Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / gcc / loop-unroll.c
blob4c7f6e2efce380ca2115bd97d4bfb48edc4ced56
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36 #include "varray.h"
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
46 What we do:
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
73 /* Information about induction variables to split. */
75 struct iv_to_split
77 rtx insn; /* The insn in that the induction variable occurs. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
88 /* Information about accumulators to expand. */
90 struct var_to_expand
92 rtx insn; /* The insn in that the variable expansion occurs. */
93 rtx reg; /* The accumulator which is expanded. */
94 varray_type var_expansions; /* The copies of the accumulator which is expanded. */
95 enum rtx_code op; /* The type of the accumulation - addition, subtraction
96 or multiplication. */
97 int expansion_count; /* Count the number of expansions generated so far. */
98 int reuse_expansion; /* The expansion we intend to reuse to expand
99 the accumulator. If REUSE_EXPANSION is 0 reuse
100 the original accumulator. Else use
101 var_expansions[REUSE_EXPANSION - 1]. */
104 /* Information about optimization applied in
105 the unrolled loop. */
107 struct opt_info
109 htab_t insns_to_split; /* A hashtable of insns to split. */
110 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
111 to expand. */
112 unsigned first_new_block; /* The first basic block that was
113 duplicated. */
114 basic_block loop_exit; /* The loop exit basic block. */
115 basic_block loop_preheader; /* The loop preheader basic block. */
118 static void decide_unrolling_and_peeling (struct loops *, int);
119 static void peel_loops_completely (struct loops *, int);
120 static void decide_peel_simple (struct loop *, int);
121 static void decide_peel_once_rolling (struct loop *, int);
122 static void decide_peel_completely (struct loop *, int);
123 static void decide_unroll_stupid (struct loop *, int);
124 static void decide_unroll_constant_iterations (struct loop *, int);
125 static void decide_unroll_runtime_iterations (struct loop *, int);
126 static void peel_loop_simple (struct loops *, struct loop *);
127 static void peel_loop_completely (struct loops *, struct loop *);
128 static void unroll_loop_stupid (struct loops *, struct loop *);
129 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
130 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
131 static struct opt_info *analyze_insns_in_loop (struct loop *);
132 static void opt_info_start_duplication (struct opt_info *);
133 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
134 static void free_opt_info (struct opt_info *);
135 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
136 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
137 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
138 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
139 static int insert_var_expansion_initialization (void **, void *);
140 static int combine_var_copies_in_loop_exit (void **, void *);
141 static int release_var_copies (void **, void *);
142 static rtx get_expansion (struct var_to_expand *);
144 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
145 void
146 unroll_and_peel_loops (struct loops *loops, int flags)
148 struct loop *loop, *next;
149 bool check;
151 /* First perform complete loop peeling (it is almost surely a win,
152 and affects parameters for further decision a lot). */
153 peel_loops_completely (loops, flags);
155 /* Now decide rest of unrolling and peeling. */
156 decide_unrolling_and_peeling (loops, flags);
158 loop = loops->tree_root;
159 while (loop->inner)
160 loop = loop->inner;
162 /* Scan the loops, inner ones first. */
163 while (loop != loops->tree_root)
165 if (loop->next)
167 next = loop->next;
168 while (next->inner)
169 next = next->inner;
171 else
172 next = loop->outer;
174 check = true;
175 /* And perform the appropriate transformations. */
176 switch (loop->lpt_decision.decision)
178 case LPT_PEEL_COMPLETELY:
179 /* Already done. */
180 gcc_unreachable ();
181 case LPT_PEEL_SIMPLE:
182 peel_loop_simple (loops, loop);
183 break;
184 case LPT_UNROLL_CONSTANT:
185 unroll_loop_constant_iterations (loops, loop);
186 break;
187 case LPT_UNROLL_RUNTIME:
188 unroll_loop_runtime_iterations (loops, loop);
189 break;
190 case LPT_UNROLL_STUPID:
191 unroll_loop_stupid (loops, loop);
192 break;
193 case LPT_NONE:
194 check = false;
195 break;
196 default:
197 gcc_unreachable ();
199 if (check)
201 #ifdef ENABLE_CHECKING
202 verify_dominators (CDI_DOMINATORS);
203 verify_loop_structure (loops);
204 #endif
206 loop = next;
209 iv_analysis_done ();
212 /* Check whether exit of the LOOP is at the end of loop body. */
214 static bool
215 loop_exit_at_end_p (struct loop *loop)
217 struct niter_desc *desc = get_simple_loop_desc (loop);
218 rtx insn;
220 if (desc->in_edge->dest != loop->latch)
221 return false;
223 /* Check that the latch is empty. */
224 FOR_BB_INSNS (loop->latch, insn)
226 if (INSN_P (insn))
227 return false;
230 return true;
233 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
234 static void
235 peel_loops_completely (struct loops *loops, int flags)
237 struct loop *loop, *next;
239 loop = loops->tree_root;
240 while (loop->inner)
241 loop = loop->inner;
243 while (loop != loops->tree_root)
245 if (loop->next)
247 next = loop->next;
248 while (next->inner)
249 next = next->inner;
251 else
252 next = loop->outer;
254 loop->lpt_decision.decision = LPT_NONE;
256 if (dump_file)
257 fprintf (dump_file,
258 "\n;; *** Considering loop %d for complete peeling ***\n",
259 loop->num);
261 loop->ninsns = num_loop_insns (loop);
263 decide_peel_once_rolling (loop, flags);
264 if (loop->lpt_decision.decision == LPT_NONE)
265 decide_peel_completely (loop, flags);
267 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
269 peel_loop_completely (loops, loop);
270 #ifdef ENABLE_CHECKING
271 verify_dominators (CDI_DOMINATORS);
272 verify_loop_structure (loops);
273 #endif
275 loop = next;
279 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
280 static void
281 decide_unrolling_and_peeling (struct loops *loops, int flags)
283 struct loop *loop = loops->tree_root, *next;
285 while (loop->inner)
286 loop = loop->inner;
288 /* Scan the loops, inner ones first. */
289 while (loop != loops->tree_root)
291 if (loop->next)
293 next = loop->next;
294 while (next->inner)
295 next = next->inner;
297 else
298 next = loop->outer;
300 loop->lpt_decision.decision = LPT_NONE;
302 if (dump_file)
303 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
305 /* Do not peel cold areas. */
306 if (!maybe_hot_bb_p (loop->header))
