Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / gcc / cp / class.c
blobf6ba914cb84e4335adc6ff340c6f2208937141a7
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
39 /* The number of nested classes being processed. If we are not in the
40 scope of any class, this is zero. */
42 int current_class_depth;
44 /* In order to deal with nested classes, we keep a stack of classes.
45 The topmost entry is the innermost class, and is the entry at index
46 CURRENT_CLASS_DEPTH */
48 typedef struct class_stack_node {
49 /* The name of the class. */
50 tree name;
52 /* The _TYPE node for the class. */
53 tree type;
55 /* The access specifier pending for new declarations in the scope of
56 this class. */
57 tree access;
59 /* If were defining TYPE, the names used in this class. */
60 splay_tree names_used;
61 }* class_stack_node_t;
63 typedef struct vtbl_init_data_s
65 /* The base for which we're building initializers. */
66 tree binfo;
67 /* The type of the most-derived type. */
68 tree derived;
69 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
70 unless ctor_vtbl_p is true. */
71 tree rtti_binfo;
72 /* The negative-index vtable initializers built up so far. These
73 are in order from least negative index to most negative index. */
74 tree inits;
75 /* The last (i.e., most negative) entry in INITS. */
76 tree* last_init;
77 /* The binfo for the virtual base for which we're building
78 vcall offset initializers. */
79 tree vbase;
80 /* The functions in vbase for which we have already provided vcall
81 offsets. */
82 varray_type fns;
83 /* The vtable index of the next vcall or vbase offset. */
84 tree index;
85 /* Nonzero if we are building the initializer for the primary
86 vtable. */
87 int primary_vtbl_p;
88 /* Nonzero if we are building the initializer for a construction
89 vtable. */
90 int ctor_vtbl_p;
91 /* True when adding vcall offset entries to the vtable. False when
92 merely computing the indices. */
93 bool generate_vcall_entries;
94 } vtbl_init_data;
96 /* The type of a function passed to walk_subobject_offsets. */
97 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
99 /* The stack itself. This is a dynamically resized array. The
100 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
101 static int current_class_stack_size;
102 static class_stack_node_t current_class_stack;
104 /* An array of all local classes present in this translation unit, in
105 declaration order. */
106 varray_type local_classes;
108 static tree get_vfield_name (tree);
109 static void finish_struct_anon (tree);
110 static tree get_vtable_name (tree);
111 static tree get_basefndecls (tree, tree);
112 static int build_primary_vtable (tree, tree);
113 static int build_secondary_vtable (tree);
114 static void finish_vtbls (tree);
115 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
116 static void finish_struct_bits (tree);
117 static int alter_access (tree, tree, tree);
118 static void handle_using_decl (tree, tree);
119 static tree dfs_modify_vtables (tree, void *);
120 static tree modify_all_vtables (tree, tree);
121 static void determine_primary_bases (tree);
122 static void finish_struct_methods (tree);
123 static void maybe_warn_about_overly_private_class (tree);
124 static int method_name_cmp (const void *, const void *);
125 static int resort_method_name_cmp (const void *, const void *);
126 static void add_implicitly_declared_members (tree, int, int);
127 static tree fixed_type_or_null (tree, int *, int *);
128 static tree resolve_address_of_overloaded_function (tree, tree, tsubst_flags_t,
129 bool, tree);
130 static tree build_simple_base_path (tree expr, tree binfo);
131 static tree build_vtbl_ref_1 (tree, tree);
132 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
133 static int count_fields (tree);
134 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
135 static void check_bitfield_decl (tree);
136 static void check_field_decl (tree, tree, int *, int *, int *);
137 static void check_field_decls (tree, tree *, int *, int *);
138 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
139 static void build_base_fields (record_layout_info, splay_tree, tree *);
140 static void check_methods (tree);
141 static void remove_zero_width_bit_fields (tree);
142 static void check_bases (tree, int *, int *);
143 static void check_bases_and_members (tree);
144 static tree create_vtable_ptr (tree, tree *);
145 static void include_empty_classes (record_layout_info);
146 static void layout_class_type (tree, tree *);
147 static void fixup_pending_inline (tree);
148 static void fixup_inline_methods (tree);
149 static void propagate_binfo_offsets (tree, tree);
150 static void layout_virtual_bases (record_layout_info, splay_tree);
151 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
152 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
153 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
154 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
155 static void add_vcall_offset (tree, tree, vtbl_init_data *);
156 static void layout_vtable_decl (tree, int);
157 static tree dfs_find_final_overrider_pre (tree, void *);
158 static tree dfs_find_final_overrider_post (tree, void *);
159 static tree find_final_overrider (tree, tree, tree);
160 static int make_new_vtable (tree, tree);
161 static int maybe_indent_hierarchy (FILE *, int, int);
162 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
163 static void dump_class_hierarchy (tree);
164 static void dump_class_hierarchy_1 (FILE *, int, tree);
165 static void dump_array (FILE *, tree);
166 static void dump_vtable (tree, tree, tree);
167 static void dump_vtt (tree, tree);
168 static void dump_thunk (FILE *, int, tree);
169 static tree build_vtable (tree, tree, tree);
170 static void initialize_vtable (tree, tree);
171 static void layout_nonempty_base_or_field (record_layout_info,
172 tree, tree, splay_tree);
173 static tree end_of_class (tree, int);
174 static bool layout_empty_base (tree, tree, splay_tree);
175 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
176 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
177 tree);
178 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
179 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
180 static void clone_constructors_and_destructors (tree);
181 static tree build_clone (tree, tree);
182 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
183 static void build_ctor_vtbl_group (tree, tree);
184 static void build_vtt (tree);
185 static tree binfo_ctor_vtable (tree);
186 static tree *build_vtt_inits (tree, tree, tree *, tree *);
187 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
188 static tree dfs_fixup_binfo_vtbls (tree, void *);
189 static int record_subobject_offset (tree, tree, splay_tree);
190 static int check_subobject_offset (tree, tree, splay_tree);
191 static int walk_subobject_offsets (tree, subobject_offset_fn,
192 tree, splay_tree, tree, int);
193 static void record_subobject_offsets (tree, tree, splay_tree, int);
194 static int layout_conflict_p (tree, tree, splay_tree, int);
195 static int splay_tree_compare_integer_csts (splay_tree_key k1,
196 splay_tree_key k2);
197 static void warn_about_ambiguous_bases (tree);
198 static bool type_requires_array_cookie (tree);
199 static bool contains_empty_class_p (tree);
200 static bool base_derived_from (tree, tree);
201 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
202 static tree end_of_base (tree);
203 static tree get_vcall_index (tree, tree);
205 /* Variables shared between class.c and call.c. */
207 #ifdef GATHER_STATISTICS
208 int n_vtables = 0;
209 int n_vtable_entries = 0;
210 int n_vtable_searches = 0;
211 int n_vtable_elems = 0;
212 int n_convert_harshness = 0;
213 int n_compute_conversion_costs = 0;
214 int n_inner_fields_searched = 0;
215 #endif
217 /* Convert to or from a base subobject. EXPR is an expression of type
218 `A' or `A*', an expression of type `B' or `B*' is returned. To
219 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
220 the B base instance within A. To convert base A to derived B, CODE
221 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
222 In this latter case, A must not be a morally virtual base of B.
223 NONNULL is true if EXPR is known to be non-NULL (this is only
224 needed when EXPR is of pointer type). CV qualifiers are preserved
225 from EXPR. */
227 tree
228 build_base_path (enum tree_code code,
229 tree expr,
230 tree binfo,
231 int nonnull)
233 tree v_binfo = NULL_TREE;
234 tree d_binfo = NULL_TREE;
235 tree probe;
236 tree offset;
237 tree target_type;
238 tree null_test = NULL;
239 tree ptr_target_type;
240 int fixed_type_p;
241 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
242 bool has_empty = false;
243 bool virtual_access;
245 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
246 return error_mark_node;
248 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
250 d_binfo = probe;
251 if (is_empty_class (BINFO_TYPE (probe)))
252 has_empty = true;
253 if (!v_binfo && BINFO_VIRTUAL_P (probe))
254 v_binfo = probe;
257 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
258 if (want_pointer)
259 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
261 gcc_assert ((code == MINUS_EXPR
262 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
263 || (code == PLUS_EXPR
264 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
266 if (binfo == d_binfo)
267 /* Nothing to do. */
268 return expr;
270 if (code == MINUS_EXPR && v_binfo)
272 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
273 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
274 return error_mark_node;
277 if (!want_pointer)
278 /* This must happen before the call to save_expr. */
279 expr = build_unary_op (ADDR_EXPR, expr, 0);
281 offset = BINFO_OFFSET (binfo);
282 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
284 /* Do we need to look in the vtable for the real offset? */
285 virtual_access = (v_binfo && fixed_type_p <= 0);
287 /* Do we need to check for a null pointer? */
288 if (want_pointer && !nonnull && (virtual_access || !integer_zerop (offset)))
289 null_test = error_mark_node;
291 /* Protect against multiple evaluation if necessary. */
292 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
293 expr = save_expr (expr);
295 /* Now that we've saved expr, build the real null test. */
296 if (null_test)
298 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
299 null_test = fold (build2 (NE_EXPR, boolean_type_node,
300 expr, zero));
303 /* If this is a simple base reference, express it as a COMPONENT_REF. */
304 if (code == PLUS_EXPR && !virtual_access
305 /* We don't build base fields for empty bases, and they aren't very
306 interesting to the optimizers anyway. */
307 && !has_empty)
309 expr = build_indirect_ref (expr, NULL);
310 expr = build_simple_base_path (expr, binfo);
311 if (want_pointer)
312 expr = build_address (expr);
313 target_type = TREE_TYPE (expr);
314 goto out;
317 if (virtual_access)
319 /* Going via virtual base V_BINFO. We need the static offset
320 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
321 V_BINFO. That offset is an entry in D_BINFO's vtable. */
322 tree v_offset;
324 if (fixed_type_p < 0 && in_base_initializer)
326 /* In a base member initializer, we cannot rely on
327 the vtable being set up. We have to use the vtt_parm. */
328 tree derived = BINFO_INHERITANCE_CHAIN (v_binfo);
329 tree t;
331 t = TREE_TYPE (TYPE_VFIELD (BINFO_TYPE (derived)));
332 t = build_pointer_type (t);
333 v_offset = convert (t, current_vtt_parm);
334 v_offset = build2 (PLUS_EXPR, t, v_offset,
335 BINFO_VPTR_INDEX (derived));
336 v_offset = build_indirect_ref (v_offset, NULL);
338 else
339 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
340 TREE_TYPE (TREE_TYPE (expr)));
342 v_offset = build2 (PLUS_EXPR, TREE_TYPE (v_offset),
343 v_offset, BINFO_VPTR_FIELD (v_binfo));
344 v_offset = build1 (NOP_EXPR,
345 build_pointer_type (ptrdiff_type_node),
346 v_offset);
347 v_offset = build_indirect_ref (v_offset, NULL);
348 TREE_CONSTANT (v_offset) = 1;
349 TREE_INVARIANT (v_offset) = 1;
351 offset = convert_to_integer (ptrdiff_type_node,
352 size_diffop (offset,
353 BINFO_OFFSET (v_binfo)));
355 if (!integer_zerop (offset))
356 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
358 if (fixed_type_p < 0)
359 /* Negative fixed_type_p means this is a constructor or destructor;
360 virtual base layout is fixed in in-charge [cd]tors, but not in
361 base [cd]tors. */
362 offset = build3 (COND_EXPR, ptrdiff_type_node,
363 build2 (EQ_EXPR, boolean_type_node,
364 current_in_charge_parm, integer_zero_node),
365 v_offset,
366 BINFO_OFFSET (binfo));
367 else
368 offset = v_offset;
371 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
373 target_type = cp_build_qualified_type
374 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
375 ptr_target_type = build_pointer_type (target_type);
376 if (want_pointer)
377 target_type = ptr_target_type;
379 expr = build1 (NOP_EXPR, ptr_target_type, expr);
381 if (!integer_zerop (offset))
382 expr = build2 (code, ptr_target_type, expr, offset);
383 else
384 null_test = NULL;
386 if (!want_pointer)
387 expr = build_indirect_ref (expr, NULL);
389 out:
390 if (null_test)
391 expr = fold (build3 (COND_EXPR, target_type, null_test, expr,
392 fold (build1 (NOP_EXPR, target_type,
393 integer_zero_node))));
395 return expr;
398 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
399 Perform a derived-to-base conversion by recursively building up a
400 sequence of COMPONENT_REFs to the appropriate base fields. */
402 static tree
403 build_simple_base_path (tree expr, tree binfo)
405 tree type = BINFO_TYPE (binfo);
406 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
407 tree field;
409 if (d_binfo == NULL_TREE)
411 tree temp;
413 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
415 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
416 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
417 an lvalue in the frontend; only _DECLs and _REFs are lvalues
418 in the backend. */
419 temp = unary_complex_lvalue (ADDR_EXPR, expr);
420 if (temp)
421 expr = build_indirect_ref (temp, NULL);
423 return expr;
426 /* Recurse. */
427 expr = build_simple_base_path (expr, d_binfo);
429 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
430 field; field = TREE_CHAIN (field))
431 /* Is this the base field created by build_base_field? */
432 if (TREE_CODE (field) == FIELD_DECL
433 && DECL_FIELD_IS_BASE (field)
434 && TREE_TYPE (field) == type)
436 /* We don't use build_class_member_access_expr here, as that
437 has unnecessary checks, and more importantly results in
438 recursive calls to dfs_walk_once. */
439 int type_quals = cp_type_quals (TREE_TYPE (expr));
441 expr = build3 (COMPONENT_REF,
442 cp_build_qualified_type (type, type_quals),
443 expr, field, NULL_TREE);
444 expr = fold_if_not_in_template (expr);
446 /* Mark the expression const or volatile, as appropriate.
447 Even though we've dealt with the type above, we still have
448 to mark the expression itself. */
449 if (type_quals & TYPE_QUAL_CONST)
450 TREE_READONLY (expr) = 1;
451 if (type_quals & TYPE_QUAL_VOLATILE)
452 TREE_THIS_VOLATILE (expr) = 1;
454 return expr;
457 /* Didn't find the base field?!? */
458 gcc_unreachable ();
461 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
462 type is a class type or a pointer to a class type. In the former
463 case, TYPE is also a class type; in the latter it is another
464 pointer type. If CHECK_ACCESS is true, an error message is emitted
465 if TYPE is inaccessible. If OBJECT has pointer type, the value is
466 assumed to be non-NULL. */
468 tree
469 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
471 tree binfo;
472 tree object_type;
474 if (TYPE_PTR_P (TREE_TYPE (object)))
476 object_type = TREE_TYPE (TREE_TYPE (object));
477 type = TREE_TYPE (type);
479 else
480 object_type = TREE_TYPE (object);
482 binfo = lookup_base (object_type, type,
483 check_access ? ba_check : ba_unique,
484 NULL);
485 if (!binfo || binfo == error_mark_node)
486 return error_mark_node;
488 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
491 /* EXPR is an expression with unqualified class type. BASE is a base
492 binfo of that class type. Returns EXPR, converted to the BASE
493 type. This function assumes that EXPR is the most derived class;
494 therefore virtual bases can be found at their static offsets. */
496 tree
497 convert_to_base_statically (tree expr, tree base)
499 tree expr_type;
501 expr_type = TREE_TYPE (expr);
502 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
504 tree pointer_type;
506 pointer_type = build_pointer_type (expr_type);
507 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
508 if (!integer_zerop (BINFO_OFFSET (base)))
509 expr = build2 (PLUS_EXPR, pointer_type, expr,
510 build_nop (pointer_type, BINFO_OFFSET (base)));
511 expr = build_nop (build_pointer_type (BINFO_TYPE (base)), expr);
512 expr = build1 (INDIRECT_REF, BINFO_TYPE (base), expr);
515 return expr;
519 tree
520 build_vfield_ref (tree datum, tree type)
522 tree vfield, vcontext;
524 if (datum == error_mark_node)
525 return error_mark_node;
527 /* First, convert to the requested type. */
528 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
529 datum = convert_to_base (datum, type, /*check_access=*/false,
530 /*nonnull=*/true);
532 /* Second, the requested type may not be the owner of its own vptr.
533 If not, convert to the base class that owns it. We cannot use
534 convert_to_base here, because VCONTEXT may appear more than once
535 in the inheritance hierarchy of TYPE, and thus direct conversion
536 between the types may be ambiguous. Following the path back up
537 one step at a time via primary bases avoids the problem. */
538 vfield = TYPE_VFIELD (type);
539 vcontext = DECL_CONTEXT (vfield);
540 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
542 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
543 type = TREE_TYPE (datum);
546 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
549 /* Given an object INSTANCE, return an expression which yields the
550 vtable element corresponding to INDEX. There are many special
551 cases for INSTANCE which we take care of here, mainly to avoid
552 creating extra tree nodes when we don't have to. */
554 static tree
555 build_vtbl_ref_1 (tree instance, tree idx)
557 tree aref;
558 tree vtbl = NULL_TREE;
560 /* Try to figure out what a reference refers to, and
561 access its virtual function table directly. */
563 int cdtorp = 0;
564 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
566 tree basetype = non_reference (TREE_TYPE (instance));
568 if (fixed_type && !cdtorp)
570 tree binfo = lookup_base (fixed_type, basetype,
571 ba_unique | ba_quiet, NULL);
572 if (binfo)
573 vtbl = unshare_expr (BINFO_VTABLE (binfo));
576 if (!vtbl)
577 vtbl = build_vfield_ref (instance, basetype);
579 assemble_external (vtbl);
581 aref = build_array_ref (vtbl, idx);
582 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
583 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
585 return aref;
588 tree
589 build_vtbl_ref (tree instance, tree idx)
591 tree aref = build_vtbl_ref_1 (instance, idx);
593 return aref;
596 /* Given a stable object pointer INSTANCE_PTR, return an expression which
597 yields a function pointer corresponding to vtable element INDEX. */
599 tree
600 build_vfn_ref (tree instance_ptr, tree idx)
602 tree aref;
604 aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);
606 /* When using function descriptors, the address of the
607 vtable entry is treated as a function pointer. */
608 if (TARGET_VTABLE_USES_DESCRIPTORS)
609 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
610 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
612 /* Remember this as a method reference, for later devirtualization. */
613 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
615 return aref;
618 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
619 for the given TYPE. */
621 static tree
622 get_vtable_name (tree type)
624 return mangle_vtbl_for_type (type);
627 /* Return an IDENTIFIER_NODE for the name of the virtual table table
628 for TYPE. */
630 tree
631 get_vtt_name (tree type)
633 return mangle_vtt_for_type (type);
636 /* DECL is an entity associated with TYPE, like a virtual table or an
637 implicitly generated constructor. Determine whether or not DECL
638 should have external or internal linkage at the object file
639 level. This routine does not deal with COMDAT linkage and other
640 similar complexities; it simply sets TREE_PUBLIC if it possible for
641 entities in other translation units to contain copies of DECL, in
642 the abstract. */
644 void
645 set_linkage_according_to_type (tree type, tree decl)
647 /* If TYPE involves a local class in a function with internal
648 linkage, then DECL should have internal linkage too. Other local
649 classes have no linkage -- but if their containing functions
650 have external linkage, it makes sense for DECL to have external
651 linkage too. That will allow template definitions to be merged,
652 for example. */
653 if (no_linkage_check (type, /*relaxed_p=*/true))
655 TREE_PUBLIC (decl) = 0;
656 DECL_INTERFACE_KNOWN (decl) = 1;
658 else
659 TREE_PUBLIC (decl) = 1;
662 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
663 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
664 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
666 static tree
667 build_vtable (tree class_type, tree name, tree vtable_type)
669 tree decl;
671 decl = build_lang_decl (VAR_DECL, name, vtable_type);
672 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
673 now to avoid confusion in mangle_decl. */
674 SET_DECL_ASSEMBLER_NAME (decl, name);
675 DECL_CONTEXT (decl) = class_type;
676 DECL_ARTIFICIAL (decl) = 1;
677 TREE_STATIC (decl) = 1;
678 TREE_READONLY (decl) = 1;
679 DECL_VIRTUAL_P (decl) = 1;
680 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
681 DECL_VTABLE_OR_VTT_P (decl) = 1;
682 /* At one time the vtable info was grabbed 2 words at a time. This
683 fails on sparc unless you have 8-byte alignment. (tiemann) */
684 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
685 DECL_ALIGN (decl));
686 set_linkage_according_to_type (class_type, decl);
687 /* The vtable has not been defined -- yet. */
688 DECL_EXTERNAL (decl) = 1;
689 DECL_NOT_REALLY_EXTERN (decl) = 1;
691 /* Mark the VAR_DECL node representing the vtable itself as a
692 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
693 is rather important that such things be ignored because any
694 effort to actually generate DWARF for them will run into
695 trouble when/if we encounter code like:
697 #pragma interface
698 struct S { virtual void member (); };
700 because the artificial declaration of the vtable itself (as
701 manufactured by the g++ front end) will say that the vtable is
702 a static member of `S' but only *after* the debug output for
703 the definition of `S' has already been output. This causes
704 grief because the DWARF entry for the definition of the vtable
705 will try to refer back to an earlier *declaration* of the
706 vtable as a static member of `S' and there won't be one. We
707 might be able to arrange to have the "vtable static member"
708 attached to the member list for `S' before the debug info for
709 `S' get written (which would solve the problem) but that would
710 require more intrusive changes to the g++ front end. */
711 DECL_IGNORED_P (decl) = 1;
713 return decl;
716 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
717 or even complete. If this does not exist, create it. If COMPLETE is
718 nonzero, then complete the definition of it -- that will render it
719 impossible to actually build the vtable, but is useful to get at those
720 which are known to exist in the runtime. */
722 tree
723 get_vtable_decl (tree type, int complete)
725 tree decl;
727 if (CLASSTYPE_VTABLES (type))
728 return CLASSTYPE_VTABLES (type);
730 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
731 CLASSTYPE_VTABLES (type) = decl;
733 if (complete)
735 DECL_EXTERNAL (decl) = 1;
736 cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0);
739 return decl;
742 /* Build the primary virtual function table for TYPE. If BINFO is
743 non-NULL, build the vtable starting with the initial approximation
744 that it is the same as the one which is the head of the association
745 list. Returns a nonzero value if a new vtable is actually
746 created. */
748 static int
749 build_primary_vtable (tree binfo, tree type)
751 tree decl;
752 tree virtuals;
754 decl = get_vtable_decl (type, /*complete=*/0);
756 if (binfo)
758 if (BINFO_NEW_VTABLE_MARKED (binfo))
759 /* We have already created a vtable for this base, so there's
760 no need to do it again. */
761 return 0;
763 virtuals = copy_list (BINFO_VIRTUALS (binfo));
764 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
765 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
766 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
768 else
770 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
771 virtuals = NULL_TREE;
774 #ifdef GATHER_STATISTICS
775 n_vtables += 1;
776 n_vtable_elems += list_length (virtuals);
777 #endif
779 /* Initialize the association list for this type, based
780 on our first approximation. */
781 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
782 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
783 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
784 return 1;
787 /* Give BINFO a new virtual function table which is initialized
788 with a skeleton-copy of its original initialization. The only
789 entry that changes is the `delta' entry, so we can really
790 share a lot of structure.
