vectorizer cost model enhancement
[official-gcc.git] / gcc / rtlanal.c
blob7b2ec2406c04304b11a140f40251c2bf2a61e7d0
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
76 DESTINATION. */
78 static unsigned int
79 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 /* Return 1 if the value of X is unstable
82 (would be different at a different point in the program).
83 The frame pointer, arg pointer, etc. are considered stable
84 (within one function) and so is anything marked `unchanging'. */
86 int
87 rtx_unstable_p (const_rtx x)
89 const RTX_CODE code = GET_CODE (x);
90 int i;
91 const char *fmt;
93 switch (code)
95 case MEM:
96 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98 case CONST:
99 CASE_CONST_ANY:
100 case SYMBOL_REF:
101 case LABEL_REF:
102 return 0;
104 case REG:
105 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
106 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
107 /* The arg pointer varies if it is not a fixed register. */
108 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
109 return 0;
110 /* ??? When call-clobbered, the value is stable modulo the restore
111 that must happen after a call. This currently screws up local-alloc
112 into believing that the restore is not needed. */
113 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
114 return 0;
115 return 1;
117 case ASM_OPERANDS:
118 if (MEM_VOLATILE_P (x))
119 return 1;
121 /* Fall through. */
123 default:
124 break;
127 fmt = GET_RTX_FORMAT (code);
128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
129 if (fmt[i] == 'e')
131 if (rtx_unstable_p (XEXP (x, i)))
132 return 1;
134 else if (fmt[i] == 'E')
136 int j;
137 for (j = 0; j < XVECLEN (x, i); j++)
138 if (rtx_unstable_p (XVECEXP (x, i, j)))
139 return 1;
142 return 0;
145 /* Return 1 if X has a value that can vary even between two
146 executions of the program. 0 means X can be compared reliably
147 against certain constants or near-constants.
148 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149 zero, we are slightly more conservative.
150 The frame pointer and the arg pointer are considered constant. */
152 bool
153 rtx_varies_p (const_rtx x, bool for_alias)
155 RTX_CODE code;
156 int i;
157 const char *fmt;
159 if (!x)
160 return 0;
162 code = GET_CODE (x);
163 switch (code)
165 case MEM:
166 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
168 case CONST:
169 CASE_CONST_ANY:
170 case SYMBOL_REF:
171 case LABEL_REF:
172 return 0;
174 case REG:
175 /* Note that we have to test for the actual rtx used for the frame
176 and arg pointers and not just the register number in case we have
177 eliminated the frame and/or arg pointer and are using it
178 for pseudos. */
179 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
180 /* The arg pointer varies if it is not a fixed register. */
181 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
182 return 0;
183 if (x == pic_offset_table_rtx
184 /* ??? When call-clobbered, the value is stable modulo the restore
185 that must happen after a call. This currently screws up
186 local-alloc into believing that the restore is not needed, so we
187 must return 0 only if we are called from alias analysis. */
188 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
189 return 0;
190 return 1;
192 case LO_SUM:
193 /* The operand 0 of a LO_SUM is considered constant
194 (in fact it is related specifically to operand 1)
195 during alias analysis. */
196 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
197 || rtx_varies_p (XEXP (x, 1), for_alias);
199 case ASM_OPERANDS:
200 if (MEM_VOLATILE_P (x))
201 return 1;
203 /* Fall through. */
205 default:
206 break;
209 fmt = GET_RTX_FORMAT (code);
210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
211 if (fmt[i] == 'e')
213 if (rtx_varies_p (XEXP (x, i), for_alias))
214 return 1;
216 else if (fmt[i] == 'E')
218 int j;
219 for (j = 0; j < XVECLEN (x, i); j++)
220 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
221 return 1;
224 return 0;
227 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
228 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
229 whether nonzero is returned for unaligned memory accesses on strict
230 alignment machines. */
232 static int
233 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
234 enum machine_mode mode, bool unaligned_mems)
236 enum rtx_code code = GET_CODE (x);
238 if (STRICT_ALIGNMENT
239 && unaligned_mems
240 && GET_MODE_SIZE (mode) != 0)
242 HOST_WIDE_INT actual_offset = offset;
243 #ifdef SPARC_STACK_BOUNDARY_HACK
244 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
245 the real alignment of %sp. However, when it does this, the
246 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
247 if (SPARC_STACK_BOUNDARY_HACK
248 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
249 actual_offset -= STACK_POINTER_OFFSET;
250 #endif
252 if (actual_offset % GET_MODE_SIZE (mode) != 0)
253 return 1;
256 switch (code)
258 case SYMBOL_REF:
259 if (SYMBOL_REF_WEAK (x))
260 return 1;
261 if (!CONSTANT_POOL_ADDRESS_P (x))
263 tree decl;
264 HOST_WIDE_INT decl_size;
266 if (offset < 0)
267 return 1;
268 if (size == 0)
269 size = GET_MODE_SIZE (mode);
270 if (size == 0)
271 return offset != 0;
273 /* If the size of the access or of the symbol is unknown,
274 assume the worst. */
275 decl = SYMBOL_REF_DECL (x);
277 /* Else check that the access is in bounds. TODO: restructure
278 expr_size/tree_expr_size/int_expr_size and just use the latter. */
279 if (!decl)
280 decl_size = -1;
281 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
282 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
283 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
284 : -1);
285 else if (TREE_CODE (decl) == STRING_CST)
286 decl_size = TREE_STRING_LENGTH (decl);
287 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
288 decl_size = int_size_in_bytes (TREE_TYPE (decl));
289 else
290 decl_size = -1;
292 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
295 return 0;
297 case LABEL_REF:
298 return 0;
300 case REG:
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
303 || x == stack_pointer_rtx
304 /* The arg pointer varies if it is not a fixed register. */
305 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
306 return 0;
307 /* All of the virtual frame registers are stack references. */
308 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
309 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
310 return 0;
311 return 1;
313 case CONST:
314 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
315 mode, unaligned_mems);
317 case PLUS:
318 /* An address is assumed not to trap if:
319 - it is the pic register plus a constant. */
320 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
321 return 0;
323 /* - or it is an address that can't trap plus a constant integer,
324 with the proper remainder modulo the mode size if we are
325 considering unaligned memory references. */
326 if (CONST_INT_P (XEXP (x, 1))
327 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
328 size, mode, unaligned_mems))
329 return 0;
331 return 1;
333 case LO_SUM:
334 case PRE_MODIFY:
335 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
336 mode, unaligned_mems);
338 case PRE_DEC:
339 case PRE_INC:
340 case POST_DEC:
341 case POST_INC:
342 case POST_MODIFY:
343 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
344 mode, unaligned_mems);
346 default:
347 break;
350 /* If it isn't one of the case above, it can cause a trap. */
351 return 1;
354 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
357 rtx_addr_can_trap_p (const_rtx x)
359 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
362 /* Return true if X is an address that is known to not be zero. */
364 bool
365 nonzero_address_p (const_rtx x)
367 const enum rtx_code code = GET_CODE (x);
369 switch (code)
371 case SYMBOL_REF:
372 return !SYMBOL_REF_WEAK (x);
374 case LABEL_REF:
375 return true;
377 case REG:
378 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
379 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
380 || x == stack_pointer_rtx
381 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
382 return true;
383 /* All of the virtual frame registers are stack references. */
384 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
385 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
386 return true;
387 return false;
389 case CONST:
390 return nonzero_address_p (XEXP (x, 0));
392 case PLUS:
393 /* Handle PIC references. */
394 if (XEXP (x, 0) == pic_offset_table_rtx
395 && CONSTANT_P (XEXP (x, 1)))
396 return true;
397 return false;
399 case PRE_MODIFY:
400 /* Similar to the above; allow positive offsets. Further, since
401 auto-inc is only allowed in memories, the register must be a
402 pointer. */
403 if (CONST_INT_P (XEXP (x, 1))
404 && INTVAL (XEXP (x, 1)) > 0)
405 return true;
406 return nonzero_address_p (XEXP (x, 0));
408 case PRE_INC:
409 /* Similarly. Further, the offset is always positive. */
410 return true;
412 case PRE_DEC:
413 case POST_DEC:
414 case POST_INC:
415 case POST_MODIFY:
416 return nonzero_address_p (XEXP (x, 0));
418 case LO_SUM:
419 return nonzero_address_p (XEXP (x, 1));
421 default:
422 break;
425 /* If it isn't one of the case above, might be zero. */
426 return false;
429 /* Return 1 if X refers to a memory location whose address
430 cannot be compared reliably with constant addresses,
431 or if X refers to a BLKmode memory object.
432 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
433 zero, we are slightly more conservative. */
435 bool
436 rtx_addr_varies_p (const_rtx x, bool for_alias)
438 enum rtx_code code;
439 int i;
440 const char *fmt;
442 if (x == 0)
443 return 0;
445 code = GET_CODE (x);
446 if (code == MEM)
447 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
449 fmt = GET_RTX_FORMAT (code);
450 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
451 if (fmt[i] == 'e')
453 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
454 return 1;
456 else if (fmt[i] == 'E')
458 int j;
459 for (j = 0; j < XVECLEN (x, i); j++)
460 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
461 return 1;
463 return 0;
466 /* Return the CALL in X if there is one. */
469 get_call_rtx_from (rtx x)
471 if (INSN_P (x))
472 x = PATTERN (x);
473 if (GET_CODE (x) == PARALLEL)
474 x = XVECEXP (x, 0, 0);
475 if (GET_CODE (x) == SET)
476 x = SET_SRC (x);
477 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
478 return x;
479 return NULL_RTX;
482 /* Return the value of the integer term in X, if one is apparent;
483 otherwise return 0.
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
487 HOST_WIDE_INT
488 get_integer_term (const_rtx x)
490 if (GET_CODE (x) == CONST)
491 x = XEXP (x, 0);
493 if (GET_CODE (x) == MINUS
494 && CONST_INT_P (XEXP (x, 1)))
495 return - INTVAL (XEXP (x, 1));
496 if (GET_CODE (x) == PLUS
497 && CONST_INT_P (XEXP (x, 1)))
498 return INTVAL (XEXP (x, 1));
499 return 0;
502 /* If X is a constant, return the value sans apparent integer term;
503 otherwise return 0.
504 Only obvious integer terms are detected. */
507 get_related_value (const_rtx x)
509 if (GET_CODE (x) != CONST)
510 return 0;
511 x = XEXP (x, 0);
512 if (GET_CODE (x) == PLUS
513 && CONST_INT_P (XEXP (x, 1)))
514 return XEXP (x, 0);
515 else if (GET_CODE (x) == MINUS
516 && CONST_INT_P (XEXP (x, 1)))
517 return XEXP (x, 0);
518 return 0;
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
524 bool
525 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
527 tree decl;
529 if (GET_CODE (symbol) != SYMBOL_REF)
530 return false;
532 if (offset == 0)
533 return true;
535 if (offset > 0)
537 if (CONSTANT_POOL_ADDRESS_P (symbol)
538 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
539 return true;
541 decl = SYMBOL_REF_DECL (symbol);
542 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
543 return true;
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
547 && SYMBOL_REF_BLOCK (symbol)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
549 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
550 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
551 return true;
553 return false;
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
559 void
560 split_const (rtx x, rtx *base_out, rtx *offset_out)
562 if (GET_CODE (x) == CONST)
564 x = XEXP (x, 0);
565 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
567 *base_out = XEXP (x, 0);
568 *offset_out = XEXP (x, 1);
569 return;
572 *base_out = x;
573 *offset_out = const0_rtx;
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
580 count_occurrences (const_rtx x, const_rtx find, int count_dest)
582 int i, j;
583 enum rtx_code code;
584 const char *format_ptr;
585 int count;
587 if (x == find)
588 return 1;
590 code = GET_CODE (x);
592 switch (code)
594 case REG:
595 CASE_CONST_ANY:
596 case SYMBOL_REF:
597 case CODE_LABEL:
598 case PC:
599 case CC0:
600 return 0;
602 case EXPR_LIST:
603 count = count_occurrences (XEXP (x, 0), find, count_dest);
604 if (XEXP (x, 1))
605 count += count_occurrences (XEXP (x, 1), find, count_dest);
606 return count;
608 case MEM:
609 if (MEM_P (find) && rtx_equal_p (x, find))
610 return 1;
611 break;
613 case SET:
614 if (SET_DEST (x) == find && ! count_dest)
615 return count_occurrences (SET_SRC (x), find, count_dest);
616 break;
618 default:
619 break;
622 format_ptr = GET_RTX_FORMAT (code);
623 count = 0;
625 for (i = 0; i < GET_RTX_LENGTH (code); i++)
627 switch (*format_ptr++)
629 case 'e':
630 count += count_occurrences (XEXP (x, i), find, count_dest);
631 break;
633 case 'E':
634 for (j = 0; j < XVECLEN (x, i); j++)
635 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
636 break;
639 return count;
643 /* Return TRUE if OP is a register or subreg of a register that
644 holds an unsigned quantity. Otherwise, return FALSE. */
646 bool
647 unsigned_reg_p (rtx op)
649 if (REG_P (op)
650 && REG_EXPR (op)
651 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
652 return true;
654 if (GET_CODE (op) == SUBREG
655 && SUBREG_PROMOTED_UNSIGNED_P (op))
656 return true;
658 return false;
662 /* Nonzero if register REG appears somewhere within IN.
663 Also works if REG is not a register; in this case it checks
664 for a subexpression of IN that is Lisp "equal" to REG. */
667 reg_mentioned_p (const_rtx reg, const_rtx in)
669 const char *fmt;
670 int i;
671 enum rtx_code code;
673 if (in == 0)
674 return 0;
676 if (reg == in)
677 return 1;
679 if (GET_CODE (in) == LABEL_REF)
680 return reg == XEXP (in, 0);
682 code = GET_CODE (in);
684 switch (code)
686 /* Compare registers by number. */
687 case REG:
688 return REG_P (reg) && REGNO (in) == REGNO (reg);
690 /* These codes have no constituent expressions
691 and are unique. */
692 case SCRATCH:
693 case CC0:
694 case PC:
695 return 0;
697 CASE_CONST_ANY:
698 /* These are kept unique for a given value. */
699 return 0;
701 default:
702 break;
705 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
706 return 1;
708 fmt = GET_RTX_FORMAT (code);
710 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
712 if (fmt[i] == 'E')
714 int j;
715 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
716 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
717 return 1;
719 else if (fmt[i] == 'e'
720 && reg_mentioned_p (reg, XEXP (in, i)))
721 return 1;
723 return 0;
726 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
727 no CODE_LABEL insn. */
730 no_labels_between_p (const_rtx beg, const_rtx end)
732 rtx p;
733 if (beg == end)
734 return 0;
735 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
736 if (LABEL_P (p))
737 return 0;
738 return 1;
741 /* Nonzero if register REG is used in an insn between
742 FROM_INSN and TO_INSN (exclusive of those two). */
745 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
747 rtx insn;
749 if (from_insn == to_insn)
750 return 0;
752 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
753 if (NONDEBUG_INSN_P (insn)
754 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
755 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
756 return 1;
757 return 0;
760 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
761 is entirely replaced by a new value and the only use is as a SET_DEST,
762 we do not consider it a reference. */
765 reg_referenced_p (const_rtx x, const_rtx body)
767 int i;
769 switch (GET_CODE (body))
771 case SET:
772 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
773 return 1;
775 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
776 of a REG that occupies all of the REG, the insn references X if
777 it is mentioned in the destination. */
778 if (GET_CODE (SET_DEST (body)) != CC0
779 && GET_CODE (SET_DEST (body)) != PC
780 && !REG_P (SET_DEST (body))
781 && ! (GET_CODE (SET_DEST (body)) == SUBREG
782 && REG_P (SUBREG_REG (SET_DEST (body)))
783 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
784 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
785 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
786 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
787 && reg_overlap_mentioned_p (x, SET_DEST (body)))
788 return 1;
789 return 0;
791 case ASM_OPERANDS:
792 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
793 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
794 return 1;
795 return 0;
797 case CALL:
798 case USE:
799 case IF_THEN_ELSE:
800 return reg_overlap_mentioned_p (x, body);
802 case TRAP_IF:
803 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
805 case PREFETCH:
806 return reg_overlap_mentioned_p (x, XEXP (body, 0));
808 case UNSPEC:
809 case UNSPEC_VOLATILE:
810 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
811 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
812 return 1;
813 return 0;
815 case PARALLEL:
816 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
817 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
818 return 1;
819 return 0;
821 case CLOBBER:
822 if (MEM_P (XEXP (body, 0)))
823 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
824 return 1;
825 return 0;
827 case COND_EXEC:
828 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
829 return 1;
830 return reg_referenced_p (x, COND_EXEC_CODE (body));
832 default:
833 return 0;
837 /* Nonzero if register REG is set or clobbered in an insn between
838 FROM_INSN and TO_INSN (exclusive of those two). */
841 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
843 const_rtx insn;
845 if (from_insn == to_insn)
846 return 0;
848 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
849 if (INSN_P (insn) && reg_set_p (reg, insn))
850 return 1;
851 return 0;
854 /* Internals of reg_set_between_p. */
856 reg_set_p (const_rtx reg, const_rtx insn)
858 /* We can be passed an insn or part of one. If we are passed an insn,
859 check if a side-effect of the insn clobbers REG. */
860 if (INSN_P (insn)
861 && (FIND_REG_INC_NOTE (insn, reg)
862 || (CALL_P (insn)
863 && ((REG_P (reg)
864 && REGNO (reg) < FIRST_PSEUDO_REGISTER
865 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
866 GET_MODE (reg), REGNO (reg)))
867 || MEM_P (reg)
868 || find_reg_fusage (insn, CLOBBER, reg)))))
869 return 1;
871 return set_of (reg, insn) != NULL_RTX;
874 /* Similar to reg_set_between_p, but check all registers in X. Return 0
875 only if none of them are modified between START and END. Return 1 if
876 X contains a MEM; this routine does use memory aliasing. */
879 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
881 const enum rtx_code code = GET_CODE (x);
882 const char *fmt;
883 int i, j;
884 rtx insn;
886 if (start == end)
887 return 0;
889 switch (code)
891 CASE_CONST_ANY:
892 case CONST:
893 case SYMBOL_REF:
894 case LABEL_REF:
895 return 0;
897 case PC:
898 case CC0:
899 return 1;
901 case MEM:
902 if (modified_between_p (XEXP (x, 0), start, end))
903 return 1;
904 if (MEM_READONLY_P (x))
905 return 0;
906 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
907 if (memory_modified_in_insn_p (x, insn))
908 return 1;
909 return 0;
910 break;
912 case REG:
913 return reg_set_between_p (x, start, end);
915 default:
916 break;
919 fmt = GET_RTX_FORMAT (code);
920 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
922 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
923 return 1;
925 else if (fmt[i] == 'E')
926 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
927 if (modified_between_p (XVECEXP (x, i, j), start, end))
928 return 1;
931 return 0;
934 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
935 of them are modified in INSN. Return 1 if X contains a MEM; this routine
936 does use memory aliasing. */
939 modified_in_p (const_rtx x, const_rtx insn)
941 const enum rtx_code code = GET_CODE (x);
942 const char *fmt;
943 int i, j;
945 switch (code)
947 CASE_CONST_ANY:
948 case CONST:
949 case SYMBOL_REF:
950 case LABEL_REF:
951 return 0;
953 case PC:
954 case CC0:
955 return 1;
957 case MEM:
958 if (modified_in_p (XEXP (x, 0), insn))
959 return 1;
960 if (MEM_READONLY_P (x))
961 return 0;
962 if (memory_modified_in_insn_p (x, insn))
963 return 1;
964 return 0;
965 break;
967 case REG:
968 return reg_set_p (x, insn);
970 default:
971 break;
974 fmt = GET_RTX_FORMAT (code);
975 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
977 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
978 return 1;
980 else if (fmt[i] == 'E')
981 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
982 if (modified_in_p (XVECEXP (x, i, j), insn))
983 return 1;
986 return 0;
989 /* Helper function for set_of. */
990 struct set_of_data
992 const_rtx found;
993 const_rtx pat;
996 static void
997 set_of_1 (rtx x, const_rtx pat, void *data1)
999 struct set_of_data *const data = (struct set_of_data *) (data1);
1000 if (rtx_equal_p (x, data->pat)
1001 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1002 data->found = pat;
1005 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1006 (either directly or via STRICT_LOW_PART and similar modifiers). */
1007 const_rtx
1008 set_of (const_rtx pat, const_rtx insn)
1010 struct set_of_data data;
1011 data.found = NULL_RTX;
1012 data.pat = pat;
1013 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1014 return data.found;
1017 /* This function, called through note_stores, collects sets and
1018 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1019 by DATA. */
1020 void
1021 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1023 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1024 if (REG_P (x) && HARD_REGISTER_P (x))
1025 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1028 /* Examine INSN, and compute the set of hard registers written by it.
