vectorizer cost model enhancement
[official-gcc.git] / gcc / reg-stack.c
blob69c05b62ad4d3009b9b4f486a8866317f6b78f92
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 * asm_operands:
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
103 asm ("foo" : "=t" (a) : "f" (b));
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
114 The asm above would be written as
116 asm ("foo" : "=&t" (a) : "f" (b));
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "tm.h"
156 #include "tree.h"
157 #include "rtl-error.h"
158 #include "tm_p.h"
159 #include "function.h"
160 #include "insn-config.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "recog.h"
165 #include "basic-block.h"
166 #include "reload.h"
167 #include "ggc.h"
168 #include "tree-pass.h"
169 #include "target.h"
170 #include "df.h"
171 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
173 #ifdef STACK_REGS
175 /* We use this array to cache info about insns, because otherwise we
176 spend too much time in stack_regs_mentioned_p.
178 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
179 the insn uses stack registers, two indicates the insn does not use
180 stack registers. */
181 static vec<char> stack_regs_mentioned_data;
183 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185 int regstack_completed = 0;
187 /* This is the basic stack record. TOP is an index into REG[] such
188 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
190 If TOP is -2, REG[] is not yet initialized. Stack initialization
191 consists of placing each live reg in array `reg' and setting `top'
192 appropriately.
194 REG_SET indicates which registers are live. */
196 typedef struct stack_def
198 int top; /* index to top stack element */
199 HARD_REG_SET reg_set; /* set of live registers */
200 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
201 } *stack_ptr;
203 /* This is used to carry information about basic blocks. It is
204 attached to the AUX field of the standard CFG block. */
206 typedef struct block_info_def
208 struct stack_def stack_in; /* Input stack configuration. */
209 struct stack_def stack_out; /* Output stack configuration. */
210 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
211 int done; /* True if block already converted. */
212 int predecessors; /* Number of predecessors that need
213 to be visited. */
214 } *block_info;
216 #define BLOCK_INFO(B) ((block_info) (B)->aux)
218 /* Passed to change_stack to indicate where to emit insns. */
219 enum emit_where
221 EMIT_AFTER,
222 EMIT_BEFORE
225 /* The block we're currently working on. */
226 static basic_block current_block;
228 /* In the current_block, whether we're processing the first register
229 stack or call instruction, i.e. the regstack is currently the
230 same as BLOCK_INFO(current_block)->stack_in. */
231 static bool starting_stack_p;
233 /* This is the register file for all register after conversion. */
234 static rtx
235 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
237 #define FP_MODE_REG(regno,mode) \
238 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
240 /* Used to initialize uninitialized registers. */
241 static rtx not_a_num;
243 /* Forward declarations */
245 static int stack_regs_mentioned_p (const_rtx pat);
246 static void pop_stack (stack_ptr, int);
247 static rtx *get_true_reg (rtx *);
249 static int check_asm_stack_operands (rtx);
250 static void get_asm_operands_in_out (rtx, int *, int *);
251 static rtx stack_result (tree);
252 static void replace_reg (rtx *, int);
253 static void remove_regno_note (rtx, enum reg_note, unsigned int);
254 static int get_hard_regnum (stack_ptr, rtx);
255 static rtx emit_pop_insn (rtx, stack_ptr, rtx, enum emit_where);
256 static void swap_to_top(rtx, stack_ptr, rtx, rtx);
257 static bool move_for_stack_reg (rtx, stack_ptr, rtx);
258 static bool move_nan_for_stack_reg (rtx, stack_ptr, rtx);
259 static int swap_rtx_condition_1 (rtx);
260 static int swap_rtx_condition (rtx);
261 static void compare_for_stack_reg (rtx, stack_ptr, rtx);
262 static bool subst_stack_regs_pat (rtx, stack_ptr, rtx);
263 static void subst_asm_stack_regs (rtx, stack_ptr);
264 static bool subst_stack_regs (rtx, stack_ptr);
265 static void change_stack (rtx, stack_ptr, stack_ptr, enum emit_where);
266 static void print_stack (FILE *, stack_ptr);
267 static rtx next_flags_user (rtx);
269 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
271 static int
272 stack_regs_mentioned_p (const_rtx pat)
274 const char *fmt;
275 int i;
277 if (STACK_REG_P (pat))
278 return 1;
280 fmt = GET_RTX_FORMAT (GET_CODE (pat));
281 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
283 if (fmt[i] == 'E')
285 int j;
287 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
288 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
289 return 1;
291 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
292 return 1;
295 return 0;
298 /* Return nonzero if INSN mentions stacked registers, else return zero. */
301 stack_regs_mentioned (const_rtx insn)
303 unsigned int uid, max;
304 int test;
306 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
307 return 0;
309 uid = INSN_UID (insn);
310 max = stack_regs_mentioned_data.length ();
311 if (uid >= max)
313 /* Allocate some extra size to avoid too many reallocs, but
314 do not grow too quickly. */
315 max = uid + uid / 20 + 1;
316 stack_regs_mentioned_data.safe_grow_cleared (max);
319 test = stack_regs_mentioned_data[uid];
320 if (test == 0)
322 /* This insn has yet to be examined. Do so now. */
323 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
324 stack_regs_mentioned_data[uid] = test;
327 return test == 1;
330 static rtx ix86_flags_rtx;
332 static rtx
333 next_flags_user (rtx insn)
335 /* Search forward looking for the first use of this value.
336 Stop at block boundaries. */
338 while (insn != BB_END (current_block))
340 insn = NEXT_INSN (insn);
342 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
343 return insn;
345 if (CALL_P (insn))
346 return NULL_RTX;
348 return NULL_RTX;
351 /* Reorganize the stack into ascending numbers, before this insn. */
353 static void
354 straighten_stack (rtx insn, stack_ptr regstack)
356 struct stack_def temp_stack;
357 int top;
359 /* If there is only a single register on the stack, then the stack is
360 already in increasing order and no reorganization is needed.
362 Similarly if the stack is empty. */
363 if (regstack->top <= 0)
364 return;
366 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
368 for (top = temp_stack.top = regstack->top; top >= 0; top--)
369 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
371 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
374 /* Pop a register from the stack. */
376 static void
377 pop_stack (stack_ptr regstack, int regno)
379 int top = regstack->top;
381 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
382 regstack->top--;
383 /* If regno was not at the top of stack then adjust stack. */
384 if (regstack->reg [top] != regno)
386 int i;
387 for (i = regstack->top; i >= 0; i--)
388 if (regstack->reg [i] == regno)
390 int j;
391 for (j = i; j < top; j++)
392 regstack->reg [j] = regstack->reg [j + 1];
393 break;
398 /* Return a pointer to the REG expression within PAT. If PAT is not a
399 REG, possible enclosed by a conversion rtx, return the inner part of
400 PAT that stopped the search. */
402 static rtx *
403 get_true_reg (rtx *pat)
405 for (;;)
406 switch (GET_CODE (*pat))
408 case SUBREG:
409 /* Eliminate FP subregister accesses in favor of the
410 actual FP register in use. */
412 rtx subreg;
413 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
415 int regno_off = subreg_regno_offset (REGNO (subreg),
416 GET_MODE (subreg),
417 SUBREG_BYTE (*pat),
418 GET_MODE (*pat));
419 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
420 GET_MODE (subreg));
421 return pat;
424 case FLOAT:
425 case FIX:
426 case FLOAT_EXTEND:
427 pat = & XEXP (*pat, 0);
428 break;
430 case UNSPEC:
431 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
432 || XINT (*pat, 1) == UNSPEC_LDA)
433 pat = & XVECEXP (*pat, 0, 0);
434 return pat;
436 case FLOAT_TRUNCATE:
437 if (!flag_unsafe_math_optimizations)
438 return pat;
439 pat = & XEXP (*pat, 0);
440 break;
442 default:
443 return pat;
447 /* Set if we find any malformed asms in a block. */
448 static bool any_malformed_asm;
450 /* There are many rules that an asm statement for stack-like regs must
451 follow. Those rules are explained at the top of this file: the rule
452 numbers below refer to that explanation. */
454 static int
455 check_asm_stack_operands (rtx insn)
457 int i;
458 int n_clobbers;
459 int malformed_asm = 0;
460 rtx body = PATTERN (insn);
462 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
463 char implicitly_dies[FIRST_PSEUDO_REGISTER];
464 int alt;
466 rtx *clobber_reg = 0;
467 int n_inputs, n_outputs;
469 /* Find out what the constraints require. If no constraint
470 alternative matches, this asm is malformed. */
471 extract_insn (insn);
472 constrain_operands (1);
473 alt = which_alternative;
475 preprocess_constraints ();
477 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
479 if (alt < 0)
481 malformed_asm = 1;
482 /* Avoid further trouble with this insn. */
483 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
484 return 0;
487 /* Strip SUBREGs here to make the following code simpler. */
488 for (i = 0; i < recog_data.n_operands; i++)
489 if (GET_CODE (recog_data.operand[i]) == SUBREG
490 && REG_P (SUBREG_REG (recog_data.operand[i])))
491 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
493 /* Set up CLOBBER_REG. */
495 n_clobbers = 0;
497 if (GET_CODE (body) == PARALLEL)
499 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
501 for (i = 0; i < XVECLEN (body, 0); i++)
502 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
504 rtx clobber = XVECEXP (body, 0, i);
505 rtx reg = XEXP (clobber, 0);
507 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
508 reg = SUBREG_REG (reg);
510 if (STACK_REG_P (reg))
512 clobber_reg[n_clobbers] = reg;
513 n_clobbers++;
518 /* Enforce rule #4: Output operands must specifically indicate which
519 reg an output appears in after an asm. "=f" is not allowed: the
520 operand constraints must select a class with a single reg.
522 Also enforce rule #5: Output operands must start at the top of
523 the reg-stack: output operands may not "skip" a reg. */
525 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
526 for (i = 0; i < n_outputs; i++)
527 if (STACK_REG_P (recog_data.operand[i]))
529 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
531 error_for_asm (insn, "output constraint %d must specify a single register", i);
532 malformed_asm = 1;
534 else
536 int j;
538 for (j = 0; j < n_clobbers; j++)
539 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
541 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
542 i, reg_names [REGNO (clobber_reg[j])]);
543 malformed_asm = 1;
544 break;
546 if (j == n_clobbers)
547 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
552 /* Search for first non-popped reg. */
553 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
554 if (! reg_used_as_output[i])
555 break;
557 /* If there are any other popped regs, that's an error. */
558 for (; i < LAST_STACK_REG + 1; i++)
559 if (reg_used_as_output[i])
560 break;
562 if (i != LAST_STACK_REG + 1)
564 error_for_asm (insn, "output regs must be grouped at top of stack");
565 malformed_asm = 1;
568 /* Enforce rule #2: All implicitly popped input regs must be closer
569 to the top of the reg-stack than any input that is not implicitly
570 popped. */
572 memset (implicitly_dies, 0, sizeof (implicitly_dies));
573 for (i = n_outputs; i < n_outputs + n_inputs; i++)
574 if (STACK_REG_P (recog_data.operand[i]))
576 /* An input reg is implicitly popped if it is tied to an
577 output, or if there is a CLOBBER for it. */
578 int j;
580 for (j = 0; j < n_clobbers; j++)
581 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
582 break;
584 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
585 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
588 /* Search for first non-popped reg. */
589 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
590 if (! implicitly_dies[i])
591 break;
593 /* If there are any other popped regs, that's an error. */
594 for (; i < LAST_STACK_REG + 1; i++)
595 if (implicitly_dies[i])
596 break;
598 if (i != LAST_STACK_REG + 1)
600 error_for_asm (insn,
601 "implicitly popped regs must be grouped at top of stack");
602 malformed_asm = 1;
605 /* Enforce rule #3: If any input operand uses the "f" constraint, all
606 output constraints must use the "&" earlyclobber.
