Document gcov-io (PR gcov-profile/84735).
[official-gcc.git] / gcc / tree-cfg.c
blobb87e48dade6309c9668f21f106d1d53d30a0cb40
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 case annot_expr_parallel_kind:
351 break;
352 default:
353 gcc_unreachable ();
356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 gimple_call_arg (stmt, 0));
359 gsi_replace (&gsi, stmt, true);
364 /* Lower internal PHI function from GIMPLE FE. */
366 static void
367 lower_phi_internal_fn ()
369 basic_block bb, pred = NULL;
370 gimple_stmt_iterator gsi;
371 tree lhs;
372 gphi *phi_node;
373 gimple *stmt;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb, cfun)
378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
380 stmt = gsi_stmt (gsi);
381 if (! gimple_call_internal_p (stmt, IFN_PHI))
382 break;
384 lhs = gimple_call_lhs (stmt);
385 phi_node = create_phi_node (lhs, bb);
387 /* Add arguments to the PHI node. */
388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
390 tree arg = gimple_call_arg (stmt, i);
391 if (TREE_CODE (arg) == LABEL_DECL)
392 pred = label_to_block (arg);
393 else
395 edge e = find_edge (pred, bb);
396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
400 gsi_remove (&gsi, true);
405 static unsigned int
406 execute_build_cfg (void)
408 gimple_seq body = gimple_body (current_function_decl);
410 build_gimple_cfg (body);
411 gimple_set_body (current_function_decl, NULL);
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Scope blocks:\n");
415 dump_scope_blocks (dump_file, dump_flags);
417 cleanup_tree_cfg ();
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419 replace_loop_annotate ();
420 return 0;
423 namespace {
425 const pass_data pass_data_build_cfg =
427 GIMPLE_PASS, /* type */
428 "cfg", /* name */
429 OPTGROUP_NONE, /* optinfo_flags */
430 TV_TREE_CFG, /* tv_id */
431 PROP_gimple_leh, /* properties_required */
432 ( PROP_cfg | PROP_loops ), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg : public gimple_opt_pass
440 public:
441 pass_build_cfg (gcc::context *ctxt)
442 : gimple_opt_pass (pass_data_build_cfg, ctxt)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function *) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
450 } // anon namespace
452 gimple_opt_pass *
453 make_pass_build_cfg (gcc::context *ctxt)
455 return new pass_build_cfg (ctxt);
459 /* Return true if T is a computed goto. */
461 bool
462 computed_goto_p (gimple *t)
464 return (gimple_code (t) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
471 bool
472 gimple_seq_unreachable_p (gimple_seq stmts)
474 if (stmts == NULL
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 later. */
479 || sanitize_flags_p (SANITIZE_UNREACHABLE))
480 return false;
482 gimple_stmt_iterator gsi = gsi_last (stmts);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485 return false;
487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
489 gimple *stmt = gsi_stmt (gsi);
490 if (gimple_code (stmt) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt)
492 && !gimple_clobber_p (stmt))
493 return false;
495 return true;
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
501 <bb C>:
503 if (something)
504 goto <bb N>;
505 else
506 goto <bb M>;
507 <bb N>:
508 __builtin_unreachable ();
509 <bb M>: */
511 bool
512 assert_unreachable_fallthru_edge_p (edge e)
514 basic_block pred_bb = e->src;
515 gimple *last = last_stmt (pred_bb);
516 if (last && gimple_code (last) == GIMPLE_COND)
518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519 if (other_bb == e->dest)
520 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521 if (EDGE_COUNT (other_bb->succs) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb));
524 return false;
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
532 static void
533 gimple_call_initialize_ctrl_altering (gimple *stmt)
535 int flags = gimple_call_flags (stmt);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt)
539 /* A call also alters control flow if it does not return. */
540 || flags & ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags & ECF_TM_BUILTIN)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt)
551 && gimple_call_internal_unique_p (stmt)))
552 gimple_call_set_ctrl_altering (stmt, true);
553 else
554 gimple_call_set_ctrl_altering (stmt, false);
558 /* Insert SEQ after BB and build a flowgraph. */
560 static basic_block
561 make_blocks_1 (gimple_seq seq, basic_block bb)
563 gimple_stmt_iterator i = gsi_start (seq);
564 gimple *stmt = NULL;
565 gimple *prev_stmt = NULL;
566 bool start_new_block = true;
567 bool first_stmt_of_seq = true;
569 while (!gsi_end_p (i))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 prev_stmt = stmt;
581 stmt = gsi_stmt (i);
583 if (stmt && is_gimple_call (stmt))
584 gimple_call_initialize_ctrl_altering (stmt);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
588 so now. */
589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
591 if (!first_stmt_of_seq)
592 gsi_split_seq_before (&i, &seq);
593 bb = create_basic_block (seq, bb);
594 start_new_block = false;
595 prev_stmt = NULL;
598 /* Now add STMT to BB and create the subgraphs for special statement
599 codes. */
600 gimple_set_bb (stmt, bb);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 next iteration. */
604 if (stmt_ends_bb_p (stmt))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
610 SSA names. */
611 if (gimple_has_lhs (stmt)
612 && stmt_can_make_abnormal_goto (stmt)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
615 tree lhs = gimple_get_lhs (stmt);
616 tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 gimple *s = gimple_build_assign (lhs, tmp);
618 gimple_set_location (s, gimple_location (stmt));
619 gimple_set_block (s, gimple_block (stmt));
620 gimple_set_lhs (stmt, tmp);
621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 DECL_GIMPLE_REG_P (tmp) = 1;
624 gsi_insert_after (&i, s, GSI_SAME_STMT);
626 start_new_block = true;
629 gsi_next (&i);
630 first_stmt_of_seq = false;
632 return bb;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
637 static void
638 make_blocks (gimple_seq seq)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
656 label. */
657 if (MAY_HAVE_DEBUG_MARKER_STMTS)
659 gimple_stmt_iterator label = gsi_none ();
661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
663 gimple *stmt = gsi_stmt (i);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a <glabel *> (stmt))
669 if (gsi_end_p (label))
670 label = i;
671 continue;
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label))
677 continue;
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
689 LABEL. */
690 gimple_stmt_iterator copy = label;
691 gsi_move_after (&i, &copy);
692 continue;
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
697 label = gsi_none ();
701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
704 /* Create and return a new empty basic block after bb AFTER. */
706 static basic_block
707 create_bb (void *h, void *e, basic_block after)
709 basic_block bb;
711 gcc_assert (!e);
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
716 bb = alloc_block ();
718 bb->index = last_basic_block_for_fn (cfun);
719 bb->flags = BB_NEW;
720 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb, after);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun)
727 == basic_block_info_for_fn (cfun)->length ())
729 size_t new_size =
730 (last_basic_block_for_fn (cfun)
731 + (last_basic_block_for_fn (cfun) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
738 n_basic_blocks_for_fn (cfun)++;
739 last_basic_block_for_fn (cfun)++;
741 return bb;
745 /*---------------------------------------------------------------------------
746 Edge creation
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
753 basic_block
754 get_abnormal_succ_dispatcher (basic_block bb)
756 edge e;
757 edge_iterator ei;
759 FOR_EACH_EDGE (e, ei, bb->succs)
760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e->dest);
764 gimple *g = gsi_stmt (gsi);
765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 return e->dest;
768 return NULL;
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 static void
777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 basic_block for_bb, int *bb_to_omp_idx,
779 auto_vec<basic_block> *bbs, bool computed_goto)
781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782 unsigned int idx = 0;
783 basic_block bb;
784 bool inner = false;
786 if (bb_to_omp_idx)
788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789 if (bb_to_omp_idx[for_bb->index] != 0)
790 inner = true;
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
795 for_bb. */
796 if (*dispatcher == NULL)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
800 early. */
801 if (bb_to_omp_idx == NULL)
803 if (bbs->is_empty ())
804 return;
806 else
808 FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 break;
811 if (bb == NULL)
812 return;
815 /* Create the dispatcher bb. */
816 *dispatcher = create_basic_block (NULL, for_bb);
817 if (computed_goto)
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var = create_tmp_var (ptr_type_node, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION);
833 gimple *factored_computed_goto_label
834 = gimple_build_label (factored_label_decl);
835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
837 /* Build our new computed goto. */
838 gimple *factored_computed_goto = gimple_build_goto (var);
839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
841 FOR_EACH_VEC_ELT (*bbs, idx, bb)
843 if (bb_to_omp_idx
844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 continue;
847 gsi = gsi_last_bb (bb);
848 gimple *last = gsi_stmt (gsi);
850 gcc_assert (computed_goto_p (last));
852 /* Copy the original computed goto's destination into VAR. */
853 gimple *assignment
854 = gimple_build_assign (var, gimple_goto_dest (last));
855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 e->goto_locus = gimple_location (last);
859 gsi_remove (&gsi, true);
862 else
864 tree arg = inner ? boolean_true_node : boolean_false_node;
865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 1, arg);
867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs, idx, bb)
873 if (bb_to_omp_idx
874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 continue;
876 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 static int
890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
892 gimple *last = last_stmt (bb);
893 bool fallthru = false;
894 int ret = 0;
896 if (!last)
897 return ret;
899 switch (gimple_code (last))
901 case GIMPLE_GOTO:
902 if (make_goto_expr_edges (bb))
903 ret = 1;
904 fallthru = false;
905 break;
906 case GIMPLE_RETURN:
908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 e->goto_locus = gimple_location (last);
910 fallthru = false;
912 break;
913 case GIMPLE_COND:
914 make_cond_expr_edges (bb);
915 fallthru = false;
916 break;
917 case GIMPLE_SWITCH:
918 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919 fallthru = false;
920 break;
921 case GIMPLE_RESX:
922 make_eh_edges (last);
923 fallthru = false;
924 break;
925 case GIMPLE_EH_DISPATCH:
926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927 break;
929 case GIMPLE_CALL:
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
932 handlers. */
933 if (stmt_can_make_abnormal_goto (last))
934 ret = 2;
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 fallthru = false;
946 /* Some calls are known not to return. */
947 else
948 fallthru = !gimple_call_noreturn_p (last);
949 break;
951 case GIMPLE_ASSIGN:
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 control-altering. */
954 if (is_ctrl_altering_stmt (last))
955 make_eh_edges (last);
956 fallthru = true;
957 break;
959 case GIMPLE_ASM:
960 make_gimple_asm_edges (bb);
961 fallthru = true;
962 break;
964 CASE_GIMPLE_OMP:
965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966 break;
968 case GIMPLE_TRANSACTION:
970 gtransaction *txn = as_a <gtransaction *> (last);
971 tree label1 = gimple_transaction_label_norm (txn);
972 tree label2 = gimple_transaction_label_uninst (txn);
974 if (label1)
975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 if (label2)
977 make_edge (bb, label_to_block (label2),
978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
980 tree label3 = gimple_transaction_label_over (txn);
981 if (gimple_transaction_subcode (txn)
982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
985 fallthru = false;
987 break;
989 default:
990 gcc_assert (!stmt_ends_bb_p (last));
991 fallthru = true;
992 break;
995 if (fallthru)
996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
998 return ret;
1001 /* Join all the blocks in the flowgraph. */
1003 static void
1004 make_edges (void)
1006 basic_block bb;
1007 struct omp_region *cur_region = NULL;
1008 auto_vec<basic_block> ab_edge_goto;
1009 auto_vec<basic_block> ab_edge_call;
1010 int *bb_to_omp_idx = NULL;
1011 int cur_omp_region_idx = 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 EDGE_FALLTHRU);
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb, cfun)
1022 int mer;
1024 if (bb_to_omp_idx)
1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028 if (mer == 1)
1029 ab_edge_goto.safe_push (bb);
1030 else if (mer == 2)
1031 ab_edge_call.safe_push (bb);
1033 if (cur_region && bb_to_omp_idx == NULL)
1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1054 gimple_stmt_iterator gsi;
1055 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056 basic_block *dispatcher_bbs = dispatcher_bb_array;
1057 int count = n_basic_blocks_for_fn (cfun);
1059 if (bb_to_omp_idx)
1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1062 FOR_EACH_BB_FN (bb, cfun)
1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 tree target;
1069 if (!label_stmt)
1070 break;
1072 target = gimple_label_label (label_stmt);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target))
1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 &ab_edge_goto, true);
1079 if (DECL_NONLOCAL (target))
1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 &ab_edge_call, false);
1083 break;
1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 gsi_next_nondebug (&gsi);
1089 if (!gsi_end_p (gsi))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple *call_stmt = gsi_stmt (gsi);
1093 if (is_gimple_call (call_stmt)
1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 || gimple_call_builtin_p (call_stmt,
1096 BUILT_IN_SETJMP_RECEIVER)))
1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 &ab_edge_call, false);
1102 if (bb_to_omp_idx)
1103 XDELETE (dispatcher_bbs);
1106 XDELETE (bb_to_omp_idx);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 bool
1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1121 gimple *stmt = gsi_stmt (*gsi);
1122 basic_block bb = gimple_bb (stmt);
1123 basic_block lastbb, afterbb;
1124 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125 edge e;
1126 lastbb = make_blocks_1 (seq, bb);
1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128 return false;
1129 e = split_block (bb, stmt);
1130 /* Move e->dest to come after the new basic blocks. */
1131 afterbb = e->dest;
1132 unlink_block (afterbb);
1133 link_block (afterbb, lastbb);
1134 redirect_edge_succ (e, bb->next_bb);
1135 bb = bb->next_bb;
1136 while (bb != afterbb)
1138 struct omp_region *cur_region = NULL;
1139 profile_count cnt = profile_count::zero ();
1140 bool all = true;
1142 int cur_omp_region_idx = 0;
1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144 gcc_assert (!mer && !cur_region);
1145 add_bb_to_loop (bb, afterbb->loop_father);
1147 edge e;
1148 edge_iterator ei;
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1151 if (e->count ().initialized_p ())
1152 cnt += e->count ();
1153 else
1154 all = false;
1156 tree_guess_outgoing_edge_probabilities (bb);
1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158 bb->count = cnt;
1160 bb = bb->next_bb;
1162 return true;
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1168 profiling. */
1170 static int
1171 next_discriminator_for_locus (location_t locus)
1173 struct locus_discrim_map item;
1174 struct locus_discrim_map **slot;
1176 item.locus = locus;
1177 item.discriminator = 0;
1178 slot = discriminator_per_locus->find_slot_with_hash (
1179 &item, LOCATION_LINE (locus), INSERT);
1180 gcc_assert (slot);
1181 if (*slot == HTAB_EMPTY_ENTRY)
1183 *slot = XNEW (struct locus_discrim_map);
1184 gcc_assert (*slot);
1185 (*slot)->locus = locus;
1186 (*slot)->discriminator = 0;
1188 (*slot)->discriminator++;
1189 return (*slot)->discriminator;
1192 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1194 static bool
1195 same_line_p (location_t locus1, location_t locus2)
1197 expanded_location from, to;
1199 if (locus1 == locus2)
1200 return true;
1202 from = expand_location (locus1);
1203 to = expand_location (locus2);
1205 if (from.line != to.line)
1206 return false;
1207 if (from.file == to.file)
1208 return true;
1209 return (from.file != NULL
1210 && to.file != NULL
1211 && filename_cmp (from.file, to.file) == 0);
1214 /* Assign discriminators to each basic block. */
1216 static void
1217 assign_discriminators (void)
1219 basic_block bb;
1221 FOR_EACH_BB_FN (bb, cfun)
1223 edge e;
1224 edge_iterator ei;
1225 gimple *last = last_stmt (bb);
1226 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1228 if (locus == UNKNOWN_LOCATION)
1229 continue;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 gimple *first = first_non_label_stmt (e->dest);
1234 gimple *last = last_stmt (e->dest);
1235 if ((first && same_line_p (locus, gimple_location (first)))
1236 || (last && same_line_p (locus, gimple_location (last))))
1238 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1239 bb->discriminator = next_discriminator_for_locus (locus);
1240 else
1241 e->dest->discriminator = next_discriminator_for_locus (locus);
1247 /* Create the edges for a GIMPLE_COND starting at block BB. */
1249 static void
1250 make_cond_expr_edges (basic_block bb)
1252 gcond *entry = as_a <gcond *> (last_stmt (bb));
1253 gimple *then_stmt, *else_stmt;
1254 basic_block then_bb, else_bb;
1255 tree then_label, else_label;
1256 edge e;
1258 gcc_assert (entry);
1259 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1261 /* Entry basic blocks for each component. */
1262 then_label = gimple_cond_true_label (entry);
1263 else_label = gimple_cond_false_label (entry);
1264 then_bb = label_to_block (then_label);
1265 else_bb = label_to_block (else_label);
1266 then_stmt = first_stmt (then_bb);
1267 else_stmt = first_stmt (else_bb);
1269 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1270 e->goto_locus = gimple_location (then_stmt);
1271 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1272 if (e)
1273 e->goto_locus = gimple_location (else_stmt);
1275 /* We do not need the labels anymore. */
1276 gimple_cond_set_true_label (entry, NULL_TREE);
1277 gimple_cond_set_false_label (entry, NULL_TREE);
1281 /* Called for each element in the hash table (P) as we delete the
1282 edge to cases hash table.
1284 Clear all the CASE_CHAINs to prevent problems with copying of
1285 SWITCH_EXPRs and structure sharing rules, then free the hash table
1286 element. */
1288 bool
1289 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1291 tree t, next;
1293 for (t = value; t; t = next)
1295 next = CASE_CHAIN (t);
1296 CASE_CHAIN (t) = NULL;
1299 return true;
1302 /* Start recording information mapping edges to case labels. */
1304 void
1305 start_recording_case_labels (void)
1307 gcc_assert (edge_to_cases == NULL);
1308 edge_to_cases = new hash_map<edge, tree>;
1309 touched_switch_bbs = BITMAP_ALLOC (NULL);
1312 /* Return nonzero if we are recording information for case labels. */
1314 static bool
1315 recording_case_labels_p (void)
1317 return (edge_to_cases != NULL);
1320 /* Stop recording information mapping edges to case labels and
1321 remove any information we have recorded. */
1322 void
1323 end_recording_case_labels (void)
1325 bitmap_iterator bi;
1326 unsigned i;
1327 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1328 delete edge_to_cases;
1329 edge_to_cases = NULL;
1330 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1332 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1333 if (bb)
1335 gimple *stmt = last_stmt (bb);
1336 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1337 group_case_labels_stmt (as_a <gswitch *> (stmt));
1340 BITMAP_FREE (touched_switch_bbs);
1343 /* If we are inside a {start,end}_recording_cases block, then return
1344 a chain of CASE_LABEL_EXPRs from T which reference E.
1346 Otherwise return NULL. */
1348 static tree
1349 get_cases_for_edge (edge e, gswitch *t)
1351 tree *slot;
1352 size_t i, n;
1354 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1355 chains available. Return NULL so the caller can detect this case. */
1356 if (!recording_case_labels_p ())
1357 return NULL;
1359 slot = edge_to_cases->get (e);
1360 if (slot)
1361 return *slot;
1363 /* If we did not find E in the hash table, then this must be the first
1364 time we have been queried for information about E & T. Add all the
1365 elements from T to the hash table then perform the query again. */
1367 n = gimple_switch_num_labels (t);
1368 for (i = 0; i < n; i++)
1370 tree elt = gimple_switch_label (t, i);
1371 tree lab = CASE_LABEL (elt);
1372 basic_block label_bb = label_to_block (lab);
1373 edge this_edge = find_edge (e->src, label_bb);
1375 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1376 a new chain. */
1377 tree &s = edge_to_cases->get_or_insert (this_edge);
1378 CASE_CHAIN (elt) = s;
1379 s = elt;
1382 return *edge_to_cases->get (e);
1385 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1387 static void
1388 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1390 size_t i, n;
1392 n = gimple_switch_num_labels (entry);
1394 for (i = 0; i < n; ++i)
1396 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1397 basic_block label_bb = label_to_block (lab);
1398 make_edge (bb, label_bb, 0);
1403 /* Return the basic block holding label DEST. */
1405 basic_block
1406 label_to_block_fn (struct function *ifun, tree dest)
1408 int uid = LABEL_DECL_UID (dest);
1410 /* We would die hard when faced by an undefined label. Emit a label to
1411 the very first basic block. This will hopefully make even the dataflow
1412 and undefined variable warnings quite right. */
1413 if (seen_error () && uid < 0)
1415 gimple_stmt_iterator gsi =
1416 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1417 gimple *stmt;
1419 stmt = gimple_build_label (dest);
1420 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1421 uid = LABEL_DECL_UID (dest);
1423 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1424 return NULL;
1425 return (*ifun->cfg->x_label_to_block_map)[uid];
1428 /* Create edges for a goto statement at block BB. Returns true
1429 if abnormal edges should be created. */
1431 static bool
1432 make_goto_expr_edges (basic_block bb)
1434 gimple_stmt_iterator last = gsi_last_bb (bb);
1435 gimple *goto_t = gsi_stmt (last);
1437 /* A simple GOTO creates normal edges. */
1438 if (simple_goto_p (goto_t))
1440 tree dest = gimple_goto_dest (goto_t);
1441 basic_block label_bb = label_to_block (dest);
1442 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1443 e->goto_locus = gimple_location (goto_t);
1444 gsi_remove (&last, true);
1445 return false;
1448 /* A computed GOTO creates abnormal edges. */
1449 return true;
1452 /* Create edges for an asm statement with labels at block BB. */
1454 static void
1455 make_gimple_asm_edges (basic_block bb)
1457 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1458 int i, n = gimple_asm_nlabels (stmt);
1460 for (i = 0; i < n; ++i)
1462 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1463 basic_block label_bb = label_to_block (label);
1464 make_edge (bb, label_bb, 0);
1468 /*---------------------------------------------------------------------------
1469 Flowgraph analysis
1470 ---------------------------------------------------------------------------*/
1472 /* Cleanup useless labels in basic blocks. This is something we wish
1473 to do early because it allows us to group case labels before creating
1474 the edges for the CFG, and it speeds up block statement iterators in
1475 all passes later on.
1476 We rerun this pass after CFG is created, to get rid of the labels that
1477 are no longer referenced. After then we do not run it any more, since
1478 (almost) no new labels should be created. */
1480 /* A map from basic block index to the leading label of that block. */
1481 static struct label_record
1483 /* The label. */
1484 tree label;
1486 /* True if the label is referenced from somewhere. */
1487 bool used;
1488 } *label_for_bb;
1490 /* Given LABEL return the first label in the same basic block. */
1492 static tree
1493 main_block_label (tree label)
1495 basic_block bb = label_to_block (label);
1496 tree main_label = label_for_bb[bb->index].label;
1498 /* label_to_block possibly inserted undefined label into the chain. */
1499 if (!main_label)
1501 label_for_bb[bb->index].label = label;
1502 main_label = label;
1505 label_for_bb[bb->index].used = true;
1506 return main_label;
1509 /* Clean up redundant labels within the exception tree. */
1511 static void
1512 cleanup_dead_labels_eh (void)
1514 eh_landing_pad lp;
1515 eh_region r;
1516 tree lab;
1517 int i;
1519 if (cfun->eh == NULL)
1520 return;
1522 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1523 if (lp && lp->post_landing_pad)
1525 lab = main_block_label (lp->post_landing_pad);
1526 if (lab != lp->post_landing_pad)
1528 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1529 EH_LANDING_PAD_NR (lab) = lp->index;
1533 FOR_ALL_EH_REGION (r)
1534 switch (r->type)
1536 case ERT_CLEANUP:
1537 case ERT_MUST_NOT_THROW:
1538 break;
1540 case ERT_TRY:
1542 eh_catch c;
1543 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1545 lab = c->label;
1546 if (lab)
1547 c->label = main_block_label (lab);
1550 break;
1552 case ERT_ALLOWED_EXCEPTIONS:
1553 lab = r->u.allowed.label;
1554 if (lab)
1555 r->u.allowed.label = main_block_label (lab);
1556 break;
1561 /* Cleanup redundant labels. This is a three-step process:
1562 1) Find the leading label for each block.
1563 2) Redirect all references to labels to the leading labels.
1564 3) Cleanup all useless labels. */
1566 void
1567 cleanup_dead_labels (void)
1569 basic_block bb;
1570 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1572 /* Find a suitable label for each block. We use the first user-defined
1573 label if there is one, or otherwise just the first label we see. */
1574 FOR_EACH_BB_FN (bb, cfun)
1576 gimple_stmt_iterator i;
1578 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1580 tree label;
1581 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1583 if (!label_stmt)
1584 break;
1586 label = gimple_label_label (label_stmt);
1588 /* If we have not yet seen a label for the current block,
1589 remember this one and see if there are more labels. */
1590 if (!label_for_bb[bb->index].label)
1592 label_for_bb[bb->index].label = label;
1593 continue;
1596 /* If we did see a label for the current block already, but it
1597 is an artificially created label, replace it if the current
1598 label is a user defined label. */
1599 if (!DECL_ARTIFICIAL (label)
1600 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1602 label_for_bb[bb->index].label = label;
1603 break;
1608 /* Now redirect all jumps/branches to the selected label.
1609 First do so for each block ending in a control statement. */
1610 FOR_EACH_BB_FN (bb, cfun)
1612 gimple *stmt = last_stmt (bb);
1613 tree label, new_label;
1615 if (!stmt)
1616 continue;
1618 switch (gimple_code (stmt))
1620 case GIMPLE_COND:
1622 gcond *cond_stmt = as_a <gcond *> (stmt);
1623 label = gimple_cond_true_label (cond_stmt);
1624 if (label)
1626 new_label = main_block_label (label);
1627 if (new_label != label)
1628 gimple_cond_set_true_label (cond_stmt, new_label);
1631 label = gimple_cond_false_label (cond_stmt);
1632 if (label)
1634 new_label = main_block_label (label);
1635 if (new_label != label)
1636 gimple_cond_set_false_label (cond_stmt, new_label);
1639 break;
1641 case GIMPLE_SWITCH:
1643 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1644 size_t i, n = gimple_switch_num_labels (switch_stmt);
1646 /* Replace all destination labels. */
1647 for (i = 0; i < n; ++i)
1649 tree case_label = gimple_switch_label (switch_stmt, i);
1650 label = CASE_LABEL (case_label);
1651 new_label = main_block_label (label);
1652 if (new_label != label)
1653 CASE_LABEL (case_label) = new_label;
1655 break;
1658 case GIMPLE_ASM:
1660 gasm *asm_stmt = as_a <gasm *> (stmt);
1661 int i, n = gimple_asm_nlabels (asm_stmt);
1663 for (i = 0; i < n; ++i)
1665 tree cons = gimple_asm_label_op (asm_stmt, i);
1666 tree label = main_block_label (TREE_VALUE (cons));
1667 TREE_VALUE (cons) = label;
1669 break;
1672 /* We have to handle gotos until they're removed, and we don't
1673 remove them until after we've created the CFG edges. */
1674 case GIMPLE_GOTO:
1675 if (!computed_goto_p (stmt))
1677 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1678 label = gimple_goto_dest (goto_stmt);
1679 new_label = main_block_label (label);
1680 if (new_label != label)
1681 gimple_goto_set_dest (goto_stmt, new_label);
1683 break;
1685 case GIMPLE_TRANSACTION:
1687 gtransaction *txn = as_a <gtransaction *> (stmt);
1689 label = gimple_transaction_label_norm (txn);
1690 if (label)
1692 new_label = main_block_label (label);
1693 if (new_label != label)
1694 gimple_transaction_set_label_norm (txn, new_label);
1697 label = gimple_transaction_label_uninst (txn);
1698 if (label)
1700 new_label = main_block_label (label);
1701 if (new_label != label)
1702 gimple_transaction_set_label_uninst (txn, new_label);
1705 label = gimple_transaction_label_over (txn);
1706 if (label)
1708 new_label = main_block_label (label);
1709 if (new_label != label)
1710 gimple_transaction_set_label_over (txn, new_label);
1713 break;
1715 default:
1716 break;
1720 /* Do the same for the exception region tree labels. */
1721 cleanup_dead_labels_eh ();
1723 /* Finally, purge dead labels. All user-defined labels and labels that
1724 can be the target of non-local gotos and labels which have their
1725 address taken are preserved. */
1726 FOR_EACH_BB_FN (bb, cfun)
1728 gimple_stmt_iterator i;
1729 tree label_for_this_bb = label_for_bb[bb->index].label;
1731 if (!label_for_this_bb)
1732 continue;
1734 /* If the main label of the block is unused, we may still remove it. */
1735 if (!label_for_bb[bb->index].used)
1736 label_for_this_bb = NULL;
1738 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1740 tree label;
1741 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1743 if (!label_stmt)
1744 break;
1746 label = gimple_label_label (label_stmt);
1748 if (label == label_for_this_bb
1749 || !DECL_ARTIFICIAL (label)
1750 || DECL_NONLOCAL (label)
1751 || FORCED_LABEL (label))
1752 gsi_next (&i);
1753 else
1754 gsi_remove (&i, true);
1758 free (label_for_bb);
1761 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1762 the ones jumping to the same label.
1763 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1765 bool
1766 group_case_labels_stmt (gswitch *stmt)
1768 int old_size = gimple_switch_num_labels (stmt);
1769 int i, next_index, new_size;
1770 basic_block default_bb = NULL;
1772 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1774 /* Look for possible opportunities to merge cases. */
1775 new_size = i = 1;
1776 while (i < old_size)
1778 tree base_case, base_high;
1779 basic_block base_bb;
1781 base_case = gimple_switch_label (stmt, i);
1783 gcc_assert (base_case);
1784 base_bb = label_to_block (CASE_LABEL (base_case));
1786 /* Discard cases that have the same destination as the default case or
1787 whose destiniation blocks have already been removed as unreachable. */
1788 if (base_bb == NULL || base_bb == default_bb)
1790 i++;
1791 continue;
1794 base_high = CASE_HIGH (base_case)
1795 ? CASE_HIGH (base_case)
1796 : CASE_LOW (base_case);
1797 next_index = i + 1;
1799 /* Try to merge case labels. Break out when we reach the end
1800 of the label vector or when we cannot merge the next case
1801 label with the current one. */
1802 while (next_index < old_size)
1804 tree merge_case = gimple_switch_label (stmt, next_index);
1805 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1806 wide_int bhp1 = wi::to_wide (base_high) + 1;
1808 /* Merge the cases if they jump to the same place,
1809 and their ranges are consecutive. */
1810 if (merge_bb == base_bb
1811 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1813 base_high = CASE_HIGH (merge_case) ?
