Suppress -fstack-protector warning on hppa.
[official-gcc.git] / gcc / range-op.cc
blobe53f3a70ea0ae8d367b91672f5526c5341d4fc52
1 /* Code for range operators.
2 Copyright (C) 2017-2022 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "gimple-pretty-print.h"
35 #include "diagnostic-core.h"
36 #include "flags.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "calls.h"
40 #include "cfganal.h"
41 #include "gimple-iterator.h"
42 #include "gimple-fold.h"
43 #include "tree-eh.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "wide-int.h"
47 #include "value-relation.h"
48 #include "range-op.h"
49 #include "tree-ssa-ccp.h"
51 // Convert irange bitmasks into a VALUE MASK pair suitable for calling CCP.
53 static void
54 irange_to_masked_value (const irange &r, widest_int &value, widest_int &mask)
56 if (r.singleton_p ())
58 mask = 0;
59 value = widest_int::from (r.lower_bound (), TYPE_SIGN (r.type ()));
61 else
63 mask = widest_int::from (r.get_nonzero_bits (), TYPE_SIGN (r.type ()));
64 value = 0;
68 // Update the known bitmasks in R when applying the operation CODE to
69 // LH and RH.
71 static void
72 update_known_bitmask (irange &r, tree_code code,
73 const irange &lh, const irange &rh)
75 if (r.undefined_p () || lh.undefined_p () || rh.undefined_p ())
76 return;
78 widest_int value, mask, lh_mask, rh_mask, lh_value, rh_value;
79 tree type = r.type ();
80 signop sign = TYPE_SIGN (type);
81 int prec = TYPE_PRECISION (type);
82 signop lh_sign = TYPE_SIGN (lh.type ());
83 signop rh_sign = TYPE_SIGN (rh.type ());
84 int lh_prec = TYPE_PRECISION (lh.type ());
85 int rh_prec = TYPE_PRECISION (rh.type ());
87 irange_to_masked_value (lh, lh_value, lh_mask);
88 irange_to_masked_value (rh, rh_value, rh_mask);
89 bit_value_binop (code, sign, prec, &value, &mask,
90 lh_sign, lh_prec, lh_value, lh_mask,
91 rh_sign, rh_prec, rh_value, rh_mask);
92 r.set_nonzero_bits (value | mask);
95 // Return the upper limit for a type.
97 static inline wide_int
98 max_limit (const_tree type)
100 return wi::max_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
103 // Return the lower limit for a type.
105 static inline wide_int
106 min_limit (const_tree type)
108 return wi::min_value (TYPE_PRECISION (type) , TYPE_SIGN (type));
111 // Return false if shifting by OP is undefined behavior. Otherwise, return
112 // true and the range it is to be shifted by. This allows trimming out of
113 // undefined ranges, leaving only valid ranges if there are any.
115 static inline bool
116 get_shift_range (irange &r, tree type, const irange &op)
118 if (op.undefined_p ())
119 return false;
121 // Build valid range and intersect it with the shift range.
122 r = value_range (build_int_cst_type (op.type (), 0),
123 build_int_cst_type (op.type (), TYPE_PRECISION (type) - 1));
124 r.intersect (op);
126 // If there are no valid ranges in the shift range, returned false.
127 if (r.undefined_p ())
128 return false;
129 return true;
132 // Return TRUE if 0 is within [WMIN, WMAX].
134 static inline bool
135 wi_includes_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
137 signop sign = TYPE_SIGN (type);
138 return wi::le_p (wmin, 0, sign) && wi::ge_p (wmax, 0, sign);
141 // Return TRUE if [WMIN, WMAX] is the singleton 0.
143 static inline bool
144 wi_zero_p (tree type, const wide_int &wmin, const wide_int &wmax)
146 unsigned prec = TYPE_PRECISION (type);
147 return wmin == wmax && wi::eq_p (wmin, wi::zero (prec));
150 // Default wide_int fold operation returns [MIN, MAX].
152 void
153 range_operator::wi_fold (irange &r, tree type,
154 const wide_int &lh_lb ATTRIBUTE_UNUSED,
155 const wide_int &lh_ub ATTRIBUTE_UNUSED,
156 const wide_int &rh_lb ATTRIBUTE_UNUSED,
157 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
159 gcc_checking_assert (r.supports_type_p (type));
160 r.set_varying (type);
163 // Call wi_fold, except further split small subranges into constants.
164 // This can provide better precision. For something 8 >> [0,1]
165 // Instead of [8, 16], we will produce [8,8][16,16]
167 void
168 range_operator::wi_fold_in_parts (irange &r, tree type,
169 const wide_int &lh_lb,
170 const wide_int &lh_ub,
171 const wide_int &rh_lb,
172 const wide_int &rh_ub) const
174 int_range_max tmp;
175 widest_int rh_range = wi::sub (widest_int::from (rh_ub, TYPE_SIGN (type)),
176 widest_int::from (rh_lb, TYPE_SIGN (type)));
177 widest_int lh_range = wi::sub (widest_int::from (lh_ub, TYPE_SIGN (type)),
178 widest_int::from (lh_lb, TYPE_SIGN (type)));
179 // If there are 2, 3, or 4 values in the RH range, do them separately.
180 // Call wi_fold_in_parts to check the RH side.
181 if (rh_range > 0 && rh_range < 4)
183 wi_fold_in_parts (r, type, lh_lb, lh_ub, rh_lb, rh_lb);
184 if (rh_range > 1)
186 wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_lb + 1, rh_lb + 1);
187 r.union_ (tmp);
188 if (rh_range == 3)
190 wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_lb + 2, rh_lb + 2);
191 r.union_ (tmp);
194 wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_ub, rh_ub);
195 r.union_ (tmp);
197 // Otherise check for 2, 3, or 4 values in the LH range and split them up.
198 // The RH side has been checked, so no recursion needed.
199 else if (lh_range > 0 && lh_range < 4)
201 wi_fold (r, type, lh_lb, lh_lb, rh_lb, rh_ub);
202 if (lh_range > 1)
204 wi_fold (tmp, type, lh_lb + 1, lh_lb + 1, rh_lb, rh_ub);
205 r.union_ (tmp);
206 if (lh_range == 3)
208 wi_fold (tmp, type, lh_lb + 2, lh_lb + 2, rh_lb, rh_ub);
209 r.union_ (tmp);
212 wi_fold (tmp, type, lh_ub, lh_ub, rh_lb, rh_ub);
213 r.union_ (tmp);
215 // Otherwise just call wi_fold.
216 else
217 wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
220 // The default for fold is to break all ranges into sub-ranges and
221 // invoke the wi_fold method on each sub-range pair.
223 bool
224 range_operator::fold_range (irange &r, tree type,
225 const irange &lh,
226 const irange &rh,
227 relation_trio trio) const
229 gcc_checking_assert (r.supports_type_p (type));
230 if (empty_range_varying (r, type, lh, rh))
231 return true;
233 relation_kind rel = trio.op1_op2 ();
234 unsigned num_lh = lh.num_pairs ();
235 unsigned num_rh = rh.num_pairs ();
237 // If both ranges are single pairs, fold directly into the result range.
238 // If the number of subranges grows too high, produce a summary result as the
239 // loop becomes exponential with little benefit. See PR 103821.
240 if ((num_lh == 1 && num_rh == 1) || num_lh * num_rh > 12)
242 wi_fold_in_parts (r, type, lh.lower_bound (), lh.upper_bound (),
243 rh.lower_bound (), rh.upper_bound ());
244 op1_op2_relation_effect (r, type, lh, rh, rel);
245 update_known_bitmask (r, m_code, lh, rh);
246 return true;
249 int_range_max tmp;
250 r.set_undefined ();
251 for (unsigned x = 0; x < num_lh; ++x)
252 for (unsigned y = 0; y < num_rh; ++y)
254 wide_int lh_lb = lh.lower_bound (x);
255 wide_int lh_ub = lh.upper_bound (x);
256 wide_int rh_lb = rh.lower_bound (y);
257 wide_int rh_ub = rh.upper_bound (y);
258 wi_fold_in_parts (tmp, type, lh_lb, lh_ub, rh_lb, rh_ub);
259 r.union_ (tmp);
260 if (r.varying_p ())
262 op1_op2_relation_effect (r, type, lh, rh, rel);
263 update_known_bitmask (r, m_code, lh, rh);
264 return true;
267 op1_op2_relation_effect (r, type, lh, rh, rel);
268 update_known_bitmask (r, m_code, lh, rh);
269 return true;
272 // The default for op1_range is to return false.
274 bool
275 range_operator::op1_range (irange &r ATTRIBUTE_UNUSED,
276 tree type ATTRIBUTE_UNUSED,
277 const irange &lhs ATTRIBUTE_UNUSED,
278 const irange &op2 ATTRIBUTE_UNUSED,
279 relation_trio) const
281 return false;
284 // The default for op2_range is to return false.
286 bool
287 range_operator::op2_range (irange &r ATTRIBUTE_UNUSED,
288 tree type ATTRIBUTE_UNUSED,
289 const irange &lhs ATTRIBUTE_UNUSED,
290 const irange &op1 ATTRIBUTE_UNUSED,
291 relation_trio) const
293 return false;
296 // The default relation routines return VREL_VARYING.
298 relation_kind
299 range_operator::lhs_op1_relation (const irange &lhs ATTRIBUTE_UNUSED,
300 const irange &op1 ATTRIBUTE_UNUSED,
301 const irange &op2 ATTRIBUTE_UNUSED,
302 relation_kind rel ATTRIBUTE_UNUSED) const
304 return VREL_VARYING;
307 relation_kind
308 range_operator::lhs_op2_relation (const irange &lhs ATTRIBUTE_UNUSED,
309 const irange &op1 ATTRIBUTE_UNUSED,
310 const irange &op2 ATTRIBUTE_UNUSED,
311 relation_kind rel ATTRIBUTE_UNUSED) const
313 return VREL_VARYING;
316 relation_kind
317 range_operator::op1_op2_relation (const irange &lhs ATTRIBUTE_UNUSED) const
319 return VREL_VARYING;
322 // Default is no relation affects the LHS.
324 bool
325 range_operator::op1_op2_relation_effect (irange &lhs_range ATTRIBUTE_UNUSED,
326 tree type ATTRIBUTE_UNUSED,
327 const irange &op1_range ATTRIBUTE_UNUSED,
328 const irange &op2_range ATTRIBUTE_UNUSED,
329 relation_kind rel ATTRIBUTE_UNUSED) const
331 return false;
334 // Create and return a range from a pair of wide-ints that are known
335 // to have overflowed (or underflowed).
337 static void
338 value_range_from_overflowed_bounds (irange &r, tree type,
339 const wide_int &wmin,
340 const wide_int &wmax)
342 const signop sgn = TYPE_SIGN (type);
343 const unsigned int prec = TYPE_PRECISION (type);
345 wide_int tmin = wide_int::from (wmin, prec, sgn);
346 wide_int tmax = wide_int::from (wmax, prec, sgn);
348 bool covers = false;
349 wide_int tem = tmin;
350 tmin = tmax + 1;
351 if (wi::cmp (tmin, tmax, sgn) < 0)
352 covers = true;
353 tmax = tem - 1;
354 if (wi::cmp (tmax, tem, sgn) > 0)
355 covers = true;
357 // If the anti-range would cover nothing, drop to varying.
358 // Likewise if the anti-range bounds are outside of the types
359 // values.
360 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
361 r.set_varying (type);
362 else
364 tree tree_min = wide_int_to_tree (type, tmin);
365 tree tree_max = wide_int_to_tree (type, tmax);
366 r.set (tree_min, tree_max, VR_ANTI_RANGE);
370 // Create and return a range from a pair of wide-ints. MIN_OVF and
371 // MAX_OVF describe any overflow that might have occurred while
372 // calculating WMIN and WMAX respectively.
374 static void
375 value_range_with_overflow (irange &r, tree type,
376 const wide_int &wmin, const wide_int &wmax,
377 wi::overflow_type min_ovf = wi::OVF_NONE,
378 wi::overflow_type max_ovf = wi::OVF_NONE)
380 const signop sgn = TYPE_SIGN (type);
381 const unsigned int prec = TYPE_PRECISION (type);
382 const bool overflow_wraps = TYPE_OVERFLOW_WRAPS (type);
384 // For one bit precision if max != min, then the range covers all
385 // values.
386 if (prec == 1 && wi::ne_p (wmax, wmin))
388 r.set_varying (type);
389 return;
392 if (overflow_wraps)
394 // If overflow wraps, truncate the values and adjust the range,
395 // kind, and bounds appropriately.
396 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
398 wide_int tmin = wide_int::from (wmin, prec, sgn);
399 wide_int tmax = wide_int::from (wmax, prec, sgn);
400 // If the limits are swapped, we wrapped around and cover
401 // the entire range.
402 if (wi::gt_p (tmin, tmax, sgn))
403 r.set_varying (type);
404 else
405 // No overflow or both overflow or underflow. The range
406 // kind stays normal.
407 r.set (wide_int_to_tree (type, tmin),
408 wide_int_to_tree (type, tmax));
409 return;
412 if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
413 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
414 value_range_from_overflowed_bounds (r, type, wmin, wmax);
415 else
416 // Other underflow and/or overflow, drop to VR_VARYING.
417 r.set_varying (type);
419 else
421 // If both bounds either underflowed or overflowed, then the result
422 // is undefined.
423 if ((min_ovf == wi::OVF_OVERFLOW && max_ovf == wi::OVF_OVERFLOW)
424 || (min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_UNDERFLOW))
426 r.set_undefined ();
427 return;
430 // If overflow does not wrap, saturate to [MIN, MAX].
431 wide_int new_lb, new_ub;
432 if (min_ovf == wi::OVF_UNDERFLOW)
433 new_lb = wi::min_value (prec, sgn);
434 else if (min_ovf == wi::OVF_OVERFLOW)
435 new_lb = wi::max_value (prec, sgn);
436 else
437 new_lb = wmin;
439 if (max_ovf == wi::OVF_UNDERFLOW)
440 new_ub = wi::min_value (prec, sgn);
441 else if (max_ovf == wi::OVF_OVERFLOW)
442 new_ub = wi::max_value (prec, sgn);
443 else
444 new_ub = wmax;
446 r.set (wide_int_to_tree (type, new_lb),
447 wide_int_to_tree (type, new_ub));
451 // Create and return a range from a pair of wide-ints. Canonicalize
452 // the case where the bounds are swapped. In which case, we transform
453 // [10,5] into [MIN,5][10,MAX].
455 static inline void
456 create_possibly_reversed_range (irange &r, tree type,
457 const wide_int &new_lb, const wide_int &new_ub)
459 signop s = TYPE_SIGN (type);
460 // If the bounds are swapped, treat the result as if an overflow occured.
461 if (wi::gt_p (new_lb, new_ub, s))
462 value_range_from_overflowed_bounds (r, type, new_lb, new_ub);
463 else
464 // Otherwise it's just a normal range.
465 r.set (wide_int_to_tree (type, new_lb), wide_int_to_tree (type, new_ub));
468 // Return the summary information about boolean range LHS. If EMPTY/FULL,
469 // return the equivalent range for TYPE in R; if FALSE/TRUE, do nothing.
471 bool_range_state
472 get_bool_state (vrange &r, const vrange &lhs, tree val_type)
474 // If there is no result, then this is unexecutable.
475 if (lhs.undefined_p ())
477 r.set_undefined ();
478 return BRS_EMPTY;
481 if (lhs.zero_p ())
482 return BRS_FALSE;
484 // For TRUE, we can't just test for [1,1] because Ada can have
485 // multi-bit booleans, and TRUE values can be: [1, MAX], ~[0], etc.
486 if (lhs.contains_p (build_zero_cst (lhs.type ())))
488 r.set_varying (val_type);
489 return BRS_FULL;
492 return BRS_TRUE;
496 class operator_equal : public range_operator
498 using range_operator::fold_range;
499 using range_operator::op1_range;
500 using range_operator::op2_range;
501 public:
502 virtual bool fold_range (irange &r, tree type,
503 const irange &op1,
504 const irange &op2,
505 relation_trio = TRIO_VARYING) const;
506 virtual bool op1_range (irange &r, tree type,
507 const irange &lhs,
508 const irange &val,
509 relation_trio = TRIO_VARYING) const;
510 virtual bool op2_range (irange &r, tree type,
511 const irange &lhs,
512 const irange &val,
513 relation_trio = TRIO_VARYING) const;
514 virtual relation_kind op1_op2_relation (const irange &lhs) const;
515 } op_equal;
517 // Check if the LHS range indicates a relation between OP1 and OP2.
519 relation_kind
520 equal_op1_op2_relation (const irange &lhs)
522 if (lhs.undefined_p ())
523 return VREL_UNDEFINED;
525 // FALSE = op1 == op2 indicates NE_EXPR.
526 if (lhs.zero_p ())
527 return VREL_NE;
529 // TRUE = op1 == op2 indicates EQ_EXPR.
530 if (!lhs.contains_p (build_zero_cst (lhs.type ())))
531 return VREL_EQ;
532 return VREL_VARYING;
535 relation_kind
536 operator_equal::op1_op2_relation (const irange &lhs) const
538 return equal_op1_op2_relation (lhs);
542 bool
543 operator_equal::fold_range (irange &r, tree type,
544 const irange &op1,
545 const irange &op2,
546 relation_trio rel) const
548 if (relop_early_resolve (r, type, op1, op2, rel, VREL_EQ))
549 return true;
551 // We can be sure the values are always equal or not if both ranges
552 // consist of a single value, and then compare them.
553 if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
554 && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
556 if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
557 r = range_true (type);
558 else
559 r = range_false (type);
561 else
563 // If ranges do not intersect, we know the range is not equal,
564 // otherwise we don't know anything for sure.
565 int_range_max tmp = op1;
566 tmp.intersect (op2);
567 if (tmp.undefined_p ())
568 r = range_false (type);
569 else
570 r = range_true_and_false (type);
572 return true;
575 bool
576 operator_equal::op1_range (irange &r, tree type,
577 const irange &lhs,
578 const irange &op2,
579 relation_trio) const
581 switch (get_bool_state (r, lhs, type))
583 case BRS_TRUE:
584 // If it's true, the result is the same as OP2.
585 r = op2;
586 break;
588 case BRS_FALSE:
589 // If the result is false, the only time we know anything is
590 // if OP2 is a constant.
591 if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
593 r = op2;
594 r.invert ();
596 else
597 r.set_varying (type);
598 break;
600 default:
601 break;
603 return true;
606 bool
607 operator_equal::op2_range (irange &r, tree type,
608 const irange &lhs,
609 const irange &op1,
610 relation_trio rel) const
612 return operator_equal::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ());
615 class operator_not_equal : public range_operator
617 using range_operator::fold_range;
618 using range_operator::op1_range;
619 using range_operator::op2_range;
620 public:
621 virtual bool fold_range (irange &r, tree type,
622 const irange &op1,
623 const irange &op2,
624 relation_trio = TRIO_VARYING) const;
625 virtual bool op1_range (irange &r, tree type,
626 const irange &lhs,
627 const irange &op2,
628 relation_trio = TRIO_VARYING) const;
629 virtual bool op2_range (irange &r, tree type,
630 const irange &lhs,
631 const irange &op1,
632 relation_trio = TRIO_VARYING) const;
633 virtual relation_kind op1_op2_relation (const irange &lhs) const;
634 } op_not_equal;
636 // Check if the LHS range indicates a relation between OP1 and OP2.
638 relation_kind
639 not_equal_op1_op2_relation (const irange &lhs)
641 if (lhs.undefined_p ())
642 return VREL_UNDEFINED;
644 // FALSE = op1 != op2 indicates EQ_EXPR.
645 if (lhs.zero_p ())
646 return VREL_EQ;
648 // TRUE = op1 != op2 indicates NE_EXPR.
649 if (!lhs.contains_p (build_zero_cst (lhs.type ())))
650 return VREL_NE;
651 return VREL_VARYING;
654 relation_kind
655 operator_not_equal::op1_op2_relation (const irange &lhs) const
657 return not_equal_op1_op2_relation (lhs);
660 bool
661 operator_not_equal::fold_range (irange &r, tree type,
662 const irange &op1,
663 const irange &op2,
664 relation_trio rel) const
666 if (relop_early_resolve (r, type, op1, op2, rel, VREL_NE))
667 return true;
669 // We can be sure the values are always equal or not if both ranges
670 // consist of a single value, and then compare them.
671 if (wi::eq_p (op1.lower_bound (), op1.upper_bound ())
672 && wi::eq_p (op2.lower_bound (), op2.upper_bound ()))
674 if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
675 r = range_true (type);
676 else
677 r = range_false (type);
679 else
681 // If ranges do not intersect, we know the range is not equal,
682 // otherwise we don't know anything for sure.