308 if (dump_file)
309 fprintf (dump_file, ";; Not considering loop, cold area\n");
310 loop = next;
311 continue;
314 /* Can the loop be manipulated? */
315 if (!can_duplicate_loop_p (loop))
317 if (dump_file)
318 fprintf (dump_file,
319 ";; Not considering loop, cannot duplicate\n");
320 loop = next;
321 continue;
324 /* Skip non-innermost loops. */
325 if (loop->inner)
327 if (dump_file)
328 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
329 loop = next;
330 continue;
333 loop->ninsns = num_loop_insns (loop);
334 loop->av_ninsns = average_num_loop_insns (loop);
336 /* Try transformations one by one in decreasing order of
337 priority. */
339 decide_unroll_constant_iterations (loop, flags);
340 if (loop->lpt_decision.decision == LPT_NONE)
341 decide_unroll_runtime_iterations (loop, flags);
342 if (loop->lpt_decision.decision == LPT_NONE)
343 decide_unroll_stupid (loop, flags);
344 if (loop->lpt_decision.decision == LPT_NONE)
345 decide_peel_simple (loop, flags);
347 loop = next;
351 /* Decide whether the LOOP is once rolling and suitable for complete
352 peeling. */
353 static void
354 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
356 struct niter_desc *desc;
358 if (dump_file)
359 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
361 /* Is the loop small enough? */
362 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
364 if (dump_file)
365 fprintf (dump_file, ";; Not considering loop, is too big\n");
366 return;
369 /* Check for simple loops. */
370 desc = get_simple_loop_desc (loop);
372 /* Check number of iterations. */
373 if (!desc->simple_p
374 || desc->assumptions
375 || !desc->const_iter
376 || desc->niter != 0)
378 if (dump_file)
379 fprintf (dump_file,
380 ";; Unable to prove that the loop rolls exactly once\n");
381 return;
384 /* Success. */
385 if (dump_file)
386 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
387 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
390 /* Decide whether the LOOP is suitable for complete peeling. */
391 static void
392 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
394 unsigned npeel;
395 struct niter_desc *desc;
397 if (dump_file)
398 fprintf (dump_file, "\n;; Considering peeling completely\n");
400 /* Skip non-innermost loops. */
401 if (loop->inner)
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
405 return;
408 /* Do not peel cold areas. */
409 if (!maybe_hot_bb_p (loop->header))
411 if (dump_file)
412 fprintf (dump_file, ";; Not considering loop, cold area\n");
413 return;
416 /* Can the loop be manipulated? */
417 if (!can_duplicate_loop_p (loop))
419 if (dump_file)
420 fprintf (dump_file,
421 ";; Not considering loop, cannot duplicate\n");
422 return;
425 /* npeel = number of iterations to peel. */
426 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
427 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
428 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
430 /* Is the loop small enough? */
431 if (!npeel)
433 if (dump_file)
434 fprintf (dump_file, ";; Not considering loop, is too big\n");
435 return;
438 /* Check for simple loops. */
439 desc = get_simple_loop_desc (loop);
441 /* Check number of iterations. */
442 if (!desc->simple_p
443 || desc->assumptions
444 || !desc->const_iter)
446 if (dump_file)
447 fprintf (dump_file,
448 ";; Unable to prove that the loop iterates constant times\n");
449 return;
452 if (desc->niter > npeel - 1)
454 if (dump_file)
456 fprintf (dump_file,
457 ";; Not peeling loop completely, rolls too much (");
458 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
459 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
461 return;
464 /* Success. */
465 if (dump_file)
466 fprintf (dump_file, ";; Decided to peel loop completely\n");
467 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
470 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
471 completely. The transformation done:
473 for (i = 0; i < 4; i++)
474 body;
478 i = 0;
479 body; i++;
480 body; i++;
481 body; i++;
482 body; i++;
484 static void
485 peel_loop_completely (struct loops *loops, struct loop *loop)
487 sbitmap wont_exit;
488 unsigned HOST_WIDE_INT npeel;
489 unsigned n_remove_edges, i;
490 edge *remove_edges, ein;
491 struct niter_desc *desc = get_simple_loop_desc (loop);
492 struct opt_info *opt_info = NULL;
494 npeel = desc->niter;
496 if (npeel)
498 wont_exit = sbitmap_alloc (npeel + 1);
499 sbitmap_ones (wont_exit);
500 RESET_BIT (wont_exit, 0);
501 if (desc->noloop_assumptions)
502 RESET_BIT (wont_exit, 1);
504 remove_edges = xcalloc (npeel, sizeof (edge));
505 n_remove_edges = 0;
507 if (flag_split_ivs_in_unroller)
508 opt_info = analyze_insns_in_loop (loop);
510 opt_info_start_duplication (opt_info);
511 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
512 loops, npeel,
513 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
514 DLTHE_FLAG_UPDATE_FREQ))
515 abort ();
517 free (wont_exit);
519 if (opt_info)
521 apply_opt_in_copies (opt_info, npeel, false, true);
522 free_opt_info (opt_info);
525 /* Remove the exit edges. */
526 for (i = 0; i < n_remove_edges; i++)
527 remove_path (loops, remove_edges[i]);
528 free (remove_edges);
531 ein = desc->in_edge;
532 free_simple_loop_desc (loop);
534 /* Now remove the unreachable part of the last iteration and cancel
535 the loop. */
536 remove_path (loops, ein);
538 if (dump_file)
539 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
542 /* Decide whether to unroll LOOP iterating constant number of times
543 and how much. */
545 static void
546 decide_unroll_constant_iterations (struct loop *loop, int flags)
548 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
549 struct niter_desc *desc;
551 if (!(flags & UAP_UNROLL))
553 /* We were not asked to, just return back silently. */
554 return;
557 if (dump_file)
558 fprintf (dump_file,
559 "\n;; Considering unrolling loop with constant "
560 "number of iterations\n");
562 /* nunroll = total number of copies of the original loop body in
563 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
564 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
565 nunroll_by_av
566 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
567 if (nunroll > nunroll_by_av)
568 nunroll = nunroll_by_av;
569 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
570 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
572 /* Skip big loops. */
573 if (nunroll <= 1)
575 if (dump_file)
576 fprintf (dump_file, ";; Not considering loop, is too big\n");
577 return;
580 /* Check for simple loops. */
581 desc = get_simple_loop_desc (loop);
583 /* Check number of iterations. */
584 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
586 if (dump_file)
