Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / libstdc++-v3 / include / bits / stl_deque.h
blob27d0304ba041ca31e0545f00000921ccc6d8b3c1
1 // Deque implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1997
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_deque.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _DEQUE_H
62 #define _DEQUE_H 1
64 #include <bits/concept_check.h>
65 #include <bits/stl_iterator_base_types.h>
66 #include <bits/stl_iterator_base_funcs.h>
68 namespace _GLIBCXX_STD
70 /**
71 * @if maint
72 * @brief This function controls the size of memory nodes.
73 * @param size The size of an element.
74 * @return The number (not byte size) of elements per node.
76 * This function started off as a compiler kludge from SGI, but seems to
77 * be a useful wrapper around a repeated constant expression. The '512' is
78 * tuneable (and no other code needs to change), but no investigation has
79 * been done since inheriting the SGI code.
80 * @endif
82 inline size_t
83 __deque_buf_size(size_t __size)
84 { return __size < 512 ? size_t(512 / __size) : size_t(1); }
87 /**
88 * @brief A deque::iterator.
90 * Quite a bit of intelligence here. Much of the functionality of
91 * deque is actually passed off to this class. A deque holds two
92 * of these internally, marking its valid range. Access to
93 * elements is done as offsets of either of those two, relying on
94 * operator overloading in this class.
96 * @if maint
97 * All the functions are op overloads except for _M_set_node.
98 * @endif
100 template<typename _Tp, typename _Ref, typename _Ptr>
101 struct _Deque_iterator
103 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
104 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
106 static size_t _S_buffer_size()
107 { return __deque_buf_size(sizeof(_Tp)); }
109 typedef random_access_iterator_tag iterator_category;
110 typedef _Tp value_type;
111 typedef _Ptr pointer;
112 typedef _Ref reference;
113 typedef size_t size_type;
114 typedef ptrdiff_t difference_type;
115 typedef _Tp** _Map_pointer;
116 typedef _Deque_iterator _Self;
118 _Tp* _M_cur;
119 _Tp* _M_first;
120 _Tp* _M_last;
121 _Map_pointer _M_node;
123 _Deque_iterator(_Tp* __x, _Map_pointer __y)
124 : _M_cur(__x), _M_first(*__y),
125 _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
127 _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
129 _Deque_iterator(const iterator& __x)
130 : _M_cur(__x._M_cur), _M_first(__x._M_first),
131 _M_last(__x._M_last), _M_node(__x._M_node) {}
133 reference
134 operator*() const
135 { return *_M_cur; }
137 pointer
138 operator->() const
139 { return _M_cur; }
141 _Self&
142 operator++()
144 ++_M_cur;
145 if (_M_cur == _M_last)
147 _M_set_node(_M_node + 1);
148 _M_cur = _M_first;
150 return *this;
153 _Self
154 operator++(int)
156 _Self __tmp = *this;
157 ++*this;
158 return __tmp;
161 _Self&
162 operator--()
164 if (_M_cur == _M_first)
166 _M_set_node(_M_node - 1);
167 _M_cur = _M_last;
169 --_M_cur;
170 return *this;
173 _Self
174 operator--(int)
176 _Self __tmp = *this;
177 --*this;
178 return __tmp;
181 _Self&
182 operator+=(difference_type __n)
184 const difference_type __offset = __n + (_M_cur - _M_first);
185 if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
186 _M_cur += __n;
187 else
189 const difference_type __node_offset =
190 __offset > 0 ? __offset / difference_type(_S_buffer_size())
191 : -difference_type((-__offset - 1)
192 / _S_buffer_size()) - 1;
193 _M_set_node(_M_node + __node_offset);
194 _M_cur = _M_first + (__offset - __node_offset
195 * difference_type(_S_buffer_size()));
197 return *this;
200 _Self
201 operator+(difference_type __n) const
203 _Self __tmp = *this;
204 return __tmp += __n;
207 _Self&
208 operator-=(difference_type __n)
209 { return *this += -__n; }
211 _Self
212 operator-(difference_type __n) const
214 _Self __tmp = *this;
215 return __tmp -= __n;
218 reference
219 operator[](difference_type __n) const
220 { return *(*this + __n); }
222 /** @if maint
223 * Prepares to traverse new_node. Sets everything except
224 * _M_cur, which should therefore be set by the caller
225 * immediately afterwards, based on _M_first and _M_last.