683 int_range_max tmp = op1;
684 tmp.intersect (op2);
685 if (tmp.undefined_p ())
686 r = range_true (type);
687 else
688 r = range_true_and_false (type);
690 return true;
693 bool
694 operator_not_equal::op1_range (irange &r, tree type,
695 const irange &lhs,
696 const irange &op2,
697 relation_trio) const
699 switch (get_bool_state (r, lhs, type))
701 case BRS_TRUE:
702 // If the result is true, the only time we know anything is if
703 // OP2 is a constant.
704 if (wi::eq_p (op2.lower_bound(), op2.upper_bound()))
706 r = op2;
707 r.invert ();
709 else
710 r.set_varying (type);
711 break;
713 case BRS_FALSE:
714 // If it's false, the result is the same as OP2.
715 r = op2;
716 break;
718 default:
719 break;
721 return true;
725 bool
726 operator_not_equal::op2_range (irange &r, tree type,
727 const irange &lhs,
728 const irange &op1,
729 relation_trio rel) const
731 return operator_not_equal::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ());
734 // (X < VAL) produces the range of [MIN, VAL - 1].
736 static void
737 build_lt (irange &r, tree type, const wide_int &val)
739 wi::overflow_type ov;
740 wide_int lim;
741 signop sgn = TYPE_SIGN (type);
743 // Signed 1 bit cannot represent 1 for subtraction.
744 if (sgn == SIGNED)
745 lim = wi::add (val, -1, sgn, &ov);
746 else
747 lim = wi::sub (val, 1, sgn, &ov);
749 // If val - 1 underflows, check if X < MIN, which is an empty range.
750 if (ov)
751 r.set_undefined ();
752 else
753 r = int_range<1> (type, min_limit (type), lim);
756 // (X <= VAL) produces the range of [MIN, VAL].
758 static void
759 build_le (irange &r, tree type, const wide_int &val)
761 r = int_range<1> (type, min_limit (type), val);
764 // (X > VAL) produces the range of [VAL + 1, MAX].
766 static void
767 build_gt (irange &r, tree type, const wide_int &val)
769 wi::overflow_type ov;
770 wide_int lim;
771 signop sgn = TYPE_SIGN (type);
773 // Signed 1 bit cannot represent 1 for addition.
774 if (sgn == SIGNED)
775 lim = wi::sub (val, -1, sgn, &ov);
776 else
777 lim = wi::add (val, 1, sgn, &ov);
778 // If val + 1 overflows, check is for X > MAX, which is an empty range.
779 if (ov)
780 r.set_undefined ();
781 else
782 r = int_range<1> (type, lim, max_limit (type));
785 // (X >= val) produces the range of [VAL, MAX].
787 static void
788 build_ge (irange &r, tree type, const wide_int &val)
790 r = int_range<1> (type, val, max_limit (type));
794 class operator_lt : public range_operator
796 using range_operator::fold_range;
797 using range_operator::op1_range;
798 using range_operator::op2_range;
799 public:
800 virtual bool fold_range (irange &r, tree type,
801 const irange &op1,
802 const irange &op2,
803 relation_trio = TRIO_VARYING) const;
804 virtual bool op1_range (irange &r, tree type,
805 const irange &lhs,
806 const irange &op2,
807 relation_trio = TRIO_VARYING) const;
808 virtual bool op2_range (irange &r, tree type,
809 const irange &lhs,
810 const irange &op1,
811 relation_trio = TRIO_VARYING) const;
812 virtual relation_kind op1_op2_relation (const irange &lhs) const;
813 } op_lt;
815 // Check if the LHS range indicates a relation between OP1 and OP2.
817 relation_kind
818 lt_op1_op2_relation (const irange &lhs)
820 if (lhs.undefined_p ())
821 return VREL_UNDEFINED;
823 // FALSE = op1 < op2 indicates GE_EXPR.
824 if (lhs.zero_p ())
825 return VREL_GE;
827 // TRUE = op1 < op2 indicates LT_EXPR.
828 if (!lhs.contains_p (build_zero_cst (lhs.type ())))
829 return VREL_LT;
830 return VREL_VARYING;
833 relation_kind
834 operator_lt::op1_op2_relation (const irange &lhs) const
836 return lt_op1_op2_relation (lhs);
839 bool
840 operator_lt::fold_range (irange &r, tree type,
841 const irange &op1,
842 const irange &op2,
843 relation_trio rel) const
845 if (relop_early_resolve (r, type, op1, op2, rel, VREL_LT))
846 return true;
848 signop sign = TYPE_SIGN (op1.type ());
849 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
851 if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
852 r = range_true (type);
853 else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
854 r = range_false (type);
855 // Use nonzero bits to determine if < 0 is false.
856 else if (op2.zero_p () && !wi::neg_p (op1.get_nonzero_bits (), sign))
857 r = range_false (type);
858 else
859 r = range_true_and_false (type);
860 return true;
863 bool
864 operator_lt::op1_range (irange &r, tree type,
865 const irange &lhs,
866 const irange &op2,
867 relation_trio) const
869 switch (get_bool_state (r, lhs, type))
871 case BRS_TRUE:
872 build_lt (r, type, op2.upper_bound ());
873 break;
875 case BRS_FALSE:
876 build_ge (r, type, op2.lower_bound ());
877 break;
879 default:
880 break;
882 return true;
885 bool
886 operator_lt::op2_range (irange &r, tree type,
887 const irange &lhs,
888 const irange &op1,
889 relation_trio) const
891 switch (get_bool_state (r, lhs, type))
893 case BRS_TRUE:
894 build_gt (r, type, op1.lower_bound ());
895 break;
897 case BRS_FALSE:
898 build_le (r, type, op1.upper_bound ());
899 break;
901 default:
902 break;
904 return true;
908 class operator_le : public range_operator
910 using range_operator::fold_range;
911 using range_operator::op1_range;
912 using range_operator::op2_range;
913 public:
914 virtual bool fold_range (irange &r, tree type,
915 const irange &op1,
916 const irange &op2,
917 relation_trio = TRIO_VARYING) const;
918 virtual bool op1_range (irange &r, tree type,
919 const irange &lhs,
920 const irange &op2,
921 relation_trio = TRIO_VARYING) const;
922 virtual bool op2_range (irange &r, tree type,
923 const irange &lhs,
924 const irange &op1,
925 relation_trio = TRIO_VARYING) const;
926 virtual relation_kind op1_op2_relation (const irange &lhs) const;
927 } op_le;
929 // Check if the LHS range indicates a relation between OP1 and OP2.
931 relation_kind
932 le_op1_op2_relation (const irange &lhs)
934 if (lhs.undefined_p ())
935 return VREL_UNDEFINED;
937 // FALSE = op1 <= op2 indicates GT_EXPR.
938 if (lhs.zero_p ())
939 return VREL_GT;
941 // TRUE = op1 <= op2 indicates LE_EXPR.
942 if (!lhs.contains_p (build_zero_cst (lhs.type ())))
943 return VREL_LE;
944 return VREL_VARYING;
947 relation_kind
948 operator_le::op1_op2_relation (const irange &lhs) const
950 return le_op1_op2_relation (lhs);
953 bool
954 operator_le::fold_range (irange &r, tree type,
955 const irange &op1,
956 const irange &op2,
957 relation_trio rel) const
959 if (relop_early_resolve (r, type, op1, op2, rel, VREL_LE))
960 return true;
962 signop sign = TYPE_SIGN (op1.type ());
963 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
965 if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
966 r = range_true (type);
967 else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
968 r = range_false (type);
969 else
970 r = range_true_and_false (type);
971 return true;
974 bool
975 operator_le::op1_range (irange &r, tree type,
976 const irange &lhs,
977 const irange &op2,
978 relation_trio) const
980 switch (get_bool_state (r, lhs, type))
982 case BRS_TRUE:
983 build_le (r, type, op2.upper_bound ());
984 break;
986 case BRS_FALSE:
987 build_gt (r, type, op2.lower_bound ());
988 break;
990 default:
991 break;
993 return true;
996 bool
997 operator_le::op2_range (irange &r, tree type,
998 const irange &lhs,
999 const irange &op1,
1000 relation_trio) const
1002 switch (get_bool_state (r, lhs, type))
1004 case BRS_TRUE:
1005 build_ge (r, type, op1.lower_bound ());
1006 break;
1008 case BRS_FALSE:
1009 build_lt (r, type, op1.upper_bound ());
1010 break;
1012 default:
1013 break;
1015 return true;
1019 class operator_gt : public range_operator
1021 using range_operator::fold_range;
1022 using range_operator::op1_range;
1023 using range_operator::op2_range;
1024 public:
1025 virtual bool fold_range (irange &r, tree type,
1026 const irange &op1,
1027 const irange &op2,
1028 relation_trio = TRIO_VARYING) const;
1029 virtual bool op1_range (irange &r, tree type,
1030 const irange &lhs,
1031 const irange &op2,
1032 relation_trio = TRIO_VARYING) const;
1033 virtual bool op2_range (irange &r, tree type,
1034 const irange &lhs,
1035 const irange &op1,
1036 relation_trio = TRIO_VARYING) const;
1037 virtual relation_kind op1_op2_relation (const irange &lhs) const;
1038 } op_gt;
1040 // Check if the LHS range indicates a relation between OP1 and OP2.
1042 relation_kind
1043 gt_op1_op2_relation (const irange &lhs)
1045 if (lhs.undefined_p ())
1046 return VREL_UNDEFINED;
1048 // FALSE = op1 > op2 indicates LE_EXPR.
1049 if (lhs.zero_p ())
1050 return VREL_LE;
1052 // TRUE = op1 > op2 indicates GT_EXPR.
1053 if (!lhs.contains_p (build_zero_cst (lhs.type ())))
1054 return VREL_GT;
1055 return VREL_VARYING;
1058 relation_kind
1059 operator_gt::op1_op2_relation (const irange &lhs) const
1061 return gt_op1_op2_relation (lhs);
1065 bool
1066 operator_gt::fold_range (irange &r, tree type,
1067 const irange &op1, const irange &op2,
1068 relation_trio rel) const
1070 if (relop_early_resolve (r, type, op1, op2, rel, VREL_GT))
1071 return true;
1073 signop sign = TYPE_SIGN (op1.type ());
1074 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
1076 if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
1077 r = range_true (type);
1078 else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
1079 r = range_false (type);
1080 else
1081 r = range_true_and_false (type);
1082 return true;
1085 bool
1086 operator_gt::op1_range (irange &r, tree type,
1087 const irange &lhs, const irange &op2,
1088 relation_trio) const
1090 switch (get_bool_state (r, lhs, type))
1092 case BRS_TRUE:
1093 build_gt (r, type, op2.lower_bound ());
1094 break;
1096 case BRS_FALSE:
1097 build_le (r, type, op2.upper_bound ());
1098 break;
1100 default:
1101 break;
1103 return true;
1106 bool
1107 operator_gt::op2_range (irange &r, tree type,
1108 const irange &lhs,
1109 const irange &op1,
1110 relation_trio) const
1112 switch (get_bool_state (r, lhs, type))
1114 case BRS_TRUE:
1115 build_lt (r, type, op1.upper_bound ());
1116 break;
1118 case BRS_FALSE:
1119 build_ge (r, type, op1.lower_bound ());
1120 break;
1122 default:
1123 break;
1125 return true;
1129 class operator_ge : public range_operator
1131 using range_operator::fold_range;
1132 using range_operator::op1_range;
1133 using range_operator::op2_range;
1134 public:
1135 virtual bool fold_range (irange &r, tree type,
1136 const irange &op1,
1137 const irange &op2,
1138 relation_trio = TRIO_VARYING) const;
1139 virtual bool op1_range (irange &r, tree type,
1140 const irange &lhs,
1141 const irange &op2,
1142 relation_trio = TRIO_VARYING) const;
1143 virtual bool op2_range (irange &r, tree type,
1144 const irange &lhs,
1145 const irange &op1,
1146 relation_trio = TRIO_VARYING) const;
1147 virtual relation_kind op1_op2_relation (const irange &lhs) const;
1148 } op_ge;
1150 // Check if the LHS range indicates a relation between OP1 and OP2.
1152 relation_kind
1153 ge_op1_op2_relation (const irange &lhs)
1155 if (lhs.undefined_p ())
1156 return VREL_UNDEFINED;
1158 // FALSE = op1 >= op2 indicates LT_EXPR.
1159 if (lhs.zero_p ())
1160 return VREL_LT;
1162 // TRUE = op1 >= op2 indicates GE_EXPR.
1163 if (!lhs.contains_p (build_zero_cst (lhs.type ())))
1164 return VREL_GE;
1165 return VREL_VARYING;
1168 relation_kind
1169 operator_ge::op1_op2_relation (const irange &lhs) const
1171 return ge_op1_op2_relation (lhs);
1174 bool
1175 operator_ge::fold_range (irange &r, tree type,
1176 const irange &op1,
1177 const irange &op2,
1178 relation_trio rel) const
1180 if (relop_early_resolve (r, type, op1, op2, rel, VREL_GE))
1181 return true;
1183 signop sign = TYPE_SIGN (op1.type ());
1184 gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
1186 if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
1187 r = range_true (type);
1188 else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
1189 r = range_false (type);
1190 else
1191 r = range_true_and_false (type);
1192 return true;
1195 bool
1196 operator_ge::op1_range (irange &r, tree type,
1197 const irange &lhs,
1198 const irange &op2,
1199 relation_trio) const
1201 switch (get_bool_state (r, lhs, type))
1203 case BRS_TRUE:
1204 build_ge (r, type, op2.lower_bound ());
1205 break;
1207 case BRS_FALSE:
1208 build_lt (r, type, op2.upper_bound ());
1209 break;
1211 default:
1212 break;
1214 return true;
1217 bool
1218 operator_ge::op2_range (irange &r, tree type,
1219 const irange &lhs,
1220 const irange &op1,
1221 relation_trio) const
1223 switch (get_bool_state (r, lhs, type))
1225 case BRS_TRUE:
1226 build_le (r, type, op1.upper_bound ());
1227 break;
1229 case BRS_FALSE:
1230 build_gt (r, type, op1.lower_bound ());
1231 break;
1233 default:
1234 break;
1236 return true;
1240 class operator_plus : public range_operator
1242 using range_operator::op1_range;
1243 using range_operator::op2_range;
1244 using range_operator::lhs_op1_relation;
1245 using range_operator::lhs_op2_relation;
1246 public:
1247 virtual bool op1_range (irange &r, tree type,
1248 const irange &lhs,
1249 const irange &op2,
1250 relation_trio) const;
1251 virtual bool op2_range (irange &r, tree type,
1252 const irange &lhs,
1253 const irange &op1,
1254 relation_trio) const;
1255 virtual void wi_fold (irange &r, tree type,
1256 const wide_int &lh_lb,
1257 const wide_int &lh_ub,
1258 const wide_int &rh_lb,
1259 const wide_int &rh_ub) const;
1260 virtual relation_kind lhs_op1_relation (const irange &lhs, const irange &op1,
1261 const irange &op2,
1262 relation_kind rel) const;
1263 virtual relation_kind lhs_op2_relation (const irange &lhs, const irange &op1,
1264 const irange &op2,
1265 relation_kind rel) const;
1266 } op_plus;
1268 // Check to see if the range of OP2 indicates anything about the relation
1269 // between LHS and OP1.
1271 relation_kind
1272 operator_plus::lhs_op1_relation (const irange &lhs,
1273 const irange &op1,
1274 const irange &op2,
1275 relation_kind) const
1277 if (lhs.undefined_p () || op1.undefined_p () || op2.undefined_p ())
1278 return VREL_VARYING;
1280 tree type = lhs.type ();
1281 unsigned prec = TYPE_PRECISION (type);
1282 wi::overflow_type ovf1, ovf2;
1283 signop sign = TYPE_SIGN (type);
1285 // LHS = OP1 + 0 indicates LHS == OP1.
1286 if (op2.zero_p ())
1287 return VREL_EQ;
1289 if (TYPE_OVERFLOW_WRAPS (type))
1291 wi::add (op1.lower_bound (), op2.lower_bound (), sign, &ovf1);
1292 wi::add (op1.upper_bound (), op2.upper_bound (), sign, &ovf2);
1294 else
1295 ovf1 = ovf2 = wi::OVF_NONE;
1297 // Never wrapping additions.
1298 if (!ovf1 && !ovf2)
1300 // Positive op2 means lhs > op1.
1301 if (wi::gt_p (op2.lower_bound (), wi::zero (prec), sign))
1302 return VREL_GT;
1303 if (wi::ge_p (op2.lower_bound (), wi::zero (prec), sign))
1304 return VREL_GE;
1306 // Negative op2 means lhs < op1.
1307 if (wi::lt_p (op2.upper_bound (), wi::zero (prec), sign))
1308 return VREL_LT;
1309 if (wi::le_p (op2.upper_bound (), wi::zero (prec), sign))
1310 return VREL_LE;
1312 // Always wrapping additions.
1313 else if (ovf1 && ovf1 == ovf2)
1315 // Positive op2 means lhs < op1.
1316 if (wi::gt_p (op2.lower_bound (), wi::zero (prec), sign))
1317 return VREL_LT;
1318 if (wi::ge_p (op2.lower_bound (), wi::zero (prec), sign))
1319 return VREL_LE;
1321 // Negative op2 means lhs > op1.
1322 if (wi::lt_p (op2.upper_bound (), wi::zero (prec), sign))
1323 return VREL_GT;
1324 if (wi::le_p (op2.upper_bound (), wi::zero (prec), sign))
1325 return VREL_GE;
1328 // If op2 does not contain 0, then LHS and OP1 can never be equal.
1329 if (!range_includes_zero_p (&op2))
1330 return VREL_NE;
1332 return VREL_VARYING;
1335 // PLUS is symmetrical, so we can simply call lhs_op1_relation with reversed
1336 // operands.
1338 relation_kind
1339 operator_plus::lhs_op2_relation (const irange &lhs, const irange &op1,
1340 const irange &op2, relation_kind rel) const
1342 return lhs_op1_relation (lhs, op2, op1, rel);
1345 void
1346 operator_plus::wi_fold (irange &r, tree type,
1347 const wide_int &lh_lb, const wide_int &lh_ub,
1348 const wide_int &rh_lb, const wide_int &rh_ub) const
1350 wi::overflow_type ov_lb, ov_ub;
1351 signop s = TYPE_SIGN (type);
1352 wide_int new_lb = wi::add (lh_lb, rh_lb, s, &ov_lb);
1353 wide_int new_ub = wi::add (lh_ub, rh_ub, s, &ov_ub);
1354 value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
1357 // Given addition or subtraction, determine the possible NORMAL ranges and
1358 // OVERFLOW ranges given an OFFSET range. ADD_P is true for addition.
1359 // Return the relation that exists between the LHS and OP1 in order for the
1360 // NORMAL range to apply.
1361 // a return value of VREL_VARYING means no ranges were applicable.
1363 static relation_kind
1364 plus_minus_ranges (irange &r_ov, irange &r_normal, const irange &offset,
1365 bool add_p)
1367 relation_kind kind = VREL_VARYING;
1368 // For now, only deal with constant adds. This could be extended to ranges
1369 // when someone is so motivated.
1370 if (!offset.singleton_p () || offset.zero_p ())
1371 return kind;
1373 // Always work with a positive offset. ie a+ -2 -> a-2 and a- -2 > a+2
1374 wide_int off = offset.lower_bound ();
1375 if (wi::neg_p (off, SIGNED))
1377 add_p = !add_p;
1378 off = wi::neg (off);
1381 wi::overflow_type ov;
1382 tree type = offset.type ();
1383 unsigned prec = TYPE_PRECISION (type);
1384 wide_int ub;
1385 wide_int lb;
1386 // calculate the normal range and relation for the operation.
1387 if (add_p)
1389 // [ 0 , INF - OFF]
1390 lb = wi::zero (prec);
1391 ub = wi::sub (wi::to_wide (vrp_val_max (type)), off, UNSIGNED, &ov);
1392 kind = VREL_GT;
1394 else
1396 // [ OFF, INF ]
1397 lb = off;
1398 ub = wi::to_wide (vrp_val_max (type));
1399 kind = VREL_LT;
1401 int_range<2> normal_range (type, lb, ub);
1402 int_range<2> ov_range (type, lb, ub, VR_ANTI_RANGE);
1404 r_ov = ov_range;
1405 r_normal = normal_range;
1406 return kind;
1409 // Once op1 has been calculated by operator_plus or operator_minus, check
1410 // to see if the relation passed causes any part of the calculation to
1411 // be not possible. ie
1412 // a_2 = b_3 + 1 with a_2 < b_3 can refine the range of b_3 to [INF, INF]
1413 // and that further refines a_2 to [0, 0].
1414 // R is the value of op1, OP2 is the offset being added/subtracted, REL is the
1415 // relation between LHS relatoin OP1 and ADD_P is true for PLUS, false for
1416 // MINUS. IF any adjustment can be made, R will reflect it.
1418 static void
1419 adjust_op1_for_overflow (irange &r, const irange &op2, relation_kind rel,
1420 bool add_p)
1422 if (r.undefined_p ())
1423 return;
1424 tree type = r.type ();
1425 // Check for unsigned overflow and calculate the overflow part.
