* config/rs6000/rs6000-protos.h (rs6000_hard_regno_mode_ok_p):
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob8bd516d3f2b3c927125a75215c6c900a13d08d30
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the
20 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21 MA 02111-1307, USA. */
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions. */
26 /* Definitions for the object file format. These are set at
27 compile-time. */
29 #define OBJECT_XCOFF 1
30 #define OBJECT_ELF 2
31 #define OBJECT_PEF 3
32 #define OBJECT_MACHO 4
34 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39 #ifndef TARGET_AIX
40 #define TARGET_AIX 0
41 #endif
43 /* Default string to use for cpu if not specified. */
44 #ifndef TARGET_CPU_DEFAULT
45 #define TARGET_CPU_DEFAULT ((char *)0)
46 #endif
48 /* Common ASM definitions used by ASM_SPEC among the various targets
49 for handling -mcpu=xxx switches. */
50 #define ASM_CPU_SPEC \
51 "%{!mcpu*: \
52 %{mpower: %{!mpower2: -mpwr}} \
53 %{mpower2: -mpwrx} \
54 %{mpowerpc*: -mppc} \
55 %{mno-power: %{!mpowerpc*: -mcom}} \
56 %{!mno-power: %{!mpower2: %(asm_default)}}} \
57 %{mcpu=common: -mcom} \
58 %{mcpu=power: -mpwr} \
59 %{mcpu=power2: -mpwrx} \
60 %{mcpu=power3: -m604} \
61 %{mcpu=power4: -mpower4} \
62 %{mcpu=powerpc: -mppc} \
63 %{mcpu=rios: -mpwr} \
64 %{mcpu=rios1: -mpwr} \
65 %{mcpu=rios2: -mpwrx} \
66 %{mcpu=rsc: -mpwr} \
67 %{mcpu=rsc1: -mpwr} \
68 %{mcpu=401: -mppc} \
69 %{mcpu=403: -m403} \
70 %{mcpu=405: -m405} \
71 %{mcpu=405fp: -m405} \
72 %{mcpu=440: -m440} \
73 %{mcpu=440fp: -m440} \
74 %{mcpu=505: -mppc} \
75 %{mcpu=601: -m601} \
76 %{mcpu=602: -mppc} \
77 %{mcpu=603: -mppc} \
78 %{mcpu=603e: -mppc} \
79 %{mcpu=ec603e: -mppc} \
80 %{mcpu=604: -mppc} \
81 %{mcpu=604e: -mppc} \
82 %{mcpu=620: -mppc} \
83 %{mcpu=630: -m604} \
84 %{mcpu=740: -mppc} \
85 %{mcpu=7400: -mppc} \
86 %{mcpu=7450: -mppc} \
87 %{mcpu=G4: -mppc} \
88 %{mcpu=750: -mppc} \
89 %{mcpu=G3: -mppc} \
90 %{mcpu=801: -mppc} \
91 %{mcpu=821: -mppc} \
92 %{mcpu=823: -mppc} \
93 %{mcpu=860: -mppc} \
94 %{mcpu=970: -mpower4} \
95 %{mcpu=G5: -mpower4} \
96 %{mcpu=8540: -me500} \
97 %{maltivec: -maltivec}"
99 #define CPP_DEFAULT_SPEC ""
101 #define ASM_DEFAULT_SPEC ""
103 /* This macro defines names of additional specifications to put in the specs
104 that can be used in various specifications like CC1_SPEC. Its definition
105 is an initializer with a subgrouping for each command option.
107 Each subgrouping contains a string constant, that defines the
108 specification name, and a string constant that used by the GCC driver
109 program.
111 Do not define this macro if it does not need to do anything. */
113 #define SUBTARGET_EXTRA_SPECS
115 #define EXTRA_SPECS \
116 { "cpp_default", CPP_DEFAULT_SPEC }, \
117 { "asm_cpu", ASM_CPU_SPEC }, \
118 { "asm_default", ASM_DEFAULT_SPEC }, \
119 SUBTARGET_EXTRA_SPECS
121 /* Architecture type. */
123 extern int target_flags;
125 /* Use POWER architecture instructions and MQ register. */
126 #define MASK_POWER 0x00000001
128 /* Use POWER2 extensions to POWER architecture. */
129 #define MASK_POWER2 0x00000002
131 /* Use PowerPC architecture instructions. */
132 #define MASK_POWERPC 0x00000004
134 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
135 #define MASK_PPC_GPOPT 0x00000008
137 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
138 #define MASK_PPC_GFXOPT 0x00000010
140 /* Use PowerPC-64 architecture instructions. */
141 #define MASK_POWERPC64 0x00000020
143 /* Use revised mnemonic names defined for PowerPC architecture. */
144 #define MASK_NEW_MNEMONICS 0x00000040
146 /* Disable placing fp constants in the TOC; can be turned on when the
147 TOC overflows. */
148 #define MASK_NO_FP_IN_TOC 0x00000080
150 /* Disable placing symbol+offset constants in the TOC; can be turned on when
151 the TOC overflows. */
152 #define MASK_NO_SUM_IN_TOC 0x00000100
154 /* Output only one TOC entry per module. Normally linking fails if
155 there are more than 16K unique variables/constants in an executable. With
156 this option, linking fails only if there are more than 16K modules, or
157 if there are more than 16K unique variables/constant in a single module.
159 This is at the cost of having 2 extra loads and one extra store per
160 function, and one less allocable register. */
161 #define MASK_MINIMAL_TOC 0x00000200
163 /* Nonzero for the 64 bit ABIs: longs and pointers are 64 bits. The
164 chip is running in "64-bit mode", in which CR0 is set in dot
165 operations based on all 64 bits of the register, bdnz works on 64-bit
166 ctr, lr is 64 bits, and so on. Requires MASK_POWERPC64. */
167 #define MASK_64BIT 0x00000400
169 /* Disable use of FPRs. */
170 #define MASK_SOFT_FLOAT 0x00000800
172 /* Enable load/store multiple, even on PowerPC */
173 #define MASK_MULTIPLE 0x00001000
175 /* Use string instructions for block moves */
176 #define MASK_STRING 0x00002000
178 /* Disable update form of load/store */
179 #define MASK_NO_UPDATE 0x00004000
181 /* Disable fused multiply/add operations */
182 #define MASK_NO_FUSED_MADD 0x00008000
184 /* Nonzero if we need to schedule the prolog and epilog. */
185 #define MASK_SCHED_PROLOG 0x00010000
187 /* Use AltiVec instructions. */
188 #define MASK_ALTIVEC 0x00020000
190 /* Return small structures in memory (as the AIX ABI requires). */
191 #define MASK_AIX_STRUCT_RET 0x00040000
193 /* Use single field mfcr instruction. */
194 #define MASK_MFCRF 0x00080000
196 /* The only remaining free bits are 0x00600000. linux64.h uses
197 0x00100000, and sysv4.h uses 0x00800000 -> 0x40000000.
198 0x80000000 is not available because target_flags is signed. */
200 #define TARGET_POWER (target_flags & MASK_POWER)
201 #define TARGET_POWER2 (target_flags & MASK_POWER2)
202 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
203 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
204 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
205 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
206 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
207 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
208 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
209 #define TARGET_64BIT (target_flags & MASK_64BIT)
210 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
211 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
212 #define TARGET_STRING (target_flags & MASK_STRING)
213 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
214 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
215 #define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
216 #define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
217 #define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
219 /* Define TARGET_MFCRF if the target assembler supports the optional
220 field operand for mfcr and the target processor supports the
221 instruction. */
223 #ifdef HAVE_AS_MFCRF
224 #define TARGET_MFCRF (target_flags & MASK_MFCRF)
225 #else
226 #define TARGET_MFCRF 0
227 #endif
230 #define TARGET_32BIT (! TARGET_64BIT)
231 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
232 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
233 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
235 /* Emit a dtp-relative reference to a TLS variable. */
237 #ifdef HAVE_AS_TLS
238 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
239 rs6000_output_dwarf_dtprel (FILE, SIZE, X)
240 #endif
242 #ifndef HAVE_AS_TLS
243 #define HAVE_AS_TLS 0
244 #endif
246 #ifdef IN_LIBGCC2
247 /* For libgcc2 we make sure this is a compile time constant */
248 #if defined (__64BIT__) || defined (__powerpc64__)
249 #define TARGET_POWERPC64 1
250 #else
251 #define TARGET_POWERPC64 0
252 #endif
253 #else
254 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
255 #endif
257 #define TARGET_XL_CALL 0
259 /* Run-time compilation parameters selecting different hardware subsets.
261 Macro to define tables used to set the flags.
262 This is a list in braces of pairs in braces,
263 each pair being { "NAME", VALUE }
264 where VALUE is the bits to set or minus the bits to clear.
265 An empty string NAME is used to identify the default VALUE. */
267 #define TARGET_SWITCHES \
268 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
269 N_("Use POWER instruction set")}, \
270 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
271 | MASK_POWER2), \
272 N_("Use POWER2 instruction set")}, \
273 {"no-power2", - MASK_POWER2, \
274 N_("Do not use POWER2 instruction set")}, \
275 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
276 | MASK_STRING), \
277 N_("Do not use POWER instruction set")}, \
278 {"powerpc", MASK_POWERPC, \
279 N_("Use PowerPC instruction set")}, \
280 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
281 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
282 N_("Do not use PowerPC instruction set")}, \
283 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
284 N_("Use PowerPC General Purpose group optional instructions")},\
285 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
286 N_("Do not use PowerPC General Purpose group optional instructions")},\
287 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
288 N_("Use PowerPC Graphics group optional instructions")},\
289 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
290 N_("Do not use PowerPC Graphics group optional instructions")},\
291 {"powerpc64", MASK_POWERPC64, \
292 N_("Use PowerPC-64 instruction set")}, \
293 {"no-powerpc64", - MASK_POWERPC64, \
294 N_("Do not use PowerPC-64 instruction set")}, \
295 {"altivec", MASK_ALTIVEC , \
296 N_("Use AltiVec instructions")}, \
297 {"no-altivec", - MASK_ALTIVEC , \
298 N_("Do not use AltiVec instructions")}, \
299 {"new-mnemonics", MASK_NEW_MNEMONICS, \
300 N_("Use new mnemonics for PowerPC architecture")},\
301 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
302 N_("Use old mnemonics for PowerPC architecture")},\
303 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
304 | MASK_MINIMAL_TOC), \
305 N_("Put everything in the regular TOC")}, \
306 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
307 N_("Place floating point constants in TOC")}, \
308 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
309 N_("Do not place floating point constants in TOC")},\
310 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
311 N_("Place symbol+offset constants in TOC")}, \
312 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
313 N_("Do not place symbol+offset constants in TOC")},\
314 {"minimal-toc", MASK_MINIMAL_TOC, \
315 "Use only one TOC entry per procedure"}, \
316 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
317 ""}, \
318 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
319 N_("Place variable addresses in the regular TOC")},\
320 {"hard-float", - MASK_SOFT_FLOAT, \
321 N_("Use hardware floating point")}, \
322 {"soft-float", MASK_SOFT_FLOAT, \
323 N_("Do not use hardware floating point")}, \
324 {"multiple", MASK_MULTIPLE, \
325 N_("Generate load/store multiple instructions")}, \
326 {"no-multiple", - MASK_MULTIPLE, \
327 N_("Do not generate load/store multiple instructions")},\
328 {"string", MASK_STRING, \
329 N_("Generate string instructions for block moves")},\
330 {"no-string", - MASK_STRING, \
331 N_("Do not generate string instructions for block moves")},\
332 {"update", - MASK_NO_UPDATE, \
333 N_("Generate load/store with update instructions")},\
334 {"no-update", MASK_NO_UPDATE, \
335 N_("Do not generate load/store with update instructions")},\
336 {"fused-madd", - MASK_NO_FUSED_MADD, \
337 N_("Generate fused multiply/add instructions")},\
338 {"no-fused-madd", MASK_NO_FUSED_MADD, \
339 N_("Do not generate fused multiply/add instructions")},\
340 {"sched-prolog", MASK_SCHED_PROLOG, \
341 ""}, \
342 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
343 N_("Do not schedule the start and end of the procedure")},\
344 {"sched-epilog", MASK_SCHED_PROLOG, \
345 ""}, \
346 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
347 ""}, \
348 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
349 N_("Return all structures in memory (AIX default)")},\
350 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
351 N_("Return small structures in registers (SVR4 default)")},\
352 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
353 ""}, \
354 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
355 ""}, \
356 {"mfcrf", MASK_MFCRF, \
357 N_("Generate single field mfcr instruction")}, \
358 {"no-mfcrf", - MASK_MFCRF, \
359 N_("Do not generate single field mfcr instruction")},\
360 SUBTARGET_SWITCHES \
361 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
362 ""}}
364 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
366 /* This is meant to be redefined in the host dependent files */
367 #define SUBTARGET_SWITCHES
369 /* Processor type. Order must match cpu attribute in MD file. */
370 enum processor_type
372 PROCESSOR_RIOS1,
373 PROCESSOR_RIOS2,
374 PROCESSOR_RS64A,
375 PROCESSOR_MPCCORE,
376 PROCESSOR_PPC403,
377 PROCESSOR_PPC405,
378 PROCESSOR_PPC440,
379 PROCESSOR_PPC601,
380 PROCESSOR_PPC603,
381 PROCESSOR_PPC604,
382 PROCESSOR_PPC604e,
383 PROCESSOR_PPC620,
384 PROCESSOR_PPC630,
385 PROCESSOR_PPC750,
386 PROCESSOR_PPC7400,
387 PROCESSOR_PPC7450,
388 PROCESSOR_PPC8540,
389 PROCESSOR_POWER4,
390 PROCESSOR_POWER5
393 extern enum processor_type rs6000_cpu;
395 /* Recast the processor type to the cpu attribute. */
396 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
398 /* Define generic processor types based upon current deployment. */
399 #define PROCESSOR_COMMON PROCESSOR_PPC601
400 #define PROCESSOR_POWER PROCESSOR_RIOS1
401 #define PROCESSOR_POWERPC PROCESSOR_PPC604
402 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
404 /* Define the default processor. This is overridden by other tm.h files. */
405 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
406 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
408 /* Specify the dialect of assembler to use. New mnemonics is dialect one
409 and the old mnemonics are dialect zero. */
410 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
412 /* Types of costly dependences. */
413 enum rs6000_dependence_cost
415 max_dep_latency = 1000,
416 no_dep_costly,
417 all_deps_costly,
418 true_store_to_load_dep_costly,
419 store_to_load_dep_costly
422 /* Types of nop insertion schemes in sched target hook sched_finish. */
423 enum rs6000_nop_insertion
425 sched_finish_regroup_exact = 1000,
426 sched_finish_pad_groups,
427 sched_finish_none
430 /* Dispatch group termination caused by an insn. */
431 enum group_termination
433 current_group,
434 previous_group
437 /* This is meant to be overridden in target specific files. */
438 #define SUBTARGET_OPTIONS
440 #define TARGET_OPTIONS \
442 {"cpu=", &rs6000_select[1].string, \
443 N_("Use features of and schedule code for given CPU"), 0}, \
444 {"tune=", &rs6000_select[2].string, \
445 N_("Schedule code for given CPU"), 0}, \
446 {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0}, \
447 {"traceback=", &rs6000_traceback_name, \
448 N_("Select full, part, or no traceback table"), 0}, \
449 {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0}, \
450 {"long-double-", &rs6000_long_double_size_string, \
451 N_("Specify size of long double (64 or 128 bits)"), 0}, \
452 {"isel=", &rs6000_isel_string, \
453 N_("Specify yes/no if isel instructions should be generated"), 0}, \
454 {"spe=", &rs6000_spe_string, \
455 N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
456 {"float-gprs=", &rs6000_float_gprs_string, \
457 N_("Specify yes/no if using floating point in the GPRs"), 0}, \
458 {"vrsave=", &rs6000_altivec_vrsave_string, \
459 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
460 {"longcall", &rs6000_longcall_switch, \
461 N_("Avoid all range limits on call instructions"), 0}, \
462 {"no-longcall", &rs6000_longcall_switch, "", 0}, \
463 {"warn-altivec-long", &rs6000_warn_altivec_long_switch, \
464 N_("Warn about deprecated 'vector long ...' AltiVec type usage"), 0}, \
465 {"no-warn-altivec-long", &rs6000_warn_altivec_long_switch, "", 0}, \
466 {"sched-costly-dep=", &rs6000_sched_costly_dep_str, \
467 N_("Determine which dependences between insns are considered costly"), 0}, \
468 {"insert-sched-nops=", &rs6000_sched_insert_nops_str, \
469 N_("Specify which post scheduling nop insertion scheme to apply"), 0}, \
470 {"align-", &rs6000_alignment_string, \
471 N_("Specify alignment of structure fields default/natural"), 0}, \
472 {"prioritize-restricted-insns=", &rs6000_sched_restricted_insns_priority_str, \
473 N_("Specify scheduling priority for dispatch slot restricted insns"), 0}, \
474 SUBTARGET_OPTIONS \
477 /* Support for a compile-time default CPU, et cetera. The rules are:
478 --with-cpu is ignored if -mcpu is specified.