226 * @endif
228 void
229 _M_set_node(_Map_pointer __new_node)
231 _M_node = __new_node;
232 _M_first = *__new_node;
233 _M_last = _M_first + difference_type(_S_buffer_size());
237 // Note: we also provide overloads whose operands are of the same type in
238 // order to avoid ambiguous overload resolution when std::rel_ops operators
239 // are in scope (for additional details, see libstdc++/3628)
240 template<typename _Tp, typename _Ref, typename _Ptr>
241 inline bool
242 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
243 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
244 { return __x._M_cur == __y._M_cur; }
246 template<typename _Tp, typename _RefL, typename _PtrL,
247 typename _RefR, typename _PtrR>
248 inline bool
249 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
250 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
251 { return __x._M_cur == __y._M_cur; }
253 template<typename _Tp, typename _Ref, typename _Ptr>
254 inline bool
255 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
256 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
257 { return !(__x == __y); }
259 template<typename _Tp, typename _RefL, typename _PtrL,
260 typename _RefR, typename _PtrR>
261 inline bool
262 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
263 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
264 { return !(__x == __y); }
266 template<typename _Tp, typename _Ref, typename _Ptr>
267 inline bool
268 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
269 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
270 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
271 : (__x._M_node < __y._M_node); }
273 template<typename _Tp, typename _RefL, typename _PtrL,
274 typename _RefR, typename _PtrR>
275 inline bool
276 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
277 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
278 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
279 : (__x._M_node < __y._M_node); }
281 template<typename _Tp, typename _Ref, typename _Ptr>
282 inline bool
283 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
284 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
285 { return __y < __x; }
287 template<typename _Tp, typename _RefL, typename _PtrL,
288 typename _RefR, typename _PtrR>
289 inline bool
290 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
291 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
292 { return __y < __x; }
294 template<typename _Tp, typename _Ref, typename _Ptr>
295 inline bool
296 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
297 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
298 { return !(__y < __x); }
300 template<typename _Tp, typename _RefL, typename _PtrL,
301 typename _RefR, typename _PtrR>
302 inline bool
303 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
304 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
305 { return !(__y < __x); }
307 template<typename _Tp, typename _Ref, typename _Ptr>
308 inline bool
309 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
310 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
311 { return !(__x < __y); }
313 template<typename _Tp, typename _RefL, typename _PtrL,
314 typename _RefR, typename _PtrR>
315 inline bool
316 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
317 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
318 { return !(__x < __y); }
320 // _GLIBCXX_RESOLVE_LIB_DEFECTS
321 // According to the resolution of DR179 not only the various comparison
322 // operators but also operator- must accept mixed iterator/const_iterator
323 // parameters.
324 template<typename _Tp, typename _RefL, typename _PtrL,
325 typename _RefR, typename _PtrR>
326 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
327 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
328 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
330 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
331 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
332 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
333 + (__y._M_last - __y._M_cur);
336 template<typename _Tp, typename _Ref, typename _Ptr>
337 inline _Deque_iterator<_Tp, _Ref, _Ptr>
338 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
339 { return __x + __n; }
342 * @if maint
343 * Deque base class. This class provides the unified face for %deque's
344 * allocation. This class's constructor and destructor allocate and
345 * deallocate (but do not initialize) storage. This makes %exception
346 * safety easier.
348 * Nothing in this class ever constructs or destroys an actual Tp element.
349 * (Deque handles that itself.) Only/All memory management is performed
350 * here.
351 * @endif
353 template<typename _Tp, typename _Alloc>
354 class _Deque_base
356 public:
357 typedef _Alloc allocator_type;
359 allocator_type
360 get_allocator() const
361 { return *static_cast<const _Alloc*>(&this->_M_impl); }
363 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
364 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
366 _Deque_base(const allocator_type& __a, size_t __num_elements)
367 : _M_impl(__a)
368 { _M_initialize_map(__num_elements); }
370 _Deque_base(const allocator_type& __a)
371 : _M_impl(__a)
374 ~_Deque_base();
376 protected:
377 //This struct encapsulates the implementation of the std::deque
378 //standard container and at the same time makes use of the EBO
379 //for empty allocators.
380 struct _Deque_impl
381 : public _Alloc
383 _Tp** _M_map;
384 size_t _M_map_size;
385 iterator _M_start;
386 iterator _M_finish;
388 _Deque_impl(const _Alloc& __a)
389 : _Alloc(__a), _M_map(0), _M_map_size(0), _M_start(), _M_finish()
393 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
394 _Map_alloc_type _M_get_map_allocator() const
395 { return _Map_alloc_type(this->get_allocator()); }
397 _Tp*
398 _M_allocate_node()
399 { return _M_impl._Alloc::allocate(__deque_buf_size(sizeof(_Tp))); }
401 void
402 _M_deallocate_node(_Tp* __p)
403 { _M_impl._Alloc::deallocate(__p, __deque_buf_size(sizeof(_Tp))); }
405 _Tp**
406 _M_allocate_map(size_t __n)
407 { return _M_get_map_allocator().allocate(__n); }
409 void
410 _M_deallocate_map(_Tp** __p, size_t __n)
411 { _M_get_map_allocator().deallocate(__p, __n); }
413 protected:
414 void _M_initialize_map(size_t);
415 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
416 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
417 enum { _S_initial_map_size = 8 };
419 _Deque_impl _M_impl;
422 template<typename _Tp, typename _Alloc>
423 _Deque_base<_Tp, _Alloc>::
424 ~_Deque_base()
426 if (this->_M_impl._M_map)
428 _M_destroy_nodes(this->_M_impl._M_start._M_node,
429 this->_M_impl._M_finish._M_node + 1);
430 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
435 * @if maint
436 * @brief Layout storage.
437 * @param num_elements The count of T's for which to allocate space
438 * at first.
439 * @return Nothing.
441 * The initial underlying memory layout is a bit complicated...
442 * @endif
444 template<typename _Tp, typename _Alloc>
445 void
446 _Deque_base<_Tp, _Alloc>::
447 _M_initialize_map(size_t __num_elements)
449 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
450 + 1);
452 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
453 size_t(__num_nodes + 2));
454 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
456 // For "small" maps (needing less than _M_map_size nodes), allocation
457 // starts in the middle elements and grows outwards. So nstart may be
458 // the beginning of _M_map, but for small maps it may be as far in as
459 // _M_map+3.