608 ??? Detect this more deterministically by having constrain_asm_operands
609 record any earlyclobber. */
611 for (i = n_outputs; i < n_outputs + n_inputs; i++)
612 if (recog_op_alt[i][alt].matches == -1)
614 int j;
616 for (j = 0; j < n_outputs; j++)
617 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
619 error_for_asm (insn,
620 "output operand %d must use %<&%> constraint", j);
621 malformed_asm = 1;
625 if (malformed_asm)
627 /* Avoid further trouble with this insn. */
628 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
629 any_malformed_asm = true;
630 return 0;
633 return 1;
636 /* Calculate the number of inputs and outputs in BODY, an
637 asm_operands. N_OPERANDS is the total number of operands, and
638 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
639 placed. */
641 static void
642 get_asm_operands_in_out (rtx body, int *pout, int *pin)
644 rtx asmop = extract_asm_operands (body);
646 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
647 *pout = (recog_data.n_operands
648 - ASM_OPERANDS_INPUT_LENGTH (asmop)
649 - ASM_OPERANDS_LABEL_LENGTH (asmop));
652 /* If current function returns its result in an fp stack register,
653 return the REG. Otherwise, return 0. */
655 static rtx
656 stack_result (tree decl)
658 rtx result;
660 /* If the value is supposed to be returned in memory, then clearly
661 it is not returned in a stack register. */
662 if (aggregate_value_p (DECL_RESULT (decl), decl))
663 return 0;
665 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
666 if (result != 0)
667 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
668 decl, true);
670 return result != 0 && STACK_REG_P (result) ? result : 0;
675 * This section deals with stack register substitution, and forms the second
676 * pass over the RTL.
679 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
680 the desired hard REGNO. */
682 static void
683 replace_reg (rtx *reg, int regno)
685 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
686 gcc_assert (STACK_REG_P (*reg));
688 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
689 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
691 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
694 /* Remove a note of type NOTE, which must be found, for register
695 number REGNO from INSN. Remove only one such note. */
697 static void
698 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
700 rtx *note_link, this_rtx;
702 note_link = &REG_NOTES (insn);
703 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
704 if (REG_NOTE_KIND (this_rtx) == note
705 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
707 *note_link = XEXP (this_rtx, 1);
708 return;
710 else
711 note_link = &XEXP (this_rtx, 1);
713 gcc_unreachable ();
716 /* Find the hard register number of virtual register REG in REGSTACK.
717 The hard register number is relative to the top of the stack. -1 is
718 returned if the register is not found. */
720 static int
721 get_hard_regnum (stack_ptr regstack, rtx reg)
723 int i;
725 gcc_assert (STACK_REG_P (reg));
727 for (i = regstack->top; i >= 0; i--)
728 if (regstack->reg[i] == REGNO (reg))
729 break;
731 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
734 /* Emit an insn to pop virtual register REG before or after INSN.
735 REGSTACK is the stack state after INSN and is updated to reflect this
736 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
737 is represented as a SET whose destination is the register to be popped
738 and source is the top of stack. A death note for the top of stack
739 cases the movdf pattern to pop. */
741 static rtx
742 emit_pop_insn (rtx insn, stack_ptr regstack, rtx reg, enum emit_where where)
744 rtx pop_insn, pop_rtx;
745 int hard_regno;
747 /* For complex types take care to pop both halves. These may survive in
748 CLOBBER and USE expressions. */
749 if (COMPLEX_MODE_P (GET_MODE (reg)))
751 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
752 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
754 pop_insn = NULL_RTX;
755 if (get_hard_regnum (regstack, reg1) >= 0)
756 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
757 if (get_hard_regnum (regstack, reg2) >= 0)
758 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
759 gcc_assert (pop_insn);
760 return pop_insn;
763 hard_regno = get_hard_regnum (regstack, reg);
765 gcc_assert (hard_regno >= FIRST_STACK_REG);
767 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
768 FP_MODE_REG (FIRST_STACK_REG, DFmode));
770 if (where == EMIT_AFTER)
771 pop_insn = emit_insn_after (pop_rtx, insn);
772 else
773 pop_insn = emit_insn_before (pop_rtx, insn);
775 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
777 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
778 = regstack->reg[regstack->top];
779 regstack->top -= 1;
780 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
782 return pop_insn;
785 /* Emit an insn before or after INSN to swap virtual register REG with
786 the top of stack. REGSTACK is the stack state before the swap, and
787 is updated to reflect the swap. A swap insn is represented as a
788 PARALLEL of two patterns: each pattern moves one reg to the other.
790 If REG is already at the top of the stack, no insn is emitted. */
792 static void
793 emit_swap_insn (rtx insn, stack_ptr regstack, rtx reg)
795 int hard_regno;
796 rtx swap_rtx;
797 int tmp, other_reg; /* swap regno temps */
798 rtx i1; /* the stack-reg insn prior to INSN */
799 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
801 hard_regno = get_hard_regnum (regstack, reg);
803 if (hard_regno == FIRST_STACK_REG)
804 return;
805 if (hard_regno == -1)
807 /* Something failed if the register wasn't on the stack. If we had
808 malformed asms, we zapped the instruction itself, but that didn't
809 produce the same pattern of register sets as before. To prevent
810 further failure, adjust REGSTACK to include REG at TOP. */
811 gcc_assert (any_malformed_asm);
812 regstack->reg[++regstack->top] = REGNO (reg);
813 return;
815 gcc_assert (hard_regno >= FIRST_STACK_REG);
817 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
819 tmp = regstack->reg[other_reg];
820 regstack->reg[other_reg] = regstack->reg[regstack->top];
821 regstack->reg[regstack->top] = tmp;
823 /* Find the previous insn involving stack regs, but don't pass a
824 block boundary. */
825 i1 = NULL;
826 if (current_block && insn != BB_HEAD (current_block))
828 rtx tmp = PREV_INSN (insn);
829 rtx limit = PREV_INSN (BB_HEAD (current_block));
830 while (tmp != limit)
832 if (LABEL_P (tmp)
833 || CALL_P (tmp)
834 || NOTE_INSN_BASIC_BLOCK_P (tmp)
835 || (NONJUMP_INSN_P (tmp)
836 && stack_regs_mentioned (tmp)))
838 i1 = tmp;
839 break;
841 tmp = PREV_INSN (tmp);
845 if (i1 != NULL_RTX
846 && (i1set = single_set (i1)) != NULL_RTX)
848 rtx i1src = *get_true_reg (&SET_SRC (i1set));
849 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
851 /* If the previous register stack push was from the reg we are to
852 swap with, omit the swap. */
854 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
855 && REG_P (i1src)
856 && REGNO (i1src) == (unsigned) hard_regno - 1
857 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
858 return;
860 /* If the previous insn wrote to the reg we are to swap with,
861 omit the swap. */
863 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
864 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
865 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
866 return;
869 /* Avoid emitting the swap if this is the first register stack insn
870 of the current_block. Instead update the current_block's stack_in
871 and let compensate edges take care of this for us. */
872 if (current_block && starting_stack_p)
874 BLOCK_INFO (current_block)->stack_in = *regstack;
875 starting_stack_p = false;
876 return;
879 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
880 FP_MODE_REG (FIRST_STACK_REG, XFmode));
882 if (i1)
883 emit_insn_after (swap_rtx, i1);
884 else if (current_block)
885 emit_insn_before (swap_rtx, BB_HEAD (current_block));
886 else
887 emit_insn_before (swap_rtx, insn);
890 /* Emit an insns before INSN to swap virtual register SRC1 with
891 the top of stack and virtual register SRC2 with second stack
892 slot. REGSTACK is the stack state before the swaps, and
893 is updated to reflect the swaps. A swap insn is represented as a
894 PARALLEL of two patterns: each pattern moves one reg to the other.
896 If SRC1 and/or SRC2 are already at the right place, no swap insn
897 is emitted. */
899 static void
900 swap_to_top (rtx insn, stack_ptr regstack, rtx src1, rtx src2)
902 struct stack_def temp_stack;
903 int regno, j, k, temp;
905 temp_stack = *regstack;
907 /* Place operand 1 at the top of stack. */
908 regno = get_hard_regnum (&temp_stack, src1);
909 gcc_assert (regno >= 0);
910 if (regno != FIRST_STACK_REG)
912 k = temp_stack.top - (regno - FIRST_STACK_REG);
913 j = temp_stack.top;
915 temp = temp_stack.reg[k];
916 temp_stack.reg[k] = temp_stack.reg[j];
917 temp_stack.reg[j] = temp;
920 /* Place operand 2 next on the stack. */
921 regno = get_hard_regnum (&temp_stack, src2);
922 gcc_assert (regno >= 0);
923 if (regno != FIRST_STACK_REG + 1)
925 k = temp_stack.top - (regno - FIRST_STACK_REG);
926 j = temp_stack.top - 1;
928 temp = temp_stack.reg[k];
929 temp_stack.reg[k] = temp_stack.reg[j];
930 temp_stack.reg[j] = temp;
933 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
936 /* Handle a move to or from a stack register in PAT, which is in INSN.
937 REGSTACK is the current stack. Return whether a control flow insn
938 was deleted in the process. */
940 static bool
941 move_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat)
943 rtx *psrc = get_true_reg (&SET_SRC (pat));
944 rtx *pdest = get_true_reg (&SET_DEST (pat));
945 rtx src, dest;
946 rtx note;
947 bool control_flow_insn_deleted = false;
949 src = *psrc; dest = *pdest;
951 if (STACK_REG_P (src) && STACK_REG_P (dest))
953 /* Write from one stack reg to another. If SRC dies here, then
954 just change the register mapping and delete the insn. */
956 note = find_regno_note (insn, REG_DEAD, REGNO (src));
957 if (note)
959 int i;
961 /* If this is a no-op move, there must not be a REG_DEAD note. */
962 gcc_assert (REGNO (src) != REGNO (dest));
964 for (i = regstack->top; i >= 0; i--)
965 if (regstack->reg[i] == REGNO (src))
966 break;
968 /* The destination must be dead, or life analysis is borked. */
969 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
971 /* If the source is not live, this is yet another case of
972 uninitialized variables. Load up a NaN instead. */
973 if (i < 0)
974 return move_nan_for_stack_reg (insn, regstack, dest);
976 /* It is possible that the dest is unused after this insn.