479 --with-tune is ignored if -mtune is specified.
480 --with-float is ignored if -mhard-float or -msoft-float are
481 specified. */
482 #define OPTION_DEFAULT_SPECS \
483 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
484 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
485 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
487 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
488 struct rs6000_cpu_select
490 const char *string;
491 const char *name;
492 int set_tune_p;
493 int set_arch_p;
496 extern struct rs6000_cpu_select rs6000_select[];
498 /* Debug support */
499 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
500 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
501 extern int rs6000_debug_stack; /* debug stack applications */
502 extern int rs6000_debug_arg; /* debug argument handling */
504 #define TARGET_DEBUG_STACK rs6000_debug_stack
505 #define TARGET_DEBUG_ARG rs6000_debug_arg
507 extern const char *rs6000_traceback_name; /* Type of traceback table. */
509 /* These are separate from target_flags because we've run out of bits
510 there. */
511 extern const char *rs6000_long_double_size_string;
512 extern int rs6000_long_double_type_size;
513 extern int rs6000_altivec_abi;
514 extern int rs6000_spe_abi;
515 extern int rs6000_isel;
516 extern int rs6000_spe;
517 extern int rs6000_float_gprs;
518 extern const char *rs6000_float_gprs_string;
519 extern const char *rs6000_isel_string;
520 extern const char *rs6000_spe_string;
521 extern const char *rs6000_altivec_vrsave_string;
522 extern int rs6000_altivec_vrsave;
523 extern const char *rs6000_longcall_switch;
524 extern int rs6000_default_long_calls;
525 extern const char* rs6000_alignment_string;
526 extern int rs6000_alignment_flags;
527 extern const char *rs6000_sched_restricted_insns_priority_str;
528 extern int rs6000_sched_restricted_insns_priority;
529 extern const char *rs6000_sched_costly_dep_str;
530 extern enum rs6000_dependence_cost rs6000_sched_costly_dep;
531 extern const char *rs6000_sched_insert_nops_str;
532 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
534 extern int rs6000_warn_altivec_long;
535 extern const char *rs6000_warn_altivec_long_switch;
537 /* Alignment options for fields in structures for sub-targets following
538 AIX-like ABI.
539 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
540 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
542 Override the macro definitions when compiling libobjc to avoid undefined
543 reference to rs6000_alignment_flags due to library's use of GCC alignment
544 macros which use the macros below. */
546 #ifndef IN_TARGET_LIBS
547 #define MASK_ALIGN_POWER 0x00000000
548 #define MASK_ALIGN_NATURAL 0x00000001
549 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
550 #else
551 #define TARGET_ALIGN_NATURAL 0
552 #endif
554 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
555 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
556 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
558 #define TARGET_SPE_ABI 0
559 #define TARGET_SPE 0
560 #define TARGET_E500 0
561 #define TARGET_ISEL 0
562 #define TARGET_FPRS 1
564 /* Sometimes certain combinations of command options do not make sense
565 on a particular target machine. You can define a macro
566 `OVERRIDE_OPTIONS' to take account of this. This macro, if
567 defined, is executed once just after all the command options have
568 been parsed.
570 Do not use this macro to turn on various extra optimizations for
571 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
573 On the RS/6000 this is used to define the target cpu type. */
575 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
577 /* Define this to change the optimizations performed by default. */
578 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
580 /* Show we can debug even without a frame pointer. */
581 #define CAN_DEBUG_WITHOUT_FP
583 /* Target pragma. */
584 #define REGISTER_TARGET_PRAGMAS() do { \
585 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
586 } while (0)
588 /* Target #defines. */
589 #define TARGET_CPU_CPP_BUILTINS() \
590 rs6000_cpu_cpp_builtins (pfile)
592 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
593 we're compiling for. Some configurations may need to override it. */
594 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
595 do \
597 if (BYTES_BIG_ENDIAN) \
599 builtin_define ("__BIG_ENDIAN__"); \
600 builtin_define ("_BIG_ENDIAN"); \
601 builtin_assert ("machine=bigendian"); \
603 else \
605 builtin_define ("__LITTLE_ENDIAN__"); \
606 builtin_define ("_LITTLE_ENDIAN"); \
607 builtin_assert ("machine=littleendian"); \
610 while (0)
612 /* Target machine storage layout. */
614 /* Define this macro if it is advisable to hold scalars in registers
615 in a wider mode than that declared by the program. In such cases,
616 the value is constrained to be within the bounds of the declared
617 type, but kept valid in the wider mode. The signedness of the
618 extension may differ from that of the type. */
620 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
621 if (GET_MODE_CLASS (MODE) == MODE_INT \
622 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
623 (MODE) = TARGET_32BIT ? SImode : DImode;
625 /* Define this if most significant bit is lowest numbered
626 in instructions that operate on numbered bit-fields. */
627 /* That is true on RS/6000. */
628 #define BITS_BIG_ENDIAN 1
630 /* Define this if most significant byte of a word is the lowest numbered. */
631 /* That is true on RS/6000. */
632 #define BYTES_BIG_ENDIAN 1
634 /* Define this if most significant word of a multiword number is lowest
635 numbered.
637 For RS/6000 we can decide arbitrarily since there are no machine
638 instructions for them. Might as well be consistent with bits and bytes. */
639 #define WORDS_BIG_ENDIAN 1
641 #define MAX_BITS_PER_WORD 64
643 /* Width of a word, in units (bytes). */
644 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
645 #ifdef IN_LIBGCC2
646 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
647 #else
648 #define MIN_UNITS_PER_WORD 4
649 #endif
650 #define UNITS_PER_FP_WORD 8
651 #define UNITS_PER_ALTIVEC_WORD 16
652 #define UNITS_PER_SPE_WORD 8
654 /* Type used for ptrdiff_t, as a string used in a declaration. */
655 #define PTRDIFF_TYPE "int"
657 /* Type used for size_t, as a string used in a declaration. */
658 #define SIZE_TYPE "long unsigned int"
660 /* Type used for wchar_t, as a string used in a declaration. */
661 #define WCHAR_TYPE "short unsigned int"
663 /* Width of wchar_t in bits. */
664 #define WCHAR_TYPE_SIZE 16
666 /* A C expression for the size in bits of the type `short' on the
667 target machine. If you don't define this, the default is half a
668 word. (If this would be less than one storage unit, it is
669 rounded up to one unit.) */
670 #define SHORT_TYPE_SIZE 16
672 /* A C expression for the size in bits of the type `int' on the
673 target machine. If you don't define this, the default is one
674 word. */
675 #define INT_TYPE_SIZE 32
677 /* A C expression for the size in bits of the type `long' on the
678 target machine. If you don't define this, the default is one
679 word. */
680 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
682 /* A C expression for the size in bits of the type `long long' on the
683 target machine. If you don't define this, the default is two
684 words. */
685 #define LONG_LONG_TYPE_SIZE 64
687 /* A C expression for the size in bits of the type `float' on the
688 target machine. If you don't define this, the default is one
689 word. */
690 #define FLOAT_TYPE_SIZE 32
692 /* A C expression for the size in bits of the type `double' on the
693 target machine. If you don't define this, the default is two
694 words. */
695 #define DOUBLE_TYPE_SIZE 64
697 /* A C expression for the size in bits of the type `long double' on
698 the target machine. If you don't define this, the default is two
699 words. */
700 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
702 /* Define this to set long double type size to use in libgcc2.c, which can
703 not depend on target_flags. */
704 #ifdef __LONG_DOUBLE_128__
705 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
706 #else
707 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
708 #endif
710 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
711 #define WIDEST_HARDWARE_FP_SIZE 64
713 /* Width in bits of a pointer.
714 See also the macro `Pmode' defined below. */
715 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
717 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
718 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
720 /* Boundary (in *bits*) on which stack pointer should be aligned. */
721 #define STACK_BOUNDARY \
722 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
724 /* Allocation boundary (in *bits*) for the code of a function. */
725 #define FUNCTION_BOUNDARY 32
727 /* No data type wants to be aligned rounder than this. */
728 #define BIGGEST_ALIGNMENT 128
730 /* A C expression to compute the alignment for a variables in the
731 local store. TYPE is the data type, and ALIGN is the alignment
732 that the object would ordinarily have. */
733 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
734 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
735 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
737 /* Alignment of field after `int : 0' in a structure. */
738 #define EMPTY_FIELD_BOUNDARY 32
740 /* Every structure's size must be a multiple of this. */
741 #define STRUCTURE_SIZE_BOUNDARY 8
743 /* Return 1 if a structure or array containing FIELD should be
744 accessed using `BLKMODE'.
746 For the SPE, simd types are V2SI, and gcc can be tempted to put the
747 entire thing in a DI and use subregs to access the internals.
748 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
749 back-end. Because a single GPR can hold a V2SI, but not a DI, the
750 best thing to do is set structs to BLKmode and avoid Severe Tire
751 Damage. */
752 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
753 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
755 /* A bit-field declared as `int' forces `int' alignment for the struct. */
756 #define PCC_BITFIELD_TYPE_MATTERS 1
758 /* Make strings word-aligned so strcpy from constants will be faster.
759 Make vector constants quadword aligned. */
760 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
761 (TREE_CODE (EXP) == STRING_CST \
762 && (ALIGN) < BITS_PER_WORD \
763 ? BITS_PER_WORD \
764 : (ALIGN))
766 /* Make arrays of chars word-aligned for the same reasons.
767 Align vectors to 128 bits. */
768 #define DATA_ALIGNMENT(TYPE, ALIGN) \
769 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
770 : TREE_CODE (TYPE) == ARRAY_TYPE \
771 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
772 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
774 /* Nonzero if move instructions will actually fail to work
775 when given unaligned data. */
776 #define STRICT_ALIGNMENT 0
778 /* Define this macro to be the value 1 if unaligned accesses have a cost
779 many times greater than aligned accesses, for example if they are
780 emulated in a trap handler. */
781 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
782 (STRICT_ALIGNMENT \
783 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
784 || (MODE) == DImode) \
785 && (ALIGN) < 32))
787 /* Standard register usage. */
789 /* Number of actual hardware registers.
790 The hardware registers are assigned numbers for the compiler
791 from 0 to just below FIRST_PSEUDO_REGISTER.
792 All registers that the compiler knows about must be given numbers,
793 even those that are not normally considered general registers.
795 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
796 an MQ register, a count register, a link register, and 8 condition
797 register fields, which we view here as separate registers. AltiVec
798 adds 32 vector registers and a VRsave register.
800 In addition, the difference between the frame and argument pointers is
801 a function of the number of registers saved, so we need to have a
802 register for AP that will later be eliminated in favor of SP or FP.
803 This is a normal register, but it is fixed.
805 We also create a pseudo register for float/int conversions, that will
806 really represent the memory location used. It is represented here as
807 a register, in order to work around problems in allocating stack storage
808 in inline functions. */
810 #define FIRST_PSEUDO_REGISTER 113
812 /* This must be included for pre gcc 3.0 glibc compatibility. */
813 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
815 /* Add 32 dwarf columns for synthetic SPE registers. */
816 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
818 /* The SPE has an additional 32 synthetic registers, with DWARF debug
819 info numbering for these registers starting at 1200. While eh_frame
820 register numbering need not be the same as the debug info numbering,
821 we choose to number these regs for eh_frame at 1200 too. This allows
822 future versions of the rs6000 backend to add hard registers and
823 continue to use the gcc hard register numbering for eh_frame. If the
824 extra SPE registers in eh_frame were numbered starting from the
825 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
826 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
827 avoid invalidating older SPE eh_frame info.
829 We must map them here to avoid huge unwinder tables mostly consisting
830 of unused space. */
831 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
832 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER) : (r))
834 /* Use gcc hard register numbering for eh_frame. */
835 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
837 /* 1 for registers that have pervasive standard uses
838 and are not available for the register allocator.
840 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
841 as a local register; for all other OS's r2 is the TOC pointer.
843 cr5 is not supposed to be used.
845 On System V implementations, r13 is fixed and not available for use. */
847 #define FIXED_REGISTERS \
848 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
849 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
850 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
851 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
852 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
853 /* AltiVec registers. */ \
854 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
855 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
856 1, 1 \
857 , 1, 1 \
860 /* 1 for registers not available across function calls.
861 These must include the FIXED_REGISTERS and also any
862 registers that can be used without being saved.
863 The latter must include the registers where values are returned
864 and the register where structure-value addresses are passed.
