Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / gcc / local-alloc.c
blob10117da8adb4a0f14f3b0efb6771f52065988607
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 #include "except.h"
78 #include "integrate.h"
80 /* Next quantity number available for allocation. */
82 static int next_qty;
84 /* Information we maintain about each quantity. */
85 struct qty
87 /* The number of refs to quantity Q. */
89 int n_refs;
91 /* The frequency of uses of quantity Q. */
93 int freq;
95 /* Insn number (counting from head of basic block)
96 where quantity Q was born. -1 if birth has not been recorded. */
98 int birth;
100 /* Insn number (counting from head of basic block)
101 where given quantity died. Due to the way tying is done,
102 and the fact that we consider in this pass only regs that die but once,
103 a quantity can die only once. Each quantity's life span
104 is a set of consecutive insns. -1 if death has not been recorded. */
106 int death;
108 /* Number of words needed to hold the data in given quantity.
109 This depends on its machine mode. It is used for these purposes:
110 1. It is used in computing the relative importance of qtys,
111 which determines the order in which we look for regs for them.
112 2. It is used in rules that prevent tying several registers of
113 different sizes in a way that is geometrically impossible
114 (see combine_regs). */
116 int size;
118 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
120 int n_calls_crossed;
122 /* The register number of one pseudo register whose reg_qty value is Q.
123 This register should be the head of the chain
124 maintained in reg_next_in_qty. */
126 int first_reg;
128 /* Reg class contained in (smaller than) the preferred classes of all
129 the pseudo regs that are tied in given quantity.
130 This is the preferred class for allocating that quantity. */
132 enum reg_class min_class;
134 /* Register class within which we allocate given qty if we can't get
135 its preferred class. */
137 enum reg_class alternate_class;
139 /* This holds the mode of the registers that are tied to given qty,
140 or VOIDmode if registers with differing modes are tied together. */
142 enum machine_mode mode;
144 /* the hard reg number chosen for given quantity,
145 or -1 if none was found. */
147 short phys_reg;
150 static struct qty *qty;
152 /* These fields are kept separately to speedup their clearing. */
154 /* We maintain two hard register sets that indicate suggested hard registers
155 for each quantity. The first, phys_copy_sugg, contains hard registers
156 that are tied to the quantity by a simple copy. The second contains all
157 hard registers that are tied to the quantity via an arithmetic operation.
159 The former register set is given priority for allocation. This tends to
160 eliminate copy insns. */
162 /* Element Q is a set of hard registers that are suggested for quantity Q by
163 copy insns. */
165 static HARD_REG_SET *qty_phys_copy_sugg;
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 arithmetic insns. */
170 static HARD_REG_SET *qty_phys_sugg;
172 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
174 static short *qty_phys_num_copy_sugg;
176 /* Element Q is the number of suggested registers in qty_phys_sugg. */
178 static short *qty_phys_num_sugg;
180 /* If (REG N) has been assigned a quantity number, is a register number
181 of another register assigned the same quantity number, or -1 for the
182 end of the chain. qty->first_reg point to the head of this chain. */
184 static int *reg_next_in_qty;
186 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
187 if it is >= 0,
188 of -1 if this register cannot be allocated by local-alloc,
189 or -2 if not known yet.
191 Note that if we see a use or death of pseudo register N with
192 reg_qty[N] == -2, register N must be local to the current block. If
193 it were used in more than one block, we would have reg_qty[N] == -1.
194 This relies on the fact that if reg_basic_block[N] is >= 0, register N
195 will not appear in any other block. We save a considerable number of
196 tests by exploiting this.
198 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
199 be referenced. */
201 static int *reg_qty;
203 /* The offset (in words) of register N within its quantity.
204 This can be nonzero if register N is SImode, and has been tied
205 to a subreg of a DImode register. */
207 static char *reg_offset;
209 /* Vector of substitutions of register numbers,
210 used to map pseudo regs into hardware regs.
211 This is set up as a result of register allocation.
212 Element N is the hard reg assigned to pseudo reg N,
213 or is -1 if no hard reg was assigned.
214 If N is a hard reg number, element N is N. */
216 short *reg_renumber;
218 /* Set of hard registers live at the current point in the scan
219 of the instructions in a basic block. */
221 static HARD_REG_SET regs_live;
223 /* Each set of hard registers indicates registers live at a particular
224 point in the basic block. For N even, regs_live_at[N] says which
225 hard registers are needed *after* insn N/2 (i.e., they may not
226 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
228 If an object is to conflict with the inputs of insn J but not the
229 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
230 if it is to conflict with the outputs of insn J but not the inputs of
231 insn J + 1, it is said to die at index J*2 + 1. */
233 static HARD_REG_SET *regs_live_at;
235 /* Communicate local vars `insn_number' and `insn'
236 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
237 static int this_insn_number;
238 static rtx this_insn;
240 struct equivalence
242 /* Set when an attempt should be made to replace a register
243 with the associated src_p entry. */
245 char replace;
247 /* Set when a REG_EQUIV note is found or created. Use to
248 keep track of what memory accesses might be created later,
249 e.g. by reload. */
251 rtx replacement;
253 rtx *src_p;
255 /* Loop depth is used to recognize equivalences which appear
256 to be present within the same loop (or in an inner loop). */
258 int loop_depth;
260 /* The list of each instruction which initializes this register. */
262 rtx init_insns;
265 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
266 structure for that register. */
268 static struct equivalence *reg_equiv;
270 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
271 static int recorded_label_ref;
273 static void alloc_qty (int, enum machine_mode, int, int);
274 static void validate_equiv_mem_from_store (rtx, rtx, void *);
275 static int validate_equiv_mem (rtx, rtx, rtx);
276 static int equiv_init_varies_p (rtx);
277 static int equiv_init_movable_p (rtx, int);
278 static int contains_replace_regs (rtx);
279 static int memref_referenced_p (rtx, rtx);
280 static int memref_used_between_p (rtx, rtx, rtx);
281 static void update_equiv_regs (void);
282 static void no_equiv (rtx, rtx, void *);
283 static void block_alloc (int);
284 static int qty_sugg_compare (int, int);
285 static int qty_sugg_compare_1 (const void *, const void *);
286 static int qty_compare (int, int);
287 static int qty_compare_1 (const void *, const void *);
288 static int combine_regs (rtx, rtx, int, int, rtx, int);
289 static int reg_meets_class_p (int, enum reg_class);
290 static void update_qty_class (int, int);
291 static void reg_is_set (rtx, rtx, void *);
292 static void reg_is_born (rtx, int);
293 static void wipe_dead_reg (rtx, int);
294 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
295 int, int);
296 static void mark_life (int, enum machine_mode, int);
297 static void post_mark_life (int, enum machine_mode, int, int, int);
298 static int no_conflict_p (rtx, rtx, rtx);
299 static int requires_inout (const char *);
301 /* Allocate a new quantity (new within current basic block)
302 for register number REGNO which is born at index BIRTH
303 within the block. MODE and SIZE are info on reg REGNO. */
305 static void
306 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
308 int qtyno = next_qty++;
310 reg_qty[regno] = qtyno;
311 reg_offset[regno] = 0;
312 reg_next_in_qty[regno] = -1;
314 qty[qtyno].first_reg = regno;
315 qty[qtyno].size = size;
316 qty[qtyno].mode = mode;
317 qty[qtyno].birth = birth;
318 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
319 qty[qtyno].min_class = reg_preferred_class (regno);
320 qty[qtyno].alternate_class = reg_alternate_class (regno);
321 qty[qtyno].n_refs = REG_N_REFS (regno);
322 qty[qtyno].freq = REG_FREQ (regno);
325 /* Main entry point of this file. */
328 local_alloc (void)
330 int i;
331 int max_qty;
332 basic_block b;
334 /* We need to keep track of whether or not we recorded a LABEL_REF so
335 that we know if the jump optimizer needs to be rerun. */
336 recorded_label_ref = 0;
338 /* Leaf functions and non-leaf functions have different needs.