1426 signop s = TYPE_SIGN (type);
1427 if (!TYPE_OVERFLOW_WRAPS (type) || s == SIGNED)
1428 return;
1430 // Only work with <, <=, >, >= relations.
1431 if (!relation_lt_le_gt_ge_p (rel))
1432 return;
1434 // Get the ranges for this offset.
1435 int_range_max normal, overflow;
1436 relation_kind k = plus_minus_ranges (overflow, normal, op2, add_p);
1438 // VREL_VARYING means there are no adjustments.
1439 if (k == VREL_VARYING)
1440 return;
1442 // If the relations match use the normal range, otherwise use overflow range.
1443 if (relation_intersect (k, rel) == k)
1444 r.intersect (normal);
1445 else
1446 r.intersect (overflow);
1447 return;
1450 bool
1451 operator_plus::op1_range (irange &r, tree type,
1452 const irange &lhs,
1453 const irange &op2,
1454 relation_trio trio) const
1456 if (lhs.undefined_p ())
1457 return false;
1458 // Start with the default operation.
1459 range_op_handler minus (MINUS_EXPR, type);
1460 if (!minus)
1461 return false;
1462 bool res = minus.fold_range (r, type, lhs, op2);
1463 relation_kind rel = trio.lhs_op2 ();
1464 // Check for a relation refinement.
1465 if (res)
1466 adjust_op1_for_overflow (r, op2, rel, true /* PLUS_EXPR */);
1467 return res;
1470 bool
1471 operator_plus::op2_range (irange &r, tree type,
1472 const irange &lhs,
1473 const irange &op1,
1474 relation_trio rel) const
1476 return op1_range (r, type, lhs, op1, rel.swap_op1_op2 ());
1480 class operator_minus : public range_operator
1482 using range_operator::fold_range;
1483 using range_operator::op1_range;
1484 using range_operator::op2_range;
1485 public:
1486 virtual bool op1_range (irange &r, tree type,
1487 const irange &lhs,
1488 const irange &op2,
1489 relation_trio) const;
1490 virtual bool op2_range (irange &r, tree type,
1491 const irange &lhs,
1492 const irange &op1,
1493 relation_trio) const;
1494 virtual void wi_fold (irange &r, tree type,
1495 const wide_int &lh_lb,
1496 const wide_int &lh_ub,
1497 const wide_int &rh_lb,
1498 const wide_int &rh_ub) const;
1499 virtual relation_kind lhs_op1_relation (const irange &lhs,
1500 const irange &op1,
1501 const irange &op2,
1502 relation_kind rel) const;
1503 virtual bool op1_op2_relation_effect (irange &lhs_range,
1504 tree type,
1505 const irange &op1_range,
1506 const irange &op2_range,
1507 relation_kind rel) const;
1508 } op_minus;
1510 void
1511 operator_minus::wi_fold (irange &r, tree type,
1512 const wide_int &lh_lb, const wide_int &lh_ub,
1513 const wide_int &rh_lb, const wide_int &rh_ub) const
1515 wi::overflow_type ov_lb, ov_ub;
1516 signop s = TYPE_SIGN (type);
1517 wide_int new_lb = wi::sub (lh_lb, rh_ub, s, &ov_lb);
1518 wide_int new_ub = wi::sub (lh_ub, rh_lb, s, &ov_ub);
1519 value_range_with_overflow (r, type, new_lb, new_ub, ov_lb, ov_ub);
1523 // Return the relation between LHS and OP1 based on the relation between
1524 // OP1 and OP2.
1526 relation_kind
1527 operator_minus::lhs_op1_relation (const irange &, const irange &op1,
1528 const irange &, relation_kind rel) const
1530 if (!op1.undefined_p () && TYPE_SIGN (op1.type ()) == UNSIGNED)
1531 switch (rel)
1533 case VREL_GT:
1534 case VREL_GE:
1535 return VREL_LE;
1536 default:
1537 break;
1539 return VREL_VARYING;
1542 // Check to see if the relation REL between OP1 and OP2 has any effect on the
1543 // LHS of the expression. If so, apply it to LHS_RANGE. This is a helper
1544 // function for both MINUS_EXPR and POINTER_DIFF_EXPR.
1546 static bool
1547 minus_op1_op2_relation_effect (irange &lhs_range, tree type,
1548 const irange &op1_range ATTRIBUTE_UNUSED,
1549 const irange &op2_range ATTRIBUTE_UNUSED,
1550 relation_kind rel)
1552 if (rel == VREL_VARYING)
1553 return false;
1555 int_range<2> rel_range;
1556 unsigned prec = TYPE_PRECISION (type);
1557 signop sgn = TYPE_SIGN (type);
1559 // == and != produce [0,0] and ~[0,0] regardless of wrapping.
1560 if (rel == VREL_EQ)
1561 rel_range = int_range<2> (type, wi::zero (prec), wi::zero (prec));
1562 else if (rel == VREL_NE)
1563 rel_range = int_range<2> (type, wi::zero (prec), wi::zero (prec),
1564 VR_ANTI_RANGE);
1565 else if (TYPE_OVERFLOW_WRAPS (type))
1567 switch (rel)
1569 // For wrapping signed values and unsigned, if op1 > op2 or
1570 // op1 < op2, then op1 - op2 can be restricted to ~[0, 0].
1571 case VREL_GT:
1572 case VREL_LT:
1573 rel_range = int_range<2> (type, wi::zero (prec), wi::zero (prec),
1574 VR_ANTI_RANGE);
1575 break;
1576 default:
1577 return false;
1580 else
1582 switch (rel)
1584 // op1 > op2, op1 - op2 can be restricted to [1, +INF]
1585 case VREL_GT:
1586 rel_range = int_range<2> (type, wi::one (prec),
1587 wi::max_value (prec, sgn));
1588 break;
1589 // op1 >= op2, op1 - op2 can be restricted to [0, +INF]
1590 case VREL_GE:
1591 rel_range = int_range<2> (type, wi::zero (prec),
1592 wi::max_value (prec, sgn));
1593 break;
1594 // op1 < op2, op1 - op2 can be restricted to [-INF, -1]
1595 case VREL_LT:
1596 rel_range = int_range<2> (type, wi::min_value (prec, sgn),
1597 wi::minus_one (prec));
1598 break;
1599 // op1 <= op2, op1 - op2 can be restricted to [-INF, 0]
1600 case VREL_LE:
1601 rel_range = int_range<2> (type, wi::min_value (prec, sgn),
1602 wi::zero (prec));
1603 break;
1604 default:
1605 return false;
1608 lhs_range.intersect (rel_range);
1609 return true;
1612 bool
1613 operator_minus::op1_op2_relation_effect (irange &lhs_range, tree type,
1614 const irange &op1_range,
1615 const irange &op2_range,
1616 relation_kind rel) const
1618 return minus_op1_op2_relation_effect (lhs_range, type, op1_range, op2_range,
1619 rel);
1622 bool
1623 operator_minus::op1_range (irange &r, tree type,
1624 const irange &lhs,
1625 const irange &op2,
1626 relation_trio trio) const
1628 if (lhs.undefined_p ())
1629 return false;
1630 // Start with the default operation.
1631 range_op_handler minus (PLUS_EXPR, type);
1632 if (!minus)
1633 return false;
1634 bool res = minus.fold_range (r, type, lhs, op2);
1635 relation_kind rel = trio.lhs_op2 ();
1636 if (res)
1637 adjust_op1_for_overflow (r, op2, rel, false /* PLUS_EXPR */);
1638 return res;
1642 bool
1643 operator_minus::op2_range (irange &r, tree type,
1644 const irange &lhs,
1645 const irange &op1,
1646 relation_trio) const
1648 if (lhs.undefined_p ())
1649 return false;
1650 return fold_range (r, type, op1, lhs);
1654 class operator_pointer_diff : public range_operator
1656 virtual bool op1_op2_relation_effect (irange &lhs_range,
1657 tree type,
1658 const irange &op1_range,
1659 const irange &op2_range,
1660 relation_kind rel) const;
1661 } op_pointer_diff;
1663 bool
1664 operator_pointer_diff::op1_op2_relation_effect (irange &lhs_range, tree type,
1665 const irange &op1_range,
1666 const irange &op2_range,
1667 relation_kind rel) const
1669 return minus_op1_op2_relation_effect (lhs_range, type, op1_range, op2_range,
1670 rel);
1674 class operator_min : public range_operator
1676 public:
1677 virtual void wi_fold (irange &r, tree type,
1678 const wide_int &lh_lb,
1679 const wide_int &lh_ub,
1680 const wide_int &rh_lb,
1681 const wide_int &rh_ub) const;
1682 } op_min;
1684 void
1685 operator_min::wi_fold (irange &r, tree type,
1686 const wide_int &lh_lb, const wide_int &lh_ub,
1687 const wide_int &rh_lb, const wide_int &rh_ub) const
1689 signop s = TYPE_SIGN (type);
1690 wide_int new_lb = wi::min (lh_lb, rh_lb, s);
1691 wide_int new_ub = wi::min (lh_ub, rh_ub, s);
1692 value_range_with_overflow (r, type, new_lb, new_ub);
1696 class operator_max : public range_operator
1698 public:
1699 virtual void wi_fold (irange &r, tree type,
1700 const wide_int &lh_lb,
1701 const wide_int &lh_ub,
1702 const wide_int &rh_lb,
1703 const wide_int &rh_ub) const;
1704 } op_max;
1706 void
1707 operator_max::wi_fold (irange &r, tree type,
1708 const wide_int &lh_lb, const wide_int &lh_ub,
1709 const wide_int &rh_lb, const wide_int &rh_ub) const
1711 signop s = TYPE_SIGN (type);
1712 wide_int new_lb = wi::max (lh_lb, rh_lb, s);
1713 wide_int new_ub = wi::max (lh_ub, rh_ub, s);
1714 value_range_with_overflow (r, type, new_lb, new_ub);
1718 class cross_product_operator : public range_operator
1720 public:
1721 // Perform an operation between two wide-ints and place the result
1722 // in R. Return true if the operation overflowed.
1723 virtual bool wi_op_overflows (wide_int &r,
1724 tree type,
1725 const wide_int &,
1726 const wide_int &) const = 0;
1728 // Calculate the cross product of two sets of sub-ranges and return it.
1729 void wi_cross_product (irange &r, tree type,
1730 const wide_int &lh_lb,
1731 const wide_int &lh_ub,
1732 const wide_int &rh_lb,
1733 const wide_int &rh_ub) const;
1736 // Calculate the cross product of two sets of ranges and return it.
1738 // Multiplications, divisions and shifts are a bit tricky to handle,
1739 // depending on the mix of signs we have in the two ranges, we need to
1740 // operate on different values to get the minimum and maximum values
1741 // for the new range. One approach is to figure out all the
1742 // variations of range combinations and do the operations.
1744 // However, this involves several calls to compare_values and it is
1745 // pretty convoluted. It's simpler to do the 4 operations (MIN0 OP
1746 // MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP MAX1) and then
1747 // figure the smallest and largest values to form the new range.
1749 void
1750 cross_product_operator::wi_cross_product (irange &r, tree type,
1751 const wide_int &lh_lb,
1752 const wide_int &lh_ub,
1753 const wide_int &rh_lb,
1754 const wide_int &rh_ub) const
1756 wide_int cp1, cp2, cp3, cp4;
1757 // Default to varying.
1758 r.set_varying (type);
1760 // Compute the 4 cross operations, bailing if we get an overflow we
1761 // can't handle.
1762 if (wi_op_overflows (cp1, type, lh_lb, rh_lb))
1763 return;
1764 if (wi::eq_p (lh_lb, lh_ub))
1765 cp3 = cp1;
1766 else if (wi_op_overflows (cp3, type, lh_ub, rh_lb))
1767 return;
1768 if (wi::eq_p (rh_lb, rh_ub))
1769 cp2 = cp1;
1770 else if (wi_op_overflows (cp2, type, lh_lb, rh_ub))
1771 return;
1772 if (wi::eq_p (lh_lb, lh_ub))
1773 cp4 = cp2;
1774 else if (wi_op_overflows (cp4, type, lh_ub, rh_ub))
1775 return;
1777 // Order pairs.
1778 signop sign = TYPE_SIGN (type);
1779 if (wi::gt_p (cp1, cp2, sign))
1780 std::swap (cp1, cp2);
1781 if (wi::gt_p (cp3, cp4, sign))
1782 std::swap (cp3, cp4);
1784 // Choose min and max from the ordered pairs.
1785 wide_int res_lb = wi::min (cp1, cp3, sign);
1786 wide_int res_ub = wi::max (cp2, cp4, sign);
1787 value_range_with_overflow (r, type, res_lb, res_ub);
1791 class operator_mult : public cross_product_operator
1793 using range_operator::op1_range;
1794 using range_operator::op2_range;
1795 public:
1796 virtual void wi_fold (irange &r, tree type,
1797 const wide_int &lh_lb,
1798 const wide_int &lh_ub,
1799 const wide_int &rh_lb,
1800 const wide_int &rh_ub) const final override;
1801 virtual bool wi_op_overflows (wide_int &res, tree type,
1802 const wide_int &w0, const wide_int &w1)
1803 const final override;
1804 virtual bool op1_range (irange &r, tree type,
1805 const irange &lhs,
1806 const irange &op2,
1807 relation_trio) const final override;
1808 virtual bool op2_range (irange &r, tree type,
1809 const irange &lhs,
1810 const irange &op1,
1811 relation_trio) const final override;
1812 } op_mult;
1814 bool
1815 operator_mult::op1_range (irange &r, tree type,
1816 const irange &lhs, const irange &op2,
1817 relation_trio) const
1819 tree offset;
1820 if (lhs.undefined_p ())
1821 return false;
1823 // We can't solve 0 = OP1 * N by dividing by N with a wrapping type.
1824 // For example: For 0 = OP1 * 2, OP1 could be 0, or MAXINT, whereas
1825 // for 4 = OP1 * 2, OP1 could be 2 or 130 (unsigned 8-bit)
1826 if (TYPE_OVERFLOW_WRAPS (type))
1827 return false;
1829 if (op2.singleton_p (&offset) && !integer_zerop (offset))
1830 return range_op_handler (TRUNC_DIV_EXPR, type).fold_range (r, type,
1831 lhs, op2);
1832 return false;
1835 bool
1836 operator_mult::op2_range (irange &r, tree type,
1837 const irange &lhs, const irange &op1,
1838 relation_trio rel) const
1840 return operator_mult::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ());
1843 bool
1844 operator_mult::wi_op_overflows (wide_int &res, tree type,
1845 const wide_int &w0, const wide_int &w1) const
1847 wi::overflow_type overflow = wi::OVF_NONE;
1848 signop sign = TYPE_SIGN (type);
1849 res = wi::mul (w0, w1, sign, &overflow);
1850 if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
1852 // For multiplication, the sign of the overflow is given
1853 // by the comparison of the signs of the operands.
1854 if (sign == UNSIGNED || w0.sign_mask () == w1.sign_mask ())
1855 res = wi::max_value (w0.get_precision (), sign);
1856 else
1857 res = wi::min_value (w0.get_precision (), sign);
1858 return false;
1860 return overflow;
1863 void
1864 operator_mult::wi_fold (irange &r, tree type,
1865 const wide_int &lh_lb, const wide_int &lh_ub,
1866 const wide_int &rh_lb, const wide_int &rh_ub) const
1868 if (TYPE_OVERFLOW_UNDEFINED (type))
1870 wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
1871 return;
1874 // Multiply the ranges when overflow wraps. This is basically fancy
1875 // code so we don't drop to varying with an unsigned
1876 // [-3,-1]*[-3,-1].
1878 // This test requires 2*prec bits if both operands are signed and
1879 // 2*prec + 2 bits if either is not. Therefore, extend the values
1880 // using the sign of the result to PREC2. From here on out,
1881 // everthing is just signed math no matter what the input types
1882 // were.
1884 signop sign = TYPE_SIGN (type);
1885 unsigned prec = TYPE_PRECISION (type);
1886 widest2_int min0 = widest2_int::from (lh_lb, sign);
1887 widest2_int max0 = widest2_int::from (lh_ub, sign);
1888 widest2_int min1 = widest2_int::from (rh_lb, sign);
1889 widest2_int max1 = widest2_int::from (rh_ub, sign);
1890 widest2_int sizem1 = wi::mask <widest2_int> (prec, false);
1891 widest2_int size = sizem1 + 1;
1893 // Canonicalize the intervals.
1894 if (sign == UNSIGNED)
1896 if (wi::ltu_p (size, min0 + max0))
1898 min0 -= size;
1899 max0 -= size;
1901 if (wi::ltu_p (size, min1 + max1))
1903 min1 -= size;
1904 max1 -= size;
1908 // Sort the 4 products so that min is in prod0 and max is in
1909 // prod3.
1910 widest2_int prod0 = min0 * min1;
1911 widest2_int prod1 = min0 * max1;
1912 widest2_int prod2 = max0 * min1;
1913 widest2_int prod3 = max0 * max1;
1915 // min0min1 > max0max1
1916 if (prod0 > prod3)
1917 std::swap (prod0, prod3);
1919 // min0max1 > max0min1
1920 if (prod1 > prod2)
1921 std::swap (prod1, prod2);
1923 if (prod0 > prod1)
1924 std::swap (prod0, prod1);
1926 if (prod2 > prod3)
1927 std::swap (prod2, prod3);
1929 // diff = max - min
1930 prod2 = prod3 - prod0;
1931 if (wi::geu_p (prod2, sizem1))
1933 // Multiplying by X, where X is a power of 2 is [0,0][X,+INF].
1934 if (TYPE_UNSIGNED (type) && rh_lb == rh_ub
1935 && wi::exact_log2 (rh_lb) != -1 && prec > 1)
1937 r.set (type, rh_lb, wi::max_value (prec, sign));
1938 int_range<2> zero;
1939 zero.set_zero (type);
1940 r.union_ (zero);
1942 else
1943 // The range covers all values.
1944 r.set_varying (type);
1946 else
1948 wide_int new_lb = wide_int::from (prod0, prec, sign);
1949 wide_int new_ub = wide_int::from (prod3, prec, sign);
1950 create_possibly_reversed_range (r, type, new_lb, new_ub);
1955 class operator_div : public cross_product_operator
1957 public:
1958 virtual void wi_fold (irange &r, tree type,
1959 const wide_int &lh_lb,
1960 const wide_int &lh_ub,
1961 const wide_int &rh_lb,
1962 const wide_int &rh_ub) const final override;
1963 virtual bool wi_op_overflows (wide_int &res, tree type,
1964 const wide_int &, const wide_int &)
1965 const final override;
1968 bool
1969 operator_div::wi_op_overflows (wide_int &res, tree type,
1970 const wide_int &w0, const wide_int &w1) const
1972 if (w1 == 0)
1973 return true;
1975 wi::overflow_type overflow = wi::OVF_NONE;
1976 signop sign = TYPE_SIGN (type);
1978 switch (m_code)
1980 case EXACT_DIV_EXPR:
1981 case TRUNC_DIV_EXPR:
1982 res = wi::div_trunc (w0, w1, sign, &overflow);
1983 break;
1984 case FLOOR_DIV_EXPR:
1985 res = wi::div_floor (w0, w1, sign, &overflow);
1986 break;
1987 case ROUND_DIV_EXPR:
1988 res = wi::div_round (w0, w1, sign, &overflow);
1989 break;
1990 case CEIL_DIV_EXPR:
1991 res = wi::div_ceil (w0, w1, sign, &overflow);
1992 break;
1993 default:
1994 gcc_unreachable ();
1997 if (overflow && TYPE_OVERFLOW_UNDEFINED (type))
1999 // For division, the only case is -INF / -1 = +INF.
2000 res = wi::max_value (w0.get_precision (), sign);
2001 return false;
2003 return overflow;
2006 void
2007 operator_div::wi_fold (irange &r, tree type,
2008 const wide_int &lh_lb, const wide_int &lh_ub,
2009 const wide_int &rh_lb, const wide_int &rh_ub) const
2011 const wide_int dividend_min = lh_lb;
2012 const wide_int dividend_max = lh_ub;
2013 const wide_int divisor_min = rh_lb;
2014 const wide_int divisor_max = rh_ub;
2015 signop sign = TYPE_SIGN (type);
2016 unsigned prec = TYPE_PRECISION (type);
2017 wide_int extra_min, extra_max;
2019 // If we know we won't divide by zero, just do the division.
2020 if (!wi_includes_zero_p (type, divisor_min, divisor_max))
2022 wi_cross_product (r, type, dividend_min, dividend_max,
2023 divisor_min, divisor_max);
2024 return;
2027 // If we're definitely dividing by zero, there's nothing to do.
2028 if (wi_zero_p (type, divisor_min, divisor_max))
2030 r.set_undefined ();
2031 return;
2034 // Perform the division in 2 parts, [LB, -1] and [1, UB], which will
2035 // skip any division by zero.
2037 // First divide by the negative numbers, if any.