1814 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1815 CASE_HIGH (base_case) = base_high;
1816 next_index++;
1818 else
1819 break;
1822 /* Discard cases that have an unreachable destination block. */
1823 if (EDGE_COUNT (base_bb->succs) == 0
1824 && gimple_seq_unreachable_p (bb_seq (base_bb))
1825 /* Don't optimize this if __builtin_unreachable () is the
1826 implicitly added one by the C++ FE too early, before
1827 -Wreturn-type can be diagnosed. We'll optimize it later
1828 during switchconv pass or any other cfg cleanup. */
1829 && (gimple_in_ssa_p (cfun)
1830 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1831 != BUILTINS_LOCATION)))
1833 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1834 if (base_edge != NULL)
1835 remove_edge_and_dominated_blocks (base_edge);
1836 i = next_index;
1837 continue;
1840 if (new_size < i)
1841 gimple_switch_set_label (stmt, new_size,
1842 gimple_switch_label (stmt, i));
1843 i = next_index;
1844 new_size++;
1847 gcc_assert (new_size <= old_size);
1849 if (new_size < old_size)
1850 gimple_switch_set_num_labels (stmt, new_size);
1852 return new_size < old_size;
1855 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1856 and scan the sorted vector of cases. Combine the ones jumping to the
1857 same label. */
1859 bool
1860 group_case_labels (void)
1862 basic_block bb;
1863 bool changed = false;
1865 FOR_EACH_BB_FN (bb, cfun)
1867 gimple *stmt = last_stmt (bb);
1868 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1869 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1872 return changed;
1875 /* Checks whether we can merge block B into block A. */
1877 static bool
1878 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1880 gimple *stmt;
1882 if (!single_succ_p (a))
1883 return false;
1885 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1886 return false;
1888 if (single_succ (a) != b)
1889 return false;
1891 if (!single_pred_p (b))
1892 return false;
1894 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1895 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1896 return false;
1898 /* If A ends by a statement causing exceptions or something similar, we
1899 cannot merge the blocks. */
1900 stmt = last_stmt (a);
1901 if (stmt && stmt_ends_bb_p (stmt))
1902 return false;
1904 /* Do not allow a block with only a non-local label to be merged. */
1905 if (stmt)
1906 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1907 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1908 return false;
1910 /* Examine the labels at the beginning of B. */
1911 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1912 gsi_next (&gsi))
1914 tree lab;
1915 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1916 if (!label_stmt)
1917 break;
1918 lab = gimple_label_label (label_stmt);
1920 /* Do not remove user forced labels or for -O0 any user labels. */
1921 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1922 return false;
1925 /* Protect simple loop latches. We only want to avoid merging
1926 the latch with the loop header or with a block in another
1927 loop in this case. */
1928 if (current_loops
1929 && b->loop_father->latch == b
1930 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1931 && (b->loop_father->header == a
1932 || b->loop_father != a->loop_father))
1933 return false;
1935 /* It must be possible to eliminate all phi nodes in B. If ssa form
1936 is not up-to-date and a name-mapping is registered, we cannot eliminate
1937 any phis. Symbols marked for renaming are never a problem though. */
1938 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1939 gsi_next (&gsi))
1941 gphi *phi = gsi.phi ();
1942 /* Technically only new names matter. */
1943 if (name_registered_for_update_p (PHI_RESULT (phi)))
1944 return false;
1947 /* When not optimizing, don't merge if we'd lose goto_locus. */
1948 if (!optimize
1949 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1951 location_t goto_locus = single_succ_edge (a)->goto_locus;
1952 gimple_stmt_iterator prev, next;
1953 prev = gsi_last_nondebug_bb (a);
1954 next = gsi_after_labels (b);
1955 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1956 gsi_next_nondebug (&next);
1957 if ((gsi_end_p (prev)
1958 || gimple_location (gsi_stmt (prev)) != goto_locus)
1959 && (gsi_end_p (next)
1960 || gimple_location (gsi_stmt (next)) != goto_locus))
1961 return false;
1964 return true;
1967 /* Replaces all uses of NAME by VAL. */
1969 void
1970 replace_uses_by (tree name, tree val)
1972 imm_use_iterator imm_iter;
1973 use_operand_p use;
1974 gimple *stmt;
1975 edge e;
1977 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1979 /* Mark the block if we change the last stmt in it. */
1980 if (cfgcleanup_altered_bbs
1981 && stmt_ends_bb_p (stmt))
1982 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1984 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1986 replace_exp (use, val);
1988 if (gimple_code (stmt) == GIMPLE_PHI)
1990 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1991 PHI_ARG_INDEX_FROM_USE (use));
1992 if (e->flags & EDGE_ABNORMAL
1993 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1995 /* This can only occur for virtual operands, since
1996 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1997 would prevent replacement. */
1998 gcc_checking_assert (virtual_operand_p (name));
1999 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2004 if (gimple_code (stmt) != GIMPLE_PHI)
2006 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2007 gimple *orig_stmt = stmt;
2008 size_t i;
2010 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2011 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2012 only change sth from non-invariant to invariant, and only
2013 when propagating constants. */
2014 if (is_gimple_min_invariant (val))
2015 for (i = 0; i < gimple_num_ops (stmt); i++)
2017 tree op = gimple_op (stmt, i);
2018 /* Operands may be empty here. For example, the labels
2019 of a GIMPLE_COND are nulled out following the creation
2020 of the corresponding CFG edges. */
2021 if (op && TREE_CODE (op) == ADDR_EXPR)
2022 recompute_tree_invariant_for_addr_expr (op);
2025 if (fold_stmt (&gsi))
2026 stmt = gsi_stmt (gsi);
2028 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2029 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2031 update_stmt (stmt);
2035 gcc_checking_assert (has_zero_uses (name));
2037 /* Also update the trees stored in loop structures. */
2038 if (current_loops)
2040 struct loop *loop;
2042 FOR_EACH_LOOP (loop, 0)
2044 substitute_in_loop_info (loop, name, val);
2049 /* Merge block B into block A. */
2051 static void
2052 gimple_merge_blocks (basic_block a, basic_block b)
2054 gimple_stmt_iterator last, gsi;
2055 gphi_iterator psi;
2057 if (dump_file)
2058 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2060 /* Remove all single-valued PHI nodes from block B of the form
2061 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2062 gsi = gsi_last_bb (a);
2063 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2065 gimple *phi = gsi_stmt (psi);
2066 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2067 gimple *copy;
2068 bool may_replace_uses = (virtual_operand_p (def)
2069 || may_propagate_copy (def, use));
2071 /* In case we maintain loop closed ssa form, do not propagate arguments
2072 of loop exit phi nodes. */
2073 if (current_loops
2074 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2075 && !virtual_operand_p (def)
2076 && TREE_CODE (use) == SSA_NAME
2077 && a->loop_father != b->loop_father)
2078 may_replace_uses = false;
2080 if (!may_replace_uses)
2082 gcc_assert (!virtual_operand_p (def));
2084 /* Note that just emitting the copies is fine -- there is no problem
2085 with ordering of phi nodes. This is because A is the single
2086 predecessor of B, therefore results of the phi nodes cannot
2087 appear as arguments of the phi nodes. */
2088 copy = gimple_build_assign (def, use);
2089 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2090 remove_phi_node (&psi, false);
2092 else
2094 /* If we deal with a PHI for virtual operands, we can simply
2095 propagate these without fussing with folding or updating
2096 the stmt. */
2097 if (virtual_operand_p (def))
2099 imm_use_iterator iter;
2100 use_operand_p use_p;
2101 gimple *stmt;
2103 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2104 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2105 SET_USE (use_p, use);
2107 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2108 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2110 else
2111 replace_uses_by (def, use);
2113 remove_phi_node (&psi, true);
2117 /* Ensure that B follows A. */
2118 move_block_after (b, a);
2120 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2121 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2123 /* Remove labels from B and set gimple_bb to A for other statements. */
2124 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2126 gimple *stmt = gsi_stmt (gsi);
2127 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2129 tree label = gimple_label_label (label_stmt);
2130 int lp_nr;
2132 gsi_remove (&gsi, false);
2134 /* Now that we can thread computed gotos, we might have
2135 a situation where we have a forced label in block B
2136 However, the label at the start of block B might still be
2137 used in other ways (think about the runtime checking for
2138 Fortran assigned gotos). So we can not just delete the
2139 label. Instead we move the label to the start of block A. */
2140 if (FORCED_LABEL (label))
2142 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2143 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2145 /* Other user labels keep around in a form of a debug stmt. */
2146 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2148 gimple *dbg = gimple_build_debug_bind (label,
2149 integer_zero_node,
2150 stmt);
2151 gimple_debug_bind_reset_value (dbg);
2152 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2155 lp_nr = EH_LANDING_PAD_NR (label);
2156 if (lp_nr)
2158 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2159 lp->post_landing_pad = NULL;
2162 else
2164 gimple_set_bb (stmt, a);
2165 gsi_next (&gsi);
2169 /* When merging two BBs, if their counts are different, the larger count
2170 is selected as the new bb count. This is to handle inconsistent
2171 profiles. */
2172 if (a->loop_father == b->loop_father)
2174 a->count = a->count.merge (b->count);
2177 /* Merge the sequences. */
2178 last = gsi_last_bb (a);
2179 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2180 set_bb_seq (b, NULL);
2182 if (cfgcleanup_altered_bbs)
2183 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2187 /* Return the one of two successors of BB that is not reachable by a
2188 complex edge, if there is one. Else, return BB. We use
2189 this in optimizations that use post-dominators for their heuristics,
2190 to catch the cases in C++ where function calls are involved. */
2192 basic_block
2193 single_noncomplex_succ (basic_block bb)
2195 edge e0, e1;
2196 if (EDGE_COUNT (bb->succs) != 2)
2197 return bb;
2199 e0 = EDGE_SUCC (bb, 0);
2200 e1 = EDGE_SUCC (bb, 1);
2201 if (e0->flags & EDGE_COMPLEX)
2202 return e1->dest;
2203 if (e1->flags & EDGE_COMPLEX)
2204 return e0->dest;
2206 return bb;
2209 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2211 void
2212 notice_special_calls (gcall *call)
2214 int flags = gimple_call_flags (call);
2216 if (flags & ECF_MAY_BE_ALLOCA)
2217 cfun->calls_alloca = true;
2218 if (flags & ECF_RETURNS_TWICE)
2219 cfun->calls_setjmp = true;
2223 /* Clear flags set by notice_special_calls. Used by dead code removal
2224 to update the flags. */
2226 void
2227 clear_special_calls (void)
2229 cfun->calls_alloca = false;
2230 cfun->calls_setjmp = false;
2233 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2235 static void
2236 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2238 /* Since this block is no longer reachable, we can just delete all
2239 of its PHI nodes. */
2240 remove_phi_nodes (bb);
2242 /* Remove edges to BB's successors. */
2243 while (EDGE_COUNT (bb->succs) > 0)
2244 remove_edge (EDGE_SUCC (bb, 0));
2248 /* Remove statements of basic block BB. */
2250 static void
2251 remove_bb (basic_block bb)
2253 gimple_stmt_iterator i;
2255 if (dump_file)
2257 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2258 if (dump_flags & TDF_DETAILS)
2260 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2261 fprintf (dump_file, "\n");
2265 if (current_loops)
2267 struct loop *loop = bb->loop_father;
2269 /* If a loop gets removed, clean up the information associated
2270 with it. */
2271 if (loop->latch == bb
2272 || loop->header == bb)
2273 free_numbers_of_iterations_estimates (loop);
2276 /* Remove all the instructions in the block. */
2277 if (bb_seq (bb) != NULL)
2279 /* Walk backwards so as to get a chance to substitute all
2280 released DEFs into debug stmts. See
2281 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2282 details. */
2283 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2285 gimple *stmt = gsi_stmt (i);
2286 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2287 if (label_stmt
2288 && (FORCED_LABEL (gimple_label_label (label_stmt))
2289 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2291 basic_block new_bb;
2292 gimple_stmt_iterator new_gsi;
2294 /* A non-reachable non-local label may still be referenced.
2295 But it no longer needs to carry the extra semantics of
2296 non-locality. */
2297 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2299 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2300 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2303 new_bb = bb->prev_bb;
2304 new_gsi = gsi_start_bb (new_bb);
2305 gsi_remove (&i, false);
2306 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2308 else
2310 /* Release SSA definitions. */
2311 release_defs (stmt);
2312 gsi_remove (&i, true);
2315 if (gsi_end_p (i))
2316 i = gsi_last_bb (bb);
2317 else
2318 gsi_prev (&i);
2322 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2323 bb->il.gimple.seq = NULL;
2324 bb->il.gimple.phi_nodes = NULL;
2328 /* Given a basic block BB and a value VAL for use in the final statement
2329 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2330 the edge that will be taken out of the block.
2331 If VAL is NULL_TREE, then the current value of the final statement's
2332 predicate or index is used.
2333 If the value does not match a unique edge, NULL is returned. */
2335 edge
2336 find_taken_edge (basic_block bb, tree val)
2338 gimple *stmt;
2340 stmt = last_stmt (bb);
2342 /* Handle ENTRY and EXIT. */
2343 if (!stmt)
2344 return NULL;
2346 if (gimple_code (stmt) == GIMPLE_COND)
2347 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2349 if (gimple_code (stmt) == GIMPLE_SWITCH)
2350 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2352 if (computed_goto_p (stmt))
2354 /* Only optimize if the argument is a label, if the argument is
2355 not a label then we can not construct a proper CFG.
2357 It may be the case that we only need to allow the LABEL_REF to
2358 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2359 appear inside a LABEL_EXPR just to be safe. */
2360 if (val
2361 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2362 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2363 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2366 /* Otherwise we only know the taken successor edge if it's unique. */
2367 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2370 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2371 statement, determine which of the outgoing edges will be taken out of the
2372 block. Return NULL if either edge may be taken. */
2374 static edge
2375 find_taken_edge_computed_goto (basic_block bb, tree val)
2377 basic_block dest;
2378 edge e = NULL;
2380 dest = label_to_block (val);
2381 if (dest)
2382 e = find_edge (bb, dest);
2384 /* It's possible for find_edge to return NULL here on invalid code
2385 that abuses the labels-as-values extension (e.g. code that attempts to
2386 jump *between* functions via stored labels-as-values; PR 84136).
2387 If so, then we simply return that NULL for the edge.
2388 We don't currently have a way of detecting such invalid code, so we
2389 can't assert that it was the case when a NULL edge occurs here. */
2391 return e;
2394 /* Given COND_STMT and a constant value VAL for use as the predicate,
2395 determine which of the two edges will be taken out of
2396 the statement's block. Return NULL if either edge may be taken.
2397 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2398 is used. */
2400 static edge
2401 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2403 edge true_edge, false_edge;
2405 if (val == NULL_TREE)
2407 /* Use the current value of the predicate. */
2408 if (gimple_cond_true_p (cond_stmt))
2409 val = integer_one_node;
2410 else if (gimple_cond_false_p (cond_stmt))
2411 val = integer_zero_node;
2412 else
2413 return NULL;
2415 else if (TREE_CODE (val) != INTEGER_CST)
2416 return NULL;
2418 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2419 &true_edge, &false_edge);
2421 return (integer_zerop (val) ? false_edge : true_edge);
2424 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2425 which edge will be taken out of the statement's block. Return NULL if any
2426 edge may be taken.
2427 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2428 is used. */
2430 static edge
2431 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2433 basic_block dest_bb;
2434 edge e;
2435 tree taken_case;
2437 if (gimple_switch_num_labels (switch_stmt) == 1)
2438 taken_case = gimple_switch_default_label (switch_stmt);
2439 else
2441 if (val == NULL_TREE)
2442 val = gimple_switch_index (switch_stmt);
2443 if (TREE_CODE (val) != INTEGER_CST)
2444 return NULL;
2445 else
2446 taken_case = find_case_label_for_value (switch_stmt, val);
2448 dest_bb = label_to_block (CASE_LABEL (taken_case));
2450 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2451 gcc_assert (e);
2452 return e;
2456 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2457 We can make optimal use here of the fact that the case labels are
2458 sorted: We can do a binary search for a case matching VAL. */
2460 static tree
2461 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2463 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2464 tree default_case = gimple_switch_default_label (switch_stmt);
2466 for (low = 0, high = n; high - low > 1; )
2468 size_t i = (high + low) / 2;
2469 tree t = gimple_switch_label (switch_stmt, i);
2470 int cmp;
2472 /* Cache the result of comparing CASE_LOW and val. */
2473 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2475 if (cmp > 0)
2476 high = i;
2477 else
2478 low = i;
2480 if (CASE_HIGH (t) == NULL)
2482 /* A singe-valued case label. */
2483 if (cmp == 0)
2484 return t;
2486 else
2488 /* A case range. We can only handle integer ranges. */
2489 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2490 return t;
2494 return default_case;
2498 /* Dump a basic block on stderr. */
2500 void
2501 gimple_debug_bb (basic_block bb)
2503 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2507 /* Dump basic block with index N on stderr. */
2509 basic_block
2510 gimple_debug_bb_n (int n)
2512 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2513 return BASIC_BLOCK_FOR_FN (cfun, n);
2517 /* Dump the CFG on stderr.
2519 FLAGS are the same used by the tree dumping functions
2520 (see TDF_* in dumpfile.h). */
2522 void
2523 gimple_debug_cfg (dump_flags_t flags)
2525 gimple_dump_cfg (stderr, flags);
2529 /* Dump the program showing basic block boundaries on the given FILE.
2531 FLAGS are the same used by the tree dumping functions (see TDF_* in
2532 tree.h). */
2534 void
2535 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2537 if (flags & TDF_DETAILS)
2539 dump_function_header (file, current_function_decl, flags);
2540 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2541 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2542 last_basic_block_for_fn (cfun));
2544 brief_dump_cfg (file, flags);
2545 fprintf (file, "\n");
2548 if (flags & TDF_STATS)
2549 dump_cfg_stats (file);
2551 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2555 /* Dump CFG statistics on FILE. */
2557 void
2558 dump_cfg_stats (FILE *file)
2560 static long max_num_merged_labels = 0;
2561 unsigned long size, total = 0;
2562 long num_edges;
2563 basic_block bb;
2564 const char * const fmt_str = "%-30s%-13s%12s\n";
2565 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2566 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2567 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2568 const char *funcname = current_function_name ();
2570 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2572 fprintf (file, "---------------------------------------------------------\n");
2573 fprintf (file, fmt_str, "", " Number of ", "Memory");
2574 fprintf (file, fmt_str, "", " instances ", "used ");
2575 fprintf (file, "---------------------------------------------------------\n");
2577 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2578 total += size;
2579 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2580 SCALE (size), LABEL (size));
2582 num_edges = 0;
2583 FOR_EACH_BB_FN (bb, cfun)
2584 num_edges += EDGE_COUNT (bb->succs);
2585 size = num_edges * sizeof (struct edge_def);
2586 total += size;
2587 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2589 fprintf (file, "---------------------------------------------------------\n");
2590 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2591 LABEL (total));
2592 fprintf (file, "---------------------------------------------------------\n");
2593 fprintf (file, "\n");
2595 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2596 max_num_merged_labels = cfg_stats.num_merged_labels;
2598 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2599 cfg_stats.num_merged_labels, max_num_merged_labels);
2601 fprintf (file, "\n");
2605 /* Dump CFG statistics on stderr. Keep extern so that it's always
2606 linked in the final executable. */
2608 DEBUG_FUNCTION void
2609 debug_cfg_stats (void)
2611 dump_cfg_stats (stderr);
2614 /*---------------------------------------------------------------------------
2615 Miscellaneous helpers
2616 ---------------------------------------------------------------------------*/
2618 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2619 flow. Transfers of control flow associated with EH are excluded. */
2621 static bool
2622 call_can_make_abnormal_goto (gimple *t)
2624 /* If the function has no non-local labels, then a call cannot make an
2625 abnormal transfer of control. */
2626 if (!cfun->has_nonlocal_label
2627 && !cfun->calls_setjmp)
2628 return false;
2630 /* Likewise if the call has no side effects. */
2631 if (!gimple_has_side_effects (t))
2632 return false;
2634 /* Likewise if the called function is leaf. */
2635 if (gimple_call_flags (t) & ECF_LEAF)
2636 return false;
2638 return true;
2642 /* Return true if T can make an abnormal transfer of control flow.
2643 Transfers of control flow associated with EH are excluded. */
2645 bool
2646 stmt_can_make_abnormal_goto (gimple *t)
2648 if (computed_goto_p (t))
2649 return true;
2650 if (is_gimple_call (t))
2651 return call_can_make_abnormal_goto (t);
2652 return false;
2656 /* Return true if T represents a stmt that always transfers control. */
2658 bool
2659 is_ctrl_stmt (gimple *t)
2661 switch (gimple_code (t))
2663 case GIMPLE_COND:
2664 case GIMPLE_SWITCH:
2665 case GIMPLE_GOTO:
2666 case GIMPLE_RETURN:
2667 case GIMPLE_RESX:
2668 return true;
2669 default:
2670 return false;
2675 /* Return true if T is a statement that may alter the flow of control
2676 (e.g., a call to a non-returning function). */
2678 bool
2679 is_ctrl_altering_stmt (gimple *t)
2681 gcc_assert (t);
2683 switch (gimple_code (t))
2685 case GIMPLE_CALL:
2686 /* Per stmt call flag indicates whether the call could alter
2687 controlflow. */
2688 if (gimple_call_ctrl_altering_p (t))
2689 return true;
2690 break;
2692 case GIMPLE_EH_DISPATCH:
2693 /* EH_DISPATCH branches to the individual catch handlers at
2694 this level of a try or allowed-exceptions region. It can
2695 fallthru to the next statement as well. */
2696 return true;
2698 case GIMPLE_ASM:
2699 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2700 return true;
2701 break;
2703 CASE_GIMPLE_OMP:
2704 /* OpenMP directives alter control flow. */
2705 return true;
2707 case GIMPLE_TRANSACTION:
2708 /* A transaction start alters control flow. */
2709 return true;
2711 default:
2712 break;
2715 /* If a statement can throw, it alters control flow. */
2716 return stmt_can_throw_internal (t);
2720 /* Return true if T is a simple local goto. */
2722 bool
2723 simple_goto_p (gimple *t)
2725 return (gimple_code (t) == GIMPLE_GOTO
2726 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2730 /* Return true if STMT should start a new basic block. PREV_STMT is
2731 the statement preceding STMT. It is used when STMT is a label or a
2732 case label. Labels should only start a new basic block if their
2733 previous statement wasn't a label. Otherwise, sequence of labels
2734 would generate unnecessary basic blocks that only contain a single
2735 label. */
2737 static inline bool
2738 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2740 if (stmt == NULL)
2741 return false;
2743 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2744 any nondebug stmts in the block. We don't want to start another
2745 block in this case: the debug stmt will already have started the
2746 one STMT would start if we weren't outputting debug stmts. */
2747 if (prev_stmt && is_gimple_debug (prev_stmt))
2748 return false;
2750 /* Labels start a new basic block only if the preceding statement
2751 wasn't a label of the same type. This prevents the creation of
2752 consecutive blocks that have nothing but a single label. */
2753 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2755 /* Nonlocal and computed GOTO targets always start a new block. */
2756 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2757 || FORCED_LABEL (gimple_label_label (label_stmt)))
2758 return true;
2760 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2762 if (DECL_NONLOCAL (gimple_label_label (
2763 as_a <glabel *> (prev_stmt))))
2764 return true;
2766 cfg_stats.num_merged_labels++;
2767 return false;
2769 else
2770 return true;
2772 else if (gimple_code (stmt) == GIMPLE_CALL)
2774 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2775 /* setjmp acts similar to a nonlocal GOTO target and thus should
2776 start a new block. */
2777 return true;
2778 if (gimple_call_internal_p (stmt, IFN_PHI)
2779 && prev_stmt
2780 && gimple_code (prev_stmt) != GIMPLE_LABEL
2781 && (gimple_code (prev_stmt) != GIMPLE_CALL
2782 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2783 /* PHI nodes start a new block unless preceeded by a label
2784 or another PHI. */
2785 return true;
2788 return false;
2792 /* Return true if T should end a basic block. */
2794 bool
2795 stmt_ends_bb_p (gimple *t)
2797 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2800 /* Remove block annotations and other data structures. */
2802 void
2803 delete_tree_cfg_annotations (struct function *fn)
2805 vec_free (label_to_block_map_for_fn (fn));
2808 /* Return the virtual phi in BB. */
2810 gphi *
2811 get_virtual_phi (basic_block bb)
2813 for (gphi_iterator gsi = gsi_start_phis (bb);
2814 !gsi_end_p (gsi);
2815 gsi_next (&gsi))
2817 gphi *phi = gsi.phi ();
2819 if (virtual_operand_p (PHI_RESULT (phi)))
2820 return phi;
2823 return NULL;
2826 /* Return the first statement in basic block BB. */
2828 gimple *
2829 first_stmt (basic_block bb)
2831 gimple_stmt_iterator i = gsi_start_bb (bb);
2832 gimple *stmt = NULL;
2834 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2836 gsi_next (&i);
2837 stmt = NULL;
2839 return stmt;
2842 /* Return the first non-label statement in basic block BB. */
2844 static gimple *
2845 first_non_label_stmt (basic_block bb)
2847 gimple_stmt_iterator i = gsi_start_bb (bb);
2848 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2849 gsi_next (&i);
2850 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2853 /* Return the last statement in basic block BB. */
2855 gimple *
2856 last_stmt (basic_block bb)
2858 gimple_stmt_iterator i = gsi_last_bb (bb);
2859 gimple *stmt = NULL;
2861 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2863 gsi_prev (&i);
2864 stmt = NULL;
2866 return stmt;
2869 /* Return the last statement of an otherwise empty block. Return NULL
2870 if the block is totally empty, or if it contains more than one
2871 statement. */
2873 gimple *
2874 last_and_only_stmt (basic_block bb)
2876 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2877 gimple *last, *prev;
2879 if (gsi_end_p (i))
2880 return NULL;
2882 last = gsi_stmt (i);
2883 gsi_prev_nondebug (&i);
2884 if (gsi_end_p (i))
2885 return last;
2887 /* Empty statements should no longer appear in the instruction stream.
2888 Everything that might have appeared before should be deleted by
2889 remove_useless_stmts, and the optimizers should just gsi_remove
2890 instead of smashing with build_empty_stmt.