792 FOR_TYPE is the most derived type which caused this table to
793 be needed.
795 Returns nonzero if we haven't met BINFO before.
797 The order in which vtables are built (by calling this function) for
798 an object must remain the same, otherwise a binary incompatibility
799 can result. */
801 static int
802 build_secondary_vtable (tree binfo)
804 if (BINFO_NEW_VTABLE_MARKED (binfo))
805 /* We already created a vtable for this base. There's no need to
806 do it again. */
807 return 0;
809 /* Remember that we've created a vtable for this BINFO, so that we
810 don't try to do so again. */
811 SET_BINFO_NEW_VTABLE_MARKED (binfo);
813 /* Make fresh virtual list, so we can smash it later. */
814 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
816 /* Secondary vtables are laid out as part of the same structure as
817 the primary vtable. */
818 BINFO_VTABLE (binfo) = NULL_TREE;
819 return 1;
822 /* Create a new vtable for BINFO which is the hierarchy dominated by
823 T. Return nonzero if we actually created a new vtable. */
825 static int
826 make_new_vtable (tree t, tree binfo)
828 if (binfo == TYPE_BINFO (t))
829 /* In this case, it is *type*'s vtable we are modifying. We start
830 with the approximation that its vtable is that of the
831 immediate base class. */
832 return build_primary_vtable (binfo, t);
833 else
834 /* This is our very own copy of `basetype' to play with. Later,
835 we will fill in all the virtual functions that override the
836 virtual functions in these base classes which are not defined
837 by the current type. */
838 return build_secondary_vtable (binfo);
841 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
842 (which is in the hierarchy dominated by T) list FNDECL as its
843 BV_FN. DELTA is the required constant adjustment from the `this'
844 pointer where the vtable entry appears to the `this' required when
845 the function is actually called. */
847 static void
848 modify_vtable_entry (tree t,
849 tree binfo,
850 tree fndecl,
851 tree delta,
852 tree *virtuals)
854 tree v;
856 v = *virtuals;
858 if (fndecl != BV_FN (v)
859 || !tree_int_cst_equal (delta, BV_DELTA (v)))
861 /* We need a new vtable for BINFO. */
862 if (make_new_vtable (t, binfo))
864 /* If we really did make a new vtable, we also made a copy
865 of the BINFO_VIRTUALS list. Now, we have to find the
866 corresponding entry in that list. */
867 *virtuals = BINFO_VIRTUALS (binfo);
868 while (BV_FN (*virtuals) != BV_FN (v))
869 *virtuals = TREE_CHAIN (*virtuals);
870 v = *virtuals;
873 BV_DELTA (v) = delta;
874 BV_VCALL_INDEX (v) = NULL_TREE;
875 BV_FN (v) = fndecl;
880 /* Add method METHOD to class TYPE. */
882 void
883 add_method (tree type, tree method)
885 int using;
886 unsigned slot;
887 tree overload;
888 bool template_conv_p = false;
889 bool conv_p;
890 VEC(tree) *method_vec;
891 bool complete_p;
892 bool insert_p = false;
893 tree current_fns;
895 if (method == error_mark_node)
896 return;
898 complete_p = COMPLETE_TYPE_P (type);
899 using = (DECL_CONTEXT (method) != type);
900 conv_p = DECL_CONV_FN_P (method);
901 if (conv_p)
902 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
903 && DECL_TEMPLATE_CONV_FN_P (method));
905 method_vec = CLASSTYPE_METHOD_VEC (type);
906 if (!method_vec)
908 /* Make a new method vector. We start with 8 entries. We must
909 allocate at least two (for constructors and destructors), and
910 we're going to end up with an assignment operator at some
911 point as well. */
912 method_vec = VEC_alloc (tree, 8);
913 /* Create slots for constructors and destructors. */
914 VEC_quick_push (tree, method_vec, NULL_TREE);
915 VEC_quick_push (tree, method_vec, NULL_TREE);
916 CLASSTYPE_METHOD_VEC (type) = method_vec;
919 /* Constructors and destructors go in special slots. */
920 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
921 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
922 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
924 slot = CLASSTYPE_DESTRUCTOR_SLOT;
926 if (TYPE_FOR_JAVA (type))
928 if (!DECL_ARTIFICIAL (method))
929 error ("Java class %qT cannot have a destructor", type);
930 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
931 error ("Java class %qT cannot have an implicit non-trivial "
932 "destructor",
933 type);
936 else
938 tree m;
940 insert_p = true;
941 /* See if we already have an entry with this name. */
942 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
943 VEC_iterate (tree, method_vec, slot, m);
944 ++slot)
946 m = OVL_CURRENT (m);
947 if (template_conv_p)
949 if (TREE_CODE (m) == TEMPLATE_DECL
950 && DECL_TEMPLATE_CONV_FN_P (m))
951 insert_p = false;
952 break;
954 if (conv_p && !DECL_CONV_FN_P (m))
955 break;
956 if (DECL_NAME (m) == DECL_NAME (method))
958 insert_p = false;
959 break;
961 if (complete_p
962 && !DECL_CONV_FN_P (m)
963 && DECL_NAME (m) > DECL_NAME (method))
964 break;
967 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
969 if (processing_template_decl)
970 /* TYPE is a template class. Don't issue any errors now; wait
971 until instantiation time to complain. */
973 else
975 tree fns;
977 /* Check to see if we've already got this method. */
978 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
980 tree fn = OVL_CURRENT (fns);
981 tree parms1;
982 tree parms2;
983 bool same = 1;
985 if (TREE_CODE (fn) != TREE_CODE (method))
986 continue;
988 /* [over.load] Member function declarations with the
989 same name and the same parameter types cannot be
990 overloaded if any of them is a static member
991 function declaration.
993 [namespace.udecl] When a using-declaration brings names
994 from a base class into a derived class scope, member
995 functions in the derived class override and/or hide member
996 functions with the same name and parameter types in a base
997 class (rather than conflicting). */
998 parms1 = TYPE_ARG_TYPES (TREE_TYPE (fn));
999 parms2 = TYPE_ARG_TYPES (TREE_TYPE (method));
1001 /* Compare the quals on the 'this' parm. Don't compare
1002 the whole types, as used functions are treated as
1003 coming from the using class in overload resolution. */
1004 if (! DECL_STATIC_FUNCTION_P (fn)
1005 && ! DECL_STATIC_FUNCTION_P (method)
1006 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1007 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1008 same = 0;
1010 /* For templates, the template parms must be identical. */
1011 if (TREE_CODE (fn) == TEMPLATE_DECL
1012 && !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1013 DECL_TEMPLATE_PARMS (method)))
1014 same = 0;
1016 if (! DECL_STATIC_FUNCTION_P (fn))
1017 parms1 = TREE_CHAIN (parms1);
1018 if (! DECL_STATIC_FUNCTION_P (method))
1019 parms2 = TREE_CHAIN (parms2);
1021 if (same && compparms (parms1, parms2)
1022 && (!DECL_CONV_FN_P (fn)
1023 || same_type_p (TREE_TYPE (TREE_TYPE (fn)),
1024 TREE_TYPE (TREE_TYPE (method)))))
1026 if (using && DECL_CONTEXT (fn) == type)
1027 /* Defer to the local function. */
1028 return;
1029 else
1031 cp_error_at ("%q#D and %q#D cannot be overloaded",
1032 method, fn);
1034 /* We don't call duplicate_decls here to merge
1035 the declarations because that will confuse
1036 things if the methods have inline
1037 definitions. In particular, we will crash
1038 while processing the definitions. */
1039 return;
1045 /* Add the new binding. */
1046 overload = build_overload (method, current_fns);
1048 if (!conv_p && slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1049 push_class_level_binding (DECL_NAME (method), overload);
1051 if (insert_p)
1053 /* We only expect to add few methods in the COMPLETE_P case, so
1054 just make room for one more method in that case. */
1055 if (VEC_reserve (tree, method_vec, complete_p ? 1 : -1))
1056 CLASSTYPE_METHOD_VEC (type) = method_vec;
1057 if (slot == VEC_length (tree, method_vec))
1058 VEC_quick_push (tree, method_vec, overload);
1059 else
1060 VEC_quick_insert (tree, method_vec, slot, overload);
1062 else
1063 /* Replace the current slot. */
1064 VEC_replace (tree, method_vec, slot, overload);
1067 /* Subroutines of finish_struct. */
1069 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1070 legit, otherwise return 0. */
1072 static int
1073 alter_access (tree t, tree fdecl, tree access)
1075 tree elem;
1077 if (!DECL_LANG_SPECIFIC (fdecl))
1078 retrofit_lang_decl (fdecl);
1080 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1082 elem = purpose_member (t, DECL_ACCESS (fdecl));
1083 if (elem)
1085 if (TREE_VALUE (elem) != access)
1087 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1088 cp_error_at ("conflicting access specifications for method"
1089 " %qD, ignored", TREE_TYPE (fdecl));
1090 else
1091 error ("conflicting access specifications for field %qE, ignored",
1092 DECL_NAME (fdecl));
1094 else
1096 /* They're changing the access to the same thing they changed
1097 it to before. That's OK. */
1101 else
1103 perform_or_defer_access_check (TYPE_BINFO (t), fdecl);
1104 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1105 return 1;
1107 return 0;
1110 /* Process the USING_DECL, which is a member of T. */
1112 static void
1113 handle_using_decl (tree using_decl, tree t)
1115 tree ctype = DECL_INITIAL (using_decl);
1116 tree name = DECL_NAME (using_decl);
1117 tree access
1118 = TREE_PRIVATE (using_decl) ? access_private_node
1119 : TREE_PROTECTED (using_decl) ? access_protected_node
1120 : access_public_node;
1121 tree fdecl, binfo;
1122 tree flist = NULL_TREE;
1123 tree old_value;
1125 if (ctype == error_mark_node)
1126 return;
1128 binfo = lookup_base (t, ctype, ba_any, NULL);
1129 if (! binfo)
1131 location_t saved_loc = input_location;
1133 input_location = DECL_SOURCE_LOCATION (using_decl);
1134 error_not_base_type (ctype, t);
1135 input_location = saved_loc;
1136 return;
1139 if (constructor_name_p (name, ctype))
1141 cp_error_at ("%qD names constructor", using_decl);
1142 return;
1144 if (constructor_name_p (name, t))
1146 cp_error_at ("%qD invalid in %qT", using_decl, t);
1147 return;
1150 fdecl = lookup_member (binfo, name, 0, false);
1152 if (!fdecl)
1154 cp_error_at ("no members matching %qD in %q#T", using_decl, ctype);
1155 return;
1158 if (BASELINK_P (fdecl))
1159 /* Ignore base type this came from. */
1160 fdecl = BASELINK_FUNCTIONS (fdecl);
1162 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1163 if (old_value)
1165 if (is_overloaded_fn (old_value))
1166 old_value = OVL_CURRENT (old_value);
1168 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1169 /* OK */;
1170 else
1171 old_value = NULL_TREE;
1174 if (is_overloaded_fn (fdecl))
1175 flist = fdecl;
1177 if (! old_value)
1179 else if (is_overloaded_fn (old_value))
1181 if (flist)
1182 /* It's OK to use functions from a base when there are functions with
1183 the same name already present in the current class. */;
1184 else
1186 cp_error_at ("%qD invalid in %q#T", using_decl, t);
1187 cp_error_at (" because of local method %q#D with same name",
1188 OVL_CURRENT (old_value));
1189 return;
1192 else if (!DECL_ARTIFICIAL (old_value))
1194 cp_error_at ("%qD invalid in %q#T", using_decl, t);
1195 cp_error_at (" because of local member %q#D with same name", old_value);
1196 return;
1199 /* Make type T see field decl FDECL with access ACCESS. */
1200 if (flist)
1201 for (; flist; flist = OVL_NEXT (flist))
1203 add_method (t, OVL_CURRENT (flist));
1204 alter_access (t, OVL_CURRENT (flist), access);
1206 else
1207 alter_access (t, fdecl, access);
1210 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1211 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1212 properties of the bases. */
1214 static void
1215 check_bases (tree t,
1216 int* cant_have_const_ctor_p,
1217 int* no_const_asn_ref_p)
1219 int i;
1220 int seen_non_virtual_nearly_empty_base_p;
1221 tree base_binfo;
1222 tree binfo;
1224 seen_non_virtual_nearly_empty_base_p = 0;
1226 for (binfo = TYPE_BINFO (t), i = 0;
1227 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1229 tree basetype = TREE_TYPE (base_binfo);
1231 gcc_assert (COMPLETE_TYPE_P (basetype));
1233 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1234 here because the case of virtual functions but non-virtual
1235 dtor is handled in finish_struct_1. */
1236 if (warn_ecpp && ! TYPE_POLYMORPHIC_P (basetype))
1237 warning ("base class %q#T has a non-virtual destructor", basetype);
1239 /* If the base class doesn't have copy constructors or
1240 assignment operators that take const references, then the
1241 derived class cannot have such a member automatically
1242 generated. */
1243 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1244 *cant_have_const_ctor_p = 1;
1245 if (TYPE_HAS_ASSIGN_REF (basetype)
1246 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1247 *no_const_asn_ref_p = 1;
1249 if (BINFO_VIRTUAL_P (base_binfo))
1250 /* A virtual base does not effect nearly emptiness. */
1252 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1254 if (seen_non_virtual_nearly_empty_base_p)
1255 /* And if there is more than one nearly empty base, then the
1256 derived class is not nearly empty either. */
1257 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1258 else
1259 /* Remember we've seen one. */
1260 seen_non_virtual_nearly_empty_base_p = 1;
1262 else if (!is_empty_class (basetype))
1263 /* If the base class is not empty or nearly empty, then this
1264 class cannot be nearly empty. */
1265 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1267 /* A lot of properties from the bases also apply to the derived
1268 class. */
1269 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1270 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1271 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1272 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1273 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1274 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1275 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1276 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1277 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1281 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1282 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1283 that have had a nearly-empty virtual primary base stolen by some
1284 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1285 T. */
1287 static void
1288 determine_primary_bases (tree t)
1290 unsigned i;
1291 tree primary = NULL_TREE;
1292 tree type_binfo = TYPE_BINFO (t);
1293 tree base_binfo;
1295 /* Determine the primary bases of our bases. */
1296 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1297 base_binfo = TREE_CHAIN (base_binfo))
1299 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1301 /* See if we're the non-virtual primary of our inheritance
1302 chain. */
1303 if (!BINFO_VIRTUAL_P (base_binfo))
1305 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1306 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1308 if (parent_primary
1309 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1310 BINFO_TYPE (parent_primary)))
1311 /* We are the primary binfo. */
1312 BINFO_PRIMARY_P (base_binfo) = 1;
1314 /* Determine if we have a virtual primary base, and mark it so.
1316 if (primary && BINFO_VIRTUAL_P (primary))
1318 tree this_primary = copied_binfo (primary, base_binfo);
1320 if (BINFO_PRIMARY_P (this_primary))
1321 /* Someone already claimed this base. */
1322 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1323 else
1325 tree delta;
1327 BINFO_PRIMARY_P (this_primary) = 1;
1328 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1330 /* A virtual binfo might have been copied from within
1331 another hierarchy. As we're about to use it as a
1332 primary base, make sure the offsets match. */
1333 delta = size_diffop (convert (ssizetype,
1334 BINFO_OFFSET (base_binfo)),
1335 convert (ssizetype,
1336 BINFO_OFFSET (this_primary)));
1338 propagate_binfo_offsets (this_primary, delta);
1343 /* First look for a dynamic direct non-virtual base. */
1344 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1346 tree basetype = BINFO_TYPE (base_binfo);
1348 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1350 primary = base_binfo;
1351 goto found;
1355 /* A "nearly-empty" virtual base class can be the primary base
1356 class, if no non-virtual polymorphic base can be found. Look for
1357 a nearly-empty virtual dynamic base that is not already a primary
1358 base of something in the hierarchy. If there is no such base,
1359 just pick the first nearly-empty virtual base. */
1361 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1362 base_binfo = TREE_CHAIN (base_binfo))
1363 if (BINFO_VIRTUAL_P (base_binfo)
1364 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1366 if (!BINFO_PRIMARY_P (base_binfo))
1368 /* Found one that is not primary. */
1369 primary = base_binfo;
1370 goto found;
1372 else if (!primary)
1373 /* Remember the first candidate. */
1374 primary = base_binfo;
1377 found:
1378 /* If we've got a primary base, use it. */
1379 if (primary)
1381 tree basetype = BINFO_TYPE (primary);
1383 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1384 if (BINFO_PRIMARY_P (primary))
1385 /* We are stealing a primary base. */
1386 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1387 BINFO_PRIMARY_P (primary) = 1;
1388 if (BINFO_VIRTUAL_P (primary))
1390 tree delta;
1392 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1393 /* A virtual binfo might have been copied from within
1394 another hierarchy. As we're about to use it as a primary
1395 base, make sure the offsets match. */
1396 delta = size_diffop (ssize_int (0),
1397 convert (ssizetype, BINFO_OFFSET (primary)));
1399 propagate_binfo_offsets (primary, delta);
1402 primary = TYPE_BINFO (basetype);
1404 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1405 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1406 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1410 /* Set memoizing fields and bits of T (and its variants) for later
1411 use. */
1413 static void
1414 finish_struct_bits (tree t)
1416 tree variants;
1418 /* Fix up variants (if any). */
1419 for (variants = TYPE_NEXT_VARIANT (t);
1420 variants;
1421 variants = TYPE_NEXT_VARIANT (variants))
1423 /* These fields are in the _TYPE part of the node, not in
1424 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1425 TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
1426 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1427 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1428 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1430 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1432 TYPE_BINFO (variants) = TYPE_BINFO (t);
1434 /* Copy whatever these are holding today. */
1435 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1436 TYPE_METHODS (variants) = TYPE_METHODS (t);
1437 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1438 TYPE_SIZE (variants) = TYPE_SIZE (t);
1439 TYPE_SIZE_UNIT (variants) = TYPE_SIZE_UNIT (t);
1442 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1443 /* For a class w/o baseclasses, 'finish_struct' has set
1444 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1445 Similarly for a class whose base classes do not have vtables.
1446 When neither of these is true, we might have removed abstract
1447 virtuals (by providing a definition), added some (by declaring
1448 new ones), or redeclared ones from a base class. We need to
1449 recalculate what's really an abstract virtual at this point (by
1450 looking in the vtables). */
1451 get_pure_virtuals (t);
1453 /* If this type has a copy constructor or a destructor, force its
1454 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1455 nonzero. This will cause it to be passed by invisible reference
1456 and prevent it from being returned in a register. */
1457 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1459 tree variants;
1460 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1461 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1463 TYPE_MODE (variants) = BLKmode;
1464 TREE_ADDRESSABLE (variants) = 1;
1469 /* Issue warnings about T having private constructors, but no friends,
1470 and so forth.
1472 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1473 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1474 non-private static member functions. */
1476 static void
1477 maybe_warn_about_overly_private_class (tree t)
1479 int has_member_fn = 0;
1480 int has_nonprivate_method = 0;
1481 tree fn;
1483 if (!warn_ctor_dtor_privacy
1484 /* If the class has friends, those entities might create and
1485 access instances, so we should not warn. */
1486 || (CLASSTYPE_FRIEND_CLASSES (t)
1487 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1488 /* We will have warned when the template was declared; there's
1489 no need to warn on every instantiation. */
1490 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1491 /* There's no reason to even consider warning about this
1492 class. */
1493 return;
1495 /* We only issue one warning, if more than one applies, because
1496 otherwise, on code like:
1498 class A {
1499 // Oops - forgot `public:'
1500 A();
1501 A(const A&);
1502 ~A();
1505 we warn several times about essentially the same problem. */
1507 /* Check to see if all (non-constructor, non-destructor) member
1508 functions are private. (Since there are no friends or
1509 non-private statics, we can't ever call any of the private member
1510 functions.) */
1511 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1512 /* We're not interested in compiler-generated methods; they don't
1513 provide any way to call private members. */
1514 if (!DECL_ARTIFICIAL (fn))
1516 if (!TREE_PRIVATE (fn))
1518 if (DECL_STATIC_FUNCTION_P (fn))
1519 /* A non-private static member function is just like a
1520 friend; it can create and invoke private member
1521 functions, and be accessed without a class
1522 instance. */
1523 return;
1525 has_nonprivate_method = 1;
1526 /* Keep searching for a static member function. */
1528 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1529 has_member_fn = 1;
1532 if (!has_nonprivate_method && has_member_fn)
1534 /* There are no non-private methods, and there's at least one
1535 private member function that isn't a constructor or
1536 destructor. (If all the private members are
1537 constructors/destructors we want to use the code below that
1538 issues error messages specifically referring to
1539 constructors/destructors.) */
1540 unsigned i;
1541 tree binfo = TYPE_BINFO (t);
1543 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1544 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1546 has_nonprivate_method = 1;
1547 break;
1549 if (!has_nonprivate_method)
1551 warning ("all member functions in class %qT are private", t);
1552 return;
1556 /* Even if some of the member functions are non-private, the class
1557 won't be useful for much if all the constructors or destructors
1558 are private: such an object can never be created or destroyed. */
1559 fn = CLASSTYPE_DESTRUCTORS (t);
1560 if (fn && TREE_PRIVATE (fn))
1562 warning ("%q#T only defines a private destructor and has no friends",
1564 return;
1567 if (TYPE_HAS_CONSTRUCTOR (t))
1569 int nonprivate_ctor = 0;
1571 /* If a non-template class does not define a copy
1572 constructor, one is defined for it, enabling it to avoid
1573 this warning. For a template class, this does not
1574 happen, and so we would normally get a warning on:
1576 template <class T> class C { private: C(); };
1578 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1579 complete non-template or fully instantiated classes have this
1580 flag set. */
1581 if (!TYPE_HAS_INIT_REF (t))
1582 nonprivate_ctor = 1;
1583 else
1584 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1586 tree ctor = OVL_CURRENT (fn);
1587 /* Ideally, we wouldn't count copy constructors (or, in
1588 fact, any constructor that takes an argument of the
1589 class type as a parameter) because such things cannot
1590 be used to construct an instance of the class unless
1591 you already have one. But, for now at least, we're
1592 more generous. */
1593 if (! TREE_PRIVATE (ctor))
1595 nonprivate_ctor = 1;
1596 break;
1600 if (nonprivate_ctor == 0)
1602 warning ("%q#T only defines private constructors and has no friends",
1604 return;
1609 static struct {
1610 gt_pointer_operator new_value;
1611 void *cookie;
1612 } resort_data;
1614 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1616 static int
1617 method_name_cmp (const void* m1_p, const void* m2_p)
1619 const tree *const m1 = m1_p;
1620 const tree *const m2 = m2_p;
1622 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1623 return 0;
1624 if (*m1 == NULL_TREE)
1625 return -1;
1626 if (*m2 == NULL_TREE)
1627 return 1;
1628 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1629 return -1;
1630 return 1;
1633 /* This routine compares two fields like method_name_cmp but using the
1634 pointer operator in resort_field_decl_data. */
1636 static int
1637 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1639 const tree *const m1 = m1_p;
1640 const tree *const m2 = m2_p;
1641 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1642 return 0;
1643 if (*m1 == NULL_TREE)
1644 return -1;
1645 if (*m2 == NULL_TREE)
1646 return 1;
1648 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1649 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1650 resort_data.new_value (&d1, resort_data.cookie);
1651 resort_data.new_value (&d2, resort_data.cookie);
1652 if (d1 < d2)
1653 return -1;
1655 return 1;
1658 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1660 void
1661 resort_type_method_vec (void* obj,
1662 void* orig_obj ATTRIBUTE_UNUSED ,
1663 gt_pointer_operator new_value,
1664 void* cookie)
1666 VEC(tree) *method_vec = (VEC(tree) *) obj;
1667 int len = VEC_length (tree, method_vec);
1668 size_t slot;
1669 tree fn;
1671 /* The type conversion ops have to live at the front of the vec, so we
1672 can't sort them. */
1673 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1674 VEC_iterate (tree, method_vec, slot, fn);
1675 ++slot)
1676 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1677 break;
1679 if (len - slot > 1)
1681 resort_data.new_value = new_value;
1682 resort_data.cookie = cookie;
1683 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1684 resort_method_name_cmp);
1688 /* Warn about duplicate methods in fn_fields.