977 If so, just pop the src. */
979 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
980 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
981 else
983 regstack->reg[i] = REGNO (dest);
984 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
985 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
988 control_flow_insn_deleted |= control_flow_insn_p (insn);
989 delete_insn (insn);
990 return control_flow_insn_deleted;
993 /* The source reg does not die. */
995 /* If this appears to be a no-op move, delete it, or else it
996 will confuse the machine description output patterns. But if
997 it is REG_UNUSED, we must pop the reg now, as per-insn processing
998 for REG_UNUSED will not work for deleted insns. */
1000 if (REGNO (src) == REGNO (dest))
1002 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1003 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1005 control_flow_insn_deleted |= control_flow_insn_p (insn);
1006 delete_insn (insn);
1007 return control_flow_insn_deleted;
1010 /* The destination ought to be dead. */
1011 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1013 replace_reg (psrc, get_hard_regnum (regstack, src));
1015 regstack->reg[++regstack->top] = REGNO (dest);
1016 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1017 replace_reg (pdest, FIRST_STACK_REG);
1019 else if (STACK_REG_P (src))
1021 /* Save from a stack reg to MEM, or possibly integer reg. Since
1022 only top of stack may be saved, emit an exchange first if
1023 needs be. */
1025 emit_swap_insn (insn, regstack, src);
1027 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1028 if (note)
1030 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1031 regstack->top--;
1032 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1034 else if ((GET_MODE (src) == XFmode)
1035 && regstack->top < REG_STACK_SIZE - 1)
1037 /* A 387 cannot write an XFmode value to a MEM without
1038 clobbering the source reg. The output code can handle
1039 this by reading back the value from the MEM.
1040 But it is more efficient to use a temp register if one is
1041 available. Push the source value here if the register
1042 stack is not full, and then write the value to memory via
1043 a pop. */
1044 rtx push_rtx;
1045 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1047 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1048 emit_insn_before (push_rtx, insn);
1049 add_reg_note (insn, REG_DEAD, top_stack_reg);
1052 replace_reg (psrc, FIRST_STACK_REG);
1054 else
1056 rtx pat = PATTERN (insn);
1058 gcc_assert (STACK_REG_P (dest));
1060 /* Load from MEM, or possibly integer REG or constant, into the
1061 stack regs. The actual target is always the top of the
1062 stack. The stack mapping is changed to reflect that DEST is
1063 now at top of stack. */
1065 /* The destination ought to be dead. However, there is a
1066 special case with i387 UNSPEC_TAN, where destination is live
1067 (an argument to fptan) but inherent load of 1.0 is modelled
1068 as a load from a constant. */
1069 if (GET_CODE (pat) == PARALLEL
1070 && XVECLEN (pat, 0) == 2
1071 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1072 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1073 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1074 emit_swap_insn (insn, regstack, dest);
1075 else
1076 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1078 gcc_assert (regstack->top < REG_STACK_SIZE);
1080 regstack->reg[++regstack->top] = REGNO (dest);
1081 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1082 replace_reg (pdest, FIRST_STACK_REG);
1085 return control_flow_insn_deleted;
1088 /* A helper function which replaces INSN with a pattern that loads up
1089 a NaN into DEST, then invokes move_for_stack_reg. */
1091 static bool
1092 move_nan_for_stack_reg (rtx insn, stack_ptr regstack, rtx dest)
1094 rtx pat;
1096 dest = FP_MODE_REG (REGNO (dest), SFmode);
1097 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1098 PATTERN (insn) = pat;
1099 INSN_CODE (insn) = -1;
1101 return move_for_stack_reg (insn, regstack, pat);
1104 /* Swap the condition on a branch, if there is one. Return true if we
1105 found a condition to swap. False if the condition was not used as
1106 such. */
1108 static int
1109 swap_rtx_condition_1 (rtx pat)
1111 const char *fmt;
1112 int i, r = 0;
1114 if (COMPARISON_P (pat))
1116 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1117 r = 1;
1119 else
1121 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1122 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1124 if (fmt[i] == 'E')
1126 int j;
1128 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1129 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1131 else if (fmt[i] == 'e')
1132 r |= swap_rtx_condition_1 (XEXP (pat, i));
1136 return r;
1139 static int
1140 swap_rtx_condition (rtx insn)
1142 rtx pat = PATTERN (insn);
1144 /* We're looking for a single set to cc0 or an HImode temporary. */
1146 if (GET_CODE (pat) == SET
1147 && REG_P (SET_DEST (pat))
1148 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1150 insn = next_flags_user (insn);
1151 if (insn == NULL_RTX)
1152 return 0;
1153 pat = PATTERN (insn);
1156 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1157 with the cc value right now. We may be able to search for one
1158 though. */
1160 if (GET_CODE (pat) == SET
1161 && GET_CODE (SET_SRC (pat)) == UNSPEC
1162 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1164 rtx dest = SET_DEST (pat);
1166 /* Search forward looking for the first use of this value.
1167 Stop at block boundaries. */
1168 while (insn != BB_END (current_block))
1170 insn = NEXT_INSN (insn);
1171 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1172 break;
1173 if (CALL_P (insn))
1174 return 0;
1177 /* We haven't found it. */
1178 if (insn == BB_END (current_block))
1179 return 0;
1181 /* So we've found the insn using this value. If it is anything
1182 other than sahf or the value does not die (meaning we'd have
1183 to search further), then we must give up. */
1184 pat = PATTERN (insn);
1185 if (GET_CODE (pat) != SET
1186 || GET_CODE (SET_SRC (pat)) != UNSPEC
1187 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1188 || ! dead_or_set_p (insn, dest))
1189 return 0;
1191 /* Now we are prepared to handle this as a normal cc0 setter. */
1192 insn = next_flags_user (insn);
1193 if (insn == NULL_RTX)
1194 return 0;
1195 pat = PATTERN (insn);
1198 if (swap_rtx_condition_1 (pat))
1200 int fail = 0;
1201 INSN_CODE (insn) = -1;
1202 if (recog_memoized (insn) == -1)
1203 fail = 1;
1204 /* In case the flags don't die here, recurse to try fix
1205 following user too. */
1206 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1208 insn = next_flags_user (insn);
1209 if (!insn || !swap_rtx_condition (insn))
1210 fail = 1;
1212 if (fail)
1214 swap_rtx_condition_1 (pat);
1215 return 0;
1217 return 1;
1219 return 0;
1222 /* Handle a comparison. Special care needs to be taken to avoid
1223 causing comparisons that a 387 cannot do correctly, such as EQ.
1225 Also, a pop insn may need to be emitted. The 387 does have an
1226 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1227 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1228 set up. */
1230 static void
1231 compare_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat_src)
1233 rtx *src1, *src2;
1234 rtx src1_note, src2_note;
1236 src1 = get_true_reg (&XEXP (pat_src, 0));
1237 src2 = get_true_reg (&XEXP (pat_src, 1));
1239 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1240 registers that die in this insn - move those to stack top first. */
1241 if ((! STACK_REG_P (*src1)
1242 || (STACK_REG_P (*src2)
1243 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1244 && swap_rtx_condition (insn))
1246 rtx temp;
1247 temp = XEXP (pat_src, 0);
1248 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1249 XEXP (pat_src, 1) = temp;
1251 src1 = get_true_reg (&XEXP (pat_src, 0));
1252 src2 = get_true_reg (&XEXP (pat_src, 1));
1254 INSN_CODE (insn) = -1;
1257 /* We will fix any death note later. */
1259 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1261 if (STACK_REG_P (*src2))
1262 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1263 else
1264 src2_note = NULL_RTX;
1266 emit_swap_insn (insn, regstack, *src1);
1268 replace_reg (src1, FIRST_STACK_REG);
1270 if (STACK_REG_P (*src2))
1271 replace_reg (src2, get_hard_regnum (regstack, *src2));
1273 if (src1_note)
1275 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1276 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1279 /* If the second operand dies, handle that. But if the operands are
1280 the same stack register, don't bother, because only one death is
1281 needed, and it was just handled. */
1283 if (src2_note
1284 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1285 && REGNO (*src1) == REGNO (*src2)))
1287 /* As a special case, two regs may die in this insn if src2 is
1288 next to top of stack and the top of stack also dies. Since
1289 we have already popped src1, "next to top of stack" is really
1290 at top (FIRST_STACK_REG) now. */
1292 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1293 && src1_note)
1295 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1296 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1298 else
1300 /* The 386 can only represent death of the first operand in
1301 the case handled above. In all other cases, emit a separate
1302 pop and remove the death note from here. */
1303 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1304 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1305 EMIT_AFTER);
1310 /* Substitute new registers in LOC, which is part of a debug insn.
1311 REGSTACK is the current register layout. */
1313 static int
1314 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1316 stack_ptr regstack = (stack_ptr)data;
1317 int hard_regno;
1319 if (!STACK_REG_P (*loc))
1320 return 0;
1322 hard_regno = get_hard_regnum (regstack, *loc);
1324 /* If we can't find an active register, reset this debug insn. */
1325 if (hard_regno == -1)
1326 return 1;
1328 gcc_assert (hard_regno >= FIRST_STACK_REG);
1330 replace_reg (loc, hard_regno);
1332 return -1;
1335 /* Substitute hardware stack regs in debug insn INSN, using stack
1336 layout REGSTACK. If we can't find a hardware stack reg for any of
1337 the REGs in it, reset the debug insn. */
1339 static void
1340 subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1342 int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1343 subst_stack_regs_in_debug_insn,
1344 regstack);
1346 if (ret == 1)
1347 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1348 else
1349 gcc_checking_assert (ret == 0);
1352 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1353 is the current register layout. Return whether a control flow insn
1354 was deleted in the process. */
1356 static bool
1357 subst_stack_regs_pat (rtx insn, stack_ptr regstack, rtx pat)
1359 rtx *dest, *src;
1360 bool control_flow_insn_deleted = false;
1362 switch (GET_CODE (pat))
1364 case USE:
1365 /* Deaths in USE insns can happen in non optimizing compilation.