2038 if (wi::neg_p (divisor_min, sign))
2039 wi_cross_product (r, type, dividend_min, dividend_max,
2040 divisor_min, wi::minus_one (prec));
2041 else
2042 r.set_undefined ();
2044 // Then divide by the non-zero positive numbers, if any.
2045 if (wi::gt_p (divisor_max, wi::zero (prec), sign))
2047 int_range_max tmp;
2048 wi_cross_product (tmp, type, dividend_min, dividend_max,
2049 wi::one (prec), divisor_max);
2050 r.union_ (tmp);
2052 // We shouldn't still have undefined here.
2053 gcc_checking_assert (!r.undefined_p ());
2057 class operator_exact_divide : public operator_div
2059 using range_operator::op1_range;
2060 public:
2061 virtual bool op1_range (irange &r, tree type,
2062 const irange &lhs,
2063 const irange &op2,
2064 relation_trio) const;
2066 } op_exact_div;
2068 bool
2069 operator_exact_divide::op1_range (irange &r, tree type,
2070 const irange &lhs,
2071 const irange &op2,
2072 relation_trio) const
2074 if (lhs.undefined_p ())
2075 return false;
2076 tree offset;
2077 // [2, 4] = op1 / [3,3] since its exact divide, no need to worry about
2078 // remainders in the endpoints, so op1 = [2,4] * [3,3] = [6,12].
2079 // We wont bother trying to enumerate all the in between stuff :-P
2080 // TRUE accuraacy is [6,6][9,9][12,12]. This is unlikely to matter most of
2081 // the time however.
2082 // If op2 is a multiple of 2, we would be able to set some non-zero bits.
2083 if (op2.singleton_p (&offset)
2084 && !integer_zerop (offset))
2085 return range_op_handler (MULT_EXPR, type).fold_range (r, type, lhs, op2);
2086 return false;
2090 class operator_lshift : public cross_product_operator
2092 using range_operator::fold_range;
2093 using range_operator::op1_range;
2094 public:
2095 virtual bool op1_range (irange &r, tree type,
2096 const irange &lhs,
2097 const irange &op2,
2098 relation_trio rel = TRIO_VARYING) const;
2099 virtual bool fold_range (irange &r, tree type,
2100 const irange &op1,
2101 const irange &op2,
2102 relation_trio rel = TRIO_VARYING) const;
2104 virtual void wi_fold (irange &r, tree type,
2105 const wide_int &lh_lb, const wide_int &lh_ub,
2106 const wide_int &rh_lb, const wide_int &rh_ub) const;
2107 virtual bool wi_op_overflows (wide_int &res,
2108 tree type,
2109 const wide_int &,
2110 const wide_int &) const;
2111 } op_lshift;
2113 class operator_rshift : public cross_product_operator
2115 using range_operator::fold_range;
2116 using range_operator::op1_range;
2117 using range_operator::lhs_op1_relation;
2118 public:
2119 virtual bool fold_range (irange &r, tree type,
2120 const irange &op1,
2121 const irange &op2,
2122 relation_trio rel = TRIO_VARYING) const;
2123 virtual void wi_fold (irange &r, tree type,
2124 const wide_int &lh_lb,
2125 const wide_int &lh_ub,
2126 const wide_int &rh_lb,
2127 const wide_int &rh_ub) const;
2128 virtual bool wi_op_overflows (wide_int &res,
2129 tree type,
2130 const wide_int &w0,
2131 const wide_int &w1) const;
2132 virtual bool op1_range (irange &, tree type,
2133 const irange &lhs,
2134 const irange &op2,
2135 relation_trio rel = TRIO_VARYING) const;
2136 virtual relation_kind lhs_op1_relation (const irange &lhs,
2137 const irange &op1,
2138 const irange &op2,
2139 relation_kind rel) const;
2140 } op_rshift;
2143 relation_kind
2144 operator_rshift::lhs_op1_relation (const irange &lhs ATTRIBUTE_UNUSED,
2145 const irange &op1,
2146 const irange &op2,
2147 relation_kind) const
2149 // If both operands range are >= 0, then the LHS <= op1.
2150 if (!op1.undefined_p () && !op2.undefined_p ()
2151 && wi::ge_p (op1.lower_bound (), 0, TYPE_SIGN (op1.type ()))
2152 && wi::ge_p (op2.lower_bound (), 0, TYPE_SIGN (op2.type ())))
2153 return VREL_LE;
2154 return VREL_VARYING;
2157 bool
2158 operator_lshift::fold_range (irange &r, tree type,
2159 const irange &op1,
2160 const irange &op2,
2161 relation_trio rel) const
2163 int_range_max shift_range;
2164 if (!get_shift_range (shift_range, type, op2))
2166 if (op2.undefined_p ())
2167 r.set_undefined ();
2168 else
2169 r.set_varying (type);
2170 return true;
2173 // Transform left shifts by constants into multiplies.
2174 if (shift_range.singleton_p ())
2176 unsigned shift = shift_range.lower_bound ().to_uhwi ();
2177 wide_int tmp = wi::set_bit_in_zero (shift, TYPE_PRECISION (type));
2178 int_range<1> mult (type, tmp, tmp);
2180 // Force wrapping multiplication.
2181 bool saved_flag_wrapv = flag_wrapv;
2182 bool saved_flag_wrapv_pointer = flag_wrapv_pointer;
2183 flag_wrapv = 1;
2184 flag_wrapv_pointer = 1;
2185 bool b = op_mult.fold_range (r, type, op1, mult);
2186 flag_wrapv = saved_flag_wrapv;
2187 flag_wrapv_pointer = saved_flag_wrapv_pointer;
2188 return b;
2190 else
2191 // Otherwise, invoke the generic fold routine.
2192 return range_operator::fold_range (r, type, op1, shift_range, rel);
2195 void
2196 operator_lshift::wi_fold (irange &r, tree type,
2197 const wide_int &lh_lb, const wide_int &lh_ub,
2198 const wide_int &rh_lb, const wide_int &rh_ub) const
2200 signop sign = TYPE_SIGN (type);
2201 unsigned prec = TYPE_PRECISION (type);
2202 int overflow_pos = sign == SIGNED ? prec - 1 : prec;
2203 int bound_shift = overflow_pos - rh_ub.to_shwi ();
2204 // If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2205 // overflow. However, for that to happen, rh.max needs to be zero,
2206 // which means rh is a singleton range of zero, which means we simply return
2207 // [lh_lb, lh_ub] as the range.
2208 if (wi::eq_p (rh_ub, rh_lb) && wi::eq_p (rh_ub, 0))
2210 r = int_range<2> (type, lh_lb, lh_ub);
2211 return;
2214 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2215 wide_int complement = ~(bound - 1);
2216 wide_int low_bound, high_bound;
2217 bool in_bounds = false;
2219 if (sign == UNSIGNED)
2221 low_bound = bound;
2222 high_bound = complement;
2223 if (wi::ltu_p (lh_ub, low_bound))
2225 // [5, 6] << [1, 2] == [10, 24].
2226 // We're shifting out only zeroes, the value increases
2227 // monotonically.
2228 in_bounds = true;
2230 else if (wi::ltu_p (high_bound, lh_lb))
2232 // [0xffffff00, 0xffffffff] << [1, 2]
2233 // == [0xfffffc00, 0xfffffffe].
2234 // We're shifting out only ones, the value decreases
2235 // monotonically.
2236 in_bounds = true;
2239 else
2241 // [-1, 1] << [1, 2] == [-4, 4]
2242 low_bound = complement;
2243 high_bound = bound;
2244 if (wi::lts_p (lh_ub, high_bound)
2245 && wi::lts_p (low_bound, lh_lb))
2247 // For non-negative numbers, we're shifting out only zeroes,
2248 // the value increases monotonically. For negative numbers,
2249 // we're shifting out only ones, the value decreases
2250 // monotonically.
2251 in_bounds = true;
2255 if (in_bounds)
2256 wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
2257 else
2258 r.set_varying (type);
2261 bool
2262 operator_lshift::wi_op_overflows (wide_int &res, tree type,
2263 const wide_int &w0, const wide_int &w1) const
2265 signop sign = TYPE_SIGN (type);
2266 if (wi::neg_p (w1))
2268 // It's unclear from the C standard whether shifts can overflow.
2269 // The following code ignores overflow; perhaps a C standard
2270 // interpretation ruling is needed.
2271 res = wi::rshift (w0, -w1, sign);
2273 else
2274 res = wi::lshift (w0, w1);
2275 return false;
2278 bool
2279 operator_lshift::op1_range (irange &r,
2280 tree type,
2281 const irange &lhs,
2282 const irange &op2,
2283 relation_trio) const
2285 if (lhs.undefined_p ())
2286 return false;
2287 tree shift_amount;
2289 if (!lhs.contains_p (build_zero_cst (type)))
2290 r.set_nonzero (type);
2291 else
2292 r.set_varying (type);
2294 if (op2.singleton_p (&shift_amount))
2296 wide_int shift = wi::to_wide (shift_amount);
2297 if (wi::lt_p (shift, 0, SIGNED))
2298 return false;
2299 if (wi::ge_p (shift, wi::uhwi (TYPE_PRECISION (type),
2300 TYPE_PRECISION (op2.type ())),
2301 UNSIGNED))
2302 return false;
2303 if (shift == 0)
2305 r.intersect (lhs);
2306 return true;
2309 // Work completely in unsigned mode to start.
2310 tree utype = type;
2311 int_range_max tmp_range;
2312 if (TYPE_SIGN (type) == SIGNED)
2314 int_range_max tmp = lhs;
2315 utype = unsigned_type_for (type);
2316 range_cast (tmp, utype);
2317 op_rshift.fold_range (tmp_range, utype, tmp, op2);
2319 else
2320 op_rshift.fold_range (tmp_range, utype, lhs, op2);
2322 // Start with ranges which can produce the LHS by right shifting the
2323 // result by the shift amount.
2324 // ie [0x08, 0xF0] = op1 << 2 will start with
2325 // [00001000, 11110000] = op1 << 2
2326 // [0x02, 0x4C] aka [00000010, 00111100]
2328 // Then create a range from the LB with the least significant upper bit
2329 // set, to the upper bound with all the bits set.
2330 // This would be [0x42, 0xFC] aka [01000010, 11111100].
2332 // Ideally we do this for each subrange, but just lump them all for now.
2333 unsigned low_bits = TYPE_PRECISION (utype)
2334 - TREE_INT_CST_LOW (shift_amount);
2335 wide_int up_mask = wi::mask (low_bits, true, TYPE_PRECISION (utype));
2336 wide_int new_ub = wi::bit_or (up_mask, tmp_range.upper_bound ());
2337 wide_int new_lb = wi::set_bit (tmp_range.lower_bound (), low_bits);
2338 int_range<2> fill_range (utype, new_lb, new_ub);
2339 tmp_range.union_ (fill_range);
2341 if (utype != type)
2342 range_cast (tmp_range, type);
2344 r.intersect (tmp_range);
2345 return true;
2348 return !r.varying_p ();
2351 bool
2352 operator_rshift::op1_range (irange &r,
2353 tree type,
2354 const irange &lhs,
2355 const irange &op2,
2356 relation_trio) const
2358 tree shift;
2359 if (lhs.undefined_p ())
2360 return false;
2361 if (op2.singleton_p (&shift))
2363 // Ignore nonsensical shifts.
2364 unsigned prec = TYPE_PRECISION (type);
2365 if (wi::ge_p (wi::to_wide (shift),
2366 wi::uhwi (prec, TYPE_PRECISION (TREE_TYPE (shift))),
2367 UNSIGNED))
2368 return false;
2369 if (wi::to_wide (shift) == 0)
2371 r = lhs;
2372 return true;
2375 // Folding the original operation may discard some impossible
2376 // ranges from the LHS.
2377 int_range_max lhs_refined;
2378 op_rshift.fold_range (lhs_refined, type, int_range<1> (type), op2);
2379 lhs_refined.intersect (lhs);
2380 if (lhs_refined.undefined_p ())
2382 r.set_undefined ();
2383 return true;
2385 int_range_max shift_range (shift, shift);
2386 int_range_max lb, ub;
2387 op_lshift.fold_range (lb, type, lhs_refined, shift_range);
2388 // LHS
2389 // 0000 0111 = OP1 >> 3
2391 // OP1 is anything from 0011 1000 to 0011 1111. That is, a
2392 // range from LHS<<3 plus a mask of the 3 bits we shifted on the
2393 // right hand side (0x07).
2394 tree mask = fold_build1 (BIT_NOT_EXPR, type,
2395 fold_build2 (LSHIFT_EXPR, type,
2396 build_minus_one_cst (type),
2397 shift));
2398 int_range_max mask_range (build_zero_cst (type), mask);
2399 op_plus.fold_range (ub, type, lb, mask_range);
2400 r = lb;
2401 r.union_ (ub);
2402 if (!lhs_refined.contains_p (build_zero_cst (type)))
2404 mask_range.invert ();
2405 r.intersect (mask_range);
2407 return true;
2409 return false;
2412 bool
2413 operator_rshift::wi_op_overflows (wide_int &res,
2414 tree type,
2415 const wide_int &w0,
2416 const wide_int &w1) const
2418 signop sign = TYPE_SIGN (type);
2419 if (wi::neg_p (w1))
2420 res = wi::lshift (w0, -w1);
2421 else
2423 // It's unclear from the C standard whether shifts can overflow.
2424 // The following code ignores overflow; perhaps a C standard
2425 // interpretation ruling is needed.
2426 res = wi::rshift (w0, w1, sign);
2428 return false;
2431 bool
2432 operator_rshift::fold_range (irange &r, tree type,
2433 const irange &op1,
2434 const irange &op2,
2435 relation_trio rel) const
2437 int_range_max shift;
2438 if (!get_shift_range (shift, type, op2))
2440 if (op2.undefined_p ())
2441 r.set_undefined ();
2442 else
2443 r.set_varying (type);
2444 return true;
2447 return range_operator::fold_range (r, type, op1, shift, rel);
2450 void
2451 operator_rshift::wi_fold (irange &r, tree type,
2452 const wide_int &lh_lb, const wide_int &lh_ub,
2453 const wide_int &rh_lb, const wide_int &rh_ub) const
2455 wi_cross_product (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
2459 class operator_cast: public range_operator
2461 using range_operator::fold_range;
2462 using range_operator::op1_range;
2463 public:
2464 virtual bool fold_range (irange &r, tree type,
2465 const irange &op1,
2466 const irange &op2,
2467 relation_trio rel = TRIO_VARYING) const;
2468 virtual bool op1_range (irange &r, tree type,
2469 const irange &lhs,
2470 const irange &op2,
2471 relation_trio rel = TRIO_VARYING) const;
2472 virtual relation_kind lhs_op1_relation (const irange &lhs,
2473 const irange &op1,
2474 const irange &op2,
2475 relation_kind) const;
2476 private:
2477 bool truncating_cast_p (const irange &inner, const irange &outer) const;
2478 bool inside_domain_p (const wide_int &min, const wide_int &max,
2479 const irange &outer) const;
2480 void fold_pair (irange &r, unsigned index, const irange &inner,
2481 const irange &outer) const;
2484 // Add a partial equivalence between the LHS and op1 for casts.
2486 relation_kind
2487 operator_cast::lhs_op1_relation (const irange &lhs,
2488 const irange &op1,
2489 const irange &op2 ATTRIBUTE_UNUSED,
2490 relation_kind) const
2492 if (lhs.undefined_p () || op1.undefined_p ())
2493 return VREL_VARYING;
2494 unsigned lhs_prec = TYPE_PRECISION (lhs.type ());
2495 unsigned op1_prec = TYPE_PRECISION (op1.type ());
2496 // If the result gets sign extended into a larger type check first if this
2497 // qualifies as a partial equivalence.
2498 if (TYPE_SIGN (op1.type ()) == SIGNED && lhs_prec > op1_prec)
2500 // If the result is sign extended, and the LHS is larger than op1,
2501 // check if op1's range can be negative as the sign extention will
2502 // cause the upper bits to be 1 instead of 0, invalidating the PE.
2503 int_range<3> negs = range_negatives (op1.type ());
2504 negs.intersect (op1);
2505 if (!negs.undefined_p ())
2506 return VREL_VARYING;
2509 unsigned prec = MIN (lhs_prec, op1_prec);
2510 return bits_to_pe (prec);
2513 // Return TRUE if casting from INNER to OUTER is a truncating cast.
2515 inline bool
2516 operator_cast::truncating_cast_p (const irange &inner,
2517 const irange &outer) const
2519 return TYPE_PRECISION (outer.type ()) < TYPE_PRECISION (inner.type ());
2522 // Return TRUE if [MIN,MAX] is inside the domain of RANGE's type.
2524 bool
2525 operator_cast::inside_domain_p (const wide_int &min,
2526 const wide_int &max,
2527 const irange &range) const
2529 wide_int domain_min = wi::to_wide (vrp_val_min (range.type ()));
2530 wide_int domain_max = wi::to_wide (vrp_val_max (range.type ()));
2531 signop domain_sign = TYPE_SIGN (range.type ());
2532 return (wi::le_p (min, domain_max, domain_sign)
2533 && wi::le_p (max, domain_max, domain_sign)
2534 && wi::ge_p (min, domain_min, domain_sign)
2535 && wi::ge_p (max, domain_min, domain_sign));
2539 // Helper for fold_range which work on a pair at a time.
2541 void
2542 operator_cast::fold_pair (irange &r, unsigned index,
2543 const irange &inner,
2544 const irange &outer) const
2546 tree inner_type = inner.type ();
2547 tree outer_type = outer.type ();
2548 signop inner_sign = TYPE_SIGN (inner_type);
2549 unsigned outer_prec = TYPE_PRECISION (outer_type);
2551 // check to see if casting from INNER to OUTER is a conversion that
2552 // fits in the resulting OUTER type.
2553 wide_int inner_lb = inner.lower_bound (index);
2554 wide_int inner_ub = inner.upper_bound (index);
2555 if (truncating_cast_p (inner, outer))
2557 // We may be able to accomodate a truncating cast if the
2558 // resulting range can be represented in the target type...
2559 if (wi::rshift (wi::sub (inner_ub, inner_lb),
2560 wi::uhwi (outer_prec, TYPE_PRECISION (inner.type ())),
2561 inner_sign) != 0)
2563 r.set_varying (outer_type);
2564 return;
2567 // ...but we must still verify that the final range fits in the
2568 // domain. This catches -fstrict-enum restrictions where the domain
2569 // range is smaller than what fits in the underlying type.
2570 wide_int min = wide_int::from (inner_lb, outer_prec, inner_sign);
2571 wide_int max = wide_int::from (inner_ub, outer_prec, inner_sign);
2572 if (inside_domain_p (min, max, outer))
2573 create_possibly_reversed_range (r, outer_type, min, max);
2574 else
2575 r.set_varying (outer_type);
2579 bool
2580 operator_cast::fold_range (irange &r, tree type ATTRIBUTE_UNUSED,
2581 const irange &inner,
2582 const irange &outer,
2583 relation_trio) const
2585 if (empty_range_varying (r, type, inner, outer))
2586 return true;
2588 gcc_checking_assert (outer.varying_p ());
2589 gcc_checking_assert (inner.num_pairs () > 0);
2591 // Avoid a temporary by folding the first pair directly into the result.
2592 fold_pair (r, 0, inner, outer);
2594 // Then process any additonal pairs by unioning with their results.
2595 for (unsigned x = 1; x < inner.num_pairs (); ++x)
2597 int_range_max tmp;
2598 fold_pair (tmp, x, inner, outer);
2599 r.union_ (tmp);
2600 if (r.varying_p ())
2601 return true;
2604 // Update the nonzero mask. Truncating casts are problematic unless
2605 // the conversion fits in the resulting outer type.
2606 wide_int nz = inner.get_nonzero_bits ();
2607 if (truncating_cast_p (inner, outer)
2608 && wi::rshift (nz, wi::uhwi (TYPE_PRECISION (outer.type ()),
2609 TYPE_PRECISION (inner.type ())),
2610 TYPE_SIGN (inner.type ())) != 0)
2611 return true;
2612 nz = wide_int::from (nz, TYPE_PRECISION (type), TYPE_SIGN (inner.type ()));
2613 r.set_nonzero_bits (nz);
2615 return true;
2618 bool
2619 operator_cast::op1_range (irange &r, tree type,
2620 const irange &lhs,
2621 const irange &op2,
2622 relation_trio) const
2624 if (lhs.undefined_p ())
2625 return false;
2626 tree lhs_type = lhs.type ();
2627 gcc_checking_assert (types_compatible_p (op2.type(), type));
2629 // If we are calculating a pointer, shortcut to what we really care about.
2630 if (POINTER_TYPE_P (type))
2632 // Conversion from other pointers or a constant (including 0/NULL)
2633 // are straightforward.
2634 if (POINTER_TYPE_P (lhs.type ())
2635 || (lhs.singleton_p ()
2636 && TYPE_PRECISION (lhs.type ()) >= TYPE_PRECISION (type)))
2638 r = lhs;
2639 range_cast (r, type);
2641 else
2643 // If the LHS is not a pointer nor a singleton, then it is
2644 // either VARYING or non-zero.