461 _Tp** __nstart = (this->_M_impl._M_map
462 + (this->_M_impl._M_map_size - __num_nodes) / 2);
463 _Tp** __nfinish = __nstart + __num_nodes;
466 { _M_create_nodes(__nstart, __nfinish); }
467 catch(...)
469 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
470 this->_M_impl._M_map = 0;
471 this->_M_impl._M_map_size = 0;
472 __throw_exception_again;
475 this->_M_impl._M_start._M_set_node(__nstart);
476 this->_M_impl._M_finish._M_set_node(__nfinish - 1);
477 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
478 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
479 + __num_elements
480 % __deque_buf_size(sizeof(_Tp)));
483 template<typename _Tp, typename _Alloc>
484 void
485 _Deque_base<_Tp, _Alloc>::
486 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
488 _Tp** __cur;
491 for (__cur = __nstart; __cur < __nfinish; ++__cur)
492 *__cur = this->_M_allocate_node();
494 catch(...)
496 _M_destroy_nodes(__nstart, __cur);
497 __throw_exception_again;
501 template<typename _Tp, typename _Alloc>
502 void
503 _Deque_base<_Tp, _Alloc>::
504 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
506 for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
507 _M_deallocate_node(*__n);
511 * @brief A standard container using fixed-size memory allocation and
512 * constant-time manipulation of elements at either end.
514 * @ingroup Containers
515 * @ingroup Sequences
517 * Meets the requirements of a <a href="tables.html#65">container</a>, a
518 * <a href="tables.html#66">reversible container</a>, and a
519 * <a href="tables.html#67">sequence</a>, including the
520 * <a href="tables.html#68">optional sequence requirements</a>.
522 * In previous HP/SGI versions of deque, there was an extra template
523 * parameter so users could control the node size. This extension turned
524 * out to violate the C++ standard (it can be detected using template
525 * template parameters), and it was removed.
527 * @if maint
528 * Here's how a deque<Tp> manages memory. Each deque has 4 members:
530 * - Tp** _M_map
531 * - size_t _M_map_size
532 * - iterator _M_start, _M_finish
534 * map_size is at least 8. %map is an array of map_size
535 * pointers-to-"nodes". (The name %map has nothing to do with the
536 * std::map class, and "nodes" should not be confused with
537 * std::list's usage of "node".)
539 * A "node" has no specific type name as such, but it is referred
540 * to as "node" in this file. It is a simple array-of-Tp. If Tp
541 * is very large, there will be one Tp element per node (i.e., an
542 * "array" of one). For non-huge Tp's, node size is inversely
543 * related to Tp size: the larger the Tp, the fewer Tp's will fit
544 * in a node. The goal here is to keep the total size of a node
545 * relatively small and constant over different Tp's, to improve
546 * allocator efficiency.
548 * Not every pointer in the %map array will point to a node. If
549 * the initial number of elements in the deque is small, the
550 * /middle/ %map pointers will be valid, and the ones at the edges
551 * will be unused. This same situation will arise as the %map
552 * grows: available %map pointers, if any, will be on the ends. As
553 * new nodes are created, only a subset of the %map's pointers need
554 * to be copied "outward".
556 * Class invariants:
557 * - For any nonsingular iterator i:
558 * - i.node points to a member of the %map array. (Yes, you read that
559 * correctly: i.node does not actually point to a node.) The member of
560 * the %map array is what actually points to the node.
561 * - i.first == *(i.node) (This points to the node (first Tp element).)
562 * - i.last == i.first + node_size
563 * - i.cur is a pointer in the range [i.first, i.last). NOTE:
564 * the implication of this is that i.cur is always a dereferenceable
565 * pointer, even if i is a past-the-end iterator.
566 * - Start and Finish are always nonsingular iterators. NOTE: this
567 * means that an empty deque must have one node, a deque with <N
568 * elements (where N is the node buffer size) must have one node, a
569 * deque with N through (2N-1) elements must have two nodes, etc.
570 * - For every node other than start.node and finish.node, every
571 * element in the node is an initialized object. If start.node ==
572 * finish.node, then [start.cur, finish.cur) are initialized
573 * objects, and the elements outside that range are uninitialized
574 * storage. Otherwise, [start.cur, start.last) and [finish.first,
575 * finish.cur) are initialized objects, and [start.first, start.cur)
576 * and [finish.cur, finish.last) are uninitialized storage.
577 * - [%map, %map + map_size) is a valid, non-empty range.
578 * - [start.node, finish.node] is a valid range contained within
579 * [%map, %map + map_size).
580 * - A pointer in the range [%map, %map + map_size) points to an allocated
581 * node if and only if the pointer is in the range
582 * [start.node, finish.node].
584 * Here's the magic: nothing in deque is "aware" of the discontiguous
585 * storage!
587 * The memory setup and layout occurs in the parent, _Base, and the iterator
588 * class is entirely responsible for "leaping" from one node to the next.
589 * All the implementation routines for deque itself work only through the
590 * start and finish iterators. This keeps the routines simple and sane,
591 * and we can use other standard algorithms as well.
