* Makefile.in (final.o): Depend on target.h.
[official-gcc.git] / gcc / config / a29k / a29k.h
blobf6bfe38277897a313d99936332b08360b59b2206
1 /* Definitions of target machine for GNU compiler, for AMD Am29000 CPU.
2 Copyright (C) 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@nyu.edu)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Names to predefine in the preprocessor for this target machine. */
26 #define CPP_PREDEFINES "-D_AM29K -D_AM29000 -D_EPI -Acpu=a29k -Amachine=a29k"
28 /* Print subsidiary information on the compiler version in use. */
29 #define TARGET_VERSION
31 /* Pass -w to assembler. */
32 #define ASM_SPEC "-w"
34 /* Run-time compilation parameters selecting different hardware subsets. */
36 extern int target_flags;
38 /* Macro to define tables used to set the flags.
39 This is a list in braces of pairs in braces,
40 each pair being { "NAME", VALUE }
41 where VALUE is the bits to set or minus the bits to clear.
42 An empty string NAME is used to identify the default VALUE. */
44 /* This means that the DW bit will be enabled, to allow direct loads
45 of bytes. */
47 #define TARGET_DW_ENABLE (target_flags & 1)
49 /* This means that the external hardware does supports byte writes. */
51 #define TARGET_BYTE_WRITES (target_flags & 2)
53 /* This means that a "small memory model" has been selected where all
54 function addresses are known to be within 256K. This allows CALL to be
55 used. */
57 #define TARGET_SMALL_MEMORY (target_flags & 4)
59 /* This means that we must always used on indirect call, even when
60 calling a function in the same file, since the file might be > 256KB. */
62 #define TARGET_LARGE_MEMORY (target_flags & 8)
64 /* This means that we are compiling for a 29050. */
66 #define TARGET_29050 (target_flags & 16)
68 /* This means that we are compiling for the kernel which means that we use
69 gr64-gr95 instead of gr96-126. */
71 #define TARGET_KERNEL_REGISTERS (target_flags & 32)
73 /* This means that a call to "__msp_check" should be inserted after each stack
74 adjustment to check for stack overflow. */
76 #define TARGET_STACK_CHECK (target_flags & 64)
78 /* This handles 29k processors which cannot handle the separation
79 of a mtsrim insns and a storem insn (most 29000 chips to date, but
80 not the 29050. */
82 #define TARGET_NO_STOREM_BUG (target_flags & 128)
84 /* This forces the compiler not to use incoming argument registers except
85 for copying out arguments. It helps detect problems when a function is
86 called with fewer arguments than it is declared with. */
88 #define TARGET_NO_REUSE_ARGS (target_flags & 256)
90 /* This means that neither builtin nor emulated float operations are
91 available, and that GCC should generate libcalls instead. */
93 #define TARGET_SOFT_FLOAT (target_flags & 512)
95 /* This means that we should not emit the multm or mutmu instructions
96 that some embedded systems' trap handlers don't support. */
98 #define TARGET_MULTM ((target_flags & 1024) == 0)
100 #define TARGET_SWITCHES \
101 { {"dw", 1, N_("Generate code assuming DW bit is set")}, \
102 {"ndw", -1, N_("Generate code assuming DW bit is not set")}, \
103 {"bw", 2, N_("Generate code using byte writes")}, \
104 {"nbw", - (1|2), N_("Do not generate byte writes")}, \
105 {"small", 4, N_("Use small memory model")}, \
106 {"normal", - (4|8), N_("Use normal memory model")}, \
107 {"large", 8, N_("Use large memory model")}, \
108 {"29050", 16+128, N_("Generate 29050 code")}, \
109 {"29000", -16, N_("Generate 29000 code")}, \
110 {"kernel-registers", 32, N_("Use kernel global registers")}, \
111 {"user-registers", -32, N_("Use user global registers")}, \
112 {"stack-check", 64, N_("Emit stack checking code")}, \
113 {"no-stack-check", - 74, N_("Do not emit stack checking code")}, \
114 {"storem-bug", -128, N_("Work around storem hardware bug")}, \
115 {"no-storem-bug", 128, N_("Do not work around storem hardware bug")}, \
116 {"reuse-arg-regs", -256, N_("Store locals in argument registers")}, \
117 {"no-reuse-arg-regs", 256, N_("Do not store locals in arg registers")}, \
118 {"soft-float", 512, N_("Use software floating point")}, \
119 {"no-multm", 1024, N_("Do not generate multm instructions")}, \
120 {"", TARGET_DEFAULT, NULL}}
122 #define TARGET_DEFAULT 3
124 /* Show we can debug even without a frame pointer. */
125 #define CAN_DEBUG_WITHOUT_FP
127 /* target machine storage layout */
129 /* Define the types for size_t, ptrdiff_t, and wchar_t. These are the
130 same as those used by EPI. The type for wchar_t does not make much
131 sense, but is what is used. */
133 #define SIZE_TYPE "unsigned int"
134 #define PTRDIFF_TYPE "int"
135 #define WCHAR_TYPE "char"
136 #define WCHAR_TYPE_SIZE BITS_PER_UNIT
138 /* Define this macro if it is advisable to hold scalars in registers
139 in a wider mode than that declared by the program. In such cases,
140 the value is constrained to be within the bounds of the declared
141 type, but kept valid in the wider mode. The signedness of the
142 extension may differ from that of the type. */
144 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
145 if (GET_MODE_CLASS (MODE) == MODE_INT \
146 && GET_MODE_SIZE (MODE) < 4) \
147 (MODE) = SImode;
149 /* Define this if most significant bit is lowest numbered
150 in instructions that operate on numbered bit-fields.
151 This is arbitrary on the 29k since it has no actual bit-field insns.
152 It is better to define this as TRUE because BYTES_BIG_ENDIAN is TRUE
153 and we want to be able to convert BP position to bit position with
154 just a shift. */
155 #define BITS_BIG_ENDIAN 1
157 /* Define this if most significant byte of a word is the lowest numbered.
158 This is true on 29k. */
159 #define BYTES_BIG_ENDIAN 1
161 /* Define this if most significant word of a multiword number is lowest
162 numbered.
164 For 29k we can decide arbitrarily since there are no machine instructions
165 for them. Might as well be consistent with bytes. */
166 #define WORDS_BIG_ENDIAN 1
168 /* number of bits in an addressable storage unit */
169 #define BITS_PER_UNIT 8
171 /* Width in bits of a "word", which is the contents of a machine register.
172 Note that this is not necessarily the width of data type `int';
173 if using 16-bit ints on a 68000, this would still be 32.
174 But on a machine with 16-bit registers, this would be 16. */
175 #define BITS_PER_WORD 32
177 /* Width of a word, in units (bytes). */
178 #define UNITS_PER_WORD 4
180 /* Width in bits of a pointer.
181 See also the macro `Pmode' defined below. */
182 #define POINTER_SIZE 32
184 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
185 #define PARM_BOUNDARY 32
187 /* Boundary (in *bits*) on which stack pointer should be aligned. */
188 #define STACK_BOUNDARY 64
190 /* Allocation boundary (in *bits*) for the code of a function. */
191 #define FUNCTION_BOUNDARY 32
193 /* Alignment of field after `int : 0' in a structure. */
194 #define EMPTY_FIELD_BOUNDARY 32
196 /* Every structure's size must be a multiple of this. */
197 #define STRUCTURE_SIZE_BOUNDARY 8
199 /* A bitfield declared as `int' forces `int' alignment for the struct. */
200 #define PCC_BITFIELD_TYPE_MATTERS 1
202 /* No data type wants to be aligned rounder than this. */
203 #define BIGGEST_ALIGNMENT 32
205 /* Make strings word-aligned so strcpy from constants will be faster. */
206 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
207 (TREE_CODE (EXP) == STRING_CST \
208 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
210 /* Make arrays of chars word-aligned for the same reasons. */
211 #define DATA_ALIGNMENT(TYPE, ALIGN) \
212 (TREE_CODE (TYPE) == ARRAY_TYPE \
213 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
214 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
216 /* Set this non-zero if move instructions will actually fail to work
217 when given unaligned data. */
218 #define STRICT_ALIGNMENT 0
220 /* Set this non-zero if unaligned move instructions are extremely slow.
222 On the 29k, they trap. */
223 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
225 /* Standard register usage. */
227 /* Number of actual hardware registers.
