PR testsuite/35843
[official-gcc.git] / gcc / dwarf2out.c
blob7625947049d18957d41d66cb55cc7dcb7fd060f8
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* TODO: Emit .debug_line header even when there are no functions, since
25 the file numbers are used by .debug_info. Alternately, leave
26 out locations for types and decls.
27 Avoid talking about ctors and op= for PODs.
28 Factor out common prologue sequences into multiple CIEs. */
30 /* The first part of this file deals with the DWARF 2 frame unwind
31 information, which is also used by the GCC efficient exception handling
32 mechanism. The second part, controlled only by an #ifdef
33 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
34 information. */
36 /* DWARF2 Abbreviation Glossary:
38 CFA = Canonical Frame Address
39 a fixed address on the stack which identifies a call frame.
40 We define it to be the value of SP just before the call insn.
41 The CFA register and offset, which may change during the course
42 of the function, are used to calculate its value at runtime.
44 CFI = Call Frame Instruction
45 an instruction for the DWARF2 abstract machine
47 CIE = Common Information Entry
48 information describing information common to one or more FDEs
50 DIE = Debugging Information Entry
52 FDE = Frame Description Entry
53 information describing the stack call frame, in particular,
54 how to restore registers
56 DW_CFA_... = DWARF2 CFA call frame instruction
57 DW_TAG_... = DWARF2 DIE tag */
59 #include "config.h"
60 #include "system.h"
61 #include "coretypes.h"
62 #include "tm.h"
63 #include "tree.h"
64 #include "version.h"
65 #include "flags.h"
66 #include "real.h"
67 #include "rtl.h"
68 #include "hard-reg-set.h"
69 #include "regs.h"
70 #include "insn-config.h"
71 #include "reload.h"
72 #include "function.h"
73 #include "output.h"
74 #include "expr.h"
75 #include "libfuncs.h"
76 #include "except.h"
77 #include "dwarf2.h"
78 #include "dwarf2out.h"
79 #include "dwarf2asm.h"
80 #include "toplev.h"
81 #include "varray.h"
82 #include "ggc.h"
83 #include "md5.h"
84 #include "tm_p.h"
85 #include "diagnostic.h"
86 #include "debug.h"
87 #include "target.h"
88 #include "langhooks.h"
89 #include "hashtab.h"
90 #include "cgraph.h"
91 #include "input.h"
93 #ifdef DWARF2_DEBUGGING_INFO
94 static void dwarf2out_source_line (unsigned int, const char *);
95 #endif
97 #ifndef DWARF2_FRAME_INFO
98 # ifdef DWARF2_DEBUGGING_INFO
99 # define DWARF2_FRAME_INFO \
100 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
101 # else
102 # define DWARF2_FRAME_INFO 0
103 # endif
104 #endif
106 /* Map register numbers held in the call frame info that gcc has
107 collected using DWARF_FRAME_REGNUM to those that should be output in
108 .debug_frame and .eh_frame. */
109 #ifndef DWARF2_FRAME_REG_OUT
110 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
111 #endif
113 /* Decide whether we want to emit frame unwind information for the current
114 translation unit. */
117 dwarf2out_do_frame (void)
119 /* We want to emit correct CFA location expressions or lists, so we
120 have to return true if we're going to output debug info, even if
121 we're not going to output frame or unwind info. */
122 return (write_symbols == DWARF2_DEBUG
123 || write_symbols == VMS_AND_DWARF2_DEBUG
124 || DWARF2_FRAME_INFO
125 #ifdef DWARF2_UNWIND_INFO
126 || (DWARF2_UNWIND_INFO
127 && (flag_unwind_tables
128 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
129 #endif
133 /* The size of the target's pointer type. */
134 #ifndef PTR_SIZE
135 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
136 #endif
138 /* Array of RTXes referenced by the debugging information, which therefore
139 must be kept around forever. */
140 static GTY(()) VEC(rtx,gc) *used_rtx_array;
142 /* A pointer to the base of a list of incomplete types which might be
143 completed at some later time. incomplete_types_list needs to be a
144 VEC(tree,gc) because we want to tell the garbage collector about
145 it. */
146 static GTY(()) VEC(tree,gc) *incomplete_types;
148 /* A pointer to the base of a table of references to declaration
149 scopes. This table is a display which tracks the nesting
150 of declaration scopes at the current scope and containing
151 scopes. This table is used to find the proper place to
152 define type declaration DIE's. */
153 static GTY(()) VEC(tree,gc) *decl_scope_table;
155 /* Pointers to various DWARF2 sections. */
156 static GTY(()) section *debug_info_section;
157 static GTY(()) section *debug_abbrev_section;
158 static GTY(()) section *debug_aranges_section;
159 static GTY(()) section *debug_macinfo_section;
160 static GTY(()) section *debug_line_section;
161 static GTY(()) section *debug_loc_section;
162 static GTY(()) section *debug_pubnames_section;
163 static GTY(()) section *debug_pubtypes_section;
164 static GTY(()) section *debug_str_section;
165 static GTY(()) section *debug_ranges_section;
166 static GTY(()) section *debug_frame_section;
168 /* How to start an assembler comment. */
169 #ifndef ASM_COMMENT_START
170 #define ASM_COMMENT_START ";#"
171 #endif
173 typedef struct dw_cfi_struct *dw_cfi_ref;
174 typedef struct dw_fde_struct *dw_fde_ref;
175 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
177 /* Call frames are described using a sequence of Call Frame
178 Information instructions. The register number, offset
179 and address fields are provided as possible operands;
180 their use is selected by the opcode field. */
182 enum dw_cfi_oprnd_type {
183 dw_cfi_oprnd_unused,
184 dw_cfi_oprnd_reg_num,
185 dw_cfi_oprnd_offset,
186 dw_cfi_oprnd_addr,
187 dw_cfi_oprnd_loc
190 typedef union dw_cfi_oprnd_struct GTY(())
192 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
193 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
194 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
195 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
197 dw_cfi_oprnd;
199 typedef struct dw_cfi_struct GTY(())
201 dw_cfi_ref dw_cfi_next;
202 enum dwarf_call_frame_info dw_cfi_opc;
203 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
204 dw_cfi_oprnd1;
205 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
206 dw_cfi_oprnd2;
208 dw_cfi_node;
210 /* This is how we define the location of the CFA. We use to handle it
211 as REG + OFFSET all the time, but now it can be more complex.
212 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
213 Instead of passing around REG and OFFSET, we pass a copy
214 of this structure. */
215 typedef struct cfa_loc GTY(())
217 HOST_WIDE_INT offset;
218 HOST_WIDE_INT base_offset;
219 unsigned int reg;
220 int indirect; /* 1 if CFA is accessed via a dereference. */
221 } dw_cfa_location;
223 /* All call frame descriptions (FDE's) in the GCC generated DWARF
224 refer to a single Common Information Entry (CIE), defined at
225 the beginning of the .debug_frame section. This use of a single
226 CIE obviates the need to keep track of multiple CIE's
227 in the DWARF generation routines below. */
229 typedef struct dw_fde_struct GTY(())
231 tree decl;
232 const char *dw_fde_begin;
233 const char *dw_fde_current_label;
234 const char *dw_fde_end;
235 const char *dw_fde_hot_section_label;
236 const char *dw_fde_hot_section_end_label;
237 const char *dw_fde_unlikely_section_label;
238 const char *dw_fde_unlikely_section_end_label;
239 bool dw_fde_switched_sections;
240 dw_cfi_ref dw_fde_cfi;
241 unsigned funcdef_number;
242 unsigned all_throwers_are_sibcalls : 1;
243 unsigned nothrow : 1;
244 unsigned uses_eh_lsda : 1;
246 dw_fde_node;
248 /* Maximum size (in bytes) of an artificially generated label. */
249 #define MAX_ARTIFICIAL_LABEL_BYTES 30
251 /* The size of addresses as they appear in the Dwarf 2 data.
252 Some architectures use word addresses to refer to code locations,
253 but Dwarf 2 info always uses byte addresses. On such machines,
254 Dwarf 2 addresses need to be larger than the architecture's
255 pointers. */
256 #ifndef DWARF2_ADDR_SIZE
257 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
258 #endif
260 /* The size in bytes of a DWARF field indicating an offset or length
261 relative to a debug info section, specified to be 4 bytes in the
262 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
263 as PTR_SIZE. */
265 #ifndef DWARF_OFFSET_SIZE
266 #define DWARF_OFFSET_SIZE 4
267 #endif
269 /* According to the (draft) DWARF 3 specification, the initial length
270 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
271 bytes are 0xffffffff, followed by the length stored in the next 8
272 bytes.
274 However, the SGI/MIPS ABI uses an initial length which is equal to
275 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
277 #ifndef DWARF_INITIAL_LENGTH_SIZE
278 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
279 #endif
281 #define DWARF_VERSION 2
283 /* Round SIZE up to the nearest BOUNDARY. */
284 #define DWARF_ROUND(SIZE,BOUNDARY) \
285 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
287 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
288 #ifndef DWARF_CIE_DATA_ALIGNMENT
289 #ifdef STACK_GROWS_DOWNWARD
290 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
291 #else
292 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
293 #endif
294 #endif
296 /* CIE identifier. */
297 #if HOST_BITS_PER_WIDE_INT >= 64
298 #define DWARF_CIE_ID \
299 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
300 #else
301 #define DWARF_CIE_ID DW_CIE_ID
302 #endif
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head;
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde;
327 #endif
329 struct indirect_string_node GTY(())
331 const char *str;
332 unsigned int refcount;
333 unsigned int form;
334 char *label;
337 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
339 static GTY(()) int dw2_string_counter;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num;
342 /* True if the compilation unit places functions in more than one section. */
343 static GTY(()) bool have_multiple_function_sections = false;
345 /* Whether the default text and cold text sections have been used at all. */
347 static GTY(()) bool text_section_used = false;
348 static GTY(()) bool cold_text_section_used = false;
350 /* The default cold text section. */
351 static GTY(()) section *cold_text_section;
353 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
355 /* Forward declarations for functions defined in this file. */
357 static char *stripattributes (const char *);
358 static const char *dwarf_cfi_name (unsigned);
359 static dw_cfi_ref new_cfi (void);
360 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
361 static void add_fde_cfi (const char *, dw_cfi_ref);
362 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
363 static void lookup_cfa (dw_cfa_location *);
364 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
365 #ifdef DWARF2_UNWIND_INFO
366 static void initial_return_save (rtx);
367 #endif
368 static HOST_WIDE_INT stack_adjust_offset (const_rtx);
369 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
370 static void output_call_frame_info (int);
371 static void dwarf2out_note_section_used (void);
372 static void dwarf2out_stack_adjust (rtx, bool);
373 static void flush_queued_reg_saves (void);
374 static bool clobbers_queued_reg_save (const_rtx);
375 static void dwarf2out_frame_debug_expr (rtx, const char *);
377 /* Support for complex CFA locations. */
378 static void output_cfa_loc (dw_cfi_ref);
379 static void get_cfa_from_loc_descr (dw_cfa_location *,
380 struct dw_loc_descr_struct *);
381 static struct dw_loc_descr_struct *build_cfa_loc
382 (dw_cfa_location *, HOST_WIDE_INT);
383 static void def_cfa_1 (const char *, dw_cfa_location *);
385 /* How to start an assembler comment. */
386 #ifndef ASM_COMMENT_START
387 #define ASM_COMMENT_START ";#"
388 #endif
390 /* Data and reference forms for relocatable data. */
391 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
392 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
394 #ifndef DEBUG_FRAME_SECTION
395 #define DEBUG_FRAME_SECTION ".debug_frame"
396 #endif
398 #ifndef FUNC_BEGIN_LABEL
399 #define FUNC_BEGIN_LABEL "LFB"
400 #endif
402 #ifndef FUNC_END_LABEL
403 #define FUNC_END_LABEL "LFE"
404 #endif
406 #ifndef FRAME_BEGIN_LABEL
407 #define FRAME_BEGIN_LABEL "Lframe"
408 #endif
409 #define CIE_AFTER_SIZE_LABEL "LSCIE"
410 #define CIE_END_LABEL "LECIE"
411 #define FDE_LABEL "LSFDE"
412 #define FDE_AFTER_SIZE_LABEL "LASFDE"
413 #define FDE_END_LABEL "LEFDE"
414 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
415 #define LINE_NUMBER_END_LABEL "LELT"
416 #define LN_PROLOG_AS_LABEL "LASLTP"
417 #define LN_PROLOG_END_LABEL "LELTP"
418 #define DIE_LABEL_PREFIX "DW"
420 /* The DWARF 2 CFA column which tracks the return address. Normally this
421 is the column for PC, or the first column after all of the hard
422 registers. */
423 #ifndef DWARF_FRAME_RETURN_COLUMN
424 #ifdef PC_REGNUM
425 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
426 #else
427 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
428 #endif
429 #endif
431 /* The mapping from gcc register number to DWARF 2 CFA column number. By
432 default, we just provide columns for all registers. */
433 #ifndef DWARF_FRAME_REGNUM
434 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
435 #endif
437 /* Hook used by __throw. */
440 expand_builtin_dwarf_sp_column (void)
442 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
443 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
446 /* Return a pointer to a copy of the section string name S with all
447 attributes stripped off, and an asterisk prepended (for assemble_name). */
449 static inline char *
450 stripattributes (const char *s)
452 char *stripped = XNEWVEC (char, strlen (s) + 2);
453 char *p = stripped;
455 *p++ = '*';
457 while (*s && *s != ',')
458 *p++ = *s++;
460 *p = '\0';
461 return stripped;
464 /* MEM is a memory reference for the register size table, each element of
465 which has mode MODE. Initialize column C as a return address column. */
467 static void
468 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
470 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
471 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
472 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
475 /* Generate code to initialize the register size table. */
477 void
478 expand_builtin_init_dwarf_reg_sizes (tree address)
480 unsigned int i;
481 enum machine_mode mode = TYPE_MODE (char_type_node);
482 rtx addr = expand_normal (address);
483 rtx mem = gen_rtx_MEM (BLKmode, addr);
484 bool wrote_return_column = false;
486 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
488 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
490 if (rnum < DWARF_FRAME_REGISTERS)
492 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
493 enum machine_mode save_mode = reg_raw_mode[i];
494 HOST_WIDE_INT size;
496 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
497 save_mode = choose_hard_reg_mode (i, 1, true);
498 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
500 if (save_mode == VOIDmode)
501 continue;
502 wrote_return_column = true;
504 size = GET_MODE_SIZE (save_mode);
505 if (offset < 0)
506 continue;
508 emit_move_insn (adjust_address (mem, mode, offset),
509 gen_int_mode (size, mode));
513 if (!wrote_return_column)
514 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
516 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
517 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
518 #endif
520 targetm.init_dwarf_reg_sizes_extra (address);
523 /* Convert a DWARF call frame info. operation to its string name */
525 static const char *
526 dwarf_cfi_name (unsigned int cfi_opc)
528 switch (cfi_opc)
530 case DW_CFA_advance_loc:
531 return "DW_CFA_advance_loc";
532 case DW_CFA_offset:
533 return "DW_CFA_offset";
534 case DW_CFA_restore:
535 return "DW_CFA_restore";
536 case DW_CFA_nop:
537 return "DW_CFA_nop";
538 case DW_CFA_set_loc:
539 return "DW_CFA_set_loc";
540 case DW_CFA_advance_loc1:
541 return "DW_CFA_advance_loc1";
542 case DW_CFA_advance_loc2:
543 return "DW_CFA_advance_loc2";
544 case DW_CFA_advance_loc4:
545 return "DW_CFA_advance_loc4";
546 case DW_CFA_offset_extended:
547 return "DW_CFA_offset_extended";
548 case DW_CFA_restore_extended:
549 return "DW_CFA_restore_extended";
550 case DW_CFA_undefined:
551 return "DW_CFA_undefined";
552 case DW_CFA_same_value:
553 return "DW_CFA_same_value";
554 case DW_CFA_register:
555 return "DW_CFA_register";
556 case DW_CFA_remember_state:
557 return "DW_CFA_remember_state";
558 case DW_CFA_restore_state:
559 return "DW_CFA_restore_state";
560 case DW_CFA_def_cfa:
561 return "DW_CFA_def_cfa";
562 case DW_CFA_def_cfa_register:
563 return "DW_CFA_def_cfa_register";
564 case DW_CFA_def_cfa_offset:
565 return "DW_CFA_def_cfa_offset";
567 /* DWARF 3 */
568 case DW_CFA_def_cfa_expression:
569 return "DW_CFA_def_cfa_expression";
570 case DW_CFA_expression:
571 return "DW_CFA_expression";
572 case DW_CFA_offset_extended_sf:
573 return "DW_CFA_offset_extended_sf";
574 case DW_CFA_def_cfa_sf:
575 return "DW_CFA_def_cfa_sf";
576 case DW_CFA_def_cfa_offset_sf:
577 return "DW_CFA_def_cfa_offset_sf";
579 /* SGI/MIPS specific */
580 case DW_CFA_MIPS_advance_loc8:
581 return "DW_CFA_MIPS_advance_loc8";
583 /* GNU extensions */
584 case DW_CFA_GNU_window_save:
585 return "DW_CFA_GNU_window_save";
586 case DW_CFA_GNU_args_size:
587 return "DW_CFA_GNU_args_size";
588 case DW_CFA_GNU_negative_offset_extended:
589 return "DW_CFA_GNU_negative_offset_extended";
591 default:
592 return "DW_CFA_<unknown>";
596 /* Return a pointer to a newly allocated Call Frame Instruction. */
598 static inline dw_cfi_ref
599 new_cfi (void)
601 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
603 cfi->dw_cfi_next = NULL;
604 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
605 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
607 return cfi;
610 /* Add a Call Frame Instruction to list of instructions. */
612 static inline void
613 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
615 dw_cfi_ref *p;
617 /* Find the end of the chain. */
618 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
621 *p = cfi;
624 /* Generate a new label for the CFI info to refer to. */
626 char *
627 dwarf2out_cfi_label (void)
629 static char label[20];
631 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
632 ASM_OUTPUT_LABEL (asm_out_file, label);
633 return label;
636 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
637 or to the CIE if LABEL is NULL. */
639 static void
640 add_fde_cfi (const char *label, dw_cfi_ref cfi)
642 if (label)
644 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
646 if (*label == 0)
647 label = dwarf2out_cfi_label ();
649 if (fde->dw_fde_current_label == NULL
650 || strcmp (label, fde->dw_fde_current_label) != 0)
652 dw_cfi_ref xcfi;
654 label = xstrdup (label);
656 /* Set the location counter to the new label. */
657 xcfi = new_cfi ();
658 /* If we have a current label, advance from there, otherwise
659 set the location directly using set_loc. */
660 xcfi->dw_cfi_opc = fde->dw_fde_current_label
661 ? DW_CFA_advance_loc4
662 : DW_CFA_set_loc;
663 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
664 add_cfi (&fde->dw_fde_cfi, xcfi);
666 fde->dw_fde_current_label = label;
669 add_cfi (&fde->dw_fde_cfi, cfi);
672 else
673 add_cfi (&cie_cfi_head, cfi);
676 /* Subroutine of lookup_cfa. */
678 static void
679 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
681 switch (cfi->dw_cfi_opc)
683 case DW_CFA_def_cfa_offset:
684 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
685 break;
686 case DW_CFA_def_cfa_offset_sf:
687 loc->offset
688 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
689 break;
690 case DW_CFA_def_cfa_register:
691 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
692 break;
693 case DW_CFA_def_cfa:
694 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
695 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
696 break;
697 case DW_CFA_def_cfa_sf:
698 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
699 loc->offset
700 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
701 break;
702 case DW_CFA_def_cfa_expression:
703 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
704 break;
705 default:
706 break;
710 /* Find the previous value for the CFA. */
712 static void
713 lookup_cfa (dw_cfa_location *loc)
715 dw_cfi_ref cfi;
717 loc->reg = INVALID_REGNUM;
718 loc->offset = 0;
719 loc->indirect = 0;
720 loc->base_offset = 0;
722 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
723 lookup_cfa_1 (cfi, loc);
725 if (fde_table_in_use)
727 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
728 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
729 lookup_cfa_1 (cfi, loc);
733 /* The current rule for calculating the DWARF2 canonical frame address. */
734 static dw_cfa_location cfa;
736 /* The register used for saving registers to the stack, and its offset
737 from the CFA. */
738 static dw_cfa_location cfa_store;
740 /* The running total of the size of arguments pushed onto the stack. */
741 static HOST_WIDE_INT args_size;
743 /* The last args_size we actually output. */
744 static HOST_WIDE_INT old_args_size;
746 /* Entry point to update the canonical frame address (CFA).
747 LABEL is passed to add_fde_cfi. The value of CFA is now to be
748 calculated from REG+OFFSET. */
750 void
751 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
753 dw_cfa_location loc;
754 loc.indirect = 0;
755 loc.base_offset = 0;
756 loc.reg = reg;
757 loc.offset = offset;
758 def_cfa_1 (label, &loc);
761 /* Determine if two dw_cfa_location structures define the same data. */
763 static bool
764 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
766 return (loc1->reg == loc2->reg
767 && loc1->offset == loc2->offset
768 && loc1->indirect == loc2->indirect
769 && (loc1->indirect == 0
770 || loc1->base_offset == loc2->base_offset));
773 /* This routine does the actual work. The CFA is now calculated from
774 the dw_cfa_location structure. */
776 static void
777 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
779 dw_cfi_ref cfi;
780 dw_cfa_location old_cfa, loc;
782 cfa = *loc_p;
783 loc = *loc_p;
785 if (cfa_store.reg == loc.reg && loc.indirect == 0)
786 cfa_store.offset = loc.offset;
788 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
789 lookup_cfa (&old_cfa);
791 /* If nothing changed, no need to issue any call frame instructions. */
792 if (cfa_equal_p (&loc, &old_cfa))
793 return;
795 cfi = new_cfi ();
797 if (loc.reg == old_cfa.reg && !loc.indirect)
799 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
800 the CFA register did not change but the offset did. */
801 if (loc.offset < 0)
803 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
804 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
806 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
807 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
809 else
811 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
812 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
816 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
817 else if (loc.offset == old_cfa.offset
818 && old_cfa.reg != INVALID_REGNUM
819 && !loc.indirect)
821 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
822 indicating the CFA register has changed to <register> but the
823 offset has not changed. */
824 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
825 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
827 #endif
829 else if (loc.indirect == 0)
831 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
832 indicating the CFA register has changed to <register> with
833 the specified offset. */
834 if (loc.offset < 0)
836 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
837 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
839 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
840 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
841 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
843 else
845 cfi->dw_cfi_opc = DW_CFA_def_cfa;
846 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
847 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
850 else
852 /* Construct a DW_CFA_def_cfa_expression instruction to
853 calculate the CFA using a full location expression since no
854 register-offset pair is available. */
855 struct dw_loc_descr_struct *loc_list;
857 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
858 loc_list = build_cfa_loc (&loc, 0);
859 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
862 add_fde_cfi (label, cfi);
865 /* Add the CFI for saving a register. REG is the CFA column number.
866 LABEL is passed to add_fde_cfi.
867 If SREG is -1, the register is saved at OFFSET from the CFA;
868 otherwise it is saved in SREG. */
870 static void
871 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
873 dw_cfi_ref cfi = new_cfi ();
875 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
877 if (sreg == INVALID_REGNUM)
879 if (reg & ~0x3f)
880 /* The register number won't fit in 6 bits, so we have to use
881 the long form. */
882 cfi->dw_cfi_opc = DW_CFA_offset_extended;
883 else
884 cfi->dw_cfi_opc = DW_CFA_offset;
886 #ifdef ENABLE_CHECKING
888 /* If we get an offset that is not a multiple of
889 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
890 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
891 description. */
892 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
894 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
896 #endif
897 offset /= DWARF_CIE_DATA_ALIGNMENT;
898 if (offset < 0)
899 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
901 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
903 else if (sreg == reg)
904 cfi->dw_cfi_opc = DW_CFA_same_value;
905 else
907 cfi->dw_cfi_opc = DW_CFA_register;
908 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
911 add_fde_cfi (label, cfi);
914 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
915 This CFI tells the unwinder that it needs to restore the window registers
916 from the previous frame's window save area.
918 ??? Perhaps we should note in the CIE where windows are saved (instead of
919 assuming 0(cfa)) and what registers are in the window. */
921 void
922 dwarf2out_window_save (const char *label)
924 dw_cfi_ref cfi = new_cfi ();
926 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
927 add_fde_cfi (label, cfi);
930 /* Add a CFI to update the running total of the size of arguments
931 pushed onto the stack. */
933 void
934 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
936 dw_cfi_ref cfi;
938 if (size == old_args_size)
939 return;
941 old_args_size = size;
943 cfi = new_cfi ();
944 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
945 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
946 add_fde_cfi (label, cfi);
949 /* Entry point for saving a register to the stack. REG is the GCC register
950 number. LABEL and OFFSET are passed to reg_save. */
952 void
953 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
955 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
958 /* Entry point for saving the return address in the stack.
959 LABEL and OFFSET are passed to reg_save. */
961 void
962 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
964 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
967 /* Entry point for saving the return address in a register.
968 LABEL and SREG are passed to reg_save. */
970 void
971 dwarf2out_return_reg (const char *label, unsigned int sreg)
973 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
976 #ifdef DWARF2_UNWIND_INFO
977 /* Record the initial position of the return address. RTL is
978 INCOMING_RETURN_ADDR_RTX. */
980 static void
981 initial_return_save (rtx rtl)
983 unsigned int reg = INVALID_REGNUM;
984 HOST_WIDE_INT offset = 0;
986 switch (GET_CODE (rtl))
988 case REG:
989 /* RA is in a register. */
990 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
991 break;
993 case MEM:
994 /* RA is on the stack. */
995 rtl = XEXP (rtl, 0);
996 switch (GET_CODE (rtl))
998 case REG:
999 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
1000 offset = 0;
1001 break;
1003 case PLUS:
1004 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1005 offset = INTVAL (XEXP (rtl, 1));
1006 break;
1008 case MINUS:
1009 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1010 offset = -INTVAL (XEXP (rtl, 1));
1011 break;
1013 default:
1014 gcc_unreachable ();
1017 break;
1019 case PLUS:
1020 /* The return address is at some offset from any value we can
1021 actually load. For instance, on the SPARC it is in %i7+8. Just
1022 ignore the offset for now; it doesn't matter for unwinding frames. */
1023 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1024 initial_return_save (XEXP (rtl, 0));
1025 return;
1027 default:
1028 gcc_unreachable ();
1031 if (reg != DWARF_FRAME_RETURN_COLUMN)
1032 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1034 #endif
1036 /* Given a SET, calculate the amount of stack adjustment it
1037 contains. */
1039 static HOST_WIDE_INT
1040 stack_adjust_offset (const_rtx pattern)
1042 const_rtx src = SET_SRC (pattern);
1043 const_rtx dest = SET_DEST (pattern);
1044 HOST_WIDE_INT offset = 0;
1045 enum rtx_code code;
1047 if (dest == stack_pointer_rtx)
1049 /* (set (reg sp) (plus (reg sp) (const_int))) */
1050 code = GET_CODE (src);
1051 if (! (code == PLUS || code == MINUS)
1052 || XEXP (src, 0) != stack_pointer_rtx
1053 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1054 return 0;
1056 offset = INTVAL (XEXP (src, 1));
1057 if (code == PLUS)
1058 offset = -offset;
1060 else if (MEM_P (dest))
1062 /* (set (mem (pre_dec (reg sp))) (foo)) */
1063 src = XEXP (dest, 0);
1064 code = GET_CODE (src);
1066 switch (code)
1068 case PRE_MODIFY:
1069 case POST_MODIFY:
1070 if (XEXP (src, 0) == stack_pointer_rtx)
1072 rtx val = XEXP (XEXP (src, 1), 1);
1073 /* We handle only adjustments by constant amount. */
1074 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1075 && GET_CODE (val) == CONST_INT);
1076 offset = -INTVAL (val);
1077 break;
1079 return 0;
1081 case PRE_DEC:
1082 case POST_DEC:
1083 if (XEXP (src, 0) == stack_pointer_rtx)
1085 offset = GET_MODE_SIZE (GET_MODE (dest));
1086 break;
1088 return 0;
1090 case PRE_INC:
1091 case POST_INC:
1092 if (XEXP (src, 0) == stack_pointer_rtx)
1094 offset = -GET_MODE_SIZE (GET_MODE (dest));
1095 break;
1097 return 0;
1099 default:
1100 return 0;
1103 else
1104 return 0;
1106 return offset;
1109 /* Check INSN to see if it looks like a push or a stack adjustment, and
1110 make a note of it if it does. EH uses this information to find out how
1111 much extra space it needs to pop off the stack. */
1113 static void
1114 dwarf2out_stack_adjust (rtx insn, bool after_p)
1116 HOST_WIDE_INT offset;
1117 const char *label;
1118 int i;
1120 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1121 with this function. Proper support would require all frame-related
1122 insns to be marked, and to be able to handle saving state around
1123 epilogues textually in the middle of the function. */
1124 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1125 return;
1127 /* If only calls can throw, and we have a frame pointer,
1128 save up adjustments until we see the CALL_INSN. */
1129 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1131 if (CALL_P (insn) && !after_p)
1133 /* Extract the size of the args from the CALL rtx itself. */
1134 insn = PATTERN (insn);
1135 if (GET_CODE (insn) == PARALLEL)
1136 insn = XVECEXP (insn, 0, 0);
1137 if (GET_CODE (insn) == SET)
1138 insn = SET_SRC (insn);
1139 gcc_assert (GET_CODE (insn) == CALL);
1140 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1142 return;
1145 if (CALL_P (insn) && !after_p)
1147 if (!flag_asynchronous_unwind_tables)
1148 dwarf2out_args_size ("", args_size);
1149 return;
1151 else if (BARRIER_P (insn))
1153 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1154 the compiler will have already emitted a stack adjustment, but
1155 doesn't bother for calls to noreturn functions. */
1156 #ifdef STACK_GROWS_DOWNWARD
1157 offset = -args_size;
1158 #else
1159 offset = args_size;
1160 #endif
1162 else if (GET_CODE (PATTERN (insn)) == SET)
1163 offset = stack_adjust_offset (PATTERN (insn));
1164 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1165 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1167 /* There may be stack adjustments inside compound insns. Search
1168 for them. */
1169 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1170 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1171 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1173 else
1174 return;
1176 if (offset == 0)
1177 return;
1179 if (cfa.reg == STACK_POINTER_REGNUM)
1180 cfa.offset += offset;
1182 #ifndef STACK_GROWS_DOWNWARD
1183 offset = -offset;
1184 #endif
1186 args_size += offset;
1187 if (args_size < 0)
1188 args_size = 0;
1190 label = dwarf2out_cfi_label ();
1191 def_cfa_1 (label, &cfa);
1192 if (flag_asynchronous_unwind_tables)
1193 dwarf2out_args_size (label, args_size);
1196 #endif
1198 /* We delay emitting a register save until either (a) we reach the end
1199 of the prologue or (b) the register is clobbered. This clusters
1200 register saves so that there are fewer pc advances. */
1202 struct queued_reg_save GTY(())
1204 struct queued_reg_save *next;
1205 rtx reg;
1206 HOST_WIDE_INT cfa_offset;
1207 rtx saved_reg;
1210 static GTY(()) struct queued_reg_save *queued_reg_saves;
1212 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1213 struct reg_saved_in_data GTY(()) {
1214 rtx orig_reg;
1215 rtx saved_in_reg;
1218 /* A list of registers saved in other registers.
1219 The list intentionally has a small maximum capacity of 4; if your
1220 port needs more than that, you might consider implementing a
1221 more efficient data structure. */
1222 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1223 static GTY(()) size_t num_regs_saved_in_regs;
1225 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1226 static const char *last_reg_save_label;
1228 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1229 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1231 static void
1232 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1234 struct queued_reg_save *q;
1236 /* Duplicates waste space, but it's also necessary to remove them
1237 for correctness, since the queue gets output in reverse
1238 order. */
1239 for (q = queued_reg_saves; q != NULL; q = q->next)
1240 if (REGNO (q->reg) == REGNO (reg))
1241 break;
1243 if (q == NULL)
1245 q = ggc_alloc (sizeof (*q));
1246 q->next = queued_reg_saves;
1247 queued_reg_saves = q;
1250 q->reg = reg;
1251 q->cfa_offset = offset;
1252 q->saved_reg = sreg;
1254 last_reg_save_label = label;
1257 /* Output all the entries in QUEUED_REG_SAVES. */
1259 static void
1260 flush_queued_reg_saves (void)
1262 struct queued_reg_save *q;
1264 for (q = queued_reg_saves; q; q = q->next)
1266 size_t i;
1267 unsigned int reg, sreg;
1269 for (i = 0; i < num_regs_saved_in_regs; i++)
1270 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1271 break;
1272 if (q->saved_reg && i == num_regs_saved_in_regs)
1274 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1275 num_regs_saved_in_regs++;
1277 if (i != num_regs_saved_in_regs)
1279 regs_saved_in_regs[i].orig_reg = q->reg;
1280 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1283 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1284 if (q->saved_reg)
1285 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1286 else
1287 sreg = INVALID_REGNUM;
1288 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1291 queued_reg_saves = NULL;
1292 last_reg_save_label = NULL;
1295 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1296 location for? Or, does it clobber a register which we've previously
1297 said that some other register is saved in, and for which we now
1298 have a new location for? */
1300 static bool
1301 clobbers_queued_reg_save (const_rtx insn)
1303 struct queued_reg_save *q;
1305 for (q = queued_reg_saves; q; q = q->next)
1307 size_t i;
1308 if (modified_in_p (q->reg, insn))
1309 return true;
1310 for (i = 0; i < num_regs_saved_in_regs; i++)
1311 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1312 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1313 return true;
1316 return false;
1319 /* Entry point for saving the first register into the second. */
1321 void
1322 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1324 size_t i;
1325 unsigned int regno, sregno;
1327 for (i = 0; i < num_regs_saved_in_regs; i++)
1328 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1329 break;
1330 if (i == num_regs_saved_in_regs)
1332 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1333 num_regs_saved_in_regs++;
1335 regs_saved_in_regs[i].orig_reg = reg;
1336 regs_saved_in_regs[i].saved_in_reg = sreg;
1338 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1339 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1340 reg_save (label, regno, sregno, 0);
1343 /* What register, if any, is currently saved in REG? */
1345 static rtx
1346 reg_saved_in (rtx reg)
1348 unsigned int regn = REGNO (reg);
1349 size_t i;
1350 struct queued_reg_save *q;
1352 for (q = queued_reg_saves; q; q = q->next)
1353 if (q->saved_reg && regn == REGNO (q->saved_reg))
1354 return q->reg;
1356 for (i = 0; i < num_regs_saved_in_regs; i++)
1357 if (regs_saved_in_regs[i].saved_in_reg
1358 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1359 return regs_saved_in_regs[i].orig_reg;
1361 return NULL_RTX;
1365 /* A temporary register holding an integral value used in adjusting SP
1366 or setting up the store_reg. The "offset" field holds the integer
1367 value, not an offset. */
1368 static dw_cfa_location cfa_temp;
1370 /* Record call frame debugging information for an expression EXPR,
1371 which either sets SP or FP (adjusting how we calculate the frame
1372 address) or saves a register to the stack or another register.
1373 LABEL indicates the address of EXPR.
1375 This function encodes a state machine mapping rtxes to actions on
1376 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1377 users need not read the source code.
1379 The High-Level Picture
1381 Changes in the register we use to calculate the CFA: Currently we
1382 assume that if you copy the CFA register into another register, we
1383 should take the other one as the new CFA register; this seems to
1384 work pretty well. If it's wrong for some target, it's simple
1385 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1387 Changes in the register we use for saving registers to the stack:
1388 This is usually SP, but not always. Again, we deduce that if you
1389 copy SP into another register (and SP is not the CFA register),
1390 then the new register is the one we will be using for register
1391 saves. This also seems to work.
1393 Register saves: There's not much guesswork about this one; if
1394 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1395 register save, and the register used to calculate the destination
1396 had better be the one we think we're using for this purpose.
1397 It's also assumed that a copy from a call-saved register to another
1398 register is saving that register if RTX_FRAME_RELATED_P is set on
1399 that instruction. If the copy is from a call-saved register to
1400 the *same* register, that means that the register is now the same
1401 value as in the caller.
1403 Except: If the register being saved is the CFA register, and the
1404 offset is nonzero, we are saving the CFA, so we assume we have to
1405 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1406 the intent is to save the value of SP from the previous frame.
1408 In addition, if a register has previously been saved to a different
1409 register,
1411 Invariants / Summaries of Rules
1413 cfa current rule for calculating the CFA. It usually
1414 consists of a register and an offset.
1415 cfa_store register used by prologue code to save things to the stack
1416 cfa_store.offset is the offset from the value of
1417 cfa_store.reg to the actual CFA
1418 cfa_temp register holding an integral value. cfa_temp.offset
1419 stores the value, which will be used to adjust the
1420 stack pointer. cfa_temp is also used like cfa_store,
1421 to track stores to the stack via fp or a temp reg.
1423 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1424 with cfa.reg as the first operand changes the cfa.reg and its
1425 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1426 cfa_temp.offset.
1428 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1429 expression yielding a constant. This sets cfa_temp.reg
1430 and cfa_temp.offset.
1432 Rule 5: Create a new register cfa_store used to save items to the
1433 stack.
1435 Rules 10-14: Save a register to the stack. Define offset as the
1436 difference of the original location and cfa_store's
1437 location (or cfa_temp's location if cfa_temp is used).
1439 The Rules
1441 "{a,b}" indicates a choice of a xor b.
1442 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1444 Rule 1:
1445 (set <reg1> <reg2>:cfa.reg)
1446 effects: cfa.reg = <reg1>
1447 cfa.offset unchanged
1448 cfa_temp.reg = <reg1>
1449 cfa_temp.offset = cfa.offset
1451 Rule 2:
1452 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1453 {<const_int>,<reg>:cfa_temp.reg}))
1454 effects: cfa.reg = sp if fp used
1455 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1456 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1457 if cfa_store.reg==sp
1459 Rule 3:
1460 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1461 effects: cfa.reg = fp
1462 cfa_offset += +/- <const_int>
1464 Rule 4:
1465 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1466 constraints: <reg1> != fp
1467 <reg1> != sp
1468 effects: cfa.reg = <reg1>
1469 cfa_temp.reg = <reg1>
1470 cfa_temp.offset = cfa.offset
1472 Rule 5:
1473 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1474 constraints: <reg1> != fp
1475 <reg1> != sp
1476 effects: cfa_store.reg = <reg1>
1477 cfa_store.offset = cfa.offset - cfa_temp.offset
1479 Rule 6:
1480 (set <reg> <const_int>)
1481 effects: cfa_temp.reg = <reg>
1482 cfa_temp.offset = <const_int>
1484 Rule 7:
1485 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1486 effects: cfa_temp.reg = <reg1>
1487 cfa_temp.offset |= <const_int>
1489 Rule 8:
1490 (set <reg> (high <exp>))
1491 effects: none
1493 Rule 9:
1494 (set <reg> (lo_sum <exp> <const_int>))
1495 effects: cfa_temp.reg = <reg>
1496 cfa_temp.offset = <const_int>
1498 Rule 10:
1499 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1500 effects: cfa_store.offset -= <const_int>
1501 cfa.offset = cfa_store.offset if cfa.reg == sp
1502 cfa.reg = sp
1503 cfa.base_offset = -cfa_store.offset
1505 Rule 11:
1506 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1507 effects: cfa_store.offset += -/+ mode_size(mem)
1508 cfa.offset = cfa_store.offset if cfa.reg == sp
1509 cfa.reg = sp
1510 cfa.base_offset = -cfa_store.offset
1512 Rule 12:
1513 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1515 <reg2>)
1516 effects: cfa.reg = <reg1>
1517 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1519 Rule 13:
1520 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1521 effects: cfa.reg = <reg1>
1522 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1524 Rule 14:
1525 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1526 effects: cfa.reg = <reg1>
1527 cfa.base_offset = -cfa_temp.offset
1528 cfa_temp.offset -= mode_size(mem)
1530 Rule 15:
1531 (set <reg> {unspec, unspec_volatile})
1532 effects: target-dependent */
1534 static void
1535 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1537 rtx src, dest, span;
1538 HOST_WIDE_INT offset;
1540 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1541 the PARALLEL independently. The first element is always processed if
1542 it is a SET. This is for backward compatibility. Other elements
1543 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1544 flag is set in them. */
1545 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1547 int par_index;
1548 int limit = XVECLEN (expr, 0);
1549 rtx elem;
1551 /* PARALLELs have strict read-modify-write semantics, so we
1552 ought to evaluate every rvalue before changing any lvalue.
1553 It's cumbersome to do that in general, but there's an
1554 easy approximation that is enough for all current users:
1555 handle register saves before register assignments. */
1556 if (GET_CODE (expr) == PARALLEL)
1557 for (par_index = 0; par_index < limit; par_index++)
1559 elem = XVECEXP (expr, 0, par_index);
1560 if (GET_CODE (elem) == SET
1561 && MEM_P (SET_DEST (elem))
1562 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1563 dwarf2out_frame_debug_expr (elem, label);
1566 for (par_index = 0; par_index < limit; par_index++)
1568 elem = XVECEXP (expr, 0, par_index);
1569 if (GET_CODE (elem) == SET
1570 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1571 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1572 dwarf2out_frame_debug_expr (elem, label);
1574 return;
1577 gcc_assert (GET_CODE (expr) == SET);
1579 src = SET_SRC (expr);
1580 dest = SET_DEST (expr);
1582 if (REG_P (src))
1584 rtx rsi = reg_saved_in (src);
1585 if (rsi)
1586 src = rsi;
1589 switch (GET_CODE (dest))
1591 case REG:
1592 switch (GET_CODE (src))
1594 /* Setting FP from SP. */
1595 case REG:
1596 if (cfa.reg == (unsigned) REGNO (src))
1598 /* Rule 1 */
1599 /* Update the CFA rule wrt SP or FP. Make sure src is
1600 relative to the current CFA register.
1602 We used to require that dest be either SP or FP, but the
1603 ARM copies SP to a temporary register, and from there to
1604 FP. So we just rely on the backends to only set
1605 RTX_FRAME_RELATED_P on appropriate insns. */
1606 cfa.reg = REGNO (dest);
1607 cfa_temp.reg = cfa.reg;
1608 cfa_temp.offset = cfa.offset;
1610 else
1612 /* Saving a register in a register. */
1613 gcc_assert (!fixed_regs [REGNO (dest)]
1614 /* For the SPARC and its register window. */
1615 || (DWARF_FRAME_REGNUM (REGNO (src))
1616 == DWARF_FRAME_RETURN_COLUMN));
1617 queue_reg_save (label, src, dest, 0);
1619 break;
1621 case PLUS:
1622 case MINUS:
1623 case LO_SUM:
1624 if (dest == stack_pointer_rtx)
1626 /* Rule 2 */
1627 /* Adjusting SP. */
1628 switch (GET_CODE (XEXP (src, 1)))
1630 case CONST_INT:
1631 offset = INTVAL (XEXP (src, 1));
1632 break;
1633 case REG:
1634 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1635 == cfa_temp.reg);
1636 offset = cfa_temp.offset;
1637 break;
1638 default:
1639 gcc_unreachable ();
1642 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1644 /* Restoring SP from FP in the epilogue. */
1645 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1646 cfa.reg = STACK_POINTER_REGNUM;
1648 else if (GET_CODE (src) == LO_SUM)
1649 /* Assume we've set the source reg of the LO_SUM from sp. */
1651 else
1652 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1654 if (GET_CODE (src) != MINUS)
1655 offset = -offset;
1656 if (cfa.reg == STACK_POINTER_REGNUM)
1657 cfa.offset += offset;
1658 if (cfa_store.reg == STACK_POINTER_REGNUM)
1659 cfa_store.offset += offset;
1661 else if (dest == hard_frame_pointer_rtx)
1663 /* Rule 3 */
1664 /* Either setting the FP from an offset of the SP,
1665 or adjusting the FP */
1666 gcc_assert (frame_pointer_needed);
1668 gcc_assert (REG_P (XEXP (src, 0))
1669 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1670 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1671 offset = INTVAL (XEXP (src, 1));
1672 if (GET_CODE (src) != MINUS)
1673 offset = -offset;
1674 cfa.offset += offset;
1675 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1677 else
1679 gcc_assert (GET_CODE (src) != MINUS);
1681 /* Rule 4 */
1682 if (REG_P (XEXP (src, 0))
1683 && REGNO (XEXP (src, 0)) == cfa.reg
1684 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1686 /* Setting a temporary CFA register that will be copied
1687 into the FP later on. */
1688 offset = - INTVAL (XEXP (src, 1));
1689 cfa.offset += offset;
1690 cfa.reg = REGNO (dest);
1691 /* Or used to save regs to the stack. */
1692 cfa_temp.reg = cfa.reg;
1693 cfa_temp.offset = cfa.offset;
1696 /* Rule 5 */
1697 else if (REG_P (XEXP (src, 0))
1698 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1699 && XEXP (src, 1) == stack_pointer_rtx)
1701 /* Setting a scratch register that we will use instead
1702 of SP for saving registers to the stack. */
1703 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1704 cfa_store.reg = REGNO (dest);
1705 cfa_store.offset = cfa.offset - cfa_temp.offset;
1708 /* Rule 9 */
1709 else if (GET_CODE (src) == LO_SUM
1710 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1712 cfa_temp.reg = REGNO (dest);
1713 cfa_temp.offset = INTVAL (XEXP (src, 1));
1715 else
1716 gcc_unreachable ();
1718 break;
1720 /* Rule 6 */
1721 case CONST_INT:
1722 cfa_temp.reg = REGNO (dest);
1723 cfa_temp.offset = INTVAL (src);
1724 break;
1726 /* Rule 7 */
1727 case IOR:
1728 gcc_assert (REG_P (XEXP (src, 0))
1729 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1730 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1732 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1733 cfa_temp.reg = REGNO (dest);
1734 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1735 break;
1737 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1738 which will fill in all of the bits. */
1739 /* Rule 8 */
1740 case HIGH:
1741 break;
1743 /* Rule 15 */
1744 case UNSPEC:
1745 case UNSPEC_VOLATILE:
1746 gcc_assert (targetm.dwarf_handle_frame_unspec);
1747 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1748 return;
1750 default:
1751 gcc_unreachable ();
1754 def_cfa_1 (label, &cfa);
1755 break;
1757 case MEM:
1758 gcc_assert (REG_P (src));
1760 /* Saving a register to the stack. Make sure dest is relative to the
1761 CFA register. */
1762 switch (GET_CODE (XEXP (dest, 0)))
1764 /* Rule 10 */
1765 /* With a push. */
1766 case PRE_MODIFY:
1767 /* We can't handle variable size modifications. */
1768 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1769 == CONST_INT);
1770 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1772 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1773 && cfa_store.reg == STACK_POINTER_REGNUM);
1775 cfa_store.offset += offset;
1776 if (cfa.reg == STACK_POINTER_REGNUM)
1777 cfa.offset = cfa_store.offset;
1779 offset = -cfa_store.offset;
1780 break;
1782 /* Rule 11 */
1783 case PRE_INC:
1784 case PRE_DEC:
1785 offset = GET_MODE_SIZE (GET_MODE (dest));
1786 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1787 offset = -offset;
1789 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1790 && cfa_store.reg == STACK_POINTER_REGNUM);
1792 cfa_store.offset += offset;
1793 if (cfa.reg == STACK_POINTER_REGNUM)
1794 cfa.offset = cfa_store.offset;
1796 offset = -cfa_store.offset;
1797 break;
1799 /* Rule 12 */
1800 /* With an offset. */
1801 case PLUS:
1802 case MINUS:
1803 case LO_SUM:
1805 int regno;
1807 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1808 && REG_P (XEXP (XEXP (dest, 0), 0)));
1809 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1810 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1811 offset = -offset;
1813 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1815 if (cfa_store.reg == (unsigned) regno)
1816 offset -= cfa_store.offset;
1817 else
1819 gcc_assert (cfa_temp.reg == (unsigned) regno);
1820 offset -= cfa_temp.offset;
1823 break;
1825 /* Rule 13 */
1826 /* Without an offset. */
1827 case REG:
1829 int regno = REGNO (XEXP (dest, 0));
1831 if (cfa_store.reg == (unsigned) regno)
1832 offset = -cfa_store.offset;
1833 else
1835 gcc_assert (cfa_temp.reg == (unsigned) regno);
1836 offset = -cfa_temp.offset;
1839 break;
1841 /* Rule 14 */
1842 case POST_INC:
1843 gcc_assert (cfa_temp.reg
1844 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1845 offset = -cfa_temp.offset;
1846 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1847 break;
1849 default:
1850 gcc_unreachable ();
1853 if (REGNO (src) != STACK_POINTER_REGNUM
1854 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1855 && (unsigned) REGNO (src) == cfa.reg)
1857 /* We're storing the current CFA reg into the stack. */
1859 if (cfa.offset == 0)
1861 /* If the source register is exactly the CFA, assume
1862 we're saving SP like any other register; this happens
1863 on the ARM. */
1864 def_cfa_1 (label, &cfa);
1865 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1866 break;
1868 else
1870 /* Otherwise, we'll need to look in the stack to
1871 calculate the CFA. */
1872 rtx x = XEXP (dest, 0);
1874 if (!REG_P (x))
1875 x = XEXP (x, 0);
1876 gcc_assert (REG_P (x));
1878 cfa.reg = REGNO (x);
1879 cfa.base_offset = offset;
1880 cfa.indirect = 1;
1881 def_cfa_1 (label, &cfa);
1882 break;
1886 def_cfa_1 (label, &cfa);
1888 span = targetm.dwarf_register_span (src);
1890 if (!span)
1891 queue_reg_save (label, src, NULL_RTX, offset);
1892 else
1894 /* We have a PARALLEL describing where the contents of SRC
1895 live. Queue register saves for each piece of the
1896 PARALLEL. */
1897 int par_index;
1898 int limit;
1899 HOST_WIDE_INT span_offset = offset;
1901 gcc_assert (GET_CODE (span) == PARALLEL);
1903 limit = XVECLEN (span, 0);
1904 for (par_index = 0; par_index < limit; par_index++)
1906 rtx elem = XVECEXP (span, 0, par_index);
1908 queue_reg_save (label, elem, NULL_RTX, span_offset);
1909 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1913 break;
1915 default:
1916 gcc_unreachable ();
1920 /* Record call frame debugging information for INSN, which either
1921 sets SP or FP (adjusting how we calculate the frame address) or saves a
1922 register to the stack. If INSN is NULL_RTX, initialize our state.