1366 Handle them by popping the dying register. */
1367 src = get_true_reg (&XEXP (pat, 0));
1368 if (STACK_REG_P (*src)
1369 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1371 /* USEs are ignored for liveness information so USEs of dead
1372 register might happen. */
1373 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1374 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1375 return control_flow_insn_deleted;
1377 /* Uninitialized USE might happen for functions returning uninitialized
1378 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1379 so it is safe to ignore the use here. This is consistent with behavior
1380 of dataflow analyzer that ignores USE too. (This also imply that
1381 forcibly initializing the register to NaN here would lead to ICE later,
1382 since the REG_DEAD notes are not issued.) */
1383 break;
1385 case VAR_LOCATION:
1386 gcc_unreachable ();
1388 case CLOBBER:
1390 rtx note;
1392 dest = get_true_reg (&XEXP (pat, 0));
1393 if (STACK_REG_P (*dest))
1395 note = find_reg_note (insn, REG_DEAD, *dest);
1397 if (pat != PATTERN (insn))
1399 /* The fix_truncdi_1 pattern wants to be able to
1400 allocate its own scratch register. It does this by
1401 clobbering an fp reg so that it is assured of an
1402 empty reg-stack register. If the register is live,
1403 kill it now. Remove the DEAD/UNUSED note so we
1404 don't try to kill it later too.
1406 In reality the UNUSED note can be absent in some
1407 complicated cases when the register is reused for
1408 partially set variable. */
1410 if (note)
1411 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1412 else
1413 note = find_reg_note (insn, REG_UNUSED, *dest);
1414 if (note)
1415 remove_note (insn, note);
1416 replace_reg (dest, FIRST_STACK_REG + 1);
1418 else
1420 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1421 indicates an uninitialized value. Because reload removed
1422 all other clobbers, this must be due to a function
1423 returning without a value. Load up a NaN. */
1425 if (!note)
1427 rtx t = *dest;
1428 if (COMPLEX_MODE_P (GET_MODE (t)))
1430 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1431 if (get_hard_regnum (regstack, u) == -1)
1433 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1434 rtx insn2 = emit_insn_before (pat2, insn);
1435 control_flow_insn_deleted
1436 |= move_nan_for_stack_reg (insn2, regstack, u);
1439 if (get_hard_regnum (regstack, t) == -1)
1440 control_flow_insn_deleted
1441 |= move_nan_for_stack_reg (insn, regstack, t);
1445 break;
1448 case SET:
1450 rtx *src1 = (rtx *) 0, *src2;
1451 rtx src1_note, src2_note;
1452 rtx pat_src;
1454 dest = get_true_reg (&SET_DEST (pat));
1455 src = get_true_reg (&SET_SRC (pat));
1456 pat_src = SET_SRC (pat);
1458 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1459 if (STACK_REG_P (*src)
1460 || (STACK_REG_P (*dest)
1461 && (REG_P (*src) || MEM_P (*src)
1462 || CONST_DOUBLE_P (*src))))
1464 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1465 break;
1468 switch (GET_CODE (pat_src))
1470 case COMPARE:
1471 compare_for_stack_reg (insn, regstack, pat_src);
1472 break;
1474 case CALL:
1476 int count;
1477 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1478 --count >= 0;)
1480 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1481 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1484 replace_reg (dest, FIRST_STACK_REG);
1485 break;
1487 case REG:
1488 /* This is a `tstM2' case. */
1489 gcc_assert (*dest == cc0_rtx);
1490 src1 = src;
1492 /* Fall through. */
1494 case FLOAT_TRUNCATE:
1495 case SQRT:
1496 case ABS:
1497 case NEG:
1498 /* These insns only operate on the top of the stack. DEST might
1499 be cc0_rtx if we're processing a tstM pattern. Also, it's
1500 possible that the tstM case results in a REG_DEAD note on the
1501 source. */
1503 if (src1 == 0)
1504 src1 = get_true_reg (&XEXP (pat_src, 0));
1506 emit_swap_insn (insn, regstack, *src1);
1508 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1510 if (STACK_REG_P (*dest))
1511 replace_reg (dest, FIRST_STACK_REG);
1513 if (src1_note)
1515 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1516 regstack->top--;
1517 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1520 replace_reg (src1, FIRST_STACK_REG);
1521 break;
1523 case MINUS:
1524 case DIV:
1525 /* On i386, reversed forms of subM3 and divM3 exist for
1526 MODE_FLOAT, so the same code that works for addM3 and mulM3
1527 can be used. */
1528 case MULT:
1529 case PLUS:
1530 /* These insns can accept the top of stack as a destination
1531 from a stack reg or mem, or can use the top of stack as a
1532 source and some other stack register (possibly top of stack)
1533 as a destination. */
1535 src1 = get_true_reg (&XEXP (pat_src, 0));
1536 src2 = get_true_reg (&XEXP (pat_src, 1));
1538 /* We will fix any death note later. */
1540 if (STACK_REG_P (*src1))
1541 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1542 else
1543 src1_note = NULL_RTX;
1544 if (STACK_REG_P (*src2))
1545 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1546 else
1547 src2_note = NULL_RTX;
1549 /* If either operand is not a stack register, then the dest
1550 must be top of stack. */
1552 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1553 emit_swap_insn (insn, regstack, *dest);
1554 else
1556 /* Both operands are REG. If neither operand is already
1557 at the top of stack, choose to make the one that is the
1558 dest the new top of stack. */
1560 int src1_hard_regnum, src2_hard_regnum;
1562 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1563 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1565 /* If the source is not live, this is yet another case of
1566 uninitialized variables. Load up a NaN instead. */
1567 if (src1_hard_regnum == -1)
1569 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1570 rtx insn2 = emit_insn_before (pat2, insn);
1571 control_flow_insn_deleted
1572 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1574 if (src2_hard_regnum == -1)
1576 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1577 rtx insn2 = emit_insn_before (pat2, insn);
1578 control_flow_insn_deleted
1579 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1582 if (src1_hard_regnum != FIRST_STACK_REG
1583 && src2_hard_regnum != FIRST_STACK_REG)
1584 emit_swap_insn (insn, regstack, *dest);
1587 if (STACK_REG_P (*src1))
1588 replace_reg (src1, get_hard_regnum (regstack, *src1));
1589 if (STACK_REG_P (*src2))
1590 replace_reg (src2, get_hard_regnum (regstack, *src2));
1592 if (src1_note)
1594 rtx src1_reg = XEXP (src1_note, 0);
1596 /* If the register that dies is at the top of stack, then
1597 the destination is somewhere else - merely substitute it.
1598 But if the reg that dies is not at top of stack, then
1599 move the top of stack to the dead reg, as though we had
1600 done the insn and then a store-with-pop. */
1602 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1604 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1605 replace_reg (dest, get_hard_regnum (regstack, *dest));
1607 else
1609 int regno = get_hard_regnum (regstack, src1_reg);
1611 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1612 replace_reg (dest, regno);
1614 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1615 = regstack->reg[regstack->top];
1618 CLEAR_HARD_REG_BIT (regstack->reg_set,
1619 REGNO (XEXP (src1_note, 0)));
1620 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1621 regstack->top--;
1623 else if (src2_note)
1625 rtx src2_reg = XEXP (src2_note, 0);
1626 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1628 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1629 replace_reg (dest, get_hard_regnum (regstack, *dest));
1631 else
1633 int regno = get_hard_regnum (regstack, src2_reg);
1635 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1636 replace_reg (dest, regno);
1638 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1639 = regstack->reg[regstack->top];
1642 CLEAR_HARD_REG_BIT (regstack->reg_set,
1643 REGNO (XEXP (src2_note, 0)));
1644 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1645 regstack->top--;
1647 else
1649 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1650 replace_reg (dest, get_hard_regnum (regstack, *dest));
1653 /* Keep operand 1 matching with destination. */
1654 if (COMMUTATIVE_ARITH_P (pat_src)
1655 && REG_P (*src1) && REG_P (*src2)
1656 && REGNO (*src1) != REGNO (*dest))
1658 int tmp = REGNO (*src1);
1659 replace_reg (src1, REGNO (*src2));
1660 replace_reg (src2, tmp);
1662 break;
1664 case UNSPEC:
1665 switch (XINT (pat_src, 1))
1667 case UNSPEC_STA:
1668 case UNSPEC_FIST:
1670 case UNSPEC_FIST_FLOOR:
1671 case UNSPEC_FIST_CEIL:
1673 /* These insns only operate on the top of the stack. */
1675 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1676 emit_swap_insn (insn, regstack, *src1);
1678 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1680 if (STACK_REG_P (*dest))
1681 replace_reg (dest, FIRST_STACK_REG);
1683 if (src1_note)
1685 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1686 regstack->top--;
1687 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1690 replace_reg (src1, FIRST_STACK_REG);
1691 break;
1693 case UNSPEC_FXAM:
1695 /* This insn only operate on the top of the stack. */
1697 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1698 emit_swap_insn (insn, regstack, *src1);
1700 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1702 replace_reg (src1, FIRST_STACK_REG);
1704 if (src1_note)
1706 remove_regno_note (insn, REG_DEAD,
1707 REGNO (XEXP (src1_note, 0)));
1708 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1709 EMIT_AFTER);
1712 break;
1714 case UNSPEC_SIN:
1715 case UNSPEC_COS:
1716 case UNSPEC_FRNDINT:
1717 case UNSPEC_F2XM1:
1719 case UNSPEC_FRNDINT_FLOOR:
1720 case UNSPEC_FRNDINT_CEIL:
1721 case UNSPEC_FRNDINT_TRUNC:
1722 case UNSPEC_FRNDINT_MASK_PM:
1724 /* Above insns operate on the top of the stack. */
1726 case UNSPEC_SINCOS_COS:
1727 case UNSPEC_XTRACT_FRACT:
1729 /* Above insns operate on the top two stack slots,
1730 first part of one input, double output insn. */
1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1734 emit_swap_insn (insn, regstack, *src1);
1736 /* Input should never die, it is replaced with output. */
1737 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 gcc_assert (!src1_note);
1740 if (STACK_REG_P (*dest))
1741 replace_reg (dest, FIRST_STACK_REG);
1743 replace_reg (src1, FIRST_STACK_REG);
1744 break;
1746 case UNSPEC_SINCOS_SIN:
1747 case UNSPEC_XTRACT_EXP:
1749 /* These insns operate on the top two stack slots,
1750 second part of one input, double output insn. */
1752 regstack->top++;
1753 /* FALLTHRU */
1755 case UNSPEC_TAN:
1757 /* For UNSPEC_TAN, regstack->top is already increased
1758 by inherent load of constant 1.0. */
1760 /* Output value is generated in the second stack slot.