1029 Store it in *PSET. Should only be called after reload. */
1030 void
1031 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1033 rtx link;
1035 CLEAR_HARD_REG_SET (*pset);
1036 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1037 if (CALL_P (insn))
1038 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1039 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1040 if (REG_NOTE_KIND (link) == REG_INC)
1041 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1044 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1045 static int
1046 record_hard_reg_uses_1 (rtx *px, void *data)
1048 rtx x = *px;
1049 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1051 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1053 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1054 while (nregs-- > 0)
1055 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1057 return 0;
1060 /* Like record_hard_reg_sets, but called through note_uses. */
1061 void
1062 record_hard_reg_uses (rtx *px, void *data)
1064 for_each_rtx (px, record_hard_reg_uses_1, data);
1067 /* Given an INSN, return a SET expression if this insn has only a single SET.
1068 It may also have CLOBBERs, USEs, or SET whose output
1069 will not be used, which we ignore. */
1072 single_set_2 (const_rtx insn, const_rtx pat)
1074 rtx set = NULL;
1075 int set_verified = 1;
1076 int i;
1078 if (GET_CODE (pat) == PARALLEL)
1080 for (i = 0; i < XVECLEN (pat, 0); i++)
1082 rtx sub = XVECEXP (pat, 0, i);
1083 switch (GET_CODE (sub))
1085 case USE:
1086 case CLOBBER:
1087 break;
1089 case SET:
1090 /* We can consider insns having multiple sets, where all
1091 but one are dead as single set insns. In common case
1092 only single set is present in the pattern so we want
1093 to avoid checking for REG_UNUSED notes unless necessary.
1095 When we reach set first time, we just expect this is
1096 the single set we are looking for and only when more
1097 sets are found in the insn, we check them. */
1098 if (!set_verified)
1100 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1101 && !side_effects_p (set))
1102 set = NULL;
1103 else
1104 set_verified = 1;
1106 if (!set)
1107 set = sub, set_verified = 0;
1108 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1109 || side_effects_p (sub))
1110 return NULL_RTX;
1111 break;
1113 default:
1114 return NULL_RTX;
1118 return set;
1121 /* Given an INSN, return nonzero if it has more than one SET, else return
1122 zero. */
1125 multiple_sets (const_rtx insn)
1127 int found;
1128 int i;
1130 /* INSN must be an insn. */
1131 if (! INSN_P (insn))
1132 return 0;
1134 /* Only a PARALLEL can have multiple SETs. */
1135 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1137 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1138 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1140 /* If we have already found a SET, then return now. */
1141 if (found)
1142 return 1;
1143 else
1144 found = 1;
1148 /* Either zero or one SET. */
1149 return 0;
1152 /* Return nonzero if the destination of SET equals the source
1153 and there are no side effects. */
1156 set_noop_p (const_rtx set)
1158 rtx src = SET_SRC (set);
1159 rtx dst = SET_DEST (set);
1161 if (dst == pc_rtx && src == pc_rtx)
1162 return 1;
1164 if (MEM_P (dst) && MEM_P (src))
1165 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1167 if (GET_CODE (dst) == ZERO_EXTRACT)
1168 return rtx_equal_p (XEXP (dst, 0), src)
1169 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1170 && !side_effects_p (src);
1172 if (GET_CODE (dst) == STRICT_LOW_PART)
1173 dst = XEXP (dst, 0);
1175 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1177 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1178 return 0;
1179 src = SUBREG_REG (src);
1180 dst = SUBREG_REG (dst);
1183 return (REG_P (src) && REG_P (dst)
1184 && REGNO (src) == REGNO (dst));
1187 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1188 value to itself. */
1191 noop_move_p (const_rtx insn)
1193 rtx pat = PATTERN (insn);
1195 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1196 return 1;
1198 /* Insns carrying these notes are useful later on. */
1199 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1200 return 0;
1202 /* Check the code to be executed for COND_EXEC. */
1203 if (GET_CODE (pat) == COND_EXEC)
1204 pat = COND_EXEC_CODE (pat);
1206 if (GET_CODE (pat) == SET && set_noop_p (pat))
1207 return 1;
1209 if (GET_CODE (pat) == PARALLEL)
1211 int i;
1212 /* If nothing but SETs of registers to themselves,
1213 this insn can also be deleted. */
1214 for (i = 0; i < XVECLEN (pat, 0); i++)
1216 rtx tem = XVECEXP (pat, 0, i);
1218 if (GET_CODE (tem) == USE
1219 || GET_CODE (tem) == CLOBBER)
1220 continue;
1222 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1223 return 0;
1226 return 1;
1228 return 0;
1232 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1233 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1234 If the object was modified, if we hit a partial assignment to X, or hit a
1235 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1236 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1237 be the src. */
1240 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1242 rtx p;
1244 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1245 p = PREV_INSN (p))
1246 if (INSN_P (p))
1248 rtx set = single_set (p);
1249 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1251 if (set && rtx_equal_p (x, SET_DEST (set)))
1253 rtx src = SET_SRC (set);
1255 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1256 src = XEXP (note, 0);
1258 if ((valid_to == NULL_RTX
1259 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1260 /* Reject hard registers because we don't usually want
1261 to use them; we'd rather use a pseudo. */
1262 && (! (REG_P (src)
1263 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1265 *pinsn = p;
1266 return src;
1270 /* If set in non-simple way, we don't have a value. */
1271 if (reg_set_p (x, p))
1272 break;
1275 return x;
1278 /* Return nonzero if register in range [REGNO, ENDREGNO)
1279 appears either explicitly or implicitly in X
1280 other than being stored into.
1282 References contained within the substructure at LOC do not count.
1283 LOC may be zero, meaning don't ignore anything. */
1286 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1287 rtx *loc)
1289 int i;
1290 unsigned int x_regno;
1291 RTX_CODE code;
1292 const char *fmt;
1294 repeat:
1295 /* The contents of a REG_NONNEG note is always zero, so we must come here
1296 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1297 if (x == 0)
1298 return 0;
1300 code = GET_CODE (x);
1302 switch (code)
1304 case REG:
1305 x_regno = REGNO (x);
1307 /* If we modifying the stack, frame, or argument pointer, it will
1308 clobber a virtual register. In fact, we could be more precise,
1309 but it isn't worth it. */
1310 if ((x_regno == STACK_POINTER_REGNUM
1311 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1312 || x_regno == ARG_POINTER_REGNUM
1313 #endif
1314 || x_regno == FRAME_POINTER_REGNUM)
1315 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1316 return 1;
1318 return endregno > x_regno && regno < END_REGNO (x);
1320 case SUBREG:
1321 /* If this is a SUBREG of a hard reg, we can see exactly which
1322 registers are being modified. Otherwise, handle normally. */
1323 if (REG_P (SUBREG_REG (x))
1324 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1326 unsigned int inner_regno = subreg_regno (x);
1327 unsigned int inner_endregno
1328 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1329 ? subreg_nregs (x) : 1);
1331 return endregno > inner_regno && regno < inner_endregno;
1333 break;
1335 case CLOBBER:
1336 case SET:
1337 if (&SET_DEST (x) != loc
1338 /* Note setting a SUBREG counts as referring to the REG it is in for
1339 a pseudo but not for hard registers since we can
1340 treat each word individually. */
1341 && ((GET_CODE (SET_DEST (x)) == SUBREG
1342 && loc != &SUBREG_REG (SET_DEST (x))
1343 && REG_P (SUBREG_REG (SET_DEST (x)))
1344 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1345 && refers_to_regno_p (regno, endregno,
1346 SUBREG_REG (SET_DEST (x)), loc))
1347 || (!REG_P (SET_DEST (x))
1348 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1349 return 1;
1351 if (code == CLOBBER || loc == &SET_SRC (x))
1352 return 0;
1353 x = SET_SRC (x);
1354 goto repeat;
1356 default:
1357 break;
1360 /* X does not match, so try its subexpressions. */
1362 fmt = GET_RTX_FORMAT (code);
1363 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1365 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1367 if (i == 0)
1369 x = XEXP (x, 0);
1370 goto repeat;
1372 else
1373 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1374 return 1;
1376 else if (fmt[i] == 'E')
1378 int j;
1379 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1380 if (loc != &XVECEXP (x, i, j)
1381 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1382 return 1;
1385 return 0;
1388 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1389 we check if any register number in X conflicts with the relevant register
1390 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1391 contains a MEM (we don't bother checking for memory addresses that can't
1392 conflict because we expect this to be a rare case. */
1395 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1397 unsigned int regno, endregno;
1399 /* If either argument is a constant, then modifying X can not
1400 affect IN. Here we look at IN, we can profitably combine
1401 CONSTANT_P (x) with the switch statement below. */
1402 if (CONSTANT_P (in))
1403 return 0;
1405 recurse:
1406 switch (GET_CODE (x))
1408 case STRICT_LOW_PART:
1409 case ZERO_EXTRACT:
1410 case SIGN_EXTRACT:
1411 /* Overly conservative. */
1412 x = XEXP (x, 0);
1413 goto recurse;
1415 case SUBREG:
1416 regno = REGNO (SUBREG_REG (x));
1417 if (regno < FIRST_PSEUDO_REGISTER)
1418 regno = subreg_regno (x);
1419 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1420 ? subreg_nregs (x) : 1);
1421 goto do_reg;
1423 case REG:
1424 regno = REGNO (x);
1425 endregno = END_REGNO (x);
1426 do_reg:
1427 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1429 case MEM:
1431 const char *fmt;
1432 int i;
1434 if (MEM_P (in))
1435 return 1;
1437 fmt = GET_RTX_FORMAT (GET_CODE (in));
1438 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1439 if (fmt[i] == 'e')
1441 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1442 return 1;
1444 else if (fmt[i] == 'E')
1446 int j;
1447 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1448 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1449 return 1;
1452 return 0;
1455 case SCRATCH:
1456 case PC:
1457 case CC0:
1458 return reg_mentioned_p (x, in);
1460 case PARALLEL:
1462 int i;
1464 /* If any register in here refers to it we return true. */
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1467 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1468 return 1;
1469 return 0;
1472 default:
1473 gcc_assert (CONSTANT_P (x));
1474 return 0;
1478 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1479 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1480 ignored by note_stores, but passed to FUN.
1482 FUN receives three arguments:
1483 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1484 2. the SET or CLOBBER rtx that does the store,
1485 3. the pointer DATA provided to note_stores.
1487 If the item being stored in or clobbered is a SUBREG of a hard register,
1488 the SUBREG will be passed. */
1490 void
1491 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1493 int i;
1495 if (GET_CODE (x) == COND_EXEC)
1496 x = COND_EXEC_CODE (x);
1498 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1500 rtx dest = SET_DEST (x);
1502 while ((GET_CODE (dest) == SUBREG
1503 && (!REG_P (SUBREG_REG (dest))
1504 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1505 || GET_CODE (dest) == ZERO_EXTRACT
1506 || GET_CODE (dest) == STRICT_LOW_PART)
1507 dest = XEXP (dest, 0);
1509 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1510 each of whose first operand is a register. */
1511 if (GET_CODE (dest) == PARALLEL)
1513 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1514 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1515 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1517 else
1518 (*fun) (dest, x, data);
1521 else if (GET_CODE (x) == PARALLEL)
1522 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1523 note_stores (XVECEXP (x, 0, i), fun, data);
1526 /* Like notes_stores, but call FUN for each expression that is being
1527 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1528 FUN for each expression, not any interior subexpressions. FUN receives a
1529 pointer to the expression and the DATA passed to this function.
1531 Note that this is not quite the same test as that done in reg_referenced_p
1532 since that considers something as being referenced if it is being
1533 partially set, while we do not. */
1535 void
1536 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1538 rtx body = *pbody;
1539 int i;
1541 switch (GET_CODE (body))
1543 case COND_EXEC:
1544 (*fun) (&COND_EXEC_TEST (body), data);
1545 note_uses (&COND_EXEC_CODE (body), fun, data);
1546 return;
1548 case PARALLEL:
1549 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1550 note_uses (&XVECEXP (body, 0, i), fun, data);
1551 return;
1553 case SEQUENCE:
1554 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1555 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1556 return;
1558 case USE:
1559 (*fun) (&XEXP (body, 0), data);
1560 return;
1562 case ASM_OPERANDS:
1563 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1564 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1565 return;
1567 case TRAP_IF:
1568 (*fun) (&TRAP_CONDITION (body), data);
1569 return;
1571 case PREFETCH:
1572 (*fun) (&XEXP (body, 0), data);
1573 return;
1575 case UNSPEC:
1576 case UNSPEC_VOLATILE:
1577 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1578 (*fun) (&XVECEXP (body, 0, i), data);
1579 return;
1581 case CLOBBER:
1582 if (MEM_P (XEXP (body, 0)))
1583 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1584 return;
1586 case SET:
1588 rtx dest = SET_DEST (body);
1590 /* For sets we replace everything in source plus registers in memory
1591 expression in store and operands of a ZERO_EXTRACT. */
1592 (*fun) (&SET_SRC (body), data);
1594 if (GET_CODE (dest) == ZERO_EXTRACT)
1596 (*fun) (&XEXP (dest, 1), data);
1597 (*fun) (&XEXP (dest, 2), data);
1600 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1601 dest = XEXP (dest, 0);
1603 if (MEM_P (dest))
1604 (*fun) (&XEXP (dest, 0), data);
1606 return;
1608 default:
1609 /* All the other possibilities never store. */
1610 (*fun) (pbody, data);
1611 return;
1615 /* Return nonzero if X's old contents don't survive after INSN.
1616 This will be true if X is (cc0) or if X is a register and
1617 X dies in INSN or because INSN entirely sets X.
1619 "Entirely set" means set directly and not through a SUBREG, or
1620 ZERO_EXTRACT, so no trace of the old contents remains.
1621 Likewise, REG_INC does not count.
1623 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1624 but for this use that makes no difference, since regs don't overlap
1625 during their lifetimes. Therefore, this function may be used
1626 at any time after deaths have been computed.