1924 If AFTER_P is false, we're being called before the insn is emitted,
1925 otherwise after. Call instructions get invoked twice. */
1927 void
1928 dwarf2out_frame_debug (rtx insn, bool after_p)
1930 const char *label;
1931 rtx src;
1933 if (insn == NULL_RTX)
1935 size_t i;
1937 /* Flush any queued register saves. */
1938 flush_queued_reg_saves ();
1940 /* Set up state for generating call frame debug info. */
1941 lookup_cfa (&cfa);
1942 gcc_assert (cfa.reg
1943 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1945 cfa.reg = STACK_POINTER_REGNUM;
1946 cfa_store = cfa;
1947 cfa_temp.reg = -1;
1948 cfa_temp.offset = 0;
1950 for (i = 0; i < num_regs_saved_in_regs; i++)
1952 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1953 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1955 num_regs_saved_in_regs = 0;
1956 return;
1959 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1960 flush_queued_reg_saves ();
1962 if (! RTX_FRAME_RELATED_P (insn))
1964 if (!ACCUMULATE_OUTGOING_ARGS)
1965 dwarf2out_stack_adjust (insn, after_p);
1966 return;
1969 label = dwarf2out_cfi_label ();
1970 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1971 if (src)
1972 insn = XEXP (src, 0);
1973 else
1974 insn = PATTERN (insn);
1976 dwarf2out_frame_debug_expr (insn, label);
1979 #endif
1981 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1982 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1983 (enum dwarf_call_frame_info cfi);
1985 static enum dw_cfi_oprnd_type
1986 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1988 switch (cfi)
1990 case DW_CFA_nop:
1991 case DW_CFA_GNU_window_save:
1992 return dw_cfi_oprnd_unused;
1994 case DW_CFA_set_loc:
1995 case DW_CFA_advance_loc1:
1996 case DW_CFA_advance_loc2:
1997 case DW_CFA_advance_loc4:
1998 case DW_CFA_MIPS_advance_loc8:
1999 return dw_cfi_oprnd_addr;
2001 case DW_CFA_offset:
2002 case DW_CFA_offset_extended:
2003 case DW_CFA_def_cfa:
2004 case DW_CFA_offset_extended_sf:
2005 case DW_CFA_def_cfa_sf:
2006 case DW_CFA_restore_extended:
2007 case DW_CFA_undefined:
2008 case DW_CFA_same_value:
2009 case DW_CFA_def_cfa_register:
2010 case DW_CFA_register:
2011 return dw_cfi_oprnd_reg_num;
2013 case DW_CFA_def_cfa_offset:
2014 case DW_CFA_GNU_args_size:
2015 case DW_CFA_def_cfa_offset_sf:
2016 return dw_cfi_oprnd_offset;
2018 case DW_CFA_def_cfa_expression:
2019 case DW_CFA_expression:
2020 return dw_cfi_oprnd_loc;
2022 default:
2023 gcc_unreachable ();
2027 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
2028 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
2029 (enum dwarf_call_frame_info cfi);
2031 static enum dw_cfi_oprnd_type
2032 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
2034 switch (cfi)
2036 case DW_CFA_def_cfa:
2037 case DW_CFA_def_cfa_sf:
2038 case DW_CFA_offset:
2039 case DW_CFA_offset_extended_sf:
2040 case DW_CFA_offset_extended:
2041 return dw_cfi_oprnd_offset;
2043 case DW_CFA_register:
2044 return dw_cfi_oprnd_reg_num;
2046 default:
2047 return dw_cfi_oprnd_unused;
2051 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2053 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
2054 switch to the data section instead, and write out a synthetic label
2055 for collect2. */
2057 static void
2058 switch_to_eh_frame_section (void)
2060 tree label;
2062 #ifdef EH_FRAME_SECTION_NAME
2063 if (eh_frame_section == 0)
2065 int flags;
2067 if (EH_TABLES_CAN_BE_READ_ONLY)
2069 int fde_encoding;
2070 int per_encoding;
2071 int lsda_encoding;
2073 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2074 /*global=*/0);
2075 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2076 /*global=*/1);
2077 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2078 /*global=*/0);
2079 flags = ((! flag_pic
2080 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2081 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2082 && (per_encoding & 0x70) != DW_EH_PE_absptr
2083 && (per_encoding & 0x70) != DW_EH_PE_aligned
2084 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2085 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2086 ? 0 : SECTION_WRITE);
2088 else
2089 flags = SECTION_WRITE;
2090 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2092 #endif
2094 if (eh_frame_section)
2095 switch_to_section (eh_frame_section);
2096 else
2098 /* We have no special eh_frame section. Put the information in
2099 the data section and emit special labels to guide collect2. */
2100 switch_to_section (data_section);
2101 label = get_file_function_name ("F");
2102 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2103 targetm.asm_out.globalize_label (asm_out_file,
2104 IDENTIFIER_POINTER (label));
2105 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2109 /* Output a Call Frame Information opcode and its operand(s). */
2111 static void
2112 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2114 unsigned long r;
2115 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2116 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2117 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2118 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2119 ((unsigned HOST_WIDE_INT)
2120 cfi->dw_cfi_oprnd1.dw_cfi_offset));
2121 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2123 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2124 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2125 "DW_CFA_offset, column 0x%lx", r);
2126 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2128 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2130 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2131 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2132 "DW_CFA_restore, column 0x%lx", r);
2134 else
2136 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2137 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2139 switch (cfi->dw_cfi_opc)
2141 case DW_CFA_set_loc:
2142 if (for_eh)
2143 dw2_asm_output_encoded_addr_rtx (
2144 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2145 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2146 false, NULL);
2147 else
2148 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2149 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2150 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2151 break;
2153 case DW_CFA_advance_loc1:
2154 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2155 fde->dw_fde_current_label, NULL);
2156 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2157 break;
2159 case DW_CFA_advance_loc2:
2160 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2161 fde->dw_fde_current_label, NULL);
2162 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2163 break;
2165 case DW_CFA_advance_loc4:
2166 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2167 fde->dw_fde_current_label, NULL);
2168 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2169 break;
2171 case DW_CFA_MIPS_advance_loc8:
2172 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2173 fde->dw_fde_current_label, NULL);
2174 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2175 break;
2177 case DW_CFA_offset_extended:
2178 case DW_CFA_def_cfa:
2179 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2180 dw2_asm_output_data_uleb128 (r, NULL);
2181 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2182 break;
2184 case DW_CFA_offset_extended_sf:
2185 case DW_CFA_def_cfa_sf:
2186 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2187 dw2_asm_output_data_uleb128 (r, NULL);
2188 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2189 break;
2191 case DW_CFA_restore_extended:
2192 case DW_CFA_undefined:
2193 case DW_CFA_same_value:
2194 case DW_CFA_def_cfa_register:
2195 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2196 dw2_asm_output_data_uleb128 (r, NULL);
2197 break;
2199 case DW_CFA_register:
2200 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2201 dw2_asm_output_data_uleb128 (r, NULL);
2202 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2203 dw2_asm_output_data_uleb128 (r, NULL);
2204 break;
2206 case DW_CFA_def_cfa_offset:
2207 case DW_CFA_GNU_args_size:
2208 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2209 break;
2211 case DW_CFA_def_cfa_offset_sf:
2212 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2213 break;
2215 case DW_CFA_GNU_window_save:
2216 break;
2218 case DW_CFA_def_cfa_expression:
2219 case DW_CFA_expression:
2220 output_cfa_loc (cfi);
2221 break;
2223 case DW_CFA_GNU_negative_offset_extended:
2224 /* Obsoleted by DW_CFA_offset_extended_sf. */
2225 gcc_unreachable ();
2227 default:
2228 break;
2233 /* Output the call frame information used to record information
2234 that relates to calculating the frame pointer, and records the
2235 location of saved registers. */
2237 static void
2238 output_call_frame_info (int for_eh)
2240 unsigned int i;
2241 dw_fde_ref fde;
2242 dw_cfi_ref cfi;
2243 char l1[20], l2[20], section_start_label[20];
2244 bool any_lsda_needed = false;
2245 char augmentation[6];
2246 int augmentation_size;
2247 int fde_encoding = DW_EH_PE_absptr;
2248 int per_encoding = DW_EH_PE_absptr;
2249 int lsda_encoding = DW_EH_PE_absptr;
2250 int return_reg;
2252 /* Don't emit a CIE if there won't be any FDEs. */
2253 if (fde_table_in_use == 0)
2254 return;
2256 /* If we make FDEs linkonce, we may have to emit an empty label for
2257 an FDE that wouldn't otherwise be emitted. We want to avoid
2258 having an FDE kept around when the function it refers to is
2259 discarded. Example where this matters: a primary function
2260 template in C++ requires EH information, but an explicit
2261 specialization doesn't. */
2262 if (TARGET_USES_WEAK_UNWIND_INFO
2263 && ! flag_asynchronous_unwind_tables
2264 && flag_exceptions
2265 && for_eh)
2266 for (i = 0; i < fde_table_in_use; i++)
2267 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2268 && !fde_table[i].uses_eh_lsda
2269 && ! DECL_WEAK (fde_table[i].decl))
2270 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2271 for_eh, /* empty */ 1);
2273 /* If we don't have any functions we'll want to unwind out of, don't
2274 emit any EH unwind information. Note that if exceptions aren't
2275 enabled, we won't have collected nothrow information, and if we
2276 asked for asynchronous tables, we always want this info. */
2277 if (for_eh)
2279 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2281 for (i = 0; i < fde_table_in_use; i++)
2282 if (fde_table[i].uses_eh_lsda)
2283 any_eh_needed = any_lsda_needed = true;
2284 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2285 any_eh_needed = true;
2286 else if (! fde_table[i].nothrow
2287 && ! fde_table[i].all_throwers_are_sibcalls)
2288 any_eh_needed = true;
2290 if (! any_eh_needed)
2291 return;
2294 /* We're going to be generating comments, so turn on app. */
2295 if (flag_debug_asm)
2296 app_enable ();
2298 if (for_eh)
2299 switch_to_eh_frame_section ();
2300 else
2302 if (!debug_frame_section)
2303 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2304 SECTION_DEBUG, NULL);
2305 switch_to_section (debug_frame_section);
2308 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2309 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2311 /* Output the CIE. */
2312 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2313 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2314 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2315 dw2_asm_output_data (4, 0xffffffff,
2316 "Initial length escape value indicating 64-bit DWARF extension");
2317 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2318 "Length of Common Information Entry");
2319 ASM_OUTPUT_LABEL (asm_out_file, l1);
2321 /* Now that the CIE pointer is PC-relative for EH,
2322 use 0 to identify the CIE. */
2323 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2324 (for_eh ? 0 : DWARF_CIE_ID),
2325 "CIE Identifier Tag");
2327 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2329 augmentation[0] = 0;
2330 augmentation_size = 0;
2331 if (for_eh)
2333 char *p;
2335 /* Augmentation:
2336 z Indicates that a uleb128 is present to size the
2337 augmentation section.
2338 L Indicates the encoding (and thus presence) of
2339 an LSDA pointer in the FDE augmentation.
2340 R Indicates a non-default pointer encoding for
2341 FDE code pointers.
2342 P Indicates the presence of an encoding + language
2343 personality routine in the CIE augmentation. */
2345 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2346 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2347 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2349 p = augmentation + 1;
2350 if (eh_personality_libfunc)
2352 *p++ = 'P';
2353 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2354 assemble_external_libcall (eh_personality_libfunc);
2356 if (any_lsda_needed)
2358 *p++ = 'L';
2359 augmentation_size += 1;
2361 if (fde_encoding != DW_EH_PE_absptr)
2363 *p++ = 'R';
2364 augmentation_size += 1;
2366 if (p > augmentation + 1)
2368 augmentation[0] = 'z';
2369 *p = '\0';
2372 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2373 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2375 int offset = ( 4 /* Length */
2376 + 4 /* CIE Id */
2377 + 1 /* CIE version */
2378 + strlen (augmentation) + 1 /* Augmentation */
2379 + size_of_uleb128 (1) /* Code alignment */
2380 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2381 + 1 /* RA column */
2382 + 1 /* Augmentation size */
2383 + 1 /* Personality encoding */ );
2384 int pad = -offset & (PTR_SIZE - 1);
2386 augmentation_size += pad;
2388 /* Augmentations should be small, so there's scarce need to
2389 iterate for a solution. Die if we exceed one uleb128 byte. */
2390 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2394 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2395 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2396 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2397 "CIE Data Alignment Factor");
2399 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2400 if (DW_CIE_VERSION == 1)
2401 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2402 else
2403 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2405 if (augmentation[0])
2407 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2408 if (eh_personality_libfunc)
2410 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2411 eh_data_format_name (per_encoding));
2412 dw2_asm_output_encoded_addr_rtx (per_encoding,
2413 eh_personality_libfunc,
2414 true, NULL);
2417 if (any_lsda_needed)
2418 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2419 eh_data_format_name (lsda_encoding));
2421 if (fde_encoding != DW_EH_PE_absptr)
2422 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2423 eh_data_format_name (fde_encoding));
2426 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2427 output_cfi (cfi, NULL, for_eh);
2429 /* Pad the CIE out to an address sized boundary. */
2430 ASM_OUTPUT_ALIGN (asm_out_file,
2431 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2432 ASM_OUTPUT_LABEL (asm_out_file, l2);
2434 /* Loop through all of the FDE's. */
2435 for (i = 0; i < fde_table_in_use; i++)
2437 fde = &fde_table[i];
2439 /* Don't emit EH unwind info for leaf functions that don't need it. */
2440 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2441 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2442 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2443 && !fde->uses_eh_lsda)
2444 continue;
2446 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2447 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2448 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2449 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2450 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2451 dw2_asm_output_data (4, 0xffffffff,
2452 "Initial length escape value indicating 64-bit DWARF extension");
2453 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2454 "FDE Length");
2455 ASM_OUTPUT_LABEL (asm_out_file, l1);
2457 if (for_eh)
2458 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2459 else
2460 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2461 debug_frame_section, "FDE CIE offset");
2463 if (for_eh)
2465 if (fde->dw_fde_switched_sections)
2467 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2468 fde->dw_fde_unlikely_section_label);
2469 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2470 fde->dw_fde_hot_section_label);
2471 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2472 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2473 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2474 "FDE initial location");
2475 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2476 fde->dw_fde_hot_section_end_label,
2477 fde->dw_fde_hot_section_label,
2478 "FDE address range");
2479 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2480 "FDE initial location");
2481 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2482 fde->dw_fde_unlikely_section_end_label,
2483 fde->dw_fde_unlikely_section_label,
2484 "FDE address range");
2486 else
2488 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2489 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2490 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2491 sym_ref,
2492 false,
2493 "FDE initial location");
2494 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2495 fde->dw_fde_end, fde->dw_fde_begin,
2496 "FDE address range");
2499 else
2501 if (fde->dw_fde_switched_sections)
2503 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2504 fde->dw_fde_hot_section_label,
2505 "FDE initial location");
2506 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2507 fde->dw_fde_hot_section_end_label,
2508 fde->dw_fde_hot_section_label,
2509 "FDE address range");
2510 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2511 fde->dw_fde_unlikely_section_label,
2512 "FDE initial location");
2513 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2514 fde->dw_fde_unlikely_section_end_label,
2515 fde->dw_fde_unlikely_section_label,
2516 "FDE address range");
2518 else
2520 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2521 "FDE initial location");
2522 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2523 fde->dw_fde_end, fde->dw_fde_begin,
2524 "FDE address range");
2528 if (augmentation[0])
2530 if (any_lsda_needed)
2532 int size = size_of_encoded_value (lsda_encoding);
2534 if (lsda_encoding == DW_EH_PE_aligned)
2536 int offset = ( 4 /* Length */
2537 + 4 /* CIE offset */
2538 + 2 * size_of_encoded_value (fde_encoding)
2539 + 1 /* Augmentation size */ );
2540 int pad = -offset & (PTR_SIZE - 1);
2542 size += pad;
2543 gcc_assert (size_of_uleb128 (size) == 1);
2546 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2548 if (fde->uses_eh_lsda)
2550 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2551 fde->funcdef_number);
2552 dw2_asm_output_encoded_addr_rtx (
2553 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2554 false, "Language Specific Data Area");
2556 else
2558 if (lsda_encoding == DW_EH_PE_aligned)
2559 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2560 dw2_asm_output_data
2561 (size_of_encoded_value (lsda_encoding), 0,
2562 "Language Specific Data Area (none)");
2565 else
2566 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2569 /* Loop through the Call Frame Instructions associated with
2570 this FDE. */
2571 fde->dw_fde_current_label = fde->dw_fde_begin;
2572 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2573 output_cfi (cfi, fde, for_eh);
2575 /* Pad the FDE out to an address sized boundary. */
2576 ASM_OUTPUT_ALIGN (asm_out_file,
2577 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2578 ASM_OUTPUT_LABEL (asm_out_file, l2);
2581 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2582 dw2_asm_output_data (4, 0, "End of Table");
2583 #ifdef MIPS_DEBUGGING_INFO
2584 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2585 get a value of 0. Putting .align 0 after the label fixes it. */
2586 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2587 #endif
2589 /* Turn off app to make assembly quicker. */
2590 if (flag_debug_asm)
2591 app_disable ();
2594 /* Output a marker (i.e. a label) for the beginning of a function, before
2595 the prologue. */
2597 void
2598 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2599 const char *file ATTRIBUTE_UNUSED)
2601 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2602 char * dup_label;
2603 dw_fde_ref fde;
2605 current_function_func_begin_label = NULL;
2607 #ifdef TARGET_UNWIND_INFO
2608 /* ??? current_function_func_begin_label is also used by except.c
2609 for call-site information. We must emit this label if it might
2610 be used. */
2611 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2612 && ! dwarf2out_do_frame ())
2613 return;
2614 #else
2615 if (! dwarf2out_do_frame ())
2616 return;
2617 #endif
2619 switch_to_section (function_section (current_function_decl));
2620 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2621 current_function_funcdef_no);
2622 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2623 current_function_funcdef_no);
2624 dup_label = xstrdup (label);
2625 current_function_func_begin_label = dup_label;
2627 #ifdef TARGET_UNWIND_INFO
2628 /* We can elide the fde allocation if we're not emitting debug info. */
2629 if (! dwarf2out_do_frame ())
2630 return;
2631 #endif
2633 /* Expand the fde table if necessary. */
2634 if (fde_table_in_use == fde_table_allocated)
2636 fde_table_allocated += FDE_TABLE_INCREMENT;
2637 fde_table = ggc_realloc (fde_table,
2638 fde_table_allocated * sizeof (dw_fde_node));
2639 memset (fde_table + fde_table_in_use, 0,
2640 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2643 /* Record the FDE associated with this function. */
2644 current_funcdef_fde = fde_table_in_use;
2646 /* Add the new FDE at the end of the fde_table. */
2647 fde = &fde_table[fde_table_in_use++];
2648 fde->decl = current_function_decl;
2649 fde->dw_fde_begin = dup_label;
2650 fde->dw_fde_current_label = dup_label;
2651 fde->dw_fde_hot_section_label = NULL;
2652 fde->dw_fde_hot_section_end_label = NULL;
2653 fde->dw_fde_unlikely_section_label = NULL;
2654 fde->dw_fde_unlikely_section_end_label = NULL;
2655 fde->dw_fde_switched_sections = false;
2656 fde->dw_fde_end = NULL;
2657 fde->dw_fde_cfi = NULL;
2658 fde->funcdef_number = current_function_funcdef_no;
2659 fde->nothrow = TREE_NOTHROW (current_function_decl);
2660 fde->uses_eh_lsda = crtl->uses_eh_lsda;
2661 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
2663 args_size = old_args_size = 0;
2665 /* We only want to output line number information for the genuine dwarf2
2666 prologue case, not the eh frame case. */
2667 #ifdef DWARF2_DEBUGGING_INFO
2668 if (file)
2669 dwarf2out_source_line (line, file);
2670 #endif
2673 /* Output a marker (i.e. a label) for the absolute end of the generated code
2674 for a function definition. This gets called *after* the epilogue code has
2675 been generated. */
2677 void
2678 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2679 const char *file ATTRIBUTE_UNUSED)
2681 dw_fde_ref fde;
2682 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2684 /* Output a label to mark the endpoint of the code generated for this
2685 function. */
2686 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2687 current_function_funcdef_no);
2688 ASM_OUTPUT_LABEL (asm_out_file, label);
2689 fde = &fde_table[fde_table_in_use - 1];
2690 fde->dw_fde_end = xstrdup (label);
2693 void
2694 dwarf2out_frame_init (void)
2696 /* Allocate the initial hunk of the fde_table. */
2697 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2698 fde_table_allocated = FDE_TABLE_INCREMENT;
2699 fde_table_in_use = 0;
2701 /* Generate the CFA instructions common to all FDE's. Do it now for the
2702 sake of lookup_cfa. */
2704 /* On entry, the Canonical Frame Address is at SP. */
2705 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2707 #ifdef DWARF2_UNWIND_INFO
2708 if (DWARF2_UNWIND_INFO || DWARF2_FRAME_INFO)
2709 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2710 #endif
2713 void
2714 dwarf2out_frame_finish (void)
2716 /* Output call frame information. */
2717 if (DWARF2_FRAME_INFO)
2718 output_call_frame_info (0);
2720 #ifndef TARGET_UNWIND_INFO
2721 /* Output another copy for the unwinder. */
2722 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2723 output_call_frame_info (1);
2724 #endif
2727 /* Note that the current function section is being used for code. */
2729 static void
2730 dwarf2out_note_section_used (void)
2732 section *sec = current_function_section ();
2733 if (sec == text_section)
2734 text_section_used = true;
2735 else if (sec == cold_text_section)
2736 cold_text_section_used = true;
2739 void
2740 dwarf2out_switch_text_section (void)
2742 dw_fde_ref fde;
2744 gcc_assert (cfun);
2746 fde = &fde_table[fde_table_in_use - 1];
2747 fde->dw_fde_switched_sections = true;
2748 fde->dw_fde_hot_section_label = crtl->subsections.hot_section_label;
2749 fde->dw_fde_hot_section_end_label = crtl->subsections.hot_section_end_label;
2750 fde->dw_fde_unlikely_section_label = crtl->subsections.cold_section_label;
2751 fde->dw_fde_unlikely_section_end_label = crtl->subsections.cold_section_end_label;
2752 have_multiple_function_sections = true;
2754 /* Reset the current label on switching text sections, so that we
2755 don't attempt to advance_loc4 between labels in different sections. */
2756 fde->dw_fde_current_label = NULL;
2758 /* There is no need to mark used sections when not debugging. */
2759 if (cold_text_section != NULL)
2760 dwarf2out_note_section_used ();
2762 #endif
2764 /* And now, the subset of the debugging information support code necessary
2765 for emitting location expressions. */
2767 /* Data about a single source file. */
2768 struct dwarf_file_data GTY(())
2770 const char * filename;
2771 int emitted_number;
2774 /* We need some way to distinguish DW_OP_addr with a direct symbol
2775 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2776 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2779 typedef struct dw_val_struct *dw_val_ref;
2780 typedef struct die_struct *dw_die_ref;
2781 typedef const struct die_struct *const_dw_die_ref;
2782 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2783 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2785 /* Each DIE may have a series of attribute/value pairs. Values
2786 can take on several forms. The forms that are used in this
2787 implementation are listed below. */
2789 enum dw_val_class
2791 dw_val_class_addr,
2792 dw_val_class_offset,
2793 dw_val_class_loc,
2794 dw_val_class_loc_list,
2795 dw_val_class_range_list,
2796 dw_val_class_const,
2797 dw_val_class_unsigned_const,
2798 dw_val_class_long_long,
2799 dw_val_class_vec,
2800 dw_val_class_flag,
2801 dw_val_class_die_ref,
2802 dw_val_class_fde_ref,
2803 dw_val_class_lbl_id,
2804 dw_val_class_lineptr,
2805 dw_val_class_str,
2806 dw_val_class_macptr,
2807 dw_val_class_file
2810 /* Describe a double word constant value. */
2811 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2813 typedef struct dw_long_long_struct GTY(())
2815 unsigned long hi;
2816 unsigned long low;
2818 dw_long_long_const;
2820 /* Describe a floating point constant value, or a vector constant value. */
2822 typedef struct dw_vec_struct GTY(())
2824 unsigned char * GTY((length ("%h.length"))) array;
2825 unsigned length;
2826 unsigned elt_size;
2828 dw_vec_const;
2830 /* The dw_val_node describes an attribute's value, as it is
2831 represented internally. */
2833 typedef struct dw_val_struct GTY(())
2835 enum dw_val_class val_class;
2836 union dw_val_struct_union
2838 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2839 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2840 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2841 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2842 HOST_WIDE_INT GTY ((default)) val_int;
2843 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2844 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2845 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2846 struct dw_val_die_union
2848 dw_die_ref die;
2849 int external;
2850 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2851 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2852 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2853 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2854 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2855 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2857 GTY ((desc ("%1.val_class"))) v;
2859 dw_val_node;
2861 /* Locations in memory are described using a sequence of stack machine
2862 operations. */
2864 typedef struct dw_loc_descr_struct GTY(())
2866 dw_loc_descr_ref dw_loc_next;
2867 enum dwarf_location_atom dw_loc_opc;
2868 dw_val_node dw_loc_oprnd1;
2869 dw_val_node dw_loc_oprnd2;
2870 int dw_loc_addr;
2872 dw_loc_descr_node;
2874 /* Location lists are ranges + location descriptions for that range,
2875 so you can track variables that are in different places over
2876 their entire life. */
2877 typedef struct dw_loc_list_struct GTY(())
2879 dw_loc_list_ref dw_loc_next;
2880 const char *begin; /* Label for begin address of range */
2881 const char *end; /* Label for end address of range */
2882 char *ll_symbol; /* Label for beginning of location list.
2883 Only on head of list */
2884 const char *section; /* Section this loclist is relative to */
2885 dw_loc_descr_ref expr;
2886 } dw_loc_list_node;
2888 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2890 static const char *dwarf_stack_op_name (unsigned);
2891 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2892 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2893 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2894 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2895 static unsigned long size_of_locs (dw_loc_descr_ref);
2896 static void output_loc_operands (dw_loc_descr_ref);
2897 static void output_loc_sequence (dw_loc_descr_ref);
2899 /* Convert a DWARF stack opcode into its string name. */
2901 static const char *
2902 dwarf_stack_op_name (unsigned int op)
2904 switch (op)
2906 case DW_OP_addr:
2907 case INTERNAL_DW_OP_tls_addr:
2908 return "DW_OP_addr";
2909 case DW_OP_deref:
2910 return "DW_OP_deref";
2911 case DW_OP_const1u:
2912 return "DW_OP_const1u";
2913 case DW_OP_const1s:
2914 return "DW_OP_const1s";
2915 case DW_OP_const2u:
2916 return "DW_OP_const2u";
2917 case DW_OP_const2s:
2918 return "DW_OP_const2s";
2919 case DW_OP_const4u:
2920 return "DW_OP_const4u";
2921 case DW_OP_const4s:
2922 return "DW_OP_const4s";
2923 case DW_OP_const8u:
2924 return "DW_OP_const8u";
2925 case DW_OP_const8s:
2926 return "DW_OP_const8s";
2927 case DW_OP_constu:
2928 return "DW_OP_constu";
2929 case DW_OP_consts:
2930 return "DW_OP_consts";
2931 case DW_OP_dup:
2932 return "DW_OP_dup";
2933 case DW_OP_drop:
2934 return "DW_OP_drop";
2935 case DW_OP_over:
2936 return "DW_OP_over";
2937 case DW_OP_pick:
2938 return "DW_OP_pick";
2939 case DW_OP_swap:
2940 return "DW_OP_swap";
2941 case DW_OP_rot:
2942 return "DW_OP_rot";
2943 case DW_OP_xderef:
2944 return "DW_OP_xderef";
2945 case DW_OP_abs:
2946 return "DW_OP_abs";
2947 case DW_OP_and:
2948 return "DW_OP_and";
2949 case DW_OP_div:
2950 return "DW_OP_div";
2951 case DW_OP_minus:
2952 return "DW_OP_minus";
2953 case DW_OP_mod:
2954 return "DW_OP_mod";
2955 case DW_OP_mul:
2956 return "DW_OP_mul";
2957 case DW_OP_neg:
2958 return "DW_OP_neg";
2959 case DW_OP_not:
2960 return "DW_OP_not";
2961 case DW_OP_or:
2962 return "DW_OP_or";
2963 case DW_OP_plus:
2964 return "DW_OP_plus";
2965 case DW_OP_plus_uconst:
2966 return "DW_OP_plus_uconst";
2967 case DW_OP_shl:
2968 return "DW_OP_shl";
2969 case DW_OP_shr:
2970 return "DW_OP_shr";
2971 case DW_OP_shra:
2972 return "DW_OP_shra";
2973 case DW_OP_xor:
2974 return "DW_OP_xor";
2975 case DW_OP_bra:
2976 return "DW_OP_bra";
2977 case DW_OP_eq:
2978 return "DW_OP_eq";
2979 case DW_OP_ge:
2980 return "DW_OP_ge";
2981 case DW_OP_gt:
2982 return "DW_OP_gt";
2983 case DW_OP_le:
2984 return "DW_OP_le";
2985 case DW_OP_lt:
2986 return "DW_OP_lt";
2987 case DW_OP_ne:
2988 return "DW_OP_ne";
2989 case DW_OP_skip:
2990 return "DW_OP_skip";
2991 case DW_OP_lit0:
2992 return "DW_OP_lit0";
2993 case DW_OP_lit1:
2994 return "DW_OP_lit1";
2995 case DW_OP_lit2:
2996 return "DW_OP_lit2";
2997 case DW_OP_lit3:
2998 return "DW_OP_lit3";
2999 case DW_OP_lit4:
3000 return "DW_OP_lit4";
3001 case DW_OP_lit5:
3002 return "DW_OP_lit5";
3003 case DW_OP_lit6:
3004 return "DW_OP_lit6";
3005 case DW_OP_lit7:
3006 return "DW_OP_lit7";
3007 case DW_OP_lit8:
3008 return "DW_OP_lit8";
3009 case DW_OP_lit9:
3010 return "DW_OP_lit9";
3011 case DW_OP_lit10:
3012 return "DW_OP_lit10";
3013 case DW_OP_lit11:
3014 return "DW_OP_lit11";
3015 case DW_OP_lit12:
3016 return "DW_OP_lit12";
3017 case DW_OP_lit13:
3018 return "DW_OP_lit13";
3019 case DW_OP_lit14:
3020 return "DW_OP_lit14";
3021 case DW_OP_lit15:
3022 return "DW_OP_lit15";
3023 case DW_OP_lit16:
3024 return "DW_OP_lit16";
3025 case DW_OP_lit17:
3026 return "DW_OP_lit17";
3027 case DW_OP_lit18:
3028 return "DW_OP_lit18";
3029 case DW_OP_lit19:
3030 return "DW_OP_lit19";
3031 case DW_OP_lit20:
3032 return "DW_OP_lit20";
3033 case DW_OP_lit21:
3034 return "DW_OP_lit21";
3035 case DW_OP_lit22:
3036 return "DW_OP_lit22";
3037 case DW_OP_lit23:
3038 return "DW_OP_lit23";
3039 case DW_OP_lit24:
3040 return "DW_OP_lit24";
3041 case DW_OP_lit25:
3042 return "DW_OP_lit25";
3043 case DW_OP_lit26:
3044 return "DW_OP_lit26";
3045 case DW_OP_lit27:
3046 return "DW_OP_lit27";
3047 case DW_OP_lit28:
3048 return "DW_OP_lit28";
3049 case DW_OP_lit29:
3050 return "DW_OP_lit29";
3051 case DW_OP_lit30:
3052 return "DW_OP_lit30";
3053 case DW_OP_lit31:
3054 return "DW_OP_lit31";
3055 case DW_OP_reg0:
3056 return "DW_OP_reg0";
3057 case DW_OP_reg1:
3058 return "DW_OP_reg1";
3059 case DW_OP_reg2:
3060 return "DW_OP_reg2";
3061 case DW_OP_reg3:
3062 return "DW_OP_reg3";
3063 case DW_OP_reg4:
3064 return "DW_OP_reg4";
3065 case DW_OP_reg5:
3066 return "DW_OP_reg5";
3067 case DW_OP_reg6:
3068 return "DW_OP_reg6";
3069 case DW_OP_reg7:
3070 return "DW_OP_reg7";
3071 case DW_OP_reg8:
3072 return "DW_OP_reg8";
3073 case DW_OP_reg9:
3074 return "DW_OP_reg9";
3075 case DW_OP_reg10:
3076 return "DW_OP_reg10";
3077 case DW_OP_reg11:
3078 return "DW_OP_reg11";
3079 case DW_OP_reg12:
3080 return "DW_OP_reg12";
3081 case DW_OP_reg13:
3082 return "DW_OP_reg13";
3083 case DW_OP_reg14:
3084 return "DW_OP_reg14";
3085 case DW_OP_reg15:
3086 return "DW_OP_reg15";
3087 case DW_OP_reg16:
3088 return "DW_OP_reg16";
3089 case DW_OP_reg17:
3090 return "DW_OP_reg17";
3091 case DW_OP_reg18:
3092 return "DW_OP_reg18";
3093 case DW_OP_reg19:
3094 return "DW_OP_reg19";
3095 case DW_OP_reg20:
3096 return "DW_OP_reg20";
3097 case DW_OP_reg21:
3098 return "DW_OP_reg21";
3099 case DW_OP_reg22:
3100 return "DW_OP_reg22";
3101 case DW_OP_reg23:
3102 return "DW_OP_reg23";
3103 case DW_OP_reg24:
3104 return "DW_OP_reg24";
3105 case DW_OP_reg25:
3106 return "DW_OP_reg25";
3107 case DW_OP_reg26:
3108 return "DW_OP_reg26";
3109 case DW_OP_reg27:
3110 return "DW_OP_reg27";
3111 case DW_OP_reg28:
3112 return "DW_OP_reg28";
3113 case DW_OP_reg29:
3114 return "DW_OP_reg29";
3115 case DW_OP_reg30:
3116 return "DW_OP_reg30";
3117 case DW_OP_reg31:
3118 return "DW_OP_reg31";
3119 case DW_OP_breg0:
3120 return "DW_OP_breg0";
3121 case DW_OP_breg1:
3122 return "DW_OP_breg1";
3123 case DW_OP_breg2:
3124 return "DW_OP_breg2";
3125 case DW_OP_breg3:
3126 return "DW_OP_breg3";
3127 case DW_OP_breg4:
3128 return "DW_OP_breg4";
3129 case DW_OP_breg5:
3130 return "DW_OP_breg5";
3131 case DW_OP_breg6:
3132 return "DW_OP_breg6";
3133 case DW_OP_breg7:
3134 return "DW_OP_breg7";
3135 case DW_OP_breg8:
3136 return "DW_OP_breg8";
3137 case DW_OP_breg9:
3138 return "DW_OP_breg9";
3139 case DW_OP_breg10:
3140 return "DW_OP_breg10";
3141 case DW_OP_breg11:
3142 return "DW_OP_breg11";
3143 case DW_OP_breg12:
3144 return "DW_OP_breg12";
3145 case DW_OP_breg13:
3146 return "DW_OP_breg13";
3147 case DW_OP_breg14:
3148 return "DW_OP_breg14";
3149 case DW_OP_breg15:
3150 return "DW_OP_breg15";
3151 case DW_OP_breg16:
3152 return "DW_OP_breg16";
3153 case DW_OP_breg17:
3154 return "DW_OP_breg17";
3155 case DW_OP_breg18:
3156 return "DW_OP_breg18";
3157 case DW_OP_breg19:
3158 return "DW_OP_breg19";
3159 case DW_OP_breg20:
3160 return "DW_OP_breg20";
3161 case DW_OP_breg21:
3162 return "DW_OP_breg21";
3163 case DW_OP_breg22:
3164 return "DW_OP_breg22";
3165 case DW_OP_breg23:
3166 return "DW_OP_breg23";
3167 case DW_OP_breg24:
3168 return "DW_OP_breg24";
3169 case DW_OP_breg25:
3170 return "DW_OP_breg25";
3171 case DW_OP_breg26:
3172 return "DW_OP_breg26";
3173 case DW_OP_breg27:
3174 return "DW_OP_breg27";
3175 case DW_OP_breg28:
3176 return "DW_OP_breg28";
3177 case DW_OP_breg29:
3178 return "DW_OP_breg29";
3179 case DW_OP_breg30:
3180 return "DW_OP_breg30";
3181 case DW_OP_breg31:
3182 return "DW_OP_breg31";
3183 case DW_OP_regx:
3184 return "DW_OP_regx";
3185 case DW_OP_fbreg:
3186 return "DW_OP_fbreg";
3187 case DW_OP_bregx:
3188 return "DW_OP_bregx";
3189 case DW_OP_piece:
3190 return "DW_OP_piece";
3191 case DW_OP_deref_size:
3192 return "DW_OP_deref_size";
3193 case DW_OP_xderef_size:
3194 return "DW_OP_xderef_size";
3195 case DW_OP_nop:
3196 return "DW_OP_nop";
3197 case DW_OP_push_object_address:
3198 return "DW_OP_push_object_address";
3199 case DW_OP_call2:
3200 return "DW_OP_call2";
3201 case DW_OP_call4:
3202 return "DW_OP_call4";
3203 case DW_OP_call_ref:
3204 return "DW_OP_call_ref";
3205 case DW_OP_GNU_push_tls_address:
3206 return "DW_OP_GNU_push_tls_address";
3207 case DW_OP_GNU_uninit:
3208 return "DW_OP_GNU_uninit";
3209 default:
3210 return "OP_<unknown>";
3214 /* Return a pointer to a newly allocated location description. Location
3215 descriptions are simple expression terms that can be strung
3216 together to form more complicated location (address) descriptions. */
3218 static inline dw_loc_descr_ref
3219 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3220 unsigned HOST_WIDE_INT oprnd2)
3222 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3224 descr->dw_loc_opc = op;
3225 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3226 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3227 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3228 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3230 return descr;
3233 /* Add a location description term to a location description expression. */
3235 static inline void
3236 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3238 dw_loc_descr_ref *d;
3240 /* Find the end of the chain. */
3241 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3244 *d = descr;
3247 /* Return the size of a location descriptor. */
3249 static unsigned long
3250 size_of_loc_descr (dw_loc_descr_ref loc)
3252 unsigned long size = 1;
3254 switch (loc->dw_loc_opc)
3256 case DW_OP_addr:
3257 case INTERNAL_DW_OP_tls_addr:
3258 size += DWARF2_ADDR_SIZE;
3259 break;
3260 case DW_OP_const1u:
3261 case DW_OP_const1s:
3262 size += 1;
3263 break;
3264 case DW_OP_const2u:
3265 case DW_OP_const2s:
3266 size += 2;
3267 break;
3268 case DW_OP_const4u:
3269 case DW_OP_const4s:
3270 size += 4;
3271 break;
3272 case DW_OP_const8u:
3273 case DW_OP_const8s:
3274 size += 8;
3275 break;
3276 case DW_OP_constu:
3277 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3278 break;
3279 case DW_OP_consts:
3280 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3281 break;
3282 case DW_OP_pick:
3283 size += 1;
3284 break;
3285 case DW_OP_plus_uconst:
3286 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3287 break;
3288 case DW_OP_skip:
3289 case DW_OP_bra:
3290 size += 2;
3291 break;
3292 case DW_OP_breg0:
3293 case DW_OP_breg1:
3294 case DW_OP_breg2:
3295 case DW_OP_breg3:
3296 case DW_OP_breg4:
3297 case DW_OP_breg5:
3298 case DW_OP_breg6:
3299 case DW_OP_breg7:
3300 case DW_OP_breg8:
3301 case DW_OP_breg9:
3302 case DW_OP_breg10:
3303 case DW_OP_breg11:
3304 case DW_OP_breg12:
3305 case DW_OP_breg13:
3306 case DW_OP_breg14:
3307 case DW_OP_breg15:
3308 case DW_OP_breg16:
3309 case DW_OP_breg17:
3310 case DW_OP_breg18:
3311 case DW_OP_breg19:
3312 case DW_OP_breg20:
3313 case DW_OP_breg21:
3314 case DW_OP_breg22:
3315 case DW_OP_breg23:
3316 case DW_OP_breg24:
3317 case DW_OP_breg25:
3318 case DW_OP_breg26:
3319 case DW_OP_breg27:
3320 case DW_OP_breg28:
3321 case DW_OP_breg29:
3322 case DW_OP_breg30:
3323 case DW_OP_breg31:
3324 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3325 break;
3326 case DW_OP_regx:
3327 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3328 break;
3329 case DW_OP_fbreg:
3330 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3331 break;
3332 case DW_OP_bregx:
3333 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3334 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3335 break;
3336 case DW_OP_piece:
3337 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3338 break;
3339 case DW_OP_deref_size:
3340 case DW_OP_xderef_size:
3341 size += 1;
3342 break;
3343 case DW_OP_call2:
3344 size += 2;
3345 break;
3346 case DW_OP_call4:
3347 size += 4;
3348 break;
3349 case DW_OP_call_ref:
3350 size += DWARF2_ADDR_SIZE;
3351 break;
3352 default:
3353 break;
3356 return size;
3359 /* Return the size of a series of location descriptors. */
3361 static unsigned long
3362 size_of_locs (dw_loc_descr_ref loc)
3364 dw_loc_descr_ref l;
3365 unsigned long size;
3367 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3368 field, to avoid writing to a PCH file. */
3369 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3371 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3372 break;
3373 size += size_of_loc_descr (l);
3375 if (! l)
3376 return size;
3378 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3380 l->dw_loc_addr = size;
3381 size += size_of_loc_descr (l);
3384 return size;
3387 /* Output location description stack opcode's operands (if any). */
3389 static void
3390 output_loc_operands (dw_loc_descr_ref loc)
3392 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3393 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3395 switch (loc->dw_loc_opc)
3397 #ifdef DWARF2_DEBUGGING_INFO
3398 case DW_OP_addr:
3399 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3400 break;
3401 case DW_OP_const2u:
3402 case DW_OP_const2s:
3403 dw2_asm_output_data (2, val1->v.val_int, NULL);
3404 break;
3405 case DW_OP_const4u:
3406 case DW_OP_const4s:
3407 dw2_asm_output_data (4, val1->v.val_int, NULL);
3408 break;
3409 case DW_OP_const8u:
3410 case DW_OP_const8s:
3411 gcc_assert (HOST_BITS_PER_LONG >= 64);
3412 dw2_asm_output_data (8, val1->v.val_int, NULL);
3413 break;
3414 case DW_OP_skip:
3415 case DW_OP_bra:
3417 int offset;
3419 gcc_assert (val1->val_class == dw_val_class_loc);
3420 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3422 dw2_asm_output_data (2, offset, NULL);
3424 break;
3425 #else
3426 case DW_OP_addr:
3427 case DW_OP_const2u:
3428 case DW_OP_const2s:
3429 case DW_OP_const4u:
3430 case DW_OP_const4s:
3431 case DW_OP_const8u:
3432 case DW_OP_const8s:
3433 case DW_OP_skip:
3434 case DW_OP_bra:
3435 /* We currently don't make any attempt to make sure these are
3436 aligned properly like we do for the main unwind info, so
3437 don't support emitting things larger than a byte if we're
3438 only doing unwinding. */
3439 gcc_unreachable ();
3440 #endif
3441 case DW_OP_const1u:
3442 case DW_OP_const1s:
3443 dw2_asm_output_data (1, val1->v.val_int, NULL);
3444 break;
3445 case DW_OP_constu:
3446 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3447 break;
3448 case DW_OP_consts:
3449 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3450 break;
3451 case DW_OP_pick:
3452 dw2_asm_output_data (1, val1->v.val_int, NULL);
3453 break;
3454 case DW_OP_plus_uconst:
3455 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3456 break;
3457 case DW_OP_breg0:
3458 case DW_OP_breg1:
3459 case DW_OP_breg2:
3460 case DW_OP_breg3:
3461 case DW_OP_breg4:
3462 case DW_OP_breg5:
3463 case DW_OP_breg6:
3464 case DW_OP_breg7:
3465 case DW_OP_breg8:
3466 case DW_OP_breg9:
3467 case DW_OP_breg10:
3468 case DW_OP_breg11:
3469 case DW_OP_breg12:
3470 case DW_OP_breg13:
3471 case DW_OP_breg14:
3472 case DW_OP_breg15:
3473 case DW_OP_breg16:
3474 case DW_OP_breg17:
3475 case DW_OP_breg18:
3476 case DW_OP_breg19:
3477 case DW_OP_breg20:
3478 case DW_OP_breg21:
3479 case DW_OP_breg22:
3480 case DW_OP_breg23:
3481 case DW_OP_breg24:
3482 case DW_OP_breg25:
3483 case DW_OP_breg26:
3484 case DW_OP_breg27:
3485 case DW_OP_breg28:
3486 case DW_OP_breg29:
3487 case DW_OP_breg30:
3488 case DW_OP_breg31:
3489 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3490 break;
3491 case DW_OP_regx:
3492 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3493 break;
3494 case DW_OP_fbreg:
3495 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3496 break;
3497 case DW_OP_bregx:
3498 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3499 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3500 break;
3501 case DW_OP_piece:
3502 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3503 break;
3504 case DW_OP_deref_size:
3505 case DW_OP_xderef_size:
3506 dw2_asm_output_data (1, val1->v.val_int, NULL);
3507 break;
3509 case INTERNAL_DW_OP_tls_addr:
3510 if (targetm.asm_out.output_dwarf_dtprel)
3512 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3513 DWARF2_ADDR_SIZE,
3514 val1->v.val_addr);
3515 fputc ('\n', asm_out_file);
3517 else
3518 gcc_unreachable ();
3519 break;
3521 default:
3522 /* Other codes have no operands. */
3523 break;
3527 /* Output a sequence of location operations. */
3529 static void
3530 output_loc_sequence (dw_loc_descr_ref loc)
3532 for (; loc != NULL; loc = loc->dw_loc_next)
3534 /* Output the opcode. */
3535 dw2_asm_output_data (1, loc->dw_loc_opc,
3536 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3538 /* Output the operand(s) (if any). */
3539 output_loc_operands (loc);
3543 /* This routine will generate the correct assembly data for a location
3544 description based on a cfi entry with a complex address. */
3546 static void
3547 output_cfa_loc (dw_cfi_ref cfi)
3549 dw_loc_descr_ref loc;
3550 unsigned long size;
3552 /* Output the size of the block. */
3553 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3554 size = size_of_locs (loc);
3555 dw2_asm_output_data_uleb128 (size, NULL);
3557 /* Now output the operations themselves. */
3558 output_loc_sequence (loc);
3561 /* This function builds a dwarf location descriptor sequence from a
3562 dw_cfa_location, adding the given OFFSET to the result of the
3563 expression. */
3565 static struct dw_loc_descr_struct *
3566 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3568 struct dw_loc_descr_struct *head, *tmp;
3570 offset += cfa->offset;
3572 if (cfa->indirect)
3574 if (cfa->base_offset)
3576 if (cfa->reg <= 31)
3577 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3578 else
3579 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3581 else if (cfa->reg <= 31)
3582 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3583 else
3584 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3586 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3587 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3588 add_loc_descr (&head, tmp);
3589 if (offset != 0)
3591 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3592 add_loc_descr (&head, tmp);
3595 else
3597 if (offset == 0)
3598 if (cfa->reg <= 31)
3599 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3600 else
3601 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3602 else if (cfa->reg <= 31)
3603 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3604 else
3605 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3608 return head;
3611 /* This function fills in aa dw_cfa_location structure from a dwarf location
3612 descriptor sequence. */
3614 static void
3615 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3617 struct dw_loc_descr_struct *ptr;
3618 cfa->offset = 0;
3619 cfa->base_offset = 0;
3620 cfa->indirect = 0;
3621 cfa->reg = -1;
3623 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3625 enum dwarf_location_atom op = ptr->dw_loc_opc;
3627 switch (op)
3629 case DW_OP_reg0:
3630 case DW_OP_reg1:
3631 case DW_OP_reg2:
3632 case DW_OP_reg3:
3633 case DW_OP_reg4:
3634 case DW_OP_reg5:
3635 case DW_OP_reg6:
3636 case DW_OP_reg7:
3637 case DW_OP_reg8:
3638 case DW_OP_reg9:
3639 case DW_OP_reg10:
3640 case DW_OP_reg11:
3641 case DW_OP_reg12:
3642 case DW_OP_reg13:
3643 case DW_OP_reg14:
3644 case DW_OP_reg15:
3645 case DW_OP_reg16:
3646 case DW_OP_reg17:
3647 case DW_OP_reg18:
3648 case DW_OP_reg19:
3649 case DW_OP_reg20:
3650 case DW_OP_reg21:
3651 case DW_OP_reg22:
3652 case DW_OP_reg23:
3653 case DW_OP_reg24:
3654 case DW_OP_reg25:
3655 case DW_OP_reg26:
3656 case DW_OP_reg27:
3657 case DW_OP_reg28:
3658 case DW_OP_reg29:
3659 case DW_OP_reg30:
3660 case DW_OP_reg31:
3661 cfa->reg = op - DW_OP_reg0;
3662 break;
3663 case DW_OP_regx:
3664 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3665 break;
3666 case DW_OP_breg0:
3667 case DW_OP_breg1:
3668 case DW_OP_breg2:
3669 case DW_OP_breg3:
3670 case DW_OP_breg4:
3671 case DW_OP_breg5:
3672 case DW_OP_breg6:
3673 case DW_OP_breg7:
3674 case DW_OP_breg8:
3675 case DW_OP_breg9:
3676 case DW_OP_breg10:
3677 case DW_OP_breg11:
3678 case DW_OP_breg12:
3679 case DW_OP_breg13:
3680 case DW_OP_breg14:
3681 case DW_OP_breg15:
3682 case DW_OP_breg16:
3683 case DW_OP_breg17:
3684 case DW_OP_breg18:
3685 case DW_OP_breg19:
3686 case DW_OP_breg20:
3687 case DW_OP_breg21:
3688 case DW_OP_breg22:
3689 case DW_OP_breg23:
3690 case DW_OP_breg24:
3691 case DW_OP_breg25:
3692 case DW_OP_breg26:
3693 case DW_OP_breg27:
3694 case DW_OP_breg28:
3695 case DW_OP_breg29:
3696 case DW_OP_breg30:
3697 case DW_OP_breg31:
3698 cfa->reg = op - DW_OP_breg0;
3699 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3700 break;
3701 case DW_OP_bregx:
3702 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3703 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3704 break;
3705 case DW_OP_deref:
3706 cfa->indirect = 1;
3707 break;
3708 case DW_OP_plus_uconst:
3709 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3710 break;
3711 default:
3712 internal_error ("DW_LOC_OP %s not implemented",
3713 dwarf_stack_op_name (ptr->dw_loc_opc));
3717 #endif /* .debug_frame support */
3719 /* And now, the support for symbolic debugging information. */
3720 #ifdef DWARF2_DEBUGGING_INFO
3722 /* .debug_str support. */
3723 static int output_indirect_string (void **, void *);
3725 static void dwarf2out_init (const char *);
3726 static void dwarf2out_finish (const char *);
3727 static void dwarf2out_define (unsigned int, const char *);
3728 static void dwarf2out_undef (unsigned int, const char *);
3729 static void dwarf2out_start_source_file (unsigned, const char *);
3730 static void dwarf2out_end_source_file (unsigned);
3731 static void dwarf2out_begin_block (unsigned, unsigned);
3732 static void dwarf2out_end_block (unsigned, unsigned);
3733 static bool dwarf2out_ignore_block (const_tree);
3734 static void dwarf2out_global_decl (tree);
3735 static void dwarf2out_type_decl (tree, int);
3736 static void dwarf2out_imported_module_or_decl (tree, tree);
3737 static void dwarf2out_abstract_function (tree);
3738 static void dwarf2out_var_location (rtx);
3739 static void dwarf2out_begin_function (tree);
3741 /* The debug hooks structure. */
3743 const struct gcc_debug_hooks dwarf2_debug_hooks =
3745 dwarf2out_init,
3746 dwarf2out_finish,
3747 dwarf2out_define,
3748 dwarf2out_undef,
3749 dwarf2out_start_source_file,
3750 dwarf2out_end_source_file,
3751 dwarf2out_begin_block,
3752 dwarf2out_end_block,
3753 dwarf2out_ignore_block,
3754 dwarf2out_source_line,
3755 dwarf2out_begin_prologue,
3756 debug_nothing_int_charstar, /* end_prologue */
3757 dwarf2out_end_epilogue,
3758 dwarf2out_begin_function,
3759 debug_nothing_int, /* end_function */
3760 dwarf2out_decl, /* function_decl */
3761 dwarf2out_global_decl,
3762 dwarf2out_type_decl, /* type_decl */
3763 dwarf2out_imported_module_or_decl,
3764 debug_nothing_tree, /* deferred_inline_function */
3765 /* The DWARF 2 backend tries to reduce debugging bloat by not
3766 emitting the abstract description of inline functions until
3767 something tries to reference them. */
3768 dwarf2out_abstract_function, /* outlining_inline_function */
3769 debug_nothing_rtx, /* label */
3770 debug_nothing_int, /* handle_pch */
3771 dwarf2out_var_location,
3772 dwarf2out_switch_text_section,
3773 1 /* start_end_main_source_file */
3775 #endif
3777 /* NOTE: In the comments in this file, many references are made to
3778 "Debugging Information Entries". This term is abbreviated as `DIE'
3779 throughout the remainder of this file. */
3781 /* An internal representation of the DWARF output is built, and then
3782 walked to generate the DWARF debugging info. The walk of the internal
3783 representation is done after the entire program has been compiled.
3784 The types below are used to describe the internal representation. */
3786 /* Various DIE's use offsets relative to the beginning of the
3787 .debug_info section to refer to each other. */
3789 typedef long int dw_offset;
3791 /* Define typedefs here to avoid circular dependencies. */
3793 typedef struct dw_attr_struct *dw_attr_ref;
3794 typedef struct dw_line_info_struct *dw_line_info_ref;
3795 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3796 typedef struct pubname_struct *pubname_ref;
3797 typedef struct dw_ranges_struct *dw_ranges_ref;
3798 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
3800 /* Each entry in the line_info_table maintains the file and
3801 line number associated with the label generated for that
3802 entry. The label gives the PC value associated with
3803 the line number entry. */
3805 typedef struct dw_line_info_struct GTY(())
3807 unsigned long dw_file_num;
3808 unsigned long dw_line_num;
3810 dw_line_info_entry;
3812 /* Line information for functions in separate sections; each one gets its
3813 own sequence. */
3814 typedef struct dw_separate_line_info_struct GTY(())
3816 unsigned long dw_file_num;
3817 unsigned long dw_line_num;
3818 unsigned long function;
3820 dw_separate_line_info_entry;
3822 /* Each DIE attribute has a field specifying the attribute kind,
3823 a link to the next attribute in the chain, and an attribute value.
3824 Attributes are typically linked below the DIE they modify. */
3826 typedef struct dw_attr_struct GTY(())
3828 enum dwarf_attribute dw_attr;
3829 dw_val_node dw_attr_val;
3831 dw_attr_node;
3833 DEF_VEC_O(dw_attr_node);
3834 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3836 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3837 The children of each node form a circular list linked by
3838 die_sib. die_child points to the node *before* the "first" child node. */
3840 typedef struct die_struct GTY(())
3842 enum dwarf_tag die_tag;
3843 char *die_symbol;
3844 VEC(dw_attr_node,gc) * die_attr;
3845 dw_die_ref die_parent;
3846 dw_die_ref die_child;
3847 dw_die_ref die_sib;
3848 dw_die_ref die_definition; /* ref from a specification to its definition */
3849 dw_offset die_offset;
3850 unsigned long die_abbrev;
3851 int die_mark;
3852 /* Die is used and must not be pruned as unused. */
3853 int die_perennial_p;
3854 unsigned int decl_id;
3856 die_node;
3858 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3859 #define FOR_EACH_CHILD(die, c, expr) do { \
3860 c = die->die_child; \
3861 if (c) do { \
3862 c = c->die_sib; \
3863 expr; \
3864 } while (c != die->die_child); \
3865 } while (0)
3867 /* The pubname structure */
3869 typedef struct pubname_struct GTY(())
3871 dw_die_ref die;
3872 const char *name;
3874 pubname_entry;
3876 DEF_VEC_O(pubname_entry);
3877 DEF_VEC_ALLOC_O(pubname_entry, gc);
3879 struct dw_ranges_struct GTY(())
3881 /* If this is positive, it's a block number, otherwise it's a
3882 bitwise-negated index into dw_ranges_by_label. */
3883 int num;
3886 struct dw_ranges_by_label_struct GTY(())
3888 const char *begin;
3889 const char *end;
3892 /* The limbo die list structure. */
3893 typedef struct limbo_die_struct GTY(())
3895 dw_die_ref die;
3896 tree created_for;
3897 struct limbo_die_struct *next;
3899 limbo_die_node;
3901 /* How to start an assembler comment. */
3902 #ifndef ASM_COMMENT_START
3903 #define ASM_COMMENT_START ";#"
3904 #endif
3906 /* Define a macro which returns nonzero for a TYPE_DECL which was
3907 implicitly generated for a tagged type.
3909 Note that unlike the gcc front end (which generates a NULL named
3910 TYPE_DECL node for each complete tagged type, each array type, and
3911 each function type node created) the g++ front end generates a
3912 _named_ TYPE_DECL node for each tagged type node created.
3913 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3914 generate a DW_TAG_typedef DIE for them. */
3916 #define TYPE_DECL_IS_STUB(decl) \
3917 (DECL_NAME (decl) == NULL_TREE \
3918 || (DECL_ARTIFICIAL (decl) \
3919 && is_tagged_type (TREE_TYPE (decl)) \
3920 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3921 /* This is necessary for stub decls that \
3922 appear in nested inline functions. */ \
3923 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3924 && (decl_ultimate_origin (decl) \
3925 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3927 /* Information concerning the compilation unit's programming
3928 language, and compiler version. */
3930 /* Fixed size portion of the DWARF compilation unit header. */
3931 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3932 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3934 /* Fixed size portion of public names info. */
3935 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3937 /* Fixed size portion of the address range info. */
3938 #define DWARF_ARANGES_HEADER_SIZE \
3939 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3940 DWARF2_ADDR_SIZE * 2) \
3941 - DWARF_INITIAL_LENGTH_SIZE)
3943 /* Size of padding portion in the address range info. It must be
3944 aligned to twice the pointer size. */
3945 #define DWARF_ARANGES_PAD_SIZE \
3946 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3947 DWARF2_ADDR_SIZE * 2) \
3948 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3950 /* Use assembler line directives if available. */
3951 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3952 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3953 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3954 #else
3955 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3956 #endif
3957 #endif
3959 /* Minimum line offset in a special line info. opcode.