228 The hardware registers are assigned numbers for the compiler
229 from 0 to just below FIRST_PSEUDO_REGISTER.
230 All registers that the compiler knows about must be given numbers,
231 even those that are not normally considered general registers.
233 29k has 256 registers, of which 62 are not defined. gr0 and gr1 are
234 not produced in generated RTL so we can start at gr96, and call it
235 register zero.
237 So 0-31 are gr96-gr127, lr0-lr127 are 32-159. To represent the input
238 arguments, whose register numbers we won't know until we are done,
239 use register 160-175. They cannot be modified. Similarly, 176 is used
240 for the frame pointer. It is assigned the last local register number
241 once the number of registers used is known.
243 We use 177, 178, 179, and 180 for the special registers BP, FC, CR, and Q,
244 respectively. Registers 181 through 199 are used for the other special
245 registers that may be used by the programmer, but are never used by the
246 compiler.
248 Registers 200-203 are the four floating-point accumulator register in
249 the 29050.
251 Registers 204-235 are the 32 global registers for kernel mode when
252 -mkernel-registers is not specified, and the 32 global user registers
253 when it is.
255 When -mkernel-registers is specified, we still use the same register
256 map but change the names so 0-31 print as gr64-gr95. */
258 #define FIRST_PSEUDO_REGISTER 236
260 /* Because of the large number of registers on the 29k, we define macros
261 to refer to each group of registers and then define the number for some
262 registers used in the calling sequence. */
264 #define R_GR(N) ((N) - 96) /* gr96 is register number 0 */
265 #define R_LR(N) ((N) + 32) /* lr0 is register number 32 */
266 #define R_FP 176 /* frame pointer is register 176 */
267 #define R_AR(N) ((N) + 160) /* first incoming arg reg is 160 */
268 #define R_KR(N) ((N) + 204) /* kernel registers (gr64 to gr95) */
270 /* Define the numbers of the special registers. */
271 #define R_BP 177
272 #define R_FC 178
273 #define R_CR 179
274 #define R_Q 180
276 /* These special registers are not used by the compiler, but may be referenced
277 by the programmer via asm declarations. */
279 #define R_VAB 181
280 #define R_OPS 182
281 #define R_CPS 183
282 #define R_CFG 184
283 #define R_CHA 185
284 #define R_CHD 186
285 #define R_CHC 187
286 #define R_RBP 188
287 #define R_TMC 189
288 #define R_TMR 190
289 #define R_PC0 191
290 #define R_PC1 192
291 #define R_PC2 193
292 #define R_MMU 194
293 #define R_LRU 195
294 #define R_FPE 196
295 #define R_INT 197
296 #define R_FPS 198
297 #define R_EXO 199
299 /* Define the number for floating-point accumulator N. */
300 #define R_ACU(N) ((N) + 200)
302 /* Now define the registers used in the calling sequence. */
303 #define R_TAV R_GR (121)
304 #define R_TPC R_GR (122)
305 #define R_LRP R_GR (123)
306 #define R_SLP R_GR (124)
307 #define R_MSP R_GR (125)
308 #define R_RAB R_GR (126)
309 #define R_RFB R_GR (127)
311 /* 1 for registers that have pervasive standard uses
312 and are not available for the register allocator. */
314 #define FIXED_REGISTERS \
315 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
316 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, \
317 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
318 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
319 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
320 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
321 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
322 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
323 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
324 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
325 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
326 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
327 1, 1, 1, 1, 1, 1, 1, 1, \
328 0, 0, 0, 0, \
329 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
330 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
332 /* 1 for registers not available across function calls.
333 These must include the FIXED_REGISTERS and also any
334 registers that can be used without being saved.
335 The latter must include the registers where values are returned
336 and the register where structure-value addresses are passed.
337 Aside from that, you can include as many other registers as you like. */
338 #define CALL_USED_REGISTERS \
339 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
340 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
341 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
342 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
343 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
344 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
345 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
346 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
347 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
348 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
349 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
350 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
351 1, 1, 1, 1, 1, 1, 1, 1, \
352 1, 1, 1, 1, \
353 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
354 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
356 /* List the order in which to allocate registers. Each register must be
357 listed once, even those in FIXED_REGISTERS.
359 We allocate in the following order:
360 gr116-gr120 (not used for anything but temps)
361 gr96-gr111 (function return values, reverse order)
362 argument registers (160-175)
363 lr0-lr127 (locals, saved)
364 acc3-0 (acc0 special)
365 everything else */
367 #define REG_ALLOC_ORDER \
368 {R_GR (116), R_GR (117), R_GR (118), R_GR (119), R_GR (120), \
369 R_GR (111), R_GR (110), R_GR (109), R_GR (108), R_GR (107), \
370 R_GR (106), R_GR (105), R_GR (104), R_GR (103), R_GR (102), \
371 R_GR (101), R_GR (100), R_GR (99), R_GR (98), R_GR (97), R_GR (96), \
372 R_AR (0), R_AR (1), R_AR (2), R_AR (3), R_AR (4), R_AR (5), \
373 R_AR (6), R_AR (7), R_AR (8), R_AR (9), R_AR (10), R_AR (11), \
374 R_AR (12), R_AR (13), R_AR (14), R_AR (15), \
375 R_LR (0), R_LR (1), R_LR (2), R_LR (3), R_LR (4), R_LR (5), \
376 R_LR (6), R_LR (7), R_LR (8), R_LR (9), R_LR (10), R_LR (11), \
377 R_LR (12), R_LR (13), R_LR (14), R_LR (15), R_LR (16), R_LR (17), \
378 R_LR (18), R_LR (19), R_LR (20), R_LR (21), R_LR (22), R_LR (23), \
379 R_LR (24), R_LR (25), R_LR (26), R_LR (27), R_LR (28), R_LR (29), \
380 R_LR (30), R_LR (31), R_LR (32), R_LR (33), R_LR (34), R_LR (35), \
381 R_LR (36), R_LR (37), R_LR (38), R_LR (39), R_LR (40), R_LR (41), \
382 R_LR (42), R_LR (43), R_LR (44), R_LR (45), R_LR (46), R_LR (47), \
383 R_LR (48), R_LR (49), R_LR (50), R_LR (51), R_LR (52), R_LR (53), \
384 R_LR (54), R_LR (55), R_LR (56), R_LR (57), R_LR (58), R_LR (59), \
385 R_LR (60), R_LR (61), R_LR (62), R_LR (63), R_LR (64), R_LR (65), \
386 R_LR (66), R_LR (67), R_LR (68), R_LR (69), R_LR (70), R_LR (71), \
387 R_LR (72), R_LR (73), R_LR (74), R_LR (75), R_LR (76), R_LR (77), \
388 R_LR (78), R_LR (79), R_LR (80), R_LR (81), R_LR (82), R_LR (83), \
389 R_LR (84), R_LR (85), R_LR (86), R_LR (87), R_LR (88), R_LR (89), \
390 R_LR (90), R_LR (91), R_LR (92), R_LR (93), R_LR (94), R_LR (95), \
391 R_LR (96), R_LR (97), R_LR (98), R_LR (99), R_LR (100), R_LR (101), \
392 R_LR (102), R_LR (103), R_LR (104), R_LR (105), R_LR (106), \
393 R_LR (107), R_LR (108), R_LR (109), R_LR (110), R_LR (111), \
394 R_LR (112), R_LR (113), R_LR (114), R_LR (115), R_LR (116), \
395 R_LR (117), R_LR (118), R_LR (119), R_LR (120), R_LR (121), \
396 R_LR (122), R_LR (123), R_LR (124), R_LR (124), R_LR (126), \
397 R_LR (127), \
398 R_ACU (3), R_ACU (2), R_ACU (1), R_ACU (0), \
399 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (121), \
400 R_GR (122), R_GR (123), R_GR (124), R_GR (125), R_GR (126), \
401 R_GR (127), \
402 R_FP, R_BP, R_FC, R_CR, R_Q, \
403 R_VAB, R_OPS, R_CPS, R_CFG, R_CHA, R_CHD, R_CHC, R_RBP, R_TMC, \
404 R_TMR, R_PC0, R_PC1, R_PC2, R_MMU, R_LRU, R_FPE, R_INT, R_FPS, \
405 R_EXO, \
406 R_KR (0), R_KR (1), R_KR (2), R_KR (3), R_KR (4), R_KR (5), \
407 R_KR (6), R_KR (7), R_KR (8), R_KR (9), R_KR (10), R_KR (11), \
408 R_KR (12), R_KR (13), R_KR (14), R_KR (15), R_KR (16), R_KR (17), \
409 R_KR (18), R_KR (19), R_KR (20), R_KR (21), R_KR (22), R_KR (23), \
410 R_KR (24), R_KR (25), R_KR (26), R_KR (27), R_KR (28), R_KR (29), \
411 R_KR (30), R_KR (31) }
413 /* Return number of consecutive hard regs needed starting at reg REGNO
414 to hold something of mode MODE.