865 Aside from that, you can include as many other registers as you like. */
867 #define CALL_USED_REGISTERS \
868 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
869 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
870 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
871 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
872 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
873 /* AltiVec registers. */ \
874 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
875 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
876 1, 1 \
877 , 1, 1 \
880 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
881 the entire set of `FIXED_REGISTERS' be included.
882 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
883 This macro is optional. If not specified, it defaults to the value
884 of `CALL_USED_REGISTERS'. */
886 #define CALL_REALLY_USED_REGISTERS \
887 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
888 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
889 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
890 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
891 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
892 /* AltiVec registers. */ \
893 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
894 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
895 0, 0 \
896 , 0, 0 \
899 #define MQ_REGNO 64
900 #define CR0_REGNO 68
901 #define CR1_REGNO 69
902 #define CR2_REGNO 70
903 #define CR3_REGNO 71
904 #define CR4_REGNO 72
905 #define MAX_CR_REGNO 75
906 #define XER_REGNO 76
907 #define FIRST_ALTIVEC_REGNO 77
908 #define LAST_ALTIVEC_REGNO 108
909 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
910 #define VRSAVE_REGNO 109
911 #define VSCR_REGNO 110
912 #define SPE_ACC_REGNO 111
913 #define SPEFSCR_REGNO 112
915 /* List the order in which to allocate registers. Each register must be
916 listed once, even those in FIXED_REGISTERS.
918 We allocate in the following order:
919 fp0 (not saved or used for anything)
920 fp13 - fp2 (not saved; incoming fp arg registers)
921 fp1 (not saved; return value)
922 fp31 - fp14 (saved; order given to save least number)
923 cr7, cr6 (not saved or special)
924 cr1 (not saved, but used for FP operations)
925 cr0 (not saved, but used for arithmetic operations)
926 cr4, cr3, cr2 (saved)
927 r0 (not saved; cannot be base reg)
928 r9 (not saved; best for TImode)
929 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
930 r3 (not saved; return value register)
931 r31 - r13 (saved; order given to save least number)
932 r12 (not saved; if used for DImode or DFmode would use r13)
933 mq (not saved; best to use it if we can)
934 ctr (not saved; when we have the choice ctr is better)
935 lr (saved)
936 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
937 spe_acc, spefscr (fixed)
939 AltiVec registers:
940 v0 - v1 (not saved or used for anything)
941 v13 - v3 (not saved; incoming vector arg registers)
942 v2 (not saved; incoming vector arg reg; return value)
943 v19 - v14 (not saved or used for anything)
944 v31 - v20 (saved; order given to save least number)
947 #if FIXED_R2 == 1
948 #define MAYBE_R2_AVAILABLE
949 #define MAYBE_R2_FIXED 2,
950 #else
951 #define MAYBE_R2_AVAILABLE 2,
952 #define MAYBE_R2_FIXED
953 #endif
955 #define REG_ALLOC_ORDER \
956 {32, \
957 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
958 33, \
959 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
960 50, 49, 48, 47, 46, \
961 75, 74, 69, 68, 72, 71, 70, \
962 0, MAYBE_R2_AVAILABLE \
963 9, 11, 10, 8, 7, 6, 5, 4, \
964 3, \
965 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
966 18, 17, 16, 15, 14, 13, 12, \
967 64, 66, 65, \
968 73, 1, MAYBE_R2_FIXED 67, 76, \
969 /* AltiVec registers. */ \
970 77, 78, \
971 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
972 79, \
973 96, 95, 94, 93, 92, 91, \
974 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
975 97, 109, 110 \
976 , 111, 112 \
979 /* True if register is floating-point. */
980 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
982 /* True if register is a condition register. */
983 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
985 /* True if register is a condition register, but not cr0. */
986 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
988 /* True if register is an integer register. */
989 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
991 /* SPE SIMD registers are just the GPRs. */
992 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
994 /* True if register is the XER register. */
995 #define XER_REGNO_P(N) ((N) == XER_REGNO)
997 /* True if register is an AltiVec register. */
998 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1000 /* Return number of consecutive hard regs needed starting at reg REGNO
1001 to hold something of mode MODE. */
1003 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
1005 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1006 ((TARGET_32BIT && TARGET_POWERPC64 \
1007 && (MODE == DImode || MODE == DFmode) \
1008 && INT_REGNO_P (REGNO)) ? 1 : 0)
1010 #define ALTIVEC_VECTOR_MODE(MODE) \
1011 ((MODE) == V16QImode \
1012 || (MODE) == V8HImode \
1013 || (MODE) == V4SFmode \
1014 || (MODE) == V4SImode)
1016 #define SPE_VECTOR_MODE(MODE) \
1017 ((MODE) == V4HImode \
1018 || (MODE) == V2SFmode \
1019 || (MODE) == V1DImode \
1020 || (MODE) == V2SImode)
1022 /* Define this macro to be nonzero if the port is prepared to handle
1023 insns involving vector mode MODE. At the very least, it must have
1024 move patterns for this mode. */
1026 #define VECTOR_MODE_SUPPORTED_P(MODE) \
1027 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
1028 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
1030 /* Value is TRUE if hard register REGNO can hold a value of
1031 machine-mode MODE. */
1032 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1033 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1035 /* Value is 1 if it is a good idea to tie two pseudo registers
1036 when one has mode MODE1 and one has mode MODE2.
1037 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1038 for any hard reg, then this must be 0 for correct output. */
1039 #define MODES_TIEABLE_P(MODE1, MODE2) \
1040 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1041 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1042 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
1043 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
1044 : GET_MODE_CLASS (MODE1) == MODE_CC \
1045 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1046 : GET_MODE_CLASS (MODE2) == MODE_CC \
1047 ? GET_MODE_CLASS (MODE1) == MODE_CC \
1048 : SPE_VECTOR_MODE (MODE1) \
1049 ? SPE_VECTOR_MODE (MODE2) \
1050 : SPE_VECTOR_MODE (MODE2) \
1051 ? SPE_VECTOR_MODE (MODE1) \
1052 : ALTIVEC_VECTOR_MODE (MODE1) \
1053 ? ALTIVEC_VECTOR_MODE (MODE2) \
1054 : ALTIVEC_VECTOR_MODE (MODE2) \
1055 ? ALTIVEC_VECTOR_MODE (MODE1) \
1056 : 1)
1058 /* Post-reload, we can't use any new AltiVec registers, as we already
1059 emitted the vrsave mask. */
1061 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1062 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
1064 /* A C expression returning the cost of moving data from a register of class
1065 CLASS1 to one of CLASS2. */
1067 #define REGISTER_MOVE_COST rs6000_register_move_cost
1069 /* A C expressions returning the cost of moving data of MODE from a register to
1070 or from memory. */
1072 #define MEMORY_MOVE_COST rs6000_memory_move_cost
1074 /* Specify the cost of a branch insn; roughly the number of extra insns that
1075 should be added to avoid a branch.
1077 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1078 unscheduled conditional branch. */
1080 #define BRANCH_COST 3
1082 /* Override BRANCH_COST heuristic which empirically produces worse
1083 performance for fold_range_test(). */
1085 #define RANGE_TEST_NON_SHORT_CIRCUIT 0
1087 /* A fixed register used at prologue and epilogue generation to fix
1088 addressing modes. The SPE needs heavy addressing fixes at the last
1089 minute, and it's best to save a register for it.
1091 AltiVec also needs fixes, but we've gotten around using r11, which
1092 is actually wrong because when use_backchain_to_restore_sp is true,
1093 we end up clobbering r11.
1095 The AltiVec case needs to be fixed. Dunno if we should break ABI
1096 compatibility and reserve a register for it as well.. */
1098 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1100 /* Define this macro to change register usage conditional on target flags.
1101 Set MQ register fixed (already call_used) if not POWER architecture
1102 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
1103 64-bit AIX reserves GPR13 for thread-private data.
1104 Conditionally disable FPRs. */
1106 #define CONDITIONAL_REGISTER_USAGE \
1108 int i; \
1109 if (! TARGET_POWER) \
1110 fixed_regs[64] = 1; \
1111 if (TARGET_64BIT) \
1112 fixed_regs[13] = call_used_regs[13] \
1113 = call_really_used_regs[13] = 1; \
1114 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
1115 for (i = 32; i < 64; i++) \
1116 fixed_regs[i] = call_used_regs[i] \
1117 = call_really_used_regs[i] = 1; \
1118 if (DEFAULT_ABI == ABI_V4 \
1119 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1120 && flag_pic == 2) \
1121 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1122 if (DEFAULT_ABI == ABI_V4 \
1123 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1124 && flag_pic == 1) \
1125 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1126 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1127 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1128 if (DEFAULT_ABI == ABI_DARWIN \
1129 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1130 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1131 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1132 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1133 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1134 if (TARGET_ALTIVEC) \
1135 global_regs[VSCR_REGNO] = 1; \
1136 if (TARGET_SPE) \
1138 global_regs[SPEFSCR_REGNO] = 1; \
1139 fixed_regs[FIXED_SCRATCH] \
1140 = call_used_regs[FIXED_SCRATCH] \
1141 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1143 if (! TARGET_ALTIVEC) \
1145 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1146 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1147 call_really_used_regs[VRSAVE_REGNO] = 1; \
1149 if (TARGET_ALTIVEC_ABI) \
1150 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
1151 call_used_regs[i] = call_really_used_regs[i] = 1; \
1154 /* Specify the registers used for certain standard purposes.
1155 The values of these macros are register numbers. */
1157 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1158 /* #define PC_REGNUM */
1160 /* Register to use for pushing function arguments. */
1161 #define STACK_POINTER_REGNUM 1
1163 /* Base register for access to local variables of the function. */
1164 #define FRAME_POINTER_REGNUM 31
1166 /* Value should be nonzero if functions must have frame pointers.
1167 Zero means the frame pointer need not be set up (and parms
1168 may be accessed via the stack pointer) in functions that seem suitable.
1169 This is computed in `reload', in reload1.c. */
1170 #define FRAME_POINTER_REQUIRED 0
1172 /* Base register for access to arguments of the function. */
1173 #define ARG_POINTER_REGNUM 67
1175 /* Place to put static chain when calling a function that requires it. */
1176 #define STATIC_CHAIN_REGNUM 11
1178 /* Link register number. */
1179 #define LINK_REGISTER_REGNUM 65
1181 /* Count register number. */
1182 #define COUNT_REGISTER_REGNUM 66
1184 /* Define the classes of registers for register constraints in the
1185 machine description. Also define ranges of constants.
1187 One of the classes must always be named ALL_REGS and include all hard regs.
1188 If there is more than one class, another class must be named NO_REGS
1189 and contain no registers.
1191 The name GENERAL_REGS must be the name of a class (or an alias for
1192 another name such as ALL_REGS). This is the class of registers
1193 that is allowed by "g" or "r" in a register constraint.
1194 Also, registers outside this class are allocated only when
1195 instructions express preferences for them.
1197 The classes must be numbered in nondecreasing order; that is,
1198 a larger-numbered class must never be contained completely
1199 in a smaller-numbered class.
1201 For any two classes, it is very desirable that there be another
1202 class that represents their union. */
1204 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1205 and condition registers, plus three special registers, MQ, CTR, and the
1206 link register. AltiVec adds a vector register class.
1208 However, r0 is special in that it cannot be used as a base register.
1209 So make a class for registers valid as base registers.
1211 Also, cr0 is the only condition code register that can be used in
1212 arithmetic insns, so make a separate class for it. */
1214 enum reg_class
1216 NO_REGS,
1217 BASE_REGS,
1218 GENERAL_REGS,
1219 FLOAT_REGS,
1220 ALTIVEC_REGS,
1221 VRSAVE_REGS,
1222 VSCR_REGS,
1223 SPE_ACC_REGS,
1224 SPEFSCR_REGS,
1225 NON_SPECIAL_REGS,
1226 MQ_REGS,
1227 LINK_REGS,
1228 CTR_REGS,
1229 LINK_OR_CTR_REGS,
1230 SPECIAL_REGS,
1231 SPEC_OR_GEN_REGS,
1232 CR0_REGS,
1233 CR_REGS,
1234 NON_FLOAT_REGS,
1235 XER_REGS,
1236 ALL_REGS,
1237 LIM_REG_CLASSES
1240 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1242 /* Give names of register classes as strings for dump file. */
1244 #define REG_CLASS_NAMES \
1246 "NO_REGS", \
1247 "BASE_REGS", \
1248 "GENERAL_REGS", \
1249 "FLOAT_REGS", \
1250 "ALTIVEC_REGS", \
1251 "VRSAVE_REGS", \
1252 "VSCR_REGS", \
1253 "SPE_ACC_REGS", \
1254 "SPEFSCR_REGS", \
1255 "NON_SPECIAL_REGS", \
1256 "MQ_REGS", \
1257 "LINK_REGS", \
1258 "CTR_REGS", \
1259 "LINK_OR_CTR_REGS", \
1260 "SPECIAL_REGS", \
1261 "SPEC_OR_GEN_REGS", \
1262 "CR0_REGS", \
1263 "CR_REGS", \
1264 "NON_FLOAT_REGS", \
1265 "XER_REGS", \
1266 "ALL_REGS" \
1269 /* Define which registers fit in which classes.
1270 This is an initializer for a vector of HARD_REG_SET
1271 of length N_REG_CLASSES. */
1273 #define REG_CLASS_CONTENTS \
1275 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1276 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1277 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1278 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1279 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1280 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1281 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1282 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1283 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1284 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1285 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1286 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1287 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1288 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1289 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1290 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1291 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1292 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1293 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1294 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1295 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
1298 /* The same information, inverted:
1299 Return the class number of the smallest class containing
1300 reg number REGNO. This could be a conditional expression
1301 or could index an array. */
1303 #define REGNO_REG_CLASS(REGNO) \
1304 ((REGNO) == 0 ? GENERAL_REGS \
1305 : (REGNO) < 32 ? BASE_REGS \
1306 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1307 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1308 : (REGNO) == CR0_REGNO ? CR0_REGS \
1309 : CR_REGNO_P (REGNO) ? CR_REGS \
1310 : (REGNO) == MQ_REGNO ? MQ_REGS \
1311 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1312 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1313 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1314 : (REGNO) == XER_REGNO ? XER_REGS \
1315 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1316 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1317 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1318 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1319 : NO_REGS)
1321 /* The class value for index registers, and the one for base regs. */
1322 #define INDEX_REG_CLASS GENERAL_REGS
1323 #define BASE_REG_CLASS BASE_REGS
1325 /* Get reg_class from a letter such as appears in the machine description. */
1327 #define REG_CLASS_FROM_LETTER(C) \
1328 ((C) == 'f' ? FLOAT_REGS \
1329 : (C) == 'b' ? BASE_REGS \
1330 : (C) == 'h' ? SPECIAL_REGS \
1331 : (C) == 'q' ? MQ_REGS \
1332 : (C) == 'c' ? CTR_REGS \
1333 : (C) == 'l' ? LINK_REGS \
1334 : (C) == 'v' ? ALTIVEC_REGS \
1335 : (C) == 'x' ? CR0_REGS \
1336 : (C) == 'y' ? CR_REGS \
1337 : (C) == 'z' ? XER_REGS \
1338 : NO_REGS)
1340 /* The letters I, J, K, L, M, N, and P in a register constraint string
1341 can be used to stand for particular ranges of immediate operands.