1628 If REG is a hard reg that occupies multiple machine registers, this
1629 function will only return 1 if each of those registers will be replaced
1630 by INSN. */
1633 dead_or_set_p (const_rtx insn, const_rtx x)
1635 unsigned int regno, end_regno;
1636 unsigned int i;
1638 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1639 if (GET_CODE (x) == CC0)
1640 return 1;
1642 gcc_assert (REG_P (x));
1644 regno = REGNO (x);
1645 end_regno = END_REGNO (x);
1646 for (i = regno; i < end_regno; i++)
1647 if (! dead_or_set_regno_p (insn, i))
1648 return 0;
1650 return 1;
1653 /* Return TRUE iff DEST is a register or subreg of a register and
1654 doesn't change the number of words of the inner register, and any
1655 part of the register is TEST_REGNO. */
1657 static bool
1658 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1660 unsigned int regno, endregno;
1662 if (GET_CODE (dest) == SUBREG
1663 && (((GET_MODE_SIZE (GET_MODE (dest))
1664 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1665 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1666 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1667 dest = SUBREG_REG (dest);
1669 if (!REG_P (dest))
1670 return false;
1672 regno = REGNO (dest);
1673 endregno = END_REGNO (dest);
1674 return (test_regno >= regno && test_regno < endregno);
1677 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1678 any member matches the covers_regno_no_parallel_p criteria. */
1680 static bool
1681 covers_regno_p (const_rtx dest, unsigned int test_regno)
1683 if (GET_CODE (dest) == PARALLEL)
1685 /* Some targets place small structures in registers for return
1686 values of functions, and those registers are wrapped in
1687 PARALLELs that we may see as the destination of a SET. */
1688 int i;
1690 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1692 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1693 if (inner != NULL_RTX
1694 && covers_regno_no_parallel_p (inner, test_regno))
1695 return true;
1698 return false;
1700 else
1701 return covers_regno_no_parallel_p (dest, test_regno);
1704 /* Utility function for dead_or_set_p to check an individual register. */
1707 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1709 const_rtx pattern;
1711 /* See if there is a death note for something that includes TEST_REGNO. */
1712 if (find_regno_note (insn, REG_DEAD, test_regno))
1713 return 1;
1715 if (CALL_P (insn)
1716 && find_regno_fusage (insn, CLOBBER, test_regno))
1717 return 1;
1719 pattern = PATTERN (insn);
1721 /* If a COND_EXEC is not executed, the value survives. */
1722 if (GET_CODE (pattern) == COND_EXEC)
1723 return 0;
1725 if (GET_CODE (pattern) == SET)
1726 return covers_regno_p (SET_DEST (pattern), test_regno);
1727 else if (GET_CODE (pattern) == PARALLEL)
1729 int i;
1731 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1733 rtx body = XVECEXP (pattern, 0, i);
1735 if (GET_CODE (body) == COND_EXEC)
1736 body = COND_EXEC_CODE (body);
1738 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1739 && covers_regno_p (SET_DEST (body), test_regno))
1740 return 1;
1744 return 0;
1747 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1748 If DATUM is nonzero, look for one whose datum is DATUM. */
1751 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1753 rtx link;
1755 gcc_checking_assert (insn);
1757 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1758 if (! INSN_P (insn))
1759 return 0;
1760 if (datum == 0)
1762 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1763 if (REG_NOTE_KIND (link) == kind)
1764 return link;
1765 return 0;
1768 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1769 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1770 return link;
1771 return 0;
1774 /* Return the reg-note of kind KIND in insn INSN which applies to register
1775 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1776 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1777 it might be the case that the note overlaps REGNO. */
1780 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1782 rtx link;
1784 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1785 if (! INSN_P (insn))
1786 return 0;
1788 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1789 if (REG_NOTE_KIND (link) == kind
1790 /* Verify that it is a register, so that scratch and MEM won't cause a
1791 problem here. */
1792 && REG_P (XEXP (link, 0))
1793 && REGNO (XEXP (link, 0)) <= regno
1794 && END_REGNO (XEXP (link, 0)) > regno)
1795 return link;
1796 return 0;
1799 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1800 has such a note. */
1803 find_reg_equal_equiv_note (const_rtx insn)
1805 rtx link;
1807 if (!INSN_P (insn))
1808 return 0;
1810 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1811 if (REG_NOTE_KIND (link) == REG_EQUAL
1812 || REG_NOTE_KIND (link) == REG_EQUIV)
1814 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1815 insns that have multiple sets. Checking single_set to
1816 make sure of this is not the proper check, as explained
1817 in the comment in set_unique_reg_note.
1819 This should be changed into an assert. */
1820 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1821 return 0;
1822 return link;
1824 return NULL;
1827 /* Check whether INSN is a single_set whose source is known to be
1828 equivalent to a constant. Return that constant if so, otherwise
1829 return null. */
1832 find_constant_src (const_rtx insn)
1834 rtx note, set, x;
1836 set = single_set (insn);
1837 if (set)
1839 x = avoid_constant_pool_reference (SET_SRC (set));
1840 if (CONSTANT_P (x))
1841 return x;
1844 note = find_reg_equal_equiv_note (insn);
1845 if (note && CONSTANT_P (XEXP (note, 0)))
1846 return XEXP (note, 0);
1848 return NULL_RTX;
1851 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1852 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1855 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1857 /* If it's not a CALL_INSN, it can't possibly have a
1858 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1859 if (!CALL_P (insn))
1860 return 0;
1862 gcc_assert (datum);
1864 if (!REG_P (datum))
1866 rtx link;
1868 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1869 link;
1870 link = XEXP (link, 1))
1871 if (GET_CODE (XEXP (link, 0)) == code
1872 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1873 return 1;
1875 else
1877 unsigned int regno = REGNO (datum);
1879 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1880 to pseudo registers, so don't bother checking. */
1882 if (regno < FIRST_PSEUDO_REGISTER)
1884 unsigned int end_regno = END_HARD_REGNO (datum);
1885 unsigned int i;
1887 for (i = regno; i < end_regno; i++)
1888 if (find_regno_fusage (insn, code, i))
1889 return 1;
1893 return 0;
1896 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1897 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1900 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1902 rtx link;
1904 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1905 to pseudo registers, so don't bother checking. */
1907 if (regno >= FIRST_PSEUDO_REGISTER
1908 || !CALL_P (insn) )
1909 return 0;
1911 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1913 rtx op, reg;
1915 if (GET_CODE (op = XEXP (link, 0)) == code
1916 && REG_P (reg = XEXP (op, 0))
1917 && REGNO (reg) <= regno
1918 && END_HARD_REGNO (reg) > regno)
1919 return 1;
1922 return 0;
1926 /* Return true if KIND is an integer REG_NOTE. */
1928 static bool
1929 int_reg_note_p (enum reg_note kind)
1931 return kind == REG_BR_PROB;
1934 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1935 stored as the pointer to the next register note. */
1938 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1940 rtx note;
1942 gcc_checking_assert (!int_reg_note_p (kind));
1943 switch (kind)
1945 case REG_CC_SETTER:
1946 case REG_CC_USER:
1947 case REG_LABEL_TARGET:
1948 case REG_LABEL_OPERAND:
1949 case REG_TM:
1950 /* These types of register notes use an INSN_LIST rather than an
1951 EXPR_LIST, so that copying is done right and dumps look
1952 better. */
1953 note = alloc_INSN_LIST (datum, list);
1954 PUT_REG_NOTE_KIND (note, kind);
1955 break;
1957 default:
1958 note = alloc_EXPR_LIST (kind, datum, list);
1959 break;
1962 return note;
1965 /* Add register note with kind KIND and datum DATUM to INSN. */
1967 void
1968 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1970 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1973 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
1975 void
1976 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
1978 gcc_checking_assert (int_reg_note_p (kind));
1979 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
1980 datum, REG_NOTES (insn));
1983 /* Add a register note like NOTE to INSN. */
1985 void
1986 add_shallow_copy_of_reg_note (rtx insn, rtx note)
1988 if (GET_CODE (note) == INT_LIST)
1989 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
1990 else
1991 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
1994 /* Remove register note NOTE from the REG_NOTES of INSN. */
1996 void
1997 remove_note (rtx insn, const_rtx note)
1999 rtx link;
2001 if (note == NULL_RTX)
2002 return;
2004 if (REG_NOTES (insn) == note)
2005 REG_NOTES (insn) = XEXP (note, 1);
2006 else
2007 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2008 if (XEXP (link, 1) == note)
2010 XEXP (link, 1) = XEXP (note, 1);
2011 break;
2014 switch (REG_NOTE_KIND (note))
2016 case REG_EQUAL:
2017 case REG_EQUIV:
2018 df_notes_rescan (insn);
2019 break;
2020 default:
2021 break;
2025 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2027 void
2028 remove_reg_equal_equiv_notes (rtx insn)
2030 rtx *loc;
2032 loc = &REG_NOTES (insn);
2033 while (*loc)
2035 enum reg_note kind = REG_NOTE_KIND (*loc);
2036 if (kind == REG_EQUAL || kind == REG_EQUIV)
2037 *loc = XEXP (*loc, 1);
2038 else
2039 loc = &XEXP (*loc, 1);
2043 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2045 void
2046 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2048 df_ref eq_use;
2050 if (!df)
2051 return;
2053 /* This loop is a little tricky. We cannot just go down the chain because
2054 it is being modified by some actions in the loop. So we just iterate
2055 over the head. We plan to drain the list anyway. */
2056 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2058 rtx insn = DF_REF_INSN (eq_use);
2059 rtx note = find_reg_equal_equiv_note (insn);
2061 /* This assert is generally triggered when someone deletes a REG_EQUAL
2062 or REG_EQUIV note by hacking the list manually rather than calling
2063 remove_note. */
2064 gcc_assert (note);
2066 remove_note (insn, note);
2070 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2071 return 1 if it is found. A simple equality test is used to determine if
2072 NODE matches. */
2075 in_expr_list_p (const_rtx listp, const_rtx node)
2077 const_rtx x;
2079 for (x = listp; x; x = XEXP (x, 1))
2080 if (node == XEXP (x, 0))
2081 return 1;
2083 return 0;
2086 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2087 remove that entry from the list if it is found.
2089 A simple equality test is used to determine if NODE matches. */
2091 void
2092 remove_node_from_expr_list (const_rtx node, rtx *listp)
2094 rtx temp = *listp;
2095 rtx prev = NULL_RTX;
2097 while (temp)
2099 if (node == XEXP (temp, 0))
2101 /* Splice the node out of the list. */
2102 if (prev)
2103 XEXP (prev, 1) = XEXP (temp, 1);
2104 else
2105 *listp = XEXP (temp, 1);
2107 return;
2110 prev = temp;
2111 temp = XEXP (temp, 1);
2115 /* Nonzero if X contains any volatile instructions. These are instructions
2116 which may cause unpredictable machine state instructions, and thus no
2117 instructions or register uses should be moved or combined across them.
2118 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2121 volatile_insn_p (const_rtx x)
2123 const RTX_CODE code = GET_CODE (x);
2124 switch (code)
2126 case LABEL_REF:
2127 case SYMBOL_REF:
2128 case CONST:
2129 CASE_CONST_ANY:
2130 case CC0:
2131 case PC:
2132 case REG:
2133 case SCRATCH:
2134 case CLOBBER:
2135 case ADDR_VEC:
2136 case ADDR_DIFF_VEC:
2137 case CALL:
2138 case MEM:
2139 return 0;
2141 case UNSPEC_VOLATILE:
2142 return 1;
2144 case ASM_INPUT:
2145 case ASM_OPERANDS:
2146 if (MEM_VOLATILE_P (x))
2147 return 1;
2149 default:
2150 break;
2153 /* Recursively scan the operands of this expression. */
2156 const char *const fmt = GET_RTX_FORMAT (code);
2157 int i;
2159 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2161 if (fmt[i] == 'e')
2163 if (volatile_insn_p (XEXP (x, i)))
2164 return 1;
2166 else if (fmt[i] == 'E')
2168 int j;
2169 for (j = 0; j < XVECLEN (x, i); j++)
2170 if (volatile_insn_p (XVECEXP (x, i, j)))
2171 return 1;
2175 return 0;
2178 /* Nonzero if X contains any volatile memory references
2179 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2182 volatile_refs_p (const_rtx x)
2184 const RTX_CODE code = GET_CODE (x);
2185 switch (code)
2187 case LABEL_REF:
2188 case SYMBOL_REF:
2189 case CONST:
2190 CASE_CONST_ANY:
2191 case CC0:
2192 case PC:
2193 case REG:
2194 case SCRATCH:
2195 case CLOBBER:
2196 case ADDR_VEC:
2197 case ADDR_DIFF_VEC:
2198 return 0;
2200 case UNSPEC_VOLATILE:
2201 return 1;
2203 case MEM:
2204 case ASM_INPUT:
2205 case ASM_OPERANDS:
2206 if (MEM_VOLATILE_P (x))
2207 return 1;
2209 default:
2210 break;
2213 /* Recursively scan the operands of this expression. */
2216 const char *const fmt = GET_RTX_FORMAT (code);
2217 int i;
2219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2221 if (fmt[i] == 'e')
2223 if (volatile_refs_p (XEXP (x, i)))
2224 return 1;
2226 else if (fmt[i] == 'E')
2228 int j;
2229 for (j = 0; j < XVECLEN (x, i); j++)
2230 if (volatile_refs_p (XVECEXP (x, i, j)))
2231 return 1;
2235 return 0;
2238 /* Similar to above, except that it also rejects register pre- and post-
2239 incrementing. */
2242 side_effects_p (const_rtx x)
2244 const RTX_CODE code = GET_CODE (x);
2245 switch (code)
2247 case LABEL_REF:
2248 case SYMBOL_REF:
2249 case CONST:
2250 CASE_CONST_ANY:
2251 case CC0:
2252 case PC:
2253 case REG:
2254 case SCRATCH:
2255 case ADDR_VEC:
2256 case ADDR_DIFF_VEC:
2257 case VAR_LOCATION:
2258 return 0;
2260 case CLOBBER:
2261 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2262 when some combination can't be done. If we see one, don't think
2263 that we can simplify the expression. */
2264 return (GET_MODE (x) != VOIDmode);
2266 case PRE_INC:
2267 case PRE_DEC:
2268 case POST_INC:
2269 case POST_DEC:
2270 case PRE_MODIFY:
2271 case POST_MODIFY:
2272 case CALL:
2273 case UNSPEC_VOLATILE:
2274 return 1;
2276 case MEM:
2277 case ASM_INPUT:
2278 case ASM_OPERANDS:
2279 if (MEM_VOLATILE_P (x))
2280 return 1;
2282 default:
2283 break;
2286 /* Recursively scan the operands of this expression. */
2289 const char *fmt = GET_RTX_FORMAT (code);
2290 int i;
2292 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2294 if (fmt[i] == 'e')
2296 if (side_effects_p (XEXP (x, i)))
2297 return 1;
2299 else if (fmt[i] == 'E')
2301 int j;
2302 for (j = 0; j < XVECLEN (x, i); j++)
2303 if (side_effects_p (XVECEXP (x, i, j)))
2304 return 1;
2308 return 0;
2311 /* Return nonzero if evaluating rtx X might cause a trap.
2312 FLAGS controls how to consider MEMs. A nonzero means the context
2313 of the access may have changed from the original, such that the
2314 address may have become invalid. */
2317 may_trap_p_1 (const_rtx x, unsigned flags)
2319 int i;
2320 enum rtx_code code;
2321 const char *fmt;
2323 /* We make no distinction currently, but this function is part of
2324 the internal target-hooks ABI so we keep the parameter as
2325 "unsigned flags". */
2326 bool code_changed = flags != 0;
2328 if (x == 0)
2329 return 0;
2330 code = GET_CODE (x);
2331 switch (code)
2333 /* Handle these cases quickly. */
2334 CASE_CONST_ANY:
2335 case SYMBOL_REF:
2336 case LABEL_REF:
2337 case CONST:
2338 case PC:
2339 case CC0:
2340 case REG:
2341 case SCRATCH:
2342 return 0;
2344 case UNSPEC:
2345 return targetm.unspec_may_trap_p (x, flags);
2347 case UNSPEC_VOLATILE:
2348 case ASM_INPUT:
2349 case TRAP_IF:
2350 return 1;
2352 case ASM_OPERANDS:
2353 return MEM_VOLATILE_P (x);
2355 /* Memory ref can trap unless it's a static var or a stack slot. */
2356 case MEM:
2357 /* Recognize specific pattern of stack checking probes. */
2358 if (flag_stack_check
2359 && MEM_VOLATILE_P (x)
2360 && XEXP (x, 0) == stack_pointer_rtx)
2361 return 1;
2362 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2363 reference; moving it out of context such as when moving code
2364 when optimizing, might cause its address to become invalid. */
2365 code_changed
2366 || !MEM_NOTRAP_P (x))
2368 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2369 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2370 GET_MODE (x), code_changed);
2373 return 0;
2375 /* Division by a non-constant might trap. */
2376 case DIV:
2377 case MOD:
2378 case UDIV:
2379 case UMOD:
2380 if (HONOR_SNANS (GET_MODE (x)))
2381 return 1;
2382 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2383 return flag_trapping_math;
2384 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2385 return 1;
2386 break;
2388 case EXPR_LIST:
2389 /* An EXPR_LIST is used to represent a function call. This
2390 certainly may trap. */
2391 return 1;
2393 case GE:
2394 case GT:
2395 case LE:
2396 case LT:
2397 case LTGT:
2398 case COMPARE:
2399 /* Some floating point comparisons may trap. */
2400 if (!flag_trapping_math)
2401 break;
2402 /* ??? There is no machine independent way to check for tests that trap
2403 when COMPARE is used, though many targets do make this distinction.
2404 For instance, sparc uses CCFPE for compares which generate exceptions
2405 and CCFP for compares which do not generate exceptions. */
2406 if (HONOR_NANS (GET_MODE (x)))
2407 return 1;
2408 /* But often the compare has some CC mode, so check operand
2409 modes as well. */
2410 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2411 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2412 return 1;
2413 break;
2415 case EQ:
2416 case NE:
2417 if (HONOR_SNANS (GET_MODE (x)))
2418 return 1;
2419 /* Often comparison is CC mode, so check operand modes. */
2420 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2421 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2422 return 1;
2423 break;
2425 case FIX:
2426 /* Conversion of floating point might trap. */
2427 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2428 return 1;
2429 break;
2431 case NEG:
2432 case ABS:
2433 case SUBREG:
2434 /* These operations don't trap even with floating point. */
2435 break;
2437 default:
2438 /* Any floating arithmetic may trap. */
2439 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2440 return 1;
2443 fmt = GET_RTX_FORMAT (code);
2444 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2446 if (fmt[i] == 'e')
2448 if (may_trap_p_1 (XEXP (x, i), flags))
2449 return 1;
2451 else if (fmt[i] == 'E')
2453 int j;
2454 for (j = 0; j < XVECLEN (x, i); j++)
2455 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2456 return 1;
2459 return 0;
2462 /* Return nonzero if evaluating rtx X might cause a trap. */
2465 may_trap_p (const_rtx x)
2467 return may_trap_p_1 (x, 0);
2470 /* Same as above, but additionally return nonzero if evaluating rtx X might
2471 cause a fault. We define a fault for the purpose of this function as a
2472 erroneous execution condition that cannot be encountered during the normal
2473 execution of a valid program; the typical example is an unaligned memory
2474 access on a strict alignment machine. The compiler guarantees that it
2475 doesn't generate code that will fault from a valid program, but this
2476 guarantee doesn't mean anything for individual instructions. Consider
2477 the following example:
2479 struct S { int d; union { char *cp; int *ip; }; };
2481 int foo(struct S *s)
2483 if (s->d == 1)
2484 return *s->ip;
2485 else
2486 return *s->cp;
2489 on a strict alignment machine. In a valid program, foo will never be
2490 invoked on a structure for which d is equal to 1 and the underlying
2491 unique field of the union not aligned on a 4-byte boundary, but the
2492 expression *s->ip might cause a fault if considered individually.