2892 Thus the only thing that should appear here in a block containing
2893 one executable statement is a label. */
2894 prev = gsi_stmt (i);
2895 if (gimple_code (prev) == GIMPLE_LABEL)
2896 return last;
2897 else
2898 return NULL;
2901 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2903 static void
2904 reinstall_phi_args (edge new_edge, edge old_edge)
2906 edge_var_map *vm;
2907 int i;
2908 gphi_iterator phis;
2910 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2911 if (!v)
2912 return;
2914 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2915 v->iterate (i, &vm) && !gsi_end_p (phis);
2916 i++, gsi_next (&phis))
2918 gphi *phi = phis.phi ();
2919 tree result = redirect_edge_var_map_result (vm);
2920 tree arg = redirect_edge_var_map_def (vm);
2922 gcc_assert (result == gimple_phi_result (phi));
2924 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2927 redirect_edge_var_map_clear (old_edge);
2930 /* Returns the basic block after which the new basic block created
2931 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2932 near its "logical" location. This is of most help to humans looking
2933 at debugging dumps. */
2935 basic_block
2936 split_edge_bb_loc (edge edge_in)
2938 basic_block dest = edge_in->dest;
2939 basic_block dest_prev = dest->prev_bb;
2941 if (dest_prev)
2943 edge e = find_edge (dest_prev, dest);
2944 if (e && !(e->flags & EDGE_COMPLEX))
2945 return edge_in->src;
2947 return dest_prev;
2950 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2951 Abort on abnormal edges. */
2953 static basic_block
2954 gimple_split_edge (edge edge_in)
2956 basic_block new_bb, after_bb, dest;
2957 edge new_edge, e;
2959 /* Abnormal edges cannot be split. */
2960 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2962 dest = edge_in->dest;
2964 after_bb = split_edge_bb_loc (edge_in);
2966 new_bb = create_empty_bb (after_bb);
2967 new_bb->count = edge_in->count ();
2969 e = redirect_edge_and_branch (edge_in, new_bb);
2970 gcc_assert (e == edge_in);
2972 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2973 reinstall_phi_args (new_edge, e);
2975 return new_bb;
2979 /* Verify properties of the address expression T with base object BASE. */
2981 static tree
2982 verify_address (tree t, tree base)
2984 bool old_constant;
2985 bool old_side_effects;
2986 bool new_constant;
2987 bool new_side_effects;
2989 old_constant = TREE_CONSTANT (t);
2990 old_side_effects = TREE_SIDE_EFFECTS (t);
2992 recompute_tree_invariant_for_addr_expr (t);
2993 new_side_effects = TREE_SIDE_EFFECTS (t);
2994 new_constant = TREE_CONSTANT (t);
2996 if (old_constant != new_constant)
2998 error ("constant not recomputed when ADDR_EXPR changed");
2999 return t;
3001 if (old_side_effects != new_side_effects)
3003 error ("side effects not recomputed when ADDR_EXPR changed");
3004 return t;
3007 if (!(VAR_P (base)
3008 || TREE_CODE (base) == PARM_DECL
3009 || TREE_CODE (base) == RESULT_DECL))
3010 return NULL_TREE;
3012 if (DECL_GIMPLE_REG_P (base))
3014 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3015 return base;
3018 return NULL_TREE;
3021 /* Callback for walk_tree, check that all elements with address taken are
3022 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3023 inside a PHI node. */
3025 static tree
3026 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3028 tree t = *tp, x;
3030 if (TYPE_P (t))
3031 *walk_subtrees = 0;
3033 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3034 #define CHECK_OP(N, MSG) \
3035 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3036 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3038 switch (TREE_CODE (t))
3040 case SSA_NAME:
3041 if (SSA_NAME_IN_FREE_LIST (t))
3043 error ("SSA name in freelist but still referenced");
3044 return *tp;
3046 break;
3048 case PARM_DECL:
3049 case VAR_DECL:
3050 case RESULT_DECL:
3052 tree context = decl_function_context (t);
3053 if (context != cfun->decl
3054 && !SCOPE_FILE_SCOPE_P (context)
3055 && !TREE_STATIC (t)
3056 && !DECL_EXTERNAL (t))
3058 error ("Local declaration from a different function");
3059 return t;
3062 break;
3064 case INDIRECT_REF:
3065 error ("INDIRECT_REF in gimple IL");
3066 return t;
3068 case MEM_REF:
3069 x = TREE_OPERAND (t, 0);
3070 if (!POINTER_TYPE_P (TREE_TYPE (x))
3071 || !is_gimple_mem_ref_addr (x))
3073 error ("invalid first operand of MEM_REF");
3074 return x;
3076 if (!poly_int_tree_p (TREE_OPERAND (t, 1))
3077 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3079 error ("invalid offset operand of MEM_REF");
3080 return TREE_OPERAND (t, 1);
3082 if (TREE_CODE (x) == ADDR_EXPR)
3084 tree va = verify_address (x, TREE_OPERAND (x, 0));
3085 if (va)
3086 return va;
3087 x = TREE_OPERAND (x, 0);
3089 walk_tree (&x, verify_expr, data, NULL);
3090 *walk_subtrees = 0;
3091 break;
3093 case ASSERT_EXPR:
3094 x = fold (ASSERT_EXPR_COND (t));
3095 if (x == boolean_false_node)
3097 error ("ASSERT_EXPR with an always-false condition");
3098 return *tp;
3100 break;
3102 case MODIFY_EXPR:
3103 error ("MODIFY_EXPR not expected while having tuples");
3104 return *tp;
3106 case ADDR_EXPR:
3108 tree tem;
3110 gcc_assert (is_gimple_address (t));
3112 /* Skip any references (they will be checked when we recurse down the
3113 tree) and ensure that any variable used as a prefix is marked
3114 addressable. */
3115 for (x = TREE_OPERAND (t, 0);
3116 handled_component_p (x);
3117 x = TREE_OPERAND (x, 0))
3120 if ((tem = verify_address (t, x)))
3121 return tem;
3123 if (!(VAR_P (x)
3124 || TREE_CODE (x) == PARM_DECL
3125 || TREE_CODE (x) == RESULT_DECL))
3126 return NULL;
3128 if (!TREE_ADDRESSABLE (x))
3130 error ("address taken, but ADDRESSABLE bit not set");
3131 return x;
3134 break;
3137 case COND_EXPR:
3138 x = COND_EXPR_COND (t);
3139 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3141 error ("non-integral used in condition");
3142 return x;
3144 if (!is_gimple_condexpr (x))
3146 error ("invalid conditional operand");
3147 return x;
3149 break;
3151 case NON_LVALUE_EXPR:
3152 case TRUTH_NOT_EXPR:
3153 gcc_unreachable ();
3155 CASE_CONVERT:
3156 case FIX_TRUNC_EXPR:
3157 case FLOAT_EXPR:
3158 case NEGATE_EXPR:
3159 case ABS_EXPR:
3160 case BIT_NOT_EXPR:
3161 CHECK_OP (0, "invalid operand to unary operator");
3162 break;
3164 case REALPART_EXPR:
3165 case IMAGPART_EXPR:
3166 case BIT_FIELD_REF:
3167 if (!is_gimple_reg_type (TREE_TYPE (t)))
3169 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3170 return t;
3173 if (TREE_CODE (t) == BIT_FIELD_REF)
3175 tree t0 = TREE_OPERAND (t, 0);
3176 tree t1 = TREE_OPERAND (t, 1);
3177 tree t2 = TREE_OPERAND (t, 2);
3178 poly_uint64 size, bitpos;
3179 if (!poly_int_tree_p (t1, &size)
3180 || !poly_int_tree_p (t2, &bitpos)
3181 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3182 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3184 error ("invalid position or size operand to BIT_FIELD_REF");
3185 return t;
3187 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3188 && maybe_ne (TYPE_PRECISION (TREE_TYPE (t)), size))
3190 error ("integral result type precision does not match "
3191 "field size of BIT_FIELD_REF");
3192 return t;
3194 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3195 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3196 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))),
3197 size))
3199 error ("mode size of non-integral result does not "
3200 "match field size of BIT_FIELD_REF");
3201 return t;
3203 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3204 && maybe_gt (size + bitpos,
3205 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0)))))
3207 error ("position plus size exceeds size of referenced object in "
3208 "BIT_FIELD_REF");
3209 return t;
3212 t = TREE_OPERAND (t, 0);
3214 /* Fall-through. */
3215 case COMPONENT_REF:
3216 case ARRAY_REF:
3217 case ARRAY_RANGE_REF:
3218 case VIEW_CONVERT_EXPR:
3219 /* We have a nest of references. Verify that each of the operands
3220 that determine where to reference is either a constant or a variable,
3221 verify that the base is valid, and then show we've already checked
3222 the subtrees. */
3223 while (handled_component_p (t))
3225 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3226 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3227 else if (TREE_CODE (t) == ARRAY_REF
3228 || TREE_CODE (t) == ARRAY_RANGE_REF)
3230 CHECK_OP (1, "invalid array index");
3231 if (TREE_OPERAND (t, 2))
3232 CHECK_OP (2, "invalid array lower bound");
3233 if (TREE_OPERAND (t, 3))
3234 CHECK_OP (3, "invalid array stride");
3236 else if (TREE_CODE (t) == BIT_FIELD_REF
3237 || TREE_CODE (t) == REALPART_EXPR
3238 || TREE_CODE (t) == IMAGPART_EXPR)
3240 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3241 "REALPART_EXPR");
3242 return t;
3245 t = TREE_OPERAND (t, 0);
3248 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3250 error ("invalid reference prefix");
3251 return t;
3253 walk_tree (&t, verify_expr, data, NULL);
3254 *walk_subtrees = 0;
3255 break;
3256 case PLUS_EXPR:
3257 case MINUS_EXPR:
3258 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3259 POINTER_PLUS_EXPR. */
3260 if (POINTER_TYPE_P (TREE_TYPE (t)))
3262 error ("invalid operand to plus/minus, type is a pointer");
3263 return t;
3265 CHECK_OP (0, "invalid operand to binary operator");
3266 CHECK_OP (1, "invalid operand to binary operator");
3267 break;
3269 case POINTER_DIFF_EXPR:
3270 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
3271 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3273 error ("invalid operand to pointer diff, operand is not a pointer");
3274 return t;
3276 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3277 || TYPE_UNSIGNED (TREE_TYPE (t))
3278 || (TYPE_PRECISION (TREE_TYPE (t))
3279 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
3281 error ("invalid type for pointer diff");
3282 return t;
3284 CHECK_OP (0, "invalid operand to pointer diff");
3285 CHECK_OP (1, "invalid operand to pointer diff");
3286 break;
3288 case POINTER_PLUS_EXPR:
3289 /* Check to make sure the first operand is a pointer or reference type. */
3290 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3292 error ("invalid operand to pointer plus, first operand is not a pointer");
3293 return t;
3295 /* Check to make sure the second operand is a ptrofftype. */
3296 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3298 error ("invalid operand to pointer plus, second operand is not an "
3299 "integer type of appropriate width");
3300 return t;
3302 /* FALLTHROUGH */
3303 case LT_EXPR:
3304 case LE_EXPR:
3305 case GT_EXPR:
3306 case GE_EXPR:
3307 case EQ_EXPR:
3308 case NE_EXPR:
3309 case UNORDERED_EXPR:
3310 case ORDERED_EXPR:
3311 case UNLT_EXPR:
3312 case UNLE_EXPR:
3313 case UNGT_EXPR:
3314 case UNGE_EXPR:
3315 case UNEQ_EXPR:
3316 case LTGT_EXPR:
3317 case MULT_EXPR:
3318 case TRUNC_DIV_EXPR:
3319 case CEIL_DIV_EXPR:
3320 case FLOOR_DIV_EXPR:
3321 case ROUND_DIV_EXPR:
3322 case TRUNC_MOD_EXPR:
3323 case CEIL_MOD_EXPR:
3324 case FLOOR_MOD_EXPR:
3325 case ROUND_MOD_EXPR:
3326 case RDIV_EXPR:
3327 case EXACT_DIV_EXPR:
3328 case MIN_EXPR:
3329 case MAX_EXPR:
3330 case LSHIFT_EXPR:
3331 case RSHIFT_EXPR:
3332 case LROTATE_EXPR:
3333 case RROTATE_EXPR:
3334 case BIT_IOR_EXPR:
3335 case BIT_XOR_EXPR:
3336 case BIT_AND_EXPR:
3337 CHECK_OP (0, "invalid operand to binary operator");
3338 CHECK_OP (1, "invalid operand to binary operator");
3339 break;
3341 case CONSTRUCTOR:
3342 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3343 *walk_subtrees = 0;
3344 break;
3346 case CASE_LABEL_EXPR:
3347 if (CASE_CHAIN (t))
3349 error ("invalid CASE_CHAIN");
3350 return t;
3352 break;
3354 default:
3355 break;
3357 return NULL;
3359 #undef CHECK_OP
3363 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3364 Returns true if there is an error, otherwise false. */
3366 static bool
3367 verify_types_in_gimple_min_lval (tree expr)
3369 tree op;
3371 if (is_gimple_id (expr))
3372 return false;
3374 if (TREE_CODE (expr) != TARGET_MEM_REF
3375 && TREE_CODE (expr) != MEM_REF)
3377 error ("invalid expression for min lvalue");
3378 return true;
3381 /* TARGET_MEM_REFs are strange beasts. */
3382 if (TREE_CODE (expr) == TARGET_MEM_REF)
3383 return false;
3385 op = TREE_OPERAND (expr, 0);
3386 if (!is_gimple_val (op))
3388 error ("invalid operand in indirect reference");
3389 debug_generic_stmt (op);
3390 return true;
3392 /* Memory references now generally can involve a value conversion. */
3394 return false;
3397 /* Verify if EXPR is a valid GIMPLE reference expression. If
3398 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3399 if there is an error, otherwise false. */
3401 static bool
3402 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3404 while (handled_component_p (expr))
3406 tree op = TREE_OPERAND (expr, 0);
3408 if (TREE_CODE (expr) == ARRAY_REF
3409 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3411 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3412 || (TREE_OPERAND (expr, 2)
3413 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3414 || (TREE_OPERAND (expr, 3)
3415 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3417 error ("invalid operands to array reference");
3418 debug_generic_stmt (expr);
3419 return true;
3423 /* Verify if the reference array element types are compatible. */
3424 if (TREE_CODE (expr) == ARRAY_REF
3425 && !useless_type_conversion_p (TREE_TYPE (expr),
3426 TREE_TYPE (TREE_TYPE (op))))
3428 error ("type mismatch in array reference");
3429 debug_generic_stmt (TREE_TYPE (expr));
3430 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3431 return true;
3433 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3434 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3435 TREE_TYPE (TREE_TYPE (op))))
3437 error ("type mismatch in array range reference");
3438 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3439 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3440 return true;
3443 if ((TREE_CODE (expr) == REALPART_EXPR
3444 || TREE_CODE (expr) == IMAGPART_EXPR)
3445 && !useless_type_conversion_p (TREE_TYPE (expr),
3446 TREE_TYPE (TREE_TYPE (op))))
3448 error ("type mismatch in real/imagpart reference");
3449 debug_generic_stmt (TREE_TYPE (expr));
3450 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3451 return true;
3454 if (TREE_CODE (expr) == COMPONENT_REF
3455 && !useless_type_conversion_p (TREE_TYPE (expr),
3456 TREE_TYPE (TREE_OPERAND (expr, 1))))
3458 error ("type mismatch in component reference");
3459 debug_generic_stmt (TREE_TYPE (expr));
3460 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3461 return true;
3464 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3466 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3467 that their operand is not an SSA name or an invariant when
3468 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3469 bug). Otherwise there is nothing to verify, gross mismatches at
3470 most invoke undefined behavior. */
3471 if (require_lvalue
3472 && (TREE_CODE (op) == SSA_NAME
3473 || is_gimple_min_invariant (op)))
3475 error ("conversion of an SSA_NAME on the left hand side");
3476 debug_generic_stmt (expr);
3477 return true;
3479 else if (TREE_CODE (op) == SSA_NAME
3480 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3482 error ("conversion of register to a different size");
3483 debug_generic_stmt (expr);
3484 return true;
3486 else if (!handled_component_p (op))
3487 return false;
3490 expr = op;
3493 if (TREE_CODE (expr) == MEM_REF)
3495 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3497 error ("invalid address operand in MEM_REF");
3498 debug_generic_stmt (expr);
3499 return true;
3501 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3502 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3504 error ("invalid offset operand in MEM_REF");
3505 debug_generic_stmt (expr);
3506 return true;
3509 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3511 if (!TMR_BASE (expr)
3512 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3514 error ("invalid address operand in TARGET_MEM_REF");
3515 return true;
3517 if (!TMR_OFFSET (expr)
3518 || !poly_int_tree_p (TMR_OFFSET (expr))
3519 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3521 error ("invalid offset operand in TARGET_MEM_REF");
3522 debug_generic_stmt (expr);
3523 return true;
3527 return ((require_lvalue || !is_gimple_min_invariant (expr))
3528 && verify_types_in_gimple_min_lval (expr));
3531 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3532 list of pointer-to types that is trivially convertible to DEST. */
3534 static bool
3535 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3537 tree src;
3539 if (!TYPE_POINTER_TO (src_obj))
3540 return true;
3542 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3543 if (useless_type_conversion_p (dest, src))
3544 return true;
3546 return false;
3549 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3550 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3552 static bool
3553 valid_fixed_convert_types_p (tree type1, tree type2)
3555 return (FIXED_POINT_TYPE_P (type1)
3556 && (INTEGRAL_TYPE_P (type2)
3557 || SCALAR_FLOAT_TYPE_P (type2)
3558 || FIXED_POINT_TYPE_P (type2)));
3561 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3562 is a problem, otherwise false. */
3564 static bool
3565 verify_gimple_call (gcall *stmt)
3567 tree fn = gimple_call_fn (stmt);
3568 tree fntype, fndecl;
3569 unsigned i;
3571 if (gimple_call_internal_p (stmt))
3573 if (fn)
3575 error ("gimple call has two targets");
3576 debug_generic_stmt (fn);
3577 return true;
3579 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3580 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3582 return false;
3585 else
3587 if (!fn)
3589 error ("gimple call has no target");
3590 return true;
3594 if (fn && !is_gimple_call_addr (fn))
3596 error ("invalid function in gimple call");
3597 debug_generic_stmt (fn);
3598 return true;
3601 if (fn
3602 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3603 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3604 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3606 error ("non-function in gimple call");
3607 return true;
3610 fndecl = gimple_call_fndecl (stmt);
3611 if (fndecl
3612 && TREE_CODE (fndecl) == FUNCTION_DECL
3613 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3614 && !DECL_PURE_P (fndecl)
3615 && !TREE_READONLY (fndecl))
3617 error ("invalid pure const state for function");
3618 return true;
3621 tree lhs = gimple_call_lhs (stmt);
3622 if (lhs
3623 && (!is_gimple_lvalue (lhs)
3624 || verify_types_in_gimple_reference (lhs, true)))
3626 error ("invalid LHS in gimple call");
3627 return true;
3630 if (gimple_call_ctrl_altering_p (stmt)
3631 && gimple_call_noreturn_p (stmt)
3632 && should_remove_lhs_p (lhs))
3634 error ("LHS in noreturn call");
3635 return true;
3638 fntype = gimple_call_fntype (stmt);
3639 if (fntype
3640 && lhs
3641 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3642 /* ??? At least C++ misses conversions at assignments from
3643 void * call results.
3644 For now simply allow arbitrary pointer type conversions. */
3645 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3646 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3648 error ("invalid conversion in gimple call");
3649 debug_generic_stmt (TREE_TYPE (lhs));
3650 debug_generic_stmt (TREE_TYPE (fntype));
3651 return true;
3654 if (gimple_call_chain (stmt)
3655 && !is_gimple_val (gimple_call_chain (stmt)))
3657 error ("invalid static chain in gimple call");
3658 debug_generic_stmt (gimple_call_chain (stmt));
3659 return true;
3662 /* If there is a static chain argument, the call should either be
3663 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3664 if (gimple_call_chain (stmt)
3665 && fndecl
3666 && !DECL_STATIC_CHAIN (fndecl))
3668 error ("static chain with function that doesn%'t use one");
3669 return true;
3672 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3674 switch (DECL_FUNCTION_CODE (fndecl))
3676 case BUILT_IN_UNREACHABLE:
3677 case BUILT_IN_TRAP:
3678 if (gimple_call_num_args (stmt) > 0)
3680 /* Built-in unreachable with parameters might not be caught by
3681 undefined behavior sanitizer. Front-ends do check users do not
3682 call them that way but we also produce calls to
3683 __builtin_unreachable internally, for example when IPA figures
3684 out a call cannot happen in a legal program. In such cases,
3685 we must make sure arguments are stripped off. */
3686 error ("__builtin_unreachable or __builtin_trap call with "
3687 "arguments");
3688 return true;
3690 break;
3691 default:
3692 break;
3696 /* ??? The C frontend passes unpromoted arguments in case it
3697 didn't see a function declaration before the call. So for now
3698 leave the call arguments mostly unverified. Once we gimplify
3699 unit-at-a-time we have a chance to fix this. */
3701 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3703 tree arg = gimple_call_arg (stmt, i);
3704 if ((is_gimple_reg_type (TREE_TYPE (arg))
3705 && !is_gimple_val (arg))
3706 || (!is_gimple_reg_type (TREE_TYPE (arg))
3707 && !is_gimple_lvalue (arg)))
3709 error ("invalid argument to gimple call");
3710 debug_generic_expr (arg);
3711 return true;
3715 return false;
3718 /* Verifies the gimple comparison with the result type TYPE and
3719 the operands OP0 and OP1, comparison code is CODE. */
3721 static bool
3722 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3724 tree op0_type = TREE_TYPE (op0);
3725 tree op1_type = TREE_TYPE (op1);
3727 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3729 error ("invalid operands in gimple comparison");
3730 return true;
3733 /* For comparisons we do not have the operations type as the
3734 effective type the comparison is carried out in. Instead
3735 we require that either the first operand is trivially
3736 convertible into the second, or the other way around.
3737 Because we special-case pointers to void we allow
3738 comparisons of pointers with the same mode as well. */
3739 if (!useless_type_conversion_p (op0_type, op1_type)
3740 && !useless_type_conversion_p (op1_type, op0_type)
3741 && (!POINTER_TYPE_P (op0_type)
3742 || !POINTER_TYPE_P (op1_type)
3743 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3745 error ("mismatching comparison operand types");
3746 debug_generic_expr (op0_type);
3747 debug_generic_expr (op1_type);
3748 return true;
3751 /* The resulting type of a comparison may be an effective boolean type. */
3752 if (INTEGRAL_TYPE_P (type)
3753 && (TREE_CODE (type) == BOOLEAN_TYPE
3754 || TYPE_PRECISION (type) == 1))
3756 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3757 || TREE_CODE (op1_type) == VECTOR_TYPE)
3758 && code != EQ_EXPR && code != NE_EXPR
3759 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3760 && !VECTOR_INTEGER_TYPE_P (op0_type))
3762 error ("unsupported operation or type for vector comparison"
3763 " returning a boolean");
3764 debug_generic_expr (op0_type);
3765 debug_generic_expr (op1_type);
3766 return true;
3769 /* Or a boolean vector type with the same element count
3770 as the comparison operand types. */
3771 else if (TREE_CODE (type) == VECTOR_TYPE
3772 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3774 if (TREE_CODE (op0_type) != VECTOR_TYPE
3775 || TREE_CODE (op1_type) != VECTOR_TYPE)
3777 error ("non-vector operands in vector comparison");
3778 debug_generic_expr (op0_type);
3779 debug_generic_expr (op1_type);
3780 return true;
3783 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3784 TYPE_VECTOR_SUBPARTS (op0_type)))
3786 error ("invalid vector comparison resulting type");
3787 debug_generic_expr (type);
3788 return true;
3791 else
3793 error ("bogus comparison result type");
3794 debug_generic_expr (type);
3795 return true;
3798 return false;
3801 /* Verify a gimple assignment statement STMT with an unary rhs.
3802 Returns true if anything is wrong. */
3804 static bool
3805 verify_gimple_assign_unary (gassign *stmt)
3807 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3808 tree lhs = gimple_assign_lhs (stmt);
3809 tree lhs_type = TREE_TYPE (lhs);
3810 tree rhs1 = gimple_assign_rhs1 (stmt);
3811 tree rhs1_type = TREE_TYPE (rhs1);
3813 if (!is_gimple_reg (lhs))
3815 error ("non-register as LHS of unary operation");
3816 return true;
3819 if (!is_gimple_val (rhs1))
3821 error ("invalid operand in unary operation");
3822 return true;
3825 /* First handle conversions. */
3826 switch (rhs_code)
3828 CASE_CONVERT:
3830 /* Allow conversions from pointer type to integral type only if
3831 there is no sign or zero extension involved.
3832 For targets were the precision of ptrofftype doesn't match that
3833 of pointers we need to allow arbitrary conversions to ptrofftype. */
3834 if ((POINTER_TYPE_P (lhs_type)
3835 && INTEGRAL_TYPE_P (rhs1_type))
3836 || (POINTER_TYPE_P (rhs1_type)
3837 && INTEGRAL_TYPE_P (lhs_type)
3838 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3839 || ptrofftype_p (sizetype))))
3840 return false;
3842 /* Allow conversion from integral to offset type and vice versa. */
3843 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3844 && INTEGRAL_TYPE_P (rhs1_type))
3845 || (INTEGRAL_TYPE_P (lhs_type)
3846 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3847 return false;
3849 /* Otherwise assert we are converting between types of the
3850 same kind. */
3851 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3853 error ("invalid types in nop conversion");
3854 debug_generic_expr (lhs_type);
3855 debug_generic_expr (rhs1_type);
3856 return true;
3859 return false;
3862 case ADDR_SPACE_CONVERT_EXPR:
3864 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3865 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3866 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3868 error ("invalid types in address space conversion");
3869 debug_generic_expr (lhs_type);
3870 debug_generic_expr (rhs1_type);
3871 return true;
3874 return false;
3877 case FIXED_CONVERT_EXPR:
3879 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3880 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3882 error ("invalid types in fixed-point conversion");
3883 debug_generic_expr (lhs_type);
3884 debug_generic_expr (rhs1_type);
3885 return true;
3888 return false;
3891 case FLOAT_EXPR:
3893 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3894 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3895 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3897 error ("invalid types in conversion to floating point");
3898 debug_generic_expr (lhs_type);
3899 debug_generic_expr (rhs1_type);
3900 return true;
3903 return false;
3906 case FIX_TRUNC_EXPR:
3908 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3909 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3910 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3912 error ("invalid types in conversion to integer");
3913 debug_generic_expr (lhs_type);
3914 debug_generic_expr (rhs1_type);
3915 return true;
3918 return false;
3921 case VEC_UNPACK_HI_EXPR:
3922 case VEC_UNPACK_LO_EXPR:
3923 case VEC_UNPACK_FLOAT_HI_EXPR:
3924 case VEC_UNPACK_FLOAT_LO_EXPR:
3925 /* FIXME. */
3926 return false;
3928 case NEGATE_EXPR:
3929 case ABS_EXPR:
3930 case BIT_NOT_EXPR:
3931 case PAREN_EXPR:
3932 case CONJ_EXPR:
3933 break;
3935 case VEC_DUPLICATE_EXPR:
3936 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3937 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3939 error ("vec_duplicate should be from a scalar to a like vector");
3940 debug_generic_expr (lhs_type);
3941 debug_generic_expr (rhs1_type);
3942 return true;
3944 return false;
3946 default:
3947 gcc_unreachable ();
3950 /* For the remaining codes assert there is no conversion involved. */
3951 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3953 error ("non-trivial conversion in unary operation");
3954 debug_generic_expr (lhs_type);
3955 debug_generic_expr (rhs1_type);
3956 return true;
3959 return false;
3962 /* Verify a gimple assignment statement STMT with a binary rhs.
3963 Returns true if anything is wrong. */
3965 static bool
3966 verify_gimple_assign_binary (gassign *stmt)
3968 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3969 tree lhs = gimple_assign_lhs (stmt);
3970 tree lhs_type = TREE_TYPE (lhs);
3971 tree rhs1 = gimple_assign_rhs1 (stmt);
3972 tree rhs1_type = TREE_TYPE (rhs1);
3973 tree rhs2 = gimple_assign_rhs2 (stmt);
3974 tree rhs2_type = TREE_TYPE (rhs2);
3976 if (!is_gimple_reg (lhs))
3978 error ("non-register as LHS of binary operation");
3979 return true;
3982 if (!is_gimple_val (rhs1)
3983 || !is_gimple_val (rhs2))
3985 error ("invalid operands in binary operation");
3986 return true;
3989 /* First handle operations that involve different types. */
3990 switch (rhs_code)
3992 case COMPLEX_EXPR:
3994 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3995 || !(INTEGRAL_TYPE_P (rhs1_type)
3996 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3997 || !(INTEGRAL_TYPE_P (rhs2_type)
3998 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
4000 error ("type mismatch in complex expression");
4001 debug_generic_expr (lhs_type);
4002 debug_generic_expr (rhs1_type);
4003 debug_generic_expr (rhs2_type);
4004 return true;
4007 return false;
4010 case LSHIFT_EXPR:
4011 case RSHIFT_EXPR:
4012 case LROTATE_EXPR:
4013 case RROTATE_EXPR:
4015 /* Shifts and rotates are ok on integral types, fixed point
4016 types and integer vector types. */
4017 if ((!INTEGRAL_TYPE_P (rhs1_type)
4018 && !FIXED_POINT_TYPE_P (rhs1_type)
4019 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
4020 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
4021 || (!INTEGRAL_TYPE_P (rhs2_type)
4022 /* Vector shifts of vectors are also ok. */
4023 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
4024 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4025 && TREE_CODE (rhs2_type) == VECTOR_TYPE
4026 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
4027 || !useless_type_conversion_p (lhs_type, rhs1_type))
4029 error ("type mismatch in shift expression");
4030 debug_generic_expr (lhs_type);
4031 debug_generic_expr (rhs1_type);
4032 debug_generic_expr (rhs2_type);
4033 return true;
4036 return false;
4039 case WIDEN_LSHIFT_EXPR:
4041 if (!INTEGRAL_TYPE_P (lhs_type)
4042 || !INTEGRAL_TYPE_P (rhs1_type)
4043 || TREE_CODE (rhs2) != INTEGER_CST
4044 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
4046 error ("type mismatch in widening vector shift expression");
4047 debug_generic_expr (lhs_type);
4048 debug_generic_expr (rhs1_type);
4049 debug_generic_expr (rhs2_type);
4050 return true;
4053 return false;
4056 case VEC_WIDEN_LSHIFT_HI_EXPR:
4057 case VEC_WIDEN_LSHIFT_LO_EXPR:
4059 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4060 || TREE_CODE (lhs_type) != VECTOR_TYPE
4061 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4062 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
4063 || TREE_CODE (rhs2) != INTEGER_CST
4064 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
4065 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
4067 error ("type mismatch in widening vector shift expression");
4068 debug_generic_expr (lhs_type);
4069 debug_generic_expr (rhs1_type);
4070 debug_generic_expr (rhs2_type);
4071 return true;
4074 return false;
4077 case PLUS_EXPR:
4078 case MINUS_EXPR:
4080 tree lhs_etype = lhs_type;
4081 tree rhs1_etype = rhs1_type;
4082 tree rhs2_etype = rhs2_type;
4083 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
4085 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4086 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
4088 error ("invalid non-vector operands to vector valued plus");
4089 return true;
4091 lhs_etype = TREE_TYPE (lhs_type);
4092 rhs1_etype = TREE_TYPE (rhs1_type);
4093 rhs2_etype = TREE_TYPE (rhs2_type);
4095 if (POINTER_TYPE_P (lhs_etype)
4096 || POINTER_TYPE_P (rhs1_etype)
4097 || POINTER_TYPE_P (rhs2_etype))
4099 error ("invalid (pointer) operands to plus/minus");
4100 return true;
4103 /* Continue with generic binary expression handling. */
4104 break;
4107 case POINTER_PLUS_EXPR:
4109 if (!POINTER_TYPE_P (rhs1_type)
4110 || !useless_type_conversion_p (lhs_type, rhs1_type)
4111 || !ptrofftype_p (rhs2_type))
4113 error ("type mismatch in pointer plus expression");
4114 debug_generic_stmt (lhs_type);
4115 debug_generic_stmt (rhs1_type);
4116 debug_generic_stmt (rhs2_type);
4117 return true;
4120 return false;
4123 case POINTER_DIFF_EXPR:
4125 if (!POINTER_TYPE_P (rhs1_type)
4126 || !POINTER_TYPE_P (rhs2_type)
4127 /* Because we special-case pointers to void we allow difference
4128 of arbitrary pointers with the same mode. */
4129 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4130 || TREE_CODE (lhs_type) != INTEGER_TYPE
4131 || TYPE_UNSIGNED (lhs_type)
4132 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4134 error ("type mismatch in pointer diff expression");
4135 debug_generic_stmt (lhs_type);
4136 debug_generic_stmt (rhs1_type);
4137 debug_generic_stmt (rhs2_type);
4138 return true;
4141 return false;
4144 case TRUTH_ANDIF_EXPR:
4145 case TRUTH_ORIF_EXPR:
4146 case TRUTH_AND_EXPR:
4147 case TRUTH_OR_EXPR:
4148 case TRUTH_XOR_EXPR:
4150 gcc_unreachable ();
4152 case LT_EXPR:
4153 case LE_EXPR:
4154 case GT_EXPR:
4155 case GE_EXPR:
4156 case EQ_EXPR:
4157 case NE_EXPR:
4158 case UNORDERED_EXPR:
4159 case ORDERED_EXPR:
4160 case UNLT_EXPR:
4161 case UNLE_EXPR:
4162 case UNGT_EXPR:
4163 case UNGE_EXPR:
4164 case UNEQ_EXPR:
4165 case LTGT_EXPR:
4166 /* Comparisons are also binary, but the result type is not
4167 connected to the operand types. */
4168 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4170 case WIDEN_MULT_EXPR:
4171 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4172 return true;
4173 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4174 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4176 case WIDEN_SUM_EXPR:
4178 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4179 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4180 && ((!INTEGRAL_TYPE_P (rhs1_type)
4181 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4182 || (!INTEGRAL_TYPE_P (lhs_type)
4183 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4184 || !useless_type_conversion_p (lhs_type, rhs2_type)
4185 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
4186 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4188 error ("type mismatch in widening sum reduction");
4189 debug_generic_expr (lhs_type);
4190 debug_generic_expr (rhs1_type);
4191 debug_generic_expr (rhs2_type);
4192 return true;
4194 return false;
4197 case VEC_WIDEN_MULT_HI_EXPR:
4198 case VEC_WIDEN_MULT_LO_EXPR:
4199 case VEC_WIDEN_MULT_EVEN_EXPR:
4200 case VEC_WIDEN_MULT_ODD_EXPR:
4202 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4203 || TREE_CODE (lhs_type) != VECTOR_TYPE
4204 || !types_compatible_p (rhs1_type, rhs2_type)
4205 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4206 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4208 error ("type mismatch in vector widening multiplication");
4209 debug_generic_expr (lhs_type);
4210 debug_generic_expr (rhs1_type);
4211 debug_generic_expr (rhs2_type);
4212 return true;
4214 return false;
4217 case VEC_PACK_TRUNC_EXPR:
4218 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4219 vector boolean types. */
4220 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4221 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4222 && types_compatible_p (rhs1_type, rhs2_type)
4223 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4224 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4225 return false;
4227 /* Fallthru. */
4228 case VEC_PACK_SAT_EXPR:
4229 case VEC_PACK_FIX_TRUNC_EXPR:
4231 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4232 || TREE_CODE (lhs_type) != VECTOR_TYPE
4233 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4234 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4235 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4236 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4237 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4238 || !types_compatible_p (rhs1_type, rhs2_type)
4239 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4240 2 * GET_MODE_SIZE (element_mode (lhs_type))))
4242 error ("type mismatch in vector pack expression");
4243 debug_generic_expr (lhs_type);
4244 debug_generic_expr (rhs1_type);
4245 debug_generic_expr (rhs2_type);
4246 return true;
4249 return false;
4252 case MULT_EXPR:
4253 case MULT_HIGHPART_EXPR:
4254 case TRUNC_DIV_EXPR:
4255 case CEIL_DIV_EXPR:
4256 case FLOOR_DIV_EXPR:
4257 case ROUND_DIV_EXPR:
4258 case TRUNC_MOD_EXPR:
4259 case CEIL_MOD_EXPR:
4260 case FLOOR_MOD_EXPR:
4261 case ROUND_MOD_EXPR:
4262 case RDIV_EXPR:
4263 case EXACT_DIV_EXPR:
4264 case MIN_EXPR:
4265 case MAX_EXPR:
4266 case BIT_IOR_EXPR:
4267 case BIT_XOR_EXPR:
4268 case BIT_AND_EXPR:
4269 /* Continue with generic binary expression handling. */
4270 break;
4272 case VEC_SERIES_EXPR:
4273 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4275 error ("type mismatch in series expression");
4276 debug_generic_expr (rhs1_type);
4277 debug_generic_expr (rhs2_type);
4278 return true;
4280 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4281 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4283 error ("vector type expected in series expression");
4284 debug_generic_expr (lhs_type);
4285 return true;
4287 return false;
4289 default:
4290 gcc_unreachable ();
4293 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4294 || !useless_type_conversion_p (lhs_type, rhs2_type))
4296 error ("type mismatch in binary expression");
4297 debug_generic_stmt (lhs_type);
4298 debug_generic_stmt (rhs1_type);
4299 debug_generic_stmt (rhs2_type);
4300 return true;
4303 return false;
4306 /* Verify a gimple assignment statement STMT with a ternary rhs.