2645 if (!lhs.contains_p (build_zero_cst (lhs.type ())))
2646 r.set_nonzero (type);
2647 else
2648 r.set_varying (type);
2650 r.intersect (op2);
2651 return true;
2654 if (truncating_cast_p (op2, lhs))
2656 if (lhs.varying_p ())
2657 r.set_varying (type);
2658 else
2660 // We want to insert the LHS as an unsigned value since it
2661 // would not trigger the signed bit of the larger type.
2662 int_range_max converted_lhs = lhs;
2663 range_cast (converted_lhs, unsigned_type_for (lhs_type));
2664 range_cast (converted_lhs, type);
2665 // Start by building the positive signed outer range for the type.
2666 wide_int lim = wi::set_bit_in_zero (TYPE_PRECISION (lhs_type),
2667 TYPE_PRECISION (type));
2668 r = int_range<1> (type, lim, wi::max_value (TYPE_PRECISION (type),
2669 SIGNED));
2670 // For the signed part, we need to simply union the 2 ranges now.
2671 r.union_ (converted_lhs);
2673 // Create maximal negative number outside of LHS bits.
2674 lim = wi::mask (TYPE_PRECISION (lhs_type), true,
2675 TYPE_PRECISION (type));
2676 // Add this to the unsigned LHS range(s).
2677 int_range_max lim_range (type, lim, lim);
2678 int_range_max lhs_neg;
2679 range_op_handler (PLUS_EXPR, type).fold_range (lhs_neg, type,
2680 converted_lhs,
2681 lim_range);
2682 // lhs_neg now has all the negative versions of the LHS.
2683 // Now union in all the values from SIGNED MIN (0x80000) to
2684 // lim-1 in order to fill in all the ranges with the upper
2685 // bits set.
2687 // PR 97317. If the lhs has only 1 bit less precision than the rhs,
2688 // we don't need to create a range from min to lim-1
2689 // calculate neg range traps trying to create [lim, lim - 1].
2690 wide_int min_val = wi::min_value (TYPE_PRECISION (type), SIGNED);
2691 if (lim != min_val)
2693 int_range_max neg (type,
2694 wi::min_value (TYPE_PRECISION (type),
2695 SIGNED),
2696 lim - 1);
2697 lhs_neg.union_ (neg);
2699 // And finally, munge the signed and unsigned portions.
2700 r.union_ (lhs_neg);
2702 // And intersect with any known value passed in the extra operand.
2703 r.intersect (op2);
2704 return true;
2707 int_range_max tmp;
2708 if (TYPE_PRECISION (lhs_type) == TYPE_PRECISION (type))
2709 tmp = lhs;
2710 else
2712 // The cast is not truncating, and the range is restricted to
2713 // the range of the RHS by this assignment.
2715 // Cast the range of the RHS to the type of the LHS.
2716 fold_range (tmp, lhs_type, int_range<1> (type), int_range<1> (lhs_type));
2717 // Intersect this with the LHS range will produce the range,
2718 // which will be cast to the RHS type before returning.
2719 tmp.intersect (lhs);
2722 // Cast the calculated range to the type of the RHS.
2723 fold_range (r, type, tmp, int_range<1> (type));
2724 return true;
2728 class operator_logical_and : public range_operator
2730 using range_operator::fold_range;
2731 using range_operator::op1_range;
2732 using range_operator::op2_range;
2733 public:
2734 virtual bool fold_range (irange &r, tree type,
2735 const irange &lh,
2736 const irange &rh,
2737 relation_trio rel = TRIO_VARYING) const;
2738 virtual bool op1_range (irange &r, tree type,
2739 const irange &lhs,
2740 const irange &op2,
2741 relation_trio rel = TRIO_VARYING) const;
2742 virtual bool op2_range (irange &r, tree type,
2743 const irange &lhs,
2744 const irange &op1,
2745 relation_trio rel = TRIO_VARYING) const;
2746 } op_logical_and;
2749 bool
2750 operator_logical_and::fold_range (irange &r, tree type,
2751 const irange &lh,
2752 const irange &rh,
2753 relation_trio) const
2755 if (empty_range_varying (r, type, lh, rh))
2756 return true;
2758 // 0 && anything is 0.
2759 if ((wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (lh.upper_bound (), 0))
2760 || (wi::eq_p (lh.lower_bound (), 0) && wi::eq_p (rh.upper_bound (), 0)))
2761 r = range_false (type);
2762 else if (lh.contains_p (build_zero_cst (lh.type ()))
2763 || rh.contains_p (build_zero_cst (rh.type ())))
2764 // To reach this point, there must be a logical 1 on each side, and
2765 // the only remaining question is whether there is a zero or not.
2766 r = range_true_and_false (type);
2767 else
2768 r = range_true (type);
2769 return true;
2772 bool
2773 operator_logical_and::op1_range (irange &r, tree type,
2774 const irange &lhs,
2775 const irange &op2 ATTRIBUTE_UNUSED,
2776 relation_trio) const
2778 switch (get_bool_state (r, lhs, type))
2780 case BRS_TRUE:
2781 // A true result means both sides of the AND must be true.
2782 r = range_true (type);
2783 break;
2784 default:
2785 // Any other result means only one side has to be false, the
2786 // other side can be anything. So we cannot be sure of any
2787 // result here.
2788 r = range_true_and_false (type);
2789 break;
2791 return true;
2794 bool
2795 operator_logical_and::op2_range (irange &r, tree type,
2796 const irange &lhs,
2797 const irange &op1,
2798 relation_trio) const
2800 return operator_logical_and::op1_range (r, type, lhs, op1);
2804 class operator_bitwise_and : public range_operator
2806 using range_operator::op1_range;
2807 using range_operator::op2_range;
2808 public:
2809 virtual bool op1_range (irange &r, tree type,
2810 const irange &lhs,
2811 const irange &op2,
2812 relation_trio rel = TRIO_VARYING) const;
2813 virtual bool op2_range (irange &r, tree type,
2814 const irange &lhs,
2815 const irange &op1,
2816 relation_trio rel = TRIO_VARYING) const;
2817 virtual void wi_fold (irange &r, tree type,
2818 const wide_int &lh_lb,
2819 const wide_int &lh_ub,
2820 const wide_int &rh_lb,
2821 const wide_int &rh_ub) const;
2822 virtual relation_kind lhs_op1_relation (const irange &lhs,
2823 const irange &op1,
2824 const irange &op2,
2825 relation_kind) const;
2826 private:
2827 void simple_op1_range_solver (irange &r, tree type,
2828 const irange &lhs,
2829 const irange &op2) const;
2830 } op_bitwise_and;
2833 // Optimize BIT_AND_EXPR, BIT_IOR_EXPR and BIT_XOR_EXPR of signed types
2834 // by considering the number of leading redundant sign bit copies.
2835 // clrsb (X op Y) = min (clrsb (X), clrsb (Y)), so for example
2836 // [-1, 0] op [-1, 0] is [-1, 0] (where nonzero_bits doesn't help).
2837 static bool
2838 wi_optimize_signed_bitwise_op (irange &r, tree type,
2839 const wide_int &lh_lb, const wide_int &lh_ub,
2840 const wide_int &rh_lb, const wide_int &rh_ub)
2842 int lh_clrsb = MIN (wi::clrsb (lh_lb), wi::clrsb (lh_ub));
2843 int rh_clrsb = MIN (wi::clrsb (rh_lb), wi::clrsb (rh_ub));
2844 int new_clrsb = MIN (lh_clrsb, rh_clrsb);
2845 if (new_clrsb == 0)
2846 return false;
2847 int type_prec = TYPE_PRECISION (type);
2848 int rprec = (type_prec - new_clrsb) - 1;
2849 value_range_with_overflow (r, type,
2850 wi::mask (rprec, true, type_prec),
2851 wi::mask (rprec, false, type_prec));
2852 return true;
2855 // An AND of 8,16, 32 or 64 bits can produce a partial equivalence between
2856 // the LHS and op1.
2858 relation_kind
2859 operator_bitwise_and::lhs_op1_relation (const irange &lhs,
2860 const irange &op1,
2861 const irange &op2,
2862 relation_kind) const
2864 if (lhs.undefined_p () || op1.undefined_p () || op2.undefined_p ())
2865 return VREL_VARYING;
2866 if (!op2.singleton_p ())
2867 return VREL_VARYING;
2868 // if val == 0xff or 0xFFFF OR 0Xffffffff OR 0Xffffffffffffffff, return TRUE
2869 int prec1 = TYPE_PRECISION (op1.type ());
2870 int prec2 = TYPE_PRECISION (op2.type ());
2871 int mask_prec = 0;
2872 wide_int mask = op2.lower_bound ();
2873 if (wi::eq_p (mask, wi::mask (8, false, prec2)))
2874 mask_prec = 8;
2875 else if (wi::eq_p (mask, wi::mask (16, false, prec2)))
2876 mask_prec = 16;
2877 else if (wi::eq_p (mask, wi::mask (32, false, prec2)))
2878 mask_prec = 32;
2879 else if (wi::eq_p (mask, wi::mask (64, false, prec2)))
2880 mask_prec = 64;
2881 return bits_to_pe (MIN (prec1, mask_prec));
2884 // Optimize BIT_AND_EXPR and BIT_IOR_EXPR in terms of a mask if
2885 // possible. Basically, see if we can optimize:
2887 // [LB, UB] op Z
2888 // into:
2889 // [LB op Z, UB op Z]
2891 // If the optimization was successful, accumulate the range in R and
2892 // return TRUE.
2894 static bool
2895 wi_optimize_and_or (irange &r,
2896 enum tree_code code,
2897 tree type,
2898 const wide_int &lh_lb, const wide_int &lh_ub,
2899 const wide_int &rh_lb, const wide_int &rh_ub)
2901 // Calculate the singleton mask among the ranges, if any.
2902 wide_int lower_bound, upper_bound, mask;
2903 if (wi::eq_p (rh_lb, rh_ub))
2905 mask = rh_lb;
2906 lower_bound = lh_lb;
2907 upper_bound = lh_ub;
2909 else if (wi::eq_p (lh_lb, lh_ub))
2911 mask = lh_lb;
2912 lower_bound = rh_lb;
2913 upper_bound = rh_ub;
2915 else
2916 return false;
2918 // If Z is a constant which (for op | its bitwise not) has n
2919 // consecutive least significant bits cleared followed by m 1
2920 // consecutive bits set immediately above it and either
2921 // m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
2923 // The least significant n bits of all the values in the range are
2924 // cleared or set, the m bits above it are preserved and any bits
2925 // above these are required to be the same for all values in the
2926 // range.
2927 wide_int w = mask;
2928 int m = 0, n = 0;
2929 if (code == BIT_IOR_EXPR)
2930 w = ~w;
2931 if (wi::eq_p (w, 0))
2932 n = w.get_precision ();
2933 else
2935 n = wi::ctz (w);
2936 w = ~(w | wi::mask (n, false, w.get_precision ()));
2937 if (wi::eq_p (w, 0))
2938 m = w.get_precision () - n;
2939 else
2940 m = wi::ctz (w) - n;
2942 wide_int new_mask = wi::mask (m + n, true, w.get_precision ());
2943 if ((new_mask & lower_bound) != (new_mask & upper_bound))
2944 return false;
2946 wide_int res_lb, res_ub;
2947 if (code == BIT_AND_EXPR)
2949 res_lb = wi::bit_and (lower_bound, mask);
2950 res_ub = wi::bit_and (upper_bound, mask);
2952 else if (code == BIT_IOR_EXPR)
2954 res_lb = wi::bit_or (lower_bound, mask);
2955 res_ub = wi::bit_or (upper_bound, mask);
2957 else
2958 gcc_unreachable ();
2959 value_range_with_overflow (r, type, res_lb, res_ub);
2961 // Furthermore, if the mask is non-zero, an IOR cannot contain zero.
2962 if (code == BIT_IOR_EXPR && wi::ne_p (mask, 0))
2964 int_range<2> tmp;
2965 tmp.set_nonzero (type);
2966 r.intersect (tmp);
2968 return true;
2971 // For range [LB, UB] compute two wide_int bit masks.
2973 // In the MAYBE_NONZERO bit mask, if some bit is unset, it means that
2974 // for all numbers in the range the bit is 0, otherwise it might be 0
2975 // or 1.
2977 // In the MUSTBE_NONZERO bit mask, if some bit is set, it means that
2978 // for all numbers in the range the bit is 1, otherwise it might be 0
2979 // or 1.
2981 void
2982 wi_set_zero_nonzero_bits (tree type,
2983 const wide_int &lb, const wide_int &ub,
2984 wide_int &maybe_nonzero,
2985 wide_int &mustbe_nonzero)
2987 signop sign = TYPE_SIGN (type);
2989 if (wi::eq_p (lb, ub))
2990 maybe_nonzero = mustbe_nonzero = lb;
2991 else if (wi::ge_p (lb, 0, sign) || wi::lt_p (ub, 0, sign))
2993 wide_int xor_mask = lb ^ ub;
2994 maybe_nonzero = lb | ub;
2995 mustbe_nonzero = lb & ub;
2996 if (xor_mask != 0)
2998 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
2999 maybe_nonzero.get_precision ());
3000 maybe_nonzero = maybe_nonzero | mask;
3001 mustbe_nonzero = wi::bit_and_not (mustbe_nonzero, mask);
3004 else
3006 maybe_nonzero = wi::minus_one (lb.get_precision ());
3007 mustbe_nonzero = wi::zero (lb.get_precision ());
3011 void
3012 operator_bitwise_and::wi_fold (irange &r, tree type,
3013 const wide_int &lh_lb,
3014 const wide_int &lh_ub,
3015 const wide_int &rh_lb,
3016 const wide_int &rh_ub) const
3018 if (wi_optimize_and_or (r, BIT_AND_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
3019 return;
3021 wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
3022 wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
3023 wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
3024 maybe_nonzero_lh, mustbe_nonzero_lh);
3025 wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
3026 maybe_nonzero_rh, mustbe_nonzero_rh);
3028 wide_int new_lb = mustbe_nonzero_lh & mustbe_nonzero_rh;
3029 wide_int new_ub = maybe_nonzero_lh & maybe_nonzero_rh;
3030 signop sign = TYPE_SIGN (type);
3031 unsigned prec = TYPE_PRECISION (type);
3032 // If both input ranges contain only negative values, we can
3033 // truncate the result range maximum to the minimum of the
3034 // input range maxima.
3035 if (wi::lt_p (lh_ub, 0, sign) && wi::lt_p (rh_ub, 0, sign))
3037 new_ub = wi::min (new_ub, lh_ub, sign);
3038 new_ub = wi::min (new_ub, rh_ub, sign);
3040 // If either input range contains only non-negative values
3041 // we can truncate the result range maximum to the respective
3042 // maximum of the input range.
3043 if (wi::ge_p (lh_lb, 0, sign))
3044 new_ub = wi::min (new_ub, lh_ub, sign);
3045 if (wi::ge_p (rh_lb, 0, sign))
3046 new_ub = wi::min (new_ub, rh_ub, sign);
3047 // PR68217: In case of signed & sign-bit-CST should
3048 // result in [-INF, 0] instead of [-INF, INF].
3049 if (wi::gt_p (new_lb, new_ub, sign))
3051 wide_int sign_bit = wi::set_bit_in_zero (prec - 1, prec);
3052 if (sign == SIGNED
3053 && ((wi::eq_p (lh_lb, lh_ub)
3054 && !wi::cmps (lh_lb, sign_bit))
3055 || (wi::eq_p (rh_lb, rh_ub)
3056 && !wi::cmps (rh_lb, sign_bit))))
3058 new_lb = wi::min_value (prec, sign);
3059 new_ub = wi::zero (prec);
3062 // If the limits got swapped around, return varying.
3063 if (wi::gt_p (new_lb, new_ub,sign))
3065 if (sign == SIGNED
3066 && wi_optimize_signed_bitwise_op (r, type,
3067 lh_lb, lh_ub,
3068 rh_lb, rh_ub))
3069 return;
3070 r.set_varying (type);
3072 else
3073 value_range_with_overflow (r, type, new_lb, new_ub);
3076 static void
3077 set_nonzero_range_from_mask (irange &r, tree type, const irange &lhs)
3079 if (!lhs.contains_p (build_zero_cst (type)))
3080 r = range_nonzero (type);
3081 else
3082 r.set_varying (type);
3085 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
3086 (otherwise return VAL). VAL and MASK must be zero-extended for
3087 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
3088 (to transform signed values into unsigned) and at the end xor
3089 SGNBIT back. */
3091 wide_int
3092 masked_increment (const wide_int &val_in, const wide_int &mask,
3093 const wide_int &sgnbit, unsigned int prec)
3095 wide_int bit = wi::one (prec), res;
3096 unsigned int i;
3098 wide_int val = val_in ^ sgnbit;
3099 for (i = 0; i < prec; i++, bit += bit)
3101 res = mask;
3102 if ((res & bit) == 0)
3103 continue;
3104 res = bit - 1;
3105 res = wi::bit_and_not (val + bit, res);
3106 res &= mask;
3107 if (wi::gtu_p (res, val))
3108 return res ^ sgnbit;
3110 return val ^ sgnbit;
3113 // This was shamelessly stolen from register_edge_assert_for_2 and
3114 // adjusted to work with iranges.
3116 void
3117 operator_bitwise_and::simple_op1_range_solver (irange &r, tree type,
3118 const irange &lhs,
3119 const irange &op2) const
3121 if (!op2.singleton_p ())
3123 set_nonzero_range_from_mask (r, type, lhs);
3124 return;
3126 unsigned int nprec = TYPE_PRECISION (type);
3127 wide_int cst2v = op2.lower_bound ();
3128 bool cst2n = wi::neg_p (cst2v, TYPE_SIGN (type));
3129 wide_int sgnbit;
3130 if (cst2n)
3131 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3132 else
3133 sgnbit = wi::zero (nprec);
3135 // Solve [lhs.lower_bound (), +INF] = x & MASK.
3137 // Minimum unsigned value for >= if (VAL & CST2) == VAL is VAL and
3138 // maximum unsigned value is ~0. For signed comparison, if CST2
3139 // doesn't have the most significant bit set, handle it similarly. If
3140 // CST2 has MSB set, the minimum is the same, and maximum is ~0U/2.
3141 wide_int valv = lhs.lower_bound ();
3142 wide_int minv = valv & cst2v, maxv;
3143 bool we_know_nothing = false;
3144 if (minv != valv)
3146 // If (VAL & CST2) != VAL, X & CST2 can't be equal to VAL.
3147 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3148 if (minv == valv)
3150 // If we can't determine anything on this bound, fall
3151 // through and conservatively solve for the other end point.
3152 we_know_nothing = true;
3155 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3156 if (we_know_nothing)
3157 r.set_varying (type);
3158 else
3159 r = int_range<1> (type, minv, maxv);
3161 // Solve [-INF, lhs.upper_bound ()] = x & MASK.
3163 // Minimum unsigned value for <= is 0 and maximum unsigned value is
3164 // VAL | ~CST2 if (VAL & CST2) == VAL. Otherwise, find smallest
3165 // VAL2 where
3166 // VAL2 > VAL && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3167 // as maximum.
3168 // For signed comparison, if CST2 doesn't have most significant bit
3169 // set, handle it similarly. If CST2 has MSB set, the maximum is
3170 // the same and minimum is INT_MIN.
3171 valv = lhs.upper_bound ();
3172 minv = valv & cst2v;
3173 if (minv == valv)
3174 maxv = valv;
3175 else
3177 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3178 if (maxv == valv)
3180 // If we couldn't determine anything on either bound, return
3181 // undefined.
3182 if (we_know_nothing)
3183 r.set_undefined ();
3184 return;
3186 maxv -= 1;
3188 maxv |= ~cst2v;
3189 minv = sgnbit;
3190 int_range<1> upper_bits (type, minv, maxv);
3191 r.intersect (upper_bits);
3194 bool
3195 operator_bitwise_and::op1_range (irange &r, tree type,
3196 const irange &lhs,
3197 const irange &op2,
3198 relation_trio) const
3200 if (lhs.undefined_p ())
3201 return false;
3202 if (types_compatible_p (type, boolean_type_node))
3203 return op_logical_and.op1_range (r, type, lhs, op2);
3205 r.set_undefined ();
3206 for (unsigned i = 0; i < lhs.num_pairs (); ++i)
3208 int_range_max chunk (lhs.type (),
3209 lhs.lower_bound (i),
3210 lhs.upper_bound (i));
3211 int_range_max res;
3212 simple_op1_range_solver (res, type, chunk, op2);
3213 r.union_ (res);
3215 if (r.undefined_p ())
3216 set_nonzero_range_from_mask (r, type, lhs);
3218 // For 0 = op1 & MASK, op1 is ~MASK.