1690 Sort methods that are not special (i.e., constructors, destructors,
1691 and type conversion operators) so that we can find them faster in
1692 search. */
1694 static void
1695 finish_struct_methods (tree t)
1697 tree fn_fields;
1698 VEC(tree) *method_vec;
1699 int slot, len;
1701 method_vec = CLASSTYPE_METHOD_VEC (t);
1702 if (!method_vec)
1703 return;
1705 len = VEC_length (tree, method_vec);
1707 /* Clear DECL_IN_AGGR_P for all functions. */
1708 for (fn_fields = TYPE_METHODS (t); fn_fields;
1709 fn_fields = TREE_CHAIN (fn_fields))
1710 DECL_IN_AGGR_P (fn_fields) = 0;
1712 /* Issue warnings about private constructors and such. If there are
1713 no methods, then some public defaults are generated. */
1714 maybe_warn_about_overly_private_class (t);
1716 /* The type conversion ops have to live at the front of the vec, so we
1717 can't sort them. */
1718 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1719 VEC_iterate (tree, method_vec, slot, fn_fields);
1720 ++slot)
1721 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1722 break;
1723 if (len - slot > 1)
1724 qsort (VEC_address (tree, method_vec) + slot,
1725 len-slot, sizeof (tree), method_name_cmp);
1728 /* Make BINFO's vtable have N entries, including RTTI entries,
1729 vbase and vcall offsets, etc. Set its type and call the backend
1730 to lay it out. */
1732 static void
1733 layout_vtable_decl (tree binfo, int n)
1735 tree atype;
1736 tree vtable;
1738 atype = build_cplus_array_type (vtable_entry_type,
1739 build_index_type (size_int (n - 1)));
1740 layout_type (atype);
1742 /* We may have to grow the vtable. */
1743 vtable = get_vtbl_decl_for_binfo (binfo);
1744 if (!same_type_p (TREE_TYPE (vtable), atype))
1746 TREE_TYPE (vtable) = atype;
1747 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1748 layout_decl (vtable, 0);
1752 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1753 have the same signature. */
1756 same_signature_p (tree fndecl, tree base_fndecl)
1758 /* One destructor overrides another if they are the same kind of
1759 destructor. */
1760 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1761 && special_function_p (base_fndecl) == special_function_p (fndecl))
1762 return 1;
1763 /* But a non-destructor never overrides a destructor, nor vice
1764 versa, nor do different kinds of destructors override
1765 one-another. For example, a complete object destructor does not
1766 override a deleting destructor. */
1767 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1768 return 0;
1770 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1771 || (DECL_CONV_FN_P (fndecl)
1772 && DECL_CONV_FN_P (base_fndecl)
1773 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1774 DECL_CONV_FN_TYPE (base_fndecl))))
1776 tree types, base_types;
1777 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1778 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1779 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1780 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1781 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1782 return 1;
1784 return 0;
1787 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1788 subobject. */
1790 static bool
1791 base_derived_from (tree derived, tree base)
1793 tree probe;
1795 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1797 if (probe == derived)
1798 return true;
1799 else if (BINFO_VIRTUAL_P (probe))
1800 /* If we meet a virtual base, we can't follow the inheritance
1801 any more. See if the complete type of DERIVED contains
1802 such a virtual base. */
1803 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1804 != NULL_TREE);
1806 return false;
1809 typedef struct find_final_overrider_data_s {
1810 /* The function for which we are trying to find a final overrider. */
1811 tree fn;
1812 /* The base class in which the function was declared. */
1813 tree declaring_base;
1814 /* The candidate overriders. */
1815 tree candidates;
1816 /* Path to most derived. */
1817 VEC (tree) *path;
1818 } find_final_overrider_data;
1820 /* Add the overrider along the current path to FFOD->CANDIDATES.
1821 Returns true if an overrider was found; false otherwise. */
1823 static bool
1824 dfs_find_final_overrider_1 (tree binfo,
1825 find_final_overrider_data *ffod,
1826 unsigned depth)
1828 tree method;
1830 /* If BINFO is not the most derived type, try a more derived class.
1831 A definition there will overrider a definition here. */
1832 if (depth)
1834 depth--;
1835 if (dfs_find_final_overrider_1
1836 (VEC_index (tree, ffod->path, depth), ffod, depth))
1837 return true;
1840 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1841 if (method)
1843 tree *candidate = &ffod->candidates;
1845 /* Remove any candidates overridden by this new function. */
1846 while (*candidate)
1848 /* If *CANDIDATE overrides METHOD, then METHOD
1849 cannot override anything else on the list. */
1850 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1851 return true;
1852 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1853 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1854 *candidate = TREE_CHAIN (*candidate);
1855 else
1856 candidate = &TREE_CHAIN (*candidate);
1859 /* Add the new function. */
1860 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1861 return true;
1864 return false;
1867 /* Called from find_final_overrider via dfs_walk. */
1869 static tree
1870 dfs_find_final_overrider_pre (tree binfo, void *data)
1872 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1874 if (binfo == ffod->declaring_base)
1875 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1876 VEC_safe_push (tree, ffod->path, binfo);
1878 return NULL_TREE;
1881 static tree
1882 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1884 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1885 VEC_pop (tree, ffod->path);
1887 return NULL_TREE;
1890 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1891 FN and whose TREE_VALUE is the binfo for the base where the
1892 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1893 DERIVED) is the base object in which FN is declared. */
1895 static tree
1896 find_final_overrider (tree derived, tree binfo, tree fn)
1898 find_final_overrider_data ffod;
1900 /* Getting this right is a little tricky. This is valid:
1902 struct S { virtual void f (); };
1903 struct T { virtual void f (); };
1904 struct U : public S, public T { };
1906 even though calling `f' in `U' is ambiguous. But,
1908 struct R { virtual void f(); };
1909 struct S : virtual public R { virtual void f (); };
1910 struct T : virtual public R { virtual void f (); };
1911 struct U : public S, public T { };
1913 is not -- there's no way to decide whether to put `S::f' or
1914 `T::f' in the vtable for `R'.
1916 The solution is to look at all paths to BINFO. If we find
1917 different overriders along any two, then there is a problem. */
1918 if (DECL_THUNK_P (fn))
1919 fn = THUNK_TARGET (fn);
1921 /* Determine the depth of the hierarchy. */
1922 ffod.fn = fn;
1923 ffod.declaring_base = binfo;
1924 ffod.candidates = NULL_TREE;
1925 ffod.path = VEC_alloc (tree, 30);
1927 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1928 dfs_find_final_overrider_post, &ffod);
1930 VEC_free (tree, ffod.path);
1932 /* If there was no winner, issue an error message. */
1933 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1935 error ("no unique final overrider for %qD in %qT", fn,
1936 BINFO_TYPE (derived));
1937 return error_mark_node;
1940 return ffod.candidates;
1943 /* Return the index of the vcall offset for FN when TYPE is used as a
1944 virtual base. */
1946 static tree
1947 get_vcall_index (tree fn, tree type)
1949 VEC (tree_pair_s) *indices = CLASSTYPE_VCALL_INDICES (type);
1950 tree_pair_p p;
1951 unsigned ix;
1953 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1954 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1955 || same_signature_p (fn, p->purpose))
1956 return p->value;
1958 /* There should always be an appropriate index. */
1959 gcc_unreachable ();
1962 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1963 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1964 corresponding position in the BINFO_VIRTUALS list. */
1966 static void
1967 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
1968 unsigned ix)
1970 tree b;
1971 tree overrider;
1972 tree delta;
1973 tree virtual_base;
1974 tree first_defn;
1975 tree overrider_fn, overrider_target;
1976 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
1977 tree over_return, base_return;
1978 bool lost = false;
1980 /* Find the nearest primary base (possibly binfo itself) which defines
1981 this function; this is the class the caller will convert to when
1982 calling FN through BINFO. */
1983 for (b = binfo; ; b = get_primary_binfo (b))
1985 gcc_assert (b);
1986 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
1987 break;
1989 /* The nearest definition is from a lost primary. */
1990 if (BINFO_LOST_PRIMARY_P (b))
1991 lost = true;
1993 first_defn = b;
1995 /* Find the final overrider. */
1996 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
1997 if (overrider == error_mark_node)
1998 return;
1999 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2001 /* Check for adjusting covariant return types. */
2002 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2003 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2005 if (POINTER_TYPE_P (over_return)
2006 && TREE_CODE (over_return) == TREE_CODE (base_return)
2007 && CLASS_TYPE_P (TREE_TYPE (over_return))
2008 && CLASS_TYPE_P (TREE_TYPE (base_return)))
2010 /* If FN is a covariant thunk, we must figure out the adjustment
2011 to the final base FN was converting to. As OVERRIDER_TARGET might
2012 also be converting to the return type of FN, we have to
2013 combine the two conversions here. */
2014 tree fixed_offset, virtual_offset;
2016 over_return = TREE_TYPE (over_return);
2017 base_return = TREE_TYPE (base_return);
2019 if (DECL_THUNK_P (fn))
2021 gcc_assert (DECL_RESULT_THUNK_P (fn));
2022 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2023 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2025 else
2026 fixed_offset = virtual_offset = NULL_TREE;
2028 if (virtual_offset)
2029 /* Find the equivalent binfo within the return type of the
2030 overriding function. We will want the vbase offset from
2031 there. */
2032 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2033 over_return);
2034 else if (!same_type_ignoring_top_level_qualifiers_p
2035 (over_return, base_return))
2037 /* There was no existing virtual thunk (which takes
2038 precedence). So find the binfo of the base function's
2039 return type within the overriding function's return type.
2040 We cannot call lookup base here, because we're inside a
2041 dfs_walk, and will therefore clobber the BINFO_MARKED
2042 flags. Fortunately we know the covariancy is valid (it
2043 has already been checked), so we can just iterate along
2044 the binfos, which have been chained in inheritance graph
2045 order. Of course it is lame that we have to repeat the
2046 search here anyway -- we should really be caching pieces
2047 of the vtable and avoiding this repeated work. */
2048 tree thunk_binfo, base_binfo;
2050 /* Find the base binfo within the overriding function's
2051 return type. */
2052 for (base_binfo = TYPE_BINFO (base_return),
2053 thunk_binfo = TYPE_BINFO (over_return);
2054 !SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2055 BINFO_TYPE (base_binfo));
2056 thunk_binfo = TREE_CHAIN (thunk_binfo))
2057 continue;
2059 /* See if virtual inheritance is involved. */
2060 for (virtual_offset = thunk_binfo;
2061 virtual_offset;
2062 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2063 if (BINFO_VIRTUAL_P (virtual_offset))
2064 break;
2066 if (virtual_offset || !BINFO_OFFSET_ZEROP (thunk_binfo))
2068 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2070 if (virtual_offset)
2072 /* We convert via virtual base. Adjust the fixed
2073 offset to be from there. */
2074 offset = size_diffop
2075 (offset, convert
2076 (ssizetype, BINFO_OFFSET (virtual_offset)));
2078 if (fixed_offset)
2079 /* There was an existing fixed offset, this must be
2080 from the base just converted to, and the base the
2081 FN was thunking to. */
2082 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2083 else
2084 fixed_offset = offset;
2088 if (fixed_offset || virtual_offset)
2089 /* Replace the overriding function with a covariant thunk. We
2090 will emit the overriding function in its own slot as
2091 well. */
2092 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2093 fixed_offset, virtual_offset);
2095 else
2096 gcc_assert (!DECL_THUNK_P (fn));
2098 /* Assume that we will produce a thunk that convert all the way to
2099 the final overrider, and not to an intermediate virtual base. */
2100 virtual_base = NULL_TREE;
2102 /* See if we can convert to an intermediate virtual base first, and then
2103 use the vcall offset located there to finish the conversion. */
2104 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2106 /* If we find the final overrider, then we can stop
2107 walking. */
2108 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2109 BINFO_TYPE (TREE_VALUE (overrider))))
2110 break;
2112 /* If we find a virtual base, and we haven't yet found the
2113 overrider, then there is a virtual base between the
2114 declaring base (first_defn) and the final overrider. */
2115 if (BINFO_VIRTUAL_P (b))
2117 virtual_base = b;
2118 break;
2122 if (overrider_fn != overrider_target && !virtual_base)
2124 /* The ABI specifies that a covariant thunk includes a mangling
2125 for a this pointer adjustment. This-adjusting thunks that
2126 override a function from a virtual base have a vcall
2127 adjustment. When the virtual base in question is a primary
2128 virtual base, we know the adjustments are zero, (and in the
2129 non-covariant case, we would not use the thunk).
2130 Unfortunately we didn't notice this could happen, when
2131 designing the ABI and so never mandated that such a covariant
2132 thunk should be emitted. Because we must use the ABI mandated
2133 name, we must continue searching from the binfo where we
2134 found the most recent definition of the function, towards the
2135 primary binfo which first introduced the function into the
2136 vtable. If that enters a virtual base, we must use a vcall
2137 this-adjusting thunk. Bleah! */
2138 tree probe = first_defn;
2140 while ((probe = get_primary_binfo (probe))
2141 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2142 if (BINFO_VIRTUAL_P (probe))
2143 virtual_base = probe;
2145 if (virtual_base)
2146 /* Even if we find a virtual base, the correct delta is
2147 between the overrider and the binfo we're building a vtable
2148 for. */
2149 goto virtual_covariant;
2152 /* Compute the constant adjustment to the `this' pointer. The
2153 `this' pointer, when this function is called, will point at BINFO
2154 (or one of its primary bases, which are at the same offset). */
2155 if (virtual_base)
2156 /* The `this' pointer needs to be adjusted from the declaration to
2157 the nearest virtual base. */
2158 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2159 convert (ssizetype, BINFO_OFFSET (first_defn)));
2160 else if (lost)
2161 /* If the nearest definition is in a lost primary, we don't need an
2162 entry in our vtable. Except possibly in a constructor vtable,
2163 if we happen to get our primary back. In that case, the offset
2164 will be zero, as it will be a primary base. */
2165 delta = size_zero_node;
2166 else
2167 /* The `this' pointer needs to be adjusted from pointing to
2168 BINFO to pointing at the base where the final overrider
2169 appears. */
2170 virtual_covariant:
2171 delta = size_diffop (convert (ssizetype,
2172 BINFO_OFFSET (TREE_VALUE (overrider))),
2173 convert (ssizetype, BINFO_OFFSET (binfo)));
2175 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2177 if (virtual_base)
2178 BV_VCALL_INDEX (*virtuals)
2179 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2180 else
2181 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2184 /* Called from modify_all_vtables via dfs_walk. */
2186 static tree
2187 dfs_modify_vtables (tree binfo, void* data)
2189 tree t = (tree) data;
2190 tree virtuals;
2191 tree old_virtuals;
2192 unsigned ix;
2194 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2195 /* A base without a vtable needs no modification, and its bases
2196 are uninteresting. */
2197 return dfs_skip_bases;
2199 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2200 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2201 /* Don't do the primary vtable, if it's new. */
2202 return NULL_TREE;
2204 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2205 /* There's no need to modify the vtable for a non-virtual primary
2206 base; we're not going to use that vtable anyhow. We do still
2207 need to do this for virtual primary bases, as they could become
2208 non-primary in a construction vtable. */
2209 return NULL_TREE;
2211 make_new_vtable (t, binfo);
2213 /* Now, go through each of the virtual functions in the virtual
2214 function table for BINFO. Find the final overrider, and update
2215 the BINFO_VIRTUALS list appropriately. */
2216 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2217 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2218 virtuals;
2219 ix++, virtuals = TREE_CHAIN (virtuals),
2220 old_virtuals = TREE_CHAIN (old_virtuals))
2221 update_vtable_entry_for_fn (t,
2222 binfo,
2223 BV_FN (old_virtuals),
2224 &virtuals, ix);
2226 return NULL_TREE;
2229 /* Update all of the primary and secondary vtables for T. Create new
2230 vtables as required, and initialize their RTTI information. Each
2231 of the functions in VIRTUALS is declared in T and may override a
2232 virtual function from a base class; find and modify the appropriate
2233 entries to point to the overriding functions. Returns a list, in
2234 declaration order, of the virtual functions that are declared in T,
2235 but do not appear in the primary base class vtable, and which
2236 should therefore be appended to the end of the vtable for T. */
2238 static tree
2239 modify_all_vtables (tree t, tree virtuals)
2241 tree binfo = TYPE_BINFO (t);
2242 tree *fnsp;
2244 /* Update all of the vtables. */
2245 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2247 /* Add virtual functions not already in our primary vtable. These
2248 will be both those introduced by this class, and those overridden
2249 from secondary bases. It does not include virtuals merely
2250 inherited from secondary bases. */
2251 for (fnsp = &virtuals; *fnsp; )
2253 tree fn = TREE_VALUE (*fnsp);
2255 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2256 || DECL_VINDEX (fn) == error_mark_node)
2258 /* We don't need to adjust the `this' pointer when
2259 calling this function. */
2260 BV_DELTA (*fnsp) = integer_zero_node;
2261 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2263 /* This is a function not already in our vtable. Keep it. */
2264 fnsp = &TREE_CHAIN (*fnsp);
2266 else
2267 /* We've already got an entry for this function. Skip it. */
2268 *fnsp = TREE_CHAIN (*fnsp);
2271 return virtuals;
2274 /* Get the base virtual function declarations in T that have the
2275 indicated NAME. */
2277 static tree
2278 get_basefndecls (tree name, tree t)
2280 tree methods;
2281 tree base_fndecls = NULL_TREE;
2282 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2283 int i;
2285 /* Find virtual functions in T with the indicated NAME. */
2286 i = lookup_fnfields_1 (t, name);
2287 if (i != -1)
2288 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2289 methods;
2290 methods = OVL_NEXT (methods))
2292 tree method = OVL_CURRENT (methods);
2294 if (TREE_CODE (method) == FUNCTION_DECL
2295 && DECL_VINDEX (method))
2296 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2299 if (base_fndecls)
2300 return base_fndecls;
2302 for (i = 0; i < n_baseclasses; i++)
2304 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2305 base_fndecls = chainon (get_basefndecls (name, basetype),
2306 base_fndecls);
2309 return base_fndecls;
2312 /* If this declaration supersedes the declaration of
2313 a method declared virtual in the base class, then
2314 mark this field as being virtual as well. */
2316 void
2317 check_for_override (tree decl, tree ctype)
2319 if (TREE_CODE (decl) == TEMPLATE_DECL)
2320 /* In [temp.mem] we have:
2322 A specialization of a member function template does not
2323 override a virtual function from a base class. */
2324 return;
2325 if ((DECL_DESTRUCTOR_P (decl)
2326 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2327 || DECL_CONV_FN_P (decl))
2328 && look_for_overrides (ctype, decl)
2329 && !DECL_STATIC_FUNCTION_P (decl))
2330 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2331 the error_mark_node so that we know it is an overriding
2332 function. */
2333 DECL_VINDEX (decl) = decl;
2335 if (DECL_VIRTUAL_P (decl))
2337 if (!DECL_VINDEX (decl))
2338 DECL_VINDEX (decl) = error_mark_node;
2339 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2343 /* Warn about hidden virtual functions that are not overridden in t.