2494 At the RTL level, potentially problematic expressions will almost always
2495 verify may_trap_p; for example, the above dereference can be emitted as
2496 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2497 However, suppose that foo is inlined in a caller that causes s->cp to
2498 point to a local character variable and guarantees that s->d is not set
2499 to 1; foo may have been effectively translated into pseudo-RTL as:
2501 if ((reg:SI) == 1)
2502 (set (reg:SI) (mem:SI (%fp - 7)))
2503 else
2504 (set (reg:QI) (mem:QI (%fp - 7)))
2506 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2507 memory reference to a stack slot, but it will certainly cause a fault
2508 on a strict alignment machine. */
2511 may_trap_or_fault_p (const_rtx x)
2513 return may_trap_p_1 (x, 1);
2516 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2517 i.e., an inequality. */
2520 inequality_comparisons_p (const_rtx x)
2522 const char *fmt;
2523 int len, i;
2524 const enum rtx_code code = GET_CODE (x);
2526 switch (code)
2528 case REG:
2529 case SCRATCH:
2530 case PC:
2531 case CC0:
2532 CASE_CONST_ANY:
2533 case CONST:
2534 case LABEL_REF:
2535 case SYMBOL_REF:
2536 return 0;
2538 case LT:
2539 case LTU:
2540 case GT:
2541 case GTU:
2542 case LE:
2543 case LEU:
2544 case GE:
2545 case GEU:
2546 return 1;
2548 default:
2549 break;
2552 len = GET_RTX_LENGTH (code);
2553 fmt = GET_RTX_FORMAT (code);
2555 for (i = 0; i < len; i++)
2557 if (fmt[i] == 'e')
2559 if (inequality_comparisons_p (XEXP (x, i)))
2560 return 1;
2562 else if (fmt[i] == 'E')
2564 int j;
2565 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2566 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2567 return 1;
2571 return 0;
2574 /* Replace any occurrence of FROM in X with TO. The function does
2575 not enter into CONST_DOUBLE for the replace.
2577 Note that copying is not done so X must not be shared unless all copies
2578 are to be modified. */
2581 replace_rtx (rtx x, rtx from, rtx to)
2583 int i, j;
2584 const char *fmt;
2586 if (x == from)
2587 return to;
2589 /* Allow this function to make replacements in EXPR_LISTs. */
2590 if (x == 0)
2591 return 0;
2593 if (GET_CODE (x) == SUBREG)
2595 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2597 if (CONST_INT_P (new_rtx))
2599 x = simplify_subreg (GET_MODE (x), new_rtx,
2600 GET_MODE (SUBREG_REG (x)),
2601 SUBREG_BYTE (x));
2602 gcc_assert (x);
2604 else
2605 SUBREG_REG (x) = new_rtx;
2607 return x;
2609 else if (GET_CODE (x) == ZERO_EXTEND)
2611 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2613 if (CONST_INT_P (new_rtx))
2615 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2616 new_rtx, GET_MODE (XEXP (x, 0)));
2617 gcc_assert (x);
2619 else
2620 XEXP (x, 0) = new_rtx;
2622 return x;
2625 fmt = GET_RTX_FORMAT (GET_CODE (x));
2626 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2628 if (fmt[i] == 'e')
2629 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2630 else if (fmt[i] == 'E')
2631 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2632 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2635 return x;
2638 /* Replace occurrences of the old label in *X with the new one.
2639 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2642 replace_label (rtx *x, void *data)
2644 rtx l = *x;
2645 rtx old_label = ((replace_label_data *) data)->r1;
2646 rtx new_label = ((replace_label_data *) data)->r2;
2647 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2649 if (l == NULL_RTX)
2650 return 0;
2652 if (GET_CODE (l) == SYMBOL_REF
2653 && CONSTANT_POOL_ADDRESS_P (l))
2655 rtx c = get_pool_constant (l);
2656 if (rtx_referenced_p (old_label, c))
2658 rtx new_c, new_l;
2659 replace_label_data *d = (replace_label_data *) data;
2661 /* Create a copy of constant C; replace the label inside
2662 but do not update LABEL_NUSES because uses in constant pool
2663 are not counted. */
2664 new_c = copy_rtx (c);
2665 d->update_label_nuses = false;
2666 for_each_rtx (&new_c, replace_label, data);
2667 d->update_label_nuses = update_label_nuses;
2669 /* Add the new constant NEW_C to constant pool and replace
2670 the old reference to constant by new reference. */
2671 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2672 *x = replace_rtx (l, l, new_l);
2674 return 0;
2677 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2678 field. This is not handled by for_each_rtx because it doesn't
2679 handle unprinted ('0') fields. */
2680 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2681 JUMP_LABEL (l) = new_label;
2683 if ((GET_CODE (l) == LABEL_REF
2684 || GET_CODE (l) == INSN_LIST)
2685 && XEXP (l, 0) == old_label)
2687 XEXP (l, 0) = new_label;
2688 if (update_label_nuses)
2690 ++LABEL_NUSES (new_label);
2691 --LABEL_NUSES (old_label);
2693 return 0;
2696 return 0;
2699 /* When *BODY is equal to X or X is directly referenced by *BODY
2700 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2701 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2703 static int
2704 rtx_referenced_p_1 (rtx *body, void *x)
2706 rtx y = (rtx) x;
2708 if (*body == NULL_RTX)
2709 return y == NULL_RTX;
2711 /* Return true if a label_ref *BODY refers to label Y. */
2712 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2713 return XEXP (*body, 0) == y;
2715 /* If *BODY is a reference to pool constant traverse the constant. */
2716 if (GET_CODE (*body) == SYMBOL_REF
2717 && CONSTANT_POOL_ADDRESS_P (*body))
2718 return rtx_referenced_p (y, get_pool_constant (*body));
2720 /* By default, compare the RTL expressions. */
2721 return rtx_equal_p (*body, y);
2724 /* Return true if X is referenced in BODY. */
2727 rtx_referenced_p (rtx x, rtx body)
2729 return for_each_rtx (&body, rtx_referenced_p_1, x);
2732 /* If INSN is a tablejump return true and store the label (before jump table) to
2733 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2735 bool
2736 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2738 rtx label, table;
2740 if (!JUMP_P (insn))
2741 return false;
2743 label = JUMP_LABEL (insn);
2744 if (label != NULL_RTX && !ANY_RETURN_P (label)
2745 && (table = next_active_insn (label)) != NULL_RTX
2746 && JUMP_TABLE_DATA_P (table))
2748 gcc_assert (table == NEXT_INSN (label));
2749 if (labelp)
2750 *labelp = label;
2751 if (tablep)
2752 *tablep = table;
2753 return true;
2755 return false;
2758 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2759 constant that is not in the constant pool and not in the condition
2760 of an IF_THEN_ELSE. */
2762 static int
2763 computed_jump_p_1 (const_rtx x)
2765 const enum rtx_code code = GET_CODE (x);
2766 int i, j;
2767 const char *fmt;
2769 switch (code)
2771 case LABEL_REF:
2772 case PC:
2773 return 0;
2775 case CONST:
2776 CASE_CONST_ANY:
2777 case SYMBOL_REF:
2778 case REG:
2779 return 1;
2781 case MEM:
2782 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2783 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2785 case IF_THEN_ELSE:
2786 return (computed_jump_p_1 (XEXP (x, 1))
2787 || computed_jump_p_1 (XEXP (x, 2)));
2789 default:
2790 break;
2793 fmt = GET_RTX_FORMAT (code);
2794 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2796 if (fmt[i] == 'e'
2797 && computed_jump_p_1 (XEXP (x, i)))
2798 return 1;
2800 else if (fmt[i] == 'E')
2801 for (j = 0; j < XVECLEN (x, i); j++)
2802 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2803 return 1;
2806 return 0;
2809 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2811 Tablejumps and casesi insns are not considered indirect jumps;
2812 we can recognize them by a (use (label_ref)). */
2815 computed_jump_p (const_rtx insn)
2817 int i;
2818 if (JUMP_P (insn))
2820 rtx pat = PATTERN (insn);
2822 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2823 if (JUMP_LABEL (insn) != NULL)
2824 return 0;
2826 if (GET_CODE (pat) == PARALLEL)
2828 int len = XVECLEN (pat, 0);
2829 int has_use_labelref = 0;
2831 for (i = len - 1; i >= 0; i--)
2832 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2833 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2834 == LABEL_REF))
2836 has_use_labelref = 1;
2837 break;
2840 if (! has_use_labelref)
2841 for (i = len - 1; i >= 0; i--)
2842 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2843 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2844 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2845 return 1;
2847 else if (GET_CODE (pat) == SET
2848 && SET_DEST (pat) == pc_rtx
2849 && computed_jump_p_1 (SET_SRC (pat)))
2850 return 1;
2852 return 0;
2855 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2856 calls. Processes the subexpressions of EXP and passes them to F. */
2857 static int
2858 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2860 int result, i, j;
2861 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2862 rtx *x;
2864 for (; format[n] != '\0'; n++)
2866 switch (format[n])
2868 case 'e':
2869 /* Call F on X. */
2870 x = &XEXP (exp, n);
2871 result = (*f) (x, data);
2872 if (result == -1)
2873 /* Do not traverse sub-expressions. */
2874 continue;
2875 else if (result != 0)
2876 /* Stop the traversal. */
2877 return result;
2879 if (*x == NULL_RTX)
2880 /* There are no sub-expressions. */
2881 continue;
2883 i = non_rtx_starting_operands[GET_CODE (*x)];
2884 if (i >= 0)
2886 result = for_each_rtx_1 (*x, i, f, data);
2887 if (result != 0)
2888 return result;
2890 break;
2892 case 'V':
2893 case 'E':
2894 if (XVEC (exp, n) == 0)
2895 continue;
2896 for (j = 0; j < XVECLEN (exp, n); ++j)
2898 /* Call F on X. */
2899 x = &XVECEXP (exp, n, j);
2900 result = (*f) (x, data);
2901 if (result == -1)
2902 /* Do not traverse sub-expressions. */
2903 continue;
2904 else if (result != 0)
2905 /* Stop the traversal. */
2906 return result;
2908 if (*x == NULL_RTX)
2909 /* There are no sub-expressions. */
2910 continue;
2912 i = non_rtx_starting_operands[GET_CODE (*x)];
2913 if (i >= 0)
2915 result = for_each_rtx_1 (*x, i, f, data);
2916 if (result != 0)
2917 return result;
2920 break;
2922 default:
2923 /* Nothing to do. */
2924 break;
2928 return 0;
2931 /* Traverse X via depth-first search, calling F for each
2932 sub-expression (including X itself). F is also passed the DATA.
2933 If F returns -1, do not traverse sub-expressions, but continue
2934 traversing the rest of the tree. If F ever returns any other
2935 nonzero value, stop the traversal, and return the value returned
2936 by F. Otherwise, return 0. This function does not traverse inside
2937 tree structure that contains RTX_EXPRs, or into sub-expressions
2938 whose format code is `0' since it is not known whether or not those
2939 codes are actually RTL.
2941 This routine is very general, and could (should?) be used to
2942 implement many of the other routines in this file. */
2945 for_each_rtx (rtx *x, rtx_function f, void *data)
2947 int result;
2948 int i;
2950 /* Call F on X. */
2951 result = (*f) (x, data);
2952 if (result == -1)
2953 /* Do not traverse sub-expressions. */
2954 return 0;
2955 else if (result != 0)
2956 /* Stop the traversal. */
2957 return result;
2959 if (*x == NULL_RTX)
2960 /* There are no sub-expressions. */
2961 return 0;
2963 i = non_rtx_starting_operands[GET_CODE (*x)];
2964 if (i < 0)
2965 return 0;
2967 return for_each_rtx_1 (*x, i, f, data);
2972 /* Data structure that holds the internal state communicated between
2973 for_each_inc_dec, for_each_inc_dec_find_mem and
2974 for_each_inc_dec_find_inc_dec. */
2976 struct for_each_inc_dec_ops {
2977 /* The function to be called for each autoinc operation found. */
2978 for_each_inc_dec_fn fn;
2979 /* The opaque argument to be passed to it. */
2980 void *arg;
2981 /* The MEM we're visiting, if any. */
2982 rtx mem;
2985 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2987 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2988 operands of the equivalent add insn and pass the result to the
2989 operator specified by *D. */
2991 static int
2992 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2994 rtx x = *r;
2995 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2997 switch (GET_CODE (x))
2999 case PRE_INC:
3000 case POST_INC:
3002 int size = GET_MODE_SIZE (GET_MODE (data->mem));
3003 rtx r1 = XEXP (x, 0);
3004 rtx c = gen_int_mode (size, GET_MODE (r1));
3005 return data->fn (data->mem, x, r1, r1, c, data->arg);
3008 case PRE_DEC:
3009 case POST_DEC:
3011 int size = GET_MODE_SIZE (GET_MODE (data->mem));
3012 rtx r1 = XEXP (x, 0);
3013 rtx c = gen_int_mode (-size, GET_MODE (r1));
3014 return data->fn (data->mem, x, r1, r1, c, data->arg);
3017 case PRE_MODIFY:
3018 case POST_MODIFY:
3020 rtx r1 = XEXP (x, 0);
3021 rtx add = XEXP (x, 1);
3022 return data->fn (data->mem, x, r1, add, NULL, data->arg);
3025 case MEM:
3027 rtx save = data->mem;
3028 int ret = for_each_inc_dec_find_mem (r, d);
3029 data->mem = save;
3030 return ret;
3033 default:
3034 return 0;
3038 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3039 address, extract the operands of the equivalent add insn and pass
3040 the result to the operator specified by *D. */
3042 static int
3043 for_each_inc_dec_find_mem (rtx *r, void *d)
3045 rtx x = *r;
3046 if (x != NULL_RTX && MEM_P (x))
3048 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3049 int result;
3051 data->mem = x;
3053 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3054 data);
3055 if (result)
3056 return result;
3058 return -1;
3060 return 0;
3063 /* Traverse *X looking for MEMs, and for autoinc operations within
3064 them. For each such autoinc operation found, call FN, passing it
3065 the innermost enclosing MEM, the operation itself, the RTX modified
3066 by the operation, two RTXs (the second may be NULL) that, once
3067 added, represent the value to be held by the modified RTX
3068 afterwards, and ARG. FN is to return -1 to skip looking for other
3069 autoinc operations within the visited operation, 0 to continue the
3070 traversal, or any other value to have it returned to the caller of
3071 for_each_inc_dec. */
3074 for_each_inc_dec (rtx *x,
3075 for_each_inc_dec_fn fn,
3076 void *arg)
3078 struct for_each_inc_dec_ops data;
3080 data.fn = fn;
3081 data.arg = arg;
3082 data.mem = NULL;
3084 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3088 /* Searches X for any reference to REGNO, returning the rtx of the
3089 reference found if any. Otherwise, returns NULL_RTX. */
3092 regno_use_in (unsigned int regno, rtx x)
3094 const char *fmt;
3095 int i, j;
3096 rtx tem;
3098 if (REG_P (x) && REGNO (x) == regno)
3099 return x;
3101 fmt = GET_RTX_FORMAT (GET_CODE (x));
3102 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3104 if (fmt[i] == 'e')
3106 if ((tem = regno_use_in (regno, XEXP (x, i))))
3107 return tem;
3109 else if (fmt[i] == 'E')
3110 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3111 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3112 return tem;
3115 return NULL_RTX;
3118 /* Return a value indicating whether OP, an operand of a commutative
3119 operation, is preferred as the first or second operand. The higher
3120 the value, the stronger the preference for being the first operand.
3121 We use negative values to indicate a preference for the first operand
3122 and positive values for the second operand. */
3125 commutative_operand_precedence (rtx op)
3127 enum rtx_code code = GET_CODE (op);
3129 /* Constants always come the second operand. Prefer "nice" constants. */
3130 if (code == CONST_INT)
3131 return -8;
3132 if (code == CONST_DOUBLE)
3133 return -7;
3134 if (code == CONST_FIXED)
3135 return -7;
3136 op = avoid_constant_pool_reference (op);
3137 code = GET_CODE (op);
3139 switch (GET_RTX_CLASS (code))
3141 case RTX_CONST_OBJ:
3142 if (code == CONST_INT)
3143 return -6;
3144 if (code == CONST_DOUBLE)
3145 return -5;
3146 if (code == CONST_FIXED)
3147 return -5;
3148 return -4;
3150 case RTX_EXTRA:
3151 /* SUBREGs of objects should come second. */
3152 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3153 return -3;
3154 return 0;
3156 case RTX_OBJ:
3157 /* Complex expressions should be the first, so decrease priority
3158 of objects. Prefer pointer objects over non pointer objects. */
3159 if ((REG_P (op) && REG_POINTER (op))
3160 || (MEM_P (op) && MEM_POINTER (op)))
3161 return -1;
3162 return -2;
3164 case RTX_COMM_ARITH:
3165 /* Prefer operands that are themselves commutative to be first.