1342 This macro defines what the ranges are.
1343 C is the letter, and VALUE is a constant value.
1344 Return 1 if VALUE is in the range specified by C.
1346 `I' is a signed 16-bit constant
1347 `J' is a constant with only the high-order 16 bits nonzero
1348 `K' is a constant with only the low-order 16 bits nonzero
1349 `L' is a signed 16-bit constant shifted left 16 bits
1350 `M' is a constant that is greater than 31
1351 `N' is a positive constant that is an exact power of two
1352 `O' is the constant zero
1353 `P' is a constant whose negation is a signed 16-bit constant */
1355 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1356 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1357 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1358 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1359 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1360 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1361 : (C) == 'M' ? (VALUE) > 31 \
1362 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1363 : (C) == 'O' ? (VALUE) == 0 \
1364 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1365 : 0)
1367 /* Similar, but for floating constants, and defining letters G and H.
1368 Here VALUE is the CONST_DOUBLE rtx itself.
1370 We flag for special constants when we can copy the constant into
1371 a general register in two insns for DF/DI and one insn for SF.
1373 'H' is used for DI/DF constants that take 3 insns. */
1375 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1376 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1377 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1378 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1379 : 0)
1381 /* Optional extra constraints for this machine.
1383 'Q' means that is a memory operand that is just an offset from a reg.
1384 'R' is for AIX TOC entries.
1385 'S' is a constant that can be placed into a 64-bit mask operand
1386 'T' is a constant that can be placed into a 32-bit mask operand
1387 'U' is for V.4 small data references.
1388 'W' is a vector constant that can be easily generated (no mem refs).
1389 'Y' is a indexed or word-aligned displacement memory operand.
1390 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1392 #define EXTRA_CONSTRAINT(OP, C) \
1393 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1394 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
1395 : (C) == 'S' ? mask64_operand (OP, DImode) \
1396 : (C) == 'T' ? mask_operand (OP, SImode) \
1397 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1398 && small_data_operand (OP, GET_MODE (OP))) \
1399 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1400 && (fixed_regs[CR0_REGNO] \
1401 || !logical_operand (OP, DImode)) \
1402 && !mask64_operand (OP, DImode)) \
1403 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
1404 : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP))) \
1405 : 0)
1407 /* Define which constraints are memory constraints. Tell reload
1408 that any memory address can be reloaded by copying the
1409 memory address into a base register if required. */
1411 #define EXTRA_MEMORY_CONSTRAINT(C, STR) \
1412 ((C) == 'Q' || (C) == 'Y')
1414 /* Given an rtx X being reloaded into a reg required to be
1415 in class CLASS, return the class of reg to actually use.
1416 In general this is just CLASS; but on some machines
1417 in some cases it is preferable to use a more restrictive class.
1419 On the RS/6000, we have to return NO_REGS when we want to reload a
1420 floating-point CONST_DOUBLE to force it to be copied to memory.
1422 We also don't want to reload integer values into floating-point
1423 registers if we can at all help it. In fact, this can
1424 cause reload to abort, if it tries to generate a reload of CTR
1425 into a FP register and discovers it doesn't have the memory location
1426 required.
1428 ??? Would it be a good idea to have reload do the converse, that is
1429 try to reload floating modes into FP registers if possible?
1432 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1433 (((GET_CODE (X) == CONST_DOUBLE \
1434 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1435 ? NO_REGS \
1436 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1437 && (CLASS) == NON_SPECIAL_REGS) \
1438 ? GENERAL_REGS \
1439 : (CLASS)))
1441 /* Return the register class of a scratch register needed to copy IN into
1442 or out of a register in CLASS in MODE. If it can be done directly,
1443 NO_REGS is returned. */
1445 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1446 secondary_reload_class (CLASS, MODE, IN)
1448 /* If we are copying between FP or AltiVec registers and anything
1449 else, we need a memory location. */
1451 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1452 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1453 || (CLASS2) == FLOAT_REGS \
1454 || (CLASS1) == ALTIVEC_REGS \
1455 || (CLASS2) == ALTIVEC_REGS))
1457 /* Return the maximum number of consecutive registers
1458 needed to represent mode MODE in a register of class CLASS.
1460 On RS/6000, this is the size of MODE in words,
1461 except in the FP regs, where a single reg is enough for two words. */
1462 #define CLASS_MAX_NREGS(CLASS, MODE) \
1463 (((CLASS) == FLOAT_REGS) \
1464 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1465 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1468 /* Return a class of registers that cannot change FROM mode to TO mode. */
1470 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1471 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) \
1472 && GET_MODE_SIZE (FROM) >= 8 && GET_MODE_SIZE (TO) >= 8) \
1473 ? 0 \
1474 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1475 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
1476 : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
1477 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1478 : 0)
1480 /* Stack layout; function entry, exit and calling. */
1482 /* Enumeration to give which calling sequence to use. */
1483 enum rs6000_abi {
1484 ABI_NONE,
1485 ABI_AIX, /* IBM's AIX */
1486 ABI_V4, /* System V.4/eabi */
1487 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1490 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1492 /* Define this if pushing a word on the stack
1493 makes the stack pointer a smaller address. */
1494 #define STACK_GROWS_DOWNWARD
1496 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1497 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1499 /* Define this if the nominal address of the stack frame
1500 is at the high-address end of the local variables;
1501 that is, each additional local variable allocated
1502 goes at a more negative offset in the frame.
1504 On the RS/6000, we grow upwards, from the area after the outgoing
1505 arguments. */
1506 /* #define FRAME_GROWS_DOWNWARD */
1508 /* Size of the outgoing register save area */
1509 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1510 || DEFAULT_ABI == ABI_DARWIN) \
1511 ? (TARGET_64BIT ? 64 : 32) \
1512 : 0)
1514 /* Size of the fixed area on the stack */
1515 #define RS6000_SAVE_AREA \
1516 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1517 << (TARGET_64BIT ? 1 : 0))
1519 /* MEM representing address to save the TOC register */
1520 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1521 plus_constant (stack_pointer_rtx, \
1522 (TARGET_32BIT ? 20 : 40)))
1524 /* Size of the V.4 varargs area if needed */
1525 #define RS6000_VARARGS_AREA 0
1527 /* Align an address */
1528 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1530 /* Size of V.4 varargs area in bytes */
1531 #define RS6000_VARARGS_SIZE \
1532 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1534 /* Offset within stack frame to start allocating local variables at.
1535 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1536 first local allocated. Otherwise, it is the offset to the BEGINNING
1537 of the first local allocated.
1539 On the RS/6000, the frame pointer is the same as the stack pointer,
1540 except for dynamic allocations. So we start after the fixed area and
1541 outgoing parameter area. */
1543 #define STARTING_FRAME_OFFSET \
1544 (RS6000_ALIGN (current_function_outgoing_args_size, \
1545 TARGET_ALTIVEC ? 16 : 8) \
1546 + RS6000_VARARGS_AREA \
1547 + RS6000_SAVE_AREA)
1549 /* Offset from the stack pointer register to an item dynamically
1550 allocated on the stack, e.g., by `alloca'.
1552 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1553 length of the outgoing arguments. The default is correct for most
1554 machines. See `function.c' for details. */
1555 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1556 (RS6000_ALIGN (current_function_outgoing_args_size, \
1557 TARGET_ALTIVEC ? 16 : 8) \
1558 + (STACK_POINTER_OFFSET))
1560 /* If we generate an insn to push BYTES bytes,
1561 this says how many the stack pointer really advances by.
1562 On RS/6000, don't define this because there are no push insns. */
1563 /* #define PUSH_ROUNDING(BYTES) */
1565 /* Offset of first parameter from the argument pointer register value.
1566 On the RS/6000, we define the argument pointer to the start of the fixed
1567 area. */
1568 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1570 /* Offset from the argument pointer register value to the top of
1571 stack. This is different from FIRST_PARM_OFFSET because of the
1572 register save area. */
1573 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1575 /* Define this if stack space is still allocated for a parameter passed
1576 in a register. The value is the number of bytes allocated to this
1577 area. */
1578 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1580 /* Define this if the above stack space is to be considered part of the
1581 space allocated by the caller. */
1582 #define OUTGOING_REG_PARM_STACK_SPACE
1584 /* This is the difference between the logical top of stack and the actual sp.
1586 For the RS/6000, sp points past the fixed area. */
1587 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1589 /* Define this if the maximum size of all the outgoing args is to be
1590 accumulated and pushed during the prologue. The amount can be
1591 found in the variable current_function_outgoing_args_size. */
1592 #define ACCUMULATE_OUTGOING_ARGS 1
1594 /* Value is the number of bytes of arguments automatically
1595 popped when returning from a subroutine call.
1596 FUNDECL is the declaration node of the function (as a tree),
1597 FUNTYPE is the data type of the function (as a tree),
1598 or for a library call it is an identifier node for the subroutine name.
1599 SIZE is the number of bytes of arguments passed on the stack. */
1601 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1603 /* Define how to find the value returned by a function.
1604 VALTYPE is the data type of the value (as a tree).
1605 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1606 otherwise, FUNC is 0. */
1608 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1610 /* Define how to find the value returned by a library function
1611 assuming the value has mode MODE. */
1613 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1615 /* DRAFT_V4_STRUCT_RET defaults off. */
1616 #define DRAFT_V4_STRUCT_RET 0
1618 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1619 #define DEFAULT_PCC_STRUCT_RETURN 0
1621 /* Mode of stack savearea.
1622 FUNCTION is VOIDmode because calling convention maintains SP.
1623 BLOCK needs Pmode for SP.
1624 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1625 #define STACK_SAVEAREA_MODE(LEVEL) \
1626 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1627 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1629 /* Minimum and maximum general purpose registers used to hold arguments. */
1630 #define GP_ARG_MIN_REG 3
1631 #define GP_ARG_MAX_REG 10
1632 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1634 /* Minimum and maximum floating point registers used to hold arguments. */
1635 #define FP_ARG_MIN_REG 33
1636 #define FP_ARG_AIX_MAX_REG 45
1637 #define FP_ARG_V4_MAX_REG 40
1638 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1639 || DEFAULT_ABI == ABI_DARWIN) \
1640 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1641 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1643 /* Minimum and maximum AltiVec registers used to hold arguments. */
1644 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1645 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1646 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1648 /* Return registers */
1649 #define GP_ARG_RETURN GP_ARG_MIN_REG
1650 #define FP_ARG_RETURN FP_ARG_MIN_REG
1651 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1653 /* Flags for the call/call_value rtl operations set up by function_arg */
1654 #define CALL_NORMAL 0x00000000 /* no special processing */
1655 /* Bits in 0x00000001 are unused. */
1656 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1657 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1658 #define CALL_LONG 0x00000008 /* always call indirect */
1659 #define CALL_LIBCALL 0x00000010 /* libcall */
1661 /* 1 if N is a possible register number for a function value
1662 as seen by the caller.
1664 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1665 #define FUNCTION_VALUE_REGNO_P(N) \
1666 ((N) == GP_ARG_RETURN \
1667 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT) \
1668 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1670 /* 1 if N is a possible register number for function argument passing.
1671 On RS/6000, these are r3-r10 and fp1-fp13.
1672 On AltiVec, v2 - v13 are used for passing vectors. */
1673 #define FUNCTION_ARG_REGNO_P(N) \
1674 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1675 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1676 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1677 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1678 && TARGET_HARD_FLOAT))
1680 /* A C structure for machine-specific, per-function data.
1681 This is added to the cfun structure. */
1682 typedef struct machine_function GTY(())
1684 /* Whether a System V.4 varargs area was created. */
1685 int sysv_varargs_p;
1686 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1687 int ra_needs_full_frame;
1688 /* Some local-dynamic symbol. */
1689 const char *some_ld_name;
1690 /* Whether the instruction chain has been scanned already. */
1691 int insn_chain_scanned_p;
1692 /* Flags if __builtin_return_address (0) was used. */
1693 int ra_need_lr;
1694 } machine_function;
1696 /* Define a data type for recording info about an argument list
1697 during the scan of that argument list. This data type should
1698 hold all necessary information about the function itself
1699 and about the args processed so far, enough to enable macros
1700 such as FUNCTION_ARG to determine where the next arg should go.
1702 On the RS/6000, this is a structure. The first element is the number of
1703 total argument words, the second is used to store the next
1704 floating-point register number, and the third says how many more args we
1705 have prototype types for.
1707 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1708 the next available GP register, `fregno' is the next available FP
1709 register, and `words' is the number of words used on the stack.
1711 The varargs/stdarg support requires that this structure's size
1712 be a multiple of sizeof(int). */
1714 typedef struct rs6000_args
1716 int words; /* # words used for passing GP registers */
1717 int fregno; /* next available FP register */
1718 int vregno; /* next available AltiVec register */
1719 int nargs_prototype; /* # args left in the current prototype */
1720 int prototype; /* Whether a prototype was defined */
1721 int stdarg; /* Whether function is a stdarg function. */
1722 int call_cookie; /* Do special things for this call */
1723 int sysv_gregno; /* next available GP register */
1724 } CUMULATIVE_ARGS;
1726 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1727 for a call to a function whose data type is FNTYPE.
1728 For a library call, FNTYPE is 0. */
1730 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1731 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1733 /* Similar, but when scanning the definition of a procedure. We always
1734 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1736 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1737 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1739 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1741 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1742 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1744 /* Update the data in CUM to advance over an argument
1745 of mode MODE and data type TYPE.
1746 (TYPE is null for libcalls where that information may not be available.) */
1748 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1749 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1751 /* Determine where to put an argument to a function.
1752 Value is zero to push the argument on the stack,
1753 or a hard register in which to store the argument.
1755 MODE is the argument's machine mode.
1756 TYPE is the data type of the argument (as a tree).
1757 This is null for libcalls where that information may
1758 not be available.
1759 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1760 the preceding args and about the function being called.
1761 NAMED is nonzero if this argument is a named parameter
1762 (otherwise it is an extra parameter matching an ellipsis).
1764 On RS/6000 the first eight words of non-FP are normally in registers
1765 and the rest are pushed. The first 13 FP args are in registers.