339 If defined, let the machine say what kind of ordering we
340 should use. */
341 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
342 ORDER_REGS_FOR_LOCAL_ALLOC;
343 #endif
345 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
346 registers. */
347 if (optimize)
348 update_equiv_regs ();
350 /* This sets the maximum number of quantities we can have. Quantity
351 numbers start at zero and we can have one for each pseudo. */
352 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
354 /* Allocate vectors of temporary data.
355 See the declarations of these variables, above,
356 for what they mean. */
358 qty = xmalloc (max_qty * sizeof (struct qty));
359 qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
360 qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
361 qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
362 qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
364 reg_qty = xmalloc (max_regno * sizeof (int));
365 reg_offset = xmalloc (max_regno * sizeof (char));
366 reg_next_in_qty = xmalloc (max_regno * sizeof (int));
368 /* Determine which pseudo-registers can be allocated by local-alloc.
369 In general, these are the registers used only in a single block and
370 which only die once.
372 We need not be concerned with which block actually uses the register
373 since we will never see it outside that block. */
375 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
377 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
378 reg_qty[i] = -2;
379 else
380 reg_qty[i] = -1;
383 /* Force loop below to initialize entire quantity array. */
384 next_qty = max_qty;
386 /* Allocate each block's local registers, block by block. */
388 FOR_EACH_BB (b)
390 /* NEXT_QTY indicates which elements of the `qty_...'
391 vectors might need to be initialized because they were used
392 for the previous block; it is set to the entire array before
393 block 0. Initialize those, with explicit loop if there are few,
394 else with bzero and bcopy. Do not initialize vectors that are
395 explicit set by `alloc_qty'. */
397 if (next_qty < 6)
399 for (i = 0; i < next_qty; i++)
401 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
402 qty_phys_num_copy_sugg[i] = 0;
403 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
404 qty_phys_num_sugg[i] = 0;
407 else
409 #define CLEAR(vector) \
410 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
412 CLEAR (qty_phys_copy_sugg);
413 CLEAR (qty_phys_num_copy_sugg);
414 CLEAR (qty_phys_sugg);
415 CLEAR (qty_phys_num_sugg);
418 next_qty = 0;
420 block_alloc (b->index);
423 free (qty);
424 free (qty_phys_copy_sugg);
425 free (qty_phys_num_copy_sugg);
426 free (qty_phys_sugg);
427 free (qty_phys_num_sugg);
429 free (reg_qty);
430 free (reg_offset);
431 free (reg_next_in_qty);
433 return recorded_label_ref;
436 /* Used for communication between the following two functions: contains
437 a MEM that we wish to ensure remains unchanged. */
438 static rtx equiv_mem;
440 /* Set nonzero if EQUIV_MEM is modified. */
441 static int equiv_mem_modified;
443 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
444 Called via note_stores. */
446 static void
447 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
448 void *data ATTRIBUTE_UNUSED)
450 if ((REG_P (dest)
451 && reg_overlap_mentioned_p (dest, equiv_mem))
452 || (MEM_P (dest)
453 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
454 equiv_mem_modified = 1;
457 /* Verify that no store between START and the death of REG invalidates
458 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
459 by storing into an overlapping memory location, or with a non-const
460 CALL_INSN.
462 Return 1 if MEMREF remains valid. */
464 static int
465 validate_equiv_mem (rtx start, rtx reg, rtx memref)
467 rtx insn;
468 rtx note;
470 equiv_mem = memref;
471 equiv_mem_modified = 0;
473 /* If the memory reference has side effects or is volatile, it isn't a
474 valid equivalence. */
475 if (side_effects_p (memref))
476 return 0;
478 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
480 if (! INSN_P (insn))
481 continue;
483 if (find_reg_note (insn, REG_DEAD, reg))
484 return 1;
486 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
487 && ! CONST_OR_PURE_CALL_P (insn))
488 return 0;
490 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
492 /* If a register mentioned in MEMREF is modified via an
493 auto-increment, we lose the equivalence. Do the same if one
494 dies; although we could extend the life, it doesn't seem worth
495 the trouble. */
497 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
498 if ((REG_NOTE_KIND (note) == REG_INC
499 || REG_NOTE_KIND (note) == REG_DEAD)
500 && REG_P (XEXP (note, 0))
501 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
502 return 0;
505 return 0;
508 /* Returns zero if X is known to be invariant. */
510 static int
511 equiv_init_varies_p (rtx x)
513 RTX_CODE code = GET_CODE (x);
514 int i;
515 const char *fmt;
517 switch (code)
519 case MEM:
520 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
522 case CONST:
523 case CONST_INT:
524 case CONST_DOUBLE:
525 case CONST_VECTOR:
526 case SYMBOL_REF:
527 case LABEL_REF:
528 return 0;
530 case REG:
531 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
533 case ASM_OPERANDS:
534 if (MEM_VOLATILE_P (x))
535 return 1;
537 /* Fall through. */
539 default:
540 break;
543 fmt = GET_RTX_FORMAT (code);
544 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
545 if (fmt[i] == 'e')
547 if (equiv_init_varies_p (XEXP (x, i)))
548 return 1;
550 else if (fmt[i] == 'E')
552 int j;
553 for (j = 0; j < XVECLEN (x, i); j++)
554 if (equiv_init_varies_p (XVECEXP (x, i, j)))
555 return 1;
558 return 0;
561 /* Returns nonzero if X (used to initialize register REGNO) is movable.
562 X is only movable if the registers it uses have equivalent initializations
563 which appear to be within the same loop (or in an inner loop) and movable
564 or if they are not candidates for local_alloc and don't vary. */
566 static int
567 equiv_init_movable_p (rtx x, int regno)
569 int i, j;
570 const char *fmt;
571 enum rtx_code code = GET_CODE (x);
573 switch (code)
575 case SET:
576 return equiv_init_movable_p (SET_SRC (x), regno);
578 case CC0:
579 case CLOBBER:
580 return 0;
582 case PRE_INC:
583 case PRE_DEC:
584 case POST_INC:
585 case POST_DEC:
586 case PRE_MODIFY:
587 case POST_MODIFY:
588 return 0;
590 case REG:
591 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
592 && reg_equiv[REGNO (x)].replace)
593 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
595 case UNSPEC_VOLATILE:
596 return 0;
598 case ASM_OPERANDS:
599 if (MEM_VOLATILE_P (x))
600 return 0;
602 /* Fall through. */
604 default:
605 break;
608 fmt = GET_RTX_FORMAT (code);
609 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
610 switch (fmt[i])
612 case 'e':
613 if (! equiv_init_movable_p (XEXP (x, i), regno))
614 return 0;
615 break;
616 case 'E':
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
618 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
619 return 0;
620 break;
623 return 1;
626 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
628 static int
629 contains_replace_regs (rtx x)
631 int i, j;
632 const char *fmt;
633 enum rtx_code code = GET_CODE (x);
635 switch (code)
637 case CONST_INT:
638 case CONST:
639 case LABEL_REF:
640 case SYMBOL_REF:
641 case CONST_DOUBLE:
642 case CONST_VECTOR:
643 case PC:
644 case CC0:
645 case HIGH:
646 return 0;
648 case REG:
649 return reg_equiv[REGNO (x)].replace;
651 default:
652 break;
655 fmt = GET_RTX_FORMAT (code);
656 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
657 switch (fmt[i])
659 case 'e':
660 if (contains_replace_regs (XEXP (x, i)))
661 return 1;
662 break;
663 case 'E':
664 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
665 if (contains_replace_regs (XVECEXP (x, i, j)))
666 return 1;
667 break;
670 return 0;
673 /* TRUE if X references a memory location that would be affected by a store
674 to MEMREF. */
676 static int
677 memref_referenced_p (rtx memref, rtx x)
679 int i, j;
680 const char *fmt;
681 enum rtx_code code = GET_CODE (x);
683 switch (code)
685 case CONST_INT:
686 case CONST:
687 case LABEL_REF:
688 case SYMBOL_REF:
689 case CONST_DOUBLE:
690 case CONST_VECTOR:
691 case PC:
692 case CC0:
693 case HIGH:
694 case LO_SUM:
695 return 0;
697 case REG:
698 return (reg_equiv[REGNO (x)].replacement
699 && memref_referenced_p (memref,
700 reg_equiv[REGNO (x)].replacement));
702 case MEM:
703 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
704 return 1;
705 break;
707 case SET:
708 /* If we are setting a MEM, it doesn't count (its address does), but any
709 other SET_DEST that has a MEM in it is referencing the MEM. */
710 if (MEM_P (SET_DEST (x)))
712 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
713 return 1;
715 else if (memref_referenced_p (memref, SET_DEST (x)))
716 return 1;
718 return memref_referenced_p (memref, SET_SRC (x));
720 default:
721 break;
724 fmt = GET_RTX_FORMAT (code);
725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
726 switch (fmt[i])
728 case 'e':
729 if (memref_referenced_p (memref, XEXP (x, i)))
730 return 1;
731 break;
732 case 'E':
733 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
734 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
735 return 1;
736 break;
739 return 0;
742 /* TRUE if some insn in the range (START, END] references a memory location
743 that would be affected by a store to MEMREF. */
745 static int
746 memref_used_between_p (rtx memref, rtx start, rtx end)
748 rtx insn;
750 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
751 insn = NEXT_INSN (insn))
752 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
753 return 1;
755 return 0;
758 /* Find registers that are equivalent to a single value throughout the
759 compilation (either because they can be referenced in memory or are set once
760 from a single constant). Lower their priority for a register.