3960 This value was chosen to give a reasonable range of values. */
3961 #define DWARF_LINE_BASE -10
3963 /* First special line opcode - leave room for the standard opcodes. */
3964 #define DWARF_LINE_OPCODE_BASE 10
3966 /* Range of line offsets in a special line info. opcode. */
3967 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3969 /* Flag that indicates the initial value of the is_stmt_start flag.
3970 In the present implementation, we do not mark any lines as
3971 the beginning of a source statement, because that information
3972 is not made available by the GCC front-end. */
3973 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3975 #ifdef DWARF2_DEBUGGING_INFO
3976 /* This location is used by calc_die_sizes() to keep track
3977 the offset of each DIE within the .debug_info section. */
3978 static unsigned long next_die_offset;
3979 #endif
3981 /* Record the root of the DIE's built for the current compilation unit. */
3982 static GTY(()) dw_die_ref comp_unit_die;
3984 /* A list of DIEs with a NULL parent waiting to be relocated. */
3985 static GTY(()) limbo_die_node *limbo_die_list;
3987 /* Filenames referenced by this compilation unit. */
3988 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3990 /* A hash table of references to DIE's that describe declarations.
3991 The key is a DECL_UID() which is a unique number identifying each decl. */
3992 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3994 /* Node of the variable location list. */
3995 struct var_loc_node GTY ((chain_next ("%h.next")))
3997 rtx GTY (()) var_loc_note;
3998 const char * GTY (()) label;
3999 const char * GTY (()) section_label;
4000 struct var_loc_node * GTY (()) next;
4003 /* Variable location list. */
4004 struct var_loc_list_def GTY (())
4006 struct var_loc_node * GTY (()) first;
4008 /* Do not mark the last element of the chained list because
4009 it is marked through the chain. */
4010 struct var_loc_node * GTY ((skip ("%h"))) last;
4012 /* DECL_UID of the variable decl. */
4013 unsigned int decl_id;
4015 typedef struct var_loc_list_def var_loc_list;
4018 /* Table of decl location linked lists. */
4019 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
4021 /* A pointer to the base of a list of references to DIE's that
4022 are uniquely identified by their tag, presence/absence of
4023 children DIE's, and list of attribute/value pairs. */
4024 static GTY((length ("abbrev_die_table_allocated")))
4025 dw_die_ref *abbrev_die_table;
4027 /* Number of elements currently allocated for abbrev_die_table. */
4028 static GTY(()) unsigned abbrev_die_table_allocated;
4030 /* Number of elements in type_die_table currently in use. */
4031 static GTY(()) unsigned abbrev_die_table_in_use;
4033 /* Size (in elements) of increments by which we may expand the
4034 abbrev_die_table. */
4035 #define ABBREV_DIE_TABLE_INCREMENT 256
4037 /* A pointer to the base of a table that contains line information
4038 for each source code line in .text in the compilation unit. */
4039 static GTY((length ("line_info_table_allocated")))
4040 dw_line_info_ref line_info_table;
4042 /* Number of elements currently allocated for line_info_table. */
4043 static GTY(()) unsigned line_info_table_allocated;
4045 /* Number of elements in line_info_table currently in use. */
4046 static GTY(()) unsigned line_info_table_in_use;
4048 /* A pointer to the base of a table that contains line information
4049 for each source code line outside of .text in the compilation unit. */
4050 static GTY ((length ("separate_line_info_table_allocated")))
4051 dw_separate_line_info_ref separate_line_info_table;
4053 /* Number of elements currently allocated for separate_line_info_table. */
4054 static GTY(()) unsigned separate_line_info_table_allocated;
4056 /* Number of elements in separate_line_info_table currently in use. */
4057 static GTY(()) unsigned separate_line_info_table_in_use;
4059 /* Size (in elements) of increments by which we may expand the
4060 line_info_table. */
4061 #define LINE_INFO_TABLE_INCREMENT 1024
4063 /* A pointer to the base of a table that contains a list of publicly
4064 accessible names. */
4065 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
4067 /* A pointer to the base of a table that contains a list of publicly
4068 accessible types. */
4069 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
4071 /* Array of dies for which we should generate .debug_arange info. */
4072 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
4074 /* Number of elements currently allocated for arange_table. */
4075 static GTY(()) unsigned arange_table_allocated;
4077 /* Number of elements in arange_table currently in use. */
4078 static GTY(()) unsigned arange_table_in_use;
4080 /* Size (in elements) of increments by which we may expand the
4081 arange_table. */
4082 #define ARANGE_TABLE_INCREMENT 64
4084 /* Array of dies for which we should generate .debug_ranges info. */
4085 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
4087 /* Number of elements currently allocated for ranges_table. */
4088 static GTY(()) unsigned ranges_table_allocated;
4090 /* Number of elements in ranges_table currently in use. */
4091 static GTY(()) unsigned ranges_table_in_use;
4093 /* Array of pairs of labels referenced in ranges_table. */
4094 static GTY ((length ("ranges_by_label_allocated")))
4095 dw_ranges_by_label_ref ranges_by_label;
4097 /* Number of elements currently allocated for ranges_by_label. */
4098 static GTY(()) unsigned ranges_by_label_allocated;
4100 /* Number of elements in ranges_by_label currently in use. */
4101 static GTY(()) unsigned ranges_by_label_in_use;
4103 /* Size (in elements) of increments by which we may expand the
4104 ranges_table. */
4105 #define RANGES_TABLE_INCREMENT 64
4107 /* Whether we have location lists that need outputting */
4108 static GTY(()) bool have_location_lists;
4110 /* Unique label counter. */
4111 static GTY(()) unsigned int loclabel_num;
4113 #ifdef DWARF2_DEBUGGING_INFO
4114 /* Record whether the function being analyzed contains inlined functions. */
4115 static int current_function_has_inlines;
4116 #endif
4117 #if 0 && defined (MIPS_DEBUGGING_INFO)
4118 static int comp_unit_has_inlines;
4119 #endif
4121 /* The last file entry emitted by maybe_emit_file(). */
4122 static GTY(()) struct dwarf_file_data * last_emitted_file;
4124 /* Number of internal labels generated by gen_internal_sym(). */
4125 static GTY(()) int label_num;
4127 /* Cached result of previous call to lookup_filename. */
4128 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4130 #ifdef DWARF2_DEBUGGING_INFO
4132 /* Offset from the "steady-state frame pointer" to the frame base,
4133 within the current function. */
4134 static HOST_WIDE_INT frame_pointer_fb_offset;
4136 /* Forward declarations for functions defined in this file. */
4138 static int is_pseudo_reg (const_rtx);
4139 static tree type_main_variant (tree);
4140 static int is_tagged_type (const_tree);
4141 static const char *dwarf_tag_name (unsigned);
4142 static const char *dwarf_attr_name (unsigned);
4143 static const char *dwarf_form_name (unsigned);
4144 static tree decl_ultimate_origin (const_tree);
4145 static tree block_ultimate_origin (const_tree);
4146 static tree decl_class_context (tree);
4147 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4148 static inline enum dw_val_class AT_class (dw_attr_ref);
4149 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4150 static inline unsigned AT_flag (dw_attr_ref);
4151 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4152 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4153 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4154 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4155 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4156 unsigned long);
4157 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4158 unsigned int, unsigned char *);
4159 static hashval_t debug_str_do_hash (const void *);
4160 static int debug_str_eq (const void *, const void *);
4161 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4162 static inline const char *AT_string (dw_attr_ref);
4163 static int AT_string_form (dw_attr_ref);
4164 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4165 static void add_AT_specification (dw_die_ref, dw_die_ref);
4166 static inline dw_die_ref AT_ref (dw_attr_ref);
4167 static inline int AT_ref_external (dw_attr_ref);
4168 static inline void set_AT_ref_external (dw_attr_ref, int);
4169 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4170 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4171 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4172 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4173 dw_loc_list_ref);
4174 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4175 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4176 static inline rtx AT_addr (dw_attr_ref);
4177 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4178 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4179 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4180 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4181 unsigned HOST_WIDE_INT);
4182 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4183 unsigned long);
4184 static inline const char *AT_lbl (dw_attr_ref);
4185 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4186 static const char *get_AT_low_pc (dw_die_ref);
4187 static const char *get_AT_hi_pc (dw_die_ref);
4188 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4189 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4190 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4191 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4192 static bool is_c_family (void);
4193 static bool is_cxx (void);
4194 static bool is_java (void);
4195 static bool is_fortran (void);
4196 static bool is_ada (void);
4197 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4198 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4199 static void add_child_die (dw_die_ref, dw_die_ref);
4200 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4201 static dw_die_ref lookup_type_die (tree);
4202 static void equate_type_number_to_die (tree, dw_die_ref);
4203 static hashval_t decl_die_table_hash (const void *);
4204 static int decl_die_table_eq (const void *, const void *);
4205 static dw_die_ref lookup_decl_die (tree);
4206 static hashval_t decl_loc_table_hash (const void *);
4207 static int decl_loc_table_eq (const void *, const void *);
4208 static var_loc_list *lookup_decl_loc (const_tree);
4209 static void equate_decl_number_to_die (tree, dw_die_ref);
4210 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4211 static void print_spaces (FILE *);
4212 static void print_die (dw_die_ref, FILE *);
4213 static void print_dwarf_line_table (FILE *);
4214 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4215 static dw_die_ref pop_compile_unit (dw_die_ref);
4216 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4217 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4218 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4219 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4220 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
4221 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4222 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4223 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4224 static void compute_section_prefix (dw_die_ref);
4225 static int is_type_die (dw_die_ref);
4226 static int is_comdat_die (dw_die_ref);
4227 static int is_symbol_die (dw_die_ref);
4228 static void assign_symbol_names (dw_die_ref);
4229 static void break_out_includes (dw_die_ref);
4230 static hashval_t htab_cu_hash (const void *);
4231 static int htab_cu_eq (const void *, const void *);
4232 static void htab_cu_del (void *);
4233 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4234 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4235 static void add_sibling_attributes (dw_die_ref);
4236 static void build_abbrev_table (dw_die_ref);
4237 static void output_location_lists (dw_die_ref);
4238 static int constant_size (long unsigned);
4239 static unsigned long size_of_die (dw_die_ref);
4240 static void calc_die_sizes (dw_die_ref);
4241 static void mark_dies (dw_die_ref);
4242 static void unmark_dies (dw_die_ref);
4243 static void unmark_all_dies (dw_die_ref);
4244 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4245 static unsigned long size_of_aranges (void);
4246 static enum dwarf_form value_format (dw_attr_ref);
4247 static void output_value_format (dw_attr_ref);
4248 static void output_abbrev_section (void);
4249 static void output_die_symbol (dw_die_ref);
4250 static void output_die (dw_die_ref);
4251 static void output_compilation_unit_header (void);
4252 static void output_comp_unit (dw_die_ref, int);
4253 static const char *dwarf2_name (tree, int);
4254 static void add_pubname (tree, dw_die_ref);
4255 static void add_pubname_string (const char *, dw_die_ref);
4256 static void add_pubtype (tree, dw_die_ref);
4257 static void output_pubnames (VEC (pubname_entry,gc) *);
4258 static void add_arange (tree, dw_die_ref);
4259 static void output_aranges (void);
4260 static unsigned int add_ranges_num (int);
4261 static unsigned int add_ranges (const_tree);
4262 static unsigned int add_ranges_by_labels (const char *, const char *);
4263 static void output_ranges (void);
4264 static void output_line_info (void);
4265 static void output_file_names (void);
4266 static dw_die_ref base_type_die (tree);
4267 static int is_base_type (tree);
4268 static bool is_subrange_type (const_tree);
4269 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4270 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4271 static int type_is_enum (const_tree);
4272 static unsigned int dbx_reg_number (const_rtx);
4273 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4274 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
4275 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
4276 enum var_init_status);
4277 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
4278 enum var_init_status);
4279 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4280 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
4281 enum var_init_status);
4282 static int is_based_loc (const_rtx);
4283 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode,
4284 enum var_init_status);
4285 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
4286 enum var_init_status);
4287 static dw_loc_descr_ref loc_descriptor (rtx, enum var_init_status);
4288 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4289 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4290 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4291 static tree field_type (const_tree);
4292 static unsigned int simple_type_align_in_bits (const_tree);
4293 static unsigned int simple_decl_align_in_bits (const_tree);
4294 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
4295 static HOST_WIDE_INT field_byte_offset (const_tree);
4296 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4297 dw_loc_descr_ref);
4298 static void add_data_member_location_attribute (dw_die_ref, tree);
4299 static void add_const_value_attribute (dw_die_ref, rtx);
4300 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4301 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4302 static void insert_float (const_rtx, unsigned char *);
4303 static rtx rtl_for_decl_location (tree);
4304 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4305 enum dwarf_attribute);
4306 static void tree_add_const_value_attribute (dw_die_ref, tree);
4307 static void add_name_attribute (dw_die_ref, const char *);
4308 static void add_comp_dir_attribute (dw_die_ref);
4309 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4310 static void add_subscript_info (dw_die_ref, tree);
4311 static void add_byte_size_attribute (dw_die_ref, tree);
4312 static void add_bit_offset_attribute (dw_die_ref, tree);
4313 static void add_bit_size_attribute (dw_die_ref, tree);
4314 static void add_prototyped_attribute (dw_die_ref, tree);
4315 static void add_abstract_origin_attribute (dw_die_ref, tree);
4316 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4317 static void add_src_coords_attributes (dw_die_ref, tree);
4318 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4319 static void push_decl_scope (tree);
4320 static void pop_decl_scope (void);
4321 static dw_die_ref scope_die_for (tree, dw_die_ref);
4322 static inline int local_scope_p (dw_die_ref);
4323 static inline int class_or_namespace_scope_p (dw_die_ref);
4324 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4325 static void add_calling_convention_attribute (dw_die_ref, tree);
4326 static const char *type_tag (const_tree);
4327 static tree member_declared_type (const_tree);
4328 #if 0
4329 static const char *decl_start_label (tree);
4330 #endif
4331 static void gen_array_type_die (tree, dw_die_ref);
4332 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
4333 #if 0
4334 static void gen_entry_point_die (tree, dw_die_ref);
4335 #endif
4336 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4337 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4338 static void gen_inlined_union_type_die (tree, dw_die_ref);
4339 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4340 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4341 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4342 static void gen_formal_types_die (tree, dw_die_ref);
4343 static void gen_subprogram_die (tree, dw_die_ref);
4344 static void gen_variable_die (tree, dw_die_ref);
4345 static void gen_label_die (tree, dw_die_ref);
4346 static void gen_lexical_block_die (tree, dw_die_ref, int);
4347 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4348 static void gen_field_die (tree, dw_die_ref);
4349 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4350 static dw_die_ref gen_compile_unit_die (const char *);
4351 static void gen_inheritance_die (tree, tree, dw_die_ref);
4352 static void gen_member_die (tree, dw_die_ref);
4353 static void gen_struct_or_union_type_die (tree, dw_die_ref,
4354 enum debug_info_usage);
4355 static void gen_subroutine_type_die (tree, dw_die_ref);
4356 static void gen_typedef_die (tree, dw_die_ref);
4357 static void gen_type_die (tree, dw_die_ref);
4358 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4359 static void gen_block_die (tree, dw_die_ref, int);
4360 static void decls_for_scope (tree, dw_die_ref, int);
4361 static int is_redundant_typedef (const_tree);
4362 static void gen_namespace_die (tree);
4363 static void gen_decl_die (tree, dw_die_ref);
4364 static dw_die_ref force_decl_die (tree);
4365 static dw_die_ref force_type_die (tree);
4366 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4367 static void declare_in_namespace (tree, dw_die_ref);
4368 static struct dwarf_file_data * lookup_filename (const char *);
4369 static void retry_incomplete_types (void);
4370 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4371 static void splice_child_die (dw_die_ref, dw_die_ref);
4372 static int file_info_cmp (const void *, const void *);
4373 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4374 const char *, const char *, unsigned);
4375 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4376 const char *, const char *,
4377 const char *);
4378 static void output_loc_list (dw_loc_list_ref);
4379 static char *gen_internal_sym (const char *);
4381 static void prune_unmark_dies (dw_die_ref);
4382 static void prune_unused_types_mark (dw_die_ref, int);
4383 static void prune_unused_types_walk (dw_die_ref);
4384 static void prune_unused_types_walk_attribs (dw_die_ref);
4385 static void prune_unused_types_prune (dw_die_ref);
4386 static void prune_unused_types (void);
4387 static int maybe_emit_file (struct dwarf_file_data *fd);
4389 /* Section names used to hold DWARF debugging information. */
4390 #ifndef DEBUG_INFO_SECTION
4391 #define DEBUG_INFO_SECTION ".debug_info"
4392 #endif
4393 #ifndef DEBUG_ABBREV_SECTION
4394 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4395 #endif
4396 #ifndef DEBUG_ARANGES_SECTION
4397 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4398 #endif
4399 #ifndef DEBUG_MACINFO_SECTION
4400 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4401 #endif
4402 #ifndef DEBUG_LINE_SECTION
4403 #define DEBUG_LINE_SECTION ".debug_line"
4404 #endif
4405 #ifndef DEBUG_LOC_SECTION
4406 #define DEBUG_LOC_SECTION ".debug_loc"
4407 #endif
4408 #ifndef DEBUG_PUBNAMES_SECTION
4409 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4410 #endif
4411 #ifndef DEBUG_STR_SECTION
4412 #define DEBUG_STR_SECTION ".debug_str"
4413 #endif
4414 #ifndef DEBUG_RANGES_SECTION
4415 #define DEBUG_RANGES_SECTION ".debug_ranges"
4416 #endif
4418 /* Standard ELF section names for compiled code and data. */
4419 #ifndef TEXT_SECTION_NAME
4420 #define TEXT_SECTION_NAME ".text"
4421 #endif
4423 /* Section flags for .debug_str section. */
4424 #define DEBUG_STR_SECTION_FLAGS \
4425 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
4426 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4427 : SECTION_DEBUG)
4429 /* Labels we insert at beginning sections we can reference instead of
4430 the section names themselves. */
4432 #ifndef TEXT_SECTION_LABEL
4433 #define TEXT_SECTION_LABEL "Ltext"
4434 #endif
4435 #ifndef COLD_TEXT_SECTION_LABEL
4436 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4437 #endif
4438 #ifndef DEBUG_LINE_SECTION_LABEL
4439 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4440 #endif
4441 #ifndef DEBUG_INFO_SECTION_LABEL
4442 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4443 #endif
4444 #ifndef DEBUG_ABBREV_SECTION_LABEL
4445 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4446 #endif
4447 #ifndef DEBUG_LOC_SECTION_LABEL
4448 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4449 #endif
4450 #ifndef DEBUG_RANGES_SECTION_LABEL
4451 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4452 #endif
4453 #ifndef DEBUG_MACINFO_SECTION_LABEL
4454 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4455 #endif
4457 /* Definitions of defaults for formats and names of various special
4458 (artificial) labels which may be generated within this file (when the -g
4459 options is used and DWARF2_DEBUGGING_INFO is in effect.
4460 If necessary, these may be overridden from within the tm.h file, but
4461 typically, overriding these defaults is unnecessary. */
4463 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4464 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4465 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4466 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4467 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4468 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4469 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4470 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4471 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4472 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4474 #ifndef TEXT_END_LABEL
4475 #define TEXT_END_LABEL "Letext"
4476 #endif
4477 #ifndef COLD_END_LABEL
4478 #define COLD_END_LABEL "Letext_cold"
4479 #endif
4480 #ifndef BLOCK_BEGIN_LABEL
4481 #define BLOCK_BEGIN_LABEL "LBB"
4482 #endif
4483 #ifndef BLOCK_END_LABEL
4484 #define BLOCK_END_LABEL "LBE"
4485 #endif
4486 #ifndef LINE_CODE_LABEL
4487 #define LINE_CODE_LABEL "LM"
4488 #endif
4489 #ifndef SEPARATE_LINE_CODE_LABEL
4490 #define SEPARATE_LINE_CODE_LABEL "LSM"
4491 #endif
4494 /* We allow a language front-end to designate a function that is to be
4495 called to "demangle" any name before it is put into a DIE. */
4497 static const char *(*demangle_name_func) (const char *);
4499 void
4500 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4502 demangle_name_func = func;
4505 /* Test if rtl node points to a pseudo register. */
4507 static inline int
4508 is_pseudo_reg (const_rtx rtl)
4510 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4511 || (GET_CODE (rtl) == SUBREG
4512 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4515 /* Return a reference to a type, with its const and volatile qualifiers
4516 removed. */
4518 static inline tree
4519 type_main_variant (tree type)
4521 type = TYPE_MAIN_VARIANT (type);
4523 /* ??? There really should be only one main variant among any group of
4524 variants of a given type (and all of the MAIN_VARIANT values for all
4525 members of the group should point to that one type) but sometimes the C
4526 front-end messes this up for array types, so we work around that bug
4527 here. */
4528 if (TREE_CODE (type) == ARRAY_TYPE)
4529 while (type != TYPE_MAIN_VARIANT (type))
4530 type = TYPE_MAIN_VARIANT (type);
4532 return type;
4535 /* Return nonzero if the given type node represents a tagged type. */
4537 static inline int
4538 is_tagged_type (const_tree type)
4540 enum tree_code code = TREE_CODE (type);
4542 return (code == RECORD_TYPE || code == UNION_TYPE
4543 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4546 /* Convert a DIE tag into its string name. */
4548 static const char *
4549 dwarf_tag_name (unsigned int tag)
4551 switch (tag)
4553 case DW_TAG_padding:
4554 return "DW_TAG_padding";
4555 case DW_TAG_array_type:
4556 return "DW_TAG_array_type";
4557 case DW_TAG_class_type:
4558 return "DW_TAG_class_type";
4559 case DW_TAG_entry_point:
4560 return "DW_TAG_entry_point";
4561 case DW_TAG_enumeration_type:
4562 return "DW_TAG_enumeration_type";
4563 case DW_TAG_formal_parameter:
4564 return "DW_TAG_formal_parameter";
4565 case DW_TAG_imported_declaration:
4566 return "DW_TAG_imported_declaration";
4567 case DW_TAG_label:
4568 return "DW_TAG_label";
4569 case DW_TAG_lexical_block:
4570 return "DW_TAG_lexical_block";
4571 case DW_TAG_member:
4572 return "DW_TAG_member";
4573 case DW_TAG_pointer_type:
4574 return "DW_TAG_pointer_type";
4575 case DW_TAG_reference_type:
4576 return "DW_TAG_reference_type";
4577 case DW_TAG_compile_unit:
4578 return "DW_TAG_compile_unit";
4579 case DW_TAG_string_type:
4580 return "DW_TAG_string_type";
4581 case DW_TAG_structure_type:
4582 return "DW_TAG_structure_type";
4583 case DW_TAG_subroutine_type:
4584 return "DW_TAG_subroutine_type";
4585 case DW_TAG_typedef:
4586 return "DW_TAG_typedef";
4587 case DW_TAG_union_type:
4588 return "DW_TAG_union_type";
4589 case DW_TAG_unspecified_parameters:
4590 return "DW_TAG_unspecified_parameters";
4591 case DW_TAG_variant:
4592 return "DW_TAG_variant";
4593 case DW_TAG_common_block:
4594 return "DW_TAG_common_block";
4595 case DW_TAG_common_inclusion:
4596 return "DW_TAG_common_inclusion";
4597 case DW_TAG_inheritance:
4598 return "DW_TAG_inheritance";
4599 case DW_TAG_inlined_subroutine:
4600 return "DW_TAG_inlined_subroutine";
4601 case DW_TAG_module:
4602 return "DW_TAG_module";
4603 case DW_TAG_ptr_to_member_type:
4604 return "DW_TAG_ptr_to_member_type";
4605 case DW_TAG_set_type:
4606 return "DW_TAG_set_type";
4607 case DW_TAG_subrange_type:
4608 return "DW_TAG_subrange_type";
4609 case DW_TAG_with_stmt:
4610 return "DW_TAG_with_stmt";
4611 case DW_TAG_access_declaration:
4612 return "DW_TAG_access_declaration";
4613 case DW_TAG_base_type:
4614 return "DW_TAG_base_type";
4615 case DW_TAG_catch_block:
4616 return "DW_TAG_catch_block";
4617 case DW_TAG_const_type:
4618 return "DW_TAG_const_type";
4619 case DW_TAG_constant:
4620 return "DW_TAG_constant";
4621 case DW_TAG_enumerator:
4622 return "DW_TAG_enumerator";
4623 case DW_TAG_file_type:
4624 return "DW_TAG_file_type";
4625 case DW_TAG_friend:
4626 return "DW_TAG_friend";
4627 case DW_TAG_namelist:
4628 return "DW_TAG_namelist";
4629 case DW_TAG_namelist_item:
4630 return "DW_TAG_namelist_item";
4631 case DW_TAG_packed_type:
4632 return "DW_TAG_packed_type";
4633 case DW_TAG_subprogram:
4634 return "DW_TAG_subprogram";
4635 case DW_TAG_template_type_param:
4636 return "DW_TAG_template_type_param";
4637 case DW_TAG_template_value_param:
4638 return "DW_TAG_template_value_param";
4639 case DW_TAG_thrown_type:
4640 return "DW_TAG_thrown_type";
4641 case DW_TAG_try_block:
4642 return "DW_TAG_try_block";
4643 case DW_TAG_variant_part:
4644 return "DW_TAG_variant_part";
4645 case DW_TAG_variable:
4646 return "DW_TAG_variable";
4647 case DW_TAG_volatile_type:
4648 return "DW_TAG_volatile_type";
4649 case DW_TAG_dwarf_procedure:
4650 return "DW_TAG_dwarf_procedure";
4651 case DW_TAG_restrict_type:
4652 return "DW_TAG_restrict_type";
4653 case DW_TAG_interface_type:
4654 return "DW_TAG_interface_type";
4655 case DW_TAG_namespace:
4656 return "DW_TAG_namespace";
4657 case DW_TAG_imported_module:
4658 return "DW_TAG_imported_module";
4659 case DW_TAG_unspecified_type:
4660 return "DW_TAG_unspecified_type";
4661 case DW_TAG_partial_unit:
4662 return "DW_TAG_partial_unit";
4663 case DW_TAG_imported_unit:
4664 return "DW_TAG_imported_unit";
4665 case DW_TAG_condition:
4666 return "DW_TAG_condition";
4667 case DW_TAG_shared_type:
4668 return "DW_TAG_shared_type";
4669 case DW_TAG_MIPS_loop:
4670 return "DW_TAG_MIPS_loop";
4671 case DW_TAG_format_label:
4672 return "DW_TAG_format_label";
4673 case DW_TAG_function_template:
4674 return "DW_TAG_function_template";
4675 case DW_TAG_class_template:
4676 return "DW_TAG_class_template";
4677 case DW_TAG_GNU_BINCL:
4678 return "DW_TAG_GNU_BINCL";
4679 case DW_TAG_GNU_EINCL:
4680 return "DW_TAG_GNU_EINCL";
4681 default:
4682 return "DW_TAG_<unknown>";
4686 /* Convert a DWARF attribute code into its string name. */
4688 static const char *
4689 dwarf_attr_name (unsigned int attr)
4691 switch (attr)
4693 case DW_AT_sibling:
4694 return "DW_AT_sibling";
4695 case DW_AT_location:
4696 return "DW_AT_location";
4697 case DW_AT_name:
4698 return "DW_AT_name";
4699 case DW_AT_ordering:
4700 return "DW_AT_ordering";
4701 case DW_AT_subscr_data:
4702 return "DW_AT_subscr_data";
4703 case DW_AT_byte_size:
4704 return "DW_AT_byte_size";
4705 case DW_AT_bit_offset:
4706 return "DW_AT_bit_offset";
4707 case DW_AT_bit_size:
4708 return "DW_AT_bit_size";
4709 case DW_AT_element_list:
4710 return "DW_AT_element_list";
4711 case DW_AT_stmt_list:
4712 return "DW_AT_stmt_list";
4713 case DW_AT_low_pc:
4714 return "DW_AT_low_pc";
4715 case DW_AT_high_pc:
4716 return "DW_AT_high_pc";
4717 case DW_AT_language:
4718 return "DW_AT_language";
4719 case DW_AT_member:
4720 return "DW_AT_member";
4721 case DW_AT_discr:
4722 return "DW_AT_discr";
4723 case DW_AT_discr_value:
4724 return "DW_AT_discr_value";
4725 case DW_AT_visibility:
4726 return "DW_AT_visibility";
4727 case DW_AT_import:
4728 return "DW_AT_import";
4729 case DW_AT_string_length:
4730 return "DW_AT_string_length";
4731 case DW_AT_common_reference:
4732 return "DW_AT_common_reference";
4733 case DW_AT_comp_dir:
4734 return "DW_AT_comp_dir";
4735 case DW_AT_const_value:
4736 return "DW_AT_const_value";
4737 case DW_AT_containing_type:
4738 return "DW_AT_containing_type";
4739 case DW_AT_default_value:
4740 return "DW_AT_default_value";
4741 case DW_AT_inline:
4742 return "DW_AT_inline";
4743 case DW_AT_is_optional:
4744 return "DW_AT_is_optional";
4745 case DW_AT_lower_bound:
4746 return "DW_AT_lower_bound";
4747 case DW_AT_producer:
4748 return "DW_AT_producer";
4749 case DW_AT_prototyped:
4750 return "DW_AT_prototyped";
4751 case DW_AT_return_addr:
4752 return "DW_AT_return_addr";
4753 case DW_AT_start_scope:
4754 return "DW_AT_start_scope";
4755 case DW_AT_bit_stride:
4756 return "DW_AT_bit_stride";
4757 case DW_AT_upper_bound:
4758 return "DW_AT_upper_bound";
4759 case DW_AT_abstract_origin:
4760 return "DW_AT_abstract_origin";
4761 case DW_AT_accessibility:
4762 return "DW_AT_accessibility";
4763 case DW_AT_address_class:
4764 return "DW_AT_address_class";
4765 case DW_AT_artificial:
4766 return "DW_AT_artificial";
4767 case DW_AT_base_types:
4768 return "DW_AT_base_types";
4769 case DW_AT_calling_convention:
4770 return "DW_AT_calling_convention";
4771 case DW_AT_count:
4772 return "DW_AT_count";
4773 case DW_AT_data_member_location:
4774 return "DW_AT_data_member_location";
4775 case DW_AT_decl_column:
4776 return "DW_AT_decl_column";
4777 case DW_AT_decl_file:
4778 return "DW_AT_decl_file";
4779 case DW_AT_decl_line:
4780 return "DW_AT_decl_line";
4781 case DW_AT_declaration:
4782 return "DW_AT_declaration";
4783 case DW_AT_discr_list:
4784 return "DW_AT_discr_list";
4785 case DW_AT_encoding:
4786 return "DW_AT_encoding";
4787 case DW_AT_external:
4788 return "DW_AT_external";
4789 case DW_AT_frame_base:
4790 return "DW_AT_frame_base";
4791 case DW_AT_friend:
4792 return "DW_AT_friend";
4793 case DW_AT_identifier_case:
4794 return "DW_AT_identifier_case";
4795 case DW_AT_macro_info:
4796 return "DW_AT_macro_info";
4797 case DW_AT_namelist_items:
4798 return "DW_AT_namelist_items";
4799 case DW_AT_priority:
4800 return "DW_AT_priority";
4801 case DW_AT_segment:
4802 return "DW_AT_segment";
4803 case DW_AT_specification:
4804 return "DW_AT_specification";
4805 case DW_AT_static_link:
4806 return "DW_AT_static_link";
4807 case DW_AT_type:
4808 return "DW_AT_type";
4809 case DW_AT_use_location:
4810 return "DW_AT_use_location";
4811 case DW_AT_variable_parameter:
4812 return "DW_AT_variable_parameter";
4813 case DW_AT_virtuality:
4814 return "DW_AT_virtuality";
4815 case DW_AT_vtable_elem_location:
4816 return "DW_AT_vtable_elem_location";
4818 case DW_AT_allocated:
4819 return "DW_AT_allocated";
4820 case DW_AT_associated:
4821 return "DW_AT_associated";
4822 case DW_AT_data_location:
4823 return "DW_AT_data_location";
4824 case DW_AT_byte_stride:
4825 return "DW_AT_byte_stride";
4826 case DW_AT_entry_pc:
4827 return "DW_AT_entry_pc";
4828 case DW_AT_use_UTF8:
4829 return "DW_AT_use_UTF8";
4830 case DW_AT_extension:
4831 return "DW_AT_extension";
4832 case DW_AT_ranges:
4833 return "DW_AT_ranges";
4834 case DW_AT_trampoline:
4835 return "DW_AT_trampoline";
4836 case DW_AT_call_column:
4837 return "DW_AT_call_column";
4838 case DW_AT_call_file:
4839 return "DW_AT_call_file";
4840 case DW_AT_call_line:
4841 return "DW_AT_call_line";
4843 case DW_AT_MIPS_fde:
4844 return "DW_AT_MIPS_fde";
4845 case DW_AT_MIPS_loop_begin:
4846 return "DW_AT_MIPS_loop_begin";
4847 case DW_AT_MIPS_tail_loop_begin:
4848 return "DW_AT_MIPS_tail_loop_begin";
4849 case DW_AT_MIPS_epilog_begin:
4850 return "DW_AT_MIPS_epilog_begin";
4851 case DW_AT_MIPS_loop_unroll_factor:
4852 return "DW_AT_MIPS_loop_unroll_factor";
4853 case DW_AT_MIPS_software_pipeline_depth:
4854 return "DW_AT_MIPS_software_pipeline_depth";
4855 case DW_AT_MIPS_linkage_name:
4856 return "DW_AT_MIPS_linkage_name";
4857 case DW_AT_MIPS_stride:
4858 return "DW_AT_MIPS_stride";
4859 case DW_AT_MIPS_abstract_name:
4860 return "DW_AT_MIPS_abstract_name";
4861 case DW_AT_MIPS_clone_origin:
4862 return "DW_AT_MIPS_clone_origin";
4863 case DW_AT_MIPS_has_inlines:
4864 return "DW_AT_MIPS_has_inlines";
4866 case DW_AT_sf_names:
4867 return "DW_AT_sf_names";
4868 case DW_AT_src_info:
4869 return "DW_AT_src_info";
4870 case DW_AT_mac_info:
4871 return "DW_AT_mac_info";
4872 case DW_AT_src_coords:
4873 return "DW_AT_src_coords";
4874 case DW_AT_body_begin:
4875 return "DW_AT_body_begin";
4876 case DW_AT_body_end:
4877 return "DW_AT_body_end";
4878 case DW_AT_GNU_vector:
4879 return "DW_AT_GNU_vector";
4881 case DW_AT_VMS_rtnbeg_pd_address:
4882 return "DW_AT_VMS_rtnbeg_pd_address";
4884 default:
4885 return "DW_AT_<unknown>";
4889 /* Convert a DWARF value form code into its string name. */
4891 static const char *
4892 dwarf_form_name (unsigned int form)
4894 switch (form)
4896 case DW_FORM_addr:
4897 return "DW_FORM_addr";
4898 case DW_FORM_block2:
4899 return "DW_FORM_block2";
4900 case DW_FORM_block4:
4901 return "DW_FORM_block4";
4902 case DW_FORM_data2:
4903 return "DW_FORM_data2";
4904 case DW_FORM_data4:
4905 return "DW_FORM_data4";
4906 case DW_FORM_data8:
4907 return "DW_FORM_data8";
4908 case DW_FORM_string:
4909 return "DW_FORM_string";
4910 case DW_FORM_block:
4911 return "DW_FORM_block";
4912 case DW_FORM_block1:
4913 return "DW_FORM_block1";
4914 case DW_FORM_data1:
4915 return "DW_FORM_data1";
4916 case DW_FORM_flag:
4917 return "DW_FORM_flag";
4918 case DW_FORM_sdata:
4919 return "DW_FORM_sdata";
4920 case DW_FORM_strp:
4921 return "DW_FORM_strp";
4922 case DW_FORM_udata:
4923 return "DW_FORM_udata";
4924 case DW_FORM_ref_addr:
4925 return "DW_FORM_ref_addr";
4926 case DW_FORM_ref1:
4927 return "DW_FORM_ref1";
4928 case DW_FORM_ref2:
4929 return "DW_FORM_ref2";
4930 case DW_FORM_ref4:
4931 return "DW_FORM_ref4";
4932 case DW_FORM_ref8:
4933 return "DW_FORM_ref8";
4934 case DW_FORM_ref_udata:
4935 return "DW_FORM_ref_udata";
4936 case DW_FORM_indirect:
4937 return "DW_FORM_indirect";
4938 default:
4939 return "DW_FORM_<unknown>";
4943 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4944 instance of an inlined instance of a decl which is local to an inline
4945 function, so we have to trace all of the way back through the origin chain
4946 to find out what sort of node actually served as the original seed for the
4947 given block. */
4949 static tree
4950 decl_ultimate_origin (const_tree decl)
4952 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4953 return NULL_TREE;
4955 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4956 nodes in the function to point to themselves; ignore that if
4957 we're trying to output the abstract instance of this function. */
4958 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4959 return NULL_TREE;
4961 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4962 most distant ancestor, this should never happen. */
4963 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4965 return DECL_ABSTRACT_ORIGIN (decl);
4968 /* Determine the "ultimate origin" of a block. The block may be an inlined
4969 instance of an inlined instance of a block which is local to an inline
4970 function, so we have to trace all of the way back through the origin chain
4971 to find out what sort of node actually served as the original seed for the
4972 given block. */
4974 static tree
4975 block_ultimate_origin (const_tree block)
4977 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4979 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4980 nodes in the function to point to themselves; ignore that if
4981 we're trying to output the abstract instance of this function. */
4982 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4983 return NULL_TREE;
4985 if (immediate_origin == NULL_TREE)
4986 return NULL_TREE;
4987 else
4989 tree ret_val;
4990 tree lookahead = immediate_origin;
4994 ret_val = lookahead;
4995 lookahead = (TREE_CODE (ret_val) == BLOCK
4996 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4998 while (lookahead != NULL && lookahead != ret_val);
5000 /* The block's abstract origin chain may not be the *ultimate* origin of
5001 the block. It could lead to a DECL that has an abstract origin set.
5002 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
5003 will give us if it has one). Note that DECL's abstract origins are
5004 supposed to be the most distant ancestor (or so decl_ultimate_origin
5005 claims), so we don't need to loop following the DECL origins. */
5006 if (DECL_P (ret_val))
5007 return DECL_ORIGIN (ret_val);
5009 return ret_val;
5013 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
5014 of a virtual function may refer to a base class, so we check the 'this'
5015 parameter. */
5017 static tree
5018 decl_class_context (tree decl)
5020 tree context = NULL_TREE;
5022 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
5023 context = DECL_CONTEXT (decl);
5024 else
5025 context = TYPE_MAIN_VARIANT
5026 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5028 if (context && !TYPE_P (context))
5029 context = NULL_TREE;
5031 return context;
5034 /* Add an attribute/value pair to a DIE. */
5036 static inline void
5037 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
5039 /* Maybe this should be an assert? */
5040 if (die == NULL)
5041 return;
5043 if (die->die_attr == NULL)
5044 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
5045 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
5048 static inline enum dw_val_class
5049 AT_class (dw_attr_ref a)
5051 return a->dw_attr_val.val_class;
5054 /* Add a flag value attribute to a DIE. */
5056 static inline void
5057 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
5059 dw_attr_node attr;
5061 attr.dw_attr = attr_kind;
5062 attr.dw_attr_val.val_class = dw_val_class_flag;
5063 attr.dw_attr_val.v.val_flag = flag;
5064 add_dwarf_attr (die, &attr);
5067 static inline unsigned
5068 AT_flag (dw_attr_ref a)
5070 gcc_assert (a && AT_class (a) == dw_val_class_flag);
5071 return a->dw_attr_val.v.val_flag;
5074 /* Add a signed integer attribute value to a DIE. */
5076 static inline void
5077 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
5079 dw_attr_node attr;
5081 attr.dw_attr = attr_kind;
5082 attr.dw_attr_val.val_class = dw_val_class_const;
5083 attr.dw_attr_val.v.val_int = int_val;
5084 add_dwarf_attr (die, &attr);
5087 static inline HOST_WIDE_INT
5088 AT_int (dw_attr_ref a)
5090 gcc_assert (a && AT_class (a) == dw_val_class_const);
5091 return a->dw_attr_val.v.val_int;
5094 /* Add an unsigned integer attribute value to a DIE. */
5096 static inline void
5097 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
5098 unsigned HOST_WIDE_INT unsigned_val)
5100 dw_attr_node attr;
5102 attr.dw_attr = attr_kind;
5103 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
5104 attr.dw_attr_val.v.val_unsigned = unsigned_val;
5105 add_dwarf_attr (die, &attr);
5108 static inline unsigned HOST_WIDE_INT
5109 AT_unsigned (dw_attr_ref a)
5111 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
5112 return a->dw_attr_val.v.val_unsigned;
5115 /* Add an unsigned double integer attribute value to a DIE. */
5117 static inline void
5118 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
5119 long unsigned int val_hi, long unsigned int val_low)
5121 dw_attr_node attr;
5123 attr.dw_attr = attr_kind;
5124 attr.dw_attr_val.val_class = dw_val_class_long_long;
5125 attr.dw_attr_val.v.val_long_long.hi = val_hi;
5126 attr.dw_attr_val.v.val_long_long.low = val_low;
5127 add_dwarf_attr (die, &attr);
5130 /* Add a floating point attribute value to a DIE and return it. */
5132 static inline void
5133 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
5134 unsigned int length, unsigned int elt_size, unsigned char *array)
5136 dw_attr_node attr;
5138 attr.dw_attr = attr_kind;
5139 attr.dw_attr_val.val_class = dw_val_class_vec;
5140 attr.dw_attr_val.v.val_vec.length = length;
5141 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
5142 attr.dw_attr_val.v.val_vec.array = array;
5143 add_dwarf_attr (die, &attr);
5146 /* Hash and equality functions for debug_str_hash. */
5148 static hashval_t
5149 debug_str_do_hash (const void *x)
5151 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5154 static int
5155 debug_str_eq (const void *x1, const void *x2)
5157 return strcmp ((((const struct indirect_string_node *)x1)->str),
5158 (const char *)x2) == 0;
5161 /* Add a string attribute value to a DIE. */
5163 static inline void
5164 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5166 dw_attr_node attr;
5167 struct indirect_string_node *node;
5168 void **slot;
5170 if (! debug_str_hash)
5171 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5172 debug_str_eq, NULL);
5174 slot = htab_find_slot_with_hash (debug_str_hash, str,
5175 htab_hash_string (str), INSERT);
5176 if (*slot == NULL)
5178 node = (struct indirect_string_node *)
5179 ggc_alloc_cleared (sizeof (struct indirect_string_node));
5180 node->str = ggc_strdup (str);
5181 *slot = node;
5183 else
5184 node = (struct indirect_string_node *) *slot;
5186 node->refcount++;
5188 attr.dw_attr = attr_kind;
5189 attr.dw_attr_val.val_class = dw_val_class_str;
5190 attr.dw_attr_val.v.val_str = node;
5191 add_dwarf_attr (die, &attr);
5194 static inline const char *
5195 AT_string (dw_attr_ref a)
5197 gcc_assert (a && AT_class (a) == dw_val_class_str);
5198 return a->dw_attr_val.v.val_str->str;
5201 /* Find out whether a string should be output inline in DIE
5202 or out-of-line in .debug_str section. */
5204 static int
5205 AT_string_form (dw_attr_ref a)
5207 struct indirect_string_node *node;
5208 unsigned int len;
5209 char label[32];
5211 gcc_assert (a && AT_class (a) == dw_val_class_str);
5213 node = a->dw_attr_val.v.val_str;
5214 if (node->form)
5215 return node->form;
5217 len = strlen (node->str) + 1;
5219 /* If the string is shorter or equal to the size of the reference, it is
5220 always better to put it inline. */
5221 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5222 return node->form = DW_FORM_string;
5224 /* If we cannot expect the linker to merge strings in .debug_str
5225 section, only put it into .debug_str if it is worth even in this
5226 single module. */
5227 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5228 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5229 return node->form = DW_FORM_string;
5231 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5232 ++dw2_string_counter;
5233 node->label = xstrdup (label);
5235 return node->form = DW_FORM_strp;
5238 /* Add a DIE reference attribute value to a DIE. */
5240 static inline void
5241 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5243 dw_attr_node attr;
5245 attr.dw_attr = attr_kind;
5246 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5247 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5248 attr.dw_attr_val.v.val_die_ref.external = 0;
5249 add_dwarf_attr (die, &attr);
5252 /* Add an AT_specification attribute to a DIE, and also make the back
5253 pointer from the specification to the definition. */
5255 static inline void
5256 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5258 add_AT_die_ref (die, DW_AT_specification, targ_die);
5259 gcc_assert (!targ_die->die_definition);
5260 targ_die->die_definition = die;
5263 static inline dw_die_ref
5264 AT_ref (dw_attr_ref a)
5266 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5267 return a->dw_attr_val.v.val_die_ref.die;
5270 static inline int
5271 AT_ref_external (dw_attr_ref a)
5273 if (a && AT_class (a) == dw_val_class_die_ref)
5274 return a->dw_attr_val.v.val_die_ref.external;
5276 return 0;
5279 static inline void
5280 set_AT_ref_external (dw_attr_ref a, int i)
5282 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5283 a->dw_attr_val.v.val_die_ref.external = i;
5286 /* Add an FDE reference attribute value to a DIE. */
5288 static inline void
5289 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5291 dw_attr_node attr;
5293 attr.dw_attr = attr_kind;
5294 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5295 attr.dw_attr_val.v.val_fde_index = targ_fde;
5296 add_dwarf_attr (die, &attr);
5299 /* Add a location description attribute value to a DIE. */
5301 static inline void
5302 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5304 dw_attr_node attr;
5306 attr.dw_attr = attr_kind;
5307 attr.dw_attr_val.val_class = dw_val_class_loc;
5308 attr.dw_attr_val.v.val_loc = loc;
5309 add_dwarf_attr (die, &attr);
5312 static inline dw_loc_descr_ref
5313 AT_loc (dw_attr_ref a)
5315 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5316 return a->dw_attr_val.v.val_loc;
5319 static inline void
5320 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5322 dw_attr_node attr;
5324 attr.dw_attr = attr_kind;
5325 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5326 attr.dw_attr_val.v.val_loc_list = loc_list;
5327 add_dwarf_attr (die, &attr);
5328 have_location_lists = true;
5331 static inline dw_loc_list_ref
5332 AT_loc_list (dw_attr_ref a)
5334 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5335 return a->dw_attr_val.v.val_loc_list;
5338 /* Add an address constant attribute value to a DIE. */
5340 static inline void
5341 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5343 dw_attr_node attr;
5345 attr.dw_attr = attr_kind;
5346 attr.dw_attr_val.val_class = dw_val_class_addr;
5347 attr.dw_attr_val.v.val_addr = addr;
5348 add_dwarf_attr (die, &attr);
5351 /* Get the RTX from to an address DIE attribute. */
5353 static inline rtx
5354 AT_addr (dw_attr_ref a)
5356 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5357 return a->dw_attr_val.v.val_addr;
5360 /* Add a file attribute value to a DIE. */
5362 static inline void
5363 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5364 struct dwarf_file_data *fd)
5366 dw_attr_node attr;
5368 attr.dw_attr = attr_kind;
5369 attr.dw_attr_val.val_class = dw_val_class_file;
5370 attr.dw_attr_val.v.val_file = fd;
5371 add_dwarf_attr (die, &attr);
5374 /* Get the dwarf_file_data from a file DIE attribute. */
5376 static inline struct dwarf_file_data *
5377 AT_file (dw_attr_ref a)
5379 gcc_assert (a && AT_class (a) == dw_val_class_file);
5380 return a->dw_attr_val.v.val_file;
5383 /* Add a label identifier attribute value to a DIE. */
5385 static inline void
5386 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5388 dw_attr_node attr;
5390 attr.dw_attr = attr_kind;
5391 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5392 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5393 add_dwarf_attr (die, &attr);
5396 /* Add a section offset attribute value to a DIE, an offset into the
5397 debug_line section. */
5399 static inline void
5400 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5401 const char *label)
5403 dw_attr_node attr;
5405 attr.dw_attr = attr_kind;
5406 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5407 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5408 add_dwarf_attr (die, &attr);
5411 /* Add a section offset attribute value to a DIE, an offset into the
5412 debug_macinfo section. */
5414 static inline void
5415 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5416 const char *label)
5418 dw_attr_node attr;
5420 attr.dw_attr = attr_kind;
5421 attr.dw_attr_val.val_class = dw_val_class_macptr;
5422 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5423 add_dwarf_attr (die, &attr);
5426 /* Add an offset attribute value to a DIE. */
5428 static inline void
5429 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5430 unsigned HOST_WIDE_INT offset)
5432 dw_attr_node attr;
5434 attr.dw_attr = attr_kind;
5435 attr.dw_attr_val.val_class = dw_val_class_offset;
5436 attr.dw_attr_val.v.val_offset = offset;
5437 add_dwarf_attr (die, &attr);
5440 /* Add an range_list attribute value to a DIE. */
5442 static void
5443 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5444 long unsigned int offset)
5446 dw_attr_node attr;
5448 attr.dw_attr = attr_kind;
5449 attr.dw_attr_val.val_class = dw_val_class_range_list;
5450 attr.dw_attr_val.v.val_offset = offset;
5451 add_dwarf_attr (die, &attr);
5454 static inline const char *
5455 AT_lbl (dw_attr_ref a)
5457 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5458 || AT_class (a) == dw_val_class_lineptr
5459 || AT_class (a) == dw_val_class_macptr));
5460 return a->dw_attr_val.v.val_lbl_id;
5463 /* Get the attribute of type attr_kind. */
5465 static dw_attr_ref
5466 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5468 dw_attr_ref a;
5469 unsigned ix;
5470 dw_die_ref spec = NULL;
5472 if (! die)
5473 return NULL;
5475 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5476 if (a->dw_attr == attr_kind)
5477 return a;
5478 else if (a->dw_attr == DW_AT_specification
5479 || a->dw_attr == DW_AT_abstract_origin)
5480 spec = AT_ref (a);
5482 if (spec)
5483 return get_AT (spec, attr_kind);
5485 return NULL;
5488 /* Return the "low pc" attribute value, typically associated with a subprogram
5489 DIE. Return null if the "low pc" attribute is either not present, or if it
5490 cannot be represented as an assembler label identifier. */
5492 static inline const char *
5493 get_AT_low_pc (dw_die_ref die)
5495 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5497 return a ? AT_lbl (a) : NULL;
5500 /* Return the "high pc" attribute value, typically associated with a subprogram
5501 DIE. Return null if the "high pc" attribute is either not present, or if it
5502 cannot be represented as an assembler label identifier. */
5504 static inline const char *
5505 get_AT_hi_pc (dw_die_ref die)
5507 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5509 return a ? AT_lbl (a) : NULL;
5512 /* Return the value of the string attribute designated by ATTR_KIND, or
5513 NULL if it is not present. */
5515 static inline const char *
5516 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5518 dw_attr_ref a = get_AT (die, attr_kind);
5520 return a ? AT_string (a) : NULL;
5523 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5524 if it is not present. */
5526 static inline int
5527 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5529 dw_attr_ref a = get_AT (die, attr_kind);
5531 return a ? AT_flag (a) : 0;
5534 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5535 if it is not present. */
5537 static inline unsigned
5538 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5540 dw_attr_ref a = get_AT (die, attr_kind);
5542 return a ? AT_unsigned (a) : 0;
5545 static inline dw_die_ref
5546 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5548 dw_attr_ref a = get_AT (die, attr_kind);
5550 return a ? AT_ref (a) : NULL;
5553 static inline struct dwarf_file_data *
5554 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5556 dw_attr_ref a = get_AT (die, attr_kind);
5558 return a ? AT_file (a) : NULL;
5561 /* Return TRUE if the language is C or C++. */
5563 static inline bool
5564 is_c_family (void)
5566 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5568 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5569 || lang == DW_LANG_C99
5570 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5573 /* Return TRUE if the language is C++. */
5575 static inline bool
5576 is_cxx (void)
5578 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5580 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5583 /* Return TRUE if the language is Fortran. */
5585 static inline bool
5586 is_fortran (void)
5588 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5590 return (lang == DW_LANG_Fortran77
5591 || lang == DW_LANG_Fortran90
5592 || lang == DW_LANG_Fortran95);
5595 /* Return TRUE if the language is Java. */
5597 static inline bool
5598 is_java (void)
5600 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5602 return lang == DW_LANG_Java;
5605 /* Return TRUE if the language is Ada. */
5607 static inline bool
5608 is_ada (void)
5610 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5612 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5615 /* Remove the specified attribute if present. */
5617 static void
5618 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5620 dw_attr_ref a;
5621 unsigned ix;
5623 if (! die)
5624 return;
5626 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5627 if (a->dw_attr == attr_kind)
5629 if (AT_class (a) == dw_val_class_str)
5630 if (a->dw_attr_val.v.val_str->refcount)
5631 a->dw_attr_val.v.val_str->refcount--;
5633 /* VEC_ordered_remove should help reduce the number of abbrevs
5634 that are needed. */
5635 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5636 return;
5640 /* Remove CHILD from its parent. PREV must have the property that
5641 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5643 static void
5644 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5646 gcc_assert (child->die_parent == prev->die_parent);
5647 gcc_assert (prev->die_sib == child);
5648 if (prev == child)
5650 gcc_assert (child->die_parent->die_child == child);
5651 prev = NULL;
5653 else
5654 prev->die_sib = child->die_sib;
5655 if (child->die_parent->die_child == child)
5656 child->die_parent->die_child = prev;
5659 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5660 matches TAG. */
5662 static void
5663 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5665 dw_die_ref c;
5667 c = die->die_child;
5668 if (c) do {
5669 dw_die_ref prev = c;
5670 c = c->die_sib;
5671 while (c->die_tag == tag)
5673 remove_child_with_prev (c, prev);
5674 /* Might have removed every child. */
5675 if (c == c->die_sib)
5676 return;
5677 c = c->die_sib;
5679 } while (c != die->die_child);
5682 /* Add a CHILD_DIE as the last child of DIE. */
5684 static void
5685 add_child_die (dw_die_ref die, dw_die_ref child_die)
5687 /* FIXME this should probably be an assert. */
5688 if (! die || ! child_die)
5689 return;
5690 gcc_assert (die != child_die);
5692 child_die->die_parent = die;
5693 if (die->die_child)
5695 child_die->die_sib = die->die_child->die_sib;
5696 die->die_child->die_sib = child_die;
5698 else
5699 child_die->die_sib = child_die;
5700 die->die_child = child_die;
5703 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5704 is the specification, to the end of PARENT's list of children.