587 fprintf (dump_file,
588 ";; Unable to prove that the loop iterates constant times\n");
589 return;
592 /* Check whether the loop rolls enough to consider. */
593 if (desc->niter < 2 * nunroll)
595 if (dump_file)
596 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
597 return;
600 /* Success; now compute number of iterations to unroll. We alter
601 nunroll so that as few as possible copies of loop body are
602 necessary, while still not decreasing the number of unrollings
603 too much (at most by 1). */
604 best_copies = 2 * nunroll + 10;
606 i = 2 * nunroll + 2;
607 if (i - 1 >= desc->niter)
608 i = desc->niter - 2;
610 for (; i >= nunroll - 1; i--)
612 unsigned exit_mod = desc->niter % (i + 1);
614 if (!loop_exit_at_end_p (loop))
615 n_copies = exit_mod + i + 1;
616 else if (exit_mod != (unsigned) i
617 || desc->noloop_assumptions != NULL_RTX)
618 n_copies = exit_mod + i + 2;
619 else
620 n_copies = i + 1;
622 if (n_copies < best_copies)
624 best_copies = n_copies;
625 best_unroll = i;
629 if (dump_file)
630 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
631 best_unroll + 1, best_copies, nunroll);
633 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
634 loop->lpt_decision.times = best_unroll;
636 if (dump_file)
637 fprintf (dump_file,
638 ";; Decided to unroll the constant times rolling loop, %d times.\n",
639 loop->lpt_decision.times);
642 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
643 times. The transformation does this:
645 for (i = 0; i < 102; i++)
646 body;
650 i = 0;
651 body; i++;
652 body; i++;
653 while (i < 102)
655 body; i++;
656 body; i++;
657 body; i++;
658 body; i++;
661 static void
662 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
664 unsigned HOST_WIDE_INT niter;
665 unsigned exit_mod;
666 sbitmap wont_exit;
667 unsigned n_remove_edges, i;
668 edge *remove_edges;
669 unsigned max_unroll = loop->lpt_decision.times;
670 struct niter_desc *desc = get_simple_loop_desc (loop);
671 bool exit_at_end = loop_exit_at_end_p (loop);
672 struct opt_info *opt_info = NULL;
674 niter = desc->niter;
676 /* Should not get here (such loop should be peeled instead). */
677 gcc_assert (niter > max_unroll + 1);
679 exit_mod = niter % (max_unroll + 1);
681 wont_exit = sbitmap_alloc (max_unroll + 1);
682 sbitmap_ones (wont_exit);
684 remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
685 n_remove_edges = 0;
686 if (flag_split_ivs_in_unroller
687 || flag_variable_expansion_in_unroller)
688 opt_info = analyze_insns_in_loop (loop);
690 if (!exit_at_end)
692 /* The exit is not at the end of the loop; leave exit test
693 in the first copy, so that the loops that start with test
694 of exit condition have continuous body after unrolling. */
696 if (dump_file)
697 fprintf (dump_file, ";; Condition on beginning of loop.\n");
699 /* Peel exit_mod iterations. */
700 RESET_BIT (wont_exit, 0);
701 if (desc->noloop_assumptions)
702 RESET_BIT (wont_exit, 1);
704 if (exit_mod)
706 opt_info_start_duplication (opt_info);
707 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
708 loops, exit_mod,
709 wont_exit, desc->out_edge,
710 remove_edges, &n_remove_edges,
711 DLTHE_FLAG_UPDATE_FREQ))
712 abort ();
714 if (opt_info && exit_mod > 1)
715 apply_opt_in_copies (opt_info, exit_mod, false, false);
717 desc->noloop_assumptions = NULL_RTX;
718 desc->niter -= exit_mod;
719 desc->niter_max -= exit_mod;
722 SET_BIT (wont_exit, 1);
724 else
726 /* Leave exit test in last copy, for the same reason as above if
727 the loop tests the condition at the end of loop body. */
729 if (dump_file)
730 fprintf (dump_file, ";; Condition on end of loop.\n");
732 /* We know that niter >= max_unroll + 2; so we do not need to care of
733 case when we would exit before reaching the loop. So just peel
734 exit_mod + 1 iterations. */
735 if (exit_mod != max_unroll
736 || desc->noloop_assumptions)
738 RESET_BIT (wont_exit, 0);
739 if (desc->noloop_assumptions)
740 RESET_BIT (wont_exit, 1);
742 opt_info_start_duplication (opt_info);
743 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
744 loops, exit_mod + 1,
745 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
746 DLTHE_FLAG_UPDATE_FREQ))
747 abort ();
749 if (opt_info && exit_mod > 0)
750 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
752 desc->niter -= exit_mod + 1;
753 desc->niter_max -= exit_mod + 1;
754 desc->noloop_assumptions = NULL_RTX;
756 SET_BIT (wont_exit, 0);
757 SET_BIT (wont_exit, 1);
760 RESET_BIT (wont_exit, max_unroll);
763 /* Now unroll the loop. */
765 opt_info_start_duplication (opt_info);
766 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
767 loops, max_unroll,
768 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
769 DLTHE_FLAG_UPDATE_FREQ))
770 abort ();
772 if (opt_info)
774 apply_opt_in_copies (opt_info, max_unroll, true, true);
775 free_opt_info (opt_info);
778 free (wont_exit);
780 if (exit_at_end)
782 basic_block exit_block = desc->in_edge->src->rbi->copy;
783 /* Find a new in and out edge; they are in the last copy we have made. */
785 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
787 desc->out_edge = EDGE_SUCC (exit_block, 0);
788 desc->in_edge = EDGE_SUCC (exit_block, 1);
790 else
792 desc->out_edge = EDGE_SUCC (exit_block, 1);
793 desc->in_edge = EDGE_SUCC (exit_block, 0);
797 desc->niter /= max_unroll + 1;
798 desc->niter_max /= max_unroll + 1;
799 desc->niter_expr = GEN_INT (desc->niter);
801 /* Remove the edges. */
802 for (i = 0; i < n_remove_edges; i++)
803 remove_path (loops, remove_edges[i]);
804 free (remove_edges);
806 if (dump_file)
807 fprintf (dump_file,
808 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
809 max_unroll, num_loop_insns (loop));
812 /* Decide whether to unroll LOOP iterating runtime computable number of times
813 and how much. */
814 static void
815 decide_unroll_runtime_iterations (struct loop *loop, int flags)
817 unsigned nunroll, nunroll_by_av, i;
818 struct niter_desc *desc;
820 if (!(flags & UAP_UNROLL))
822 /* We were not asked to, just return back silently. */
823 return;
826 if (dump_file)
827 fprintf (dump_file,
828 "\n;; Considering unrolling loop with runtime "
829 "computable number of iterations\n");
831 /* nunroll = total number of copies of the original loop body in
832 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
833 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
834 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
835 if (nunroll > nunroll_by_av)
836 nunroll = nunroll_by_av;
837 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
838 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
840 /* Skip big loops. */
841 if (nunroll <= 1)
843 if (dump_file)
844 fprintf (dump_file, ";; Not considering loop, is too big\n");