762 If such a register is only referenced once, try substituting its value
763 into the using insn. If it succeeds, we can eliminate the register
764 completely. */
766 static void
767 update_equiv_regs (void)
769 rtx insn;
770 basic_block bb;
771 int loop_depth;
772 regset_head cleared_regs;
773 int clear_regnos = 0;
775 reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
776 INIT_REG_SET (&cleared_regs);
778 init_alias_analysis ();
780 /* Scan the insns and find which registers have equivalences. Do this
781 in a separate scan of the insns because (due to -fcse-follow-jumps)
782 a register can be set below its use. */
783 FOR_EACH_BB (bb)
785 loop_depth = bb->loop_depth;
787 for (insn = BB_HEAD (bb);
788 insn != NEXT_INSN (BB_END (bb));
789 insn = NEXT_INSN (insn))
791 rtx note;
792 rtx set;
793 rtx dest, src;
794 int regno;
796 if (! INSN_P (insn))
797 continue;
799 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
800 if (REG_NOTE_KIND (note) == REG_INC)
801 no_equiv (XEXP (note, 0), note, NULL);
803 set = single_set (insn);
805 /* If this insn contains more (or less) than a single SET,
806 only mark all destinations as having no known equivalence. */
807 if (set == 0)
809 note_stores (PATTERN (insn), no_equiv, NULL);
810 continue;
812 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
814 int i;
816 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
818 rtx part = XVECEXP (PATTERN (insn), 0, i);
819 if (part != set)
820 note_stores (part, no_equiv, NULL);
824 dest = SET_DEST (set);
825 src = SET_SRC (set);
827 /* If this sets a MEM to the contents of a REG that is only used
828 in a single basic block, see if the register is always equivalent
829 to that memory location and if moving the store from INSN to the
830 insn that set REG is safe. If so, put a REG_EQUIV note on the
831 initializing insn.
833 Don't add a REG_EQUIV note if the insn already has one. The existing
834 REG_EQUIV is likely more useful than the one we are adding.
836 If one of the regs in the address has reg_equiv[REGNO].replace set,
837 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
838 optimization may move the set of this register immediately before
839 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
840 the mention in the REG_EQUIV note would be to an uninitialized
841 pseudo. */
842 /* ????? This test isn't good enough; we might see a MEM with a use of
843 a pseudo register before we see its setting insn that will cause
844 reg_equiv[].replace for that pseudo to be set.
845 Equivalences to MEMs should be made in another pass, after the
846 reg_equiv[].replace information has been gathered. */
848 if (MEM_P (dest) && REG_P (src)
849 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
850 && REG_BASIC_BLOCK (regno) >= 0
851 && REG_N_SETS (regno) == 1
852 && reg_equiv[regno].init_insns != 0
853 && reg_equiv[regno].init_insns != const0_rtx
854 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
855 REG_EQUIV, NULL_RTX)
856 && ! contains_replace_regs (XEXP (dest, 0)))
858 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
859 if (validate_equiv_mem (init_insn, src, dest)
860 && ! memref_used_between_p (dest, init_insn, insn))
861 REG_NOTES (init_insn)
862 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
865 /* We only handle the case of a pseudo register being set
866 once, or always to the same value. */
867 /* ??? The mn10200 port breaks if we add equivalences for
868 values that need an ADDRESS_REGS register and set them equivalent
869 to a MEM of a pseudo. The actual problem is in the over-conservative
870 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
871 calculate_needs, but we traditionally work around this problem
872 here by rejecting equivalences when the destination is in a register
873 that's likely spilled. This is fragile, of course, since the
874 preferred class of a pseudo depends on all instructions that set
875 or use it. */
877 if (!REG_P (dest)
878 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
879 || reg_equiv[regno].init_insns == const0_rtx
880 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
881 && MEM_P (src)))
883 /* This might be setting a SUBREG of a pseudo, a pseudo that is
884 also set somewhere else to a constant. */
885 note_stores (set, no_equiv, NULL);
886 continue;
889 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
891 /* cse sometimes generates function invariants, but doesn't put a
892 REG_EQUAL note on the insn. Since this note would be redundant,
893 there's no point creating it earlier than here. */
894 if (! note && ! rtx_varies_p (src, 0))
895 note = set_unique_reg_note (insn, REG_EQUAL, src);
897 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
898 since it represents a function call */
899 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
900 note = NULL_RTX;
902 if (REG_N_SETS (regno) != 1
903 && (! note
904 || rtx_varies_p (XEXP (note, 0), 0)
905 || (reg_equiv[regno].replacement
906 && ! rtx_equal_p (XEXP (note, 0),
907 reg_equiv[regno].replacement))))
909 no_equiv (dest, set, NULL);
910 continue;
912 /* Record this insn as initializing this register. */
913 reg_equiv[regno].init_insns
914 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
916 /* If this register is known to be equal to a constant, record that
917 it is always equivalent to the constant. */
918 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
919 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
921 /* If this insn introduces a "constant" register, decrease the priority
922 of that register. Record this insn if the register is only used once
923 more and the equivalence value is the same as our source.
925 The latter condition is checked for two reasons: First, it is an
926 indication that it may be more efficient to actually emit the insn
927 as written (if no registers are available, reload will substitute
928 the equivalence). Secondly, it avoids problems with any registers
929 dying in this insn whose death notes would be missed.
