Suppress -fstack-protector warning on hppa.
[official-gcc.git] / gcc / ira.cc
blobd28a67b2546f1a160761ba342e4e98151af43e84
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2022 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.cc) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.cc).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.cc).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.cc).
168 * IRA creates all caps (file ira-build.cc).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.cc). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.cc). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA cannot assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.cc). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.cc). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.cc). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.cc to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.cc.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.cc). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
517 if (! use_hard_frame_p)
518 add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
519 HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
539 for (i = 0; i < N_REG_CLASSES; i++)
541 if (i == (int) NO_REGS)
542 continue;
544 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
550 enum reg_class *p;
552 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
607 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
608 ira_class_subset_p[cl][cl2]
609 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
610 if (! hard_reg_set_empty_p (temp_hard_regset2)
611 && hard_reg_set_subset_p (reg_class_contents[cl2],
612 reg_class_contents[cl]))
613 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
615 cost = ira_memory_move_cost[mode][cl2][0];
616 if (cost > ira_max_memory_move_cost[mode][cl][0])
617 ira_max_memory_move_cost[mode][cl][0] = cost;
618 cost = ira_memory_move_cost[mode][cl2][1];
619 if (cost > ira_max_memory_move_cost[mode][cl][1])
620 ira_max_memory_move_cost[mode][cl][1] = cost;
623 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
624 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
626 ira_memory_move_cost[mode][cl][0]
627 = ira_max_memory_move_cost[mode][cl][0];
628 ira_memory_move_cost[mode][cl][1]
629 = ira_max_memory_move_cost[mode][cl][1];
631 setup_reg_subclasses ();
636 /* Define the following macro if allocation through malloc if
637 preferable. */
638 #define IRA_NO_OBSTACK
640 #ifndef IRA_NO_OBSTACK
641 /* Obstack used for storing all dynamic data (except bitmaps) of the
642 IRA. */
643 static struct obstack ira_obstack;
644 #endif
646 /* Obstack used for storing all bitmaps of the IRA. */
647 static struct bitmap_obstack ira_bitmap_obstack;
649 /* Allocate memory of size LEN for IRA data. */
650 void *
651 ira_allocate (size_t len)
653 void *res;
655 #ifndef IRA_NO_OBSTACK
656 res = obstack_alloc (&ira_obstack, len);
657 #else
658 res = xmalloc (len);
659 #endif
660 return res;
663 /* Free memory ADDR allocated for IRA data. */
664 void
665 ira_free (void *addr ATTRIBUTE_UNUSED)
667 #ifndef IRA_NO_OBSTACK
668 /* do nothing */
669 #else
670 free (addr);
671 #endif
675 /* Allocate and returns bitmap for IRA. */
676 bitmap
677 ira_allocate_bitmap (void)
679 return BITMAP_ALLOC (&ira_bitmap_obstack);
682 /* Free bitmap B allocated for IRA. */
683 void
684 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
686 /* do nothing */
691 /* Output information about allocation of all allocnos (except for
692 caps) into file F. */
693 void
694 ira_print_disposition (FILE *f)
696 int i, n, max_regno;
697 ira_allocno_t a;
698 basic_block bb;
700 fprintf (f, "Disposition:");
701 max_regno = max_reg_num ();
702 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
703 for (a = ira_regno_allocno_map[i];
704 a != NULL;
705 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
707 if (n % 4 == 0)
708 fprintf (f, "\n");
709 n++;
710 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
711 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
712 fprintf (f, "b%-3d", bb->index);
713 else
714 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
715 if (ALLOCNO_HARD_REGNO (a) >= 0)
716 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
717 else
718 fprintf (f, " mem");
720 fprintf (f, "\n");
723 /* Outputs information about allocation of all allocnos into
724 stderr. */
725 void
726 ira_debug_disposition (void)
728 ira_print_disposition (stderr);
733 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
734 register class containing stack registers or NO_REGS if there are
735 no stack registers. To find this class, we iterate through all
736 register pressure classes and choose the first register pressure
737 class containing all the stack registers and having the biggest
738 size. */
739 static void
740 setup_stack_reg_pressure_class (void)
742 ira_stack_reg_pressure_class = NO_REGS;
743 #ifdef STACK_REGS
745 int i, best, size;
746 enum reg_class cl;
747 HARD_REG_SET temp_hard_regset2;
749 CLEAR_HARD_REG_SET (temp_hard_regset);
750 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
751 SET_HARD_REG_BIT (temp_hard_regset, i);
752 best = 0;
753 for (i = 0; i < ira_pressure_classes_num; i++)
755 cl = ira_pressure_classes[i];
756 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
757 size = hard_reg_set_size (temp_hard_regset2);
758 if (best < size)
760 best = size;
761 ira_stack_reg_pressure_class = cl;
765 #endif
768 /* Find pressure classes which are register classes for which we
769 calculate register pressure in IRA, register pressure sensitive
770 insn scheduling, and register pressure sensitive loop invariant
771 motion.
773 To make register pressure calculation easy, we always use
774 non-intersected register pressure classes. A move of hard
775 registers from one register pressure class is not more expensive
776 than load and store of the hard registers. Most likely an allocno
777 class will be a subset of a register pressure class and in many
778 cases a register pressure class. That makes usage of register
779 pressure classes a good approximation to find a high register
780 pressure. */
781 static void
782 setup_pressure_classes (void)
784 int cost, i, n, curr;
785 int cl, cl2;
786 enum reg_class pressure_classes[N_REG_CLASSES];
787 int m;
788 HARD_REG_SET temp_hard_regset2;
789 bool insert_p;
791 if (targetm.compute_pressure_classes)
792 n = targetm.compute_pressure_classes (pressure_classes);
793 else
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
798 if (ira_class_hard_regs_num[cl] == 0)
799 continue;
800 if (ira_class_hard_regs_num[cl] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses[cl][0] < cl)
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
814 temp_hard_regset
815 = (reg_class_contents[cl]
816 & ~(no_unit_alloc_regs
817 | ira_prohibited_class_mode_regs[cl][m]));
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
826 if (m >= NUM_MACHINE_MODES)
827 continue;
829 curr = 0;
830 insert_p = true;
831 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 temp_hard_regset2 = (reg_class_contents[cl2]
843 & ~no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (temp_hard_regset != temp_hard_regset2
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (temp_hard_regset2 != temp_hard_regset
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (temp_hard_regset2 == temp_hard_regset)
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
868 #ifdef ENABLE_IRA_CHECKING
870 HARD_REG_SET ignore_hard_regs;
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 ignore_hard_regs = no_unit_alloc_regs;
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
888 ignore_hard_regs |= reg_class_contents[cl];
889 continue;
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 temp_hard_regset2 |= reg_class_contents[cl];
895 if (i < n)
896 temp_hard_regset |= reg_class_contents[cl];
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have allocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 temp_hard_regset &= ~ignore_hard_regs;
904 temp_hard_regset2 &= ~ignore_hard_regs;
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
907 #endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
915 setup_stack_reg_pressure_class ();
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922 static void
923 setup_uniform_class_p (void)
925 int i, cl, cl2, m;
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We cannot use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
944 ira_init_register_move_cost_if_necessary ((machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
949 if (m < NUM_MACHINE_MODES)
950 break;
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
960 Target may have many subtargets and not all target hard registers can
961 be used for allocation, e.g. x86 port in 32-bit mode cannot use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
968 Pseudo class cost calculation in ira-costs.cc is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.cc is mostly base on investigation
981 of the insn constraints. */
982 static void
983 setup_allocno_and_important_classes (void)
985 int i, j, n, cl;
986 bool set_p;
987 HARD_REG_SET temp_hard_regset2;
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i = 0; i < LIM_REG_CLASSES; i++)
996 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1001 if (temp_hard_regset == temp_hard_regset2)
1002 break;
1004 if (j >= n || targetm.additional_allocno_class_p (i))
1005 classes[n++] = (enum reg_class) i;
1006 else if (i == GENERAL_REGS)
1007 /* Prefer general regs. For i386 example, it means that
1008 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1009 (all of them consists of the same available hard
1010 registers). */
1011 classes[j] = (enum reg_class) i;
1013 classes[n] = LIM_REG_CLASSES;
1015 /* Set up classes which can be used for allocnos as classes
1016 containing non-empty unique sets of allocatable hard
1017 registers. */
1018 ira_allocno_classes_num = 0;
1019 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1020 if (ira_class_hard_regs_num[cl] > 0)
1021 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1022 ira_important_classes_num = 0;
1023 /* Add non-allocno classes containing to non-empty set of
1024 allocatable hard regs. */
1025 for (cl = 0; cl < N_REG_CLASSES; cl++)
1026 if (ira_class_hard_regs_num[cl] > 0)
1028 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1029 set_p = false;
1030 for (j = 0; j < ira_allocno_classes_num; j++)
1032 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1033 & ~no_unit_alloc_regs);
1034 if ((enum reg_class) cl == ira_allocno_classes[j])
1035 break;
1036 else if (hard_reg_set_subset_p (temp_hard_regset,
1037 temp_hard_regset2))
1038 set_p = true;
1040 if (set_p && j >= ira_allocno_classes_num)
1041 ira_important_classes[ira_important_classes_num++]
1042 = (enum reg_class) cl;
1044 /* Now add allocno classes to the important classes. */
1045 for (j = 0; j < ira_allocno_classes_num; j++)
1046 ira_important_classes[ira_important_classes_num++]
1047 = ira_allocno_classes[j];
1048 for (cl = 0; cl < N_REG_CLASSES; cl++)
1050 ira_reg_allocno_class_p[cl] = false;
1051 ira_reg_pressure_class_p[cl] = false;
1053 for (j = 0; j < ira_allocno_classes_num; j++)
1054 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1055 setup_pressure_classes ();
1056 setup_uniform_class_p ();
1059 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1060 given by array CLASSES of length CLASSES_NUM. The function is used
1061 make translation any reg class to an allocno class or to an
1062 pressure class. This translation is necessary for some
1063 calculations when we can use only allocno or pressure classes and
1064 such translation represents an approximate representation of all
1065 classes.
1067 The translation in case when allocatable hard register set of a
1068 given class is subset of allocatable hard register set of a class
1069 in CLASSES is pretty simple. We use smallest classes from CLASSES
1070 containing a given class. If allocatable hard register set of a
1071 given class is not a subset of any corresponding set of a class
1072 from CLASSES, we use the cheapest (with load/store point of view)
1073 class from CLASSES whose set intersects with given class set. */
1074 static void
1075 setup_class_translate_array (enum reg_class *class_translate,
1076 int classes_num, enum reg_class *classes)
1078 int cl, mode;
1079 enum reg_class aclass, best_class, *cl_ptr;
1080 int i, cost, min_cost, best_cost;
1082 for (cl = 0; cl < N_REG_CLASSES; cl++)
1083 class_translate[cl] = NO_REGS;
1085 for (i = 0; i < classes_num; i++)
1087 aclass = classes[i];
1088 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1089 (cl = *cl_ptr) != LIM_REG_CLASSES;
1090 cl_ptr++)
1091 if (class_translate[cl] == NO_REGS)
1092 class_translate[cl] = aclass;
1093 class_translate[aclass] = aclass;
1095 /* For classes which are not fully covered by one of given classes
1096 (in other words covered by more one given class), use the
1097 cheapest class. */
1098 for (cl = 0; cl < N_REG_CLASSES; cl++)
1100 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1101 continue;
1102 best_class = NO_REGS;
1103 best_cost = INT_MAX;
1104 for (i = 0; i < classes_num; i++)
1106 aclass = classes[i];
1107 temp_hard_regset = (reg_class_contents[aclass]
1108 & reg_class_contents[cl]
1109 & ~no_unit_alloc_regs);
1110 if (! hard_reg_set_empty_p (temp_hard_regset))
1112 min_cost = INT_MAX;
1113 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1115 cost = (ira_memory_move_cost[mode][aclass][0]
1116 + ira_memory_move_cost[mode][aclass][1]);
1117 if (min_cost > cost)
1118 min_cost = cost;
1120 if (best_class == NO_REGS || best_cost > min_cost)
1122 best_class = aclass;
1123 best_cost = min_cost;
1127 class_translate[cl] = best_class;
1131 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1132 IRA_PRESSURE_CLASS_TRANSLATE. */
1133 static void
1134 setup_class_translate (void)
1136 setup_class_translate_array (ira_allocno_class_translate,
1137 ira_allocno_classes_num, ira_allocno_classes);
1138 setup_class_translate_array (ira_pressure_class_translate,
1139 ira_pressure_classes_num, ira_pressure_classes);
1142 /* Order numbers of allocno classes in original target allocno class
1143 array, -1 for non-allocno classes. */
1144 static int allocno_class_order[N_REG_CLASSES];
1146 /* The function used to sort the important classes. */
1147 static int
1148 comp_reg_classes_func (const void *v1p, const void *v2p)
1150 enum reg_class cl1 = *(const enum reg_class *) v1p;
1151 enum reg_class cl2 = *(const enum reg_class *) v2p;
1152 enum reg_class tcl1, tcl2;
1153 int diff;
1155 tcl1 = ira_allocno_class_translate[cl1];
1156 tcl2 = ira_allocno_class_translate[cl2];
1157 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1158 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1159 return diff;
1160 return (int) cl1 - (int) cl2;
1163 /* For correct work of function setup_reg_class_relation we need to
1164 reorder important classes according to the order of their allocno
1165 classes. It places important classes containing the same
1166 allocatable hard register set adjacent to each other and allocno
1167 class with the allocatable hard register set right after the other
1168 important classes with the same set.
1170 In example from comments of function
1171 setup_allocno_and_important_classes, it places LEGACY_REGS and
1172 GENERAL_REGS close to each other and GENERAL_REGS is after
1173 LEGACY_REGS. */
1174 static void
1175 reorder_important_classes (void)
1177 int i;
1179 for (i = 0; i < N_REG_CLASSES; i++)
1180 allocno_class_order[i] = -1;
1181 for (i = 0; i < ira_allocno_classes_num; i++)
1182 allocno_class_order[ira_allocno_classes[i]] = i;
1183 qsort (ira_important_classes, ira_important_classes_num,
1184 sizeof (enum reg_class), comp_reg_classes_func);
1185 for (i = 0; i < ira_important_classes_num; i++)
1186 ira_important_class_nums[ira_important_classes[i]] = i;
1189 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1190 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1191 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1192 please see corresponding comments in ira-int.h. */
1193 static void
1194 setup_reg_class_relations (void)
1196 int i, cl1, cl2, cl3;
1197 HARD_REG_SET intersection_set, union_set, temp_set2;
1198 bool important_class_p[N_REG_CLASSES];
1200 memset (important_class_p, 0, sizeof (important_class_p));
1201 for (i = 0; i < ira_important_classes_num; i++)
1202 important_class_p[ira_important_classes[i]] = true;
1203 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1205 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1206 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1208 ira_reg_classes_intersect_p[cl1][cl2] = false;
1209 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1210 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1211 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1212 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1213 if (hard_reg_set_empty_p (temp_hard_regset)
1214 && hard_reg_set_empty_p (temp_set2))
1216 /* The both classes have no allocatable hard registers
1217 -- take all class hard registers into account and use
1218 reg_class_subunion and reg_class_superunion. */
1219 for (i = 0;; i++)
1221 cl3 = reg_class_subclasses[cl1][i];
1222 if (cl3 == LIM_REG_CLASSES)
1223 break;
1224 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1225 (enum reg_class) cl3))
1226 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1228 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1229 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1230 continue;
1232 ira_reg_classes_intersect_p[cl1][cl2]
1233 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1234 if (important_class_p[cl1] && important_class_p[cl2]
1235 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1237 /* CL1 and CL2 are important classes and CL1 allocatable
1238 hard register set is inside of CL2 allocatable hard
1239 registers -- make CL1 a superset of CL2. */
1240 enum reg_class *p;
1242 p = &ira_reg_class_super_classes[cl1][0];
1243 while (*p != LIM_REG_CLASSES)
1244 p++;
1245 *p++ = (enum reg_class) cl2;
1246 *p = LIM_REG_CLASSES;
1248 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1249 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1250 intersection_set = (reg_class_contents[cl1]
1251 & reg_class_contents[cl2]
1252 & ~no_unit_alloc_regs);
1253 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1254 & ~no_unit_alloc_regs);
1255 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1257 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1258 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1260 /* CL3 allocatable hard register set is inside of
1261 intersection of allocatable hard register sets
1262 of CL1 and CL2. */
1263 if (important_class_p[cl3])
1265 temp_set2
1266 = (reg_class_contents
1267 [ira_reg_class_intersect[cl1][cl2]]);
1268 temp_set2 &= ~no_unit_alloc_regs;
1269 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1270 /* If the allocatable hard register sets are
1271 the same, prefer GENERAL_REGS or the
1272 smallest class for debugging
1273 purposes. */
1274 || (temp_hard_regset == temp_set2
1275 && (cl3 == GENERAL_REGS
1276 || ((ira_reg_class_intersect[cl1][cl2]
1277 != GENERAL_REGS)
1278 && hard_reg_set_subset_p
1279 (reg_class_contents[cl3],
1280 reg_class_contents
1281 [(int)
1282 ira_reg_class_intersect[cl1][cl2]])))))
1283 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1285 temp_set2
1286 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1287 & ~no_unit_alloc_regs);
1288 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 /* Ignore unavailable hard registers and prefer
1290 smallest class for debugging purposes. */
1291 || (temp_hard_regset == temp_set2
1292 && hard_reg_set_subset_p
1293 (reg_class_contents[cl3],
1294 reg_class_contents
1295 [(int) ira_reg_class_subset[cl1][cl2]])))
1296 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1298 if (important_class_p[cl3]
1299 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1301 /* CL3 allocatable hard register set is inside of
1302 union of allocatable hard register sets of CL1
1303 and CL2. */
1304 temp_set2
1305 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1306 & ~no_unit_alloc_regs);
1307 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1308 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1310 && (temp_set2 != temp_hard_regset
1311 || cl3 == GENERAL_REGS
1312 /* If the allocatable hard register sets are the
1313 same, prefer GENERAL_REGS or the smallest
1314 class for debugging purposes. */
1315 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1316 && hard_reg_set_subset_p
1317 (reg_class_contents[cl3],
1318 reg_class_contents
1319 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1320 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1322 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1324 /* CL3 allocatable hard register set contains union
1325 of allocatable hard register sets of CL1 and
1326 CL2. */
1327 temp_set2
1328 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1329 & ~no_unit_alloc_regs);
1330 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1331 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1333 && (temp_set2 != temp_hard_regset
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1343 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1350 /* Output all uniform and important classes into file F. */
1351 static void
1352 print_uniform_and_important_classes (FILE *f)
1354 int i, cl;
1356 fprintf (f, "Uniform classes:\n");
1357 for (cl = 0; cl < N_REG_CLASSES; cl++)
1358 if (ira_uniform_class_p[cl])
1359 fprintf (f, " %s", reg_class_names[cl]);
1360 fprintf (f, "\nImportant classes:\n");
1361 for (i = 0; i < ira_important_classes_num; i++)
1362 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1363 fprintf (f, "\n");
1366 /* Output all possible allocno or pressure classes and their
1367 translation map into file F. */
1368 static void
1369 print_translated_classes (FILE *f, bool pressure_p)
1371 int classes_num = (pressure_p
1372 ? ira_pressure_classes_num : ira_allocno_classes_num);
1373 enum reg_class *classes = (pressure_p
1374 ? ira_pressure_classes : ira_allocno_classes);
1375 enum reg_class *class_translate = (pressure_p
1376 ? ira_pressure_class_translate
1377 : ira_allocno_class_translate);
1378 int i;
1380 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1381 for (i = 0; i < classes_num; i++)
1382 fprintf (f, " %s", reg_class_names[classes[i]]);
1383 fprintf (f, "\nClass translation:\n");
1384 for (i = 0; i < N_REG_CLASSES; i++)
1385 fprintf (f, " %s -> %s\n", reg_class_names[i],
1386 reg_class_names[class_translate[i]]);
1389 /* Output all possible allocno and translation classes and the
1390 translation maps into stderr. */
1391 void
1392 ira_debug_allocno_classes (void)
1394 print_uniform_and_important_classes (stderr);
1395 print_translated_classes (stderr, false);
1396 print_translated_classes (stderr, true);
1399 /* Set up different arrays concerning class subsets, allocno and
1400 important classes. */
1401 static void
1402 find_reg_classes (void)
1404 setup_allocno_and_important_classes ();
1405 setup_class_translate ();
1406 reorder_important_classes ();
1407 setup_reg_class_relations ();
1412 /* Set up the array above. */
1413 static void
1414 setup_hard_regno_aclass (void)
1416 int i;
1418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1420 #if 1
1421 ira_hard_regno_allocno_class[i]
1422 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1423 ? NO_REGS
1424 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1425 #else
1426 int j;
1427 enum reg_class cl;
1428 ira_hard_regno_allocno_class[i] = NO_REGS;
1429 for (j = 0; j < ira_allocno_classes_num; j++)
1431 cl = ira_allocno_classes[j];
1432 if (ira_class_hard_reg_index[cl][i] >= 0)
1434 ira_hard_regno_allocno_class[i] = cl;
1435 break;
1438 #endif
1444 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1445 static void
1446 setup_reg_class_nregs (void)
1448 int i, cl, cl2, m;
1450 for (m = 0; m < MAX_MACHINE_MODE; m++)
1452 for (cl = 0; cl < N_REG_CLASSES; cl++)
1453 ira_reg_class_max_nregs[cl][m]
1454 = ira_reg_class_min_nregs[cl][m]
1455 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1456 for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 for (i = 0;
1458 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1459 i++)
1460 if (ira_reg_class_min_nregs[cl2][m]
1461 < ira_reg_class_min_nregs[cl][m])
1462 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1468 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS, IRA_EXCLUDE_CLASS_MODE_REGS, and
1469 IRA_CLASS_SINGLETON. This function is called once IRA_CLASS_HARD_REGS has
1470 been initialized. */
1471 static void
1472 setup_prohibited_and_exclude_class_mode_regs (void)
1474 int j, k, hard_regno, cl, last_hard_regno, count;
1476 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1478 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1479 for (j = 0; j < NUM_MACHINE_MODES; j++)
1481 count = 0;
1482 last_hard_regno = -1;
1483 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1484 CLEAR_HARD_REG_SET (ira_exclude_class_mode_regs[cl][j]);
1485 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1487 hard_regno = ira_class_hard_regs[cl][k];
1488 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1489 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1490 hard_regno);
1491 else if (in_hard_reg_set_p (temp_hard_regset,
1492 (machine_mode) j, hard_regno))
1494 last_hard_regno = hard_regno;
1495 count++;
1497 else
1499 SET_HARD_REG_BIT (ira_exclude_class_mode_regs[cl][j], hard_regno);
1502 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1507 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1508 spanning from one register pressure class to another one. It is
1509 called after defining the pressure classes. */
1510 static void
1511 clarify_prohibited_class_mode_regs (void)
1513 int j, k, hard_regno, cl, pclass, nregs;
1515 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1516 for (j = 0; j < NUM_MACHINE_MODES; j++)
1518 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1519 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1521 hard_regno = ira_class_hard_regs[cl][k];
1522 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1523 continue;
1524 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1525 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1527 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1528 hard_regno);
1529 continue;
1531 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1532 for (nregs-- ;nregs >= 0; nregs--)
1533 if (((enum reg_class) pclass
1534 != ira_pressure_class_translate[REGNO_REG_CLASS
1535 (hard_regno + nregs)]))
1537 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1538 hard_regno);
1539 break;
1541 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1542 hard_regno))
1543 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1544 (machine_mode) j, hard_regno);
1549 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1550 and IRA_MAY_MOVE_OUT_COST for MODE. */
1551 void
1552 ira_init_register_move_cost (machine_mode mode)
1554 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1555 bool all_match = true;
1556 unsigned int i, cl1, cl2;
1557 HARD_REG_SET ok_regs;
1559 ira_assert (ira_register_move_cost[mode] == NULL
1560 && ira_may_move_in_cost[mode] == NULL
1561 && ira_may_move_out_cost[mode] == NULL);
1562 CLEAR_HARD_REG_SET (ok_regs);
1563 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1564 if (targetm.hard_regno_mode_ok (i, mode))
1565 SET_HARD_REG_BIT (ok_regs, i);
1567 /* Note that we might be asked about the move costs of modes that
1568 cannot be stored in any hard register, for example if an inline
1569 asm tries to create a register operand with an impossible mode.