2344 We know that constructors and destructors don't apply. */
2346 void
2347 warn_hidden (tree t)
2349 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (t);
2350 tree fns;
2351 size_t i;
2353 /* We go through each separately named virtual function. */
2354 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2355 VEC_iterate (tree, method_vec, i, fns);
2356 ++i)
2358 tree fn;
2359 tree name;
2360 tree fndecl;
2361 tree base_fndecls;
2362 tree base_binfo;
2363 tree binfo;
2364 int j;
2366 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2367 have the same name. Figure out what name that is. */
2368 name = DECL_NAME (OVL_CURRENT (fns));
2369 /* There are no possibly hidden functions yet. */
2370 base_fndecls = NULL_TREE;
2371 /* Iterate through all of the base classes looking for possibly
2372 hidden functions. */
2373 for (binfo = TYPE_BINFO (t), j = 0;
2374 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2376 tree basetype = BINFO_TYPE (base_binfo);
2377 base_fndecls = chainon (get_basefndecls (name, basetype),
2378 base_fndecls);
2381 /* If there are no functions to hide, continue. */
2382 if (!base_fndecls)
2383 continue;
2385 /* Remove any overridden functions. */
2386 for (fn = fns; fn; fn = OVL_NEXT (fn))
2388 fndecl = OVL_CURRENT (fn);
2389 if (DECL_VINDEX (fndecl))
2391 tree *prev = &base_fndecls;
2393 while (*prev)
2394 /* If the method from the base class has the same
2395 signature as the method from the derived class, it
2396 has been overridden. */
2397 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2398 *prev = TREE_CHAIN (*prev);
2399 else
2400 prev = &TREE_CHAIN (*prev);
2404 /* Now give a warning for all base functions without overriders,
2405 as they are hidden. */
2406 while (base_fndecls)
2408 /* Here we know it is a hider, and no overrider exists. */
2409 cp_warning_at ("%qD was hidden", TREE_VALUE (base_fndecls));
2410 cp_warning_at (" by %qD", fns);
2411 base_fndecls = TREE_CHAIN (base_fndecls);
2416 /* Check for things that are invalid. There are probably plenty of other
2417 things we should check for also. */
2419 static void
2420 finish_struct_anon (tree t)
2422 tree field;
2424 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2426 if (TREE_STATIC (field))
2427 continue;
2428 if (TREE_CODE (field) != FIELD_DECL)
2429 continue;
2431 if (DECL_NAME (field) == NULL_TREE
2432 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2434 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2435 for (; elt; elt = TREE_CHAIN (elt))
2437 /* We're generally only interested in entities the user
2438 declared, but we also find nested classes by noticing
2439 the TYPE_DECL that we create implicitly. You're
2440 allowed to put one anonymous union inside another,
2441 though, so we explicitly tolerate that. We use
2442 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2443 we also allow unnamed types used for defining fields. */
2444 if (DECL_ARTIFICIAL (elt)
2445 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2446 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2447 continue;
2449 if (TREE_CODE (elt) != FIELD_DECL)
2451 cp_pedwarn_at ("%q#D invalid; an anonymous union can "
2452 "only have non-static data members",
2453 elt);
2454 continue;
2457 if (TREE_PRIVATE (elt))
2458 cp_pedwarn_at ("private member %q#D in anonymous union",
2459 elt);
2460 else if (TREE_PROTECTED (elt))
2461 cp_pedwarn_at ("protected member %q#D in anonymous union",
2462 elt);
2464 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2465 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2471 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2472 will be used later during class template instantiation.
2473 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2474 a non-static member data (FIELD_DECL), a member function
2475 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2476 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2477 When FRIEND_P is nonzero, T is either a friend class
2478 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2479 (FUNCTION_DECL, TEMPLATE_DECL). */
2481 void
2482 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2484 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2485 if (CLASSTYPE_TEMPLATE_INFO (type))
2486 CLASSTYPE_DECL_LIST (type)
2487 = tree_cons (friend_p ? NULL_TREE : type,
2488 t, CLASSTYPE_DECL_LIST (type));
2491 /* Create default constructors, assignment operators, and so forth for
2492 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2493 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2494 the class cannot have a default constructor, copy constructor
2495 taking a const reference argument, or an assignment operator taking
2496 a const reference, respectively. */
2498 static void
2499 add_implicitly_declared_members (tree t,
2500 int cant_have_const_cctor,
2501 int cant_have_const_assignment)
2503 /* Destructor. */
2504 if (!CLASSTYPE_DESTRUCTORS (t))
2506 /* In general, we create destructors lazily. */
2507 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2508 /* However, if the implicit destructor is non-trivial
2509 destructor, we sometimes have to create it at this point. */
2510 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2512 bool lazy_p = true;
2514 if (TYPE_FOR_JAVA (t))
2515 /* If this a Java class, any non-trivial destructor is
2516 invalid, even if compiler-generated. Therefore, if the
2517 destructor is non-trivial we create it now. */
2518 lazy_p = false;
2519 else
2521 tree binfo;
2522 tree base_binfo;
2523 int ix;
2525 /* If the implicit destructor will be virtual, then we must
2526 generate it now because (unfortunately) we do not
2527 generate virtual tables lazily. */
2528 binfo = TYPE_BINFO (t);
2529 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2531 tree base_type;
2532 tree dtor;
2534 base_type = BINFO_TYPE (base_binfo);
2535 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2536 if (dtor && DECL_VIRTUAL_P (dtor))
2538 lazy_p = false;
2539 break;
2544 /* If we can't get away with being lazy, generate the destructor
2545 now. */
2546 if (!lazy_p)
2547 lazily_declare_fn (sfk_destructor, t);
2551 /* Default constructor. */
2552 if (! TYPE_HAS_CONSTRUCTOR (t))
2554 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2555 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2558 /* Copy constructor. */
2559 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2561 TYPE_HAS_INIT_REF (t) = 1;
2562 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2563 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2564 TYPE_HAS_CONSTRUCTOR (t) = 1;
2567 /* If there is no assignment operator, one will be created if and
2568 when it is needed. For now, just record whether or not the type
2569 of the parameter to the assignment operator will be a const or
2570 non-const reference. */
2571 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2573 TYPE_HAS_ASSIGN_REF (t) = 1;
2574 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2575 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2579 /* Subroutine of finish_struct_1. Recursively count the number of fields
2580 in TYPE, including anonymous union members. */
2582 static int
2583 count_fields (tree fields)
2585 tree x;
2586 int n_fields = 0;
2587 for (x = fields; x; x = TREE_CHAIN (x))
2589 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2590 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2591 else
2592 n_fields += 1;
2594 return n_fields;
2597 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2598 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2600 static int
2601 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2603 tree x;
2604 for (x = fields; x; x = TREE_CHAIN (x))
2606 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2607 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2608 else
2609 field_vec->elts[idx++] = x;
2611 return idx;
2614 /* FIELD is a bit-field. We are finishing the processing for its
2615 enclosing type. Issue any appropriate messages and set appropriate
2616 flags. */
2618 static void
2619 check_bitfield_decl (tree field)
2621 tree type = TREE_TYPE (field);
2622 tree w = NULL_TREE;
2624 /* Detect invalid bit-field type. */
2625 if (DECL_INITIAL (field)
2626 && ! INTEGRAL_TYPE_P (TREE_TYPE (field)))
2628 cp_error_at ("bit-field %q#D with non-integral type", field);
2629 w = error_mark_node;
2632 /* Detect and ignore out of range field width. */
2633 if (DECL_INITIAL (field))
2635 w = DECL_INITIAL (field);
2637 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2638 STRIP_NOPS (w);
2640 /* detect invalid field size. */
2641 w = integral_constant_value (w);
2643 if (TREE_CODE (w) != INTEGER_CST)
2645 cp_error_at ("bit-field %qD width not an integer constant",
2646 field);
2647 w = error_mark_node;
2649 else if (tree_int_cst_sgn (w) < 0)
2651 cp_error_at ("negative width in bit-field %qD", field);
2652 w = error_mark_node;
2654 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2656 cp_error_at ("zero width for bit-field %qD", field);
2657 w = error_mark_node;
2659 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2660 && TREE_CODE (type) != ENUMERAL_TYPE
2661 && TREE_CODE (type) != BOOLEAN_TYPE)
2662 cp_warning_at ("width of %qD exceeds its type", field);
2663 else if (TREE_CODE (type) == ENUMERAL_TYPE
2664 && (0 > compare_tree_int (w,
2665 min_precision (TYPE_MIN_VALUE (type),
2666 TYPE_UNSIGNED (type)))
2667 || 0 > compare_tree_int (w,
2668 min_precision
2669 (TYPE_MAX_VALUE (type),
2670 TYPE_UNSIGNED (type)))))
2671 cp_warning_at ("%qD is too small to hold all values of %q#T",
2672 field, type);
2675 /* Remove the bit-field width indicator so that the rest of the
2676 compiler does not treat that value as an initializer. */
2677 DECL_INITIAL (field) = NULL_TREE;
2679 if (w != error_mark_node)
2681 DECL_SIZE (field) = convert (bitsizetype, w);
2682 DECL_BIT_FIELD (field) = 1;
2684 else
2686 /* Non-bit-fields are aligned for their type. */
2687 DECL_BIT_FIELD (field) = 0;
2688 CLEAR_DECL_C_BIT_FIELD (field);
2692 /* FIELD is a non bit-field. We are finishing the processing for its
2693 enclosing type T. Issue any appropriate messages and set appropriate
2694 flags. */
2696 static void
2697 check_field_decl (tree field,
2698 tree t,
2699 int* cant_have_const_ctor,
2700 int* no_const_asn_ref,
2701 int* any_default_members)
2703 tree type = strip_array_types (TREE_TYPE (field));
2705 /* An anonymous union cannot contain any fields which would change
2706 the settings of CANT_HAVE_CONST_CTOR and friends. */
2707 if (ANON_UNION_TYPE_P (type))
2709 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2710 structs. So, we recurse through their fields here. */
2711 else if (ANON_AGGR_TYPE_P (type))
2713 tree fields;
2715 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2716 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2717 check_field_decl (fields, t, cant_have_const_ctor,
2718 no_const_asn_ref, any_default_members);
2720 /* Check members with class type for constructors, destructors,
2721 etc. */
2722 else if (CLASS_TYPE_P (type))
2724 /* Never let anything with uninheritable virtuals
2725 make it through without complaint. */
2726 abstract_virtuals_error (field, type);
2728 if (TREE_CODE (t) == UNION_TYPE)
2730 if (TYPE_NEEDS_CONSTRUCTING (type))
2731 cp_error_at ("member %q#D with constructor not allowed in union",
2732 field);
2733 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2734 cp_error_at ("member %q#D with destructor not allowed in union",
2735 field);
2736 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2737 cp_error_at ("member %q#D with copy assignment operator not allowed in union",
2738 field);
2740 else
2742 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2743 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2744 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2745 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2746 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2749 if (!TYPE_HAS_CONST_INIT_REF (type))
2750 *cant_have_const_ctor = 1;
2752 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2753 *no_const_asn_ref = 1;
2755 if (DECL_INITIAL (field) != NULL_TREE)
2757 /* `build_class_init_list' does not recognize
2758 non-FIELD_DECLs. */
2759 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2760 error ("multiple fields in union %qT initialized", t);
2761 *any_default_members = 1;
2765 /* Check the data members (both static and non-static), class-scoped
2766 typedefs, etc., appearing in the declaration of T. Issue
2767 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2768 declaration order) of access declarations; each TREE_VALUE in this
2769 list is a USING_DECL.
2771 In addition, set the following flags:
2773 EMPTY_P
2774 The class is empty, i.e., contains no non-static data members.
2776 CANT_HAVE_CONST_CTOR_P
2777 This class cannot have an implicitly generated copy constructor
2778 taking a const reference.
2780 CANT_HAVE_CONST_ASN_REF
2781 This class cannot have an implicitly generated assignment
2782 operator taking a const reference.
2784 All of these flags should be initialized before calling this
2785 function.
2787 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2788 fields can be added by adding to this chain. */
2790 static void
2791 check_field_decls (tree t, tree *access_decls,
2792 int *cant_have_const_ctor_p,
2793 int *no_const_asn_ref_p)
2795 tree *field;
2796 tree *next;
2797 bool has_pointers;
2798 int any_default_members;
2800 /* Assume there are no access declarations. */
2801 *access_decls = NULL_TREE;
2802 /* Assume this class has no pointer members. */
2803 has_pointers = false;
2804 /* Assume none of the members of this class have default
2805 initializations. */
2806 any_default_members = 0;
2808 for (field = &TYPE_FIELDS (t); *field; field = next)
2810 tree x = *field;
2811 tree type = TREE_TYPE (x);
2813 next = &TREE_CHAIN (x);
2815 if (TREE_CODE (x) == FIELD_DECL)
2817 if (TYPE_PACKED (t))
2819 if (!pod_type_p (TREE_TYPE (x)) && !TYPE_PACKED (TREE_TYPE (x)))
2820 cp_warning_at
2821 ("ignoring packed attribute on unpacked non-POD field %q#D",
2823 else
2824 DECL_PACKED (x) = 1;
2827 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2828 /* We don't treat zero-width bitfields as making a class
2829 non-empty. */
2831 else
2833 tree element_type;
2835 /* The class is non-empty. */
2836 CLASSTYPE_EMPTY_P (t) = 0;
2837 /* The class is not even nearly empty. */
2838 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2839 /* If one of the data members contains an empty class,
2840 so does T. */
2841 element_type = strip_array_types (type);
2842 if (CLASS_TYPE_P (element_type)
2843 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
2844 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2848 if (TREE_CODE (x) == USING_DECL)
2850 /* Prune the access declaration from the list of fields. */
2851 *field = TREE_CHAIN (x);
2853 /* Save the access declarations for our caller. */
2854 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2856 /* Since we've reset *FIELD there's no reason to skip to the
2857 next field. */
2858 next = field;
2859 continue;
2862 if (TREE_CODE (x) == TYPE_DECL
2863 || TREE_CODE (x) == TEMPLATE_DECL)
2864 continue;
2866 /* If we've gotten this far, it's a data member, possibly static,
2867 or an enumerator. */
2868 DECL_CONTEXT (x) = t;
2870 /* When this goes into scope, it will be a non-local reference. */
2871 DECL_NONLOCAL (x) = 1;
2873 if (TREE_CODE (t) == UNION_TYPE)
2875 /* [class.union]
2877 If a union contains a static data member, or a member of
2878 reference type, the program is ill-formed. */
2879 if (TREE_CODE (x) == VAR_DECL)
2881 cp_error_at ("%qD may not be static because it is a member of a union", x);
2882 continue;
2884 if (TREE_CODE (type) == REFERENCE_TYPE)
2886 cp_error_at ("%qD may not have reference type %qT because"
2887 " it is a member of a union",
2888 x, type);
2889 continue;
2893 /* ``A local class cannot have static data members.'' ARM 9.4 */
2894 if (current_function_decl && TREE_STATIC (x))
2895 cp_error_at ("field %qD in local class cannot be static", x);
2897 /* Perform error checking that did not get done in
2898 grokdeclarator. */
2899 if (TREE_CODE (type) == FUNCTION_TYPE)
2901 cp_error_at ("field %qD invalidly declared function type", x);
2902 type = build_pointer_type (type);
2903 TREE_TYPE (x) = type;
2905 else if (TREE_CODE (type) == METHOD_TYPE)
2907 cp_error_at ("field %qD invalidly declared method type", x);
2908 type = build_pointer_type (type);
2909 TREE_TYPE (x) = type;
2912 if (type == error_mark_node)
2913 continue;
2915 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2916 continue;
2918 /* Now it can only be a FIELD_DECL. */
2920 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2921 CLASSTYPE_NON_AGGREGATE (t) = 1;
2923 /* If this is of reference type, check if it needs an init.
2924 Also do a little ANSI jig if necessary. */
2925 if (TREE_CODE (type) == REFERENCE_TYPE)
2927 CLASSTYPE_NON_POD_P (t) = 1;
2928 if (DECL_INITIAL (x) == NULL_TREE)
2929 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2931 /* ARM $12.6.2: [A member initializer list] (or, for an
2932 aggregate, initialization by a brace-enclosed list) is the
2933 only way to initialize nonstatic const and reference
2934 members. */
2935 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2937 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2938 && extra_warnings)
2939 cp_warning_at ("non-static reference %q#D in class without a constructor", x);
2942 type = strip_array_types (type);
2944 /* This is used by -Weffc++ (see below). Warn only for pointers
2945 to members which might hold dynamic memory. So do not warn
2946 for pointers to functions or pointers to members. */
2947 if (TYPE_PTR_P (type)
2948 && !TYPE_PTRFN_P (type)
2949 && !TYPE_PTR_TO_MEMBER_P (type))
2950 has_pointers = true;
2952 if (CLASS_TYPE_P (type))
2954 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
2955 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2956 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
2957 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2960 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
2961 CLASSTYPE_HAS_MUTABLE (t) = 1;
2963 if (! pod_type_p (type))
2964 /* DR 148 now allows pointers to members (which are POD themselves),
2965 to be allowed in POD structs. */
2966 CLASSTYPE_NON_POD_P (t) = 1;
2968 if (! zero_init_p (type))
2969 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
2971 /* If any field is const, the structure type is pseudo-const. */
2972 if (CP_TYPE_CONST_P (type))
2974 C_TYPE_FIELDS_READONLY (t) = 1;
2975 if (DECL_INITIAL (x) == NULL_TREE)
2976 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2978 /* ARM $12.6.2: [A member initializer list] (or, for an
2979 aggregate, initialization by a brace-enclosed list) is the
2980 only way to initialize nonstatic const and reference
2981 members. */
2982 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2984 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2985 && extra_warnings)
2986 cp_warning_at ("non-static const member %q#D in class without a constructor", x);
2988 /* A field that is pseudo-const makes the structure likewise. */
2989 else if (CLASS_TYPE_P (type))
2991 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
2992 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
2993 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
2994 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
2997 /* Core issue 80: A nonstatic data member is required to have a
2998 different name from the class iff the class has a
2999 user-defined constructor. */
3000 if (constructor_name_p (DECL_NAME (x), t) && TYPE_HAS_CONSTRUCTOR (t))
3001 cp_pedwarn_at ("field %q#D with same name as class", x);
3003 /* We set DECL_C_BIT_FIELD in grokbitfield.
3004 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3005 if (DECL_C_BIT_FIELD (x))
3006 check_bitfield_decl (x);
3007 else
3008 check_field_decl (x, t,
3009 cant_have_const_ctor_p,
3010 no_const_asn_ref_p,
3011 &any_default_members);
3014 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3015 it should also define a copy constructor and an assignment operator to
3016 implement the correct copy semantic (deep vs shallow, etc.). As it is
3017 not feasible to check whether the constructors do allocate dynamic memory
3018 and store it within members, we approximate the warning like this:
3020 -- Warn only if there are members which are pointers
3021 -- Warn only if there is a non-trivial constructor (otherwise,
3022 there cannot be memory allocated).
3023 -- Warn only if there is a non-trivial destructor. We assume that the
3024 user at least implemented the cleanup correctly, and a destructor
3025 is needed to free dynamic memory.
3027 This seems enough for practical purposes. */
3028 if (warn_ecpp
3029 && has_pointers
3030 && TYPE_HAS_CONSTRUCTOR (t)
3031 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3032 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3034 warning ("%q#T has pointer data members", t);
3036 if (! TYPE_HAS_INIT_REF (t))
3038 warning (" but does not override %<%T(const %T&)%>", t, t);
3039 if (! TYPE_HAS_ASSIGN_REF (t))
3040 warning (" or %<operator=(const %T&)%>", t);
3042 else if (! TYPE_HAS_ASSIGN_REF (t))
3043 warning (" but does not override %<operator=(const %T&)%>", t);
3047 /* Check anonymous struct/anonymous union fields. */
3048 finish_struct_anon (t);
3050 /* We've built up the list of access declarations in reverse order.
3051 Fix that now. */
3052 *access_decls = nreverse (*access_decls);
3055 /* If TYPE is an empty class type, records its OFFSET in the table of
3056 OFFSETS. */
3058 static int
3059 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3061 splay_tree_node n;
3063 if (!is_empty_class (type))
3064 return 0;
3066 /* Record the location of this empty object in OFFSETS. */
3067 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3068 if (!n)
3069 n = splay_tree_insert (offsets,
3070 (splay_tree_key) offset,
3071 (splay_tree_value) NULL_TREE);
3072 n->value = ((splay_tree_value)
3073 tree_cons (NULL_TREE,
3074 type,
3075 (tree) n->value));
3077 return 0;
3080 /* Returns nonzero if TYPE is an empty class type and there is
3081 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3083 static int
3084 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3086 splay_tree_node n;
3087 tree t;
3089 if (!is_empty_class (type))
3090 return 0;
3092 /* Record the location of this empty object in OFFSETS. */
3093 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3094 if (!n)
3095 return 0;
3097 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3098 if (same_type_p (TREE_VALUE (t), type))
3099 return 1;
3101 return 0;
3104 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3105 F for every subobject, passing it the type, offset, and table of
3106 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3107 be traversed.
3109 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3110 than MAX_OFFSET will not be walked.