5705 This is done by removing and re-adding it. */
5707 static void
5708 splice_child_die (dw_die_ref parent, dw_die_ref child)
5710 dw_die_ref p;
5712 /* We want the declaration DIE from inside the class, not the
5713 specification DIE at toplevel. */
5714 if (child->die_parent != parent)
5716 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5718 if (tmp)
5719 child = tmp;
5722 gcc_assert (child->die_parent == parent
5723 || (child->die_parent
5724 == get_AT_ref (parent, DW_AT_specification)));
5726 for (p = child->die_parent->die_child; ; p = p->die_sib)
5727 if (p->die_sib == child)
5729 remove_child_with_prev (child, p);
5730 break;
5733 add_child_die (parent, child);
5736 /* Return a pointer to a newly created DIE node. */
5738 static inline dw_die_ref
5739 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5741 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5743 die->die_tag = tag_value;
5745 if (parent_die != NULL)
5746 add_child_die (parent_die, die);
5747 else
5749 limbo_die_node *limbo_node;
5751 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5752 limbo_node->die = die;
5753 limbo_node->created_for = t;
5754 limbo_node->next = limbo_die_list;
5755 limbo_die_list = limbo_node;
5758 return die;
5761 /* Return the DIE associated with the given type specifier. */
5763 static inline dw_die_ref
5764 lookup_type_die (tree type)
5766 return TYPE_SYMTAB_DIE (type);
5769 /* Equate a DIE to a given type specifier. */
5771 static inline void
5772 equate_type_number_to_die (tree type, dw_die_ref type_die)
5774 TYPE_SYMTAB_DIE (type) = type_die;
5777 /* Returns a hash value for X (which really is a die_struct). */
5779 static hashval_t
5780 decl_die_table_hash (const void *x)
5782 return (hashval_t) ((const_dw_die_ref) x)->decl_id;
5785 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5787 static int
5788 decl_die_table_eq (const void *x, const void *y)
5790 return (((const_dw_die_ref) x)->decl_id == DECL_UID ((const_tree) y));
5793 /* Return the DIE associated with a given declaration. */
5795 static inline dw_die_ref
5796 lookup_decl_die (tree decl)
5798 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5801 /* Returns a hash value for X (which really is a var_loc_list). */
5803 static hashval_t
5804 decl_loc_table_hash (const void *x)
5806 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5809 /* Return nonzero if decl_id of var_loc_list X is the same as
5810 UID of decl *Y. */
5812 static int
5813 decl_loc_table_eq (const void *x, const void *y)
5815 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const_tree) y));
5818 /* Return the var_loc list associated with a given declaration. */
5820 static inline var_loc_list *
5821 lookup_decl_loc (const_tree decl)
5823 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5826 /* Equate a DIE to a particular declaration. */
5828 static void
5829 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5831 unsigned int decl_id = DECL_UID (decl);
5832 void **slot;
5834 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5835 *slot = decl_die;
5836 decl_die->decl_id = decl_id;
5839 /* Add a variable location node to the linked list for DECL. */
5841 static void
5842 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5844 unsigned int decl_id = DECL_UID (decl);
5845 var_loc_list *temp;
5846 void **slot;
5848 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5849 if (*slot == NULL)
5851 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5852 temp->decl_id = decl_id;
5853 *slot = temp;
5855 else
5856 temp = *slot;
5858 if (temp->last)
5860 /* If the current location is the same as the end of the list,
5861 and either both or neither of the locations is uninitialized,
5862 we have nothing to do. */
5863 if ((!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5864 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5865 || ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
5866 != NOTE_VAR_LOCATION_STATUS (loc->var_loc_note))
5867 && ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
5868 == VAR_INIT_STATUS_UNINITIALIZED)
5869 || (NOTE_VAR_LOCATION_STATUS (loc->var_loc_note)
5870 == VAR_INIT_STATUS_UNINITIALIZED))))
5872 /* Add LOC to the end of list and update LAST. */
5873 temp->last->next = loc;
5874 temp->last = loc;
5877 /* Do not add empty location to the beginning of the list. */
5878 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5880 temp->first = loc;
5881 temp->last = loc;
5885 /* Keep track of the number of spaces used to indent the
5886 output of the debugging routines that print the structure of
5887 the DIE internal representation. */
5888 static int print_indent;
5890 /* Indent the line the number of spaces given by print_indent. */
5892 static inline void
5893 print_spaces (FILE *outfile)
5895 fprintf (outfile, "%*s", print_indent, "");
5898 /* Print the information associated with a given DIE, and its children.
5899 This routine is a debugging aid only. */
5901 static void
5902 print_die (dw_die_ref die, FILE *outfile)
5904 dw_attr_ref a;
5905 dw_die_ref c;
5906 unsigned ix;
5908 print_spaces (outfile);
5909 fprintf (outfile, "DIE %4ld: %s\n",
5910 die->die_offset, dwarf_tag_name (die->die_tag));
5911 print_spaces (outfile);
5912 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5913 fprintf (outfile, " offset: %ld\n", die->die_offset);
5915 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5917 print_spaces (outfile);
5918 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5920 switch (AT_class (a))
5922 case dw_val_class_addr:
5923 fprintf (outfile, "address");
5924 break;
5925 case dw_val_class_offset:
5926 fprintf (outfile, "offset");
5927 break;
5928 case dw_val_class_loc:
5929 fprintf (outfile, "location descriptor");
5930 break;
5931 case dw_val_class_loc_list:
5932 fprintf (outfile, "location list -> label:%s",
5933 AT_loc_list (a)->ll_symbol);
5934 break;
5935 case dw_val_class_range_list:
5936 fprintf (outfile, "range list");
5937 break;
5938 case dw_val_class_const:
5939 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5940 break;
5941 case dw_val_class_unsigned_const:
5942 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5943 break;
5944 case dw_val_class_long_long:
5945 fprintf (outfile, "constant (%lu,%lu)",
5946 a->dw_attr_val.v.val_long_long.hi,
5947 a->dw_attr_val.v.val_long_long.low);
5948 break;
5949 case dw_val_class_vec:
5950 fprintf (outfile, "floating-point or vector constant");
5951 break;
5952 case dw_val_class_flag:
5953 fprintf (outfile, "%u", AT_flag (a));
5954 break;
5955 case dw_val_class_die_ref:
5956 if (AT_ref (a) != NULL)
5958 if (AT_ref (a)->die_symbol)
5959 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5960 else
5961 fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
5963 else
5964 fprintf (outfile, "die -> <null>");
5965 break;
5966 case dw_val_class_lbl_id:
5967 case dw_val_class_lineptr:
5968 case dw_val_class_macptr:
5969 fprintf (outfile, "label: %s", AT_lbl (a));
5970 break;
5971 case dw_val_class_str:
5972 if (AT_string (a) != NULL)
5973 fprintf (outfile, "\"%s\"", AT_string (a));
5974 else
5975 fprintf (outfile, "<null>");
5976 break;
5977 case dw_val_class_file:
5978 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5979 AT_file (a)->emitted_number);
5980 break;
5981 default:
5982 break;
5985 fprintf (outfile, "\n");
5988 if (die->die_child != NULL)
5990 print_indent += 4;
5991 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5992 print_indent -= 4;
5994 if (print_indent == 0)
5995 fprintf (outfile, "\n");
5998 /* Print the contents of the source code line number correspondence table.
5999 This routine is a debugging aid only. */
6001 static void
6002 print_dwarf_line_table (FILE *outfile)
6004 unsigned i;
6005 dw_line_info_ref line_info;
6007 fprintf (outfile, "\n\nDWARF source line information\n");
6008 for (i = 1; i < line_info_table_in_use; i++)
6010 line_info = &line_info_table[i];
6011 fprintf (outfile, "%5d: %4ld %6ld\n", i,
6012 line_info->dw_file_num,
6013 line_info->dw_line_num);
6016 fprintf (outfile, "\n\n");
6019 /* Print the information collected for a given DIE. */
6021 void
6022 debug_dwarf_die (dw_die_ref die)
6024 print_die (die, stderr);
6027 /* Print all DWARF information collected for the compilation unit.
6028 This routine is a debugging aid only. */
6030 void
6031 debug_dwarf (void)
6033 print_indent = 0;
6034 print_die (comp_unit_die, stderr);
6035 if (! DWARF2_ASM_LINE_DEBUG_INFO)
6036 print_dwarf_line_table (stderr);
6039 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
6040 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
6041 DIE that marks the start of the DIEs for this include file. */
6043 static dw_die_ref
6044 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
6046 const char *filename = get_AT_string (bincl_die, DW_AT_name);
6047 dw_die_ref new_unit = gen_compile_unit_die (filename);
6049 new_unit->die_sib = old_unit;
6050 return new_unit;
6053 /* Close an include-file CU and reopen the enclosing one. */
6055 static dw_die_ref
6056 pop_compile_unit (dw_die_ref old_unit)
6058 dw_die_ref new_unit = old_unit->die_sib;
6060 old_unit->die_sib = NULL;
6061 return new_unit;
6064 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6065 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
6067 /* Calculate the checksum of a location expression. */
6069 static inline void
6070 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6072 CHECKSUM (loc->dw_loc_opc);
6073 CHECKSUM (loc->dw_loc_oprnd1);
6074 CHECKSUM (loc->dw_loc_oprnd2);
6077 /* Calculate the checksum of an attribute. */
6079 static void
6080 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
6082 dw_loc_descr_ref loc;
6083 rtx r;
6085 CHECKSUM (at->dw_attr);
6087 /* We don't care that this was compiled with a different compiler
6088 snapshot; if the output is the same, that's what matters. */
6089 if (at->dw_attr == DW_AT_producer)
6090 return;
6092 switch (AT_class (at))
6094 case dw_val_class_const:
6095 CHECKSUM (at->dw_attr_val.v.val_int);
6096 break;
6097 case dw_val_class_unsigned_const:
6098 CHECKSUM (at->dw_attr_val.v.val_unsigned);
6099 break;
6100 case dw_val_class_long_long:
6101 CHECKSUM (at->dw_attr_val.v.val_long_long);
6102 break;
6103 case dw_val_class_vec:
6104 CHECKSUM (at->dw_attr_val.v.val_vec);
6105 break;
6106 case dw_val_class_flag:
6107 CHECKSUM (at->dw_attr_val.v.val_flag);
6108 break;
6109 case dw_val_class_str:
6110 CHECKSUM_STRING (AT_string (at));
6111 break;
6113 case dw_val_class_addr:
6114 r = AT_addr (at);
6115 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6116 CHECKSUM_STRING (XSTR (r, 0));
6117 break;
6119 case dw_val_class_offset:
6120 CHECKSUM (at->dw_attr_val.v.val_offset);
6121 break;
6123 case dw_val_class_loc:
6124 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6125 loc_checksum (loc, ctx);
6126 break;
6128 case dw_val_class_die_ref:
6129 die_checksum (AT_ref (at), ctx, mark);
6130 break;
6132 case dw_val_class_fde_ref:
6133 case dw_val_class_lbl_id:
6134 case dw_val_class_lineptr:
6135 case dw_val_class_macptr:
6136 break;
6138 case dw_val_class_file:
6139 CHECKSUM_STRING (AT_file (at)->filename);
6140 break;
6142 default:
6143 break;
6147 /* Calculate the checksum of a DIE. */
6149 static void
6150 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6152 dw_die_ref c;
6153 dw_attr_ref a;
6154 unsigned ix;
6156 /* To avoid infinite recursion. */
6157 if (die->die_mark)
6159 CHECKSUM (die->die_mark);
6160 return;
6162 die->die_mark = ++(*mark);
6164 CHECKSUM (die->die_tag);
6166 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6167 attr_checksum (a, ctx, mark);
6169 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6172 #undef CHECKSUM
6173 #undef CHECKSUM_STRING
6175 /* Do the location expressions look same? */
6176 static inline int
6177 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6179 return loc1->dw_loc_opc == loc2->dw_loc_opc
6180 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6181 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6184 /* Do the values look the same? */
6185 static int
6186 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6188 dw_loc_descr_ref loc1, loc2;
6189 rtx r1, r2;
6191 if (v1->val_class != v2->val_class)
6192 return 0;
6194 switch (v1->val_class)
6196 case dw_val_class_const:
6197 return v1->v.val_int == v2->v.val_int;
6198 case dw_val_class_unsigned_const:
6199 return v1->v.val_unsigned == v2->v.val_unsigned;
6200 case dw_val_class_long_long:
6201 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6202 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6203 case dw_val_class_vec:
6204 if (v1->v.val_vec.length != v2->v.val_vec.length
6205 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6206 return 0;
6207 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6208 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6209 return 0;
6210 return 1;
6211 case dw_val_class_flag:
6212 return v1->v.val_flag == v2->v.val_flag;
6213 case dw_val_class_str:
6214 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6216 case dw_val_class_addr:
6217 r1 = v1->v.val_addr;
6218 r2 = v2->v.val_addr;
6219 if (GET_CODE (r1) != GET_CODE (r2))
6220 return 0;
6221 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6222 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6224 case dw_val_class_offset:
6225 return v1->v.val_offset == v2->v.val_offset;
6227 case dw_val_class_loc:
6228 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6229 loc1 && loc2;
6230 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6231 if (!same_loc_p (loc1, loc2, mark))
6232 return 0;
6233 return !loc1 && !loc2;
6235 case dw_val_class_die_ref:
6236 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6238 case dw_val_class_fde_ref:
6239 case dw_val_class_lbl_id:
6240 case dw_val_class_lineptr:
6241 case dw_val_class_macptr:
6242 return 1;
6244 case dw_val_class_file:
6245 return v1->v.val_file == v2->v.val_file;
6247 default:
6248 return 1;
6252 /* Do the attributes look the same? */
6254 static int
6255 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6257 if (at1->dw_attr != at2->dw_attr)
6258 return 0;
6260 /* We don't care that this was compiled with a different compiler
6261 snapshot; if the output is the same, that's what matters. */
6262 if (at1->dw_attr == DW_AT_producer)
6263 return 1;
6265 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6268 /* Do the dies look the same? */
6270 static int
6271 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6273 dw_die_ref c1, c2;
6274 dw_attr_ref a1;
6275 unsigned ix;
6277 /* To avoid infinite recursion. */
6278 if (die1->die_mark)
6279 return die1->die_mark == die2->die_mark;
6280 die1->die_mark = die2->die_mark = ++(*mark);
6282 if (die1->die_tag != die2->die_tag)
6283 return 0;
6285 if (VEC_length (dw_attr_node, die1->die_attr)
6286 != VEC_length (dw_attr_node, die2->die_attr))
6287 return 0;
6289 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6290 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6291 return 0;
6293 c1 = die1->die_child;
6294 c2 = die2->die_child;
6295 if (! c1)
6297 if (c2)
6298 return 0;
6300 else
6301 for (;;)
6303 if (!same_die_p (c1, c2, mark))
6304 return 0;
6305 c1 = c1->die_sib;
6306 c2 = c2->die_sib;
6307 if (c1 == die1->die_child)
6309 if (c2 == die2->die_child)
6310 break;
6311 else
6312 return 0;
6316 return 1;
6319 /* Do the dies look the same? Wrapper around same_die_p. */
6321 static int
6322 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6324 int mark = 0;
6325 int ret = same_die_p (die1, die2, &mark);
6327 unmark_all_dies (die1);
6328 unmark_all_dies (die2);
6330 return ret;
6333 /* The prefix to attach to symbols on DIEs in the current comdat debug
6334 info section. */
6335 static char *comdat_symbol_id;
6337 /* The index of the current symbol within the current comdat CU. */
6338 static unsigned int comdat_symbol_number;
6340 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6341 children, and set comdat_symbol_id accordingly. */
6343 static void
6344 compute_section_prefix (dw_die_ref unit_die)
6346 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6347 const char *base = die_name ? lbasename (die_name) : "anonymous";
6348 char *name = alloca (strlen (base) + 64);
6349 char *p;
6350 int i, mark;
6351 unsigned char checksum[16];
6352 struct md5_ctx ctx;
6354 /* Compute the checksum of the DIE, then append part of it as hex digits to
6355 the name filename of the unit. */
6357 md5_init_ctx (&ctx);
6358 mark = 0;
6359 die_checksum (unit_die, &ctx, &mark);
6360 unmark_all_dies (unit_die);
6361 md5_finish_ctx (&ctx, checksum);
6363 sprintf (name, "%s.", base);
6364 clean_symbol_name (name);
6366 p = name + strlen (name);
6367 for (i = 0; i < 4; i++)
6369 sprintf (p, "%.2x", checksum[i]);
6370 p += 2;
6373 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6374 comdat_symbol_number = 0;
6377 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6379 static int
6380 is_type_die (dw_die_ref die)
6382 switch (die->die_tag)
6384 case DW_TAG_array_type:
6385 case DW_TAG_class_type:
6386 case DW_TAG_interface_type:
6387 case DW_TAG_enumeration_type:
6388 case DW_TAG_pointer_type:
6389 case DW_TAG_reference_type:
6390 case DW_TAG_string_type:
6391 case DW_TAG_structure_type:
6392 case DW_TAG_subroutine_type:
6393 case DW_TAG_union_type:
6394 case DW_TAG_ptr_to_member_type:
6395 case DW_TAG_set_type:
6396 case DW_TAG_subrange_type:
6397 case DW_TAG_base_type:
6398 case DW_TAG_const_type:
6399 case DW_TAG_file_type:
6400 case DW_TAG_packed_type:
6401 case DW_TAG_volatile_type:
6402 case DW_TAG_typedef:
6403 return 1;
6404 default:
6405 return 0;
6409 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6410 Basically, we want to choose the bits that are likely to be shared between
6411 compilations (types) and leave out the bits that are specific to individual
6412 compilations (functions). */
6414 static int
6415 is_comdat_die (dw_die_ref c)
6417 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6418 we do for stabs. The advantage is a greater likelihood of sharing between
6419 objects that don't include headers in the same order (and therefore would
6420 put the base types in a different comdat). jason 8/28/00 */
6422 if (c->die_tag == DW_TAG_base_type)
6423 return 0;
6425 if (c->die_tag == DW_TAG_pointer_type
6426 || c->die_tag == DW_TAG_reference_type
6427 || c->die_tag == DW_TAG_const_type
6428 || c->die_tag == DW_TAG_volatile_type)
6430 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6432 return t ? is_comdat_die (t) : 0;
6435 return is_type_die (c);
6438 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6439 compilation unit. */
6441 static int
6442 is_symbol_die (dw_die_ref c)
6444 return (is_type_die (c)
6445 || (get_AT (c, DW_AT_declaration)
6446 && !get_AT (c, DW_AT_specification))
6447 || c->die_tag == DW_TAG_namespace);
6450 static char *
6451 gen_internal_sym (const char *prefix)
6453 char buf[256];
6455 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6456 return xstrdup (buf);
6459 /* Assign symbols to all worthy DIEs under DIE. */
6461 static void
6462 assign_symbol_names (dw_die_ref die)
6464 dw_die_ref c;
6466 if (is_symbol_die (die))
6468 if (comdat_symbol_id)
6470 char *p = alloca (strlen (comdat_symbol_id) + 64);
6472 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6473 comdat_symbol_id, comdat_symbol_number++);
6474 die->die_symbol = xstrdup (p);
6476 else
6477 die->die_symbol = gen_internal_sym ("LDIE");
6480 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6483 struct cu_hash_table_entry
6485 dw_die_ref cu;
6486 unsigned min_comdat_num, max_comdat_num;
6487 struct cu_hash_table_entry *next;
6490 /* Routines to manipulate hash table of CUs. */
6491 static hashval_t
6492 htab_cu_hash (const void *of)
6494 const struct cu_hash_table_entry *entry = of;
6496 return htab_hash_string (entry->cu->die_symbol);
6499 static int
6500 htab_cu_eq (const void *of1, const void *of2)
6502 const struct cu_hash_table_entry *entry1 = of1;
6503 const struct die_struct *entry2 = of2;
6505 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6508 static void
6509 htab_cu_del (void *what)
6511 struct cu_hash_table_entry *next, *entry = what;
6513 while (entry)
6515 next = entry->next;
6516 free (entry);
6517 entry = next;
6521 /* Check whether we have already seen this CU and set up SYM_NUM
6522 accordingly. */
6523 static int
6524 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6526 struct cu_hash_table_entry dummy;
6527 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6529 dummy.max_comdat_num = 0;
6531 slot = (struct cu_hash_table_entry **)
6532 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6533 INSERT);
6534 entry = *slot;
6536 for (; entry; last = entry, entry = entry->next)
6538 if (same_die_p_wrap (cu, entry->cu))
6539 break;
6542 if (entry)
6544 *sym_num = entry->min_comdat_num;
6545 return 1;
6548 entry = XCNEW (struct cu_hash_table_entry);
6549 entry->cu = cu;
6550 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6551 entry->next = *slot;
6552 *slot = entry;
6554 return 0;
6557 /* Record SYM_NUM to record of CU in HTABLE. */
6558 static void
6559 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6561 struct cu_hash_table_entry **slot, *entry;
6563 slot = (struct cu_hash_table_entry **)
6564 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6565 NO_INSERT);
6566 entry = *slot;
6568 entry->max_comdat_num = sym_num;
6571 /* Traverse the DIE (which is always comp_unit_die), and set up
6572 additional compilation units for each of the include files we see
6573 bracketed by BINCL/EINCL. */
6575 static void
6576 break_out_includes (dw_die_ref die)
6578 dw_die_ref c;
6579 dw_die_ref unit = NULL;
6580 limbo_die_node *node, **pnode;
6581 htab_t cu_hash_table;
6583 c = die->die_child;
6584 if (c) do {
6585 dw_die_ref prev = c;
6586 c = c->die_sib;
6587 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6588 || (unit && is_comdat_die (c)))
6590 dw_die_ref next = c->die_sib;
6592 /* This DIE is for a secondary CU; remove it from the main one. */
6593 remove_child_with_prev (c, prev);
6595 if (c->die_tag == DW_TAG_GNU_BINCL)
6596 unit = push_new_compile_unit (unit, c);
6597 else if (c->die_tag == DW_TAG_GNU_EINCL)
6598 unit = pop_compile_unit (unit);
6599 else
6600 add_child_die (unit, c);
6601 c = next;
6602 if (c == die->die_child)
6603 break;
6605 } while (c != die->die_child);
6607 #if 0
6608 /* We can only use this in debugging, since the frontend doesn't check
6609 to make sure that we leave every include file we enter. */
6610 gcc_assert (!unit);
6611 #endif
6613 assign_symbol_names (die);
6614 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6615 for (node = limbo_die_list, pnode = &limbo_die_list;
6616 node;
6617 node = node->next)
6619 int is_dupl;
6621 compute_section_prefix (node->die);
6622 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6623 &comdat_symbol_number);
6624 assign_symbol_names (node->die);
6625 if (is_dupl)
6626 *pnode = node->next;
6627 else
6629 pnode = &node->next;
6630 record_comdat_symbol_number (node->die, cu_hash_table,
6631 comdat_symbol_number);
6634 htab_delete (cu_hash_table);
6637 /* Traverse the DIE and add a sibling attribute if it may have the
6638 effect of speeding up access to siblings. To save some space,
6639 avoid generating sibling attributes for DIE's without children. */
6641 static void
6642 add_sibling_attributes (dw_die_ref die)
6644 dw_die_ref c;
6646 if (! die->die_child)
6647 return;
6649 if (die->die_parent && die != die->die_parent->die_child)
6650 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6652 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6655 /* Output all location lists for the DIE and its children. */
6657 static void
6658 output_location_lists (dw_die_ref die)
6660 dw_die_ref c;
6661 dw_attr_ref a;
6662 unsigned ix;
6664 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6665 if (AT_class (a) == dw_val_class_loc_list)
6666 output_loc_list (AT_loc_list (a));
6668 FOR_EACH_CHILD (die, c, output_location_lists (c));
6671 /* The format of each DIE (and its attribute value pairs) is encoded in an
6672 abbreviation table. This routine builds the abbreviation table and assigns
6673 a unique abbreviation id for each abbreviation entry. The children of each
6674 die are visited recursively. */
6676 static void
6677 build_abbrev_table (dw_die_ref die)
6679 unsigned long abbrev_id;
6680 unsigned int n_alloc;
6681 dw_die_ref c;
6682 dw_attr_ref a;
6683 unsigned ix;
6685 /* Scan the DIE references, and mark as external any that refer to
6686 DIEs from other CUs (i.e. those which are not marked). */
6687 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6688 if (AT_class (a) == dw_val_class_die_ref
6689 && AT_ref (a)->die_mark == 0)
6691 gcc_assert (AT_ref (a)->die_symbol);
6693 set_AT_ref_external (a, 1);
6696 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6698 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6699 dw_attr_ref die_a, abbrev_a;
6700 unsigned ix;
6701 bool ok = true;
6703 if (abbrev->die_tag != die->die_tag)
6704 continue;
6705 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6706 continue;
6708 if (VEC_length (dw_attr_node, abbrev->die_attr)
6709 != VEC_length (dw_attr_node, die->die_attr))
6710 continue;
6712 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6714 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6715 if ((abbrev_a->dw_attr != die_a->dw_attr)
6716 || (value_format (abbrev_a) != value_format (die_a)))
6718 ok = false;
6719 break;
6722 if (ok)
6723 break;
6726 if (abbrev_id >= abbrev_die_table_in_use)
6728 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6730 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6731 abbrev_die_table = ggc_realloc (abbrev_die_table,
6732 sizeof (dw_die_ref) * n_alloc);
6734 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6735 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6736 abbrev_die_table_allocated = n_alloc;
6739 ++abbrev_die_table_in_use;
6740 abbrev_die_table[abbrev_id] = die;
6743 die->die_abbrev = abbrev_id;
6744 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6747 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6749 static int
6750 constant_size (long unsigned int value)
6752 int log;
6754 if (value == 0)
6755 log = 0;
6756 else
6757 log = floor_log2 (value);
6759 log = log / 8;
6760 log = 1 << (floor_log2 (log) + 1);
6762 return log;
6765 /* Return the size of a DIE as it is represented in the
6766 .debug_info section. */
6768 static unsigned long
6769 size_of_die (dw_die_ref die)
6771 unsigned long size = 0;
6772 dw_attr_ref a;
6773 unsigned ix;
6775 size += size_of_uleb128 (die->die_abbrev);
6776 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6778 switch (AT_class (a))
6780 case dw_val_class_addr:
6781 size += DWARF2_ADDR_SIZE;
6782 break;
6783 case dw_val_class_offset:
6784 size += DWARF_OFFSET_SIZE;
6785 break;
6786 case dw_val_class_loc:
6788 unsigned long lsize = size_of_locs (AT_loc (a));
6790 /* Block length. */
6791 size += constant_size (lsize);
6792 size += lsize;
6794 break;
6795 case dw_val_class_loc_list:
6796 size += DWARF_OFFSET_SIZE;
6797 break;
6798 case dw_val_class_range_list:
6799 size += DWARF_OFFSET_SIZE;
6800 break;
6801 case dw_val_class_const:
6802 size += size_of_sleb128 (AT_int (a));
6803 break;
6804 case dw_val_class_unsigned_const:
6805 size += constant_size (AT_unsigned (a));
6806 break;
6807 case dw_val_class_long_long:
6808 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6809 break;
6810 case dw_val_class_vec:
6811 size += 1 + (a->dw_attr_val.v.val_vec.length
6812 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6813 break;
6814 case dw_val_class_flag:
6815 size += 1;
6816 break;
6817 case dw_val_class_die_ref:
6818 if (AT_ref_external (a))
6819 size += DWARF2_ADDR_SIZE;
6820 else
6821 size += DWARF_OFFSET_SIZE;
6822 break;
6823 case dw_val_class_fde_ref:
6824 size += DWARF_OFFSET_SIZE;
6825 break;
6826 case dw_val_class_lbl_id:
6827 size += DWARF2_ADDR_SIZE;
6828 break;
6829 case dw_val_class_lineptr:
6830 case dw_val_class_macptr:
6831 size += DWARF_OFFSET_SIZE;
6832 break;
6833 case dw_val_class_str:
6834 if (AT_string_form (a) == DW_FORM_strp)
6835 size += DWARF_OFFSET_SIZE;
6836 else
6837 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6838 break;
6839 case dw_val_class_file:
6840 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6841 break;
6842 default:
6843 gcc_unreachable ();
6847 return size;
6850 /* Size the debugging information associated with a given DIE. Visits the
6851 DIE's children recursively. Updates the global variable next_die_offset, on
6852 each time through. Uses the current value of next_die_offset to update the
6853 die_offset field in each DIE. */
6855 static void
6856 calc_die_sizes (dw_die_ref die)
6858 dw_die_ref c;
6860 die->die_offset = next_die_offset;
6861 next_die_offset += size_of_die (die);
6863 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6865 if (die->die_child != NULL)
6866 /* Count the null byte used to terminate sibling lists. */
6867 next_die_offset += 1;
6870 /* Set the marks for a die and its children. We do this so
6871 that we know whether or not a reference needs to use FORM_ref_addr; only
6872 DIEs in the same CU will be marked. We used to clear out the offset
6873 and use that as the flag, but ran into ordering problems. */
6875 static void
6876 mark_dies (dw_die_ref die)
6878 dw_die_ref c;
6880 gcc_assert (!die->die_mark);
6882 die->die_mark = 1;
6883 FOR_EACH_CHILD (die, c, mark_dies (c));
6886 /* Clear the marks for a die and its children. */
6888 static void
6889 unmark_dies (dw_die_ref die)
6891 dw_die_ref c;
6893 gcc_assert (die->die_mark);
6895 die->die_mark = 0;
6896 FOR_EACH_CHILD (die, c, unmark_dies (c));
6899 /* Clear the marks for a die, its children and referred dies. */
6901 static void
6902 unmark_all_dies (dw_die_ref die)
6904 dw_die_ref c;
6905 dw_attr_ref a;
6906 unsigned ix;
6908 if (!die->die_mark)
6909 return;
6910 die->die_mark = 0;
6912 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6914 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6915 if (AT_class (a) == dw_val_class_die_ref)
6916 unmark_all_dies (AT_ref (a));
6919 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6920 generated for the compilation unit. */
6922 static unsigned long
6923 size_of_pubnames (VEC (pubname_entry, gc) * names)
6925 unsigned long size;
6926 unsigned i;
6927 pubname_ref p;
6929 size = DWARF_PUBNAMES_HEADER_SIZE;
6930 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6931 if (names != pubtype_table
6932 || p->die->die_offset != 0
6933 || !flag_eliminate_unused_debug_types)
6934 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6936 size += DWARF_OFFSET_SIZE;
6937 return size;
6940 /* Return the size of the information in the .debug_aranges section. */
6942 static unsigned long
6943 size_of_aranges (void)
6945 unsigned long size;
6947 size = DWARF_ARANGES_HEADER_SIZE;
6949 /* Count the address/length pair for this compilation unit. */
6950 if (text_section_used)
6951 size += 2 * DWARF2_ADDR_SIZE;
6952 if (cold_text_section_used)
6953 size += 2 * DWARF2_ADDR_SIZE;
6954 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6956 /* Count the two zero words used to terminated the address range table. */
6957 size += 2 * DWARF2_ADDR_SIZE;
6958 return size;
6961 /* Select the encoding of an attribute value. */
6963 static enum dwarf_form
6964 value_format (dw_attr_ref a)
6966 switch (a->dw_attr_val.val_class)
6968 case dw_val_class_addr:
6969 return DW_FORM_addr;
6970 case dw_val_class_range_list:
6971 case dw_val_class_offset:
6972 case dw_val_class_loc_list:
6973 switch (DWARF_OFFSET_SIZE)
6975 case 4:
6976 return DW_FORM_data4;
6977 case 8:
6978 return DW_FORM_data8;
6979 default:
6980 gcc_unreachable ();
6982 case dw_val_class_loc:
6983 switch (constant_size (size_of_locs (AT_loc (a))))
6985 case 1:
6986 return DW_FORM_block1;
6987 case 2:
6988 return DW_FORM_block2;
6989 default:
6990 gcc_unreachable ();
6992 case dw_val_class_const:
6993 return DW_FORM_sdata;
6994 case dw_val_class_unsigned_const:
6995 switch (constant_size (AT_unsigned (a)))
6997 case 1:
6998 return DW_FORM_data1;
6999 case 2:
7000 return DW_FORM_data2;
7001 case 4:
7002 return DW_FORM_data4;
7003 case 8:
7004 return DW_FORM_data8;
7005 default:
7006 gcc_unreachable ();
7008 case dw_val_class_long_long:
7009 return DW_FORM_block1;
7010 case dw_val_class_vec:
7011 return DW_FORM_block1;
7012 case dw_val_class_flag:
7013 return DW_FORM_flag;
7014 case dw_val_class_die_ref:
7015 if (AT_ref_external (a))
7016 return DW_FORM_ref_addr;
7017 else
7018 return DW_FORM_ref;
7019 case dw_val_class_fde_ref:
7020 return DW_FORM_data;
7021 case dw_val_class_lbl_id:
7022 return DW_FORM_addr;
7023 case dw_val_class_lineptr:
7024 case dw_val_class_macptr:
7025 return DW_FORM_data;
7026 case dw_val_class_str:
7027 return AT_string_form (a);
7028 case dw_val_class_file:
7029 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
7031 case 1:
7032 return DW_FORM_data1;
7033 case 2:
7034 return DW_FORM_data2;
7035 case 4:
7036 return DW_FORM_data4;
7037 default:
7038 gcc_unreachable ();
7041 default:
7042 gcc_unreachable ();
7046 /* Output the encoding of an attribute value. */
7048 static void
7049 output_value_format (dw_attr_ref a)
7051 enum dwarf_form form = value_format (a);
7053 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
7056 /* Output the .debug_abbrev section which defines the DIE abbreviation
7057 table. */
7059 static void
7060 output_abbrev_section (void)
7062 unsigned long abbrev_id;
7064 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
7066 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
7067 unsigned ix;
7068 dw_attr_ref a_attr;
7070 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
7071 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
7072 dwarf_tag_name (abbrev->die_tag));
7074 if (abbrev->die_child != NULL)
7075 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
7076 else
7077 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
7079 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
7080 ix++)
7082 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
7083 dwarf_attr_name (a_attr->dw_attr));
7084 output_value_format (a_attr);
7087 dw2_asm_output_data (1, 0, NULL);
7088 dw2_asm_output_data (1, 0, NULL);
7091 /* Terminate the table. */
7092 dw2_asm_output_data (1, 0, NULL);
7095 /* Output a symbol we can use to refer to this DIE from another CU. */
7097 static inline void
7098 output_die_symbol (dw_die_ref die)
7100 char *sym = die->die_symbol;
7102 if (sym == 0)
7103 return;
7105 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
7106 /* We make these global, not weak; if the target doesn't support
7107 .linkonce, it doesn't support combining the sections, so debugging
7108 will break. */
7109 targetm.asm_out.globalize_label (asm_out_file, sym);
7111 ASM_OUTPUT_LABEL (asm_out_file, sym);
7114 /* Return a new location list, given the begin and end range, and the
7115 expression. gensym tells us whether to generate a new internal symbol for
7116 this location list node, which is done for the head of the list only. */
7118 static inline dw_loc_list_ref
7119 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
7120 const char *section, unsigned int gensym)
7122 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
7124 retlist->begin = begin;
7125 retlist->end = end;
7126 retlist->expr = expr;
7127 retlist->section = section;
7128 if (gensym)
7129 retlist->ll_symbol = gen_internal_sym ("LLST");
7131 return retlist;
7134 /* Add a location description expression to a location list. */
7136 static inline void
7137 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
7138 const char *begin, const char *end,
7139 const char *section)
7141 dw_loc_list_ref *d;
7143 /* Find the end of the chain. */
7144 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
7147 /* Add a new location list node to the list. */
7148 *d = new_loc_list (descr, begin, end, section, 0);
7151 /* Output the location list given to us. */
7153 static void
7154 output_loc_list (dw_loc_list_ref list_head)
7156 dw_loc_list_ref curr = list_head;
7158 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7160 /* Walk the location list, and output each range + expression. */
7161 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7163 unsigned long size;
7164 /* Don't output an entry that starts and ends at the same address. */
7165 if (strcmp (curr->begin, curr->end) == 0)
7166 continue;
7167 if (!have_multiple_function_sections)
7169 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7170 "Location list begin address (%s)",
7171 list_head->ll_symbol);
7172 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7173 "Location list end address (%s)",
7174 list_head->ll_symbol);
7176 else
7178 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7179 "Location list begin address (%s)",
7180 list_head->ll_symbol);
7181 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7182 "Location list end address (%s)",
7183 list_head->ll_symbol);
7185 size = size_of_locs (curr->expr);
7187 /* Output the block length for this list of location operations. */
7188 gcc_assert (size <= 0xffff);
7189 dw2_asm_output_data (2, size, "%s", "Location expression size");
7191 output_loc_sequence (curr->expr);
7194 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7195 "Location list terminator begin (%s)",
7196 list_head->ll_symbol);
7197 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7198 "Location list terminator end (%s)",
7199 list_head->ll_symbol);
7202 /* Output the DIE and its attributes. Called recursively to generate
7203 the definitions of each child DIE. */
7205 static void
7206 output_die (dw_die_ref die)
7208 dw_attr_ref a;
7209 dw_die_ref c;
7210 unsigned long size;
7211 unsigned ix;
7213 /* If someone in another CU might refer to us, set up a symbol for
7214 them to point to. */
7215 if (die->die_symbol)
7216 output_die_symbol (die);
7218 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7219 (unsigned long)die->die_offset,
7220 dwarf_tag_name (die->die_tag));
7222 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7224 const char *name = dwarf_attr_name (a->dw_attr);
7226 switch (AT_class (a))
7228 case dw_val_class_addr:
7229 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7230 break;
7232 case dw_val_class_offset:
7233 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7234 "%s", name);
7235 break;
7237 case dw_val_class_range_list:
7239 char *p = strchr (ranges_section_label, '\0');
7241 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7242 a->dw_attr_val.v.val_offset);
7243 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7244 debug_ranges_section, "%s", name);
7245 *p = '\0';
7247 break;
7249 case dw_val_class_loc:
7250 size = size_of_locs (AT_loc (a));
7252 /* Output the block length for this list of location operations. */
7253 dw2_asm_output_data (constant_size (size), size, "%s", name);
7255 output_loc_sequence (AT_loc (a));
7256 break;
7258 case dw_val_class_const:
7259 /* ??? It would be slightly more efficient to use a scheme like is
7260 used for unsigned constants below, but gdb 4.x does not sign
7261 extend. Gdb 5.x does sign extend. */
7262 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7263 break;
7265 case dw_val_class_unsigned_const:
7266 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7267 AT_unsigned (a), "%s", name);
7268 break;
7270 case dw_val_class_long_long:
7272 unsigned HOST_WIDE_INT first, second;
7274 dw2_asm_output_data (1,
7275 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7276 "%s", name);
7278 if (WORDS_BIG_ENDIAN)
7280 first = a->dw_attr_val.v.val_long_long.hi;
7281 second = a->dw_attr_val.v.val_long_long.low;
7283 else
7285 first = a->dw_attr_val.v.val_long_long.low;
7286 second = a->dw_attr_val.v.val_long_long.hi;
7289 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7290 first, "long long constant");
7291 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7292 second, NULL);
7294 break;
7296 case dw_val_class_vec:
7298 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7299 unsigned int len = a->dw_attr_val.v.val_vec.length;
7300 unsigned int i;
7301 unsigned char *p;
7303 dw2_asm_output_data (1, len * elt_size, "%s", name);
7304 if (elt_size > sizeof (HOST_WIDE_INT))
7306 elt_size /= 2;
7307 len *= 2;
7309 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7310 i < len;
7311 i++, p += elt_size)
7312 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7313 "fp or vector constant word %u", i);
7314 break;
7317 case dw_val_class_flag:
7318 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7319 break;
7321 case dw_val_class_loc_list:
7323 char *sym = AT_loc_list (a)->ll_symbol;
7325 gcc_assert (sym);
7326 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7327 "%s", name);
7329 break;
7331 case dw_val_class_die_ref:
7332 if (AT_ref_external (a))
7334 char *sym = AT_ref (a)->die_symbol;
7336 gcc_assert (sym);
7337 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7338 "%s", name);
7340 else
7342 gcc_assert (AT_ref (a)->die_offset);
7343 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7344 "%s", name);
7346 break;
7348 case dw_val_class_fde_ref:
7350 char l1[20];
7352 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7353 a->dw_attr_val.v.val_fde_index * 2);
7354 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7355 "%s", name);
7357 break;
7359 case dw_val_class_lbl_id:
7360 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7361 break;
7363 case dw_val_class_lineptr:
7364 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7365 debug_line_section, "%s", name);
7366 break;
7368 case dw_val_class_macptr:
7369 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7370 debug_macinfo_section, "%s", name);
7371 break;
7373 case dw_val_class_str:
7374 if (AT_string_form (a) == DW_FORM_strp)
7375 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7376 a->dw_attr_val.v.val_str->label,
7377 debug_str_section,
7378 "%s: \"%s\"", name, AT_string (a));
7379 else
7380 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7381 break;
7383 case dw_val_class_file:
7385 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7387 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7388 a->dw_attr_val.v.val_file->filename);
7389 break;
7392 default:
7393 gcc_unreachable ();
7397 FOR_EACH_CHILD (die, c, output_die (c));
7399 /* Add null byte to terminate sibling list. */
7400 if (die->die_child != NULL)
7401 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7402 (unsigned long) die->die_offset);
7405 /* Output the compilation unit that appears at the beginning of the
7406 .debug_info section, and precedes the DIE descriptions. */
7408 static void
7409 output_compilation_unit_header (void)
7411 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7412 dw2_asm_output_data (4, 0xffffffff,
7413 "Initial length escape value indicating 64-bit DWARF extension");
7414 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7415 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7416 "Length of Compilation Unit Info");
7417 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7418 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7419 debug_abbrev_section,
7420 "Offset Into Abbrev. Section");
7421 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7424 /* Output the compilation unit DIE and its children. */
7426 static void
7427 output_comp_unit (dw_die_ref die, int output_if_empty)
7429 const char *secname;
7430 char *oldsym, *tmp;
7432 /* Unless we are outputting main CU, we may throw away empty ones. */
7433 if (!output_if_empty && die->die_child == NULL)
7434 return;
7436 /* Even if there are no children of this DIE, we must output the information
7437 about the compilation unit. Otherwise, on an empty translation unit, we
7438 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7439 will then complain when examining the file. First mark all the DIEs in
7440 this CU so we know which get local refs. */
7441 mark_dies (die);
7443 build_abbrev_table (die);
7445 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7446 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7447 calc_die_sizes (die);
7449 oldsym = die->die_symbol;
7450 if (oldsym)
7452 tmp = alloca (strlen (oldsym) + 24);
7454 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7455 secname = tmp;
7456 die->die_symbol = NULL;
7457 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7459 else
7460 switch_to_section (debug_info_section);
7462 /* Output debugging information. */
7463 output_compilation_unit_header ();
7464 output_die (die);
7466 /* Leave the marks on the main CU, so we can check them in
7467 output_pubnames. */
7468 if (oldsym)
7470 unmark_dies (die);
7471 die->die_symbol = oldsym;
7475 /* Return the DWARF2/3 pubname associated with a decl. */
7477 static const char *
7478 dwarf2_name (tree decl, int scope)
7480 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7483 /* Add a new entry to .debug_pubnames if appropriate. */
7485 static void
7486 add_pubname_string (const char *str, dw_die_ref die)
7488 pubname_entry e;
7490 e.die = die;
7491 e.name = xstrdup (str);
7492 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7495 static void
7496 add_pubname (tree decl, dw_die_ref die)
7499 if (TREE_PUBLIC (decl))
7500 add_pubname_string (dwarf2_name (decl, 1), die);
7503 /* Add a new entry to .debug_pubtypes if appropriate. */
7505 static void
7506 add_pubtype (tree decl, dw_die_ref die)
7508 pubname_entry e;
7510 e.name = NULL;
7511 if ((TREE_PUBLIC (decl)
7512 || die->die_parent == comp_unit_die)
7513 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7515 e.die = die;
7516 if (TYPE_P (decl))
7518 if (TYPE_NAME (decl))
7520 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7521 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7522 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7523 && DECL_NAME (TYPE_NAME (decl)))
7524 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7525 else
7526 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7529 else
7530 e.name = xstrdup (dwarf2_name (decl, 1));
7532 /* If we don't have a name for the type, there's no point in adding
7533 it to the table. */
7534 if (e.name && e.name[0] != '\0')
7535 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7539 /* Output the public names table used to speed up access to externally
7540 visible names; or the public types table used to find type definitions. */
7542 static void
7543 output_pubnames (VEC (pubname_entry, gc) * names)
7545 unsigned i;
7546 unsigned long pubnames_length = size_of_pubnames (names);
7547 pubname_ref pub;
7549 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7550 dw2_asm_output_data (4, 0xffffffff,
7551 "Initial length escape value indicating 64-bit DWARF extension");
7552 if (names == pubname_table)
7553 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7554 "Length of Public Names Info");
7555 else
7556 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7557 "Length of Public Type Names Info");
7558 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7559 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7560 debug_info_section,
7561 "Offset of Compilation Unit Info");
7562 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7563 "Compilation Unit Length");
7565 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7567 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7568 if (names == pubname_table)
7569 gcc_assert (pub->die->die_mark);
7571 if (names != pubtype_table
7572 || pub->die->die_offset != 0
7573 || !flag_eliminate_unused_debug_types)
7575 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7576 "DIE offset");
7578 dw2_asm_output_nstring (pub->name, -1, "external name");
7582 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7585 /* Add a new entry to .debug_aranges if appropriate. */
7587 static void
7588 add_arange (tree decl, dw_die_ref die)
7590 if (! DECL_SECTION_NAME (decl))
7591 return;
7593 if (arange_table_in_use == arange_table_allocated)
7595 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7596 arange_table = ggc_realloc (arange_table,
7597 (arange_table_allocated
7598 * sizeof (dw_die_ref)));
7599 memset (arange_table + arange_table_in_use, 0,
7600 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7603 arange_table[arange_table_in_use++] = die;
7606 /* Output the information that goes into the .debug_aranges table.
7607 Namely, define the beginning and ending address range of the
7608 text section generated for this compilation unit. */
7610 static void
7611 output_aranges (void)
7613 unsigned i;
7614 unsigned long aranges_length = size_of_aranges ();
7616 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7617 dw2_asm_output_data (4, 0xffffffff,
7618 "Initial length escape value indicating 64-bit DWARF extension");
7619 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7620 "Length of Address Ranges Info");
7621 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7622 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7623 debug_info_section,
7624 "Offset of Compilation Unit Info");
7625 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7626 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7628 /* We need to align to twice the pointer size here. */
7629 if (DWARF_ARANGES_PAD_SIZE)
7631 /* Pad using a 2 byte words so that padding is correct for any
7632 pointer size. */
7633 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7634 2 * DWARF2_ADDR_SIZE);
7635 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7636 dw2_asm_output_data (2, 0, NULL);
7639 /* It is necessary not to output these entries if the sections were
7640 not used; if the sections were not used, the length will be 0 and
7641 the address may end up as 0 if the section is discarded by ld
7642 --gc-sections, leaving an invalid (0, 0) entry that can be
7643 confused with the terminator. */
7644 if (text_section_used)
7646 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7647 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7648 text_section_label, "Length");
7650 if (cold_text_section_used)
7652 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7653 "Address");
7654 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7655 cold_text_section_label, "Length");
7658 for (i = 0; i < arange_table_in_use; i++)
7660 dw_die_ref die = arange_table[i];
7662 /* We shouldn't see aranges for DIEs outside of the main CU. */
7663 gcc_assert (die->die_mark);
7665 if (die->die_tag == DW_TAG_subprogram)
7667 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7668 "Address");
7669 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7670 get_AT_low_pc (die), "Length");
7672 else
7674 /* A static variable; extract the symbol from DW_AT_location.