1570 We therefore can't assert have_regs_of_mode[mode] here. */
1571 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1572 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1574 int cost;
1575 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1576 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1578 if ((ira_reg_class_max_nregs[cl1][mode]
1579 > ira_class_hard_regs_num[cl1])
1580 || (ira_reg_class_max_nregs[cl2][mode]
1581 > ira_class_hard_regs_num[cl2]))
1582 cost = 65535;
1583 else
1584 cost = (ira_memory_move_cost[mode][cl1][0]
1585 + ira_memory_move_cost[mode][cl2][1]) * 2;
1587 else
1589 cost = register_move_cost (mode, (enum reg_class) cl1,
1590 (enum reg_class) cl2);
1591 ira_assert (cost < 65535);
1593 all_match &= (last_move_cost[cl1][cl2] == cost);
1594 last_move_cost[cl1][cl2] = cost;
1596 if (all_match && last_mode_for_init_move_cost != -1)
1598 ira_register_move_cost[mode]
1599 = ira_register_move_cost[last_mode_for_init_move_cost];
1600 ira_may_move_in_cost[mode]
1601 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1602 ira_may_move_out_cost[mode]
1603 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1604 return;
1606 last_mode_for_init_move_cost = mode;
1607 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1608 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1609 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1611 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1613 int cost;
1614 enum reg_class *p1, *p2;
1616 if (last_move_cost[cl1][cl2] == 65535)
1618 ira_register_move_cost[mode][cl1][cl2] = 65535;
1619 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1620 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1622 else
1624 cost = last_move_cost[cl1][cl2];
1626 for (p2 = &reg_class_subclasses[cl2][0];
1627 *p2 != LIM_REG_CLASSES; p2++)
1628 if (ira_class_hard_regs_num[*p2] > 0
1629 && (ira_reg_class_max_nregs[*p2][mode]
1630 <= ira_class_hard_regs_num[*p2]))
1631 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1633 for (p1 = &reg_class_subclasses[cl1][0];
1634 *p1 != LIM_REG_CLASSES; p1++)
1635 if (ira_class_hard_regs_num[*p1] > 0
1636 && (ira_reg_class_max_nregs[*p1][mode]
1637 <= ira_class_hard_regs_num[*p1]))
1638 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1640 ira_assert (cost <= 65535);
1641 ira_register_move_cost[mode][cl1][cl2] = cost;
1643 if (ira_class_subset_p[cl1][cl2])
1644 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1645 else
1646 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1648 if (ira_class_subset_p[cl2][cl1])
1649 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1650 else
1651 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1658 /* This is called once during compiler work. It sets up
1659 different arrays whose values don't depend on the compiled
1660 function. */
1661 void
1662 ira_init_once (void)
1664 ira_init_costs_once ();
1665 lra_init_once ();
1667 ira_use_lra_p = targetm.lra_p ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_and_exclude_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Extract INSN and return the set of alternatives that we should consider.
1768 This excludes any alternatives whose constraints are obviously impossible
1769 to meet (e.g. because the constraint requires a constant and the operand
1770 is nonconstant). It also excludes alternatives that are bound to need
1771 a spill or reload, as long as we have other alternatives that match
1772 exactly. */
1773 alternative_mask
1774 ira_setup_alts (rtx_insn *insn)
1776 int nop, nalt;
1777 bool curr_swapped;
1778 const char *p;
1779 int commutative = -1;
1781 extract_insn (insn);
1782 preprocess_constraints (insn);
1783 alternative_mask preferred = get_preferred_alternatives (insn);
1784 alternative_mask alts = 0;
1785 alternative_mask exact_alts = 0;
1786 /* Check that the hard reg set is enough for holding all
1787 alternatives. It is hard to imagine the situation when the
1788 assertion is wrong. */
1789 ira_assert (recog_data.n_alternatives
1790 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1791 FIRST_PSEUDO_REGISTER));
1792 for (nop = 0; nop < recog_data.n_operands; nop++)
1793 if (recog_data.constraints[nop][0] == '%')
1795 commutative = nop;
1796 break;
1798 for (curr_swapped = false;; curr_swapped = true)
1800 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1802 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1803 continue;
1805 const operand_alternative *op_alt
1806 = &recog_op_alt[nalt * recog_data.n_operands];
1807 int this_reject = 0;
1808 for (nop = 0; nop < recog_data.n_operands; nop++)
1810 int c, len;
1812 this_reject += op_alt[nop].reject;
1814 rtx op = recog_data.operand[nop];
1815 p = op_alt[nop].constraint;
1816 if (*p == 0 || *p == ',')
1817 continue;
1819 bool win_p = false;
1821 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1823 case '#':
1824 case ',':
1825 c = '\0';
1826 /* FALLTHRU */
1827 case '\0':
1828 len = 0;
1829 break;
1831 case '%':
1832 /* The commutative modifier is handled above. */
1833 break;
1835 case '0': case '1': case '2': case '3': case '4':
1836 case '5': case '6': case '7': case '8': case '9':
1838 char *end;
1839 unsigned long dup = strtoul (p, &end, 10);
1840 rtx other = recog_data.operand[dup];
1841 len = end - p;
1842 if (MEM_P (other)
1843 ? rtx_equal_p (other, op)
1844 : REG_P (op) || SUBREG_P (op))
1845 goto op_success;
1846 win_p = true;
1848 break;
1850 case 'g':
1851 goto op_success;
1852 break;
1854 default:
1856 enum constraint_num cn = lookup_constraint (p);
1857 rtx mem = NULL;
1858 switch (get_constraint_type (cn))
1860 case CT_REGISTER:
1861 if (reg_class_for_constraint (cn) != NO_REGS)
1863 if (REG_P (op) || SUBREG_P (op))
1864 goto op_success;
1865 win_p = true;
1867 break;
1869 case CT_CONST_INT:
1870 if (CONST_INT_P (op)
1871 && (insn_const_int_ok_for_constraint
1872 (INTVAL (op), cn)))
1873 goto op_success;
1874 break;
1876 case CT_ADDRESS:
1877 goto op_success;
1879 case CT_MEMORY:
1880 case CT_RELAXED_MEMORY:
1881 mem = op;
1882 /* Fall through. */
1883 case CT_SPECIAL_MEMORY:
1884 if (!mem)
1885 mem = extract_mem_from_operand (op);
1886 if (MEM_P (mem))
1887 goto op_success;
1888 win_p = true;
1889 break;
1891 case CT_FIXED_FORM:
1892 if (constraint_satisfied_p (op, cn))
1893 goto op_success;
1894 break;
1896 break;
1899 while (p += len, c);
1900 if (!win_p)
1901 break;
1902 /* We can make the alternative match by spilling a register
1903 to memory or loading something into a register. Count a
1904 cost of one reload (the equivalent of the '?' constraint). */
1905 this_reject += 6;
1906 op_success:
1910 if (nop >= recog_data.n_operands)
1912 alts |= ALTERNATIVE_BIT (nalt);
1913 if (this_reject == 0)
1914 exact_alts |= ALTERNATIVE_BIT (nalt);
1917 if (commutative < 0)
1918 break;
1919 /* Swap forth and back to avoid changing recog_data. */
1920 std::swap (recog_data.operand[commutative],
1921 recog_data.operand[commutative + 1]);
1922 if (curr_swapped)
1923 break;
1925 return exact_alts ? exact_alts : alts;
1928 /* Return the number of the output non-early clobber operand which
1929 should be the same in any case as operand with number OP_NUM (or
1930 negative value if there is no such operand). ALTS is the mask
1931 of alternatives that we should consider. SINGLE_INPUT_OP_HAS_CSTR_P
1932 should be set in this function, it indicates whether there is only
1933 a single input operand which has the matching constraint on the
1934 output operand at the position specified in return value. If the
1935 pattern allows any one of several input operands holds the matching
1936 constraint, it's set as false, one typical case is destructive FMA
1937 instruction on target rs6000. Note that for a non-NO_REG preferred
1938 register class with no free register move copy, if the parameter
1939 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to one, this function
1940 will check all available alternatives for matching constraints,
1941 even if it has found or will find one alternative with non-NO_REG
1942 regclass, it can respect more cases with matching constraints. If
1943 PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to zero,
1944 SINGLE_INPUT_OP_HAS_CSTR_P is always true, it will stop to find
1945 matching constraint relationship once it hits some alternative with
1946 some non-NO_REG regclass. */
1948 ira_get_dup_out_num (int op_num, alternative_mask alts,
1949 bool &single_input_op_has_cstr_p)
1951 int curr_alt, c, original;
1952 bool ignore_p, use_commut_op_p;
1953 const char *str;
1955 if (op_num < 0 || recog_data.n_alternatives == 0)
1956 return -1;
1957 /* We should find duplications only for input operands. */
1958 if (recog_data.operand_type[op_num] != OP_IN)
1959 return -1;
1960 str = recog_data.constraints[op_num];
1961 use_commut_op_p = false;
1962 single_input_op_has_cstr_p = true;
1964 rtx op = recog_data.operand[op_num];
1965 int op_regno = reg_or_subregno (op);
1966 enum reg_class op_pref_cl = reg_preferred_class (op_regno);
1967 machine_mode op_mode = GET_MODE (op);
1969 ira_init_register_move_cost_if_necessary (op_mode);
1970 /* If the preferred regclass isn't NO_REG, continue to find the matching
1971 constraint in all available alternatives with preferred regclass, even
1972 if we have found or will find one alternative whose constraint stands
1973 for a REG (non-NO_REG) regclass. Note that it would be fine not to
1974 respect matching constraint if the register copy is free, so exclude
1975 it. */
1976 bool respect_dup_despite_reg_cstr
1977 = param_ira_consider_dup_in_all_alts
1978 && op_pref_cl != NO_REGS
1979 && ira_register_move_cost[op_mode][op_pref_cl][op_pref_cl] > 0;
1981 /* Record the alternative whose constraint uses the same regclass as the
1982 preferred regclass, later if we find one matching constraint for this
1983 operand with preferred reclass, we will visit these recorded
1984 alternatives to check whether if there is one alternative in which no
1985 any INPUT operands have one matching constraint same as our candidate.
1986 If yes, it means there is one alternative which is perfectly fine
1987 without satisfying this matching constraint. If no, it means in any
1988 alternatives there is one other INPUT operand holding this matching
1989 constraint, it's fine to respect this matching constraint and further
1990 create this constraint copy since it would become harmless once some
1991 other takes preference and it's interfered. */
1992 alternative_mask pref_cl_alts;
1994 for (;;)
1996 pref_cl_alts = 0;
1998 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
1999 original = -1;;)
2001 c = *str;
2002 if (c == '\0')
2003 break;
2004 if (c == '#')
2005 ignore_p = true;
2006 else if (c == ',')
2008 curr_alt++;
2009 ignore_p = !TEST_BIT (alts, curr_alt);
2011 else if (! ignore_p)
2012 switch (c)
2014 case 'g':
2015 goto fail;
2016 default:
2018 enum constraint_num cn = lookup_constraint (str);
2019 enum reg_class cl = reg_class_for_constraint (cn);
2020 if (cl != NO_REGS && !targetm.class_likely_spilled_p (cl))
2022 if (respect_dup_despite_reg_cstr)
2024 /* If it's free to move from one preferred class to
2025 the one without matching constraint, it doesn't
2026 have to respect this constraint with costs. */
2027 if (cl != op_pref_cl
2028 && (ira_reg_class_intersect[cl][op_pref_cl]
2029 != NO_REGS)
2030 && (ira_may_move_in_cost[op_mode][op_pref_cl][cl]
2031 == 0))
2032 goto fail;
2033 else if (cl == op_pref_cl)
2034 pref_cl_alts |= ALTERNATIVE_BIT (curr_alt);
2036 else
2037 goto fail;
2039 if (constraint_satisfied_p (op, cn))
2040 goto fail;
2041 break;
2044 case '0': case '1': case '2': case '3': case '4':
2045 case '5': case '6': case '7': case '8': case '9':
2047 char *end;
2048 int n = (int) strtoul (str, &end, 10);
2049 str = end;
2050 if (original != -1 && original != n)
2051 goto fail;
2052 gcc_assert (n < recog_data.n_operands);
2053 if (respect_dup_despite_reg_cstr)
2055 const operand_alternative *op_alt
2056 = &recog_op_alt[curr_alt * recog_data.n_operands];
2057 /* Only respect the one with preferred rclass, without
2058 respect_dup_despite_reg_cstr it's possible to get
2059 one whose regclass isn't preferred first before,
2060 but it would fail since there should be other
2061 alternatives with preferred regclass. */
2062 if (op_alt[n].cl == op_pref_cl)
2063 original = n;
2065 else
2066 original = n;
2067 continue;
2070 str += CONSTRAINT_LEN (c, str);
2072 if (original == -1)
2073 goto fail;
2074 if (recog_data.operand_type[original] == OP_OUT)
2076 if (pref_cl_alts == 0)
2077 return original;
2078 /* Visit these recorded alternatives to check whether
2079 there is one alternative in which no any INPUT operands
2080 have one matching constraint same as our candidate.
2081 Give up this candidate if so. */
2082 int nop, nalt;
2083 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
2085 if (!TEST_BIT (pref_cl_alts, nalt))
2086 continue;
2087 const operand_alternative *op_alt
2088 = &recog_op_alt[nalt * recog_data.n_operands];
2089 bool dup_in_other = false;
2090 for (nop = 0; nop < recog_data.n_operands; nop++)
2092 if (recog_data.operand_type[nop] != OP_IN)
2093 continue;
2094 if (nop == op_num)
2095 continue;
2096 if (op_alt[nop].matches == original)
2098 dup_in_other = true;
2099 break;
2102 if (!dup_in_other)
2103 return -1;
2105 single_input_op_has_cstr_p = false;
2106 return original;
2108 fail:
2109 if (use_commut_op_p)
2110 break;
2111 use_commut_op_p = true;
2112 if (recog_data.constraints[op_num][0] == '%')
2113 str = recog_data.constraints[op_num + 1];
2114 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2115 str = recog_data.constraints[op_num - 1];
2116 else
2117 break;
2119 return -1;
2124 /* Search forward to see if the source register of a copy insn dies
2125 before either it or the destination register is modified, but don't
2126 scan past the end of the basic block. If so, we can replace the
2127 source with the destination and let the source die in the copy
2128 insn.