1761 Move current value from second slot to the top. */
1762 regstack->reg[regstack->top]
1763 = regstack->reg[regstack->top - 1];
1765 gcc_assert (STACK_REG_P (*dest));
1767 regstack->reg[regstack->top - 1] = REGNO (*dest);
1768 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1769 replace_reg (dest, FIRST_STACK_REG + 1);
1771 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1773 replace_reg (src1, FIRST_STACK_REG);
1774 break;
1776 case UNSPEC_FPATAN:
1777 case UNSPEC_FYL2X:
1778 case UNSPEC_FYL2XP1:
1779 /* These insns operate on the top two stack slots. */
1781 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1782 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1784 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1785 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1787 swap_to_top (insn, regstack, *src1, *src2);
1789 replace_reg (src1, FIRST_STACK_REG);
1790 replace_reg (src2, FIRST_STACK_REG + 1);
1792 if (src1_note)
1793 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1794 if (src2_note)
1795 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1797 /* Pop both input operands from the stack. */
1798 CLEAR_HARD_REG_BIT (regstack->reg_set,
1799 regstack->reg[regstack->top]);
1800 CLEAR_HARD_REG_BIT (regstack->reg_set,
1801 regstack->reg[regstack->top - 1]);
1802 regstack->top -= 2;
1804 /* Push the result back onto the stack. */
1805 regstack->reg[++regstack->top] = REGNO (*dest);
1806 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1807 replace_reg (dest, FIRST_STACK_REG);
1808 break;
1810 case UNSPEC_FSCALE_FRACT:
1811 case UNSPEC_FPREM_F:
1812 case UNSPEC_FPREM1_F:
1813 /* These insns operate on the top two stack slots,
1814 first part of double input, double output insn. */
1816 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1817 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1819 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1820 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1822 /* Inputs should never die, they are
1823 replaced with outputs. */
1824 gcc_assert (!src1_note);
1825 gcc_assert (!src2_note);
1827 swap_to_top (insn, regstack, *src1, *src2);
1829 /* Push the result back onto stack. Empty stack slot
1830 will be filled in second part of insn. */
1831 if (STACK_REG_P (*dest))
1833 regstack->reg[regstack->top] = REGNO (*dest);
1834 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1835 replace_reg (dest, FIRST_STACK_REG);
1838 replace_reg (src1, FIRST_STACK_REG);
1839 replace_reg (src2, FIRST_STACK_REG + 1);
1840 break;
1842 case UNSPEC_FSCALE_EXP:
1843 case UNSPEC_FPREM_U:
1844 case UNSPEC_FPREM1_U:
1845 /* These insns operate on the top two stack slots,
1846 second part of double input, double output insn. */
1848 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1849 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1851 /* Push the result back onto stack. Fill empty slot from
1852 first part of insn and fix top of stack pointer. */
1853 if (STACK_REG_P (*dest))
1855 regstack->reg[regstack->top - 1] = REGNO (*dest);
1856 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1857 replace_reg (dest, FIRST_STACK_REG + 1);
1860 replace_reg (src1, FIRST_STACK_REG);
1861 replace_reg (src2, FIRST_STACK_REG + 1);
1862 break;
1864 case UNSPEC_C2_FLAG:
1865 /* This insn operates on the top two stack slots,
1866 third part of C2 setting double input insn. */
1868 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1869 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1871 replace_reg (src1, FIRST_STACK_REG);
1872 replace_reg (src2, FIRST_STACK_REG + 1);
1873 break;
1875 case UNSPEC_SAHF:
1876 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1877 The combination matches the PPRO fcomi instruction. */
1879 pat_src = XVECEXP (pat_src, 0, 0);
1880 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1881 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1882 /* Fall through. */
1884 case UNSPEC_FNSTSW:
1885 /* Combined fcomp+fnstsw generated for doing well with
1886 CSE. When optimizing this would have been broken
1887 up before now. */
1889 pat_src = XVECEXP (pat_src, 0, 0);
1890 gcc_assert (GET_CODE (pat_src) == COMPARE);
1892 compare_for_stack_reg (insn, regstack, pat_src);
1893 break;
1895 default:
1896 gcc_unreachable ();
1898 break;
1900 case IF_THEN_ELSE:
1901 /* This insn requires the top of stack to be the destination. */
1903 src1 = get_true_reg (&XEXP (pat_src, 1));
1904 src2 = get_true_reg (&XEXP (pat_src, 2));
1906 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1907 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1909 /* If the comparison operator is an FP comparison operator,
1910 it is handled correctly by compare_for_stack_reg () who
1911 will move the destination to the top of stack. But if the
1912 comparison operator is not an FP comparison operator, we
1913 have to handle it here. */
1914 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1915 && REGNO (*dest) != regstack->reg[regstack->top])
1917 /* In case one of operands is the top of stack and the operands
1918 dies, it is safe to make it the destination operand by
1919 reversing the direction of cmove and avoid fxch. */
1920 if ((REGNO (*src1) == regstack->reg[regstack->top]
1921 && src1_note)
1922 || (REGNO (*src2) == regstack->reg[regstack->top]
1923 && src2_note))
1925 int idx1 = (get_hard_regnum (regstack, *src1)
1926 - FIRST_STACK_REG);
1927 int idx2 = (get_hard_regnum (regstack, *src2)
1928 - FIRST_STACK_REG);
1930 /* Make reg-stack believe that the operands are already
1931 swapped on the stack */
1932 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1933 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1935 /* Reverse condition to compensate the operand swap.
1936 i386 do have comparison always reversible. */
1937 PUT_CODE (XEXP (pat_src, 0),
1938 reversed_comparison_code (XEXP (pat_src, 0), insn));
1940 else
1941 emit_swap_insn (insn, regstack, *dest);
1945 rtx src_note [3];
1946 int i;
1948 src_note[0] = 0;
1949 src_note[1] = src1_note;
1950 src_note[2] = src2_note;
1952 if (STACK_REG_P (*src1))
1953 replace_reg (src1, get_hard_regnum (regstack, *src1));
1954 if (STACK_REG_P (*src2))
1955 replace_reg (src2, get_hard_regnum (regstack, *src2));
1957 for (i = 1; i <= 2; i++)
1958 if (src_note [i])
1960 int regno = REGNO (XEXP (src_note[i], 0));
1962 /* If the register that dies is not at the top of
1963 stack, then move the top of stack to the dead reg.
1964 Top of stack should never die, as it is the
1965 destination. */
1966 gcc_assert (regno != regstack->reg[regstack->top]);
1967 remove_regno_note (insn, REG_DEAD, regno);
1968 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1969 EMIT_AFTER);
1973 /* Make dest the top of stack. Add dest to regstack if
1974 not present. */
1975 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1976 regstack->reg[++regstack->top] = REGNO (*dest);
1977 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1978 replace_reg (dest, FIRST_STACK_REG);
1979 break;
1981 default:
1982 gcc_unreachable ();
1984 break;
1987 default:
1988 break;
1991 return control_flow_insn_deleted;
1994 /* Substitute hard regnums for any stack regs in INSN, which has
1995 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1996 before the insn, and is updated with changes made here.
1998 There are several requirements and assumptions about the use of
1999 stack-like regs in asm statements. These rules are enforced by
2000 record_asm_stack_regs; see comments there for details. Any
2001 asm_operands left in the RTL at this point may be assume to meet the
2002 requirements, since record_asm_stack_regs removes any problem asm. */
2004 static void
2005 subst_asm_stack_regs (rtx insn, stack_ptr regstack)
2007 rtx body = PATTERN (insn);
2008 int alt;
2010 rtx *note_reg; /* Array of note contents */
2011 rtx **note_loc; /* Address of REG field of each note */
2012 enum reg_note *note_kind; /* The type of each note */
2014 rtx *clobber_reg = 0;
2015 rtx **clobber_loc = 0;
2017 struct stack_def temp_stack;
2018 int n_notes;
2019 int n_clobbers;
2020 rtx note;
2021 int i;
2022 int n_inputs, n_outputs;
2024 if (! check_asm_stack_operands (insn))
2025 return;
2027 /* Find out what the constraints required. If no constraint
2028 alternative matches, that is a compiler bug: we should have caught
2029 such an insn in check_asm_stack_operands. */
2030 extract_insn (insn);
2031 constrain_operands (1);
2032 alt = which_alternative;
2034 preprocess_constraints ();
2036 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2038 gcc_assert (alt >= 0);
2040 /* Strip SUBREGs here to make the following code simpler. */
2041 for (i = 0; i < recog_data.n_operands; i++)
2042 if (GET_CODE (recog_data.operand[i]) == SUBREG
2043 && REG_P (SUBREG_REG (recog_data.operand[i])))
2045 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2046 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2049 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2051 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2052 i++;
2054 note_reg = XALLOCAVEC (rtx, i);
2055 note_loc = XALLOCAVEC (rtx *, i);
2056 note_kind = XALLOCAVEC (enum reg_note, i);
2058 n_notes = 0;
2059 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2061 if (GET_CODE (note) != EXPR_LIST)
2062 continue;
2063 rtx reg = XEXP (note, 0);
2064 rtx *loc = & XEXP (note, 0);
2066 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2068 loc = & SUBREG_REG (reg);
2069 reg = SUBREG_REG (reg);
2072 if (STACK_REG_P (reg)
2073 && (REG_NOTE_KIND (note) == REG_DEAD
2074 || REG_NOTE_KIND (note) == REG_UNUSED))
2076 note_reg[n_notes] = reg;
2077 note_loc[n_notes] = loc;
2078 note_kind[n_notes] = REG_NOTE_KIND (note);
2079 n_notes++;
2083 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2085 n_clobbers = 0;
2087 if (GET_CODE (body) == PARALLEL)
2089 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2090 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2092 for (i = 0; i < XVECLEN (body, 0); i++)
2093 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2095 rtx clobber = XVECEXP (body, 0, i);
2096 rtx reg = XEXP (clobber, 0);
2097 rtx *loc = & XEXP (clobber, 0);
2099 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2101 loc = & SUBREG_REG (reg);
2102 reg = SUBREG_REG (reg);
2105 if (STACK_REG_P (reg))
2107 clobber_reg[n_clobbers] = reg;
2108 clobber_loc[n_clobbers] = loc;
2109 n_clobbers++;
2114 temp_stack = *regstack;
2116 /* Put the input regs into the desired place in TEMP_STACK. */
2118 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2119 if (STACK_REG_P (recog_data.operand[i])
2120 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2121 FLOAT_REGS)
2122 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2124 /* If an operand needs to be in a particular reg in
2125 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2126 these constraints are for single register classes, and
2127 reload guaranteed that operand[i] is already in that class,
2128 we can just use REGNO (recog_data.operand[i]) to know which
2129 actual reg this operand needs to be in. */
2131 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2133 gcc_assert (regno >= 0);
2135 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2137 /* recog_data.operand[i] is not in the right place. Find
2138 it and swap it with whatever is already in I's place.