845 return;
848 /* Check for simple loops. */
849 desc = get_simple_loop_desc (loop);
851 /* Check simpleness. */
852 if (!desc->simple_p || desc->assumptions)
854 if (dump_file)
855 fprintf (dump_file,
856 ";; Unable to prove that the number of iterations "
857 "can be counted in runtime\n");
858 return;
861 if (desc->const_iter)
863 if (dump_file)
864 fprintf (dump_file, ";; Loop iterates constant times\n");
865 return;
868 /* If we have profile feedback, check whether the loop rolls. */
869 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
871 if (dump_file)
872 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
873 return;
876 /* Success; now force nunroll to be power of 2, as we are unable to
877 cope with overflows in computation of number of iterations. */
878 for (i = 1; 2 * i <= nunroll; i *= 2)
879 continue;
881 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
882 loop->lpt_decision.times = i - 1;
884 if (dump_file)
885 fprintf (dump_file,
886 ";; Decided to unroll the runtime computable "
887 "times rolling loop, %d times.\n",
888 loop->lpt_decision.times);
891 /* Unroll LOOP for that we are able to count number of iterations in runtime
892 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
893 extra care for case n < 0):
895 for (i = 0; i < n; i++)
896 body;
900 i = 0;
901 mod = n % 4;
903 switch (mod)
905 case 3:
906 body; i++;
907 case 2:
908 body; i++;
909 case 1:
910 body; i++;
911 case 0: ;
914 while (i < n)
916 body; i++;
917 body; i++;
918 body; i++;
919 body; i++;
922 static void
923 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
925 rtx old_niter, niter, init_code, branch_code, tmp;
926 unsigned i, j, p;
927 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
928 unsigned n_dom_bbs;
929 sbitmap wont_exit;
930 int may_exit_copy;
931 unsigned n_peel, n_remove_edges;
932 edge *remove_edges, e;
933 bool extra_zero_check, last_may_exit;
934 unsigned max_unroll = loop->lpt_decision.times;
935 struct niter_desc *desc = get_simple_loop_desc (loop);
936 bool exit_at_end = loop_exit_at_end_p (loop);
937 struct opt_info *opt_info = NULL;
939 if (flag_split_ivs_in_unroller
940 || flag_variable_expansion_in_unroller)
941 opt_info = analyze_insns_in_loop (loop);
943 /* Remember blocks whose dominators will have to be updated. */
944 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
945 n_dom_bbs = 0;
947 body = get_loop_body (loop);
948 for (i = 0; i < loop->num_nodes; i++)
950 unsigned nldom;
951 basic_block *ldom;
953 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
954 for (j = 0; j < nldom; j++)
955 if (!flow_bb_inside_loop_p (loop, ldom[j]))
956 dom_bbs[n_dom_bbs++] = ldom[j];
958 free (ldom);
960 free (body);
962 if (!exit_at_end)
964 /* Leave exit in first copy (for explanation why see comment in
965 unroll_loop_constant_iterations). */
966 may_exit_copy = 0;
967 n_peel = max_unroll - 1;
968 extra_zero_check = true;
969 last_may_exit = false;
971 else
973 /* Leave exit in last copy (for explanation why see comment in
974 unroll_loop_constant_iterations). */
975 may_exit_copy = max_unroll;
976 n_peel = max_unroll;
977 extra_zero_check = false;
978 last_may_exit = true;
981 /* Get expression for number of iterations. */
982 start_sequence ();
983 old_niter = niter = gen_reg_rtx (desc->mode);
984 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
985 if (tmp != niter)
986 emit_move_insn (niter, tmp);
988 /* Count modulo by ANDing it with max_unroll; we use the fact that
989 the number of unrollings is a power of two, and thus this is correct
990 even if there is overflow in the computation. */
991 niter = expand_simple_binop (desc->mode, AND,
992 niter,
993 GEN_INT (max_unroll),
994 NULL_RTX, 0, OPTAB_LIB_WIDEN);
996 init_code = get_insns ();
997 end_sequence ();
999 /* Precondition the loop. */
1000 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1002 remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
1003 n_remove_edges = 0;
1005 wont_exit = sbitmap_alloc (max_unroll + 2);
1007 /* Peel the first copy of loop body (almost always we must leave exit test
1008 here; the only exception is when we have extra zero check and the number
1009 of iterations is reliable. Also record the place of (possible) extra
1010 zero check. */
1011 sbitmap_zero (wont_exit);
1012 if (extra_zero_check
1013 && !desc->noloop_assumptions)
1014 SET_BIT (wont_exit, 1);
1015 ezc_swtch = loop_preheader_edge (loop)->src;
1016 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1017 loops, 1,
1018 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1019 DLTHE_FLAG_UPDATE_FREQ))
1020 abort ();
1022 /* Record the place where switch will be built for preconditioning. */
1023 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1024 NULL_RTX);
1026 for (i = 0; i < n_peel; i++)
1028 /* Peel the copy. */
1029 sbitmap_zero (wont_exit);
1030 if (i != n_peel - 1 || !last_may_exit)
1031 SET_BIT (wont_exit, 1);
1032 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1033 loops, 1,
1034 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1035 DLTHE_FLAG_UPDATE_FREQ))
1036 abort ();
1038 /* Create item for switch. */
1039 j = n_peel - i - (extra_zero_check ? 0 : 1);
1040 p = REG_BR_PROB_BASE / (i + 2);
1042 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1043 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1044 block_label (preheader), p, NULL_RTX);
1046 swtch = loop_split_edge_with (EDGE_PRED (swtch, 0), branch_code);
1047 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1048 EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
1049 e = make_edge (swtch, preheader,
1050 EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
1051 e->probability = p;
1054 if (extra_zero_check)
1056 /* Add branch for zero iterations. */
1057 p = REG_BR_PROB_BASE / (max_unroll + 1);
1058 swtch = ezc_swtch;
1059 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1060 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1061 block_label (preheader), p, NULL_RTX);
1063 swtch = loop_split_edge_with (EDGE_SUCC (swtch, 0), branch_code);
1064 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1065 EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
1066 e = make_edge (swtch, preheader,
1067 EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
1068 e->probability = p;
1071 /* Recount dominators for outer blocks. */
1072 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1074 /* And unroll loop. */
1076 sbitmap_ones (wont_exit);
1077 RESET_BIT (wont_exit, may_exit_copy);
1078 opt_info_start_duplication (opt_info);
1080 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1081 loops, max_unroll,