4307 Returns true if anything is wrong. */
4309 static bool
4310 verify_gimple_assign_ternary (gassign *stmt)
4312 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4313 tree lhs = gimple_assign_lhs (stmt);
4314 tree lhs_type = TREE_TYPE (lhs);
4315 tree rhs1 = gimple_assign_rhs1 (stmt);
4316 tree rhs1_type = TREE_TYPE (rhs1);
4317 tree rhs2 = gimple_assign_rhs2 (stmt);
4318 tree rhs2_type = TREE_TYPE (rhs2);
4319 tree rhs3 = gimple_assign_rhs3 (stmt);
4320 tree rhs3_type = TREE_TYPE (rhs3);
4322 if (!is_gimple_reg (lhs))
4324 error ("non-register as LHS of ternary operation");
4325 return true;
4328 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4329 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4330 || !is_gimple_val (rhs2)
4331 || !is_gimple_val (rhs3))
4333 error ("invalid operands in ternary operation");
4334 return true;
4337 /* First handle operations that involve different types. */
4338 switch (rhs_code)
4340 case WIDEN_MULT_PLUS_EXPR:
4341 case WIDEN_MULT_MINUS_EXPR:
4342 if ((!INTEGRAL_TYPE_P (rhs1_type)
4343 && !FIXED_POINT_TYPE_P (rhs1_type))
4344 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4345 || !useless_type_conversion_p (lhs_type, rhs3_type)
4346 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4347 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4349 error ("type mismatch in widening multiply-accumulate expression");
4350 debug_generic_expr (lhs_type);
4351 debug_generic_expr (rhs1_type);
4352 debug_generic_expr (rhs2_type);
4353 debug_generic_expr (rhs3_type);
4354 return true;
4356 break;
4358 case FMA_EXPR:
4359 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4360 || !useless_type_conversion_p (lhs_type, rhs2_type)
4361 || !useless_type_conversion_p (lhs_type, rhs3_type))
4363 error ("type mismatch in fused multiply-add expression");
4364 debug_generic_expr (lhs_type);
4365 debug_generic_expr (rhs1_type);
4366 debug_generic_expr (rhs2_type);
4367 debug_generic_expr (rhs3_type);
4368 return true;
4370 break;
4372 case VEC_COND_EXPR:
4373 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4374 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4375 TYPE_VECTOR_SUBPARTS (lhs_type)))
4377 error ("the first argument of a VEC_COND_EXPR must be of a "
4378 "boolean vector type of the same number of elements "
4379 "as the result");
4380 debug_generic_expr (lhs_type);
4381 debug_generic_expr (rhs1_type);
4382 return true;
4384 /* Fallthrough. */
4385 case COND_EXPR:
4386 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4387 || !useless_type_conversion_p (lhs_type, rhs3_type))
4389 error ("type mismatch in conditional expression");
4390 debug_generic_expr (lhs_type);
4391 debug_generic_expr (rhs2_type);
4392 debug_generic_expr (rhs3_type);
4393 return true;
4395 break;
4397 case VEC_PERM_EXPR:
4398 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4399 || !useless_type_conversion_p (lhs_type, rhs2_type))
4401 error ("type mismatch in vector permute expression");
4402 debug_generic_expr (lhs_type);
4403 debug_generic_expr (rhs1_type);
4404 debug_generic_expr (rhs2_type);
4405 debug_generic_expr (rhs3_type);
4406 return true;
4409 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4410 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4411 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4413 error ("vector types expected in vector permute expression");
4414 debug_generic_expr (lhs_type);
4415 debug_generic_expr (rhs1_type);
4416 debug_generic_expr (rhs2_type);
4417 debug_generic_expr (rhs3_type);
4418 return true;
4421 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4422 TYPE_VECTOR_SUBPARTS (rhs2_type))
4423 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4424 TYPE_VECTOR_SUBPARTS (rhs3_type))
4425 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4426 TYPE_VECTOR_SUBPARTS (lhs_type)))
4428 error ("vectors with different element number found "
4429 "in vector permute expression");
4430 debug_generic_expr (lhs_type);
4431 debug_generic_expr (rhs1_type);
4432 debug_generic_expr (rhs2_type);
4433 debug_generic_expr (rhs3_type);
4434 return true;
4437 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4438 || (TREE_CODE (rhs3) != VECTOR_CST
4439 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4440 (TREE_TYPE (rhs3_type)))
4441 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4442 (TREE_TYPE (rhs1_type))))))
4444 error ("invalid mask type in vector permute expression");
4445 debug_generic_expr (lhs_type);
4446 debug_generic_expr (rhs1_type);
4447 debug_generic_expr (rhs2_type);
4448 debug_generic_expr (rhs3_type);
4449 return true;
4452 return false;
4454 case SAD_EXPR:
4455 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4456 || !useless_type_conversion_p (lhs_type, rhs3_type)
4457 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4458 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4460 error ("type mismatch in sad expression");
4461 debug_generic_expr (lhs_type);
4462 debug_generic_expr (rhs1_type);
4463 debug_generic_expr (rhs2_type);
4464 debug_generic_expr (rhs3_type);
4465 return true;
4468 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4469 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4470 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4472 error ("vector types expected in sad expression");
4473 debug_generic_expr (lhs_type);
4474 debug_generic_expr (rhs1_type);
4475 debug_generic_expr (rhs2_type);
4476 debug_generic_expr (rhs3_type);
4477 return true;
4480 return false;
4482 case BIT_INSERT_EXPR:
4483 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4485 error ("type mismatch in BIT_INSERT_EXPR");
4486 debug_generic_expr (lhs_type);
4487 debug_generic_expr (rhs1_type);
4488 return true;
4490 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4491 && INTEGRAL_TYPE_P (rhs2_type))
4492 || (VECTOR_TYPE_P (rhs1_type)
4493 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4495 error ("not allowed type combination in BIT_INSERT_EXPR");
4496 debug_generic_expr (rhs1_type);
4497 debug_generic_expr (rhs2_type);
4498 return true;
4500 if (! tree_fits_uhwi_p (rhs3)
4501 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4502 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4504 error ("invalid position or size in BIT_INSERT_EXPR");
4505 return true;
4507 if (INTEGRAL_TYPE_P (rhs1_type))
4509 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4510 if (bitpos >= TYPE_PRECISION (rhs1_type)
4511 || (bitpos + TYPE_PRECISION (rhs2_type)
4512 > TYPE_PRECISION (rhs1_type)))
4514 error ("insertion out of range in BIT_INSERT_EXPR");
4515 return true;
4518 else if (VECTOR_TYPE_P (rhs1_type))
4520 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4521 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4522 if (bitpos % bitsize != 0)
4524 error ("vector insertion not at element boundary");
4525 return true;
4528 return false;
4530 case DOT_PROD_EXPR:
4532 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4533 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4534 && ((!INTEGRAL_TYPE_P (rhs1_type)
4535 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4536 || (!INTEGRAL_TYPE_P (lhs_type)
4537 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4538 || !types_compatible_p (rhs1_type, rhs2_type)
4539 || !useless_type_conversion_p (lhs_type, rhs3_type)
4540 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4541 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4543 error ("type mismatch in dot product reduction");
4544 debug_generic_expr (lhs_type);
4545 debug_generic_expr (rhs1_type);
4546 debug_generic_expr (rhs2_type);
4547 return true;
4549 return false;
4552 case REALIGN_LOAD_EXPR:
4553 /* FIXME. */
4554 return false;
4556 default:
4557 gcc_unreachable ();
4559 return false;
4562 /* Verify a gimple assignment statement STMT with a single rhs.
4563 Returns true if anything is wrong. */
4565 static bool
4566 verify_gimple_assign_single (gassign *stmt)
4568 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4569 tree lhs = gimple_assign_lhs (stmt);
4570 tree lhs_type = TREE_TYPE (lhs);
4571 tree rhs1 = gimple_assign_rhs1 (stmt);
4572 tree rhs1_type = TREE_TYPE (rhs1);
4573 bool res = false;
4575 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4577 error ("non-trivial conversion at assignment");
4578 debug_generic_expr (lhs_type);
4579 debug_generic_expr (rhs1_type);
4580 return true;
4583 if (gimple_clobber_p (stmt)
4584 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4586 error ("non-decl/MEM_REF LHS in clobber statement");
4587 debug_generic_expr (lhs);
4588 return true;
4591 if (handled_component_p (lhs)
4592 || TREE_CODE (lhs) == MEM_REF
4593 || TREE_CODE (lhs) == TARGET_MEM_REF)
4594 res |= verify_types_in_gimple_reference (lhs, true);
4596 /* Special codes we cannot handle via their class. */
4597 switch (rhs_code)
4599 case ADDR_EXPR:
4601 tree op = TREE_OPERAND (rhs1, 0);
4602 if (!is_gimple_addressable (op))
4604 error ("invalid operand in unary expression");
4605 return true;
4608 /* Technically there is no longer a need for matching types, but
4609 gimple hygiene asks for this check. In LTO we can end up
4610 combining incompatible units and thus end up with addresses
4611 of globals that change their type to a common one. */
4612 if (!in_lto_p
4613 && !types_compatible_p (TREE_TYPE (op),
4614 TREE_TYPE (TREE_TYPE (rhs1)))
4615 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4616 TREE_TYPE (op)))
4618 error ("type mismatch in address expression");
4619 debug_generic_stmt (TREE_TYPE (rhs1));
4620 debug_generic_stmt (TREE_TYPE (op));
4621 return true;
4624 return verify_types_in_gimple_reference (op, true);
4627 /* tcc_reference */
4628 case INDIRECT_REF:
4629 error ("INDIRECT_REF in gimple IL");
4630 return true;
4632 case COMPONENT_REF:
4633 case BIT_FIELD_REF:
4634 case ARRAY_REF:
4635 case ARRAY_RANGE_REF:
4636 case VIEW_CONVERT_EXPR:
4637 case REALPART_EXPR:
4638 case IMAGPART_EXPR:
4639 case TARGET_MEM_REF:
4640 case MEM_REF:
4641 if (!is_gimple_reg (lhs)
4642 && is_gimple_reg_type (TREE_TYPE (lhs)))
4644 error ("invalid rhs for gimple memory store");
4645 debug_generic_stmt (lhs);
4646 debug_generic_stmt (rhs1);
4647 return true;
4649 return res || verify_types_in_gimple_reference (rhs1, false);
4651 /* tcc_constant */
4652 case SSA_NAME:
4653 case INTEGER_CST:
4654 case REAL_CST:
4655 case FIXED_CST:
4656 case COMPLEX_CST:
4657 case VECTOR_CST:
4658 case STRING_CST:
4659 return res;
4661 /* tcc_declaration */
4662 case CONST_DECL:
4663 return res;
4664 case VAR_DECL:
4665 case PARM_DECL:
4666 if (!is_gimple_reg (lhs)
4667 && !is_gimple_reg (rhs1)
4668 && is_gimple_reg_type (TREE_TYPE (lhs)))
4670 error ("invalid rhs for gimple memory store");
4671 debug_generic_stmt (lhs);
4672 debug_generic_stmt (rhs1);
4673 return true;
4675 return res;
4677 case CONSTRUCTOR:
4678 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4680 unsigned int i;
4681 tree elt_i, elt_v, elt_t = NULL_TREE;
4683 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4684 return res;
4685 /* For vector CONSTRUCTORs we require that either it is empty
4686 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4687 (then the element count must be correct to cover the whole
4688 outer vector and index must be NULL on all elements, or it is
4689 a CONSTRUCTOR of scalar elements, where we as an exception allow
4690 smaller number of elements (assuming zero filling) and
4691 consecutive indexes as compared to NULL indexes (such
4692 CONSTRUCTORs can appear in the IL from FEs). */
4693 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4695 if (elt_t == NULL_TREE)
4697 elt_t = TREE_TYPE (elt_v);
4698 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4700 tree elt_t = TREE_TYPE (elt_v);
4701 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4702 TREE_TYPE (elt_t)))
4704 error ("incorrect type of vector CONSTRUCTOR"
4705 " elements");
4706 debug_generic_stmt (rhs1);
4707 return true;
4709 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4710 * TYPE_VECTOR_SUBPARTS (elt_t),
4711 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4713 error ("incorrect number of vector CONSTRUCTOR"
4714 " elements");
4715 debug_generic_stmt (rhs1);
4716 return true;
4719 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4720 elt_t))
4722 error ("incorrect type of vector CONSTRUCTOR elements");
4723 debug_generic_stmt (rhs1);
4724 return true;
4726 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4727 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4729 error ("incorrect number of vector CONSTRUCTOR elements");
4730 debug_generic_stmt (rhs1);
4731 return true;
4734 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4736 error ("incorrect type of vector CONSTRUCTOR elements");
4737 debug_generic_stmt (rhs1);
4738 return true;
4740 if (elt_i != NULL_TREE
4741 && (TREE_CODE (elt_t) == VECTOR_TYPE
4742 || TREE_CODE (elt_i) != INTEGER_CST
4743 || compare_tree_int (elt_i, i) != 0))
4745 error ("vector CONSTRUCTOR with non-NULL element index");
4746 debug_generic_stmt (rhs1);
4747 return true;
4749 if (!is_gimple_val (elt_v))
4751 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4752 debug_generic_stmt (rhs1);
4753 return true;
4757 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4759 error ("non-vector CONSTRUCTOR with elements");
4760 debug_generic_stmt (rhs1);
4761 return true;
4763 return res;
4764 case OBJ_TYPE_REF:
4765 case ASSERT_EXPR:
4766 case WITH_SIZE_EXPR:
4767 /* FIXME. */
4768 return res;
4770 default:;
4773 return res;
4776 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4777 is a problem, otherwise false. */
4779 static bool
4780 verify_gimple_assign (gassign *stmt)
4782 switch (gimple_assign_rhs_class (stmt))
4784 case GIMPLE_SINGLE_RHS:
4785 return verify_gimple_assign_single (stmt);
4787 case GIMPLE_UNARY_RHS:
4788 return verify_gimple_assign_unary (stmt);
4790 case GIMPLE_BINARY_RHS:
4791 return verify_gimple_assign_binary (stmt);
4793 case GIMPLE_TERNARY_RHS:
4794 return verify_gimple_assign_ternary (stmt);
4796 default:
4797 gcc_unreachable ();
4801 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4802 is a problem, otherwise false. */
4804 static bool
4805 verify_gimple_return (greturn *stmt)
4807 tree op = gimple_return_retval (stmt);
4808 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4810 /* We cannot test for present return values as we do not fix up missing
4811 return values from the original source. */
4812 if (op == NULL)
4813 return false;
4815 if (!is_gimple_val (op)
4816 && TREE_CODE (op) != RESULT_DECL)
4818 error ("invalid operand in return statement");
4819 debug_generic_stmt (op);
4820 return true;
4823 if ((TREE_CODE (op) == RESULT_DECL
4824 && DECL_BY_REFERENCE (op))
4825 || (TREE_CODE (op) == SSA_NAME
4826 && SSA_NAME_VAR (op)
4827 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4828 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4829 op = TREE_TYPE (op);
4831 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4833 error ("invalid conversion in return statement");
4834 debug_generic_stmt (restype);
4835 debug_generic_stmt (TREE_TYPE (op));
4836 return true;
4839 return false;
4843 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4844 is a problem, otherwise false. */
4846 static bool
4847 verify_gimple_goto (ggoto *stmt)
4849 tree dest = gimple_goto_dest (stmt);
4851 /* ??? We have two canonical forms of direct goto destinations, a
4852 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4853 if (TREE_CODE (dest) != LABEL_DECL
4854 && (!is_gimple_val (dest)
4855 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4857 error ("goto destination is neither a label nor a pointer");
4858 return true;
4861 return false;
4864 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4865 is a problem, otherwise false. */
4867 static bool
4868 verify_gimple_switch (gswitch *stmt)
4870 unsigned int i, n;
4871 tree elt, prev_upper_bound = NULL_TREE;
4872 tree index_type, elt_type = NULL_TREE;
4874 if (!is_gimple_val (gimple_switch_index (stmt)))
4876 error ("invalid operand to switch statement");
4877 debug_generic_stmt (gimple_switch_index (stmt));
4878 return true;
4881 index_type = TREE_TYPE (gimple_switch_index (stmt));
4882 if (! INTEGRAL_TYPE_P (index_type))
4884 error ("non-integral type switch statement");
4885 debug_generic_expr (index_type);
4886 return true;
4889 elt = gimple_switch_label (stmt, 0);
4890 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4892 error ("invalid default case label in switch statement");
4893 debug_generic_expr (elt);
4894 return true;
4897 n = gimple_switch_num_labels (stmt);
4898 for (i = 1; i < n; i++)
4900 elt = gimple_switch_label (stmt, i);
4902 if (! CASE_LOW (elt))
4904 error ("invalid case label in switch statement");
4905 debug_generic_expr (elt);
4906 return true;
4908 if (CASE_HIGH (elt)
4909 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4911 error ("invalid case range in switch statement");
4912 debug_generic_expr (elt);
4913 return true;
4916 if (elt_type)
4918 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4919 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4921 error ("type mismatch for case label in switch statement");
4922 debug_generic_expr (elt);
4923 return true;
4926 else
4928 elt_type = TREE_TYPE (CASE_LOW (elt));
4929 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4931 error ("type precision mismatch in switch statement");
4932 return true;
4936 if (prev_upper_bound)
4938 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4940 error ("case labels not sorted in switch statement");
4941 return true;
4945 prev_upper_bound = CASE_HIGH (elt);
4946 if (! prev_upper_bound)
4947 prev_upper_bound = CASE_LOW (elt);
4950 return false;
4953 /* Verify a gimple debug statement STMT.
4954 Returns true if anything is wrong. */
4956 static bool
4957 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4959 /* There isn't much that could be wrong in a gimple debug stmt. A
4960 gimple debug bind stmt, for example, maps a tree, that's usually
4961 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4962 component or member of an aggregate type, to another tree, that
4963 can be an arbitrary expression. These stmts expand into debug
4964 insns, and are converted to debug notes by var-tracking.c. */
4965 return false;
4968 /* Verify a gimple label statement STMT.
4969 Returns true if anything is wrong. */
4971 static bool
4972 verify_gimple_label (glabel *stmt)
4974 tree decl = gimple_label_label (stmt);
4975 int uid;
4976 bool err = false;
4978 if (TREE_CODE (decl) != LABEL_DECL)
4979 return true;
4980 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4981 && DECL_CONTEXT (decl) != current_function_decl)
4983 error ("label's context is not the current function decl");
4984 err |= true;
4987 uid = LABEL_DECL_UID (decl);
4988 if (cfun->cfg
4989 && (uid == -1
4990 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4992 error ("incorrect entry in label_to_block_map");
4993 err |= true;
4996 uid = EH_LANDING_PAD_NR (decl);
4997 if (uid)
4999 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
5000 if (decl != lp->post_landing_pad)
5002 error ("incorrect setting of landing pad number");
5003 err |= true;
5007 return err;
5010 /* Verify a gimple cond statement STMT.