1767 If this is floating-point and no prototype is specified, we use
1768 both an FP and integer register (or possibly FP reg and stack). Library
1769 functions (when TYPE is zero) always have the proper types for args,
1770 so we can pass the FP value just in one register. emit_library_function
1771 doesn't support EXPR_LIST anyway. */
1773 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1774 function_arg (&CUM, MODE, TYPE, NAMED)
1776 /* For an arg passed partly in registers and partly in memory,
1777 this is the number of registers used.
1778 For args passed entirely in registers or entirely in memory, zero. */
1780 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1781 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1783 /* A C expression that indicates when an argument must be passed by
1784 reference. If nonzero for an argument, a copy of that argument is
1785 made in memory and a pointer to the argument is passed instead of
1786 the argument itself. The pointer is passed in whatever way is
1787 appropriate for passing a pointer to that type. */
1789 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1790 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1792 /* If defined, a C expression which determines whether, and in which
1793 direction, to pad out an argument with extra space. The value
1794 should be of type `enum direction': either `upward' to pad above
1795 the argument, `downward' to pad below, or `none' to inhibit
1796 padding. */
1798 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1800 /* If defined, a C expression that gives the alignment boundary, in bits,
1801 of an argument with the specified mode and type. If it is not defined,
1802 PARM_BOUNDARY is used for all arguments. */
1804 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1805 function_arg_boundary (MODE, TYPE)
1807 /* Implement `va_start' for varargs and stdarg. */
1808 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1809 rs6000_va_start (valist, nextarg)
1811 /* Implement `va_arg'. */
1812 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1813 rs6000_va_arg (valist, type)
1815 #define PAD_VARARGS_DOWN \
1816 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1818 /* Output assembler code to FILE to increment profiler label # LABELNO
1819 for profiling a function entry. */
1821 #define FUNCTION_PROFILER(FILE, LABELNO) \
1822 output_function_profiler ((FILE), (LABELNO));
1824 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1825 the stack pointer does not matter. No definition is equivalent to
1826 always zero.
1828 On the RS/6000, this is nonzero because we can restore the stack from
1829 its backpointer, which we maintain. */
1830 #define EXIT_IGNORE_STACK 1
1832 /* Define this macro as a C expression that is nonzero for registers
1833 that are used by the epilogue or the return' pattern. The stack
1834 and frame pointer registers are already be assumed to be used as
1835 needed. */
1837 #define EPILOGUE_USES(REGNO) \
1838 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1839 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1840 || (current_function_calls_eh_return \
1841 && TARGET_AIX \
1842 && (REGNO) == 2))
1845 /* TRAMPOLINE_TEMPLATE deleted */
1847 /* Length in units of the trampoline for entering a nested function. */
1849 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1851 /* Emit RTL insns to initialize the variable parts of a trampoline.
1852 FNADDR is an RTX for the address of the function's pure code.
1853 CXT is an RTX for the static chain value for the function. */
1855 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1856 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1858 /* Definitions for __builtin_return_address and __builtin_frame_address.
1859 __builtin_return_address (0) should give link register (65), enable
1860 this. */
1861 /* This should be uncommented, so that the link register is used, but
1862 currently this would result in unmatched insns and spilling fixed
1863 registers so we'll leave it for another day. When these problems are
1864 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1865 (mrs) */
1866 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1868 /* Number of bytes into the frame return addresses can be found. See
1869 rs6000_stack_info in rs6000.c for more information on how the different
1870 abi's store the return address. */
1871 #define RETURN_ADDRESS_OFFSET \
1872 ((DEFAULT_ABI == ABI_AIX \
1873 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1874 (DEFAULT_ABI == ABI_V4) ? 4 : \
1875 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1877 /* The current return address is in link register (65). The return address
1878 of anything farther back is accessed normally at an offset of 8 from the
1879 frame pointer. */
1880 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1881 (rs6000_return_addr (COUNT, FRAME))
1884 /* Definitions for register eliminations.
1886 We have two registers that can be eliminated on the RS/6000. First, the
1887 frame pointer register can often be eliminated in favor of the stack
1888 pointer register. Secondly, the argument pointer register can always be
1889 eliminated; it is replaced with either the stack or frame pointer.
1891 In addition, we use the elimination mechanism to see if r30 is needed
1892 Initially we assume that it isn't. If it is, we spill it. This is done
1893 by making it an eliminable register. We replace it with itself so that
1894 if it isn't needed, then existing uses won't be modified. */
1896 /* This is an array of structures. Each structure initializes one pair
1897 of eliminable registers. The "from" register number is given first,
1898 followed by "to". Eliminations of the same "from" register are listed
1899 in order of preference. */
1900 #define ELIMINABLE_REGS \
1901 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1902 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1903 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1904 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1906 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1907 Frame pointer elimination is automatically handled.
1909 For the RS/6000, if frame pointer elimination is being done, we would like
1910 to convert ap into fp, not sp.
1912 We need r30 if -mminimal-toc was specified, and there are constant pool
1913 references. */
1915 #define CAN_ELIMINATE(FROM, TO) \
1916 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1917 ? ! frame_pointer_needed \
1918 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1919 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1920 : 1)
1922 /* Define the offset between two registers, one to be eliminated, and the other
1923 its replacement, at the start of a routine. */
1924 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1925 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1927 /* Addressing modes, and classification of registers for them. */
1929 #define HAVE_PRE_DECREMENT 1
1930 #define HAVE_PRE_INCREMENT 1
1932 /* Macros to check register numbers against specific register classes. */
1934 /* These assume that REGNO is a hard or pseudo reg number.
1935 They give nonzero only if REGNO is a hard reg of the suitable class
1936 or a pseudo reg currently allocated to a suitable hard reg.
1937 Since they use reg_renumber, they are safe only once reg_renumber
1938 has been allocated, which happens in local-alloc.c. */
1940 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1941 ((REGNO) < FIRST_PSEUDO_REGISTER \
1942 ? (REGNO) <= 31 || (REGNO) == 67 \
1943 : (reg_renumber[REGNO] >= 0 \
1944 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1946 #define REGNO_OK_FOR_BASE_P(REGNO) \
1947 ((REGNO) < FIRST_PSEUDO_REGISTER \
1948 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1949 : (reg_renumber[REGNO] > 0 \
1950 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1952 /* Maximum number of registers that can appear in a valid memory address. */
1954 #define MAX_REGS_PER_ADDRESS 2
1956 /* Recognize any constant value that is a valid address. */
1958 #define CONSTANT_ADDRESS_P(X) \
1959 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1960 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1961 || GET_CODE (X) == HIGH)
1963 /* Nonzero if the constant value X is a legitimate general operand.
1964 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1966 On the RS/6000, all integer constants are acceptable, most won't be valid
1967 for particular insns, though. Only easy FP constants are
1968 acceptable. */
1970 #define LEGITIMATE_CONSTANT_P(X) \
1971 (((GET_CODE (X) != CONST_DOUBLE \
1972 && GET_CODE (X) != CONST_VECTOR) \
1973 || GET_MODE (X) == VOIDmode \
1974 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1975 || easy_fp_constant (X, GET_MODE (X)) \
1976 || easy_vector_constant (X, GET_MODE (X))) \
1977 && !rs6000_tls_referenced_p (X))
1979 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1980 and check its validity for a certain class.
1981 We have two alternate definitions for each of them.
1982 The usual definition accepts all pseudo regs; the other rejects
1983 them unless they have been allocated suitable hard regs.
1984 The symbol REG_OK_STRICT causes the latter definition to be used.
1986 Most source files want to accept pseudo regs in the hope that
1987 they will get allocated to the class that the insn wants them to be in.
1988 Source files for reload pass need to be strict.
1989 After reload, it makes no difference, since pseudo regs have
1990 been eliminated by then. */
1992 #ifdef REG_OK_STRICT
1993 # define REG_OK_STRICT_FLAG 1
1994 #else
1995 # define REG_OK_STRICT_FLAG 0
1996 #endif
1998 /* Nonzero if X is a hard reg that can be used as an index
1999 or if it is a pseudo reg in the non-strict case. */
2000 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2001 ((! (STRICT) \
2002 && (REGNO (X) <= 31 \
2003 || REGNO (X) == ARG_POINTER_REGNUM \
2004 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2005 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2007 /* Nonzero if X is a hard reg that can be used as a base reg
2008 or if it is a pseudo reg in the non-strict case. */
2009 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2010 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2012 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2013 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2015 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2016 that is a valid memory address for an instruction.
2017 The MODE argument is the machine mode for the MEM expression
2018 that wants to use this address.
2020 On the RS/6000, there are four valid address: a SYMBOL_REF that
2021 refers to a constant pool entry of an address (or the sum of it
2022 plus a constant), a short (16-bit signed) constant plus a register,
2023 the sum of two registers, or a register indirect, possibly with an
2024 auto-increment. For DFmode and DImode with a constant plus register,
2025 we must ensure that both words are addressable or PowerPC64 with offset
2026 word aligned.
2028 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2029 32-bit DImode, TImode), indexed addressing cannot be used because
2030 adjacent memory cells are accessed by adding word-sized offsets
2031 during assembly output. */
2033 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2034 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2035 goto ADDR; \
2038 /* Try machine-dependent ways of modifying an illegitimate address
2039 to be legitimate. If we find one, return the new, valid address.
2040 This macro is used in only one place: `memory_address' in explow.c.
2042 OLDX is the address as it was before break_out_memory_refs was called.
2043 In some cases it is useful to look at this to decide what needs to be done.
2045 MODE and WIN are passed so that this macro can use
2046 GO_IF_LEGITIMATE_ADDRESS.
2048 It is always safe for this macro to do nothing. It exists to recognize
2049 opportunities to optimize the output.
2051 On RS/6000, first check for the sum of a register with a constant
2052 integer that is out of range. If so, generate code to add the
2053 constant with the low-order 16 bits masked to the register and force
2054 this result into another register (this can be done with `cau').
2055 Then generate an address of REG+(CONST&0xffff), allowing for the
2056 possibility of bit 16 being a one.
2058 Then check for the sum of a register and something not constant, try to
2059 load the other things into a register and return the sum. */
2061 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2062 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2063 if (result != NULL_RTX) \
2065 (X) = result; \
2066 goto WIN; \
2070 /* Try a machine-dependent way of reloading an illegitimate address
2071 operand. If we find one, push the reload and jump to WIN. This
2072 macro is used in only one place: `find_reloads_address' in reload.c.
2074 Implemented on rs6000 by rs6000_legitimize_reload_address.
2075 Note that (X) is evaluated twice; this is safe in current usage. */
2077 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2078 do { \
2079 int win; \
2080 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2081 (int)(TYPE), (IND_LEVELS), &win); \
2082 if ( win ) \
2083 goto WIN; \
2084 } while (0)
2086 /* Go to LABEL if ADDR (a legitimate address expression)
2087 has an effect that depends on the machine mode it is used for. */
2089 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2090 do { \
2091 if (rs6000_mode_dependent_address (ADDR)) \
2092 goto LABEL; \
2093 } while (0)
2095 /* The register number of the register used to address a table of
2096 static data addresses in memory. In some cases this register is
2097 defined by a processor's "application binary interface" (ABI).
2098 When this macro is defined, RTL is generated for this register
2099 once, as with the stack pointer and frame pointer registers. If
2100 this macro is not defined, it is up to the machine-dependent files
2101 to allocate such a register (if necessary). */
2103 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2104 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2106 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2108 /* Define this macro if the register defined by
2109 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2110 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2112 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2114 /* By generating position-independent code, when two different
2115 programs (A and B) share a common library (libC.a), the text of
2116 the library can be shared whether or not the library is linked at
2117 the same address for both programs. In some of these
2118 environments, position-independent code requires not only the use
2119 of different addressing modes, but also special code to enable the
2120 use of these addressing modes.
2122 The `FINALIZE_PIC' macro serves as a hook to emit these special
2123 codes once the function is being compiled into assembly code, but
2124 not before. (It is not done before, because in the case of
2125 compiling an inline function, it would lead to multiple PIC
2126 prologues being included in functions which used inline functions
2127 and were compiled to assembly language.) */
2129 /* #define FINALIZE_PIC */
2131 /* A C expression that is nonzero if X is a legitimate immediate
2132 operand on the target machine when generating position independent
2133 code. You can assume that X satisfies `CONSTANT_P', so you need
2134 not check this. You can also assume FLAG_PIC is true, so you need
2135 not check it either. You need not define this macro if all
2136 constants (including `SYMBOL_REF') can be immediate operands when
2137 generating position independent code. */
2139 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2141 /* Define this if some processing needs to be done immediately before
2142 emitting code for an insn. */
2144 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2146 /* Specify the machine mode that this machine uses
2147 for the index in the tablejump instruction. */
2148 #define CASE_VECTOR_MODE SImode
2150 /* Define as C expression which evaluates to nonzero if the tablejump
2151 instruction expects the table to contain offsets from the address of the
2152 table.
2153 Do not define this if the table should contain absolute addresses. */
2154 #define CASE_VECTOR_PC_RELATIVE 1
2156 /* Define this as 1 if `char' should by default be signed; else as 0. */
2157 #define DEFAULT_SIGNED_CHAR 0
2159 /* This flag, if defined, says the same insns that convert to a signed fixnum
2160 also convert validly to an unsigned one. */
2162 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2164 /* Max number of bytes we can move from memory to memory
2165 in one reasonably fast instruction. */
2166 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2167 #define MAX_MOVE_MAX 8
2169 /* Nonzero if access to memory by bytes is no faster than for words.
2170 Also nonzero if doing byte operations (specifically shifts) in registers
2171 is undesirable. */
2172 #define SLOW_BYTE_ACCESS 1
2174 /* Define if operations between registers always perform the operation
2175 on the full register even if a narrower mode is specified. */
2176 #define WORD_REGISTER_OPERATIONS
2178 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2179 will either zero-extend or sign-extend. The value of this macro should
2180 be the code that says which one of the two operations is implicitly
2181 done, NIL if none. */
2182 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2184 /* Define if loading short immediate values into registers sign extends. */
2185 #define SHORT_IMMEDIATES_SIGN_EXTEND
2187 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2188 is done just by pretending it is already truncated. */
2189 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2191 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2192 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2193 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2195 /* The CTZ patterns return -1 for input of zero. */
2196 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2198 /* Specify the machine mode that pointers have.
2199 After generation of rtl, the compiler makes no further distinction
2200 between pointers and any other objects of this machine mode. */
2201 #define Pmode (TARGET_32BIT ? SImode : DImode)
2203 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2204 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2206 /* Mode of a function address in a call instruction (for indexing purposes).
2207 Doesn't matter on RS/6000. */
2208 #define FUNCTION_MODE SImode
2210 /* Define this if addresses of constant functions
2211 shouldn't be put through pseudo regs where they can be cse'd.