1082 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1083 DLTHE_FLAG_UPDATE_FREQ))
1084 abort ();
1086 if (opt_info)
1088 apply_opt_in_copies (opt_info, max_unroll, true, true);
1089 free_opt_info (opt_info);
1092 free (wont_exit);
1094 if (exit_at_end)
1096 basic_block exit_block = desc->in_edge->src->rbi->copy;
1097 /* Find a new in and out edge; they are in the last copy we have made. */
1099 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1101 desc->out_edge = EDGE_SUCC (exit_block, 0);
1102 desc->in_edge = EDGE_SUCC (exit_block, 1);
1104 else
1106 desc->out_edge = EDGE_SUCC (exit_block, 1);
1107 desc->in_edge = EDGE_SUCC (exit_block, 0);
1111 /* Remove the edges. */
1112 for (i = 0; i < n_remove_edges; i++)
1113 remove_path (loops, remove_edges[i]);
1114 free (remove_edges);
1116 /* We must be careful when updating the number of iterations due to
1117 preconditioning and the fact that the value must be valid at entry
1118 of the loop. After passing through the above code, we see that
1119 the correct new number of iterations is this: */
1120 gcc_assert (!desc->const_iter);
1121 desc->niter_expr =
1122 simplify_gen_binary (UDIV, desc->mode, old_niter, GEN_INT (max_unroll + 1));
1123 desc->niter_max /= max_unroll + 1;
1124 if (exit_at_end)
1126 desc->niter_expr =
1127 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1128 desc->noloop_assumptions = NULL_RTX;
1129 desc->niter_max--;
1132 if (dump_file)
1133 fprintf (dump_file,
1134 ";; Unrolled loop %d times, counting # of iterations "
1135 "in runtime, %i insns\n",
1136 max_unroll, num_loop_insns (loop));
1139 /* Decide whether to simply peel LOOP and how much. */
1140 static void
1141 decide_peel_simple (struct loop *loop, int flags)
1143 unsigned npeel;
1144 struct niter_desc *desc;
1146 if (!(flags & UAP_PEEL))
1148 /* We were not asked to, just return back silently. */
1149 return;
1152 if (dump_file)
1153 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1155 /* npeel = number of iterations to peel. */
1156 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1157 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1158 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1160 /* Skip big loops. */
1161 if (!npeel)
1163 if (dump_file)
1164 fprintf (dump_file, ";; Not considering loop, is too big\n");
1165 return;
1168 /* Check for simple loops. */
1169 desc = get_simple_loop_desc (loop);
1171 /* Check number of iterations. */
1172 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1174 if (dump_file)
1175 fprintf (dump_file, ";; Loop iterates constant times\n");
1176 return;
1179 /* Do not simply peel loops with branches inside -- it increases number
1180 of mispredicts. */
1181 if (num_loop_branches (loop) > 1)
1183 if (dump_file)
1184 fprintf (dump_file, ";; Not peeling, contains branches\n");
1185 return;
1188 if (loop->header->count)
1190 unsigned niter = expected_loop_iterations (loop);
1191 if (niter + 1 > npeel)
1193 if (dump_file)
1195 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1196 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1197 (HOST_WIDEST_INT) (niter + 1));
1198 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1199 npeel);
1201 return;
1203 npeel = niter + 1;
1205 else
1207 /* For now we have no good heuristics to decide whether loop peeling
1208 will be effective, so disable it. */
1209 if (dump_file)
1210 fprintf (dump_file,
1211 ";; Not peeling loop, no evidence it will be profitable\n");
1212 return;
1215 /* Success. */
1216 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1217 loop->lpt_decision.times = npeel;
1219 if (dump_file)
1220 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1221 loop->lpt_decision.times);
1224 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1225 while (cond)
1226 body;
1230 if (!cond) goto end;
1231 body;
1232 if (!cond) goto end;
1233 body;
1234 while (cond)
1235 body;
1236 end: ;
1238 static void
1239 peel_loop_simple (struct loops *loops, struct loop *loop)
1241 sbitmap wont_exit;
1242 unsigned npeel = loop->lpt_decision.times;
1243 struct niter_desc *desc = get_simple_loop_desc (loop);
1244 struct opt_info *opt_info = NULL;
1246 if (flag_split_ivs_in_unroller && npeel > 1)
1247 opt_info = analyze_insns_in_loop (loop);
1249 wont_exit = sbitmap_alloc (npeel + 1);
1250 sbitmap_zero (wont_exit);
1252 opt_info_start_duplication (opt_info);
1254 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1255 loops, npeel, wont_exit, NULL, NULL, NULL,
1256 DLTHE_FLAG_UPDATE_FREQ))
1257 abort ();
1259 free (wont_exit);
1261 if (opt_info)
1263 apply_opt_in_copies (opt_info, npeel, false, false);
1264 free_opt_info (opt_info);
1267 if (desc->simple_p)
1269 if (desc->const_iter)
1271 desc->niter -= npeel;
1272 desc->niter_expr = GEN_INT (desc->niter);
1273 desc->noloop_assumptions = NULL_RTX;
1275 else
1277 /* We cannot just update niter_expr, as its value might be clobbered
1278 inside loop. We could handle this by counting the number into
1279 temporary just like we do in runtime unrolling, but it does not
1280 seem worthwhile. */
1281 free_simple_loop_desc (loop);
1284 if (dump_file)
1285 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1288 /* Decide whether to unroll LOOP stupidly and how much. */
1289 static void
1290 decide_unroll_stupid (struct loop *loop, int flags)
1292 unsigned nunroll, nunroll_by_av, i;
1293 struct niter_desc *desc;
1295 if (!(flags & UAP_UNROLL_ALL))
1297 /* We were not asked to, just return back silently. */
1298 return;
1301 if (dump_file)
1302 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1304 /* nunroll = total number of copies of the original loop body in
1305 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1306 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1307 nunroll_by_av
1308 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1309 if (nunroll > nunroll_by_av)
1310 nunroll = nunroll_by_av;
1311 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1312 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1314 /* Skip big loops. */
1315 if (nunroll <= 1)
1317 if (dump_file)
1318 fprintf (dump_file, ";; Not considering loop, is too big\n");
1319 return;
1322 /* Check for simple loops. */
1323 desc = get_simple_loop_desc (loop);
1325 /* Check simpleness. */
1326 if (desc->simple_p && !desc->assumptions)
1328 if (dump_file)
1329 fprintf (dump_file, ";; The loop is simple\n");
1330 return;
1333 /* Do not unroll loops with branches inside -- it increases number
1334 of mispredicts. */
1335 if (num_loop_branches (loop) > 1)
1337 if (dump_file)
1338 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1339 return;
1342 /* If we have profile feedback, check whether the loop rolls. */