415 This is ordinarily the length in words of a value of mode MODE
416 but can be less for certain modes in special long registers. */
418 #define HARD_REGNO_NREGS(REGNO, MODE) \
419 ((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3)? 1 \
420 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
422 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
423 On 29k, the cpu registers can hold any mode. But a double-precision
424 floating-point value should start at an even register. The special
425 registers cannot hold floating-point values, BP, CR, and FC cannot
426 hold integer or floating-point values, and the accumulators cannot
427 hold integer values.
429 DImode and larger values should start at an even register just like
430 DFmode values, even though the instruction set doesn't require it, in order
431 to prevent reload from aborting due to a modes_equiv_for_class_p failure.
433 (I'd like to use the "?:" syntax to make this more readable, but Sun's
434 compiler doesn't seem to accept it.) */
435 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
436 (((REGNO) >= R_ACU (0) && (REGNO) <= R_ACU (3) \
437 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
438 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)) \
439 || ((REGNO) >= R_BP && (REGNO) <= R_CR \
440 && GET_MODE_CLASS (MODE) == MODE_PARTIAL_INT) \
441 || ((REGNO) >= R_Q && (REGNO) < R_ACU (0) \
442 && GET_MODE_CLASS (MODE) != MODE_FLOAT \
443 && GET_MODE_CLASS (MODE) != MODE_COMPLEX_FLOAT) \
444 || (((REGNO) < R_BP || (REGNO) >= R_KR (0)) \
445 && ((((REGNO) & 1) == 0) \
446 || GET_MODE_UNIT_SIZE (MODE) <= UNITS_PER_WORD)))
448 /* Value is 1 if it is a good idea to tie two pseudo registers
449 when one has mode MODE1 and one has mode MODE2.
450 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
451 for any hard reg, then this must be 0 for correct output.
453 On the 29k, normally we'd just have problems with DFmode because of the
454 even alignment. However, we also have to be a bit concerned about
455 the special register's restriction to non-floating and the floating-point
456 accumulator's restriction to only floating. This probably won't
457 cause any great inefficiencies in practice. */
459 #define MODES_TIEABLE_P(MODE1, MODE2) \
460 ((MODE1) == (MODE2) \
461 || (GET_MODE_CLASS (MODE1) == MODE_INT \
462 && GET_MODE_CLASS (MODE2) == MODE_INT))
464 /* Specify the registers used for certain standard purposes.
465 The values of these macros are register numbers. */
467 /* 29k pc isn't overloaded on a register that the compiler knows about. */
468 /* #define PC_REGNUM */
470 /* Register to use for pushing function arguments. */
471 #define STACK_POINTER_REGNUM R_GR (125)
473 /* Base register for access to local variables of the function. */
474 #define FRAME_POINTER_REGNUM R_FP
476 /* Value should be nonzero if functions must have frame pointers.
477 Zero means the frame pointer need not be set up (and parms
478 may be accessed via the stack pointer) in functions that seem suitable.
479 This is computed in `reload', in reload1.c. */
480 #define FRAME_POINTER_REQUIRED 0
482 /* Base register for access to arguments of the function. */
483 #define ARG_POINTER_REGNUM R_FP
485 /* Register in which static-chain is passed to a function. */
486 #define STATIC_CHAIN_REGNUM R_SLP
488 /* Register in which address to store a structure value
489 is passed to a function. */
490 #define STRUCT_VALUE_REGNUM R_LRP
492 /* Define the classes of registers for register constraints in the
493 machine description. Also define ranges of constants.
495 One of the classes must always be named ALL_REGS and include all hard regs.
496 If there is more than one class, another class must be named NO_REGS
497 and contain no registers.
499 The name GENERAL_REGS must be the name of a class (or an alias for
500 another name such as ALL_REGS). This is the class of registers
501 that is allowed by "g" or "r" in a register constraint.
502 Also, registers outside this class are allocated only when
503 instructions express preferences for them.
505 The classes must be numbered in nondecreasing order; that is,
506 a larger-numbered class must never be contained completely
507 in a smaller-numbered class.
509 For any two classes, it is very desirable that there be another
510 class that represents their union.
512 The 29k has nine registers classes: LR0_REGS, GENERAL_REGS, SPECIAL_REGS,
513 BP_REGS, FC_REGS, CR_REGS, Q_REGS, ACCUM_REGS, and ACCUM0_REGS.
514 LR0_REGS, BP_REGS, FC_REGS, CR_REGS, and Q_REGS contain just the single
515 register. The latter two classes are used to represent the floating-point
516 accumulator registers in the 29050. We also define the union class
517 FLOAT_REGS to represent any register that can be used to hold a
518 floating-point value. The union of SPECIAL_REGS and ACCUM_REGS isn't
519 useful as the former cannot contain floating-point and the latter can only
520 contain floating-point. */
522 enum reg_class { NO_REGS, LR0_REGS, GENERAL_REGS, BP_REGS, FC_REGS, CR_REGS,
523 Q_REGS, SPECIAL_REGS, ACCUM0_REGS, ACCUM_REGS, FLOAT_REGS,
524 ALL_REGS, LIM_REG_CLASSES };
526 #define N_REG_CLASSES (int) LIM_REG_CLASSES
528 /* Give names of register classes as strings for dump file. */
530 #define REG_CLASS_NAMES \
531 {"NO_REGS", "LR0_REGS", "GENERAL_REGS", "BP_REGS", "FC_REGS", "CR_REGS", \
532 "Q_REGS", "SPECIAL_REGS", "ACCUM0_REGS", "ACCUM_REGS", "FLOAT_REGS", \
533 "ALL_REGS" }
535 /* Define which registers fit in which classes.
536 This is an initializer for a vector of HARD_REG_SET
537 of length N_REG_CLASSES. */
539 #define REG_CLASS_CONTENTS \
540 { {0, 0, 0, 0, 0, 0, 0, 0}, \
541 {0, 1, 0, 0, 0, 0, 0, 0}, \
542 {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xfff, 0xfff}, \
543 {0, 0, 0, 0, 0, 0x20000, 0, 0}, \
544 {0, 0, 0, 0, 0, 0x40000, 0, 0}, \
545 {0, 0, 0, 0, 0, 0x80000, 0, 0}, \
546 {0, 0, 0, 0, 0, 0x100000, 0, 0}, \
547 {0, 0, 0, 0, 0, 0xfffe0000, 0xff, 0}, \
548 {0, 0, 0, 0, 0, 0, 0x100, 0}, \
549 {0, 0, 0, 0, 0, 0, 0xf00, 0}, \
550 {~0, ~0, ~0, ~0, ~0, ~ 0xfffe0000, ~ 0xff, 0xfff}, \
551 {~0, ~0, ~0, ~0, ~0, ~0, ~0, 0xfff} }
553 /* The same information, inverted:
554 Return the class number of the smallest class containing
555 reg number REGNO. This could be a conditional expression
556 or could index an array. */
558 #define REGNO_REG_CLASS(REGNO) \
559 ((REGNO) == R_BP ? BP_REGS \
560 : (REGNO) == R_FC ? FC_REGS \
561 : (REGNO) == R_CR ? CR_REGS \
562 : (REGNO) == R_Q ? Q_REGS \
563 : (REGNO) > R_BP && (REGNO) <= R_EXO ? SPECIAL_REGS \
564 : (REGNO) == R_ACU (0) ? ACCUM0_REGS \
565 : (REGNO) >= R_KR (0) ? GENERAL_REGS \
566 : (REGNO) > R_ACU (0) ? ACCUM_REGS \
567 : (REGNO) == R_LR (0) ? LR0_REGS \
568 : GENERAL_REGS)
570 /* The class value for index registers, and the one for base regs. */
571 #define INDEX_REG_CLASS NO_REGS
572 #define BASE_REG_CLASS GENERAL_REGS
574 /* Get reg_class from a letter such as appears in the machine description. */
576 #define REG_CLASS_FROM_LETTER(C) \
577 ((C) == 'r' ? GENERAL_REGS \
578 : (C) == 'l' ? LR0_REGS \
579 : (C) == 'b' ? BP_REGS \
580 : (C) == 'f' ? FC_REGS \
581 : (C) == 'c' ? CR_REGS \
582 : (C) == 'q' ? Q_REGS \
583 : (C) == 'h' ? SPECIAL_REGS \
584 : (C) == 'a' ? ACCUM_REGS \
585 : (C) == 'A' ? ACCUM0_REGS \
586 : (C) == 'f' ? FLOAT_REGS \
587 : NO_REGS)
589 /* Define this macro to change register usage conditional on target flags.