3112 If F returns a nonzero value, the traversal ceases, and that value
3113 is returned. Otherwise, returns zero. */
3115 static int
3116 walk_subobject_offsets (tree type,
3117 subobject_offset_fn f,
3118 tree offset,
3119 splay_tree offsets,
3120 tree max_offset,
3121 int vbases_p)
3123 int r = 0;
3124 tree type_binfo = NULL_TREE;
3126 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3127 stop. */
3128 if (max_offset && INT_CST_LT (max_offset, offset))
3129 return 0;
3131 if (!TYPE_P (type))
3133 if (abi_version_at_least (2))
3134 type_binfo = type;
3135 type = BINFO_TYPE (type);
3138 if (CLASS_TYPE_P (type))
3140 tree field;
3141 tree binfo;
3142 int i;
3144 /* Avoid recursing into objects that are not interesting. */
3145 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3146 return 0;
3148 /* Record the location of TYPE. */
3149 r = (*f) (type, offset, offsets);
3150 if (r)
3151 return r;
3153 /* Iterate through the direct base classes of TYPE. */
3154 if (!type_binfo)
3155 type_binfo = TYPE_BINFO (type);
3156 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3158 tree binfo_offset;
3160 if (abi_version_at_least (2)
3161 && BINFO_VIRTUAL_P (binfo))
3162 continue;
3164 if (!vbases_p
3165 && BINFO_VIRTUAL_P (binfo)
3166 && !BINFO_PRIMARY_P (binfo))
3167 continue;
3169 if (!abi_version_at_least (2))
3170 binfo_offset = size_binop (PLUS_EXPR,
3171 offset,
3172 BINFO_OFFSET (binfo));
3173 else
3175 tree orig_binfo;
3176 /* We cannot rely on BINFO_OFFSET being set for the base
3177 class yet, but the offsets for direct non-virtual
3178 bases can be calculated by going back to the TYPE. */
3179 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3180 binfo_offset = size_binop (PLUS_EXPR,
3181 offset,
3182 BINFO_OFFSET (orig_binfo));
3185 r = walk_subobject_offsets (binfo,
3187 binfo_offset,
3188 offsets,
3189 max_offset,
3190 (abi_version_at_least (2)
3191 ? /*vbases_p=*/0 : vbases_p));
3192 if (r)
3193 return r;
3196 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3198 unsigned ix;
3199 VEC (tree) *vbases;
3201 /* Iterate through the virtual base classes of TYPE. In G++
3202 3.2, we included virtual bases in the direct base class
3203 loop above, which results in incorrect results; the
3204 correct offsets for virtual bases are only known when
3205 working with the most derived type. */
3206 if (vbases_p)
3207 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3208 VEC_iterate (tree, vbases, ix, binfo); ix++)
3210 r = walk_subobject_offsets (binfo,
3212 size_binop (PLUS_EXPR,
3213 offset,
3214 BINFO_OFFSET (binfo)),
3215 offsets,
3216 max_offset,
3217 /*vbases_p=*/0);
3218 if (r)
3219 return r;
3221 else
3223 /* We still have to walk the primary base, if it is
3224 virtual. (If it is non-virtual, then it was walked
3225 above.) */
3226 tree vbase = get_primary_binfo (type_binfo);
3228 if (vbase && BINFO_VIRTUAL_P (vbase)
3229 && BINFO_PRIMARY_P (vbase)
3230 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3232 r = (walk_subobject_offsets
3233 (vbase, f, offset,
3234 offsets, max_offset, /*vbases_p=*/0));
3235 if (r)
3236 return r;
3241 /* Iterate through the fields of TYPE. */
3242 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3243 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3245 tree field_offset;
3247 if (abi_version_at_least (2))
3248 field_offset = byte_position (field);
3249 else
3250 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3251 field_offset = DECL_FIELD_OFFSET (field);
3253 r = walk_subobject_offsets (TREE_TYPE (field),
3255 size_binop (PLUS_EXPR,
3256 offset,
3257 field_offset),
3258 offsets,
3259 max_offset,
3260 /*vbases_p=*/1);
3261 if (r)
3262 return r;
3265 else if (TREE_CODE (type) == ARRAY_TYPE)
3267 tree element_type = strip_array_types (type);
3268 tree domain = TYPE_DOMAIN (type);
3269 tree index;
3271 /* Avoid recursing into objects that are not interesting. */
3272 if (!CLASS_TYPE_P (element_type)
3273 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3274 return 0;
3276 /* Step through each of the elements in the array. */
3277 for (index = size_zero_node;
3278 /* G++ 3.2 had an off-by-one error here. */
3279 (abi_version_at_least (2)
3280 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3281 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3282 index = size_binop (PLUS_EXPR, index, size_one_node))
3284 r = walk_subobject_offsets (TREE_TYPE (type),
3286 offset,
3287 offsets,
3288 max_offset,
3289 /*vbases_p=*/1);
3290 if (r)
3291 return r;
3292 offset = size_binop (PLUS_EXPR, offset,
3293 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3294 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3295 there's no point in iterating through the remaining
3296 elements of the array. */
3297 if (max_offset && INT_CST_LT (max_offset, offset))
3298 break;
3302 return 0;
3305 /* Record all of the empty subobjects of TYPE (located at OFFSET) in
3306 OFFSETS. If VBASES_P is nonzero, virtual bases of TYPE are
3307 examined. */
3309 static void
3310 record_subobject_offsets (tree type,
3311 tree offset,
3312 splay_tree offsets,
3313 int vbases_p)
3315 walk_subobject_offsets (type, record_subobject_offset, offset,
3316 offsets, /*max_offset=*/NULL_TREE, vbases_p);
3319 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3320 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3321 virtual bases of TYPE are examined. */
3323 static int
3324 layout_conflict_p (tree type,
3325 tree offset,
3326 splay_tree offsets,
3327 int vbases_p)
3329 splay_tree_node max_node;
3331 /* Get the node in OFFSETS that indicates the maximum offset where
3332 an empty subobject is located. */
3333 max_node = splay_tree_max (offsets);
3334 /* If there aren't any empty subobjects, then there's no point in
3335 performing this check. */
3336 if (!max_node)
3337 return 0;
3339 return walk_subobject_offsets (type, check_subobject_offset, offset,
3340 offsets, (tree) (max_node->key),
3341 vbases_p);
3344 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3345 non-static data member of the type indicated by RLI. BINFO is the
3346 binfo corresponding to the base subobject, OFFSETS maps offsets to
3347 types already located at those offsets. This function determines
3348 the position of the DECL. */
3350 static void
3351 layout_nonempty_base_or_field (record_layout_info rli,
3352 tree decl,
3353 tree binfo,
3354 splay_tree offsets)
3356 tree offset = NULL_TREE;
3357 bool field_p;
3358 tree type;
3360 if (binfo)
3362 /* For the purposes of determining layout conflicts, we want to
3363 use the class type of BINFO; TREE_TYPE (DECL) will be the
3364 CLASSTYPE_AS_BASE version, which does not contain entries for
3365 zero-sized bases. */
3366 type = TREE_TYPE (binfo);
3367 field_p = false;
3369 else
3371 type = TREE_TYPE (decl);
3372 field_p = true;
3375 /* Try to place the field. It may take more than one try if we have
3376 a hard time placing the field without putting two objects of the
3377 same type at the same address. */
3378 while (1)
3380 struct record_layout_info_s old_rli = *rli;
3382 /* Place this field. */
3383 place_field (rli, decl);
3384 offset = byte_position (decl);
3386 /* We have to check to see whether or not there is already
3387 something of the same type at the offset we're about to use.
3388 For example, consider:
3390 struct S {};
3391 struct T : public S { int i; };
3392 struct U : public S, public T {};
3394 Here, we put S at offset zero in U. Then, we can't put T at
3395 offset zero -- its S component would be at the same address
3396 as the S we already allocated. So, we have to skip ahead.
3397 Since all data members, including those whose type is an
3398 empty class, have nonzero size, any overlap can happen only
3399 with a direct or indirect base-class -- it can't happen with
3400 a data member. */
3401 /* In a union, overlap is permitted; all members are placed at
3402 offset zero. */
3403 if (TREE_CODE (rli->t) == UNION_TYPE)
3404 break;
3405 /* G++ 3.2 did not check for overlaps when placing a non-empty
3406 virtual base. */
3407 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3408 break;
3409 if (layout_conflict_p (field_p ? type : binfo, offset,
3410 offsets, field_p))
3412 /* Strip off the size allocated to this field. That puts us
3413 at the first place we could have put the field with
3414 proper alignment. */
3415 *rli = old_rli;
3417 /* Bump up by the alignment required for the type. */
3418 rli->bitpos
3419 = size_binop (PLUS_EXPR, rli->bitpos,
3420 bitsize_int (binfo
3421 ? CLASSTYPE_ALIGN (type)
3422 : TYPE_ALIGN (type)));
3423 normalize_rli (rli);
3425 else
3426 /* There was no conflict. We're done laying out this field. */
3427 break;
3430 /* Now that we know where it will be placed, update its
3431 BINFO_OFFSET. */
3432 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3433 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3434 this point because their BINFO_OFFSET is copied from another
3435 hierarchy. Therefore, we may not need to add the entire
3436 OFFSET. */
3437 propagate_binfo_offsets (binfo,
3438 size_diffop (convert (ssizetype, offset),
3439 convert (ssizetype,
3440 BINFO_OFFSET (binfo))));
3443 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3445 static int
3446 empty_base_at_nonzero_offset_p (tree type,
3447 tree offset,
3448 splay_tree offsets ATTRIBUTE_UNUSED)
3450 return is_empty_class (type) && !integer_zerop (offset);
3453 /* Layout the empty base BINFO. EOC indicates the byte currently just
3454 past the end of the class, and should be correctly aligned for a
3455 class of the type indicated by BINFO; OFFSETS gives the offsets of
3456 the empty bases allocated so far. T is the most derived
3457 type. Return nonzero iff we added it at the end. */
3459 static bool
3460 layout_empty_base (tree binfo, tree eoc, splay_tree offsets)
3462 tree alignment;
3463 tree basetype = BINFO_TYPE (binfo);
3464 bool atend = false;
3466 /* This routine should only be used for empty classes. */
3467 gcc_assert (is_empty_class (basetype));
3468 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3470 if (!integer_zerop (BINFO_OFFSET (binfo)))
3472 if (abi_version_at_least (2))
3473 propagate_binfo_offsets
3474 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3475 else if (warn_abi)
3476 warning ("offset of empty base %qT may not be ABI-compliant and may"
3477 "change in a future version of GCC",
3478 BINFO_TYPE (binfo));
3481 /* This is an empty base class. We first try to put it at offset
3482 zero. */
3483 if (layout_conflict_p (binfo,
3484 BINFO_OFFSET (binfo),
3485 offsets,
3486 /*vbases_p=*/0))
3488 /* That didn't work. Now, we move forward from the next
3489 available spot in the class. */
3490 atend = true;
3491 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3492 while (1)
3494 if (!layout_conflict_p (binfo,
3495 BINFO_OFFSET (binfo),
3496 offsets,
3497 /*vbases_p=*/0))
3498 /* We finally found a spot where there's no overlap. */
3499 break;
3501 /* There's overlap here, too. Bump along to the next spot. */
3502 propagate_binfo_offsets (binfo, alignment);
3505 return atend;
3508 /* Layout the base given by BINFO in the class indicated by RLI.
3509 *BASE_ALIGN is a running maximum of the alignments of
3510 any base class. OFFSETS gives the location of empty base
3511 subobjects. T is the most derived type. Return nonzero if the new
3512 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3513 *NEXT_FIELD, unless BINFO is for an empty base class.
3515 Returns the location at which the next field should be inserted. */
3517 static tree *
3518 build_base_field (record_layout_info rli, tree binfo,
3519 splay_tree offsets, tree *next_field)
3521 tree t = rli->t;
3522 tree basetype = BINFO_TYPE (binfo);
3524 if (!COMPLETE_TYPE_P (basetype))
3525 /* This error is now reported in xref_tag, thus giving better
3526 location information. */
3527 return next_field;
3529 /* Place the base class. */
3530 if (!is_empty_class (basetype))
3532 tree decl;
3534 /* The containing class is non-empty because it has a non-empty
3535 base class. */
3536 CLASSTYPE_EMPTY_P (t) = 0;
3538 /* Create the FIELD_DECL. */
3539 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3540 DECL_ARTIFICIAL (decl) = 1;
3541 DECL_IGNORED_P (decl) = 1;
3542 DECL_FIELD_CONTEXT (decl) = t;
3543 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3544 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3545 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3546 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3547 DECL_MODE (decl) = TYPE_MODE (basetype);
3548 DECL_FIELD_IS_BASE (decl) = 1;
3550 /* Try to place the field. It may take more than one try if we
3551 have a hard time placing the field without putting two
3552 objects of the same type at the same address. */
3553 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3554 /* Add the new FIELD_DECL to the list of fields for T. */
3555 TREE_CHAIN (decl) = *next_field;
3556 *next_field = decl;
3557 next_field = &TREE_CHAIN (decl);
3559 else
3561 tree eoc;
3562 bool atend;
3564 /* On some platforms (ARM), even empty classes will not be
3565 byte-aligned. */
3566 eoc = round_up (rli_size_unit_so_far (rli),
3567 CLASSTYPE_ALIGN_UNIT (basetype));
3568 atend = layout_empty_base (binfo, eoc, offsets);
3569 /* A nearly-empty class "has no proper base class that is empty,
3570 not morally virtual, and at an offset other than zero." */
3571 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3573 if (atend)
3574 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3575 /* The check above (used in G++ 3.2) is insufficient because
3576 an empty class placed at offset zero might itself have an
3577 empty base at a nonzero offset. */
3578 else if (walk_subobject_offsets (basetype,
3579 empty_base_at_nonzero_offset_p,
3580 size_zero_node,
3581 /*offsets=*/NULL,
3582 /*max_offset=*/NULL_TREE,
3583 /*vbases_p=*/true))
3585 if (abi_version_at_least (2))
3586 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3587 else if (warn_abi)
3588 warning ("class %qT will be considered nearly empty in a "
3589 "future version of GCC", t);
3593 /* We do not create a FIELD_DECL for empty base classes because
3594 it might overlap some other field. We want to be able to
3595 create CONSTRUCTORs for the class by iterating over the
3596 FIELD_DECLs, and the back end does not handle overlapping
3597 FIELD_DECLs. */
3599 /* An empty virtual base causes a class to be non-empty
3600 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3601 here because that was already done when the virtual table
3602 pointer was created. */
3605 /* Record the offsets of BINFO and its base subobjects. */
3606 record_subobject_offsets (binfo,
3607 BINFO_OFFSET (binfo),
3608 offsets,
3609 /*vbases_p=*/0);
3611 return next_field;
3614 /* Layout all of the non-virtual base classes. Record empty
3615 subobjects in OFFSETS. T is the most derived type. Return nonzero
3616 if the type cannot be nearly empty. The fields created
3617 corresponding to the base classes will be inserted at
3618 *NEXT_FIELD. */
3620 static void
3621 build_base_fields (record_layout_info rli,
3622 splay_tree offsets, tree *next_field)
3624 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3625 subobjects. */
3626 tree t = rli->t;
3627 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3628 int i;
3630 /* The primary base class is always allocated first. */
3631 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3632 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3633 offsets, next_field);
3635 /* Now allocate the rest of the bases. */
3636 for (i = 0; i < n_baseclasses; ++i)
3638 tree base_binfo;
3640 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3642 /* The primary base was already allocated above, so we don't
3643 need to allocate it again here. */
3644 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3645 continue;
3647 /* Virtual bases are added at the end (a primary virtual base
3648 will have already been added). */
3649 if (BINFO_VIRTUAL_P (base_binfo))
3650 continue;
3652 next_field = build_base_field (rli, base_binfo,
3653 offsets, next_field);
3657 /* Go through the TYPE_METHODS of T issuing any appropriate
3658 diagnostics, figuring out which methods override which other
3659 methods, and so forth. */
3661 static void
3662 check_methods (tree t)
3664 tree x;
3666 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3668 check_for_override (x, t);
3669 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3670 cp_error_at ("initializer specified for non-virtual method %qD", x);
3671 /* The name of the field is the original field name
3672 Save this in auxiliary field for later overloading. */
3673 if (DECL_VINDEX (x))
3675 TYPE_POLYMORPHIC_P (t) = 1;
3676 if (DECL_PURE_VIRTUAL_P (x))
3677 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (t), x);
3679 /* All user-declared destructors are non-trivial. */
3680 if (DECL_DESTRUCTOR_P (x))
3681 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3685 /* FN is a constructor or destructor. Clone the declaration to create
3686 a specialized in-charge or not-in-charge version, as indicated by
3687 NAME. */
3689 static tree
3690 build_clone (tree fn, tree name)
3692 tree parms;
3693 tree clone;
3695 /* Copy the function. */
3696 clone = copy_decl (fn);
3697 /* Remember where this function came from. */
3698 DECL_CLONED_FUNCTION (clone) = fn;
3699 DECL_ABSTRACT_ORIGIN (clone) = fn;
3700 /* Reset the function name. */
3701 DECL_NAME (clone) = name;
3702 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3703 /* There's no pending inline data for this function. */
3704 DECL_PENDING_INLINE_INFO (clone) = NULL;
3705 DECL_PENDING_INLINE_P (clone) = 0;
3706 /* And it hasn't yet been deferred. */
3707 DECL_DEFERRED_FN (clone) = 0;
3709 /* The base-class destructor is not virtual. */
3710 if (name == base_dtor_identifier)
3712 DECL_VIRTUAL_P (clone) = 0;
3713 if (TREE_CODE (clone) != TEMPLATE_DECL)
3714 DECL_VINDEX (clone) = NULL_TREE;
3717 /* If there was an in-charge parameter, drop it from the function
3718 type. */
3719 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3721 tree basetype;
3722 tree parmtypes;
3723 tree exceptions;
3725 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3726 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3727 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3728 /* Skip the `this' parameter. */
3729 parmtypes = TREE_CHAIN (parmtypes);
3730 /* Skip the in-charge parameter. */
3731 parmtypes = TREE_CHAIN (parmtypes);
3732 /* And the VTT parm, in a complete [cd]tor. */
3733 if (DECL_HAS_VTT_PARM_P (fn)
3734 && ! DECL_NEEDS_VTT_PARM_P (clone))
3735 parmtypes = TREE_CHAIN (parmtypes);
3736 /* If this is subobject constructor or destructor, add the vtt
3737 parameter. */
3738 TREE_TYPE (clone)
3739 = build_method_type_directly (basetype,
3740 TREE_TYPE (TREE_TYPE (clone)),
3741 parmtypes);
3742 if (exceptions)
3743 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3744 exceptions);
3745 TREE_TYPE (clone)
3746 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3747 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3750 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3751 aren't function parameters; those are the template parameters. */
3752 if (TREE_CODE (clone) != TEMPLATE_DECL)
3754 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3755 /* Remove the in-charge parameter. */
3756 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3758 TREE_CHAIN (DECL_ARGUMENTS (clone))
3759 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3760 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3762 /* And the VTT parm, in a complete [cd]tor. */
3763 if (DECL_HAS_VTT_PARM_P (fn))
3765 if (DECL_NEEDS_VTT_PARM_P (clone))
3766 DECL_HAS_VTT_PARM_P (clone) = 1;
3767 else
3769 TREE_CHAIN (DECL_ARGUMENTS (clone))
3770 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3771 DECL_HAS_VTT_PARM_P (clone) = 0;
3775 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3777 DECL_CONTEXT (parms) = clone;
3778 cxx_dup_lang_specific_decl (parms);
3782 /* Create the RTL for this function. */
3783 SET_DECL_RTL (clone, NULL_RTX);
3784 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3786 /* Make it easy to find the CLONE given the FN. */
3787 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3788 TREE_CHAIN (fn) = clone;
3790 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3791 if (TREE_CODE (clone) == TEMPLATE_DECL)
3793 tree result;
3795 DECL_TEMPLATE_RESULT (clone)
3796 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3797 result = DECL_TEMPLATE_RESULT (clone);
3798 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3799 DECL_TI_TEMPLATE (result) = clone;
3801 else if (pch_file)
3802 note_decl_for_pch (clone);
3804 return clone;
3807 /* Produce declarations for all appropriate clones of FN. If
3808 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3809 CLASTYPE_METHOD_VEC as well. */
3811 void
3812 clone_function_decl (tree fn, int update_method_vec_p)
3814 tree clone;
3816 /* Avoid inappropriate cloning. */
3817 if (TREE_CHAIN (fn)
3818 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3819 return;
3821 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3823 /* For each constructor, we need two variants: an in-charge version
3824 and a not-in-charge version. */
3825 clone = build_clone (fn, complete_ctor_identifier);
3826 if (update_method_vec_p)
3827 add_method (DECL_CONTEXT (clone), clone);
3828 clone = build_clone (fn, base_ctor_identifier);
3829 if (update_method_vec_p)
3830 add_method (DECL_CONTEXT (clone), clone);
3832 else
3834 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3836 /* For each destructor, we need three variants: an in-charge
3837 version, a not-in-charge version, and an in-charge deleting
3838 version. We clone the deleting version first because that
3839 means it will go second on the TYPE_METHODS list -- and that
3840 corresponds to the correct layout order in the virtual
3841 function table.