1343 if (loop->header->count
1344 && expected_loop_iterations (loop) < 2 * nunroll)
1346 if (dump_file)
1347 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1348 return;
1351 /* Success. Now force nunroll to be power of 2, as it seems that this
1352 improves results (partially because of better alignments, partially
1353 because of some dark magic). */
1354 for (i = 1; 2 * i <= nunroll; i *= 2)
1355 continue;
1357 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1358 loop->lpt_decision.times = i - 1;
1360 if (dump_file)
1361 fprintf (dump_file,
1362 ";; Decided to unroll the loop stupidly, %d times.\n",
1363 loop->lpt_decision.times);
1366 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1367 while (cond)
1368 body;
1372 while (cond)
1374 body;
1375 if (!cond) break;
1376 body;
1377 if (!cond) break;
1378 body;
1379 if (!cond) break;
1380 body;
1383 static void
1384 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1386 sbitmap wont_exit;
1387 unsigned nunroll = loop->lpt_decision.times;
1388 struct niter_desc *desc = get_simple_loop_desc (loop);
1389 struct opt_info *opt_info = NULL;
1391 if (flag_split_ivs_in_unroller
1392 || flag_variable_expansion_in_unroller)
1393 opt_info = analyze_insns_in_loop (loop);
1396 wont_exit = sbitmap_alloc (nunroll + 1);
1397 sbitmap_zero (wont_exit);
1398 opt_info_start_duplication (opt_info);
1400 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1401 loops, nunroll, wont_exit, NULL, NULL, NULL,
1402 DLTHE_FLAG_UPDATE_FREQ))
1403 abort ();
1405 if (opt_info)
1407 apply_opt_in_copies (opt_info, nunroll, true, true);
1408 free_opt_info (opt_info);
1411 free (wont_exit);
1413 if (desc->simple_p)
1415 /* We indeed may get here provided that there are nontrivial assumptions
1416 for a loop to be really simple. We could update the counts, but the
1417 problem is that we are unable to decide which exit will be taken
1418 (not really true in case the number of iterations is constant,
1419 but noone will do anything with this information, so we do not
1420 worry about it). */
1421 desc->simple_p = false;
1424 if (dump_file)
1425 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1426 nunroll, num_loop_insns (loop));
1429 /* A hash function for information about insns to split. */
1431 static hashval_t
1432 si_info_hash (const void *ivts)
1434 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1437 /* An equality functions for information about insns to split. */
1439 static int
1440 si_info_eq (const void *ivts1, const void *ivts2)
1442 const struct iv_to_split *i1 = ivts1;
1443 const struct iv_to_split *i2 = ivts2;
1445 return i1->insn == i2->insn;
1448 /* Return a hash for VES, which is really a "var_to_expand *". */
1450 static hashval_t
1451 ve_info_hash (const void *ves)
1453 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1456 /* Return true if IVTS1 and IVTS2 (which are really both of type
1457 "var_to_expand *") refer to the same instruction. */
1459 static int
1460 ve_info_eq (const void *ivts1, const void *ivts2)
1462 const struct var_to_expand *i1 = ivts1;
1463 const struct var_to_expand *i2 = ivts2;
1465 return i1->insn == i2->insn;
1468 /* Returns true if REG is referenced in one insn in LOOP. */
1470 bool
1471 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1473 basic_block *body, bb;
1474 unsigned i;
1475 int count_ref = 0;
1476 rtx insn;
1478 body = get_loop_body (loop);
1479 for (i = 0; i < loop->num_nodes; i++)
1481 bb = body[i];
1483 FOR_BB_INSNS (bb, insn)
1485 if (rtx_referenced_p (reg, insn))
1486 count_ref++;
1489 return (count_ref == 1);
1492 /* Determine whether INSN contains an accumulator
1493 which can be expanded into separate copies,
1494 one for each copy of the LOOP body.
1496 for (i = 0 ; i < n; i++)
1497 sum += a[i];
1501 sum += a[i]
1502 ....
1503 i = i+1;
1504 sum1 += a[i]
1505 ....
1506 i = i+1
1507 sum2 += a[i];
1508 ....
1510 Return NULL if INSN contains no opportunity for expansion of accumulator.
1511 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1512 information and return a pointer to it.
1515 static struct var_to_expand *
1516 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1518 rtx set, dest, src, op1;
1519 struct var_to_expand *ves;
1520 enum machine_mode mode1, mode2;
1522 set = single_set (insn);
1523 if (!set)
1524 return NULL;
1526 dest = SET_DEST (set);
1527 src = SET_SRC (set);
1529 if (GET_CODE (src) != PLUS
1530 && GET_CODE (src) != MINUS
1531 && GET_CODE (src) != MULT)
1532 return NULL;
1534 if (!XEXP (src, 0))
1535 return NULL;
1537 op1 = XEXP (src, 0);
1539 if (!REG_P (dest)
1540 && !(GET_CODE (dest) == SUBREG
1541 && REG_P (SUBREG_REG (dest))))
1542 return NULL;
1544 if (!rtx_equal_p (dest, op1))
1545 return NULL;
1547 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1548 return NULL;
1550 if (rtx_referenced_p (dest, XEXP (src, 1)))
1551 return NULL;
1553 mode1 = GET_MODE (dest);
1554 mode2 = GET_MODE (XEXP (src, 1));
1555 if ((FLOAT_MODE_P (mode1)
1556 || FLOAT_MODE_P (mode2))
1557 && !flag_unsafe_math_optimizations)
1558 return NULL;
1560 /* Record the accumulator to expand. */
1561 ves = xmalloc (sizeof (struct var_to_expand));
1562 ves->insn = insn;
1563 VARRAY_RTX_INIT (ves->var_expansions, 1, "var_expansions");
1564 ves->reg = copy_rtx (dest);
1565 ves->op = GET_CODE (src);
1566 ves->expansion_count = 0;
1567 ves->reuse_expansion = 0;
1568 return ves;
1571 /* Determine whether there is an induction variable in INSN that
1572 we would like to split during unrolling.
1574 I.e. replace
1576 i = i + 1;
1578 i = i + 1;
1580 i = i + 1;
1583 type chains by
1585 i0 = i + 1
1587 i = i0 + 1
1589 i = i0 + 2
1592 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1593 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1594 pointer to it. */
1596 static struct iv_to_split *
1597 analyze_iv_to_split_insn (rtx insn)
1599 rtx set, dest;
1600 struct rtx_iv iv;
1601 struct iv_to_split *ivts;
1603 /* For now we just split the basic induction variables. Later this may be
1604 extended for example by selecting also addresses of memory references. */
1605 set = single_set (insn);
1606 if (!set)
1607 return NULL;
1609 dest = SET_DEST (set);
1610 if (!REG_P (dest))
1611 return NULL;
1613 if (!biv_p (insn, dest))
1614 return NULL;
1616 if (!iv_analyze (insn, dest, &iv))
1617 abort ();
1619 if (iv.step == const0_rtx
1620 || iv.mode != iv.extend_mode)
1621 return NULL;
1623 /* Record the insn to split. */
1624 ivts = xmalloc (sizeof (struct iv_to_split));
1625 ivts->insn = insn;
1626 ivts->base_var = NULL_RTX;
1627 ivts->step = iv.step;
1628 ivts->n_loc = 1;
1629 ivts->loc[0] = 1;
1631 return ivts;
1634 /* Determines which of insns in LOOP can be optimized.
