Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / libgfortran / generated / minval_r8.c
blob68310d2c6e92ccc08a81b346a1dade4e0e6fc9af
1 /* Implementation of the MINVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include "libgfortran.h"
38 extern void minval_r8 (gfc_array_r8 *, gfc_array_r8 *, index_type *);
39 export_proto(minval_r8);
41 void
42 minval_r8 (gfc_array_r8 *retarray, gfc_array_r8 *array, index_type *pdim)
44 index_type count[GFC_MAX_DIMENSIONS - 1];
45 index_type extent[GFC_MAX_DIMENSIONS - 1];
46 index_type sstride[GFC_MAX_DIMENSIONS - 1];
47 index_type dstride[GFC_MAX_DIMENSIONS - 1];
48 GFC_REAL_8 *base;
49 GFC_REAL_8 *dest;
50 index_type rank;
51 index_type n;
52 index_type len;
53 index_type delta;
54 index_type dim;
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
59 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
60 if (array->dim[0].stride == 0)
61 array->dim[0].stride = 1;
62 if (retarray->dim[0].stride == 0)
63 retarray->dim[0].stride = 1;
65 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
66 delta = array->dim[dim].stride;
68 for (n = 0; n < dim; n++)
70 sstride[n] = array->dim[n].stride;
71 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
73 for (n = dim; n < rank; n++)
75 sstride[n] = array->dim[n + 1].stride;
76 extent[n] =
77 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
80 if (retarray->data == NULL)
82 for (n = 0; n < rank; n++)
84 retarray->dim[n].lbound = 0;
85 retarray->dim[n].ubound = extent[n]-1;
86 if (n == 0)
87 retarray->dim[n].stride = 1;
88 else
89 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
92 retarray->data
93 = internal_malloc_size (sizeof (GFC_REAL_8)
94 * retarray->dim[rank-1].stride
95 * extent[rank-1]);
96 retarray->base = 0;
99 for (n = 0; n < rank; n++)
101 count[n] = 0;
102 dstride[n] = retarray->dim[n].stride;
103 if (extent[n] <= 0)
104 len = 0;
107 base = array->data;
108 dest = retarray->data;
110 while (base)
112 GFC_REAL_8 *src;
113 GFC_REAL_8 result;
114 src = base;
117 result = GFC_REAL_8_HUGE;
118 if (len <= 0)
119 *dest = GFC_REAL_8_HUGE;
120 else
122 for (n = 0; n < len; n++, src += delta)
125 if (*src < result)
126 result = *src;
128 *dest = result;
131 /* Advance to the next element. */
132 count[0]++;
133 base += sstride[0];
134 dest += dstride[0];
135 n = 0;
136 while (count[n] == extent[n])
138 /* When we get to the end of a dimension, reset it and increment
139 the next dimension. */
140 count[n] = 0;
141 /* We could precalculate these products, but this is a less
142 frequently used path so proabably not worth it. */
143 base -= sstride[n] * extent[n];
144 dest -= dstride[n] * extent[n];
145 n++;
146 if (n == rank)
148 /* Break out of the look. */
149 base = NULL;
150 break;
152 else
154 count[n]++;
155 base += sstride[n];
156 dest += dstride[n];
163 extern void mminval_r8 (gfc_array_r8 *, gfc_array_r8 *, index_type *,
164 gfc_array_l4 *);
165 export_proto(mminval_r8);
167 void
168 mminval_r8 (gfc_array_r8 * retarray, gfc_array_r8 * array,
169 index_type *pdim, gfc_array_l4 * mask)
171 index_type count[GFC_MAX_DIMENSIONS - 1];
172 index_type extent[GFC_MAX_DIMENSIONS - 1];
173 index_type sstride[GFC_MAX_DIMENSIONS - 1];
174 index_type dstride[GFC_MAX_DIMENSIONS - 1];
175 index_type mstride[GFC_MAX_DIMENSIONS - 1];
176 GFC_REAL_8 *dest;
177 GFC_REAL_8 *base;
178 GFC_LOGICAL_4 *mbase;
179 int rank;
180 int dim;
181 index_type n;
182 index_type len;
183 index_type delta;
184 index_type mdelta;
186 dim = (*pdim) - 1;
187 rank = GFC_DESCRIPTOR_RANK (array) - 1;
188 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
189 if (array->dim[0].stride == 0)
190 array->dim[0].stride = 1;
191 if (retarray->dim[0].stride == 0)
192 retarray->dim[0].stride = 1;
194 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
195 if (len <= 0)
196 return;
197 delta = array->dim[dim].stride;
198 mdelta = mask->dim[dim].stride;
200 for (n = 0; n < dim; n++)
202 sstride[n] = array->dim[n].stride;
203 mstride[n] = mask->dim[n].stride;
204 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
206 for (n = dim; n < rank; n++)
208 sstride[n] = array->dim[n + 1].stride;
209 mstride[n] = mask->dim[n + 1].stride;
210 extent[n] =
211 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
214 for (n = 0; n < rank; n++)
216 count[n] = 0;
217 dstride[n] = retarray->dim[n].stride;
218 if (extent[n] <= 0)
219 return;
222 dest = retarray->data;
223 base = array->data;
224 mbase = mask->data;
226 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
228 /* This allows the same loop to be used for all logical types. */
229 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
230 for (n = 0; n < rank; n++)
231 mstride[n] <<= 1;
232 mdelta <<= 1;
233 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
236 while (base)
238 GFC_REAL_8 *src;
239 GFC_LOGICAL_4 *msrc;
240 GFC_REAL_8 result;
241 src = base;
242 msrc = mbase;
245 result = GFC_REAL_8_HUGE;
246 if (len <= 0)
247 *dest = GFC_REAL_8_HUGE;
248 else
250 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
253 if (*msrc && *src < result)
254 result = *src;
256 *dest = result;
259 /* Advance to the next element. */
260 count[0]++;
261 base += sstride[0];
262 mbase += mstride[0];
263 dest += dstride[0];
264 n = 0;
265 while (count[n] == extent[n])
267 /* When we get to the end of a dimension, reset it and increment
268 the next dimension. */
269 count[n] = 0;
270 /* We could precalculate these products, but this is a less
271 frequently used path so proabably not worth it. */
272 base -= sstride[n] * extent[n];
273 mbase -= mstride[n] * extent[n];
274 dest -= dstride[n] * extent[n];
275 n++;
276 if (n == rank)
278 /* Break out of the look. */
279 base = NULL;
280 break;
282 else
284 count[n]++;
285 base += sstride[n];
286 mbase += mstride[n];
287 dest += dstride[n];