2130 This will reduce the number of registers live in that range and may
2131 enable the destination and the source coalescing, thus often saving
2132 one register in addition to a register-register copy. */
2134 static void
2135 decrease_live_ranges_number (void)
2137 basic_block bb;
2138 rtx_insn *insn;
2139 rtx set, src, dest, dest_death, note;
2140 rtx_insn *p, *q;
2141 int sregno, dregno;
2143 if (! flag_expensive_optimizations)
2144 return;
2146 if (ira_dump_file)
2147 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2149 FOR_EACH_BB_FN (bb, cfun)
2150 FOR_BB_INSNS (bb, insn)
2152 set = single_set (insn);
2153 if (! set)
2154 continue;
2155 src = SET_SRC (set);
2156 dest = SET_DEST (set);
2157 if (! REG_P (src) || ! REG_P (dest)
2158 || find_reg_note (insn, REG_DEAD, src))
2159 continue;
2160 sregno = REGNO (src);
2161 dregno = REGNO (dest);
2163 /* We don't want to mess with hard regs if register classes
2164 are small. */
2165 if (sregno == dregno
2166 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2167 && (sregno < FIRST_PSEUDO_REGISTER
2168 || dregno < FIRST_PSEUDO_REGISTER))
2169 /* We don't see all updates to SP if they are in an
2170 auto-inc memory reference, so we must disallow this
2171 optimization on them. */
2172 || sregno == STACK_POINTER_REGNUM
2173 || dregno == STACK_POINTER_REGNUM)
2174 continue;
2176 dest_death = NULL_RTX;
2178 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2180 if (! INSN_P (p))
2181 continue;
2182 if (BLOCK_FOR_INSN (p) != bb)
2183 break;
2185 if (reg_set_p (src, p) || reg_set_p (dest, p)
2186 /* If SRC is an asm-declared register, it must not be
2187 replaced in any asm. Unfortunately, the REG_EXPR
2188 tree for the asm variable may be absent in the SRC
2189 rtx, so we can't check the actual register
2190 declaration easily (the asm operand will have it,
2191 though). To avoid complicating the test for a rare
2192 case, we just don't perform register replacement
2193 for a hard reg mentioned in an asm. */
2194 || (sregno < FIRST_PSEUDO_REGISTER
2195 && asm_noperands (PATTERN (p)) >= 0
2196 && reg_overlap_mentioned_p (src, PATTERN (p)))
2197 /* Don't change hard registers used by a call. */
2198 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2199 && find_reg_fusage (p, USE, src))
2200 /* Don't change a USE of a register. */
2201 || (GET_CODE (PATTERN (p)) == USE
2202 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2203 break;
2205 /* See if all of SRC dies in P. This test is slightly
2206 more conservative than it needs to be. */
2207 if ((note = find_regno_note (p, REG_DEAD, sregno))
2208 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2210 int failed = 0;
2212 /* We can do the optimization. Scan forward from INSN
2213 again, replacing regs as we go. Set FAILED if a
2214 replacement can't be done. In that case, we can't
2215 move the death note for SRC. This should be
2216 rare. */
2218 /* Set to stop at next insn. */
2219 for (q = next_real_insn (insn);
2220 q != next_real_insn (p);
2221 q = next_real_insn (q))
2223 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2225 /* If SRC is a hard register, we might miss
2226 some overlapping registers with
2227 validate_replace_rtx, so we would have to
2228 undo it. We can't if DEST is present in
2229 the insn, so fail in that combination of
2230 cases. */
2231 if (sregno < FIRST_PSEUDO_REGISTER
2232 && reg_mentioned_p (dest, PATTERN (q)))
2233 failed = 1;
2235 /* Attempt to replace all uses. */
2236 else if (!validate_replace_rtx (src, dest, q))
2237 failed = 1;
2239 /* If this succeeded, but some part of the
2240 register is still present, undo the
2241 replacement. */
2242 else if (sregno < FIRST_PSEUDO_REGISTER
2243 && reg_overlap_mentioned_p (src, PATTERN (q)))
2245 validate_replace_rtx (dest, src, q);
2246 failed = 1;
2250 /* If DEST dies here, remove the death note and
2251 save it for later. Make sure ALL of DEST dies
2252 here; again, this is overly conservative. */
2253 if (! dest_death
2254 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2256 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2257 remove_note (q, dest_death);
2258 else
2260 failed = 1;
2261 dest_death = 0;
2266 if (! failed)
2268 /* Move death note of SRC from P to INSN. */
2269 remove_note (p, note);
2270 XEXP (note, 1) = REG_NOTES (insn);
2271 REG_NOTES (insn) = note;
2274 /* DEST is also dead if INSN has a REG_UNUSED note for
2275 DEST. */
2276 if (! dest_death
2277 && (dest_death
2278 = find_regno_note (insn, REG_UNUSED, dregno)))
2280 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2281 remove_note (insn, dest_death);
2284 /* Put death note of DEST on P if we saw it die. */
2285 if (dest_death)
2287 XEXP (dest_death, 1) = REG_NOTES (p);
2288 REG_NOTES (p) = dest_death;
2290 break;
2293 /* If SRC is a hard register which is set or killed in
2294 some other way, we can't do this optimization. */
2295 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2296 break;
2303 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2304 static bool
2305 ira_bad_reload_regno_1 (int regno, rtx x)
2307 int x_regno, n, i;
2308 ira_allocno_t a;
2309 enum reg_class pref;
2311 /* We only deal with pseudo regs. */
2312 if (! x || GET_CODE (x) != REG)
2313 return false;
2315 x_regno = REGNO (x);
2316 if (x_regno < FIRST_PSEUDO_REGISTER)
2317 return false;
2319 /* If the pseudo prefers REGNO explicitly, then do not consider
2320 REGNO a bad spill choice. */
2321 pref = reg_preferred_class (x_regno);
2322 if (reg_class_size[pref] == 1)
2323 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2325 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2326 poor choice for a reload regno. */
2327 a = ira_regno_allocno_map[x_regno];
2328 n = ALLOCNO_NUM_OBJECTS (a);
2329 for (i = 0; i < n; i++)
2331 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2332 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2333 return true;
2335 return false;
2338 /* Return nonzero if REGNO is a particularly bad choice for reloading
2339 IN or OUT. */
2340 bool
2341 ira_bad_reload_regno (int regno, rtx in, rtx out)
2343 return (ira_bad_reload_regno_1 (regno, in)
2344 || ira_bad_reload_regno_1 (regno, out));
2347 /* Add register clobbers from asm statements. */
2348 static void
2349 compute_regs_asm_clobbered (void)
2351 basic_block bb;
2353 FOR_EACH_BB_FN (bb, cfun)
2355 rtx_insn *insn;
2356 FOR_BB_INSNS_REVERSE (bb, insn)
2358 df_ref def;
2360 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2361 FOR_EACH_INSN_DEF (def, insn)
2363 unsigned int dregno = DF_REF_REGNO (def);
2364 if (HARD_REGISTER_NUM_P (dregno))
2365 add_to_hard_reg_set (&crtl->asm_clobbers,
2366 GET_MODE (DF_REF_REAL_REG (def)),
2367 dregno);
2374 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2375 REGS_EVER_LIVE. */
2376 void
2377 ira_setup_eliminable_regset (void)
2379 int i;
2380 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2381 int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2383 /* Setup is_leaf as frame_pointer_required may use it. This function
2384 is called by sched_init before ira if scheduling is enabled. */
2385 crtl->is_leaf = leaf_function_p ();
2387 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2388 sp for alloca. So we can't eliminate the frame pointer in that
2389 case. At some point, we should improve this by emitting the
2390 sp-adjusting insns for this case. */
2391 frame_pointer_needed
2392 = (! flag_omit_frame_pointer
2393 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2394 /* We need the frame pointer to catch stack overflow exceptions if
2395 the stack pointer is moving (as for the alloca case just above). */
2396 || (STACK_CHECK_MOVING_SP
2397 && flag_stack_check
2398 && flag_exceptions
2399 && cfun->can_throw_non_call_exceptions)
2400 || crtl->accesses_prior_frames
2401 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2402 || targetm.frame_pointer_required ());
2404 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2405 RTL is very small. So if we use frame pointer for RA and RTL
2406 actually prevents this, we will spill pseudos assigned to the
2407 frame pointer in LRA. */
2409 if (frame_pointer_needed)
2410 for (i = 0; i < fp_reg_count; i++)
2411 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2413 ira_no_alloc_regs = no_unit_alloc_regs;
2414 CLEAR_HARD_REG_SET (eliminable_regset);
2416 compute_regs_asm_clobbered ();
2418 /* Build the regset of all eliminable registers and show we can't
2419 use those that we already know won't be eliminated. */
2420 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2422 bool cannot_elim
2423 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2424 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2426 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2428 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2430 if (cannot_elim)
2431 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2433 else if (cannot_elim)
2434 error ("%s cannot be used in %<asm%> here",
2435 reg_names[eliminables[i].from]);
2436 else
2437 df_set_regs_ever_live (eliminables[i].from, true);
2439 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2441 for (i = 0; i < fp_reg_count; i++)
2442 if (global_regs[HARD_FRAME_POINTER_REGNUM + i])
2443 /* Nothing to do: the register is already treated as live
2444 where appropriate, and cannot be eliminated. */
2446 else if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2447 HARD_FRAME_POINTER_REGNUM + i))
2449 SET_HARD_REG_BIT (eliminable_regset,
2450 HARD_FRAME_POINTER_REGNUM + i);
2451 if (frame_pointer_needed)
2452 SET_HARD_REG_BIT (ira_no_alloc_regs,
2453 HARD_FRAME_POINTER_REGNUM + i);
2455 else if (frame_pointer_needed)
2456 error ("%s cannot be used in %<asm%> here",
2457 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2458 else
2459 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2465 /* Vector of substitutions of register numbers,
2466 used to map pseudo regs into hardware regs.
2467 This is set up as a result of register allocation.
2468 Element N is the hard reg assigned to pseudo reg N,
2469 or is -1 if no hard reg was assigned.
2470 If N is a hard reg number, element N is N. */
2471 short *reg_renumber;
2473 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2474 the allocation found by IRA. */
2475 static void
2476 setup_reg_renumber (void)
2478 int regno, hard_regno;
2479 ira_allocno_t a;
2480 ira_allocno_iterator ai;
2482 caller_save_needed = 0;
2483 FOR_EACH_ALLOCNO (a, ai)
2485 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2486 continue;
2487 /* There are no caps at this point. */
2488 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2489 if (! ALLOCNO_ASSIGNED_P (a))
2490 /* It can happen if A is not referenced but partially anticipated
2491 somewhere in a region. */
2492 ALLOCNO_ASSIGNED_P (a) = true;
2493 ira_free_allocno_updated_costs (a);
2494 hard_regno = ALLOCNO_HARD_REGNO (a);
2495 regno = ALLOCNO_REGNO (a);
2496 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2497 if (hard_regno >= 0)
2499 int i, nwords;
2500 enum reg_class pclass;
2501 ira_object_t obj;
2503 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2504 nwords = ALLOCNO_NUM_OBJECTS (a);
2505 for (i = 0; i < nwords; i++)
2507 obj = ALLOCNO_OBJECT (a, i);
2508 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2509 |= ~reg_class_contents[pclass];
2511 if (ira_need_caller_save_p (a, hard_regno))
2513 ira_assert (!optimize || flag_caller_saves
2514 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2515 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2516 || regno >= ira_reg_equiv_len
2517 || ira_equiv_no_lvalue_p (regno));
2518 caller_save_needed = 1;
2524 /* Set up allocno assignment flags for further allocation
2525 improvements. */
2526 static void
2527 setup_allocno_assignment_flags (void)
2529 int hard_regno;
2530 ira_allocno_t a;
2531 ira_allocno_iterator ai;
2533 FOR_EACH_ALLOCNO (a, ai)
2535 if (! ALLOCNO_ASSIGNED_P (a))
2536 /* It can happen if A is not referenced but partially anticipated
2537 somewhere in a region. */
2538 ira_free_allocno_updated_costs (a);
2539 hard_regno = ALLOCNO_HARD_REGNO (a);
2540 /* Don't assign hard registers to allocnos which are destination
2541 of removed store at the end of loop. It has no sense to keep
2542 the same value in different hard registers. It is also
2543 impossible to assign hard registers correctly to such
2544 allocnos because the cost info and info about intersected
2545 calls are incorrect for them. */
2546 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2547 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2548 || (ALLOCNO_MEMORY_COST (a)
2549 - ALLOCNO_CLASS_COST (a)) < 0);
2550 ira_assert
2551 (hard_regno < 0
2552 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2553 reg_class_contents[ALLOCNO_CLASS (a)]));
2557 /* Evaluate overall allocation cost and the costs for using hard
2558 registers and memory for allocnos. */
2559 static void
2560 calculate_allocation_cost (void)
2562 int hard_regno, cost;
2563 ira_allocno_t a;
2564 ira_allocno_iterator ai;
2566 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2567 FOR_EACH_ALLOCNO (a, ai)
2569 hard_regno = ALLOCNO_HARD_REGNO (a);
2570 ira_assert (hard_regno < 0
2571 || (ira_hard_reg_in_set_p
2572 (hard_regno, ALLOCNO_MODE (a),
2573 reg_class_contents[ALLOCNO_CLASS (a)])));
2574 if (hard_regno < 0)
2576 cost = ALLOCNO_MEMORY_COST (a);
2577 ira_mem_cost += cost;
2579 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2581 cost = (ALLOCNO_HARD_REG_COSTS (a)
2582 [ira_class_hard_reg_index
2583 [ALLOCNO_CLASS (a)][hard_regno]]);
2584 ira_reg_cost += cost;
2586 else
2588 cost = ALLOCNO_CLASS_COST (a);
2589 ira_reg_cost += cost;
2591 ira_overall_cost += cost;
2594 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2596 fprintf (ira_dump_file,
2597 "+++Costs: overall %" PRId64
2598 ", reg %" PRId64
2599 ", mem %" PRId64
2600 ", ld %" PRId64
2601 ", st %" PRId64
2602 ", move %" PRId64,
2603 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2604 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2605 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2606 ira_move_loops_num, ira_additional_jumps_num);
2611 #ifdef ENABLE_IRA_CHECKING
2612 /* Check the correctness of the allocation. We do need this because
2613 of complicated code to transform more one region internal
2614 representation into one region representation. */
2615 static void
2616 check_allocation (void)
2618 ira_allocno_t a;
2619 int hard_regno, nregs, conflict_nregs;
2620 ira_allocno_iterator ai;
2622 FOR_EACH_ALLOCNO (a, ai)
2624 int n = ALLOCNO_NUM_OBJECTS (a);
2625 int i;
2627 if (ALLOCNO_CAP_MEMBER (a) != NULL
2628 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2629 continue;
2630 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2631 if (nregs == 1)
2632 /* We allocated a single hard register. */
2633 n = 1;
2634 else if (n > 1)
2635 /* We allocated multiple hard registers, and we will test
2636 conflicts in a granularity of single hard regs. */
2637 nregs = 1;
2639 for (i = 0; i < n; i++)
2641 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2642 ira_object_t conflict_obj;
2643 ira_object_conflict_iterator oci;
2644 int this_regno = hard_regno;
2645 if (n > 1)
2647 if (REG_WORDS_BIG_ENDIAN)
2648 this_regno += n - i - 1;
2649 else
2650 this_regno += i;
2652 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2654 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2655 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2656 if (conflict_hard_regno < 0)
2657 continue;
2658 if (ira_soft_conflict (a, conflict_a))
2659 continue;
2661 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2662 ALLOCNO_MODE (conflict_a));
2664 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2665 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2667 if (REG_WORDS_BIG_ENDIAN)
2668 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2669 - OBJECT_SUBWORD (conflict_obj) - 1);
2670 else
2671 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2672 conflict_nregs = 1;
2675 if ((conflict_hard_regno <= this_regno
2676 && this_regno < conflict_hard_regno + conflict_nregs)
2677 || (this_regno <= conflict_hard_regno
2678 && conflict_hard_regno < this_regno + nregs))
2680 fprintf (stderr, "bad allocation for %d and %d\n",
2681 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2682 gcc_unreachable ();
2688 #endif
2690 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2691 be already calculated. */
2692 static void
2693 setup_reg_equiv_init (void)
2695 int i;
2696 int max_regno = max_reg_num ();
2698 for (i = 0; i < max_regno; i++)
2699 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2702 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2703 are insns which were generated for such movement. It is assumed
2704 that FROM_REGNO and TO_REGNO always have the same value at the
2705 point of any move containing such registers. This function is used
2706 to update equiv info for register shuffles on the region borders
2707 and for caller save/restore insns. */
2708 void
2709 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2711 rtx_insn *insn;
2712 rtx x, note;
2714 if (! ira_reg_equiv[from_regno].defined_p
2715 && (! ira_reg_equiv[to_regno].defined_p
2716 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2717 && ! MEM_READONLY_P (x))))
2718 return;
2719 insn = insns;
2720 if (NEXT_INSN (insn) != NULL_RTX)
2722 if (! ira_reg_equiv[to_regno].defined_p)
2724 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2725 return;
2727 ira_reg_equiv[to_regno].defined_p = false;
2728 ira_reg_equiv[to_regno].memory
2729 = ira_reg_equiv[to_regno].constant
2730 = ira_reg_equiv[to_regno].invariant
2731 = ira_reg_equiv[to_regno].init_insns = NULL;
2732 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2733 fprintf (ira_dump_file,
2734 " Invalidating equiv info for reg %d\n", to_regno);
2735 return;
2737 /* It is possible that FROM_REGNO still has no equivalence because
2738 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2739 insn was not processed yet. */
2740 if (ira_reg_equiv[from_regno].defined_p)
2742 ira_reg_equiv[to_regno].defined_p = true;
2743 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2745 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2746 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2747 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2748 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2749 ira_reg_equiv[to_regno].memory = x;
2750 if (! MEM_READONLY_P (x))
2751 /* We don't add the insn to insn init list because memory
2752 equivalence is just to say what memory is better to use
2753 when the pseudo is spilled. */
2754 return;
2756 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2758 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2759 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2760 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2761 ira_reg_equiv[to_regno].constant = x;
2763 else
2765 x = ira_reg_equiv[from_regno].invariant;
2766 ira_assert (x != NULL_RTX);
2767 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2768 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2769 ira_reg_equiv[to_regno].invariant = x;
2771 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2773 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2774 gcc_assert (note != NULL_RTX);
2775 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2777 fprintf (ira_dump_file,
2778 " Adding equiv note to insn %u for reg %d ",
2779 INSN_UID (insn), to_regno);
2780 dump_value_slim (ira_dump_file, x, 1);
2781 fprintf (ira_dump_file, "\n");
2785 ira_reg_equiv[to_regno].init_insns
2786 = gen_rtx_INSN_LIST (VOIDmode, insn,
2787 ira_reg_equiv[to_regno].init_insns);
2788 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2789 fprintf (ira_dump_file,
2790 " Adding equiv init move insn %u to reg %d\n",
2791 INSN_UID (insn), to_regno);
2794 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2795 by IRA. */
2796 static void
2797 fix_reg_equiv_init (void)
2799 int max_regno = max_reg_num ();
2800 int i, new_regno, max;
2801 rtx set;
2802 rtx_insn_list *x, *next, *prev;
2803 rtx_insn *insn;
2805 if (max_regno_before_ira < max_regno)
2807 max = vec_safe_length (reg_equivs);
2808 grow_reg_equivs ();
2809 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2810 for (prev = NULL, x = reg_equiv_init (i);
2811 x != NULL_RTX;
2812 x = next)
2814 next = x->next ();
2815 insn = x->insn ();
2816 set = single_set (insn);
2817 ira_assert (set != NULL_RTX
2818 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2819 if (REG_P (SET_DEST (set))
2820 && ((int) REGNO (SET_DEST (set)) == i
2821 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2822 new_regno = REGNO (SET_DEST (set));
2823 else if (REG_P (SET_SRC (set))
2824 && ((int) REGNO (SET_SRC (set)) == i
2825 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2826 new_regno = REGNO (SET_SRC (set));
2827 else
2828 gcc_unreachable ();
2829 if (new_regno == i)
2830 prev = x;
2831 else
2833 /* Remove the wrong list element. */
2834 if (prev == NULL_RTX)
2835 reg_equiv_init (i) = next;
2836 else
2837 XEXP (prev, 1) = next;
2838 XEXP (x, 1) = reg_equiv_init (new_regno);
2839 reg_equiv_init (new_regno) = x;
2845 #ifdef ENABLE_IRA_CHECKING
2846 /* Print redundant memory-memory copies. */
2847 static void
2848 print_redundant_copies (void)
2850 int hard_regno;
2851 ira_allocno_t a;
2852 ira_copy_t cp, next_cp;
2853 ira_allocno_iterator ai;
2855 FOR_EACH_ALLOCNO (a, ai)
2857 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2858 /* It is a cap. */
2859 continue;
2860 hard_regno = ALLOCNO_HARD_REGNO (a);
2861 if (hard_regno >= 0)
2862 continue;
2863 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2864 if (cp->first == a)
2865 next_cp = cp->next_first_allocno_copy;
2866 else
2868 next_cp = cp->next_second_allocno_copy;
2869 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2870 && cp->insn != NULL_RTX
2871 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2872 fprintf (ira_dump_file,
2873 " Redundant move from %d(freq %d):%d\n",
2874 INSN_UID (cp->insn), cp->freq, hard_regno);
2878 #endif
2880 /* Setup preferred and alternative classes for new pseudo-registers
2881 created by IRA starting with START. */
2882 static void
2883 setup_preferred_alternate_classes_for_new_pseudos (int start)
2885 int i, old_regno;
2886 int max_regno = max_reg_num ();
2888 for (i = start; i < max_regno; i++)
2890 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2891 ira_assert (i != old_regno);
2892 setup_reg_classes (i, reg_preferred_class (old_regno),
2893 reg_alternate_class (old_regno),
2894 reg_allocno_class (old_regno));
2895 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2896 fprintf (ira_dump_file,
2897 " New r%d: setting preferred %s, alternative %s\n",
2898 i, reg_class_names[reg_preferred_class (old_regno)],
2899 reg_class_names[reg_alternate_class (old_regno)]);
2904 /* The number of entries allocated in reg_info. */
2905 static int allocated_reg_info_size;
2907 /* Regional allocation can create new pseudo-registers. This function
2908 expands some arrays for pseudo-registers. */
2909 static void
2910 expand_reg_info (void)
2912 int i;
2913 int size = max_reg_num ();
2915 resize_reg_info ();
2916 for (i = allocated_reg_info_size; i < size; i++)
2917 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2918 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2919 allocated_reg_info_size = size;
2922 /* Return TRUE if there is too high register pressure in the function.