1635 Return a OPT_INFO struct with the relevant hash tables filled
1636 with all insns to be optimized. The FIRST_NEW_BLOCK field
1637 is undefined for the return value. */
1639 static struct opt_info *
1640 analyze_insns_in_loop (struct loop *loop)
1642 basic_block *body, bb;
1643 unsigned i, n_edges = 0;
1644 struct opt_info *opt_info = xcalloc (1, sizeof (struct opt_info));
1645 rtx insn;
1646 struct iv_to_split *ivts = NULL;
1647 struct var_to_expand *ves = NULL;
1648 PTR *slot1;
1649 PTR *slot2;
1650 edge *edges = get_loop_exit_edges (loop, &n_edges);
1651 basic_block preheader;
1652 bool can_apply = false;
1654 iv_analysis_loop_init (loop);
1656 body = get_loop_body (loop);
1658 if (flag_split_ivs_in_unroller)
1659 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1660 si_info_hash, si_info_eq, free);
1662 /* Record the loop exit bb and loop preheader before the unrolling. */
1663 if (!loop_preheader_edge (loop)->src)
1665 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1666 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1668 else
1669 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1671 if (n_edges == 1
1672 && !(edges[0]->flags & EDGE_COMPLEX)
1673 && (edges[0]->flags & EDGE_LOOP_EXIT))
1675 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1676 can_apply = true;
1679 if (flag_variable_expansion_in_unroller
1680 && can_apply)
1681 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1682 ve_info_hash, ve_info_eq, free);
1684 for (i = 0; i < loop->num_nodes; i++)
1686 bb = body[i];
1687 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1688 continue;
1690 FOR_BB_INSNS (bb, insn)
1692 if (!INSN_P (insn))
1693 continue;
1695 if (opt_info->insns_to_split)
1696 ivts = analyze_iv_to_split_insn (insn);
1698 if (ivts)
1700 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1701 *slot1 = ivts;
1702 continue;
1705 if (opt_info->insns_with_var_to_expand)
1706 ves = analyze_insn_to_expand_var (loop, insn);
1708 if (ves)
1710 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1711 *slot2 = ves;
1716 free (edges);
1717 free (body);
1718 return opt_info;
1721 /* Called just before loop duplication. Records start of duplicated area
1722 to OPT_INFO. */
1724 static void
1725 opt_info_start_duplication (struct opt_info *opt_info)
1727 if (opt_info)
1728 opt_info->first_new_block = last_basic_block;
1731 /* Determine the number of iterations between initialization of the base
1732 variable and the current copy (N_COPY). N_COPIES is the total number
1733 of newly created copies. UNROLLING is true if we are unrolling
1734 (not peeling) the loop. */
1736 static unsigned
1737 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1739 if (unrolling)
1741 /* If we are unrolling, initialization is done in the original loop
1742 body (number 0). */
1743 return n_copy;
1745 else
1747 /* If we are peeling, the copy in that the initialization occurs has
1748 number 1. The original loop (number 0) is the last. */
1749 if (n_copy)
1750 return n_copy - 1;
1751 else
1752 return n_copies;
1756 /* Locate in EXPR the expression corresponding to the location recorded
1757 in IVTS, and return a pointer to the RTX for this location. */
1759 static rtx *
1760 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1762 unsigned i;
1763 rtx *ret = &expr;
1765 for (i = 0; i < ivts->n_loc; i++)
1766 ret = &XEXP (*ret, ivts->loc[i]);
1768 return ret;
1771 /* Allocate basic variable for the induction variable chain. Callback for
1772 htab_traverse. */
1774 static int
1775 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1777 struct iv_to_split *ivts = *slot;
1778 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1780 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1782 return 1;
1785 /* Insert initialization of basic variable of IVTS before INSN, taking
1786 the initial value from INSN. */
1788 static void
1789 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1791 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1792 rtx seq;
1794 start_sequence ();
1795 expr = force_operand (expr, ivts->base_var);
1796 if (expr != ivts->base_var)
1797 emit_move_insn (ivts->base_var, expr);
1798 seq = get_insns ();
1799 end_sequence ();
1801 emit_insn_before (seq, insn);
1804 /* Replace the use of induction variable described in IVTS in INSN
1805 by base variable + DELTA * step. */
1807 static void
1808 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1810 rtx expr, *loc, seq, incr, var;
1811 enum machine_mode mode = GET_MODE (ivts->base_var);
1812 rtx src, dest, set;
1814 /* Construct base + DELTA * step. */
1815 if (!delta)
1816 expr = ivts->base_var;
1817 else
1819 incr = simplify_gen_binary (MULT, mode,
1820 ivts->step, gen_int_mode (delta, mode));
1821 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1822 ivts->base_var, incr);
1825 /* Figure out where to do the replacement. */
1826 loc = get_ivts_expr (single_set (insn), ivts);
1828 /* If we can make the replacement right away, we're done. */
1829 if (validate_change (insn, loc, expr, 0))
1830 return;
1832 /* Otherwise, force EXPR into a register and try again. */
1833 start_sequence ();
1834 var = gen_reg_rtx (mode);
1835 expr = force_operand (expr, var);
1836 if (expr != var)
1837 emit_move_insn (var, expr);
1838 seq = get_insns ();
1839 end_sequence ();
1840 emit_insn_before (seq, insn);
1842 if (validate_change (insn, loc, var, 0))
1843 return;
1845 /* The last chance. Try recreating the assignment in insn
1846 completely from scratch. */
1847 set = single_set (insn);
1848 gcc_assert (set);
1850 start_sequence ();
1851 *loc = var;
1852 src = copy_rtx (SET_SRC (set));
1853 dest = copy_rtx (SET_DEST (set));
1854 src = force_operand (src, dest);
1855 if (src != dest)
1856 emit_move_insn (dest, src);
1857 seq = get_insns ();
1858 end_sequence ();
1860 emit_insn_before (seq, insn);
1861 delete_insn (insn);
1865 /* Return one expansion of the accumulator recorded in struct VE. */
1867 static rtx
1868 get_expansion (struct var_to_expand *ve)
1870 rtx reg;
1872 if (ve->reuse_expansion == 0)
1873 reg = ve->reg;
1874 else
1875 reg = VARRAY_RTX (ve->var_expansions, ve->reuse_expansion - 1);
1877 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == (unsigned) ve->reuse_expansion)
1878 ve->reuse_expansion = 0;
1879 else
1880 ve->reuse_expansion++;
1882 return reg;
1886 /* Given INSN replace the uses of the accumulator recorded in VE
1887 with a new register. */
1889 static void
1890 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1892 rtx new_reg, set;
1893 bool really_new_expansion = false;
1895 set = single_set (insn);
1896 if (!set)
1897 abort ();
1899 /* Generate a new register only if the expansion limit has not been
1900 reached. Else reuse an already existing expansion. */
1901 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1903 really_new_expansion = true;
1904 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1906 else
1907 new_reg = get_expansion (ve);
1909 validate_change (insn, &SET_DEST (set), new_reg, 1);
1910 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1912 if (apply_change_group ())
1913 if (really_new_expansion)
1915 VARRAY_PUSH_RTX (ve->var_expansions, new_reg);
1916 ve->expansion_count++;
1920 /* Initialize the variable expansions in loop preheader.