2139 K is where recog_data.operand[i] is now. J is where it
2140 should be. */
2141 int j, k, temp;
2143 k = temp_stack.top - (regno - FIRST_STACK_REG);
2144 j = (temp_stack.top
2145 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2147 temp = temp_stack.reg[k];
2148 temp_stack.reg[k] = temp_stack.reg[j];
2149 temp_stack.reg[j] = temp;
2153 /* Emit insns before INSN to make sure the reg-stack is in the right
2154 order. */
2156 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2158 /* Make the needed input register substitutions. Do death notes and
2159 clobbers too, because these are for inputs, not outputs. */
2161 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2162 if (STACK_REG_P (recog_data.operand[i]))
2164 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2166 gcc_assert (regnum >= 0);
2168 replace_reg (recog_data.operand_loc[i], regnum);
2171 for (i = 0; i < n_notes; i++)
2172 if (note_kind[i] == REG_DEAD)
2174 int regnum = get_hard_regnum (regstack, note_reg[i]);
2176 gcc_assert (regnum >= 0);
2178 replace_reg (note_loc[i], regnum);
2181 for (i = 0; i < n_clobbers; i++)
2183 /* It's OK for a CLOBBER to reference a reg that is not live.
2184 Don't try to replace it in that case. */
2185 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2187 if (regnum >= 0)
2189 /* Sigh - clobbers always have QImode. But replace_reg knows
2190 that these regs can't be MODE_INT and will assert. Just put
2191 the right reg there without calling replace_reg. */
2193 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2197 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2199 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2200 if (STACK_REG_P (recog_data.operand[i]))
2202 /* An input reg is implicitly popped if it is tied to an
2203 output, or if there is a CLOBBER for it. */
2204 int j;
2206 for (j = 0; j < n_clobbers; j++)
2207 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2208 break;
2210 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2212 /* recog_data.operand[i] might not be at the top of stack.
2213 But that's OK, because all we need to do is pop the
2214 right number of regs off of the top of the reg-stack.
2215 record_asm_stack_regs guaranteed that all implicitly
2216 popped regs were grouped at the top of the reg-stack. */
2218 CLEAR_HARD_REG_BIT (regstack->reg_set,
2219 regstack->reg[regstack->top]);
2220 regstack->top--;
2224 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2225 Note that there isn't any need to substitute register numbers.
2226 ??? Explain why this is true. */
2228 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2230 /* See if there is an output for this hard reg. */
2231 int j;
2233 for (j = 0; j < n_outputs; j++)
2234 if (STACK_REG_P (recog_data.operand[j])
2235 && REGNO (recog_data.operand[j]) == (unsigned) i)
2237 regstack->reg[++regstack->top] = i;
2238 SET_HARD_REG_BIT (regstack->reg_set, i);
2239 break;
2243 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2244 input that the asm didn't implicitly pop. If the asm didn't
2245 implicitly pop an input reg, that reg will still be live.
2247 Note that we can't use find_regno_note here: the register numbers
2248 in the death notes have already been substituted. */
2250 for (i = 0; i < n_outputs; i++)
2251 if (STACK_REG_P (recog_data.operand[i]))
2253 int j;
2255 for (j = 0; j < n_notes; j++)
2256 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2257 && note_kind[j] == REG_UNUSED)
2259 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2260 EMIT_AFTER);
2261 break;
2265 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2266 if (STACK_REG_P (recog_data.operand[i]))
2268 int j;
2270 for (j = 0; j < n_notes; j++)
2271 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2272 && note_kind[j] == REG_DEAD
2273 && TEST_HARD_REG_BIT (regstack->reg_set,
2274 REGNO (recog_data.operand[i])))
2276 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2277 EMIT_AFTER);
2278 break;
2283 /* Substitute stack hard reg numbers for stack virtual registers in
2284 INSN. Non-stack register numbers are not changed. REGSTACK is the
2285 current stack content. Insns may be emitted as needed to arrange the
2286 stack for the 387 based on the contents of the insn. Return whether
2287 a control flow insn was deleted in the process. */
2289 static bool
2290 subst_stack_regs (rtx insn, stack_ptr regstack)
2292 rtx *note_link, note;
2293 bool control_flow_insn_deleted = false;
2294 int i;
2296 if (CALL_P (insn))
2298 int top = regstack->top;
2300 /* If there are any floating point parameters to be passed in
2301 registers for this call, make sure they are in the right
2302 order. */
2304 if (top >= 0)
2306 straighten_stack (insn, regstack);
2308 /* Now mark the arguments as dead after the call. */
2310 while (regstack->top >= 0)
2312 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2313 regstack->top--;
2318 /* Do the actual substitution if any stack regs are mentioned.
2319 Since we only record whether entire insn mentions stack regs, and
2320 subst_stack_regs_pat only works for patterns that contain stack regs,
2321 we must check each pattern in a parallel here. A call_value_pop could
2322 fail otherwise. */
2324 if (stack_regs_mentioned (insn))
2326 int n_operands = asm_noperands (PATTERN (insn));
2327 if (n_operands >= 0)
2329 /* This insn is an `asm' with operands. Decode the operands,
2330 decide how many are inputs, and do register substitution.
2331 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2333 subst_asm_stack_regs (insn, regstack);
2334 return control_flow_insn_deleted;
2337 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2338 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2340 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2342 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2343 XVECEXP (PATTERN (insn), 0, i)
2344 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2345 control_flow_insn_deleted
2346 |= subst_stack_regs_pat (insn, regstack,
2347 XVECEXP (PATTERN (insn), 0, i));
2350 else
2351 control_flow_insn_deleted
2352 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2355 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2356 REG_UNUSED will already have been dealt with, so just return. */
2358 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2359 return control_flow_insn_deleted;
2361 /* If this a noreturn call, we can't insert pop insns after it.
2362 Instead, reset the stack state to empty. */
2363 if (CALL_P (insn)
2364 && find_reg_note (insn, REG_NORETURN, NULL))
2366 regstack->top = -1;
2367 CLEAR_HARD_REG_SET (regstack->reg_set);
2368 return control_flow_insn_deleted;
2371 /* If there is a REG_UNUSED note on a stack register on this insn,
2372 the indicated reg must be popped. The REG_UNUSED note is removed,
2373 since the form of the newly emitted pop insn references the reg,
2374 making it no longer `unset'. */
2376 note_link = &REG_NOTES (insn);
2377 for (note = *note_link; note; note = XEXP (note, 1))
2378 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2380 *note_link = XEXP (note, 1);
2381 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2383 else
2384 note_link = &XEXP (note, 1);
2386 return control_flow_insn_deleted;
2389 /* Change the organization of the stack so that it fits a new basic
2390 block. Some registers might have to be popped, but there can never be
2391 a register live in the new block that is not now live.
2393 Insert any needed insns before or after INSN, as indicated by
2394 WHERE. OLD is the original stack layout, and NEW is the desired
2395 form. OLD is updated to reflect the code emitted, i.e., it will be
2396 the same as NEW upon return.
2398 This function will not preserve block_end[]. But that information
2399 is no longer needed once this has executed. */
2401 static void
2402 change_stack (rtx insn, stack_ptr old, stack_ptr new_stack, enum emit_where where)
2404 int reg;
2405 int update_end = 0;
2406 int i;
2408 /* Stack adjustments for the first insn in a block update the
2409 current_block's stack_in instead of inserting insns directly.
2410 compensate_edges will add the necessary code later. */
2411 if (current_block
2412 && starting_stack_p
2413 && where == EMIT_BEFORE)
2415 BLOCK_INFO (current_block)->stack_in = *new_stack;
2416 starting_stack_p = false;
2417 *old = *new_stack;
2418 return;
2421 /* We will be inserting new insns "backwards". If we are to insert
2422 after INSN, find the next insn, and insert before it. */
2424 if (where == EMIT_AFTER)
2426 if (current_block && BB_END (current_block) == insn)
2427 update_end = 1;
2428 insn = NEXT_INSN (insn);
2431 /* Initialize partially dead variables. */
2432 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2433 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2434 && !TEST_HARD_REG_BIT (old->reg_set, i))
2436 old->reg[++old->top] = i;
2437 SET_HARD_REG_BIT (old->reg_set, i);
2438 emit_insn_before (gen_rtx_SET (VOIDmode,
2439 FP_MODE_REG (i, SFmode), not_a_num), insn);
2442 /* Pop any registers that are not needed in the new block. */
2444 /* If the destination block's stack already has a specified layout
2445 and contains two or more registers, use a more intelligent algorithm
2446 to pop registers that minimizes the number number of fxchs below. */
2447 if (new_stack->top > 0)
2449 bool slots[REG_STACK_SIZE];
2450 int pops[REG_STACK_SIZE];
2451 int next, dest, topsrc;
2453 /* First pass to determine the free slots. */
2454 for (reg = 0; reg <= new_stack->top; reg++)
2455 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2457 /* Second pass to allocate preferred slots. */
2458 topsrc = -1;
2459 for (reg = old->top; reg > new_stack->top; reg--)
2460 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2462 dest = -1;
2463 for (next = 0; next <= new_stack->top; next++)
2464 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2466 /* If this is a preference for the new top of stack, record
2467 the fact by remembering it's old->reg in topsrc. */
2468 if (next == new_stack->top)
2469 topsrc = reg;
2470 slots[next] = true;
2471 dest = next;
2472 break;
2474 pops[reg] = dest;
2476 else
2477 pops[reg] = reg;
2479 /* Intentionally, avoid placing the top of stack in it's correct
2480 location, if we still need to permute the stack below and we
2481 can usefully place it somewhere else. This is the case if any
2482 slot is still unallocated, in which case we should place the
2483 top of stack there. */
2484 if (topsrc != -1)
2485 for (reg = 0; reg < new_stack->top; reg++)
2486 if (!slots[reg])
2488 pops[topsrc] = reg;
2489 slots[new_stack->top] = false;
2490 slots[reg] = true;
2491 break;
2494 /* Third pass allocates remaining slots and emits pop insns. */
2495 next = new_stack->top;
2496 for (reg = old->top; reg > new_stack->top; reg--)
2498 dest = pops[reg];
2499 if (dest == -1)
2501 /* Find next free slot. */
2502 while (slots[next])
2503 next--;
2504 dest = next--;
2506 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2507 EMIT_BEFORE);
2510 else
2512 /* The following loop attempts to maximize the number of times we
2513 pop the top of the stack, as this permits the use of the faster
2514 ffreep instruction on platforms that support it. */
2515 int live, next;
2517 live = 0;
2518 for (reg = 0; reg <= old->top; reg++)
2519 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2520 live++;
2522 next = live;
2523 while (old->top >= live)
2524 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2526 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2527 next--;
2528 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2529 EMIT_BEFORE);
2531 else
2532 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2533 EMIT_BEFORE);
2536 if (new_stack->top == -2)
2538 /* If the new block has never been processed, then it can inherit
2539 the old stack order. */
2541 new_stack->top = old->top;
2542 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2544 else
2546 /* This block has been entered before, and we must match the
2547 previously selected stack order. */
2549 /* By now, the only difference should be the order of the stack,
2550 not their depth or liveliness. */
2552 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2553 gcc_assert (old->top == new_stack->top);
2555 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2556 swaps until the stack is correct.