2923 It is used to decide when stack slot sharing is worth to do. */
2924 static bool
2925 too_high_register_pressure_p (void)
2927 int i;
2928 enum reg_class pclass;
2930 for (i = 0; i < ira_pressure_classes_num; i++)
2932 pclass = ira_pressure_classes[i];
2933 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2934 return true;
2936 return false;
2941 /* Indicate that hard register number FROM was eliminated and replaced with
2942 an offset from hard register number TO. The status of hard registers live
2943 at the start of a basic block is updated by replacing a use of FROM with
2944 a use of TO. */
2946 void
2947 mark_elimination (int from, int to)
2949 basic_block bb;
2950 bitmap r;
2952 FOR_EACH_BB_FN (bb, cfun)
2954 r = DF_LR_IN (bb);
2955 if (bitmap_bit_p (r, from))
2957 bitmap_clear_bit (r, from);
2958 bitmap_set_bit (r, to);
2960 if (! df_live)
2961 continue;
2962 r = DF_LIVE_IN (bb);
2963 if (bitmap_bit_p (r, from))
2965 bitmap_clear_bit (r, from);
2966 bitmap_set_bit (r, to);
2973 /* The length of the following array. */
2974 int ira_reg_equiv_len;
2976 /* Info about equiv. info for each register. */
2977 struct ira_reg_equiv_s *ira_reg_equiv;
2979 /* Expand ira_reg_equiv if necessary. */
2980 void
2981 ira_expand_reg_equiv (void)
2983 int old = ira_reg_equiv_len;
2985 if (ira_reg_equiv_len > max_reg_num ())
2986 return;
2987 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2988 ira_reg_equiv
2989 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2990 ira_reg_equiv_len
2991 * sizeof (struct ira_reg_equiv_s));
2992 gcc_assert (old < ira_reg_equiv_len);
2993 memset (ira_reg_equiv + old, 0,
2994 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2997 static void
2998 init_reg_equiv (void)
3000 ira_reg_equiv_len = 0;
3001 ira_reg_equiv = NULL;
3002 ira_expand_reg_equiv ();
3005 static void
3006 finish_reg_equiv (void)
3008 free (ira_reg_equiv);
3013 struct equivalence
3015 /* Set when a REG_EQUIV note is found or created. Use to
3016 keep track of what memory accesses might be created later,
3017 e.g. by reload. */
3018 rtx replacement;
3019 rtx *src_p;
3021 /* The list of each instruction which initializes this register.
3023 NULL indicates we know nothing about this register's equivalence
3024 properties.
3026 An INSN_LIST with a NULL insn indicates this pseudo is already
3027 known to not have a valid equivalence. */
3028 rtx_insn_list *init_insns;
3030 /* Loop depth is used to recognize equivalences which appear
3031 to be present within the same loop (or in an inner loop). */
3032 short loop_depth;
3033 /* Nonzero if this had a preexisting REG_EQUIV note. */
3034 unsigned char is_arg_equivalence : 1;
3035 /* Set when an attempt should be made to replace a register
3036 with the associated src_p entry. */
3037 unsigned char replace : 1;
3038 /* Set if this register has no known equivalence. */
3039 unsigned char no_equiv : 1;
3040 /* Set if this register is mentioned in a paradoxical subreg. */
3041 unsigned char pdx_subregs : 1;
3044 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3045 structure for that register. */
3046 static struct equivalence *reg_equiv;
3048 /* Used for communication between the following two functions. */
3049 struct equiv_mem_data
3051 /* A MEM that we wish to ensure remains unchanged. */
3052 rtx equiv_mem;
3054 /* Set true if EQUIV_MEM is modified. */
3055 bool equiv_mem_modified;
3058 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3059 Called via note_stores. */
3060 static void
3061 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3062 void *data)
3064 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
3066 if ((REG_P (dest)
3067 && reg_overlap_mentioned_p (dest, info->equiv_mem))
3068 || (MEM_P (dest)
3069 && anti_dependence (info->equiv_mem, dest)))
3070 info->equiv_mem_modified = true;
3073 enum valid_equiv { valid_none, valid_combine, valid_reload };
3075 /* Verify that no store between START and the death of REG invalidates
3076 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3077 by storing into an overlapping memory location, or with a non-const
3078 CALL_INSN.
3080 Return VALID_RELOAD if MEMREF remains valid for both reload and
3081 combine_and_move insns, VALID_COMBINE if only valid for
3082 combine_and_move_insns, and VALID_NONE otherwise. */
3083 static enum valid_equiv
3084 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
3086 rtx_insn *insn;
3087 rtx note;
3088 struct equiv_mem_data info = { memref, false };
3089 enum valid_equiv ret = valid_reload;
3091 /* If the memory reference has side effects or is volatile, it isn't a
3092 valid equivalence. */
3093 if (side_effects_p (memref))
3094 return valid_none;
3096 for (insn = start; insn; insn = NEXT_INSN (insn))
3098 if (!INSN_P (insn))
3099 continue;
3101 if (find_reg_note (insn, REG_DEAD, reg))
3102 return ret;
3104 if (CALL_P (insn))
3106 /* We can combine a reg def from one insn into a reg use in
3107 another over a call if the memory is readonly or the call
3108 const/pure. However, we can't set reg_equiv notes up for
3109 reload over any call. The problem is the equivalent form
3110 may reference a pseudo which gets assigned a call
3111 clobbered hard reg. When we later replace REG with its
3112 equivalent form, the value in the call-clobbered reg has
3113 been changed and all hell breaks loose. */
3114 ret = valid_combine;
3115 if (!MEM_READONLY_P (memref)
3116 && !RTL_CONST_OR_PURE_CALL_P (insn))
3117 return valid_none;
3120 note_stores (insn, validate_equiv_mem_from_store, &info);
3121 if (info.equiv_mem_modified)
3122 return valid_none;
3124 /* If a register mentioned in MEMREF is modified via an
3125 auto-increment, we lose the equivalence. Do the same if one
3126 dies; although we could extend the life, it doesn't seem worth
3127 the trouble. */
3129 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3130 if ((REG_NOTE_KIND (note) == REG_INC
3131 || REG_NOTE_KIND (note) == REG_DEAD)
3132 && REG_P (XEXP (note, 0))
3133 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3134 return valid_none;
3137 return valid_none;
3140 /* Returns zero if X is known to be invariant. */
3141 static int
3142 equiv_init_varies_p (rtx x)
3144 RTX_CODE code = GET_CODE (x);
3145 int i;
3146 const char *fmt;
3148 switch (code)
3150 case MEM:
3151 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3153 case CONST:
3154 CASE_CONST_ANY:
3155 case SYMBOL_REF:
3156 case LABEL_REF:
3157 return 0;
3159 case REG:
3160 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3162 case ASM_OPERANDS:
3163 if (MEM_VOLATILE_P (x))
3164 return 1;
3166 /* Fall through. */
3168 default:
3169 break;
3172 fmt = GET_RTX_FORMAT (code);
3173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3174 if (fmt[i] == 'e')
3176 if (equiv_init_varies_p (XEXP (x, i)))
3177 return 1;
3179 else if (fmt[i] == 'E')
3181 int j;
3182 for (j = 0; j < XVECLEN (x, i); j++)
3183 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3184 return 1;
3187 return 0;
3190 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3191 X is only movable if the registers it uses have equivalent initializations
3192 which appear to be within the same loop (or in an inner loop) and movable
3193 or if they are not candidates for local_alloc and don't vary. */
3194 static int
3195 equiv_init_movable_p (rtx x, int regno)
3197 int i, j;
3198 const char *fmt;
3199 enum rtx_code code = GET_CODE (x);
3201 switch (code)
3203 case SET:
3204 return equiv_init_movable_p (SET_SRC (x), regno);
3206 case CLOBBER:
3207 return 0;
3209 case PRE_INC:
3210 case PRE_DEC:
3211 case POST_INC:
3212 case POST_DEC:
3213 case PRE_MODIFY:
3214 case POST_MODIFY:
3215 return 0;
3217 case REG:
3218 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3219 && reg_equiv[REGNO (x)].replace)
3220 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3221 && ! rtx_varies_p (x, 0)));
3223 case UNSPEC_VOLATILE:
3224 return 0;
3226 case ASM_OPERANDS:
3227 if (MEM_VOLATILE_P (x))
3228 return 0;
3230 /* Fall through. */
3232 default:
3233 break;
3236 fmt = GET_RTX_FORMAT (code);
3237 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3238 switch (fmt[i])
3240 case 'e':
3241 if (! equiv_init_movable_p (XEXP (x, i), regno))
3242 return 0;
3243 break;
3244 case 'E':
3245 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3246 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3247 return 0;
3248 break;
3251 return 1;
3254 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3256 /* Auxiliary function for memref_referenced_p. Process setting X for
3257 MEMREF store. */
3258 static bool
3259 process_set_for_memref_referenced_p (rtx memref, rtx x)
3261 /* If we are setting a MEM, it doesn't count (its address does), but any
3262 other SET_DEST that has a MEM in it is referencing the MEM. */
3263 if (MEM_P (x))
3265 if (memref_referenced_p (memref, XEXP (x, 0), true))
3266 return true;
3268 else if (memref_referenced_p (memref, x, false))
3269 return true;
3271 return false;
3274 /* TRUE if X references a memory location (as a read if READ_P) that
3275 would be affected by a store to MEMREF. */
3276 static bool
3277 memref_referenced_p (rtx memref, rtx x, bool read_p)
3279 int i, j;
3280 const char *fmt;
3281 enum rtx_code code = GET_CODE (x);
3283 switch (code)
3285 case CONST:
3286 case LABEL_REF:
3287 case SYMBOL_REF:
3288 CASE_CONST_ANY:
3289 case PC:
3290 case HIGH:
3291 case LO_SUM:
3292 return false;
3294 case REG:
3295 return (reg_equiv[REGNO (x)].replacement
3296 && memref_referenced_p (memref,
3297 reg_equiv[REGNO (x)].replacement, read_p));
3299 case MEM:
3300 /* Memory X might have another effective type than MEMREF. */
3301 if (read_p || true_dependence (memref, VOIDmode, x))
3302 return true;
3303 break;
3305 case SET:
3306 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3307 return true;
3309 return memref_referenced_p (memref, SET_SRC (x), true);
3311 case CLOBBER:
3312 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3313 return true;
3315 return false;
3317 case PRE_DEC:
3318 case POST_DEC:
3319 case PRE_INC:
3320 case POST_INC:
3321 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3322 return true;
3324 return memref_referenced_p (memref, XEXP (x, 0), true);
3326 case POST_MODIFY:
3327 case PRE_MODIFY:
3328 /* op0 = op0 + op1 */
3329 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3330 return true;
3332 if (memref_referenced_p (memref, XEXP (x, 0), true))
3333 return true;
3335 return memref_referenced_p (memref, XEXP (x, 1), true);
3337 default:
3338 break;
3341 fmt = GET_RTX_FORMAT (code);
3342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3343 switch (fmt[i])
3345 case 'e':
3346 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3347 return true;
3348 break;
3349 case 'E':
3350 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3351 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3352 return true;
3353 break;
3356 return false;
3359 /* TRUE if some insn in the range (START, END] references a memory location
3360 that would be affected by a store to MEMREF.
3362 Callers should not call this routine if START is after END in the
3363 RTL chain. */
3365 static int
3366 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3368 rtx_insn *insn;
3370 for (insn = NEXT_INSN (start);
3371 insn && insn != NEXT_INSN (end);
3372 insn = NEXT_INSN (insn))
3374 if (!NONDEBUG_INSN_P (insn))
3375 continue;
3377 if (memref_referenced_p (memref, PATTERN (insn), false))
3378 return 1;
3380 /* Nonconst functions may access memory. */
3381 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3382 return 1;
3385 gcc_assert (insn == NEXT_INSN (end));
3386 return 0;
3389 /* Mark REG as having no known equivalence.
3390 Some instructions might have been processed before and furnished
3391 with REG_EQUIV notes for this register; these notes will have to be
3392 removed.
3393 STORE is the piece of RTL that does the non-constant / conflicting
3394 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3395 but needs to be there because this function is called from note_stores. */
3396 static void
3397 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3398 void *data ATTRIBUTE_UNUSED)
3400 int regno;
3401 rtx_insn_list *list;
3403 if (!REG_P (reg))
3404 return;
3405 regno = REGNO (reg);
3406 reg_equiv[regno].no_equiv = 1;
3407 list = reg_equiv[regno].init_insns;
3408 if (list && list->insn () == NULL)
3409 return;
3410 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3411 reg_equiv[regno].replacement = NULL_RTX;
3412 /* This doesn't matter for equivalences made for argument registers, we
3413 should keep their initialization insns. */
3414 if (reg_equiv[regno].is_arg_equivalence)
3415 return;
3416 ira_reg_equiv[regno].defined_p = false;
3417 ira_reg_equiv[regno].init_insns = NULL;
3418 for (; list; list = list->next ())
3420 rtx_insn *insn = list->insn ();
3421 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3425 /* Check whether the SUBREG is a paradoxical subreg and set the result
3426 in PDX_SUBREGS. */
3428 static void
3429 set_paradoxical_subreg (rtx_insn *insn)
3431 subrtx_iterator::array_type array;
3432 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3434 const_rtx subreg = *iter;
3435 if (GET_CODE (subreg) == SUBREG)
3437 const_rtx reg = SUBREG_REG (subreg);
3438 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3439 reg_equiv[REGNO (reg)].pdx_subregs = true;
3444 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3445 equivalent replacement. */
3447 static rtx
3448 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3450 if (REG_P (loc))
3452 bitmap cleared_regs = (bitmap) data;
3453 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3454 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3455 NULL_RTX, adjust_cleared_regs, data);
3457 return NULL_RTX;
3460 /* Given register REGNO is set only once, return true if the defining
3461 insn dominates all uses. */
3463 static bool
3464 def_dominates_uses (int regno)
3466 df_ref def = DF_REG_DEF_CHAIN (regno);
3468 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3469 /* If this is an artificial def (eh handler regs, hard frame pointer
3470 for non-local goto, regs defined on function entry) then def_info
3471 is NULL and the reg is always live before any use. We might
3472 reasonably return true in that case, but since the only call
3473 of this function is currently here in ira.cc when we are looking
3474 at a defining insn we can't have an artificial def as that would
3475 bump DF_REG_DEF_COUNT. */
3476 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3478 rtx_insn *def_insn = DF_REF_INSN (def);
3479 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3481 for (df_ref use = DF_REG_USE_CHAIN (regno);
3482 use;
3483 use = DF_REF_NEXT_REG (use))
3485 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3486 /* Only check real uses, not artificial ones. */
3487 if (use_info)
3489 rtx_insn *use_insn = DF_REF_INSN (use);
3490 if (!DEBUG_INSN_P (use_insn))
3492 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3493 if (use_bb != def_bb
3494 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3495 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3496 return false;
3500 return true;
3503 /* Scan the instructions before update_equiv_regs. Record which registers
3504 are referenced as paradoxical subregs. Also check for cases in which
3505 the current function needs to save a register that one of its call
3506 instructions clobbers.