3219 if (lhs.zero_p () && op2.singleton_p ())
3221 wide_int nz = wi::bit_not (op2.get_nonzero_bits ());
3222 int_range<2> tmp (type);
3223 tmp.set_nonzero_bits (nz);
3224 r.intersect (tmp);
3226 return true;
3229 bool
3230 operator_bitwise_and::op2_range (irange &r, tree type,
3231 const irange &lhs,
3232 const irange &op1,
3233 relation_trio) const
3235 return operator_bitwise_and::op1_range (r, type, lhs, op1);
3239 class operator_logical_or : public range_operator
3241 using range_operator::fold_range;
3242 using range_operator::op1_range;
3243 using range_operator::op2_range;
3244 public:
3245 virtual bool fold_range (irange &r, tree type,
3246 const irange &lh,
3247 const irange &rh,
3248 relation_trio rel = TRIO_VARYING) const;
3249 virtual bool op1_range (irange &r, tree type,
3250 const irange &lhs,
3251 const irange &op2,
3252 relation_trio rel = TRIO_VARYING) const;
3253 virtual bool op2_range (irange &r, tree type,
3254 const irange &lhs,
3255 const irange &op1,
3256 relation_trio rel = TRIO_VARYING) const;
3257 } op_logical_or;
3259 bool
3260 operator_logical_or::fold_range (irange &r, tree type ATTRIBUTE_UNUSED,
3261 const irange &lh,
3262 const irange &rh,
3263 relation_trio) const
3265 if (empty_range_varying (r, type, lh, rh))
3266 return true;
3268 r = lh;
3269 r.union_ (rh);
3270 return true;
3273 bool
3274 operator_logical_or::op1_range (irange &r, tree type,
3275 const irange &lhs,
3276 const irange &op2 ATTRIBUTE_UNUSED,
3277 relation_trio) const
3279 switch (get_bool_state (r, lhs, type))
3281 case BRS_FALSE:
3282 // A false result means both sides of the OR must be false.
3283 r = range_false (type);
3284 break;
3285 default:
3286 // Any other result means only one side has to be true, the
3287 // other side can be anything. so we can't be sure of any result
3288 // here.
3289 r = range_true_and_false (type);
3290 break;
3292 return true;
3295 bool
3296 operator_logical_or::op2_range (irange &r, tree type,
3297 const irange &lhs,
3298 const irange &op1,
3299 relation_trio) const
3301 return operator_logical_or::op1_range (r, type, lhs, op1);
3305 class operator_bitwise_or : public range_operator
3307 using range_operator::op1_range;
3308 using range_operator::op2_range;
3309 public:
3310 virtual bool op1_range (irange &r, tree type,
3311 const irange &lhs,
3312 const irange &op2,
3313 relation_trio rel = TRIO_VARYING) const;
3314 virtual bool op2_range (irange &r, tree type,
3315 const irange &lhs,
3316 const irange &op1,
3317 relation_trio rel = TRIO_VARYING) const;
3318 virtual void wi_fold (irange &r, tree type,
3319 const wide_int &lh_lb,
3320 const wide_int &lh_ub,
3321 const wide_int &rh_lb,
3322 const wide_int &rh_ub) const;
3323 } op_bitwise_or;
3325 void
3326 operator_bitwise_or::wi_fold (irange &r, tree type,
3327 const wide_int &lh_lb,
3328 const wide_int &lh_ub,
3329 const wide_int &rh_lb,
3330 const wide_int &rh_ub) const
3332 if (wi_optimize_and_or (r, BIT_IOR_EXPR, type, lh_lb, lh_ub, rh_lb, rh_ub))
3333 return;
3335 wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
3336 wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
3337 wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
3338 maybe_nonzero_lh, mustbe_nonzero_lh);
3339 wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
3340 maybe_nonzero_rh, mustbe_nonzero_rh);
3341 wide_int new_lb = mustbe_nonzero_lh | mustbe_nonzero_rh;
3342 wide_int new_ub = maybe_nonzero_lh | maybe_nonzero_rh;
3343 signop sign = TYPE_SIGN (type);
3344 // If the input ranges contain only positive values we can
3345 // truncate the minimum of the result range to the maximum
3346 // of the input range minima.
3347 if (wi::ge_p (lh_lb, 0, sign)
3348 && wi::ge_p (rh_lb, 0, sign))
3350 new_lb = wi::max (new_lb, lh_lb, sign);
3351 new_lb = wi::max (new_lb, rh_lb, sign);
3353 // If either input range contains only negative values
3354 // we can truncate the minimum of the result range to the
3355 // respective minimum range.
3356 if (wi::lt_p (lh_ub, 0, sign))
3357 new_lb = wi::max (new_lb, lh_lb, sign);
3358 if (wi::lt_p (rh_ub, 0, sign))
3359 new_lb = wi::max (new_lb, rh_lb, sign);
3360 // If the limits got swapped around, return a conservative range.
3361 if (wi::gt_p (new_lb, new_ub, sign))
3363 // Make sure that nonzero|X is nonzero.
3364 if (wi::gt_p (lh_lb, 0, sign)
3365 || wi::gt_p (rh_lb, 0, sign)
3366 || wi::lt_p (lh_ub, 0, sign)
3367 || wi::lt_p (rh_ub, 0, sign))
3368 r.set_nonzero (type);
3369 else if (sign == SIGNED
3370 && wi_optimize_signed_bitwise_op (r, type,
3371 lh_lb, lh_ub,
3372 rh_lb, rh_ub))
3373 return;
3374 else
3375 r.set_varying (type);
3376 return;
3378 value_range_with_overflow (r, type, new_lb, new_ub);
3381 bool
3382 operator_bitwise_or::op1_range (irange &r, tree type,
3383 const irange &lhs,
3384 const irange &op2,
3385 relation_trio) const
3387 if (lhs.undefined_p ())
3388 return false;
3389 // If this is really a logical wi_fold, call that.
3390 if (types_compatible_p (type, boolean_type_node))
3391 return op_logical_or.op1_range (r, type, lhs, op2);
3393 if (lhs.zero_p ())
3395 tree zero = build_zero_cst (type);
3396 r = int_range<1> (zero, zero);
3397 return true;
3399 r.set_varying (type);
3400 return true;
3403 bool
3404 operator_bitwise_or::op2_range (irange &r, tree type,
3405 const irange &lhs,
3406 const irange &op1,
3407 relation_trio) const
3409 return operator_bitwise_or::op1_range (r, type, lhs, op1);
3413 class operator_bitwise_xor : public range_operator
3415 using range_operator::op1_range;
3416 using range_operator::op2_range;
3417 public:
3418 virtual void wi_fold (irange &r, tree type,
3419 const wide_int &lh_lb,
3420 const wide_int &lh_ub,
3421 const wide_int &rh_lb,
3422 const wide_int &rh_ub) const;
3423 virtual bool op1_range (irange &r, tree type,
3424 const irange &lhs,
3425 const irange &op2,
3426 relation_trio rel = TRIO_VARYING) const;
3427 virtual bool op2_range (irange &r, tree type,
3428 const irange &lhs,
3429 const irange &op1,
3430 relation_trio rel = TRIO_VARYING) const;
3431 virtual bool op1_op2_relation_effect (irange &lhs_range,
3432 tree type,
3433 const irange &op1_range,
3434 const irange &op2_range,
3435 relation_kind rel) const;
3436 } op_bitwise_xor;
3438 void
3439 operator_bitwise_xor::wi_fold (irange &r, tree type,
3440 const wide_int &lh_lb,
3441 const wide_int &lh_ub,
3442 const wide_int &rh_lb,
3443 const wide_int &rh_ub) const
3445 signop sign = TYPE_SIGN (type);
3446 wide_int maybe_nonzero_lh, mustbe_nonzero_lh;
3447 wide_int maybe_nonzero_rh, mustbe_nonzero_rh;
3448 wi_set_zero_nonzero_bits (type, lh_lb, lh_ub,
3449 maybe_nonzero_lh, mustbe_nonzero_lh);
3450 wi_set_zero_nonzero_bits (type, rh_lb, rh_ub,
3451 maybe_nonzero_rh, mustbe_nonzero_rh);
3453 wide_int result_zero_bits = ((mustbe_nonzero_lh & mustbe_nonzero_rh)
3454 | ~(maybe_nonzero_lh | maybe_nonzero_rh));
3455 wide_int result_one_bits
3456 = (wi::bit_and_not (mustbe_nonzero_lh, maybe_nonzero_rh)
3457 | wi::bit_and_not (mustbe_nonzero_rh, maybe_nonzero_lh));
3458 wide_int new_ub = ~result_zero_bits;
3459 wide_int new_lb = result_one_bits;
3461 // If the range has all positive or all negative values, the result
3462 // is better than VARYING.
3463 if (wi::lt_p (new_lb, 0, sign) || wi::ge_p (new_ub, 0, sign))
3464 value_range_with_overflow (r, type, new_lb, new_ub);
3465 else if (sign == SIGNED
3466 && wi_optimize_signed_bitwise_op (r, type,
3467 lh_lb, lh_ub,
3468 rh_lb, rh_ub))
3469 ; /* Do nothing. */
3470 else
3471 r.set_varying (type);
3473 /* Furthermore, XOR is non-zero if its arguments can't be equal. */
3474 if (wi::lt_p (lh_ub, rh_lb, sign)
3475 || wi::lt_p (rh_ub, lh_lb, sign)
3476 || wi::ne_p (result_one_bits, 0))
3478 int_range<2> tmp;
3479 tmp.set_nonzero (type);
3480 r.intersect (tmp);
3484 bool
3485 operator_bitwise_xor::op1_op2_relation_effect (irange &lhs_range,
3486 tree type,
3487 const irange &,
3488 const irange &,
3489 relation_kind rel) const
3491 if (rel == VREL_VARYING)
3492 return false;
3494 int_range<2> rel_range;
3496 switch (rel)
3498 case VREL_EQ:
3499 rel_range.set_zero (type);
3500 break;
3501 case VREL_NE:
3502 rel_range.set_nonzero (type);
3503 break;
3504 default:
3505 return false;
3508 lhs_range.intersect (rel_range);
3509 return true;
3512 bool
3513 operator_bitwise_xor::op1_range (irange &r, tree type,
3514 const irange &lhs,
3515 const irange &op2,
3516 relation_trio) const
3518 if (lhs.undefined_p () || lhs.varying_p ())
3520 r = lhs;
3521 return true;
3523 if (types_compatible_p (type, boolean_type_node))
3525 switch (get_bool_state (r, lhs, type))
3527 case BRS_TRUE:
3528 if (op2.varying_p ())
3529 r.set_varying (type);
3530 else if (op2.zero_p ())
3531 r = range_true (type);
3532 // See get_bool_state for the rationale
3533 else if (op2.contains_p (build_zero_cst (op2.type ())))
3534 r = range_true_and_false (type);
3535 else
3536 r = range_false (type);
3537 break;
3538 case BRS_FALSE:
3539 r = op2;
3540 break;
3541 default:
3542 break;
3544 return true;
3546 r.set_varying (type);
3547 return true;
3550 bool
3551 operator_bitwise_xor::op2_range (irange &r, tree type,
3552 const irange &lhs,
3553 const irange &op1,
3554 relation_trio) const
3556 return operator_bitwise_xor::op1_range (r, type, lhs, op1);
3559 class operator_trunc_mod : public range_operator
3561 using range_operator::op1_range;
3562 using range_operator::op2_range;
3563 public:
3564 virtual void wi_fold (irange &r, tree type,
3565 const wide_int &lh_lb,
3566 const wide_int &lh_ub,
3567 const wide_int &rh_lb,
3568 const wide_int &rh_ub) const;
3569 virtual bool op1_range (irange &r, tree type,
3570 const irange &lhs,
3571 const irange &op2,
3572 relation_trio) const;
3573 virtual bool op2_range (irange &r, tree type,
3574 const irange &lhs,
3575 const irange &op1,
3576 relation_trio) const;
3577 } op_trunc_mod;
3579 void
3580 operator_trunc_mod::wi_fold (irange &r, tree type,
3581 const wide_int &lh_lb,
3582 const wide_int &lh_ub,
3583 const wide_int &rh_lb,
3584 const wide_int &rh_ub) const
3586 wide_int new_lb, new_ub, tmp;
3587 signop sign = TYPE_SIGN (type);
3588 unsigned prec = TYPE_PRECISION (type);
3590 // Mod 0 is undefined.
3591 if (wi_zero_p (type, rh_lb, rh_ub))
3593 r.set_undefined ();
3594 return;
3597 // Check for constant and try to fold.
3598 if (lh_lb == lh_ub && rh_lb == rh_ub)
3600 wi::overflow_type ov = wi::OVF_NONE;
3601 tmp = wi::mod_trunc (lh_lb, rh_lb, sign, &ov);
3602 if (ov == wi::OVF_NONE)
3604 r = int_range<2> (type, tmp, tmp);
3605 return;
3609 // ABS (A % B) < ABS (B) and either 0 <= A % B <= A or A <= A % B <= 0.
3610 new_ub = rh_ub - 1;
3611 if (sign == SIGNED)
3613 tmp = -1 - rh_lb;
3614 new_ub = wi::smax (new_ub, tmp);
3617 if (sign == UNSIGNED)
3618 new_lb = wi::zero (prec);
3619 else
3621 new_lb = -new_ub;
3622 tmp = lh_lb;
3623 if (wi::gts_p (tmp, 0))
3624 tmp = wi::zero (prec);
3625 new_lb = wi::smax (new_lb, tmp);
3627 tmp = lh_ub;
3628 if (sign == SIGNED && wi::neg_p (tmp))
3629 tmp = wi::zero (prec);
3630 new_ub = wi::min (new_ub, tmp, sign);
3632 value_range_with_overflow (r, type, new_lb, new_ub);
3635 bool
3636 operator_trunc_mod::op1_range (irange &r, tree type,
3637 const irange &lhs,
3638 const irange &,
3639 relation_trio) const
3641 if (lhs.undefined_p ())
3642 return false;
3643 // PR 91029.
3644 signop sign = TYPE_SIGN (type);
3645 unsigned prec = TYPE_PRECISION (type);
3646 // (a % b) >= x && x > 0 , then a >= x.
3647 if (wi::gt_p (lhs.lower_bound (), 0, sign))
3649 r = value_range (type, lhs.lower_bound (), wi::max_value (prec, sign));
3650 return true;
3652 // (a % b) <= x && x < 0 , then a <= x.
3653 if (wi::lt_p (lhs.upper_bound (), 0, sign))
3655 r = value_range (type, wi::min_value (prec, sign), lhs.upper_bound ());
3656 return true;
3658 return false;
3661 bool
3662 operator_trunc_mod::op2_range (irange &r, tree type,
3663 const irange &lhs,
3664 const irange &,
3665 relation_trio) const
3667 if (lhs.undefined_p ())
3668 return false;
3669 // PR 91029.
3670 signop sign = TYPE_SIGN (type);
3671 unsigned prec = TYPE_PRECISION (type);
3672 // (a % b) >= x && x > 0 , then b is in ~[-x, x] for signed
3673 // or b > x for unsigned.
3674 if (wi::gt_p (lhs.lower_bound (), 0, sign))
3676 if (sign == SIGNED)
3677 r = value_range (type, wi::neg (lhs.lower_bound ()),
3678 lhs.lower_bound (), VR_ANTI_RANGE);
3679 else if (wi::lt_p (lhs.lower_bound (), wi::max_value (prec, sign),
3680 sign))
3681 r = value_range (type, lhs.lower_bound () + 1,
3682 wi::max_value (prec, sign));
3683 else
3684 return false;
3685 return true;
3687 // (a % b) <= x && x < 0 , then b is in ~[x, -x].
3688 if (wi::lt_p (lhs.upper_bound (), 0, sign))
3690 if (wi::gt_p (lhs.upper_bound (), wi::min_value (prec, sign), sign))
3691 r = value_range (type, lhs.upper_bound (),
3692 wi::neg (lhs.upper_bound ()), VR_ANTI_RANGE);
3693 else
3694 return false;
3695 return true;
3697 return false;
3701 class operator_logical_not : public range_operator
3703 using range_operator::fold_range;
3704 using range_operator::op1_range;
3705 public:
3706 virtual bool fold_range (irange &r, tree type,
3707 const irange &lh,
3708 const irange &rh,
3709 relation_trio rel = TRIO_VARYING) const;
3710 virtual bool op1_range (irange &r, tree type,
3711 const irange &lhs,
3712 const irange &op2,
3713 relation_trio rel = TRIO_VARYING) const;
3714 } op_logical_not;
3716 // Folding a logical NOT, oddly enough, involves doing nothing on the
3717 // forward pass through. During the initial walk backwards, the
3718 // logical NOT reversed the desired outcome on the way back, so on the
3719 // way forward all we do is pass the range forward.
3721 // b_2 = x_1 < 20
3722 // b_3 = !b_2
3723 // if (b_3)
3724 // to determine the TRUE branch, walking backward
3725 // if (b_3) if ([1,1])
3726 // b_3 = !b_2 [1,1] = ![0,0]
3727 // b_2 = x_1 < 20 [0,0] = x_1 < 20, false, so x_1 == [20, 255]
3728 // which is the result we are looking for.. so.. pass it through.
3730 bool
3731 operator_logical_not::fold_range (irange &r, tree type,
3732 const irange &lh,
3733 const irange &rh ATTRIBUTE_UNUSED,
3734 relation_trio) const
3736 if (empty_range_varying (r, type, lh, rh))
3737 return true;
3739 r = lh;
3740 if (!lh.varying_p () && !lh.undefined_p ())
3741 r.invert ();
3743 return true;
3746 bool
3747 operator_logical_not::op1_range (irange &r,
3748 tree type,
3749 const irange &lhs,
3750 const irange &op2,
3751 relation_trio) const
3753 // Logical NOT is involutary...do it again.
3754 return fold_range (r, type, lhs, op2);
3758 class operator_bitwise_not : public range_operator
3760 using range_operator::fold_range;
3761 using range_operator::op1_range;
3762 public:
3763 virtual bool fold_range (irange &r, tree type,
3764 const irange &lh,
3765 const irange &rh,
3766 relation_trio rel = TRIO_VARYING) const;
3767 virtual bool op1_range (irange &r, tree type,
3768 const irange &lhs,
3769 const irange &op2,
3770 relation_trio rel = TRIO_VARYING) const;
3771 } op_bitwise_not;
3773 bool
3774 operator_bitwise_not::fold_range (irange &r, tree type,
3775 const irange &lh,
3776 const irange &rh,
3777 relation_trio) const
3779 if (empty_range_varying (r, type, lh, rh))
3780 return true;
3782 if (types_compatible_p (type, boolean_type_node))
3783 return op_logical_not.fold_range (r, type, lh, rh);
3785 // ~X is simply -1 - X.
3786 int_range<1> minusone (type, wi::minus_one (TYPE_PRECISION (type)),
3787 wi::minus_one (TYPE_PRECISION (type)));
3788 return range_op_handler (MINUS_EXPR, type).fold_range (r, type, minusone, lh);
3791 bool
3792 operator_bitwise_not::op1_range (irange &r, tree type,
3793 const irange &lhs,
3794 const irange &op2,
3795 relation_trio) const
3797 if (lhs.undefined_p ())
3798 return false;
3799 if (types_compatible_p (type, boolean_type_node))
3800 return op_logical_not.op1_range (r, type, lhs, op2);
3802 // ~X is -1 - X and since bitwise NOT is involutary...do it again.
3803 return fold_range (r, type, lhs, op2);
3807 class operator_cst : public range_operator
3809 using range_operator::fold_range;
3810 public:
3811 virtual bool fold_range (irange &r, tree type,
3812 const irange &op1,
3813 const irange &op2,
3814 relation_trio rel = TRIO_VARYING) const;
3815 } op_integer_cst;
3817 bool
3818 operator_cst::fold_range (irange &r, tree type ATTRIBUTE_UNUSED,
3819 const irange &lh,
3820 const irange &rh ATTRIBUTE_UNUSED,
3821 relation_trio) const
3823 r = lh;
3824 return true;
3828 class operator_identity : public range_operator
3830 using range_operator::fold_range;
3831 using range_operator::op1_range;
3832 using range_operator::lhs_op1_relation;
3833 public:
3834 virtual bool fold_range (irange &r, tree type,
3835 const irange &op1,
3836 const irange &op2,
3837 relation_trio rel = TRIO_VARYING) const;
3838 virtual bool op1_range (irange &r, tree type,
3839 const irange &lhs,
3840 const irange &op2,
3841 relation_trio rel = TRIO_VARYING) const;
3842 virtual relation_kind lhs_op1_relation (const irange &lhs,
3843 const irange &op1,
3844 const irange &op2,
3845 relation_kind rel) const;
3848 // Determine if there is a relationship between LHS and OP1.
3850 relation_kind
3851 operator_identity::lhs_op1_relation (const irange &lhs,
3852 const irange &op1 ATTRIBUTE_UNUSED,
3853 const irange &op2 ATTRIBUTE_UNUSED,
3854 relation_kind) const
3856 if (lhs.undefined_p ())
3857 return VREL_VARYING;
3858 // Simply a copy, so they are equivalent.