931 If we don't have a REG_EQUIV note, see if this insn is loading
932 a register used only in one basic block from a MEM. If so, and the
933 MEM remains unchanged for the life of the register, add a REG_EQUIV
934 note. */
936 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
938 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
939 && MEM_P (SET_SRC (set))
940 && validate_equiv_mem (insn, dest, SET_SRC (set)))
941 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
942 REG_NOTES (insn));
944 if (note)
946 int regno = REGNO (dest);
948 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
949 We might end up substituting the LABEL_REF for uses of the
950 pseudo here or later. That kind of transformation may turn an
951 indirect jump into a direct jump, in which case we must rerun the
952 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
953 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
954 || (GET_CODE (XEXP (note, 0)) == CONST
955 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
956 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
957 == LABEL_REF)))
958 recorded_label_ref = 1;
960 reg_equiv[regno].replacement = XEXP (note, 0);
961 reg_equiv[regno].src_p = &SET_SRC (set);
962 reg_equiv[regno].loop_depth = loop_depth;
964 /* Don't mess with things live during setjmp. */
965 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
967 /* Note that the statement below does not affect the priority
968 in local-alloc! */
969 REG_LIVE_LENGTH (regno) *= 2;
972 /* If the register is referenced exactly twice, meaning it is
973 set once and used once, indicate that the reference may be
974 replaced by the equivalence we computed above. Do this
975 even if the register is only used in one block so that
976 dependencies can be handled where the last register is
977 used in a different block (i.e. HIGH / LO_SUM sequences)
978 and to reduce the number of registers alive across
979 calls. */
981 if (REG_N_REFS (regno) == 2
982 && (rtx_equal_p (XEXP (note, 0), src)
983 || ! equiv_init_varies_p (src))
984 && NONJUMP_INSN_P (insn)
985 && equiv_init_movable_p (PATTERN (insn), regno))
986 reg_equiv[regno].replace = 1;
992 /* Now scan all regs killed in an insn to see if any of them are
993 registers only used that once. If so, see if we can replace the
994 reference with the equivalent from. If we can, delete the
995 initializing reference and this register will go away. If we
996 can't replace the reference, and the initializing reference is
997 within the same loop (or in an inner loop), then move the register
998 initialization just before the use, so that they are in the same
999 basic block. */
1000 FOR_EACH_BB_REVERSE (bb)
1002 loop_depth = bb->loop_depth;
1003 for (insn = BB_END (bb);
1004 insn != PREV_INSN (BB_HEAD (bb));
1005 insn = PREV_INSN (insn))
1007 rtx link;
1009 if (! INSN_P (insn))
1010 continue;
1012 /* Don't substitute into a non-local goto, this confuses CFG. */
1013 if (JUMP_P (insn)
1014 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1015 continue;
1017 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1019 if (REG_NOTE_KIND (link) == REG_DEAD
1020 /* Make sure this insn still refers to the register. */
1021 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1023 int regno = REGNO (XEXP (link, 0));
1024 rtx equiv_insn;
1026 if (! reg_equiv[regno].replace
1027 || reg_equiv[regno].loop_depth < loop_depth)
1028 continue;
1030 /* reg_equiv[REGNO].replace gets set only when
1031 REG_N_REFS[REGNO] is 2, i.e. the register is set
1032 once and used once. (If it were only set, but not used,
1033 flow would have deleted the setting insns.) Hence
1034 there can only be one insn in reg_equiv[REGNO].init_insns. */
1035 if (reg_equiv[regno].init_insns == NULL_RTX
1036 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1037 abort ();
1038 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1040 /* We may not move instructions that can throw, since
1041 that changes basic block boundaries and we are not
1042 prepared to adjust the CFG to match. */
1043 if (can_throw_internal (equiv_insn))
1044 continue;
1046 if (asm_noperands (PATTERN (equiv_insn)) < 0
1047 && validate_replace_rtx (regno_reg_rtx[regno],
1048 *(reg_equiv[regno].src_p), insn))
1050 rtx equiv_link;
1051 rtx last_link;
1052 rtx note;
1054 /* Find the last note. */
1055 for (last_link = link; XEXP (last_link, 1);
1056 last_link = XEXP (last_link, 1))
1059 /* Append the REG_DEAD notes from equiv_insn. */
1060 equiv_link = REG_NOTES (equiv_insn);
1061 while (equiv_link)
1063 note = equiv_link;
1064 equiv_link = XEXP (equiv_link, 1);
1065 if (REG_NOTE_KIND (note) == REG_DEAD)
1067 remove_note (equiv_insn, note);
1068 XEXP (last_link, 1) = note;
1069 XEXP (note, 1) = NULL_RTX;
1070 last_link = note;
1074 remove_death (regno, insn);
1075 REG_N_REFS (regno) = 0;
1076 REG_FREQ (regno) = 0;
1077 delete_insn (equiv_insn);
1079 reg_equiv[regno].init_insns
1080 = XEXP (reg_equiv[regno].init_insns, 1);
1082 /* Move the initialization of the register to just before
1083 INSN. Update the flow information. */
1084 else if (PREV_INSN (insn) != equiv_insn)
1086 rtx new_insn;
1088 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1089 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1090 REG_NOTES (equiv_insn) = 0;
1092 /* Make sure this insn is recognized before reload begins,
1093 otherwise eliminate_regs_in_insn will abort. */
1094 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1096 delete_insn (equiv_insn);
1098 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1100 REG_BASIC_BLOCK (regno) = bb->index;
1101 REG_N_CALLS_CROSSED (regno) = 0;
1102 REG_LIVE_LENGTH (regno) = 2;
1104 if (insn == BB_HEAD (bb))
1105 BB_HEAD (bb) = PREV_INSN (insn);
1107 /* Remember to clear REGNO from all basic block's live
1108 info. */
1109 SET_REGNO_REG_SET (&cleared_regs, regno);
1110 clear_regnos++;
1117 /* Clear all dead REGNOs from all basic block's live info. */
1118 if (clear_regnos)
1120 unsigned j;
1122 if (clear_regnos > 8)
1124 FOR_EACH_BB (bb)
1126 AND_COMPL_REG_SET (bb->global_live_at_start, &cleared_regs);
1127 AND_COMPL_REG_SET (bb->global_live_at_end, &cleared_regs);
1130 else
1132 reg_set_iterator rsi;
1133 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1135 FOR_EACH_BB (bb)
1137 CLEAR_REGNO_REG_SET (bb->global_live_at_start, j);
1138 CLEAR_REGNO_REG_SET (bb->global_live_at_end, j);
1144 /* Clean up. */
1145 end_alias_analysis ();
1146 CLEAR_REG_SET (&cleared_regs);
1147 free (reg_equiv);
1150 /* Mark REG as having no known equivalence.
1151 Some instructions might have been processed before and furnished
1152 with REG_EQUIV notes for this register; these notes will have to be
1153 removed.
1154 STORE is the piece of RTL that does the non-constant / conflicting
1155 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1156 but needs to be there because this function is called from note_stores. */
1157 static void
1158 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1160 int regno;
1161 rtx list;
1163 if (!REG_P (reg))
1164 return;
1165 regno = REGNO (reg);
1166 list = reg_equiv[regno].init_insns;
1167 if (list == const0_rtx)
1168 return;
1169 for (; list; list = XEXP (list, 1))
1171 rtx insn = XEXP (list, 0);
1172 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1174 reg_equiv[regno].init_insns = const0_rtx;
1175 reg_equiv[regno].replacement = NULL_RTX;
1178 /* Allocate hard regs to the pseudo regs used only within block number B.
1179 Only the pseudos that die but once can be handled. */
1181 static void
1182 block_alloc (int b)
1184 int i, q;
1185 rtx insn;
1186 rtx note, hard_reg;
1187 int insn_number = 0;
1188 int insn_count = 0;
1189 int max_uid = get_max_uid ();
1190 int *qty_order;
1191 int no_conflict_combined_regno = -1;
1193 /* Count the instructions in the basic block. */
1195 insn = BB_END (BASIC_BLOCK (b));
1196 while (1)
1198 if (!NOTE_P (insn))
1199 if (++insn_count > max_uid)
1200 abort ();
1201 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1202 break;
1203 insn = PREV_INSN (insn);
1206 /* +2 to leave room for a post_mark_life at the last insn and for
1207 the birth of a CLOBBER in the first insn. */
1208 regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1210 /* Initialize table of hardware registers currently live. */
1212 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1214 /* This loop scans the instructions of the basic block
1215 and assigns quantities to registers.
1216 It computes which registers to tie. */
1218 insn = BB_HEAD (BASIC_BLOCK (b));
1219 while (1)
1221 if (!NOTE_P (insn))
1222 insn_number++;
1224 if (INSN_P (insn))
1226 rtx link, set;
1227 int win = 0;
1228 rtx r0, r1 = NULL_RTX;
1229 int combined_regno = -1;
1230 int i;
1232 this_insn_number = insn_number;
1233 this_insn = insn;
1235 extract_insn (insn);
1236 which_alternative = -1;
1238 /* Is this insn suitable for tying two registers?
1239 If so, try doing that.
1240 Suitable insns are those with at least two operands and where
1241 operand 0 is an output that is a register that is not
1242 earlyclobber.
1244 We can tie operand 0 with some operand that dies in this insn.
1245 First look for operands that are required to be in the same
1246 register as operand 0. If we find such, only try tying that
1247 operand or one that can be put into that operand if the
1248 operation is commutative. If we don't find an operand
1249 that is required to be in the same register as operand 0,
1250 we can tie with any operand.