2558 The worst case number of swaps emitted is N + 2, where N is the
2559 depth of the stack. In some cases, the reg at the top of
2560 stack may be correct, but swapped anyway in order to fix
2561 other regs. But since we never swap any other reg away from
2562 its correct slot, this algorithm will converge. */
2564 if (new_stack->top != -1)
2567 /* Swap the reg at top of stack into the position it is
2568 supposed to be in, until the correct top of stack appears. */
2570 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2572 for (reg = new_stack->top; reg >= 0; reg--)
2573 if (new_stack->reg[reg] == old->reg[old->top])
2574 break;
2576 gcc_assert (reg != -1);
2578 emit_swap_insn (insn, old,
2579 FP_MODE_REG (old->reg[reg], DFmode));
2582 /* See if any regs remain incorrect. If so, bring an
2583 incorrect reg to the top of stack, and let the while loop
2584 above fix it. */
2586 for (reg = new_stack->top; reg >= 0; reg--)
2587 if (new_stack->reg[reg] != old->reg[reg])
2589 emit_swap_insn (insn, old,
2590 FP_MODE_REG (old->reg[reg], DFmode));
2591 break;
2593 } while (reg >= 0);
2595 /* At this point there must be no differences. */
2597 for (reg = old->top; reg >= 0; reg--)
2598 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2601 if (update_end)
2602 BB_END (current_block) = PREV_INSN (insn);
2605 /* Print stack configuration. */
2607 static void
2608 print_stack (FILE *file, stack_ptr s)
2610 if (! file)
2611 return;
2613 if (s->top == -2)
2614 fprintf (file, "uninitialized\n");
2615 else if (s->top == -1)
2616 fprintf (file, "empty\n");
2617 else
2619 int i;
2620 fputs ("[ ", file);
2621 for (i = 0; i <= s->top; ++i)
2622 fprintf (file, "%d ", s->reg[i]);
2623 fputs ("]\n", file);
2627 /* This function was doing life analysis. We now let the regular live
2628 code do it's job, so we only need to check some extra invariants
2629 that reg-stack expects. Primary among these being that all registers
2630 are initialized before use.
2632 The function returns true when code was emitted to CFG edges and
2633 commit_edge_insertions needs to be called. */
2635 static int
2636 convert_regs_entry (void)
2638 int inserted = 0;
2639 edge e;
2640 edge_iterator ei;
2642 /* Load something into each stack register live at function entry.
2643 Such live registers can be caused by uninitialized variables or
2644 functions not returning values on all paths. In order to keep
2645 the push/pop code happy, and to not scrog the register stack, we
2646 must put something in these registers. Use a QNaN.
2648 Note that we are inserting converted code here. This code is
2649 never seen by the convert_regs pass. */
2651 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2653 basic_block block = e->dest;
2654 block_info bi = BLOCK_INFO (block);
2655 int reg, top = -1;
2657 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2658 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2660 rtx init;
2662 bi->stack_in.reg[++top] = reg;
2664 init = gen_rtx_SET (VOIDmode,
2665 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2666 not_a_num);
2667 insert_insn_on_edge (init, e);
2668 inserted = 1;
2671 bi->stack_in.top = top;
2674 return inserted;
2677 /* Construct the desired stack for function exit. This will either
2678 be `empty', or the function return value at top-of-stack. */
2680 static void
2681 convert_regs_exit (void)
2683 int value_reg_low, value_reg_high;
2684 stack_ptr output_stack;
2685 rtx retvalue;
2687 retvalue = stack_result (current_function_decl);
2688 value_reg_low = value_reg_high = -1;
2689 if (retvalue)
2691 value_reg_low = REGNO (retvalue);
2692 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2695 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2696 if (value_reg_low == -1)
2697 output_stack->top = -1;
2698 else
2700 int reg;
2702 output_stack->top = value_reg_high - value_reg_low;
2703 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2705 output_stack->reg[value_reg_high - reg] = reg;
2706 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2711 /* Copy the stack info from the end of edge E's source block to the
2712 start of E's destination block. */
2714 static void
2715 propagate_stack (edge e)
2717 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2718 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2719 int reg;
2721 /* Preserve the order of the original stack, but check whether
2722 any pops are needed. */
2723 dest_stack->top = -1;
2724 for (reg = 0; reg <= src_stack->top; ++reg)
2725 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2726 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2728 /* Push in any partially dead values. */
2729 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2730 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2731 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2732 dest_stack->reg[++dest_stack->top] = reg;
2736 /* Adjust the stack of edge E's source block on exit to match the stack
2737 of it's target block upon input. The stack layouts of both blocks
2738 should have been defined by now. */
2740 static bool
2741 compensate_edge (edge e)
2743 basic_block source = e->src, target = e->dest;
2744 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2745 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2746 struct stack_def regstack;
2747 int reg;
2749 if (dump_file)
2750 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2752 gcc_assert (target_stack->top != -2);
2754 /* Check whether stacks are identical. */
2755 if (target_stack->top == source_stack->top)
2757 for (reg = target_stack->top; reg >= 0; --reg)
2758 if (target_stack->reg[reg] != source_stack->reg[reg])
2759 break;
2761 if (reg == -1)
2763 if (dump_file)
2764 fprintf (dump_file, "no changes needed\n");
2765 return false;
2769 if (dump_file)
2771 fprintf (dump_file, "correcting stack to ");
2772 print_stack (dump_file, target_stack);
2775 /* Abnormal calls may appear to have values live in st(0), but the
2776 abnormal return path will not have actually loaded the values. */
2777 if (e->flags & EDGE_ABNORMAL_CALL)
2779 /* Assert that the lifetimes are as we expect -- one value
2780 live at st(0) on the end of the source block, and no
2781 values live at the beginning of the destination block.
2782 For complex return values, we may have st(1) live as well. */
2783 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2784 gcc_assert (target_stack->top == -1);
2785 return false;
2788 /* Handle non-call EH edges specially. The normal return path have
2789 values in registers. These will be popped en masse by the unwind
2790 library. */
2791 if (e->flags & EDGE_EH)
2793 gcc_assert (target_stack->top == -1);
2794 return false;
2797 /* We don't support abnormal edges. Global takes care to
2798 avoid any live register across them, so we should never
2799 have to insert instructions on such edges. */
2800 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2802 /* Make a copy of source_stack as change_stack is destructive. */
2803 regstack = *source_stack;
2805 /* It is better to output directly to the end of the block
2806 instead of to the edge, because emit_swap can do minimal
2807 insn scheduling. We can do this when there is only one
2808 edge out, and it is not abnormal. */
2809 if (EDGE_COUNT (source->succs) == 1)
2811 current_block = source;
2812 change_stack (BB_END (source), &regstack, target_stack,
2813 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2815 else
2817 rtx seq, after;
2819 current_block = NULL;
2820 start_sequence ();
2822 /* ??? change_stack needs some point to emit insns after. */
2823 after = emit_note (NOTE_INSN_DELETED);
2825 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2827 seq = get_insns ();
2828 end_sequence ();
2830 insert_insn_on_edge (seq, e);
2831 return true;
2833 return false;
2836 /* Traverse all non-entry edges in the CFG, and emit the necessary
2837 edge compensation code to change the stack from stack_out of the
2838 source block to the stack_in of the destination block. */
2840 static bool
2841 compensate_edges (void)
2843 bool inserted = false;
2844 basic_block bb;
2846 starting_stack_p = false;
2848 FOR_EACH_BB (bb)
2849 if (bb != ENTRY_BLOCK_PTR)
2851 edge e;
2852 edge_iterator ei;
2854 FOR_EACH_EDGE (e, ei, bb->succs)
2855 inserted |= compensate_edge (e);
2857 return inserted;
2860 /* Select the better of two edges E1 and E2 to use to determine the
2861 stack layout for their shared destination basic block. This is
2862 typically the more frequently executed. The edge E1 may be NULL
2863 (in which case E2 is returned), but E2 is always non-NULL. */
2865 static edge
2866 better_edge (edge e1, edge e2)
2868 if (!e1)
2869 return e2;
2871 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2872 return e1;
2873 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2874 return e2;
2876 if (e1->count > e2->count)
2877 return e1;
2878 if (e1->count < e2->count)
2879 return e2;
2881 /* Prefer critical edges to minimize inserting compensation code on
2882 critical edges. */
2884 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2885 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2887 /* Avoid non-deterministic behavior. */
2888 return (e1->src->index < e2->src->index) ? e1 : e2;
2891 /* Convert stack register references in one block. Return true if the CFG
2892 has been modified in the process. */
2894 static bool
2895 convert_regs_1 (basic_block block)
2897 struct stack_def regstack;
2898 block_info bi = BLOCK_INFO (block);
2899 int reg;
2900 rtx insn, next;
2901 bool control_flow_insn_deleted = false;
2902 bool cfg_altered = false;
2903 int debug_insns_with_starting_stack = 0;
2905 any_malformed_asm = false;
2907 /* Choose an initial stack layout, if one hasn't already been chosen. */
2908 if (bi->stack_in.top == -2)
2910 edge e, beste = NULL;
2911 edge_iterator ei;
2913 /* Select the best incoming edge (typically the most frequent) to
2914 use as a template for this basic block. */
2915 FOR_EACH_EDGE (e, ei, block->preds)
2916 if (BLOCK_INFO (e->src)->done)
2917 beste = better_edge (beste, e);
2919 if (beste)
2920 propagate_stack (beste);
2921 else
2923 /* No predecessors. Create an arbitrary input stack. */
2924 bi->stack_in.top = -1;
2925 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2926 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2927 bi->stack_in.reg[++bi->stack_in.top] = reg;
2931 if (dump_file)
2933 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2934 print_stack (dump_file, &bi->stack_in);
2937 /* Process all insns in this block. Keep track of NEXT so that we
2938 don't process insns emitted while substituting in INSN. */
2939 current_block = block;
2940 next = BB_HEAD (block);
2941 regstack = bi->stack_in;
2942 starting_stack_p = true;
2946 insn = next;
2947 next = NEXT_INSN (insn);
2949 /* Ensure we have not missed a block boundary. */
2950 gcc_assert (next);
2951 if (insn == BB_END (block))
2952 next = NULL;
2954 /* Don't bother processing unless there is a stack reg
2955 mentioned or if it's a CALL_INSN. */
2956 if (DEBUG_INSN_P (insn))
2958 if (starting_stack_p)
2959 debug_insns_with_starting_stack++;
2960 else
2962 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2964 /* Nothing must ever die at a debug insn. If something
2965 is referenced in it that becomes dead, it should have
2966 died before and the reference in the debug insn
2967 should have been removed so as to avoid changing code
2968 generation. */
2969 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2972 else if (stack_regs_mentioned (insn)
2973 || CALL_P (insn))
2975 if (dump_file)
2977 fprintf (dump_file, " insn %d input stack: ",
2978 INSN_UID (insn));
2979 print_stack (dump_file, &regstack);
2981 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2982 starting_stack_p = false;
2985 while (next);
2987 if (debug_insns_with_starting_stack)
2989 /* Since it's the first non-debug instruction that determines
2990 the stack requirements of the current basic block, we refrain
2991 from updating debug insns before it in the loop above, and
2992 fix them up here. */
2993 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2994 insn = NEXT_INSN (insn))
2996 if (!DEBUG_INSN_P (insn))
2997 continue;
2999 debug_insns_with_starting_stack--;
3000 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3004 if (dump_file)
3006 fprintf (dump_file, "Expected live registers [");
3007 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3008 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3009 fprintf (dump_file, " %d", reg);
3010 fprintf (dump_file, " ]\nOutput stack: ");
3011 print_stack (dump_file, &regstack);
3014 insn = BB_END (block);
3015 if (JUMP_P (insn))
3016 insn = PREV_INSN (insn);
3018 /* If the function is declared to return a value, but it returns one
3019 in only some cases, some registers might come live here. Emit
3020 necessary moves for them. */
3022 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3024 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3025 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3027 rtx set;
3029 if (dump_file)
3030 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3032 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3033 insn = emit_insn_after (set, insn);
3034 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3038 /* Amongst the insns possibly deleted during the substitution process above,
3039 might have been the only trapping insn in the block. We purge the now
3040 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3041 called at the end of convert_regs. The order in which we process the
3042 blocks ensures that we never delete an already processed edge.