592 * @endif
594 template<typename _Tp, typename _Alloc = allocator<_Tp> >
595 class deque : protected _Deque_base<_Tp, _Alloc>
597 // concept requirements
598 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
600 typedef _Deque_base<_Tp, _Alloc> _Base;
602 public:
603 typedef _Tp value_type;
604 typedef typename _Alloc::pointer pointer;
605 typedef typename _Alloc::const_pointer const_pointer;
606 typedef typename _Alloc::reference reference;
607 typedef typename _Alloc::const_reference const_reference;
608 typedef typename _Base::iterator iterator;
609 typedef typename _Base::const_iterator const_iterator;
610 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
611 typedef std::reverse_iterator<iterator> reverse_iterator;
612 typedef size_t size_type;
613 typedef ptrdiff_t difference_type;
614 typedef typename _Base::allocator_type allocator_type;
616 protected:
617 typedef pointer* _Map_pointer;
619 static size_t _S_buffer_size()
620 { return __deque_buf_size(sizeof(_Tp)); }
622 // Functions controlling memory layout, and nothing else.
623 using _Base::_M_initialize_map;
624 using _Base::_M_create_nodes;
625 using _Base::_M_destroy_nodes;
626 using _Base::_M_allocate_node;
627 using _Base::_M_deallocate_node;
628 using _Base::_M_allocate_map;
629 using _Base::_M_deallocate_map;
631 /** @if maint
632 * A total of four data members accumulated down the heirarchy.
633 * May be accessed via _M_impl.*
634 * @endif
636 using _Base::_M_impl;
638 public:
639 // [23.2.1.1] construct/copy/destroy
640 // (assign() and get_allocator() are also listed in this section)
642 * @brief Default constructor creates no elements.
644 explicit
645 deque(const allocator_type& __a = allocator_type())
646 : _Base(__a, 0) {}
649 * @brief Create a %deque with copies of an exemplar element.
650 * @param n The number of elements to initially create.
651 * @param value An element to copy.
653 * This constructor fills the %deque with @a n copies of @a value.
655 deque(size_type __n, const value_type& __value,
656 const allocator_type& __a = allocator_type())
657 : _Base(__a, __n)
658 { _M_fill_initialize(__value); }
661 * @brief Create a %deque with default elements.
662 * @param n The number of elements to initially create.
664 * This constructor fills the %deque with @a n copies of a
665 * default-constructed element.
667 explicit
668 deque(size_type __n)
669 : _Base(allocator_type(), __n)
670 { _M_fill_initialize(value_type()); }
673 * @brief %Deque copy constructor.
674 * @param x A %deque of identical element and allocator types.
676 * The newly-created %deque uses a copy of the allocation object used
677 * by @a x.
679 deque(const deque& __x)
680 : _Base(__x.get_allocator(), __x.size())
681 { std::__uninitialized_copy_a(__x.begin(), __x.end(),
682 this->_M_impl._M_start,
683 this->get_allocator()); }
686 * @brief Builds a %deque from a range.
687 * @param first An input iterator.
688 * @param last An input iterator.
690 * Create a %deque consisting of copies of the elements from [first,
691 * last).
693 * If the iterators are forward, bidirectional, or random-access, then
694 * this will call the elements' copy constructor N times (where N is
695 * distance(first,last)) and do no memory reallocation. But if only
696 * input iterators are used, then this will do at most 2N calls to the
697 * copy constructor, and logN memory reallocations.
699 template<typename _InputIterator>
700 deque(_InputIterator __first, _InputIterator __last,
701 const allocator_type& __a = allocator_type())
702 : _Base(__a)
704 // Check whether it's an integral type. If so, it's not an iterator.
705 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
706 _M_initialize_dispatch(__first, __last, _Integral());
710 * The dtor only erases the elements, and note that if the elements
711 * themselves are pointers, the pointed-to memory is not touched in any
712 * way. Managing the pointer is the user's responsibilty.
714 ~deque()
715 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
716 this->get_allocator()); }
719 * @brief %Deque assignment operator.
720 * @param x A %deque of identical element and allocator types.
722 * All the elements of @a x are copied, but unlike the copy constructor,
723 * the allocator object is not copied.
725 deque&
726 operator=(const deque& __x);
729 * @brief Assigns a given value to a %deque.
730 * @param n Number of elements to be assigned.
731 * @param val Value to be assigned.
733 * This function fills a %deque with @a n copies of the given
734 * value. Note that the assignment completely changes the
735 * %deque and that the resulting %deque's size is the same as
736 * the number of elements assigned. Old data may be lost.
738 void
739 assign(size_type __n, const value_type& __val)
740 { _M_fill_assign(__n, __val); }
743 * @brief Assigns a range to a %deque.
744 * @param first An input iterator.
745 * @param last An input iterator.
747 * This function fills a %deque with copies of the elements in the
748 * range [first,last).
750 * Note that the assignment completely changes the %deque and that the
751 * resulting %deque's size is the same as the number of elements
752 * assigned. Old data may be lost.
754 template<typename _InputIterator>
755 void
756 assign(_InputIterator __first, _InputIterator __last)
758 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
759 _M_assign_dispatch(__first, __last, _Integral());
762 /// Get a copy of the memory allocation object.
763 allocator_type
764 get_allocator() const
765 { return _Base::get_allocator(); }
767 // iterators
769 * Returns a read/write iterator that points to the first element in the
770 * %deque. Iteration is done in ordinary element order.