1252 Subregs in place of regs are also ok.
1254 If tying is done, WIN is set nonzero. */
1256 if (optimize
1257 && recog_data.n_operands > 1
1258 && recog_data.constraints[0][0] == '='
1259 && recog_data.constraints[0][1] != '&')
1261 /* If non-negative, is an operand that must match operand 0. */
1262 int must_match_0 = -1;
1263 /* Counts number of alternatives that require a match with
1264 operand 0. */
1265 int n_matching_alts = 0;
1267 for (i = 1; i < recog_data.n_operands; i++)
1269 const char *p = recog_data.constraints[i];
1270 int this_match = requires_inout (p);
1272 n_matching_alts += this_match;
1273 if (this_match == recog_data.n_alternatives)
1274 must_match_0 = i;
1277 r0 = recog_data.operand[0];
1278 for (i = 1; i < recog_data.n_operands; i++)
1280 /* Skip this operand if we found an operand that
1281 must match operand 0 and this operand isn't it
1282 and can't be made to be it by commutativity. */
1284 if (must_match_0 >= 0 && i != must_match_0
1285 && ! (i == must_match_0 + 1
1286 && recog_data.constraints[i-1][0] == '%')
1287 && ! (i == must_match_0 - 1
1288 && recog_data.constraints[i][0] == '%'))
1289 continue;
1291 /* Likewise if each alternative has some operand that
1292 must match operand zero. In that case, skip any
1293 operand that doesn't list operand 0 since we know that
1294 the operand always conflicts with operand 0. We
1295 ignore commutativity in this case to keep things simple. */
1296 if (n_matching_alts == recog_data.n_alternatives
1297 && 0 == requires_inout (recog_data.constraints[i]))
1298 continue;
1300 r1 = recog_data.operand[i];
1302 /* If the operand is an address, find a register in it.
1303 There may be more than one register, but we only try one
1304 of them. */
1305 if (recog_data.constraints[i][0] == 'p'
1306 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1307 recog_data.constraints[i]))
1308 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1309 r1 = XEXP (r1, 0);
1311 /* Avoid making a call-saved register unnecessarily
1312 clobbered. */
1313 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1314 if (hard_reg != NULL_RTX)
1316 if (REG_P (hard_reg)
1317 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1318 && !call_used_regs[REGNO (hard_reg)])
1319 continue;
1322 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1324 /* We have two priorities for hard register preferences.
1325 If we have a move insn or an insn whose first input
1326 can only be in the same register as the output, give
1327 priority to an equivalence found from that insn. */
1328 int may_save_copy
1329 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1331 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1332 win = combine_regs (r1, r0, may_save_copy,
1333 insn_number, insn, 0);
1335 if (win)
1336 break;
1340 /* Recognize an insn sequence with an ultimate result
1341 which can safely overlap one of the inputs.
1342 The sequence begins with a CLOBBER of its result,
1343 and ends with an insn that copies the result to itself
1344 and has a REG_EQUAL note for an equivalent formula.
1345 That note indicates what the inputs are.
1346 The result and the input can overlap if each insn in
1347 the sequence either doesn't mention the input
1348 or has a REG_NO_CONFLICT note to inhibit the conflict.
1350 We do the combining test at the CLOBBER so that the
1351 destination register won't have had a quantity number
1352 assigned, since that would prevent combining. */
1354 if (optimize
1355 && GET_CODE (PATTERN (insn)) == CLOBBER
1356 && (r0 = XEXP (PATTERN (insn), 0),
1357 REG_P (r0))
1358 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1359 && XEXP (link, 0) != 0
1360 && NONJUMP_INSN_P (XEXP (link, 0))
1361 && (set = single_set (XEXP (link, 0))) != 0
1362 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1363 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1364 NULL_RTX)) != 0)
1366 if (r1 = XEXP (note, 0), REG_P (r1)
1367 /* Check that we have such a sequence. */
1368 && no_conflict_p (insn, r0, r1))
1369 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1370 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1371 && (r1 = XEXP (XEXP (note, 0), 0),
1372 REG_P (r1) || GET_CODE (r1) == SUBREG)
1373 && no_conflict_p (insn, r0, r1))
1374 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1376 /* Here we care if the operation to be computed is
1377 commutative. */
1378 else if (COMMUTATIVE_P (XEXP (note, 0))
1379 && (r1 = XEXP (XEXP (note, 0), 1),
1380 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1381 && no_conflict_p (insn, r0, r1))
1382 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1384 /* If we did combine something, show the register number
1385 in question so that we know to ignore its death. */
1386 if (win)
1387 no_conflict_combined_regno = REGNO (r1);
1390 /* If registers were just tied, set COMBINED_REGNO
1391 to the number of the register used in this insn
1392 that was tied to the register set in this insn.
1393 This register's qty should not be "killed". */
1395 if (win)
1397 while (GET_CODE (r1) == SUBREG)
1398 r1 = SUBREG_REG (r1);
1399 combined_regno = REGNO (r1);
1402 /* Mark the death of everything that dies in this instruction,
1403 except for anything that was just combined. */
1405 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1406 if (REG_NOTE_KIND (link) == REG_DEAD
1407 && REG_P (XEXP (link, 0))
1408 && combined_regno != (int) REGNO (XEXP (link, 0))
1409 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1410 || ! find_reg_note (insn, REG_NO_CONFLICT,
1411 XEXP (link, 0))))
1412 wipe_dead_reg (XEXP (link, 0), 0);
1414 /* Allocate qty numbers for all registers local to this block
1415 that are born (set) in this instruction.
1416 A pseudo that already has a qty is not changed. */
1418 note_stores (PATTERN (insn), reg_is_set, NULL);
1420 /* If anything is set in this insn and then unused, mark it as dying
1421 after this insn, so it will conflict with our outputs. This
1422 can't match with something that combined, and it doesn't matter
1423 if it did. Do this after the calls to reg_is_set since these
1424 die after, not during, the current insn. */
1426 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1427 if (REG_NOTE_KIND (link) == REG_UNUSED
1428 && REG_P (XEXP (link, 0)))
1429 wipe_dead_reg (XEXP (link, 0), 1);
1431 /* If this is an insn that has a REG_RETVAL note pointing at a
1432 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1433 block, so clear any register number that combined within it. */
1434 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1435 && NONJUMP_INSN_P (XEXP (note, 0))
1436 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1437 no_conflict_combined_regno = -1;
1440 /* Set the registers live after INSN_NUMBER. Note that we never
1441 record the registers live before the block's first insn, since no
1442 pseudos we care about are live before that insn. */
1444 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1445 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1447 if (insn == BB_END (BASIC_BLOCK (b)))
1448 break;
1450 insn = NEXT_INSN (insn);
1453 /* Now every register that is local to this basic block
1454 should have been given a quantity, or else -1 meaning ignore it.
1455 Every quantity should have a known birth and death.
1457 Order the qtys so we assign them registers in order of the
1458 number of suggested registers they need so we allocate those with
1459 the most restrictive needs first. */
1461 qty_order = xmalloc (next_qty * sizeof (int));
1462 for (i = 0; i < next_qty; i++)
1463 qty_order[i] = i;
1465 #define EXCHANGE(I1, I2) \
1466 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1468 switch (next_qty)
1470 case 3:
1471 /* Make qty_order[2] be the one to allocate last. */
1472 if (qty_sugg_compare (0, 1) > 0)
1473 EXCHANGE (0, 1);
1474 if (qty_sugg_compare (1, 2) > 0)
1475 EXCHANGE (2, 1);
1477 /* ... Fall through ... */
1478 case 2:
1479 /* Put the best one to allocate in qty_order[0]. */
1480 if (qty_sugg_compare (0, 1) > 0)
1481 EXCHANGE (0, 1);
1483 /* ... Fall through ... */
1485 case 1:
1486 case 0:
1487 /* Nothing to do here. */
1488 break;
1490 default:
1491 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1494 /* Try to put each quantity in a suggested physical register, if it has one.