3044 Note that, at this point, the CFG may have been damaged by the emission
3045 of instructions after an abnormal call, which moves the basic block end
3046 (and is the reason why we call fixup_abnormal_edges later). So we must
3047 be sure that the trapping insn has been deleted before trying to purge
3048 dead edges, otherwise we risk purging valid edges.
3050 ??? We are normally supposed not to delete trapping insns, so we pretend
3051 that the insns deleted above don't actually trap. It would have been
3052 better to detect this earlier and avoid creating the EH edge in the first
3053 place, still, but we don't have enough information at that time. */
3055 if (control_flow_insn_deleted)
3056 cfg_altered |= purge_dead_edges (block);
3058 /* Something failed if the stack lives don't match. If we had malformed
3059 asms, we zapped the instruction itself, but that didn't produce the
3060 same pattern of register kills as before. */
3062 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3063 || any_malformed_asm);
3064 bi->stack_out = regstack;
3065 bi->done = true;
3067 return cfg_altered;
3070 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3071 CFG has been modified in the process. */
3073 static bool
3074 convert_regs_2 (basic_block block)
3076 basic_block *stack, *sp;
3077 bool cfg_altered = false;
3079 /* We process the blocks in a top-down manner, in a way such that one block
3080 is only processed after all its predecessors. The number of predecessors
3081 of every block has already been computed. */
3083 stack = XNEWVEC (basic_block, n_basic_blocks);
3084 sp = stack;
3086 *sp++ = block;
3090 edge e;
3091 edge_iterator ei;
3093 block = *--sp;
3095 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3096 some dead EH outgoing edge after the deletion of the trapping
3097 insn inside the block. Since the number of predecessors of
3098 BLOCK's successors was computed based on the initial edge set,
3099 we check the necessity to process some of these successors
3100 before such an edge deletion may happen. However, there is
3101 a pitfall: if BLOCK is the only predecessor of a successor and
3102 the edge between them happens to be deleted, the successor
3103 becomes unreachable and should not be processed. The problem
3104 is that there is no way to preventively detect this case so we
3105 stack the successor in all cases and hand over the task of
3106 fixing up the discrepancy to convert_regs_1. */
3108 FOR_EACH_EDGE (e, ei, block->succs)
3109 if (! (e->flags & EDGE_DFS_BACK))
3111 BLOCK_INFO (e->dest)->predecessors--;
3112 if (!BLOCK_INFO (e->dest)->predecessors)
3113 *sp++ = e->dest;
3116 cfg_altered |= convert_regs_1 (block);
3118 while (sp != stack);
3120 free (stack);
3122 return cfg_altered;
3125 /* Traverse all basic blocks in a function, converting the register
3126 references in each insn from the "flat" register file that gcc uses,
3127 to the stack-like registers the 387 uses. */
3129 static void
3130 convert_regs (void)
3132 bool cfg_altered = false;
3133 int inserted;
3134 basic_block b;
3135 edge e;
3136 edge_iterator ei;
3138 /* Initialize uninitialized registers on function entry. */
3139 inserted = convert_regs_entry ();
3141 /* Construct the desired stack for function exit. */
3142 convert_regs_exit ();
3143 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3145 /* ??? Future: process inner loops first, and give them arbitrary
3146 initial stacks which emit_swap_insn can modify. This ought to
3147 prevent double fxch that often appears at the head of a loop. */
3149 /* Process all blocks reachable from all entry points. */
3150 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3151 cfg_altered |= convert_regs_2 (e->dest);
3153 /* ??? Process all unreachable blocks. Though there's no excuse
3154 for keeping these even when not optimizing. */
3155 FOR_EACH_BB (b)
3157 block_info bi = BLOCK_INFO (b);
3159 if (! bi->done)
3160 cfg_altered |= convert_regs_2 (b);
3163 /* We must fix up abnormal edges before inserting compensation code
3164 because both mechanisms insert insns on edges. */
3165 inserted |= fixup_abnormal_edges ();
3167 inserted |= compensate_edges ();
3169 clear_aux_for_blocks ();
3171 if (inserted)
3172 commit_edge_insertions ();
3174 if (cfg_altered)
3175 cleanup_cfg (0);
3177 if (dump_file)
3178 fputc ('\n', dump_file);
3181 /* Convert register usage from "flat" register file usage to a "stack
3182 register file. FILE is the dump file, if used.
3184 Construct a CFG and run life analysis. Then convert each insn one
3185 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3186 code duplication created when the converter inserts pop insns on
3187 the edges. */
3189 static bool
3190 reg_to_stack (void)
3192 basic_block bb;
3193 int i;
3194 int max_uid;
3196 /* Clean up previous run. */
3197 stack_regs_mentioned_data.release ();
3199 /* See if there is something to do. Flow analysis is quite
3200 expensive so we might save some compilation time. */
3201 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3202 if (df_regs_ever_live_p (i))
3203 break;
3204 if (i > LAST_STACK_REG)
3205 return false;
3207 df_note_add_problem ();
3208 df_analyze ();
3210 mark_dfs_back_edges ();
3212 /* Set up block info for each basic block. */
3213 alloc_aux_for_blocks (sizeof (struct block_info_def));
3214 FOR_EACH_BB (bb)
3216 block_info bi = BLOCK_INFO (bb);
3217 edge_iterator ei;
3218 edge e;
3219 int reg;
3221 FOR_EACH_EDGE (e, ei, bb->preds)
3222 if (!(e->flags & EDGE_DFS_BACK)
3223 && e->src != ENTRY_BLOCK_PTR)
3224 bi->predecessors++;
3226 /* Set current register status at last instruction `uninitialized'. */
3227 bi->stack_in.top = -2;
3229 /* Copy live_at_end and live_at_start into temporaries. */
3230 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3232 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3233 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3234 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3235 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3239 /* Create the replacement registers up front. */
3240 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3242 enum machine_mode mode;
3243 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3244 mode != VOIDmode;
3245 mode = GET_MODE_WIDER_MODE (mode))
3246 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3247 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3248 mode != VOIDmode;
3249 mode = GET_MODE_WIDER_MODE (mode))
3250 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3253 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3255 /* A QNaN for initializing uninitialized variables.
3257 ??? We can't load from constant memory in PIC mode, because
3258 we're inserting these instructions before the prologue and
3259 the PIC register hasn't been set up. In that case, fall back
3260 on zero, which we can get from `fldz'. */
3262 if ((flag_pic && !TARGET_64BIT)
3263 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3264 not_a_num = CONST0_RTX (SFmode);
3265 else
3267 REAL_VALUE_TYPE r;
3269 real_nan (&r, "", 1, SFmode);
3270 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3271 not_a_num = force_const_mem (SFmode, not_a_num);
3274 /* Allocate a cache for stack_regs_mentioned. */
3275 max_uid = get_max_uid ();
3276 stack_regs_mentioned_data.create (max_uid + 1);
3277 memset (stack_regs_mentioned_data.address (),
3278 0, sizeof (char) * (max_uid + 1));
3280 convert_regs ();
3282 free_aux_for_blocks ();
3283 return true;
3285 #endif /* STACK_REGS */
3287 static bool
3288 gate_handle_stack_regs (void)
3290 #ifdef STACK_REGS
3291 return 1;
3292 #else
3293 return 0;
3294 #endif
3297 namespace {
3299 const pass_data pass_data_stack_regs =
3301 RTL_PASS, /* type */
3302 "*stack_regs", /* name */
3303 OPTGROUP_NONE, /* optinfo_flags */
3304 true, /* has_gate */
3305 false, /* has_execute */
3306 TV_REG_STACK, /* tv_id */
3307 0, /* properties_required */
3308 0, /* properties_provided */
3309 0, /* properties_destroyed */
3310 0, /* todo_flags_start */
3311 0, /* todo_flags_finish */
3314 class pass_stack_regs : public rtl_opt_pass
3316 public:
3317 pass_stack_regs(gcc::context *ctxt)
3318 : rtl_opt_pass(pass_data_stack_regs, ctxt)
3321 /* opt_pass methods: */
3322 bool gate () { return gate_handle_stack_regs (); }
3324 }; // class pass_stack_regs
3326 } // anon namespace
3328 rtl_opt_pass *
3329 make_pass_stack_regs (gcc::context *ctxt)
3331 return new pass_stack_regs (ctxt);
3334 /* Convert register usage from flat register file usage to a stack
3335 register file. */
3336 static unsigned int
3337 rest_of_handle_stack_regs (void)
3339 #ifdef STACK_REGS
3340 reg_to_stack ();
3341 regstack_completed = 1;
3342 #endif
3343 return 0;
3346 namespace {
3348 const pass_data pass_data_stack_regs_run =
3350 RTL_PASS, /* type */
3351 "stack", /* name */
3352 OPTGROUP_NONE, /* optinfo_flags */
3353 false, /* has_gate */
3354 true, /* has_execute */
3355 TV_REG_STACK, /* tv_id */
3356 0, /* properties_required */
3357 0, /* properties_provided */
3358 0, /* properties_destroyed */
3359 0, /* todo_flags_start */
3360 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
3363 class pass_stack_regs_run : public rtl_opt_pass
3365 public:
3366 pass_stack_regs_run(gcc::context *ctxt)
3367 : rtl_opt_pass(pass_data_stack_regs_run, ctxt)
3370 /* opt_pass methods: */
3371 unsigned int execute () { return rest_of_handle_stack_regs (); }
3373 }; // class pass_stack_regs_run
3375 } // anon namespace
3377 rtl_opt_pass *
3378 make_pass_stack_regs_run (gcc::context *ctxt)
3380 return new pass_stack_regs_run (ctxt);