3508 These things are logically unrelated, but it's more efficient to do
3509 them together. */
3511 static void
3512 update_equiv_regs_prescan (void)
3514 basic_block bb;
3515 rtx_insn *insn;
3516 function_abi_aggregator callee_abis;
3518 FOR_EACH_BB_FN (bb, cfun)
3519 FOR_BB_INSNS (bb, insn)
3520 if (NONDEBUG_INSN_P (insn))
3522 set_paradoxical_subreg (insn);
3523 if (CALL_P (insn))
3524 callee_abis.note_callee_abi (insn_callee_abi (insn));
3527 HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3528 if (!hard_reg_set_empty_p (extra_caller_saves))
3529 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3530 if (TEST_HARD_REG_BIT (extra_caller_saves, regno))
3531 df_set_regs_ever_live (regno, true);
3534 /* Find registers that are equivalent to a single value throughout the
3535 compilation (either because they can be referenced in memory or are
3536 set once from a single constant). Lower their priority for a
3537 register.
3539 If such a register is only referenced once, try substituting its
3540 value into the using insn. If it succeeds, we can eliminate the
3541 register completely.
3543 Initialize init_insns in ira_reg_equiv array. */
3544 static void
3545 update_equiv_regs (void)
3547 rtx_insn *insn;
3548 basic_block bb;
3550 /* Scan the insns and find which registers have equivalences. Do this
3551 in a separate scan of the insns because (due to -fcse-follow-jumps)
3552 a register can be set below its use. */
3553 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3554 FOR_EACH_BB_FN (bb, cfun)
3556 int loop_depth = bb_loop_depth (bb);
3558 for (insn = BB_HEAD (bb);
3559 insn != NEXT_INSN (BB_END (bb));
3560 insn = NEXT_INSN (insn))
3562 rtx note;
3563 rtx set;
3564 rtx dest, src;
3565 int regno;
3567 if (! INSN_P (insn))
3568 continue;
3570 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3571 if (REG_NOTE_KIND (note) == REG_INC)
3572 no_equiv (XEXP (note, 0), note, NULL);
3574 set = single_set (insn);
3576 /* If this insn contains more (or less) than a single SET,
3577 only mark all destinations as having no known equivalence. */
3578 if (set == NULL_RTX
3579 || side_effects_p (SET_SRC (set)))
3581 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3582 continue;
3584 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3586 int i;
3588 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3590 rtx part = XVECEXP (PATTERN (insn), 0, i);
3591 if (part != set)
3592 note_pattern_stores (part, no_equiv, NULL);
3596 dest = SET_DEST (set);
3597 src = SET_SRC (set);
3599 /* See if this is setting up the equivalence between an argument
3600 register and its stack slot. */
3601 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3602 if (note)
3604 gcc_assert (REG_P (dest));
3605 regno = REGNO (dest);
3607 /* Note that we don't want to clear init_insns in
3608 ira_reg_equiv even if there are multiple sets of this
3609 register. */
3610 reg_equiv[regno].is_arg_equivalence = 1;
3612 /* The insn result can have equivalence memory although
3613 the equivalence is not set up by the insn. We add
3614 this insn to init insns as it is a flag for now that
3615 regno has an equivalence. We will remove the insn
3616 from init insn list later. */
3617 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3618 ira_reg_equiv[regno].init_insns
3619 = gen_rtx_INSN_LIST (VOIDmode, insn,
3620 ira_reg_equiv[regno].init_insns);
3622 /* Continue normally in case this is a candidate for
3623 replacements. */
3626 if (!optimize)
3627 continue;
3629 /* We only handle the case of a pseudo register being set
3630 once, or always to the same value. */
3631 /* ??? The mn10200 port breaks if we add equivalences for
3632 values that need an ADDRESS_REGS register and set them equivalent
3633 to a MEM of a pseudo. The actual problem is in the over-conservative
3634 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3635 calculate_needs, but we traditionally work around this problem
3636 here by rejecting equivalences when the destination is in a register
3637 that's likely spilled. This is fragile, of course, since the
3638 preferred class of a pseudo depends on all instructions that set
3639 or use it. */
3641 if (!REG_P (dest)
3642 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3643 || (reg_equiv[regno].init_insns
3644 && reg_equiv[regno].init_insns->insn () == NULL)
3645 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3646 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3648 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3649 also set somewhere else to a constant. */
3650 note_pattern_stores (set, no_equiv, NULL);
3651 continue;
3654 /* Don't set reg mentioned in a paradoxical subreg
3655 equivalent to a mem. */
3656 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3658 note_pattern_stores (set, no_equiv, NULL);
3659 continue;
3662 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3664 /* cse sometimes generates function invariants, but doesn't put a
3665 REG_EQUAL note on the insn. Since this note would be redundant,
3666 there's no point creating it earlier than here. */
3667 if (! note && ! rtx_varies_p (src, 0))
3668 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3670 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3671 since it represents a function call. */
3672 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3673 note = NULL_RTX;
3675 if (DF_REG_DEF_COUNT (regno) != 1)
3677 bool equal_p = true;
3678 rtx_insn_list *list;
3680 /* If we have already processed this pseudo and determined it
3681 cannot have an equivalence, then honor that decision. */
3682 if (reg_equiv[regno].no_equiv)
3683 continue;
3685 if (! note
3686 || rtx_varies_p (XEXP (note, 0), 0)
3687 || (reg_equiv[regno].replacement
3688 && ! rtx_equal_p (XEXP (note, 0),
3689 reg_equiv[regno].replacement)))
3691 no_equiv (dest, set, NULL);
3692 continue;
3695 list = reg_equiv[regno].init_insns;
3696 for (; list; list = list->next ())
3698 rtx note_tmp;
3699 rtx_insn *insn_tmp;
3701 insn_tmp = list->insn ();
3702 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3703 gcc_assert (note_tmp);
3704 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3706 equal_p = false;
3707 break;
3711 if (! equal_p)
3713 no_equiv (dest, set, NULL);
3714 continue;
3718 /* Record this insn as initializing this register. */
3719 reg_equiv[regno].init_insns
3720 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3722 /* If this register is known to be equal to a constant, record that
3723 it is always equivalent to the constant.
3724 Note that it is possible to have a register use before
3725 the def in loops (see gcc.c-torture/execute/pr79286.c)
3726 where the reg is undefined on first use. If the def insn
3727 won't trap we can use it as an equivalence, effectively
3728 choosing the "undefined" value for the reg to be the
3729 same as the value set by the def. */
3730 if (DF_REG_DEF_COUNT (regno) == 1
3731 && note
3732 && !rtx_varies_p (XEXP (note, 0), 0)
3733 && (!may_trap_or_fault_p (XEXP (note, 0))
3734 || def_dominates_uses (regno)))
3736 rtx note_value = XEXP (note, 0);
3737 remove_note (insn, note);
3738 set_unique_reg_note (insn, REG_EQUIV, note_value);
3741 /* If this insn introduces a "constant" register, decrease the priority
3742 of that register. Record this insn if the register is only used once
3743 more and the equivalence value is the same as our source.
3745 The latter condition is checked for two reasons: First, it is an
3746 indication that it may be more efficient to actually emit the insn
3747 as written (if no registers are available, reload will substitute
3748 the equivalence). Secondly, it avoids problems with any registers
3749 dying in this insn whose death notes would be missed.
3751 If we don't have a REG_EQUIV note, see if this insn is loading
3752 a register used only in one basic block from a MEM. If so, and the
3753 MEM remains unchanged for the life of the register, add a REG_EQUIV
3754 note. */
3755 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3757 rtx replacement = NULL_RTX;
3758 if (note)
3759 replacement = XEXP (note, 0);
3760 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3761 && MEM_P (SET_SRC (set)))
3763 enum valid_equiv validity;
3764 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3765 if (validity != valid_none)
3767 replacement = copy_rtx (SET_SRC (set));
3768 if (validity == valid_reload)
3769 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3773 /* If we haven't done so, record for reload that this is an
3774 equivalencing insn. */
3775 if (note && !reg_equiv[regno].is_arg_equivalence)
3776 ira_reg_equiv[regno].init_insns
3777 = gen_rtx_INSN_LIST (VOIDmode, insn,
3778 ira_reg_equiv[regno].init_insns);
3780 if (replacement)
3782 reg_equiv[regno].replacement = replacement;
3783 reg_equiv[regno].src_p = &SET_SRC (set);
3784 reg_equiv[regno].loop_depth = (short) loop_depth;
3786 /* Don't mess with things live during setjmp. */
3787 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3789 /* If the register is referenced exactly twice, meaning it is
3790 set once and used once, indicate that the reference may be
3791 replaced by the equivalence we computed above. Do this
3792 even if the register is only used in one block so that
3793 dependencies can be handled where the last register is
3794 used in a different block (i.e. HIGH / LO_SUM sequences)
3795 and to reduce the number of registers alive across
3796 calls. */
3798 if (REG_N_REFS (regno) == 2
3799 && (rtx_equal_p (replacement, src)
3800 || ! equiv_init_varies_p (src))
3801 && NONJUMP_INSN_P (insn)
3802 && equiv_init_movable_p (PATTERN (insn), regno))
3803 reg_equiv[regno].replace = 1;
3810 /* For insns that set a MEM to the contents of a REG that is only used
3811 in a single basic block, see if the register is always equivalent
3812 to that memory location and if moving the store from INSN to the
3813 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3814 initializing insn. */
3815 static void
3816 add_store_equivs (void)
3818 auto_bitmap seen_insns;
3820 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3822 rtx set, src, dest;
3823 unsigned regno;
3824 rtx_insn *init_insn;
3826 bitmap_set_bit (seen_insns, INSN_UID (insn));
3828 if (! INSN_P (insn))
3829 continue;
3831 set = single_set (insn);
3832 if (! set)
3833 continue;
3835 dest = SET_DEST (set);
3836 src = SET_SRC (set);
3838 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3839 REG_EQUIV is likely more useful than the one we are adding. */
3840 if (MEM_P (dest) && REG_P (src)
3841 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3842 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3843 && DF_REG_DEF_COUNT (regno) == 1
3844 && ! reg_equiv[regno].pdx_subregs
3845 && reg_equiv[regno].init_insns != NULL
3846 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3847 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3848 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3849 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3850 && ! memref_used_between_p (dest, init_insn, insn)
3851 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3852 multiple sets. */
3853 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3855 /* This insn makes the equivalence, not the one initializing
3856 the register. */
3857 ira_reg_equiv[regno].init_insns
3858 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3859 df_notes_rescan (init_insn);
3860 if (dump_file)
3861 fprintf (dump_file,
3862 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3863 INSN_UID (init_insn),
3864 INSN_UID (insn));
3869 /* Scan all regs killed in an insn to see if any of them are registers
3870 only used that once. If so, see if we can replace the reference
3871 with the equivalent form. If we can, delete the initializing
3872 reference and this register will go away. If we can't replace the
3873 reference, and the initializing reference is within the same loop
3874 (or in an inner loop), then move the register initialization just
3875 before the use, so that they are in the same basic block. */
3876 static void
3877 combine_and_move_insns (void)
3879 auto_bitmap cleared_regs;
3880 int max = max_reg_num ();
3882 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3884 if (!reg_equiv[regno].replace)
3885 continue;
3887 rtx_insn *use_insn = 0;
3888 for (df_ref use = DF_REG_USE_CHAIN (regno);
3889 use;
3890 use = DF_REF_NEXT_REG (use))
3891 if (DF_REF_INSN_INFO (use))
3893 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3894 continue;
3895 gcc_assert (!use_insn);
3896 use_insn = DF_REF_INSN (use);
3898 gcc_assert (use_insn);
3900 /* Don't substitute into jumps. indirect_jump_optimize does
3901 this for anything we are prepared to handle. */
3902 if (JUMP_P (use_insn))
3903 continue;
3905 /* Also don't substitute into a conditional trap insn -- it can become
3906 an unconditional trap, and that is a flow control insn. */
3907 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3908 continue;
3910 df_ref def = DF_REG_DEF_CHAIN (regno);
3911 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3912 rtx_insn *def_insn = DF_REF_INSN (def);
3914 /* We may not move instructions that can throw, since that
3915 changes basic block boundaries and we are not prepared to
3916 adjust the CFG to match. */
3917 if (can_throw_internal (def_insn))
3918 continue;
3920 /* Instructions with multiple sets can only be moved if DF analysis is
3921 performed for all of the registers set. See PR91052. */
3922 if (multiple_sets (def_insn))
3923 continue;
3925 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3926 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3927 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3928 continue;
3930 if (asm_noperands (PATTERN (def_insn)) < 0
3931 && validate_replace_rtx (regno_reg_rtx[regno],
3932 *reg_equiv[regno].src_p, use_insn))
3934 rtx link;
3935 /* Append the REG_DEAD notes from def_insn. */
3936 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3938 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3940 *p = XEXP (link, 1);
3941 XEXP (link, 1) = REG_NOTES (use_insn);
3942 REG_NOTES (use_insn) = link;
3944 else
3945 p = &XEXP (link, 1);
3948 remove_death (regno, use_insn);
3949 SET_REG_N_REFS (regno, 0);
3950 REG_FREQ (regno) = 0;
3951 df_ref use;
3952 FOR_EACH_INSN_USE (use, def_insn)
3954 unsigned int use_regno = DF_REF_REGNO (use);
3955 if (!HARD_REGISTER_NUM_P (use_regno))
3956 reg_equiv[use_regno].replace = 0;
3959 delete_insn (def_insn);
3961 reg_equiv[regno].init_insns = NULL;
3962 ira_reg_equiv[regno].init_insns = NULL;
3963 bitmap_set_bit (cleared_regs, regno);
3966 /* Move the initialization of the register to just before
3967 USE_INSN. Update the flow information. */
3968 else if (prev_nondebug_insn (use_insn) != def_insn)
3970 rtx_insn *new_insn;
3972 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3973 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3974 REG_NOTES (def_insn) = 0;
3975 /* Rescan it to process the notes. */
3976 df_insn_rescan (new_insn);
3978 /* Make sure this insn is recognized before reload begins,
3979 otherwise eliminate_regs_in_insn will die. */
3980 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3982 delete_insn (def_insn);
3984 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3986 REG_BASIC_BLOCK (regno) = use_bb->index;
3987 REG_N_CALLS_CROSSED (regno) = 0;
3989 if (use_insn == BB_HEAD (use_bb))
3990 BB_HEAD (use_bb) = new_insn;
3992 /* We know regno dies in use_insn, but inside a loop
3993 REG_DEAD notes might be missing when def_insn was in
3994 another basic block. However, when we move def_insn into
3995 this bb we'll definitely get a REG_DEAD note and reload
3996 will see the death. It's possible that update_equiv_regs
3997 set up an equivalence referencing regno for a reg set by
3998 use_insn, when regno was seen as non-local. Now that
3999 regno is local to this block, and dies, such an
4000 equivalence is invalid. */
4001 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
4003 rtx set = single_set (use_insn);
4004 if (set && REG_P (SET_DEST (set)))
4005 no_equiv (SET_DEST (set), set, NULL);
4008 ira_reg_equiv[regno].init_insns
4009 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
4010 bitmap_set_bit (cleared_regs, regno);
4014 if (!bitmap_empty_p (cleared_regs))
4016 basic_block bb;
4018 FOR_EACH_BB_FN (bb, cfun)
4020 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
4021 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
4022 if (!df_live)
4023 continue;
4024 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
4025 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
4028 /* Last pass - adjust debug insns referencing cleared regs. */
4029 if (MAY_HAVE_DEBUG_BIND_INSNS)
4030 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
4031 if (DEBUG_BIND_INSN_P (insn))
4033 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
4034 INSN_VAR_LOCATION_LOC (insn)
4035 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
4036 adjust_cleared_regs,
4037 (void *) cleared_regs);
4038 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
4039 df_insn_rescan (insn);
4044 /* A pass over indirect jumps, converting simple cases to direct jumps.
4045 Combine does this optimization too, but only within a basic block. */
4046 static void
4047 indirect_jump_optimize (void)
4049 basic_block bb;
4050 bool rebuild_p = false;
4052 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4054 rtx_insn *insn = BB_END (bb);
4055 if (!JUMP_P (insn)
4056 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
4057 continue;
4059 rtx x = pc_set (insn);
4060 if (!x || !REG_P (SET_SRC (x)))
4061 continue;
4063 int regno = REGNO (SET_SRC (x));
4064 if (DF_REG_DEF_COUNT (regno) == 1)
4066 df_ref def = DF_REG_DEF_CHAIN (regno);
4067 if (!DF_REF_IS_ARTIFICIAL (def))
4069 rtx_insn *def_insn = DF_REF_INSN (def);
4070 rtx lab = NULL_RTX;
4071 rtx set = single_set (def_insn);
4072 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
4073 lab = SET_SRC (set);
4074 else
4076 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
4077 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
4078 lab = XEXP (eqnote, 0);
4080 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
4081 rebuild_p = true;
4086 if (rebuild_p)
4088 timevar_push (TV_JUMP);
4089 rebuild_jump_labels (get_insns ());
4090 if (purge_all_dead_edges ())
4091 delete_unreachable_blocks ();
4092 timevar_pop (TV_JUMP);
4096 /* Set up fields memory, constant, and invariant from init_insns in
4097 the structures of array ira_reg_equiv. */
4098 static void
4099 setup_reg_equiv (void)
4101 int i;
4102 rtx_insn_list *elem, *prev_elem, *next_elem;
4103 rtx_insn *insn;
4104 rtx set, x;
4106 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
4107 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
4108 elem;
4109 prev_elem = elem, elem = next_elem)
4111 next_elem = elem->next ();
4112 insn = elem->insn ();
4113 set = single_set (insn);
4115 /* Init insns can set up equivalence when the reg is a destination or
4116 a source (in this case the destination is memory). */
4117 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
4119 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
4121 x = XEXP (x, 0);
4122 if (REG_P (SET_DEST (set))
4123 && REGNO (SET_DEST (set)) == (unsigned int) i
4124 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
4126 /* This insn reporting the equivalence but
4127 actually not setting it. Remove it from the
4128 list. */
4129 if (prev_elem == NULL)
4130 ira_reg_equiv[i].init_insns = next_elem;
4131 else
4132 XEXP (prev_elem, 1) = next_elem;
4133 elem = prev_elem;
4136 else if (REG_P (SET_DEST (set))
4137 && REGNO (SET_DEST (set)) == (unsigned int) i)
4138 x = SET_SRC (set);
4139 else
4141 gcc_assert (REG_P (SET_SRC (set))
4142 && REGNO (SET_SRC (set)) == (unsigned int) i);
4143 x = SET_DEST (set);
4145 if (! function_invariant_p (x)
4146 || ! flag_pic
4147 /* A function invariant is often CONSTANT_P but may
4148 include a register. We promise to only pass
4149 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
4150 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4152 /* It can happen that a REG_EQUIV note contains a MEM
4153 that is not a legitimate memory operand. As later
4154 stages of reload assume that all addresses found in
4155 the lra_regno_equiv_* arrays were originally
4156 legitimate, we ignore such REG_EQUIV notes. */
4157 if (memory_operand (x, VOIDmode))
4159 ira_reg_equiv[i].defined_p = true;
4160 ira_reg_equiv[i].memory = x;
4161 continue;
4163 else if (function_invariant_p (x))
4165 machine_mode mode;
4167 mode = GET_MODE (SET_DEST (set));
4168 if (GET_CODE (x) == PLUS
4169 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4170 /* This is PLUS of frame pointer and a constant,
4171 or fp, or argp. */
4172 ira_reg_equiv[i].invariant = x;
4173 else if (targetm.legitimate_constant_p (mode, x))
4174 ira_reg_equiv[i].constant = x;
4175 else
4177 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4178 if (ira_reg_equiv[i].memory == NULL_RTX)
4180 ira_reg_equiv[i].defined_p = false;
4181 ira_reg_equiv[i].init_insns = NULL;
4182 break;
4185 ira_reg_equiv[i].defined_p = true;
4186 continue;
4190 ira_reg_equiv[i].defined_p = false;
4191 ira_reg_equiv[i].init_insns = NULL;
4192 break;
4198 /* Print chain C to FILE. */
4199 static void
4200 print_insn_chain (FILE *file, class insn_chain *c)
4202 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4203 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4204 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4208 /* Print all reload_insn_chains to FILE. */
4209 static void
4210 print_insn_chains (FILE *file)
4212 class insn_chain *c;
4213 for (c = reload_insn_chain; c ; c = c->next)
4214 print_insn_chain (file, c);
4217 /* Return true if pseudo REGNO should be added to set live_throughout
4218 or dead_or_set of the insn chains for reload consideration. */
4219 static bool
4220 pseudo_for_reload_consideration_p (int regno)
4222 /* Consider spilled pseudos too for IRA because they still have a
4223 chance to get hard-registers in the reload when IRA is used. */
4224 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4227 /* Return true if we can track the individual bytes of subreg X.