3843 For a non-virtual destructor, we do not build a deleting
3844 destructor. */
3845 if (DECL_VIRTUAL_P (fn))
3847 clone = build_clone (fn, deleting_dtor_identifier);
3848 if (update_method_vec_p)
3849 add_method (DECL_CONTEXT (clone), clone);
3851 clone = build_clone (fn, complete_dtor_identifier);
3852 if (update_method_vec_p)
3853 add_method (DECL_CONTEXT (clone), clone);
3854 clone = build_clone (fn, base_dtor_identifier);
3855 if (update_method_vec_p)
3856 add_method (DECL_CONTEXT (clone), clone);
3859 /* Note that this is an abstract function that is never emitted. */
3860 DECL_ABSTRACT (fn) = 1;
3863 /* DECL is an in charge constructor, which is being defined. This will
3864 have had an in class declaration, from whence clones were
3865 declared. An out-of-class definition can specify additional default
3866 arguments. As it is the clones that are involved in overload
3867 resolution, we must propagate the information from the DECL to its
3868 clones. */
3870 void
3871 adjust_clone_args (tree decl)
3873 tree clone;
3875 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3876 clone = TREE_CHAIN (clone))
3878 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3879 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3880 tree decl_parms, clone_parms;
3882 clone_parms = orig_clone_parms;
3884 /* Skip the 'this' parameter. */
3885 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3886 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3888 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3889 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3890 if (DECL_HAS_VTT_PARM_P (decl))
3891 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3893 clone_parms = orig_clone_parms;
3894 if (DECL_HAS_VTT_PARM_P (clone))
3895 clone_parms = TREE_CHAIN (clone_parms);
3897 for (decl_parms = orig_decl_parms; decl_parms;
3898 decl_parms = TREE_CHAIN (decl_parms),
3899 clone_parms = TREE_CHAIN (clone_parms))
3901 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3902 TREE_TYPE (clone_parms)));
3904 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3906 /* A default parameter has been added. Adjust the
3907 clone's parameters. */
3908 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3909 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3910 tree type;
3912 clone_parms = orig_decl_parms;
3914 if (DECL_HAS_VTT_PARM_P (clone))
3916 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
3917 TREE_VALUE (orig_clone_parms),
3918 clone_parms);
3919 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
3921 type = build_method_type_directly (basetype,
3922 TREE_TYPE (TREE_TYPE (clone)),
3923 clone_parms);
3924 if (exceptions)
3925 type = build_exception_variant (type, exceptions);
3926 TREE_TYPE (clone) = type;
3928 clone_parms = NULL_TREE;
3929 break;
3932 gcc_assert (!clone_parms);
3936 /* For each of the constructors and destructors in T, create an
3937 in-charge and not-in-charge variant. */
3939 static void
3940 clone_constructors_and_destructors (tree t)
3942 tree fns;
3944 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3945 out now. */
3946 if (!CLASSTYPE_METHOD_VEC (t))
3947 return;
3949 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3950 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3951 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3952 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3955 /* Remove all zero-width bit-fields from T. */
3957 static void
3958 remove_zero_width_bit_fields (tree t)
3960 tree *fieldsp;
3962 fieldsp = &TYPE_FIELDS (t);
3963 while (*fieldsp)
3965 if (TREE_CODE (*fieldsp) == FIELD_DECL
3966 && DECL_C_BIT_FIELD (*fieldsp)
3967 && DECL_INITIAL (*fieldsp))
3968 *fieldsp = TREE_CHAIN (*fieldsp);
3969 else
3970 fieldsp = &TREE_CHAIN (*fieldsp);
3974 /* Returns TRUE iff we need a cookie when dynamically allocating an
3975 array whose elements have the indicated class TYPE. */
3977 static bool
3978 type_requires_array_cookie (tree type)
3980 tree fns;
3981 bool has_two_argument_delete_p = false;
3983 gcc_assert (CLASS_TYPE_P (type));
3985 /* If there's a non-trivial destructor, we need a cookie. In order
3986 to iterate through the array calling the destructor for each
3987 element, we'll have to know how many elements there are. */
3988 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3989 return true;
3991 /* If the usual deallocation function is a two-argument whose second
3992 argument is of type `size_t', then we have to pass the size of
3993 the array to the deallocation function, so we will need to store
3994 a cookie. */
3995 fns = lookup_fnfields (TYPE_BINFO (type),
3996 ansi_opname (VEC_DELETE_EXPR),
3997 /*protect=*/0);
3998 /* If there are no `operator []' members, or the lookup is
3999 ambiguous, then we don't need a cookie. */
4000 if (!fns || fns == error_mark_node)
4001 return false;
4002 /* Loop through all of the functions. */
4003 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4005 tree fn;
4006 tree second_parm;
4008 /* Select the current function. */
4009 fn = OVL_CURRENT (fns);
4010 /* See if this function is a one-argument delete function. If
4011 it is, then it will be the usual deallocation function. */
4012 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4013 if (second_parm == void_list_node)
4014 return false;
4015 /* Otherwise, if we have a two-argument function and the second
4016 argument is `size_t', it will be the usual deallocation
4017 function -- unless there is one-argument function, too. */
4018 if (TREE_CHAIN (second_parm) == void_list_node
4019 && same_type_p (TREE_VALUE (second_parm), sizetype))
4020 has_two_argument_delete_p = true;
4023 return has_two_argument_delete_p;
4026 /* Check the validity of the bases and members declared in T. Add any
4027 implicitly-generated functions (like copy-constructors and
4028 assignment operators). Compute various flag bits (like
4029 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4030 level: i.e., independently of the ABI in use. */
4032 static void
4033 check_bases_and_members (tree t)
4035 /* Nonzero if the implicitly generated copy constructor should take
4036 a non-const reference argument. */
4037 int cant_have_const_ctor;
4038 /* Nonzero if the implicitly generated assignment operator
4039 should take a non-const reference argument. */
4040 int no_const_asn_ref;
4041 tree access_decls;
4043 /* By default, we use const reference arguments and generate default
4044 constructors. */
4045 cant_have_const_ctor = 0;
4046 no_const_asn_ref = 0;
4048 /* Check all the base-classes. */
4049 check_bases (t, &cant_have_const_ctor,
4050 &no_const_asn_ref);
4052 /* Check all the method declarations. */
4053 check_methods (t);
4055 /* Check all the data member declarations. We cannot call
4056 check_field_decls until we have called check_bases check_methods,
4057 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4058 being set appropriately. */
4059 check_field_decls (t, &access_decls,
4060 &cant_have_const_ctor,
4061 &no_const_asn_ref);
4063 /* A nearly-empty class has to be vptr-containing; a nearly empty
4064 class contains just a vptr. */
4065 if (!TYPE_CONTAINS_VPTR_P (t))
4066 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4068 /* Do some bookkeeping that will guide the generation of implicitly
4069 declared member functions. */
4070 TYPE_HAS_COMPLEX_INIT_REF (t)
4071 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4072 TYPE_NEEDS_CONSTRUCTING (t)
4073 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4074 CLASSTYPE_NON_AGGREGATE (t)
4075 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4076 CLASSTYPE_NON_POD_P (t)
4077 |= (CLASSTYPE_NON_AGGREGATE (t)
4078 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4079 || TYPE_HAS_ASSIGN_REF (t));
4080 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4081 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4083 /* Synthesize any needed methods. */
4084 add_implicitly_declared_members (t,
4085 cant_have_const_ctor,
4086 no_const_asn_ref);
4088 /* Create the in-charge and not-in-charge variants of constructors
4089 and destructors. */
4090 clone_constructors_and_destructors (t);
4092 /* Process the using-declarations. */
4093 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4094 handle_using_decl (TREE_VALUE (access_decls), t);
4096 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4097 finish_struct_methods (t);
4099 /* Figure out whether or not we will need a cookie when dynamically
4100 allocating an array of this type. */
4101 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4102 = type_requires_array_cookie (t);
4105 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4106 accordingly. If a new vfield was created (because T doesn't have a
4107 primary base class), then the newly created field is returned. It
4108 is not added to the TYPE_FIELDS list; it is the caller's
4109 responsibility to do that. Accumulate declared virtual functions
4110 on VIRTUALS_P. */
4112 static tree
4113 create_vtable_ptr (tree t, tree* virtuals_p)
4115 tree fn;
4117 /* Collect the virtual functions declared in T. */
4118 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4119 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4120 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4122 tree new_virtual = make_node (TREE_LIST);
4124 BV_FN (new_virtual) = fn;
4125 BV_DELTA (new_virtual) = integer_zero_node;
4126 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4128 TREE_CHAIN (new_virtual) = *virtuals_p;
4129 *virtuals_p = new_virtual;
4132 /* If we couldn't find an appropriate base class, create a new field
4133 here. Even if there weren't any new virtual functions, we might need a
4134 new virtual function table if we're supposed to include vptrs in
4135 all classes that need them. */
4136 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4138 /* We build this decl with vtbl_ptr_type_node, which is a
4139 `vtable_entry_type*'. It might seem more precise to use
4140 `vtable_entry_type (*)[N]' where N is the number of virtual
4141 functions. However, that would require the vtable pointer in
4142 base classes to have a different type than the vtable pointer
4143 in derived classes. We could make that happen, but that
4144 still wouldn't solve all the problems. In particular, the
4145 type-based alias analysis code would decide that assignments
4146 to the base class vtable pointer can't alias assignments to
4147 the derived class vtable pointer, since they have different
4148 types. Thus, in a derived class destructor, where the base
4149 class constructor was inlined, we could generate bad code for
4150 setting up the vtable pointer.
4152 Therefore, we use one type for all vtable pointers. We still
4153 use a type-correct type; it's just doesn't indicate the array
4154 bounds. That's better than using `void*' or some such; it's
4155 cleaner, and it let's the alias analysis code know that these
4156 stores cannot alias stores to void*! */
4157 tree field;
4159 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4160 SET_DECL_ASSEMBLER_NAME (field, get_identifier (VFIELD_BASE));
4161 DECL_VIRTUAL_P (field) = 1;
4162 DECL_ARTIFICIAL (field) = 1;
4163 DECL_FIELD_CONTEXT (field) = t;
4164 DECL_FCONTEXT (field) = t;
4166 TYPE_VFIELD (t) = field;
4168 /* This class is non-empty. */
4169 CLASSTYPE_EMPTY_P (t) = 0;
4171 return field;
4174 return NULL_TREE;
4177 /* Fixup the inline function given by INFO now that the class is
4178 complete. */
4180 static void
4181 fixup_pending_inline (tree fn)
4183 if (DECL_PENDING_INLINE_INFO (fn))
4185 tree args = DECL_ARGUMENTS (fn);
4186 while (args)
4188 DECL_CONTEXT (args) = fn;
4189 args = TREE_CHAIN (args);
4194 /* Fixup the inline methods and friends in TYPE now that TYPE is
4195 complete. */
4197 static void
4198 fixup_inline_methods (tree type)
4200 tree method = TYPE_METHODS (type);
4201 VEC (tree) *friends;
4202 unsigned ix;
4204 if (method && TREE_CODE (method) == TREE_VEC)
4206 if (TREE_VEC_ELT (method, 1))
4207 method = TREE_VEC_ELT (method, 1);
4208 else if (TREE_VEC_ELT (method, 0))
4209 method = TREE_VEC_ELT (method, 0);
4210 else
4211 method = TREE_VEC_ELT (method, 2);
4214 /* Do inline member functions. */
4215 for (; method; method = TREE_CHAIN (method))
4216 fixup_pending_inline (method);
4218 /* Do friends. */
4219 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4220 VEC_iterate (tree, friends, ix, method); ix++)
4221 fixup_pending_inline (method);
4222 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4225 /* Add OFFSET to all base types of BINFO which is a base in the
4226 hierarchy dominated by T.
4228 OFFSET, which is a type offset, is number of bytes. */
4230 static void
4231 propagate_binfo_offsets (tree binfo, tree offset)
4233 int i;
4234 tree primary_binfo;
4235 tree base_binfo;
4237 /* Update BINFO's offset. */
4238 BINFO_OFFSET (binfo)
4239 = convert (sizetype,
4240 size_binop (PLUS_EXPR,
4241 convert (ssizetype, BINFO_OFFSET (binfo)),
4242 offset));
4244 /* Find the primary base class. */
4245 primary_binfo = get_primary_binfo (binfo);
4247 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4248 propagate_binfo_offsets (primary_binfo, offset);
4250 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4251 downwards. */
4252 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4254 /* Don't do the primary base twice. */
4255 if (base_binfo == primary_binfo)
4256 continue;
4258 if (BINFO_VIRTUAL_P (base_binfo))
4259 continue;
4261 propagate_binfo_offsets (base_binfo, offset);
4265 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4266 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4267 empty subobjects of T. */
4269 static void
4270 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4272 tree vbase;
4273 tree t = rli->t;
4274 bool first_vbase = true;
4275 tree *next_field;
4277 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4278 return;
4280 if (!abi_version_at_least(2))
4282 /* In G++ 3.2, we incorrectly rounded the size before laying out
4283 the virtual bases. */
4284 finish_record_layout (rli, /*free_p=*/false);
4285 #ifdef STRUCTURE_SIZE_BOUNDARY
4286 /* Packed structures don't need to have minimum size. */
4287 if (! TYPE_PACKED (t))
4288 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4289 #endif
4290 rli->offset = TYPE_SIZE_UNIT (t);
4291 rli->bitpos = bitsize_zero_node;
4292 rli->record_align = TYPE_ALIGN (t);
4295 /* Find the last field. The artificial fields created for virtual
4296 bases will go after the last extant field to date. */
4297 next_field = &TYPE_FIELDS (t);
4298 while (*next_field)
4299 next_field = &TREE_CHAIN (*next_field);
4301 /* Go through the virtual bases, allocating space for each virtual
4302 base that is not already a primary base class. These are
4303 allocated in inheritance graph order. */
4304 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4306 if (!BINFO_VIRTUAL_P (vbase))
4307 continue;
4309 if (!BINFO_PRIMARY_P (vbase))
4311 tree basetype = TREE_TYPE (vbase);
4313 /* This virtual base is not a primary base of any class in the
4314 hierarchy, so we have to add space for it. */
4315 next_field = build_base_field (rli, vbase,
4316 offsets, next_field);
4318 /* If the first virtual base might have been placed at a
4319 lower address, had we started from CLASSTYPE_SIZE, rather
4320 than TYPE_SIZE, issue a warning. There can be both false
4321 positives and false negatives from this warning in rare
4322 cases; to deal with all the possibilities would probably
4323 require performing both layout algorithms and comparing
4324 the results which is not particularly tractable. */
4325 if (warn_abi
4326 && first_vbase
4327 && (tree_int_cst_lt
4328 (size_binop (CEIL_DIV_EXPR,
4329 round_up (CLASSTYPE_SIZE (t),
4330 CLASSTYPE_ALIGN (basetype)),
4331 bitsize_unit_node),
4332 BINFO_OFFSET (vbase))))
4333 warning ("offset of virtual base %qT is not ABI-compliant and "
4334 "may change in a future version of GCC",
4335 basetype);
4337 first_vbase = false;
4342 /* Returns the offset of the byte just past the end of the base class
4343 BINFO. */
4345 static tree
4346 end_of_base (tree binfo)
4348 tree size;
4350 if (is_empty_class (BINFO_TYPE (binfo)))
4351 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4352 allocate some space for it. It cannot have virtual bases, so
4353 TYPE_SIZE_UNIT is fine. */
4354 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4355 else
4356 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4358 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4361 /* Returns the offset of the byte just past the end of the base class
4362 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4363 only non-virtual bases are included. */
4365 static tree
4366 end_of_class (tree t, int include_virtuals_p)
4368 tree result = size_zero_node;
4369 VEC (tree) *vbases;
4370 tree binfo;
4371 tree base_binfo;
4372 tree offset;
4373 int i;
4375 for (binfo = TYPE_BINFO (t), i = 0;
4376 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4378 if (!include_virtuals_p
4379 && BINFO_VIRTUAL_P (base_binfo)
4380 && (!BINFO_PRIMARY_P (base_binfo)
4381 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4382 continue;
4384 offset = end_of_base (base_binfo);
4385 if (INT_CST_LT_UNSIGNED (result, offset))
4386 result = offset;
4389 /* G++ 3.2 did not check indirect virtual bases. */
4390 if (abi_version_at_least (2) && include_virtuals_p)
4391 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4392 VEC_iterate (tree, vbases, i, base_binfo); i++)
4394 offset = end_of_base (base_binfo);
4395 if (INT_CST_LT_UNSIGNED (result, offset))
4396 result = offset;
4399 return result;
4402 /* Warn about bases of T that are inaccessible because they are
4403 ambiguous. For example:
4405 struct S {};
4406 struct T : public S {};
4407 struct U : public S, public T {};
4409 Here, `(S*) new U' is not allowed because there are two `S'
4410 subobjects of U. */
4412 static void
4413 warn_about_ambiguous_bases (tree t)
4415 int i;
4416 VEC (tree) *vbases;
4417 tree basetype;
4418 tree binfo;
4419 tree base_binfo;
4421 /* If there are no repeated bases, nothing can be ambiguous. */
4422 if (!CLASSTYPE_REPEATED_BASE_P (t))
4423 return;
4425 /* Check direct bases. */
4426 for (binfo = TYPE_BINFO (t), i = 0;
4427 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4429 basetype = BINFO_TYPE (base_binfo);
4431 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4432 warning ("direct base %qT inaccessible in %qT due to ambiguity",
4433 basetype, t);
4436 /* Check for ambiguous virtual bases. */
4437 if (extra_warnings)
4438 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4439 VEC_iterate (tree, vbases, i, binfo); i++)
4441 basetype = BINFO_TYPE (binfo);
4443 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4444 warning ("virtual base %qT inaccessible in %qT due to ambiguity",
4445 basetype, t);
4449 /* Compare two INTEGER_CSTs K1 and K2. */
4451 static int
4452 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4454 return tree_int_cst_compare ((tree) k1, (tree) k2);
4457 /* Increase the size indicated in RLI to account for empty classes
4458 that are "off the end" of the class. */
4460 static void
4461 include_empty_classes (record_layout_info rli)
4463 tree eoc;
4464 tree rli_size;
4466 /* It might be the case that we grew the class to allocate a
4467 zero-sized base class. That won't be reflected in RLI, yet,
4468 because we are willing to overlay multiple bases at the same
4469 offset. However, now we need to make sure that RLI is big enough
4470 to reflect the entire class. */
4471 eoc = end_of_class (rli->t,
4472 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4473 rli_size = rli_size_unit_so_far (rli);
4474 if (TREE_CODE (rli_size) == INTEGER_CST
4475 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4477 if (!abi_version_at_least (2))
4478 /* In version 1 of the ABI, the size of a class that ends with
4479 a bitfield was not rounded up to a whole multiple of a
4480 byte. Because rli_size_unit_so_far returns only the number
4481 of fully allocated bytes, any extra bits were not included
4482 in the size. */
4483 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4484 else
4485 /* The size should have been rounded to a whole byte. */
4486 gcc_assert (tree_int_cst_equal
4487 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4488 rli->bitpos
4489 = size_binop (PLUS_EXPR,
4490 rli->bitpos,
4491 size_binop (MULT_EXPR,
4492 convert (bitsizetype,
4493 size_binop (MINUS_EXPR,
4494 eoc, rli_size)),
4495 bitsize_int (BITS_PER_UNIT)));
4496 normalize_rli (rli);
4500 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4501 BINFO_OFFSETs for all of the base-classes. Position the vtable
4502 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4504 static void
4505 layout_class_type (tree t, tree *virtuals_p)
4507 tree non_static_data_members;
4508 tree field;
4509 tree vptr;
4510 record_layout_info rli;
4511 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4512 types that appear at that offset. */
4513 splay_tree empty_base_offsets;
4514 /* True if the last field layed out was a bit-field. */
4515 bool last_field_was_bitfield = false;
4516 /* The location at which the next field should be inserted. */
4517 tree *next_field;
4518 /* T, as a base class. */
4519 tree base_t;
4521 /* Keep track of the first non-static data member. */
4522 non_static_data_members = TYPE_FIELDS (t);
4524 /* Start laying out the record. */
4525 rli = start_record_layout (t);
4527 /* Mark all the primary bases in the hierarchy. */
4528 determine_primary_bases (t);
4530 /* Create a pointer to our virtual function table. */
4531 vptr = create_vtable_ptr (t, virtuals_p);
4533 /* The vptr is always the first thing in the class. */
4534 if (vptr)
4536 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4537 TYPE_FIELDS (t) = vptr;
4538 next_field = &TREE_CHAIN (vptr);
4539 place_field (rli, vptr);
4541 else
4542 next_field = &TYPE_FIELDS (t);
4544 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4545 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4546 NULL, NULL);
4547 build_base_fields (rli, empty_base_offsets, next_field);
4549 /* Layout the non-static data members. */
4550 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4552 tree type;
4553 tree padding;
4555 /* We still pass things that aren't non-static data members to
4556 the back-end, in case it wants to do something with them. */
4557 if (TREE_CODE (field) != FIELD_DECL)
4559 place_field (rli, field);
4560 /* If the static data member has incomplete type, keep track
4561 of it so that it can be completed later. (The handling
4562 of pending statics in finish_record_layout is
4563 insufficient; consider:
4565 struct S1;
4566 struct S2 { static S1 s1; };
4568 At this point, finish_record_layout will be called, but
4569 S1 is still incomplete.) */
4570 if (TREE_CODE (field) == VAR_DECL)
4572 maybe_register_incomplete_var (field);
4573 /* The visibility of static data members is determined
4574 at their point of declaration, not their point of
4575 definition. */
4576 determine_visibility (field);
4578 continue;
4581 type = TREE_TYPE (field);
4583 padding = NULL_TREE;
4585 /* If this field is a bit-field whose width is greater than its
4586 type, then there are some special rules for allocating
4587 it. */
4588 if (DECL_C_BIT_FIELD (field)
4589 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4591 integer_type_kind itk;
4592 tree integer_type;
4593 bool was_unnamed_p = false;
4594 /* We must allocate the bits as if suitably aligned for the
4595 longest integer type that fits in this many bits. type
4596 of the field. Then, we are supposed to use the left over
4597 bits as additional padding. */
4598 for (itk = itk_char; itk != itk_none; ++itk)
4599 if (INT_CST_LT (DECL_SIZE (field),
4600 TYPE_SIZE (integer_types[itk])))
4601 break;
4603 /* ITK now indicates a type that is too large for the
4604 field. We have to back up by one to find the largest
4605 type that fits. */
4606 integer_type = integer_types[itk - 1];
4608 /* Figure out how much additional padding is required. GCC
4609 3.2 always created a padding field, even if it had zero
4610 width. */
4611 if (!abi_version_at_least (2)
4612 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4614 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4615 /* In a union, the padding field must have the full width
4616 of the bit-field; all fields start at offset zero. */
4617 padding = DECL_SIZE (field);
4618 else
4620 if (warn_abi && TREE_CODE (t) == UNION_TYPE)
4621 warning ("size assigned to %qT may not be "
4622 "ABI-compliant and may change in a future "
4623 "version of GCC",
4625 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4626 TYPE_SIZE (integer_type));
4629 #ifdef PCC_BITFIELD_TYPE_MATTERS
4630 /* An unnamed bitfield does not normally affect the
4631 alignment of the containing class on a target where
4632 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4633 make any exceptions for unnamed bitfields when the
4634 bitfields are longer than their types. Therefore, we
4635 temporarily give the field a name. */
4636 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4638 was_unnamed_p = true;
4639 DECL_NAME (field) = make_anon_name ();
4641 #endif
4642 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4643 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4644 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4645 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4646 empty_base_offsets);
4647 if (was_unnamed_p)
4648 DECL_NAME (field) = NULL_TREE;
4649 /* Now that layout has been performed, set the size of the
4650 field to the size of its declared type; the rest of the
4651 field is effectively invisible. */
4652 DECL_SIZE (field) = TYPE_SIZE (type);
4653 /* We must also reset the DECL_MODE of the field. */
4654 if (abi_version_at_least (2))
4655 DECL_MODE (field) = TYPE_MODE (type);
4656 else if (warn_abi
4657 && DECL_MODE (field) != TYPE_MODE (type))
4658 /* Versions of G++ before G++ 3.4 did not reset the
4659 DECL_MODE. */
4660 warning ("the offset of %qD may not be ABI-compliant and may "
4661 "change in a future version of GCC", field);
4663 else
4664 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4665 empty_base_offsets);
4667 /* Remember the location of any empty classes in FIELD. */
4668 if (abi_version_at_least (2))
4669 record_subobject_offsets (TREE_TYPE (field),
4670 byte_position(field),
4671 empty_base_offsets,
4672 /*vbases_p=*/1);
4674 /* If a bit-field does not immediately follow another bit-field,
4675 and yet it starts in the middle of a byte, we have failed to
4676 comply with the ABI. */
4677 if (warn_abi
4678 && DECL_C_BIT_FIELD (field)
4679 && !last_field_was_bitfield