2212 Desirable on machines where ordinary constants are expensive
2213 but a CALL with constant address is cheap. */
2214 #define NO_FUNCTION_CSE
2216 /* Define this to be nonzero if shift instructions ignore all but the low-order
2217 few bits.
2219 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2220 have been dropped from the PowerPC architecture. */
2222 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2224 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2225 should be adjusted to reflect any required changes. This macro is used when
2226 there is some systematic length adjustment required that would be difficult
2227 to express in the length attribute. */
2229 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2231 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2232 COMPARE, return the mode to be used for the comparison. For
2233 floating-point, CCFPmode should be used. CCUNSmode should be used
2234 for unsigned comparisons. CCEQmode should be used when we are
2235 doing an inequality comparison on the result of a
2236 comparison. CCmode should be used in all other cases. */
2238 #define SELECT_CC_MODE(OP,X,Y) \
2239 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2240 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2241 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2242 ? CCEQmode : CCmode))
2244 /* Can the condition code MODE be safely reversed? This is safe in
2245 all cases on this port, because at present it doesn't use the
2246 trapping FP comparisons (fcmpo). */
2247 #define REVERSIBLE_CC_MODE(MODE) 1
2249 /* Given a condition code and a mode, return the inverse condition. */
2250 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2252 /* Define the information needed to generate branch and scc insns. This is
2253 stored from the compare operation. */
2255 extern GTY(()) rtx rs6000_compare_op0;
2256 extern GTY(()) rtx rs6000_compare_op1;
2257 extern int rs6000_compare_fp_p;
2259 /* Control the assembler format that we output. */
2261 /* A C string constant describing how to begin a comment in the target
2262 assembler language. The compiler assumes that the comment will end at
2263 the end of the line. */
2264 #define ASM_COMMENT_START " #"
2266 /* Implicit library calls should use memcpy, not bcopy, etc. */
2268 #define TARGET_MEM_FUNCTIONS
2270 /* Flag to say the TOC is initialized */
2271 extern int toc_initialized;
2273 /* Macro to output a special constant pool entry. Go to WIN if we output
2274 it. Otherwise, it is written the usual way.
2276 On the RS/6000, toc entries are handled this way. */
2278 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2279 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2281 output_toc (FILE, X, LABELNO, MODE); \
2282 goto WIN; \
2286 #ifdef HAVE_GAS_WEAK
2287 #define RS6000_WEAK 1
2288 #else
2289 #define RS6000_WEAK 0
2290 #endif
2292 #if RS6000_WEAK
2293 /* Used in lieu of ASM_WEAKEN_LABEL. */
2294 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2295 do \
2297 fputs ("\t.weak\t", (FILE)); \
2298 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2299 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2300 && DEFAULT_ABI == ABI_AIX) \
2302 if (TARGET_XCOFF) \
2303 fputs ("[DS]", (FILE)); \
2304 fputs ("\n\t.weak\t.", (FILE)); \
2305 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2307 fputc ('\n', (FILE)); \
2308 if (VAL) \
2310 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2311 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2312 && DEFAULT_ABI == ABI_AIX) \
2314 fputs ("\t.set\t.", (FILE)); \
2315 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2316 fputs (",.", (FILE)); \
2317 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2318 fputc ('\n', (FILE)); \
2322 while (0)
2323 #endif
2325 /* This implements the `alias' attribute. */
2326 #undef ASM_OUTPUT_DEF_FROM_DECLS
2327 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2328 do \
2330 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2331 const char *name = IDENTIFIER_POINTER (TARGET); \
2332 if (TREE_CODE (DECL) == FUNCTION_DECL \
2333 && DEFAULT_ABI == ABI_AIX) \
2335 if (TREE_PUBLIC (DECL)) \
2337 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2339 fputs ("\t.globl\t.", FILE); \
2340 RS6000_OUTPUT_BASENAME (FILE, alias); \
2341 putc ('\n', FILE); \
2344 else if (TARGET_XCOFF) \
2346 fputs ("\t.lglobl\t.", FILE); \
2347 RS6000_OUTPUT_BASENAME (FILE, alias); \
2348 putc ('\n', FILE); \
2350 fputs ("\t.set\t.", FILE); \
2351 RS6000_OUTPUT_BASENAME (FILE, alias); \
2352 fputs (",.", FILE); \
2353 RS6000_OUTPUT_BASENAME (FILE, name); \
2354 fputc ('\n', FILE); \
2356 ASM_OUTPUT_DEF (FILE, alias, name); \
2358 while (0)
2360 #define TARGET_ASM_FILE_START rs6000_file_start
2362 /* Output to assembler file text saying following lines
2363 may contain character constants, extra white space, comments, etc. */
2365 #define ASM_APP_ON ""
2367 /* Output to assembler file text saying following lines
2368 no longer contain unusual constructs. */
2370 #define ASM_APP_OFF ""
2372 /* How to refer to registers in assembler output.
2373 This sequence is indexed by compiler's hard-register-number (see above). */
2375 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2377 #define REGISTER_NAMES \
2379 &rs6000_reg_names[ 0][0], /* r0 */ \
2380 &rs6000_reg_names[ 1][0], /* r1 */ \
2381 &rs6000_reg_names[ 2][0], /* r2 */ \
2382 &rs6000_reg_names[ 3][0], /* r3 */ \
2383 &rs6000_reg_names[ 4][0], /* r4 */ \
2384 &rs6000_reg_names[ 5][0], /* r5 */ \
2385 &rs6000_reg_names[ 6][0], /* r6 */ \
2386 &rs6000_reg_names[ 7][0], /* r7 */ \
2387 &rs6000_reg_names[ 8][0], /* r8 */ \
2388 &rs6000_reg_names[ 9][0], /* r9 */ \
2389 &rs6000_reg_names[10][0], /* r10 */ \
2390 &rs6000_reg_names[11][0], /* r11 */ \
2391 &rs6000_reg_names[12][0], /* r12 */ \
2392 &rs6000_reg_names[13][0], /* r13 */ \
2393 &rs6000_reg_names[14][0], /* r14 */ \
2394 &rs6000_reg_names[15][0], /* r15 */ \
2395 &rs6000_reg_names[16][0], /* r16 */ \
2396 &rs6000_reg_names[17][0], /* r17 */ \
2397 &rs6000_reg_names[18][0], /* r18 */ \
2398 &rs6000_reg_names[19][0], /* r19 */ \
2399 &rs6000_reg_names[20][0], /* r20 */ \
2400 &rs6000_reg_names[21][0], /* r21 */ \
2401 &rs6000_reg_names[22][0], /* r22 */ \
2402 &rs6000_reg_names[23][0], /* r23 */ \
2403 &rs6000_reg_names[24][0], /* r24 */ \
2404 &rs6000_reg_names[25][0], /* r25 */ \
2405 &rs6000_reg_names[26][0], /* r26 */ \
2406 &rs6000_reg_names[27][0], /* r27 */ \
2407 &rs6000_reg_names[28][0], /* r28 */ \
2408 &rs6000_reg_names[29][0], /* r29 */ \
2409 &rs6000_reg_names[30][0], /* r30 */ \
2410 &rs6000_reg_names[31][0], /* r31 */ \
2412 &rs6000_reg_names[32][0], /* fr0 */ \
2413 &rs6000_reg_names[33][0], /* fr1 */ \
2414 &rs6000_reg_names[34][0], /* fr2 */ \
2415 &rs6000_reg_names[35][0], /* fr3 */ \
2416 &rs6000_reg_names[36][0], /* fr4 */ \
2417 &rs6000_reg_names[37][0], /* fr5 */ \
2418 &rs6000_reg_names[38][0], /* fr6 */ \
2419 &rs6000_reg_names[39][0], /* fr7 */ \
2420 &rs6000_reg_names[40][0], /* fr8 */ \
2421 &rs6000_reg_names[41][0], /* fr9 */ \
2422 &rs6000_reg_names[42][0], /* fr10 */ \
2423 &rs6000_reg_names[43][0], /* fr11 */ \
2424 &rs6000_reg_names[44][0], /* fr12 */ \
2425 &rs6000_reg_names[45][0], /* fr13 */ \
2426 &rs6000_reg_names[46][0], /* fr14 */ \
2427 &rs6000_reg_names[47][0], /* fr15 */ \
2428 &rs6000_reg_names[48][0], /* fr16 */ \
2429 &rs6000_reg_names[49][0], /* fr17 */ \
2430 &rs6000_reg_names[50][0], /* fr18 */ \
2431 &rs6000_reg_names[51][0], /* fr19 */ \
2432 &rs6000_reg_names[52][0], /* fr20 */ \
2433 &rs6000_reg_names[53][0], /* fr21 */ \
2434 &rs6000_reg_names[54][0], /* fr22 */ \
2435 &rs6000_reg_names[55][0], /* fr23 */ \
2436 &rs6000_reg_names[56][0], /* fr24 */ \
2437 &rs6000_reg_names[57][0], /* fr25 */ \
2438 &rs6000_reg_names[58][0], /* fr26 */ \
2439 &rs6000_reg_names[59][0], /* fr27 */ \
2440 &rs6000_reg_names[60][0], /* fr28 */ \
2441 &rs6000_reg_names[61][0], /* fr29 */ \
2442 &rs6000_reg_names[62][0], /* fr30 */ \
2443 &rs6000_reg_names[63][0], /* fr31 */ \
2445 &rs6000_reg_names[64][0], /* mq */ \
2446 &rs6000_reg_names[65][0], /* lr */ \
2447 &rs6000_reg_names[66][0], /* ctr */ \
2448 &rs6000_reg_names[67][0], /* ap */ \
2450 &rs6000_reg_names[68][0], /* cr0 */ \
2451 &rs6000_reg_names[69][0], /* cr1 */ \
2452 &rs6000_reg_names[70][0], /* cr2 */ \
2453 &rs6000_reg_names[71][0], /* cr3 */ \
2454 &rs6000_reg_names[72][0], /* cr4 */ \
2455 &rs6000_reg_names[73][0], /* cr5 */ \
2456 &rs6000_reg_names[74][0], /* cr6 */ \
2457 &rs6000_reg_names[75][0], /* cr7 */ \
2459 &rs6000_reg_names[76][0], /* xer */ \
2461 &rs6000_reg_names[77][0], /* v0 */ \
2462 &rs6000_reg_names[78][0], /* v1 */ \
2463 &rs6000_reg_names[79][0], /* v2 */ \
2464 &rs6000_reg_names[80][0], /* v3 */ \
2465 &rs6000_reg_names[81][0], /* v4 */ \
2466 &rs6000_reg_names[82][0], /* v5 */ \
2467 &rs6000_reg_names[83][0], /* v6 */ \
2468 &rs6000_reg_names[84][0], /* v7 */ \
2469 &rs6000_reg_names[85][0], /* v8 */ \
2470 &rs6000_reg_names[86][0], /* v9 */ \
2471 &rs6000_reg_names[87][0], /* v10 */ \
2472 &rs6000_reg_names[88][0], /* v11 */ \
2473 &rs6000_reg_names[89][0], /* v12 */ \
2474 &rs6000_reg_names[90][0], /* v13 */ \
2475 &rs6000_reg_names[91][0], /* v14 */ \
2476 &rs6000_reg_names[92][0], /* v15 */ \
2477 &rs6000_reg_names[93][0], /* v16 */ \
2478 &rs6000_reg_names[94][0], /* v17 */ \
2479 &rs6000_reg_names[95][0], /* v18 */ \
2480 &rs6000_reg_names[96][0], /* v19 */ \
2481 &rs6000_reg_names[97][0], /* v20 */ \
2482 &rs6000_reg_names[98][0], /* v21 */ \
2483 &rs6000_reg_names[99][0], /* v22 */ \
2484 &rs6000_reg_names[100][0], /* v23 */ \
2485 &rs6000_reg_names[101][0], /* v24 */ \
2486 &rs6000_reg_names[102][0], /* v25 */ \
2487 &rs6000_reg_names[103][0], /* v26 */ \
2488 &rs6000_reg_names[104][0], /* v27 */ \
2489 &rs6000_reg_names[105][0], /* v28 */ \
2490 &rs6000_reg_names[106][0], /* v29 */ \
2491 &rs6000_reg_names[107][0], /* v30 */ \
2492 &rs6000_reg_names[108][0], /* v31 */ \
2493 &rs6000_reg_names[109][0], /* vrsave */ \
2494 &rs6000_reg_names[110][0], /* vscr */ \
2495 &rs6000_reg_names[111][0], /* spe_acc */ \
2496 &rs6000_reg_names[112][0], /* spefscr */ \
2499 /* Table of additional register names to use in user input. */
2501 #define ADDITIONAL_REGISTER_NAMES \
2502 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2503 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2504 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2505 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2506 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2507 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2508 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2509 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2510 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2511 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2512 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2513 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2514 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2515 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2516 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2517 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2518 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2519 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2520 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2521 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2522 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2523 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2524 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2525 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2526 {"vrsave", 109}, {"vscr", 110}, \
2527 {"spe_acc", 111}, {"spefscr", 112}, \
2528 /* no additional names for: mq, lr, ctr, ap */ \
2529 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2530 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2531 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2533 /* Text to write out after a CALL that may be replaced by glue code by
2534 the loader. This depends on the AIX version. */
2535 #define RS6000_CALL_GLUE "cror 31,31,31"
2537 /* This is how to output an element of a case-vector that is relative. */
2539 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2540 do { char buf[100]; \
2541 fputs ("\t.long ", FILE); \
2542 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2543 assemble_name (FILE, buf); \
2544 putc ('-', FILE); \
2545 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2546 assemble_name (FILE, buf); \
2547 putc ('\n', FILE); \
2548 } while (0)
2550 /* This is how to output an assembler line
2551 that says to advance the location counter
2552 to a multiple of 2**LOG bytes. */
2554 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2555 if ((LOG) != 0) \
2556 fprintf (FILE, "\t.align %d\n", (LOG))
2558 /* Pick up the return address upon entry to a procedure. Used for
2559 dwarf2 unwind information. This also enables the table driven
2560 mechanism. */
2562 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2563 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2565 /* Describe how we implement __builtin_eh_return. */
2566 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2567 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2569 /* Print operand X (an rtx) in assembler syntax to file FILE.