772 iterator
773 begin()
774 { return this->_M_impl._M_start; }
777 * Returns a read-only (constant) iterator that points to the first
778 * element in the %deque. Iteration is done in ordinary element order.
780 const_iterator
781 begin() const
782 { return this->_M_impl._M_start; }
785 * Returns a read/write iterator that points one past the last
786 * element in the %deque. Iteration is done in ordinary
787 * element order.
789 iterator
790 end()
791 { return this->_M_impl._M_finish; }
794 * Returns a read-only (constant) iterator that points one past
795 * the last element in the %deque. Iteration is done in
796 * ordinary element order.
798 const_iterator
799 end() const
800 { return this->_M_impl._M_finish; }
803 * Returns a read/write reverse iterator that points to the
804 * last element in the %deque. Iteration is done in reverse
805 * element order.
807 reverse_iterator
808 rbegin()
809 { return reverse_iterator(this->_M_impl._M_finish); }
812 * Returns a read-only (constant) reverse iterator that points
813 * to the last element in the %deque. Iteration is done in
814 * reverse element order.
816 const_reverse_iterator
817 rbegin() const
818 { return const_reverse_iterator(this->_M_impl._M_finish); }
821 * Returns a read/write reverse iterator that points to one
822 * before the first element in the %deque. Iteration is done
823 * in reverse element order.
825 reverse_iterator
826 rend() { return reverse_iterator(this->_M_impl._M_start); }
829 * Returns a read-only (constant) reverse iterator that points
830 * to one before the first element in the %deque. Iteration is
831 * done in reverse element order.
833 const_reverse_iterator
834 rend() const
835 { return const_reverse_iterator(this->_M_impl._M_start); }
837 // [23.2.1.2] capacity
838 /** Returns the number of elements in the %deque. */
839 size_type
840 size() const
841 { return this->_M_impl._M_finish - this->_M_impl._M_start; }
843 /** Returns the size() of the largest possible %deque. */
844 size_type
845 max_size() const
846 { return size_type(-1); }
849 * @brief Resizes the %deque to the specified number of elements.
850 * @param new_size Number of elements the %deque should contain.
851 * @param x Data with which new elements should be populated.
853 * This function will %resize the %deque to the specified
854 * number of elements. If the number is smaller than the
855 * %deque's current size the %deque is truncated, otherwise the
856 * %deque is extended and new elements are populated with given
857 * data.
859 void
860 resize(size_type __new_size, const value_type& __x)
862 const size_type __len = size();
863 if (__new_size < __len)
864 erase(this->_M_impl._M_start + __new_size, this->_M_impl._M_finish);
865 else
866 insert(this->_M_impl._M_finish, __new_size - __len, __x);
870 * @brief Resizes the %deque to the specified number of elements.
871 * @param new_size Number of elements the %deque should contain.
873 * This function will resize the %deque to the specified number
874 * of elements. If the number is smaller than the %deque's
875 * current size the %deque is truncated, otherwise the %deque
876 * is extended and new elements are default-constructed.
878 void
879 resize(size_type new_size)
880 { resize(new_size, value_type()); }
883 * Returns true if the %deque is empty. (Thus begin() would
884 * equal end().)
886 bool
887 empty() const
888 { return this->_M_impl._M_finish == this->_M_impl._M_start; }
890 // element access
892 * @brief Subscript access to the data contained in the %deque.
893 * @param n The index of the element for which data should be
894 * accessed.
895 * @return Read/write reference to data.
897 * This operator allows for easy, array-style, data access.
898 * Note that data access with this operator is unchecked and
899 * out_of_range lookups are not defined. (For checked lookups
900 * see at().)
902 reference
903 operator[](size_type __n)
904 { return this->_M_impl._M_start[difference_type(__n)]; }
907 * @brief Subscript access to the data contained in the %deque.
908 * @param n The index of the element for which data should be
909 * accessed.
910 * @return Read-only (constant) reference to data.
912 * This operator allows for easy, array-style, data access.
913 * Note that data access with this operator is unchecked and
914 * out_of_range lookups are not defined. (For checked lookups
915 * see at().)
917 const_reference
918 operator[](size_type __n) const
919 { return this->_M_impl._M_start[difference_type(__n)]; }
921 protected:
922 /// @if maint Safety check used only from at(). @endif
923 void
924 _M_range_check(size_type __n) const
926 if (__n >= this->size())
927 __throw_out_of_range(__N("deque::_M_range_check"));
930 public:
932 * @brief Provides access to the data contained in the %deque.
933 * @param n The index of the element for which data should be
934 * accessed.
935 * @return Read/write reference to data.
936 * @throw std::out_of_range If @a n is an invalid index.
938 * This function provides for safer data access. The parameter
939 * is first checked that it is in the range of the deque. The
940 * function throws out_of_range if the check fails.
942 reference
943 at(size_type __n)
945 _M_range_check(__n);
946 return (*this)[__n];
950 * @brief Provides access to the data contained in the %deque.
951 * @param n The index of the element for which data should be
952 * accessed.
953 * @return Read-only (constant) reference to data.
954 * @throw std::out_of_range If @a n is an invalid index.
956 * This function provides for safer data access. The parameter is first
957 * checked that it is in the range of the deque. The function throws
958 * out_of_range if the check fails.