3166 This helps to make things linear. In particular,
3167 (and (and (reg) (reg)) (not (reg))) is canonical. */
3168 return 4;
3170 case RTX_BIN_ARITH:
3171 /* If only one operand is a binary expression, it will be the first
3172 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3173 is canonical, although it will usually be further simplified. */
3174 return 2;
3176 case RTX_UNARY:
3177 /* Then prefer NEG and NOT. */
3178 if (code == NEG || code == NOT)
3179 return 1;
3181 default:
3182 return 0;
3186 /* Return 1 iff it is necessary to swap operands of commutative operation
3187 in order to canonicalize expression. */
3189 bool
3190 swap_commutative_operands_p (rtx x, rtx y)
3192 return (commutative_operand_precedence (x)
3193 < commutative_operand_precedence (y));
3196 /* Return 1 if X is an autoincrement side effect and the register is
3197 not the stack pointer. */
3199 auto_inc_p (const_rtx x)
3201 switch (GET_CODE (x))
3203 case PRE_INC:
3204 case POST_INC:
3205 case PRE_DEC:
3206 case POST_DEC:
3207 case PRE_MODIFY:
3208 case POST_MODIFY:
3209 /* There are no REG_INC notes for SP. */
3210 if (XEXP (x, 0) != stack_pointer_rtx)
3211 return 1;
3212 default:
3213 break;
3215 return 0;
3218 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3220 loc_mentioned_in_p (rtx *loc, const_rtx in)
3222 enum rtx_code code;
3223 const char *fmt;
3224 int i, j;
3226 if (!in)
3227 return 0;
3229 code = GET_CODE (in);
3230 fmt = GET_RTX_FORMAT (code);
3231 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3233 if (fmt[i] == 'e')
3235 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3236 return 1;
3238 else if (fmt[i] == 'E')
3239 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3240 if (loc == &XVECEXP (in, i, j)
3241 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3242 return 1;
3244 return 0;
3247 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3248 and SUBREG_BYTE, return the bit offset where the subreg begins
3249 (counting from the least significant bit of the operand). */
3251 unsigned int
3252 subreg_lsb_1 (enum machine_mode outer_mode,
3253 enum machine_mode inner_mode,
3254 unsigned int subreg_byte)
3256 unsigned int bitpos;
3257 unsigned int byte;
3258 unsigned int word;
3260 /* A paradoxical subreg begins at bit position 0. */
3261 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3262 return 0;
3264 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3265 /* If the subreg crosses a word boundary ensure that
3266 it also begins and ends on a word boundary. */
3267 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3268 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3269 && (subreg_byte % UNITS_PER_WORD
3270 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3272 if (WORDS_BIG_ENDIAN)
3273 word = (GET_MODE_SIZE (inner_mode)
3274 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3275 else
3276 word = subreg_byte / UNITS_PER_WORD;
3277 bitpos = word * BITS_PER_WORD;
3279 if (BYTES_BIG_ENDIAN)
3280 byte = (GET_MODE_SIZE (inner_mode)
3281 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3282 else
3283 byte = subreg_byte % UNITS_PER_WORD;
3284 bitpos += byte * BITS_PER_UNIT;
3286 return bitpos;
3289 /* Given a subreg X, return the bit offset where the subreg begins
3290 (counting from the least significant bit of the reg). */
3292 unsigned int
3293 subreg_lsb (const_rtx x)
3295 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3296 SUBREG_BYTE (x));
3299 /* Fill in information about a subreg of a hard register.
3300 xregno - A regno of an inner hard subreg_reg (or what will become one).
3301 xmode - The mode of xregno.
3302 offset - The byte offset.
3303 ymode - The mode of a top level SUBREG (or what may become one).
3304 info - Pointer to structure to fill in. */
3305 void
3306 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3307 unsigned int offset, enum machine_mode ymode,
3308 struct subreg_info *info)
3310 int nregs_xmode, nregs_ymode;
3311 int mode_multiple, nregs_multiple;
3312 int offset_adj, y_offset, y_offset_adj;
3313 int regsize_xmode, regsize_ymode;
3314 bool rknown;
3316 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3318 rknown = false;
3320 /* If there are holes in a non-scalar mode in registers, we expect
3321 that it is made up of its units concatenated together. */
3322 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3324 enum machine_mode xmode_unit;
3326 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3327 if (GET_MODE_INNER (xmode) == VOIDmode)
3328 xmode_unit = xmode;
3329 else
3330 xmode_unit = GET_MODE_INNER (xmode);
3331 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3332 gcc_assert (nregs_xmode
3333 == (GET_MODE_NUNITS (xmode)
3334 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3335 gcc_assert (hard_regno_nregs[xregno][xmode]
3336 == (hard_regno_nregs[xregno][xmode_unit]
3337 * GET_MODE_NUNITS (xmode)));
3339 /* You can only ask for a SUBREG of a value with holes in the middle
3340 if you don't cross the holes. (Such a SUBREG should be done by
3341 picking a different register class, or doing it in memory if
3342 necessary.) An example of a value with holes is XCmode on 32-bit
3343 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3344 3 for each part, but in memory it's two 128-bit parts.
3345 Padding is assumed to be at the end (not necessarily the 'high part')
3346 of each unit. */
3347 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3348 < GET_MODE_NUNITS (xmode))
3349 && (offset / GET_MODE_SIZE (xmode_unit)
3350 != ((offset + GET_MODE_SIZE (ymode) - 1)
3351 / GET_MODE_SIZE (xmode_unit))))
3353 info->representable_p = false;
3354 rknown = true;
3357 else
3358 nregs_xmode = hard_regno_nregs[xregno][xmode];
3360 nregs_ymode = hard_regno_nregs[xregno][ymode];
3362 /* Paradoxical subregs are otherwise valid. */
3363 if (!rknown
3364 && offset == 0
3365 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3367 info->representable_p = true;
3368 /* If this is a big endian paradoxical subreg, which uses more
3369 actual hard registers than the original register, we must
3370 return a negative offset so that we find the proper highpart
3371 of the register. */
3372 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3373 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3374 info->offset = nregs_xmode - nregs_ymode;
3375 else
3376 info->offset = 0;
3377 info->nregs = nregs_ymode;
3378 return;
3381 /* If registers store different numbers of bits in the different
3382 modes, we cannot generally form this subreg. */
3383 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3384 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3385 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3386 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3388 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3389 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3390 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3392 info->representable_p = false;
3393 info->nregs
3394 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3395 info->offset = offset / regsize_xmode;
3396 return;
3398 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3400 info->representable_p = false;
3401 info->nregs
3402 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3403 info->offset = offset / regsize_xmode;
3404 return;
3408 /* Lowpart subregs are otherwise valid. */
3409 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3411 info->representable_p = true;
3412 rknown = true;
3414 if (offset == 0 || nregs_xmode == nregs_ymode)
3416 info->offset = 0;
3417 info->nregs = nregs_ymode;
3418 return;
3422 /* This should always pass, otherwise we don't know how to verify
3423 the constraint. These conditions may be relaxed but
3424 subreg_regno_offset would need to be redesigned. */
3425 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3426 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3428 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3429 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3431 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3432 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3433 HOST_WIDE_INT off_low = offset & (ysize - 1);
3434 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3435 offset = (xsize - ysize - off_high) | off_low;
3437 /* The XMODE value can be seen as a vector of NREGS_XMODE
3438 values. The subreg must represent a lowpart of given field.
3439 Compute what field it is. */
3440 offset_adj = offset;
3441 offset_adj -= subreg_lowpart_offset (ymode,
3442 mode_for_size (GET_MODE_BITSIZE (xmode)
3443 / nregs_xmode,
3444 MODE_INT, 0));
3446 /* Size of ymode must not be greater than the size of xmode. */
3447 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3448 gcc_assert (mode_multiple != 0);
3450 y_offset = offset / GET_MODE_SIZE (ymode);
3451 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3452 nregs_multiple = nregs_xmode / nregs_ymode;
3454 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3455 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3457 if (!rknown)
3459 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3460 rknown = true;
3462 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3463 info->nregs = nregs_ymode;
3466 /* This function returns the regno offset of a subreg expression.
3467 xregno - A regno of an inner hard subreg_reg (or what will become one).
3468 xmode - The mode of xregno.
3469 offset - The byte offset.
3470 ymode - The mode of a top level SUBREG (or what may become one).
3471 RETURN - The regno offset which would be used. */
3472 unsigned int
3473 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3474 unsigned int offset, enum machine_mode ymode)
3476 struct subreg_info info;
3477 subreg_get_info (xregno, xmode, offset, ymode, &info);
3478 return info.offset;
3481 /* This function returns true when the offset is representable via
3482 subreg_offset in the given regno.
3483 xregno - A regno of an inner hard subreg_reg (or what will become one).
3484 xmode - The mode of xregno.
3485 offset - The byte offset.
3486 ymode - The mode of a top level SUBREG (or what may become one).
3487 RETURN - Whether the offset is representable. */
3488 bool
3489 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3490 unsigned int offset, enum machine_mode ymode)
3492 struct subreg_info info;
3493 subreg_get_info (xregno, xmode, offset, ymode, &info);
3494 return info.representable_p;
3497 /* Return the number of a YMODE register to which
3499 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3501 can be simplified. Return -1 if the subreg can't be simplified.
3503 XREGNO is a hard register number. */
3506 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3507 unsigned int offset, enum machine_mode ymode)
3509 struct subreg_info info;
3510 unsigned int yregno;
3512 #ifdef CANNOT_CHANGE_MODE_CLASS
3513 /* Give the backend a chance to disallow the mode change. */
3514 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3515 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3516 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3517 /* We can use mode change in LRA for some transformations. */
3518 && ! lra_in_progress)
3519 return -1;
3520 #endif
3522 /* We shouldn't simplify stack-related registers. */
3523 if ((!reload_completed || frame_pointer_needed)
3524 && xregno == FRAME_POINTER_REGNUM)
3525 return -1;
3527 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3528 && xregno == ARG_POINTER_REGNUM)
3529 return -1;
3531 if (xregno == STACK_POINTER_REGNUM
3532 /* We should convert hard stack register in LRA if it is
3533 possible. */
3534 && ! lra_in_progress)
3535 return -1;
3537 /* Try to get the register offset. */
3538 subreg_get_info (xregno, xmode, offset, ymode, &info);
3539 if (!info.representable_p)
3540 return -1;
3542 /* Make sure that the offsetted register value is in range. */
3543 yregno = xregno + info.offset;
3544 if (!HARD_REGISTER_NUM_P (yregno))
3545 return -1;
3547 /* See whether (reg:YMODE YREGNO) is valid.
3549 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3550 This is a kludge to work around how complex FP arguments are passed
3551 on IA-64 and should be fixed. See PR target/49226. */
3552 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3553 && HARD_REGNO_MODE_OK (xregno, xmode))
3554 return -1;
3556 return (int) yregno;
3559 /* Return the final regno that a subreg expression refers to. */
3560 unsigned int
3561 subreg_regno (const_rtx x)
3563 unsigned int ret;
3564 rtx subreg = SUBREG_REG (x);
3565 int regno = REGNO (subreg);
3567 ret = regno + subreg_regno_offset (regno,
3568 GET_MODE (subreg),
3569 SUBREG_BYTE (x),
3570 GET_MODE (x));
3571 return ret;
3575 /* Return the number of registers that a subreg expression refers
3576 to. */
3577 unsigned int
3578 subreg_nregs (const_rtx x)
3580 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3583 /* Return the number of registers that a subreg REG with REGNO
3584 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3585 changed so that the regno can be passed in. */
3587 unsigned int
3588 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3590 struct subreg_info info;
3591 rtx subreg = SUBREG_REG (x);
3593 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3594 &info);
3595 return info.nregs;
3599 struct parms_set_data
3601 int nregs;
3602 HARD_REG_SET regs;
3605 /* Helper function for noticing stores to parameter registers. */
3606 static void
3607 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3609 struct parms_set_data *const d = (struct parms_set_data *) data;
3610 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3611 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3613 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3614 d->nregs--;
3618 /* Look backward for first parameter to be loaded.
3619 Note that loads of all parameters will not necessarily be
3620 found if CSE has eliminated some of them (e.g., an argument
3621 to the outer function is passed down as a parameter).
3622 Do not skip BOUNDARY. */
3624 find_first_parameter_load (rtx call_insn, rtx boundary)
3626 struct parms_set_data parm;
3627 rtx p, before, first_set;
3629 /* Since different machines initialize their parameter registers
3630 in different orders, assume nothing. Collect the set of all
3631 parameter registers. */
3632 CLEAR_HARD_REG_SET (parm.regs);
3633 parm.nregs = 0;
3634 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3635 if (GET_CODE (XEXP (p, 0)) == USE
3636 && REG_P (XEXP (XEXP (p, 0), 0)))
3638 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3640 /* We only care about registers which can hold function
3641 arguments. */
3642 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3643 continue;
3645 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3646 parm.nregs++;
3648 before = call_insn;
3649 first_set = call_insn;
3651 /* Search backward for the first set of a register in this set. */
3652 while (parm.nregs && before != boundary)
3654 before = PREV_INSN (before);
3656 /* It is possible that some loads got CSEed from one call to
3657 another. Stop in that case. */
3658 if (CALL_P (before))
3659 break;
3661 /* Our caller needs either ensure that we will find all sets
3662 (in case code has not been optimized yet), or take care
3663 for possible labels in a way by setting boundary to preceding
3664 CODE_LABEL. */
3665 if (LABEL_P (before))
3667 gcc_assert (before == boundary);
3668 break;
3671 if (INSN_P (before))
3673 int nregs_old = parm.nregs;
3674 note_stores (PATTERN (before), parms_set, &parm);
3675 /* If we found something that did not set a parameter reg,
3676 we're done. Do not keep going, as that might result
3677 in hoisting an insn before the setting of a pseudo
3678 that is used by the hoisted insn. */
3679 if (nregs_old != parm.nregs)
3680 first_set = before;
3681 else
3682 break;
3685 return first_set;
3688 /* Return true if we should avoid inserting code between INSN and preceding
3689 call instruction. */
3691 bool
3692 keep_with_call_p (const_rtx insn)
3694 rtx set;
3696 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3698 if (REG_P (SET_DEST (set))
3699 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3700 && fixed_regs[REGNO (SET_DEST (set))]
3701 && general_operand (SET_SRC (set), VOIDmode))
3702 return true;
3703 if (REG_P (SET_SRC (set))
3704 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3705 && REG_P (SET_DEST (set))
3706 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3707 return true;
3708 /* There may be a stack pop just after the call and before the store
3709 of the return register. Search for the actual store when deciding
3710 if we can break or not. */
3711 if (SET_DEST (set) == stack_pointer_rtx)
3713 /* This CONST_CAST is okay because next_nonnote_insn just
3714 returns its argument and we assign it to a const_rtx
3715 variable. */
3716 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3717 if (i2 && keep_with_call_p (i2))
3718 return true;
3721 return false;
3724 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3725 to non-complex jumps. That is, direct unconditional, conditional,
3726 and tablejumps, but not computed jumps or returns. It also does
3727 not apply to the fallthru case of a conditional jump. */
3729 bool
3730 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3732 rtx tmp = JUMP_LABEL (jump_insn);
3734 if (label == tmp)
3735 return true;
3737 if (tablejump_p (jump_insn, NULL, &tmp))
3739 rtvec vec = XVEC (PATTERN (tmp),
3740 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3741 int i, veclen = GET_NUM_ELEM (vec);
3743 for (i = 0; i < veclen; ++i)
3744 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3745 return true;
3748 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3749 return true;
3751 return false;
3755 /* Return an estimate of the cost of computing rtx X.
3756 One use is in cse, to decide which expression to keep in the hash table.
3757 Another is in rtl generation, to pick the cheapest way to multiply.
3758 Other uses like the latter are expected in the future.
3760 X appears as operand OPNO in an expression with code OUTER_CODE.
3761 SPEED specifies whether costs optimized for speed or size should
3762 be returned. */
3765 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3767 int i, j;
3768 enum rtx_code code;
3769 const char *fmt;
3770 int total;
3771 int factor;
3773 if (x == 0)
3774 return 0;
3776 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3777 many insns, taking N times as long. */
3778 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3779 if (factor == 0)
3780 factor = 1;
3782 /* Compute the default costs of certain things.
3783 Note that targetm.rtx_costs can override the defaults. */
3785 code = GET_CODE (x);
3786 switch (code)
3788 case MULT:
3789 /* Multiplication has time-complexity O(N*N), where N is the
3790 number of units (translated from digits) when using
3791 schoolbook long multiplication. */
3792 total = factor * factor * COSTS_N_INSNS (5);
3793 break;
3794 case DIV:
3795 case UDIV:
3796 case MOD:
3797 case UMOD:
3798 /* Similarly, complexity for schoolbook long division. */
3799 total = factor * factor * COSTS_N_INSNS (7);
3800 break;
3801 case USE:
3802 /* Used in combine.c as a marker. */
3803 total = 0;
3804 break;
3805 case SET:
3806 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3807 the mode for the factor. */
3808 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3809 if (factor == 0)
3810 factor = 1;
3811 /* Pass through. */
3812 default:
3813 total = factor * COSTS_N_INSNS (1);
3816 switch (code)
3818 case REG:
3819 return 0;
3821 case SUBREG:
3822 total = 0;
3823 /* If we can't tie these modes, make this expensive. The larger
3824 the mode, the more expensive it is. */
3825 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3826 return COSTS_N_INSNS (2 + factor);
3827 break;
3829 default:
3830 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3831 return total;
3832 break;
3835 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3836 which is already in total. */
3838 fmt = GET_RTX_FORMAT (code);
3839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3840 if (fmt[i] == 'e')
3841 total += rtx_cost (XEXP (x, i), code, i, speed);
3842 else if (fmt[i] == 'E')
3843 for (j = 0; j < XVECLEN (x, i); j++)
3844 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3846 return total;
3849 /* Fill in the structure C with information about both speed and size rtx
3850 costs for X, which is operand OPNO in an expression with code OUTER. */
3852 void
3853 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3854 struct full_rtx_costs *c)
3856 c->speed = rtx_cost (x, outer, opno, true);
3857 c->size = rtx_cost (x, outer, opno, false);
3861 /* Return cost of address expression X.