1921 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1922 basic block where the initialization of the expansions
1923 should take place. */
1925 static int
1926 insert_var_expansion_initialization (void **slot, void *place_p)
1928 struct var_to_expand *ve = *slot;
1929 basic_block place = (basic_block)place_p;
1930 rtx seq, var, zero_init, insn;
1931 unsigned i;
1933 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == 0)
1934 return 1;
1936 start_sequence ();
1937 if (ve->op == PLUS || ve->op == MINUS)
1938 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1940 var = VARRAY_RTX (ve->var_expansions, i);
1941 zero_init = CONST0_RTX (GET_MODE (var));
1942 emit_move_insn (var, zero_init);
1944 else if (ve->op == MULT)
1945 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1947 var = VARRAY_RTX (ve->var_expansions, i);
1948 zero_init = CONST1_RTX (GET_MODE (var));
1949 emit_move_insn (var, zero_init);
1952 seq = get_insns ();
1953 end_sequence ();
1955 insn = BB_HEAD (place);
1956 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1957 insn = NEXT_INSN (insn);
1959 emit_insn_after (seq, insn);
1960 /* Continue traversing the hash table. */
1961 return 1;
1964 /* Combine the variable expansions at the loop exit.
1965 Callbacks for htab_traverse. PLACE_P is the loop exit
1966 basic block where the summation of the expansions should
1967 take place. */
1969 static int
1970 combine_var_copies_in_loop_exit (void **slot, void *place_p)
1972 struct var_to_expand *ve = *slot;
1973 basic_block place = (basic_block)place_p;
1974 rtx sum = ve->reg;
1975 rtx expr, seq, var, insn;
1976 unsigned i;
1978 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == 0)
1979 return 1;
1981 start_sequence ();
1982 if (ve->op == PLUS || ve->op == MINUS)
1983 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1985 var = VARRAY_RTX (ve->var_expansions, i);
1986 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
1987 var, sum);
1989 else if (ve->op == MULT)
1990 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1992 var = VARRAY_RTX (ve->var_expansions, i);
1993 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
1994 var, sum);
1997 expr = force_operand (sum, ve->reg);
1998 if (expr != ve->reg)
1999 emit_move_insn (ve->reg, expr);
2000 seq = get_insns ();
2001 end_sequence ();
2003 insn = BB_HEAD (place);
2004 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2005 insn = NEXT_INSN (insn);
2007 emit_insn_after (seq, insn);
2009 /* Continue traversing the hash table. */
2010 return 1;
2013 /* Apply loop optimizations in loop copies using the
2014 data which gathered during the unrolling. Structure
2015 OPT_INFO record that data.
2017 UNROLLING is true if we unrolled (not peeled) the loop.
2018 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2019 the loop (as it should happen in complete unrolling, but not in ordinary
2020 peeling of the loop). */
2022 static void
2023 apply_opt_in_copies (struct opt_info *opt_info,
2024 unsigned n_copies, bool unrolling,
2025 bool rewrite_original_loop)
2027 unsigned i, delta;
2028 basic_block bb, orig_bb;
2029 rtx insn, orig_insn, next;
2030 struct iv_to_split ivts_templ, *ivts;
2031 struct var_to_expand ve_templ, *ves;
2033 /* Sanity check -- we need to put initialization in the original loop
2034 body. */
2035 gcc_assert (!unrolling || rewrite_original_loop);
2037 /* Allocate the basic variables (i0). */
2038 if (opt_info->insns_to_split)
2039 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2041 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2043 bb = BASIC_BLOCK (i);
2044 orig_bb = bb->rbi->original;
2046 delta = determine_split_iv_delta (bb->rbi->copy_number, n_copies,
2047 unrolling);
2048 orig_insn = BB_HEAD (orig_bb);
2049 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2051 next = NEXT_INSN (insn);
2052 if (!INSN_P (insn))
2053 continue;
2055 while (!INSN_P (orig_insn))
2056 orig_insn = NEXT_INSN (orig_insn);
2058 ivts_templ.insn = orig_insn;
2059 ve_templ.insn = orig_insn;
2061 /* Apply splitting iv optimization. */
2062 if (opt_info->insns_to_split)
2064 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2066 if (ivts)
2068 #ifdef ENABLE_CHECKING
2069 gcc_assert (rtx_equal_p (PATTERN (insn), PATTERN (orig_insn)));
2070 #endif
2072 if (!delta)
2073 insert_base_initialization (ivts, insn);
2074 split_iv (ivts, insn, delta);
2077 /* Apply variable expansion optimization. */
2078 if (unrolling && opt_info->insns_with_var_to_expand)
2080 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2081 if (ves)
2083 #ifdef ENABLE_CHECKING
2084 gcc_assert (rtx_equal_p (PATTERN (insn), PATTERN (orig_insn)));
2085 #endif
2086 expand_var_during_unrolling (ves, insn);
2089 orig_insn = NEXT_INSN (orig_insn);
2093 if (!rewrite_original_loop)
2094 return;
2096 /* Initialize the variable expansions in the loop preheader
2097 and take care of combining them at the loop exit. */
2098 if (opt_info->insns_with_var_to_expand)
2100 htab_traverse (opt_info->insns_with_var_to_expand,
2101 insert_var_expansion_initialization,
2102 opt_info->loop_preheader);
2103 htab_traverse (opt_info->insns_with_var_to_expand,
2104 combine_var_copies_in_loop_exit,
2105 opt_info->loop_exit);
2108 /* Rewrite also the original loop body. Find them as originals of the blocks
2109 in the last copied iteration, i.e. those that have
2110 bb->rbi->original->copy == bb. */
2111 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2113 bb = BASIC_BLOCK (i);
2114 orig_bb = bb->rbi->original;
2115 if (orig_bb->rbi->copy != bb)
2116 continue;
2118 delta = determine_split_iv_delta (0, n_copies, unrolling);
2119 for (orig_insn = BB_HEAD (orig_bb);
2120 orig_insn != NEXT_INSN (BB_END (bb));
2121 orig_insn = next)
2123 next = NEXT_INSN (orig_insn);
2125 if (!INSN_P (orig_insn))
2126 continue;
2128 ivts_templ.insn = orig_insn;
2129 if (opt_info->insns_to_split)
2131 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2132 if (ivts)
2134 if (!delta)
2135 insert_base_initialization (ivts, orig_insn);
2136 split_iv (ivts, orig_insn, delta);
2137 continue;
2145 /* Release the data structures used for the variable expansion
2146 optimization. Callbacks for htab_traverse. */
2148 static int
2149 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2151 struct var_to_expand *ve = *slot;
2153 VARRAY_CLEAR (ve->var_expansions);
2155 /* Continue traversing the hash table. */
2156 return 1;
2159 /* Release OPT_INFO. */
2161 static void
2162 free_opt_info (struct opt_info *opt_info)
2164 if (opt_info->insns_to_split)
2165 htab_delete (opt_info->insns_to_split);
2166 if (opt_info->insns_with_var_to_expand)
2168 htab_traverse (opt_info->insns_with_var_to_expand,
2169 release_var_copies, NULL);
2170 htab_delete (opt_info->insns_with_var_to_expand);
2172 free (opt_info);