5011 Returns true if anything is wrong. */
5013 static bool
5014 verify_gimple_cond (gcond *stmt)
5016 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
5018 error ("invalid comparison code in gimple cond");
5019 return true;
5021 if (!(!gimple_cond_true_label (stmt)
5022 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
5023 || !(!gimple_cond_false_label (stmt)
5024 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
5026 error ("invalid labels in gimple cond");
5027 return true;
5030 return verify_gimple_comparison (boolean_type_node,
5031 gimple_cond_lhs (stmt),
5032 gimple_cond_rhs (stmt),
5033 gimple_cond_code (stmt));
5036 /* Verify the GIMPLE statement STMT. Returns true if there is an
5037 error, otherwise false. */
5039 static bool
5040 verify_gimple_stmt (gimple *stmt)
5042 switch (gimple_code (stmt))
5044 case GIMPLE_ASSIGN:
5045 return verify_gimple_assign (as_a <gassign *> (stmt));
5047 case GIMPLE_LABEL:
5048 return verify_gimple_label (as_a <glabel *> (stmt));
5050 case GIMPLE_CALL:
5051 return verify_gimple_call (as_a <gcall *> (stmt));
5053 case GIMPLE_COND:
5054 return verify_gimple_cond (as_a <gcond *> (stmt));
5056 case GIMPLE_GOTO:
5057 return verify_gimple_goto (as_a <ggoto *> (stmt));
5059 case GIMPLE_SWITCH:
5060 return verify_gimple_switch (as_a <gswitch *> (stmt));
5062 case GIMPLE_RETURN:
5063 return verify_gimple_return (as_a <greturn *> (stmt));
5065 case GIMPLE_ASM:
5066 return false;
5068 case GIMPLE_TRANSACTION:
5069 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
5071 /* Tuples that do not have tree operands. */
5072 case GIMPLE_NOP:
5073 case GIMPLE_PREDICT:
5074 case GIMPLE_RESX:
5075 case GIMPLE_EH_DISPATCH:
5076 case GIMPLE_EH_MUST_NOT_THROW:
5077 return false;
5079 CASE_GIMPLE_OMP:
5080 /* OpenMP directives are validated by the FE and never operated
5081 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
5082 non-gimple expressions when the main index variable has had
5083 its address taken. This does not affect the loop itself
5084 because the header of an GIMPLE_OMP_FOR is merely used to determine
5085 how to setup the parallel iteration. */
5086 return false;
5088 case GIMPLE_DEBUG:
5089 return verify_gimple_debug (stmt);
5091 default:
5092 gcc_unreachable ();
5096 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
5097 and false otherwise. */
5099 static bool
5100 verify_gimple_phi (gimple *phi)
5102 bool err = false;
5103 unsigned i;
5104 tree phi_result = gimple_phi_result (phi);
5105 bool virtual_p;
5107 if (!phi_result)
5109 error ("invalid PHI result");
5110 return true;
5113 virtual_p = virtual_operand_p (phi_result);
5114 if (TREE_CODE (phi_result) != SSA_NAME
5115 || (virtual_p
5116 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5118 error ("invalid PHI result");
5119 err = true;
5122 for (i = 0; i < gimple_phi_num_args (phi); i++)
5124 tree t = gimple_phi_arg_def (phi, i);
5126 if (!t)
5128 error ("missing PHI def");
5129 err |= true;
5130 continue;
5132 /* Addressable variables do have SSA_NAMEs but they
5133 are not considered gimple values. */
5134 else if ((TREE_CODE (t) == SSA_NAME
5135 && virtual_p != virtual_operand_p (t))
5136 || (virtual_p
5137 && (TREE_CODE (t) != SSA_NAME
5138 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5139 || (!virtual_p
5140 && !is_gimple_val (t)))
5142 error ("invalid PHI argument");
5143 debug_generic_expr (t);
5144 err |= true;
5146 #ifdef ENABLE_TYPES_CHECKING
5147 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5149 error ("incompatible types in PHI argument %u", i);
5150 debug_generic_stmt (TREE_TYPE (phi_result));
5151 debug_generic_stmt (TREE_TYPE (t));
5152 err |= true;
5154 #endif
5157 return err;
5160 /* Verify the GIMPLE statements inside the sequence STMTS. */
5162 static bool
5163 verify_gimple_in_seq_2 (gimple_seq stmts)
5165 gimple_stmt_iterator ittr;
5166 bool err = false;
5168 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5170 gimple *stmt = gsi_stmt (ittr);
5172 switch (gimple_code (stmt))
5174 case GIMPLE_BIND:
5175 err |= verify_gimple_in_seq_2 (
5176 gimple_bind_body (as_a <gbind *> (stmt)));
5177 break;
5179 case GIMPLE_TRY:
5180 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5181 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5182 break;
5184 case GIMPLE_EH_FILTER:
5185 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5186 break;
5188 case GIMPLE_EH_ELSE:
5190 geh_else *eh_else = as_a <geh_else *> (stmt);
5191 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5192 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5194 break;
5196 case GIMPLE_CATCH:
5197 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5198 as_a <gcatch *> (stmt)));
5199 break;
5201 case GIMPLE_TRANSACTION:
5202 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5203 break;
5205 default:
5207 bool err2 = verify_gimple_stmt (stmt);
5208 if (err2)
5209 debug_gimple_stmt (stmt);
5210 err |= err2;
5215 return err;
5218 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5219 is a problem, otherwise false. */
5221 static bool
5222 verify_gimple_transaction (gtransaction *stmt)
5224 tree lab;
5226 lab = gimple_transaction_label_norm (stmt);
5227 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5228 return true;
5229 lab = gimple_transaction_label_uninst (stmt);
5230 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5231 return true;
5232 lab = gimple_transaction_label_over (stmt);
5233 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5234 return true;
5236 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5240 /* Verify the GIMPLE statements inside the statement list STMTS. */
5242 DEBUG_FUNCTION void
5243 verify_gimple_in_seq (gimple_seq stmts)
5245 timevar_push (TV_TREE_STMT_VERIFY);
5246 if (verify_gimple_in_seq_2 (stmts))
5247 internal_error ("verify_gimple failed");
5248 timevar_pop (TV_TREE_STMT_VERIFY);
5251 /* Return true when the T can be shared. */
5253 static bool
5254 tree_node_can_be_shared (tree t)
5256 if (IS_TYPE_OR_DECL_P (t)
5257 || is_gimple_min_invariant (t)
5258 || TREE_CODE (t) == SSA_NAME
5259 || t == error_mark_node
5260 || TREE_CODE (t) == IDENTIFIER_NODE)
5261 return true;
5263 if (TREE_CODE (t) == CASE_LABEL_EXPR)
5264 return true;
5266 if (DECL_P (t))
5267 return true;
5269 return false;
5272 /* Called via walk_tree. Verify tree sharing. */
5274 static tree
5275 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5277 hash_set<void *> *visited = (hash_set<void *> *) data;
5279 if (tree_node_can_be_shared (*tp))
5281 *walk_subtrees = false;
5282 return NULL;
5285 if (visited->add (*tp))
5286 return *tp;
5288 return NULL;
5291 /* Called via walk_gimple_stmt. Verify tree sharing. */
5293 static tree
5294 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5296 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5297 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5300 static bool eh_error_found;
5301 bool
5302 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5303 hash_set<gimple *> *visited)
5305 if (!visited->contains (stmt))
5307 error ("dead STMT in EH table");
5308 debug_gimple_stmt (stmt);
5309 eh_error_found = true;
5311 return true;
5314 /* Verify if the location LOCs block is in BLOCKS. */
5316 static bool
5317 verify_location (hash_set<tree> *blocks, location_t loc)
5319 tree block = LOCATION_BLOCK (loc);
5320 if (block != NULL_TREE
5321 && !blocks->contains (block))
5323 error ("location references block not in block tree");
5324 return true;
5326 if (block != NULL_TREE)
5327 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5328 return false;
5331 /* Called via walk_tree. Verify that expressions have no blocks. */
5333 static tree
5334 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5336 if (!EXPR_P (*tp))
5338 *walk_subtrees = false;
5339 return NULL;
5342 location_t loc = EXPR_LOCATION (*tp);
5343 if (LOCATION_BLOCK (loc) != NULL)
5344 return *tp;
5346 return NULL;
5349 /* Called via walk_tree. Verify locations of expressions. */
5351 static tree
5352 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5354 hash_set<tree> *blocks = (hash_set<tree> *) data;
5356 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5358 tree t = DECL_DEBUG_EXPR (*tp);
5359 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5360 if (addr)
5361 return addr;
5363 if ((VAR_P (*tp)
5364 || TREE_CODE (*tp) == PARM_DECL
5365 || TREE_CODE (*tp) == RESULT_DECL)
5366 && DECL_HAS_VALUE_EXPR_P (*tp))
5368 tree t = DECL_VALUE_EXPR (*tp);
5369 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5370 if (addr)
5371 return addr;
5374 if (!EXPR_P (*tp))
5376 *walk_subtrees = false;
5377 return NULL;
5380 location_t loc = EXPR_LOCATION (*tp);
5381 if (verify_location (blocks, loc))
5382 return *tp;
5384 return NULL;
5387 /* Called via walk_gimple_op. Verify locations of expressions. */
5389 static tree
5390 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5392 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5393 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5396 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5398 static void
5399 collect_subblocks (hash_set<tree> *blocks, tree block)
5401 tree t;
5402 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5404 blocks->add (t);
5405 collect_subblocks (blocks, t);
5409 /* Verify the GIMPLE statements in the CFG of FN. */
5411 DEBUG_FUNCTION void
5412 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5414 basic_block bb;
5415 bool err = false;
5417 timevar_push (TV_TREE_STMT_VERIFY);
5418 hash_set<void *> visited;
5419 hash_set<gimple *> visited_stmts;
5421 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5422 hash_set<tree> blocks;
5423 if (DECL_INITIAL (fn->decl))
5425 blocks.add (DECL_INITIAL (fn->decl));
5426 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5429 FOR_EACH_BB_FN (bb, fn)
5431 gimple_stmt_iterator gsi;
5433 for (gphi_iterator gpi = gsi_start_phis (bb);
5434 !gsi_end_p (gpi);
5435 gsi_next (&gpi))
5437 gphi *phi = gpi.phi ();
5438 bool err2 = false;
5439 unsigned i;
5441 visited_stmts.add (phi);
5443 if (gimple_bb (phi) != bb)
5445 error ("gimple_bb (phi) is set to a wrong basic block");
5446 err2 = true;
5449 err2 |= verify_gimple_phi (phi);
5451 /* Only PHI arguments have locations. */
5452 if (gimple_location (phi) != UNKNOWN_LOCATION)
5454 error ("PHI node with location");
5455 err2 = true;
5458 for (i = 0; i < gimple_phi_num_args (phi); i++)
5460 tree arg = gimple_phi_arg_def (phi, i);
5461 tree addr = walk_tree (&arg, verify_node_sharing_1,
5462 &visited, NULL);
5463 if (addr)
5465 error ("incorrect sharing of tree nodes");
5466 debug_generic_expr (addr);
5467 err2 |= true;
5469 location_t loc = gimple_phi_arg_location (phi, i);
5470 if (virtual_operand_p (gimple_phi_result (phi))
5471 && loc != UNKNOWN_LOCATION)
5473 error ("virtual PHI with argument locations");
5474 err2 = true;
5476 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5477 if (addr)
5479 debug_generic_expr (addr);
5480 err2 = true;
5482 err2 |= verify_location (&blocks, loc);
5485 if (err2)
5486 debug_gimple_stmt (phi);
5487 err |= err2;
5490 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5492 gimple *stmt = gsi_stmt (gsi);
5493 bool err2 = false;
5494 struct walk_stmt_info wi;
5495 tree addr;
5496 int lp_nr;
5498 visited_stmts.add (stmt);
5500 if (gimple_bb (stmt) != bb)
5502 error ("gimple_bb (stmt) is set to a wrong basic block");
5503 err2 = true;
5506 err2 |= verify_gimple_stmt (stmt);
5507 err2 |= verify_location (&blocks, gimple_location (stmt));
5509 memset (&wi, 0, sizeof (wi));
5510 wi.info = (void *) &visited;
5511 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5512 if (addr)
5514 error ("incorrect sharing of tree nodes");
5515 debug_generic_expr (addr);
5516 err2 |= true;
5519 memset (&wi, 0, sizeof (wi));
5520 wi.info = (void *) &blocks;
5521 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5522 if (addr)
5524 debug_generic_expr (addr);
5525 err2 |= true;
5528 /* ??? Instead of not checking these stmts at all the walker
5529 should know its context via wi. */
5530 if (!is_gimple_debug (stmt)
5531 && !is_gimple_omp (stmt))
5533 memset (&wi, 0, sizeof (wi));
5534 addr = walk_gimple_op (stmt, verify_expr, &wi);
5535 if (addr)
5537 debug_generic_expr (addr);
5538 inform (gimple_location (stmt), "in statement");
5539 err2 |= true;
5543 /* If the statement is marked as part of an EH region, then it is
5544 expected that the statement could throw. Verify that when we
5545 have optimizations that simplify statements such that we prove
5546 that they cannot throw, that we update other data structures
5547 to match. */
5548 lp_nr = lookup_stmt_eh_lp (stmt);
5549 if (lp_nr > 0)
5551 if (!stmt_could_throw_p (stmt))
5553 if (verify_nothrow)
5555 error ("statement marked for throw, but doesn%'t");
5556 err2 |= true;
5559 else if (!gsi_one_before_end_p (gsi))
5561 error ("statement marked for throw in middle of block");
5562 err2 |= true;
5566 if (err2)
5567 debug_gimple_stmt (stmt);
5568 err |= err2;
5572 eh_error_found = false;
5573 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5574 if (eh_table)
5575 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5576 (&visited_stmts);
5578 if (err || eh_error_found)
5579 internal_error ("verify_gimple failed");
5581 verify_histograms ();
5582 timevar_pop (TV_TREE_STMT_VERIFY);
5586 /* Verifies that the flow information is OK. */
5588 static int
5589 gimple_verify_flow_info (void)
5591 int err = 0;
5592 basic_block bb;
5593 gimple_stmt_iterator gsi;
5594 gimple *stmt;
5595 edge e;
5596 edge_iterator ei;
5598 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5599 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5601 error ("ENTRY_BLOCK has IL associated with it");
5602 err = 1;
5605 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5606 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5608 error ("EXIT_BLOCK has IL associated with it");
5609 err = 1;
5612 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5613 if (e->flags & EDGE_FALLTHRU)
5615 error ("fallthru to exit from bb %d", e->src->index);
5616 err = 1;
5619 FOR_EACH_BB_FN (bb, cfun)
5621 bool found_ctrl_stmt = false;
5623 stmt = NULL;
5625 /* Skip labels on the start of basic block. */
5626 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5628 tree label;
5629 gimple *prev_stmt = stmt;
5631 stmt = gsi_stmt (gsi);
5633 if (gimple_code (stmt) != GIMPLE_LABEL)
5634 break;
5636 label = gimple_label_label (as_a <glabel *> (stmt));
5637 if (prev_stmt && DECL_NONLOCAL (label))
5639 error ("nonlocal label ");
5640 print_generic_expr (stderr, label);
5641 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5642 bb->index);
5643 err = 1;
5646 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5648 error ("EH landing pad label ");
5649 print_generic_expr (stderr, label);
5650 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5651 bb->index);
5652 err = 1;
5655 if (label_to_block (label) != bb)
5657 error ("label ");
5658 print_generic_expr (stderr, label);
5659 fprintf (stderr, " to block does not match in bb %d",
5660 bb->index);
5661 err = 1;
5664 if (decl_function_context (label) != current_function_decl)
5666 error ("label ");
5667 print_generic_expr (stderr, label);
5668 fprintf (stderr, " has incorrect context in bb %d",
5669 bb->index);
5670 err = 1;
5674 /* Verify that body of basic block BB is free of control flow. */
5675 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5677 gimple *stmt = gsi_stmt (gsi);
5679 if (found_ctrl_stmt)
5681 error ("control flow in the middle of basic block %d",
5682 bb->index);
5683 err = 1;
5686 if (stmt_ends_bb_p (stmt))
5687 found_ctrl_stmt = true;
5689 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5691 error ("label ");
5692 print_generic_expr (stderr, gimple_label_label (label_stmt));
5693 fprintf (stderr, " in the middle of basic block %d", bb->index);
5694 err = 1;
5698 gsi = gsi_last_nondebug_bb (bb);
5699 if (gsi_end_p (gsi))
5700 continue;
5702 stmt = gsi_stmt (gsi);
5704 if (gimple_code (stmt) == GIMPLE_LABEL)
5705 continue;
5707 err |= verify_eh_edges (stmt);
5709 if (is_ctrl_stmt (stmt))
5711 FOR_EACH_EDGE (e, ei, bb->succs)
5712 if (e->flags & EDGE_FALLTHRU)
5714 error ("fallthru edge after a control statement in bb %d",
5715 bb->index);
5716 err = 1;
5720 if (gimple_code (stmt) != GIMPLE_COND)
5722 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5723 after anything else but if statement. */
5724 FOR_EACH_EDGE (e, ei, bb->succs)
5725 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5727 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5728 bb->index);
5729 err = 1;
5733 switch (gimple_code (stmt))
5735 case GIMPLE_COND:
5737 edge true_edge;
5738 edge false_edge;
5740 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5742 if (!true_edge
5743 || !false_edge
5744 || !(true_edge->flags & EDGE_TRUE_VALUE)
5745 || !(false_edge->flags & EDGE_FALSE_VALUE)
5746 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5747 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5748 || EDGE_COUNT (bb->succs) >= 3)
5750 error ("wrong outgoing edge flags at end of bb %d",
5751 bb->index);
5752 err = 1;
5755 break;
5757 case GIMPLE_GOTO:
5758 if (simple_goto_p (stmt))
5760 error ("explicit goto at end of bb %d", bb->index);
5761 err = 1;
5763 else
5765 /* FIXME. We should double check that the labels in the
5766 destination blocks have their address taken. */
5767 FOR_EACH_EDGE (e, ei, bb->succs)
5768 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5769 | EDGE_FALSE_VALUE))
5770 || !(e->flags & EDGE_ABNORMAL))
5772 error ("wrong outgoing edge flags at end of bb %d",
5773 bb->index);
5774 err = 1;
5777 break;
5779 case GIMPLE_CALL:
5780 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5781 break;
5782 /* fallthru */
5783 case GIMPLE_RETURN:
5784 if (!single_succ_p (bb)
5785 || (single_succ_edge (bb)->flags
5786 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5787 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5789 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5790 err = 1;
5792 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5794 error ("return edge does not point to exit in bb %d",
5795 bb->index);
5796 err = 1;
5798 break;
5800 case GIMPLE_SWITCH:
5802 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5803 tree prev;
5804 edge e;
5805 size_t i, n;
5807 n = gimple_switch_num_labels (switch_stmt);
5809 /* Mark all the destination basic blocks. */
5810 for (i = 0; i < n; ++i)
5812 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5813 basic_block label_bb = label_to_block (lab);
5814 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5815 label_bb->aux = (void *)1;
5818 /* Verify that the case labels are sorted. */
5819 prev = gimple_switch_label (switch_stmt, 0);
5820 for (i = 1; i < n; ++i)
5822 tree c = gimple_switch_label (switch_stmt, i);
5823 if (!CASE_LOW (c))
5825 error ("found default case not at the start of "
5826 "case vector");
5827 err = 1;
5828 continue;
5830 if (CASE_LOW (prev)
5831 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5833 error ("case labels not sorted: ");
5834 print_generic_expr (stderr, prev);
5835 fprintf (stderr," is greater than ");
5836 print_generic_expr (stderr, c);
5837 fprintf (stderr," but comes before it.\n");
5838 err = 1;
5840 prev = c;
5842 /* VRP will remove the default case if it can prove it will
5843 never be executed. So do not verify there always exists
5844 a default case here. */
5846 FOR_EACH_EDGE (e, ei, bb->succs)
5848 if (!e->dest->aux)
5850 error ("extra outgoing edge %d->%d",
5851 bb->index, e->dest->index);
5852 err = 1;
5855 e->dest->aux = (void *)2;
5856 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5857 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5859 error ("wrong outgoing edge flags at end of bb %d",
5860 bb->index);
5861 err = 1;
5865 /* Check that we have all of them. */
5866 for (i = 0; i < n; ++i)
5868 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5869 basic_block label_bb = label_to_block (lab);
5871 if (label_bb->aux != (void *)2)
5873 error ("missing edge %i->%i", bb->index, label_bb->index);
5874 err = 1;
5878 FOR_EACH_EDGE (e, ei, bb->succs)
5879 e->dest->aux = (void *)0;
5881 break;
5883 case GIMPLE_EH_DISPATCH:
5884 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5885 break;
5887 default:
5888 break;
5892 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5893 verify_dominators (CDI_DOMINATORS);
5895 return err;
5899 /* Updates phi nodes after creating a forwarder block joined
5900 by edge FALLTHRU. */
5902 static void
5903 gimple_make_forwarder_block (edge fallthru)
5905 edge e;
5906 edge_iterator ei;
5907 basic_block dummy, bb;
5908 tree var;
5909 gphi_iterator gsi;
5911 dummy = fallthru->src;
5912 bb = fallthru->dest;
5914 if (single_pred_p (bb))
5915 return;
5917 /* If we redirected a branch we must create new PHI nodes at the
5918 start of BB. */
5919 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5921 gphi *phi, *new_phi;
5923 phi = gsi.phi ();
5924 var = gimple_phi_result (phi);
5925 new_phi = create_phi_node (var, bb);
5926 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5927 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5928 UNKNOWN_LOCATION);
5931 /* Add the arguments we have stored on edges. */
5932 FOR_EACH_EDGE (e, ei, bb->preds)
5934 if (e == fallthru)
5935 continue;
5937 flush_pending_stmts (e);
5942 /* Return a non-special label in the head of basic block BLOCK.
5943 Create one if it doesn't exist. */
5945 tree
5946 gimple_block_label (basic_block bb)
5948 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5949 bool first = true;
5950 tree label;
5951 glabel *stmt;
5953 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5955 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5956 if (!stmt)
5957 break;
5958 label = gimple_label_label (stmt);
5959 if (!DECL_NONLOCAL (label))
5961 if (!first)
5962 gsi_move_before (&i, &s);
5963 return label;
5967 label = create_artificial_label (UNKNOWN_LOCATION);
5968 stmt = gimple_build_label (label);
5969 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5970 return label;
5974 /* Attempt to perform edge redirection by replacing a possibly complex
5975 jump instruction by a goto or by removing the jump completely.
5976 This can apply only if all edges now point to the same block. The
5977 parameters and return values are equivalent to
5978 redirect_edge_and_branch. */
5980 static edge
5981 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5983 basic_block src = e->src;
5984 gimple_stmt_iterator i;
5985 gimple *stmt;
5987 /* We can replace or remove a complex jump only when we have exactly
5988 two edges. */
5989 if (EDGE_COUNT (src->succs) != 2
5990 /* Verify that all targets will be TARGET. Specifically, the
5991 edge that is not E must also go to TARGET. */
5992 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5993 return NULL;
5995 i = gsi_last_bb (src);
5996 if (gsi_end_p (i))
5997 return NULL;
5999 stmt = gsi_stmt (i);
6001 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
6003 gsi_remove (&i, true);
6004 e = ssa_redirect_edge (e, target);
6005 e->flags = EDGE_FALLTHRU;
6006 return e;
6009 return NULL;
6013 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
6014 edge representing the redirected branch. */
6016 static edge
6017 gimple_redirect_edge_and_branch (edge e, basic_block dest)
6019 basic_block bb = e->src;
6020 gimple_stmt_iterator gsi;
6021 edge ret;
6022 gimple *stmt;
6024 if (e->flags & EDGE_ABNORMAL)
6025 return NULL;
6027 if (e->dest == dest)
6028 return NULL;
6030 if (e->flags & EDGE_EH)
6031 return redirect_eh_edge (e, dest);
6033 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
6035 ret = gimple_try_redirect_by_replacing_jump (e, dest);
6036 if (ret)
6037 return ret;
6040 gsi = gsi_last_nondebug_bb (bb);
6041 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
6043 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
6045 case GIMPLE_COND:
6046 /* For COND_EXPR, we only need to redirect the edge. */
6047 break;
6049 case GIMPLE_GOTO:
6050 /* No non-abnormal edges should lead from a non-simple goto, and
6051 simple ones should be represented implicitly. */
6052 gcc_unreachable ();
6054 case GIMPLE_SWITCH:
6056 gswitch *switch_stmt = as_a <gswitch *> (stmt);
6057 tree label = gimple_block_label (dest);
6058 tree cases = get_cases_for_edge (e, switch_stmt);
6060 /* If we have a list of cases associated with E, then use it
6061 as it's a lot faster than walking the entire case vector. */
6062 if (cases)
6064 edge e2 = find_edge (e->src, dest);
6065 tree last, first;
6067 first = cases;
6068 while (cases)
6070 last = cases;
6071 CASE_LABEL (cases) = label;
6072 cases = CASE_CHAIN (cases);
6075 /* If there was already an edge in the CFG, then we need
6076 to move all the cases associated with E to E2. */
6077 if (e2)
6079 tree cases2 = get_cases_for_edge (e2, switch_stmt);
6081 CASE_CHAIN (last) = CASE_CHAIN (cases2);
6082 CASE_CHAIN (cases2) = first;
6084 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
6086 else
6088 size_t i, n = gimple_switch_num_labels (switch_stmt);
6090 for (i = 0; i < n; i++)
6092 tree elt = gimple_switch_label (switch_stmt, i);
6093 if (label_to_block (CASE_LABEL (elt)) == e->dest)
6094 CASE_LABEL (elt) = label;
6098 break;
6100 case GIMPLE_ASM:
6102 gasm *asm_stmt = as_a <gasm *> (stmt);
6103 int i, n = gimple_asm_nlabels (asm_stmt);
6104 tree label = NULL;
6106 for (i = 0; i < n; ++i)
6108 tree cons = gimple_asm_label_op (asm_stmt, i);
6109 if (label_to_block (TREE_VALUE (cons)) == e->dest)
6111 if (!label)
6112 label = gimple_block_label (dest);
6113 TREE_VALUE (cons) = label;
6117 /* If we didn't find any label matching the former edge in the
6118 asm labels, we must be redirecting the fallthrough
6119 edge. */
6120 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6122 break;
6124 case GIMPLE_RETURN:
6125 gsi_remove (&gsi, true);
6126 e->flags |= EDGE_FALLTHRU;
6127 break;
6129 case GIMPLE_OMP_RETURN:
6130 case GIMPLE_OMP_CONTINUE:
6131 case GIMPLE_OMP_SECTIONS_SWITCH:
6132 case GIMPLE_OMP_FOR:
6133 /* The edges from OMP constructs can be simply redirected. */
6134 break;
6136 case GIMPLE_EH_DISPATCH:
6137 if (!(e->flags & EDGE_FALLTHRU))
6138 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6139 break;
6141 case GIMPLE_TRANSACTION:
6142 if (e->flags & EDGE_TM_ABORT)
6143 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6144 gimple_block_label (dest));
6145 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6146 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6147 gimple_block_label (dest));
6148 else
6149 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6150 gimple_block_label (dest));
6151 break;
6153 default:
6154 /* Otherwise it must be a fallthru edge, and we don't need to
6155 do anything besides redirecting it. */
6156 gcc_assert (e->flags & EDGE_FALLTHRU);
6157 break;
6160 /* Update/insert PHI nodes as necessary. */
6162 /* Now update the edges in the CFG. */
6163 e = ssa_redirect_edge (e, dest);
6165 return e;
6168 /* Returns true if it is possible to remove edge E by redirecting
6169 it to the destination of the other edge from E->src. */
6171 static bool
6172 gimple_can_remove_branch_p (const_edge e)
6174 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6175 return false;
6177 return true;
6180 /* Simple wrapper, as we can always redirect fallthru edges. */
6182 static basic_block
6183 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6185 e = gimple_redirect_edge_and_branch (e, dest);
6186 gcc_assert (e);
6188 return NULL;
6192 /* Splits basic block BB after statement STMT (but at least after the
6193 labels). If STMT is NULL, BB is split just after the labels. */
6195 static basic_block
6196 gimple_split_block (basic_block bb, void *stmt)
6198 gimple_stmt_iterator gsi;
6199 gimple_stmt_iterator gsi_tgt;
6200 gimple_seq list;
6201 basic_block new_bb;
6202 edge e;
6203 edge_iterator ei;
6205 new_bb = create_empty_bb (bb);
6207 /* Redirect the outgoing edges. */
6208 new_bb->succs = bb->succs;
6209 bb->succs = NULL;
6210 FOR_EACH_EDGE (e, ei, new_bb->succs)
6211 e->src = new_bb;
6213 /* Get a stmt iterator pointing to the first stmt to move. */
6214 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6215 gsi = gsi_after_labels (bb);
6216 else
6218 gsi = gsi_for_stmt ((gimple *) stmt);
6219 gsi_next (&gsi);
6222 /* Move everything from GSI to the new basic block. */
6223 if (gsi_end_p (gsi))
6224 return new_bb;
6226 /* Split the statement list - avoid re-creating new containers as this
6227 brings ugly quadratic memory consumption in the inliner.
6228 (We are still quadratic since we need to update stmt BB pointers,
6229 sadly.) */
6230 gsi_split_seq_before (&gsi, &list);
6231 set_bb_seq (new_bb, list);
6232 for (gsi_tgt = gsi_start (list);
6233 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6234 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6236 return new_bb;
6240 /* Moves basic block BB after block AFTER. */
6242 static bool
6243 gimple_move_block_after (basic_block bb, basic_block after)
6245 if (bb->prev_bb == after)
6246 return true;
6248 unlink_block (bb);
6249 link_block (bb, after);
6251 return true;
6255 /* Return TRUE if block BB has no executable statements, otherwise return
6256 FALSE. */
6258 static bool
6259 gimple_empty_block_p (basic_block bb)
6261 /* BB must have no executable statements. */
6262 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6263 if (phi_nodes (bb))
6264 return false;
6265 if (gsi_end_p (gsi))
6266 return true;
6267 if (is_gimple_debug (gsi_stmt (gsi)))
6268 gsi_next_nondebug (&gsi);
6269 return gsi_end_p (gsi);
6273 /* Split a basic block if it ends with a conditional branch and if the
6274 other part of the block is not empty. */
6276 static basic_block
6277 gimple_split_block_before_cond_jump (basic_block bb)
6279 gimple *last, *split_point;
6280 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6281 if (gsi_end_p (gsi))
6282 return NULL;
6283 last = gsi_stmt (gsi);
6284 if (gimple_code (last) != GIMPLE_COND
6285 && gimple_code (last) != GIMPLE_SWITCH)
6286 return NULL;
6287 gsi_prev (&gsi);
6288 split_point = gsi_stmt (gsi);
6289 return split_block (bb, split_point)->dest;
6293 /* Return true if basic_block can be duplicated. */
6295 static bool
6296 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6298 return true;
6301 /* Create a duplicate of the basic block BB. NOTE: This does not
6302 preserve SSA form. */
6304 static basic_block
6305 gimple_duplicate_bb (basic_block bb)
6307 basic_block new_bb;
6308 gimple_stmt_iterator gsi_tgt;
6310 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6312 /* Copy the PHI nodes. We ignore PHI node arguments here because
6313 the incoming edges have not been setup yet. */
6314 for (gphi_iterator gpi = gsi_start_phis (bb);
6315 !gsi_end_p (gpi);
6316 gsi_next (&gpi))
6318 gphi *phi, *copy;
6319 phi = gpi.phi ();
6320 copy = create_phi_node (NULL_TREE, new_bb);
6321 create_new_def_for (gimple_phi_result (phi), copy,
6322 gimple_phi_result_ptr (copy));
6323 gimple_set_uid (copy, gimple_uid (phi));
6326 gsi_tgt = gsi_start_bb (new_bb);
6327 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6328 !gsi_end_p (gsi);
6329 gsi_next (&gsi))
6331 def_operand_p def_p;
6332 ssa_op_iter op_iter;
6333 tree lhs;
6334 gimple *stmt, *copy;
6336 stmt = gsi_stmt (gsi);
6337 if (gimple_code (stmt) == GIMPLE_LABEL)
6338 continue;
6340 /* Don't duplicate label debug stmts. */
6341 if (gimple_debug_bind_p (stmt)
6342 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6343 == LABEL_DECL)
6344 continue;
6346 /* Create a new copy of STMT and duplicate STMT's virtual
6347 operands. */
6348 copy = gimple_copy (stmt);
6349 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6351 maybe_duplicate_eh_stmt (copy, stmt);
6352 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6354 /* When copying around a stmt writing into a local non-user
6355 aggregate, make sure it won't share stack slot with other
6356 vars. */
6357 lhs = gimple_get_lhs (stmt);
6358 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6360 tree base = get_base_address (lhs);
6361 if (base
6362 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6363 && DECL_IGNORED_P (base)
6364 && !TREE_STATIC (base)
6365 && !DECL_EXTERNAL (base)
6366 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6367 DECL_NONSHAREABLE (base) = 1;
6370 /* Create new names for all the definitions created by COPY and
6371 add replacement mappings for each new name. */
6372 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6373 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6376 return new_bb;
6379 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6381 static void
6382 add_phi_args_after_copy_edge (edge e_copy)
6384 basic_block bb, bb_copy = e_copy->src, dest;
6385 edge e;
6386 edge_iterator ei;
6387 gphi *phi, *phi_copy;
6388 tree def;
6389 gphi_iterator psi, psi_copy;
6391 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6392 return;
6394 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6396 if (e_copy->dest->flags & BB_DUPLICATED)
6397 dest = get_bb_original (e_copy->dest);
6398 else
6399 dest = e_copy->dest;
6401 e = find_edge (bb, dest);
6402 if (!e)
6404 /* During loop unrolling the target of the latch edge is copied.
6405 In this case we are not looking for edge to dest, but to
6406 duplicated block whose original was dest. */
6407 FOR_EACH_EDGE (e, ei, bb->succs)
6409 if ((e->dest->flags & BB_DUPLICATED)
6410 && get_bb_original (e->dest) == dest)
6411 break;
6414 gcc_assert (e != NULL);
6417 for (psi = gsi_start_phis (e->dest),
6418 psi_copy = gsi_start_phis (e_copy->dest);
6419 !gsi_end_p (psi);
6420 gsi_next (&psi), gsi_next (&psi_copy))
6422 phi = psi.phi ();
6423 phi_copy = psi_copy.phi ();
6424 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6425 add_phi_arg (phi_copy, def, e_copy,
6426 gimple_phi_arg_location_from_edge (phi, e));
6431 /* Basic block BB_COPY was created by code duplication. Add phi node
6432 arguments for edges going out of BB_COPY. The blocks that were
6433 duplicated have BB_DUPLICATED set. */
6435 void
6436 add_phi_args_after_copy_bb (basic_block bb_copy)
6438 edge e_copy;
6439 edge_iterator ei;
6441 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6443 add_phi_args_after_copy_edge (e_copy);
6447 /* Blocks in REGION_COPY array of length N_REGION were created by
6448 duplication of basic blocks. Add phi node arguments for edges
6449 going from these blocks. If E_COPY is not NULL, also add
6450 phi node arguments for its destination.*/
6452 void
6453 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6454 edge e_copy)
6456 unsigned i;
6458 for (i = 0; i < n_region; i++)
6459 region_copy[i]->flags |= BB_DUPLICATED;
6461 for (i = 0; i < n_region; i++)
6462 add_phi_args_after_copy_bb (region_copy[i]);
6463 if (e_copy)
6464 add_phi_args_after_copy_edge (e_copy);
6466 for (i = 0; i < n_region; i++)
6467 region_copy[i]->flags &= ~BB_DUPLICATED;
6470 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6471 important exit edge EXIT. By important we mean that no SSA name defined
6472 inside region is live over the other exit edges of the region. All entry
6473 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6474 to the duplicate of the region. Dominance and loop information is
6475 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6476 UPDATE_DOMINANCE is false then we assume that the caller will update the
6477 dominance information after calling this function. The new basic
6478 blocks are stored to REGION_COPY in the same order as they had in REGION,
6479 provided that REGION_COPY is not NULL.
6480 The function returns false if it is unable to copy the region,
6481 true otherwise. */
6483 bool
6484 gimple_duplicate_sese_region (edge entry, edge exit,
6485 basic_block *region, unsigned n_region,
6486 basic_block *region_copy,
6487 bool update_dominance)
6489 unsigned i;
6490 bool free_region_copy = false, copying_header = false;
6491 struct loop *loop = entry->dest->loop_father;
6492 edge exit_copy;
6493 vec<basic_block> doms = vNULL;
6494 edge redirected;
6495 profile_count total_count = profile_count::uninitialized ();
6496 profile_count entry_count = profile_count::uninitialized ();
6498 if (!can_copy_bbs_p (region, n_region))
6499 return false;
6501 /* Some sanity checking. Note that we do not check for all possible
6502 missuses of the functions. I.e. if you ask to copy something weird,
6503 it will work, but the state of structures probably will not be
6504 correct. */
6505 for (i = 0; i < n_region; i++)
6507 /* We do not handle subloops, i.e. all the blocks must belong to the
6508 same loop. */
6509 if (region[i]->loop_father != loop)
6510 return false;
6512 if (region[i] != entry->dest
6513 && region[i] == loop->header)
6514 return false;
6517 /* In case the function is used for loop header copying (which is the primary
6518 use), ensure that EXIT and its copy will be new latch and entry edges. */
6519 if (loop->header == entry->dest)
6521 copying_header = true;
6523 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6524 return false;
6526 for (i = 0; i < n_region; i++)
6527 if (region[i] != exit->src
6528 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6529 return false;
6532 initialize_original_copy_tables ();
6534 if (copying_header)
6535 set_loop_copy (loop, loop_outer (loop));
6536 else
6537 set_loop_copy (loop, loop);
6539 if (!region_copy)
6541 region_copy = XNEWVEC (basic_block, n_region);
6542 free_region_copy = true;
6545 /* Record blocks outside the region that are dominated by something
6546 inside. */
6547 if (update_dominance)
6549 doms.create (0);
6550 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6553 if (entry->dest->count.initialized_p ())
6555 total_count = entry->dest->count;
6556 entry_count = entry->count ();
6557 /* Fix up corner cases, to avoid division by zero or creation of negative
6558 frequencies. */
6559 if (entry_count > total_count)
6560 entry_count = total_count;
6563 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6564 split_edge_bb_loc (entry), update_dominance);
6565 if (total_count.initialized_p () && entry_count.initialized_p ())
6567 scale_bbs_frequencies_profile_count (region, n_region,
6568 total_count - entry_count,
6569 total_count);
6570 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6571 total_count);
6574 if (copying_header)
6576 loop->header = exit->dest;
6577 loop->latch = exit->src;
6580 /* Redirect the entry and add the phi node arguments. */
6581 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6582 gcc_assert (redirected != NULL);
6583 flush_pending_stmts (entry);
6585 /* Concerning updating of dominators: We must recount dominators
6586 for entry block and its copy. Anything that is outside of the
6587 region, but was dominated by something inside needs recounting as
6588 well. */
6589 if (update_dominance)
6591 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6592 doms.safe_push (get_bb_original (entry->dest));
6593 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6594 doms.release ();
6597 /* Add the other PHI node arguments. */
6598 add_phi_args_after_copy (region_copy, n_region, NULL);
6600 if (free_region_copy)
6601 free (region_copy);
6603 free_original_copy_tables ();
6604 return true;
6607 /* Checks if BB is part of the region defined by N_REGION BBS. */
6608 static bool
6609 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6611 unsigned int n;
6613 for (n = 0; n < n_region; n++)
6615 if (bb == bbs[n])
6616 return true;
6618 return false;
6621 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6622 are stored to REGION_COPY in the same order in that they appear
6623 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6624 the region, EXIT an exit from it. The condition guarding EXIT
6625 is moved to ENTRY. Returns true if duplication succeeds, false
6626 otherwise.