960 const_reference
961 at(size_type __n) const
963 _M_range_check(__n);
964 return (*this)[__n];
968 * Returns a read/write reference to the data at the first
969 * element of the %deque.
971 reference
972 front()
973 { return *begin(); }
976 * Returns a read-only (constant) reference to the data at the first
977 * element of the %deque.
979 const_reference
980 front() const
981 { return *begin(); }
984 * Returns a read/write reference to the data at the last element of the
985 * %deque.
987 reference
988 back()
990 iterator __tmp = end();
991 --__tmp;
992 return *__tmp;
996 * Returns a read-only (constant) reference to the data at the last
997 * element of the %deque.
999 const_reference
1000 back() const
1002 const_iterator __tmp = end();
1003 --__tmp;
1004 return *__tmp;
1007 // [23.2.1.2] modifiers
1009 * @brief Add data to the front of the %deque.
1010 * @param x Data to be added.
1012 * This is a typical stack operation. The function creates an
1013 * element at the front of the %deque and assigns the given
1014 * data to it. Due to the nature of a %deque this operation
1015 * can be done in constant time.
1017 void
1018 push_front(const value_type& __x)
1020 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1022 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1023 --this->_M_impl._M_start._M_cur;
1025 else
1026 _M_push_front_aux(__x);
1030 * @brief Add data to the end of the %deque.
1031 * @param x Data to be added.
1033 * This is a typical stack operation. The function creates an
1034 * element at the end of the %deque and assigns the given data
1035 * to it. Due to the nature of a %deque this operation can be
1036 * done in constant time.
1038 void
1039 push_back(const value_type& __x)
1041 if (this->_M_impl._M_finish._M_cur
1042 != this->_M_impl._M_finish._M_last - 1)
1044 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1045 ++this->_M_impl._M_finish._M_cur;
1047 else
1048 _M_push_back_aux(__x);
1052 * @brief Removes first element.
1054 * This is a typical stack operation. It shrinks the %deque by one.
1056 * Note that no data is returned, and if the first element's data is
1057 * needed, it should be retrieved before pop_front() is called.
1059 void
1060 pop_front()
1062 if (this->_M_impl._M_start._M_cur
1063 != this->_M_impl._M_start._M_last - 1)
1065 this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1066 ++this->_M_impl._M_start._M_cur;
1068 else
1069 _M_pop_front_aux();
1073 * @brief Removes last element.
1075 * This is a typical stack operation. It shrinks the %deque by one.
1077 * Note that no data is returned, and if the last element's data is
1078 * needed, it should be retrieved before pop_back() is called.
1080 void
1081 pop_back()
1083 if (this->_M_impl._M_finish._M_cur
1084 != this->_M_impl._M_finish._M_first)
1086 --this->_M_impl._M_finish._M_cur;
1087 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1089 else
1090 _M_pop_back_aux();
1094 * @brief Inserts given value into %deque before specified iterator.
1095 * @param position An iterator into the %deque.
1096 * @param x Data to be inserted.
1097 * @return An iterator that points to the inserted data.
1099 * This function will insert a copy of the given value before the
1100 * specified location.
1102 iterator
1103 insert(iterator position, const value_type& __x);
1106 * @brief Inserts a number of copies of given data into the %deque.
1107 * @param position An iterator into the %deque.
1108 * @param n Number of elements to be inserted.
1109 * @param x Data to be inserted.
1111 * This function will insert a specified number of copies of the given
1112 * data before the location specified by @a position.
1114 void
1115 insert(iterator __position, size_type __n, const value_type& __x)
1116 { _M_fill_insert(__position, __n, __x); }
1119 * @brief Inserts a range into the %deque.
1120 * @param position An iterator into the %deque.
1121 * @param first An input iterator.
1122 * @param last An input iterator.
1124 * This function will insert copies of the data in the range
1125 * [first,last) into the %deque before the location specified
1126 * by @a pos. This is known as "range insert."
1128 template<typename _InputIterator>
1129 void
1130 insert(iterator __position, _InputIterator __first,
1131 _InputIterator __last)
1133 // Check whether it's an integral type. If so, it's not an iterator.
1134 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1135 _M_insert_dispatch(__position, __first, __last, _Integral());
1139 * @brief Remove element at given position.
1140 * @param position Iterator pointing to element to be erased.
1141 * @return An iterator pointing to the next element (or end()).
1143 * This function will erase the element at the given position and thus
1144 * shorten the %deque by one.
1146 * The user is cautioned that
1147 * this function only erases the element, and that if the element is
1148 * itself a pointer, the pointed-to memory is not touched in any way.
1149 * Managing the pointer is the user's responsibilty.
1151 iterator
1152 erase(iterator __position);
1155 * @brief Remove a range of elements.
1156 * @param first Iterator pointing to the first element to be erased.
1157 * @param last Iterator pointing to one past the last element to be
1158 * erased.
1159 * @return An iterator pointing to the element pointed to by @a last
1160 * prior to erasing (or end()).
1162 * This function will erase the elements in the range [first,last) and
1163 * shorten the %deque accordingly.
1165 * The user is cautioned that
1166 * this function only erases the elements, and that if the elements
1167 * themselves are pointers, the pointed-to memory is not touched in any
1168 * way. Managing the pointer is the user's responsibilty.
1170 iterator
1171 erase(iterator __first, iterator __last);
1174 * @brief Swaps data with another %deque.