3859 return VREL_EQ;
3862 bool
3863 operator_identity::fold_range (irange &r, tree type ATTRIBUTE_UNUSED,
3864 const irange &lh,
3865 const irange &rh ATTRIBUTE_UNUSED,
3866 relation_trio) const
3868 r = lh;
3869 return true;
3872 bool
3873 operator_identity::op1_range (irange &r, tree type ATTRIBUTE_UNUSED,
3874 const irange &lhs,
3875 const irange &op2 ATTRIBUTE_UNUSED,
3876 relation_trio) const
3878 r = lhs;
3879 return true;
3883 class operator_unknown : public range_operator
3885 using range_operator::fold_range;
3886 public:
3887 virtual bool fold_range (irange &r, tree type,
3888 const irange &op1,
3889 const irange &op2,
3890 relation_trio rel = TRIO_VARYING) const;
3893 bool
3894 operator_unknown::fold_range (irange &r, tree type,
3895 const irange &lh ATTRIBUTE_UNUSED,
3896 const irange &rh ATTRIBUTE_UNUSED,
3897 relation_trio) const
3899 r.set_varying (type);
3900 return true;
3904 class operator_abs : public range_operator
3906 using range_operator::op1_range;
3907 public:
3908 virtual void wi_fold (irange &r, tree type,
3909 const wide_int &lh_lb,
3910 const wide_int &lh_ub,
3911 const wide_int &rh_lb,
3912 const wide_int &rh_ub) const;
3913 virtual bool op1_range (irange &r, tree type,
3914 const irange &lhs,
3915 const irange &op2,
3916 relation_trio) const;
3917 } op_abs;
3919 void
3920 operator_abs::wi_fold (irange &r, tree type,
3921 const wide_int &lh_lb, const wide_int &lh_ub,
3922 const wide_int &rh_lb ATTRIBUTE_UNUSED,
3923 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
3925 wide_int min, max;
3926 signop sign = TYPE_SIGN (type);
3927 unsigned prec = TYPE_PRECISION (type);
3929 // Pass through LH for the easy cases.
3930 if (sign == UNSIGNED || wi::ge_p (lh_lb, 0, sign))
3932 r = int_range<1> (type, lh_lb, lh_ub);
3933 return;
3936 // -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get
3937 // a useful range.
3938 wide_int min_value = wi::min_value (prec, sign);
3939 wide_int max_value = wi::max_value (prec, sign);
3940 if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lh_lb, min_value))
3942 r.set_varying (type);
3943 return;
3946 // ABS_EXPR may flip the range around, if the original range
3947 // included negative values.
3948 if (wi::eq_p (lh_lb, min_value))
3950 // ABS ([-MIN, -MIN]) isn't representable, but we have traditionally
3951 // returned [-MIN,-MIN] so this preserves that behaviour. PR37078
3952 if (wi::eq_p (lh_ub, min_value))
3954 r = int_range<1> (type, min_value, min_value);
3955 return;
3957 min = max_value;
3959 else
3960 min = wi::abs (lh_lb);
3962 if (wi::eq_p (lh_ub, min_value))
3963 max = max_value;
3964 else
3965 max = wi::abs (lh_ub);
3967 // If the range contains zero then we know that the minimum value in the
3968 // range will be zero.
3969 if (wi::le_p (lh_lb, 0, sign) && wi::ge_p (lh_ub, 0, sign))
3971 if (wi::gt_p (min, max, sign))
3972 max = min;
3973 min = wi::zero (prec);
3975 else
3977 // If the range was reversed, swap MIN and MAX.
3978 if (wi::gt_p (min, max, sign))
3979 std::swap (min, max);
3982 // If the new range has its limits swapped around (MIN > MAX), then
3983 // the operation caused one of them to wrap around. The only thing
3984 // we know is that the result is positive.
3985 if (wi::gt_p (min, max, sign))
3987 min = wi::zero (prec);
3988 max = max_value;
3990 r = int_range<1> (type, min, max);
3993 bool
3994 operator_abs::op1_range (irange &r, tree type,
3995 const irange &lhs,
3996 const irange &op2,
3997 relation_trio) const
3999 if (empty_range_varying (r, type, lhs, op2))
4000 return true;
4001 if (TYPE_UNSIGNED (type))
4003 r = lhs;
4004 return true;
4006 // Start with the positives because negatives are an impossible result.
4007 int_range_max positives = range_positives (type);
4008 positives.intersect (lhs);
4009 r = positives;
4010 // Then add the negative of each pair:
4011 // ABS(op1) = [5,20] would yield op1 => [-20,-5][5,20].
4012 for (unsigned i = 0; i < positives.num_pairs (); ++i)
4013 r.union_ (int_range<1> (type,
4014 -positives.upper_bound (i),
4015 -positives.lower_bound (i)));
4016 // With flag_wrapv, -TYPE_MIN_VALUE = TYPE_MIN_VALUE which is
4017 // unrepresentable. Add -TYPE_MIN_VALUE in this case.
4018 wide_int min_value = wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type));
4019 wide_int lb = lhs.lower_bound ();
4020 if (!TYPE_OVERFLOW_UNDEFINED (type) && wi::eq_p (lb, min_value))
4021 r.union_ (int_range<2> (type, lb, lb));
4022 return true;
4026 class operator_absu : public range_operator
4028 public:
4029 virtual void wi_fold (irange &r, tree type,
4030 const wide_int &lh_lb, const wide_int &lh_ub,
4031 const wide_int &rh_lb, const wide_int &rh_ub) const;
4032 } op_absu;
4034 void
4035 operator_absu::wi_fold (irange &r, tree type,
4036 const wide_int &lh_lb, const wide_int &lh_ub,
4037 const wide_int &rh_lb ATTRIBUTE_UNUSED,
4038 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
4040 wide_int new_lb, new_ub;
4042 // Pass through VR0 the easy cases.
4043 if (wi::ges_p (lh_lb, 0))
4045 new_lb = lh_lb;
4046 new_ub = lh_ub;
4048 else
4050 new_lb = wi::abs (lh_lb);
4051 new_ub = wi::abs (lh_ub);
4053 // If the range contains zero then we know that the minimum
4054 // value in the range will be zero.
4055 if (wi::ges_p (lh_ub, 0))
4057 if (wi::gtu_p (new_lb, new_ub))
4058 new_ub = new_lb;
4059 new_lb = wi::zero (TYPE_PRECISION (type));
4061 else
4062 std::swap (new_lb, new_ub);
4065 gcc_checking_assert (TYPE_UNSIGNED (type));
4066 r = int_range<1> (type, new_lb, new_ub);
4070 class operator_negate : public range_operator
4072 using range_operator::fold_range;
4073 using range_operator::op1_range;
4074 public:
4075 virtual bool fold_range (irange &r, tree type,
4076 const irange &op1,
4077 const irange &op2,
4078 relation_trio rel = TRIO_VARYING) const;
4079 virtual bool op1_range (irange &r, tree type,
4080 const irange &lhs,
4081 const irange &op2,
4082 relation_trio rel = TRIO_VARYING) const;
4083 } op_negate;
4085 bool
4086 operator_negate::fold_range (irange &r, tree type,
4087 const irange &lh,
4088 const irange &rh,
4089 relation_trio) const
4091 if (empty_range_varying (r, type, lh, rh))
4092 return true;
4093 // -X is simply 0 - X.
4094 return range_op_handler (MINUS_EXPR, type).fold_range (r, type,
4095 range_zero (type), lh);
4098 bool
4099 operator_negate::op1_range (irange &r, tree type,
4100 const irange &lhs,
4101 const irange &op2,
4102 relation_trio) const
4104 // NEGATE is involutory.
4105 return fold_range (r, type, lhs, op2);
4109 class operator_addr_expr : public range_operator
4111 using range_operator::fold_range;
4112 using range_operator::op1_range;
4113 public:
4114 virtual bool fold_range (irange &r, tree type,
4115 const irange &op1,
4116 const irange &op2,
4117 relation_trio rel = TRIO_VARYING) const;
4118 virtual bool op1_range (irange &r, tree type,
4119 const irange &lhs,
4120 const irange &op2,
4121 relation_trio rel = TRIO_VARYING) const;
4122 } op_addr;
4124 bool
4125 operator_addr_expr::fold_range (irange &r, tree type,
4126 const irange &lh,
4127 const irange &rh,
4128 relation_trio) const
4130 if (empty_range_varying (r, type, lh, rh))
4131 return true;
4133 // Return a non-null pointer of the LHS type (passed in op2).
4134 if (lh.zero_p ())
4135 r = range_zero (type);
4136 else if (!lh.contains_p (build_zero_cst (lh.type ())))
4137 r = range_nonzero (type);
4138 else
4139 r.set_varying (type);
4140 return true;
4143 bool
4144 operator_addr_expr::op1_range (irange &r, tree type,
4145 const irange &lhs,
4146 const irange &op2,
4147 relation_trio) const
4149 return operator_addr_expr::fold_range (r, type, lhs, op2);
4153 class pointer_plus_operator : public range_operator
4155 public:
4156 virtual void wi_fold (irange &r, tree type,
4157 const wide_int &lh_lb,
4158 const wide_int &lh_ub,
4159 const wide_int &rh_lb,
4160 const wide_int &rh_ub) const;
4161 } op_pointer_plus;
4163 void
4164 pointer_plus_operator::wi_fold (irange &r, tree type,
4165 const wide_int &lh_lb,
4166 const wide_int &lh_ub,
4167 const wide_int &rh_lb,
4168 const wide_int &rh_ub) const
4170 // Check for [0,0] + const, and simply return the const.
4171 if (lh_lb == 0 && lh_ub == 0 && rh_lb == rh_ub)
4173 tree val = wide_int_to_tree (type, rh_lb);
4174 r.set (val, val);
4175 return;
4178 // For pointer types, we are really only interested in asserting
4179 // whether the expression evaluates to non-NULL.
4181 // With -fno-delete-null-pointer-checks we need to be more
4182 // conservative. As some object might reside at address 0,
4183 // then some offset could be added to it and the same offset
4184 // subtracted again and the result would be NULL.
4185 // E.g.
4186 // static int a[12]; where &a[0] is NULL and
4187 // ptr = &a[6];
4188 // ptr -= 6;
4189 // ptr will be NULL here, even when there is POINTER_PLUS_EXPR
4190 // where the first range doesn't include zero and the second one
4191 // doesn't either. As the second operand is sizetype (unsigned),
4192 // consider all ranges where the MSB could be set as possible
4193 // subtractions where the result might be NULL.
4194 if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
4195 || !wi_includes_zero_p (type, rh_lb, rh_ub))
4196 && !TYPE_OVERFLOW_WRAPS (type)
4197 && (flag_delete_null_pointer_checks
4198 || !wi::sign_mask (rh_ub)))
4199 r = range_nonzero (type);
4200 else if (lh_lb == lh_ub && lh_lb == 0
4201 && rh_lb == rh_ub && rh_lb == 0)
4202 r = range_zero (type);
4203 else
4204 r.set_varying (type);
4208 class pointer_min_max_operator : public range_operator
4210 public:
4211 virtual void wi_fold (irange & r, tree type,
4212 const wide_int &lh_lb, const wide_int &lh_ub,
4213 const wide_int &rh_lb, const wide_int &rh_ub) const;
4216 void
4217 pointer_min_max_operator::wi_fold (irange &r, tree type,
4218 const wide_int &lh_lb,
4219 const wide_int &lh_ub,
4220 const wide_int &rh_lb,
4221 const wide_int &rh_ub) const
4223 // For MIN/MAX expressions with pointers, we only care about
4224 // nullness. If both are non null, then the result is nonnull.
4225 // If both are null, then the result is null. Otherwise they
4226 // are varying.
4227 if (!wi_includes_zero_p (type, lh_lb, lh_ub)
4228 && !wi_includes_zero_p (type, rh_lb, rh_ub))
4229 r = range_nonzero (type);
4230 else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
4231 r = range_zero (type);
4232 else
4233 r.set_varying (type);
4237 class pointer_and_operator : public range_operator
4239 public:
4240 virtual void wi_fold (irange &r, tree type,
4241 const wide_int &lh_lb, const wide_int &lh_ub,
4242 const wide_int &rh_lb, const wide_int &rh_ub) const;
4243 } op_pointer_and;
4245 void
4246 pointer_and_operator::wi_fold (irange &r, tree type,
4247 const wide_int &lh_lb,
4248 const wide_int &lh_ub,
4249 const wide_int &rh_lb ATTRIBUTE_UNUSED,
4250 const wide_int &rh_ub ATTRIBUTE_UNUSED) const
4252 // For pointer types, we are really only interested in asserting
4253 // whether the expression evaluates to non-NULL.
4254 if (wi_zero_p (type, lh_lb, lh_ub) || wi_zero_p (type, lh_lb, lh_ub))
4255 r = range_zero (type);
4256 else
4257 r.set_varying (type);
4261 class pointer_or_operator : public range_operator
4263 using range_operator::op1_range;
4264 using range_operator::op2_range;
4265 public:
4266 virtual bool op1_range (irange &r, tree type,
4267 const irange &lhs,
4268 const irange &op2,
4269 relation_trio rel = TRIO_VARYING) const;
4270 virtual bool op2_range (irange &r, tree type,
4271 const irange &lhs,
4272 const irange &op1,
4273 relation_trio rel = TRIO_VARYING) const;
4274 virtual void wi_fold (irange &r, tree type,
4275 const wide_int &lh_lb, const wide_int &lh_ub,
4276 const wide_int &rh_lb, const wide_int &rh_ub) const;
4277 } op_pointer_or;
4279 bool
4280 pointer_or_operator::op1_range (irange &r, tree type,
4281 const irange &lhs,
4282 const irange &op2 ATTRIBUTE_UNUSED,
4283 relation_trio) const
4285 if (lhs.undefined_p ())
4286 return false;
4287 if (lhs.zero_p ())
4289 tree zero = build_zero_cst (type);
4290 r = int_range<1> (zero, zero);
4291 return true;
4293 r.set_varying (type);
4294 return true;
4297 bool
4298 pointer_or_operator::op2_range (irange &r, tree type,
4299 const irange &lhs,
4300 const irange &op1,
4301 relation_trio) const
4303 return pointer_or_operator::op1_range (r, type, lhs, op1);
4306 void
4307 pointer_or_operator::wi_fold (irange &r, tree type,
4308 const wide_int &lh_lb,
4309 const wide_int &lh_ub,
4310 const wide_int &rh_lb,
4311 const wide_int &rh_ub) const
4313 // For pointer types, we are really only interested in asserting
4314 // whether the expression evaluates to non-NULL.
4315 if (!wi_includes_zero_p (type, lh_lb, lh_ub)
4316 && !wi_includes_zero_p (type, rh_lb, rh_ub))
4317 r = range_nonzero (type);
4318 else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
4319 r = range_zero (type);
4320 else
4321 r.set_varying (type);
4324 // Return a pointer to the range_operator instance, if there is one
4325 // associated with tree_code CODE.
4327 range_operator *
4328 range_op_table::operator[] (enum tree_code code)
4330 gcc_checking_assert (code > 0 && code < MAX_TREE_CODES);
4331 return m_range_tree[code];
4334 // Add OP to the handler table for CODE.
4336 void
4337 range_op_table::set (enum tree_code code, range_operator &op)
4339 gcc_checking_assert (m_range_tree[code] == NULL);
4340 m_range_tree[code] = &op;
4341 gcc_checking_assert (op.m_code == ERROR_MARK || op.m_code == code);
4342 op.m_code = code;
4345 // Shared operators that require separate instantiations because they
4346 // do not share a common tree code.
4347 static operator_cast op_nop, op_convert;
4348 static operator_identity op_ssa, op_paren, op_obj_type;
4349 static operator_unknown op_realpart, op_imagpart;
4350 static pointer_min_max_operator op_ptr_min, op_ptr_max;
4351 static operator_div op_trunc_div;
4352 static operator_div op_floor_div;
4353 static operator_div op_round_div;
4354 static operator_div op_ceil_div;
4356 // Instantiate a range op table for integral operations.
4358 class integral_table : public range_op_table
4360 public:
4361 integral_table ();
4362 } integral_tree_table;
4364 integral_table::integral_table ()
4366 set (EQ_EXPR, op_equal);
4367 set (NE_EXPR, op_not_equal);
4368 set (LT_EXPR, op_lt);
4369 set (LE_EXPR, op_le);
4370 set (GT_EXPR, op_gt);
4371 set (GE_EXPR, op_ge);
4372 set (PLUS_EXPR, op_plus);
4373 set (MINUS_EXPR, op_minus);
4374 set (MIN_EXPR, op_min);
4375 set (MAX_EXPR, op_max);
4376 set (MULT_EXPR, op_mult);
4377 set (TRUNC_DIV_EXPR, op_trunc_div);
4378 set (FLOOR_DIV_EXPR, op_floor_div);
4379 set (ROUND_DIV_EXPR, op_round_div);
4380 set (CEIL_DIV_EXPR, op_ceil_div);
4381 set (EXACT_DIV_EXPR, op_exact_div);
4382 set (LSHIFT_EXPR, op_lshift);
4383 set (RSHIFT_EXPR, op_rshift);
4384 set (NOP_EXPR, op_nop);
4385 set (CONVERT_EXPR, op_convert);
4386 set (TRUTH_AND_EXPR, op_logical_and);
4387 set (BIT_AND_EXPR, op_bitwise_and);
4388 set (TRUTH_OR_EXPR, op_logical_or);
4389 set (BIT_IOR_EXPR, op_bitwise_or);
4390 set (BIT_XOR_EXPR, op_bitwise_xor);
4391 set (TRUNC_MOD_EXPR, op_trunc_mod);
4392 set (TRUTH_NOT_EXPR, op_logical_not);
4393 set (BIT_NOT_EXPR, op_bitwise_not);
4394 set (INTEGER_CST, op_integer_cst);
4395 set (SSA_NAME, op_ssa);
4396 set (PAREN_EXPR, op_paren);
4397 set (OBJ_TYPE_REF, op_obj_type);
4398 set (IMAGPART_EXPR, op_imagpart);
4399 set (REALPART_EXPR, op_realpart);
4400 set (POINTER_DIFF_EXPR, op_pointer_diff);
4401 set (ABS_EXPR, op_abs);
4402 set (ABSU_EXPR, op_absu);
4403 set (NEGATE_EXPR, op_negate);
4404 set (ADDR_EXPR, op_addr);
4407 // Instantiate a range op table for pointer operations.
4409 class pointer_table : public range_op_table
4411 public:
4412 pointer_table ();
4413 } pointer_tree_table;
4415 pointer_table::pointer_table ()
4417 set (BIT_AND_EXPR, op_pointer_and);
4418 set (BIT_IOR_EXPR, op_pointer_or);
4419 set (MIN_EXPR, op_ptr_min);
4420 set (MAX_EXPR, op_ptr_max);
4421 set (POINTER_PLUS_EXPR, op_pointer_plus);
4423 set (EQ_EXPR, op_equal);
4424 set (NE_EXPR, op_not_equal);
4425 set (LT_EXPR, op_lt);
4426 set (LE_EXPR, op_le);
4427 set (GT_EXPR, op_gt);
4428 set (GE_EXPR, op_ge);
4429 set (SSA_NAME, op_ssa);
4430 set (INTEGER_CST, op_integer_cst);
4431 set (ADDR_EXPR, op_addr);
4432 set (NOP_EXPR, op_nop);
4433 set (CONVERT_EXPR, op_convert);
4435 set (BIT_NOT_EXPR, op_bitwise_not);
4436 set (BIT_XOR_EXPR, op_bitwise_xor);
4439 // The tables are hidden and accessed via a simple extern function.
4441 static inline range_operator *
4442 get_handler (enum tree_code code, tree type)
4444 // First check if there is a pointer specialization.
4445 if (POINTER_TYPE_P (type))
4446 return pointer_tree_table[code];
4447 if (INTEGRAL_TYPE_P (type))
4448 return integral_tree_table[code];
4449 return NULL;
4452 // Return the floating point operator for CODE or NULL if none available.