1495 This may cause registers to be allocated that otherwise wouldn't be, but
1496 this seems acceptable in local allocation (unlike global allocation). */
1497 for (i = 0; i < next_qty; i++)
1499 q = qty_order[i];
1500 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1501 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1502 0, 1, qty[q].birth, qty[q].death);
1503 else
1504 qty[q].phys_reg = -1;
1507 /* Order the qtys so we assign them registers in order of
1508 decreasing length of life. Normally call qsort, but if we
1509 have only a very small number of quantities, sort them ourselves. */
1511 for (i = 0; i < next_qty; i++)
1512 qty_order[i] = i;
1514 #define EXCHANGE(I1, I2) \
1515 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1517 switch (next_qty)
1519 case 3:
1520 /* Make qty_order[2] be the one to allocate last. */
1521 if (qty_compare (0, 1) > 0)
1522 EXCHANGE (0, 1);
1523 if (qty_compare (1, 2) > 0)
1524 EXCHANGE (2, 1);
1526 /* ... Fall through ... */
1527 case 2:
1528 /* Put the best one to allocate in qty_order[0]. */
1529 if (qty_compare (0, 1) > 0)
1530 EXCHANGE (0, 1);
1532 /* ... Fall through ... */
1534 case 1:
1535 case 0:
1536 /* Nothing to do here. */
1537 break;
1539 default:
1540 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1543 /* Now for each qty that is not a hardware register,
1544 look for a hardware register to put it in.
1545 First try the register class that is cheapest for this qty,
1546 if there is more than one class. */
1548 for (i = 0; i < next_qty; i++)
1550 q = qty_order[i];
1551 if (qty[q].phys_reg < 0)
1553 #ifdef INSN_SCHEDULING
1554 /* These values represent the adjusted lifetime of a qty so
1555 that it conflicts with qtys which appear near the start/end
1556 of this qty's lifetime.
1558 The purpose behind extending the lifetime of this qty is to
1559 discourage the register allocator from creating false
1560 dependencies.
1562 The adjustment value is chosen to indicate that this qty
1563 conflicts with all the qtys in the instructions immediately
1564 before and after the lifetime of this qty.
1566 Experiments have shown that higher values tend to hurt
1567 overall code performance.
1569 If allocation using the extended lifetime fails we will try
1570 again with the qty's unadjusted lifetime. */
1571 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1572 int fake_death = MIN (insn_number * 2 + 1,
1573 qty[q].death + 2 - qty[q].death % 2);
1574 #endif
1576 if (N_REG_CLASSES > 1)
1578 #ifdef INSN_SCHEDULING
1579 /* We try to avoid using hard registers allocated to qtys which
1580 are born immediately after this qty or die immediately before
1581 this qty.
1583 This optimization is only appropriate when we will run
1584 a scheduling pass after reload and we are not optimizing
1585 for code size. */
1586 if (flag_schedule_insns_after_reload
1587 && !optimize_size
1588 && !SMALL_REGISTER_CLASSES)
1590 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1591 qty[q].mode, q, 0, 0,
1592 fake_birth, fake_death);
1593 if (qty[q].phys_reg >= 0)
1594 continue;
1596 #endif
1597 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1598 qty[q].mode, q, 0, 0,
1599 qty[q].birth, qty[q].death);
1600 if (qty[q].phys_reg >= 0)
1601 continue;
1604 #ifdef INSN_SCHEDULING
1605 /* Similarly, avoid false dependencies. */
1606 if (flag_schedule_insns_after_reload
1607 && !optimize_size
1608 && !SMALL_REGISTER_CLASSES
1609 && qty[q].alternate_class != NO_REGS)
1610 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1611 qty[q].mode, q, 0, 0,
1612 fake_birth, fake_death);
1613 #endif
1614 if (qty[q].alternate_class != NO_REGS)
1615 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1616 qty[q].mode, q, 0, 0,
1617 qty[q].birth, qty[q].death);
1621 /* Now propagate the register assignments
1622 to the pseudo regs belonging to the qtys. */
1624 for (q = 0; q < next_qty; q++)
1625 if (qty[q].phys_reg >= 0)
1627 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1628 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1631 /* Clean up. */
1632 free (regs_live_at);
1633 free (qty_order);
1636 /* Compare two quantities' priority for getting real registers.
1637 We give shorter-lived quantities higher priority.
1638 Quantities with more references are also preferred, as are quantities that
1639 require multiple registers. This is the identical prioritization as
1640 done by global-alloc.
1642 We used to give preference to registers with *longer* lives, but using
1643 the same algorithm in both local- and global-alloc can speed up execution
1644 of some programs by as much as a factor of three! */
1646 /* Note that the quotient will never be bigger than
1647 the value of floor_log2 times the maximum number of
1648 times a register can occur in one insn (surely less than 100)
1649 weighted by frequency (max REG_FREQ_MAX).
1650 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1651 QTY_CMP_PRI is also used by qty_sugg_compare. */
1653 #define QTY_CMP_PRI(q) \
1654 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1655 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1657 static int
1658 qty_compare (int q1, int q2)
1660 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1663 static int
1664 qty_compare_1 (const void *q1p, const void *q2p)
1666 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1667 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1669 if (tem != 0)
1670 return tem;
1672 /* If qtys are equally good, sort by qty number,
1673 so that the results of qsort leave nothing to chance. */
1674 return q1 - q2;
1677 /* Compare two quantities' priority for getting real registers. This version
1678 is called for quantities that have suggested hard registers. First priority
1679 goes to quantities that have copy preferences, then to those that have
1680 normal preferences. Within those groups, quantities with the lower
1681 number of preferences have the highest priority. Of those, we use the same
1682 algorithm as above. */
1684 #define QTY_CMP_SUGG(q) \
1685 (qty_phys_num_copy_sugg[q] \
1686 ? qty_phys_num_copy_sugg[q] \
1687 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1689 static int
1690 qty_sugg_compare (int q1, int q2)
1692 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1694 if (tem != 0)
1695 return tem;
1697 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1700 static int
1701 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1703 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1704 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1706 if (tem != 0)
1707 return tem;
1709 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1710 if (tem != 0)
1711 return tem;
1713 /* If qtys are equally good, sort by qty number,
1714 so that the results of qsort leave nothing to chance. */
1715 return q1 - q2;
1718 #undef QTY_CMP_SUGG
1719 #undef QTY_CMP_PRI
1721 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1722 Returns 1 if have done so, or 0 if cannot.
1724 Combining registers means marking them as having the same quantity
1725 and adjusting the offsets within the quantity if either of
1726 them is a SUBREG.
1728 We don't actually combine a hard reg with a pseudo; instead
1729 we just record the hard reg as the suggestion for the pseudo's quantity.
1730 If we really combined them, we could lose if the pseudo lives
1731 across an insn that clobbers the hard reg (eg, movmem).
1733 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1734 there is no REG_DEAD note on INSN. This occurs during the processing
1735 of REG_NO_CONFLICT blocks.
1737 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1738 SETREG or if the input and output must share a register.
1739 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1741 There are elaborate checks for the validity of combining. */
1743 static int
1744 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1745 rtx insn, int already_dead)
1747 int ureg, sreg;
1748 int offset = 0;
1749 int usize, ssize;
1750 int sqty;
1752 /* Determine the numbers and sizes of registers being used. If a subreg
1753 is present that does not change the entire register, don't consider
1754 this a copy insn. */
1756 while (GET_CODE (usedreg) == SUBREG)
1758 rtx subreg = SUBREG_REG (usedreg);
1760 if (REG_P (subreg))
1762 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1763 may_save_copy = 0;
1765 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1766 offset += subreg_regno_offset (REGNO (subreg),
1767 GET_MODE (subreg),
1768 SUBREG_BYTE (usedreg),
1769 GET_MODE (usedreg));
1770 else
1771 offset += (SUBREG_BYTE (usedreg)
1772 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1775 usedreg = subreg;
1778 if (!REG_P (usedreg))
1779 return 0;
1781 ureg = REGNO (usedreg);
1782 if (ureg < FIRST_PSEUDO_REGISTER)
1783 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1784 else
1785 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1786 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1787 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1789 while (GET_CODE (setreg) == SUBREG)
1791 rtx subreg = SUBREG_REG (setreg);
1793 if (REG_P (subreg))
1795 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1796 may_save_copy = 0;
1798 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1799 offset -= subreg_regno_offset (REGNO (subreg),
1800 GET_MODE (subreg),
1801 SUBREG_BYTE (setreg),
1802 GET_MODE (setreg));
1803 else
1804 offset -= (SUBREG_BYTE (setreg)
1805 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1808 setreg = subreg;
1811 if (!REG_P (setreg))
1812 return 0;
1814 sreg = REGNO (setreg);
1815 if (sreg < FIRST_PSEUDO_REGISTER)
1816 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1817 else
1818 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1819 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1820 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1822 /* If UREG is a pseudo-register that hasn't already been assigned a
1823 quantity number, it means that it is not local to this block or dies
1824 more than once. In either event, we can't do anything with it. */
1825 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1826 /* Do not combine registers unless one fits within the other. */
1827 || (offset > 0 && usize + offset > ssize)
1828 || (offset < 0 && usize + offset < ssize)
1829 /* Do not combine with a smaller already-assigned object
1830 if that smaller object is already combined with something bigger. */
1831 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1832 && usize < qty[reg_qty[ureg]].size)
1833 /* Can't combine if SREG is not a register we can allocate. */
1834 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1835 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1836 These have already been taken care of. This probably wouldn't
1837 combine anyway, but don't take any chances. */
1838 || (ureg >= FIRST_PSEUDO_REGISTER
1839 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1840 /* Don't tie something to itself. In most cases it would make no
1841 difference, but it would screw up if the reg being tied to itself
1842 also dies in this insn. */
1843 || ureg == sreg
1844 /* Don't try to connect two different hardware registers. */
1845 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1846 /* Don't connect two different machine modes if they have different
1847 implications as to which registers may be used. */
1848 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1849 return 0;
1851 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1852 qty_phys_sugg for the pseudo instead of tying them.