591 On the 29k, we use this to change the register names for kernel mapping. */
593 #define CONDITIONAL_REGISTER_USAGE \
595 const char *p; \
596 int i; \
598 if (TARGET_KERNEL_REGISTERS) \
599 for (i = 0; i < 32; i++) \
601 p = reg_names[i]; \
602 reg_names[i] = reg_names[R_KR (i)]; \
603 reg_names[R_KR (i)] = p; \
607 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
608 can be used to stand for particular ranges of immediate operands.
609 This macro defines what the ranges are.
610 C is the letter, and VALUE is a constant value.
611 Return 1 if VALUE is in the range specified by C.
613 For 29k:
614 `I' is used for the range of constants most insns can contain.
615 `J' is for the few 16-bit insns.
616 `K' is a constant whose high-order 24 bits are all one
617 `L' is a HImode constant whose high-order 8 bits are all one
618 `M' is a 32-bit constant whose high-order 16 bits are all one (for CONSTN)
619 `N' is a 32-bit constant whose negative is 8 bits
620 `O' is the 32-bit constant 0x80000000, any constant with low-order
621 16 bits zero for 29050.
622 `P' is a HImode constant whose negative is 8 bits */
624 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
625 ((C) == 'I' ? (unsigned) (VALUE) < 0x100 \
626 : (C) == 'J' ? (unsigned) (VALUE) < 0x10000 \
627 : (C) == 'K' ? ((VALUE) & 0xffffff00) == 0xffffff00 \
628 : (C) == 'L' ? ((VALUE) & 0xff00) == 0xff00 \
629 : (C) == 'M' ? ((VALUE) & 0xffff0000) == 0xffff0000 \
630 : (C) == 'N' ? ((VALUE) < 0 && (VALUE) > -256) \
631 : (C) == 'O' ? ((VALUE) == 0x80000000 \
632 || (TARGET_29050 && ((VALUE) & 0xffff) == 0)) \
633 : (C) == 'P' ? (((VALUE) | 0xffff0000) < 0 \
634 && ((VALUE) | 0xffff0000) > -256) \
635 : 0)
637 /* Similar, but for floating constants, and defining letters G and H.
638 Here VALUE is the CONST_DOUBLE rtx itself.
639 All floating-point constants are valid on 29k. */
641 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
643 /* Given an rtx X being reloaded into a reg required to be
644 in class CLASS, return the class of reg to actually use.
645 In general this is just CLASS; but on some machines
646 in some cases it is preferable to use a more restrictive class. */
648 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
650 /* Return the register class of a scratch register needed to copy IN into
651 or out of a register in CLASS in MODE. If it can be done directly,
652 NO_REGS is returned. */
654 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
655 secondary_reload_class (CLASS, MODE, IN)
657 /* Return the maximum number of consecutive registers
658 needed to represent mode MODE in a register of class CLASS.
660 On 29k, this is the size of MODE in words except that the floating-point
661 accumulators only require one word for anything they can hold. */
663 #define CLASS_MAX_NREGS(CLASS, MODE) \
664 (((CLASS) == ACCUM_REGS || (CLASS) == ACCUM0_REGS) ? 1 \
665 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
667 /* Define the cost of moving between registers of various classes. Everything
668 involving a general register is cheap, but moving between the other types
669 (even within a class) is two insns. */
671 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
672 ((CLASS1) == GENERAL_REGS || (CLASS2) == GENERAL_REGS ? 2 : 4)
674 /* A C expressions returning the cost of moving data of MODE from a register to
675 or from memory.
677 It takes extra insns on the 29k to form addresses, so we want to make
678 this higher. In addition, we need to keep it more expensive than the
679 most expensive register-register copy. */
681 #define MEMORY_MOVE_COST(MODE,CLASS,IN) 6
683 /* A C statement (sans semicolon) to update the integer variable COST
684 based on the relationship between INSN that is dependent on
685 DEP_INSN through the dependence LINK. The default is to make no
686 adjustment to COST. On the a29k, ignore the cost of anti- and
687 output-dependencies. */
688 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
689 if (REG_NOTE_KIND (LINK) != 0) \
690 (COST) = 0; /* Anti or output dependence. */
692 /* Stack layout; function entry, exit and calling. */
694 /* Define this if pushing a word on the stack
695 makes the stack pointer a smaller address. */
696 #define STACK_GROWS_DOWNWARD
698 /* Define this if the nominal address of the stack frame
699 is at the high-address end of the local variables;
700 that is, each additional local variable allocated
701 goes at a more negative offset in the frame. */
702 #define FRAME_GROWS_DOWNWARD
704 /* Offset within stack frame to start allocating local variables at.
705 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
706 first local allocated. Otherwise, it is the offset to the BEGINNING
707 of the first local allocated. */
709 #define STARTING_FRAME_OFFSET (- current_function_pretend_args_size)
711 /* If we generate an insn to push BYTES bytes,
712 this says how many the stack pointer really advances by.
713 On 29k, don't define this because there are no push insns. */
714 /* #define PUSH_ROUNDING(BYTES) */
716 /* Define this if the maximum size of all the outgoing args is to be
717 accumulated and pushed during the prologue. The amount can be
718 found in the variable current_function_outgoing_args_size. */
719 #define ACCUMULATE_OUTGOING_ARGS 1
721 /* Offset of first parameter from the argument pointer register value. */
723 #define FIRST_PARM_OFFSET(FNDECL) (- current_function_pretend_args_size)
725 /* Define this if stack space is still allocated for a parameter passed
726 in a register. */
727 /* #define REG_PARM_STACK_SPACE */
729 /* Value is the number of bytes of arguments automatically
730 popped when returning from a subroutine call.
731 FUNDECL is the declaration node of the function (as a tree),
732 FUNTYPE is the data type of the function (as a tree),
733 or for a library call it is an identifier node for the subroutine name.
734 SIZE is the number of bytes of arguments passed on the stack. */
736 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
738 /* Define how to find the value returned by a function.
739 VALTYPE is the data type of the value (as a tree).
740 If the precise function being called is known, FUNC is its FUNCTION_DECL;
741 otherwise, FUNC is 0.
743 On 29k the value is found in gr96. */
745 #define FUNCTION_VALUE(VALTYPE, FUNC) \
746 gen_rtx_REG (TYPE_MODE (VALTYPE), R_GR (96))
748 /* Define how to find the value returned by a library function
749 assuming the value has mode MODE. */
751 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, R_GR (96))
753 /* 1 if N is a possible register number for a function value
754 as seen by the caller.
755 On 29k, gr96-gr111 are used. */
757 #define FUNCTION_VALUE_REGNO_P(N) ((N) == R_GR (96))
759 /* 1 if N is a possible register number for function argument passing.
760 On 29k, these are lr2-lr17. */
762 #define FUNCTION_ARG_REGNO_P(N) ((N) <= R_LR (17) && (N) >= R_LR (2))
764 /* Define a data type for recording info about an argument list
765 during the scan of that argument list. This data type should
766 hold all necessary information about the function itself
767 and about the args processed so far, enough to enable macros
768 such as FUNCTION_ARG to determine where the next arg should go.
770 On 29k, this is a single integer, which is a number of words
771 of arguments scanned so far.
772 Thus 16 or more means all following args should go on the stack. */
774 #define CUMULATIVE_ARGS int
776 /* Initialize a variable CUM of type CUMULATIVE_ARGS
777 for a call to a function whose data type is FNTYPE.