6628 For example,
6630 some_code;
6631 if (cond)
6633 else
6636 is transformed to
6638 if (cond)
6640 some_code;
6643 else
6645 some_code;
6650 bool
6651 gimple_duplicate_sese_tail (edge entry, edge exit,
6652 basic_block *region, unsigned n_region,
6653 basic_block *region_copy)
6655 unsigned i;
6656 bool free_region_copy = false;
6657 struct loop *loop = exit->dest->loop_father;
6658 struct loop *orig_loop = entry->dest->loop_father;
6659 basic_block switch_bb, entry_bb, nentry_bb;
6660 vec<basic_block> doms;
6661 profile_count total_count = profile_count::uninitialized (),
6662 exit_count = profile_count::uninitialized ();
6663 edge exits[2], nexits[2], e;
6664 gimple_stmt_iterator gsi;
6665 gimple *cond_stmt;
6666 edge sorig, snew;
6667 basic_block exit_bb;
6668 gphi_iterator psi;
6669 gphi *phi;
6670 tree def;
6671 struct loop *target, *aloop, *cloop;
6673 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6674 exits[0] = exit;
6675 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6677 if (!can_copy_bbs_p (region, n_region))
6678 return false;
6680 initialize_original_copy_tables ();
6681 set_loop_copy (orig_loop, loop);
6683 target= loop;
6684 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6686 if (bb_part_of_region_p (aloop->header, region, n_region))
6688 cloop = duplicate_loop (aloop, target);
6689 duplicate_subloops (aloop, cloop);
6693 if (!region_copy)
6695 region_copy = XNEWVEC (basic_block, n_region);
6696 free_region_copy = true;
6699 gcc_assert (!need_ssa_update_p (cfun));
6701 /* Record blocks outside the region that are dominated by something
6702 inside. */
6703 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6705 total_count = exit->src->count;
6706 exit_count = exit->count ();
6707 /* Fix up corner cases, to avoid division by zero or creation of negative
6708 frequencies. */
6709 if (exit_count > total_count)
6710 exit_count = total_count;
6712 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6713 split_edge_bb_loc (exit), true);
6714 if (total_count.initialized_p () && exit_count.initialized_p ())
6716 scale_bbs_frequencies_profile_count (region, n_region,
6717 total_count - exit_count,
6718 total_count);
6719 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6720 total_count);
6723 /* Create the switch block, and put the exit condition to it. */
6724 entry_bb = entry->dest;
6725 nentry_bb = get_bb_copy (entry_bb);
6726 if (!last_stmt (entry->src)
6727 || !stmt_ends_bb_p (last_stmt (entry->src)))
6728 switch_bb = entry->src;
6729 else
6730 switch_bb = split_edge (entry);
6731 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6733 gsi = gsi_last_bb (switch_bb);
6734 cond_stmt = last_stmt (exit->src);
6735 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6736 cond_stmt = gimple_copy (cond_stmt);
6738 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6740 sorig = single_succ_edge (switch_bb);
6741 sorig->flags = exits[1]->flags;
6742 sorig->probability = exits[1]->probability;
6743 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6744 snew->probability = exits[0]->probability;
6747 /* Register the new edge from SWITCH_BB in loop exit lists. */
6748 rescan_loop_exit (snew, true, false);
6750 /* Add the PHI node arguments. */
6751 add_phi_args_after_copy (region_copy, n_region, snew);
6753 /* Get rid of now superfluous conditions and associated edges (and phi node
6754 arguments). */
6755 exit_bb = exit->dest;
6757 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6758 PENDING_STMT (e) = NULL;
6760 /* The latch of ORIG_LOOP was copied, and so was the backedge
6761 to the original header. We redirect this backedge to EXIT_BB. */
6762 for (i = 0; i < n_region; i++)
6763 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6765 gcc_assert (single_succ_edge (region_copy[i]));
6766 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6767 PENDING_STMT (e) = NULL;
6768 for (psi = gsi_start_phis (exit_bb);
6769 !gsi_end_p (psi);
6770 gsi_next (&psi))
6772 phi = psi.phi ();
6773 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6774 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6777 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6778 PENDING_STMT (e) = NULL;
6780 /* Anything that is outside of the region, but was dominated by something
6781 inside needs to update dominance info. */
6782 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6783 doms.release ();
6784 /* Update the SSA web. */
6785 update_ssa (TODO_update_ssa);
6787 if (free_region_copy)
6788 free (region_copy);
6790 free_original_copy_tables ();
6791 return true;
6794 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6795 adding blocks when the dominator traversal reaches EXIT. This
6796 function silently assumes that ENTRY strictly dominates EXIT. */
6798 void
6799 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6800 vec<basic_block> *bbs_p)
6802 basic_block son;
6804 for (son = first_dom_son (CDI_DOMINATORS, entry);
6805 son;
6806 son = next_dom_son (CDI_DOMINATORS, son))
6808 bbs_p->safe_push (son);
6809 if (son != exit)
6810 gather_blocks_in_sese_region (son, exit, bbs_p);
6814 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6815 The duplicates are recorded in VARS_MAP. */
6817 static void
6818 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6819 tree to_context)
6821 tree t = *tp, new_t;
6822 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6824 if (DECL_CONTEXT (t) == to_context)
6825 return;
6827 bool existed;
6828 tree &loc = vars_map->get_or_insert (t, &existed);
6830 if (!existed)
6832 if (SSA_VAR_P (t))
6834 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6835 add_local_decl (f, new_t);
6837 else
6839 gcc_assert (TREE_CODE (t) == CONST_DECL);
6840 new_t = copy_node (t);
6842 DECL_CONTEXT (new_t) = to_context;
6844 loc = new_t;
6846 else
6847 new_t = loc;
6849 *tp = new_t;
6853 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6854 VARS_MAP maps old ssa names and var_decls to the new ones. */
6856 static tree
6857 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6858 tree to_context)
6860 tree new_name;
6862 gcc_assert (!virtual_operand_p (name));
6864 tree *loc = vars_map->get (name);
6866 if (!loc)
6868 tree decl = SSA_NAME_VAR (name);
6869 if (decl)
6871 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6872 replace_by_duplicate_decl (&decl, vars_map, to_context);
6873 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6874 decl, SSA_NAME_DEF_STMT (name));
6876 else
6877 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6878 name, SSA_NAME_DEF_STMT (name));
6880 /* Now that we've used the def stmt to define new_name, make sure it
6881 doesn't define name anymore. */
6882 SSA_NAME_DEF_STMT (name) = NULL;
6884 vars_map->put (name, new_name);
6886 else
6887 new_name = *loc;
6889 return new_name;
6892 struct move_stmt_d
6894 tree orig_block;
6895 tree new_block;
6896 tree from_context;
6897 tree to_context;
6898 hash_map<tree, tree> *vars_map;
6899 htab_t new_label_map;
6900 hash_map<void *, void *> *eh_map;
6901 bool remap_decls_p;
6904 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6905 contained in *TP if it has been ORIG_BLOCK previously and change the
6906 DECL_CONTEXT of every local variable referenced in *TP. */
6908 static tree
6909 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6911 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6912 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6913 tree t = *tp;
6915 if (EXPR_P (t))
6917 tree block = TREE_BLOCK (t);
6918 if (block == NULL_TREE)
6920 else if (block == p->orig_block
6921 || p->orig_block == NULL_TREE)
6922 TREE_SET_BLOCK (t, p->new_block);
6923 else if (flag_checking)
6925 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6926 block = BLOCK_SUPERCONTEXT (block);
6927 gcc_assert (block == p->orig_block);
6930 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6932 if (TREE_CODE (t) == SSA_NAME)
6933 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6934 else if (TREE_CODE (t) == PARM_DECL
6935 && gimple_in_ssa_p (cfun))
6936 *tp = *(p->vars_map->get (t));
6937 else if (TREE_CODE (t) == LABEL_DECL)
6939 if (p->new_label_map)
6941 struct tree_map in, *out;
6942 in.base.from = t;
6943 out = (struct tree_map *)
6944 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6945 if (out)
6946 *tp = t = out->to;
6949 /* For FORCED_LABELs we can end up with references from other
6950 functions if some SESE regions are outlined. It is UB to
6951 jump in between them, but they could be used just for printing
6952 addresses etc. In that case, DECL_CONTEXT on the label should
6953 be the function containing the glabel stmt with that LABEL_DECL,
6954 rather than whatever function a reference to the label was seen
6955 last time. */
6956 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6957 DECL_CONTEXT (t) = p->to_context;
6959 else if (p->remap_decls_p)
6961 /* Replace T with its duplicate. T should no longer appear in the
6962 parent function, so this looks wasteful; however, it may appear
6963 in referenced_vars, and more importantly, as virtual operands of
6964 statements, and in alias lists of other variables. It would be
6965 quite difficult to expunge it from all those places. ??? It might
6966 suffice to do this for addressable variables. */
6967 if ((VAR_P (t) && !is_global_var (t))
6968 || TREE_CODE (t) == CONST_DECL)
6969 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6971 *walk_subtrees = 0;
6973 else if (TYPE_P (t))
6974 *walk_subtrees = 0;
6976 return NULL_TREE;
6979 /* Helper for move_stmt_r. Given an EH region number for the source
6980 function, map that to the duplicate EH regio number in the dest. */
6982 static int
6983 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6985 eh_region old_r, new_r;
6987 old_r = get_eh_region_from_number (old_nr);
6988 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6990 return new_r->index;
6993 /* Similar, but operate on INTEGER_CSTs. */
6995 static tree
6996 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6998 int old_nr, new_nr;
7000 old_nr = tree_to_shwi (old_t_nr);
7001 new_nr = move_stmt_eh_region_nr (old_nr, p);
7003 return build_int_cst (integer_type_node, new_nr);
7006 /* Like move_stmt_op, but for gimple statements.
7008 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
7009 contained in the current statement in *GSI_P and change the
7010 DECL_CONTEXT of every local variable referenced in the current
7011 statement. */
7013 static tree
7014 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
7015 struct walk_stmt_info *wi)
7017 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
7018 gimple *stmt = gsi_stmt (*gsi_p);
7019 tree block = gimple_block (stmt);
7021 if (block == p->orig_block
7022 || (p->orig_block == NULL_TREE
7023 && block != NULL_TREE))
7024 gimple_set_block (stmt, p->new_block);
7026 switch (gimple_code (stmt))
7028 case GIMPLE_CALL:
7029 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
7031 tree r, fndecl = gimple_call_fndecl (stmt);
7032 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
7033 switch (DECL_FUNCTION_CODE (fndecl))
7035 case BUILT_IN_EH_COPY_VALUES:
7036 r = gimple_call_arg (stmt, 1);
7037 r = move_stmt_eh_region_tree_nr (r, p);
7038 gimple_call_set_arg (stmt, 1, r);
7039 /* FALLTHRU */
7041 case BUILT_IN_EH_POINTER:
7042 case BUILT_IN_EH_FILTER:
7043 r = gimple_call_arg (stmt, 0);
7044 r = move_stmt_eh_region_tree_nr (r, p);
7045 gimple_call_set_arg (stmt, 0, r);
7046 break;
7048 default:
7049 break;
7052 break;
7054 case GIMPLE_RESX:
7056 gresx *resx_stmt = as_a <gresx *> (stmt);
7057 int r = gimple_resx_region (resx_stmt);
7058 r = move_stmt_eh_region_nr (r, p);
7059 gimple_resx_set_region (resx_stmt, r);
7061 break;
7063 case GIMPLE_EH_DISPATCH:
7065 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
7066 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
7067 r = move_stmt_eh_region_nr (r, p);
7068 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
7070 break;
7072 case GIMPLE_OMP_RETURN:
7073 case GIMPLE_OMP_CONTINUE:
7074 break;
7076 case GIMPLE_LABEL:
7078 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7079 so that such labels can be referenced from other regions.
7080 Make sure to update it when seeing a GIMPLE_LABEL though,
7081 that is the owner of the label. */
7082 walk_gimple_op (stmt, move_stmt_op, wi);
7083 *handled_ops_p = true;
7084 tree label = gimple_label_label (as_a <glabel *> (stmt));
7085 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
7086 DECL_CONTEXT (label) = p->to_context;
7088 break;
7090 default:
7091 if (is_gimple_omp (stmt))
7093 /* Do not remap variables inside OMP directives. Variables
7094 referenced in clauses and directive header belong to the
7095 parent function and should not be moved into the child
7096 function. */
7097 bool save_remap_decls_p = p->remap_decls_p;
7098 p->remap_decls_p = false;
7099 *handled_ops_p = true;
7101 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7102 move_stmt_op, wi);
7104 p->remap_decls_p = save_remap_decls_p;
7106 break;
7109 return NULL_TREE;
7112 /* Move basic block BB from function CFUN to function DEST_FN. The
7113 block is moved out of the original linked list and placed after
7114 block AFTER in the new list. Also, the block is removed from the
7115 original array of blocks and placed in DEST_FN's array of blocks.
7116 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7117 updated to reflect the moved edges.
7119 The local variables are remapped to new instances, VARS_MAP is used
7120 to record the mapping. */
7122 static void
7123 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7124 basic_block after, bool update_edge_count_p,
7125 struct move_stmt_d *d)
7127 struct control_flow_graph *cfg;
7128 edge_iterator ei;
7129 edge e;
7130 gimple_stmt_iterator si;
7131 unsigned old_len, new_len;
7133 /* Remove BB from dominance structures. */
7134 delete_from_dominance_info (CDI_DOMINATORS, bb);
7136 /* Move BB from its current loop to the copy in the new function. */
7137 if (current_loops)
7139 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
7140 if (new_loop)
7141 bb->loop_father = new_loop;
7144 /* Link BB to the new linked list. */
7145 move_block_after (bb, after);
7147 /* Update the edge count in the corresponding flowgraphs. */
7148 if (update_edge_count_p)
7149 FOR_EACH_EDGE (e, ei, bb->succs)
7151 cfun->cfg->x_n_edges--;
7152 dest_cfun->cfg->x_n_edges++;
7155 /* Remove BB from the original basic block array. */
7156 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7157 cfun->cfg->x_n_basic_blocks--;
7159 /* Grow DEST_CFUN's basic block array if needed. */
7160 cfg = dest_cfun->cfg;
7161 cfg->x_n_basic_blocks++;
7162 if (bb->index >= cfg->x_last_basic_block)
7163 cfg->x_last_basic_block = bb->index + 1;
7165 old_len = vec_safe_length (cfg->x_basic_block_info);
7166 if ((unsigned) cfg->x_last_basic_block >= old_len)
7168 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7169 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7172 (*cfg->x_basic_block_info)[bb->index] = bb;
7174 /* Remap the variables in phi nodes. */
7175 for (gphi_iterator psi = gsi_start_phis (bb);
7176 !gsi_end_p (psi); )
7178 gphi *phi = psi.phi ();
7179 use_operand_p use;
7180 tree op = PHI_RESULT (phi);
7181 ssa_op_iter oi;
7182 unsigned i;
7184 if (virtual_operand_p (op))
7186 /* Remove the phi nodes for virtual operands (alias analysis will be
7187 run for the new function, anyway). */
7188 remove_phi_node (&psi, true);
7189 continue;
7192 SET_PHI_RESULT (phi,
7193 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7194 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7196 op = USE_FROM_PTR (use);
7197 if (TREE_CODE (op) == SSA_NAME)
7198 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7201 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7203 location_t locus = gimple_phi_arg_location (phi, i);
7204 tree block = LOCATION_BLOCK (locus);
7206 if (locus == UNKNOWN_LOCATION)
7207 continue;
7208 if (d->orig_block == NULL_TREE || block == d->orig_block)
7210 locus = set_block (locus, d->new_block);
7211 gimple_phi_arg_set_location (phi, i, locus);
7215 gsi_next (&psi);
7218 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7220 gimple *stmt = gsi_stmt (si);
7221 struct walk_stmt_info wi;
7223 memset (&wi, 0, sizeof (wi));
7224 wi.info = d;
7225 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7227 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7229 tree label = gimple_label_label (label_stmt);
7230 int uid = LABEL_DECL_UID (label);
7232 gcc_assert (uid > -1);
7234 old_len = vec_safe_length (cfg->x_label_to_block_map);
7235 if (old_len <= (unsigned) uid)
7237 new_len = 3 * uid / 2 + 1;
7238 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7241 (*cfg->x_label_to_block_map)[uid] = bb;
7242 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7244 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7246 if (uid >= dest_cfun->cfg->last_label_uid)
7247 dest_cfun->cfg->last_label_uid = uid + 1;
7250 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7251 remove_stmt_from_eh_lp_fn (cfun, stmt);
7253 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7254 gimple_remove_stmt_histograms (cfun, stmt);
7256 /* We cannot leave any operands allocated from the operand caches of
7257 the current function. */
7258 free_stmt_operands (cfun, stmt);
7259 push_cfun (dest_cfun);
7260 update_stmt (stmt);
7261 pop_cfun ();
7264 FOR_EACH_EDGE (e, ei, bb->succs)
7265 if (e->goto_locus != UNKNOWN_LOCATION)
7267 tree block = LOCATION_BLOCK (e->goto_locus);
7268 if (d->orig_block == NULL_TREE
7269 || block == d->orig_block)
7270 e->goto_locus = set_block (e->goto_locus, d->new_block);
7274 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7275 the outermost EH region. Use REGION as the incoming base EH region. */
7277 static eh_region
7278 find_outermost_region_in_block (struct function *src_cfun,
7279 basic_block bb, eh_region region)
7281 gimple_stmt_iterator si;
7283 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7285 gimple *stmt = gsi_stmt (si);
7286 eh_region stmt_region;
7287 int lp_nr;
7289 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7290 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7291 if (stmt_region)
7293 if (region == NULL)
7294 region = stmt_region;
7295 else if (stmt_region != region)
7297 region = eh_region_outermost (src_cfun, stmt_region, region);
7298 gcc_assert (region != NULL);
7303 return region;
7306 static tree
7307 new_label_mapper (tree decl, void *data)
7309 htab_t hash = (htab_t) data;
7310 struct tree_map *m;
7311 void **slot;
7313 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7315 m = XNEW (struct tree_map);
7316 m->hash = DECL_UID (decl);
7317 m->base.from = decl;
7318 m->to = create_artificial_label (UNKNOWN_LOCATION);
7319 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7320 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7321 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7323 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7324 gcc_assert (*slot == NULL);
7326 *slot = m;
7328 return m->to;
7331 /* Tree walker to replace the decls used inside value expressions by
7332 duplicates. */
7334 static tree
7335 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7337 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7339 switch (TREE_CODE (*tp))
7341 case VAR_DECL:
7342 case PARM_DECL:
7343 case RESULT_DECL:
7344 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7345 break;
7346 default:
7347 break;
7350 if (IS_TYPE_OR_DECL_P (*tp))
7351 *walk_subtrees = false;
7353 return NULL;
7356 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7357 subblocks. */
7359 static void
7360 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7361 tree to_context)
7363 tree *tp, t;
7365 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7367 t = *tp;
7368 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7369 continue;
7370 replace_by_duplicate_decl (&t, vars_map, to_context);
7371 if (t != *tp)
7373 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7375 tree x = DECL_VALUE_EXPR (*tp);
7376 struct replace_decls_d rd = { vars_map, to_context };
7377 unshare_expr (x);
7378 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7379 SET_DECL_VALUE_EXPR (t, x);
7380 DECL_HAS_VALUE_EXPR_P (t) = 1;
7382 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7383 *tp = t;
7387 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7388 replace_block_vars_by_duplicates (block, vars_map, to_context);
7391 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7392 from FN1 to FN2. */
7394 static void
7395 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7396 struct loop *loop)
7398 /* Discard it from the old loop array. */
7399 (*get_loops (fn1))[loop->num] = NULL;
7401 /* Place it in the new loop array, assigning it a new number. */
7402 loop->num = number_of_loops (fn2);
7403 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7405 /* Recurse to children. */
7406 for (loop = loop->inner; loop; loop = loop->next)
7407 fixup_loop_arrays_after_move (fn1, fn2, loop);
7410 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7411 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7413 DEBUG_FUNCTION void
7414 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7416 basic_block bb;
7417 edge_iterator ei;
7418 edge e;
7419 bitmap bbs = BITMAP_ALLOC (NULL);
7420 int i;
7422 gcc_assert (entry != NULL);
7423 gcc_assert (entry != exit);
7424 gcc_assert (bbs_p != NULL);
7426 gcc_assert (bbs_p->length () > 0);
7428 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7429 bitmap_set_bit (bbs, bb->index);
7431 gcc_assert (bitmap_bit_p (bbs, entry->index));
7432 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7434 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7436 if (bb == entry)
7438 gcc_assert (single_pred_p (entry));
7439 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7441 else
7442 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7444 e = ei_edge (ei);
7445 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7448 if (bb == exit)
7450 gcc_assert (single_succ_p (exit));
7451 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7453 else
7454 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7456 e = ei_edge (ei);
7457 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7461 BITMAP_FREE (bbs);
7464 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7466 bool
7467 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7469 bitmap release_names = (bitmap)data;
7471 if (TREE_CODE (from) != SSA_NAME)
7472 return true;
7474 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7475 return true;
7478 /* Return LOOP_DIST_ALIAS call if present in BB. */
7480 static gimple *
7481 find_loop_dist_alias (basic_block bb)
7483 gimple *g = last_stmt (bb);
7484 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7485 return NULL;
7487 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7488 gsi_prev (&gsi);
7489 if (gsi_end_p (gsi))
7490 return NULL;
7492 g = gsi_stmt (gsi);
7493 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7494 return g;
7495 return NULL;
7498 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7499 to VALUE and update any immediate uses of it's LHS. */
7501 void
7502 fold_loop_internal_call (gimple *g, tree value)
7504 tree lhs = gimple_call_lhs (g);
7505 use_operand_p use_p;
7506 imm_use_iterator iter;
7507 gimple *use_stmt;
7508 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7510 update_call_from_tree (&gsi, value);
7511 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7513 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7514 SET_USE (use_p, value);
7515 update_stmt (use_stmt);
7519 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7520 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7521 single basic block in the original CFG and the new basic block is
7522 returned. DEST_CFUN must not have a CFG yet.
7524 Note that the region need not be a pure SESE region. Blocks inside
7525 the region may contain calls to abort/exit. The only restriction
7526 is that ENTRY_BB should be the only entry point and it must
7527 dominate EXIT_BB.
7529 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7530 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7531 to the new function.
7533 All local variables referenced in the region are assumed to be in
7534 the corresponding BLOCK_VARS and unexpanded variable lists
7535 associated with DEST_CFUN.
7537 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7538 reimplement move_sese_region_to_fn by duplicating the region rather than
7539 moving it. */
7541 basic_block
7542 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7543 basic_block exit_bb, tree orig_block)
7545 vec<basic_block> bbs, dom_bbs;
7546 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7547 basic_block after, bb, *entry_pred, *exit_succ, abb;
7548 struct function *saved_cfun = cfun;
7549 int *entry_flag, *exit_flag;
7550 profile_probability *entry_prob, *exit_prob;
7551 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7552 edge e;
7553 edge_iterator ei;
7554 htab_t new_label_map;
7555 hash_map<void *, void *> *eh_map;
7556 struct loop *loop = entry_bb->loop_father;
7557 struct loop *loop0 = get_loop (saved_cfun, 0);
7558 struct move_stmt_d d;
7560 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7561 region. */
7562 gcc_assert (entry_bb != exit_bb
7563 && (!exit_bb
7564 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7566 /* Collect all the blocks in the region. Manually add ENTRY_BB
7567 because it won't be added by dfs_enumerate_from. */
7568 bbs.create (0);
7569 bbs.safe_push (entry_bb);
7570 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7572 if (flag_checking)
7573 verify_sese (entry_bb, exit_bb, &bbs);
7575 /* The blocks that used to be dominated by something in BBS will now be
7576 dominated by the new block. */
7577 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7578 bbs.address (),
7579 bbs.length ());
7581 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7582 the predecessor edges to ENTRY_BB and the successor edges to
7583 EXIT_BB so that we can re-attach them to the new basic block that
7584 will replace the region. */
7585 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7586 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7587 entry_flag = XNEWVEC (int, num_entry_edges);
7588 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7589 i = 0;
7590 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7592 entry_prob[i] = e->probability;
7593 entry_flag[i] = e->flags;
7594 entry_pred[i++] = e->src;
7595 remove_edge (e);
7598 if (exit_bb)
7600 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7601 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7602 exit_flag = XNEWVEC (int, num_exit_edges);
7603 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7604 i = 0;
7605 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7607 exit_prob[i] = e->probability;
7608 exit_flag[i] = e->flags;
7609 exit_succ[i++] = e->dest;
7610 remove_edge (e);
7613 else
7615 num_exit_edges = 0;
7616 exit_succ = NULL;
7617 exit_flag = NULL;
7618 exit_prob = NULL;
7621 /* Switch context to the child function to initialize DEST_FN's CFG. */
7622 gcc_assert (dest_cfun->cfg == NULL);
7623 push_cfun (dest_cfun);
7625 init_empty_tree_cfg ();
7627 /* Initialize EH information for the new function. */
7628 eh_map = NULL;
7629 new_label_map = NULL;
7630 if (saved_cfun->eh)
7632 eh_region region = NULL;
7634 FOR_EACH_VEC_ELT (bbs, i, bb)
7635 region = find_outermost_region_in_block (saved_cfun, bb, region);
7637 init_eh_for_function ();
7638 if (region != NULL)
7640 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7641 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7642 new_label_mapper, new_label_map);
7646 /* Initialize an empty loop tree. */
7647 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7648 init_loops_structure (dest_cfun, loops, 1);
7649 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7650 set_loops_for_fn (dest_cfun, loops);
7652 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7654 /* Move the outlined loop tree part. */
7655 num_nodes = bbs.length ();
7656 FOR_EACH_VEC_ELT (bbs, i, bb)
7658 if (bb->loop_father->header == bb)
7660 struct loop *this_loop = bb->loop_father;
7661 struct loop *outer = loop_outer (this_loop);
7662 if (outer == loop
7663 /* If the SESE region contains some bbs ending with
7664 a noreturn call, those are considered to belong
7665 to the outermost loop in saved_cfun, rather than
7666 the entry_bb's loop_father. */
7667 || outer == loop0)
7669 if (outer != loop)
7670 num_nodes -= this_loop->num_nodes;
7671 flow_loop_tree_node_remove (bb->loop_father);
7672 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7673 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7676 else if (bb->loop_father == loop0 && loop0 != loop)
7677 num_nodes--;
7679 /* Remove loop exits from the outlined region. */
7680 if (loops_for_fn (saved_cfun)->exits)
7681 FOR_EACH_EDGE (e, ei, bb->succs)
7683 struct loops *l = loops_for_fn (saved_cfun);
7684 loop_exit **slot
7685 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7686 NO_INSERT);
7687 if (slot)
7688 l->exits->clear_slot (slot);
7692 /* Adjust the number of blocks in the tree root of the outlined part. */
7693 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7695 /* Setup a mapping to be used by move_block_to_fn. */
7696 loop->aux = current_loops->tree_root;
7697 loop0->aux = current_loops->tree_root;
7699 /* Fix up orig_loop_num. If the block referenced in it has been moved
7700 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7701 struct loop *dloop;
7702 signed char *moved_orig_loop_num = NULL;
7703 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7704 if (dloop->orig_loop_num)
7706 if (moved_orig_loop_num == NULL)
7707 moved_orig_loop_num
7708 = XCNEWVEC (signed char, vec_safe_length (larray));
7709 if ((*larray)[dloop->orig_loop_num] != NULL
7710 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7712 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7713 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7714 moved_orig_loop_num[dloop->orig_loop_num]++;
7715 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7717 else
7719 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7720 dloop->orig_loop_num = 0;
7723 pop_cfun ();
7725 if (moved_orig_loop_num)
7727 FOR_EACH_VEC_ELT (bbs, i, bb)
7729 gimple *g = find_loop_dist_alias (bb);
7730 if (g == NULL)
7731 continue;
7733 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7734 gcc_assert (orig_loop_num
7735 && (unsigned) orig_loop_num < vec_safe_length (larray));
7736 if (moved_orig_loop_num[orig_loop_num] == 2)
7738 /* If we have moved both loops with this orig_loop_num into
7739 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7740 too, update the first argument. */
7741 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7742 && (get_loop (saved_cfun, dloop->orig_loop_num)
7743 == NULL));
7744 tree t = build_int_cst (integer_type_node,
7745 (*larray)[dloop->orig_loop_num]->num);
7746 gimple_call_set_arg (g, 0, t);
7747 update_stmt (g);
7748 /* Make sure the following loop will not update it. */
7749 moved_orig_loop_num[orig_loop_num] = 0;
7751 else
7752 /* Otherwise at least one of the loops stayed in saved_cfun.