1175 * @param x A %deque of the same element and allocator types.
1177 * This exchanges the elements between two deques in constant time.
1178 * (Four pointers, so it should be quite fast.)
1179 * Note that the global std::swap() function is specialized such that
1180 * std::swap(d1,d2) will feed to this function.
1182 void
1183 swap(deque& __x)
1185 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1186 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1187 std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1188 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1192 * Erases all the elements. Note that this function only erases the
1193 * elements, and that if the elements themselves are pointers, the
1194 * pointed-to memory is not touched in any way. Managing the pointer is
1195 * the user's responsibilty.
1197 void clear();
1199 protected:
1200 // Internal constructor functions follow.
1202 // called by the range constructor to implement [23.1.1]/9
1203 template<typename _Integer>
1204 void
1205 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1207 _M_initialize_map(__n);
1208 _M_fill_initialize(__x);
1211 // called by the range constructor to implement [23.1.1]/9
1212 template<typename _InputIterator>
1213 void
1214 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1215 __false_type)
1217 typedef typename iterator_traits<_InputIterator>::iterator_category
1218 _IterCategory;
1219 _M_range_initialize(__first, __last, _IterCategory());
1222 // called by the second initialize_dispatch above
1223 //@{
1225 * @if maint
1226 * @brief Fills the deque with whatever is in [first,last).
1227 * @param first An input iterator.
1228 * @param last An input iterator.
1229 * @return Nothing.
1231 * If the iterators are actually forward iterators (or better), then the
1232 * memory layout can be done all at once. Else we move forward using
1233 * push_back on each value from the iterator.
1234 * @endif
1236 template<typename _InputIterator>
1237 void
1238 _M_range_initialize(_InputIterator __first, _InputIterator __last,
1239 input_iterator_tag);
1241 // called by the second initialize_dispatch above
1242 template<typename _ForwardIterator>
1243 void
1244 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1245 forward_iterator_tag);
1246 //@}
1249 * @if maint
1250 * @brief Fills the %deque with copies of value.
1251 * @param value Initial value.
1252 * @return Nothing.
1253 * @pre _M_start and _M_finish have already been initialized,
1254 * but none of the %deque's elements have yet been constructed.
1256 * This function is called only when the user provides an explicit size
1257 * (with or without an explicit exemplar value).
1258 * @endif
1260 void
1261 _M_fill_initialize(const value_type& __value);
1263 // Internal assign functions follow. The *_aux functions do the actual
1264 // assignment work for the range versions.
1266 // called by the range assign to implement [23.1.1]/9
1267 template<typename _Integer>
1268 void
1269 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1271 _M_fill_assign(static_cast<size_type>(__n),
1272 static_cast<value_type>(__val));
1275 // called by the range assign to implement [23.1.1]/9
1276 template<typename _InputIterator>
1277 void
1278 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1279 __false_type)
1281 typedef typename iterator_traits<_InputIterator>::iterator_category
1282 _IterCategory;
1283 _M_assign_aux(__first, __last, _IterCategory());
1286 // called by the second assign_dispatch above
1287 template<typename _InputIterator>
1288 void
1289 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1290 input_iterator_tag);
1292 // called by the second assign_dispatch above
1293 template<typename _ForwardIterator>
1294 void
1295 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1296 forward_iterator_tag)
1298 const size_type __len = std::distance(__first, __last);
1299 if (__len > size())
1301 _ForwardIterator __mid = __first;
1302 std::advance(__mid, size());
1303 std::copy(__first, __mid, begin());
1304 insert(end(), __mid, __last);
1306 else
1307 erase(std::copy(__first, __last, begin()), end());
1310 // Called by assign(n,t), and the range assign when it turns out
1311 // to be the same thing.
1312 void
1313 _M_fill_assign(size_type __n, const value_type& __val)
1315 if (__n > size())
1317 std::fill(begin(), end(), __val);
1318 insert(end(), __n - size(), __val);
1320 else
1322 erase(begin() + __n, end());
1323 std::fill(begin(), end(), __val);
1327 //@{
1329 * @if maint
1330 * @brief Helper functions for push_* and pop_*.
1331 * @endif
1333 void _M_push_back_aux(const value_type&);
1334 void _M_push_front_aux(const value_type&);
1335 void _M_pop_back_aux();
1336 void _M_pop_front_aux();
1337 //@}
1339 // Internal insert functions follow. The *_aux functions do the actual
1340 // insertion work when all shortcuts fail.
1342 // called by the range insert to implement [23.1.1]/9
1343 template<typename _Integer>
1344 void
1345 _M_insert_dispatch(iterator __pos,
1346 _Integer __n, _Integer __x, __true_type)
1348 _M_fill_insert(__pos, static_cast<size_type>(__n),
1349 static_cast<value_type>(__x));
1352 // called by the range insert to implement [23.1.1]/9
1353 template<typename _InputIterator>
1354 void
1355 _M_insert_dispatch(iterator __pos,
1356 _InputIterator __first, _InputIterator __last,
1357 __false_type)
1359 typedef typename iterator_traits<_InputIterator>::iterator_category
1360 _IterCategory;
1361 _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1364 // called by the second insert_dispatch above
1365 template<typename _InputIterator>
1366 void
1367 _M_range_insert_aux(iterator __pos, _InputIterator __first,
1368 _InputIterator __last, input_iterator_tag);
1370 // called by the second insert_dispatch above
1371 template<typename _ForwardIterator>
1372 void
1373 _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1374 _ForwardIterator __last, forward_iterator_tag);
1376 // Called by insert(p,n,x), and the range insert when it turns out to be
1377 // the same thing. Can use fill functions in optimal situations,
1378 // otherwise passes off to insert_aux(p,n,x).