4680 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4681 DECL_FIELD_BIT_OFFSET (field),
4682 bitsize_unit_node)))
4683 cp_warning_at ("offset of %qD is not ABI-compliant and may "
4684 "change in a future version of GCC",
4685 field);
4687 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4688 offset of the field. */
4689 if (warn_abi
4690 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4691 byte_position (field))
4692 && contains_empty_class_p (TREE_TYPE (field)))
4693 cp_warning_at ("%qD contains empty classes which may cause base "
4694 "classes to be placed at different locations in a "
4695 "future version of GCC",
4696 field);
4698 /* If we needed additional padding after this field, add it
4699 now. */
4700 if (padding)
4702 tree padding_field;
4704 padding_field = build_decl (FIELD_DECL,
4705 NULL_TREE,
4706 char_type_node);
4707 DECL_BIT_FIELD (padding_field) = 1;
4708 DECL_SIZE (padding_field) = padding;
4709 DECL_CONTEXT (padding_field) = t;
4710 DECL_ARTIFICIAL (padding_field) = 1;
4711 DECL_IGNORED_P (padding_field) = 1;
4712 layout_nonempty_base_or_field (rli, padding_field,
4713 NULL_TREE,
4714 empty_base_offsets);
4717 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4720 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4722 /* Make sure that we are on a byte boundary so that the size of
4723 the class without virtual bases will always be a round number
4724 of bytes. */
4725 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4726 normalize_rli (rli);
4729 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4730 padding. */
4731 if (!abi_version_at_least (2))
4732 include_empty_classes(rli);
4734 /* Delete all zero-width bit-fields from the list of fields. Now
4735 that the type is laid out they are no longer important. */
4736 remove_zero_width_bit_fields (t);
4738 /* Create the version of T used for virtual bases. We do not use
4739 make_aggr_type for this version; this is an artificial type. For
4740 a POD type, we just reuse T. */
4741 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4743 base_t = make_node (TREE_CODE (t));
4745 /* Set the size and alignment for the new type. In G++ 3.2, all
4746 empty classes were considered to have size zero when used as
4747 base classes. */
4748 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4750 TYPE_SIZE (base_t) = bitsize_zero_node;
4751 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4752 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4753 warning ("layout of classes derived from empty class %qT "
4754 "may change in a future version of GCC",
4757 else
4759 tree eoc;
4761 /* If the ABI version is not at least two, and the last
4762 field was a bit-field, RLI may not be on a byte
4763 boundary. In particular, rli_size_unit_so_far might
4764 indicate the last complete byte, while rli_size_so_far
4765 indicates the total number of bits used. Therefore,
4766 rli_size_so_far, rather than rli_size_unit_so_far, is
4767 used to compute TYPE_SIZE_UNIT. */
4768 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4769 TYPE_SIZE_UNIT (base_t)
4770 = size_binop (MAX_EXPR,
4771 convert (sizetype,
4772 size_binop (CEIL_DIV_EXPR,
4773 rli_size_so_far (rli),
4774 bitsize_int (BITS_PER_UNIT))),
4775 eoc);
4776 TYPE_SIZE (base_t)
4777 = size_binop (MAX_EXPR,
4778 rli_size_so_far (rli),
4779 size_binop (MULT_EXPR,
4780 convert (bitsizetype, eoc),
4781 bitsize_int (BITS_PER_UNIT)));
4783 TYPE_ALIGN (base_t) = rli->record_align;
4784 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4786 /* Copy the fields from T. */
4787 next_field = &TYPE_FIELDS (base_t);
4788 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4789 if (TREE_CODE (field) == FIELD_DECL)
4791 *next_field = build_decl (FIELD_DECL,
4792 DECL_NAME (field),
4793 TREE_TYPE (field));
4794 DECL_CONTEXT (*next_field) = base_t;
4795 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4796 DECL_FIELD_BIT_OFFSET (*next_field)
4797 = DECL_FIELD_BIT_OFFSET (field);
4798 DECL_SIZE (*next_field) = DECL_SIZE (field);
4799 DECL_MODE (*next_field) = DECL_MODE (field);
4800 next_field = &TREE_CHAIN (*next_field);
4803 /* Record the base version of the type. */
4804 CLASSTYPE_AS_BASE (t) = base_t;
4805 TYPE_CONTEXT (base_t) = t;
4807 else
4808 CLASSTYPE_AS_BASE (t) = t;
4810 /* Every empty class contains an empty class. */
4811 if (CLASSTYPE_EMPTY_P (t))
4812 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
4814 /* Set the TYPE_DECL for this type to contain the right
4815 value for DECL_OFFSET, so that we can use it as part
4816 of a COMPONENT_REF for multiple inheritance. */
4817 layout_decl (TYPE_MAIN_DECL (t), 0);
4819 /* Now fix up any virtual base class types that we left lying
4820 around. We must get these done before we try to lay out the
4821 virtual function table. As a side-effect, this will remove the
4822 base subobject fields. */
4823 layout_virtual_bases (rli, empty_base_offsets);
4825 /* Make sure that empty classes are reflected in RLI at this
4826 point. */
4827 include_empty_classes(rli);
4829 /* Make sure not to create any structures with zero size. */
4830 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
4831 place_field (rli,
4832 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
4834 /* Let the back-end lay out the type. */
4835 finish_record_layout (rli, /*free_p=*/true);
4837 /* Warn about bases that can't be talked about due to ambiguity. */
4838 warn_about_ambiguous_bases (t);
4840 /* Now that we're done with layout, give the base fields the real types. */
4841 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4842 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
4843 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
4845 /* Clean up. */
4846 splay_tree_delete (empty_base_offsets);
4849 /* Determine the "key method" for the class type indicated by TYPE,
4850 and set CLASSTYPE_KEY_METHOD accordingly. */
4852 void
4853 determine_key_method (tree type)
4855 tree method;
4857 if (TYPE_FOR_JAVA (type)
4858 || processing_template_decl
4859 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
4860 || CLASSTYPE_INTERFACE_KNOWN (type))
4861 return;
4863 /* The key method is the first non-pure virtual function that is not
4864 inline at the point of class definition. On some targets the
4865 key function may not be inline; those targets should not call
4866 this function until the end of the translation unit. */
4867 for (method = TYPE_METHODS (type); method != NULL_TREE;
4868 method = TREE_CHAIN (method))
4869 if (DECL_VINDEX (method) != NULL_TREE
4870 && ! DECL_DECLARED_INLINE_P (method)
4871 && ! DECL_PURE_VIRTUAL_P (method))
4873 CLASSTYPE_KEY_METHOD (type) = method;
4874 break;
4877 return;
4880 /* Perform processing required when the definition of T (a class type)
4881 is complete. */
4883 void
4884 finish_struct_1 (tree t)
4886 tree x;
4887 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4888 tree virtuals = NULL_TREE;
4889 int n_fields = 0;
4891 if (COMPLETE_TYPE_P (t))
4893 gcc_assert (IS_AGGR_TYPE (t));
4894 error ("redefinition of %q#T", t);
4895 popclass ();
4896 return;
4899 /* If this type was previously laid out as a forward reference,
4900 make sure we lay it out again. */
4901 TYPE_SIZE (t) = NULL_TREE;
4902 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
4904 fixup_inline_methods (t);
4906 /* Make assumptions about the class; we'll reset the flags if
4907 necessary. */
4908 CLASSTYPE_EMPTY_P (t) = 1;
4909 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
4910 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
4912 /* Do end-of-class semantic processing: checking the validity of the
4913 bases and members and add implicitly generated methods. */
4914 check_bases_and_members (t);
4916 /* Find the key method. */
4917 if (TYPE_CONTAINS_VPTR_P (t))
4919 /* The Itanium C++ ABI permits the key method to be chosen when
4920 the class is defined -- even though the key method so
4921 selected may later turn out to be an inline function. On
4922 some systems (such as ARM Symbian OS) the key method cannot
4923 be determined until the end of the translation unit. On such
4924 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4925 will cause the class to be added to KEYED_CLASSES. Then, in
4926 finish_file we will determine the key method. */
4927 if (targetm.cxx.key_method_may_be_inline ())
4928 determine_key_method (t);
4930 /* If a polymorphic class has no key method, we may emit the vtable
4931 in every translation unit where the class definition appears. */
4932 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
4933 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
4936 /* Layout the class itself. */
4937 layout_class_type (t, &virtuals);
4938 if (CLASSTYPE_AS_BASE (t) != t)
4939 /* We use the base type for trivial assignments, and hence it
4940 needs a mode. */
4941 compute_record_mode (CLASSTYPE_AS_BASE (t));
4943 virtuals = modify_all_vtables (t, nreverse (virtuals));
4945 /* If necessary, create the primary vtable for this class. */
4946 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
4948 /* We must enter these virtuals into the table. */
4949 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4950 build_primary_vtable (NULL_TREE, t);
4951 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
4952 /* Here we know enough to change the type of our virtual
4953 function table, but we will wait until later this function. */
4954 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
4957 if (TYPE_CONTAINS_VPTR_P (t))
4959 int vindex;
4960 tree fn;
4962 if (BINFO_VTABLE (TYPE_BINFO (t)))
4963 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
4964 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4965 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
4967 /* Add entries for virtual functions introduced by this class. */
4968 BINFO_VIRTUALS (TYPE_BINFO (t))
4969 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
4971 /* Set DECL_VINDEX for all functions declared in this class. */
4972 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
4973 fn;
4974 fn = TREE_CHAIN (fn),
4975 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
4976 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
4978 tree fndecl = BV_FN (fn);
4980 if (DECL_THUNK_P (fndecl))
4981 /* A thunk. We should never be calling this entry directly
4982 from this vtable -- we'd use the entry for the non
4983 thunk base function. */
4984 DECL_VINDEX (fndecl) = NULL_TREE;
4985 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
4986 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
4990 finish_struct_bits (t);
4992 /* Complete the rtl for any static member objects of the type we're
4993 working on. */
4994 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
4995 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
4996 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
4997 DECL_MODE (x) = TYPE_MODE (t);
4999 /* Done with FIELDS...now decide whether to sort these for
5000 faster lookups later.
5002 We use a small number because most searches fail (succeeding
5003 ultimately as the search bores through the inheritance
5004 hierarchy), and we want this failure to occur quickly. */
5006 n_fields = count_fields (TYPE_FIELDS (t));
5007 if (n_fields > 7)
5009 struct sorted_fields_type *field_vec = GGC_NEWVAR
5010 (struct sorted_fields_type,
5011 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5012 field_vec->len = n_fields;
5013 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5014 qsort (field_vec->elts, n_fields, sizeof (tree),
5015 field_decl_cmp);
5016 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5017 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5018 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5021 /* Make the rtl for any new vtables we have created, and unmark
5022 the base types we marked. */
5023 finish_vtbls (t);
5025 /* Build the VTT for T. */
5026 build_vtt (t);
5028 if (warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5030 tree dtor;
5032 dtor = CLASSTYPE_DESTRUCTORS (t);
5033 /* Warn only if the dtor is non-private or the class has
5034 friends. */
5035 if (/* An implicitly declared destructor is always public. And,
5036 if it were virtual, we would have created it by now. */
5037 !dtor
5038 || (!DECL_VINDEX (dtor)
5039 && (!TREE_PRIVATE (dtor)
5040 || CLASSTYPE_FRIEND_CLASSES (t)
5041 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))
5042 warning ("%q#T has virtual functions but non-virtual destructor",
5046 complete_vars (t);
5048 if (warn_overloaded_virtual)
5049 warn_hidden (t);
5051 maybe_suppress_debug_info (t);
5053 dump_class_hierarchy (t);
5055 /* Finish debugging output for this type. */
5056 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5059 /* When T was built up, the member declarations were added in reverse
5060 order. Rearrange them to declaration order. */
5062 void
5063 unreverse_member_declarations (tree t)
5065 tree next;
5066 tree prev;
5067 tree x;
5069 /* The following lists are all in reverse order. Put them in
5070 declaration order now. */
5071 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5072 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5074 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5075 reverse order, so we can't just use nreverse. */
5076 prev = NULL_TREE;
5077 for (x = TYPE_FIELDS (t);
5078 x && TREE_CODE (x) != TYPE_DECL;
5079 x = next)
5081 next = TREE_CHAIN (x);
5082 TREE_CHAIN (x) = prev;
5083 prev = x;
5085 if (prev)
5087 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5088 if (prev)
5089 TYPE_FIELDS (t) = prev;
5093 tree
5094 finish_struct (tree t, tree attributes)
5096 location_t saved_loc = input_location;
5098 /* Now that we've got all the field declarations, reverse everything
5099 as necessary. */
5100 unreverse_member_declarations (t);
5102 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5104 /* Nadger the current location so that diagnostics point to the start of
5105 the struct, not the end. */
5106 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5108 if (processing_template_decl)
5110 tree x;
5112 finish_struct_methods (t);
5113 TYPE_SIZE (t) = bitsize_zero_node;
5114 TYPE_SIZE_UNIT (t) = size_zero_node;
5116 /* We need to emit an error message if this type was used as a parameter
5117 and it is an abstract type, even if it is a template. We construct
5118 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5119 account and we call complete_vars with this type, which will check
5120 the PARM_DECLS. Note that while the type is being defined,
5121 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5122 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5123 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5124 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5125 if (DECL_PURE_VIRTUAL_P (x))
5126 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (t), x);
5127 complete_vars (t);
5129 else
5130 finish_struct_1 (t);
5132 input_location = saved_loc;
5134 TYPE_BEING_DEFINED (t) = 0;
5136 if (current_class_type)
5137 popclass ();
5138 else
5139 error ("trying to finish struct, but kicked out due to previous parse errors");
5141 if (processing_template_decl && at_function_scope_p ())
5142 add_stmt (build_min (TAG_DEFN, t));
5144 return t;
5147 /* Return the dynamic type of INSTANCE, if known.
5148 Used to determine whether the virtual function table is needed
5149 or not.
5151 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5152 of our knowledge of its type. *NONNULL should be initialized
5153 before this function is called. */
5155 static tree
5156 fixed_type_or_null (tree instance, int* nonnull, int* cdtorp)
5158 switch (TREE_CODE (instance))
5160 case INDIRECT_REF:
5161 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5162 return NULL_TREE;
5163 else
5164 return fixed_type_or_null (TREE_OPERAND (instance, 0),
5165 nonnull, cdtorp);
5167 case CALL_EXPR:
5168 /* This is a call to a constructor, hence it's never zero. */
5169 if (TREE_HAS_CONSTRUCTOR (instance))
5171 if (nonnull)
5172 *nonnull = 1;
5173 return TREE_TYPE (instance);
5175 return NULL_TREE;
5177 case SAVE_EXPR:
5178 /* This is a call to a constructor, hence it's never zero. */
5179 if (TREE_HAS_CONSTRUCTOR (instance))
5181 if (nonnull)
5182 *nonnull = 1;
5183 return TREE_TYPE (instance);
5185 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5187 case PLUS_EXPR:
5188 case MINUS_EXPR:
5189 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5190 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5191 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5192 /* Propagate nonnull. */
5193 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5194 return NULL_TREE;
5196 case NOP_EXPR:
5197 case CONVERT_EXPR:
5198 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5200 case ADDR_EXPR:
5201 instance = TREE_OPERAND (instance, 0);
5202 if (nonnull)
5204 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5205 with a real object -- given &p->f, p can still be null. */
5206 tree t = get_base_address (instance);
5207 /* ??? Probably should check DECL_WEAK here. */
5208 if (t && DECL_P (t))
5209 *nonnull = 1;
5211 return fixed_type_or_null (instance, nonnull, cdtorp);
5213 case COMPONENT_REF:
5214 /* If this component is really a base class reference, then the field
5215 itself isn't definitive. */
5216 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5217 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5218 return fixed_type_or_null (TREE_OPERAND (instance, 1), nonnull, cdtorp);
5220 case VAR_DECL:
5221 case FIELD_DECL:
5222 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5223 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
5225 if (nonnull)
5226 *nonnull = 1;
5227 return TREE_TYPE (TREE_TYPE (instance));
5229 /* fall through... */
5230 case TARGET_EXPR:
5231 case PARM_DECL:
5232 case RESULT_DECL:
5233 if (IS_AGGR_TYPE (TREE_TYPE (instance)))
5235 if (nonnull)
5236 *nonnull = 1;
5237 return TREE_TYPE (instance);
5239 else if (instance == current_class_ptr)
5241 if (nonnull)
5242 *nonnull = 1;
5244 /* if we're in a ctor or dtor, we know our type. */
5245 if (DECL_LANG_SPECIFIC (current_function_decl)
5246 && (DECL_CONSTRUCTOR_P (current_function_decl)
5247 || DECL_DESTRUCTOR_P (current_function_decl)))
5249 if (cdtorp)
5250 *cdtorp = 1;
5251 return TREE_TYPE (TREE_TYPE (instance));
5254 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5256 /* Reference variables should be references to objects. */
5257 if (nonnull)
5258 *nonnull = 1;
5260 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5261 variable's initializer may refer to the variable
5262 itself. */
5263 if (TREE_CODE (instance) == VAR_DECL
5264 && DECL_INITIAL (instance)
5265 && !DECL_VAR_MARKED_P (instance))
5267 tree type;
5268 DECL_VAR_MARKED_P (instance) = 1;
5269 type = fixed_type_or_null (DECL_INITIAL (instance),
5270 nonnull, cdtorp);
5271 DECL_VAR_MARKED_P (instance) = 0;
5272 return type;
5275 return NULL_TREE;
5277 default:
5278 return NULL_TREE;
5282 /* Return nonzero if the dynamic type of INSTANCE is known, and
5283 equivalent to the static type. We also handle the case where
5284 INSTANCE is really a pointer. Return negative if this is a
5285 ctor/dtor. There the dynamic type is known, but this might not be
5286 the most derived base of the original object, and hence virtual
5287 bases may not be layed out according to this type.
5289 Used to determine whether the virtual function table is needed
5290 or not.
5292 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5293 of our knowledge of its type. *NONNULL should be initialized
5294 before this function is called. */
5297 resolves_to_fixed_type_p (tree instance, int* nonnull)
5299 tree t = TREE_TYPE (instance);
5300 int cdtorp = 0;
5302 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5303 if (fixed == NULL_TREE)
5304 return 0;
5305 if (POINTER_TYPE_P (t))
5306 t = TREE_TYPE (t);
5307 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5308 return 0;
5309 return cdtorp ? -1 : 1;
5313 void
5314 init_class_processing (void)
5316 current_class_depth = 0;
5317 current_class_stack_size = 10;
5318 current_class_stack
5319 = xmalloc (current_class_stack_size * sizeof (struct class_stack_node));
5320 VARRAY_TREE_INIT (local_classes, 8, "local_classes");
5322 ridpointers[(int) RID_PUBLIC] = access_public_node;
5323 ridpointers[(int) RID_PRIVATE] = access_private_node;
5324 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5327 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5329 static void
5330 restore_class_cache (void)
5332 tree type;
5334 /* We are re-entering the same class we just left, so we don't
5335 have to search the whole inheritance matrix to find all the
5336 decls to bind again. Instead, we install the cached
5337 class_shadowed list and walk through it binding names. */
5338 push_binding_level (previous_class_level);
5339 class_binding_level = previous_class_level;
5340 /* Restore IDENTIFIER_TYPE_VALUE. */
5341 for (type = class_binding_level->type_shadowed;
5342 type;
5343 type = TREE_CHAIN (type))
5344 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5347 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5348 appropriate for TYPE.
5350 So that we may avoid calls to lookup_name, we cache the _TYPE
5351 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5353 For multiple inheritance, we perform a two-pass depth-first search
5354 of the type lattice. */
5356 void
5357 pushclass (tree type)
5359 type = TYPE_MAIN_VARIANT (type);
5361 /* Make sure there is enough room for the new entry on the stack. */
5362 if (current_class_depth + 1 >= current_class_stack_size)
5364 current_class_stack_size *= 2;
5365 current_class_stack
5366 = xrealloc (current_class_stack,
5367 current_class_stack_size
5368 * sizeof (struct class_stack_node));
5371 /* Insert a new entry on the class stack. */
5372 current_class_stack[current_class_depth].name = current_class_name;
5373 current_class_stack[current_class_depth].type = current_class_type;
5374 current_class_stack[current_class_depth].access = current_access_specifier;
5375 current_class_stack[current_class_depth].names_used = 0;
5376 current_class_depth++;
5378 /* Now set up the new type. */
5379 current_class_name = TYPE_NAME (type);
5380 if (TREE_CODE (current_class_name) == TYPE_DECL)
5381 current_class_name = DECL_NAME (current_class_name);
5382 current_class_type = type;
5384 /* By default, things in classes are private, while things in
5385 structures or unions are public. */
5386 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5387 ? access_private_node
5388 : access_public_node);
5390 if (previous_class_level
5391 && type != previous_class_level->this_entity
5392 && current_class_depth == 1)
5394 /* Forcibly remove any old class remnants. */
5395 invalidate_class_lookup_cache ();
5398 if (!previous_class_level
5399 || type != previous_class_level->this_entity
5400 || current_class_depth > 1)
5401 pushlevel_class ();
5402 else
5403 restore_class_cache ();
5406 /* When we exit a toplevel class scope, we save its binding level so
5407 that we can restore it quickly. Here, we've entered some other
5408 class, so we must invalidate our cache. */
5410 void
5411 invalidate_class_lookup_cache (void)
5413 previous_class_level = NULL;
5416 /* Get out of the current class scope. If we were in a class scope
5417 previously, that is the one popped to. */
5419 void
5420 popclass (void)
5422 poplevel_class ();
5424 current_class_depth--;
5425 current_class_name = current_class_stack[current_class_depth].name;
5426 current_class_type = current_class_stack[current_class_depth].type;
5427 current_access_specifier = current_class_stack[current_class_depth].access;
5428 if (current_class_stack[current_class_depth].names_used)
5429 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5432 /* Returns 1 if current_class_type is either T or a nested type of T.
5433 We start looking from 1 because entry 0 is from global scope, and has
5434 no type. */
5437 currently_open_class (tree t)
5439 int i;
5440 if (current_class_type && same_type_p (t, current_class_type))
5441 return 1;
5442 for (i = 1; i < current_class_depth; ++i)
5443 if (current_class_stack[i].type
5444 && same_type_p (current_class_stack [i].type, t))
5445 return 1;
5446 return 0;
5449 /* If either current_class_type or one of its enclosing classes are derived
5450 from T, return the appropriate type. Used to determine how we found
5451 something via unqualified lookup. */
5453 tree
5454 currently_open_derived_class (tree t)
5456 int i;
5458 /* The bases of a dependent type are unknown. */
5459 if (dependent_type_p (t))
5460 return NULL_TREE;
5462 if (!current_class_type)
5463 return NULL_TREE;
5465 if (DERIVED_FROM_P (t, current_class_type))
5466 return current_class_type;
5468 for (i = current_class_depth - 1; i > 0; --i)
5469 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5470 return current_class_stack[i].type;
5472 return NULL_TREE;
5475 /* When entering a class scope, all enclosing class scopes' names with
5476 static meaning (static variables, static functions, types and
5477 enumerators) have to be visible. This recursive function calls
5478 pushclass for all enclosing class contexts until global or a local
5479 scope is reached. TYPE is the enclosed class. */
5481 void
5482 push_nested_class (tree type)
5484 tree context;
5486 /* A namespace might be passed in error cases, like A::B:C. */
5487 if (type == NULL_TREE
5488 || type == error_mark_node
5489 || TREE_CODE (type) == NAMESPACE_DECL
5490 || ! IS_AGGR_TYPE (type)
5491 || TREE_CODE (type) == TEMPLATE_TYPE_PARM
5492 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
5493 return;
5495 context = DECL_CONTEXT (TYPE_MAIN_DECL (type));
5497 if (context && CLASS_TYPE_P (context))
5498 push_nested_class (context);
5499 pushclass (type);
5502 /* Undoes a push_nested_class call. */
5504 void
5505 pop_nested_class (void)
5507 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5509 popclass ();
5510 if (context && CLASS_TYPE_P (context))
5511 pop_nested_class ();
5514 /* Returns the number of extern "LANG" blocks we are nested within. */
5517 current_lang_depth (void)
5519 return VARRAY_ACTIVE_SIZE (current_lang_base);
5522 /* Set global variables CURRENT_LANG_NAME to appropriate value
5523 so that behavior of name-mangling machinery is correct. */
5525 void
5526 push_lang_context (tree name)
5528 VARRAY_PUSH_TREE (current_lang_base, current_lang_name);
5530 if (name == lang_name_cplusplus)
5532 current_lang_name = name;
5534 else if (name == lang_name_java)
5536 current_lang_name = name;
5537 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5538 (See record_builtin_java_type in decl.c.) However, that causes
5539 incorrect debug entries if these types are actually used.