7675 Note that this code isn't currently hit, as we only emit
7676 aranges for functions (jason 9/23/99). */
7677 dw_attr_ref a = get_AT (die, DW_AT_location);
7678 dw_loc_descr_ref loc;
7680 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7682 loc = AT_loc (a);
7683 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7685 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7686 loc->dw_loc_oprnd1.v.val_addr, "Address");
7687 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7688 get_AT_unsigned (die, DW_AT_byte_size),
7689 "Length");
7693 /* Output the terminator words. */
7694 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7695 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7698 /* Add a new entry to .debug_ranges. Return the offset at which it
7699 was placed. */
7701 static unsigned int
7702 add_ranges_num (int num)
7704 unsigned int in_use = ranges_table_in_use;
7706 if (in_use == ranges_table_allocated)
7708 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7709 ranges_table
7710 = ggc_realloc (ranges_table, (ranges_table_allocated
7711 * sizeof (struct dw_ranges_struct)));
7712 memset (ranges_table + ranges_table_in_use, 0,
7713 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7716 ranges_table[in_use].num = num;
7717 ranges_table_in_use = in_use + 1;
7719 return in_use * 2 * DWARF2_ADDR_SIZE;
7722 /* Add a new entry to .debug_ranges corresponding to a block, or a
7723 range terminator if BLOCK is NULL. */
7725 static unsigned int
7726 add_ranges (const_tree block)
7728 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
7731 /* Add a new entry to .debug_ranges corresponding to a pair of
7732 labels. */
7734 static unsigned int
7735 add_ranges_by_labels (const char *begin, const char *end)
7737 unsigned int in_use = ranges_by_label_in_use;
7739 if (in_use == ranges_by_label_allocated)
7741 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
7742 ranges_by_label
7743 = ggc_realloc (ranges_by_label,
7744 (ranges_by_label_allocated
7745 * sizeof (struct dw_ranges_by_label_struct)));
7746 memset (ranges_by_label + ranges_by_label_in_use, 0,
7747 RANGES_TABLE_INCREMENT
7748 * sizeof (struct dw_ranges_by_label_struct));
7751 ranges_by_label[in_use].begin = begin;
7752 ranges_by_label[in_use].end = end;
7753 ranges_by_label_in_use = in_use + 1;
7755 return add_ranges_num (-(int)in_use - 1);
7758 static void
7759 output_ranges (void)
7761 unsigned i;
7762 static const char *const start_fmt = "Offset 0x%x";
7763 const char *fmt = start_fmt;
7765 for (i = 0; i < ranges_table_in_use; i++)
7767 int block_num = ranges_table[i].num;
7769 if (block_num > 0)
7771 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7772 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7774 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7775 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7777 /* If all code is in the text section, then the compilation
7778 unit base address defaults to DW_AT_low_pc, which is the
7779 base of the text section. */
7780 if (!have_multiple_function_sections)
7782 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7783 text_section_label,
7784 fmt, i * 2 * DWARF2_ADDR_SIZE);
7785 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7786 text_section_label, NULL);
7789 /* Otherwise, the compilation unit base address is zero,
7790 which allows us to use absolute addresses, and not worry
7791 about whether the target supports cross-section
7792 arithmetic. */
7793 else
7795 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7796 fmt, i * 2 * DWARF2_ADDR_SIZE);
7797 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7800 fmt = NULL;
7803 /* Negative block_num stands for an index into ranges_by_label. */
7804 else if (block_num < 0)
7806 int lab_idx = - block_num - 1;
7808 if (!have_multiple_function_sections)
7810 gcc_unreachable ();
7811 #if 0
7812 /* If we ever use add_ranges_by_labels () for a single
7813 function section, all we have to do is to take out
7814 the #if 0 above. */
7815 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
7816 ranges_by_label[lab_idx].begin,
7817 text_section_label,
7818 fmt, i * 2 * DWARF2_ADDR_SIZE);
7819 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
7820 ranges_by_label[lab_idx].end,
7821 text_section_label, NULL);
7822 #endif
7824 else
7826 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
7827 ranges_by_label[lab_idx].begin,
7828 fmt, i * 2 * DWARF2_ADDR_SIZE);
7829 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
7830 ranges_by_label[lab_idx].end,
7831 NULL);
7834 else
7836 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7837 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7838 fmt = start_fmt;
7843 /* Data structure containing information about input files. */
7844 struct file_info
7846 const char *path; /* Complete file name. */
7847 const char *fname; /* File name part. */
7848 int length; /* Length of entire string. */
7849 struct dwarf_file_data * file_idx; /* Index in input file table. */
7850 int dir_idx; /* Index in directory table. */
7853 /* Data structure containing information about directories with source
7854 files. */
7855 struct dir_info
7857 const char *path; /* Path including directory name. */
7858 int length; /* Path length. */
7859 int prefix; /* Index of directory entry which is a prefix. */
7860 int count; /* Number of files in this directory. */
7861 int dir_idx; /* Index of directory used as base. */
7864 /* Callback function for file_info comparison. We sort by looking at
7865 the directories in the path. */
7867 static int
7868 file_info_cmp (const void *p1, const void *p2)
7870 const struct file_info *s1 = p1;
7871 const struct file_info *s2 = p2;
7872 const unsigned char *cp1;
7873 const unsigned char *cp2;
7875 /* Take care of file names without directories. We need to make sure that
7876 we return consistent values to qsort since some will get confused if
7877 we return the same value when identical operands are passed in opposite
7878 orders. So if neither has a directory, return 0 and otherwise return
7879 1 or -1 depending on which one has the directory. */
7880 if ((s1->path == s1->fname || s2->path == s2->fname))
7881 return (s2->path == s2->fname) - (s1->path == s1->fname);
7883 cp1 = (const unsigned char *) s1->path;
7884 cp2 = (const unsigned char *) s2->path;
7886 while (1)
7888 ++cp1;
7889 ++cp2;
7890 /* Reached the end of the first path? If so, handle like above. */
7891 if ((cp1 == (const unsigned char *) s1->fname)
7892 || (cp2 == (const unsigned char *) s2->fname))
7893 return ((cp2 == (const unsigned char *) s2->fname)
7894 - (cp1 == (const unsigned char *) s1->fname));
7896 /* Character of current path component the same? */
7897 else if (*cp1 != *cp2)
7898 return *cp1 - *cp2;
7902 struct file_name_acquire_data
7904 struct file_info *files;
7905 int used_files;
7906 int max_files;
7909 /* Traversal function for the hash table. */
7911 static int
7912 file_name_acquire (void ** slot, void *data)
7914 struct file_name_acquire_data *fnad = data;
7915 struct dwarf_file_data *d = *slot;
7916 struct file_info *fi;
7917 const char *f;
7919 gcc_assert (fnad->max_files >= d->emitted_number);
7921 if (! d->emitted_number)
7922 return 1;
7924 gcc_assert (fnad->max_files != fnad->used_files);
7926 fi = fnad->files + fnad->used_files++;
7928 /* Skip all leading "./". */
7929 f = d->filename;
7930 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7931 f += 2;
7933 /* Create a new array entry. */
7934 fi->path = f;
7935 fi->length = strlen (f);
7936 fi->file_idx = d;
7938 /* Search for the file name part. */
7939 f = strrchr (f, DIR_SEPARATOR);
7940 #if defined (DIR_SEPARATOR_2)
7942 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7944 if (g != NULL)
7946 if (f == NULL || f < g)
7947 f = g;
7950 #endif
7952 fi->fname = f == NULL ? fi->path : f + 1;
7953 return 1;
7956 /* Output the directory table and the file name table. We try to minimize
7957 the total amount of memory needed. A heuristic is used to avoid large
7958 slowdowns with many input files. */
7960 static void
7961 output_file_names (void)
7963 struct file_name_acquire_data fnad;
7964 int numfiles;
7965 struct file_info *files;
7966 struct dir_info *dirs;
7967 int *saved;
7968 int *savehere;
7969 int *backmap;
7970 int ndirs;
7971 int idx_offset;
7972 int i;
7973 int idx;
7975 if (!last_emitted_file)
7977 dw2_asm_output_data (1, 0, "End directory table");
7978 dw2_asm_output_data (1, 0, "End file name table");
7979 return;
7982 numfiles = last_emitted_file->emitted_number;
7984 /* Allocate the various arrays we need. */
7985 files = alloca (numfiles * sizeof (struct file_info));
7986 dirs = alloca (numfiles * sizeof (struct dir_info));
7988 fnad.files = files;
7989 fnad.used_files = 0;
7990 fnad.max_files = numfiles;
7991 htab_traverse (file_table, file_name_acquire, &fnad);
7992 gcc_assert (fnad.used_files == fnad.max_files);
7994 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7996 /* Find all the different directories used. */
7997 dirs[0].path = files[0].path;
7998 dirs[0].length = files[0].fname - files[0].path;
7999 dirs[0].prefix = -1;
8000 dirs[0].count = 1;
8001 dirs[0].dir_idx = 0;
8002 files[0].dir_idx = 0;
8003 ndirs = 1;
8005 for (i = 1; i < numfiles; i++)
8006 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
8007 && memcmp (dirs[ndirs - 1].path, files[i].path,
8008 dirs[ndirs - 1].length) == 0)
8010 /* Same directory as last entry. */
8011 files[i].dir_idx = ndirs - 1;
8012 ++dirs[ndirs - 1].count;
8014 else
8016 int j;
8018 /* This is a new directory. */
8019 dirs[ndirs].path = files[i].path;
8020 dirs[ndirs].length = files[i].fname - files[i].path;
8021 dirs[ndirs].count = 1;
8022 dirs[ndirs].dir_idx = ndirs;
8023 files[i].dir_idx = ndirs;
8025 /* Search for a prefix. */
8026 dirs[ndirs].prefix = -1;
8027 for (j = 0; j < ndirs; j++)
8028 if (dirs[j].length < dirs[ndirs].length
8029 && dirs[j].length > 1
8030 && (dirs[ndirs].prefix == -1
8031 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
8032 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
8033 dirs[ndirs].prefix = j;
8035 ++ndirs;
8038 /* Now to the actual work. We have to find a subset of the directories which
8039 allow expressing the file name using references to the directory table
8040 with the least amount of characters. We do not do an exhaustive search
8041 where we would have to check out every combination of every single
8042 possible prefix. Instead we use a heuristic which provides nearly optimal
8043 results in most cases and never is much off. */
8044 saved = alloca (ndirs * sizeof (int));
8045 savehere = alloca (ndirs * sizeof (int));
8047 memset (saved, '\0', ndirs * sizeof (saved[0]));
8048 for (i = 0; i < ndirs; i++)
8050 int j;
8051 int total;
8053 /* We can always save some space for the current directory. But this
8054 does not mean it will be enough to justify adding the directory. */
8055 savehere[i] = dirs[i].length;
8056 total = (savehere[i] - saved[i]) * dirs[i].count;
8058 for (j = i + 1; j < ndirs; j++)
8060 savehere[j] = 0;
8061 if (saved[j] < dirs[i].length)
8063 /* Determine whether the dirs[i] path is a prefix of the
8064 dirs[j] path. */
8065 int k;
8067 k = dirs[j].prefix;
8068 while (k != -1 && k != (int) i)
8069 k = dirs[k].prefix;
8071 if (k == (int) i)
8073 /* Yes it is. We can possibly save some memory by
8074 writing the filenames in dirs[j] relative to
8075 dirs[i]. */
8076 savehere[j] = dirs[i].length;
8077 total += (savehere[j] - saved[j]) * dirs[j].count;
8082 /* Check whether we can save enough to justify adding the dirs[i]
8083 directory. */
8084 if (total > dirs[i].length + 1)
8086 /* It's worthwhile adding. */
8087 for (j = i; j < ndirs; j++)
8088 if (savehere[j] > 0)
8090 /* Remember how much we saved for this directory so far. */
8091 saved[j] = savehere[j];
8093 /* Remember the prefix directory. */
8094 dirs[j].dir_idx = i;
8099 /* Emit the directory name table. */
8100 idx = 1;
8101 idx_offset = dirs[0].length > 0 ? 1 : 0;
8102 for (i = 1 - idx_offset; i < ndirs; i++)
8103 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
8104 "Directory Entry: 0x%x", i + idx_offset);
8106 dw2_asm_output_data (1, 0, "End directory table");
8108 /* We have to emit them in the order of emitted_number since that's
8109 used in the debug info generation. To do this efficiently we
8110 generate a back-mapping of the indices first. */
8111 backmap = alloca (numfiles * sizeof (int));
8112 for (i = 0; i < numfiles; i++)
8113 backmap[files[i].file_idx->emitted_number - 1] = i;
8115 /* Now write all the file names. */
8116 for (i = 0; i < numfiles; i++)
8118 int file_idx = backmap[i];
8119 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
8121 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
8122 "File Entry: 0x%x", (unsigned) i + 1);
8124 /* Include directory index. */
8125 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
8127 /* Modification time. */
8128 dw2_asm_output_data_uleb128 (0, NULL);
8130 /* File length in bytes. */
8131 dw2_asm_output_data_uleb128 (0, NULL);
8134 dw2_asm_output_data (1, 0, "End file name table");
8138 /* Output the source line number correspondence information. This
8139 information goes into the .debug_line section. */
8141 static void
8142 output_line_info (void)
8144 char l1[20], l2[20], p1[20], p2[20];
8145 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
8146 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
8147 unsigned opc;
8148 unsigned n_op_args;
8149 unsigned long lt_index;
8150 unsigned long current_line;
8151 long line_offset;
8152 long line_delta;
8153 unsigned long current_file;
8154 unsigned long function;
8156 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
8157 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
8158 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
8159 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
8161 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
8162 dw2_asm_output_data (4, 0xffffffff,
8163 "Initial length escape value indicating 64-bit DWARF extension");
8164 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
8165 "Length of Source Line Info");
8166 ASM_OUTPUT_LABEL (asm_out_file, l1);
8168 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
8169 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
8170 ASM_OUTPUT_LABEL (asm_out_file, p1);
8172 /* Define the architecture-dependent minimum instruction length (in
8173 bytes). In this implementation of DWARF, this field is used for
8174 information purposes only. Since GCC generates assembly language,
8175 we have no a priori knowledge of how many instruction bytes are
8176 generated for each source line, and therefore can use only the
8177 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
8178 commands. Accordingly, we fix this as `1', which is "correct
8179 enough" for all architectures, and don't let the target override. */
8180 dw2_asm_output_data (1, 1,
8181 "Minimum Instruction Length");
8183 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
8184 "Default is_stmt_start flag");
8185 dw2_asm_output_data (1, DWARF_LINE_BASE,
8186 "Line Base Value (Special Opcodes)");
8187 dw2_asm_output_data (1, DWARF_LINE_RANGE,
8188 "Line Range Value (Special Opcodes)");
8189 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
8190 "Special Opcode Base");
8192 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
8194 switch (opc)
8196 case DW_LNS_advance_pc:
8197 case DW_LNS_advance_line:
8198 case DW_LNS_set_file:
8199 case DW_LNS_set_column:
8200 case DW_LNS_fixed_advance_pc:
8201 n_op_args = 1;
8202 break;
8203 default:
8204 n_op_args = 0;
8205 break;
8208 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
8209 opc, n_op_args);
8212 /* Write out the information about the files we use. */
8213 output_file_names ();
8214 ASM_OUTPUT_LABEL (asm_out_file, p2);
8216 /* We used to set the address register to the first location in the text
8217 section here, but that didn't accomplish anything since we already
8218 have a line note for the opening brace of the first function. */
8220 /* Generate the line number to PC correspondence table, encoded as
8221 a series of state machine operations. */
8222 current_file = 1;
8223 current_line = 1;
8225 if (cfun && in_cold_section_p)
8226 strcpy (prev_line_label, crtl->subsections.cold_section_label);
8227 else
8228 strcpy (prev_line_label, text_section_label);
8229 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
8231 dw_line_info_ref line_info = &line_info_table[lt_index];
8233 #if 0
8234 /* Disable this optimization for now; GDB wants to see two line notes
8235 at the beginning of a function so it can find the end of the
8236 prologue. */
8238 /* Don't emit anything for redundant notes. Just updating the
8239 address doesn't accomplish anything, because we already assume
8240 that anything after the last address is this line. */
8241 if (line_info->dw_line_num == current_line
8242 && line_info->dw_file_num == current_file)
8243 continue;
8244 #endif
8246 /* Emit debug info for the address of the current line.
8248 Unfortunately, we have little choice here currently, and must always
8249 use the most general form. GCC does not know the address delta
8250 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8251 attributes which will give an upper bound on the address range. We
8252 could perhaps use length attributes to determine when it is safe to
8253 use DW_LNS_fixed_advance_pc. */
8255 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8256 if (0)
8258 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8259 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8260 "DW_LNS_fixed_advance_pc");
8261 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8263 else
8265 /* This can handle any delta. This takes
8266 4+DWARF2_ADDR_SIZE bytes. */
8267 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8268 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8269 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8270 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8273 strcpy (prev_line_label, line_label);
8275 /* Emit debug info for the source file of the current line, if
8276 different from the previous line. */
8277 if (line_info->dw_file_num != current_file)
8279 current_file = line_info->dw_file_num;
8280 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8281 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8284 /* Emit debug info for the current line number, choosing the encoding
8285 that uses the least amount of space. */
8286 if (line_info->dw_line_num != current_line)
8288 line_offset = line_info->dw_line_num - current_line;
8289 line_delta = line_offset - DWARF_LINE_BASE;
8290 current_line = line_info->dw_line_num;
8291 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8292 /* This can handle deltas from -10 to 234, using the current
8293 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8294 takes 1 byte. */
8295 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8296 "line %lu", current_line);
8297 else
8299 /* This can handle any delta. This takes at least 4 bytes,
8300 depending on the value being encoded. */
8301 dw2_asm_output_data (1, DW_LNS_advance_line,
8302 "advance to line %lu", current_line);
8303 dw2_asm_output_data_sleb128 (line_offset, NULL);
8304 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8307 else
8308 /* We still need to start a new row, so output a copy insn. */
8309 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8312 /* Emit debug info for the address of the end of the function. */
8313 if (0)
8315 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8316 "DW_LNS_fixed_advance_pc");
8317 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8319 else
8321 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8322 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8323 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8324 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8327 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8328 dw2_asm_output_data_uleb128 (1, NULL);
8329 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8331 function = 0;
8332 current_file = 1;
8333 current_line = 1;
8334 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8336 dw_separate_line_info_ref line_info
8337 = &separate_line_info_table[lt_index];
8339 #if 0
8340 /* Don't emit anything for redundant notes. */
8341 if (line_info->dw_line_num == current_line
8342 && line_info->dw_file_num == current_file
8343 && line_info->function == function)
8344 goto cont;
8345 #endif
8347 /* Emit debug info for the address of the current line. If this is
8348 a new function, or the first line of a function, then we need
8349 to handle it differently. */
8350 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8351 lt_index);
8352 if (function != line_info->function)
8354 function = line_info->function;
8356 /* Set the address register to the first line in the function. */
8357 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8358 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8359 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8360 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8362 else
8364 /* ??? See the DW_LNS_advance_pc comment above. */
8365 if (0)
8367 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8368 "DW_LNS_fixed_advance_pc");
8369 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8371 else
8373 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8374 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8375 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8376 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8380 strcpy (prev_line_label, line_label);
8382 /* Emit debug info for the source file of the current line, if
8383 different from the previous line. */
8384 if (line_info->dw_file_num != current_file)
8386 current_file = line_info->dw_file_num;
8387 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8388 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8391 /* Emit debug info for the current line number, choosing the encoding
8392 that uses the least amount of space. */
8393 if (line_info->dw_line_num != current_line)
8395 line_offset = line_info->dw_line_num - current_line;
8396 line_delta = line_offset - DWARF_LINE_BASE;
8397 current_line = line_info->dw_line_num;
8398 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8399 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8400 "line %lu", current_line);
8401 else
8403 dw2_asm_output_data (1, DW_LNS_advance_line,
8404 "advance to line %lu", current_line);
8405 dw2_asm_output_data_sleb128 (line_offset, NULL);
8406 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8409 else
8410 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8412 #if 0
8413 cont:
8414 #endif
8416 lt_index++;
8418 /* If we're done with a function, end its sequence. */
8419 if (lt_index == separate_line_info_table_in_use
8420 || separate_line_info_table[lt_index].function != function)
8422 current_file = 1;
8423 current_line = 1;
8425 /* Emit debug info for the address of the end of the function. */
8426 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8427 if (0)
8429 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8430 "DW_LNS_fixed_advance_pc");
8431 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8433 else
8435 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8436 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8437 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8438 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8441 /* Output the marker for the end of this sequence. */
8442 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8443 dw2_asm_output_data_uleb128 (1, NULL);
8444 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8448 /* Output the marker for the end of the line number info. */
8449 ASM_OUTPUT_LABEL (asm_out_file, l2);
8452 /* Given a pointer to a tree node for some base type, return a pointer to
8453 a DIE that describes the given type.
8455 This routine must only be called for GCC type nodes that correspond to
8456 Dwarf base (fundamental) types. */
8458 static dw_die_ref
8459 base_type_die (tree type)
8461 dw_die_ref base_type_result;
8462 enum dwarf_type encoding;
8464 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8465 return 0;
8467 switch (TREE_CODE (type))
8469 case INTEGER_TYPE:
8470 if (TYPE_STRING_FLAG (type))
8472 if (TYPE_UNSIGNED (type))
8473 encoding = DW_ATE_unsigned_char;
8474 else
8475 encoding = DW_ATE_signed_char;
8477 else if (TYPE_UNSIGNED (type))
8478 encoding = DW_ATE_unsigned;
8479 else
8480 encoding = DW_ATE_signed;
8481 break;
8483 case REAL_TYPE:
8484 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8485 encoding = DW_ATE_decimal_float;
8486 else
8487 encoding = DW_ATE_float;
8488 break;
8490 case FIXED_POINT_TYPE:
8491 if (TYPE_UNSIGNED (type))
8492 encoding = DW_ATE_unsigned_fixed;
8493 else
8494 encoding = DW_ATE_signed_fixed;
8495 break;
8497 /* Dwarf2 doesn't know anything about complex ints, so use
8498 a user defined type for it. */
8499 case COMPLEX_TYPE:
8500 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8501 encoding = DW_ATE_complex_float;
8502 else
8503 encoding = DW_ATE_lo_user;
8504 break;
8506 case BOOLEAN_TYPE:
8507 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8508 encoding = DW_ATE_boolean;
8509 break;
8511 default:
8512 /* No other TREE_CODEs are Dwarf fundamental types. */
8513 gcc_unreachable ();
8516 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8518 /* This probably indicates a bug. */
8519 if (! TYPE_NAME (type))
8520 add_name_attribute (base_type_result, "__unknown__");
8522 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8523 int_size_in_bytes (type));
8524 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8526 return base_type_result;
8529 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8530 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8532 static inline int
8533 is_base_type (tree type)
8535 switch (TREE_CODE (type))
8537 case ERROR_MARK:
8538 case VOID_TYPE:
8539 case INTEGER_TYPE:
8540 case REAL_TYPE:
8541 case FIXED_POINT_TYPE:
8542 case COMPLEX_TYPE:
8543 case BOOLEAN_TYPE:
8544 return 1;
8546 case ARRAY_TYPE:
8547 case RECORD_TYPE:
8548 case UNION_TYPE:
8549 case QUAL_UNION_TYPE:
8550 case ENUMERAL_TYPE:
8551 case FUNCTION_TYPE:
8552 case METHOD_TYPE:
8553 case POINTER_TYPE:
8554 case REFERENCE_TYPE:
8555 case OFFSET_TYPE:
8556 case LANG_TYPE:
8557 case VECTOR_TYPE:
8558 return 0;
8560 default:
8561 gcc_unreachable ();
8564 return 0;
8567 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8568 node, return the size in bits for the type if it is a constant, or else
8569 return the alignment for the type if the type's size is not constant, or
8570 else return BITS_PER_WORD if the type actually turns out to be an
8571 ERROR_MARK node. */
8573 static inline unsigned HOST_WIDE_INT
8574 simple_type_size_in_bits (const_tree type)
8576 if (TREE_CODE (type) == ERROR_MARK)
8577 return BITS_PER_WORD;
8578 else if (TYPE_SIZE (type) == NULL_TREE)
8579 return 0;
8580 else if (host_integerp (TYPE_SIZE (type), 1))
8581 return tree_low_cst (TYPE_SIZE (type), 1);
8582 else
8583 return TYPE_ALIGN (type);
8586 /* Return true if the debug information for the given type should be
8587 emitted as a subrange type. */
8589 static inline bool
8590 is_subrange_type (const_tree type)
8592 tree subtype = TREE_TYPE (type);
8594 /* Subrange types are identified by the fact that they are integer
8595 types, and that they have a subtype which is either an integer type
8596 or an enumeral type. */
8598 if (TREE_CODE (type) != INTEGER_TYPE
8599 || subtype == NULL_TREE)
8600 return false;
8602 if (TREE_CODE (subtype) != INTEGER_TYPE
8603 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8604 return false;
8606 if (TREE_CODE (type) == TREE_CODE (subtype)
8607 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8608 && TYPE_MIN_VALUE (type) != NULL
8609 && TYPE_MIN_VALUE (subtype) != NULL
8610 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8611 && TYPE_MAX_VALUE (type) != NULL
8612 && TYPE_MAX_VALUE (subtype) != NULL
8613 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8615 /* The type and its subtype have the same representation. If in
8616 addition the two types also have the same name, then the given
8617 type is not a subrange type, but rather a plain base type. */
8618 /* FIXME: brobecker/2004-03-22:
8619 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8620 therefore be sufficient to check the TYPE_SIZE node pointers
8621 rather than checking the actual size. Unfortunately, we have
8622 found some cases, such as in the Ada "integer" type, where
8623 this is not the case. Until this problem is solved, we need to
8624 keep checking the actual size. */
8625 tree type_name = TYPE_NAME (type);
8626 tree subtype_name = TYPE_NAME (subtype);
8628 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8629 type_name = DECL_NAME (type_name);
8631 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8632 subtype_name = DECL_NAME (subtype_name);
8634 if (type_name == subtype_name)
8635 return false;
8638 return true;
8641 /* Given a pointer to a tree node for a subrange type, return a pointer
8642 to a DIE that describes the given type. */
8644 static dw_die_ref
8645 subrange_type_die (tree type, dw_die_ref context_die)
8647 dw_die_ref subrange_die;
8648 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8650 if (context_die == NULL)
8651 context_die = comp_unit_die;
8653 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8655 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8657 /* The size of the subrange type and its base type do not match,
8658 so we need to generate a size attribute for the subrange type. */
8659 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8662 if (TYPE_MIN_VALUE (type) != NULL)
8663 add_bound_info (subrange_die, DW_AT_lower_bound,
8664 TYPE_MIN_VALUE (type));
8665 if (TYPE_MAX_VALUE (type) != NULL)
8666 add_bound_info (subrange_die, DW_AT_upper_bound,
8667 TYPE_MAX_VALUE (type));
8669 return subrange_die;
8672 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8673 entry that chains various modifiers in front of the given type. */
8675 static dw_die_ref
8676 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8677 dw_die_ref context_die)
8679 enum tree_code code = TREE_CODE (type);
8680 dw_die_ref mod_type_die;
8681 dw_die_ref sub_die = NULL;
8682 tree item_type = NULL;
8683 tree qualified_type;
8684 tree name;
8686 if (code == ERROR_MARK)
8687 return NULL;
8689 /* See if we already have the appropriately qualified variant of
8690 this type. */
8691 qualified_type
8692 = get_qualified_type (type,
8693 ((is_const_type ? TYPE_QUAL_CONST : 0)
8694 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8696 /* If we do, then we can just use its DIE, if it exists. */
8697 if (qualified_type)
8699 mod_type_die = lookup_type_die (qualified_type);
8700 if (mod_type_die)
8701 return mod_type_die;
8704 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8706 /* Handle C typedef types. */
8707 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8709 tree dtype = TREE_TYPE (name);
8711 if (qualified_type == dtype)
8713 /* For a named type, use the typedef. */
8714 gen_type_die (qualified_type, context_die);
8715 return lookup_type_die (qualified_type);
8717 else if (is_const_type < TYPE_READONLY (dtype)
8718 || is_volatile_type < TYPE_VOLATILE (dtype)
8719 || (is_const_type <= TYPE_READONLY (dtype)
8720 && is_volatile_type <= TYPE_VOLATILE (dtype)
8721 && DECL_ORIGINAL_TYPE (name) != type))
8722 /* cv-unqualified version of named type. Just use the unnamed
8723 type to which it refers. */
8724 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8725 is_const_type, is_volatile_type,
8726 context_die);
8727 /* Else cv-qualified version of named type; fall through. */
8730 if (is_const_type)
8732 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8733 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8735 else if (is_volatile_type)
8737 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8738 sub_die = modified_type_die (type, 0, 0, context_die);
8740 else if (code == POINTER_TYPE)
8742 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8743 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8744 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8745 item_type = TREE_TYPE (type);
8747 else if (code == REFERENCE_TYPE)
8749 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8750 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8751 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8752 item_type = TREE_TYPE (type);
8754 else if (is_subrange_type (type))
8756 mod_type_die = subrange_type_die (type, context_die);
8757 item_type = TREE_TYPE (type);
8759 else if (is_base_type (type))
8760 mod_type_die = base_type_die (type);
8761 else
8763 gen_type_die (type, context_die);
8765 /* We have to get the type_main_variant here (and pass that to the
8766 `lookup_type_die' routine) because the ..._TYPE node we have
8767 might simply be a *copy* of some original type node (where the
8768 copy was created to help us keep track of typedef names) and
8769 that copy might have a different TYPE_UID from the original
8770 ..._TYPE node. */
8771 if (TREE_CODE (type) != VECTOR_TYPE)
8772 return lookup_type_die (type_main_variant (type));
8773 else
8774 /* Vectors have the debugging information in the type,
8775 not the main variant. */
8776 return lookup_type_die (type);
8779 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8780 don't output a DW_TAG_typedef, since there isn't one in the
8781 user's program; just attach a DW_AT_name to the type. */
8782 if (name
8783 && (TREE_CODE (name) != TYPE_DECL
8784 || (TREE_TYPE (name) == qualified_type && DECL_NAME (name))))
8786 if (TREE_CODE (name) == TYPE_DECL)
8787 /* Could just call add_name_and_src_coords_attributes here,
8788 but since this is a builtin type it doesn't have any
8789 useful source coordinates anyway. */
8790 name = DECL_NAME (name);
8791 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8794 if (qualified_type)
8795 equate_type_number_to_die (qualified_type, mod_type_die);
8797 if (item_type)
8798 /* We must do this after the equate_type_number_to_die call, in case
8799 this is a recursive type. This ensures that the modified_type_die
8800 recursion will terminate even if the type is recursive. Recursive
8801 types are possible in Ada. */
8802 sub_die = modified_type_die (item_type,
8803 TYPE_READONLY (item_type),
8804 TYPE_VOLATILE (item_type),
8805 context_die);
8807 if (sub_die != NULL)
8808 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8810 return mod_type_die;
8813 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8814 an enumerated type. */
8816 static inline int
8817 type_is_enum (const_tree type)
8819 return TREE_CODE (type) == ENUMERAL_TYPE;
8822 /* Return the DBX register number described by a given RTL node. */
8824 static unsigned int
8825 dbx_reg_number (const_rtx rtl)
8827 unsigned regno = REGNO (rtl);
8829 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8831 #ifdef LEAF_REG_REMAP
8832 if (current_function_uses_only_leaf_regs)
8834 int leaf_reg = LEAF_REG_REMAP (regno);
8835 if (leaf_reg != -1)
8836 regno = (unsigned) leaf_reg;
8838 #endif
8840 return DBX_REGISTER_NUMBER (regno);
8843 /* Optionally add a DW_OP_piece term to a location description expression.
8844 DW_OP_piece is only added if the location description expression already
8845 doesn't end with DW_OP_piece. */
8847 static void
8848 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8850 dw_loc_descr_ref loc;
8852 if (*list_head != NULL)
8854 /* Find the end of the chain. */
8855 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8858 if (loc->dw_loc_opc != DW_OP_piece)
8859 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8863 /* Return a location descriptor that designates a machine register or
8864 zero if there is none. */
8866 static dw_loc_descr_ref
8867 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
8869 rtx regs;
8871 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8872 return 0;
8874 regs = targetm.dwarf_register_span (rtl);
8876 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8877 return multiple_reg_loc_descriptor (rtl, regs, initialized);
8878 else
8879 return one_reg_loc_descriptor (dbx_reg_number (rtl), initialized);
8882 /* Return a location descriptor that designates a machine register for
8883 a given hard register number. */
8885 static dw_loc_descr_ref
8886 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
8888 dw_loc_descr_ref reg_loc_descr;
8889 if (regno <= 31)
8890 reg_loc_descr = new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8891 else
8892 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
8894 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
8895 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
8897 return reg_loc_descr;
8900 /* Given an RTL of a register, return a location descriptor that
8901 designates a value that spans more than one register. */
8903 static dw_loc_descr_ref
8904 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
8905 enum var_init_status initialized)
8907 int nregs, size, i;
8908 unsigned reg;
8909 dw_loc_descr_ref loc_result = NULL;
8911 reg = REGNO (rtl);
8912 #ifdef LEAF_REG_REMAP
8913 if (current_function_uses_only_leaf_regs)
8915 int leaf_reg = LEAF_REG_REMAP (reg);
8916 if (leaf_reg != -1)
8917 reg = (unsigned) leaf_reg;
8919 #endif
8920 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8921 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8923 /* Simple, contiguous registers. */
8924 if (regs == NULL_RTX)
8926 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8928 loc_result = NULL;
8929 while (nregs--)
8931 dw_loc_descr_ref t;
8933 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
8934 VAR_INIT_STATUS_INITIALIZED);
8935 add_loc_descr (&loc_result, t);
8936 add_loc_descr_op_piece (&loc_result, size);
8937 ++reg;
8939 return loc_result;
8942 /* Now onto stupid register sets in non contiguous locations. */
8944 gcc_assert (GET_CODE (regs) == PARALLEL);
8946 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8947 loc_result = NULL;
8949 for (i = 0; i < XVECLEN (regs, 0); ++i)
8951 dw_loc_descr_ref t;
8953 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)),
8954 VAR_INIT_STATUS_INITIALIZED);
8955 add_loc_descr (&loc_result, t);
8956 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8957 add_loc_descr_op_piece (&loc_result, size);
8960 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
8961 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
8962 return loc_result;
8965 /* Return a location descriptor that designates a constant. */
8967 static dw_loc_descr_ref
8968 int_loc_descriptor (HOST_WIDE_INT i)
8970 enum dwarf_location_atom op;
8972 /* Pick the smallest representation of a constant, rather than just
8973 defaulting to the LEB encoding. */
8974 if (i >= 0)
8976 if (i <= 31)
8977 op = DW_OP_lit0 + i;
8978 else if (i <= 0xff)
8979 op = DW_OP_const1u;
8980 else if (i <= 0xffff)
8981 op = DW_OP_const2u;
8982 else if (HOST_BITS_PER_WIDE_INT == 32
8983 || i <= 0xffffffff)
8984 op = DW_OP_const4u;
8985 else
8986 op = DW_OP_constu;
8988 else
8990 if (i >= -0x80)
8991 op = DW_OP_const1s;
8992 else if (i >= -0x8000)
8993 op = DW_OP_const2s;
8994 else if (HOST_BITS_PER_WIDE_INT == 32
8995 || i >= -0x80000000)
8996 op = DW_OP_const4s;
8997 else
8998 op = DW_OP_consts;
9001 return new_loc_descr (op, i, 0);
9004 /* Return a location descriptor that designates a base+offset location. */
9006 static dw_loc_descr_ref
9007 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
9008 enum var_init_status initialized)
9010 unsigned int regno;
9011 dw_loc_descr_ref result;
9013 /* We only use "frame base" when we're sure we're talking about the
9014 post-prologue local stack frame. We do this by *not* running
9015 register elimination until this point, and recognizing the special
9016 argument pointer and soft frame pointer rtx's. */
9017 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
9019 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9021 if (elim != reg)
9023 if (GET_CODE (elim) == PLUS)
9025 offset += INTVAL (XEXP (elim, 1));
9026 elim = XEXP (elim, 0);
9028 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
9029 : stack_pointer_rtx));
9030 offset += frame_pointer_fb_offset;
9032 return new_loc_descr (DW_OP_fbreg, offset, 0);
9036 regno = dbx_reg_number (reg);
9037 if (regno <= 31)
9038 result = new_loc_descr (DW_OP_breg0 + regno, offset, 0);
9039 else
9040 result = new_loc_descr (DW_OP_bregx, regno, offset);
9042 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
9043 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9045 return result;
9048 /* Return true if this RTL expression describes a base+offset calculation. */
9050 static inline int
9051 is_based_loc (const_rtx rtl)
9053 return (GET_CODE (rtl) == PLUS
9054 && ((REG_P (XEXP (rtl, 0))
9055 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
9056 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
9059 /* Return a descriptor that describes the concatenation of N locations
9060 used to form the address of a memory location. */
9062 static dw_loc_descr_ref
9063 concatn_mem_loc_descriptor (rtx concatn, enum machine_mode mode,
9064 enum var_init_status initialized)
9066 unsigned int i;
9067 dw_loc_descr_ref cc_loc_result = NULL;
9068 unsigned int n = XVECLEN (concatn, 0);
9070 for (i = 0; i < n; ++i)
9072 dw_loc_descr_ref ref;
9073 rtx x = XVECEXP (concatn, 0, i);
9075 ref = mem_loc_descriptor (x, mode, VAR_INIT_STATUS_INITIALIZED);
9076 if (ref == NULL)
9077 return NULL;
9079 add_loc_descr (&cc_loc_result, ref);
9080 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9083 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9084 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9086 return cc_loc_result;
9089 /* The following routine converts the RTL for a variable or parameter
9090 (resident in memory) into an equivalent Dwarf representation of a
9091 mechanism for getting the address of that same variable onto the top of a
9092 hypothetical "address evaluation" stack.
9094 When creating memory location descriptors, we are effectively transforming
9095 the RTL for a memory-resident object into its Dwarf postfix expression
9096 equivalent. This routine recursively descends an RTL tree, turning
9097 it into Dwarf postfix code as it goes.
9099 MODE is the mode of the memory reference, needed to handle some
9100 autoincrement addressing modes.
9102 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
9103 location list for RTL.
9105 Return 0 if we can't represent the location. */
9107 static dw_loc_descr_ref
9108 mem_loc_descriptor (rtx rtl, enum machine_mode mode,
9109 enum var_init_status initialized)
9111 dw_loc_descr_ref mem_loc_result = NULL;
9112 enum dwarf_location_atom op;
9114 /* Note that for a dynamically sized array, the location we will generate a
9115 description of here will be the lowest numbered location which is
9116 actually within the array. That's *not* necessarily the same as the
9117 zeroth element of the array. */
9119 rtl = targetm.delegitimize_address (rtl);
9121 switch (GET_CODE (rtl))
9123 case POST_INC:
9124 case POST_DEC:
9125 case POST_MODIFY:
9126 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
9127 just fall into the SUBREG code. */
9129 /* ... fall through ... */
9131 case SUBREG:
9132 /* The case of a subreg may arise when we have a local (register)
9133 variable or a formal (register) parameter which doesn't quite fill
9134 up an entire register. For now, just assume that it is
9135 legitimate to make the Dwarf info refer to the whole register which
9136 contains the given subreg. */
9137 rtl = XEXP (rtl, 0);
9139 /* ... fall through ... */
9141 case REG:
9142 /* Whenever a register number forms a part of the description of the
9143 method for calculating the (dynamic) address of a memory resident
9144 object, DWARF rules require the register number be referred to as
9145 a "base register". This distinction is not based in any way upon
9146 what category of register the hardware believes the given register
9147 belongs to. This is strictly DWARF terminology we're dealing with
9148 here. Note that in cases where the location of a memory-resident
9149 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
9150 OP_CONST (0)) the actual DWARF location descriptor that we generate
9151 may just be OP_BASEREG (basereg). This may look deceptively like
9152 the object in question was allocated to a register (rather than in
9153 memory) so DWARF consumers need to be aware of the subtle
9154 distinction between OP_REG and OP_BASEREG. */
9155 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
9156 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
9157 break;
9159 case MEM:
9160 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
9161 VAR_INIT_STATUS_INITIALIZED);
9162 if (mem_loc_result != 0)
9163 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
9164 break;
9166 case LO_SUM:
9167 rtl = XEXP (rtl, 1);
9169 /* ... fall through ... */
9171 case LABEL_REF:
9172 /* Some ports can transform a symbol ref into a label ref, because
9173 the symbol ref is too far away and has to be dumped into a constant
9174 pool. */
9175 case CONST:
9176 case SYMBOL_REF:
9177 /* Alternatively, the symbol in the constant pool might be referenced
9178 by a different symbol. */
9179 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
9181 bool marked;
9182 rtx tmp = get_pool_constant_mark (rtl, &marked);
9184 if (GET_CODE (tmp) == SYMBOL_REF)
9186 rtl = tmp;
9187 if (CONSTANT_POOL_ADDRESS_P (tmp))
9188 get_pool_constant_mark (tmp, &marked);
9189 else
9190 marked = true;
9193 /* If all references to this pool constant were optimized away,
9194 it was not output and thus we can't represent it.
9195 FIXME: might try to use DW_OP_const_value here, though
9196 DW_OP_piece complicates it. */
9197 if (!marked)
9198 return 0;
9201 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
9202 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
9203 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
9204 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9205 break;
9207 case PRE_MODIFY:
9208 /* Extract the PLUS expression nested inside and fall into
9209 PLUS code below. */
9210 rtl = XEXP (rtl, 1);
9211 goto plus;
9213 case PRE_INC:
9214 case PRE_DEC:
9215 /* Turn these into a PLUS expression and fall into the PLUS code
9216 below. */
9217 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
9218 GEN_INT (GET_CODE (rtl) == PRE_INC
9219 ? GET_MODE_UNIT_SIZE (mode)
9220 : -GET_MODE_UNIT_SIZE (mode)));
9222 /* ... fall through ... */
9224 case PLUS:
9225 plus:
9226 if (is_based_loc (rtl))
9227 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
9228 INTVAL (XEXP (rtl, 1)),
9229 VAR_INIT_STATUS_INITIALIZED);
9230 else
9232 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
9233 VAR_INIT_STATUS_INITIALIZED);
9234 if (mem_loc_result == 0)
9235 break;
9237 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
9238 && INTVAL (XEXP (rtl, 1)) >= 0)
9239 add_loc_descr (&mem_loc_result,
9240 new_loc_descr (DW_OP_plus_uconst,
9241 INTVAL (XEXP (rtl, 1)), 0));
9242 else
9244 add_loc_descr (&mem_loc_result,
9245 mem_loc_descriptor (XEXP (rtl, 1), mode,
9246 VAR_INIT_STATUS_INITIALIZED));
9247 add_loc_descr (&mem_loc_result,
9248 new_loc_descr (DW_OP_plus, 0, 0));
9251 break;
9253 /* If a pseudo-reg is optimized away, it is possible for it to
9254 be replaced with a MEM containing a multiply or shift. */
9255 case MULT:
9256 op = DW_OP_mul;
9257 goto do_binop;
9259 case ASHIFT:
9260 op = DW_OP_shl;
9261 goto do_binop;
9263 case ASHIFTRT:
9264 op = DW_OP_shra;
9265 goto do_binop;
9267 case LSHIFTRT:
9268 op = DW_OP_shr;
9269 goto do_binop;
9271 do_binop:
9273 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
9274 VAR_INIT_STATUS_INITIALIZED);
9275 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
9276 VAR_INIT_STATUS_INITIALIZED);
9278 if (op0 == 0 || op1 == 0)
9279 break;
9281 mem_loc_result = op0;
9282 add_loc_descr (&mem_loc_result, op1);
9283 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9284 break;
9287 case CONST_INT:
9288 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9289 break;
9291 case CONCATN:
9292 mem_loc_result = concatn_mem_loc_descriptor (rtl, mode,
9293 VAR_INIT_STATUS_INITIALIZED);
9294 break;
9296 default:
9297 gcc_unreachable ();
9300 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9301 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9303 return mem_loc_result;
9306 /* Return a descriptor that describes the concatenation of two locations.
9307 This is typically a complex variable. */
9309 static dw_loc_descr_ref
9310 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
9312 dw_loc_descr_ref cc_loc_result = NULL;
9313 dw_loc_descr_ref x0_ref = loc_descriptor (x0, VAR_INIT_STATUS_INITIALIZED);
9314 dw_loc_descr_ref x1_ref = loc_descriptor (x1, VAR_INIT_STATUS_INITIALIZED);
9316 if (x0_ref == 0 || x1_ref == 0)
9317 return 0;
9319 cc_loc_result = x0_ref;
9320 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9322 add_loc_descr (&cc_loc_result, x1_ref);
9323 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9325 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
9326 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9328 return cc_loc_result;
9331 /* Return a descriptor that describes the concatenation of N
9332 locations. */
9334 static dw_loc_descr_ref
9335 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
9337 unsigned int i;
9338 dw_loc_descr_ref cc_loc_result = NULL;
9339 unsigned int n = XVECLEN (concatn, 0);
9341 for (i = 0; i < n; ++i)
9343 dw_loc_descr_ref ref;
9344 rtx x = XVECEXP (concatn, 0, i);
9346 ref = loc_descriptor (x, VAR_INIT_STATUS_INITIALIZED);
9347 if (ref == NULL)
9348 return NULL;
9350 add_loc_descr (&cc_loc_result, ref);
9351 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9354 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9355 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9357 return cc_loc_result;
9360 /* Output a proper Dwarf location descriptor for a variable or parameter
9361 which is either allocated in a register or in a memory location. For a
9362 register, we just generate an OP_REG and the register number. For a
9363 memory location we provide a Dwarf postfix expression describing how to
9364 generate the (dynamic) address of the object onto the address stack.
9366 If we don't know how to describe it, return 0. */
9368 static dw_loc_descr_ref
9369 loc_descriptor (rtx rtl, enum var_init_status initialized)
9371 dw_loc_descr_ref loc_result = NULL;
9373 switch (GET_CODE (rtl))
9375 case SUBREG:
9376 /* The case of a subreg may arise when we have a local (register)
9377 variable or a formal (register) parameter which doesn't quite fill
9378 up an entire register. For now, just assume that it is
9379 legitimate to make the Dwarf info refer to the whole register which
9380 contains the given subreg. */
9381 rtl = SUBREG_REG (rtl);
9383 /* ... fall through ... */
9385 case REG:
9386 loc_result = reg_loc_descriptor (rtl, initialized);
9387 break;
9389 case MEM:
9390 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
9391 initialized);
9392 break;
9394 case CONCAT:
9395 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
9396 initialized);
9397 break;
9399 case CONCATN:
9400 loc_result = concatn_loc_descriptor (rtl, initialized);
9401 break;
9403 case VAR_LOCATION:
9404 /* Single part. */
9405 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9407 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), initialized);
9408 break;
9411 rtl = XEXP (rtl, 1);
9412 /* FALLTHRU */
9414 case PARALLEL:
9416 rtvec par_elems = XVEC (rtl, 0);
9417 int num_elem = GET_NUM_ELEM (par_elems);
9418 enum machine_mode mode;
9419 int i;
9421 /* Create the first one, so we have something to add to. */
9422 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
9423 initialized);
9424 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9425 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9426 for (i = 1; i < num_elem; i++)
9428 dw_loc_descr_ref temp;
9430 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
9431 initialized);
9432 add_loc_descr (&loc_result, temp);
9433 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9434 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9437 break;
9439 default:
9440 gcc_unreachable ();
9443 return loc_result;
9446 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9447 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9448 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9449 top-level invocation, and we require the address of LOC; is 0 if we require
9450 the value of LOC. */
9452 static dw_loc_descr_ref
9453 loc_descriptor_from_tree_1 (tree loc, int want_address)
9455 dw_loc_descr_ref ret, ret1;
9456 int have_address = 0;
9457 enum dwarf_location_atom op;
9459 /* ??? Most of the time we do not take proper care for sign/zero
9460 extending the values properly. Hopefully this won't be a real
9461 problem... */
9463 switch (TREE_CODE (loc))
9465 case ERROR_MARK:
9466 return 0;
9468 case PLACEHOLDER_EXPR:
9469 /* This case involves extracting fields from an object to determine the
9470 position of other fields. We don't try to encode this here. The
9471 only user of this is Ada, which encodes the needed information using
9472 the names of types. */
9473 return 0;
9475 case CALL_EXPR:
9476 return 0;
9478 case PREINCREMENT_EXPR:
9479 case PREDECREMENT_EXPR:
9480 case POSTINCREMENT_EXPR:
9481 case POSTDECREMENT_EXPR:
9482 /* There are no opcodes for these operations. */
9483 return 0;
9485 case ADDR_EXPR:
9486 /* If we already want an address, there's nothing we can do. */
9487 if (want_address)
9488 return 0;
9490 /* Otherwise, process the argument and look for the address. */
9491 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9493 case VAR_DECL:
9494 if (DECL_THREAD_LOCAL_P (loc))
9496 rtx rtl;
9498 /* If this is not defined, we have no way to emit the data. */
9499 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
9500 return 0;
9502 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9503 look up addresses of objects in the current module. */
9504 if (DECL_EXTERNAL (loc))
9505 return 0;
9507 rtl = rtl_for_decl_location (loc);
9508 if (rtl == NULL_RTX)
9509 return 0;
9511 if (!MEM_P (rtl))
9512 return 0;
9513 rtl = XEXP (rtl, 0);
9514 if (! CONSTANT_P (rtl))
9515 return 0;
9517 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9518 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9519 ret->dw_loc_oprnd1.v.val_addr = rtl;
9521 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9522 add_loc_descr (&ret, ret1);
9524 have_address = 1;
9525 break;
9527 /* FALLTHRU */
9529 case PARM_DECL:
9530 if (DECL_HAS_VALUE_EXPR_P (loc))
9531 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9532 want_address);
9533 /* FALLTHRU */
9535 case RESULT_DECL:
9536 case FUNCTION_DECL:
9538 rtx rtl = rtl_for_decl_location (loc);
9540 if (rtl == NULL_RTX)
9541 return 0;
9542 else if (GET_CODE (rtl) == CONST_INT)
9544 HOST_WIDE_INT val = INTVAL (rtl);
9545 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9546 val &= GET_MODE_MASK (DECL_MODE (loc));
9547 ret = int_loc_descriptor (val);
9549 else if (GET_CODE (rtl) == CONST_STRING)
9550 return 0;
9551 else if (CONSTANT_P (rtl))
9553 ret = new_loc_descr (DW_OP_addr, 0, 0);
9554 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9555 ret->dw_loc_oprnd1.v.val_addr = rtl;
9557 else
9559 enum machine_mode mode;
9561 /* Certain constructs can only be represented at top-level. */
9562 if (want_address == 2)
9563 return loc_descriptor (rtl, VAR_INIT_STATUS_INITIALIZED);
9565 mode = GET_MODE (rtl);
9566 if (MEM_P (rtl))
9568 rtl = XEXP (rtl, 0);
9569 have_address = 1;
9571 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
9574 break;
9576 case INDIRECT_REF:
9577 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9578 have_address = 1;
9579 break;
9581 case COMPOUND_EXPR:
9582 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9584 case NOP_EXPR:
9585 case CONVERT_EXPR:
9586 case VIEW_CONVERT_EXPR:
9587 case SAVE_EXPR:
9588 case GIMPLE_MODIFY_STMT:
9589 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc, 0),
9590 want_address);
9592 case COMPONENT_REF:
9593 case BIT_FIELD_REF:
9594 case ARRAY_REF:
9595 case ARRAY_RANGE_REF:
9597 tree obj, offset;
9598 HOST_WIDE_INT bitsize, bitpos, bytepos;
9599 enum machine_mode mode;
9600 int volatilep;
9601 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9603 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9604 &unsignedp, &volatilep, false);
9606 if (obj == loc)
9607 return 0;
9609 ret = loc_descriptor_from_tree_1 (obj, 1);
9610 if (ret == 0
9611 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9612 return 0;
9614 if (offset != NULL_TREE)
9616 /* Variable offset. */
9617 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9618 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9621 bytepos = bitpos / BITS_PER_UNIT;
9622 if (bytepos > 0)
9623 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9624 else if (bytepos < 0)
9626 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9627 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9630 have_address = 1;
9631 break;
9634 case INTEGER_CST:
9635 if (host_integerp (loc, 0))
9636 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9637 else
9638 return 0;
9639 break;
9641 case CONSTRUCTOR:
9643 /* Get an RTL for this, if something has been emitted. */
9644 rtx rtl = lookup_constant_def (loc);
9645 enum machine_mode mode;
9647 if (!rtl || !MEM_P (rtl))
9648 return 0;
9649 mode = GET_MODE (rtl);
9650 rtl = XEXP (rtl, 0);
9651 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
9652 have_address = 1;
9653 break;
9656 case TRUTH_AND_EXPR:
9657 case TRUTH_ANDIF_EXPR:
9658 case BIT_AND_EXPR:
9659 op = DW_OP_and;
9660 goto do_binop;
9662 case TRUTH_XOR_EXPR:
9663 case BIT_XOR_EXPR:
9664 op = DW_OP_xor;
9665 goto do_binop;
9667 case TRUTH_OR_EXPR:
9668 case TRUTH_ORIF_EXPR:
9669 case BIT_IOR_EXPR:
9670 op = DW_OP_or;
9671 goto do_binop;
9673 case FLOOR_DIV_EXPR:
9674 case CEIL_DIV_EXPR:
9675 case ROUND_DIV_EXPR:
9676 case TRUNC_DIV_EXPR:
9677 op = DW_OP_div;
9678 goto do_binop;
9680 case MINUS_EXPR:
9681 op = DW_OP_minus;
9682 goto do_binop;
9684 case FLOOR_MOD_EXPR:
9685 case CEIL_MOD_EXPR:
9686 case ROUND_MOD_EXPR:
9687 case TRUNC_MOD_EXPR:
9688 op = DW_OP_mod;
9689 goto do_binop;
9691 case MULT_EXPR:
9692 op = DW_OP_mul;
9693 goto do_binop;
9695 case LSHIFT_EXPR:
9696 op = DW_OP_shl;
9697 goto do_binop;
9699 case RSHIFT_EXPR:
9700 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9701 goto do_binop;
9703 case POINTER_PLUS_EXPR:
9704 case PLUS_EXPR:
9705 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9706 && host_integerp (TREE_OPERAND (loc, 1), 0))
9708 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9709 if (ret == 0)
9710 return 0;
9712 add_loc_descr (&ret,
9713 new_loc_descr (DW_OP_plus_uconst,
9714 tree_low_cst (TREE_OPERAND (loc, 1),
9716 0));
9717 break;
9720 op = DW_OP_plus;
9721 goto do_binop;
9723 case LE_EXPR:
9724 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9725 return 0;
9727 op = DW_OP_le;
9728 goto do_binop;
9730 case GE_EXPR:
9731 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9732 return 0;
9734 op = DW_OP_ge;
9735 goto do_binop;
9737 case LT_EXPR:
9738 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9739 return 0;
9741 op = DW_OP_lt;
9742 goto do_binop;
9744 case GT_EXPR:
9745 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9746 return 0;
9748 op = DW_OP_gt;
9749 goto do_binop;
9751 case EQ_EXPR:
9752 op = DW_OP_eq;
9753 goto do_binop;
9755 case NE_EXPR:
9756 op = DW_OP_ne;
9757 goto do_binop;
9759 do_binop:
9760 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9761 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9762 if (ret == 0 || ret1 == 0)
9763 return 0;
9765 add_loc_descr (&ret, ret1);
9766 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9767 break;
9769 case TRUTH_NOT_EXPR:
9770 case BIT_NOT_EXPR:
9771 op = DW_OP_not;
9772 goto do_unop;
9774 case ABS_EXPR:
9775 op = DW_OP_abs;
9776 goto do_unop;
9778 case NEGATE_EXPR:
9779 op = DW_OP_neg;
9780 goto do_unop;
9782 do_unop:
9783 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9784 if (ret == 0)
9785 return 0;
9787 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9788 break;
9790 case MIN_EXPR:
9791 case MAX_EXPR:
9793 const enum tree_code code =
9794 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9796 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9797 build2 (code, integer_type_node,
9798 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9799 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9802 /* ... fall through ... */
9804 case COND_EXPR:
9806 dw_loc_descr_ref lhs
9807 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9808 dw_loc_descr_ref rhs
9809 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9810 dw_loc_descr_ref bra_node, jump_node, tmp;
9812 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9813 if (ret == 0 || lhs == 0 || rhs == 0)
9814 return 0;
9816 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9817 add_loc_descr (&ret, bra_node);
9819 add_loc_descr (&ret, rhs);
9820 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9821 add_loc_descr (&ret, jump_node);
9823 add_loc_descr (&ret, lhs);
9824 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9825 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9827 /* ??? Need a node to point the skip at. Use a nop. */
9828 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9829 add_loc_descr (&ret, tmp);
9830 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9831 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9833 break;
9835 case FIX_TRUNC_EXPR:
9836 return 0;
9838 default:
9839 /* Leave front-end specific codes as simply unknown. This comes
9840 up, for instance, with the C STMT_EXPR. */
9841 if ((unsigned int) TREE_CODE (loc)
9842 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9843 return 0;
9845 #ifdef ENABLE_CHECKING
9846 /* Otherwise this is a generic code; we should just lists all of
9847 these explicitly. We forgot one. */
9848 gcc_unreachable ();
9849 #else
9850 /* In a release build, we want to degrade gracefully: better to
9851 generate incomplete debugging information than to crash. */
9852 return NULL;
9853 #endif
9856 /* Show if we can't fill the request for an address. */
9857 if (want_address && !have_address)
9858 return 0;
9860 /* If we've got an address and don't want one, dereference. */
9861 if (!want_address && have_address && ret)
9863 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9865 if (size > DWARF2_ADDR_SIZE || size == -1)
9866 return 0;
9867 else if (size == DWARF2_ADDR_SIZE)
9868 op = DW_OP_deref;
9869 else
9870 op = DW_OP_deref_size;
9872 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9875 return ret;
9878 static inline dw_loc_descr_ref
9879 loc_descriptor_from_tree (tree loc)
9881 return loc_descriptor_from_tree_1 (loc, 2);
9884 /* Given a value, round it up to the lowest multiple of `boundary'
9885 which is not less than the value itself. */
9887 static inline HOST_WIDE_INT
9888 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9890 return (((value + boundary - 1) / boundary) * boundary);
9893 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9894 pointer to the declared type for the relevant field variable, or return
9895 `integer_type_node' if the given node turns out to be an
9896 ERROR_MARK node. */
9898 static inline tree
9899 field_type (const_tree decl)
9901 tree type;
9903 if (TREE_CODE (decl) == ERROR_MARK)
9904 return integer_type_node;
9906 type = DECL_BIT_FIELD_TYPE (decl);
9907 if (type == NULL_TREE)
9908 type = TREE_TYPE (decl);
9910 return type;
9913 /* Given a pointer to a tree node, return the alignment in bits for
9914 it, or else return BITS_PER_WORD if the node actually turns out to
9915 be an ERROR_MARK node. */
9917 static inline unsigned
9918 simple_type_align_in_bits (const_tree type)
9920 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9923 static inline unsigned
9924 simple_decl_align_in_bits (const_tree decl)
9926 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9929 /* Return the result of rounding T up to ALIGN. */
9931 static inline HOST_WIDE_INT
9932 round_up_to_align (HOST_WIDE_INT t, unsigned int align)
9934 /* We must be careful if T is negative because HOST_WIDE_INT can be
9935 either "above" or "below" unsigned int as per the C promotion
9936 rules, depending on the host, thus making the signedness of the
9937 direct multiplication and division unpredictable. */
9938 unsigned HOST_WIDE_INT u = (unsigned HOST_WIDE_INT) t;
9940 u += align - 1;
9941 u /= align;
9942 u *= align;
9944 return (HOST_WIDE_INT) u;
9947 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9948 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9949 or return 0 if we are unable to determine what that offset is, either
9950 because the argument turns out to be a pointer to an ERROR_MARK node, or
9951 because the offset is actually variable. (We can't handle the latter case
9952 just yet). */
9954 static HOST_WIDE_INT
9955 field_byte_offset (const_tree decl)
9957 HOST_WIDE_INT object_offset_in_bits;
9958 HOST_WIDE_INT bitpos_int;
9960 if (TREE_CODE (decl) == ERROR_MARK)
9961 return 0;
9963 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9965 /* We cannot yet cope with fields whose positions are variable, so
9966 for now, when we see such things, we simply return 0. Someday, we may
9967 be able to handle such cases, but it will be damn difficult. */
9968 if (! host_integerp (bit_position (decl), 0))
9969 return 0;
9971 bitpos_int = int_bit_position (decl);
9973 #ifdef PCC_BITFIELD_TYPE_MATTERS
9974 if (PCC_BITFIELD_TYPE_MATTERS)
9976 tree type;
9977 tree field_size_tree;
9978 HOST_WIDE_INT deepest_bitpos;
9979 unsigned HOST_WIDE_INT field_size_in_bits;
9980 unsigned int type_align_in_bits;
9981 unsigned int decl_align_in_bits;
9982 unsigned HOST_WIDE_INT type_size_in_bits;
9984 type = field_type (decl);
9985 field_size_tree = DECL_SIZE (decl);
9987 /* The size could be unspecified if there was an error, or for
9988 a flexible array member. */
9989 if (! field_size_tree)
9990 field_size_tree = bitsize_zero_node;
9992 /* If we don't know the size of the field, pretend it's a full word. */
9993 if (host_integerp (field_size_tree, 1))
9994 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9995 else
9996 field_size_in_bits = BITS_PER_WORD;
9998 type_size_in_bits = simple_type_size_in_bits (type);
9999 type_align_in_bits = simple_type_align_in_bits (type);
10000 decl_align_in_bits = simple_decl_align_in_bits (decl);
10002 /* The GCC front-end doesn't make any attempt to keep track of the
10003 starting bit offset (relative to the start of the containing
10004 structure type) of the hypothetical "containing object" for a
10005 bit-field. Thus, when computing the byte offset value for the
10006 start of the "containing object" of a bit-field, we must deduce
10007 this information on our own. This can be rather tricky to do in
10008 some cases. For example, handling the following structure type
10009 definition when compiling for an i386/i486 target (which only
10010 aligns long long's to 32-bit boundaries) can be very tricky:
10012 struct S { int field1; long long field2:31; };
10014 Fortunately, there is a simple rule-of-thumb which can be used
10015 in such cases. When compiling for an i386/i486, GCC will
10016 allocate 8 bytes for the structure shown above. It decides to
10017 do this based upon one simple rule for bit-field allocation.