7753 Remove the LOOP_DIST_ALIAS call. */
7754 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7756 FOR_EACH_BB_FN (bb, saved_cfun)
7758 gimple *g = find_loop_dist_alias (bb);
7759 if (g == NULL)
7760 continue;
7761 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7762 gcc_assert (orig_loop_num
7763 && (unsigned) orig_loop_num < vec_safe_length (larray));
7764 if (moved_orig_loop_num[orig_loop_num])
7765 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7766 of the corresponding loops was moved, remove it. */
7767 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7769 XDELETEVEC (moved_orig_loop_num);
7771 ggc_free (larray);
7773 /* Move blocks from BBS into DEST_CFUN. */
7774 gcc_assert (bbs.length () >= 2);
7775 after = dest_cfun->cfg->x_entry_block_ptr;
7776 hash_map<tree, tree> vars_map;
7778 memset (&d, 0, sizeof (d));
7779 d.orig_block = orig_block;
7780 d.new_block = DECL_INITIAL (dest_cfun->decl);
7781 d.from_context = cfun->decl;
7782 d.to_context = dest_cfun->decl;
7783 d.vars_map = &vars_map;
7784 d.new_label_map = new_label_map;
7785 d.eh_map = eh_map;
7786 d.remap_decls_p = true;
7788 if (gimple_in_ssa_p (cfun))
7789 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7791 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7792 set_ssa_default_def (dest_cfun, arg, narg);
7793 vars_map.put (arg, narg);
7796 FOR_EACH_VEC_ELT (bbs, i, bb)
7798 /* No need to update edge counts on the last block. It has
7799 already been updated earlier when we detached the region from
7800 the original CFG. */
7801 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7802 after = bb;
7805 loop->aux = NULL;
7806 loop0->aux = NULL;
7807 /* Loop sizes are no longer correct, fix them up. */
7808 loop->num_nodes -= num_nodes;
7809 for (struct loop *outer = loop_outer (loop);
7810 outer; outer = loop_outer (outer))
7811 outer->num_nodes -= num_nodes;
7812 loop0->num_nodes -= bbs.length () - num_nodes;
7814 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7816 struct loop *aloop;
7817 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7818 if (aloop != NULL)
7820 if (aloop->simduid)
7822 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7823 d.to_context);
7824 dest_cfun->has_simduid_loops = true;
7826 if (aloop->force_vectorize)
7827 dest_cfun->has_force_vectorize_loops = true;
7831 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7832 if (orig_block)
7834 tree block;
7835 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7836 == NULL_TREE);
7837 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7838 = BLOCK_SUBBLOCKS (orig_block);
7839 for (block = BLOCK_SUBBLOCKS (orig_block);
7840 block; block = BLOCK_CHAIN (block))
7841 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7842 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7845 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7846 &vars_map, dest_cfun->decl);
7848 if (new_label_map)
7849 htab_delete (new_label_map);
7850 if (eh_map)
7851 delete eh_map;
7853 if (gimple_in_ssa_p (cfun))
7855 /* We need to release ssa-names in a defined order, so first find them,
7856 and then iterate in ascending version order. */
7857 bitmap release_names = BITMAP_ALLOC (NULL);
7858 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7859 bitmap_iterator bi;
7860 unsigned i;
7861 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7862 release_ssa_name (ssa_name (i));
7863 BITMAP_FREE (release_names);
7866 /* Rewire the entry and exit blocks. The successor to the entry
7867 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7868 the child function. Similarly, the predecessor of DEST_FN's
7869 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7870 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7871 various CFG manipulation function get to the right CFG.
7873 FIXME, this is silly. The CFG ought to become a parameter to
7874 these helpers. */
7875 push_cfun (dest_cfun);
7876 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7877 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7878 if (exit_bb)
7880 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7881 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7883 else
7884 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7885 pop_cfun ();
7887 /* Back in the original function, the SESE region has disappeared,
7888 create a new basic block in its place. */
7889 bb = create_empty_bb (entry_pred[0]);
7890 if (current_loops)
7891 add_bb_to_loop (bb, loop);
7892 for (i = 0; i < num_entry_edges; i++)
7894 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7895 e->probability = entry_prob[i];
7898 for (i = 0; i < num_exit_edges; i++)
7900 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7901 e->probability = exit_prob[i];
7904 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7905 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7906 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7907 dom_bbs.release ();
7909 if (exit_bb)
7911 free (exit_prob);
7912 free (exit_flag);
7913 free (exit_succ);
7915 free (entry_prob);
7916 free (entry_flag);
7917 free (entry_pred);
7918 bbs.release ();
7920 return bb;
7923 /* Dump default def DEF to file FILE using FLAGS and indentation
7924 SPC. */
7926 static void
7927 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7929 for (int i = 0; i < spc; ++i)
7930 fprintf (file, " ");
7931 dump_ssaname_info_to_file (file, def, spc);
7933 print_generic_expr (file, TREE_TYPE (def), flags);
7934 fprintf (file, " ");
7935 print_generic_expr (file, def, flags);
7936 fprintf (file, " = ");
7937 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7938 fprintf (file, ";\n");
7941 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7943 static void
7944 print_no_sanitize_attr_value (FILE *file, tree value)
7946 unsigned int flags = tree_to_uhwi (value);
7947 bool first = true;
7948 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7950 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7952 if (!first)
7953 fprintf (file, " | ");
7954 fprintf (file, "%s", sanitizer_opts[i].name);
7955 first = false;
7960 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7963 void
7964 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7966 tree arg, var, old_current_fndecl = current_function_decl;
7967 struct function *dsf;
7968 bool ignore_topmost_bind = false, any_var = false;
7969 basic_block bb;
7970 tree chain;
7971 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7972 && decl_is_tm_clone (fndecl));
7973 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7975 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7977 fprintf (file, "__attribute__((");
7979 bool first = true;
7980 tree chain;
7981 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7982 first = false, chain = TREE_CHAIN (chain))
7984 if (!first)
7985 fprintf (file, ", ");
7987 tree name = get_attribute_name (chain);
7988 print_generic_expr (file, name, dump_flags);
7989 if (TREE_VALUE (chain) != NULL_TREE)
7991 fprintf (file, " (");
7993 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7994 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7995 else
7996 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7997 fprintf (file, ")");
8001 fprintf (file, "))\n");
8004 current_function_decl = fndecl;
8005 if (flags & TDF_GIMPLE)
8007 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
8008 dump_flags | TDF_SLIM);
8009 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
8011 else
8012 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
8014 arg = DECL_ARGUMENTS (fndecl);
8015 while (arg)
8017 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
8018 fprintf (file, " ");
8019 print_generic_expr (file, arg, dump_flags);
8020 if (DECL_CHAIN (arg))
8021 fprintf (file, ", ");
8022 arg = DECL_CHAIN (arg);
8024 fprintf (file, ")\n");
8026 dsf = DECL_STRUCT_FUNCTION (fndecl);
8027 if (dsf && (flags & TDF_EH))
8028 dump_eh_tree (file, dsf);
8030 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
8032 dump_node (fndecl, TDF_SLIM | flags, file);
8033 current_function_decl = old_current_fndecl;
8034 return;
8037 /* When GIMPLE is lowered, the variables are no longer available in
8038 BIND_EXPRs, so display them separately. */
8039 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
8041 unsigned ix;
8042 ignore_topmost_bind = true;
8044 fprintf (file, "{\n");
8045 if (gimple_in_ssa_p (fun)
8046 && (flags & TDF_ALIAS))
8048 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
8049 arg = DECL_CHAIN (arg))
8051 tree def = ssa_default_def (fun, arg);
8052 if (def)
8053 dump_default_def (file, def, 2, flags);
8056 tree res = DECL_RESULT (fun->decl);
8057 if (res != NULL_TREE
8058 && DECL_BY_REFERENCE (res))
8060 tree def = ssa_default_def (fun, res);
8061 if (def)
8062 dump_default_def (file, def, 2, flags);
8065 tree static_chain = fun->static_chain_decl;
8066 if (static_chain != NULL_TREE)
8068 tree def = ssa_default_def (fun, static_chain);
8069 if (def)
8070 dump_default_def (file, def, 2, flags);
8074 if (!vec_safe_is_empty (fun->local_decls))
8075 FOR_EACH_LOCAL_DECL (fun, ix, var)
8077 print_generic_decl (file, var, flags);
8078 fprintf (file, "\n");
8080 any_var = true;
8083 tree name;
8085 if (gimple_in_ssa_p (cfun))
8086 FOR_EACH_SSA_NAME (ix, name, cfun)
8088 if (!SSA_NAME_VAR (name))
8090 fprintf (file, " ");
8091 print_generic_expr (file, TREE_TYPE (name), flags);
8092 fprintf (file, " ");
8093 print_generic_expr (file, name, flags);
8094 fprintf (file, ";\n");
8096 any_var = true;
8101 if (fun && fun->decl == fndecl
8102 && fun->cfg
8103 && basic_block_info_for_fn (fun))
8105 /* If the CFG has been built, emit a CFG-based dump. */
8106 if (!ignore_topmost_bind)
8107 fprintf (file, "{\n");
8109 if (any_var && n_basic_blocks_for_fn (fun))
8110 fprintf (file, "\n");
8112 FOR_EACH_BB_FN (bb, fun)
8113 dump_bb (file, bb, 2, flags);
8115 fprintf (file, "}\n");
8117 else if (fun->curr_properties & PROP_gimple_any)
8119 /* The function is now in GIMPLE form but the CFG has not been
8120 built yet. Emit the single sequence of GIMPLE statements
8121 that make up its body. */
8122 gimple_seq body = gimple_body (fndecl);
8124 if (gimple_seq_first_stmt (body)
8125 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8126 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8127 print_gimple_seq (file, body, 0, flags);
8128 else
8130 if (!ignore_topmost_bind)
8131 fprintf (file, "{\n");
8133 if (any_var)
8134 fprintf (file, "\n");
8136 print_gimple_seq (file, body, 2, flags);
8137 fprintf (file, "}\n");
8140 else
8142 int indent;
8144 /* Make a tree based dump. */
8145 chain = DECL_SAVED_TREE (fndecl);
8146 if (chain && TREE_CODE (chain) == BIND_EXPR)
8148 if (ignore_topmost_bind)
8150 chain = BIND_EXPR_BODY (chain);
8151 indent = 2;
8153 else
8154 indent = 0;
8156 else
8158 if (!ignore_topmost_bind)
8160 fprintf (file, "{\n");
8161 /* No topmost bind, pretend it's ignored for later. */
8162 ignore_topmost_bind = true;
8164 indent = 2;
8167 if (any_var)
8168 fprintf (file, "\n");
8170 print_generic_stmt_indented (file, chain, flags, indent);
8171 if (ignore_topmost_bind)
8172 fprintf (file, "}\n");
8175 if (flags & TDF_ENUMERATE_LOCALS)
8176 dump_enumerated_decls (file, flags);
8177 fprintf (file, "\n\n");
8179 current_function_decl = old_current_fndecl;
8182 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8184 DEBUG_FUNCTION void
8185 debug_function (tree fn, dump_flags_t flags)
8187 dump_function_to_file (fn, stderr, flags);
8191 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8193 static void
8194 print_pred_bbs (FILE *file, basic_block bb)
8196 edge e;
8197 edge_iterator ei;
8199 FOR_EACH_EDGE (e, ei, bb->preds)
8200 fprintf (file, "bb_%d ", e->src->index);
8204 /* Print on FILE the indexes for the successors of basic_block BB. */
8206 static void
8207 print_succ_bbs (FILE *file, basic_block bb)
8209 edge e;
8210 edge_iterator ei;
8212 FOR_EACH_EDGE (e, ei, bb->succs)
8213 fprintf (file, "bb_%d ", e->dest->index);
8216 /* Print to FILE the basic block BB following the VERBOSITY level. */
8218 void
8219 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8221 char *s_indent = (char *) alloca ((size_t) indent + 1);
8222 memset ((void *) s_indent, ' ', (size_t) indent);
8223 s_indent[indent] = '\0';
8225 /* Print basic_block's header. */
8226 if (verbosity >= 2)
8228 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8229 print_pred_bbs (file, bb);
8230 fprintf (file, "}, succs = {");
8231 print_succ_bbs (file, bb);
8232 fprintf (file, "})\n");
8235 /* Print basic_block's body. */
8236 if (verbosity >= 3)
8238 fprintf (file, "%s {\n", s_indent);
8239 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8240 fprintf (file, "%s }\n", s_indent);
8244 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8246 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8247 VERBOSITY level this outputs the contents of the loop, or just its
8248 structure. */
8250 static void
8251 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8253 char *s_indent;
8254 basic_block bb;
8256 if (loop == NULL)
8257 return;
8259 s_indent = (char *) alloca ((size_t) indent + 1);
8260 memset ((void *) s_indent, ' ', (size_t) indent);
8261 s_indent[indent] = '\0';
8263 /* Print loop's header. */
8264 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8265 if (loop->header)
8266 fprintf (file, "header = %d", loop->header->index);
8267 else
8269 fprintf (file, "deleted)\n");
8270 return;
8272 if (loop->latch)
8273 fprintf (file, ", latch = %d", loop->latch->index);
8274 else
8275 fprintf (file, ", multiple latches");
8276 fprintf (file, ", niter = ");
8277 print_generic_expr (file, loop->nb_iterations);
8279 if (loop->any_upper_bound)
8281 fprintf (file, ", upper_bound = ");
8282 print_decu (loop->nb_iterations_upper_bound, file);
8284 if (loop->any_likely_upper_bound)
8286 fprintf (file, ", likely_upper_bound = ");
8287 print_decu (loop->nb_iterations_likely_upper_bound, file);
8290 if (loop->any_estimate)
8292 fprintf (file, ", estimate = ");
8293 print_decu (loop->nb_iterations_estimate, file);
8295 if (loop->unroll)
8296 fprintf (file, ", unroll = %d", loop->unroll);
8297 fprintf (file, ")\n");
8299 /* Print loop's body. */
8300 if (verbosity >= 1)
8302 fprintf (file, "%s{\n", s_indent);
8303 FOR_EACH_BB_FN (bb, cfun)
8304 if (bb->loop_father == loop)
8305 print_loops_bb (file, bb, indent, verbosity);
8307 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8308 fprintf (file, "%s}\n", s_indent);
8312 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8313 spaces. Following VERBOSITY level this outputs the contents of the
8314 loop, or just its structure. */
8316 static void
8317 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8318 int verbosity)
8320 if (loop == NULL)
8321 return;
8323 print_loop (file, loop, indent, verbosity);
8324 print_loop_and_siblings (file, loop->next, indent, verbosity);
8327 /* Follow a CFG edge from the entry point of the program, and on entry
8328 of a loop, pretty print the loop structure on FILE. */
8330 void
8331 print_loops (FILE *file, int verbosity)
8333 basic_block bb;
8335 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8336 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8337 if (bb && bb->loop_father)
8338 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8341 /* Dump a loop. */
8343 DEBUG_FUNCTION void
8344 debug (struct loop &ref)
8346 print_loop (stderr, &ref, 0, /*verbosity*/0);
8349 DEBUG_FUNCTION void
8350 debug (struct loop *ptr)
8352 if (ptr)
8353 debug (*ptr);
8354 else
8355 fprintf (stderr, "<nil>\n");
8358 /* Dump a loop verbosely. */
8360 DEBUG_FUNCTION void
8361 debug_verbose (struct loop &ref)
8363 print_loop (stderr, &ref, 0, /*verbosity*/3);
8366 DEBUG_FUNCTION void
8367 debug_verbose (struct loop *ptr)
8369 if (ptr)
8370 debug (*ptr);
8371 else
8372 fprintf (stderr, "<nil>\n");
8376 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8378 DEBUG_FUNCTION void
8379 debug_loops (int verbosity)
8381 print_loops (stderr, verbosity);
8384 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8386 DEBUG_FUNCTION void
8387 debug_loop (struct loop *loop, int verbosity)
8389 print_loop (stderr, loop, 0, verbosity);
8392 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8393 level. */
8395 DEBUG_FUNCTION void
8396 debug_loop_num (unsigned num, int verbosity)
8398 debug_loop (get_loop (cfun, num), verbosity);
8401 /* Return true if BB ends with a call, possibly followed by some
8402 instructions that must stay with the call. Return false,
8403 otherwise. */
8405 static bool
8406 gimple_block_ends_with_call_p (basic_block bb)
8408 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8409 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8413 /* Return true if BB ends with a conditional branch. Return false,
8414 otherwise. */
8416 static bool
8417 gimple_block_ends_with_condjump_p (const_basic_block bb)
8419 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8420 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8424 /* Return true if statement T may terminate execution of BB in ways not
8425 explicitly represtented in the CFG. */
8427 bool
8428 stmt_can_terminate_bb_p (gimple *t)
8430 tree fndecl = NULL_TREE;
8431 int call_flags = 0;
8433 /* Eh exception not handled internally terminates execution of the whole
8434 function. */
8435 if (stmt_can_throw_external (t))
8436 return true;
8438 /* NORETURN and LONGJMP calls already have an edge to exit.
8439 CONST and PURE calls do not need one.
8440 We don't currently check for CONST and PURE here, although
8441 it would be a good idea, because those attributes are
8442 figured out from the RTL in mark_constant_function, and
8443 the counter incrementation code from -fprofile-arcs
8444 leads to different results from -fbranch-probabilities. */
8445 if (is_gimple_call (t))
8447 fndecl = gimple_call_fndecl (t);
8448 call_flags = gimple_call_flags (t);
8451 if (is_gimple_call (t)
8452 && fndecl
8453 && DECL_BUILT_IN (fndecl)
8454 && (call_flags & ECF_NOTHROW)
8455 && !(call_flags & ECF_RETURNS_TWICE)
8456 /* fork() doesn't really return twice, but the effect of
8457 wrapping it in __gcov_fork() which calls __gcov_flush()
8458 and clears the counters before forking has the same
8459 effect as returning twice. Force a fake edge. */
8460 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8461 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8462 return false;
8464 if (is_gimple_call (t))
8466 edge_iterator ei;
8467 edge e;
8468 basic_block bb;
8470 if (call_flags & (ECF_PURE | ECF_CONST)
8471 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8472 return false;
8474 /* Function call may do longjmp, terminate program or do other things.
8475 Special case noreturn that have non-abnormal edges out as in this case
8476 the fact is sufficiently represented by lack of edges out of T. */
8477 if (!(call_flags & ECF_NORETURN))
8478 return true;
8480 bb = gimple_bb (t);
8481 FOR_EACH_EDGE (e, ei, bb->succs)
8482 if ((e->flags & EDGE_FAKE) == 0)
8483 return true;
8486 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8487 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8488 return true;
8490 return false;
8494 /* Add fake edges to the function exit for any non constant and non
8495 noreturn calls (or noreturn calls with EH/abnormal edges),
8496 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8497 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8498 that were split.
8500 The goal is to expose cases in which entering a basic block does
8501 not imply that all subsequent instructions must be executed. */
8503 static int
8504 gimple_flow_call_edges_add (sbitmap blocks)
8506 int i;
8507 int blocks_split = 0;
8508 int last_bb = last_basic_block_for_fn (cfun);
8509 bool check_last_block = false;
8511 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8512 return 0;
8514 if (! blocks)
8515 check_last_block = true;
8516 else
8517 check_last_block = bitmap_bit_p (blocks,
8518 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8520 /* In the last basic block, before epilogue generation, there will be
8521 a fallthru edge to EXIT. Special care is required if the last insn
8522 of the last basic block is a call because make_edge folds duplicate
8523 edges, which would result in the fallthru edge also being marked
8524 fake, which would result in the fallthru edge being removed by
8525 remove_fake_edges, which would result in an invalid CFG.
8527 Moreover, we can't elide the outgoing fake edge, since the block
8528 profiler needs to take this into account in order to solve the minimal
8529 spanning tree in the case that the call doesn't return.
8531 Handle this by adding a dummy instruction in a new last basic block. */
8532 if (check_last_block)
8534 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8535 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8536 gimple *t = NULL;
8538 if (!gsi_end_p (gsi))
8539 t = gsi_stmt (gsi);
8541 if (t && stmt_can_terminate_bb_p (t))
8543 edge e;
8545 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8546 if (e)
8548 gsi_insert_on_edge (e, gimple_build_nop ());
8549 gsi_commit_edge_inserts ();
8554 /* Now add fake edges to the function exit for any non constant
8555 calls since there is no way that we can determine if they will
8556 return or not... */
8557 for (i = 0; i < last_bb; i++)
8559 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8560 gimple_stmt_iterator gsi;
8561 gimple *stmt, *last_stmt;
8563 if (!bb)
8564 continue;
8566 if (blocks && !bitmap_bit_p (blocks, i))
8567 continue;
8569 gsi = gsi_last_nondebug_bb (bb);
8570 if (!gsi_end_p (gsi))
8572 last_stmt = gsi_stmt (gsi);
8575 stmt = gsi_stmt (gsi);
8576 if (stmt_can_terminate_bb_p (stmt))
8578 edge e;
8580 /* The handling above of the final block before the
8581 epilogue should be enough to verify that there is
8582 no edge to the exit block in CFG already.
8583 Calling make_edge in such case would cause us to
8584 mark that edge as fake and remove it later. */
8585 if (flag_checking && stmt == last_stmt)
8587 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8588 gcc_assert (e == NULL);
8591 /* Note that the following may create a new basic block
8592 and renumber the existing basic blocks. */
8593 if (stmt != last_stmt)
8595 e = split_block (bb, stmt);
8596 if (e)
8597 blocks_split++;
8599 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8600 e->probability = profile_probability::guessed_never ();
8602 gsi_prev (&gsi);
8604 while (!gsi_end_p (gsi));
8608 if (blocks_split)
8609 checking_verify_flow_info ();
8611 return blocks_split;
8614 /* Removes edge E and all the blocks dominated by it, and updates dominance
8615 information. The IL in E->src needs to be updated separately.
8616 If dominance info is not available, only the edge E is removed.*/
8618 void
8619 remove_edge_and_dominated_blocks (edge e)
8621 vec<basic_block> bbs_to_remove = vNULL;
8622 vec<basic_block> bbs_to_fix_dom = vNULL;
8623 edge f;
8624 edge_iterator ei;
8625 bool none_removed = false;
8626 unsigned i;
8627 basic_block bb, dbb;
8628 bitmap_iterator bi;
8630 /* If we are removing a path inside a non-root loop that may change
8631 loop ownership of blocks or remove loops. Mark loops for fixup. */
8632 if (current_loops
8633 && loop_outer (e->src->loop_father) != NULL
8634 && e->src->loop_father == e->dest->loop_father)
8635 loops_state_set (LOOPS_NEED_FIXUP);
8637 if (!dom_info_available_p (CDI_DOMINATORS))
8639 remove_edge (e);
8640 return;
8643 /* No updating is needed for edges to exit. */
8644 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8646 if (cfgcleanup_altered_bbs)
8647 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8648 remove_edge (e);
8649 return;
8652 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8653 that is not dominated by E->dest, then this set is empty. Otherwise,
8654 all the basic blocks dominated by E->dest are removed.
8656 Also, to DF_IDOM we store the immediate dominators of the blocks in
8657 the dominance frontier of E (i.e., of the successors of the
8658 removed blocks, if there are any, and of E->dest otherwise). */
8659 FOR_EACH_EDGE (f, ei, e->dest->preds)
8661 if (f == e)
8662 continue;
8664 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8666 none_removed = true;
8667 break;
8671 auto_bitmap df, df_idom;
8672 if (none_removed)
8673 bitmap_set_bit (df_idom,
8674 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8675 else
8677 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8678 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8680 FOR_EACH_EDGE (f, ei, bb->succs)
8682 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8683 bitmap_set_bit (df, f->dest->index);
8686 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8687 bitmap_clear_bit (df, bb->index);
8689 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8691 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8692 bitmap_set_bit (df_idom,
8693 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8697 if (cfgcleanup_altered_bbs)
8699 /* Record the set of the altered basic blocks. */
8700 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8701 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8704 /* Remove E and the cancelled blocks. */
8705 if (none_removed)
8706 remove_edge (e);
8707 else
8709 /* Walk backwards so as to get a chance to substitute all
8710 released DEFs into debug stmts. See
8711 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8712 details. */
8713 for (i = bbs_to_remove.length (); i-- > 0; )
8714 delete_basic_block (bbs_to_remove[i]);
8717 /* Update the dominance information. The immediate dominator may change only
8718 for blocks whose immediate dominator belongs to DF_IDOM:
8720 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8721 removal. Let Z the arbitrary block such that idom(Z) = Y and
8722 Z dominates X after the removal. Before removal, there exists a path P
8723 from Y to X that avoids Z. Let F be the last edge on P that is
8724 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8725 dominates W, and because of P, Z does not dominate W), and W belongs to
8726 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8727 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8729 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8730 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8731 dbb;
8732 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8733 bbs_to_fix_dom.safe_push (dbb);
8736 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8738 bbs_to_remove.release ();
8739 bbs_to_fix_dom.release ();
8742 /* Purge dead EH edges from basic block BB. */
8744 bool
8745 gimple_purge_dead_eh_edges (basic_block bb)
8747 bool changed = false;
8748 edge e;
8749 edge_iterator ei;
8750 gimple *stmt = last_stmt (bb);
8752 if (stmt && stmt_can_throw_internal (stmt))
8753 return false;
8755 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8757 if (e->flags & EDGE_EH)
8759 remove_edge_and_dominated_blocks (e);
8760 changed = true;
8762 else
8763 ei_next (&ei);
8766 return changed;
8769 /* Purge dead EH edges from basic block listed in BLOCKS. */
8771 bool
8772 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8774 bool changed = false;
8775 unsigned i;
8776 bitmap_iterator bi;
8778 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8780 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8782 /* Earlier gimple_purge_dead_eh_edges could have removed
8783 this basic block already. */
8784 gcc_assert (bb || changed);
8785 if (bb != NULL)
8786 changed |= gimple_purge_dead_eh_edges (bb);
8789 return changed;
8792 /* Purge dead abnormal call edges from basic block BB. */
8794 bool
8795 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8797 bool changed = false;
8798 edge e;
8799 edge_iterator ei;
8800 gimple *stmt = last_stmt (bb);
8802 if (!cfun->has_nonlocal_label
8803 && !cfun->calls_setjmp)
8804 return false;
8806 if (stmt && stmt_can_make_abnormal_goto (stmt))
8807 return false;
8809 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8811 if (e->flags & EDGE_ABNORMAL)
8813 if (e->flags & EDGE_FALLTHRU)
8814 e->flags &= ~EDGE_ABNORMAL;
8815 else
8816 remove_edge_and_dominated_blocks (e);
8817 changed = true;
8819 else
8820 ei_next (&ei);
8823 return changed;
8826 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8828 bool
8829 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8831 bool changed = false;
8832 unsigned i;
8833 bitmap_iterator bi;
8835 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8837 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8839 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8840 this basic block already. */
8841 gcc_assert (bb || changed);
8842 if (bb != NULL)
8843 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8846 return changed;
8849 /* This function is called whenever a new edge is created or
8850 redirected. */
8852 static void
8853 gimple_execute_on_growing_pred (edge e)
8855 basic_block bb = e->dest;
8857 if (!gimple_seq_empty_p (phi_nodes (bb)))
8858 reserve_phi_args_for_new_edge (bb);
8861 /* This function is called immediately before edge E is removed from
8862 the edge vector E->dest->preds. */
8864 static void
8865 gimple_execute_on_shrinking_pred (edge e)
8867 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8868 remove_phi_args (e);
8871 /*---------------------------------------------------------------------------
8872 Helper functions for Loop versioning
8873 ---------------------------------------------------------------------------*/
8875 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8876 of 'first'. Both of them are dominated by 'new_head' basic block. When
8877 'new_head' was created by 'second's incoming edge it received phi arguments
8878 on the edge by split_edge(). Later, additional edge 'e' was created to
8879 connect 'new_head' and 'first'. Now this routine adds phi args on this
8880 additional edge 'e' that new_head to second edge received as part of edge
8881 splitting. */
8883 static void
8884 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8885 basic_block new_head, edge e)
8887 gphi *phi1, *phi2;
8888 gphi_iterator psi1, psi2;
8889 tree def;
8890 edge e2 = find_edge (new_head, second);
8892 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8893 edge, we should always have an edge from NEW_HEAD to SECOND. */
8894 gcc_assert (e2 != NULL);
8896 /* Browse all 'second' basic block phi nodes and add phi args to
8897 edge 'e' for 'first' head. PHI args are always in correct order. */
8899 for (psi2 = gsi_start_phis (second),
8900 psi1 = gsi_start_phis (first);
8901 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8902 gsi_next (&psi2), gsi_next (&psi1))
8904 phi1 = psi1.phi ();
8905 phi2 = psi2.phi ();
8906 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8907 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8912 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8913 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8914 the destination of the ELSE part. */
8916 static void
8917 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8918 basic_block second_head ATTRIBUTE_UNUSED,
8919 basic_block cond_bb, void *cond_e)
8921 gimple_stmt_iterator gsi;
8922 gimple *new_cond_expr;
8923 tree cond_expr = (tree) cond_e;
8924 edge e0;
8926 /* Build new conditional expr */
8927 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8928 NULL_TREE, NULL_TREE);
8930 /* Add new cond in cond_bb. */
8931 gsi = gsi_last_bb (cond_bb);
8932 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8934 /* Adjust edges appropriately to connect new head with first head
8935 as well as second head. */
8936 e0 = single_succ_edge (cond_bb);
8937 e0->flags &= ~EDGE_FALLTHRU;
8938 e0->flags |= EDGE_FALSE_VALUE;
8942 /* Do book-keeping of basic block BB for the profile consistency checker.
8943 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8944 then do post-pass accounting. Store the counting in RECORD. */
8945 static void
8946 gimple_account_profile_record (basic_block bb, int after_pass,
8947 struct profile_record *record)
8949 gimple_stmt_iterator i;
8950 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8952 record->size[after_pass]
8953 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8954 if (bb->count.initialized_p ())
8955 record->time[after_pass]
8956 += estimate_num_insns (gsi_stmt (i),
8957 &eni_time_weights) * bb->count.to_gcov_type ();
8958 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8959 record->time[after_pass]
8960 += estimate_num_insns (gsi_stmt (i),
8961 &eni_time_weights) * bb->count.to_frequency (cfun);
8965 struct cfg_hooks gimple_cfg_hooks = {
8966 "gimple",
8967 gimple_verify_flow_info,
8968 gimple_dump_bb, /* dump_bb */
8969 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8970 create_bb, /* create_basic_block */
8971 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8972 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8973 gimple_can_remove_branch_p, /* can_remove_branch_p */
8974 remove_bb, /* delete_basic_block */
8975 gimple_split_block, /* split_block */
8976 gimple_move_block_after, /* move_block_after */
8977 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8978 gimple_merge_blocks, /* merge_blocks */
8979 gimple_predict_edge, /* predict_edge */
8980 gimple_predicted_by_p, /* predicted_by_p */
8981 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8982 gimple_duplicate_bb, /* duplicate_block */
8983 gimple_split_edge, /* split_edge */
8984 gimple_make_forwarder_block, /* make_forward_block */
8985 NULL, /* tidy_fallthru_edge */
8986 NULL, /* force_nonfallthru */
8987 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8988 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8989 gimple_flow_call_edges_add, /* flow_call_edges_add */
8990 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8991 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8992 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8993 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8994 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8995 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8996 flush_pending_stmts, /* flush_pending_stmts */
8997 gimple_empty_block_p, /* block_empty_p */
8998 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8999 gimple_account_profile_record,
9003 /* Split all critical edges. */
9005 unsigned int
9006 split_critical_edges (void)
9008 basic_block bb;
9009 edge e;
9010 edge_iterator ei;
9012 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
9013 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
9014 mappings around the calls to split_edge. */
9015 start_recording_case_labels ();
9016 FOR_ALL_BB_FN (bb, cfun)
9018 FOR_EACH_EDGE (e, ei, bb->succs)
9020 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
9021 split_edge (e);
9022 /* PRE inserts statements to edges and expects that
9023 since split_critical_edges was done beforehand, committing edge
9024 insertions will not split more edges. In addition to critical
9025 edges we must split edges that have multiple successors and
9026 end by control flow statements, such as RESX.