2570 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2571 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2573 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2575 /* Define which CODE values are valid. */
2577 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2578 ((CODE) == '.' || (CODE) == '&')
2580 /* Print a memory address as an operand to reference that memory location. */
2582 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2584 /* Define the codes that are matched by predicates in rs6000.c. */
2586 #define PREDICATE_CODES \
2587 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2588 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
2589 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2590 LABEL_REF, SUBREG, REG, MEM}}, \
2591 {"short_cint_operand", {CONST_INT}}, \
2592 {"u_short_cint_operand", {CONST_INT}}, \
2593 {"non_short_cint_operand", {CONST_INT}}, \
2594 {"exact_log2_cint_operand", {CONST_INT}}, \
2595 {"gpc_reg_operand", {SUBREG, REG}}, \
2596 {"cc_reg_operand", {SUBREG, REG}}, \
2597 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2598 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2599 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2600 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
2601 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2602 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2603 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2604 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2605 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2606 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2607 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2608 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2609 {"easy_fp_constant", {CONST_DOUBLE}}, \
2610 {"easy_vector_constant", {CONST_VECTOR}}, \
2611 {"easy_vector_constant_add_self", {CONST_VECTOR}}, \
2612 {"zero_fp_constant", {CONST_DOUBLE}}, \
2613 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2614 {"lwa_operand", {SUBREG, MEM, REG}}, \
2615 {"volatile_mem_operand", {MEM}}, \
2616 {"offsettable_mem_operand", {MEM}}, \
2617 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2618 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2619 {"non_add_cint_operand", {CONST_INT}}, \
2620 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2621 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2622 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
2623 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2624 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2625 {"mask_operand", {CONST_INT}}, \
2626 {"mask_operand_wrap", {CONST_INT}}, \
2627 {"mask64_operand", {CONST_INT}}, \
2628 {"mask64_2_operand", {CONST_INT}}, \
2629 {"count_register_operand", {REG}}, \
2630 {"xer_operand", {REG}}, \
2631 {"symbol_ref_operand", {SYMBOL_REF}}, \
2632 {"rs6000_tls_symbol_ref", {SYMBOL_REF}}, \
2633 {"call_operand", {SYMBOL_REF, REG}}, \
2634 {"current_file_function_operand", {SYMBOL_REF}}, \
2635 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2636 CONST_DOUBLE, SYMBOL_REF}}, \
2637 {"load_multiple_operation", {PARALLEL}}, \
2638 {"store_multiple_operation", {PARALLEL}}, \
2639 {"vrsave_operation", {PARALLEL}}, \
2640 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2641 GT, LEU, LTU, GEU, GTU, \
2642 UNORDERED, ORDERED, \
2643 UNGE, UNLE }}, \
2644 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2645 UNORDERED }}, \
2646 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2647 GT, LEU, LTU, GEU, GTU, \
2648 UNORDERED, ORDERED, \
2649 UNGE, UNLE }}, \
2650 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2651 GT, LEU, LTU, GEU, GTU}}, \
2652 {"boolean_operator", {AND, IOR, XOR}}, \
2653 {"boolean_or_operator", {IOR, XOR}}, \
2654 {"altivec_register_operand", {REG}}, \
2655 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2657 /* uncomment for disabling the corresponding default options */
2658 /* #define MACHINE_no_sched_interblock */
2659 /* #define MACHINE_no_sched_speculative */
2660 /* #define MACHINE_no_sched_speculative_load */
2662 /* General flags. */
2663 extern int flag_pic;
2664 extern int optimize;
2665 extern int flag_expensive_optimizations;
2666 extern int frame_pointer_needed;
2668 enum rs6000_builtins
2670 /* AltiVec builtins. */
2671 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2672 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2673 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2674 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2675 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2676 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2677 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2678 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2679 ALTIVEC_BUILTIN_VADDUBM,
2680 ALTIVEC_BUILTIN_VADDUHM,
2681 ALTIVEC_BUILTIN_VADDUWM,
2682 ALTIVEC_BUILTIN_VADDFP,
2683 ALTIVEC_BUILTIN_VADDCUW,
2684 ALTIVEC_BUILTIN_VADDUBS,
2685 ALTIVEC_BUILTIN_VADDSBS,
2686 ALTIVEC_BUILTIN_VADDUHS,
2687 ALTIVEC_BUILTIN_VADDSHS,
2688 ALTIVEC_BUILTIN_VADDUWS,
2689 ALTIVEC_BUILTIN_VADDSWS,
2690 ALTIVEC_BUILTIN_VAND,
2691 ALTIVEC_BUILTIN_VANDC,
2692 ALTIVEC_BUILTIN_VAVGUB,
2693 ALTIVEC_BUILTIN_VAVGSB,
2694 ALTIVEC_BUILTIN_VAVGUH,
2695 ALTIVEC_BUILTIN_VAVGSH,
2696 ALTIVEC_BUILTIN_VAVGUW,
2697 ALTIVEC_BUILTIN_VAVGSW,
2698 ALTIVEC_BUILTIN_VCFUX,
2699 ALTIVEC_BUILTIN_VCFSX,
2700 ALTIVEC_BUILTIN_VCTSXS,
2701 ALTIVEC_BUILTIN_VCTUXS,
2702 ALTIVEC_BUILTIN_VCMPBFP,
2703 ALTIVEC_BUILTIN_VCMPEQUB,
2704 ALTIVEC_BUILTIN_VCMPEQUH,
2705 ALTIVEC_BUILTIN_VCMPEQUW,
2706 ALTIVEC_BUILTIN_VCMPEQFP,
2707 ALTIVEC_BUILTIN_VCMPGEFP,
2708 ALTIVEC_BUILTIN_VCMPGTUB,
2709 ALTIVEC_BUILTIN_VCMPGTSB,
2710 ALTIVEC_BUILTIN_VCMPGTUH,
2711 ALTIVEC_BUILTIN_VCMPGTSH,
2712 ALTIVEC_BUILTIN_VCMPGTUW,
2713 ALTIVEC_BUILTIN_VCMPGTSW,
2714 ALTIVEC_BUILTIN_VCMPGTFP,
2715 ALTIVEC_BUILTIN_VEXPTEFP,
2716 ALTIVEC_BUILTIN_VLOGEFP,
2717 ALTIVEC_BUILTIN_VMADDFP,
2718 ALTIVEC_BUILTIN_VMAXUB,
2719 ALTIVEC_BUILTIN_VMAXSB,
2720 ALTIVEC_BUILTIN_VMAXUH,
2721 ALTIVEC_BUILTIN_VMAXSH,
2722 ALTIVEC_BUILTIN_VMAXUW,
2723 ALTIVEC_BUILTIN_VMAXSW,
2724 ALTIVEC_BUILTIN_VMAXFP,
2725 ALTIVEC_BUILTIN_VMHADDSHS,
2726 ALTIVEC_BUILTIN_VMHRADDSHS,
2727 ALTIVEC_BUILTIN_VMLADDUHM,
2728 ALTIVEC_BUILTIN_VMRGHB,
2729 ALTIVEC_BUILTIN_VMRGHH,
2730 ALTIVEC_BUILTIN_VMRGHW,
2731 ALTIVEC_BUILTIN_VMRGLB,
2732 ALTIVEC_BUILTIN_VMRGLH,
2733 ALTIVEC_BUILTIN_VMRGLW,
2734 ALTIVEC_BUILTIN_VMSUMUBM,
2735 ALTIVEC_BUILTIN_VMSUMMBM,
2736 ALTIVEC_BUILTIN_VMSUMUHM,
2737 ALTIVEC_BUILTIN_VMSUMSHM,
2738 ALTIVEC_BUILTIN_VMSUMUHS,
2739 ALTIVEC_BUILTIN_VMSUMSHS,
2740 ALTIVEC_BUILTIN_VMINUB,
2741 ALTIVEC_BUILTIN_VMINSB,
2742 ALTIVEC_BUILTIN_VMINUH,
2743 ALTIVEC_BUILTIN_VMINSH,
2744 ALTIVEC_BUILTIN_VMINUW,
2745 ALTIVEC_BUILTIN_VMINSW,
2746 ALTIVEC_BUILTIN_VMINFP,
2747 ALTIVEC_BUILTIN_VMULEUB,
2748 ALTIVEC_BUILTIN_VMULESB,
2749 ALTIVEC_BUILTIN_VMULEUH,
2750 ALTIVEC_BUILTIN_VMULESH,
2751 ALTIVEC_BUILTIN_VMULOUB,
2752 ALTIVEC_BUILTIN_VMULOSB,
2753 ALTIVEC_BUILTIN_VMULOUH,
2754 ALTIVEC_BUILTIN_VMULOSH,
2755 ALTIVEC_BUILTIN_VNMSUBFP,
2756 ALTIVEC_BUILTIN_VNOR,
2757 ALTIVEC_BUILTIN_VOR,
2758 ALTIVEC_BUILTIN_VSEL_4SI,
2759 ALTIVEC_BUILTIN_VSEL_4SF,
2760 ALTIVEC_BUILTIN_VSEL_8HI,
2761 ALTIVEC_BUILTIN_VSEL_16QI,
2762 ALTIVEC_BUILTIN_VPERM_4SI,
2763 ALTIVEC_BUILTIN_VPERM_4SF,
2764 ALTIVEC_BUILTIN_VPERM_8HI,
2765 ALTIVEC_BUILTIN_VPERM_16QI,
2766 ALTIVEC_BUILTIN_VPKUHUM,
2767 ALTIVEC_BUILTIN_VPKUWUM,
2768 ALTIVEC_BUILTIN_VPKPX,
2769 ALTIVEC_BUILTIN_VPKUHSS,
2770 ALTIVEC_BUILTIN_VPKSHSS,
2771 ALTIVEC_BUILTIN_VPKUWSS,
2772 ALTIVEC_BUILTIN_VPKSWSS,
2773 ALTIVEC_BUILTIN_VPKUHUS,
2774 ALTIVEC_BUILTIN_VPKSHUS,
2775 ALTIVEC_BUILTIN_VPKUWUS,
2776 ALTIVEC_BUILTIN_VPKSWUS,
2777 ALTIVEC_BUILTIN_VREFP,
2778 ALTIVEC_BUILTIN_VRFIM,
2779 ALTIVEC_BUILTIN_VRFIN,
2780 ALTIVEC_BUILTIN_VRFIP,
2781 ALTIVEC_BUILTIN_VRFIZ,
2782 ALTIVEC_BUILTIN_VRLB,
2783 ALTIVEC_BUILTIN_VRLH,
2784 ALTIVEC_BUILTIN_VRLW,
2785 ALTIVEC_BUILTIN_VRSQRTEFP,
2786 ALTIVEC_BUILTIN_VSLB,
2787 ALTIVEC_BUILTIN_VSLH,
2788 ALTIVEC_BUILTIN_VSLW,
2789 ALTIVEC_BUILTIN_VSL,
2790 ALTIVEC_BUILTIN_VSLO,
2791 ALTIVEC_BUILTIN_VSPLTB,
2792 ALTIVEC_BUILTIN_VSPLTH,
2793 ALTIVEC_BUILTIN_VSPLTW,
2794 ALTIVEC_BUILTIN_VSPLTISB,
2795 ALTIVEC_BUILTIN_VSPLTISH,
2796 ALTIVEC_BUILTIN_VSPLTISW,
2797 ALTIVEC_BUILTIN_VSRB,
2798 ALTIVEC_BUILTIN_VSRH,
2799 ALTIVEC_BUILTIN_VSRW,
2800 ALTIVEC_BUILTIN_VSRAB,
2801 ALTIVEC_BUILTIN_VSRAH,
2802 ALTIVEC_BUILTIN_VSRAW,
2803 ALTIVEC_BUILTIN_VSR,
2804 ALTIVEC_BUILTIN_VSRO,