10018 GCC allocates each "containing object" for each bit-field at
10019 the first (i.e. lowest addressed) legitimate alignment boundary
10020 (based upon the required minimum alignment for the declared
10021 type of the field) which it can possibly use, subject to the
10022 condition that there is still enough available space remaining
10023 in the containing object (when allocated at the selected point)
10024 to fully accommodate all of the bits of the bit-field itself.
10026 This simple rule makes it obvious why GCC allocates 8 bytes for
10027 each object of the structure type shown above. When looking
10028 for a place to allocate the "containing object" for `field2',
10029 the compiler simply tries to allocate a 64-bit "containing
10030 object" at each successive 32-bit boundary (starting at zero)
10031 until it finds a place to allocate that 64- bit field such that
10032 at least 31 contiguous (and previously unallocated) bits remain
10033 within that selected 64 bit field. (As it turns out, for the
10034 example above, the compiler finds it is OK to allocate the
10035 "containing object" 64-bit field at bit-offset zero within the
10036 structure type.)
10038 Here we attempt to work backwards from the limited set of facts
10039 we're given, and we try to deduce from those facts, where GCC
10040 must have believed that the containing object started (within
10041 the structure type). The value we deduce is then used (by the
10042 callers of this routine) to generate DW_AT_location and
10043 DW_AT_bit_offset attributes for fields (both bit-fields and, in
10044 the case of DW_AT_location, regular fields as well). */
10046 /* Figure out the bit-distance from the start of the structure to
10047 the "deepest" bit of the bit-field. */
10048 deepest_bitpos = bitpos_int + field_size_in_bits;
10050 /* This is the tricky part. Use some fancy footwork to deduce
10051 where the lowest addressed bit of the containing object must
10052 be. */
10053 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
10055 /* Round up to type_align by default. This works best for
10056 bitfields. */
10057 object_offset_in_bits
10058 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
10060 if (object_offset_in_bits > bitpos_int)
10062 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
10064 /* Round up to decl_align instead. */
10065 object_offset_in_bits
10066 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
10069 else
10070 #endif
10071 object_offset_in_bits = bitpos_int;
10073 return object_offset_in_bits / BITS_PER_UNIT;
10076 /* The following routines define various Dwarf attributes and any data
10077 associated with them. */
10079 /* Add a location description attribute value to a DIE.
10081 This emits location attributes suitable for whole variables and
10082 whole parameters. Note that the location attributes for struct fields are
10083 generated by the routine `data_member_location_attribute' below. */
10085 static inline void
10086 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
10087 dw_loc_descr_ref descr)
10089 if (descr != 0)
10090 add_AT_loc (die, attr_kind, descr);
10093 /* Attach the specialized form of location attribute used for data members of
10094 struct and union types. In the special case of a FIELD_DECL node which
10095 represents a bit-field, the "offset" part of this special location
10096 descriptor must indicate the distance in bytes from the lowest-addressed
10097 byte of the containing struct or union type to the lowest-addressed byte of
10098 the "containing object" for the bit-field. (See the `field_byte_offset'
10099 function above).
10101 For any given bit-field, the "containing object" is a hypothetical object
10102 (of some integral or enum type) within which the given bit-field lives. The
10103 type of this hypothetical "containing object" is always the same as the
10104 declared type of the individual bit-field itself (for GCC anyway... the
10105 DWARF spec doesn't actually mandate this). Note that it is the size (in
10106 bytes) of the hypothetical "containing object" which will be given in the
10107 DW_AT_byte_size attribute for this bit-field. (See the
10108 `byte_size_attribute' function below.) It is also used when calculating the
10109 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
10110 function below.) */
10112 static void
10113 add_data_member_location_attribute (dw_die_ref die, tree decl)
10115 HOST_WIDE_INT offset;
10116 dw_loc_descr_ref loc_descr = 0;
10118 if (TREE_CODE (decl) == TREE_BINFO)
10120 /* We're working on the TAG_inheritance for a base class. */
10121 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
10123 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
10124 aren't at a fixed offset from all (sub)objects of the same
10125 type. We need to extract the appropriate offset from our
10126 vtable. The following dwarf expression means
10128 BaseAddr = ObAddr + *((*ObAddr) - Offset)
10130 This is specific to the V3 ABI, of course. */
10132 dw_loc_descr_ref tmp;
10134 /* Make a copy of the object address. */
10135 tmp = new_loc_descr (DW_OP_dup, 0, 0);
10136 add_loc_descr (&loc_descr, tmp);
10138 /* Extract the vtable address. */
10139 tmp = new_loc_descr (DW_OP_deref, 0, 0);
10140 add_loc_descr (&loc_descr, tmp);
10142 /* Calculate the address of the offset. */
10143 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
10144 gcc_assert (offset < 0);
10146 tmp = int_loc_descriptor (-offset);
10147 add_loc_descr (&loc_descr, tmp);
10148 tmp = new_loc_descr (DW_OP_minus, 0, 0);
10149 add_loc_descr (&loc_descr, tmp);
10151 /* Extract the offset. */
10152 tmp = new_loc_descr (DW_OP_deref, 0, 0);
10153 add_loc_descr (&loc_descr, tmp);
10155 /* Add it to the object address. */
10156 tmp = new_loc_descr (DW_OP_plus, 0, 0);
10157 add_loc_descr (&loc_descr, tmp);
10159 else
10160 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
10162 else
10163 offset = field_byte_offset (decl);
10165 if (! loc_descr)
10167 enum dwarf_location_atom op;
10169 /* The DWARF2 standard says that we should assume that the structure
10170 address is already on the stack, so we can specify a structure field
10171 address by using DW_OP_plus_uconst. */
10173 #ifdef MIPS_DEBUGGING_INFO
10174 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
10175 operator correctly. It works only if we leave the offset on the
10176 stack. */
10177 op = DW_OP_constu;
10178 #else
10179 op = DW_OP_plus_uconst;
10180 #endif
10182 loc_descr = new_loc_descr (op, offset, 0);
10185 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
10188 /* Writes integer values to dw_vec_const array. */
10190 static void
10191 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
10193 while (size != 0)
10195 *dest++ = val & 0xff;
10196 val >>= 8;
10197 --size;
10201 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
10203 static HOST_WIDE_INT
10204 extract_int (const unsigned char *src, unsigned int size)
10206 HOST_WIDE_INT val = 0;
10208 src += size;
10209 while (size != 0)
10211 val <<= 8;
10212 val |= *--src & 0xff;
10213 --size;
10215 return val;
10218 /* Writes floating point values to dw_vec_const array. */
10220 static void
10221 insert_float (const_rtx rtl, unsigned char *array)
10223 REAL_VALUE_TYPE rv;
10224 long val[4];
10225 int i;
10227 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
10228 real_to_target (val, &rv, GET_MODE (rtl));
10230 /* real_to_target puts 32-bit pieces in each long. Pack them. */
10231 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
10233 insert_int (val[i], 4, array);
10234 array += 4;
10238 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
10239 does not have a "location" either in memory or in a register. These
10240 things can arise in GNU C when a constant is passed as an actual parameter
10241 to an inlined function. They can also arise in C++ where declared
10242 constants do not necessarily get memory "homes". */
10244 static void
10245 add_const_value_attribute (dw_die_ref die, rtx rtl)
10247 switch (GET_CODE (rtl))
10249 case CONST_INT:
10251 HOST_WIDE_INT val = INTVAL (rtl);
10253 if (val < 0)
10254 add_AT_int (die, DW_AT_const_value, val);
10255 else
10256 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
10258 break;
10260 case CONST_DOUBLE:
10261 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
10262 floating-point constant. A CONST_DOUBLE is used whenever the
10263 constant requires more than one word in order to be adequately
10264 represented. We output CONST_DOUBLEs as blocks. */
10266 enum machine_mode mode = GET_MODE (rtl);
10268 if (SCALAR_FLOAT_MODE_P (mode))
10270 unsigned int length = GET_MODE_SIZE (mode);
10271 unsigned char *array = ggc_alloc (length);
10273 insert_float (rtl, array);
10274 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
10276 else
10278 /* ??? We really should be using HOST_WIDE_INT throughout. */
10279 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
10281 add_AT_long_long (die, DW_AT_const_value,
10282 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
10285 break;
10287 case CONST_VECTOR:
10289 enum machine_mode mode = GET_MODE (rtl);
10290 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
10291 unsigned int length = CONST_VECTOR_NUNITS (rtl);
10292 unsigned char *array = ggc_alloc (length * elt_size);
10293 unsigned int i;
10294 unsigned char *p;
10296 switch (GET_MODE_CLASS (mode))
10298 case MODE_VECTOR_INT:
10299 for (i = 0, p = array; i < length; i++, p += elt_size)
10301 rtx elt = CONST_VECTOR_ELT (rtl, i);
10302 HOST_WIDE_INT lo, hi;
10304 switch (GET_CODE (elt))
10306 case CONST_INT:
10307 lo = INTVAL (elt);
10308 hi = -(lo < 0);
10309 break;
10311 case CONST_DOUBLE:
10312 lo = CONST_DOUBLE_LOW (elt);
10313 hi = CONST_DOUBLE_HIGH (elt);
10314 break;
10316 default:
10317 gcc_unreachable ();
10320 if (elt_size <= sizeof (HOST_WIDE_INT))
10321 insert_int (lo, elt_size, p);
10322 else
10324 unsigned char *p0 = p;
10325 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
10327 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
10328 if (WORDS_BIG_ENDIAN)
10330 p0 = p1;
10331 p1 = p;
10333 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
10334 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
10337 break;
10339 case MODE_VECTOR_FLOAT:
10340 for (i = 0, p = array; i < length; i++, p += elt_size)
10342 rtx elt = CONST_VECTOR_ELT (rtl, i);
10343 insert_float (elt, p);
10345 break;
10347 default:
10348 gcc_unreachable ();
10351 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10353 break;
10355 case CONST_STRING:
10356 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10357 break;
10359 case SYMBOL_REF:
10360 case LABEL_REF:
10361 case CONST:
10362 add_AT_addr (die, DW_AT_const_value, rtl);
10363 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10364 break;
10366 case PLUS:
10367 /* In cases where an inlined instance of an inline function is passed
10368 the address of an `auto' variable (which is local to the caller) we
10369 can get a situation where the DECL_RTL of the artificial local
10370 variable (for the inlining) which acts as a stand-in for the
10371 corresponding formal parameter (of the inline function) will look
10372 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10373 exactly a compile-time constant expression, but it isn't the address
10374 of the (artificial) local variable either. Rather, it represents the
10375 *value* which the artificial local variable always has during its
10376 lifetime. We currently have no way to represent such quasi-constant
10377 values in Dwarf, so for now we just punt and generate nothing. */
10378 break;
10380 default:
10381 /* No other kinds of rtx should be possible here. */
10382 gcc_unreachable ();
10387 /* Determine whether the evaluation of EXPR references any variables
10388 or functions which aren't otherwise used (and therefore may not be
10389 output). */
10390 static tree
10391 reference_to_unused (tree * tp, int * walk_subtrees,
10392 void * data ATTRIBUTE_UNUSED)
10394 if (! EXPR_P (*tp) && ! GIMPLE_STMT_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10395 *walk_subtrees = 0;
10397 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10398 && ! TREE_ASM_WRITTEN (*tp))
10399 return *tp;
10400 else if (!flag_unit_at_a_time)
10401 return NULL_TREE;
10402 /* ??? The C++ FE emits debug information for using decls, so
10403 putting gcc_unreachable here falls over. See PR31899. For now
10404 be conservative. */
10405 else if (!cgraph_global_info_ready
10406 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
10407 return *tp;
10408 else if (DECL_P (*tp) && TREE_CODE (*tp) == VAR_DECL)
10410 struct varpool_node *node = varpool_node (*tp);
10411 if (!node->needed)
10412 return *tp;
10414 else if (DECL_P (*tp) && TREE_CODE (*tp) == FUNCTION_DECL
10415 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
10417 struct cgraph_node *node = cgraph_node (*tp);
10418 if (!node->output)
10419 return *tp;
10421 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
10422 return *tp;
10424 return NULL_TREE;
10427 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10428 for use in a later add_const_value_attribute call. */
10430 static rtx
10431 rtl_for_decl_init (tree init, tree type)
10433 rtx rtl = NULL_RTX;
10435 /* If a variable is initialized with a string constant without embedded
10436 zeros, build CONST_STRING. */
10437 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10439 tree enttype = TREE_TYPE (type);
10440 tree domain = TYPE_DOMAIN (type);
10441 enum machine_mode mode = TYPE_MODE (enttype);
10443 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10444 && domain
10445 && integer_zerop (TYPE_MIN_VALUE (domain))
10446 && compare_tree_int (TYPE_MAX_VALUE (domain),
10447 TREE_STRING_LENGTH (init) - 1) == 0
10448 && ((size_t) TREE_STRING_LENGTH (init)
10449 == strlen (TREE_STRING_POINTER (init)) + 1))
10450 rtl = gen_rtx_CONST_STRING (VOIDmode,
10451 ggc_strdup (TREE_STRING_POINTER (init)));
10453 /* Other aggregates, and complex values, could be represented using
10454 CONCAT: FIXME! */
10455 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10457 /* Vectors only work if their mode is supported by the target.
10458 FIXME: generic vectors ought to work too. */
10459 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10461 /* If the initializer is something that we know will expand into an
10462 immediate RTL constant, expand it now. We must be careful not to
10463 reference variables which won't be output. */
10464 else if (initializer_constant_valid_p (init, type)
10465 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10467 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
10468 possible. */
10469 if (TREE_CODE (type) == VECTOR_TYPE)
10470 switch (TREE_CODE (init))
10472 case VECTOR_CST:
10473 break;
10474 case CONSTRUCTOR:
10475 if (TREE_CONSTANT (init))
10477 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
10478 bool constant_p = true;
10479 tree value;
10480 unsigned HOST_WIDE_INT ix;
10482 /* Even when ctor is constant, it might contain non-*_CST
10483 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
10484 belong into VECTOR_CST nodes. */
10485 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
10486 if (!CONSTANT_CLASS_P (value))
10488 constant_p = false;
10489 break;
10492 if (constant_p)
10494 init = build_vector_from_ctor (type, elts);
10495 break;
10498 /* FALLTHRU */
10500 default:
10501 return NULL;
10504 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10506 /* If expand_expr returns a MEM, it wasn't immediate. */
10507 gcc_assert (!rtl || !MEM_P (rtl));
10510 return rtl;
10513 /* This is a specialized subset of expand_expr to evaluate a DECL_VALUE_EXPR.
10514 We stop if we find decls that haven't been expanded, or if the expression is
10515 getting so complex we won't be able to represent it anyway. Returns NULL on
10516 failure. */
10518 static rtx
10519 dw_expand_expr (tree expr)
10521 switch (TREE_CODE (expr))
10523 case VAR_DECL:
10524 case PARM_DECL:
10525 if (DECL_HAS_VALUE_EXPR_P (expr))
10526 return dw_expand_expr (DECL_VALUE_EXPR (expr));
10527 /* FALLTHRU */
10529 case CONST_DECL:
10530 case RESULT_DECL:
10531 return DECL_RTL_IF_SET (expr);
10533 case INTEGER_CST:
10534 return expand_expr (expr, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10536 case COMPONENT_REF:
10537 case ARRAY_REF:
10538 case ARRAY_RANGE_REF:
10539 case BIT_FIELD_REF:
10541 enum machine_mode mode;
10542 HOST_WIDE_INT bitsize, bitpos;
10543 tree offset, tem;
10544 int volatilep = 0, unsignedp = 0;
10545 rtx x;
10547 tem = get_inner_reference (expr, &bitsize, &bitpos, &offset,
10548 &mode, &unsignedp, &volatilep, true);
10550 x = dw_expand_expr (tem);
10551 if (x == NULL || !MEM_P (x))
10552 return NULL;
10553 if (offset != NULL)
10555 if (!host_integerp (offset, 0))
10556 return NULL;
10557 x = adjust_address_nv (x, mode, tree_low_cst (offset, 0));
10559 if (bitpos != 0)
10560 x = adjust_address_nv (x, mode, bitpos / BITS_PER_UNIT);
10562 return x;
10565 default:
10566 return NULL;
10570 /* Generate RTL for the variable DECL to represent its location. */
10572 static rtx
10573 rtl_for_decl_location (tree decl)
10575 rtx rtl;
10577 /* Here we have to decide where we are going to say the parameter "lives"
10578 (as far as the debugger is concerned). We only have a couple of
10579 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10581 DECL_RTL normally indicates where the parameter lives during most of the
10582 activation of the function. If optimization is enabled however, this
10583 could be either NULL or else a pseudo-reg. Both of those cases indicate
10584 that the parameter doesn't really live anywhere (as far as the code
10585 generation parts of GCC are concerned) during most of the function's
10586 activation. That will happen (for example) if the parameter is never
10587 referenced within the function.
10589 We could just generate a location descriptor here for all non-NULL
10590 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10591 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10592 where DECL_RTL is NULL or is a pseudo-reg.
10594 Note however that we can only get away with using DECL_INCOMING_RTL as
10595 a backup substitute for DECL_RTL in certain limited cases. In cases
10596 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10597 we can be sure that the parameter was passed using the same type as it is
10598 declared to have within the function, and that its DECL_INCOMING_RTL
10599 points us to a place where a value of that type is passed.
10601 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10602 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10603 because in these cases DECL_INCOMING_RTL points us to a value of some
10604 type which is *different* from the type of the parameter itself. Thus,
10605 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10606 such cases, the debugger would end up (for example) trying to fetch a
10607 `float' from a place which actually contains the first part of a
10608 `double'. That would lead to really incorrect and confusing
10609 output at debug-time.
10611 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10612 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10613 are a couple of exceptions however. On little-endian machines we can
10614 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10615 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10616 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10617 when (on a little-endian machine) a non-prototyped function has a
10618 parameter declared to be of type `short' or `char'. In such cases,
10619 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10620 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10621 passed `int' value. If the debugger then uses that address to fetch
10622 a `short' or a `char' (on a little-endian machine) the result will be
10623 the correct data, so we allow for such exceptional cases below.
10625 Note that our goal here is to describe the place where the given formal
10626 parameter lives during most of the function's activation (i.e. between the
10627 end of the prologue and the start of the epilogue). We'll do that as best
10628 as we can. Note however that if the given formal parameter is modified
10629 sometime during the execution of the function, then a stack backtrace (at
10630 debug-time) will show the function as having been called with the *new*
10631 value rather than the value which was originally passed in. This happens
10632 rarely enough that it is not a major problem, but it *is* a problem, and
10633 I'd like to fix it.
10635 A future version of dwarf2out.c may generate two additional attributes for
10636 any given DW_TAG_formal_parameter DIE which will describe the "passed
10637 type" and the "passed location" for the given formal parameter in addition
10638 to the attributes we now generate to indicate the "declared type" and the
10639 "active location" for each parameter. This additional set of attributes
10640 could be used by debuggers for stack backtraces. Separately, note that
10641 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10642 This happens (for example) for inlined-instances of inline function formal
10643 parameters which are never referenced. This really shouldn't be
10644 happening. All PARM_DECL nodes should get valid non-NULL
10645 DECL_INCOMING_RTL values. FIXME. */
10647 /* Use DECL_RTL as the "location" unless we find something better. */
10648 rtl = DECL_RTL_IF_SET (decl);
10650 /* When generating abstract instances, ignore everything except
10651 constants, symbols living in memory, and symbols living in
10652 fixed registers. */
10653 if (! reload_completed)
10655 if (rtl
10656 && (CONSTANT_P (rtl)
10657 || (MEM_P (rtl)
10658 && CONSTANT_P (XEXP (rtl, 0)))
10659 || (REG_P (rtl)
10660 && TREE_CODE (decl) == VAR_DECL
10661 && TREE_STATIC (decl))))
10663 rtl = targetm.delegitimize_address (rtl);
10664 return rtl;
10666 rtl = NULL_RTX;
10668 else if (TREE_CODE (decl) == PARM_DECL)
10670 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10672 tree declared_type = TREE_TYPE (decl);
10673 tree passed_type = DECL_ARG_TYPE (decl);
10674 enum machine_mode dmode = TYPE_MODE (declared_type);
10675 enum machine_mode pmode = TYPE_MODE (passed_type);
10677 /* This decl represents a formal parameter which was optimized out.
10678 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10679 all cases where (rtl == NULL_RTX) just below. */
10680 if (dmode == pmode)
10681 rtl = DECL_INCOMING_RTL (decl);
10682 else if (SCALAR_INT_MODE_P (dmode)
10683 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10684 && DECL_INCOMING_RTL (decl))
10686 rtx inc = DECL_INCOMING_RTL (decl);
10687 if (REG_P (inc))
10688 rtl = inc;
10689 else if (MEM_P (inc))
10691 if (BYTES_BIG_ENDIAN)
10692 rtl = adjust_address_nv (inc, dmode,
10693 GET_MODE_SIZE (pmode)
10694 - GET_MODE_SIZE (dmode));
10695 else
10696 rtl = inc;
10701 /* If the parm was passed in registers, but lives on the stack, then
10702 make a big endian correction if the mode of the type of the
10703 parameter is not the same as the mode of the rtl. */
10704 /* ??? This is the same series of checks that are made in dbxout.c before
10705 we reach the big endian correction code there. It isn't clear if all
10706 of these checks are necessary here, but keeping them all is the safe
10707 thing to do. */
10708 else if (MEM_P (rtl)
10709 && XEXP (rtl, 0) != const0_rtx
10710 && ! CONSTANT_P (XEXP (rtl, 0))
10711 /* Not passed in memory. */
10712 && !MEM_P (DECL_INCOMING_RTL (decl))
10713 /* Not passed by invisible reference. */
10714 && (!REG_P (XEXP (rtl, 0))
10715 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10716 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10717 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10718 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10719 #endif
10721 /* Big endian correction check. */
10722 && BYTES_BIG_ENDIAN
10723 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10724 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10725 < UNITS_PER_WORD))
10727 int offset = (UNITS_PER_WORD
10728 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10730 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10731 plus_constant (XEXP (rtl, 0), offset));
10734 else if (TREE_CODE (decl) == VAR_DECL
10735 && rtl
10736 && MEM_P (rtl)
10737 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10738 && BYTES_BIG_ENDIAN)
10740 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10741 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10743 /* If a variable is declared "register" yet is smaller than
10744 a register, then if we store the variable to memory, it
10745 looks like we're storing a register-sized value, when in
10746 fact we are not. We need to adjust the offset of the
10747 storage location to reflect the actual value's bytes,
10748 else gdb will not be able to display it. */
10749 if (rsize > dsize)
10750 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10751 plus_constant (XEXP (rtl, 0), rsize-dsize));
10754 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10755 and will have been substituted directly into all expressions that use it.
10756 C does not have such a concept, but C++ and other languages do. */
10757 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10758 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10760 if (rtl)
10761 rtl = targetm.delegitimize_address (rtl);
10763 /* If we don't look past the constant pool, we risk emitting a
10764 reference to a constant pool entry that isn't referenced from
10765 code, and thus is not emitted. */
10766 if (rtl)
10767 rtl = avoid_constant_pool_reference (rtl);
10769 return rtl;
10772 /* We need to figure out what section we should use as the base for the
10773 address ranges where a given location is valid.
10774 1. If this particular DECL has a section associated with it, use that.
10775 2. If this function has a section associated with it, use that.
10776 3. Otherwise, use the text section.
10777 XXX: If you split a variable across multiple sections, we won't notice. */
10779 static const char *
10780 secname_for_decl (const_tree decl)
10782 const char *secname;
10784 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10786 tree sectree = DECL_SECTION_NAME (decl);
10787 secname = TREE_STRING_POINTER (sectree);
10789 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10791 tree sectree = DECL_SECTION_NAME (current_function_decl);
10792 secname = TREE_STRING_POINTER (sectree);
10794 else if (cfun && in_cold_section_p)
10795 secname = crtl->subsections.cold_section_label;
10796 else
10797 secname = text_section_label;
10799 return secname;
10802 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_RTX is returned.
10803 If so, the rtx for the SYMBOL_REF for the COMMON block is returned, and the
10804 value is the offset into the common block for the symbol. */
10806 static rtx
10807 common_check (tree decl, HOST_WIDE_INT *value)
10809 rtx home;
10810 rtx sym_addr;
10811 rtx res = NULL_RTX;
10813 /* If the decl isn't a VAR_DECL, or if it isn't public or static, or if
10814 it does not have a value (the offset into the common area), or if it
10815 is thread local (as opposed to global) then it isn't common, and shouldn't
10816 be handled as such. */
10817 if (TREE_CODE (decl) != VAR_DECL
10818 || !TREE_PUBLIC(decl)
10819 || !TREE_STATIC(decl)
10820 || !DECL_HAS_VALUE_EXPR_P(decl)
10821 || DECL_THREAD_LOCAL_P (decl)
10822 || !is_fortran())
10823 return NULL;
10825 home = DECL_RTL (decl);
10826 if (home == NULL_RTX || GET_CODE (home) != MEM)
10827 return NULL;
10829 sym_addr = dw_expand_expr (DECL_VALUE_EXPR (decl));
10830 if (sym_addr == NULL_RTX || GET_CODE (sym_addr) != MEM)
10831 return NULL;
10833 sym_addr = XEXP (sym_addr, 0);
10834 if (GET_CODE (sym_addr) == CONST)
10835 sym_addr = XEXP (sym_addr, 0);
10836 if ((GET_CODE (sym_addr) == SYMBOL_REF || GET_CODE (sym_addr) == PLUS)
10837 && DECL_INITIAL (decl) == 0)
10840 /* We have a sym that will go into a common area, meaning that it
10841 will get storage reserved with a .comm/.lcomm assembler pseudo-op.
10843 Determine name of common area this symbol will be an offset into,
10844 and offset into that area. Also retrieve the decl for the area
10845 that the symbol is offset into. */
10846 tree cdecl = NULL;
10848 switch (GET_CODE (sym_addr))
10850 case PLUS:
10851 if (GET_CODE (XEXP (sym_addr, 0)) == CONST_INT)
10853 res = XEXP (sym_addr, 1);
10854 *value = INTVAL (XEXP (sym_addr, 0));
10855 cdecl = SYMBOL_REF_DECL (XEXP (sym_addr, 1));
10857 else
10859 res = XEXP (sym_addr, 0);
10860 *value = INTVAL (XEXP (sym_addr, 1));
10861 cdecl = SYMBOL_REF_DECL (XEXP (sym_addr, 0));
10863 break;
10865 case SYMBOL_REF:
10866 res = sym_addr;
10867 *value = 0;
10868 cdecl = SYMBOL_REF_DECL (sym_addr);
10869 break;
10871 default:
10872 error ("common symbol debug info is not structured as "
10873 "symbol+offset");
10876 /* Check area common symbol is offset into. If this is not public, then
10877 it is not a symbol in a common block. It must be a .lcomm symbol, not
10878 a .comm symbol. */
10879 if (cdecl == NULL || !TREE_PUBLIC(cdecl))
10880 res = NULL_RTX;
10882 else
10883 res = NULL_RTX;
10885 return res;
10889 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10890 data attribute for a variable or a parameter. We generate the
10891 DW_AT_const_value attribute only in those cases where the given variable
10892 or parameter does not have a true "location" either in memory or in a
10893 register. This can happen (for example) when a constant is passed as an
10894 actual argument in a call to an inline function. (It's possible that
10895 these things can crop up in other ways also.) Note that one type of
10896 constant value which can be passed into an inlined function is a constant
10897 pointer. This can happen for example if an actual argument in an inlined
10898 function call evaluates to a compile-time constant address. */
10900 static void
10901 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10902 enum dwarf_attribute attr)
10904 rtx rtl;
10905 dw_loc_descr_ref descr;
10906 var_loc_list *loc_list;
10907 struct var_loc_node *node;
10908 if (TREE_CODE (decl) == ERROR_MARK)
10909 return;
10911 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10912 || TREE_CODE (decl) == RESULT_DECL);
10914 /* See if we possibly have multiple locations for this variable. */
10915 loc_list = lookup_decl_loc (decl);
10917 /* If it truly has multiple locations, the first and last node will
10918 differ. */
10919 if (loc_list && loc_list->first != loc_list->last)
10921 const char *endname, *secname;
10922 dw_loc_list_ref list;
10923 rtx varloc;
10924 enum var_init_status initialized;
10926 /* Now that we know what section we are using for a base,
10927 actually construct the list of locations.
10928 The first location information is what is passed to the
10929 function that creates the location list, and the remaining
10930 locations just get added on to that list.
10931 Note that we only know the start address for a location
10932 (IE location changes), so to build the range, we use
10933 the range [current location start, next location start].
10934 This means we have to special case the last node, and generate
10935 a range of [last location start, end of function label]. */
10937 node = loc_list->first;
10938 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10939 secname = secname_for_decl (decl);
10941 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note))
10942 initialized = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10943 else
10944 initialized = VAR_INIT_STATUS_INITIALIZED;
10946 list = new_loc_list (loc_descriptor (varloc, initialized),
10947 node->label, node->next->label, secname, 1);
10948 node = node->next;
10950 for (; node->next; node = node->next)
10951 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10953 /* The variable has a location between NODE->LABEL and
10954 NODE->NEXT->LABEL. */
10955 enum var_init_status initialized =
10956 NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10957 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10958 add_loc_descr_to_loc_list (&list,
10959 loc_descriptor (varloc, initialized),
10960 node->label, node->next->label, secname);
10963 /* If the variable has a location at the last label
10964 it keeps its location until the end of function. */
10965 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10967 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10968 enum var_init_status initialized =
10969 NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10971 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10972 if (!current_function_decl)
10973 endname = text_end_label;
10974 else
10976 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10977 current_function_funcdef_no);
10978 endname = ggc_strdup (label_id);
10980 add_loc_descr_to_loc_list (&list,
10981 loc_descriptor (varloc, initialized),
10982 node->label, endname, secname);
10985 /* Finally, add the location list to the DIE, and we are done. */
10986 add_AT_loc_list (die, attr, list);
10987 return;
10990 /* Try to get some constant RTL for this decl, and use that as the value of
10991 the location. */
10993 rtl = rtl_for_decl_location (decl);
10994 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10996 add_const_value_attribute (die, rtl);
10997 return;
11000 /* If we have tried to generate the location otherwise, and it
11001 didn't work out (we wouldn't be here if we did), and we have a one entry
11002 location list, try generating a location from that. */
11003 if (loc_list && loc_list->first)
11005 enum var_init_status status;
11006 node = loc_list->first;
11007 status = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
11008 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note), status);
11009 if (descr)
11011 add_AT_location_description (die, attr, descr);
11012 return;
11016 /* We couldn't get any rtl, so try directly generating the location
11017 description from the tree. */
11018 descr = loc_descriptor_from_tree (decl);
11019 if (descr)
11021 add_AT_location_description (die, attr, descr);
11022 return;
11024 /* None of that worked, so it must not really have a location;
11025 try adding a constant value attribute from the DECL_INITIAL. */
11026 tree_add_const_value_attribute (die, decl);
11029 /* If we don't have a copy of this variable in memory for some reason (such
11030 as a C++ member constant that doesn't have an out-of-line definition),
11031 we should tell the debugger about the constant value. */
11033 static void
11034 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
11036 tree init = DECL_INITIAL (decl);
11037 tree type = TREE_TYPE (decl);
11038 rtx rtl;
11040 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
11041 /* OK */;
11042 else
11043 return;
11045 rtl = rtl_for_decl_init (init, type);
11046 if (rtl)
11047 add_const_value_attribute (var_die, rtl);
11050 /* Convert the CFI instructions for the current function into a
11051 location list. This is used for DW_AT_frame_base when we targeting
11052 a dwarf2 consumer that does not support the dwarf3
11053 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
11054 expressions. */
11056 static dw_loc_list_ref
11057 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
11059 dw_fde_ref fde;
11060 dw_loc_list_ref list, *list_tail;
11061 dw_cfi_ref cfi;
11062 dw_cfa_location last_cfa, next_cfa;
11063 const char *start_label, *last_label, *section;
11065 fde = &fde_table[fde_table_in_use - 1];
11067 section = secname_for_decl (current_function_decl);
11068 list_tail = &list;
11069 list = NULL;
11071 next_cfa.reg = INVALID_REGNUM;
11072 next_cfa.offset = 0;
11073 next_cfa.indirect = 0;
11074 next_cfa.base_offset = 0;
11076 start_label = fde->dw_fde_begin;
11078 /* ??? Bald assumption that the CIE opcode list does not contain
11079 advance opcodes. */
11080 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
11081 lookup_cfa_1 (cfi, &next_cfa);
11083 last_cfa = next_cfa;
11084 last_label = start_label;
11086 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
11087 switch (cfi->dw_cfi_opc)
11089 case DW_CFA_set_loc:
11090 case DW_CFA_advance_loc1:
11091 case DW_CFA_advance_loc2:
11092 case DW_CFA_advance_loc4:
11093 if (!cfa_equal_p (&last_cfa, &next_cfa))
11095 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
11096 start_label, last_label, section,
11097 list == NULL);
11099 list_tail = &(*list_tail)->dw_loc_next;
11100 last_cfa = next_cfa;
11101 start_label = last_label;
11103 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
11104 break;
11106 case DW_CFA_advance_loc:
11107 /* The encoding is complex enough that we should never emit this. */
11108 case DW_CFA_remember_state:
11109 case DW_CFA_restore_state:
11110 /* We don't handle these two in this function. It would be possible
11111 if it were to be required. */
11112 gcc_unreachable ();
11114 default:
11115 lookup_cfa_1 (cfi, &next_cfa);
11116 break;
11119 if (!cfa_equal_p (&last_cfa, &next_cfa))
11121 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
11122 start_label, last_label, section,
11123 list == NULL);
11124 list_tail = &(*list_tail)->dw_loc_next;
11125 start_label = last_label;
11127 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
11128 start_label, fde->dw_fde_end, section,
11129 list == NULL);
11131 return list;
11134 /* Compute a displacement from the "steady-state frame pointer" to the
11135 frame base (often the same as the CFA), and store it in
11136 frame_pointer_fb_offset. OFFSET is added to the displacement
11137 before the latter is negated. */
11139 static void
11140 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
11142 rtx reg, elim;
11144 #ifdef FRAME_POINTER_CFA_OFFSET
11145 reg = frame_pointer_rtx;
11146 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
11147 #else
11148 reg = arg_pointer_rtx;
11149 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
11150 #endif
11152 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
11153 if (GET_CODE (elim) == PLUS)
11155 offset += INTVAL (XEXP (elim, 1));
11156 elim = XEXP (elim, 0);
11158 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
11159 : stack_pointer_rtx));
11161 frame_pointer_fb_offset = -offset;
11164 /* Generate a DW_AT_name attribute given some string value to be included as
11165 the value of the attribute. */
11167 static void
11168 add_name_attribute (dw_die_ref die, const char *name_string)
11170 if (name_string != NULL && *name_string != 0)
11172 if (demangle_name_func)
11173 name_string = (*demangle_name_func) (name_string);
11175 add_AT_string (die, DW_AT_name, name_string);
11179 /* Generate a DW_AT_comp_dir attribute for DIE. */
11181 static void
11182 add_comp_dir_attribute (dw_die_ref die)
11184 const char *wd = get_src_pwd ();
11185 if (wd != NULL)
11186 add_AT_string (die, DW_AT_comp_dir, remap_debug_filename (wd));
11189 /* Given a tree node describing an array bound (either lower or upper) output
11190 a representation for that bound. */
11192 static void
11193 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
11195 switch (TREE_CODE (bound))
11197 case ERROR_MARK:
11198 return;
11200 /* All fixed-bounds are represented by INTEGER_CST nodes. */
11201 case INTEGER_CST:
11202 if (! host_integerp (bound, 0)
11203 || (bound_attr == DW_AT_lower_bound
11204 && (((is_c_family () || is_java ()) && integer_zerop (bound))
11205 || (is_fortran () && integer_onep (bound)))))
11206 /* Use the default. */
11208 else
11209 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
11210 break;
11212 case CONVERT_EXPR:
11213 case NOP_EXPR:
11214 case VIEW_CONVERT_EXPR:
11215 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
11216 break;
11218 case SAVE_EXPR:
11219 break;
11221 case VAR_DECL:
11222 case PARM_DECL:
11223 case RESULT_DECL:
11225 dw_die_ref decl_die = lookup_decl_die (bound);
11227 /* ??? Can this happen, or should the variable have been bound
11228 first? Probably it can, since I imagine that we try to create
11229 the types of parameters in the order in which they exist in
11230 the list, and won't have created a forward reference to a
11231 later parameter. */
11232 if (decl_die != NULL)
11233 add_AT_die_ref (subrange_die, bound_attr, decl_die);
11234 break;
11237 default:
11239 /* Otherwise try to create a stack operation procedure to
11240 evaluate the value of the array bound. */
11242 dw_die_ref ctx, decl_die;
11243 dw_loc_descr_ref loc;
11245 loc = loc_descriptor_from_tree (bound);
11246 if (loc == NULL)
11247 break;
11249 if (current_function_decl == 0)
11250 ctx = comp_unit_die;
11251 else
11252 ctx = lookup_decl_die (current_function_decl);
11254 decl_die = new_die (DW_TAG_variable, ctx, bound);
11255 add_AT_flag (decl_die, DW_AT_artificial, 1);
11256 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
11257 add_AT_loc (decl_die, DW_AT_location, loc);
11259 add_AT_die_ref (subrange_die, bound_attr, decl_die);
11260 break;
11265 /* Note that the block of subscript information for an array type also
11266 includes information about the element type of type given array type. */
11268 static void
11269 add_subscript_info (dw_die_ref type_die, tree type)
11271 #ifndef MIPS_DEBUGGING_INFO
11272 unsigned dimension_number;
11273 #endif
11274 tree lower, upper;
11275 dw_die_ref subrange_die;
11277 /* The GNU compilers represent multidimensional array types as sequences of
11278 one dimensional array types whose element types are themselves array
11279 types. Here we squish that down, so that each multidimensional array
11280 type gets only one array_type DIE in the Dwarf debugging info. The draft
11281 Dwarf specification say that we are allowed to do this kind of
11282 compression in C (because there is no difference between an array or
11283 arrays and a multidimensional array in C) but for other source languages
11284 (e.g. Ada) we probably shouldn't do this. */
11286 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11287 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11288 We work around this by disabling this feature. See also
11289 gen_array_type_die. */
11290 #ifndef MIPS_DEBUGGING_INFO
11291 for (dimension_number = 0;
11292 TREE_CODE (type) == ARRAY_TYPE;
11293 type = TREE_TYPE (type), dimension_number++)
11294 #endif
11296 tree domain = TYPE_DOMAIN (type);
11298 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
11299 and (in GNU C only) variable bounds. Handle all three forms
11300 here. */
11301 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
11302 if (domain)
11304 /* We have an array type with specified bounds. */
11305 lower = TYPE_MIN_VALUE (domain);
11306 upper = TYPE_MAX_VALUE (domain);
11308 /* Define the index type. */
11309 if (TREE_TYPE (domain))
11311 /* ??? This is probably an Ada unnamed subrange type. Ignore the
11312 TREE_TYPE field. We can't emit debug info for this
11313 because it is an unnamed integral type. */
11314 if (TREE_CODE (domain) == INTEGER_TYPE
11315 && TYPE_NAME (domain) == NULL_TREE
11316 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
11317 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
11319 else
11320 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
11321 type_die);
11324 /* ??? If upper is NULL, the array has unspecified length,
11325 but it does have a lower bound. This happens with Fortran
11326 dimension arr(N:*)
11327 Since the debugger is definitely going to need to know N
11328 to produce useful results, go ahead and output the lower
11329 bound solo, and hope the debugger can cope. */
11331 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
11332 if (upper)
11333 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
11336 /* Otherwise we have an array type with an unspecified length. The
11337 DWARF-2 spec does not say how to handle this; let's just leave out the
11338 bounds. */
11342 static void
11343 add_byte_size_attribute (dw_die_ref die, tree tree_node)
11345 unsigned size;
11347 switch (TREE_CODE (tree_node))
11349 case ERROR_MARK:
11350 size = 0;
11351 break;
11352 case ENUMERAL_TYPE:
11353 case RECORD_TYPE:
11354 case UNION_TYPE:
11355 case QUAL_UNION_TYPE:
11356 size = int_size_in_bytes (tree_node);
11357 break;
11358 case FIELD_DECL:
11359 /* For a data member of a struct or union, the DW_AT_byte_size is
11360 generally given as the number of bytes normally allocated for an
11361 object of the *declared* type of the member itself. This is true
11362 even for bit-fields. */
11363 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
11364 break;
11365 default:
11366 gcc_unreachable ();
11369 /* Note that `size' might be -1 when we get to this point. If it is, that
11370 indicates that the byte size of the entity in question is variable. We
11371 have no good way of expressing this fact in Dwarf at the present time,
11372 so just let the -1 pass on through. */
11373 add_AT_unsigned (die, DW_AT_byte_size, size);
11376 /* For a FIELD_DECL node which represents a bit-field, output an attribute
11377 which specifies the distance in bits from the highest order bit of the
11378 "containing object" for the bit-field to the highest order bit of the
11379 bit-field itself.
11381 For any given bit-field, the "containing object" is a hypothetical object
11382 (of some integral or enum type) within which the given bit-field lives. The
11383 type of this hypothetical "containing object" is always the same as the
11384 declared type of the individual bit-field itself. The determination of the
11385 exact location of the "containing object" for a bit-field is rather
11386 complicated. It's handled by the `field_byte_offset' function (above).
11388 Note that it is the size (in bytes) of the hypothetical "containing object"
11389 which will be given in the DW_AT_byte_size attribute for this bit-field.
11390 (See `byte_size_attribute' above). */
11392 static inline void
11393 add_bit_offset_attribute (dw_die_ref die, tree decl)
11395 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
11396 tree type = DECL_BIT_FIELD_TYPE (decl);
11397 HOST_WIDE_INT bitpos_int;
11398 HOST_WIDE_INT highest_order_object_bit_offset;
11399 HOST_WIDE_INT highest_order_field_bit_offset;
11400 HOST_WIDE_INT unsigned bit_offset;
11402 /* Must be a field and a bit field. */
11403 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
11405 /* We can't yet handle bit-fields whose offsets are variable, so if we
11406 encounter such things, just return without generating any attribute
11407 whatsoever. Likewise for variable or too large size. */
11408 if (! host_integerp (bit_position (decl), 0)
11409 || ! host_integerp (DECL_SIZE (decl), 1))
11410 return;
11412 bitpos_int = int_bit_position (decl);
11414 /* Note that the bit offset is always the distance (in bits) from the
11415 highest-order bit of the "containing object" to the highest-order bit of
11416 the bit-field itself. Since the "high-order end" of any object or field
11417 is different on big-endian and little-endian machines, the computation
11418 below must take account of these differences. */
11419 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
11420 highest_order_field_bit_offset = bitpos_int;
11422 if (! BYTES_BIG_ENDIAN)
11424 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
11425 highest_order_object_bit_offset += simple_type_size_in_bits (type);
11428 bit_offset
11429 = (! BYTES_BIG_ENDIAN
11430 ? highest_order_object_bit_offset - highest_order_field_bit_offset
11431 : highest_order_field_bit_offset - highest_order_object_bit_offset);
11433 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
11436 /* For a FIELD_DECL node which represents a bit field, output an attribute
11437 which specifies the length in bits of the given field. */
11439 static inline void
11440 add_bit_size_attribute (dw_die_ref die, tree decl)
11442 /* Must be a field and a bit field. */
11443 gcc_assert (TREE_CODE (decl) == FIELD_DECL
11444 && DECL_BIT_FIELD_TYPE (decl));
11446 if (host_integerp (DECL_SIZE (decl), 1))
11447 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
11450 /* If the compiled language is ANSI C, then add a 'prototyped'
11451 attribute, if arg types are given for the parameters of a function. */
11453 static inline void
11454 add_prototyped_attribute (dw_die_ref die, tree func_type)
11456 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
11457 && TYPE_ARG_TYPES (func_type) != NULL)
11458 add_AT_flag (die, DW_AT_prototyped, 1);
11461 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
11462 by looking in either the type declaration or object declaration
11463 equate table. */
11465 static inline void
11466 add_abstract_origin_attribute (dw_die_ref die, tree origin)
11468 dw_die_ref origin_die = NULL;
11470 if (TREE_CODE (origin) != FUNCTION_DECL)
11472 /* We may have gotten separated from the block for the inlined
11473 function, if we're in an exception handler or some such; make
11474 sure that the abstract function has been written out.
11476 Doing this for nested functions is wrong, however; functions are
11477 distinct units, and our context might not even be inline. */
11478 tree fn = origin;
11480 if (TYPE_P (fn))
11481 fn = TYPE_STUB_DECL (fn);
11483 fn = decl_function_context (fn);
11484 if (fn)
11485 dwarf2out_abstract_function (fn);
11488 if (DECL_P (origin))
11489 origin_die = lookup_decl_die (origin);
11490 else if (TYPE_P (origin))
11491 origin_die = lookup_type_die (origin);
11493 /* XXX: Functions that are never lowered don't always have correct block
11494 trees (in the case of java, they simply have no block tree, in some other
11495 languages). For these functions, there is nothing we can really do to
11496 output correct debug info for inlined functions in all cases. Rather
11497 than die, we'll just produce deficient debug info now, in that we will
11498 have variables without a proper abstract origin. In the future, when all
11499 functions are lowered, we should re-add a gcc_assert (origin_die)
11500 here. */
11502 if (origin_die)
11503 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
11506 /* We do not currently support the pure_virtual attribute. */
11508 static inline void
11509 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
11511 if (DECL_VINDEX (func_decl))
11513 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11515 if (host_integerp (DECL_VINDEX (func_decl), 0))
11516 add_AT_loc (die, DW_AT_vtable_elem_location,
11517 new_loc_descr (DW_OP_constu,
11518 tree_low_cst (DECL_VINDEX (func_decl), 0),
11519 0));
11521 /* GNU extension: Record what type this method came from originally. */
11522 if (debug_info_level > DINFO_LEVEL_TERSE)
11523 add_AT_die_ref (die, DW_AT_containing_type,
11524 lookup_type_die (DECL_CONTEXT (func_decl)));
11528 /* Add source coordinate attributes for the given decl. */
11530 static void
11531 add_src_coords_attributes (dw_die_ref die, tree decl)
11533 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11535 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
11536 add_AT_unsigned (die, DW_AT_decl_line, s.line);
11539 /* Add a DW_AT_name attribute and source coordinate attribute for the
11540 given decl, but only if it actually has a name. */
11542 static void
11543 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
11545 tree decl_name;
11547 decl_name = DECL_NAME (decl);
11548 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
11550 add_name_attribute (die, dwarf2_name (decl, 0));
11551 if (! DECL_ARTIFICIAL (decl))
11552 add_src_coords_attributes (die, decl);
11554 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
11555 && TREE_PUBLIC (decl)
11556 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
11557 && !DECL_ABSTRACT (decl)
11558 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
11559 && !is_fortran ())
11560 add_AT_string (die, DW_AT_MIPS_linkage_name,
11561 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
11564 #ifdef VMS_DEBUGGING_INFO
11565 /* Get the function's name, as described by its RTL. This may be different
11566 from the DECL_NAME name used in the source file. */
11567 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11569 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11570 XEXP (DECL_RTL (decl), 0));
11571 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11573 #endif
11576 /* Push a new declaration scope. */
11578 static void
11579 push_decl_scope (tree scope)
11581 VEC_safe_push (tree, gc, decl_scope_table, scope);
11584 /* Pop a declaration scope. */
11586 static inline void
11587 pop_decl_scope (void)
11589 VEC_pop (tree, decl_scope_table);
11592 /* Return the DIE for the scope that immediately contains this type.