1379 void
1380 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1382 // called by insert(p,x)
1383 iterator
1384 _M_insert_aux(iterator __pos, const value_type& __x);
1386 // called by insert(p,n,x) via fill_insert
1387 void
1388 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1390 // called by range_insert_aux for forward iterators
1391 template<typename _ForwardIterator>
1392 void
1393 _M_insert_aux(iterator __pos,
1394 _ForwardIterator __first, _ForwardIterator __last,
1395 size_type __n);
1397 //@{
1399 * @if maint
1400 * @brief Memory-handling helpers for the previous internal insert
1401 * functions.
1402 * @endif
1404 iterator
1405 _M_reserve_elements_at_front(size_type __n)
1407 const size_type __vacancies = this->_M_impl._M_start._M_cur
1408 - this->_M_impl._M_start._M_first;
1409 if (__n > __vacancies)
1410 _M_new_elements_at_front(__n - __vacancies);
1411 return this->_M_impl._M_start - difference_type(__n);
1414 iterator
1415 _M_reserve_elements_at_back(size_type __n)
1417 const size_type __vacancies = (this->_M_impl._M_finish._M_last
1418 - this->_M_impl._M_finish._M_cur) - 1;
1419 if (__n > __vacancies)
1420 _M_new_elements_at_back(__n - __vacancies);
1421 return this->_M_impl._M_finish + difference_type(__n);
1424 void
1425 _M_new_elements_at_front(size_type __new_elements);
1427 void
1428 _M_new_elements_at_back(size_type __new_elements);
1429 //@}
1432 //@{
1434 * @if maint
1435 * @brief Memory-handling helpers for the major %map.
1437 * Makes sure the _M_map has space for new nodes. Does not
1438 * actually add the nodes. Can invalidate _M_map pointers.
1439 * (And consequently, %deque iterators.)
1440 * @endif
1442 void
1443 _M_reserve_map_at_back (size_type __nodes_to_add = 1)
1445 if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1446 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1447 _M_reallocate_map(__nodes_to_add, false);
1450 void
1451 _M_reserve_map_at_front (size_type __nodes_to_add = 1)
1453 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1454 - this->_M_impl._M_map))
1455 _M_reallocate_map(__nodes_to_add, true);
1458 void
1459 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1460 //@}
1465 * @brief Deque equality comparison.
1466 * @param x A %deque.
1467 * @param y A %deque of the same type as @a x.
1468 * @return True iff the size and elements of the deques are equal.
1470 * This is an equivalence relation. It is linear in the size of the
1471 * deques. Deques are considered equivalent if their sizes are equal,
1472 * and if corresponding elements compare equal.
1474 template<typename _Tp, typename _Alloc>
1475 inline bool
1476 operator==(const deque<_Tp, _Alloc>& __x,
1477 const deque<_Tp, _Alloc>& __y)
1478 { return __x.size() == __y.size()
1479 && std::equal(__x.begin(), __x.end(), __y.begin()); }
1482 * @brief Deque ordering relation.
1483 * @param x A %deque.
1484 * @param y A %deque of the same type as @a x.
1485 * @return True iff @a x is lexicographically less than @a y.
1487 * This is a total ordering relation. It is linear in the size of the
1488 * deques. The elements must be comparable with @c <.
1490 * See std::lexicographical_compare() for how the determination is made.
1492 template<typename _Tp, typename _Alloc>
1493 inline bool
1494 operator<(const deque<_Tp, _Alloc>& __x,
1495 const deque<_Tp, _Alloc>& __y)
1496 { return lexicographical_compare(__x.begin(), __x.end(),
1497 __y.begin(), __y.end()); }
1499 /// Based on operator==
1500 template<typename _Tp, typename _Alloc>
1501 inline bool
1502 operator!=(const deque<_Tp, _Alloc>& __x,
1503 const deque<_Tp, _Alloc>& __y)
1504 { return !(__x == __y); }
1506 /// Based on operator<
1507 template<typename _Tp, typename _Alloc>
1508 inline bool
1509 operator>(const deque<_Tp, _Alloc>& __x,
1510 const deque<_Tp, _Alloc>& __y)
1511 { return __y < __x; }
1513 /// Based on operator<
1514 template<typename _Tp, typename _Alloc>
1515 inline bool
1516 operator<=(const deque<_Tp, _Alloc>& __x,
1517 const deque<_Tp, _Alloc>& __y)
1518 { return !(__y < __x); }
1520 /// Based on operator<
1521 template<typename _Tp, typename _Alloc>
1522 inline bool
1523 operator>=(const deque<_Tp, _Alloc>& __x,
1524 const deque<_Tp, _Alloc>& __y)
1525 { return !(__x < __y); }
1527 /// See std::deque::swap().
1528 template<typename _Tp, typename _Alloc>
1529 inline void
1530 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1531 { __x.swap(__y); }
1532 } // namespace std
1534 #endif /* _DEQUE_H */