778 For a library call, FNTYPE is 0. */
780 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
782 /* Same, but called for incoming args.
784 On the 29k, we use this to set all argument registers to fixed and
785 set the last 16 local regs, less two, (lr110-lr125) to available. Some
786 will later be changed to call-saved by FUNCTION_INCOMING_ARG.
787 lr126,lr127 are always fixed, they are place holders for the caller's
788 lr0,lr1. */
790 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
791 { int i; \
792 for (i = R_AR (0) - 2; i < R_AR (16); i++) \
794 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1; \
795 SET_HARD_REG_BIT (fixed_reg_set, i); \
796 SET_HARD_REG_BIT (call_used_reg_set, i); \
797 SET_HARD_REG_BIT (call_fixed_reg_set, i); \
799 for (i = R_LR (110); i < R_LR (126); i++) \
801 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 0; \
802 CLEAR_HARD_REG_BIT (fixed_reg_set, i); \
803 CLEAR_HARD_REG_BIT (call_used_reg_set, i); \
804 CLEAR_HARD_REG_BIT (call_fixed_reg_set, i); \
806 (CUM) = 0; \
809 /* Define intermediate macro to compute the size (in registers) of an argument
810 for the 29k. */
812 #define A29K_ARG_SIZE(MODE, TYPE, NAMED) \
813 (! (NAMED) ? 0 \
814 : (MODE) != BLKmode \
815 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
816 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
818 /* Update the data in CUM to advance over an argument
819 of mode MODE and data type TYPE.
820 (TYPE is null for libcalls where that information may not be available.) */
822 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
823 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
824 (CUM) = 16; \
825 else \
826 (CUM) += A29K_ARG_SIZE (MODE, TYPE, NAMED)
828 /* Determine where to put an argument to a function.
829 Value is zero to push the argument on the stack,
830 or a hard register in which to store the argument.
832 MODE is the argument's machine mode.
833 TYPE is the data type of the argument (as a tree).
834 This is null for libcalls where that information may
835 not be available.
836 CUM is a variable of type CUMULATIVE_ARGS which gives info about
837 the preceding args and about the function being called.
838 NAMED is nonzero if this argument is a named parameter
839 (otherwise it is an extra parameter matching an ellipsis).
841 On 29k the first 16 words of args are normally in registers
842 and the rest are pushed. */
844 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
845 ((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \
846 ? gen_rtx_REG ((MODE), R_LR (2) + (CUM)) : 0)
848 /* Define where a function finds its arguments.
849 This is different from FUNCTION_ARG because of register windows.
851 On the 29k, we hack this to call a function that sets the used registers
852 as non-fixed and not used by calls. */
854 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
855 ((CUM) < 16 && (NAMED) && ! MUST_PASS_IN_STACK (MODE, TYPE) \
856 ? gen_rtx_REG (MODE, \
857 incoming_reg (CUM, A29K_ARG_SIZE (MODE, TYPE, NAMED))) \
858 : 0)
860 /* This indicates that an argument is to be passed with an invisible reference
861 (i.e., a pointer to the object is passed).
863 On the 29k, we do this if it must be passed on the stack. */
865 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
866 (MUST_PASS_IN_STACK (MODE, TYPE))
868 /* Specify the padding direction of arguments.
870 On the 29k, we must pad upwards in order to be able to pass args in
871 registers. */
873 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
875 /* For an arg passed partly in registers and partly in memory,
876 this is the number of registers used.
877 For args passed entirely in registers or entirely in memory, zero. */
879 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
880 ((CUM) < 16 && 16 < (CUM) + A29K_ARG_SIZE (MODE, TYPE, NAMED) && (NAMED) \
881 ? 16 - (CUM) : 0)
883 /* Perform any needed actions needed for a function that is receiving a
884 variable number of arguments.
886 CUM is as above.
888 MODE and TYPE are the mode and type of the current parameter.
890 PRETEND_SIZE is a variable that should be set to the amount of stack
891 that must be pushed by the prolog to pretend that our caller pushed
894 Normally, this macro will push all remaining incoming registers on the
895 stack and set PRETEND_SIZE to the length of the registers pushed. */
897 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
898 { if ((CUM) < 16) \
900 int first_reg_offset = (CUM); \
902 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
903 first_reg_offset += A29K_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
905 if (first_reg_offset > 16) \
906 first_reg_offset = 16; \
908 if (! (NO_RTL) && first_reg_offset != 16) \
909 move_block_from_reg \
910 (R_AR (0) + first_reg_offset, \
911 gen_rtx_MEM (BLKmode, virtual_incoming_args_rtx), \
912 16 - first_reg_offset, (16 - first_reg_offset) * UNITS_PER_WORD); \
913 PRETEND_SIZE = (16 - first_reg_offset) * UNITS_PER_WORD; \
917 /* Define the information needed to generate branch and scc insns. This is
918 stored from the compare operation. Note that we can't use "rtx" here
919 since it hasn't been defined! */
921 extern struct rtx_def *a29k_compare_op0, *a29k_compare_op1;
922 extern int a29k_compare_fp_p;
924 /* This macro produces the initial definition of a function name.
926 For the 29k, we need the prolog to contain one or two words prior to
927 the declaration of the function name. So just store away the name and
928 write it as part of the prolog. This also computes the register names,
929 which can't be done until after register allocation, but must be done
930 before final_start_function is called. */
932 extern const char *a29k_function_name;
934 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
935 a29k_function_name = NAME; \
936 a29k_compute_reg_names ();
938 /* Output assembler code to FILE to increment profiler label # LABELNO
939 for profiling a function entry. */
941 #define FUNCTION_PROFILER(FILE, LABELNO)
943 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
944 the stack pointer does not matter. The value is tested only in
945 functions that have frame pointers.
946 No definition is equivalent to always zero. */
948 #define EXIT_IGNORE_STACK 1
950 /* Define the number of delay slots needed for the function epilogue.
952 On the 29k, we need a slot except when we have a register stack adjustment,
953 have a memory stack adjustment, and have no frame pointer. */
955 #define DELAY_SLOTS_FOR_EPILOGUE \
956 (! (needs_regstack_p () \
957 && (get_frame_size () + current_function_pretend_args_size \
958 + current_function_outgoing_args_size) != 0 \
959 && ! frame_pointer_needed))
961 /* Define whether INSN can be placed in delay slot N for the epilogue.
963 On the 29k, we must be able to place it in a delay slot, it must
964 not use sp if the frame pointer cannot be eliminated, and it cannot
965 use local regs if we need to push the register stack.
966 If this is a SET with a memory as source, it might load from
967 a stack slot, unless the address is constant. */
969 #define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
970 (get_attr_in_delay_slot (INSN) == IN_DELAY_SLOT_YES \
971 && ! (frame_pointer_needed \
972 && reg_mentioned_p (stack_pointer_rtx, PATTERN (INSN))) \
973 && ! (needs_regstack_p () && uses_local_reg_p (PATTERN (INSN))) \
974 && (GET_CODE (PATTERN (INSN)) != SET \
975 || GET_CODE (SET_SRC (PATTERN (INSN))) != MEM \
976 || ! rtx_varies_p (XEXP (SET_SRC (PATTERN (INSN)), 0), 0)))
978 /* Output assembler code for a block containing the constant parts
979 of a trampoline, leaving space for the variable parts.
981 The trampoline should set the static chain pointer to value placed
982 into the trampoline and should branch to the specified routine. We
983 use gr121 (tav) as a temporary. */
985 #define TRAMPOLINE_TEMPLATE(FILE) \
987 fprintf (FILE, "\tconst %s,0\n", reg_names[R_TAV]); \
988 fprintf (FILE, "\tconsth %s,0\n", reg_names[R_TAV]); \
989 fprintf (FILE, "\tconst %s,0\n", reg_names[R_SLP]); \
990 fprintf (FILE, "\tjmpi %s\n", reg_names[R_TAV]); \
991 fprintf (FILE, "\tconsth %s,0\n", reg_names[R_SLP]); \
994 /* Length in units of the trampoline for entering a nested function. */
996 #define TRAMPOLINE_SIZE 20
998 /* Emit RTL insns to initialize the variable parts of a trampoline.