1854 Return "failure" so that the lifespan of UREG is terminated here;
1855 that way the two lifespans will be disjoint and nothing will prevent
1856 the pseudo reg from being given this hard reg. */
1858 if (ureg < FIRST_PSEUDO_REGISTER)
1860 /* Allocate a quantity number so we have a place to put our
1861 suggestions. */
1862 if (reg_qty[sreg] == -2)
1863 reg_is_born (setreg, 2 * insn_number);
1865 if (reg_qty[sreg] >= 0)
1867 if (may_save_copy
1868 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1870 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1871 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1873 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1875 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1876 qty_phys_num_sugg[reg_qty[sreg]]++;
1879 return 0;
1882 /* Similarly for SREG a hard register and UREG a pseudo register. */
1884 if (sreg < FIRST_PSEUDO_REGISTER)
1886 if (may_save_copy
1887 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1889 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1890 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1892 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1894 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1895 qty_phys_num_sugg[reg_qty[ureg]]++;
1897 return 0;
1900 /* At this point we know that SREG and UREG are both pseudos.
1901 Do nothing if SREG already has a quantity or is a register that we
1902 don't allocate. */
1903 if (reg_qty[sreg] >= -1
1904 /* If we are not going to let any regs live across calls,
1905 don't tie a call-crossing reg to a non-call-crossing reg. */
1906 || (current_function_has_nonlocal_label
1907 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1908 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1909 return 0;
1911 /* We don't already know about SREG, so tie it to UREG
1912 if this is the last use of UREG, provided the classes they want
1913 are compatible. */
1915 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1916 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1918 /* Add SREG to UREG's quantity. */
1919 sqty = reg_qty[ureg];
1920 reg_qty[sreg] = sqty;
1921 reg_offset[sreg] = reg_offset[ureg] + offset;
1922 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1923 qty[sqty].first_reg = sreg;
1925 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1926 update_qty_class (sqty, sreg);
1928 /* Update info about quantity SQTY. */
1929 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1930 qty[sqty].n_refs += REG_N_REFS (sreg);
1931 qty[sqty].freq += REG_FREQ (sreg);
1932 if (usize < ssize)
1934 int i;
1936 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1937 reg_offset[i] -= offset;
1939 qty[sqty].size = ssize;
1940 qty[sqty].mode = GET_MODE (setreg);
1943 else
1944 return 0;
1946 return 1;
1949 /* Return 1 if the preferred class of REG allows it to be tied
1950 to a quantity or register whose class is CLASS.
1951 True if REG's reg class either contains or is contained in CLASS. */
1953 static int
1954 reg_meets_class_p (int reg, enum reg_class class)
1956 enum reg_class rclass = reg_preferred_class (reg);
1957 return (reg_class_subset_p (rclass, class)
1958 || reg_class_subset_p (class, rclass));
1961 /* Update the class of QTYNO assuming that REG is being tied to it. */
1963 static void
1964 update_qty_class (int qtyno, int reg)
1966 enum reg_class rclass = reg_preferred_class (reg);
1967 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1968 qty[qtyno].min_class = rclass;
1970 rclass = reg_alternate_class (reg);
1971 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1972 qty[qtyno].alternate_class = rclass;
1975 /* Handle something which alters the value of an rtx REG.
1977 REG is whatever is set or clobbered. SETTER is the rtx that
1978 is modifying the register.
1980 If it is not really a register, we do nothing.
1981 The file-global variables `this_insn' and `this_insn_number'
1982 carry info from `block_alloc'. */
1984 static void
1985 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
1987 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1988 a hard register. These may actually not exist any more. */
1990 if (GET_CODE (reg) != SUBREG
1991 && !REG_P (reg))
1992 return;
1994 /* Mark this register as being born. If it is used in a CLOBBER, mark
1995 it as being born halfway between the previous insn and this insn so that
1996 it conflicts with our inputs but not the outputs of the previous insn. */
1998 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2001 /* Handle beginning of the life of register REG.
2002 BIRTH is the index at which this is happening. */
2004 static void
2005 reg_is_born (rtx reg, int birth)
2007 int regno;
2009 if (GET_CODE (reg) == SUBREG)
2011 regno = REGNO (SUBREG_REG (reg));
2012 if (regno < FIRST_PSEUDO_REGISTER)
2013 regno = subreg_regno (reg);
2015 else
2016 regno = REGNO (reg);
2018 if (regno < FIRST_PSEUDO_REGISTER)
2020 mark_life (regno, GET_MODE (reg), 1);
2022 /* If the register was to have been born earlier that the present
2023 insn, mark it as live where it is actually born. */
2024 if (birth < 2 * this_insn_number)
2025 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2027 else
2029 if (reg_qty[regno] == -2)
2030 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2032 /* If this register has a quantity number, show that it isn't dead. */
2033 if (reg_qty[regno] >= 0)
2034 qty[reg_qty[regno]].death = -1;
2038 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2039 REG is an output that is dying (i.e., it is never used), otherwise it
2040 is an input (the normal case).
2041 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2043 static void
2044 wipe_dead_reg (rtx reg, int output_p)
2046 int regno = REGNO (reg);
2048 /* If this insn has multiple results,
2049 and the dead reg is used in one of the results,
2050 extend its life to after this insn,
2051 so it won't get allocated together with any other result of this insn.
2053 It is unsafe to use !single_set here since it will ignore an unused
2054 output. Just because an output is unused does not mean the compiler
2055 can assume the side effect will not occur. Consider if REG appears
2056 in the address of an output and we reload the output. If we allocate
2057 REG to the same hard register as an unused output we could set the hard
2058 register before the output reload insn. */
2059 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2060 && multiple_sets (this_insn))
2062 int i;
2063 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2065 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2066 if (GET_CODE (set) == SET
2067 && !REG_P (SET_DEST (set))
2068 && !rtx_equal_p (reg, SET_DEST (set))
2069 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2070 output_p = 1;
2074 /* If this register is used in an auto-increment address, then extend its
2075 life to after this insn, so that it won't get allocated together with
2076 the result of this insn. */
2077 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2078 output_p = 1;
2080 if (regno < FIRST_PSEUDO_REGISTER)
2082 mark_life (regno, GET_MODE (reg), 0);
2084 /* If a hard register is dying as an output, mark it as in use at
2085 the beginning of this insn (the above statement would cause this
2086 not to happen). */
2087 if (output_p)
2088 post_mark_life (regno, GET_MODE (reg), 1,
2089 2 * this_insn_number, 2 * this_insn_number + 1);
2092 else if (reg_qty[regno] >= 0)
2093 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2096 /* Find a block of SIZE words of hard regs in reg_class CLASS
2097 that can hold something of machine-mode MODE
2098 (but actually we test only the first of the block for holding MODE)
2099 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2100 and return the number of the first of them.