3862 Expect that X is properly formed address reference.
3864 SPEED parameter specify whether costs optimized for speed or size should
3865 be returned. */
3868 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3870 /* We may be asked for cost of various unusual addresses, such as operands
3871 of push instruction. It is not worthwhile to complicate writing
3872 of the target hook by such cases. */
3874 if (!memory_address_addr_space_p (mode, x, as))
3875 return 1000;
3877 return targetm.address_cost (x, mode, as, speed);
3880 /* If the target doesn't override, compute the cost as with arithmetic. */
3883 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
3885 return rtx_cost (x, MEM, 0, speed);
3889 unsigned HOST_WIDE_INT
3890 nonzero_bits (const_rtx x, enum machine_mode mode)
3892 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3895 unsigned int
3896 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3898 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3901 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3902 It avoids exponential behavior in nonzero_bits1 when X has
3903 identical subexpressions on the first or the second level. */
3905 static unsigned HOST_WIDE_INT
3906 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3907 enum machine_mode known_mode,
3908 unsigned HOST_WIDE_INT known_ret)
3910 if (x == known_x && mode == known_mode)
3911 return known_ret;
3913 /* Try to find identical subexpressions. If found call
3914 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3915 precomputed value for the subexpression as KNOWN_RET. */
3917 if (ARITHMETIC_P (x))
3919 rtx x0 = XEXP (x, 0);
3920 rtx x1 = XEXP (x, 1);
3922 /* Check the first level. */
3923 if (x0 == x1)
3924 return nonzero_bits1 (x, mode, x0, mode,
3925 cached_nonzero_bits (x0, mode, known_x,
3926 known_mode, known_ret));
3928 /* Check the second level. */
3929 if (ARITHMETIC_P (x0)
3930 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3931 return nonzero_bits1 (x, mode, x1, mode,
3932 cached_nonzero_bits (x1, mode, known_x,
3933 known_mode, known_ret));
3935 if (ARITHMETIC_P (x1)
3936 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3937 return nonzero_bits1 (x, mode, x0, mode,
3938 cached_nonzero_bits (x0, mode, known_x,
3939 known_mode, known_ret));
3942 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3945 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3946 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3947 is less useful. We can't allow both, because that results in exponential
3948 run time recursion. There is a nullstone testcase that triggered
3949 this. This macro avoids accidental uses of num_sign_bit_copies. */
3950 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3952 /* Given an expression, X, compute which bits in X can be nonzero.
3953 We don't care about bits outside of those defined in MODE.
3955 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3956 an arithmetic operation, we can do better. */
3958 static unsigned HOST_WIDE_INT
3959 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3960 enum machine_mode known_mode,
3961 unsigned HOST_WIDE_INT known_ret)
3963 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3964 unsigned HOST_WIDE_INT inner_nz;
3965 enum rtx_code code;
3966 enum machine_mode inner_mode;
3967 unsigned int mode_width = GET_MODE_PRECISION (mode);
3969 /* For floating-point and vector values, assume all bits are needed. */
3970 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3971 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3972 return nonzero;
3974 /* If X is wider than MODE, use its mode instead. */
3975 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3977 mode = GET_MODE (x);
3978 nonzero = GET_MODE_MASK (mode);
3979 mode_width = GET_MODE_PRECISION (mode);
3982 if (mode_width > HOST_BITS_PER_WIDE_INT)
3983 /* Our only callers in this case look for single bit values. So
3984 just return the mode mask. Those tests will then be false. */
3985 return nonzero;
3987 #ifndef WORD_REGISTER_OPERATIONS
3988 /* If MODE is wider than X, but both are a single word for both the host
3989 and target machines, we can compute this from which bits of the
3990 object might be nonzero in its own mode, taking into account the fact
3991 that on many CISC machines, accessing an object in a wider mode
3992 causes the high-order bits to become undefined. So they are
3993 not known to be zero. */
3995 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3996 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3997 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3998 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4000 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4001 known_x, known_mode, known_ret);
4002 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4003 return nonzero;
4005 #endif
4007 code = GET_CODE (x);
4008 switch (code)
4010 case REG:
4011 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4012 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4013 all the bits above ptr_mode are known to be zero. */
4014 /* As we do not know which address space the pointer is referring to,
4015 we can do this only if the target does not support different pointer
4016 or address modes depending on the address space. */
4017 if (target_default_pointer_address_modes_p ()
4018 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4019 && REG_POINTER (x))
4020 nonzero &= GET_MODE_MASK (ptr_mode);
4021 #endif
4023 /* Include declared information about alignment of pointers. */
4024 /* ??? We don't properly preserve REG_POINTER changes across
4025 pointer-to-integer casts, so we can't trust it except for
4026 things that we know must be pointers. See execute/960116-1.c. */
4027 if ((x == stack_pointer_rtx
4028 || x == frame_pointer_rtx
4029 || x == arg_pointer_rtx)
4030 && REGNO_POINTER_ALIGN (REGNO (x)))
4032 unsigned HOST_WIDE_INT alignment
4033 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4035 #ifdef PUSH_ROUNDING
4036 /* If PUSH_ROUNDING is defined, it is possible for the
4037 stack to be momentarily aligned only to that amount,
4038 so we pick the least alignment. */
4039 if (x == stack_pointer_rtx && PUSH_ARGS)
4040 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4041 alignment);
4042 #endif
4044 nonzero &= ~(alignment - 1);
4048 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4049 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4050 known_mode, known_ret,
4051 &nonzero_for_hook);
4053 if (new_rtx)
4054 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4055 known_mode, known_ret);
4057 return nonzero_for_hook;
4060 case CONST_INT:
4061 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4062 /* If X is negative in MODE, sign-extend the value. */
4063 if (INTVAL (x) > 0
4064 && mode_width < BITS_PER_WORD
4065 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4066 != 0)
4067 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4068 #endif
4070 return UINTVAL (x);
4072 case MEM:
4073 #ifdef LOAD_EXTEND_OP
4074 /* In many, if not most, RISC machines, reading a byte from memory
4075 zeros the rest of the register. Noticing that fact saves a lot
4076 of extra zero-extends. */
4077 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4078 nonzero &= GET_MODE_MASK (GET_MODE (x));
4079 #endif
4080 break;
4082 case EQ: case NE:
4083 case UNEQ: case LTGT:
4084 case GT: case GTU: case UNGT:
4085 case LT: case LTU: case UNLT:
4086 case GE: case GEU: case UNGE:
4087 case LE: case LEU: case UNLE:
4088 case UNORDERED: case ORDERED:
4089 /* If this produces an integer result, we know which bits are set.
4090 Code here used to clear bits outside the mode of X, but that is
4091 now done above. */
4092 /* Mind that MODE is the mode the caller wants to look at this
4093 operation in, and not the actual operation mode. We can wind
4094 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4095 that describes the results of a vector compare. */
4096 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4097 && mode_width <= HOST_BITS_PER_WIDE_INT)
4098 nonzero = STORE_FLAG_VALUE;
4099 break;
4101 case NEG:
4102 #if 0
4103 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4104 and num_sign_bit_copies. */
4105 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4106 == GET_MODE_PRECISION (GET_MODE (x)))
4107 nonzero = 1;
4108 #endif
4110 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4111 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4112 break;
4114 case ABS:
4115 #if 0
4116 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4117 and num_sign_bit_copies. */
4118 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4119 == GET_MODE_PRECISION (GET_MODE (x)))
4120 nonzero = 1;
4121 #endif
4122 break;
4124 case TRUNCATE:
4125 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4126 known_x, known_mode, known_ret)
4127 & GET_MODE_MASK (mode));
4128 break;
4130 case ZERO_EXTEND:
4131 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4132 known_x, known_mode, known_ret);
4133 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4134 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4135 break;
4137 case SIGN_EXTEND:
4138 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4139 Otherwise, show all the bits in the outer mode but not the inner
4140 may be nonzero. */
4141 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4142 known_x, known_mode, known_ret);
4143 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4145 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4146 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4147 inner_nz |= (GET_MODE_MASK (mode)
4148 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4151 nonzero &= inner_nz;
4152 break;
4154 case AND:
4155 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4156 known_x, known_mode, known_ret)
4157 & cached_nonzero_bits (XEXP (x, 1), mode,
4158 known_x, known_mode, known_ret);
4159 break;
4161 case XOR: case IOR:
4162 case UMIN: case UMAX: case SMIN: case SMAX:
4164 unsigned HOST_WIDE_INT nonzero0
4165 = cached_nonzero_bits (XEXP (x, 0), mode,
4166 known_x, known_mode, known_ret);
4168 /* Don't call nonzero_bits for the second time if it cannot change
4169 anything. */
4170 if ((nonzero & nonzero0) != nonzero)
4171 nonzero &= nonzero0
4172 | cached_nonzero_bits (XEXP (x, 1), mode,
4173 known_x, known_mode, known_ret);
4175 break;
4177 case PLUS: case MINUS:
4178 case MULT:
4179 case DIV: case UDIV:
4180 case MOD: case UMOD:
4181 /* We can apply the rules of arithmetic to compute the number of
4182 high- and low-order zero bits of these operations. We start by
4183 computing the width (position of the highest-order nonzero bit)
4184 and the number of low-order zero bits for each value. */
4186 unsigned HOST_WIDE_INT nz0
4187 = cached_nonzero_bits (XEXP (x, 0), mode,
4188 known_x, known_mode, known_ret);
4189 unsigned HOST_WIDE_INT nz1
4190 = cached_nonzero_bits (XEXP (x, 1), mode,
4191 known_x, known_mode, known_ret);
4192 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4193 int width0 = floor_log2 (nz0) + 1;
4194 int width1 = floor_log2 (nz1) + 1;
4195 int low0 = floor_log2 (nz0 & -nz0);
4196 int low1 = floor_log2 (nz1 & -nz1);
4197 unsigned HOST_WIDE_INT op0_maybe_minusp
4198 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4199 unsigned HOST_WIDE_INT op1_maybe_minusp
4200 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4201 unsigned int result_width = mode_width;
4202 int result_low = 0;
4204 switch (code)
4206 case PLUS:
4207 result_width = MAX (width0, width1) + 1;
4208 result_low = MIN (low0, low1);
4209 break;
4210 case MINUS:
4211 result_low = MIN (low0, low1);
4212 break;
4213 case MULT:
4214 result_width = width0 + width1;
4215 result_low = low0 + low1;
4216 break;
4217 case DIV:
4218 if (width1 == 0)
4219 break;
4220 if (!op0_maybe_minusp && !op1_maybe_minusp)
4221 result_width = width0;
4222 break;
4223 case UDIV:
4224 if (width1 == 0)
4225 break;
4226 result_width = width0;
4227 break;
4228 case MOD:
4229 if (width1 == 0)
4230 break;
4231 if (!op0_maybe_minusp && !op1_maybe_minusp)
4232 result_width = MIN (width0, width1);
4233 result_low = MIN (low0, low1);
4234 break;
4235 case UMOD:
4236 if (width1 == 0)
4237 break;
4238 result_width = MIN (width0, width1);
4239 result_low = MIN (low0, low1);
4240 break;
4241 default:
4242 gcc_unreachable ();
4245 if (result_width < mode_width)
4246 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4248 if (result_low > 0)
4249 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4251 break;
4253 case ZERO_EXTRACT:
4254 if (CONST_INT_P (XEXP (x, 1))
4255 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4256 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4257 break;
4259 case SUBREG:
4260 /* If this is a SUBREG formed for a promoted variable that has
4261 been zero-extended, we know that at least the high-order bits
4262 are zero, though others might be too. */
4264 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4265 nonzero = GET_MODE_MASK (GET_MODE (x))
4266 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4267 known_x, known_mode, known_ret);
4269 inner_mode = GET_MODE (SUBREG_REG (x));
4270 /* If the inner mode is a single word for both the host and target
4271 machines, we can compute this from which bits of the inner
4272 object might be nonzero. */
4273 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4274 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4276 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4277 known_x, known_mode, known_ret);
4279 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4280 /* If this is a typical RISC machine, we only have to worry
4281 about the way loads are extended. */
4282 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4283 ? val_signbit_known_set_p (inner_mode, nonzero)
4284 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4285 || !MEM_P (SUBREG_REG (x)))
4286 #endif
4288 /* On many CISC machines, accessing an object in a wider mode
4289 causes the high-order bits to become undefined. So they are
4290 not known to be zero. */
4291 if (GET_MODE_PRECISION (GET_MODE (x))
4292 > GET_MODE_PRECISION (inner_mode))
4293 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4294 & ~GET_MODE_MASK (inner_mode));
4297 break;
4299 case ASHIFTRT:
4300 case LSHIFTRT:
4301 case ASHIFT:
4302 case ROTATE:
4303 /* The nonzero bits are in two classes: any bits within MODE
4304 that aren't in GET_MODE (x) are always significant. The rest of the
4305 nonzero bits are those that are significant in the operand of
4306 the shift when shifted the appropriate number of bits. This
4307 shows that high-order bits are cleared by the right shift and
4308 low-order bits by left shifts. */
4309 if (CONST_INT_P (XEXP (x, 1))
4310 && INTVAL (XEXP (x, 1)) >= 0
4311 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4312 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4314 enum machine_mode inner_mode = GET_MODE (x);
4315 unsigned int width = GET_MODE_PRECISION (inner_mode);
4316 int count = INTVAL (XEXP (x, 1));
4317 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4318 unsigned HOST_WIDE_INT op_nonzero
4319 = cached_nonzero_bits (XEXP (x, 0), mode,
4320 known_x, known_mode, known_ret);
4321 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4322 unsigned HOST_WIDE_INT outer = 0;
4324 if (mode_width > width)
4325 outer = (op_nonzero & nonzero & ~mode_mask);
4327 if (code == LSHIFTRT)
4328 inner >>= count;
4329 else if (code == ASHIFTRT)
4331 inner >>= count;
4333 /* If the sign bit may have been nonzero before the shift, we
4334 need to mark all the places it could have been copied to
4335 by the shift as possibly nonzero. */
4336 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4337 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4338 << (width - count);
4340 else if (code == ASHIFT)
4341 inner <<= count;
4342 else
4343 inner = ((inner << (count % width)
4344 | (inner >> (width - (count % width)))) & mode_mask);
4346 nonzero &= (outer | inner);
4348 break;
4350 case FFS:
4351 case POPCOUNT:
4352 /* This is at most the number of bits in the mode. */
4353 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4354 break;
4356 case CLZ:
4357 /* If CLZ has a known value at zero, then the nonzero bits are
4358 that value, plus the number of bits in the mode minus one. */
4359 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4360 nonzero
4361 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4362 else
4363 nonzero = -1;
4364 break;
4366 case CTZ:
4367 /* If CTZ has a known value at zero, then the nonzero bits are
4368 that value, plus the number of bits in the mode minus one. */
4369 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4370 nonzero
4371 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4372 else
4373 nonzero = -1;
4374 break;
4376 case CLRSB:
4377 /* This is at most the number of bits in the mode minus 1. */
4378 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4379 break;
4381 case PARITY:
4382 nonzero = 1;
4383 break;
4385 case IF_THEN_ELSE:
4387 unsigned HOST_WIDE_INT nonzero_true
4388 = cached_nonzero_bits (XEXP (x, 1), mode,
4389 known_x, known_mode, known_ret);
4391 /* Don't call nonzero_bits for the second time if it cannot change
4392 anything. */
4393 if ((nonzero & nonzero_true) != nonzero)
4394 nonzero &= nonzero_true
4395 | cached_nonzero_bits (XEXP (x, 2), mode,
4396 known_x, known_mode, known_ret);
4398 break;
4400 default:
4401 break;
4404 return nonzero;
4407 /* See the macro definition above. */
4408 #undef cached_num_sign_bit_copies
4411 /* The function cached_num_sign_bit_copies is a wrapper around
4412 num_sign_bit_copies1. It avoids exponential behavior in
4413 num_sign_bit_copies1 when X has identical subexpressions on the
4414 first or the second level. */
4416 static unsigned int
4417 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4418 enum machine_mode known_mode,
4419 unsigned int known_ret)
4421 if (x == known_x && mode == known_mode)
4422 return known_ret;
4424 /* Try to find identical subexpressions. If found call
4425 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4426 the precomputed value for the subexpression as KNOWN_RET. */
4428 if (ARITHMETIC_P (x))
4430 rtx x0 = XEXP (x, 0);
4431 rtx x1 = XEXP (x, 1);
4433 /* Check the first level. */
4434 if (x0 == x1)
4435 return
4436 num_sign_bit_copies1 (x, mode, x0, mode,
4437 cached_num_sign_bit_copies (x0, mode, known_x,
4438 known_mode,
4439 known_ret));
4441 /* Check the second level. */
4442 if (ARITHMETIC_P (x0)
4443 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4444 return
4445 num_sign_bit_copies1 (x, mode, x1, mode,
4446 cached_num_sign_bit_copies (x1, mode, known_x,
4447 known_mode,
4448 known_ret));
4450 if (ARITHMETIC_P (x1)
4451 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4452 return
4453 num_sign_bit_copies1 (x, mode, x0, mode,
4454 cached_num_sign_bit_copies (x0, mode, known_x,
4455 known_mode,
4456 known_ret));
4459 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4462 /* Return the number of bits at the high-order end of X that are known to
4463 be equal to the sign bit. X will be used in mode MODE; if MODE is
4464 VOIDmode, X will be used in its own mode. The returned value will always
4465 be between 1 and the number of bits in MODE. */
4467 static unsigned int
4468 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4469 enum machine_mode known_mode,
4470 unsigned int known_ret)
4472 enum rtx_code code = GET_CODE (x);
4473 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4474 int num0, num1, result;
4475 unsigned HOST_WIDE_INT nonzero;
4477 /* If we weren't given a mode, use the mode of X. If the mode is still
4478 VOIDmode, we don't know anything. Likewise if one of the modes is
4479 floating-point. */
4481 if (mode == VOIDmode)
4482 mode = GET_MODE (x);
4484 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4485 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4486 return 1;
4488 /* For a smaller object, just ignore the high bits. */
4489 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4491 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4492 known_x, known_mode, known_ret);
4493 return MAX (1,
4494 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4497 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4499 #ifndef WORD_REGISTER_OPERATIONS
4500 /* If this machine does not do all register operations on the entire
4501 register and MODE is wider than the mode of X, we can say nothing
4502 at all about the high-order bits. */
4503 return 1;
4504 #else
4505 /* Likewise on machines that do, if the mode of the object is smaller
4506 than a word and loads of that size don't sign extend, we can say
4507 nothing about the high order bits. */
4508 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4509 #ifdef LOAD_EXTEND_OP
4510 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4511 #endif
4513 return 1;
4514 #endif
4517 switch (code)
4519 case REG:
4521 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4522 /* If pointers extend signed and this is a pointer in Pmode, say that
4523 all the bits above ptr_mode are known to be sign bit copies. */
4524 /* As we do not know which address space the pointer is referring to,
4525 we can do this only if the target does not support different pointer
4526 or address modes depending on the address space. */
4527 if (target_default_pointer_address_modes_p ()
4528 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4529 && mode == Pmode && REG_POINTER (x))
4530 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4531 #endif
4534 unsigned int copies_for_hook = 1, copies = 1;
4535 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4536 known_mode, known_ret,
4537 &copies_for_hook);
4539 if (new_rtx)
4540 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4541 known_mode, known_ret);
4543 if (copies > 1 || copies_for_hook > 1)
4544 return MAX (copies, copies_for_hook);
4546 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4548 break;
4550 case MEM:
4551 #ifdef LOAD_EXTEND_OP
4552 /* Some RISC machines sign-extend all loads of smaller than a word. */
4553 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4554 return MAX (1, ((int) bitwidth
4555 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4556 #endif
4557 break;
4559 case CONST_INT:
4560 /* If the constant is negative, take its 1's complement and remask.