999 FNADDR is an RTX for the address of the function's pure code.
1000 CXT is an RTX for the static chain value for the function.
1002 We do this on the 29k by writing the bytes of the addresses into the
1003 trampoline one byte at a time. */
1005 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1007 INITIALIZE_TRAMPOLINE_VALUE (TRAMP, FNADDR, 0, 4); \
1008 INITIALIZE_TRAMPOLINE_VALUE (TRAMP, CXT, 8, 16); \
1011 /* Define a sub-macro to initialize one value into the trampoline.
1012 We specify the offsets of the CONST and CONSTH instructions, respectively
1013 and copy the value a byte at a time into these instructions. */
1015 #define INITIALIZE_TRAMPOLINE_VALUE(TRAMP, VALUE, CONST, CONSTH) \
1017 rtx _addr, _temp; \
1018 rtx _val = force_reg (SImode, VALUE); \
1020 _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 3)); \
1021 emit_move_insn (gen_rtx_MEM (QImode, _addr), \
1022 gen_lowpart (QImode, _val)); \
1024 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
1025 build_int_2 (8, 0), 0, 1); \
1026 _addr = memory_address (QImode, plus_constant (TRAMP, (CONST) + 1)); \
1027 emit_move_insn (gen_rtx_MEM (QImode, _addr), \
1028 gen_lowpart (QImode, _temp)); \
1030 _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \
1031 build_int_2 (8, 0), _temp, 1); \
1032 _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 3)); \
1033 emit_move_insn (gen_rtx_MEM (QImode, _addr), \
1034 gen_lowpart (QImode, _temp)); \
1036 _temp = expand_shift (RSHIFT_EXPR, SImode, _temp, \
1037 build_int_2 (8, 0), _temp, 1); \
1038 _addr = memory_address (QImode, plus_constant (TRAMP, (CONSTH) + 1)); \
1039 emit_move_insn (gen_rtx_MEM (QImode, _addr), \
1040 gen_lowpart (QImode, _temp)); \
1043 /* Addressing modes, and classification of registers for them. */
1045 /* #define HAVE_POST_INCREMENT 0 */
1046 /* #define HAVE_POST_DECREMENT 0 */
1048 /* #define HAVE_PRE_DECREMENT 0 */
1049 /* #define HAVE_PRE_INCREMENT 0 */
1051 /* Macros to check register numbers against specific register classes. */
1053 /* These assume that REGNO is a hard or pseudo reg number.
1054 They give nonzero only if REGNO is a hard reg of the suitable class
1055 or a pseudo reg currently allocated to a suitable hard reg.
1056 Since they use reg_renumber, they are safe only once reg_renumber
1057 has been allocated, which happens in local-alloc.c. */
1059 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1060 #define REGNO_OK_FOR_BASE_P(REGNO) 1
1062 /* Given the value returned from get_frame_size, compute the actual size
1063 of the frame we will allocate. We include the pretend and outgoing
1064 arg sizes and round to a doubleword. */
1066 #define ACTUAL_FRAME_SIZE(SIZE) \
1067 (((SIZE) + current_function_pretend_args_size \
1068 + current_function_outgoing_args_size + 7) & ~7)
1070 /* Define the initial offset between the frame and stack pointer. */
1072 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1073 (DEPTH) = ACTUAL_FRAME_SIZE (get_frame_size ())
1075 /* Maximum number of registers that can appear in a valid memory address. */
1076 #define MAX_REGS_PER_ADDRESS 1
1078 /* Recognize any constant value that is a valid address. */
1080 #define CONSTANT_ADDRESS_P(X) \
1081 (GET_CODE (X) == CONST_INT && (unsigned) INTVAL (X) < 0x100)
1083 /* Include all constant integers and constant doubles */
1084 #define LEGITIMATE_CONSTANT_P(X) 1
1086 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1087 and check its validity for a certain class.
1088 We have two alternate definitions for each of them.
1089 The usual definition accepts all pseudo regs; the other rejects
1090 them unless they have been allocated suitable hard regs.
1091 The symbol REG_OK_STRICT causes the latter definition to be used.
1093 Most source files want to accept pseudo regs in the hope that
1094 they will get allocated to the class that the insn wants them to be in.
1095 Source files for reload pass need to be strict.
1096 After reload, it makes no difference, since pseudo regs have
1097 been eliminated by then. */
1099 #ifndef REG_OK_STRICT
1101 /* Nonzero if X is a hard reg that can be used as an index
1102 or if it is a pseudo reg. */
1103 #define REG_OK_FOR_INDEX_P(X) 0
1104 /* Nonzero if X is a hard reg that can be used as a base reg
1105 or if it is a pseudo reg. */
1106 #define REG_OK_FOR_BASE_P(X) 1
1108 #else
1110 /* Nonzero if X is a hard reg that can be used as an index. */
1111 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1112 /* Nonzero if X is a hard reg that can be used as a base reg. */
1113 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1115 #endif
1117 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1118 that is a valid memory address for an instruction.
1119 The MODE argument is the machine mode for the MEM expression
1120 that wants to use this address.
1122 On the 29k, a legitimate address is a register and so is a
1123 constant of less than 256. */
1125 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1126 { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1127 goto ADDR; \
1128 if (GET_CODE (X) == CONST_INT \
1129 && (unsigned) INTVAL (X) < 0x100) \
1130 goto ADDR; \
1133 /* Try machine-dependent ways of modifying an illegitimate address
1134 to be legitimate. If we find one, return the new, valid address.
1135 This macro is used in only one place: `memory_address' in explow.c.
1137 OLDX is the address as it was before break_out_memory_refs was called.
1138 In some cases it is useful to look at this to decide what needs to be done.
1140 MODE and WIN are passed so that this macro can use
1141 GO_IF_LEGITIMATE_ADDRESS.
1143 It is always safe for this macro to do nothing. It exists to recognize
1144 opportunities to optimize the output.
1146 For the 29k, we need not do anything. However, if we don't,
1147 `memory_address' will try lots of things to get a valid address, most of
1148 which will result in dead code and extra pseudos. So we make the address
1149 valid here.
1151 This is easy: The only valid addresses are an offset from a register
1152 and we know the address isn't valid. So just call either `force_operand'
1153 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1155 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1156 { if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1157 X = XEXP (x, 0); \
1158 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1159 X = force_operand (X, 0); \
1160 else \
1161 X = force_reg (Pmode, X); \
1162 goto WIN; \
1165 /* Go to LABEL if ADDR (a legitimate address expression)
1166 has an effect that depends on the machine mode it is used for.
1167 On the 29k this is never true. */
1169 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1171 /* Compute the cost of an address. For the 29k, all valid addresses are
1172 the same cost. */
1174 #define ADDRESS_COST(X) 0
1176 /* Define this if some processing needs to be done immediately before
1177 emitting code for an insn. */
1179 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1181 /* Specify the machine mode that this machine uses
1182 for the index in the tablejump instruction. */
1183 #define CASE_VECTOR_MODE SImode
1185 /* Define as C expression which evaluates to nonzero if the tablejump
1186 instruction expects the table to contain offsets from the address of the
1187 table.
1188 Do not define this if the table should contain absolute addresses. */
1189 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1191 /* Specify the tree operation to be used to convert reals to integers. */
1192 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1194 /* This is the kind of divide that is easiest to do in the general case. */
1195 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1197 /* Define this as 1 if `char' should by default be signed; else as 0. */
1198 #define DEFAULT_SIGNED_CHAR 0
1200 /* This flag, if defined, says the same insns that convert to a signed fixnum
1201 also convert validly to an unsigned one.
1203 We actually lie a bit here as overflow conditions are different. But
1204 they aren't being checked anyway. */
1206 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1208 /* Max number of bytes we can move to of from memory
1209 in one reasonably fast instruction.
1211 For the 29k, we will define movti, so put this at 4 words. */
1212 #define MOVE_MAX 16
1214 /* Largest number of bytes of an object that can be placed in a register.
1215 On the 29k we have plenty of registers, so use TImode. */
1216 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1218 /* Nonzero if access to memory by bytes is no faster than for words.
1219 Also non-zero if doing byte operations (specifically shifts) in registers
1220 is undesirable.
