Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / libgfortran / generated / sum_c8.c
blobec040cbd78c30af38639c75d5d7398f9d94ce886
1 /* Implementation of the SUM intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
37 extern void sum_c8 (gfc_array_c8 *, gfc_array_c8 *, index_type *);
38 export_proto(sum_c8);
40 void
41 sum_c8 (gfc_array_c8 *retarray, gfc_array_c8 *array, index_type *pdim)
43 index_type count[GFC_MAX_DIMENSIONS - 1];
44 index_type extent[GFC_MAX_DIMENSIONS - 1];
45 index_type sstride[GFC_MAX_DIMENSIONS - 1];
46 index_type dstride[GFC_MAX_DIMENSIONS - 1];
47 GFC_COMPLEX_8 *base;
48 GFC_COMPLEX_8 *dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
55 /* Make dim zero based to avoid confusion. */
56 dim = (*pdim) - 1;
57 rank = GFC_DESCRIPTOR_RANK (array) - 1;
58 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
59 if (array->dim[0].stride == 0)
60 array->dim[0].stride = 1;
61 if (retarray->dim[0].stride == 0)
62 retarray->dim[0].stride = 1;
64 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
65 delta = array->dim[dim].stride;
67 for (n = 0; n < dim; n++)
69 sstride[n] = array->dim[n].stride;
70 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
72 for (n = dim; n < rank; n++)
74 sstride[n] = array->dim[n + 1].stride;
75 extent[n] =
76 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
79 if (retarray->data == NULL)
81 for (n = 0; n < rank; n++)
83 retarray->dim[n].lbound = 0;
84 retarray->dim[n].ubound = extent[n]-1;
85 if (n == 0)
86 retarray->dim[n].stride = 1;
87 else
88 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
91 retarray->data
92 = internal_malloc_size (sizeof (GFC_COMPLEX_8)
93 * retarray->dim[rank-1].stride
94 * extent[rank-1]);
95 retarray->base = 0;
98 for (n = 0; n < rank; n++)
100 count[n] = 0;
101 dstride[n] = retarray->dim[n].stride;
102 if (extent[n] <= 0)
103 len = 0;
106 base = array->data;
107 dest = retarray->data;
109 while (base)
111 GFC_COMPLEX_8 *src;
112 GFC_COMPLEX_8 result;
113 src = base;
116 result = 0;
117 if (len <= 0)
118 *dest = 0;
119 else
121 for (n = 0; n < len; n++, src += delta)
124 result += *src;
126 *dest = result;
129 /* Advance to the next element. */
130 count[0]++;
131 base += sstride[0];
132 dest += dstride[0];
133 n = 0;
134 while (count[n] == extent[n])
136 /* When we get to the end of a dimension, reset it and increment
137 the next dimension. */
138 count[n] = 0;
139 /* We could precalculate these products, but this is a less
140 frequently used path so proabably not worth it. */
141 base -= sstride[n] * extent[n];
142 dest -= dstride[n] * extent[n];
143 n++;
144 if (n == rank)
146 /* Break out of the look. */
147 base = NULL;
148 break;
150 else
152 count[n]++;
153 base += sstride[n];
154 dest += dstride[n];
161 extern void msum_c8 (gfc_array_c8 *, gfc_array_c8 *, index_type *,
162 gfc_array_l4 *);
163 export_proto(msum_c8);
165 void
166 msum_c8 (gfc_array_c8 * retarray, gfc_array_c8 * array,
167 index_type *pdim, gfc_array_l4 * mask)
169 index_type count[GFC_MAX_DIMENSIONS - 1];
170 index_type extent[GFC_MAX_DIMENSIONS - 1];
171 index_type sstride[GFC_MAX_DIMENSIONS - 1];
172 index_type dstride[GFC_MAX_DIMENSIONS - 1];
173 index_type mstride[GFC_MAX_DIMENSIONS - 1];
174 GFC_COMPLEX_8 *dest;
175 GFC_COMPLEX_8 *base;
176 GFC_LOGICAL_4 *mbase;
177 int rank;
178 int dim;
179 index_type n;
180 index_type len;
181 index_type delta;
182 index_type mdelta;
184 dim = (*pdim) - 1;
185 rank = GFC_DESCRIPTOR_RANK (array) - 1;
186 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
187 if (array->dim[0].stride == 0)
188 array->dim[0].stride = 1;
189 if (retarray->dim[0].stride == 0)
190 retarray->dim[0].stride = 1;
192 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
193 if (len <= 0)
194 return;
195 delta = array->dim[dim].stride;
196 mdelta = mask->dim[dim].stride;
198 for (n = 0; n < dim; n++)
200 sstride[n] = array->dim[n].stride;
201 mstride[n] = mask->dim[n].stride;
202 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
204 for (n = dim; n < rank; n++)
206 sstride[n] = array->dim[n + 1].stride;
207 mstride[n] = mask->dim[n + 1].stride;
208 extent[n] =
209 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
212 for (n = 0; n < rank; n++)
214 count[n] = 0;
215 dstride[n] = retarray->dim[n].stride;
216 if (extent[n] <= 0)
217 return;
220 dest = retarray->data;
221 base = array->data;
222 mbase = mask->data;
224 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
226 /* This allows the same loop to be used for all logical types. */
227 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
228 for (n = 0; n < rank; n++)
229 mstride[n] <<= 1;
230 mdelta <<= 1;
231 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
234 while (base)
236 GFC_COMPLEX_8 *src;
237 GFC_LOGICAL_4 *msrc;
238 GFC_COMPLEX_8 result;
239 src = base;
240 msrc = mbase;
243 result = 0;
244 if (len <= 0)
245 *dest = 0;
246 else
248 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
251 if (*msrc)
252 result += *src;
254 *dest = result;
257 /* Advance to the next element. */
258 count[0]++;
259 base += sstride[0];
260 mbase += mstride[0];
261 dest += dstride[0];
262 n = 0;
263 while (count[n] == extent[n])
265 /* When we get to the end of a dimension, reset it and increment
266 the next dimension. */
267 count[n] = 0;
268 /* We could precalculate these products, but this is a less
269 frequently used path so proabably not worth it. */
270 base -= sstride[n] * extent[n];
271 mbase -= mstride[n] * extent[n];
272 dest -= dstride[n] * extent[n];
273 n++;
274 if (n == rank)
276 /* Break out of the look. */
277 base = NULL;
278 break;
280 else
282 count[n]++;
283 base += sstride[n];
284 mbase += mstride[n];
285 dest += dstride[n];