4561 Then see how many zero bits we have. */
4562 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4563 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4564 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4565 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4567 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4569 case SUBREG:
4570 /* If this is a SUBREG for a promoted object that is sign-extended
4571 and we are looking at it in a wider mode, we know that at least the
4572 high-order bits are known to be sign bit copies. */
4574 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4576 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4577 known_x, known_mode, known_ret);
4578 return MAX ((int) bitwidth
4579 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4580 num0);
4583 /* For a smaller object, just ignore the high bits. */
4584 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4586 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4587 known_x, known_mode, known_ret);
4588 return MAX (1, (num0
4589 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4590 - bitwidth)));
4593 #ifdef WORD_REGISTER_OPERATIONS
4594 #ifdef LOAD_EXTEND_OP
4595 /* For paradoxical SUBREGs on machines where all register operations
4596 affect the entire register, just look inside. Note that we are
4597 passing MODE to the recursive call, so the number of sign bit copies
4598 will remain relative to that mode, not the inner mode. */
4600 /* This works only if loads sign extend. Otherwise, if we get a
4601 reload for the inner part, it may be loaded from the stack, and
4602 then we lose all sign bit copies that existed before the store
4603 to the stack. */
4605 if (paradoxical_subreg_p (x)
4606 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4607 && MEM_P (SUBREG_REG (x)))
4608 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4609 known_x, known_mode, known_ret);
4610 #endif
4611 #endif
4612 break;
4614 case SIGN_EXTRACT:
4615 if (CONST_INT_P (XEXP (x, 1)))
4616 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4617 break;
4619 case SIGN_EXTEND:
4620 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4621 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4622 known_x, known_mode, known_ret));
4624 case TRUNCATE:
4625 /* For a smaller object, just ignore the high bits. */
4626 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4627 known_x, known_mode, known_ret);
4628 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4629 - bitwidth)));
4631 case NOT:
4632 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4633 known_x, known_mode, known_ret);
4635 case ROTATE: case ROTATERT:
4636 /* If we are rotating left by a number of bits less than the number
4637 of sign bit copies, we can just subtract that amount from the
4638 number. */
4639 if (CONST_INT_P (XEXP (x, 1))
4640 && INTVAL (XEXP (x, 1)) >= 0
4641 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4643 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4644 known_x, known_mode, known_ret);
4645 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4646 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4648 break;
4650 case NEG:
4651 /* In general, this subtracts one sign bit copy. But if the value
4652 is known to be positive, the number of sign bit copies is the
4653 same as that of the input. Finally, if the input has just one bit
4654 that might be nonzero, all the bits are copies of the sign bit. */
4655 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4656 known_x, known_mode, known_ret);
4657 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4658 return num0 > 1 ? num0 - 1 : 1;
4660 nonzero = nonzero_bits (XEXP (x, 0), mode);
4661 if (nonzero == 1)
4662 return bitwidth;
4664 if (num0 > 1
4665 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4666 num0--;
4668 return num0;
4670 case IOR: case AND: case XOR:
4671 case SMIN: case SMAX: case UMIN: case UMAX:
4672 /* Logical operations will preserve the number of sign-bit copies.
4673 MIN and MAX operations always return one of the operands. */
4674 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4675 known_x, known_mode, known_ret);
4676 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4677 known_x, known_mode, known_ret);
4679 /* If num1 is clearing some of the top bits then regardless of
4680 the other term, we are guaranteed to have at least that many
4681 high-order zero bits. */
4682 if (code == AND
4683 && num1 > 1
4684 && bitwidth <= HOST_BITS_PER_WIDE_INT
4685 && CONST_INT_P (XEXP (x, 1))
4686 && (UINTVAL (XEXP (x, 1))
4687 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4688 return num1;
4690 /* Similarly for IOR when setting high-order bits. */
4691 if (code == IOR
4692 && num1 > 1
4693 && bitwidth <= HOST_BITS_PER_WIDE_INT
4694 && CONST_INT_P (XEXP (x, 1))
4695 && (UINTVAL (XEXP (x, 1))
4696 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4697 return num1;
4699 return MIN (num0, num1);
4701 case PLUS: case MINUS:
4702 /* For addition and subtraction, we can have a 1-bit carry. However,
4703 if we are subtracting 1 from a positive number, there will not
4704 be such a carry. Furthermore, if the positive number is known to
4705 be 0 or 1, we know the result is either -1 or 0. */
4707 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4708 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4710 nonzero = nonzero_bits (XEXP (x, 0), mode);
4711 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4712 return (nonzero == 1 || nonzero == 0 ? bitwidth
4713 : bitwidth - floor_log2 (nonzero) - 1);
4716 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4717 known_x, known_mode, known_ret);
4718 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4719 known_x, known_mode, known_ret);
4720 result = MAX (1, MIN (num0, num1) - 1);
4722 return result;
4724 case MULT:
4725 /* The number of bits of the product is the sum of the number of
4726 bits of both terms. However, unless one of the terms if known
4727 to be positive, we must allow for an additional bit since negating
4728 a negative number can remove one sign bit copy. */
4730 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4731 known_x, known_mode, known_ret);
4732 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4733 known_x, known_mode, known_ret);
4735 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4736 if (result > 0
4737 && (bitwidth > HOST_BITS_PER_WIDE_INT
4738 || (((nonzero_bits (XEXP (x, 0), mode)
4739 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4740 && ((nonzero_bits (XEXP (x, 1), mode)
4741 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4742 != 0))))
4743 result--;
4745 return MAX (1, result);
4747 case UDIV:
4748 /* The result must be <= the first operand. If the first operand
4749 has the high bit set, we know nothing about the number of sign
4750 bit copies. */
4751 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4752 return 1;
4753 else if ((nonzero_bits (XEXP (x, 0), mode)
4754 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4755 return 1;
4756 else
4757 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4758 known_x, known_mode, known_ret);
4760 case UMOD:
4761 /* The result must be <= the second operand. If the second operand
4762 has (or just might have) the high bit set, we know nothing about
4763 the number of sign bit copies. */
4764 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4765 return 1;
4766 else if ((nonzero_bits (XEXP (x, 1), mode)
4767 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4768 return 1;
4769 else
4770 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4771 known_x, known_mode, known_ret);
4773 case DIV:
4774 /* Similar to unsigned division, except that we have to worry about
4775 the case where the divisor is negative, in which case we have
4776 to add 1. */
4777 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4778 known_x, known_mode, known_ret);
4779 if (result > 1
4780 && (bitwidth > HOST_BITS_PER_WIDE_INT
4781 || (nonzero_bits (XEXP (x, 1), mode)
4782 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4783 result--;
4785 return result;
4787 case MOD:
4788 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4789 known_x, known_mode, known_ret);
4790 if (result > 1
4791 && (bitwidth > HOST_BITS_PER_WIDE_INT
4792 || (nonzero_bits (XEXP (x, 1), mode)
4793 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4794 result--;
4796 return result;
4798 case ASHIFTRT:
4799 /* Shifts by a constant add to the number of bits equal to the
4800 sign bit. */
4801 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4802 known_x, known_mode, known_ret);
4803 if (CONST_INT_P (XEXP (x, 1))
4804 && INTVAL (XEXP (x, 1)) > 0
4805 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4806 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4808 return num0;
4810 case ASHIFT:
4811 /* Left shifts destroy copies. */
4812 if (!CONST_INT_P (XEXP (x, 1))
4813 || INTVAL (XEXP (x, 1)) < 0
4814 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4815 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4816 return 1;
4818 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4819 known_x, known_mode, known_ret);
4820 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4822 case IF_THEN_ELSE:
4823 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4824 known_x, known_mode, known_ret);
4825 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4826 known_x, known_mode, known_ret);
4827 return MIN (num0, num1);
4829 case EQ: case NE: case GE: case GT: case LE: case LT:
4830 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4831 case GEU: case GTU: case LEU: case LTU:
4832 case UNORDERED: case ORDERED:
4833 /* If the constant is negative, take its 1's complement and remask.
4834 Then see how many zero bits we have. */
4835 nonzero = STORE_FLAG_VALUE;
4836 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4837 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4838 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4840 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4842 default:
4843 break;
4846 /* If we haven't been able to figure it out by one of the above rules,
4847 see if some of the high-order bits are known to be zero. If so,
4848 count those bits and return one less than that amount. If we can't
4849 safely compute the mask for this mode, always return BITWIDTH. */
4851 bitwidth = GET_MODE_PRECISION (mode);
4852 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4853 return 1;
4855 nonzero = nonzero_bits (x, mode);
4856 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4857 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4860 /* Calculate the rtx_cost of a single instruction. A return value of
4861 zero indicates an instruction pattern without a known cost. */
4864 insn_rtx_cost (rtx pat, bool speed)
4866 int i, cost;
4867 rtx set;
4869 /* Extract the single set rtx from the instruction pattern.
4870 We can't use single_set since we only have the pattern. */
4871 if (GET_CODE (pat) == SET)
4872 set = pat;
4873 else if (GET_CODE (pat) == PARALLEL)
4875 set = NULL_RTX;
4876 for (i = 0; i < XVECLEN (pat, 0); i++)
4878 rtx x = XVECEXP (pat, 0, i);
4879 if (GET_CODE (x) == SET)
4881 if (set)
4882 return 0;
4883 set = x;
4886 if (!set)
4887 return 0;
4889 else
4890 return 0;
4892 cost = set_src_cost (SET_SRC (set), speed);
4893 return cost > 0 ? cost : COSTS_N_INSNS (1);
4896 /* Given an insn INSN and condition COND, return the condition in a
4897 canonical form to simplify testing by callers. Specifically:
4899 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4900 (2) Both operands will be machine operands; (cc0) will have been replaced.
4901 (3) If an operand is a constant, it will be the second operand.
4902 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4903 for GE, GEU, and LEU.
4905 If the condition cannot be understood, or is an inequality floating-point
4906 comparison which needs to be reversed, 0 will be returned.
4908 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4910 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4911 insn used in locating the condition was found. If a replacement test
4912 of the condition is desired, it should be placed in front of that
4913 insn and we will be sure that the inputs are still valid.
4915 If WANT_REG is nonzero, we wish the condition to be relative to that
4916 register, if possible. Therefore, do not canonicalize the condition
4917 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4918 to be a compare to a CC mode register.
4920 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4921 and at INSN. */
4924 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4925 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4927 enum rtx_code code;
4928 rtx prev = insn;
4929 const_rtx set;
4930 rtx tem;
4931 rtx op0, op1;
4932 int reverse_code = 0;
4933 enum machine_mode mode;
4934 basic_block bb = BLOCK_FOR_INSN (insn);
4936 code = GET_CODE (cond);
4937 mode = GET_MODE (cond);
4938 op0 = XEXP (cond, 0);
4939 op1 = XEXP (cond, 1);
4941 if (reverse)
4942 code = reversed_comparison_code (cond, insn);
4943 if (code == UNKNOWN)
4944 return 0;
4946 if (earliest)
4947 *earliest = insn;
4949 /* If we are comparing a register with zero, see if the register is set
4950 in the previous insn to a COMPARE or a comparison operation. Perform
4951 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4952 in cse.c */
4954 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4955 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4956 && op1 == CONST0_RTX (GET_MODE (op0))
4957 && op0 != want_reg)
4959 /* Set nonzero when we find something of interest. */
4960 rtx x = 0;
4962 #ifdef HAVE_cc0
4963 /* If comparison with cc0, import actual comparison from compare
4964 insn. */
4965 if (op0 == cc0_rtx)
4967 if ((prev = prev_nonnote_insn (prev)) == 0
4968 || !NONJUMP_INSN_P (prev)
4969 || (set = single_set (prev)) == 0
4970 || SET_DEST (set) != cc0_rtx)
4971 return 0;
4973 op0 = SET_SRC (set);
4974 op1 = CONST0_RTX (GET_MODE (op0));
4975 if (earliest)
4976 *earliest = prev;
4978 #endif
4980 /* If this is a COMPARE, pick up the two things being compared. */
4981 if (GET_CODE (op0) == COMPARE)
4983 op1 = XEXP (op0, 1);
4984 op0 = XEXP (op0, 0);
4985 continue;
4987 else if (!REG_P (op0))
4988 break;
4990 /* Go back to the previous insn. Stop if it is not an INSN. We also
4991 stop if it isn't a single set or if it has a REG_INC note because
4992 we don't want to bother dealing with it. */
4994 prev = prev_nonnote_nondebug_insn (prev);
4996 if (prev == 0
4997 || !NONJUMP_INSN_P (prev)
4998 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4999 /* In cfglayout mode, there do not have to be labels at the
5000 beginning of a block, or jumps at the end, so the previous
5001 conditions would not stop us when we reach bb boundary. */
5002 || BLOCK_FOR_INSN (prev) != bb)
5003 break;
5005 set = set_of (op0, prev);
5007 if (set
5008 && (GET_CODE (set) != SET
5009 || !rtx_equal_p (SET_DEST (set), op0)))
5010 break;
5012 /* If this is setting OP0, get what it sets it to if it looks
5013 relevant. */
5014 if (set)
5016 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5017 #ifdef FLOAT_STORE_FLAG_VALUE
5018 REAL_VALUE_TYPE fsfv;
5019 #endif
5021 /* ??? We may not combine comparisons done in a CCmode with
5022 comparisons not done in a CCmode. This is to aid targets
5023 like Alpha that have an IEEE compliant EQ instruction, and
5024 a non-IEEE compliant BEQ instruction. The use of CCmode is
5025 actually artificial, simply to prevent the combination, but
5026 should not affect other platforms.
5028 However, we must allow VOIDmode comparisons to match either
5029 CCmode or non-CCmode comparison, because some ports have
5030 modeless comparisons inside branch patterns.
5032 ??? This mode check should perhaps look more like the mode check
5033 in simplify_comparison in combine. */
5035 if ((GET_CODE (SET_SRC (set)) == COMPARE
5036 || (((code == NE
5037 || (code == LT
5038 && val_signbit_known_set_p (inner_mode,
5039 STORE_FLAG_VALUE))
5040 #ifdef FLOAT_STORE_FLAG_VALUE
5041 || (code == LT
5042 && SCALAR_FLOAT_MODE_P (inner_mode)
5043 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5044 REAL_VALUE_NEGATIVE (fsfv)))
5045 #endif
5047 && COMPARISON_P (SET_SRC (set))))
5048 && (((GET_MODE_CLASS (mode) == MODE_CC)
5049 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5050 || mode == VOIDmode || inner_mode == VOIDmode))
5051 x = SET_SRC (set);
5052 else if (((code == EQ
5053 || (code == GE
5054 && val_signbit_known_set_p (inner_mode,
5055 STORE_FLAG_VALUE))
5056 #ifdef FLOAT_STORE_FLAG_VALUE
5057 || (code == GE
5058 && SCALAR_FLOAT_MODE_P (inner_mode)
5059 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5060 REAL_VALUE_NEGATIVE (fsfv)))
5061 #endif
5063 && COMPARISON_P (SET_SRC (set))
5064 && (((GET_MODE_CLASS (mode) == MODE_CC)
5065 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5066 || mode == VOIDmode || inner_mode == VOIDmode))
5069 reverse_code = 1;
5070 x = SET_SRC (set);
5072 else
5073 break;
5076 else if (reg_set_p (op0, prev))
5077 /* If this sets OP0, but not directly, we have to give up. */
5078 break;
5080 if (x)
5082 /* If the caller is expecting the condition to be valid at INSN,
5083 make sure X doesn't change before INSN. */
5084 if (valid_at_insn_p)
5085 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5086 break;
5087 if (COMPARISON_P (x))
5088 code = GET_CODE (x);
5089 if (reverse_code)
5091 code = reversed_comparison_code (x, prev);
5092 if (code == UNKNOWN)
5093 return 0;
5094 reverse_code = 0;
5097 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5098 if (earliest)
5099 *earliest = prev;
5103 /* If constant is first, put it last. */
5104 if (CONSTANT_P (op0))
5105 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5107 /* If OP0 is the result of a comparison, we weren't able to find what
5108 was really being compared, so fail. */
5109 if (!allow_cc_mode
5110 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5111 return 0;
5113 /* Canonicalize any ordered comparison with integers involving equality
5114 if we can do computations in the relevant mode and we do not
5115 overflow. */
5117 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5118 && CONST_INT_P (op1)
5119 && GET_MODE (op0) != VOIDmode
5120 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5122 HOST_WIDE_INT const_val = INTVAL (op1);
5123 unsigned HOST_WIDE_INT uconst_val = const_val;
5124 unsigned HOST_WIDE_INT max_val
5125 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5127 switch (code)
5129 case LE:
5130 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5131 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5132 break;
5134 /* When cross-compiling, const_val might be sign-extended from
5135 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5136 case GE:
5137 if ((const_val & max_val)
5138 != ((unsigned HOST_WIDE_INT) 1
5139 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5140 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5141 break;
5143 case LEU:
5144 if (uconst_val < max_val)
5145 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5146 break;
5148 case GEU:
5149 if (uconst_val != 0)
5150 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5151 break;
5153 default:
5154 break;
5158 /* Never return CC0; return zero instead. */
5159 if (CC0_P (op0))
5160 return 0;
5162 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5165 /* Given a jump insn JUMP, return the condition that will cause it to branch
5166 to its JUMP_LABEL. If the condition cannot be understood, or is an
5167 inequality floating-point comparison which needs to be reversed, 0 will
5168 be returned.
5170 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5171 insn used in locating the condition was found. If a replacement test
5172 of the condition is desired, it should be placed in front of that
5173 insn and we will be sure that the inputs are still valid. If EARLIEST
5174 is null, the returned condition will be valid at INSN.
5176 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5177 compare CC mode register.