11593 Non-named types get global scope. Named types nested in other
11594 types get their containing scope if it's open, or global scope
11595 otherwise. All other types (i.e. function-local named types) get
11596 the current active scope. */
11598 static dw_die_ref
11599 scope_die_for (tree t, dw_die_ref context_die)
11601 dw_die_ref scope_die = NULL;
11602 tree containing_scope;
11603 int i;
11605 /* Non-types always go in the current scope. */
11606 gcc_assert (TYPE_P (t));
11608 containing_scope = TYPE_CONTEXT (t);
11610 /* Use the containing namespace if it was passed in (for a declaration). */
11611 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11613 if (context_die == lookup_decl_die (containing_scope))
11614 /* OK */;
11615 else
11616 containing_scope = NULL_TREE;
11619 /* Ignore function type "scopes" from the C frontend. They mean that
11620 a tagged type is local to a parmlist of a function declarator, but
11621 that isn't useful to DWARF. */
11622 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11623 containing_scope = NULL_TREE;
11625 if (containing_scope == NULL_TREE)
11626 scope_die = comp_unit_die;
11627 else if (TYPE_P (containing_scope))
11629 /* For types, we can just look up the appropriate DIE. But
11630 first we check to see if we're in the middle of emitting it
11631 so we know where the new DIE should go. */
11632 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11633 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11634 break;
11636 if (i < 0)
11638 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11639 || TREE_ASM_WRITTEN (containing_scope));
11641 /* If none of the current dies are suitable, we get file scope. */
11642 scope_die = comp_unit_die;
11644 else
11645 scope_die = lookup_type_die (containing_scope);
11647 else
11648 scope_die = context_die;
11650 return scope_die;
11653 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11655 static inline int
11656 local_scope_p (dw_die_ref context_die)
11658 for (; context_die; context_die = context_die->die_parent)
11659 if (context_die->die_tag == DW_TAG_inlined_subroutine
11660 || context_die->die_tag == DW_TAG_subprogram)
11661 return 1;
11663 return 0;
11666 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11667 whether or not to treat a DIE in this context as a declaration. */
11669 static inline int
11670 class_or_namespace_scope_p (dw_die_ref context_die)
11672 return (context_die
11673 && (context_die->die_tag == DW_TAG_structure_type
11674 || context_die->die_tag == DW_TAG_class_type
11675 || context_die->die_tag == DW_TAG_interface_type
11676 || context_die->die_tag == DW_TAG_union_type
11677 || context_die->die_tag == DW_TAG_namespace));
11680 /* Many forms of DIEs require a "type description" attribute. This
11681 routine locates the proper "type descriptor" die for the type given
11682 by 'type', and adds a DW_AT_type attribute below the given die. */
11684 static void
11685 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11686 int decl_volatile, dw_die_ref context_die)
11688 enum tree_code code = TREE_CODE (type);
11689 dw_die_ref type_die = NULL;
11691 /* ??? If this type is an unnamed subrange type of an integral, floating-point
11692 or fixed-point type, use the inner type. This is because we have no
11693 support for unnamed types in base_type_die. This can happen if this is
11694 an Ada subrange type. Correct solution is emit a subrange type die. */
11695 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
11696 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11697 type = TREE_TYPE (type), code = TREE_CODE (type);
11699 if (code == ERROR_MARK
11700 /* Handle a special case. For functions whose return type is void, we
11701 generate *no* type attribute. (Note that no object may have type
11702 `void', so this only applies to function return types). */
11703 || code == VOID_TYPE)
11704 return;
11706 type_die = modified_type_die (type,
11707 decl_const || TYPE_READONLY (type),
11708 decl_volatile || TYPE_VOLATILE (type),
11709 context_die);
11711 if (type_die != NULL)
11712 add_AT_die_ref (object_die, DW_AT_type, type_die);
11715 /* Given an object die, add the calling convention attribute for the
11716 function call type. */
11717 static void
11718 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
11720 enum dwarf_calling_convention value = DW_CC_normal;
11722 value = targetm.dwarf_calling_convention (TREE_TYPE (decl));
11724 /* DWARF doesn't provide a way to identify a program's source-level
11725 entry point. DW_AT_calling_convention attributes are only meant
11726 to describe functions' calling conventions. However, lacking a
11727 better way to signal the Fortran main program, we use this for the
11728 time being, following existing custom. */
11729 if (is_fortran ()
11730 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
11731 value = DW_CC_program;
11733 /* Only add the attribute if the backend requests it, and
11734 is not DW_CC_normal. */
11735 if (value && (value != DW_CC_normal))
11736 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11739 /* Given a tree pointer to a struct, class, union, or enum type node, return
11740 a pointer to the (string) tag name for the given type, or zero if the type
11741 was declared without a tag. */
11743 static const char *
11744 type_tag (const_tree type)
11746 const char *name = 0;
11748 if (TYPE_NAME (type) != 0)
11750 tree t = 0;
11752 /* Find the IDENTIFIER_NODE for the type name. */
11753 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11754 t = TYPE_NAME (type);
11756 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11757 a TYPE_DECL node, regardless of whether or not a `typedef' was
11758 involved. */
11759 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11760 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11762 /* We want to be extra verbose. Don't call dwarf_name if
11763 DECL_NAME isn't set. The default hook for decl_printable_name
11764 doesn't like that, and in this context it's correct to return
11765 0, instead of "<anonymous>" or the like. */
11766 if (DECL_NAME (TYPE_NAME (type)))
11767 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
11770 /* Now get the name as a string, or invent one. */
11771 if (!name && t != 0)
11772 name = IDENTIFIER_POINTER (t);
11775 return (name == 0 || *name == '\0') ? 0 : name;
11778 /* Return the type associated with a data member, make a special check
11779 for bit field types. */
11781 static inline tree
11782 member_declared_type (const_tree member)
11784 return (DECL_BIT_FIELD_TYPE (member)
11785 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11788 /* Get the decl's label, as described by its RTL. This may be different
11789 from the DECL_NAME name used in the source file. */
11791 #if 0
11792 static const char *
11793 decl_start_label (tree decl)
11795 rtx x;
11796 const char *fnname;
11798 x = DECL_RTL (decl);
11799 gcc_assert (MEM_P (x));
11801 x = XEXP (x, 0);
11802 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11804 fnname = XSTR (x, 0);
11805 return fnname;
11807 #endif
11809 /* These routines generate the internal representation of the DIE's for
11810 the compilation unit. Debugging information is collected by walking
11811 the declaration trees passed in from dwarf2out_decl(). */
11813 static void
11814 gen_array_type_die (tree type, dw_die_ref context_die)
11816 dw_die_ref scope_die = scope_die_for (type, context_die);
11817 dw_die_ref array_die;
11818 tree element_type;
11820 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11821 the inner array type comes before the outer array type. Thus we must
11822 call gen_type_die before we call new_die. See below also. */
11823 #ifdef MIPS_DEBUGGING_INFO
11824 gen_type_die (TREE_TYPE (type), context_die);
11825 #endif
11827 array_die = new_die (DW_TAG_array_type, scope_die, type);
11828 add_name_attribute (array_die, type_tag (type));
11829 equate_type_number_to_die (type, array_die);
11831 if (TREE_CODE (type) == VECTOR_TYPE)
11833 /* The frontend feeds us a representation for the vector as a struct
11834 containing an array. Pull out the array type. */
11835 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11836 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11839 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
11840 if (is_fortran ()
11841 && TREE_CODE (type) == ARRAY_TYPE
11842 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
11843 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
11845 #if 0
11846 /* We default the array ordering. SDB will probably do
11847 the right things even if DW_AT_ordering is not present. It's not even
11848 an issue until we start to get into multidimensional arrays anyway. If
11849 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11850 then we'll have to put the DW_AT_ordering attribute back in. (But if
11851 and when we find out that we need to put these in, we will only do so
11852 for multidimensional arrays. */
11853 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11854 #endif
11856 #ifdef MIPS_DEBUGGING_INFO
11857 /* The SGI compilers handle arrays of unknown bound by setting
11858 AT_declaration and not emitting any subrange DIEs. */
11859 if (! TYPE_DOMAIN (type))
11860 add_AT_flag (array_die, DW_AT_declaration, 1);
11861 else
11862 #endif
11863 add_subscript_info (array_die, type);
11865 /* Add representation of the type of the elements of this array type. */
11866 element_type = TREE_TYPE (type);
11868 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11869 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11870 We work around this by disabling this feature. See also
11871 add_subscript_info. */
11872 #ifndef MIPS_DEBUGGING_INFO
11873 while (TREE_CODE (element_type) == ARRAY_TYPE)
11874 element_type = TREE_TYPE (element_type);
11876 gen_type_die (element_type, context_die);
11877 #endif
11879 add_type_attribute (array_die, element_type, 0, 0, context_die);
11881 if (get_AT (array_die, DW_AT_name))
11882 add_pubtype (type, array_die);
11885 static dw_loc_descr_ref
11886 descr_info_loc (tree val, tree base_decl)
11888 HOST_WIDE_INT size;
11889 dw_loc_descr_ref loc, loc2;
11890 enum dwarf_location_atom op;
11892 if (val == base_decl)
11893 return new_loc_descr (DW_OP_push_object_address, 0, 0);
11895 switch (TREE_CODE (val))
11897 case NOP_EXPR:
11898 case CONVERT_EXPR:
11899 return descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11900 case INTEGER_CST:
11901 if (host_integerp (val, 0))
11902 return int_loc_descriptor (tree_low_cst (val, 0));
11903 break;
11904 case INDIRECT_REF:
11905 size = int_size_in_bytes (TREE_TYPE (val));
11906 if (size < 0)
11907 break;
11908 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11909 if (!loc)
11910 break;
11911 if (size == DWARF2_ADDR_SIZE)
11912 add_loc_descr (&loc, new_loc_descr (DW_OP_deref, 0, 0));
11913 else
11914 add_loc_descr (&loc, new_loc_descr (DW_OP_deref_size, size, 0));
11915 return loc;
11916 case POINTER_PLUS_EXPR:
11917 case PLUS_EXPR:
11918 if (host_integerp (TREE_OPERAND (val, 1), 1)
11919 && (unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (val, 1), 1)
11920 < 16384)
11922 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11923 if (!loc)
11924 break;
11925 add_loc_descr (&loc,
11926 new_loc_descr (DW_OP_plus_uconst,
11927 tree_low_cst (TREE_OPERAND (val, 1),
11928 1), 0));
11930 else
11932 op = DW_OP_plus;
11933 do_binop:
11934 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11935 if (!loc)
11936 break;
11937 loc2 = descr_info_loc (TREE_OPERAND (val, 1), base_decl);
11938 if (!loc2)
11939 break;
11940 add_loc_descr (&loc, loc2);
11941 add_loc_descr (&loc2, new_loc_descr (op, 0, 0));
11943 return loc;
11944 case MINUS_EXPR:
11945 op = DW_OP_minus;
11946 goto do_binop;
11947 case MULT_EXPR:
11948 op = DW_OP_mul;
11949 goto do_binop;
11950 case EQ_EXPR:
11951 op = DW_OP_eq;
11952 goto do_binop;
11953 case NE_EXPR:
11954 op = DW_OP_ne;
11955 goto do_binop;
11956 default:
11957 break;
11959 return NULL;
11962 static void
11963 add_descr_info_field (dw_die_ref die, enum dwarf_attribute attr,
11964 tree val, tree base_decl)
11966 dw_loc_descr_ref loc;
11968 if (host_integerp (val, 0))
11970 add_AT_unsigned (die, attr, tree_low_cst (val, 0));
11971 return;
11974 loc = descr_info_loc (val, base_decl);
11975 if (!loc)
11976 return;
11978 add_AT_loc (die, attr, loc);
11981 /* This routine generates DIE for array with hidden descriptor, details
11982 are filled into *info by a langhook. */
11984 static void
11985 gen_descr_array_type_die (tree type, struct array_descr_info *info,
11986 dw_die_ref context_die)
11988 dw_die_ref scope_die = scope_die_for (type, context_die);
11989 dw_die_ref array_die;
11990 int dim;
11992 array_die = new_die (DW_TAG_array_type, scope_die, type);
11993 add_name_attribute (array_die, type_tag (type));
11994 equate_type_number_to_die (type, array_die);
11996 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
11997 if (is_fortran ()
11998 && info->ndimensions >= 2)
11999 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
12001 if (info->data_location)
12002 add_descr_info_field (array_die, DW_AT_data_location, info->data_location,
12003 info->base_decl);
12004 if (info->associated)
12005 add_descr_info_field (array_die, DW_AT_associated, info->associated,
12006 info->base_decl);
12007 if (info->allocated)
12008 add_descr_info_field (array_die, DW_AT_allocated, info->allocated,
12009 info->base_decl);
12011 for (dim = 0; dim < info->ndimensions; dim++)
12013 dw_die_ref subrange_die
12014 = new_die (DW_TAG_subrange_type, array_die, NULL);
12016 if (info->dimen[dim].lower_bound)
12018 /* If it is the default value, omit it. */
12019 if ((is_c_family () || is_java ())
12020 && integer_zerop (info->dimen[dim].lower_bound))
12022 else if (is_fortran ()
12023 && integer_onep (info->dimen[dim].lower_bound))
12025 else
12026 add_descr_info_field (subrange_die, DW_AT_lower_bound,
12027 info->dimen[dim].lower_bound,
12028 info->base_decl);
12030 if (info->dimen[dim].upper_bound)
12031 add_descr_info_field (subrange_die, DW_AT_upper_bound,
12032 info->dimen[dim].upper_bound,
12033 info->base_decl);
12034 if (info->dimen[dim].stride)
12035 add_descr_info_field (subrange_die, DW_AT_byte_stride,
12036 info->dimen[dim].stride,
12037 info->base_decl);
12040 gen_type_die (info->element_type, context_die);
12041 add_type_attribute (array_die, info->element_type, 0, 0, context_die);
12043 if (get_AT (array_die, DW_AT_name))
12044 add_pubtype (type, array_die);
12047 #if 0
12048 static void
12049 gen_entry_point_die (tree decl, dw_die_ref context_die)
12051 tree origin = decl_ultimate_origin (decl);
12052 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
12054 if (origin != NULL)
12055 add_abstract_origin_attribute (decl_die, origin);
12056 else
12058 add_name_and_src_coords_attributes (decl_die, decl);
12059 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
12060 0, 0, context_die);
12063 if (DECL_ABSTRACT (decl))
12064 equate_decl_number_to_die (decl, decl_die);
12065 else
12066 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
12068 #endif
12070 /* Walk through the list of incomplete types again, trying once more to
12071 emit full debugging info for them. */
12073 static void
12074 retry_incomplete_types (void)
12076 int i;
12078 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
12079 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
12082 /* Generate a DIE to represent an inlined instance of an enumeration type. */
12084 static void
12085 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
12087 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
12089 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
12090 be incomplete and such types are not marked. */
12091 add_abstract_origin_attribute (type_die, type);
12094 /* Determine what tag to use for a record type. */
12096 static enum dwarf_tag
12097 record_type_tag (tree type)
12099 if (! lang_hooks.types.classify_record)
12100 return DW_TAG_structure_type;
12102 switch (lang_hooks.types.classify_record (type))
12104 case RECORD_IS_STRUCT:
12105 return DW_TAG_structure_type;
12107 case RECORD_IS_CLASS:
12108 return DW_TAG_class_type;
12110 case RECORD_IS_INTERFACE:
12111 return DW_TAG_interface_type;
12113 default:
12114 gcc_unreachable ();
12118 /* Generate a DIE to represent an inlined instance of a structure type. */
12120 static void
12121 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
12123 dw_die_ref type_die = new_die (record_type_tag (type), context_die, type);
12125 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
12126 be incomplete and such types are not marked. */
12127 add_abstract_origin_attribute (type_die, type);
12130 /* Generate a DIE to represent an inlined instance of a union type. */
12132 static void
12133 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
12135 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
12137 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
12138 be incomplete and such types are not marked. */
12139 add_abstract_origin_attribute (type_die, type);
12142 /* Generate a DIE to represent an enumeration type. Note that these DIEs
12143 include all of the information about the enumeration values also. Each
12144 enumerated type name/value is listed as a child of the enumerated type
12145 DIE. */
12147 static dw_die_ref
12148 gen_enumeration_type_die (tree type, dw_die_ref context_die)
12150 dw_die_ref type_die = lookup_type_die (type);
12152 if (type_die == NULL)
12154 type_die = new_die (DW_TAG_enumeration_type,
12155 scope_die_for (type, context_die), type);
12156 equate_type_number_to_die (type, type_die);
12157 add_name_attribute (type_die, type_tag (type));
12159 else if (! TYPE_SIZE (type))
12160 return type_die;
12161 else
12162 remove_AT (type_die, DW_AT_declaration);
12164 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
12165 given enum type is incomplete, do not generate the DW_AT_byte_size
12166 attribute or the DW_AT_element_list attribute. */
12167 if (TYPE_SIZE (type))
12169 tree link;
12171 TREE_ASM_WRITTEN (type) = 1;
12172 add_byte_size_attribute (type_die, type);
12173 if (TYPE_STUB_DECL (type) != NULL_TREE)
12174 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12176 /* If the first reference to this type was as the return type of an
12177 inline function, then it may not have a parent. Fix this now. */
12178 if (type_die->die_parent == NULL)
12179 add_child_die (scope_die_for (type, context_die), type_die);
12181 for (link = TYPE_VALUES (type);
12182 link != NULL; link = TREE_CHAIN (link))
12184 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
12185 tree value = TREE_VALUE (link);
12187 add_name_attribute (enum_die,
12188 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
12190 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
12191 /* DWARF2 does not provide a way of indicating whether or
12192 not enumeration constants are signed or unsigned. GDB
12193 always assumes the values are signed, so we output all
12194 values as if they were signed. That means that
12195 enumeration constants with very large unsigned values
12196 will appear to have negative values in the debugger. */
12197 add_AT_int (enum_die, DW_AT_const_value,
12198 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
12201 else
12202 add_AT_flag (type_die, DW_AT_declaration, 1);
12204 if (get_AT (type_die, DW_AT_name))
12205 add_pubtype (type, type_die);
12207 return type_die;
12210 /* Generate a DIE to represent either a real live formal parameter decl or to
12211 represent just the type of some formal parameter position in some function
12212 type.
12214 Note that this routine is a bit unusual because its argument may be a
12215 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
12216 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
12217 node. If it's the former then this function is being called to output a
12218 DIE to represent a formal parameter object (or some inlining thereof). If
12219 it's the latter, then this function is only being called to output a
12220 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
12221 argument type of some subprogram type. */
12223 static dw_die_ref
12224 gen_formal_parameter_die (tree node, dw_die_ref context_die)
12226 dw_die_ref parm_die
12227 = new_die (DW_TAG_formal_parameter, context_die, node);
12228 tree origin;
12230 switch (TREE_CODE_CLASS (TREE_CODE (node)))
12232 case tcc_declaration:
12233 origin = decl_ultimate_origin (node);
12234 if (origin != NULL)
12235 add_abstract_origin_attribute (parm_die, origin);
12236 else
12238 tree type = TREE_TYPE (node);
12239 add_name_and_src_coords_attributes (parm_die, node);
12240 if (DECL_BY_REFERENCE (node))
12241 type = TREE_TYPE (type);
12242 add_type_attribute (parm_die, type,
12243 TREE_READONLY (node),
12244 TREE_THIS_VOLATILE (node),
12245 context_die);
12246 if (DECL_ARTIFICIAL (node))
12247 add_AT_flag (parm_die, DW_AT_artificial, 1);
12250 equate_decl_number_to_die (node, parm_die);
12251 if (! DECL_ABSTRACT (node))
12252 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
12254 break;
12256 case tcc_type:
12257 /* We were called with some kind of a ..._TYPE node. */
12258 add_type_attribute (parm_die, node, 0, 0, context_die);
12259 break;
12261 default:
12262 gcc_unreachable ();
12265 return parm_die;
12268 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
12269 at the end of an (ANSI prototyped) formal parameters list. */
12271 static void
12272 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
12274 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
12277 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
12278 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
12279 parameters as specified in some function type specification (except for
12280 those which appear as part of a function *definition*). */
12282 static void
12283 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
12285 tree link;
12286 tree formal_type = NULL;
12287 tree first_parm_type;
12288 tree arg;
12290 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
12292 arg = DECL_ARGUMENTS (function_or_method_type);
12293 function_or_method_type = TREE_TYPE (function_or_method_type);
12295 else
12296 arg = NULL_TREE;
12298 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
12300 /* Make our first pass over the list of formal parameter types and output a
12301 DW_TAG_formal_parameter DIE for each one. */
12302 for (link = first_parm_type; link; )
12304 dw_die_ref parm_die;
12306 formal_type = TREE_VALUE (link);
12307 if (formal_type == void_type_node)
12308 break;
12310 /* Output a (nameless) DIE to represent the formal parameter itself. */
12311 parm_die = gen_formal_parameter_die (formal_type, context_die);
12312 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
12313 && link == first_parm_type)
12314 || (arg && DECL_ARTIFICIAL (arg)))
12315 add_AT_flag (parm_die, DW_AT_artificial, 1);
12317 link = TREE_CHAIN (link);
12318 if (arg)
12319 arg = TREE_CHAIN (arg);
12322 /* If this function type has an ellipsis, add a
12323 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
12324 if (formal_type != void_type_node)
12325 gen_unspecified_parameters_die (function_or_method_type, context_die);
12327 /* Make our second (and final) pass over the list of formal parameter types
12328 and output DIEs to represent those types (as necessary). */
12329 for (link = TYPE_ARG_TYPES (function_or_method_type);
12330 link && TREE_VALUE (link);
12331 link = TREE_CHAIN (link))
12332 gen_type_die (TREE_VALUE (link), context_die);
12335 /* We want to generate the DIE for TYPE so that we can generate the
12336 die for MEMBER, which has been defined; we will need to refer back
12337 to the member declaration nested within TYPE. If we're trying to
12338 generate minimal debug info for TYPE, processing TYPE won't do the
12339 trick; we need to attach the member declaration by hand. */
12341 static void
12342 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
12344 gen_type_die (type, context_die);
12346 /* If we're trying to avoid duplicate debug info, we may not have
12347 emitted the member decl for this function. Emit it now. */
12348 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
12349 && ! lookup_decl_die (member))
12351 dw_die_ref type_die;
12352 gcc_assert (!decl_ultimate_origin (member));
12354 push_decl_scope (type);
12355 type_die = lookup_type_die (type);
12356 if (TREE_CODE (member) == FUNCTION_DECL)
12357 gen_subprogram_die (member, type_die);
12358 else if (TREE_CODE (member) == FIELD_DECL)
12360 /* Ignore the nameless fields that are used to skip bits but handle
12361 C++ anonymous unions and structs. */
12362 if (DECL_NAME (member) != NULL_TREE
12363 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
12364 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
12366 gen_type_die (member_declared_type (member), type_die);
12367 gen_field_die (member, type_die);
12370 else
12371 gen_variable_die (member, type_die);
12373 pop_decl_scope ();
12377 /* Generate the DWARF2 info for the "abstract" instance of a function which we
12378 may later generate inlined and/or out-of-line instances of. */
12380 static void
12381 dwarf2out_abstract_function (tree decl)
12383 dw_die_ref old_die;
12384 tree save_fn;
12385 tree context;
12386 int was_abstract = DECL_ABSTRACT (decl);
12388 /* Make sure we have the actual abstract inline, not a clone. */
12389 decl = DECL_ORIGIN (decl);
12391 old_die = lookup_decl_die (decl);
12392 if (old_die && get_AT (old_die, DW_AT_inline))
12393 /* We've already generated the abstract instance. */
12394 return;
12396 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
12397 we don't get confused by DECL_ABSTRACT. */
12398 if (debug_info_level > DINFO_LEVEL_TERSE)
12400 context = decl_class_context (decl);
12401 if (context)
12402 gen_type_die_for_member
12403 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
12406 /* Pretend we've just finished compiling this function. */
12407 save_fn = current_function_decl;
12408 current_function_decl = decl;
12409 push_cfun (DECL_STRUCT_FUNCTION (decl));
12411 set_decl_abstract_flags (decl, 1);
12412 dwarf2out_decl (decl);
12413 if (! was_abstract)
12414 set_decl_abstract_flags (decl, 0);
12416 current_function_decl = save_fn;
12417 pop_cfun ();
12420 /* Helper function of premark_used_types() which gets called through
12421 htab_traverse_resize().
12423 Marks the DIE of a given type in *SLOT as perennial, so it never gets
12424 marked as unused by prune_unused_types. */
12425 static int
12426 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
12428 tree type;
12429 dw_die_ref die;
12431 type = *slot;
12432 die = lookup_type_die (type);
12433 if (die != NULL)
12434 die->die_perennial_p = 1;
12435 return 1;
12438 /* Mark all members of used_types_hash as perennial. */
12439 static void
12440 premark_used_types (void)
12442 if (cfun && cfun->used_types_hash)
12443 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
12446 /* Generate a DIE to represent a declared function (either file-scope or
12447 block-local). */
12449 static void
12450 gen_subprogram_die (tree decl, dw_die_ref context_die)
12452 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
12453 tree origin = decl_ultimate_origin (decl);
12454 dw_die_ref subr_die;
12455 tree fn_arg_types;
12456 tree outer_scope;
12457 dw_die_ref old_die = lookup_decl_die (decl);
12458 int declaration = (current_function_decl != decl
12459 || class_or_namespace_scope_p (context_die));
12461 premark_used_types ();
12463 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
12464 started to generate the abstract instance of an inline, decided to output
12465 its containing class, and proceeded to emit the declaration of the inline
12466 from the member list for the class. If so, DECLARATION takes priority;
12467 we'll get back to the abstract instance when done with the class. */
12469 /* The class-scope declaration DIE must be the primary DIE. */
12470 if (origin && declaration && class_or_namespace_scope_p (context_die))
12472 origin = NULL;
12473 gcc_assert (!old_die);
12476 /* Now that the C++ front end lazily declares artificial member fns, we
12477 might need to retrofit the declaration into its class. */
12478 if (!declaration && !origin && !old_die
12479 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
12480 && !class_or_namespace_scope_p (context_die)
12481 && debug_info_level > DINFO_LEVEL_TERSE)
12482 old_die = force_decl_die (decl);
12484 if (origin != NULL)
12486 gcc_assert (!declaration || local_scope_p (context_die));
12488 /* Fixup die_parent for the abstract instance of a nested
12489 inline function. */
12490 if (old_die && old_die->die_parent == NULL)
12491 add_child_die (context_die, old_die);
12493 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12494 add_abstract_origin_attribute (subr_die, origin);
12496 else if (old_die)
12498 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12499 struct dwarf_file_data * file_index = lookup_filename (s.file);
12501 if (!get_AT_flag (old_die, DW_AT_declaration)
12502 /* We can have a normal definition following an inline one in the
12503 case of redefinition of GNU C extern inlines.
12504 It seems reasonable to use AT_specification in this case. */
12505 && !get_AT (old_die, DW_AT_inline))
12507 /* Detect and ignore this case, where we are trying to output
12508 something we have already output. */
12509 return;
12512 /* If the definition comes from the same place as the declaration,
12513 maybe use the old DIE. We always want the DIE for this function
12514 that has the *_pc attributes to be under comp_unit_die so the
12515 debugger can find it. We also need to do this for abstract
12516 instances of inlines, since the spec requires the out-of-line copy
12517 to have the same parent. For local class methods, this doesn't
12518 apply; we just use the old DIE. */
12519 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
12520 && (DECL_ARTIFICIAL (decl)
12521 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
12522 && (get_AT_unsigned (old_die, DW_AT_decl_line)
12523 == (unsigned) s.line))))
12525 subr_die = old_die;
12527 /* Clear out the declaration attribute and the formal parameters.
12528 Do not remove all children, because it is possible that this
12529 declaration die was forced using force_decl_die(). In such
12530 cases die that forced declaration die (e.g. TAG_imported_module)
12531 is one of the children that we do not want to remove. */
12532 remove_AT (subr_die, DW_AT_declaration);
12533 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
12535 else
12537 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12538 add_AT_specification (subr_die, old_die);
12539 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12540 add_AT_file (subr_die, DW_AT_decl_file, file_index);
12541 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12542 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
12545 else
12547 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12549 if (TREE_PUBLIC (decl))
12550 add_AT_flag (subr_die, DW_AT_external, 1);
12552 add_name_and_src_coords_attributes (subr_die, decl);
12553 if (debug_info_level > DINFO_LEVEL_TERSE)
12555 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
12556 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
12557 0, 0, context_die);
12560 add_pure_or_virtual_attribute (subr_die, decl);
12561 if (DECL_ARTIFICIAL (decl))
12562 add_AT_flag (subr_die, DW_AT_artificial, 1);
12564 if (TREE_PROTECTED (decl))
12565 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
12566 else if (TREE_PRIVATE (decl))
12567 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
12570 if (declaration)
12572 if (!old_die || !get_AT (old_die, DW_AT_inline))
12574 add_AT_flag (subr_die, DW_AT_declaration, 1);
12576 /* The first time we see a member function, it is in the context of
12577 the class to which it belongs. We make sure of this by emitting
12578 the class first. The next time is the definition, which is
12579 handled above. The two may come from the same source text.
12581 Note that force_decl_die() forces function declaration die. It is
12582 later reused to represent definition. */
12583 equate_decl_number_to_die (decl, subr_die);
12586 else if (DECL_ABSTRACT (decl))
12588 if (DECL_DECLARED_INLINE_P (decl))
12590 if (cgraph_function_possibly_inlined_p (decl))
12591 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
12592 else
12593 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
12595 else
12597 if (cgraph_function_possibly_inlined_p (decl))
12598 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
12599 else
12600 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
12603 if (DECL_DECLARED_INLINE_P (decl)
12604 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
12605 add_AT_flag (subr_die, DW_AT_artificial, 1);
12607 equate_decl_number_to_die (decl, subr_die);
12609 else if (!DECL_EXTERNAL (decl))
12611 HOST_WIDE_INT cfa_fb_offset;
12613 if (!old_die || !get_AT (old_die, DW_AT_inline))
12614 equate_decl_number_to_die (decl, subr_die);
12616 if (!flag_reorder_blocks_and_partition)
12618 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
12619 current_function_funcdef_no);
12620 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
12621 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
12622 current_function_funcdef_no);
12623 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
12625 add_pubname (decl, subr_die);
12626 add_arange (decl, subr_die);
12628 else
12629 { /* Do nothing for now; maybe need to duplicate die, one for
12630 hot section and ond for cold section, then use the hot/cold
12631 section begin/end labels to generate the aranges... */
12633 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
12634 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
12635 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
12636 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
12638 add_pubname (decl, subr_die);
12639 add_arange (decl, subr_die);
12640 add_arange (decl, subr_die);
12644 #ifdef MIPS_DEBUGGING_INFO
12645 /* Add a reference to the FDE for this routine. */
12646 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
12647 #endif
12649 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
12651 /* We define the "frame base" as the function's CFA. This is more
12652 convenient for several reasons: (1) It's stable across the prologue
12653 and epilogue, which makes it better than just a frame pointer,
12654 (2) With dwarf3, there exists a one-byte encoding that allows us
12655 to reference the .debug_frame data by proxy, but failing that,
12656 (3) We can at least reuse the code inspection and interpretation
12657 code that determines the CFA position at various points in the
12658 function. */
12659 /* ??? Use some command-line or configury switch to enable the use
12660 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
12661 consumers that understand it; fall back to "pure" dwarf2 and
12662 convert the CFA data into a location list. */
12664 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
12665 if (list->dw_loc_next)
12666 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
12667 else
12668 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
12671 /* Compute a displacement from the "steady-state frame pointer" to
12672 the CFA. The former is what all stack slots and argument slots
12673 will reference in the rtl; the later is what we've told the
12674 debugger about. We'll need to adjust all frame_base references
12675 by this displacement. */
12676 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
12678 if (cfun->static_chain_decl)
12679 add_AT_location_description (subr_die, DW_AT_static_link,
12680 loc_descriptor_from_tree (cfun->static_chain_decl));
12683 /* Now output descriptions of the arguments for this function. This gets
12684 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
12685 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
12686 `...' at the end of the formal parameter list. In order to find out if
12687 there was a trailing ellipsis or not, we must instead look at the type
12688 associated with the FUNCTION_DECL. This will be a node of type
12689 FUNCTION_TYPE. If the chain of type nodes hanging off of this
12690 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
12691 an ellipsis at the end. */
12693 /* In the case where we are describing a mere function declaration, all we
12694 need to do here (and all we *can* do here) is to describe the *types* of
12695 its formal parameters. */
12696 if (debug_info_level <= DINFO_LEVEL_TERSE)
12698 else if (declaration)
12699 gen_formal_types_die (decl, subr_die);
12700 else
12702 /* Generate DIEs to represent all known formal parameters. */
12703 tree arg_decls = DECL_ARGUMENTS (decl);
12704 tree parm;
12706 /* When generating DIEs, generate the unspecified_parameters DIE
12707 instead if we come across the arg "__builtin_va_alist" */
12708 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
12709 if (TREE_CODE (parm) == PARM_DECL)
12711 if (DECL_NAME (parm)
12712 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
12713 "__builtin_va_alist"))
12714 gen_unspecified_parameters_die (parm, subr_die);
12715 else
12716 gen_decl_die (parm, subr_die);
12719 /* Decide whether we need an unspecified_parameters DIE at the end.
12720 There are 2 more cases to do this for: 1) the ansi ... declaration -
12721 this is detectable when the end of the arg list is not a
12722 void_type_node 2) an unprototyped function declaration (not a
12723 definition). This just means that we have no info about the
12724 parameters at all. */
12725 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
12726 if (fn_arg_types != NULL)
12728 /* This is the prototyped case, check for.... */
12729 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
12730 gen_unspecified_parameters_die (decl, subr_die);
12732 else if (DECL_INITIAL (decl) == NULL_TREE)
12733 gen_unspecified_parameters_die (decl, subr_die);
12736 /* Output Dwarf info for all of the stuff within the body of the function
12737 (if it has one - it may be just a declaration). */
12738 outer_scope = DECL_INITIAL (decl);
12740 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
12741 a function. This BLOCK actually represents the outermost binding contour
12742 for the function, i.e. the contour in which the function's formal
12743 parameters and labels get declared. Curiously, it appears that the front
12744 end doesn't actually put the PARM_DECL nodes for the current function onto
12745 the BLOCK_VARS list for this outer scope, but are strung off of the
12746 DECL_ARGUMENTS list for the function instead.
12748 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
12749 the LABEL_DECL nodes for the function however, and we output DWARF info
12750 for those in decls_for_scope. Just within the `outer_scope' there will be
12751 a BLOCK node representing the function's outermost pair of curly braces,
12752 and any blocks used for the base and member initializers of a C++
12753 constructor function. */
12754 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
12756 /* Emit a DW_TAG_variable DIE for a named return value. */
12757 if (DECL_NAME (DECL_RESULT (decl)))
12758 gen_decl_die (DECL_RESULT (decl), subr_die);
12760 current_function_has_inlines = 0;
12761 decls_for_scope (outer_scope, subr_die, 0);
12763 #if 0 && defined (MIPS_DEBUGGING_INFO)
12764 if (current_function_has_inlines)
12766 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
12767 if (! comp_unit_has_inlines)
12769 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
12770 comp_unit_has_inlines = 1;
12773 #endif
12775 /* Add the calling convention attribute if requested. */
12776 add_calling_convention_attribute (subr_die, decl);
12780 /* Generate a DIE to represent a declared data object. */
12782 static void
12783 gen_variable_die (tree decl, dw_die_ref context_die)
12785 HOST_WIDE_INT off;
12786 rtx csym;
12787 dw_die_ref var_die;
12788 tree origin = decl_ultimate_origin (decl);
12789 dw_die_ref old_die = lookup_decl_die (decl);
12790 int declaration = (DECL_EXTERNAL (decl)
12791 /* If DECL is COMDAT and has not actually been
12792 emitted, we cannot take its address; there
12793 might end up being no definition anywhere in
12794 the program. For example, consider the C++
12795 test case:
12797 template <class T>
12798 struct S { static const int i = 7; };
12800 template <class T>
12801 const int S<T>::i;
12803 int f() { return S<int>::i; }
12805 Here, S<int>::i is not DECL_EXTERNAL, but no
12806 definition is required, so the compiler will
12807 not emit a definition. */
12808 || (TREE_CODE (decl) == VAR_DECL
12809 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12810 || class_or_namespace_scope_p (context_die));
12812 csym = common_check (decl, &off);
12814 /* Symbol in common gets emitted as a child of the common block, in the form
12815 of a data member.
12817 ??? This creates a new common block die for every common block symbol.
12818 Better to share same common block die for all symbols in that block. */
12819 if (csym)
12821 tree blok;
12822 dw_die_ref com_die;
12823 const char *cnam = targetm.strip_name_encoding(XSTR (csym, 0));
12824 dw_loc_descr_ref loc = mem_loc_descriptor (csym, dw_val_class_addr,
12825 VAR_INIT_STATUS_INITIALIZED);
12827 blok = (tree) TREE_OPERAND (DECL_VALUE_EXPR (decl), 0);
12828 var_die = new_die (DW_TAG_common_block, context_die, decl);
12829 add_name_and_src_coords_attributes (var_die, blok);
12830 add_AT_flag (var_die, DW_AT_external, 1);
12831 add_AT_loc (var_die, DW_AT_location, loc);
12832 com_die = new_die (DW_TAG_member, var_die, decl);
12833 add_name_and_src_coords_attributes (com_die, decl);
12834 add_type_attribute (com_die, TREE_TYPE (decl), TREE_READONLY (decl),
12835 TREE_THIS_VOLATILE (decl), context_die);
12836 add_AT_loc (com_die, DW_AT_data_member_location, int_loc_descriptor(off));
12837 add_pubname_string (cnam, var_die); /* ??? needed? */
12838 return;
12841 var_die = new_die (DW_TAG_variable, context_die, decl);
12843 if (origin != NULL)
12844 add_abstract_origin_attribute (var_die, origin);
12846 /* Loop unrolling can create multiple blocks that refer to the same
12847 static variable, so we must test for the DW_AT_declaration flag.
12849 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12850 copy decls and set the DECL_ABSTRACT flag on them instead of
12851 sharing them.
12853 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12855 ??? The declare_in_namespace support causes us to get two DIEs for one
12856 variable, both of which are declarations. We want to avoid considering
12857 one to be a specification, so we must test that this DIE is not a
12858 declaration. */
12859 else if (old_die && TREE_STATIC (decl) && ! declaration
12860 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12862 /* This is a definition of a C++ class level static. */
12863 add_AT_specification (var_die, old_die);
12864 if (DECL_NAME (decl))
12866 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12867 struct dwarf_file_data * file_index = lookup_filename (s.file);
12869 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12870 add_AT_file (var_die, DW_AT_decl_file, file_index);
12872 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12873 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12876 else
12878 tree type = TREE_TYPE (decl);
12879 if ((TREE_CODE (decl) == PARM_DECL
12880 || TREE_CODE (decl) == RESULT_DECL)
12881 && DECL_BY_REFERENCE (decl))
12882 type = TREE_TYPE (type);
12884 add_name_and_src_coords_attributes (var_die, decl);
12885 add_type_attribute (var_die, type, TREE_READONLY (decl),
12886 TREE_THIS_VOLATILE (decl), context_die);
12888 if (TREE_PUBLIC (decl))
12889 add_AT_flag (var_die, DW_AT_external, 1);
12891 if (DECL_ARTIFICIAL (decl))
12892 add_AT_flag (var_die, DW_AT_artificial, 1);
12894 if (TREE_PROTECTED (decl))
12895 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12896 else if (TREE_PRIVATE (decl))
12897 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12900 if (declaration)
12901 add_AT_flag (var_die, DW_AT_declaration, 1);
12903 if (DECL_ABSTRACT (decl) || declaration)
12904 equate_decl_number_to_die (decl, var_die);
12906 if (! declaration && ! DECL_ABSTRACT (decl))
12908 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12909 add_pubname (decl, var_die);
12911 else
12912 tree_add_const_value_attribute (var_die, decl);
12915 /* Generate a DIE to represent a label identifier. */
12917 static void
12918 gen_label_die (tree decl, dw_die_ref context_die)
12920 tree origin = decl_ultimate_origin (decl);
12921 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12922 rtx insn;
12923 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12925 if (origin != NULL)
12926 add_abstract_origin_attribute (lbl_die, origin);
12927 else
12928 add_name_and_src_coords_attributes (lbl_die, decl);
12930 if (DECL_ABSTRACT (decl))
12931 equate_decl_number_to_die (decl, lbl_die);
12932 else
12934 insn = DECL_RTL_IF_SET (decl);
12936 /* Deleted labels are programmer specified labels which have been
12937 eliminated because of various optimizations. We still emit them
12938 here so that it is possible to put breakpoints on them. */
12939 if (insn
12940 && (LABEL_P (insn)
12941 || ((NOTE_P (insn)
12942 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
12944 /* When optimization is enabled (via -O) some parts of the compiler
12945 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12946 represent source-level labels which were explicitly declared by
12947 the user. This really shouldn't be happening though, so catch
12948 it if it ever does happen. */
12949 gcc_assert (!INSN_DELETED_P (insn));
12951 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12952 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12957 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12958 attributes to the DIE for a block STMT, to describe where the inlined
12959 function was called from. This is similar to add_src_coords_attributes. */
12961 static inline void
12962 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12964 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12966 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12967 add_AT_unsigned (die, DW_AT_call_line, s.line);
12971 /* If STMT's abstract origin is a function declaration and STMT's
12972 first subblock's abstract origin is the function's outermost block,
12973 then we're looking at the main entry point. */
12974 static bool
12975 is_inlined_entry_point (const_tree stmt)
12977 tree decl, block;
12979 if (!stmt || TREE_CODE (stmt) != BLOCK)
12980 return false;
12982 decl = block_ultimate_origin (stmt);
12984 if (!decl || TREE_CODE (decl) != FUNCTION_DECL)
12985 return false;
12987 block = BLOCK_SUBBLOCKS (stmt);
12989 if (block)
12991 if (TREE_CODE (block) != BLOCK)
12992 return false;
12994 block = block_ultimate_origin (block);
12997 return block == DECL_INITIAL (decl);
13000 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
13001 Add low_pc and high_pc attributes to the DIE for a block STMT. */
13003 static inline void
13004 add_high_low_attributes (tree stmt, dw_die_ref die)
13006 char label[MAX_ARTIFICIAL_LABEL_BYTES];
13008 if (BLOCK_FRAGMENT_CHAIN (stmt))
13010 tree chain;
13012 if (is_inlined_entry_point (stmt))
13014 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
13015 BLOCK_NUMBER (stmt));
13016 add_AT_lbl_id (die, DW_AT_entry_pc, label);
13019 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
13021 chain = BLOCK_FRAGMENT_CHAIN (stmt);
13024 add_ranges (chain);
13025 chain = BLOCK_FRAGMENT_CHAIN (chain);
13027 while (chain);
13028 add_ranges (NULL);
13030 else
13032 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
13033 BLOCK_NUMBER (stmt));
13034 add_AT_lbl_id (die, DW_AT_low_pc, label);
13035 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
13036 BLOCK_NUMBER (stmt));
13037 add_AT_lbl_id (die, DW_AT_high_pc, label);
13041 /* Generate a DIE for a lexical block. */
13043 static void
13044 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
13046 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
13048 if (! BLOCK_ABSTRACT (stmt))
13049 add_high_low_attributes (stmt, stmt_die);
13051 decls_for_scope (stmt, stmt_die, depth);
13054 /* Generate a DIE for an inlined subprogram. */
13056 static void
13057 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
13059 tree decl = block_ultimate_origin (stmt);
13061 /* Emit info for the abstract instance first, if we haven't yet. We
13062 must emit this even if the block is abstract, otherwise when we
13063 emit the block below (or elsewhere), we may end up trying to emit
13064 a die whose origin die hasn't been emitted, and crashing. */
13065 dwarf2out_abstract_function (decl);
13067 if (! BLOCK_ABSTRACT (stmt))
13069 dw_die_ref subr_die
13070 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
13072 add_abstract_origin_attribute (subr_die, decl);
13073 add_high_low_attributes (stmt, subr_die);
13074 add_call_src_coords_attributes (stmt, subr_die);
13076 decls_for_scope (stmt, subr_die, depth);
13077 current_function_has_inlines = 1;
13079 else
13080 /* We may get here if we're the outer block of function A that was
13081 inlined into function B that was inlined into function C. When
13082 generating debugging info for C, dwarf2out_abstract_function(B)
13083 would mark all inlined blocks as abstract, including this one.
13084 So, we wouldn't (and shouldn't) expect labels to be generated
13085 for this one. Instead, just emit debugging info for
13086 declarations within the block. This is particularly important
13087 in the case of initializers of arguments passed from B to us:
13088 if they're statement expressions containing declarations, we
13089 wouldn't generate dies for their abstract variables, and then,
13090 when generating dies for the real variables, we'd die (pun
13091 intended :-) */
13092 gen_lexical_block_die (stmt, context_die, depth);
13095 /* Generate a DIE for a field in a record, or structure. */
13097 static void
13098 gen_field_die (tree decl, dw_die_ref context_die)
13100 dw_die_ref decl_die;
13102 if (TREE_TYPE (decl) == error_mark_node)
13103 return;
13105 decl_die = new_die (DW_TAG_member, context_die, decl);
13106 add_name_and_src_coords_attributes (decl_die, decl);
13107 add_type_attribute (decl_die, member_declared_type (decl),
13108 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
13109 context_die);
13111 if (DECL_BIT_FIELD_TYPE (decl))
13113 add_byte_size_attribute (decl_die, decl);
13114 add_bit_size_attribute (decl_die, decl);
13115 add_bit_offset_attribute (decl_die, decl);
13118 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
13119 add_data_member_location_attribute (decl_die, decl);
13121 if (DECL_ARTIFICIAL (decl))
13122 add_AT_flag (decl_die, DW_AT_artificial, 1);
13124 if (TREE_PROTECTED (decl))
13125 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
13126 else if (TREE_PRIVATE (decl))
13127 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
13129 /* Equate decl number to die, so that we can look up this decl later on. */
13130 equate_decl_number_to_die (decl, decl_die);
13133 #if 0
13134 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
13135 Use modified_type_die instead.
13136 We keep this code here just in case these types of DIEs may be needed to
13137 represent certain things in other languages (e.g. Pascal) someday. */
13139 static void
13140 gen_pointer_type_die (tree type, dw_die_ref context_die)
13142 dw_die_ref ptr_die
13143 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
13145 equate_type_number_to_die (type, ptr_die);
13146 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
13147 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
13150 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
13151 Use modified_type_die instead.
13152 We keep this code here just in case these types of DIEs may be needed to
13153 represent certain things in other languages (e.g. Pascal) someday. */
13155 static void
13156 gen_reference_type_die (tree type, dw_die_ref context_die)
13158 dw_die_ref ref_die
13159 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
13161 equate_type_number_to_die (type, ref_die);
13162 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
13163 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
13165 #endif
13167 /* Generate a DIE for a pointer to a member type. */
13169 static void
13170 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
13172 dw_die_ref ptr_die
13173 = new_die (DW_TAG_ptr_to_member_type,
13174 scope_die_for (type, context_die), type);
13176 equate_type_number_to_die (type, ptr_die);
13177 add_AT_die_ref (ptr_die, DW_AT_containing_type,
13178 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
13179 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
13182 /* Generate the DIE for the compilation unit. */
13184 static dw_die_ref
13185 gen_compile_unit_die (const char *filename)
13187 dw_die_ref die;
13188 char producer[250];
13189 const char *language_string = lang_hooks.name;
13190 int language;
13192 die = new_die (DW_TAG_compile_unit, NULL, NULL);
13194 if (filename)
13196 add_name_attribute (die, filename);
13197 /* Don't add cwd for <built-in>. */
13198 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
13199 add_comp_dir_attribute (die);
13202 sprintf (producer, "%s %s", language_string, version_string);
13204 #ifdef MIPS_DEBUGGING_INFO
13205 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
13206 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
13207 not appear in the producer string, the debugger reaches the conclusion
13208 that the object file is stripped and has no debugging information.
13209 To get the MIPS/SGI debugger to believe that there is debugging
13210 information in the object file, we add a -g to the producer string. */
13211 if (debug_info_level > DINFO_LEVEL_TERSE)
13212 strcat (producer, " -g");
13213 #endif
13215 add_AT_string (die, DW_AT_producer, producer);
13217 if (strcmp (language_string, "GNU C++") == 0)
13218 language = DW_LANG_C_plus_plus;
13219 else if (strcmp (language_string, "GNU Ada") == 0)
13220 language = DW_LANG_Ada95;
13221 else if (strcmp (language_string, "GNU F77") == 0)
13222 language = DW_LANG_Fortran77;
13223 else if (strcmp (language_string, "GNU Fortran") == 0)
13224 language = DW_LANG_Fortran95;
13225 else if (strcmp (language_string, "GNU Pascal") == 0)
13226 language = DW_LANG_Pascal83;
13227 else if (strcmp (language_string, "GNU Java") == 0)
13228 language = DW_LANG_Java;
13229 else if (strcmp (language_string, "GNU Objective-C") == 0)
13230 language = DW_LANG_ObjC;
13231 else if (strcmp (language_string, "GNU Objective-C++") == 0)
13232 language = DW_LANG_ObjC_plus_plus;
13233 else
13234 language = DW_LANG_C89;
13236 add_AT_unsigned (die, DW_AT_language, language);
13237 return die;
13240 /* Generate the DIE for a base class. */
13242 static void
13243 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
13245 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
13247 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
13248 add_data_member_location_attribute (die, binfo);
13250 if (BINFO_VIRTUAL_P (binfo))
13251 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
13253 if (access == access_public_node)
13254 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
13255 else if (access == access_protected_node)
13256 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
13259 /* Generate a DIE for a class member. */
13261 static void
13262 gen_member_die (tree type, dw_die_ref context_die)
13264 tree member;
13265 tree binfo = TYPE_BINFO (type);
13266 dw_die_ref child;
13268 /* If this is not an incomplete type, output descriptions of each of its
13269 members. Note that as we output the DIEs necessary to represent the
13270 members of this record or union type, we will also be trying to output
13271 DIEs to represent the *types* of those members. However the `type'
13272 function (above) will specifically avoid generating type DIEs for member
13273 types *within* the list of member DIEs for this (containing) type except
13274 for those types (of members) which are explicitly marked as also being
13275 members of this (containing) type themselves. The g++ front- end can
13276 force any given type to be treated as a member of some other (containing)
13277 type by setting the TYPE_CONTEXT of the given (member) type to point to
13278 the TREE node representing the appropriate (containing) type. */
13280 /* First output info about the base classes. */
13281 if (binfo)
13283 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
13284 int i;
13285 tree base;
13287 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
13288 gen_inheritance_die (base,
13289 (accesses ? VEC_index (tree, accesses, i)
13290 : access_public_node), context_die);
13293 /* Now output info about the data members and type members. */
13294 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
13296 /* If we thought we were generating minimal debug info for TYPE
13297 and then changed our minds, some of the member declarations
13298 may have already been defined. Don't define them again, but
13299 do put them in the right order. */
13301 child = lookup_decl_die (member);
13302 if (child)
13303 splice_child_die (context_die, child);
13304 else
13305 gen_decl_die (member, context_die);
13308 /* Now output info about the function members (if any). */
13309 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
13311 /* Don't include clones in the member list. */
13312 if (DECL_ABSTRACT_ORIGIN (member))
13313 continue;
13315 child = lookup_decl_die (member);
13316 if (child)
13317 splice_child_die (context_die, child);
13318 else
13319 gen_decl_die (member, context_die);
13323 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
13324 is set, we pretend that the type was never defined, so we only get the
13325 member DIEs needed by later specification DIEs. */
13327 static void
13328 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
13329 enum debug_info_usage usage)
13331 dw_die_ref type_die = lookup_type_die (type);
13332 dw_die_ref scope_die = 0;
13333 int nested = 0;
13334 int complete = (TYPE_SIZE (type)
13335 && (! TYPE_STUB_DECL (type)
13336 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
13337 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
13338 complete = complete && should_emit_struct_debug (type, usage);
13340 if (type_die && ! complete)
13341 return;
13343 if (TYPE_CONTEXT (type) != NULL_TREE
13344 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
13345 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
13346 nested = 1;
13348 scope_die = scope_die_for (type, context_die);
13350 if (! type_die || (nested && scope_die == comp_unit_die))
13351 /* First occurrence of type or toplevel definition of nested class. */
13353 dw_die_ref old_die = type_die;
13355 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
13356 ? record_type_tag (type) : DW_TAG_union_type,
13357 scope_die, type);
13358 equate_type_number_to_die (type, type_die);
13359 if (old_die)
13360 add_AT_specification (type_die, old_die);
13361 else
13362 add_name_attribute (type_die, type_tag (type));
13364 else
13365 remove_AT (type_die, DW_AT_declaration);
13367 /* If this type has been completed, then give it a byte_size attribute and
13368 then give a list of members. */
13369 if (complete && !ns_decl)
13371 /* Prevent infinite recursion in cases where the type of some member of
13372 this type is expressed in terms of this type itself. */
13373 TREE_ASM_WRITTEN (type) = 1;
13374 add_byte_size_attribute (type_die, type);
13375 if (TYPE_STUB_DECL (type) != NULL_TREE)
13376 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
13378 /* If the first reference to this type was as the return type of an
13379 inline function, then it may not have a parent. Fix this now. */
13380 if (type_die->die_parent == NULL)
13381 add_child_die (scope_die, type_die);
13383 push_decl_scope (type);
13384 gen_member_die (type, type_die);
13385 pop_decl_scope ();
13387 /* GNU extension: Record what type our vtable lives in. */
13388 if (TYPE_VFIELD (type))
13390 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
13392 gen_type_die (vtype, context_die);
13393 add_AT_die_ref (type_die, DW_AT_containing_type,
13394 lookup_type_die (vtype));
13397 else
13399 add_AT_flag (type_die, DW_AT_declaration, 1);
13401 /* We don't need to do this for function-local types. */
13402 if (TYPE_STUB_DECL (type)
13403 && ! decl_function_context (TYPE_STUB_DECL (type)))
13404 VEC_safe_push (tree, gc, incomplete_types, type);
13407 if (get_AT (type_die, DW_AT_name))
13408 add_pubtype (type, type_die);
13411 /* Generate a DIE for a subroutine _type_. */
13413 static void
13414 gen_subroutine_type_die (tree type, dw_die_ref context_die)
13416 tree return_type = TREE_TYPE (type);
13417 dw_die_ref subr_die
13418 = new_die (DW_TAG_subroutine_type,
13419 scope_die_for (type, context_die), type);
13421 equate_type_number_to_die (type, subr_die);
13422 add_prototyped_attribute (subr_die, type);
13423 add_type_attribute (subr_die, return_type, 0, 0, context_die);
13424 gen_formal_types_die (type, subr_die);
13426 if (get_AT (subr_die, DW_AT_name))
13427 add_pubtype (type, subr_die);
13430 /* Generate a DIE for a type definition. */
13432 static void
13433 gen_typedef_die (tree decl, dw_die_ref context_die)
13435 dw_die_ref type_die;
13436 tree origin;
13438 if (TREE_ASM_WRITTEN (decl))
13439 return;
13441 TREE_ASM_WRITTEN (decl) = 1;
13442 type_die = new_die (DW_TAG_typedef, context_die, decl);
13443 origin = decl_ultimate_origin (decl);
13444 if (origin != NULL)
13445 add_abstract_origin_attribute (type_die, origin);
13446 else
13448 tree type;
13450 add_name_and_src_coords_attributes (type_die, decl);
13451 if (DECL_ORIGINAL_TYPE (decl))
13453 type = DECL_ORIGINAL_TYPE (decl);
13455 gcc_assert (type != TREE_TYPE (decl));
13456 equate_type_number_to_die (TREE_TYPE (decl), type_die);
13458 else
13459 type = TREE_TYPE (decl);
13461 add_type_attribute (type_die, type, TREE_READONLY (decl),
13462 TREE_THIS_VOLATILE (decl), context_die);
13465 if (DECL_ABSTRACT (decl))
13466 equate_decl_number_to_die (decl, type_die);
13468 if (get_AT (type_die, DW_AT_name))
13469 add_pubtype (decl, type_die);
13472 /* Generate a type description DIE. */
13474 static void
13475 gen_type_die_with_usage (tree type, dw_die_ref context_die,
13476 enum debug_info_usage usage)
13478 int need_pop;
13479 struct array_descr_info info;
13481 if (type == NULL_TREE || type == error_mark_node)
13482 return;
13484 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
13485 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
13487 if (TREE_ASM_WRITTEN (type))
13488 return;
13490 /* Prevent broken recursion; we can't hand off to the same type. */
13491 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
13493 TREE_ASM_WRITTEN (type) = 1;
13494 gen_decl_die (TYPE_NAME (type), context_die);
13495 return;
13498 /* If this is an array type with hidden descriptor, handle it first. */
13499 if (!TREE_ASM_WRITTEN (type)
13500 && lang_hooks.types.get_array_descr_info
13501 && lang_hooks.types.get_array_descr_info (type, &info))
13503 gen_descr_array_type_die (type, &info, context_die);
13504 TREE_ASM_WRITTEN (type) = 1;
13505 return;
13508 /* We are going to output a DIE to represent the unqualified version
13509 of this type (i.e. without any const or volatile qualifiers) so
13510 get the main variant (i.e. the unqualified version) of this type
13511 now. (Vectors are special because the debugging info is in the
13512 cloned type itself). */
13513 if (TREE_CODE (type) != VECTOR_TYPE)
13514 type = type_main_variant (type);
13516 if (TREE_ASM_WRITTEN (type))
13517 return;
13519 switch (TREE_CODE (type))
13521 case ERROR_MARK:
13522 break;
13524 case POINTER_TYPE:
13525 case REFERENCE_TYPE:
13526 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
13527 ensures that the gen_type_die recursion will terminate even if the
13528 type is recursive. Recursive types are possible in Ada. */
13529 /* ??? We could perhaps do this for all types before the switch
13530 statement. */
13531 TREE_ASM_WRITTEN (type) = 1;
13533 /* For these types, all that is required is that we output a DIE (or a
13534 set of DIEs) to represent the "basis" type. */
13535 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13536 DINFO_USAGE_IND_USE);
13537 break;
13539 case OFFSET_TYPE:
13540 /* This code is used for C++ pointer-to-data-member types.