2101 Return -1 if such a block cannot be found.
2102 If QTYNO crosses calls, insist on a register preserved by calls,
2103 unless ACCEPT_CALL_CLOBBERED is nonzero.
2105 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2106 register is available. If not, return -1. */
2108 static int
2109 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2110 int accept_call_clobbered, int just_try_suggested,
2111 int born_index, int dead_index)
2113 int i, ins;
2114 HARD_REG_SET first_used, used;
2115 #ifdef ELIMINABLE_REGS
2116 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2117 #endif
2119 /* Validate our parameters. */
2120 if (born_index < 0 || born_index > dead_index)
2121 abort ();
2123 /* Don't let a pseudo live in a reg across a function call
2124 if we might get a nonlocal goto. */
2125 if (current_function_has_nonlocal_label
2126 && qty[qtyno].n_calls_crossed > 0)
2127 return -1;
2129 if (accept_call_clobbered)
2130 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2131 else if (qty[qtyno].n_calls_crossed == 0)
2132 COPY_HARD_REG_SET (used, fixed_reg_set);
2133 else
2134 COPY_HARD_REG_SET (used, call_used_reg_set);
2136 if (accept_call_clobbered)
2137 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2139 for (ins = born_index; ins < dead_index; ins++)
2140 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2142 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2144 /* Don't use the frame pointer reg in local-alloc even if
2145 we may omit the frame pointer, because if we do that and then we
2146 need a frame pointer, reload won't know how to move the pseudo
2147 to another hard reg. It can move only regs made by global-alloc.
2149 This is true of any register that can be eliminated. */
2150 #ifdef ELIMINABLE_REGS
2151 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2152 SET_HARD_REG_BIT (used, eliminables[i].from);
2153 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2154 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2155 that it might be eliminated into. */
2156 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2157 #endif
2158 #else
2159 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2160 #endif
2162 #ifdef CANNOT_CHANGE_MODE_CLASS
2163 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2164 #endif
2166 /* Normally, the registers that can be used for the first register in
2167 a multi-register quantity are the same as those that can be used for
2168 subsequent registers. However, if just trying suggested registers,
2169 restrict our consideration to them. If there are copy-suggested
2170 register, try them. Otherwise, try the arithmetic-suggested
2171 registers. */
2172 COPY_HARD_REG_SET (first_used, used);
2174 if (just_try_suggested)
2176 if (qty_phys_num_copy_sugg[qtyno] != 0)
2177 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2178 else
2179 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2182 /* If all registers are excluded, we can't do anything. */
2183 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2185 /* If at least one would be suitable, test each hard reg. */
2187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2189 #ifdef REG_ALLOC_ORDER
2190 int regno = reg_alloc_order[i];
2191 #else
2192 int regno = i;
2193 #endif
2194 if (! TEST_HARD_REG_BIT (first_used, regno)
2195 && HARD_REGNO_MODE_OK (regno, mode)
2196 && (qty[qtyno].n_calls_crossed == 0
2197 || accept_call_clobbered
2198 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2200 int j;
2201 int size1 = hard_regno_nregs[regno][mode];
2202 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2203 if (j == size1)
2205 /* Mark that this register is in use between its birth and death
2206 insns. */
2207 post_mark_life (regno, mode, 1, born_index, dead_index);
2208 return regno;
2210 #ifndef REG_ALLOC_ORDER
2211 /* Skip starting points we know will lose. */
2212 i += j;
2213 #endif
2217 fail:
2218 /* If we are just trying suggested register, we have just tried copy-
2219 suggested registers, and there are arithmetic-suggested registers,
2220 try them. */
2222 /* If it would be profitable to allocate a call-clobbered register
2223 and save and restore it around calls, do that. */
2224 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2225 && qty_phys_num_sugg[qtyno] != 0)
2227 /* Don't try the copy-suggested regs again. */
2228 qty_phys_num_copy_sugg[qtyno] = 0;
2229 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2230 born_index, dead_index);
2233 /* We need not check to see if the current function has nonlocal
2234 labels because we don't put any pseudos that are live over calls in
2235 registers in that case. */
2237 if (! accept_call_clobbered
2238 && flag_caller_saves
2239 && ! just_try_suggested
2240 && qty[qtyno].n_calls_crossed != 0
2241 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2242 qty[qtyno].n_calls_crossed))
2244 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2245 if (i >= 0)
2246 caller_save_needed = 1;
2247 return i;
2249 return -1;
2252 /* Mark that REGNO with machine-mode MODE is live starting from the current
2253 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2254 is zero). */
2256 static void
2257 mark_life (int regno, enum machine_mode mode, int life)
2259 int j = hard_regno_nregs[regno][mode];
2260 if (life)
2261 while (--j >= 0)
2262 SET_HARD_REG_BIT (regs_live, regno + j);
2263 else
2264 while (--j >= 0)
2265 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2268 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2269 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2270 to insn number DEATH (exclusive). */
2272 static void
2273 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2274 int death)
2276 int j = hard_regno_nregs[regno][mode];
2277 HARD_REG_SET this_reg;
2279 CLEAR_HARD_REG_SET (this_reg);
2280 while (--j >= 0)
2281 SET_HARD_REG_BIT (this_reg, regno + j);
2283 if (life)
2284 while (birth < death)
2286 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2287 birth++;
2289 else
2290 while (birth < death)
2292 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2293 birth++;
2297 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2298 is the register being clobbered, and R1 is a register being used in
2299 the equivalent expression.
2301 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2302 in which it is used, return 1.
2304 Otherwise, return 0. */
2306 static int
2307 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2309 int ok = 0;
2310 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2311 rtx p, last;
2313 /* If R1 is a hard register, return 0 since we handle this case
2314 when we scan the insns that actually use it. */
2316 if (note == 0
2317 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2318 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2319 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2320 return 0;
2322 last = XEXP (note, 0);
2324 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2325 if (INSN_P (p))
2327 if (find_reg_note (p, REG_DEAD, r1))
2328 ok = 1;
2330 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2331 some earlier optimization pass has inserted instructions into
2332 the sequence, and it is not safe to perform this optimization.
2333 Note that emit_no_conflict_block always ensures that this is
2334 true when these sequences are created. */
2335 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2336 return 0;
2339 return ok;
2342 /* Return the number of alternatives for which the constraint string P
2343 indicates that the operand must be equal to operand 0 and that no register
2344 is acceptable. */
2346 static int
2347 requires_inout (const char *p)
2349 char c;
2350 int found_zero = 0;
2351 int reg_allowed = 0;
2352 int num_matching_alts = 0;
2353 int len;
2355 for ( ; (c = *p); p += len)
2357 len = CONSTRAINT_LEN (c, p);
2358 switch (c)
2360 case '=': case '+': case '?':
2361 case '#': case '&': case '!':
2362 case '*': case '%':
2363 case 'm': case '<': case '>': case 'V': case 'o':
2364 case 'E': case 'F': case 'G': case 'H':
2365 case 's': case 'i': case 'n':
2366 case 'I': case 'J': case 'K': case 'L':
2367 case 'M': case 'N': case 'O': case 'P':
2368 case 'X':
2369 /* These don't say anything we care about. */
2370 break;
2372 case ',':
2373 if (found_zero && ! reg_allowed)
2374 num_matching_alts++;
2376 found_zero = reg_allowed = 0;
2377 break;
2379 case '0':
2380 found_zero = 1;
2381 break;
2383 case '1': case '2': case '3': case '4': case '5':
2384 case '6': case '7': case '8': case '9':
2385 /* Skip the balance of the matching constraint. */
2387 p++;
2388 while (ISDIGIT (*p));
2389 len = 0;
2390 break;
2392 default:
2393 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2394 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2395 break;
2396 /* Fall through. */
2397 case 'p':
2398 case 'g': case 'r':
2399 reg_allowed = 1;
2400 break;
2404 if (found_zero && ! reg_allowed)
2405 num_matching_alts++;
2407 return num_matching_alts;
2410 void
2411 dump_local_alloc (FILE *file)
2413 int i;
2414 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2415 if (reg_renumber[i] != -1)
2416 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);