4228 When returning true, set *OUTER_SIZE to the number of bytes in
4229 X itself, *INNER_SIZE to the number of bytes in the inner register
4230 and *START to the offset of the first byte. */
4231 static bool
4232 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4233 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4235 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4236 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4237 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4238 && SUBREG_BYTE (x).is_constant (start));
4241 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4242 a register with SIZE bytes, making the register live if INIT_VALUE. */
4243 static void
4244 init_live_subregs (bool init_value, sbitmap *live_subregs,
4245 bitmap live_subregs_used, int allocnum, int size)
4247 gcc_assert (size > 0);
4249 /* Been there, done that. */
4250 if (bitmap_bit_p (live_subregs_used, allocnum))
4251 return;
4253 /* Create a new one. */
4254 if (live_subregs[allocnum] == NULL)
4255 live_subregs[allocnum] = sbitmap_alloc (size);
4257 /* If the entire reg was live before blasting into subregs, we need
4258 to init all of the subregs to ones else init to 0. */
4259 if (init_value)
4260 bitmap_ones (live_subregs[allocnum]);
4261 else
4262 bitmap_clear (live_subregs[allocnum]);
4264 bitmap_set_bit (live_subregs_used, allocnum);
4267 /* Walk the insns of the current function and build reload_insn_chain,
4268 and record register life information. */
4269 static void
4270 build_insn_chain (void)
4272 unsigned int i;
4273 class insn_chain **p = &reload_insn_chain;
4274 basic_block bb;
4275 class insn_chain *c = NULL;
4276 class insn_chain *next = NULL;
4277 auto_bitmap live_relevant_regs;
4278 auto_bitmap elim_regset;
4279 /* live_subregs is a vector used to keep accurate information about
4280 which hardregs are live in multiword pseudos. live_subregs and
4281 live_subregs_used are indexed by pseudo number. The live_subreg
4282 entry for a particular pseudo is only used if the corresponding
4283 element is non zero in live_subregs_used. The sbitmap size of
4284 live_subreg[allocno] is number of bytes that the pseudo can
4285 occupy. */
4286 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4287 auto_bitmap live_subregs_used;
4289 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4290 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4291 bitmap_set_bit (elim_regset, i);
4292 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4294 bitmap_iterator bi;
4295 rtx_insn *insn;
4297 CLEAR_REG_SET (live_relevant_regs);
4298 bitmap_clear (live_subregs_used);
4300 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4302 if (i >= FIRST_PSEUDO_REGISTER)
4303 break;
4304 bitmap_set_bit (live_relevant_regs, i);
4307 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4308 FIRST_PSEUDO_REGISTER, i, bi)
4310 if (pseudo_for_reload_consideration_p (i))
4311 bitmap_set_bit (live_relevant_regs, i);
4314 FOR_BB_INSNS_REVERSE (bb, insn)
4316 if (!NOTE_P (insn) && !BARRIER_P (insn))
4318 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4319 df_ref def, use;
4321 c = new_insn_chain ();
4322 c->next = next;
4323 next = c;
4324 *p = c;
4325 p = &c->prev;
4327 c->insn = insn;
4328 c->block = bb->index;
4330 if (NONDEBUG_INSN_P (insn))
4331 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4333 unsigned int regno = DF_REF_REGNO (def);
4335 /* Ignore may clobbers because these are generated
4336 from calls. However, every other kind of def is
4337 added to dead_or_set. */
4338 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4340 if (regno < FIRST_PSEUDO_REGISTER)
4342 if (!fixed_regs[regno])
4343 bitmap_set_bit (&c->dead_or_set, regno);
4345 else if (pseudo_for_reload_consideration_p (regno))
4346 bitmap_set_bit (&c->dead_or_set, regno);
4349 if ((regno < FIRST_PSEUDO_REGISTER
4350 || reg_renumber[regno] >= 0
4351 || ira_conflicts_p)
4352 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4354 rtx reg = DF_REF_REG (def);
4355 HOST_WIDE_INT outer_size, inner_size, start;
4357 /* We can usually track the liveness of individual
4358 bytes within a subreg. The only exceptions are
4359 subregs wrapped in ZERO_EXTRACTs and subregs whose
4360 size is not known; in those cases we need to be
4361 conservative and treat the definition as a partial
4362 definition of the full register rather than a full
4363 definition of a specific part of the register. */
4364 if (GET_CODE (reg) == SUBREG
4365 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4366 && get_subreg_tracking_sizes (reg, &outer_size,
4367 &inner_size, &start))
4369 HOST_WIDE_INT last = start + outer_size;
4371 init_live_subregs
4372 (bitmap_bit_p (live_relevant_regs, regno),
4373 live_subregs, live_subregs_used, regno,
4374 inner_size);
4376 if (!DF_REF_FLAGS_IS_SET
4377 (def, DF_REF_STRICT_LOW_PART))
4379 /* Expand the range to cover entire words.
4380 Bytes added here are "don't care". */
4381 start
4382 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4383 last = ((last + UNITS_PER_WORD - 1)
4384 / UNITS_PER_WORD * UNITS_PER_WORD);
4387 /* Ignore the paradoxical bits. */
4388 if (last > SBITMAP_SIZE (live_subregs[regno]))
4389 last = SBITMAP_SIZE (live_subregs[regno]);
4391 while (start < last)
4393 bitmap_clear_bit (live_subregs[regno], start);
4394 start++;
4397 if (bitmap_empty_p (live_subregs[regno]))
4399 bitmap_clear_bit (live_subregs_used, regno);
4400 bitmap_clear_bit (live_relevant_regs, regno);
4402 else
4403 /* Set live_relevant_regs here because
4404 that bit has to be true to get us to
4405 look at the live_subregs fields. */
4406 bitmap_set_bit (live_relevant_regs, regno);
4408 else
4410 /* DF_REF_PARTIAL is generated for
4411 subregs, STRICT_LOW_PART, and
4412 ZERO_EXTRACT. We handle the subreg
4413 case above so here we have to keep from
4414 modeling the def as a killing def. */
4415 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4417 bitmap_clear_bit (live_subregs_used, regno);
4418 bitmap_clear_bit (live_relevant_regs, regno);
4424 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4425 bitmap_copy (&c->live_throughout, live_relevant_regs);
4427 if (NONDEBUG_INSN_P (insn))
4428 FOR_EACH_INSN_INFO_USE (use, insn_info)
4430 unsigned int regno = DF_REF_REGNO (use);
4431 rtx reg = DF_REF_REG (use);
4433 /* DF_REF_READ_WRITE on a use means that this use
4434 is fabricated from a def that is a partial set
4435 to a multiword reg. Here, we only model the
4436 subreg case that is not wrapped in ZERO_EXTRACT
4437 precisely so we do not need to look at the
4438 fabricated use. */
4439 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4440 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4441 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4442 continue;
4444 /* Add the last use of each var to dead_or_set. */
4445 if (!bitmap_bit_p (live_relevant_regs, regno))
4447 if (regno < FIRST_PSEUDO_REGISTER)
4449 if (!fixed_regs[regno])
4450 bitmap_set_bit (&c->dead_or_set, regno);
4452 else if (pseudo_for_reload_consideration_p (regno))
4453 bitmap_set_bit (&c->dead_or_set, regno);
4456 if (regno < FIRST_PSEUDO_REGISTER
4457 || pseudo_for_reload_consideration_p (regno))
4459 HOST_WIDE_INT outer_size, inner_size, start;
4460 if (GET_CODE (reg) == SUBREG
4461 && !DF_REF_FLAGS_IS_SET (use,
4462 DF_REF_SIGN_EXTRACT
4463 | DF_REF_ZERO_EXTRACT)
4464 && get_subreg_tracking_sizes (reg, &outer_size,
4465 &inner_size, &start))
4467 HOST_WIDE_INT last = start + outer_size;
4469 init_live_subregs
4470 (bitmap_bit_p (live_relevant_regs, regno),
4471 live_subregs, live_subregs_used, regno,
4472 inner_size);
4474 /* Ignore the paradoxical bits. */
4475 if (last > SBITMAP_SIZE (live_subregs[regno]))
4476 last = SBITMAP_SIZE (live_subregs[regno]);
4478 while (start < last)
4480 bitmap_set_bit (live_subregs[regno], start);
4481 start++;
4484 else
4485 /* Resetting the live_subregs_used is
4486 effectively saying do not use the subregs
4487 because we are reading the whole
4488 pseudo. */
4489 bitmap_clear_bit (live_subregs_used, regno);
4490 bitmap_set_bit (live_relevant_regs, regno);
4496 /* FIXME!! The following code is a disaster. Reload needs to see the
4497 labels and jump tables that are just hanging out in between
4498 the basic blocks. See pr33676. */
4499 insn = BB_HEAD (bb);
4501 /* Skip over the barriers and cruft. */
4502 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4503 || BLOCK_FOR_INSN (insn) == bb))
4504 insn = PREV_INSN (insn);
4506 /* While we add anything except barriers and notes, the focus is
4507 to get the labels and jump tables into the
4508 reload_insn_chain. */
4509 while (insn)
4511 if (!NOTE_P (insn) && !BARRIER_P (insn))
4513 if (BLOCK_FOR_INSN (insn))
4514 break;
4516 c = new_insn_chain ();
4517 c->next = next;
4518 next = c;
4519 *p = c;
4520 p = &c->prev;
4522 /* The block makes no sense here, but it is what the old
4523 code did. */
4524 c->block = bb->index;
4525 c->insn = insn;
4526 bitmap_copy (&c->live_throughout, live_relevant_regs);
4528 insn = PREV_INSN (insn);
4532 reload_insn_chain = c;
4533 *p = NULL;
4535 for (i = 0; i < (unsigned int) max_regno; i++)
4536 if (live_subregs[i] != NULL)
4537 sbitmap_free (live_subregs[i]);
4538 free (live_subregs);
4540 if (dump_file)
4541 print_insn_chains (dump_file);
4544 /* Examine the rtx found in *LOC, which is read or written to as determined
4545 by TYPE. Return false if we find a reason why an insn containing this
4546 rtx should not be moved (such as accesses to non-constant memory), true
4547 otherwise. */
4548 static bool
4549 rtx_moveable_p (rtx *loc, enum op_type type)
4551 const char *fmt;
4552 rtx x = *loc;
4553 int i, j;
4555 enum rtx_code code = GET_CODE (x);
4556 switch (code)
4558 case CONST:
4559 CASE_CONST_ANY:
4560 case SYMBOL_REF:
4561 case LABEL_REF:
4562 return true;
4564 case PC:
4565 return type == OP_IN;
4567 case REG:
4568 if (x == frame_pointer_rtx)
4569 return true;
4570 if (HARD_REGISTER_P (x))
4571 return false;
4573 return true;
4575 case MEM:
4576 if (type == OP_IN && MEM_READONLY_P (x))
4577 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4578 return false;
4580 case SET:
4581 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4582 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4584 case STRICT_LOW_PART:
4585 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4587 case ZERO_EXTRACT:
4588 case SIGN_EXTRACT:
4589 return (rtx_moveable_p (&XEXP (x, 0), type)
4590 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4591 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4593 case CLOBBER:
4594 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4596 case UNSPEC_VOLATILE:
4597 /* It is a bad idea to consider insns with such rtl
4598 as moveable ones. The insn scheduler also considers them as barrier
4599 for a reason. */
4600 return false;
4602 case ASM_OPERANDS:
4603 /* The same is true for volatile asm: it has unknown side effects, it
4604 cannot be moved at will. */
4605 if (MEM_VOLATILE_P (x))
4606 return false;
4608 default:
4609 break;
4612 fmt = GET_RTX_FORMAT (code);
4613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4615 if (fmt[i] == 'e')
4617 if (!rtx_moveable_p (&XEXP (x, i), type))
4618 return false;
4620 else if (fmt[i] == 'E')
4621 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4623 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4624 return false;
4627 return true;
4630 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4631 to give dominance relationships between two insns I1 and I2. */
4632 static bool
4633 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4635 basic_block bb1 = BLOCK_FOR_INSN (i1);
4636 basic_block bb2 = BLOCK_FOR_INSN (i2);
4638 if (bb1 == bb2)
4639 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4640 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4643 /* Record the range of register numbers added by find_moveable_pseudos. */
4644 int first_moveable_pseudo, last_moveable_pseudo;
4646 /* These two vectors hold data for every register added by
4647 find_movable_pseudos, with index 0 holding data for the
4648 first_moveable_pseudo. */
4649 /* The original home register. */
4650 static vec<rtx> pseudo_replaced_reg;
4652 /* Look for instances where we have an instruction that is known to increase
4653 register pressure, and whose result is not used immediately. If it is
4654 possible to move the instruction downwards to just before its first use,
4655 split its lifetime into two ranges. We create a new pseudo to compute the
4656 value, and emit a move instruction just before the first use. If, after
4657 register allocation, the new pseudo remains unallocated, the function
4658 move_unallocated_pseudos then deletes the move instruction and places
4659 the computation just before the first use.
4661 Such a move is safe and profitable if all the input registers remain live
4662 and unchanged between the original computation and its first use. In such
4663 a situation, the computation is known to increase register pressure, and
4664 moving it is known to at least not worsen it.