9027 Go ahead and split them too. This matches the logic in
9028 gimple_find_edge_insert_loc. */
9029 else if ((!single_pred_p (e->dest)
9030 || !gimple_seq_empty_p (phi_nodes (e->dest))
9031 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
9032 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
9033 && !(e->flags & EDGE_ABNORMAL))
9035 gimple_stmt_iterator gsi;
9037 gsi = gsi_last_bb (e->src);
9038 if (!gsi_end_p (gsi)
9039 && stmt_ends_bb_p (gsi_stmt (gsi))
9040 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
9041 && !gimple_call_builtin_p (gsi_stmt (gsi),
9042 BUILT_IN_RETURN)))
9043 split_edge (e);
9047 end_recording_case_labels ();
9048 return 0;
9051 namespace {
9053 const pass_data pass_data_split_crit_edges =
9055 GIMPLE_PASS, /* type */
9056 "crited", /* name */
9057 OPTGROUP_NONE, /* optinfo_flags */
9058 TV_TREE_SPLIT_EDGES, /* tv_id */
9059 PROP_cfg, /* properties_required */
9060 PROP_no_crit_edges, /* properties_provided */
9061 0, /* properties_destroyed */
9062 0, /* todo_flags_start */
9063 0, /* todo_flags_finish */
9066 class pass_split_crit_edges : public gimple_opt_pass
9068 public:
9069 pass_split_crit_edges (gcc::context *ctxt)
9070 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
9073 /* opt_pass methods: */
9074 virtual unsigned int execute (function *) { return split_critical_edges (); }
9076 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
9077 }; // class pass_split_crit_edges
9079 } // anon namespace
9081 gimple_opt_pass *
9082 make_pass_split_crit_edges (gcc::context *ctxt)
9084 return new pass_split_crit_edges (ctxt);
9088 /* Insert COND expression which is GIMPLE_COND after STMT
9089 in basic block BB with appropriate basic block split
9090 and creation of a new conditionally executed basic block.
9091 Update profile so the new bb is visited with probability PROB.
9092 Return created basic block. */
9093 basic_block
9094 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
9095 profile_probability prob)
9097 edge fall = split_block (bb, stmt);
9098 gimple_stmt_iterator iter = gsi_last_bb (bb);
9099 basic_block new_bb;
9101 /* Insert cond statement. */
9102 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9103 if (gsi_end_p (iter))
9104 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9105 else
9106 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9108 /* Create conditionally executed block. */
9109 new_bb = create_empty_bb (bb);
9110 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9111 e->probability = prob;
9112 new_bb->count = e->count ();
9113 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9115 /* Fix edge for split bb. */
9116 fall->flags = EDGE_FALSE_VALUE;
9117 fall->probability -= e->probability;
9119 /* Update dominance info. */
9120 if (dom_info_available_p (CDI_DOMINATORS))
9122 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9123 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9126 /* Update loop info. */
9127 if (current_loops)
9128 add_bb_to_loop (new_bb, bb->loop_father);
9130 return new_bb;
9133 /* Build a ternary operation and gimplify it. Emit code before GSI.
9134 Return the gimple_val holding the result. */
9136 tree
9137 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
9138 tree type, tree a, tree b, tree c)
9140 tree ret;
9141 location_t loc = gimple_location (gsi_stmt (*gsi));
9143 ret = fold_build3_loc (loc, code, type, a, b, c);
9144 STRIP_NOPS (ret);
9146 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9147 GSI_SAME_STMT);
9150 /* Build a binary operation and gimplify it. Emit code before GSI.
9151 Return the gimple_val holding the result. */
9153 tree
9154 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9155 tree type, tree a, tree b)
9157 tree ret;
9159 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9160 STRIP_NOPS (ret);
9162 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9163 GSI_SAME_STMT);
9166 /* Build a unary operation and gimplify it. Emit code before GSI.
9167 Return the gimple_val holding the result. */
9169 tree
9170 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9171 tree a)
9173 tree ret;
9175 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9176 STRIP_NOPS (ret);
9178 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9179 GSI_SAME_STMT);
9184 /* Given a basic block B which ends with a conditional and has
9185 precisely two successors, determine which of the edges is taken if
9186 the conditional is true and which is taken if the conditional is
9187 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9189 void
9190 extract_true_false_edges_from_block (basic_block b,
9191 edge *true_edge,
9192 edge *false_edge)
9194 edge e = EDGE_SUCC (b, 0);
9196 if (e->flags & EDGE_TRUE_VALUE)
9198 *true_edge = e;
9199 *false_edge = EDGE_SUCC (b, 1);
9201 else
9203 *false_edge = e;
9204 *true_edge = EDGE_SUCC (b, 1);
9209 /* From a controlling predicate in the immediate dominator DOM of
9210 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9211 predicate evaluates to true and false and store them to
9212 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9213 they are non-NULL. Returns true if the edges can be determined,
9214 else return false. */
9216 bool
9217 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9218 edge *true_controlled_edge,
9219 edge *false_controlled_edge)
9221 basic_block bb = phiblock;
9222 edge true_edge, false_edge, tem;
9223 edge e0 = NULL, e1 = NULL;
9225 /* We have to verify that one edge into the PHI node is dominated
9226 by the true edge of the predicate block and the other edge
9227 dominated by the false edge. This ensures that the PHI argument
9228 we are going to take is completely determined by the path we
9229 take from the predicate block.
9230 We can only use BB dominance checks below if the destination of
9231 the true/false edges are dominated by their edge, thus only
9232 have a single predecessor. */
9233 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9234 tem = EDGE_PRED (bb, 0);
9235 if (tem == true_edge
9236 || (single_pred_p (true_edge->dest)
9237 && (tem->src == true_edge->dest
9238 || dominated_by_p (CDI_DOMINATORS,
9239 tem->src, true_edge->dest))))
9240 e0 = tem;
9241 else if (tem == false_edge
9242 || (single_pred_p (false_edge->dest)
9243 && (tem->src == false_edge->dest
9244 || dominated_by_p (CDI_DOMINATORS,
9245 tem->src, false_edge->dest))))
9246 e1 = tem;
9247 else
9248 return false;
9249 tem = EDGE_PRED (bb, 1);
9250 if (tem == true_edge
9251 || (single_pred_p (true_edge->dest)
9252 && (tem->src == true_edge->dest
9253 || dominated_by_p (CDI_DOMINATORS,
9254 tem->src, true_edge->dest))))
9255 e0 = tem;
9256 else if (tem == false_edge
9257 || (single_pred_p (false_edge->dest)
9258 && (tem->src == false_edge->dest
9259 || dominated_by_p (CDI_DOMINATORS,
9260 tem->src, false_edge->dest))))
9261 e1 = tem;
9262 else
9263 return false;
9264 if (!e0 || !e1)
9265 return false;
9267 if (true_controlled_edge)
9268 *true_controlled_edge = e0;
9269 if (false_controlled_edge)
9270 *false_controlled_edge = e1;
9272 return true;
9275 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9276 range [low, high]. Place associated stmts before *GSI. */
9278 void
9279 generate_range_test (basic_block bb, tree index, tree low, tree high,
9280 tree *lhs, tree *rhs)
9282 tree type = TREE_TYPE (index);
9283 tree utype = unsigned_type_for (type);
9285 low = fold_convert (type, low);
9286 high = fold_convert (type, high);
9288 tree tmp = make_ssa_name (type);
9289 gassign *sub1
9290 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9292 *lhs = make_ssa_name (utype);
9293 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9295 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9296 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9297 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9298 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9301 /* Emit return warnings. */
9303 namespace {
9305 const pass_data pass_data_warn_function_return =
9307 GIMPLE_PASS, /* type */
9308 "*warn_function_return", /* name */
9309 OPTGROUP_NONE, /* optinfo_flags */
9310 TV_NONE, /* tv_id */
9311 PROP_cfg, /* properties_required */
9312 0, /* properties_provided */
9313 0, /* properties_destroyed */
9314 0, /* todo_flags_start */
9315 0, /* todo_flags_finish */
9318 class pass_warn_function_return : public gimple_opt_pass
9320 public:
9321 pass_warn_function_return (gcc::context *ctxt)
9322 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9325 /* opt_pass methods: */
9326 virtual unsigned int execute (function *);
9328 }; // class pass_warn_function_return
9330 unsigned int
9331 pass_warn_function_return::execute (function *fun)
9333 source_location location;
9334 gimple *last;
9335 edge e;
9336 edge_iterator ei;
9338 if (!targetm.warn_func_return (fun->decl))
9339 return 0;
9341 /* If we have a path to EXIT, then we do return. */
9342 if (TREE_THIS_VOLATILE (fun->decl)
9343 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9345 location = UNKNOWN_LOCATION;
9346 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9347 (e = ei_safe_edge (ei)); )
9349 last = last_stmt (e->src);
9350 if ((gimple_code (last) == GIMPLE_RETURN
9351 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9352 && location == UNKNOWN_LOCATION
9353 && ((location = LOCATION_LOCUS (gimple_location (last)))
9354 != UNKNOWN_LOCATION)
9355 && !optimize)
9356 break;
9357 /* When optimizing, replace return stmts in noreturn functions
9358 with __builtin_unreachable () call. */
9359 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9361 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9362 gimple *new_stmt = gimple_build_call (fndecl, 0);
9363 gimple_set_location (new_stmt, gimple_location (last));
9364 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9365 gsi_replace (&gsi, new_stmt, true);
9366 remove_edge (e);
9368 else
9369 ei_next (&ei);
9371 if (location == UNKNOWN_LOCATION)
9372 location = cfun->function_end_locus;
9373 warning_at (location, 0, "%<noreturn%> function does return");
9376 /* If we see "return;" in some basic block, then we do reach the end
9377 without returning a value. */
9378 else if (warn_return_type > 0
9379 && !TREE_NO_WARNING (fun->decl)
9380 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9382 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9384 gimple *last = last_stmt (e->src);
9385 greturn *return_stmt = dyn_cast <greturn *> (last);
9386 if (return_stmt
9387 && gimple_return_retval (return_stmt) == NULL
9388 && !gimple_no_warning_p (last))
9390 location = gimple_location (last);
9391 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9392 location = fun->function_end_locus;
9393 warning_at (location, OPT_Wreturn_type,
9394 "control reaches end of non-void function");
9395 TREE_NO_WARNING (fun->decl) = 1;
9396 break;
9399 /* The C++ FE turns fallthrough from the end of non-void function
9400 into __builtin_unreachable () call with BUILTINS_LOCATION.
9401 Recognize those too. */
9402 basic_block bb;
9403 if (!TREE_NO_WARNING (fun->decl))
9404 FOR_EACH_BB_FN (bb, fun)
9405 if (EDGE_COUNT (bb->succs) == 0)
9407 gimple *last = last_stmt (bb);
9408 const enum built_in_function ubsan_missing_ret
9409 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9410 if (last
9411 && ((LOCATION_LOCUS (gimple_location (last))
9412 == BUILTINS_LOCATION
9413 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9414 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9416 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9417 gsi_prev_nondebug (&gsi);
9418 gimple *prev = gsi_stmt (gsi);
9419 if (prev == NULL)
9420 location = UNKNOWN_LOCATION;
9421 else
9422 location = gimple_location (prev);
9423 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9424 location = fun->function_end_locus;
9425 warning_at (location, OPT_Wreturn_type,
9426 "control reaches end of non-void function");
9427 TREE_NO_WARNING (fun->decl) = 1;
9428 break;
9432 return 0;
9435 } // anon namespace
9437 gimple_opt_pass *
9438 make_pass_warn_function_return (gcc::context *ctxt)
9440 return new pass_warn_function_return (ctxt);
9443 /* Walk a gimplified function and warn for functions whose return value is
9444 ignored and attribute((warn_unused_result)) is set. This is done before
9445 inlining, so we don't have to worry about that. */
9447 static void
9448 do_warn_unused_result (gimple_seq seq)
9450 tree fdecl, ftype;
9451 gimple_stmt_iterator i;
9453 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9455 gimple *g = gsi_stmt (i);
9457 switch (gimple_code (g))
9459 case GIMPLE_BIND:
9460 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9461 break;
9462 case GIMPLE_TRY:
9463 do_warn_unused_result (gimple_try_eval (g));
9464 do_warn_unused_result (gimple_try_cleanup (g));
9465 break;
9466 case GIMPLE_CATCH:
9467 do_warn_unused_result (gimple_catch_handler (
9468 as_a <gcatch *> (g)));
9469 break;
9470 case GIMPLE_EH_FILTER:
9471 do_warn_unused_result (gimple_eh_filter_failure (g));
9472 break;
9474 case GIMPLE_CALL:
9475 if (gimple_call_lhs (g))
9476 break;
9477 if (gimple_call_internal_p (g))
9478 break;
9480 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9481 LHS. All calls whose value is ignored should be
9482 represented like this. Look for the attribute. */
9483 fdecl = gimple_call_fndecl (g);
9484 ftype = gimple_call_fntype (g);
9486 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9488 location_t loc = gimple_location (g);
9490 if (fdecl)
9491 warning_at (loc, OPT_Wunused_result,
9492 "ignoring return value of %qD, "
9493 "declared with attribute warn_unused_result",
9494 fdecl);
9495 else
9496 warning_at (loc, OPT_Wunused_result,
9497 "ignoring return value of function "
9498 "declared with attribute warn_unused_result");
9500 break;
9502 default:
9503 /* Not a container, not a call, or a call whose value is used. */
9504 break;
9509 namespace {
9511 const pass_data pass_data_warn_unused_result =
9513 GIMPLE_PASS, /* type */
9514 "*warn_unused_result", /* name */
9515 OPTGROUP_NONE, /* optinfo_flags */
9516 TV_NONE, /* tv_id */
9517 PROP_gimple_any, /* properties_required */
9518 0, /* properties_provided */
9519 0, /* properties_destroyed */
9520 0, /* todo_flags_start */
9521 0, /* todo_flags_finish */
9524 class pass_warn_unused_result : public gimple_opt_pass
9526 public:
9527 pass_warn_unused_result (gcc::context *ctxt)
9528 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9531 /* opt_pass methods: */
9532 virtual bool gate (function *) { return flag_warn_unused_result; }
9533 virtual unsigned int execute (function *)
9535 do_warn_unused_result (gimple_body (current_function_decl));
9536 return 0;
9539 }; // class pass_warn_unused_result
9541 } // anon namespace
9543 gimple_opt_pass *
9544 make_pass_warn_unused_result (gcc::context *ctxt)
9546 return new pass_warn_unused_result (ctxt);
9549 /* IPA passes, compilation of earlier functions or inlining
9550 might have changed some properties, such as marked functions nothrow,
9551 pure, const or noreturn.
9552 Remove redundant edges and basic blocks, and create new ones if necessary.
9554 This pass can't be executed as stand alone pass from pass manager, because
9555 in between inlining and this fixup the verify_flow_info would fail. */
9557 unsigned int
9558 execute_fixup_cfg (void)
9560 basic_block bb;
9561 gimple_stmt_iterator gsi;
9562 int todo = 0;
9563 cgraph_node *node = cgraph_node::get (current_function_decl);
9564 profile_count num = node->count;
9565 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9566 bool scale = num.initialized_p () && !(num == den);
9568 if (scale)
9570 profile_count::adjust_for_ipa_scaling (&num, &den);
9571 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9572 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9573 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9576 FOR_EACH_BB_FN (bb, cfun)
9578 if (scale)
9579 bb->count = bb->count.apply_scale (num, den);
9580 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9582 gimple *stmt = gsi_stmt (gsi);
9583 tree decl = is_gimple_call (stmt)
9584 ? gimple_call_fndecl (stmt)
9585 : NULL;
9586 if (decl)
9588 int flags = gimple_call_flags (stmt);
9589 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9591 if (gimple_purge_dead_abnormal_call_edges (bb))
9592 todo |= TODO_cleanup_cfg;
9594 if (gimple_in_ssa_p (cfun))
9596 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9597 update_stmt (stmt);
9601 if (flags & ECF_NORETURN
9602 && fixup_noreturn_call (stmt))
9603 todo |= TODO_cleanup_cfg;
9606 /* Remove stores to variables we marked write-only.
9607 Keep access when store has side effect, i.e. in case when source
9608 is volatile. */
9609 if (gimple_store_p (stmt)
9610 && !gimple_has_side_effects (stmt))
9612 tree lhs = get_base_address (gimple_get_lhs (stmt));
9614 if (VAR_P (lhs)
9615 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9616 && varpool_node::get (lhs)->writeonly)
9618 unlink_stmt_vdef (stmt);
9619 gsi_remove (&gsi, true);
9620 release_defs (stmt);
9621 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9622 continue;
9625 /* For calls we can simply remove LHS when it is known
9626 to be write-only. */
9627 if (is_gimple_call (stmt)
9628 && gimple_get_lhs (stmt))
9630 tree lhs = get_base_address (gimple_get_lhs (stmt));
9632 if (VAR_P (lhs)
9633 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9634 && varpool_node::get (lhs)->writeonly)
9636 gimple_call_set_lhs (stmt, NULL);
9637 update_stmt (stmt);
9638 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9642 if (maybe_clean_eh_stmt (stmt)
9643 && gimple_purge_dead_eh_edges (bb))
9644 todo |= TODO_cleanup_cfg;
9645 gsi_next (&gsi);
9648 /* If we have a basic block with no successors that does not
9649 end with a control statement or a noreturn call end it with
9650 a call to __builtin_unreachable. This situation can occur
9651 when inlining a noreturn call that does in fact return. */
9652 if (EDGE_COUNT (bb->succs) == 0)
9654 gimple *stmt = last_stmt (bb);
9655 if (!stmt
9656 || (!is_ctrl_stmt (stmt)
9657 && (!is_gimple_call (stmt)
9658 || !gimple_call_noreturn_p (stmt))))
9660 if (stmt && is_gimple_call (stmt))
9661 gimple_call_set_ctrl_altering (stmt, false);
9662 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9663 stmt = gimple_build_call (fndecl, 0);
9664 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9665 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9666 if (!cfun->after_inlining)
9668 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9669 node->create_edge (cgraph_node::get_create (fndecl),
9670 call_stmt, bb->count);
9675 if (scale)
9676 compute_function_frequency ();
9678 if (current_loops
9679 && (todo & TODO_cleanup_cfg))
9680 loops_state_set (LOOPS_NEED_FIXUP);
9682 return todo;
9685 namespace {
9687 const pass_data pass_data_fixup_cfg =
9689 GIMPLE_PASS, /* type */
9690 "fixup_cfg", /* name */
9691 OPTGROUP_NONE, /* optinfo_flags */
9692 TV_NONE, /* tv_id */
9693 PROP_cfg, /* properties_required */
9694 0, /* properties_provided */
9695 0, /* properties_destroyed */
9696 0, /* todo_flags_start */
9697 0, /* todo_flags_finish */
9700 class pass_fixup_cfg : public gimple_opt_pass
9702 public:
9703 pass_fixup_cfg (gcc::context *ctxt)
9704 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9707 /* opt_pass methods: */
9708 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9709 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9711 }; // class pass_fixup_cfg
9713 } // anon namespace
9715 gimple_opt_pass *
9716 make_pass_fixup_cfg (gcc::context *ctxt)
9718 return new pass_fixup_cfg (ctxt);
9721 /* Garbage collection support for edge_def. */
9723 extern void gt_ggc_mx (tree&);
9724 extern void gt_ggc_mx (gimple *&);
9725 extern void gt_ggc_mx (rtx&);
9726 extern void gt_ggc_mx (basic_block&);
9728 static void
9729 gt_ggc_mx (rtx_insn *& x)
9731 if (x)
9732 gt_ggc_mx_rtx_def ((void *) x);
9735 void
9736 gt_ggc_mx (edge_def *e)
9738 tree block = LOCATION_BLOCK (e->goto_locus);
9739 gt_ggc_mx (e->src);
9740 gt_ggc_mx (e->dest);
9741 if (current_ir_type () == IR_GIMPLE)
9742 gt_ggc_mx (e->insns.g);
9743 else
9744 gt_ggc_mx (e->insns.r);
9745 gt_ggc_mx (block);
9748 /* PCH support for edge_def. */
9750 extern void gt_pch_nx (tree&);
9751 extern void gt_pch_nx (gimple *&);
9752 extern void gt_pch_nx (rtx&);
9753 extern void gt_pch_nx (basic_block&);
9755 static void
9756 gt_pch_nx (rtx_insn *& x)
9758 if (x)
9759 gt_pch_nx_rtx_def ((void *) x);
9762 void
9763 gt_pch_nx (edge_def *e)
9765 tree block = LOCATION_BLOCK (e->goto_locus);
9766 gt_pch_nx (e->src);
9767 gt_pch_nx (e->dest);
9768 if (current_ir_type () == IR_GIMPLE)
9769 gt_pch_nx (e->insns.g);
9770 else
9771 gt_pch_nx (e->insns.r);
9772 gt_pch_nx (block);
9775 void
9776 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9778 tree block = LOCATION_BLOCK (e->goto_locus);
9779 op (&(e->src), cookie);
9780 op (&(e->dest), cookie);
9781 if (current_ir_type () == IR_GIMPLE)
9782 op (&(e->insns.g), cookie);
9783 else
9784 op (&(e->insns.r), cookie);
9785 op (&(block), cookie);
9788 #if CHECKING_P
9790 namespace selftest {
9792 /* Helper function for CFG selftests: create a dummy function decl
9793 and push it as cfun. */
9795 static tree
9796 push_fndecl (const char *name)
9798 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9799 /* FIXME: this uses input_location: */
9800 tree fndecl = build_fn_decl (name, fn_type);
9801 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9802 NULL_TREE, integer_type_node);
9803 DECL_RESULT (fndecl) = retval;
9804 push_struct_function (fndecl);
9805 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9806 ASSERT_TRUE (fun != NULL);
9807 init_empty_tree_cfg_for_function (fun);
9808 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9809 ASSERT_EQ (0, n_edges_for_fn (fun));
9810 return fndecl;
9813 /* These tests directly create CFGs.
9814 Compare with the static fns within tree-cfg.c:
9815 - build_gimple_cfg
9816 - make_blocks: calls create_basic_block (seq, bb);
9817 - make_edges. */
9819 /* Verify a simple cfg of the form:
9820 ENTRY -> A -> B -> C -> EXIT. */
9822 static void
9823 test_linear_chain ()
9825 gimple_register_cfg_hooks ();
9827 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9828 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9830 /* Create some empty blocks. */
9831 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9832 basic_block bb_b = create_empty_bb (bb_a);
9833 basic_block bb_c = create_empty_bb (bb_b);
9835 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9836 ASSERT_EQ (0, n_edges_for_fn (fun));
9838 /* Create some edges: a simple linear chain of BBs. */
9839 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9840 make_edge (bb_a, bb_b, 0);
9841 make_edge (bb_b, bb_c, 0);
9842 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9844 /* Verify the edges. */
9845 ASSERT_EQ (4, n_edges_for_fn (fun));
9846 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9847 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9848 ASSERT_EQ (1, bb_a->preds->length ());
9849 ASSERT_EQ (1, bb_a->succs->length ());
9850 ASSERT_EQ (1, bb_b->preds->length ());
9851 ASSERT_EQ (1, bb_b->succs->length ());
9852 ASSERT_EQ (1, bb_c->preds->length ());
9853 ASSERT_EQ (1, bb_c->succs->length ());
9854 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9855 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9857 /* Verify the dominance information
9858 Each BB in our simple chain should be dominated by the one before
9859 it. */
9860 calculate_dominance_info (CDI_DOMINATORS);
9861 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9862 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9863 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9864 ASSERT_EQ (1, dom_by_b.length ());
9865 ASSERT_EQ (bb_c, dom_by_b[0]);
9866 free_dominance_info (CDI_DOMINATORS);
9867 dom_by_b.release ();
9869 /* Similarly for post-dominance: each BB in our chain is post-dominated
9870 by the one after it. */
9871 calculate_dominance_info (CDI_POST_DOMINATORS);
9872 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9873 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9874 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9875 ASSERT_EQ (1, postdom_by_b.length ());
9876 ASSERT_EQ (bb_a, postdom_by_b[0]);
9877 free_dominance_info (CDI_POST_DOMINATORS);
9878 postdom_by_b.release ();
9880 pop_cfun ();
9883 /* Verify a simple CFG of the form:
9884 ENTRY
9888 /t \f
9894 EXIT. */
9896 static void
9897 test_diamond ()
9899 gimple_register_cfg_hooks ();
9901 tree fndecl = push_fndecl ("cfg_test_diamond");
9902 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9904 /* Create some empty blocks. */
9905 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9906 basic_block bb_b = create_empty_bb (bb_a);
9907 basic_block bb_c = create_empty_bb (bb_a);
9908 basic_block bb_d = create_empty_bb (bb_b);
9910 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9911 ASSERT_EQ (0, n_edges_for_fn (fun));
9913 /* Create the edges. */
9914 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9915 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9916 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9917 make_edge (bb_b, bb_d, 0);
9918 make_edge (bb_c, bb_d, 0);
9919 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9921 /* Verify the edges. */
9922 ASSERT_EQ (6, n_edges_for_fn (fun));
9923 ASSERT_EQ (1, bb_a->preds->length ());
9924 ASSERT_EQ (2, bb_a->succs->length ());
9925 ASSERT_EQ (1, bb_b->preds->length ());
9926 ASSERT_EQ (1, bb_b->succs->length ());
9927 ASSERT_EQ (1, bb_c->preds->length ());
9928 ASSERT_EQ (1, bb_c->succs->length ());
9929 ASSERT_EQ (2, bb_d->preds->length ());
9930 ASSERT_EQ (1, bb_d->succs->length ());
9932 /* Verify the dominance information. */
9933 calculate_dominance_info (CDI_DOMINATORS);
9934 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9935 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9936 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9937 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9938 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9939 dom_by_a.release ();
9940 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9941 ASSERT_EQ (0, dom_by_b.length ());
9942 dom_by_b.release ();
9943 free_dominance_info (CDI_DOMINATORS);
9945 /* Similarly for post-dominance. */
9946 calculate_dominance_info (CDI_POST_DOMINATORS);
9947 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9948 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9949 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9950 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9951 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9952 postdom_by_d.release ();
9953 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9954 ASSERT_EQ (0, postdom_by_b.length ());
9955 postdom_by_b.release ();
9956 free_dominance_info (CDI_POST_DOMINATORS);
9958 pop_cfun ();
9961 /* Verify that we can handle a CFG containing a "complete" aka
9962 fully-connected subgraph (where A B C D below all have edges
9963 pointing to each other node, also to themselves).
9964 e.g.:
9965 ENTRY EXIT
9971 A<--->B
9972 ^^ ^^
9973 | \ / |
9974 | X |
9975 | / \ |
9976 VV VV
9977 C<--->D
9980 static void
9981 test_fully_connected ()
9983 gimple_register_cfg_hooks ();
9985 tree fndecl = push_fndecl ("cfg_fully_connected");
9986 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9988 const int n = 4;
9990 /* Create some empty blocks. */
9991 auto_vec <basic_block> subgraph_nodes;
9992 for (int i = 0; i < n; i++)
9993 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9995 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9996 ASSERT_EQ (0, n_edges_for_fn (fun));
9998 /* Create the edges. */
9999 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
10000 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
10001 for (int i = 0; i < n; i++)
10002 for (int j = 0; j < n; j++)
10003 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
10005 /* Verify the edges. */
10006 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
10007 /* The first one is linked to ENTRY/EXIT as well as itself and
10008 everything else. */
10009 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
10010 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
10011 /* The other ones in the subgraph are linked to everything in
10012 the subgraph (including themselves). */
10013 for (int i = 1; i < n; i++)
10015 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
10016 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
10019 /* Verify the dominance information. */
10020 calculate_dominance_info (CDI_DOMINATORS);
10021 /* The initial block in the subgraph should be dominated by ENTRY. */
10022 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
10023 get_immediate_dominator (CDI_DOMINATORS,
10024 subgraph_nodes[0]));
10025 /* Every other block in the subgraph should be dominated by the
10026 initial block. */
10027 for (int i = 1; i < n; i++)
10028 ASSERT_EQ (subgraph_nodes[0],
10029 get_immediate_dominator (CDI_DOMINATORS,
10030 subgraph_nodes[i]));
10031 free_dominance_info (CDI_DOMINATORS);
10033 /* Similarly for post-dominance. */
10034 calculate_dominance_info (CDI_POST_DOMINATORS);
10035 /* The initial block in the subgraph should be postdominated by EXIT. */
10036 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
10037 get_immediate_dominator (CDI_POST_DOMINATORS,
10038 subgraph_nodes[0]));
10039 /* Every other block in the subgraph should be postdominated by the
10040 initial block, since that leads to EXIT. */
10041 for (int i = 1; i < n; i++)
10042 ASSERT_EQ (subgraph_nodes[0],
10043 get_immediate_dominator (CDI_POST_DOMINATORS,
10044 subgraph_nodes[i]));
10045 free_dominance_info (CDI_POST_DOMINATORS);
10047 pop_cfun ();
10050 /* Run all of the selftests within this file. */
10052 void
10053 tree_cfg_c_tests ()
10055 test_linear_chain ();
10056 test_diamond ();
10057 test_fully_connected ();
10060 } // namespace selftest
10062 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10063 - loop
10064 - nested loops
10065 - switch statement (a block with many out-edges)
10066 - something that jumps to itself
10067 - etc */
10069 #endif /* CHECKING_P */