1222 On the 29k, large masks are expensive, so we want to use bytes to
1223 manipulate fields. */
1224 #define SLOW_BYTE_ACCESS 0
1226 /* Define if operations between registers always perform the operation
1227 on the full register even if a narrower mode is specified. */
1228 #define WORD_REGISTER_OPERATIONS
1230 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1231 will either zero-extend or sign-extend. The value of this macro should
1232 be the code that says which one of the two operations is implicitly
1233 done, NIL if none. */
1234 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1236 /* Define if the object format being used is COFF or a superset. */
1237 #define OBJECT_FORMAT_COFF
1239 /* This uses COFF, so it wants SDB format. */
1240 #define SDB_DEBUGGING_INFO
1242 /* Define this to be the delimiter between SDB sub-sections. The default
1243 is ";". */
1244 #define SDB_DELIM "\n"
1246 /* Do not break .stabs pseudos into continuations. */
1247 #define DBX_CONTIN_LENGTH 0
1249 /* Don't try to use the `x' type-cross-reference character in DBX data.
1250 Also has the consequence of putting each struct, union or enum
1251 into a separate .stabs, containing only cross-refs to the others. */
1252 #define DBX_NO_XREFS
1254 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1255 is done just by pretending it is already truncated. */
1256 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1258 /* We assume that the store-condition-codes instructions store 0 for false
1259 and some other value for true. This is the value stored for true, which
1260 is just the sign bit. */
1262 #define STORE_FLAG_VALUE (-2147483647 - 1)
1264 /* Specify the machine mode that pointers have.
1265 After generation of rtl, the compiler makes no further distinction
1266 between pointers and any other objects of this machine mode. */
1267 #define Pmode SImode
1269 /* Mode of a function address in a call instruction (for indexing purposes).
1271 Doesn't matter on 29k. */
1272 #define FUNCTION_MODE SImode
1274 /* Define this if addresses of constant functions
1275 shouldn't be put through pseudo regs where they can be cse'd.
1276 Desirable on machines where ordinary constants are expensive
1277 but a CALL with constant address is cheap. */
1278 #define NO_FUNCTION_CSE
1280 /* Define this to be nonzero if shift instructions ignore all but the low-order
1281 few bits. */
1282 #define SHIFT_COUNT_TRUNCATED 1
1284 /* Compute the cost of computing a constant rtl expression RTX
1285 whose rtx-code is CODE. The body of this macro is a portion
1286 of a switch statement. If the code is computed here,
1287 return it with a return statement. Otherwise, break from the switch.
1289 We only care about the cost if it is valid in an insn. The only
1290 constants that cause an insn to generate more than one machine
1291 instruction are those involving floating-point or address. So
1292 only these need be expensive. */
1294 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1295 case CONST_INT: \
1296 return 0; \
1297 case CONST: \
1298 case LABEL_REF: \
1299 case SYMBOL_REF: \
1300 return 6; \
1301 case CONST_DOUBLE: \
1302 return GET_MODE (RTX) == SFmode ? 6 : 8;
1304 /* Provide the costs of a rtl expression. This is in the body of a
1305 switch on CODE.
1307 All MEMs cost the same if they are valid. This is used to ensure
1308 that (mem (symbol_ref ...)) is placed into a CALL when valid.
1310 The multiply cost depends on whether this is a 29050 or not. */
1312 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1313 case MULT: \
1314 return TARGET_29050 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (40); \
1315 case DIV: \
1316 case UDIV: \
1317 case MOD: \
1318 case UMOD: \
1319 return COSTS_N_INSNS (50); \
1320 case MEM: \
1321 return COSTS_N_INSNS (2);
1323 /* Control the assembler format that we output. */
1325 /* Output at beginning of assembler file. */
1327 #define ASM_FILE_START(FILE) \
1328 { char *p, *after_dir = main_input_filename; \
1329 if (TARGET_29050) \
1330 fprintf (FILE, "\t.cputype 29050\n"); \
1331 for (p = main_input_filename; *p; p++) \
1332 if (*p == '/') \
1333 after_dir = p + 1; \
1334 fprintf (FILE, "\t.file "); \
1335 output_quoted_string (FILE, after_dir); \
1336 fprintf (FILE, "\n"); \
1337 fprintf (FILE, "\t.sect .lit,lit\n"); }
1339 /* Output to assembler file text saying following lines
1340 may contain character constants, extra white space, comments, etc. */
1342 #define ASM_APP_ON ""
1344 /* Output to assembler file text saying following lines
1345 no longer contain unusual constructs. */
1347 #define ASM_APP_OFF ""
1349 /* The next few macros don't have tabs on most machines, but
1350 at least one 29K assembler wants them. */
1352 /* Output before instructions. */
1354 #define TEXT_SECTION_ASM_OP "\t.text"
1356 /* Output before read-only data. */
1358 #define READONLY_DATA_SECTION_ASM_OP "\t.use .lit"
1360 /* Output before writable data. */
1362 #define DATA_SECTION_ASM_OP "\t.data"
1364 /* Define an extra section for read-only data, a routine to enter it, and
1365 indicate that it is for read-only data. */
1367 #define EXTRA_SECTIONS readonly_data
1369 #define EXTRA_SECTION_FUNCTIONS \
1370 void \
1371 literal_section () \
1373 if (in_section != readonly_data) \
1375 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1376 in_section = readonly_data; \
1380 #define READONLY_DATA_SECTION literal_section
1382 /* If we are referencing a function that is static or is known to be
1383 in this file, make the SYMBOL_REF special. We can use this to indicate
1384 that we can branch to this function without emitting a no-op after the
1385 call. */
1387 #define ENCODE_SECTION_INFO(DECL) \
1388 if (TREE_CODE (DECL) == FUNCTION_DECL \
1389 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1390 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1392 /* How to refer to registers in assembler output.
1393 This sequence is indexed by compiler's hard-register-number (see above). */
1395 #define REGISTER_NAMES \
1396 {"gr96", "gr97", "gr98", "gr99", "gr100", "gr101", "gr102", "gr103", "gr104", \
1397 "gr105", "gr106", "gr107", "gr108", "gr109", "gr110", "gr111", "gr112", \
1398 "gr113", "gr114", "gr115", "gr116", "gr117", "gr118", "gr119", "gr120", \
1399 "gr121", "gr122", "gr123", "gr124", "gr125", "gr126", "gr127", \
1400 "lr0", "lr1", "lr2", "lr3", "lr4", "lr5", "lr6", "lr7", "lr8", "lr9", \
1401 "lr10", "lr11", "lr12", "lr13", "lr14", "lr15", "lr16", "lr17", "lr18", \
1402 "lr19", "lr20", "lr21", "lr22", "lr23", "lr24", "lr25", "lr26", "lr27", \
1403 "lr28", "lr29", "lr30", "lr31", "lr32", "lr33", "lr34", "lr35", "lr36", \
1404 "lr37", "lr38", "lr39", "lr40", "lr41", "lr42", "lr43", "lr44", "lr45", \
1405 "lr46", "lr47", "lr48", "lr49", "lr50", "lr51", "lr52", "lr53", "lr54", \
1406 "lr55", "lr56", "lr57", "lr58", "lr59", "lr60", "lr61", "lr62", "lr63", \
1407 "lr64", "lr65", "lr66", "lr67", "lr68", "lr69", "lr70", "lr71", "lr72", \
1408 "lr73", "lr74", "lr75", "lr76", "lr77", "lr78", "lr79", "lr80", "lr81", \
1409 "lr82", "lr83", "lr84", "lr85", "lr86", "lr87", "lr88", "lr89", "lr90", \
1410 "lr91", "lr92", "lr93", "lr94", "lr95", "lr96", "lr97", "lr98", "lr99", \
1411 "lr100", "lr101", "lr102", "lr103", "lr104", "lr105", "lr106", "lr107", \
1412 "lr108", "lr109", "lr110", "lr111", "lr112", "lr113", "lr114", "lr115", \
1413 "lr116", "lr117", "lr118", "lr119", "lr120", "lr121", "lr122", "lr123", \
1414 "lr124", "lr125", "lr126", "lr127", \
1415 "AI0", "AI1", "AI2", "AI3", "AI4", "AI5", "AI6", "AI7", "AI8", "AI9", \
1416 "AI10", "AI11", "AI12", "AI13", "AI14", "AI15", "FP", \
1417 "bp", "fc", "cr", "q", \
1418 "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr", \
1419 "pc0", "pc1", "pc2", "mmu", "lru", "fpe", "int", "fps", "exo", \
1420 "0", "1", "2", "3", \
1421 "gr64", "gr65", "gr66", "gr67", "gr68", "gr69", "gr70", "gr71", \
1422 "gr72", "gr73", "gr74", "gr75", "gr76", "gr77", "gr78", "gr79", \
1423 "gr80", "gr81", "gr82", "gr83", "gr84", "gr85", "gr86", "gr87", \
1424 "gr88", "gr89", "gr90", "gr91", "gr92", "gr93", "gr94", "gr95" }
1426 /* How to renumber registers for dbx and gdb. */
1428 extern int a29k_debug_reg_map[];
1429 #define DBX_REGISTER_NUMBER(REGNO) a29k_debug_reg_map[REGNO]
1431 /* This how to write an assembler directive to FILE to switch to
1432 section NAME for DECL. */
1434 #define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \
1435 fprintf (FILE, "\t.sect %s, bss\n\t.use %s\n", NAME, NAME)
1437 /* This is how to output the definition of a user-level label named NAME,
1438 such as the label on a static function or variable NAME. */
1440 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1441 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1443 /* This is how to output a command to make the user-level label named NAME
1444 defined for reference from other files. */
1446 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1447 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1449 /* The prefix to add to user-visible assembler symbols. */
1451 #undef USER_LABEL_PREFIX
1452 #define USER_LABEL_PREFIX "_"
1454 /* This is how to output an internal numbered label where
1455 PREFIX is the class of label and NUM is the number within the class. */
1457 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1458 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1460 /* This is how to output a label for a jump table. Arguments are the same as
1461 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1462 passed. */
1464 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1465 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1467 /* This is how to store into the string LABEL