4666 We restrict moves to only those cases where a register remains unallocated,
4667 in order to avoid interfering too much with the instruction schedule. As
4668 an exception, we may move insns which only modify their input register
4669 (typically induction variables), as this increases the freedom for our
4670 intended transformation, and does not limit the second instruction
4671 scheduler pass. */
4673 static void
4674 find_moveable_pseudos (void)
4676 unsigned i;
4677 int max_regs = max_reg_num ();
4678 int max_uid = get_max_uid ();
4679 basic_block bb;
4680 int *uid_luid = XNEWVEC (int, max_uid);
4681 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4682 /* A set of registers which are live but not modified throughout a block. */
4683 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4684 last_basic_block_for_fn (cfun));
4685 /* A set of registers which only exist in a given basic block. */
4686 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4687 last_basic_block_for_fn (cfun));
4688 /* A set of registers which are set once, in an instruction that can be
4689 moved freely downwards, but are otherwise transparent to a block. */
4690 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4691 last_basic_block_for_fn (cfun));
4692 auto_bitmap live, used, set, interesting, unusable_as_input;
4693 bitmap_iterator bi;
4695 first_moveable_pseudo = max_regs;
4696 pseudo_replaced_reg.release ();
4697 pseudo_replaced_reg.safe_grow_cleared (max_regs, true);
4699 df_analyze ();
4700 calculate_dominance_info (CDI_DOMINATORS);
4702 i = 0;
4703 FOR_EACH_BB_FN (bb, cfun)
4705 rtx_insn *insn;
4706 bitmap transp = bb_transp_live + bb->index;
4707 bitmap moveable = bb_moveable_reg_sets + bb->index;
4708 bitmap local = bb_local + bb->index;
4710 bitmap_initialize (local, 0);
4711 bitmap_initialize (transp, 0);
4712 bitmap_initialize (moveable, 0);
4713 bitmap_copy (live, df_get_live_out (bb));
4714 bitmap_and_into (live, df_get_live_in (bb));
4715 bitmap_copy (transp, live);
4716 bitmap_clear (moveable);
4717 bitmap_clear (live);
4718 bitmap_clear (used);
4719 bitmap_clear (set);
4720 FOR_BB_INSNS (bb, insn)
4721 if (NONDEBUG_INSN_P (insn))
4723 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4724 df_ref def, use;
4726 uid_luid[INSN_UID (insn)] = i++;
4728 def = df_single_def (insn_info);
4729 use = df_single_use (insn_info);
4730 if (use
4731 && def
4732 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4733 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4734 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4736 unsigned regno = DF_REF_REGNO (use);
4737 bitmap_set_bit (moveable, regno);
4738 bitmap_set_bit (set, regno);
4739 bitmap_set_bit (used, regno);
4740 bitmap_clear_bit (transp, regno);
4741 continue;
4743 FOR_EACH_INSN_INFO_USE (use, insn_info)
4745 unsigned regno = DF_REF_REGNO (use);
4746 bitmap_set_bit (used, regno);
4747 if (bitmap_clear_bit (moveable, regno))
4748 bitmap_clear_bit (transp, regno);
4751 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4753 unsigned regno = DF_REF_REGNO (def);
4754 bitmap_set_bit (set, regno);
4755 bitmap_clear_bit (transp, regno);
4756 bitmap_clear_bit (moveable, regno);
4761 FOR_EACH_BB_FN (bb, cfun)
4763 bitmap local = bb_local + bb->index;
4764 rtx_insn *insn;
4766 FOR_BB_INSNS (bb, insn)
4767 if (NONDEBUG_INSN_P (insn))
4769 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4770 rtx_insn *def_insn;
4771 rtx closest_use, note;
4772 df_ref def, use;
4773 unsigned regno;
4774 bool all_dominated, all_local;
4775 machine_mode mode;
4777 def = df_single_def (insn_info);
4778 /* There must be exactly one def in this insn. */
4779 if (!def || !single_set (insn))
4780 continue;
4781 /* This must be the only definition of the reg. We also limit
4782 which modes we deal with so that we can assume we can generate
4783 move instructions. */
4784 regno = DF_REF_REGNO (def);
4785 mode = GET_MODE (DF_REF_REG (def));
4786 if (DF_REG_DEF_COUNT (regno) != 1
4787 || !DF_REF_INSN_INFO (def)
4788 || HARD_REGISTER_NUM_P (regno)
4789 || DF_REG_EQ_USE_COUNT (regno) > 0
4790 || (!INTEGRAL_MODE_P (mode)
4791 && !FLOAT_MODE_P (mode)
4792 && !OPAQUE_MODE_P (mode)))
4793 continue;
4794 def_insn = DF_REF_INSN (def);
4796 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4797 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4798 break;
4800 if (note)
4802 if (dump_file)
4803 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4804 regno);
4805 bitmap_set_bit (unusable_as_input, regno);
4806 continue;
4809 use = DF_REG_USE_CHAIN (regno);
4810 all_dominated = true;
4811 all_local = true;
4812 closest_use = NULL_RTX;
4813 for (; use; use = DF_REF_NEXT_REG (use))
4815 rtx_insn *insn;
4816 if (!DF_REF_INSN_INFO (use))
4818 all_dominated = false;
4819 all_local = false;
4820 break;
4822 insn = DF_REF_INSN (use);
4823 if (DEBUG_INSN_P (insn))
4824 continue;
4825 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4826 all_local = false;
4827 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4828 all_dominated = false;
4829 if (closest_use != insn && closest_use != const0_rtx)
4831 if (closest_use == NULL_RTX)
4832 closest_use = insn;
4833 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4834 closest_use = insn;
4835 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4836 closest_use = const0_rtx;
4839 if (!all_dominated)
4841 if (dump_file)
4842 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4843 regno);
4844 continue;
4846 if (all_local)
4847 bitmap_set_bit (local, regno);
4848 if (closest_use == const0_rtx || closest_use == NULL
4849 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4851 if (dump_file)
4852 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4853 closest_use == const0_rtx || closest_use == NULL
4854 ? " (no unique first use)" : "");
4855 continue;
4858 bitmap_set_bit (interesting, regno);
4859 /* If we get here, we know closest_use is a non-NULL insn
4860 (as opposed to const_0_rtx). */
4861 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4863 if (dump_file && (all_local || all_dominated))
4865 fprintf (dump_file, "Reg %u:", regno);
4866 if (all_local)
4867 fprintf (dump_file, " local to bb %d", bb->index);
4868 if (all_dominated)
4869 fprintf (dump_file, " def dominates all uses");
4870 if (closest_use != const0_rtx)
4871 fprintf (dump_file, " has unique first use");
4872 fputs ("\n", dump_file);
4877 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4879 df_ref def = DF_REG_DEF_CHAIN (i);
4880 rtx_insn *def_insn = DF_REF_INSN (def);
4881 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4882 bitmap def_bb_local = bb_local + def_block->index;
4883 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4884 bitmap def_bb_transp = bb_transp_live + def_block->index;
4885 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4886 rtx_insn *use_insn = closest_uses[i];
4887 df_ref use;
4888 bool all_ok = true;
4889 bool all_transp = true;
4891 if (!REG_P (DF_REF_REG (def)))
4892 continue;
4894 if (!local_to_bb_p)
4896 if (dump_file)
4897 fprintf (dump_file, "Reg %u not local to one basic block\n",
4899 continue;
4901 if (reg_equiv_init (i) != NULL_RTX)
4903 if (dump_file)
4904 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4906 continue;
4908 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4910 if (dump_file)
4911 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4912 INSN_UID (def_insn), i);
4913 continue;
4915 if (dump_file)
4916 fprintf (dump_file, "Examining insn %d, def for %d\n",
4917 INSN_UID (def_insn), i);
4918 FOR_EACH_INSN_USE (use, def_insn)
4920 unsigned regno = DF_REF_REGNO (use);
4921 if (bitmap_bit_p (unusable_as_input, regno))
4923 all_ok = false;
4924 if (dump_file)
4925 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4926 break;
4928 if (!bitmap_bit_p (def_bb_transp, regno))
4930 if (bitmap_bit_p (def_bb_moveable, regno)
4931 && !control_flow_insn_p (use_insn))
4933 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4935 rtx_insn *x = NEXT_INSN (def_insn);
4936 while (!modified_in_p (DF_REF_REG (use), x))
4938 gcc_assert (x != use_insn);
4939 x = NEXT_INSN (x);
4941 if (dump_file)
4942 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4943 regno, INSN_UID (x));
4944 emit_insn_after (PATTERN (x), use_insn);
4945 set_insn_deleted (x);
4947 else
4949 if (dump_file)
4950 fprintf (dump_file, " input reg %u modified between def and use\n",
4951 regno);
4952 all_transp = false;
4955 else
4956 all_transp = false;
4959 if (!all_ok)
4960 continue;
4961 if (!dbg_cnt (ira_move))
4962 break;
4963 if (dump_file)
4964 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4966 if (all_transp)
4968 rtx def_reg = DF_REF_REG (def);
4969 rtx newreg = ira_create_new_reg (def_reg);
4970 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4972 unsigned nregno = REGNO (newreg);
4973 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4974 nregno -= max_regs;
4975 pseudo_replaced_reg[nregno] = def_reg;
4980 FOR_EACH_BB_FN (bb, cfun)
4982 bitmap_clear (bb_local + bb->index);
4983 bitmap_clear (bb_transp_live + bb->index);
4984 bitmap_clear (bb_moveable_reg_sets + bb->index);
4986 free (uid_luid);
4987 free (closest_uses);
4988 free (bb_local);
4989 free (bb_transp_live);
4990 free (bb_moveable_reg_sets);
4992 last_moveable_pseudo = max_reg_num ();
4994 fix_reg_equiv_init ();
4995 expand_reg_info ();
4996 regstat_free_n_sets_and_refs ();
4997 regstat_free_ri ();
4998 regstat_init_n_sets_and_refs ();
4999 regstat_compute_ri ();
5000 free_dominance_info (CDI_DOMINATORS);
5003 /* If SET pattern SET is an assignment from a hard register to a pseudo which
5004 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
5005 the destination. Otherwise return NULL. */
5007 static rtx
5008 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
5010 rtx src = SET_SRC (set);
5011 rtx dest = SET_DEST (set);
5012 if (!REG_P (src) || !HARD_REGISTER_P (src)
5013 || !REG_P (dest) || HARD_REGISTER_P (dest)
5014 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
5015 return NULL;
5016 return dest;
5019 /* If insn is interesting for parameter range-splitting shrink-wrapping
5020 preparation, i.e. it is a single set from a hard register to a pseudo, which
5021 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
5022 parallel statement with only one such statement, return the destination.
5023 Otherwise return NULL. */
5025 static rtx
5026 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
5028 if (!INSN_P (insn))
5029 return NULL;
5030 rtx pat = PATTERN (insn);
5031 if (GET_CODE (pat) == SET)
5032 return interesting_dest_for_shprep_1 (pat, call_dom);
5034 if (GET_CODE (pat) != PARALLEL)
5035 return NULL;
5036 rtx ret = NULL;
5037 for (int i = 0; i < XVECLEN (pat, 0); i++)
5039 rtx sub = XVECEXP (pat, 0, i);
5040 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
5041 continue;
5042 if (GET_CODE (sub) != SET
5043 || side_effects_p (sub))
5044 return NULL;
5045 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
5046 if (dest && ret)
5047 return NULL;
5048 if (dest)
5049 ret = dest;
5051 return ret;
5054 /* Split live ranges of pseudos that are loaded from hard registers in the
5055 first BB in a BB that dominates all non-sibling call if such a BB can be
5056 found and is not in a loop. Return true if the function has made any
5057 changes. */
5059 static bool
5060 split_live_ranges_for_shrink_wrap (void)
5062 basic_block bb, call_dom = NULL;
5063 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5064 rtx_insn *insn, *last_interesting_insn = NULL;
5065 auto_bitmap need_new, reachable;
5066 vec<basic_block> queue;
5068 if (!SHRINK_WRAPPING_ENABLED)
5069 return false;
5071 queue.create (n_basic_blocks_for_fn (cfun));
5073 FOR_EACH_BB_FN (bb, cfun)
5074 FOR_BB_INSNS (bb, insn)
5075 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
5077 if (bb == first)
5079 queue.release ();
5080 return false;
5083 bitmap_set_bit (need_new, bb->index);
5084 bitmap_set_bit (reachable, bb->index);
5085 queue.quick_push (bb);
5086 break;
5089 if (queue.is_empty ())
5091 queue.release ();
5092 return false;
5095 while (!queue.is_empty ())
5097 edge e;
5098 edge_iterator ei;
5100 bb = queue.pop ();
5101 FOR_EACH_EDGE (e, ei, bb->succs)
5102 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5103 && bitmap_set_bit (reachable, e->dest->index))
5104 queue.quick_push (e->dest);
5106 queue.release ();
5108 FOR_BB_INSNS (first, insn)
5110 rtx dest = interesting_dest_for_shprep (insn, NULL);
5111 if (!dest)
5112 continue;
5114 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
5115 return false;
5117 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
5118 use;
5119 use = DF_REF_NEXT_REG (use))
5121 int ubbi = DF_REF_BB (use)->index;
5122 if (bitmap_bit_p (reachable, ubbi))
5123 bitmap_set_bit (need_new, ubbi);
5125 last_interesting_insn = insn;
5128 if (!last_interesting_insn)
5129 return false;
5131 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5132 if (call_dom == first)
5133 return false;
5135 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5136 while (bb_loop_depth (call_dom) > 0)
5137 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5138 loop_optimizer_finalize ();
5140 if (call_dom == first)
5141 return false;
5143 calculate_dominance_info (CDI_POST_DOMINATORS);
5144 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5146 free_dominance_info (CDI_POST_DOMINATORS);
5147 return false;
5149 free_dominance_info (CDI_POST_DOMINATORS);
5151 if (dump_file)
5152 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5153 call_dom->index);
5155 bool ret = false;
5156 FOR_BB_INSNS (first, insn)
5158 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5159 if (!dest || dest == pic_offset_table_rtx)
5160 continue;
5162 bool need_newreg = false;
5163 df_ref use, next;
5164 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5166 rtx_insn *uin = DF_REF_INSN (use);
5167 next = DF_REF_NEXT_REG (use);
5169 if (DEBUG_INSN_P (uin))
5170 continue;
5172 basic_block ubb = BLOCK_FOR_INSN (uin);
5173 if (ubb == call_dom
5174 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5176 need_newreg = true;
5177 break;
5181 if (need_newreg)
5183 rtx newreg = ira_create_new_reg (dest);
5185 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5187 rtx_insn *uin = DF_REF_INSN (use);
5188 next = DF_REF_NEXT_REG (use);
5190 basic_block ubb = BLOCK_FOR_INSN (uin);
5191 if (ubb == call_dom
5192 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5193 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5196 rtx_insn *new_move = gen_move_insn (newreg, dest);
5197 emit_insn_after (new_move, bb_note (call_dom));
5198 if (dump_file)
5200 fprintf (dump_file, "Split live-range of register ");
5201 print_rtl_single (dump_file, dest);
5203 ret = true;
5206 if (insn == last_interesting_insn)
5207 break;
5209 apply_change_group ();
5210 return ret;
5213 /* Perform the second half of the transformation started in
5214 find_moveable_pseudos. We look for instances where the newly introduced
5215 pseudo remains unallocated, and remove it by moving the definition to
5216 just before its use, replacing the move instruction generated by
5217 find_moveable_pseudos. */
5218 static void
5219 move_unallocated_pseudos (void)
5221 int i;
5222 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5223 if (reg_renumber[i] < 0)
5225 int idx = i - first_moveable_pseudo;
5226 rtx other_reg = pseudo_replaced_reg[idx];
5227 /* The iterating range [first_moveable_pseudo, last_moveable_pseudo)
5228 covers every new pseudo created in find_moveable_pseudos,
5229 regardless of the validation with it is successful or not.
5230 So we need to skip the pseudos which were used in those failed
5231 validations to avoid unexpected DF info and consequent ICE.
5232 We only set pseudo_replaced_reg[] when the validation is successful
5233 in find_moveable_pseudos, it's enough to check it here. */
5234 if (!other_reg)
5235 continue;
5236 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5237 /* The use must follow all definitions of OTHER_REG, so we can
5238 insert the new definition immediately after any of them. */
5239 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5240 rtx_insn *move_insn = DF_REF_INSN (other_def);
5241 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5242 rtx set;
5243 int success;
5245 if (dump_file)
5246 fprintf (dump_file, "moving def of %d (insn %d now) ",
5247 REGNO (other_reg), INSN_UID (def_insn));
5249 delete_insn (move_insn);
5250 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5251 delete_insn (DF_REF_INSN (other_def));
5252 delete_insn (def_insn);
5254 set = single_set (newinsn);
5255 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5256 gcc_assert (success);
5257 if (dump_file)
5258 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5259 INSN_UID (newinsn), i);
5260 SET_REG_N_REFS (i, 0);
5263 first_moveable_pseudo = last_moveable_pseudo = 0;
5268 /* Code dealing with scratches (changing them onto
5269 pseudos and restoring them from the pseudos).
5271 We change scratches into pseudos at the beginning of IRA to
5272 simplify dealing with them (conflicts, hard register assignments).
5274 If the pseudo denoting scratch was spilled it means that we do not
5275 need a hard register for it. Such pseudos are transformed back to
5276 scratches at the end of LRA. */
5278 /* Description of location of a former scratch operand. */
5279 struct sloc
5281 rtx_insn *insn; /* Insn where the scratch was. */
5282 int nop; /* Number of the operand which was a scratch. */
5283 unsigned regno; /* regno gnerated instead of scratch */
5284 int icode; /* Original icode from which scratch was removed. */
5287 typedef struct sloc *sloc_t;
5289 /* Locations of the former scratches. */
5290 static vec<sloc_t> scratches;
5292 /* Bitmap of scratch regnos. */
5293 static bitmap_head scratch_bitmap;
5295 /* Bitmap of scratch operands. */
5296 static bitmap_head scratch_operand_bitmap;
5298 /* Return true if pseudo REGNO is made of SCRATCH. */
5299 bool
5300 ira_former_scratch_p (int regno)
5302 return bitmap_bit_p (&scratch_bitmap, regno);
5305 /* Return true if the operand NOP of INSN is a former scratch. */
5306 bool
5307 ira_former_scratch_operand_p (rtx_insn *insn, int nop)
5309 return bitmap_bit_p (&scratch_operand_bitmap,
5310 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
5313 /* Register operand NOP in INSN as a former scratch. It will be
5314 changed to scratch back, if it is necessary, at the LRA end. */
5315 void
5316 ira_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
5318 rtx op = *recog_data.operand_loc[nop];
5319 sloc_t loc = XNEW (struct sloc);
5320 ira_assert (REG_P (op));
5321 loc->insn = insn;
5322 loc->nop = nop;
5323 loc->regno = REGNO (op);
5324 loc->icode = icode;
5325 scratches.safe_push (loc);
5326 bitmap_set_bit (&scratch_bitmap, REGNO (op));
5327 bitmap_set_bit (&scratch_operand_bitmap,
5328 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
5329 add_reg_note (insn, REG_UNUSED, op);
5332 /* Return true if string STR contains constraint 'X'. */
5333 static bool
5334 contains_X_constraint_p (const char *str)
5336 int c;
5338 while ((c = *str))
5340 str += CONSTRAINT_LEN (c, str);
5341 if (c == 'X') return true;
5343 return false;
5346 /* Change INSN's scratches into pseudos and save their location.
5347 Return true if we changed any scratch. */
5348 bool
5349 ira_remove_insn_scratches (rtx_insn *insn, bool all_p, FILE *dump_file,
5350 rtx (*get_reg) (rtx original))
5352 int i;
5353 bool insn_changed_p;
5354 rtx reg, *loc;
5356 extract_insn (insn);
5357 insn_changed_p = false;
5358 for (i = 0; i < recog_data.n_operands; i++)
5360 loc = recog_data.operand_loc[i];
5361 if (GET_CODE (*loc) == SCRATCH && GET_MODE (*loc) != VOIDmode)
5363 if (! all_p && contains_X_constraint_p (recog_data.constraints[i]))
5364 continue;
5365 insn_changed_p = true;
5366 *loc = reg = get_reg (*loc);
5367 ira_register_new_scratch_op (insn, i, INSN_CODE (insn));
5368 if (ira_dump_file != NULL)
5369 fprintf (dump_file,
5370 "Removing SCRATCH to p%u in insn #%u (nop %d)\n",
5371 REGNO (reg), INSN_UID (insn), i);
5374 return insn_changed_p;
5377 /* Return new register of the same mode as ORIGINAL. Used in
5378 remove_scratches. */
5379 static rtx
5380 get_scratch_reg (rtx original)
5382 return gen_reg_rtx (GET_MODE (original));
5385 /* Change scratches into pseudos and save their location. Return true
5386 if we changed any scratch. */
5387 static bool
5388 remove_scratches (void)
5390 bool change_p = false;
5391 basic_block bb;
5392 rtx_insn *insn;
5394 scratches.create (get_max_uid ());
5395 bitmap_initialize (&scratch_bitmap, &reg_obstack);
5396 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
5397 FOR_EACH_BB_FN (bb, cfun)
5398 FOR_BB_INSNS (bb, insn)
5399 if (INSN_P (insn)
5400 && ira_remove_insn_scratches (insn, false, ira_dump_file, get_scratch_reg))
5402 /* Because we might use DF, we need to keep DF info up to date. */
5403 df_insn_rescan (insn);
5404 change_p = true;
5406 return change_p;
5409 /* Changes pseudos created by function remove_scratches onto scratches. */
5410 void
5411 ira_restore_scratches (FILE *dump_file)
5413 int regno, n;
5414 unsigned i;
5415 rtx *op_loc;
5416 sloc_t loc;
5418 for (i = 0; scratches.iterate (i, &loc); i++)
5420 /* Ignore already deleted insns. */
5421 if (NOTE_P (loc->insn)
5422 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
5423 continue;
5424 extract_insn (loc->insn);
5425 if (loc->icode != INSN_CODE (loc->insn))
5427 /* The icode doesn't match, which means the insn has been modified
5428 (e.g. register elimination). The scratch cannot be restored. */
5429 continue;
5431 op_loc = recog_data.operand_loc[loc->nop];
5432 if (REG_P (*op_loc)
5433 && ((regno = REGNO (*op_loc)) >= FIRST_PSEUDO_REGISTER)
5434 && reg_renumber[regno] < 0)
5436 /* It should be only case when scratch register with chosen
5437 constraint 'X' did not get memory or hard register. */
5438 ira_assert (ira_former_scratch_p (regno));
5439 *op_loc = gen_rtx_SCRATCH (GET_MODE (*op_loc));
5440 for (n = 0; n < recog_data.n_dups; n++)
5441 *recog_data.dup_loc[n]
5442 = *recog_data.operand_loc[(int) recog_data.dup_num[n]];
5443 if (dump_file != NULL)
5444 fprintf (dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
5445 INSN_UID (loc->insn), loc->nop);
5448 for (i = 0; scratches.iterate (i, &loc); i++)
5449 free (loc);
5450 scratches.release ();
5451 bitmap_clear (&scratch_bitmap);
5452 bitmap_clear (&scratch_operand_bitmap);
5457 /* If the backend knows where to allocate pseudos for hard
5458 register initial values, register these allocations now. */
5459 static void
5460 allocate_initial_values (void)
5462 if (targetm.allocate_initial_value)
5464 rtx hreg, preg, x;
5465 int i, regno;
5467 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5469 if (! initial_value_entry (i, &hreg, &preg))
5470 break;
5472 x = targetm.allocate_initial_value (hreg);
5473 regno = REGNO (preg);
5474 if (x && REG_N_SETS (regno) <= 1)
5476 if (MEM_P (x))
5477 reg_equiv_memory_loc (regno) = x;
5478 else
5480 basic_block bb;
5481 int new_regno;
5483 gcc_assert (REG_P (x));
5484 new_regno = REGNO (x);
5485 reg_renumber[regno] = new_regno;
5486 /* Poke the regno right into regno_reg_rtx so that even
5487 fixed regs are accepted. */
5488 SET_REGNO (preg, new_regno);
5489 /* Update global register liveness information. */
5490 FOR_EACH_BB_FN (bb, cfun)
5492 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5493 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5494 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5495 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5501 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5502 &hreg, &preg));
5509 /* True when we use LRA instead of reload pass for the current
5510 function. */
5511 bool ira_use_lra_p;
5513 /* True if we have allocno conflicts. It is false for non-optimized
5514 mode or when the conflict table is too big. */
5515 bool ira_conflicts_p;
5517 /* Saved between IRA and reload. */
5518 static int saved_flag_ira_share_spill_slots;
5520 /* This is the main entry of IRA. */
5521 static void
5522 ira (FILE *f)
5524 bool loops_p;
5525 int ira_max_point_before_emit;
5526 bool saved_flag_caller_saves = flag_caller_saves;
5527 enum ira_region saved_flag_ira_region = flag_ira_region;
5528 basic_block bb;
5529 edge_iterator ei;
5530 edge e;
5531 bool output_jump_reload_p = false;
5533 if (ira_use_lra_p)
5535 /* First put potential jump output reloads on the output edges
5536 as USE which will be removed at the end of LRA. The major
5537 goal is actually to create BBs for critical edges for LRA and
5538 populate them later by live info. In LRA it will be
5539 difficult to do this. */
5540 FOR_EACH_BB_FN (bb, cfun)
5542 rtx_insn *end = BB_END (bb);
5543 if (!JUMP_P (end))
5544 continue;
5545 extract_insn (end);
5546 for (int i = 0; i < recog_data.n_operands; i++)
5547 if (recog_data.operand_type[i] != OP_IN)
5549 bool skip_p = false;
5550 FOR_EACH_EDGE (e, ei, bb->succs)
5551 if (EDGE_CRITICAL_P (e)
5552 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
5553 && (e->flags & EDGE_ABNORMAL))
5555 skip_p = true;
5556 break;
5558 if (skip_p)
5559 break;
5560 output_jump_reload_p = true;
5561 FOR_EACH_EDGE (e, ei, bb->succs)
5562 if (EDGE_CRITICAL_P (e)
5563 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
5565 start_sequence ();
5566 /* We need to put some no-op insn here. We can
5567 not put a note as commit_edges insertion will
5568 fail. */
5569 emit_insn (gen_rtx_USE (VOIDmode, const1_rtx));
5570 rtx_insn *insns = get_insns ();
5571 end_sequence ();
5572 insert_insn_on_edge (insns, e);
5574 break;
5577 if (output_jump_reload_p)
5578 commit_edge_insertions ();
5581 if (flag_ira_verbose < 10)
5583 internal_flag_ira_verbose = flag_ira_verbose;
5584 ira_dump_file = f;
5586 else
5588 internal_flag_ira_verbose = flag_ira_verbose - 10;
5589 ira_dump_file = stderr;
5592 clear_bb_flags ();
5594 /* Determine if the current function is a leaf before running IRA
5595 since this can impact optimizations done by the prologue and
5596 epilogue thus changing register elimination offsets.