13541 Output a description of the relevant class type. */
13542 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
13543 DINFO_USAGE_IND_USE);
13545 /* Output a description of the type of the object pointed to. */
13546 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13547 DINFO_USAGE_IND_USE);
13549 /* Now output a DIE to represent this pointer-to-data-member type
13550 itself. */
13551 gen_ptr_to_mbr_type_die (type, context_die);
13552 break;
13554 case FUNCTION_TYPE:
13555 /* Force out return type (in case it wasn't forced out already). */
13556 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13557 DINFO_USAGE_DIR_USE);
13558 gen_subroutine_type_die (type, context_die);
13559 break;
13561 case METHOD_TYPE:
13562 /* Force out return type (in case it wasn't forced out already). */
13563 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13564 DINFO_USAGE_DIR_USE);
13565 gen_subroutine_type_die (type, context_die);
13566 break;
13568 case ARRAY_TYPE:
13569 gen_array_type_die (type, context_die);
13570 break;
13572 case VECTOR_TYPE:
13573 gen_array_type_die (type, context_die);
13574 break;
13576 case ENUMERAL_TYPE:
13577 case RECORD_TYPE:
13578 case UNION_TYPE:
13579 case QUAL_UNION_TYPE:
13580 /* If this is a nested type whose containing class hasn't been written
13581 out yet, writing it out will cover this one, too. This does not apply
13582 to instantiations of member class templates; they need to be added to
13583 the containing class as they are generated. FIXME: This hurts the
13584 idea of combining type decls from multiple TUs, since we can't predict
13585 what set of template instantiations we'll get. */
13586 if (TYPE_CONTEXT (type)
13587 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
13588 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
13590 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
13592 if (TREE_ASM_WRITTEN (type))
13593 return;
13595 /* If that failed, attach ourselves to the stub. */
13596 push_decl_scope (TYPE_CONTEXT (type));
13597 context_die = lookup_type_die (TYPE_CONTEXT (type));
13598 need_pop = 1;
13600 else
13602 declare_in_namespace (type, context_die);
13603 need_pop = 0;
13606 if (TREE_CODE (type) == ENUMERAL_TYPE)
13608 /* This might have been written out by the call to
13609 declare_in_namespace. */
13610 if (!TREE_ASM_WRITTEN (type))
13611 gen_enumeration_type_die (type, context_die);
13613 else
13614 gen_struct_or_union_type_die (type, context_die, usage);
13616 if (need_pop)
13617 pop_decl_scope ();
13619 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
13620 it up if it is ever completed. gen_*_type_die will set it for us
13621 when appropriate. */
13622 return;
13624 case VOID_TYPE:
13625 case INTEGER_TYPE:
13626 case REAL_TYPE:
13627 case FIXED_POINT_TYPE:
13628 case COMPLEX_TYPE:
13629 case BOOLEAN_TYPE:
13630 /* No DIEs needed for fundamental types. */
13631 break;
13633 case LANG_TYPE:
13634 /* No Dwarf representation currently defined. */
13635 break;
13637 default:
13638 gcc_unreachable ();
13641 TREE_ASM_WRITTEN (type) = 1;
13644 static void
13645 gen_type_die (tree type, dw_die_ref context_die)
13647 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
13650 /* Generate a DIE for a tagged type instantiation. */
13652 static void
13653 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
13655 if (type == NULL_TREE || type == error_mark_node)
13656 return;
13658 /* We are going to output a DIE to represent the unqualified version of
13659 this type (i.e. without any const or volatile qualifiers) so make sure
13660 that we have the main variant (i.e. the unqualified version) of this
13661 type now. */
13662 gcc_assert (type == type_main_variant (type));
13664 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
13665 an instance of an unresolved type. */
13667 switch (TREE_CODE (type))
13669 case ERROR_MARK:
13670 break;
13672 case ENUMERAL_TYPE:
13673 gen_inlined_enumeration_type_die (type, context_die);
13674 break;
13676 case RECORD_TYPE:
13677 gen_inlined_structure_type_die (type, context_die);
13678 break;
13680 case UNION_TYPE:
13681 case QUAL_UNION_TYPE:
13682 gen_inlined_union_type_die (type, context_die);
13683 break;
13685 default:
13686 gcc_unreachable ();
13690 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
13691 things which are local to the given block. */
13693 static void
13694 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
13696 int must_output_die = 0;
13697 tree origin;
13698 tree decl;
13699 enum tree_code origin_code;
13701 /* Ignore blocks that are NULL. */
13702 if (stmt == NULL_TREE)
13703 return;
13705 /* If the block is one fragment of a non-contiguous block, do not
13706 process the variables, since they will have been done by the
13707 origin block. Do process subblocks. */
13708 if (BLOCK_FRAGMENT_ORIGIN (stmt))
13710 tree sub;
13712 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
13713 gen_block_die (sub, context_die, depth + 1);
13715 return;
13718 /* Determine the "ultimate origin" of this block. This block may be an
13719 inlined instance of an inlined instance of inline function, so we have
13720 to trace all of the way back through the origin chain to find out what
13721 sort of node actually served as the original seed for the creation of
13722 the current block. */
13723 origin = block_ultimate_origin (stmt);
13724 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
13726 /* Determine if we need to output any Dwarf DIEs at all to represent this
13727 block. */
13728 if (origin_code == FUNCTION_DECL)
13729 /* The outer scopes for inlinings *must* always be represented. We
13730 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
13731 must_output_die = 1;
13732 else
13734 /* In the case where the current block represents an inlining of the
13735 "body block" of an inline function, we must *NOT* output any DIE for
13736 this block because we have already output a DIE to represent the whole
13737 inlined function scope and the "body block" of any function doesn't
13738 really represent a different scope according to ANSI C rules. So we
13739 check here to make sure that this block does not represent a "body
13740 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
13741 if (! is_body_block (origin ? origin : stmt))
13743 /* Determine if this block directly contains any "significant"
13744 local declarations which we will need to output DIEs for. */
13745 if (debug_info_level > DINFO_LEVEL_TERSE)
13746 /* We are not in terse mode so *any* local declaration counts
13747 as being a "significant" one. */
13748 must_output_die = (BLOCK_VARS (stmt) != NULL
13749 && (TREE_USED (stmt)
13750 || TREE_ASM_WRITTEN (stmt)
13751 || BLOCK_ABSTRACT (stmt)));
13752 else
13753 /* We are in terse mode, so only local (nested) function
13754 definitions count as "significant" local declarations. */
13755 for (decl = BLOCK_VARS (stmt);
13756 decl != NULL; decl = TREE_CHAIN (decl))
13757 if (TREE_CODE (decl) == FUNCTION_DECL
13758 && DECL_INITIAL (decl))
13760 must_output_die = 1;
13761 break;
13766 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
13767 DIE for any block which contains no significant local declarations at
13768 all. Rather, in such cases we just call `decls_for_scope' so that any
13769 needed Dwarf info for any sub-blocks will get properly generated. Note
13770 that in terse mode, our definition of what constitutes a "significant"
13771 local declaration gets restricted to include only inlined function
13772 instances and local (nested) function definitions. */
13773 if (must_output_die)
13775 if (origin_code == FUNCTION_DECL)
13776 gen_inlined_subroutine_die (stmt, context_die, depth);
13777 else
13778 gen_lexical_block_die (stmt, context_die, depth);
13780 else
13781 decls_for_scope (stmt, context_die, depth);
13784 /* Generate all of the decls declared within a given scope and (recursively)
13785 all of its sub-blocks. */
13787 static void
13788 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
13790 tree decl;
13791 tree subblocks;
13793 /* Ignore NULL blocks. */
13794 if (stmt == NULL_TREE)
13795 return;
13797 if (TREE_USED (stmt))
13799 /* Output the DIEs to represent all of the data objects and typedefs
13800 declared directly within this block but not within any nested
13801 sub-blocks. Also, nested function and tag DIEs have been
13802 generated with a parent of NULL; fix that up now. */
13803 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
13805 dw_die_ref die;
13807 if (TREE_CODE (decl) == FUNCTION_DECL)
13808 die = lookup_decl_die (decl);
13809 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
13810 die = lookup_type_die (TREE_TYPE (decl));
13811 else
13812 die = NULL;
13814 if (die != NULL && die->die_parent == NULL)
13815 add_child_die (context_die, die);
13816 /* Do not produce debug information for static variables since
13817 these might be optimized out. We are called for these later
13818 in varpool_analyze_pending_decls.
13820 But *do* produce it for Fortran COMMON variables because,
13821 even though they are static, their names can differ depending
13822 on the scope, which we need to preserve. */
13823 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl)
13824 && !(is_fortran () && TREE_PUBLIC (decl)))
13826 else
13827 gen_decl_die (decl, context_die);
13831 /* If we're at -g1, we're not interested in subblocks. */
13832 if (debug_info_level <= DINFO_LEVEL_TERSE)
13833 return;
13835 /* Output the DIEs to represent all sub-blocks (and the items declared
13836 therein) of this block. */
13837 for (subblocks = BLOCK_SUBBLOCKS (stmt);
13838 subblocks != NULL;
13839 subblocks = BLOCK_CHAIN (subblocks))
13840 gen_block_die (subblocks, context_die, depth + 1);
13843 /* Is this a typedef we can avoid emitting? */
13845 static inline int
13846 is_redundant_typedef (const_tree decl)
13848 if (TYPE_DECL_IS_STUB (decl))
13849 return 1;
13851 if (DECL_ARTIFICIAL (decl)
13852 && DECL_CONTEXT (decl)
13853 && is_tagged_type (DECL_CONTEXT (decl))
13854 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
13855 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
13856 /* Also ignore the artificial member typedef for the class name. */
13857 return 1;
13859 return 0;
13862 /* Returns the DIE for decl. A DIE will always be returned. */
13864 static dw_die_ref
13865 force_decl_die (tree decl)
13867 dw_die_ref decl_die;
13868 unsigned saved_external_flag;
13869 tree save_fn = NULL_TREE;
13870 decl_die = lookup_decl_die (decl);
13871 if (!decl_die)
13873 dw_die_ref context_die;
13874 tree decl_context = DECL_CONTEXT (decl);
13875 if (decl_context)
13877 /* Find die that represents this context. */
13878 if (TYPE_P (decl_context))
13879 context_die = force_type_die (decl_context);
13880 else
13881 context_die = force_decl_die (decl_context);
13883 else
13884 context_die = comp_unit_die;
13886 decl_die = lookup_decl_die (decl);
13887 if (decl_die)
13888 return decl_die;
13890 switch (TREE_CODE (decl))
13892 case FUNCTION_DECL:
13893 /* Clear current_function_decl, so that gen_subprogram_die thinks
13894 that this is a declaration. At this point, we just want to force
13895 declaration die. */
13896 save_fn = current_function_decl;
13897 current_function_decl = NULL_TREE;
13898 gen_subprogram_die (decl, context_die);
13899 current_function_decl = save_fn;
13900 break;
13902 case VAR_DECL:
13903 /* Set external flag to force declaration die. Restore it after
13904 gen_decl_die() call. */
13905 saved_external_flag = DECL_EXTERNAL (decl);
13906 DECL_EXTERNAL (decl) = 1;
13907 gen_decl_die (decl, context_die);
13908 DECL_EXTERNAL (decl) = saved_external_flag;
13909 break;
13911 case NAMESPACE_DECL:
13912 dwarf2out_decl (decl);
13913 break;
13915 default:
13916 gcc_unreachable ();
13919 /* We should be able to find the DIE now. */
13920 if (!decl_die)
13921 decl_die = lookup_decl_die (decl);
13922 gcc_assert (decl_die);
13925 return decl_die;
13928 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
13929 always returned. */
13931 static dw_die_ref
13932 force_type_die (tree type)
13934 dw_die_ref type_die;
13936 type_die = lookup_type_die (type);
13937 if (!type_die)
13939 dw_die_ref context_die;
13940 if (TYPE_CONTEXT (type))
13942 if (TYPE_P (TYPE_CONTEXT (type)))
13943 context_die = force_type_die (TYPE_CONTEXT (type));
13944 else
13945 context_die = force_decl_die (TYPE_CONTEXT (type));
13947 else
13948 context_die = comp_unit_die;
13950 type_die = modified_type_die (type, TYPE_READONLY (type),
13951 TYPE_VOLATILE (type), context_die);
13952 gcc_assert (type_die);
13954 return type_die;
13957 /* Force out any required namespaces to be able to output DECL,
13958 and return the new context_die for it, if it's changed. */
13960 static dw_die_ref
13961 setup_namespace_context (tree thing, dw_die_ref context_die)
13963 tree context = (DECL_P (thing)
13964 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13965 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13966 /* Force out the namespace. */
13967 context_die = force_decl_die (context);
13969 return context_die;
13972 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13973 type) within its namespace, if appropriate.
13975 For compatibility with older debuggers, namespace DIEs only contain
13976 declarations; all definitions are emitted at CU scope. */
13978 static void
13979 declare_in_namespace (tree thing, dw_die_ref context_die)
13981 dw_die_ref ns_context;
13983 if (debug_info_level <= DINFO_LEVEL_TERSE)
13984 return;
13986 /* If this decl is from an inlined function, then don't try to emit it in its
13987 namespace, as we will get confused. It would have already been emitted
13988 when the abstract instance of the inline function was emitted anyways. */
13989 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13990 return;
13992 ns_context = setup_namespace_context (thing, context_die);
13994 if (ns_context != context_die)
13996 if (DECL_P (thing))
13997 gen_decl_die (thing, ns_context);
13998 else
13999 gen_type_die (thing, ns_context);
14003 /* Generate a DIE for a namespace or namespace alias. */
14005 static void
14006 gen_namespace_die (tree decl)
14008 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
14010 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
14011 they are an alias of. */
14012 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
14014 /* Output a real namespace. */
14015 dw_die_ref namespace_die
14016 = new_die (DW_TAG_namespace, context_die, decl);
14017 add_name_and_src_coords_attributes (namespace_die, decl);
14018 equate_decl_number_to_die (decl, namespace_die);
14020 else
14022 /* Output a namespace alias. */
14024 /* Force out the namespace we are an alias of, if necessary. */
14025 dw_die_ref origin_die
14026 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
14028 /* Now create the namespace alias DIE. */
14029 dw_die_ref namespace_die
14030 = new_die (DW_TAG_imported_declaration, context_die, decl);
14031 add_name_and_src_coords_attributes (namespace_die, decl);
14032 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
14033 equate_decl_number_to_die (decl, namespace_die);
14037 /* Generate Dwarf debug information for a decl described by DECL. */
14039 static void
14040 gen_decl_die (tree decl, dw_die_ref context_die)
14042 tree origin;
14044 if (DECL_P (decl) && DECL_IGNORED_P (decl))
14045 return;
14047 switch (TREE_CODE (decl))
14049 case ERROR_MARK:
14050 break;
14052 case CONST_DECL:
14053 /* The individual enumerators of an enum type get output when we output
14054 the Dwarf representation of the relevant enum type itself. */
14055 break;
14057 case FUNCTION_DECL:
14058 /* Don't output any DIEs to represent mere function declarations,
14059 unless they are class members or explicit block externs. */
14060 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
14061 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
14062 break;
14064 #if 0
14065 /* FIXME */
14066 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
14067 on local redeclarations of global functions. That seems broken. */
14068 if (current_function_decl != decl)
14069 /* This is only a declaration. */;
14070 #endif
14072 /* If we're emitting a clone, emit info for the abstract instance. */
14073 if (DECL_ORIGIN (decl) != decl)
14074 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
14076 /* If we're emitting an out-of-line copy of an inline function,
14077 emit info for the abstract instance and set up to refer to it. */
14078 else if (cgraph_function_possibly_inlined_p (decl)
14079 && ! DECL_ABSTRACT (decl)
14080 && ! class_or_namespace_scope_p (context_die)
14081 /* dwarf2out_abstract_function won't emit a die if this is just
14082 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
14083 that case, because that works only if we have a die. */
14084 && DECL_INITIAL (decl) != NULL_TREE)
14086 dwarf2out_abstract_function (decl);
14087 set_decl_origin_self (decl);
14090 /* Otherwise we're emitting the primary DIE for this decl. */
14091 else if (debug_info_level > DINFO_LEVEL_TERSE)
14093 /* Before we describe the FUNCTION_DECL itself, make sure that we
14094 have described its return type. */
14095 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
14097 /* And its virtual context. */
14098 if (DECL_VINDEX (decl) != NULL_TREE)
14099 gen_type_die (DECL_CONTEXT (decl), context_die);
14101 /* And its containing type. */
14102 origin = decl_class_context (decl);
14103 if (origin != NULL_TREE)
14104 gen_type_die_for_member (origin, decl, context_die);
14106 /* And its containing namespace. */
14107 declare_in_namespace (decl, context_die);
14110 /* Now output a DIE to represent the function itself. */
14111 gen_subprogram_die (decl, context_die);
14112 break;
14114 case TYPE_DECL:
14115 /* If we are in terse mode, don't generate any DIEs to represent any
14116 actual typedefs. */
14117 if (debug_info_level <= DINFO_LEVEL_TERSE)
14118 break;
14120 /* In the special case of a TYPE_DECL node representing the declaration
14121 of some type tag, if the given TYPE_DECL is marked as having been
14122 instantiated from some other (original) TYPE_DECL node (e.g. one which
14123 was generated within the original definition of an inline function) we
14124 have to generate a special (abbreviated) DW_TAG_structure_type,
14125 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
14126 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE
14127 && is_tagged_type (TREE_TYPE (decl)))
14129 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
14130 break;
14133 if (is_redundant_typedef (decl))
14134 gen_type_die (TREE_TYPE (decl), context_die);
14135 else
14136 /* Output a DIE to represent the typedef itself. */
14137 gen_typedef_die (decl, context_die);
14138 break;
14140 case LABEL_DECL:
14141 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14142 gen_label_die (decl, context_die);
14143 break;
14145 case VAR_DECL:
14146 case RESULT_DECL:
14147 /* If we are in terse mode, don't generate any DIEs to represent any
14148 variable declarations or definitions. */
14149 if (debug_info_level <= DINFO_LEVEL_TERSE)
14150 break;
14152 /* If this is the global definition of the Fortran COMMON block, we don't
14153 need to do anything. Syntactically, the block itself has no identity,
14154 just its constituent identifiers. */
14155 if (TREE_CODE (decl) == VAR_DECL
14156 && TREE_PUBLIC (decl)
14157 && TREE_STATIC (decl)
14158 && is_fortran ()
14159 && !DECL_HAS_VALUE_EXPR_P (decl))
14160 break;
14162 /* Output any DIEs that are needed to specify the type of this data
14163 object. */
14164 if (TREE_CODE (decl) == RESULT_DECL && DECL_BY_REFERENCE (decl))
14165 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
14166 else
14167 gen_type_die (TREE_TYPE (decl), context_die);
14169 /* And its containing type. */
14170 origin = decl_class_context (decl);
14171 if (origin != NULL_TREE)
14172 gen_type_die_for_member (origin, decl, context_die);
14174 /* And its containing namespace. */
14175 declare_in_namespace (decl, context_die);
14177 /* Now output the DIE to represent the data object itself. This gets
14178 complicated because of the possibility that the VAR_DECL really
14179 represents an inlined instance of a formal parameter for an inline
14180 function. */
14181 origin = decl_ultimate_origin (decl);
14182 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
14183 gen_formal_parameter_die (decl, context_die);
14184 else
14185 gen_variable_die (decl, context_die);
14186 break;
14188 case FIELD_DECL:
14189 /* Ignore the nameless fields that are used to skip bits but handle C++
14190 anonymous unions and structs. */
14191 if (DECL_NAME (decl) != NULL_TREE
14192 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
14193 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
14195 gen_type_die (member_declared_type (decl), context_die);
14196 gen_field_die (decl, context_die);
14198 break;
14200 case PARM_DECL:
14201 if (DECL_BY_REFERENCE (decl))
14202 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
14203 else
14204 gen_type_die (TREE_TYPE (decl), context_die);
14205 gen_formal_parameter_die (decl, context_die);
14206 break;
14208 case NAMESPACE_DECL:
14209 gen_namespace_die (decl);
14210 break;
14212 default:
14213 /* Probably some frontend-internal decl. Assume we don't care. */
14214 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
14215 break;
14219 /* Output debug information for global decl DECL. Called from toplev.c after
14220 compilation proper has finished. */
14222 static void
14223 dwarf2out_global_decl (tree decl)
14225 /* Output DWARF2 information for file-scope tentative data object
14226 declarations, file-scope (extern) function declarations (which had no
14227 corresponding body) and file-scope tagged type declarations and
14228 definitions which have not yet been forced out.
14230 Ignore the global decl of any Fortran COMMON blocks which also wind up here
14231 though they have already been described in the local scope for the
14232 procedures using them. */
14233 if (TREE_CODE (decl) == VAR_DECL
14234 && TREE_PUBLIC (decl) && TREE_STATIC (decl) && is_fortran ())
14235 return;
14237 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
14238 dwarf2out_decl (decl);
14241 /* Output debug information for type decl DECL. Called from toplev.c
14242 and from language front ends (to record built-in types). */
14243 static void
14244 dwarf2out_type_decl (tree decl, int local)
14246 if (!local)
14247 dwarf2out_decl (decl);
14250 /* Output debug information for imported module or decl. */
14252 static void
14253 dwarf2out_imported_module_or_decl (tree decl, tree context)
14255 dw_die_ref imported_die, at_import_die;
14256 dw_die_ref scope_die;
14257 expanded_location xloc;
14259 if (debug_info_level <= DINFO_LEVEL_TERSE)
14260 return;
14262 gcc_assert (decl);
14264 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
14265 We need decl DIE for reference and scope die. First, get DIE for the decl
14266 itself. */
14268 /* Get the scope die for decl context. Use comp_unit_die for global module
14269 or decl. If die is not found for non globals, force new die. */
14270 if (!context)
14271 scope_die = comp_unit_die;
14272 else if (TYPE_P (context))
14274 if (!should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
14275 return;
14276 scope_die = force_type_die (context);
14278 else
14279 scope_die = force_decl_die (context);
14281 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
14282 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
14284 if (is_base_type (TREE_TYPE (decl)))
14285 at_import_die = base_type_die (TREE_TYPE (decl));
14286 else
14287 at_import_die = force_type_die (TREE_TYPE (decl));
14289 else
14291 at_import_die = lookup_decl_die (decl);
14292 if (!at_import_die)
14294 /* If we're trying to avoid duplicate debug info, we may not have
14295 emitted the member decl for this field. Emit it now. */
14296 if (TREE_CODE (decl) == FIELD_DECL)
14298 tree type = DECL_CONTEXT (decl);
14299 dw_die_ref type_context_die;
14301 if (TYPE_CONTEXT (type))
14302 if (TYPE_P (TYPE_CONTEXT (type)))
14304 if (!should_emit_struct_debug (TYPE_CONTEXT (type),
14305 DINFO_USAGE_DIR_USE))
14306 return;
14307 type_context_die = force_type_die (TYPE_CONTEXT (type));
14309 else
14310 type_context_die = force_decl_die (TYPE_CONTEXT (type));
14311 else
14312 type_context_die = comp_unit_die;
14313 gen_type_die_for_member (type, decl, type_context_die);
14315 at_import_die = force_decl_die (decl);
14319 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
14320 if (TREE_CODE (decl) == NAMESPACE_DECL)
14321 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
14322 else
14323 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
14325 xloc = expand_location (input_location);
14326 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
14327 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
14328 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
14331 /* Write the debugging output for DECL. */
14333 void
14334 dwarf2out_decl (tree decl)
14336 dw_die_ref context_die = comp_unit_die;
14338 switch (TREE_CODE (decl))
14340 case ERROR_MARK:
14341 return;
14343 case FUNCTION_DECL:
14344 /* What we would really like to do here is to filter out all mere
14345 file-scope declarations of file-scope functions which are never
14346 referenced later within this translation unit (and keep all of ones
14347 that *are* referenced later on) but we aren't clairvoyant, so we have
14348 no idea which functions will be referenced in the future (i.e. later
14349 on within the current translation unit). So here we just ignore all
14350 file-scope function declarations which are not also definitions. If
14351 and when the debugger needs to know something about these functions,
14352 it will have to hunt around and find the DWARF information associated
14353 with the definition of the function.
14355 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
14356 nodes represent definitions and which ones represent mere
14357 declarations. We have to check DECL_INITIAL instead. That's because
14358 the C front-end supports some weird semantics for "extern inline"
14359 function definitions. These can get inlined within the current
14360 translation unit (and thus, we need to generate Dwarf info for their
14361 abstract instances so that the Dwarf info for the concrete inlined
14362 instances can have something to refer to) but the compiler never
14363 generates any out-of-lines instances of such things (despite the fact
14364 that they *are* definitions).
14366 The important point is that the C front-end marks these "extern
14367 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
14368 them anyway. Note that the C++ front-end also plays some similar games
14369 for inline function definitions appearing within include files which
14370 also contain `#pragma interface' pragmas. */
14371 if (DECL_INITIAL (decl) == NULL_TREE)
14372 return;
14374 /* If we're a nested function, initially use a parent of NULL; if we're
14375 a plain function, this will be fixed up in decls_for_scope. If
14376 we're a method, it will be ignored, since we already have a DIE. */
14377 if (decl_function_context (decl)
14378 /* But if we're in terse mode, we don't care about scope. */
14379 && debug_info_level > DINFO_LEVEL_TERSE)
14380 context_die = NULL;
14381 break;
14383 case VAR_DECL:
14384 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
14385 declaration and if the declaration was never even referenced from
14386 within this entire compilation unit. We suppress these DIEs in
14387 order to save space in the .debug section (by eliminating entries
14388 which are probably useless). Note that we must not suppress
14389 block-local extern declarations (whether used or not) because that
14390 would screw-up the debugger's name lookup mechanism and cause it to
14391 miss things which really ought to be in scope at a given point. */
14392 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
14393 return;
14395 /* For local statics lookup proper context die. */
14396 if (TREE_STATIC (decl) && decl_function_context (decl))
14397 context_die = lookup_decl_die (DECL_CONTEXT (decl));
14399 /* If we are in terse mode, don't generate any DIEs to represent any
14400 variable declarations or definitions. */
14401 if (debug_info_level <= DINFO_LEVEL_TERSE)
14402 return;
14403 break;
14405 case NAMESPACE_DECL:
14406 if (debug_info_level <= DINFO_LEVEL_TERSE)
14407 return;
14408 if (lookup_decl_die (decl) != NULL)
14409 return;
14410 break;
14412 case TYPE_DECL:
14413 /* Don't emit stubs for types unless they are needed by other DIEs. */
14414 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
14415 return;
14417 /* Don't bother trying to generate any DIEs to represent any of the
14418 normal built-in types for the language we are compiling. */
14419 if (DECL_IS_BUILTIN (decl))
14421 /* OK, we need to generate one for `bool' so GDB knows what type
14422 comparisons have. */
14423 if (is_cxx ()
14424 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
14425 && ! DECL_IGNORED_P (decl))
14426 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
14428 return;
14431 /* If we are in terse mode, don't generate any DIEs for types. */
14432 if (debug_info_level <= DINFO_LEVEL_TERSE)
14433 return;
14435 /* If we're a function-scope tag, initially use a parent of NULL;
14436 this will be fixed up in decls_for_scope. */
14437 if (decl_function_context (decl))
14438 context_die = NULL;
14440 break;
14442 default:
14443 return;
14446 gen_decl_die (decl, context_die);
14449 /* Output a marker (i.e. a label) for the beginning of the generated code for
14450 a lexical block. */
14452 static void
14453 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
14454 unsigned int blocknum)
14456 switch_to_section (current_function_section ());
14457 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
14460 /* Output a marker (i.e. a label) for the end of the generated code for a
14461 lexical block. */
14463 static void
14464 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
14466 switch_to_section (current_function_section ());
14467 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
14470 /* Returns nonzero if it is appropriate not to emit any debugging
14471 information for BLOCK, because it doesn't contain any instructions.
14473 Don't allow this for blocks with nested functions or local classes
14474 as we would end up with orphans, and in the presence of scheduling
14475 we may end up calling them anyway. */
14477 static bool
14478 dwarf2out_ignore_block (const_tree block)
14480 tree decl;
14482 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
14483 if (TREE_CODE (decl) == FUNCTION_DECL
14484 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
14485 return 0;
14487 return 1;
14490 /* Hash table routines for file_hash. */
14492 static int
14493 file_table_eq (const void *p1_p, const void *p2_p)
14495 const struct dwarf_file_data * p1 = p1_p;
14496 const char * p2 = p2_p;
14497 return strcmp (p1->filename, p2) == 0;
14500 static hashval_t
14501 file_table_hash (const void *p_p)
14503 const struct dwarf_file_data * p = p_p;
14504 return htab_hash_string (p->filename);
14507 /* Lookup FILE_NAME (in the list of filenames that we know about here in
14508 dwarf2out.c) and return its "index". The index of each (known) filename is
14509 just a unique number which is associated with only that one filename. We
14510 need such numbers for the sake of generating labels (in the .debug_sfnames
14511 section) and references to those files numbers (in the .debug_srcinfo
14512 and.debug_macinfo sections). If the filename given as an argument is not
14513 found in our current list, add it to the list and assign it the next
14514 available unique index number. In order to speed up searches, we remember
14515 the index of the filename was looked up last. This handles the majority of
14516 all searches. */
14518 static struct dwarf_file_data *
14519 lookup_filename (const char *file_name)
14521 void ** slot;
14522 struct dwarf_file_data * created;
14524 /* Check to see if the file name that was searched on the previous
14525 call matches this file name. If so, return the index. */
14526 if (file_table_last_lookup
14527 && (file_name == file_table_last_lookup->filename
14528 || strcmp (file_table_last_lookup->filename, file_name) == 0))
14529 return file_table_last_lookup;
14531 /* Didn't match the previous lookup, search the table. */
14532 slot = htab_find_slot_with_hash (file_table, file_name,
14533 htab_hash_string (file_name), INSERT);
14534 if (*slot)
14535 return *slot;
14537 created = ggc_alloc (sizeof (struct dwarf_file_data));
14538 created->filename = file_name;
14539 created->emitted_number = 0;
14540 *slot = created;
14541 return created;
14544 /* If the assembler will construct the file table, then translate the compiler
14545 internal file table number into the assembler file table number, and emit
14546 a .file directive if we haven't already emitted one yet. The file table
14547 numbers are different because we prune debug info for unused variables and
14548 types, which may include filenames. */
14550 static int
14551 maybe_emit_file (struct dwarf_file_data * fd)
14553 if (! fd->emitted_number)
14555 if (last_emitted_file)
14556 fd->emitted_number = last_emitted_file->emitted_number + 1;
14557 else
14558 fd->emitted_number = 1;
14559 last_emitted_file = fd;
14561 if (DWARF2_ASM_LINE_DEBUG_INFO)
14563 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
14564 output_quoted_string (asm_out_file,
14565 remap_debug_filename (fd->filename));
14566 fputc ('\n', asm_out_file);
14570 return fd->emitted_number;
14573 /* Called by the final INSN scan whenever we see a var location. We
14574 use it to drop labels in the right places, and throw the location in
14575 our lookup table. */
14577 static void
14578 dwarf2out_var_location (rtx loc_note)
14580 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
14581 struct var_loc_node *newloc;
14582 rtx prev_insn;
14583 static rtx last_insn;
14584 static const char *last_label;
14585 tree decl;
14587 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
14588 return;
14589 prev_insn = PREV_INSN (loc_note);
14591 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
14592 /* If the insn we processed last time is the previous insn
14593 and it is also a var location note, use the label we emitted
14594 last time. */
14595 if (last_insn != NULL_RTX
14596 && last_insn == prev_insn
14597 && NOTE_P (prev_insn)
14598 && NOTE_KIND (prev_insn) == NOTE_INSN_VAR_LOCATION)
14600 newloc->label = last_label;
14602 else
14604 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
14605 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
14606 loclabel_num++;
14607 newloc->label = ggc_strdup (loclabel);
14609 newloc->var_loc_note = loc_note;
14610 newloc->next = NULL;
14612 if (cfun && in_cold_section_p)
14613 newloc->section_label = crtl->subsections.cold_section_label;
14614 else
14615 newloc->section_label = text_section_label;
14617 last_insn = loc_note;
14618 last_label = newloc->label;
14619 decl = NOTE_VAR_LOCATION_DECL (loc_note);
14620 add_var_loc_to_decl (decl, newloc);
14623 /* We need to reset the locations at the beginning of each
14624 function. We can't do this in the end_function hook, because the
14625 declarations that use the locations won't have been output when
14626 that hook is called. Also compute have_multiple_function_sections here. */
14628 static void
14629 dwarf2out_begin_function (tree fun)
14631 htab_empty (decl_loc_table);
14633 if (function_section (fun) != text_section)
14634 have_multiple_function_sections = true;
14636 dwarf2out_note_section_used ();
14639 /* Output a label to mark the beginning of a source code line entry
14640 and record information relating to this source line, in
14641 'line_info_table' for later output of the .debug_line section. */
14643 static void
14644 dwarf2out_source_line (unsigned int line, const char *filename)
14646 if (debug_info_level >= DINFO_LEVEL_NORMAL
14647 && line != 0)
14649 int file_num = maybe_emit_file (lookup_filename (filename));
14651 switch_to_section (current_function_section ());
14653 /* If requested, emit something human-readable. */
14654 if (flag_debug_asm)
14655 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
14656 filename, line);
14658 if (DWARF2_ASM_LINE_DEBUG_INFO)
14660 /* Emit the .loc directive understood by GNU as. */
14661 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
14663 /* Indicate that line number info exists. */
14664 line_info_table_in_use++;
14666 else if (function_section (current_function_decl) != text_section)
14668 dw_separate_line_info_ref line_info;
14669 targetm.asm_out.internal_label (asm_out_file,
14670 SEPARATE_LINE_CODE_LABEL,
14671 separate_line_info_table_in_use);
14673 /* Expand the line info table if necessary. */
14674 if (separate_line_info_table_in_use
14675 == separate_line_info_table_allocated)
14677 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
14678 separate_line_info_table
14679 = ggc_realloc (separate_line_info_table,
14680 separate_line_info_table_allocated
14681 * sizeof (dw_separate_line_info_entry));
14682 memset (separate_line_info_table
14683 + separate_line_info_table_in_use,
14685 (LINE_INFO_TABLE_INCREMENT
14686 * sizeof (dw_separate_line_info_entry)));
14689 /* Add the new entry at the end of the line_info_table. */
14690 line_info
14691 = &separate_line_info_table[separate_line_info_table_in_use++];
14692 line_info->dw_file_num = file_num;
14693 line_info->dw_line_num = line;
14694 line_info->function = current_function_funcdef_no;
14696 else
14698 dw_line_info_ref line_info;
14700 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
14701 line_info_table_in_use);
14703 /* Expand the line info table if necessary. */
14704 if (line_info_table_in_use == line_info_table_allocated)
14706 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
14707 line_info_table
14708 = ggc_realloc (line_info_table,
14709 (line_info_table_allocated
14710 * sizeof (dw_line_info_entry)));
14711 memset (line_info_table + line_info_table_in_use, 0,
14712 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
14715 /* Add the new entry at the end of the line_info_table. */
14716 line_info = &line_info_table[line_info_table_in_use++];
14717 line_info->dw_file_num = file_num;
14718 line_info->dw_line_num = line;
14723 /* Record the beginning of a new source file. */
14725 static void
14726 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
14728 if (flag_eliminate_dwarf2_dups)
14730 /* Record the beginning of the file for break_out_includes. */
14731 dw_die_ref bincl_die;
14733 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
14734 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
14737 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14739 int file_num = maybe_emit_file (lookup_filename (filename));
14741 switch_to_section (debug_macinfo_section);
14742 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
14743 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
14744 lineno);
14746 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
14750 /* Record the end of a source file. */
14752 static void
14753 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
14755 if (flag_eliminate_dwarf2_dups)
14756 /* Record the end of the file for break_out_includes. */
14757 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
14759 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14761 switch_to_section (debug_macinfo_section);
14762 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
14766 /* Called from debug_define in toplev.c. The `buffer' parameter contains
14767 the tail part of the directive line, i.e. the part which is past the
14768 initial whitespace, #, whitespace, directive-name, whitespace part. */
14770 static void
14771 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
14772 const char *buffer ATTRIBUTE_UNUSED)
14774 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14776 switch_to_section (debug_macinfo_section);
14777 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
14778 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
14779 dw2_asm_output_nstring (buffer, -1, "The macro");
14783 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
14784 the tail part of the directive line, i.e. the part which is past the
14785 initial whitespace, #, whitespace, directive-name, whitespace part. */
14787 static void
14788 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
14789 const char *buffer ATTRIBUTE_UNUSED)
14791 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14793 switch_to_section (debug_macinfo_section);
14794 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
14795 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
14796 dw2_asm_output_nstring (buffer, -1, "The macro");
14800 /* Set up for Dwarf output at the start of compilation. */
14802 static void
14803 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
14805 /* Allocate the file_table. */
14806 file_table = htab_create_ggc (50, file_table_hash,
14807 file_table_eq, NULL);
14809 /* Allocate the decl_die_table. */
14810 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
14811 decl_die_table_eq, NULL);
14813 /* Allocate the decl_loc_table. */
14814 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
14815 decl_loc_table_eq, NULL);
14817 /* Allocate the initial hunk of the decl_scope_table. */
14818 decl_scope_table = VEC_alloc (tree, gc, 256);
14820 /* Allocate the initial hunk of the abbrev_die_table. */
14821 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
14822 * sizeof (dw_die_ref));
14823 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
14824 /* Zero-th entry is allocated, but unused. */
14825 abbrev_die_table_in_use = 1;
14827 /* Allocate the initial hunk of the line_info_table. */
14828 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
14829 * sizeof (dw_line_info_entry));
14830 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
14832 /* Zero-th entry is allocated, but unused. */
14833 line_info_table_in_use = 1;
14835 /* Allocate the pubtypes and pubnames vectors. */
14836 pubname_table = VEC_alloc (pubname_entry, gc, 32);
14837 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
14839 /* Generate the initial DIE for the .debug section. Note that the (string)
14840 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
14841 will (typically) be a relative pathname and that this pathname should be
14842 taken as being relative to the directory from which the compiler was
14843 invoked when the given (base) source file was compiled. We will fill
14844 in this value in dwarf2out_finish. */
14845 comp_unit_die = gen_compile_unit_die (NULL);
14847 incomplete_types = VEC_alloc (tree, gc, 64);
14849 used_rtx_array = VEC_alloc (rtx, gc, 32);
14851 debug_info_section = get_section (DEBUG_INFO_SECTION,
14852 SECTION_DEBUG, NULL);
14853 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
14854 SECTION_DEBUG, NULL);
14855 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
14856 SECTION_DEBUG, NULL);
14857 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
14858 SECTION_DEBUG, NULL);
14859 debug_line_section = get_section (DEBUG_LINE_SECTION,
14860 SECTION_DEBUG, NULL);
14861 debug_loc_section = get_section (DEBUG_LOC_SECTION,
14862 SECTION_DEBUG, NULL);
14863 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
14864 SECTION_DEBUG, NULL);
14865 #ifdef DEBUG_PUBTYPES_SECTION
14866 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
14867 SECTION_DEBUG, NULL);
14868 #endif
14869 debug_str_section = get_section (DEBUG_STR_SECTION,
14870 DEBUG_STR_SECTION_FLAGS, NULL);
14871 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
14872 SECTION_DEBUG, NULL);
14873 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
14874 SECTION_DEBUG, NULL);
14876 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
14877 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
14878 DEBUG_ABBREV_SECTION_LABEL, 0);
14879 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
14880 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
14881 COLD_TEXT_SECTION_LABEL, 0);
14882 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
14884 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
14885 DEBUG_INFO_SECTION_LABEL, 0);
14886 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
14887 DEBUG_LINE_SECTION_LABEL, 0);
14888 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
14889 DEBUG_RANGES_SECTION_LABEL, 0);
14890 switch_to_section (debug_abbrev_section);
14891 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
14892 switch_to_section (debug_info_section);
14893 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
14894 switch_to_section (debug_line_section);
14895 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
14897 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14899 switch_to_section (debug_macinfo_section);
14900 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
14901 DEBUG_MACINFO_SECTION_LABEL, 0);
14902 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
14905 switch_to_section (text_section);
14906 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
14907 if (flag_reorder_blocks_and_partition)
14909 cold_text_section = unlikely_text_section ();
14910 switch_to_section (cold_text_section);
14911 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
14915 /* A helper function for dwarf2out_finish called through
14916 ht_forall. Emit one queued .debug_str string. */
14918 static int
14919 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
14921 struct indirect_string_node *node = (struct indirect_string_node *) *h;
14923 if (node->form == DW_FORM_strp)
14925 switch_to_section (debug_str_section);
14926 ASM_OUTPUT_LABEL (asm_out_file, node->label);
14927 assemble_string (node->str, strlen (node->str) + 1);
14930 return 1;
14933 #if ENABLE_ASSERT_CHECKING
14934 /* Verify that all marks are clear. */
14936 static void
14937 verify_marks_clear (dw_die_ref die)
14939 dw_die_ref c;
14941 gcc_assert (! die->die_mark);
14942 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14944 #endif /* ENABLE_ASSERT_CHECKING */
14946 /* Clear the marks for a die and its children.
14947 Be cool if the mark isn't set. */
14949 static void
14950 prune_unmark_dies (dw_die_ref die)
14952 dw_die_ref c;
14954 if (die->die_mark)
14955 die->die_mark = 0;
14956 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14959 /* Given DIE that we're marking as used, find any other dies
14960 it references as attributes and mark them as used. */
14962 static void
14963 prune_unused_types_walk_attribs (dw_die_ref die)
14965 dw_attr_ref a;
14966 unsigned ix;
14968 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14970 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14972 /* A reference to another DIE.
14973 Make sure that it will get emitted. */
14974 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14976 /* Set the string's refcount to 0 so that prune_unused_types_mark
14977 accounts properly for it. */
14978 if (AT_class (a) == dw_val_class_str)
14979 a->dw_attr_val.v.val_str->refcount = 0;
14984 /* Mark DIE as being used. If DOKIDS is true, then walk down
14985 to DIE's children. */
14987 static void
14988 prune_unused_types_mark (dw_die_ref die, int dokids)
14990 dw_die_ref c;
14992 if (die->die_mark == 0)
14994 /* We haven't done this node yet. Mark it as used. */
14995 die->die_mark = 1;
14997 /* We also have to mark its parents as used.
14998 (But we don't want to mark our parents' kids due to this.) */
14999 if (die->die_parent)
15000 prune_unused_types_mark (die->die_parent, 0);
15002 /* Mark any referenced nodes. */
15003 prune_unused_types_walk_attribs (die);
15005 /* If this node is a specification,
15006 also mark the definition, if it exists. */
15007 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
15008 prune_unused_types_mark (die->die_definition, 1);
15011 if (dokids && die->die_mark != 2)
15013 /* We need to walk the children, but haven't done so yet.
15014 Remember that we've walked the kids. */
15015 die->die_mark = 2;
15017 /* If this is an array type, we need to make sure our
15018 kids get marked, even if they're types. */
15019 if (die->die_tag == DW_TAG_array_type)
15020 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
15021 else
15022 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
15027 /* Walk the tree DIE and mark types that we actually use. */
15029 static void
15030 prune_unused_types_walk (dw_die_ref die)
15032 dw_die_ref c;
15034 /* Don't do anything if this node is already marked. */
15035 if (die->die_mark)
15036 return;
15038 switch (die->die_tag)
15040 case DW_TAG_const_type:
15041 case DW_TAG_packed_type:
15042 case DW_TAG_pointer_type:
15043 case DW_TAG_reference_type:
15044 case DW_TAG_volatile_type:
15045 case DW_TAG_typedef:
15046 case DW_TAG_array_type:
15047 case DW_TAG_structure_type:
15048 case DW_TAG_union_type:
15049 case DW_TAG_class_type:
15050 case DW_TAG_interface_type:
15051 case DW_TAG_friend:
15052 case DW_TAG_variant_part:
15053 case DW_TAG_enumeration_type:
15054 case DW_TAG_subroutine_type:
15055 case DW_TAG_string_type:
15056 case DW_TAG_set_type:
15057 case DW_TAG_subrange_type:
15058 case DW_TAG_ptr_to_member_type:
15059 case DW_TAG_file_type:
15060 if (die->die_perennial_p)
15061 break;
15063 /* It's a type node --- don't mark it. */
15064 return;
15066 default:
15067 /* Mark everything else. */
15068 break;
15071 die->die_mark = 1;
15073 /* Now, mark any dies referenced from here. */
15074 prune_unused_types_walk_attribs (die);
15076 /* Mark children. */
15077 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
15080 /* Increment the string counts on strings referred to from DIE's
15081 attributes. */
15083 static void
15084 prune_unused_types_update_strings (dw_die_ref die)
15086 dw_attr_ref a;
15087 unsigned ix;
15089 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
15090 if (AT_class (a) == dw_val_class_str)
15092 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
15093 s->refcount++;
15094 /* Avoid unnecessarily putting strings that are used less than
15095 twice in the hash table. */
15096 if (s->refcount
15097 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
15099 void ** slot;
15100 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
15101 htab_hash_string (s->str),
15102 INSERT);
15103 gcc_assert (*slot == NULL);
15104 *slot = s;
15109 /* Remove from the tree DIE any dies that aren't marked. */
15111 static void
15112 prune_unused_types_prune (dw_die_ref die)
15114 dw_die_ref c;
15116 gcc_assert (die->die_mark);
15117 prune_unused_types_update_strings (die);
15119 if (! die->die_child)
15120 return;
15122 c = die->die_child;
15123 do {
15124 dw_die_ref prev = c;
15125 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
15126 if (c == die->die_child)
15128 /* No marked children between 'prev' and the end of the list. */
15129 if (prev == c)
15130 /* No marked children at all. */
15131 die->die_child = NULL;
15132 else
15134 prev->die_sib = c->die_sib;
15135 die->die_child = prev;
15137 return;
15140 if (c != prev->die_sib)
15141 prev->die_sib = c;
15142 prune_unused_types_prune (c);
15143 } while (c != die->die_child);
15147 /* Remove dies representing declarations that we never use. */
15149 static void
15150 prune_unused_types (void)
15152 unsigned int i;
15153 limbo_die_node *node;
15154 pubname_ref pub;
15156 #if ENABLE_ASSERT_CHECKING
15157 /* All the marks should already be clear. */
15158 verify_marks_clear (comp_unit_die);
15159 for (node = limbo_die_list; node; node = node->next)
15160 verify_marks_clear (node->die);
15161 #endif /* ENABLE_ASSERT_CHECKING */
15163 /* Set the mark on nodes that are actually used. */
15164 prune_unused_types_walk (comp_unit_die);
15165 for (node = limbo_die_list; node; node = node->next)
15166 prune_unused_types_walk (node->die);
15168 /* Also set the mark on nodes referenced from the
15169 pubname_table or arange_table. */
15170 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
15171 prune_unused_types_mark (pub->die, 1);
15172 for (i = 0; i < arange_table_in_use; i++)
15173 prune_unused_types_mark (arange_table[i], 1);
15175 /* Get rid of nodes that aren't marked; and update the string counts. */
15176 if (debug_str_hash)
15177 htab_empty (debug_str_hash);
15178 prune_unused_types_prune (comp_unit_die);
15179 for (node = limbo_die_list; node; node = node->next)
15180 prune_unused_types_prune (node->die);
15182 /* Leave the marks clear. */
15183 prune_unmark_dies (comp_unit_die);
15184 for (node = limbo_die_list; node; node = node->next)
15185 prune_unmark_dies (node->die);
15188 /* Set the parameter to true if there are any relative pathnames in
15189 the file table. */
15190 static int
15191 file_table_relative_p (void ** slot, void *param)
15193 bool *p = param;
15194 struct dwarf_file_data *d = *slot;
15195 if (!IS_ABSOLUTE_PATH (d->filename))
15197 *p = true;
15198 return 0;
15200 return 1;
15203 /* Output stuff that dwarf requires at the end of every file,
15204 and generate the DWARF-2 debugging info. */
15206 static void
15207 dwarf2out_finish (const char *filename)
15209 limbo_die_node *node, *next_node;
15210 dw_die_ref die = 0;
15212 /* Add the name for the main input file now. We delayed this from
15213 dwarf2out_init to avoid complications with PCH. */
15214 add_name_attribute (comp_unit_die, remap_debug_filename (filename));
15215 if (!IS_ABSOLUTE_PATH (filename))
15216 add_comp_dir_attribute (comp_unit_die);
15217 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
15219 bool p = false;
15220 htab_traverse (file_table, file_table_relative_p, &p);
15221 if (p)
15222 add_comp_dir_attribute (comp_unit_die);
15225 /* Traverse the limbo die list, and add parent/child links. The only
15226 dies without parents that should be here are concrete instances of
15227 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
15228 For concrete instances, we can get the parent die from the abstract
15229 instance. */
15230 for (node = limbo_die_list; node; node = next_node)
15232 next_node = node->next;
15233 die = node->die;
15235 if (die->die_parent == NULL)
15237 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
15239 if (origin)
15240 add_child_die (origin->die_parent, die);
15241 else if (die == comp_unit_die)
15243 else if (errorcount > 0 || sorrycount > 0)
15244 /* It's OK to be confused by errors in the input. */
15245 add_child_die (comp_unit_die, die);
15246 else
15248 /* In certain situations, the lexical block containing a
15249 nested function can be optimized away, which results
15250 in the nested function die being orphaned. Likewise
15251 with the return type of that nested function. Force
15252 this to be a child of the containing function.
15254 It may happen that even the containing function got fully
15255 inlined and optimized out. In that case we are lost and
15256 assign the empty child. This should not be big issue as
15257 the function is likely unreachable too. */
15258 tree context = NULL_TREE;
15260 gcc_assert (node->created_for);
15262 if (DECL_P (node->created_for))
15263 context = DECL_CONTEXT (node->created_for);
15264 else if (TYPE_P (node->created_for))
15265 context = TYPE_CONTEXT (node->created_for);
15267 gcc_assert (context
15268 && (TREE_CODE (context) == FUNCTION_DECL
15269 || TREE_CODE (context) == NAMESPACE_DECL));
15271 origin = lookup_decl_die (context);
15272 if (origin)
15273 add_child_die (origin, die);
15274 else
15275 add_child_die (comp_unit_die, die);
15280 limbo_die_list = NULL;
15282 /* Walk through the list of incomplete types again, trying once more to
15283 emit full debugging info for them. */
15284 retry_incomplete_types ();
15286 if (flag_eliminate_unused_debug_types)
15287 prune_unused_types ();
15289 /* Generate separate CUs for each of the include files we've seen.
15290 They will go into limbo_die_list. */
15291 if (flag_eliminate_dwarf2_dups)
15292 break_out_includes (comp_unit_die);
15294 /* Traverse the DIE's and add add sibling attributes to those DIE's
15295 that have children. */
15296 add_sibling_attributes (comp_unit_die);
15297 for (node = limbo_die_list; node; node = node->next)
15298 add_sibling_attributes (node->die);
15300 /* Output a terminator label for the .text section. */
15301 switch_to_section (text_section);
15302 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
15303 if (flag_reorder_blocks_and_partition)
15305 switch_to_section (unlikely_text_section ());
15306 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
15309 /* We can only use the low/high_pc attributes if all of the code was
15310 in .text. */
15311 if (!have_multiple_function_sections)
15313 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
15314 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
15317 else
15319 unsigned fde_idx = 0;
15321 /* We need to give .debug_loc and .debug_ranges an appropriate
15322 "base address". Use zero so that these addresses become
15323 absolute. Historically, we've emitted the unexpected
15324 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
15325 Emit both to give time for other tools to adapt. */
15326 add_AT_addr (comp_unit_die, DW_AT_low_pc, const0_rtx);
15327 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
15329 add_AT_range_list (comp_unit_die, DW_AT_ranges,
15330 add_ranges_by_labels (text_section_label,
15331 text_end_label));
15332 if (flag_reorder_blocks_and_partition)
15333 add_ranges_by_labels (cold_text_section_label,
15334 cold_end_label);
15336 for (fde_idx = 0; fde_idx < fde_table_in_use; fde_idx++)
15338 dw_fde_ref fde = &fde_table[fde_idx];
15340 if (fde->dw_fde_switched_sections)
15342 add_ranges_by_labels (fde->dw_fde_hot_section_label,
15343 fde->dw_fde_hot_section_end_label);
15344 add_ranges_by_labels (fde->dw_fde_unlikely_section_label,
15345 fde->dw_fde_unlikely_section_end_label);
15347 else
15348 add_ranges_by_labels (fde->dw_fde_begin,
15349 fde->dw_fde_end);
15352 add_ranges (NULL);
15355 /* Output location list section if necessary. */
15356 if (have_location_lists)
15358 /* Output the location lists info. */
15359 switch_to_section (debug_loc_section);
15360 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
15361 DEBUG_LOC_SECTION_LABEL, 0);
15362 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
15363 output_location_lists (die);
15366 if (debug_info_level >= DINFO_LEVEL_NORMAL)
15367 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
15368 debug_line_section_label);
15370 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
15371 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
15373 /* Output all of the compilation units. We put the main one last so that
15374 the offsets are available to output_pubnames. */
15375 for (node = limbo_die_list; node; node = node->next)
15376 output_comp_unit (node->die, 0);
15378 output_comp_unit (comp_unit_die, 0);
15380 /* Output the abbreviation table. */
15381 switch_to_section (debug_abbrev_section);
15382 output_abbrev_section ();
15384 /* Output public names table if necessary. */
15385 if (!VEC_empty (pubname_entry, pubname_table))
15387 switch_to_section (debug_pubnames_section);
15388 output_pubnames (pubname_table);
15391 #ifdef DEBUG_PUBTYPES_SECTION
15392 /* Output public types table if necessary. */
15393 if (!VEC_empty (pubname_entry, pubtype_table))
15395 switch_to_section (debug_pubtypes_section);
15396 output_pubnames (pubtype_table);
15398 #endif
15400 /* Output the address range information. We only put functions in the arange
15401 table, so don't write it out if we don't have any. */
15402 if (fde_table_in_use)
15404 switch_to_section (debug_aranges_section);
15405 output_aranges ();
15408 /* Output ranges section if necessary. */
15409 if (ranges_table_in_use)
15411 switch_to_section (debug_ranges_section);
15412 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
15413 output_ranges ();
15416 /* Output the source line correspondence table. We must do this
15417 even if there is no line information. Otherwise, on an empty
15418 translation unit, we will generate a present, but empty,
15419 .debug_info section. IRIX 6.5 `nm' will then complain when
15420 examining the file. This is done late so that any filenames
15421 used by the debug_info section are marked as 'used'. */
15422 if (! DWARF2_ASM_LINE_DEBUG_INFO)
15424 switch_to_section (debug_line_section);
15425 output_line_info ();
15428 /* Have to end the macro section. */
15429 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
15431 switch_to_section (debug_macinfo_section);
15432 dw2_asm_output_data (1, 0, "End compilation unit");
15435 /* If we emitted any DW_FORM_strp form attribute, output the string
15436 table too. */
15437 if (debug_str_hash)
15438 htab_traverse (debug_str_hash, output_indirect_string, NULL);
15440 #else
15442 /* This should never be used, but its address is needed for comparisons. */
15443 const struct gcc_debug_hooks dwarf2_debug_hooks;
15445 #endif /* DWARF2_DEBUGGING_INFO */
15447 #include "gt-dwarf2out.h"