5179 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5182 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5184 rtx cond;
5185 int reverse;
5186 rtx set;
5188 /* If this is not a standard conditional jump, we can't parse it. */
5189 if (!JUMP_P (jump)
5190 || ! any_condjump_p (jump))
5191 return 0;
5192 set = pc_set (jump);
5194 cond = XEXP (SET_SRC (set), 0);
5196 /* If this branches to JUMP_LABEL when the condition is false, reverse
5197 the condition. */
5198 reverse
5199 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5200 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5202 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5203 allow_cc_mode, valid_at_insn_p);
5206 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5207 TARGET_MODE_REP_EXTENDED.
5209 Note that we assume that the property of
5210 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5211 narrower than mode B. I.e., if A is a mode narrower than B then in
5212 order to be able to operate on it in mode B, mode A needs to
5213 satisfy the requirements set by the representation of mode B. */
5215 static void
5216 init_num_sign_bit_copies_in_rep (void)
5218 enum machine_mode mode, in_mode;
5220 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5221 in_mode = GET_MODE_WIDER_MODE (mode))
5222 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5223 mode = GET_MODE_WIDER_MODE (mode))
5225 enum machine_mode i;
5227 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5228 extends to the next widest mode. */
5229 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5230 || GET_MODE_WIDER_MODE (mode) == in_mode);
5232 /* We are in in_mode. Count how many bits outside of mode
5233 have to be copies of the sign-bit. */
5234 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5236 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5238 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5239 /* We can only check sign-bit copies starting from the
5240 top-bit. In order to be able to check the bits we
5241 have already seen we pretend that subsequent bits
5242 have to be sign-bit copies too. */
5243 || num_sign_bit_copies_in_rep [in_mode][mode])
5244 num_sign_bit_copies_in_rep [in_mode][mode]
5245 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5250 /* Suppose that truncation from the machine mode of X to MODE is not a
5251 no-op. See if there is anything special about X so that we can
5252 assume it already contains a truncated value of MODE. */
5254 bool
5255 truncated_to_mode (enum machine_mode mode, const_rtx x)
5257 /* This register has already been used in MODE without explicit
5258 truncation. */
5259 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5260 return true;
5262 /* See if we already satisfy the requirements of MODE. If yes we
5263 can just switch to MODE. */
5264 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5265 && (num_sign_bit_copies (x, GET_MODE (x))
5266 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5267 return true;
5269 return false;
5272 /* Initialize non_rtx_starting_operands, which is used to speed up
5273 for_each_rtx. */
5274 void
5275 init_rtlanal (void)
5277 int i;
5278 for (i = 0; i < NUM_RTX_CODE; i++)
5280 const char *format = GET_RTX_FORMAT (i);
5281 const char *first = strpbrk (format, "eEV");
5282 non_rtx_starting_operands[i] = first ? first - format : -1;
5285 init_num_sign_bit_copies_in_rep ();
5288 /* Check whether this is a constant pool constant. */
5289 bool
5290 constant_pool_constant_p (rtx x)
5292 x = avoid_constant_pool_reference (x);
5293 return CONST_DOUBLE_P (x);
5296 /* If M is a bitmask that selects a field of low-order bits within an item but
5297 not the entire word, return the length of the field. Return -1 otherwise.
5298 M is used in machine mode MODE. */
5301 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5303 if (mode != VOIDmode)
5305 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5306 return -1;
5307 m &= GET_MODE_MASK (mode);
5310 return exact_log2 (m + 1);
5313 /* Return the mode of MEM's address. */
5315 enum machine_mode
5316 get_address_mode (rtx mem)
5318 enum machine_mode mode;
5320 gcc_assert (MEM_P (mem));
5321 mode = GET_MODE (XEXP (mem, 0));
5322 if (mode != VOIDmode)
5323 return mode;
5324 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5327 /* Split up a CONST_DOUBLE or integer constant rtx
5328 into two rtx's for single words,
5329 storing in *FIRST the word that comes first in memory in the target
5330 and in *SECOND the other. */
5332 void
5333 split_double (rtx value, rtx *first, rtx *second)
5335 if (CONST_INT_P (value))
5337 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5339 /* In this case the CONST_INT holds both target words.
5340 Extract the bits from it into two word-sized pieces.
5341 Sign extend each half to HOST_WIDE_INT. */
5342 unsigned HOST_WIDE_INT low, high;
5343 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5344 unsigned bits_per_word = BITS_PER_WORD;
5346 /* Set sign_bit to the most significant bit of a word. */
5347 sign_bit = 1;
5348 sign_bit <<= bits_per_word - 1;
5350 /* Set mask so that all bits of the word are set. We could
5351 have used 1 << BITS_PER_WORD instead of basing the
5352 calculation on sign_bit. However, on machines where
5353 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5354 compiler warning, even though the code would never be
5355 executed. */
5356 mask = sign_bit << 1;
5357 mask--;
5359 /* Set sign_extend as any remaining bits. */
5360 sign_extend = ~mask;
5362 /* Pick the lower word and sign-extend it. */
5363 low = INTVAL (value);
5364 low &= mask;
5365 if (low & sign_bit)
5366 low |= sign_extend;
5368 /* Pick the higher word, shifted to the least significant
5369 bits, and sign-extend it. */
5370 high = INTVAL (value);
5371 high >>= bits_per_word - 1;
5372 high >>= 1;
5373 high &= mask;
5374 if (high & sign_bit)
5375 high |= sign_extend;
5377 /* Store the words in the target machine order. */
5378 if (WORDS_BIG_ENDIAN)
5380 *first = GEN_INT (high);
5381 *second = GEN_INT (low);
5383 else
5385 *first = GEN_INT (low);
5386 *second = GEN_INT (high);
5389 else
5391 /* The rule for using CONST_INT for a wider mode
5392 is that we regard the value as signed.
5393 So sign-extend it. */
5394 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5395 if (WORDS_BIG_ENDIAN)
5397 *first = high;
5398 *second = value;
5400 else
5402 *first = value;
5403 *second = high;
5407 else if (!CONST_DOUBLE_P (value))
5409 if (WORDS_BIG_ENDIAN)
5411 *first = const0_rtx;
5412 *second = value;
5414 else
5416 *first = value;
5417 *second = const0_rtx;
5420 else if (GET_MODE (value) == VOIDmode
5421 /* This is the old way we did CONST_DOUBLE integers. */
5422 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5424 /* In an integer, the words are defined as most and least significant.
5425 So order them by the target's convention. */
5426 if (WORDS_BIG_ENDIAN)
5428 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5429 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5431 else
5433 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5434 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5437 else
5439 REAL_VALUE_TYPE r;
5440 long l[2];
5441 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5443 /* Note, this converts the REAL_VALUE_TYPE to the target's
5444 format, splits up the floating point double and outputs
5445 exactly 32 bits of it into each of l[0] and l[1] --
5446 not necessarily BITS_PER_WORD bits. */
5447 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5449 /* If 32 bits is an entire word for the target, but not for the host,
5450 then sign-extend on the host so that the number will look the same
5451 way on the host that it would on the target. See for instance
5452 simplify_unary_operation. The #if is needed to avoid compiler
5453 warnings. */
5455 #if HOST_BITS_PER_LONG > 32
5456 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5458 if (l[0] & ((long) 1 << 31))
5459 l[0] |= ((long) (-1) << 32);
5460 if (l[1] & ((long) 1 << 31))
5461 l[1] |= ((long) (-1) << 32);
5463 #endif
5465 *first = GEN_INT (l[0]);
5466 *second = GEN_INT (l[1]);
5470 /* Return true if X is a sign_extract or zero_extract from the least
5471 significant bit. */
5473 static bool
5474 lsb_bitfield_op_p (rtx x)
5476 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5478 enum machine_mode mode = GET_MODE (XEXP (x, 0));
5479 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5480 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5482 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5484 return false;
5487 /* Strip outer address "mutations" from LOC and return a pointer to the
5488 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5489 stripped expression there.
5491 "Mutations" either convert between modes or apply some kind of
5492 extension, truncation or alignment. */
5494 rtx *
5495 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5497 for (;;)
5499 enum rtx_code code = GET_CODE (*loc);
5500 if (GET_RTX_CLASS (code) == RTX_UNARY)
5501 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5502 used to convert between pointer sizes. */
5503 loc = &XEXP (*loc, 0);
5504 else if (lsb_bitfield_op_p (*loc))
5505 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5506 acts as a combined truncation and extension. */
5507 loc = &XEXP (*loc, 0);
5508 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5509 /* (and ... (const_int -X)) is used to align to X bytes. */
5510 loc = &XEXP (*loc, 0);
5511 else if (code == SUBREG
5512 && !OBJECT_P (SUBREG_REG (*loc))
5513 && subreg_lowpart_p (*loc))
5514 /* (subreg (operator ...) ...) inside and is used for mode
5515 conversion too. */
5516 loc = &SUBREG_REG (*loc);
5517 else
5518 return loc;
5519 if (outer_code)
5520 *outer_code = code;
5524 /* Return true if CODE applies some kind of scale. The scaled value is
5525 is the first operand and the scale is the second. */
5527 static bool
5528 binary_scale_code_p (enum rtx_code code)
5530 return (code == MULT
5531 || code == ASHIFT
5532 /* Needed by ARM targets. */
5533 || code == ASHIFTRT
5534 || code == LSHIFTRT
5535 || code == ROTATE
5536 || code == ROTATERT);
5539 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5540 (see address_info). Return null otherwise. */
5542 static rtx *
5543 get_base_term (rtx *inner)
5545 if (GET_CODE (*inner) == LO_SUM)
5546 inner = strip_address_mutations (&XEXP (*inner, 0));
5547 if (REG_P (*inner)
5548 || MEM_P (*inner)
5549 || GET_CODE (*inner) == SUBREG)
5550 return inner;
5551 return 0;
5554 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5555 (see address_info). Return null otherwise. */
5557 static rtx *
5558 get_index_term (rtx *inner)
5560 /* At present, only constant scales are allowed. */
5561 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5562 inner = strip_address_mutations (&XEXP (*inner, 0));
5563 if (REG_P (*inner)
5564 || MEM_P (*inner)
5565 || GET_CODE (*inner) == SUBREG)
5566 return inner;
5567 return 0;
5570 /* Set the segment part of address INFO to LOC, given that INNER is the
5571 unmutated value. */
5573 static void
5574 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5576 gcc_assert (!info->segment);
5577 info->segment = loc;
5578 info->segment_term = inner;
5581 /* Set the base part of address INFO to LOC, given that INNER is the
5582 unmutated value. */
5584 static void
5585 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5587 gcc_assert (!info->base);
5588 info->base = loc;
5589 info->base_term = inner;
5592 /* Set the index part of address INFO to LOC, given that INNER is the
5593 unmutated value. */
5595 static void
5596 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5598 gcc_assert (!info->index);
5599 info->index = loc;
5600 info->index_term = inner;
5603 /* Set the displacement part of address INFO to LOC, given that INNER
5604 is the constant term. */
5606 static void
5607 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5609 gcc_assert (!info->disp);
5610 info->disp = loc;
5611 info->disp_term = inner;
5614 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5615 rest of INFO accordingly. */
5617 static void
5618 decompose_incdec_address (struct address_info *info)
5620 info->autoinc_p = true;
5622 rtx *base = &XEXP (*info->inner, 0);
5623 set_address_base (info, base, base);
5624 gcc_checking_assert (info->base == info->base_term);
5626 /* These addresses are only valid when the size of the addressed
5627 value is known. */
5628 gcc_checking_assert (info->mode != VOIDmode);
5631 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5632 of INFO accordingly. */
5634 static void
5635 decompose_automod_address (struct address_info *info)
5637 info->autoinc_p = true;
5639 rtx *base = &XEXP (*info->inner, 0);
5640 set_address_base (info, base, base);
5641 gcc_checking_assert (info->base == info->base_term);
5643 rtx plus = XEXP (*info->inner, 1);
5644 gcc_assert (GET_CODE (plus) == PLUS);
5646 info->base_term2 = &XEXP (plus, 0);
5647 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5649 rtx *step = &XEXP (plus, 1);
5650 rtx *inner_step = strip_address_mutations (step);
5651 if (CONSTANT_P (*inner_step))
5652 set_address_disp (info, step, inner_step);
5653 else
5654 set_address_index (info, step, inner_step);
5657 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5658 values in [PTR, END). Return a pointer to the end of the used array. */
5660 static rtx **
5661 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5663 rtx x = *loc;
5664 if (GET_CODE (x) == PLUS)
5666 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5667 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5669 else
5671 gcc_assert (ptr != end);
5672 *ptr++ = loc;
5674 return ptr;
5677 /* Evaluate the likelihood of X being a base or index value, returning
5678 positive if it is likely to be a base, negative if it is likely to be
5679 an index, and 0 if we can't tell. Make the magnitude of the return
5680 value reflect the amount of confidence we have in the answer.
5682 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5684 static int
5685 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5686 enum rtx_code outer_code, enum rtx_code index_code)
5688 /* Believe *_POINTER unless the address shape requires otherwise. */
5689 if (REG_P (x) && REG_POINTER (x))
5690 return 2;
5691 if (MEM_P (x) && MEM_POINTER (x))
5692 return 2;
5694 if (REG_P (x) && HARD_REGISTER_P (x))
5696 /* X is a hard register. If it only fits one of the base
5697 or index classes, choose that interpretation. */
5698 int regno = REGNO (x);
5699 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5700 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5701 if (base_p != index_p)
5702 return base_p ? 1 : -1;
5704 return 0;
5707 /* INFO->INNER describes a normal, non-automodified address.
5708 Fill in the rest of INFO accordingly. */
5710 static void
5711 decompose_normal_address (struct address_info *info)
5713 /* Treat the address as the sum of up to four values. */
5714 rtx *ops[4];
5715 size_t n_ops = extract_plus_operands (info->inner, ops,
5716 ops + ARRAY_SIZE (ops)) - ops;
5718 /* If there is more than one component, any base component is in a PLUS. */
5719 if (n_ops > 1)
5720 info->base_outer_code = PLUS;
5722 /* Try to classify each sum operand now. Leave those that could be
5723 either a base or an index in OPS. */
5724 rtx *inner_ops[4];
5725 size_t out = 0;
5726 for (size_t in = 0; in < n_ops; ++in)
5728 rtx *loc = ops[in];
5729 rtx *inner = strip_address_mutations (loc);
5730 if (CONSTANT_P (*inner))
5731 set_address_disp (info, loc, inner);
5732 else if (GET_CODE (*inner) == UNSPEC)
5733 set_address_segment (info, loc, inner);
5734 else
5736 /* The only other possibilities are a base or an index. */
5737 rtx *base_term = get_base_term (inner);
5738 rtx *index_term = get_index_term (inner);
5739 gcc_assert (base_term || index_term);
5740 if (!base_term)
5741 set_address_index (info, loc, index_term);
5742 else if (!index_term)
5743 set_address_base (info, loc, base_term);
5744 else
5746 gcc_assert (base_term == index_term);
5747 ops[out] = loc;
5748 inner_ops[out] = base_term;
5749 ++out;
5754 /* Classify the remaining OPS members as bases and indexes. */
5755 if (out == 1)
5757 /* If we haven't seen a base or an index yet, assume that this is
5758 the base. If we were confident that another term was the base
5759 or index, treat the remaining operand as the other kind. */
5760 if (!info->base)
5761 set_address_base (info, ops[0], inner_ops[0]);
5762 else
5763 set_address_index (info, ops[0], inner_ops[0]);
5765 else if (out == 2)
5767 /* In the event of a tie, assume the base comes first. */
5768 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5769 GET_CODE (*ops[1]))
5770 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5771 GET_CODE (*ops[0])))
5773 set_address_base (info, ops[0], inner_ops[0]);
5774 set_address_index (info, ops[1], inner_ops[1]);
5776 else
5778 set_address_base (info, ops[1], inner_ops[1]);
5779 set_address_index (info, ops[0], inner_ops[0]);
5782 else
5783 gcc_assert (out == 0);
5786 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5787 or VOIDmode if not known. AS is the address space associated with LOC.
5788 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5790 void
5791 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5792 addr_space_t as, enum rtx_code outer_code)
5794 memset (info, 0, sizeof (*info));
5795 info->mode = mode;
5796 info->as = as;
5797 info->addr_outer_code = outer_code;
5798 info->outer = loc;
5799 info->inner = strip_address_mutations (loc, &outer_code);
5800 info->base_outer_code = outer_code;
5801 switch (GET_CODE (*info->inner))
5803 case PRE_DEC:
5804 case PRE_INC:
5805 case POST_DEC:
5806 case POST_INC:
5807 decompose_incdec_address (info);
5808 break;
5810 case PRE_MODIFY:
5811 case POST_MODIFY:
5812 decompose_automod_address (info);
5813 break;
5815 default:
5816 decompose_normal_address (info);
5817 break;
5821 /* Describe address operand LOC in INFO. */
5823 void
5824 decompose_lea_address (struct address_info *info, rtx *loc)
5826 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5829 /* Describe the address of MEM X in INFO. */
5831 void
5832 decompose_mem_address (struct address_info *info, rtx x)
5834 gcc_assert (MEM_P (x));
5835 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5836 MEM_ADDR_SPACE (x), MEM);
5839 /* Update INFO after a change to the address it describes. */
5841 void
5842 update_address (struct address_info *info)
5844 decompose_address (info, info->outer, info->mode, info->as,
5845 info->addr_outer_code);
5848 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5849 more complicated than that. */
5851 HOST_WIDE_INT
5852 get_index_scale (const struct address_info *info)
5854 rtx index = *info->index;
5855 if (GET_CODE (index) == MULT
5856 && CONST_INT_P (XEXP (index, 1))
5857 && info->index_term == &XEXP (index, 0))
5858 return INTVAL (XEXP (index, 1));
5860 if (GET_CODE (index) == ASHIFT
5861 && CONST_INT_P (XEXP (index, 1))
5862 && info->index_term == &XEXP (index, 0))
5863 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
5865 if (info->index == info->index_term)
5866 return 1;
5868 return 0;
5871 /* Return the "index code" of INFO, in the form required by
5872 ok_for_base_p_1. */
5874 enum rtx_code
5875 get_index_code (const struct address_info *info)
5877 if (info->index)
5878 return GET_CODE (*info->index);
5880 if (info->disp)
5881 return GET_CODE (*info->disp);
5883 return SCRATCH;