1468 the symbol_ref name of an internal numbered label where
1469 PREFIX is the class of label and NUM is the number within the class.
1470 This is suitable for output with `assemble_name'. */
1472 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1473 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1475 /* This is how to output an assembler line defining a `double' constant. */
1477 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1478 fprintf (FILE, "\t.double %.20e\n", (VALUE))
1480 /* This is how to output an assembler line defining a `float' constant. */
1482 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1483 fprintf (FILE, "\t.float %.20e\n", (VALUE))
1485 /* This is how to output an assembler line defining an `int' constant. */
1487 #define ASM_OUTPUT_INT(FILE,VALUE) \
1488 ( fprintf (FILE, "\t.word "), \
1489 output_addr_const (FILE, (VALUE)), \
1490 fprintf (FILE, "\n"))
1492 /* Likewise for `char' and `short' constants. */
1494 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1495 ( fprintf (FILE, "\t.hword "), \
1496 output_addr_const (FILE, (VALUE)), \
1497 fprintf (FILE, "\n"))
1499 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1500 ( fprintf (FILE, "\t.byte "), \
1501 output_addr_const (FILE, (VALUE)), \
1502 fprintf (FILE, "\n"))
1504 /* This is how to output an insn to push a register on the stack.
1505 It need not be very fast code. */
1507 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1508 fprintf (FILE, "\tsub %s,%s,4\n\tstore 0,0,%s,%s\n", \
1509 reg_names[R_MSP], reg_names[R_MSP], reg_names[REGNO], \
1510 reg_names[R_MSP]);
1512 /* This is how to output an insn to pop a register from the stack.
1513 It need not be very fast code. */
1515 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1516 fprintf (FILE, "\tload 0,0,%s,%s\n\tadd %s,%s,4\n", \
1517 reg_names[REGNO], reg_names[R_MSP], reg_names[R_MSP], \
1518 reg_names[R_MSP]);
1520 /* This is how to output an assembler line for a numeric constant byte. */
1522 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1523 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1525 /* This is how to output an element of a case-vector that is absolute. */
1527 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1528 fprintf (FILE, "\t.word L%d\n", VALUE)
1530 /* This is how to output an element of a case-vector that is relative.
1531 Don't define this if it is not supported. */
1533 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
1535 /* This is how to output an assembler line
1536 that says to advance the location counter
1537 to a multiple of 2**LOG bytes. */
1539 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1540 if ((LOG) != 0) \
1541 fprintf (FILE, "\t.align %d\n", 1 << (LOG))
1543 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1544 fprintf (FILE, "\t.block %d\n", (SIZE))
1546 /* This says how to output an assembler line
1547 to define a global common symbol. */
1549 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1550 ( fputs ("\t.comm ", (FILE)), \
1551 assemble_name ((FILE), (NAME)), \
1552 fprintf ((FILE), ",%d\n", (SIZE)))
1554 /* This says how to output an assembler line
1555 to define a local common symbol. */
1557 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1558 ( fputs ("\t.lcomm ", (FILE)), \
1559 assemble_name ((FILE), (NAME)), \
1560 fprintf ((FILE), ",%d\n", (SIZE)))
1562 /* Store in OUTPUT a string (made with alloca) containing
1563 an assembler-name for a local static variable named NAME.
1564 LABELNO is an integer which is different for each call. */
1566 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1567 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1568 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1570 /* Define the parentheses used to group arithmetic operations
1571 in assembler code. */
1573 #define ASM_OPEN_PAREN "("
1574 #define ASM_CLOSE_PAREN ")"
1576 /* Print operand X (an rtx) in assembler syntax to file FILE.
1577 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1578 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1580 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1582 /* Determine which codes are valid without a following integer. These must
1583 not be alphabetic.
1585 We support `#' which is null if a delay slot exists, otherwise
1586 "\n\tnop" and `*' which prints the register name for TPC (gr122). */
1588 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#' || (CODE) == '*')
1590 /* Print a memory address as an operand to reference that memory location. */
1592 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1593 { register rtx addr = ADDR; \
1594 if (!REG_P (addr) \
1595 && ! (GET_CODE (addr) == CONST_INT \
1596 && INTVAL (addr) >= 0 && INTVAL (addr) < 256)) \
1597 abort (); \
1598 output_operand (addr, 0); \
1600 /* Define the codes that are matched by predicates in a29k.c. */
1602 #define PREDICATE_CODES \
1603 {"cint_8_operand", {CONST_INT}}, \
1604 {"cint_16_operand", {CONST_INT}}, \
1605 {"long_const_operand", {CONST_INT, CONST, CONST_DOUBLE, \
1606 LABEL_REF, SYMBOL_REF}}, \
1607 {"const_0_operand", {CONST_INT, ASHIFT}}, \
1608 {"const_8_operand", {CONST_INT, ASHIFT}}, \
1609 {"const_16_operand", {CONST_INT, ASHIFT}}, \
1610 {"const_24_operand", {CONST_INT, ASHIFT}}, \
1611 {"float_const_operand", {CONST_DOUBLE}}, \
1612 {"gpc_reg_operand", {SUBREG, REG}}, \
1613 {"gpc_reg_or_float_constant_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1614 {"gpc_reg_or_integer_constant_operand", {SUBREG, REG, \
1615 CONST_INT, CONST_DOUBLE}}, \
1616 {"gpc_reg_or_immediate_operand", {SUBREG, REG, CONST_INT, \
1617 CONST_DOUBLE, CONST, \
1618 SYMBOL_REF, LABEL_REF}}, \
1619 {"spec_reg_operand", {REG}}, \
1620 {"accum_reg_operand", {REG}}, \
1621 {"srcb_operand", {SUBREG, REG, CONST_INT}}, \
1622 {"cmplsrcb_operand", {SUBREG, REG, CONST_INT}}, \
1623 {"reg_or_immediate_operand", {SUBREG, REG, CONST_INT, CONST, \
1624 CONST_DOUBLE, CONST, SYMBOL_REF, LABEL_REF}}, \
1625 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
1626 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1627 {"add_operand", {SUBREG, REG, CONST_INT}}, \
1628 {"call_operand", {SYMBOL_REF, CONST_INT}}, \
1629 {"in_operand", {SUBREG, MEM, REG, CONST_INT, CONST, SYMBOL_REF, \
1630 LABEL_REF, CONST_DOUBLE}}, \
1631 {"out_operand", {SUBREG, REG, MEM}}, \
1632 {"reload_memory_operand", {SUBREG, REG, MEM}}, \
1633 {"fp_comparison_operator", {EQ, GT, GE}}, \
1634 {"branch_operator", {GE, LT}}, \
1635 {"load_multiple_operation", {PARALLEL}}, \
1636 {"store_multiple_operation", {PARALLEL}}, \
1637 {"epilogue_operand", {CODE_LABEL}},