5597 Other target callbacks may use crtl->is_leaf too, including
5598 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5599 crtl->is_leaf = leaf_function_p ();
5601 /* Perform target specific PIC register initialization. */
5602 targetm.init_pic_reg ();
5604 ira_conflicts_p = optimize > 0;
5606 /* Determine the number of pseudos actually requiring coloring. */
5607 unsigned int num_used_regs = 0;
5608 for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5609 if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5610 num_used_regs++;
5612 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5613 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5614 use simplified and faster algorithms in LRA. */
5615 lra_simple_p
5616 = ira_use_lra_p
5617 && num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun);
5619 if (lra_simple_p)
5621 /* It permits to skip live range splitting in LRA. */
5622 flag_caller_saves = false;
5623 /* There is no sense to do regional allocation when we use
5624 simplified LRA. */
5625 flag_ira_region = IRA_REGION_ONE;
5626 ira_conflicts_p = false;
5629 #ifndef IRA_NO_OBSTACK
5630 gcc_obstack_init (&ira_obstack);
5631 #endif
5632 bitmap_obstack_initialize (&ira_bitmap_obstack);
5634 /* LRA uses its own infrastructure to handle caller save registers. */
5635 if (flag_caller_saves && !ira_use_lra_p)
5636 init_caller_save ();
5638 setup_prohibited_mode_move_regs ();
5639 decrease_live_ranges_number ();
5640 df_note_add_problem ();
5642 /* DF_LIVE can't be used in the register allocator, too many other
5643 parts of the compiler depend on using the "classic" liveness
5644 interpretation of the DF_LR problem. See PR38711.
5645 Remove the problem, so that we don't spend time updating it in
5646 any of the df_analyze() calls during IRA/LRA. */
5647 if (optimize > 1)
5648 df_remove_problem (df_live);
5649 gcc_checking_assert (df_live == NULL);
5651 if (flag_checking)
5652 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5654 df_analyze ();
5656 init_reg_equiv ();
5657 if (ira_conflicts_p)
5659 calculate_dominance_info (CDI_DOMINATORS);
5661 if (split_live_ranges_for_shrink_wrap ())
5662 df_analyze ();
5664 free_dominance_info (CDI_DOMINATORS);
5667 df_clear_flags (DF_NO_INSN_RESCAN);
5669 indirect_jump_optimize ();
5670 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5671 df_analyze ();
5673 regstat_init_n_sets_and_refs ();
5674 regstat_compute_ri ();
5676 /* If we are not optimizing, then this is the only place before
5677 register allocation where dataflow is done. And that is needed
5678 to generate these warnings. */
5679 if (warn_clobbered)
5680 generate_setjmp_warnings ();
5682 /* update_equiv_regs can use reg classes of pseudos and they are set up in
5683 register pressure sensitive scheduling and loop invariant motion and in
5684 live range shrinking. This info can become obsolete if we add new pseudos
5685 since the last set up. Recalculate it again if the new pseudos were
5686 added. */
5687 if (resize_reg_info () && (flag_sched_pressure || flag_live_range_shrinkage
5688 || flag_ira_loop_pressure))
5689 ira_set_pseudo_classes (true, ira_dump_file);
5691 init_alias_analysis ();
5692 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5693 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5694 update_equiv_regs_prescan ();
5695 update_equiv_regs ();
5697 /* Don't move insns if live range shrinkage or register
5698 pressure-sensitive scheduling were done because it will not
5699 improve allocation but likely worsen insn scheduling. */
5700 if (optimize
5701 && !flag_live_range_shrinkage
5702 && !(flag_sched_pressure && flag_schedule_insns))
5703 combine_and_move_insns ();
5705 /* Gather additional equivalences with memory. */
5706 if (optimize)
5707 add_store_equivs ();
5709 loop_optimizer_finalize ();
5710 free_dominance_info (CDI_DOMINATORS);
5711 end_alias_analysis ();
5712 free (reg_equiv);
5714 /* Once max_regno changes, we need to free and re-init/re-compute
5715 some data structures like regstat_n_sets_and_refs and reg_info_p. */
5716 auto regstat_recompute_for_max_regno = []() {
5717 regstat_free_n_sets_and_refs ();
5718 regstat_free_ri ();
5719 regstat_init_n_sets_and_refs ();
5720 regstat_compute_ri ();
5721 resize_reg_info ();
5724 int max_regno_before_rm = max_reg_num ();
5725 if (ira_use_lra_p && remove_scratches ())
5727 ira_expand_reg_equiv ();
5728 /* For now remove_scatches is supposed to create pseudos when it
5729 succeeds, assert this happens all the time. Once it doesn't
5730 hold, we should guard the regstat recompute for the case
5731 max_regno changes. */
5732 gcc_assert (max_regno_before_rm != max_reg_num ());
5733 regstat_recompute_for_max_regno ();
5736 setup_reg_equiv ();
5737 grow_reg_equivs ();
5738 setup_reg_equiv_init ();
5740 allocated_reg_info_size = max_reg_num ();
5742 /* It is not worth to do such improvement when we use a simple
5743 allocation because of -O0 usage or because the function is too
5744 big. */
5745 if (ira_conflicts_p)
5746 find_moveable_pseudos ();
5748 max_regno_before_ira = max_reg_num ();
5749 ira_setup_eliminable_regset ();
5751 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5752 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5753 ira_move_loops_num = ira_additional_jumps_num = 0;
5755 ira_assert (current_loops == NULL);
5756 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5757 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5759 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5760 fprintf (ira_dump_file, "Building IRA IR\n");
5761 loops_p = ira_build ();
5763 ira_assert (ira_conflicts_p || !loops_p);
5765 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5766 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5767 /* It is just wasting compiler's time to pack spilled pseudos into
5768 stack slots in this case -- prohibit it. We also do this if
5769 there is setjmp call because a variable not modified between
5770 setjmp and longjmp the compiler is required to preserve its
5771 value and sharing slots does not guarantee it. */
5772 flag_ira_share_spill_slots = FALSE;
5774 ira_color ();
5776 ira_max_point_before_emit = ira_max_point;
5778 ira_initiate_emit_data ();
5780 ira_emit (loops_p);
5782 max_regno = max_reg_num ();
5783 if (ira_conflicts_p)
5785 if (! loops_p)
5787 if (! ira_use_lra_p)
5788 ira_initiate_assign ();
5790 else
5792 expand_reg_info ();
5794 if (ira_use_lra_p)
5796 ira_allocno_t a;
5797 ira_allocno_iterator ai;
5799 FOR_EACH_ALLOCNO (a, ai)
5801 int old_regno = ALLOCNO_REGNO (a);
5802 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5804 ALLOCNO_REGNO (a) = new_regno;
5806 if (old_regno != new_regno)
5807 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5808 reg_alternate_class (old_regno),
5809 reg_allocno_class (old_regno));
5812 else
5814 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5815 fprintf (ira_dump_file, "Flattening IR\n");
5816 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5818 /* New insns were generated: add notes and recalculate live
5819 info. */
5820 df_analyze ();
5822 /* ??? Rebuild the loop tree, but why? Does the loop tree
5823 change if new insns were generated? Can that be handled
5824 by updating the loop tree incrementally? */
5825 loop_optimizer_finalize ();
5826 free_dominance_info (CDI_DOMINATORS);
5827 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5828 | LOOPS_HAVE_RECORDED_EXITS);
5830 if (! ira_use_lra_p)
5832 setup_allocno_assignment_flags ();
5833 ira_initiate_assign ();
5834 ira_reassign_conflict_allocnos (max_regno);
5839 ira_finish_emit_data ();
5841 setup_reg_renumber ();
5843 calculate_allocation_cost ();
5845 #ifdef ENABLE_IRA_CHECKING
5846 if (ira_conflicts_p && ! ira_use_lra_p)
5847 /* Opposite to reload pass, LRA does not use any conflict info
5848 from IRA. We don't rebuild conflict info for LRA (through
5849 ira_flattening call) and cannot use the check here. We could
5850 rebuild this info for LRA in the check mode but there is a risk
5851 that code generated with the check and without it will be a bit
5852 different. Calling ira_flattening in any mode would be a
5853 wasting CPU time. So do not check the allocation for LRA. */
5854 check_allocation ();
5855 #endif
5857 if (max_regno != max_regno_before_ira)
5858 regstat_recompute_for_max_regno ();
5860 overall_cost_before = ira_overall_cost;
5861 if (! ira_conflicts_p)
5862 grow_reg_equivs ();
5863 else
5865 fix_reg_equiv_init ();
5867 #ifdef ENABLE_IRA_CHECKING
5868 print_redundant_copies ();
5869 #endif
5870 if (! ira_use_lra_p)
5872 ira_spilled_reg_stack_slots_num = 0;
5873 ira_spilled_reg_stack_slots
5874 = ((class ira_spilled_reg_stack_slot *)
5875 ira_allocate (max_regno
5876 * sizeof (class ira_spilled_reg_stack_slot)));
5877 memset ((void *)ira_spilled_reg_stack_slots, 0,
5878 max_regno * sizeof (class ira_spilled_reg_stack_slot));
5881 allocate_initial_values ();
5883 /* See comment for find_moveable_pseudos call. */
5884 if (ira_conflicts_p)
5885 move_unallocated_pseudos ();
5887 /* Restore original values. */
5888 if (lra_simple_p)
5890 flag_caller_saves = saved_flag_caller_saves;
5891 flag_ira_region = saved_flag_ira_region;
5895 /* Modify asm goto to avoid further trouble with this insn. We can
5896 not replace the insn by USE as in other asm insns as we still
5897 need to keep CFG consistency. */
5898 void
5899 ira_nullify_asm_goto (rtx_insn *insn)
5901 ira_assert (JUMP_P (insn) && INSN_CODE (insn) < 0);
5902 rtx tmp = extract_asm_operands (PATTERN (insn));
5903 PATTERN (insn) = gen_rtx_ASM_OPERANDS (VOIDmode, ggc_strdup (""), "", 0,
5904 rtvec_alloc (0),
5905 rtvec_alloc (0),
5906 ASM_OPERANDS_LABEL_VEC (tmp),
5907 ASM_OPERANDS_SOURCE_LOCATION(tmp));
5910 static void
5911 do_reload (void)
5913 basic_block bb;
5914 bool need_dce;
5915 unsigned pic_offset_table_regno = INVALID_REGNUM;
5917 if (flag_ira_verbose < 10)
5918 ira_dump_file = dump_file;
5920 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5921 after reload to avoid possible wrong usages of hard reg assigned
5922 to it. */
5923 if (pic_offset_table_rtx
5924 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5925 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5927 timevar_push (TV_RELOAD);
5928 if (ira_use_lra_p)
5930 if (current_loops != NULL)
5932 loop_optimizer_finalize ();
5933 free_dominance_info (CDI_DOMINATORS);
5935 FOR_ALL_BB_FN (bb, cfun)
5936 bb->loop_father = NULL;
5937 current_loops = NULL;
5939 ira_destroy ();
5941 lra (ira_dump_file);
5942 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5943 LRA. */
5944 vec_free (reg_equivs);
5945 reg_equivs = NULL;
5946 need_dce = false;
5948 else
5950 df_set_flags (DF_NO_INSN_RESCAN);
5951 build_insn_chain ();
5953 need_dce = reload (get_insns (), ira_conflicts_p);
5956 timevar_pop (TV_RELOAD);
5958 timevar_push (TV_IRA);
5960 if (ira_conflicts_p && ! ira_use_lra_p)
5962 ira_free (ira_spilled_reg_stack_slots);
5963 ira_finish_assign ();
5966 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5967 && overall_cost_before != ira_overall_cost)
5968 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5969 ira_overall_cost);
5971 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5973 if (! ira_use_lra_p)
5975 ira_destroy ();
5976 if (current_loops != NULL)
5978 loop_optimizer_finalize ();
5979 free_dominance_info (CDI_DOMINATORS);
5981 FOR_ALL_BB_FN (bb, cfun)
5982 bb->loop_father = NULL;
5983 current_loops = NULL;
5985 regstat_free_ri ();
5986 regstat_free_n_sets_and_refs ();
5989 if (optimize)
5990 cleanup_cfg (CLEANUP_EXPENSIVE);
5992 finish_reg_equiv ();
5994 bitmap_obstack_release (&ira_bitmap_obstack);
5995 #ifndef IRA_NO_OBSTACK
5996 obstack_free (&ira_obstack, NULL);
5997 #endif
5999 /* The code after the reload has changed so much that at this point
6000 we might as well just rescan everything. Note that
6001 df_rescan_all_insns is not going to help here because it does not
6002 touch the artificial uses and defs. */
6003 df_finish_pass (true);
6004 df_scan_alloc (NULL);
6005 df_scan_blocks ();
6007 if (optimize > 1)
6009 df_live_add_problem ();
6010 df_live_set_all_dirty ();
6013 if (optimize)
6014 df_analyze ();
6016 if (need_dce && optimize)
6017 run_fast_dce ();
6019 /* Diagnose uses of the hard frame pointer when it is used as a global
6020 register. Often we can get away with letting the user appropriate
6021 the frame pointer, but we should let them know when code generation
6022 makes that impossible. */
6023 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
6025 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
6026 error_at (DECL_SOURCE_LOCATION (current_function_decl),
6027 "frame pointer required, but reserved");
6028 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
6031 /* If we are doing generic stack checking, give a warning if this
6032 function's frame size is larger than we expect. */
6033 if (flag_stack_check == GENERIC_STACK_CHECK)
6035 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
6037 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6038 if (df_regs_ever_live_p (i)
6039 && !fixed_regs[i]
6040 && !crtl->abi->clobbers_full_reg_p (i))
6041 size += UNITS_PER_WORD;
6043 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
6044 warning (0, "frame size too large for reliable stack checking");
6047 if (pic_offset_table_regno != INVALID_REGNUM)
6048 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
6050 timevar_pop (TV_IRA);
6053 /* Run the integrated register allocator. */
6055 namespace {
6057 const pass_data pass_data_ira =
6059 RTL_PASS, /* type */
6060 "ira", /* name */
6061 OPTGROUP_NONE, /* optinfo_flags */
6062 TV_IRA, /* tv_id */
6063 0, /* properties_required */
6064 0, /* properties_provided */
6065 0, /* properties_destroyed */
6066 0, /* todo_flags_start */
6067 TODO_do_not_ggc_collect, /* todo_flags_finish */
6070 class pass_ira : public rtl_opt_pass
6072 public:
6073 pass_ira (gcc::context *ctxt)
6074 : rtl_opt_pass (pass_data_ira, ctxt)
6077 /* opt_pass methods: */
6078 bool gate (function *) final override
6080 return !targetm.no_register_allocation;
6082 unsigned int execute (function *) final override
6084 ira (dump_file);
6085 return 0;
6088 }; // class pass_ira
6090 } // anon namespace
6092 rtl_opt_pass *
6093 make_pass_ira (gcc::context *ctxt)
6095 return new pass_ira (ctxt);
6098 namespace {
6100 const pass_data pass_data_reload =
6102 RTL_PASS, /* type */
6103 "reload", /* name */
6104 OPTGROUP_NONE, /* optinfo_flags */
6105 TV_RELOAD, /* tv_id */
6106 0, /* properties_required */
6107 0, /* properties_provided */
6108 0, /* properties_destroyed */
6109 0, /* todo_flags_start */
6110 0, /* todo_flags_finish */
6113 class pass_reload : public rtl_opt_pass
6115 public:
6116 pass_reload (gcc::context *ctxt)
6117 : rtl_opt_pass (pass_data_reload, ctxt)
6120 /* opt_pass methods: */
6121 bool gate (function *) final override
6123 return !targetm.no_register_allocation;
6125 unsigned int execute (function *) final override
6127 do_reload ();
6128 return 0;
6131 }; // class pass_reload
6133 } // anon namespace
6135 rtl_opt_pass *
6136 make_pass_reload (gcc::context *ctxt)
6138 return new pass_reload (ctxt);