4454 static inline range_operator_float *
4455 get_float_handler (enum tree_code code, tree)
4457 return (*floating_tree_table)[code];
4460 void
4461 range_op_handler::set_op_handler (tree_code code, tree type)
4463 if (irange::supports_p (type))
4465 m_float = NULL;
4466 m_int = get_handler (code, type);
4467 m_valid = m_int != NULL;
4469 else if (frange::supports_p (type))
4471 m_int = NULL;
4472 m_float = get_float_handler (code, type);
4473 m_valid = m_float != NULL;
4475 else
4477 m_int = NULL;
4478 m_float = NULL;
4479 m_valid = false;
4483 range_op_handler::range_op_handler ()
4485 m_int = NULL;
4486 m_float = NULL;
4487 m_valid = false;
4490 range_op_handler::range_op_handler (tree_code code, tree type)
4492 set_op_handler (code, type);
4496 bool
4497 range_op_handler::fold_range (vrange &r, tree type,
4498 const vrange &lh,
4499 const vrange &rh,
4500 relation_trio rel) const
4502 gcc_checking_assert (m_valid);
4503 if (m_int)
4504 return m_int->fold_range (as_a <irange> (r), type,
4505 as_a <irange> (lh),
4506 as_a <irange> (rh), rel);
4508 if (is_a <irange> (r))
4510 if (is_a <irange> (rh))
4511 return m_float->fold_range (as_a <irange> (r), type,
4512 as_a <frange> (lh),
4513 as_a <irange> (rh), rel);
4514 else
4515 return m_float->fold_range (as_a <irange> (r), type,
4516 as_a <frange> (lh),
4517 as_a <frange> (rh), rel);
4519 return m_float->fold_range (as_a <frange> (r), type,
4520 as_a <frange> (lh),
4521 as_a <frange> (rh), rel);
4524 bool
4525 range_op_handler::op1_range (vrange &r, tree type,
4526 const vrange &lhs,
4527 const vrange &op2,
4528 relation_trio rel) const
4530 gcc_checking_assert (m_valid);
4532 if (lhs.undefined_p ())
4533 return false;
4534 if (m_int)
4535 return m_int->op1_range (as_a <irange> (r), type,
4536 as_a <irange> (lhs),
4537 as_a <irange> (op2), rel);
4539 if (is_a <irange> (lhs))
4540 return m_float->op1_range (as_a <frange> (r), type,
4541 as_a <irange> (lhs),
4542 as_a <frange> (op2), rel);
4543 return m_float->op1_range (as_a <frange> (r), type,
4544 as_a <frange> (lhs),
4545 as_a <frange> (op2), rel);
4548 bool
4549 range_op_handler::op2_range (vrange &r, tree type,
4550 const vrange &lhs,
4551 const vrange &op1,
4552 relation_trio rel) const
4554 gcc_checking_assert (m_valid);
4555 if (lhs.undefined_p ())
4556 return false;
4557 if (m_int)
4558 return m_int->op2_range (as_a <irange> (r), type,
4559 as_a <irange> (lhs),
4560 as_a <irange> (op1), rel);
4562 if (is_a <irange> (lhs))
4563 return m_float->op2_range (as_a <frange> (r), type,
4564 as_a <irange> (lhs),
4565 as_a <frange> (op1), rel);
4566 return m_float->op2_range (as_a <frange> (r), type,
4567 as_a <frange> (lhs),
4568 as_a <frange> (op1), rel);
4571 relation_kind
4572 range_op_handler::lhs_op1_relation (const vrange &lhs,
4573 const vrange &op1,
4574 const vrange &op2,
4575 relation_kind rel) const
4577 gcc_checking_assert (m_valid);
4578 if (m_int)
4579 return m_int->lhs_op1_relation (as_a <irange> (lhs),
4580 as_a <irange> (op1),
4581 as_a <irange> (op2), rel);
4583 if (is_a <irange> (lhs))
4584 return m_float->lhs_op1_relation (as_a <irange> (lhs),
4585 as_a <frange> (op1),
4586 as_a <frange> (op2), rel);
4587 return m_float->lhs_op1_relation (as_a <frange> (lhs),
4588 as_a <frange> (op1),
4589 as_a <frange> (op2), rel);
4592 relation_kind
4593 range_op_handler::lhs_op2_relation (const vrange &lhs,
4594 const vrange &op1,
4595 const vrange &op2,
4596 relation_kind rel) const
4598 gcc_checking_assert (m_valid);
4599 if (m_int)
4600 return m_int->lhs_op2_relation (as_a <irange> (lhs),
4601 as_a <irange> (op1),
4602 as_a <irange> (op2), rel);
4604 if (is_a <irange> (lhs))
4605 return m_float->lhs_op2_relation (as_a <irange> (lhs),
4606 as_a <frange> (op1),
4607 as_a <frange> (op2), rel);
4608 return m_float->lhs_op2_relation (as_a <frange> (lhs),
4609 as_a <frange> (op1),
4610 as_a <frange> (op2), rel);
4613 relation_kind
4614 range_op_handler::op1_op2_relation (const vrange &lhs) const
4616 gcc_checking_assert (m_valid);
4617 if (m_int)
4618 return m_int->op1_op2_relation (as_a <irange> (lhs));
4619 if (is_a <irange> (lhs))
4620 return m_float->op1_op2_relation (as_a <irange> (lhs));
4621 return m_float->op1_op2_relation (as_a <frange> (lhs));
4624 // Cast the range in R to TYPE.
4626 bool
4627 range_cast (vrange &r, tree type)
4629 Value_Range tmp (r);
4630 Value_Range varying (type);
4631 varying.set_varying (type);
4632 range_op_handler op (CONVERT_EXPR, type);
4633 // Call op_convert, if it fails, the result is varying.
4634 if (!op || !op.fold_range (r, type, tmp, varying))
4636 r.set_varying (type);
4637 return false;
4639 return true;
4642 #if CHECKING_P
4643 #include "selftest.h"
4645 namespace selftest
4647 #define INT(N) build_int_cst (integer_type_node, (N))
4648 #define UINT(N) build_int_cstu (unsigned_type_node, (N))
4649 #define INT16(N) build_int_cst (short_integer_type_node, (N))
4650 #define UINT16(N) build_int_cstu (short_unsigned_type_node, (N))
4651 #define SCHAR(N) build_int_cst (signed_char_type_node, (N))
4652 #define UCHAR(N) build_int_cstu (unsigned_char_type_node, (N))
4654 static void
4655 range_op_cast_tests ()
4657 int_range<1> r0, r1, r2, rold;
4658 r0.set_varying (integer_type_node);
4659 tree maxint = wide_int_to_tree (integer_type_node, r0.upper_bound ());
4661 // If a range is in any way outside of the range for the converted
4662 // to range, default to the range for the new type.
4663 r0.set_varying (short_integer_type_node);
4664 tree minshort = wide_int_to_tree (short_integer_type_node, r0.lower_bound ());
4665 tree maxshort = wide_int_to_tree (short_integer_type_node, r0.upper_bound ());
4666 if (TYPE_PRECISION (TREE_TYPE (maxint))
4667 > TYPE_PRECISION (short_integer_type_node))
4669 r1 = int_range<1> (integer_zero_node, maxint);
4670 range_cast (r1, short_integer_type_node);
4671 ASSERT_TRUE (r1.lower_bound () == wi::to_wide (minshort)
4672 && r1.upper_bound() == wi::to_wide (maxshort));
4675 // (unsigned char)[-5,-1] => [251,255].
4676 r0 = rold = int_range<1> (SCHAR (-5), SCHAR (-1));
4677 range_cast (r0, unsigned_char_type_node);
4678 ASSERT_TRUE (r0 == int_range<1> (UCHAR (251), UCHAR (255)));
4679 range_cast (r0, signed_char_type_node);
4680 ASSERT_TRUE (r0 == rold);
4682 // (signed char)[15, 150] => [-128,-106][15,127].
4683 r0 = rold = int_range<1> (UCHAR (15), UCHAR (150));
4684 range_cast (r0, signed_char_type_node);
4685 r1 = int_range<1> (SCHAR (15), SCHAR (127));
4686 r2 = int_range<1> (SCHAR (-128), SCHAR (-106));
4687 r1.union_ (r2);
4688 ASSERT_TRUE (r1 == r0);
4689 range_cast (r0, unsigned_char_type_node);
4690 ASSERT_TRUE (r0 == rold);
4692 // (unsigned char)[-5, 5] => [0,5][251,255].
4693 r0 = rold = int_range<1> (SCHAR (-5), SCHAR (5));
4694 range_cast (r0, unsigned_char_type_node);
4695 r1 = int_range<1> (UCHAR (251), UCHAR (255));
4696 r2 = int_range<1> (UCHAR (0), UCHAR (5));
4697 r1.union_ (r2);
4698 ASSERT_TRUE (r0 == r1);
4699 range_cast (r0, signed_char_type_node);
4700 ASSERT_TRUE (r0 == rold);
4702 // (unsigned char)[-5,5] => [0,5][251,255].
4703 r0 = int_range<1> (INT (-5), INT (5));
4704 range_cast (r0, unsigned_char_type_node);
4705 r1 = int_range<1> (UCHAR (0), UCHAR (5));
4706 r1.union_ (int_range<1> (UCHAR (251), UCHAR (255)));
4707 ASSERT_TRUE (r0 == r1);
4709 // (unsigned char)[5U,1974U] => [0,255].
4710 r0 = int_range<1> (UINT (5), UINT (1974));
4711 range_cast (r0, unsigned_char_type_node);
4712 ASSERT_TRUE (r0 == int_range<1> (UCHAR (0), UCHAR (255)));
4713 range_cast (r0, integer_type_node);
4714 // Going to a wider range should not sign extend.
4715 ASSERT_TRUE (r0 == int_range<1> (INT (0), INT (255)));
4717 // (unsigned char)[-350,15] => [0,255].
4718 r0 = int_range<1> (INT (-350), INT (15));
4719 range_cast (r0, unsigned_char_type_node);
4720 ASSERT_TRUE (r0 == (int_range<1>
4721 (TYPE_MIN_VALUE (unsigned_char_type_node),
4722 TYPE_MAX_VALUE (unsigned_char_type_node))));
4724 // Casting [-120,20] from signed char to unsigned short.
4725 // => [0, 20][0xff88, 0xffff].
4726 r0 = int_range<1> (SCHAR (-120), SCHAR (20));
4727 range_cast (r0, short_unsigned_type_node);
4728 r1 = int_range<1> (UINT16 (0), UINT16 (20));
4729 r2 = int_range<1> (UINT16 (0xff88), UINT16 (0xffff));
4730 r1.union_ (r2);
4731 ASSERT_TRUE (r0 == r1);
4732 // A truncating cast back to signed char will work because [-120, 20]
4733 // is representable in signed char.
4734 range_cast (r0, signed_char_type_node);
4735 ASSERT_TRUE (r0 == int_range<1> (SCHAR (-120), SCHAR (20)));
4737 // unsigned char -> signed short
4738 // (signed short)[(unsigned char)25, (unsigned char)250]
4739 // => [(signed short)25, (signed short)250]
4740 r0 = rold = int_range<1> (UCHAR (25), UCHAR (250));
4741 range_cast (r0, short_integer_type_node);
4742 r1 = int_range<1> (INT16 (25), INT16 (250));
4743 ASSERT_TRUE (r0 == r1);
4744 range_cast (r0, unsigned_char_type_node);
4745 ASSERT_TRUE (r0 == rold);
4747 // Test casting a wider signed [-MIN,MAX] to a nar`rower unsigned.
4748 r0 = int_range<1> (TYPE_MIN_VALUE (long_long_integer_type_node),
4749 TYPE_MAX_VALUE (long_long_integer_type_node));
4750 range_cast (r0, short_unsigned_type_node);
4751 r1 = int_range<1> (TYPE_MIN_VALUE (short_unsigned_type_node),
4752 TYPE_MAX_VALUE (short_unsigned_type_node));
4753 ASSERT_TRUE (r0 == r1);
4755 // Casting NONZERO to a narrower type will wrap/overflow so
4756 // it's just the entire range for the narrower type.
4758 // "NOT 0 at signed 32-bits" ==> [-MIN_32,-1][1, +MAX_32]. This is
4759 // is outside of the range of a smaller range, return the full
4760 // smaller range.
4761 if (TYPE_PRECISION (integer_type_node)
4762 > TYPE_PRECISION (short_integer_type_node))
4764 r0 = range_nonzero (integer_type_node);
4765 range_cast (r0, short_integer_type_node);
4766 r1 = int_range<1> (TYPE_MIN_VALUE (short_integer_type_node),
4767 TYPE_MAX_VALUE (short_integer_type_node));
4768 ASSERT_TRUE (r0 == r1);
4771 // Casting NONZERO from a narrower signed to a wider signed.
4773 // NONZERO signed 16-bits is [-MIN_16,-1][1, +MAX_16].
4774 // Converting this to 32-bits signed is [-MIN_16,-1][1, +MAX_16].
4775 r0 = range_nonzero (short_integer_type_node);
4776 range_cast (r0, integer_type_node);
4777 r1 = int_range<1> (INT (-32768), INT (-1));
4778 r2 = int_range<1> (INT (1), INT (32767));
4779 r1.union_ (r2);
4780 ASSERT_TRUE (r0 == r1);
4783 static void
4784 range_op_lshift_tests ()
4786 // Test that 0x808.... & 0x8.... still contains 0x8....
4787 // for a large set of numbers.
4789 int_range_max res;
4790 tree big_type = long_long_unsigned_type_node;
4791 // big_num = 0x808,0000,0000,0000
4792 tree big_num = fold_build2 (LSHIFT_EXPR, big_type,
4793 build_int_cst (big_type, 0x808),
4794 build_int_cst (big_type, 48));
4795 op_bitwise_and.fold_range (res, big_type,
4796 int_range <1> (big_type),
4797 int_range <1> (big_num, big_num));
4798 // val = 0x8,0000,0000,0000
4799 tree val = fold_build2 (LSHIFT_EXPR, big_type,
4800 build_int_cst (big_type, 0x8),
4801 build_int_cst (big_type, 48));
4802 ASSERT_TRUE (res.contains_p (val));
4805 if (TYPE_PRECISION (unsigned_type_node) > 31)
4807 // unsigned VARYING = op1 << 1 should be VARYING.
4808 int_range<2> lhs (unsigned_type_node);
4809 int_range<2> shift (INT (1), INT (1));
4810 int_range_max op1;
4811 op_lshift.op1_range (op1, unsigned_type_node, lhs, shift);
4812 ASSERT_TRUE (op1.varying_p ());
4814 // 0 = op1 << 1 should be [0,0], [0x8000000, 0x8000000].
4815 int_range<2> zero (UINT (0), UINT (0));
4816 op_lshift.op1_range (op1, unsigned_type_node, zero, shift);
4817 ASSERT_TRUE (op1.num_pairs () == 2);
4818 // Remove the [0,0] range.
4819 op1.intersect (zero);
4820 ASSERT_TRUE (op1.num_pairs () == 1);
4821 // op1 << 1 should be [0x8000,0x8000] << 1,
4822 // which should result in [0,0].
4823 int_range_max result;
4824 op_lshift.fold_range (result, unsigned_type_node, op1, shift);
4825 ASSERT_TRUE (result == zero);
4827 // signed VARYING = op1 << 1 should be VARYING.
4828 if (TYPE_PRECISION (integer_type_node) > 31)
4830 // unsigned VARYING = op1 << 1 hould be VARYING.
4831 int_range<2> lhs (integer_type_node);
4832 int_range<2> shift (INT (1), INT (1));
4833 int_range_max op1;
4834 op_lshift.op1_range (op1, integer_type_node, lhs, shift);
4835 ASSERT_TRUE (op1.varying_p ());
4837 // 0 = op1 << 1 should be [0,0], [0x8000000, 0x8000000].
4838 int_range<2> zero (INT (0), INT (0));
4839 op_lshift.op1_range (op1, integer_type_node, zero, shift);
4840 ASSERT_TRUE (op1.num_pairs () == 2);
4841 // Remove the [0,0] range.
4842 op1.intersect (zero);
4843 ASSERT_TRUE (op1.num_pairs () == 1);
4844 // op1 << 1 shuould be [0x8000,0x8000] << 1,
4845 // which should result in [0,0].
4846 int_range_max result;
4847 op_lshift.fold_range (result, unsigned_type_node, op1, shift);
4848 ASSERT_TRUE (result == zero);
4852 static void
4853 range_op_rshift_tests ()
4855 // unsigned: [3, MAX] = OP1 >> 1
4857 int_range_max lhs (build_int_cst (unsigned_type_node, 3),
4858 TYPE_MAX_VALUE (unsigned_type_node));
4859 int_range_max one (build_one_cst (unsigned_type_node),
4860 build_one_cst (unsigned_type_node));
4861 int_range_max op1;
4862 op_rshift.op1_range (op1, unsigned_type_node, lhs, one);
4863 ASSERT_FALSE (op1.contains_p (UINT (3)));
4866 // signed: [3, MAX] = OP1 >> 1
4868 int_range_max lhs (INT (3), TYPE_MAX_VALUE (integer_type_node));
4869 int_range_max one (INT (1), INT (1));
4870 int_range_max op1;
4871 op_rshift.op1_range (op1, integer_type_node, lhs, one);
4872 ASSERT_FALSE (op1.contains_p (INT (-2)));
4875 // This is impossible, so OP1 should be [].
4876 // signed: [MIN, MIN] = OP1 >> 1
4878 int_range_max lhs (TYPE_MIN_VALUE (integer_type_node),
4879 TYPE_MIN_VALUE (integer_type_node));
4880 int_range_max one (INT (1), INT (1));
4881 int_range_max op1;
4882 op_rshift.op1_range (op1, integer_type_node, lhs, one);
4883 ASSERT_TRUE (op1.undefined_p ());
4886 // signed: ~[-1] = OP1 >> 31
4887 if (TYPE_PRECISION (integer_type_node) > 31)
4889 int_range_max lhs (INT (-1), INT (-1), VR_ANTI_RANGE);
4890 int_range_max shift (INT (31), INT (31));
4891 int_range_max op1;
4892 op_rshift.op1_range (op1, integer_type_node, lhs, shift);
4893 int_range_max negatives = range_negatives (integer_type_node);
4894 negatives.intersect (op1);
4895 ASSERT_TRUE (negatives.undefined_p ());
4899 static void
4900 range_op_bitwise_and_tests ()
4902 int_range_max res;
4903 tree min = vrp_val_min (integer_type_node);
4904 tree max = vrp_val_max (integer_type_node);
4905 tree tiny = fold_build2 (PLUS_EXPR, integer_type_node, min,
4906 build_one_cst (integer_type_node));
4907 int_range_max i1 (tiny, max);
4908 int_range_max i2 (build_int_cst (integer_type_node, 255),
4909 build_int_cst (integer_type_node, 255));
4911 // [MIN+1, MAX] = OP1 & 255: OP1 is VARYING
4912 op_bitwise_and.op1_range (res, integer_type_node, i1, i2);
4913 ASSERT_TRUE (res == int_range<1> (integer_type_node));
4915 // VARYING = OP1 & 255: OP1 is VARYING
4916 i1 = int_range<1> (integer_type_node);
4917 op_bitwise_and.op1_range (res, integer_type_node, i1, i2);
4918 ASSERT_TRUE (res == int_range<1> (integer_type_node));
4920 // For 0 = x & MASK, x is ~MASK.
4922 int_range<2> zero (integer_zero_node, integer_zero_node);
4923 int_range<2> mask = int_range<2> (INT (7), INT (7));
4924 op_bitwise_and.op1_range (res, integer_type_node, zero, mask);
4925 wide_int inv = wi::shwi (~7U, TYPE_PRECISION (integer_type_node));
4926 ASSERT_TRUE (res.get_nonzero_bits () == inv);
4929 // (NONZERO | X) is nonzero.
4930 i1.set_nonzero (integer_type_node);
4931 i2.set_varying (integer_type_node);
4932 op_bitwise_or.fold_range (res, integer_type_node, i1, i2);
4933 ASSERT_TRUE (res.nonzero_p ());
4935 // (NEGATIVE | X) is nonzero.
4936 i1 = int_range<1> (INT (-5), INT (-3));
4937 i2.set_varying (integer_type_node);
4938 op_bitwise_or.fold_range (res, integer_type_node, i1, i2);
4939 ASSERT_FALSE (res.contains_p (INT (0)));
4942 static void
4943 range_relational_tests ()
4945 int_range<2> lhs (unsigned_char_type_node);
4946 int_range<2> op1 (UCHAR (8), UCHAR (10));
4947 int_range<2> op2 (UCHAR (20), UCHAR (20));
4949 // Never wrapping additions mean LHS > OP1.
4950 relation_kind code = op_plus.lhs_op1_relation (lhs, op1, op2, VREL_VARYING);
4951 ASSERT_TRUE (code == VREL_GT);
4953 // Most wrapping additions mean nothing...
4954 op1 = int_range<2> (UCHAR (8), UCHAR (10));
4955 op2 = int_range<2> (UCHAR (0), UCHAR (255));
4956 code = op_plus.lhs_op1_relation (lhs, op1, op2, VREL_VARYING);
4957 ASSERT_TRUE (code == VREL_VARYING);
4959 // However, always wrapping additions mean LHS < OP1.
4960 op1 = int_range<2> (UCHAR (1), UCHAR (255));
4961 op2 = int_range<2> (UCHAR (255), UCHAR (255));
4962 code = op_plus.lhs_op1_relation (lhs, op1, op2, VREL_VARYING);
4963 ASSERT_TRUE (code == VREL_LT);
4966 void
4967 range_op_tests ()
4969 range_op_rshift_tests ();
4970 range_op_lshift_tests ();
4971 range_op_bitwise_and_tests ();
4972 range_op_cast_tests ();
4973 range_relational_tests ();
4975 extern void range_op_float_tests ();
4976 range_op_float_tests ();
4979 } // namespace selftest
4981 #endif // CHECKING_P