Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / libgfortran / generated / minloc1_4_r4.c
blobf8d4c14a46929da2852d3eeb176bdc112f8ece29
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
39 extern void minloc1_4_r4 (gfc_array_i4 *, gfc_array_r4 *, index_type *);
40 export_proto(minloc1_4_r4);
42 void
43 minloc1_4_r4 (gfc_array_i4 *retarray, gfc_array_r4 *array, index_type *pdim)
45 index_type count[GFC_MAX_DIMENSIONS - 1];
46 index_type extent[GFC_MAX_DIMENSIONS - 1];
47 index_type sstride[GFC_MAX_DIMENSIONS - 1];
48 index_type dstride[GFC_MAX_DIMENSIONS - 1];
49 GFC_REAL_4 *base;
50 GFC_INTEGER_4 *dest;
51 index_type rank;
52 index_type n;
53 index_type len;
54 index_type delta;
55 index_type dim;
57 /* Make dim zero based to avoid confusion. */
58 dim = (*pdim) - 1;
59 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
61 if (array->dim[0].stride == 0)
62 array->dim[0].stride = 1;
63 if (retarray->dim[0].stride == 0)
64 retarray->dim[0].stride = 1;
66 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
67 delta = array->dim[dim].stride;
69 for (n = 0; n < dim; n++)
71 sstride[n] = array->dim[n].stride;
72 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
74 for (n = dim; n < rank; n++)
76 sstride[n] = array->dim[n + 1].stride;
77 extent[n] =
78 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
81 if (retarray->data == NULL)
83 for (n = 0; n < rank; n++)
85 retarray->dim[n].lbound = 0;
86 retarray->dim[n].ubound = extent[n]-1;
87 if (n == 0)
88 retarray->dim[n].stride = 1;
89 else
90 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
93 retarray->data
94 = internal_malloc_size (sizeof (GFC_INTEGER_4)
95 * retarray->dim[rank-1].stride
96 * extent[rank-1]);
97 retarray->base = 0;
100 for (n = 0; n < rank; n++)
102 count[n] = 0;
103 dstride[n] = retarray->dim[n].stride;
104 if (extent[n] <= 0)
105 len = 0;
108 base = array->data;
109 dest = retarray->data;
111 while (base)
113 GFC_REAL_4 *src;
114 GFC_INTEGER_4 result;
115 src = base;
118 GFC_REAL_4 minval;
119 minval = GFC_REAL_4_HUGE;
120 result = 1;
121 if (len <= 0)
122 *dest = 0;
123 else
125 for (n = 0; n < len; n++, src += delta)
128 if (*src < minval)
130 minval = *src;
131 result = (GFC_INTEGER_4)n + 1;
134 *dest = result;
137 /* Advance to the next element. */
138 count[0]++;
139 base += sstride[0];
140 dest += dstride[0];
141 n = 0;
142 while (count[n] == extent[n])
144 /* When we get to the end of a dimension, reset it and increment
145 the next dimension. */
146 count[n] = 0;
147 /* We could precalculate these products, but this is a less
148 frequently used path so proabably not worth it. */
149 base -= sstride[n] * extent[n];
150 dest -= dstride[n] * extent[n];
151 n++;
152 if (n == rank)
154 /* Break out of the look. */
155 base = NULL;
156 break;
158 else
160 count[n]++;
161 base += sstride[n];
162 dest += dstride[n];
169 extern void mminloc1_4_r4 (gfc_array_i4 *, gfc_array_r4 *, index_type *,
170 gfc_array_l4 *);
171 export_proto(mminloc1_4_r4);
173 void
174 mminloc1_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 * array,
175 index_type *pdim, gfc_array_l4 * mask)
177 index_type count[GFC_MAX_DIMENSIONS - 1];
178 index_type extent[GFC_MAX_DIMENSIONS - 1];
179 index_type sstride[GFC_MAX_DIMENSIONS - 1];
180 index_type dstride[GFC_MAX_DIMENSIONS - 1];
181 index_type mstride[GFC_MAX_DIMENSIONS - 1];
182 GFC_INTEGER_4 *dest;
183 GFC_REAL_4 *base;
184 GFC_LOGICAL_4 *mbase;
185 int rank;
186 int dim;
187 index_type n;
188 index_type len;
189 index_type delta;
190 index_type mdelta;
192 dim = (*pdim) - 1;
193 rank = GFC_DESCRIPTOR_RANK (array) - 1;
194 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
195 if (array->dim[0].stride == 0)
196 array->dim[0].stride = 1;
197 if (retarray->dim[0].stride == 0)
198 retarray->dim[0].stride = 1;
200 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
201 if (len <= 0)
202 return;
203 delta = array->dim[dim].stride;
204 mdelta = mask->dim[dim].stride;
206 for (n = 0; n < dim; n++)
208 sstride[n] = array->dim[n].stride;
209 mstride[n] = mask->dim[n].stride;
210 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
212 for (n = dim; n < rank; n++)
214 sstride[n] = array->dim[n + 1].stride;
215 mstride[n] = mask->dim[n + 1].stride;
216 extent[n] =
217 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
220 for (n = 0; n < rank; n++)
222 count[n] = 0;
223 dstride[n] = retarray->dim[n].stride;
224 if (extent[n] <= 0)
225 return;
228 dest = retarray->data;
229 base = array->data;
230 mbase = mask->data;
232 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
234 /* This allows the same loop to be used for all logical types. */
235 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
236 for (n = 0; n < rank; n++)
237 mstride[n] <<= 1;
238 mdelta <<= 1;
239 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
242 while (base)
244 GFC_REAL_4 *src;
245 GFC_LOGICAL_4 *msrc;
246 GFC_INTEGER_4 result;
247 src = base;
248 msrc = mbase;
251 GFC_REAL_4 minval;
252 minval = GFC_REAL_4_HUGE;
253 result = 1;
254 if (len <= 0)
255 *dest = 0;
256 else
258 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
261 if (*msrc && *src < minval)
263 minval = *src;
264 result = (GFC_INTEGER_4)n + 1;
267 *dest = result;
270 /* Advance to the next element. */
271 count[0]++;
272 base += sstride[0];
273 mbase += mstride[0];
274 dest += dstride[0];
275 n = 0;
276 while (count[n] == extent[n])
278 /* When we get to the end of a dimension, reset it and increment
279 the next dimension. */
280 count[n] = 0;
281 /* We could precalculate these products, but this is a less
282 frequently used path so proabably not worth it. */
283 base -= sstride[n] * extent[n];
284 mbase -= mstride[n] * extent[n];
285 dest -= dstride[n] * extent[n];
286 n++;
287 if (n == rank)
289 /* Break out of the look. */
290 base = NULL;
291 break;
293 else
295 count[n]++;
296 base += sstride[n];
297 mbase += mstride[n];
298 dest += dstride[n];