2805 ALTIVEC_BUILTIN_VSUBUBM,
2806 ALTIVEC_BUILTIN_VSUBUHM,
2807 ALTIVEC_BUILTIN_VSUBUWM,
2808 ALTIVEC_BUILTIN_VSUBFP,
2809 ALTIVEC_BUILTIN_VSUBCUW,
2810 ALTIVEC_BUILTIN_VSUBUBS,
2811 ALTIVEC_BUILTIN_VSUBSBS,
2812 ALTIVEC_BUILTIN_VSUBUHS,
2813 ALTIVEC_BUILTIN_VSUBSHS,
2814 ALTIVEC_BUILTIN_VSUBUWS,
2815 ALTIVEC_BUILTIN_VSUBSWS,
2816 ALTIVEC_BUILTIN_VSUM4UBS,
2817 ALTIVEC_BUILTIN_VSUM4SBS,
2818 ALTIVEC_BUILTIN_VSUM4SHS,
2819 ALTIVEC_BUILTIN_VSUM2SWS,
2820 ALTIVEC_BUILTIN_VSUMSWS,
2821 ALTIVEC_BUILTIN_VXOR,
2822 ALTIVEC_BUILTIN_VSLDOI_16QI,
2823 ALTIVEC_BUILTIN_VSLDOI_8HI,
2824 ALTIVEC_BUILTIN_VSLDOI_4SI,
2825 ALTIVEC_BUILTIN_VSLDOI_4SF,
2826 ALTIVEC_BUILTIN_VUPKHSB,
2827 ALTIVEC_BUILTIN_VUPKHPX,
2828 ALTIVEC_BUILTIN_VUPKHSH,
2829 ALTIVEC_BUILTIN_VUPKLSB,
2830 ALTIVEC_BUILTIN_VUPKLPX,
2831 ALTIVEC_BUILTIN_VUPKLSH,
2832 ALTIVEC_BUILTIN_MTVSCR,
2833 ALTIVEC_BUILTIN_MFVSCR,
2834 ALTIVEC_BUILTIN_DSSALL,
2835 ALTIVEC_BUILTIN_DSS,
2836 ALTIVEC_BUILTIN_LVSL,
2837 ALTIVEC_BUILTIN_LVSR,
2838 ALTIVEC_BUILTIN_DSTT,
2839 ALTIVEC_BUILTIN_DSTST,
2840 ALTIVEC_BUILTIN_DSTSTT,
2841 ALTIVEC_BUILTIN_DST,
2842 ALTIVEC_BUILTIN_LVEBX,
2843 ALTIVEC_BUILTIN_LVEHX,
2844 ALTIVEC_BUILTIN_LVEWX,
2845 ALTIVEC_BUILTIN_LVXL,
2846 ALTIVEC_BUILTIN_LVX,
2847 ALTIVEC_BUILTIN_STVX,
2848 ALTIVEC_BUILTIN_STVEBX,
2849 ALTIVEC_BUILTIN_STVEHX,
2850 ALTIVEC_BUILTIN_STVEWX,
2851 ALTIVEC_BUILTIN_STVXL,
2852 ALTIVEC_BUILTIN_VCMPBFP_P,
2853 ALTIVEC_BUILTIN_VCMPEQFP_P,
2854 ALTIVEC_BUILTIN_VCMPEQUB_P,
2855 ALTIVEC_BUILTIN_VCMPEQUH_P,
2856 ALTIVEC_BUILTIN_VCMPEQUW_P,
2857 ALTIVEC_BUILTIN_VCMPGEFP_P,
2858 ALTIVEC_BUILTIN_VCMPGTFP_P,
2859 ALTIVEC_BUILTIN_VCMPGTSB_P,
2860 ALTIVEC_BUILTIN_VCMPGTSH_P,
2861 ALTIVEC_BUILTIN_VCMPGTSW_P,
2862 ALTIVEC_BUILTIN_VCMPGTUB_P,
2863 ALTIVEC_BUILTIN_VCMPGTUH_P,
2864 ALTIVEC_BUILTIN_VCMPGTUW_P,
2865 ALTIVEC_BUILTIN_ABSS_V4SI,
2866 ALTIVEC_BUILTIN_ABSS_V8HI,
2867 ALTIVEC_BUILTIN_ABSS_V16QI,
2868 ALTIVEC_BUILTIN_ABS_V4SI,
2869 ALTIVEC_BUILTIN_ABS_V4SF,
2870 ALTIVEC_BUILTIN_ABS_V8HI,
2871 ALTIVEC_BUILTIN_ABS_V16QI,
2872 ALTIVEC_BUILTIN_COMPILETIME_ERROR,
2874 /* SPE builtins. */
2875 SPE_BUILTIN_EVADDW,
2876 SPE_BUILTIN_EVAND,
2877 SPE_BUILTIN_EVANDC,
2878 SPE_BUILTIN_EVDIVWS,
2879 SPE_BUILTIN_EVDIVWU,
2880 SPE_BUILTIN_EVEQV,
2881 SPE_BUILTIN_EVFSADD,
2882 SPE_BUILTIN_EVFSDIV,
2883 SPE_BUILTIN_EVFSMUL,
2884 SPE_BUILTIN_EVFSSUB,
2885 SPE_BUILTIN_EVLDDX,
2886 SPE_BUILTIN_EVLDHX,
2887 SPE_BUILTIN_EVLDWX,
2888 SPE_BUILTIN_EVLHHESPLATX,
2889 SPE_BUILTIN_EVLHHOSSPLATX,
2890 SPE_BUILTIN_EVLHHOUSPLATX,
2891 SPE_BUILTIN_EVLWHEX,
2892 SPE_BUILTIN_EVLWHOSX,
2893 SPE_BUILTIN_EVLWHOUX,
2894 SPE_BUILTIN_EVLWHSPLATX,
2895 SPE_BUILTIN_EVLWWSPLATX,
2896 SPE_BUILTIN_EVMERGEHI,
2897 SPE_BUILTIN_EVMERGEHILO,
2898 SPE_BUILTIN_EVMERGELO,
2899 SPE_BUILTIN_EVMERGELOHI,
2900 SPE_BUILTIN_EVMHEGSMFAA,
2901 SPE_BUILTIN_EVMHEGSMFAN,
2902 SPE_BUILTIN_EVMHEGSMIAA,
2903 SPE_BUILTIN_EVMHEGSMIAN,
2904 SPE_BUILTIN_EVMHEGUMIAA,
2905 SPE_BUILTIN_EVMHEGUMIAN,
2906 SPE_BUILTIN_EVMHESMF,
2907 SPE_BUILTIN_EVMHESMFA,
2908 SPE_BUILTIN_EVMHESMFAAW,
2909 SPE_BUILTIN_EVMHESMFANW,
2910 SPE_BUILTIN_EVMHESMI,
2911 SPE_BUILTIN_EVMHESMIA,
2912 SPE_BUILTIN_EVMHESMIAAW,
2913 SPE_BUILTIN_EVMHESMIANW,
2914 SPE_BUILTIN_EVMHESSF,
2915 SPE_BUILTIN_EVMHESSFA,
2916 SPE_BUILTIN_EVMHESSFAAW,
2917 SPE_BUILTIN_EVMHESSFANW,
2918 SPE_BUILTIN_EVMHESSIAAW,
2919 SPE_BUILTIN_EVMHESSIANW,
2920 SPE_BUILTIN_EVMHEUMI,
2921 SPE_BUILTIN_EVMHEUMIA,
2922 SPE_BUILTIN_EVMHEUMIAAW,
2923 SPE_BUILTIN_EVMHEUMIANW,
2924 SPE_BUILTIN_EVMHEUSIAAW,
2925 SPE_BUILTIN_EVMHEUSIANW,
2926 SPE_BUILTIN_EVMHOGSMFAA,
2927 SPE_BUILTIN_EVMHOGSMFAN,
2928 SPE_BUILTIN_EVMHOGSMIAA,
2929 SPE_BUILTIN_EVMHOGSMIAN,
2930 SPE_BUILTIN_EVMHOGUMIAA,
2931 SPE_BUILTIN_EVMHOGUMIAN,
2932 SPE_BUILTIN_EVMHOSMF,
2933 SPE_BUILTIN_EVMHOSMFA,
2934 SPE_BUILTIN_EVMHOSMFAAW,
2935 SPE_BUILTIN_EVMHOSMFANW,
2936 SPE_BUILTIN_EVMHOSMI,
2937 SPE_BUILTIN_EVMHOSMIA,
2938 SPE_BUILTIN_EVMHOSMIAAW,
2939 SPE_BUILTIN_EVMHOSMIANW,
2940 SPE_BUILTIN_EVMHOSSF,
2941 SPE_BUILTIN_EVMHOSSFA,
2942 SPE_BUILTIN_EVMHOSSFAAW,
2943 SPE_BUILTIN_EVMHOSSFANW,
2944 SPE_BUILTIN_EVMHOSSIAAW,
2945 SPE_BUILTIN_EVMHOSSIANW,
2946 SPE_BUILTIN_EVMHOUMI,
2947 SPE_BUILTIN_EVMHOUMIA,
2948 SPE_BUILTIN_EVMHOUMIAAW,
2949 SPE_BUILTIN_EVMHOUMIANW,
2950 SPE_BUILTIN_EVMHOUSIAAW,
2951 SPE_BUILTIN_EVMHOUSIANW,
2952 SPE_BUILTIN_EVMWHSMF,
2953 SPE_BUILTIN_EVMWHSMFA,
2954 SPE_BUILTIN_EVMWHSMI,
2955 SPE_BUILTIN_EVMWHSMIA,
2956 SPE_BUILTIN_EVMWHSSF,
2957 SPE_BUILTIN_EVMWHSSFA,
2958 SPE_BUILTIN_EVMWHUMI,
2959 SPE_BUILTIN_EVMWHUMIA,
2960 SPE_BUILTIN_EVMWLSMIAAW,
2961 SPE_BUILTIN_EVMWLSMIANW,
2962 SPE_BUILTIN_EVMWLSSIAAW,
2963 SPE_BUILTIN_EVMWLSSIANW,
2964 SPE_BUILTIN_EVMWLUMI,
2965 SPE_BUILTIN_EVMWLUMIA,
2966 SPE_BUILTIN_EVMWLUMIAAW,
2967 SPE_BUILTIN_EVMWLUMIANW,
2968 SPE_BUILTIN_EVMWLUSIAAW,
2969 SPE_BUILTIN_EVMWLUSIANW,
2970 SPE_BUILTIN_EVMWSMF,
2971 SPE_BUILTIN_EVMWSMFA,
2972 SPE_BUILTIN_EVMWSMFAA,
2973 SPE_BUILTIN_EVMWSMFAN,
2974 SPE_BUILTIN_EVMWSMI,
2975 SPE_BUILTIN_EVMWSMIA,
2976 SPE_BUILTIN_EVMWSMIAA,
2977 SPE_BUILTIN_EVMWSMIAN,
2978 SPE_BUILTIN_EVMWHSSFAA,
2979 SPE_BUILTIN_EVMWSSF,
2980 SPE_BUILTIN_EVMWSSFA,
2981 SPE_BUILTIN_EVMWSSFAA,
2982 SPE_BUILTIN_EVMWSSFAN,
2983 SPE_BUILTIN_EVMWUMI,
2984 SPE_BUILTIN_EVMWUMIA,
2985 SPE_BUILTIN_EVMWUMIAA,
2986 SPE_BUILTIN_EVMWUMIAN,
2987 SPE_BUILTIN_EVNAND,
2988 SPE_BUILTIN_EVNOR,
2989 SPE_BUILTIN_EVOR,
2990 SPE_BUILTIN_EVORC,
2991 SPE_BUILTIN_EVRLW,
2992 SPE_BUILTIN_EVSLW,
2993 SPE_BUILTIN_EVSRWS,
2994 SPE_BUILTIN_EVSRWU,
2995 SPE_BUILTIN_EVSTDDX,
2996 SPE_BUILTIN_EVSTDHX,
2997 SPE_BUILTIN_EVSTDWX,
2998 SPE_BUILTIN_EVSTWHEX,
2999 SPE_BUILTIN_EVSTWHOX,
3000 SPE_BUILTIN_EVSTWWEX,
3001 SPE_BUILTIN_EVSTWWOX,
3002 SPE_BUILTIN_EVSUBFW,
3003 SPE_BUILTIN_EVXOR,
3004 SPE_BUILTIN_EVABS,
3005 SPE_BUILTIN_EVADDSMIAAW,
3006 SPE_BUILTIN_EVADDSSIAAW,
3007 SPE_BUILTIN_EVADDUMIAAW,
3008 SPE_BUILTIN_EVADDUSIAAW,
3009 SPE_BUILTIN_EVCNTLSW,
3010 SPE_BUILTIN_EVCNTLZW,
3011 SPE_BUILTIN_EVEXTSB,
3012 SPE_BUILTIN_EVEXTSH,
3013 SPE_BUILTIN_EVFSABS,
3014 SPE_BUILTIN_EVFSCFSF,
3015 SPE_BUILTIN_EVFSCFSI,
3016 SPE_BUILTIN_EVFSCFUF,
3017 SPE_BUILTIN_EVFSCFUI,
3018 SPE_BUILTIN_EVFSCTSF,
3019 SPE_BUILTIN_EVFSCTSI,
3020 SPE_BUILTIN_EVFSCTSIZ,
3021 SPE_BUILTIN_EVFSCTUF,
3022 SPE_BUILTIN_EVFSCTUI,
3023 SPE_BUILTIN_EVFSCTUIZ,
3024 SPE_BUILTIN_EVFSNABS,
3025 SPE_BUILTIN_EVFSNEG,
3026 SPE_BUILTIN_EVMRA,
3027 SPE_BUILTIN_EVNEG,
3028 SPE_BUILTIN_EVRNDW,
3029 SPE_BUILTIN_EVSUBFSMIAAW,
3030 SPE_BUILTIN_EVSUBFSSIAAW,
3031 SPE_BUILTIN_EVSUBFUMIAAW,
3032 SPE_BUILTIN_EVSUBFUSIAAW,
3033 SPE_BUILTIN_EVADDIW,
3034 SPE_BUILTIN_EVLDD,
3035 SPE_BUILTIN_EVLDH,
3036 SPE_BUILTIN_EVLDW,
3037 SPE_BUILTIN_EVLHHESPLAT,
3038 SPE_BUILTIN_EVLHHOSSPLAT,
3039 SPE_BUILTIN_EVLHHOUSPLAT,
3040 SPE_BUILTIN_EVLWHE,
3041 SPE_BUILTIN_EVLWHOS,
3042 SPE_BUILTIN_EVLWHOU,
3043 SPE_BUILTIN_EVLWHSPLAT,
3044 SPE_BUILTIN_EVLWWSPLAT,
3045 SPE_BUILTIN_EVRLWI,
3046 SPE_BUILTIN_EVSLWI,
3047 SPE_BUILTIN_EVSRWIS,
3048 SPE_BUILTIN_EVSRWIU,
3049 SPE_BUILTIN_EVSTDD,
3050 SPE_BUILTIN_EVSTDH,
3051 SPE_BUILTIN_EVSTDW,
3052 SPE_BUILTIN_EVSTWHE,
3053 SPE_BUILTIN_EVSTWHO,
3054 SPE_BUILTIN_EVSTWWE,
3055 SPE_BUILTIN_EVSTWWO,
3056 SPE_BUILTIN_EVSUBIFW,
3058 /* Compares. */
3059 SPE_BUILTIN_EVCMPEQ,
3060 SPE_BUILTIN_EVCMPGTS,
3061 SPE_BUILTIN_EVCMPGTU,
3062 SPE_BUILTIN_EVCMPLTS,
3063 SPE_BUILTIN_EVCMPLTU,
3064 SPE_BUILTIN_EVFSCMPEQ,
3065 SPE_BUILTIN_EVFSCMPGT,
3066 SPE_BUILTIN_EVFSCMPLT,
3067 SPE_BUILTIN_EVFSTSTEQ,
3068 SPE_BUILTIN_EVFSTSTGT,
3069 SPE_BUILTIN_EVFSTSTLT,
3071 /* EVSEL compares. */
3072 SPE_BUILTIN_EVSEL_CMPEQ,
3073 SPE_BUILTIN_EVSEL_CMPGTS,
3074 SPE_BUILTIN_EVSEL_CMPGTU,
3075 SPE_BUILTIN_EVSEL_CMPLTS,
3076 SPE_BUILTIN_EVSEL_CMPLTU,
3077 SPE_BUILTIN_EVSEL_FSCMPEQ,
3078 SPE_BUILTIN_EVSEL_FSCMPGT,
3079 SPE_BUILTIN_EVSEL_FSCMPLT,
3080 SPE_BUILTIN_EVSEL_FSTSTEQ,
3081 SPE_BUILTIN_EVSEL_FSTSTGT,
3082 SPE_BUILTIN_EVSEL_FSTSTLT,
3084 SPE_BUILTIN_EVSPLATFI,
3085 SPE_BUILTIN_EVSPLATI,
3086 SPE_BUILTIN_EVMWHSSMAA,
3087 SPE_BUILTIN_EVMWHSMFAA,
3088 SPE_BUILTIN_EVMWHSMIAA,
3089 SPE_BUILTIN_EVMWHUSIAA,
3090 SPE_BUILTIN_EVMWHUMIAA,
3091 SPE_BUILTIN_EVMWHSSFAN,
3092 SPE_BUILTIN_EVMWHSSIAN,
3093 SPE_BUILTIN_EVMWHSMFAN,
3094 SPE_BUILTIN_EVMWHSMIAN,
3095 SPE_BUILTIN_EVMWHUSIAN,
3096 SPE_BUILTIN_EVMWHUMIAN,
3097 SPE_BUILTIN_EVMWHGSSFAA,
3098 SPE_BUILTIN_EVMWHGSMFAA,
3099 SPE_BUILTIN_EVMWHGSMIAA,
3100 SPE_BUILTIN_EVMWHGUMIAA,
3101 SPE_BUILTIN_EVMWHGSSFAN,
3102 SPE_BUILTIN_EVMWHGSMFAN,
3103 SPE_BUILTIN_EVMWHGSMIAN,
3104 SPE_BUILTIN_EVMWHGUMIAN,
3105 SPE_BUILTIN_MTSPEFSCR,
3106 SPE_BUILTIN_MFSPEFSCR,
3107 SPE_BUILTIN_BRINC