5540 So we re-enable debug output after extern "Java". */
5541 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5542 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5543 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5544 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5545 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5546 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5547 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5548 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5550 else if (name == lang_name_c)
5552 current_lang_name = name;
5554 else
5555 error ("language string %<\"%E\"%> not recognized", name);
5558 /* Get out of the current language scope. */
5560 void
5561 pop_lang_context (void)
5563 current_lang_name = VARRAY_TOP_TREE (current_lang_base);
5564 VARRAY_POP (current_lang_base);
5567 /* Type instantiation routines. */
5569 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5570 matches the TARGET_TYPE. If there is no satisfactory match, return
5571 error_mark_node, and issue a error & warning messages under control
5572 of FLAGS. Permit pointers to member function if FLAGS permits. If
5573 TEMPLATE_ONLY, the name of the overloaded function was a
5574 template-id, and EXPLICIT_TARGS are the explicitly provided
5575 template arguments. */
5577 static tree
5578 resolve_address_of_overloaded_function (tree target_type,
5579 tree overload,
5580 tsubst_flags_t flags,
5581 bool template_only,
5582 tree explicit_targs)
5584 /* Here's what the standard says:
5586 [over.over]
5588 If the name is a function template, template argument deduction
5589 is done, and if the argument deduction succeeds, the deduced
5590 arguments are used to generate a single template function, which
5591 is added to the set of overloaded functions considered.
5593 Non-member functions and static member functions match targets of
5594 type "pointer-to-function" or "reference-to-function." Nonstatic
5595 member functions match targets of type "pointer-to-member
5596 function;" the function type of the pointer to member is used to
5597 select the member function from the set of overloaded member
5598 functions. If a nonstatic member function is selected, the
5599 reference to the overloaded function name is required to have the
5600 form of a pointer to member as described in 5.3.1.
5602 If more than one function is selected, any template functions in
5603 the set are eliminated if the set also contains a non-template
5604 function, and any given template function is eliminated if the
5605 set contains a second template function that is more specialized
5606 than the first according to the partial ordering rules 14.5.5.2.
5607 After such eliminations, if any, there shall remain exactly one
5608 selected function. */
5610 int is_ptrmem = 0;
5611 int is_reference = 0;
5612 /* We store the matches in a TREE_LIST rooted here. The functions
5613 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5614 interoperability with most_specialized_instantiation. */
5615 tree matches = NULL_TREE;
5616 tree fn;
5618 /* By the time we get here, we should be seeing only real
5619 pointer-to-member types, not the internal POINTER_TYPE to
5620 METHOD_TYPE representation. */
5621 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5622 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5624 gcc_assert (is_overloaded_fn (overload));
5626 /* Check that the TARGET_TYPE is reasonable. */
5627 if (TYPE_PTRFN_P (target_type))
5628 /* This is OK. */;
5629 else if (TYPE_PTRMEMFUNC_P (target_type))
5630 /* This is OK, too. */
5631 is_ptrmem = 1;
5632 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5634 /* This is OK, too. This comes from a conversion to reference
5635 type. */
5636 target_type = build_reference_type (target_type);
5637 is_reference = 1;
5639 else
5641 if (flags & tf_error)
5642 error ("cannot resolve overloaded function %qD based on"
5643 " conversion to type %qT",
5644 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5645 return error_mark_node;
5648 /* If we can find a non-template function that matches, we can just
5649 use it. There's no point in generating template instantiations
5650 if we're just going to throw them out anyhow. But, of course, we
5651 can only do this when we don't *need* a template function. */
5652 if (!template_only)
5654 tree fns;
5656 for (fns = overload; fns; fns = OVL_NEXT (fns))
5658 tree fn = OVL_CURRENT (fns);
5659 tree fntype;
5661 if (TREE_CODE (fn) == TEMPLATE_DECL)
5662 /* We're not looking for templates just yet. */
5663 continue;
5665 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5666 != is_ptrmem)
5667 /* We're looking for a non-static member, and this isn't
5668 one, or vice versa. */
5669 continue;
5671 /* Ignore anticipated decls of undeclared builtins. */
5672 if (DECL_ANTICIPATED (fn))
5673 continue;
5675 /* See if there's a match. */
5676 fntype = TREE_TYPE (fn);
5677 if (is_ptrmem)
5678 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5679 else if (!is_reference)
5680 fntype = build_pointer_type (fntype);
5682 if (can_convert_arg (target_type, fntype, fn))
5683 matches = tree_cons (fn, NULL_TREE, matches);
5687 /* Now, if we've already got a match (or matches), there's no need
5688 to proceed to the template functions. But, if we don't have a
5689 match we need to look at them, too. */
5690 if (!matches)
5692 tree target_fn_type;
5693 tree target_arg_types;
5694 tree target_ret_type;
5695 tree fns;
5697 if (is_ptrmem)
5698 target_fn_type
5699 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5700 else
5701 target_fn_type = TREE_TYPE (target_type);
5702 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5703 target_ret_type = TREE_TYPE (target_fn_type);
5705 /* Never do unification on the 'this' parameter. */
5706 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5707 target_arg_types = TREE_CHAIN (target_arg_types);
5709 for (fns = overload; fns; fns = OVL_NEXT (fns))
5711 tree fn = OVL_CURRENT (fns);
5712 tree instantiation;
5713 tree instantiation_type;
5714 tree targs;
5716 if (TREE_CODE (fn) != TEMPLATE_DECL)
5717 /* We're only looking for templates. */
5718 continue;
5720 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5721 != is_ptrmem)
5722 /* We're not looking for a non-static member, and this is
5723 one, or vice versa. */
5724 continue;
5726 /* Try to do argument deduction. */
5727 targs = make_tree_vec (DECL_NTPARMS (fn));
5728 if (fn_type_unification (fn, explicit_targs, targs,
5729 target_arg_types, target_ret_type,
5730 DEDUCE_EXACT, -1) != 0)
5731 /* Argument deduction failed. */
5732 continue;
5734 /* Instantiate the template. */
5735 instantiation = instantiate_template (fn, targs, flags);
5736 if (instantiation == error_mark_node)
5737 /* Instantiation failed. */
5738 continue;
5740 /* See if there's a match. */
5741 instantiation_type = TREE_TYPE (instantiation);
5742 if (is_ptrmem)
5743 instantiation_type =
5744 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
5745 else if (!is_reference)
5746 instantiation_type = build_pointer_type (instantiation_type);
5747 if (can_convert_arg (target_type, instantiation_type, instantiation))
5748 matches = tree_cons (instantiation, fn, matches);
5751 /* Now, remove all but the most specialized of the matches. */
5752 if (matches)
5754 tree match = most_specialized_instantiation (matches);
5756 if (match != error_mark_node)
5757 matches = tree_cons (match, NULL_TREE, NULL_TREE);
5761 /* Now we should have exactly one function in MATCHES. */
5762 if (matches == NULL_TREE)
5764 /* There were *no* matches. */
5765 if (flags & tf_error)
5767 error ("no matches converting function %qD to type %q#T",
5768 DECL_NAME (OVL_FUNCTION (overload)),
5769 target_type);
5771 /* print_candidates expects a chain with the functions in
5772 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5773 so why be clever?). */
5774 for (; overload; overload = OVL_NEXT (overload))
5775 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
5776 matches);
5778 print_candidates (matches);
5780 return error_mark_node;
5782 else if (TREE_CHAIN (matches))
5784 /* There were too many matches. */
5786 if (flags & tf_error)
5788 tree match;
5790 error ("converting overloaded function %qD to type %q#T is ambiguous",
5791 DECL_NAME (OVL_FUNCTION (overload)),
5792 target_type);
5794 /* Since print_candidates expects the functions in the
5795 TREE_VALUE slot, we flip them here. */
5796 for (match = matches; match; match = TREE_CHAIN (match))
5797 TREE_VALUE (match) = TREE_PURPOSE (match);
5799 print_candidates (matches);
5802 return error_mark_node;
5805 /* Good, exactly one match. Now, convert it to the correct type. */
5806 fn = TREE_PURPOSE (matches);
5808 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5809 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
5811 static int explained;
5813 if (!(flags & tf_error))
5814 return error_mark_node;
5816 pedwarn ("assuming pointer to member %qD", fn);
5817 if (!explained)
5819 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn);
5820 explained = 1;
5824 /* If we're doing overload resolution purely for the purpose of
5825 determining conversion sequences, we should not consider the
5826 function used. If this conversion sequence is selected, the
5827 function will be marked as used at this point. */
5828 if (!(flags & tf_conv))
5829 mark_used (fn);
5831 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
5832 return build_unary_op (ADDR_EXPR, fn, 0);
5833 else
5835 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5836 will mark the function as addressed, but here we must do it
5837 explicitly. */
5838 cxx_mark_addressable (fn);
5840 return fn;
5844 /* This function will instantiate the type of the expression given in
5845 RHS to match the type of LHSTYPE. If errors exist, then return
5846 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5847 we complain on errors. If we are not complaining, never modify rhs,
5848 as overload resolution wants to try many possible instantiations, in
5849 the hope that at least one will work.
5851 For non-recursive calls, LHSTYPE should be a function, pointer to
5852 function, or a pointer to member function. */
5854 tree
5855 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
5857 tsubst_flags_t flags_in = flags;
5859 flags &= ~tf_ptrmem_ok;
5861 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
5863 if (flags & tf_error)
5864 error ("not enough type information");
5865 return error_mark_node;
5868 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
5870 if (same_type_p (lhstype, TREE_TYPE (rhs)))
5871 return rhs;
5872 if (flag_ms_extensions
5873 && TYPE_PTRMEMFUNC_P (lhstype)
5874 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
5875 /* Microsoft allows `A::f' to be resolved to a
5876 pointer-to-member. */
5878 else
5880 if (flags & tf_error)
5881 error ("argument of type %qT does not match %qT",
5882 TREE_TYPE (rhs), lhstype);
5883 return error_mark_node;
5887 if (TREE_CODE (rhs) == BASELINK)
5888 rhs = BASELINK_FUNCTIONS (rhs);
5890 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
5891 deduce any type information. */
5892 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
5894 if (flags & tf_error)
5895 error ("not enough type information");
5896 return error_mark_node;
5899 /* We don't overwrite rhs if it is an overloaded function.
5900 Copying it would destroy the tree link. */
5901 if (TREE_CODE (rhs) != OVERLOAD)
5902 rhs = copy_node (rhs);
5904 /* This should really only be used when attempting to distinguish
5905 what sort of a pointer to function we have. For now, any
5906 arithmetic operation which is not supported on pointers
5907 is rejected as an error. */
5909 switch (TREE_CODE (rhs))
5911 case TYPE_EXPR:
5912 case CONVERT_EXPR:
5913 case SAVE_EXPR:
5914 case CONSTRUCTOR:
5915 gcc_unreachable ();
5917 case INDIRECT_REF:
5918 case ARRAY_REF:
5920 tree new_rhs;
5922 new_rhs = instantiate_type (build_pointer_type (lhstype),
5923 TREE_OPERAND (rhs, 0), flags);
5924 if (new_rhs == error_mark_node)
5925 return error_mark_node;
5927 TREE_TYPE (rhs) = lhstype;
5928 TREE_OPERAND (rhs, 0) = new_rhs;
5929 return rhs;
5932 case NOP_EXPR:
5933 rhs = copy_node (TREE_OPERAND (rhs, 0));
5934 TREE_TYPE (rhs) = unknown_type_node;
5935 return instantiate_type (lhstype, rhs, flags);
5937 case COMPONENT_REF:
5939 tree member = TREE_OPERAND (rhs, 1);
5941 member = instantiate_type (lhstype, member, flags);
5942 if (member != error_mark_node
5943 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
5944 /* Do not lose object's side effects. */
5945 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
5946 TREE_OPERAND (rhs, 0), member);
5947 return member;
5950 case OFFSET_REF:
5951 rhs = TREE_OPERAND (rhs, 1);
5952 if (BASELINK_P (rhs))
5953 return instantiate_type (lhstype, BASELINK_FUNCTIONS (rhs), flags_in);
5955 /* This can happen if we are forming a pointer-to-member for a
5956 member template. */
5957 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
5959 /* Fall through. */
5961 case TEMPLATE_ID_EXPR:
5963 tree fns = TREE_OPERAND (rhs, 0);
5964 tree args = TREE_OPERAND (rhs, 1);
5966 return
5967 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
5968 /*template_only=*/true,
5969 args);
5972 case OVERLOAD:
5973 case FUNCTION_DECL:
5974 return
5975 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
5976 /*template_only=*/false,
5977 /*explicit_targs=*/NULL_TREE);
5979 case CALL_EXPR:
5980 /* This is too hard for now. */
5981 gcc_unreachable ();
5983 case PLUS_EXPR:
5984 case MINUS_EXPR:
5985 case COMPOUND_EXPR:
5986 TREE_OPERAND (rhs, 0)
5987 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
5988 if (TREE_OPERAND (rhs, 0) == error_mark_node)
5989 return error_mark_node;
5990 TREE_OPERAND (rhs, 1)
5991 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
5992 if (TREE_OPERAND (rhs, 1) == error_mark_node)
5993 return error_mark_node;
5995 TREE_TYPE (rhs) = lhstype;
5996 return rhs;
5998 case MULT_EXPR:
5999 case TRUNC_DIV_EXPR:
6000 case FLOOR_DIV_EXPR:
6001 case CEIL_DIV_EXPR:
6002 case ROUND_DIV_EXPR:
6003 case RDIV_EXPR:
6004 case TRUNC_MOD_EXPR:
6005 case FLOOR_MOD_EXPR:
6006 case CEIL_MOD_EXPR:
6007 case ROUND_MOD_EXPR:
6008 case FIX_ROUND_EXPR:
6009 case FIX_FLOOR_EXPR:
6010 case FIX_CEIL_EXPR:
6011 case FIX_TRUNC_EXPR:
6012 case FLOAT_EXPR:
6013 case NEGATE_EXPR:
6014 case ABS_EXPR:
6015 case MAX_EXPR:
6016 case MIN_EXPR:
6018 case BIT_AND_EXPR:
6019 case BIT_IOR_EXPR:
6020 case BIT_XOR_EXPR:
6021 case LSHIFT_EXPR:
6022 case RSHIFT_EXPR:
6023 case LROTATE_EXPR:
6024 case RROTATE_EXPR:
6026 case PREINCREMENT_EXPR:
6027 case PREDECREMENT_EXPR:
6028 case POSTINCREMENT_EXPR:
6029 case POSTDECREMENT_EXPR:
6030 if (flags & tf_error)
6031 error ("invalid operation on uninstantiated type");
6032 return error_mark_node;
6034 case TRUTH_AND_EXPR:
6035 case TRUTH_OR_EXPR:
6036 case TRUTH_XOR_EXPR:
6037 case LT_EXPR:
6038 case LE_EXPR:
6039 case GT_EXPR:
6040 case GE_EXPR:
6041 case EQ_EXPR:
6042 case NE_EXPR:
6043 case TRUTH_ANDIF_EXPR:
6044 case TRUTH_ORIF_EXPR:
6045 case TRUTH_NOT_EXPR:
6046 if (flags & tf_error)
6047 error ("not enough type information");
6048 return error_mark_node;
6050 case COND_EXPR:
6051 if (type_unknown_p (TREE_OPERAND (rhs, 0)))
6053 if (flags & tf_error)
6054 error ("not enough type information");
6055 return error_mark_node;
6057 TREE_OPERAND (rhs, 1)
6058 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6059 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6060 return error_mark_node;
6061 TREE_OPERAND (rhs, 2)
6062 = instantiate_type (lhstype, TREE_OPERAND (rhs, 2), flags);
6063 if (TREE_OPERAND (rhs, 2) == error_mark_node)
6064 return error_mark_node;
6066 TREE_TYPE (rhs) = lhstype;
6067 return rhs;
6069 case MODIFY_EXPR:
6070 TREE_OPERAND (rhs, 1)
6071 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6072 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6073 return error_mark_node;
6075 TREE_TYPE (rhs) = lhstype;
6076 return rhs;
6078 case ADDR_EXPR:
6080 if (PTRMEM_OK_P (rhs))
6081 flags |= tf_ptrmem_ok;
6083 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6086 case ERROR_MARK:
6087 return error_mark_node;
6089 default:
6090 gcc_unreachable ();
6092 return error_mark_node;
6095 /* Return the name of the virtual function pointer field
6096 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6097 this may have to look back through base types to find the
6098 ultimate field name. (For single inheritance, these could
6099 all be the same name. Who knows for multiple inheritance). */
6101 static tree
6102 get_vfield_name (tree type)
6104 tree binfo, base_binfo;
6105 char *buf;
6107 for (binfo = TYPE_BINFO (type);
6108 BINFO_N_BASE_BINFOS (binfo);
6109 binfo = base_binfo)
6111 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6113 if (BINFO_VIRTUAL_P (base_binfo)
6114 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6115 break;
6118 type = BINFO_TYPE (binfo);
6119 buf = alloca (sizeof (VFIELD_NAME_FORMAT) + TYPE_NAME_LENGTH (type) + 2);
6120 sprintf (buf, VFIELD_NAME_FORMAT,
6121 IDENTIFIER_POINTER (constructor_name (type)));
6122 return get_identifier (buf);
6125 void
6126 print_class_statistics (void)
6128 #ifdef GATHER_STATISTICS
6129 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6130 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6131 if (n_vtables)
6133 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6134 n_vtables, n_vtable_searches);
6135 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6136 n_vtable_entries, n_vtable_elems);
6138 #endif
6141 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6142 according to [class]:
6143 The class-name is also inserted
6144 into the scope of the class itself. For purposes of access checking,
6145 the inserted class name is treated as if it were a public member name. */
6147 void
6148 build_self_reference (void)
6150 tree name = constructor_name (current_class_type);
6151 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6152 tree saved_cas;
6154 DECL_NONLOCAL (value) = 1;
6155 DECL_CONTEXT (value) = current_class_type;
6156 DECL_ARTIFICIAL (value) = 1;
6157 SET_DECL_SELF_REFERENCE_P (value);
6159 if (processing_template_decl)
6160 value = push_template_decl (value);
6162 saved_cas = current_access_specifier;
6163 current_access_specifier = access_public_node;
6164 finish_member_declaration (value);
6165 current_access_specifier = saved_cas;
6168 /* Returns 1 if TYPE contains only padding bytes. */
6171 is_empty_class (tree type)
6173 if (type == error_mark_node)
6174 return 0;
6176 if (! IS_AGGR_TYPE (type))
6177 return 0;
6179 /* In G++ 3.2, whether or not a class was empty was determined by
6180 looking at its size. */
6181 if (abi_version_at_least (2))
6182 return CLASSTYPE_EMPTY_P (type);
6183 else
6184 return integer_zerop (CLASSTYPE_SIZE (type));
6187 /* Returns true if TYPE contains an empty class. */
6189 static bool
6190 contains_empty_class_p (tree type)
6192 if (is_empty_class (type))
6193 return true;
6194 if (CLASS_TYPE_P (type))
6196 tree field;
6197 tree binfo;
6198 tree base_binfo;
6199 int i;
6201 for (binfo = TYPE_BINFO (type), i = 0;
6202 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6203 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6204 return true;
6205 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6206 if (TREE_CODE (field) == FIELD_DECL
6207 && !DECL_ARTIFICIAL (field)
6208 && is_empty_class (TREE_TYPE (field)))
6209 return true;
6211 else if (TREE_CODE (type) == ARRAY_TYPE)
6212 return contains_empty_class_p (TREE_TYPE (type));
6213 return false;
6216 /* Note that NAME was looked up while the current class was being
6217 defined and that the result of that lookup was DECL. */
6219 void
6220 maybe_note_name_used_in_class (tree name, tree decl)
6222 splay_tree names_used;
6224 /* If we're not defining a class, there's nothing to do. */
6225 if (!(innermost_scope_kind() == sk_class
6226 && TYPE_BEING_DEFINED (current_class_type)))
6227 return;
6229 /* If there's already a binding for this NAME, then we don't have
6230 anything to worry about. */
6231 if (lookup_member (current_class_type, name,
6232 /*protect=*/0, /*want_type=*/false))
6233 return;
6235 if (!current_class_stack[current_class_depth - 1].names_used)
6236 current_class_stack[current_class_depth - 1].names_used
6237 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6238 names_used = current_class_stack[current_class_depth - 1].names_used;
6240 splay_tree_insert (names_used,
6241 (splay_tree_key) name,
6242 (splay_tree_value) decl);
6245 /* Note that NAME was declared (as DECL) in the current class. Check
6246 to see that the declaration is valid. */
6248 void
6249 note_name_declared_in_class (tree name, tree decl)
6251 splay_tree names_used;
6252 splay_tree_node n;
6254 /* Look to see if we ever used this name. */
6255 names_used
6256 = current_class_stack[current_class_depth - 1].names_used;
6257 if (!names_used)
6258 return;
6260 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6261 if (n)
6263 /* [basic.scope.class]
6265 A name N used in a class S shall refer to the same declaration
6266 in its context and when re-evaluated in the completed scope of
6267 S. */
6268 error ("declaration of %q#D", decl);
6269 cp_error_at ("changes meaning of %qD from %q+#D",
6270 DECL_NAME (OVL_CURRENT (decl)),
6271 (tree) n->value);
6275 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6276 Secondary vtables are merged with primary vtables; this function
6277 will return the VAR_DECL for the primary vtable. */
6279 tree
6280 get_vtbl_decl_for_binfo (tree binfo)
6282 tree decl;
6284 decl = BINFO_VTABLE (binfo);
6285 if (decl && TREE_CODE (decl) == PLUS_EXPR)
6287 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6288 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6290 if (decl)
6291 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6292 return decl;
6296 /* Returns the binfo for the primary base of BINFO. If the resulting
6297 BINFO is a virtual base, and it is inherited elsewhere in the
6298 hierarchy, then the returned binfo might not be the primary base of
6299 BINFO in the complete object. Check BINFO_PRIMARY_P or
6300 BINFO_LOST_PRIMARY_P to be sure. */
6302 tree
6303 get_primary_binfo (tree binfo)
6305 tree primary_base;
6306 tree result;
6308 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6309 if (!primary_base)
6310 return NULL_TREE;
6312 result = copied_binfo (primary_base, binfo);
6313 return result;
6316 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6318 static int
6319 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6321 if (!indented_p)
6322 fprintf (stream, "%*s", indent, "");
6323 return 1;
6326 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6327 INDENT should be zero when called from the top level; it is
6328 incremented recursively. IGO indicates the next expected BINFO in
6329 inheritance graph ordering. */
6331 static tree
6332 dump_class_hierarchy_r (FILE *stream,
6333 int flags,
6334 tree binfo,
6335 tree igo,
6336 int indent)
6338 int indented = 0;
6339 tree base_binfo;
6340 int i;
6342 indented = maybe_indent_hierarchy (stream, indent, 0);
6343 fprintf (stream, "%s (0x%lx) ",
6344 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6345 (unsigned long) binfo);
6346 if (binfo != igo)
6348 fprintf (stream, "alternative-path\n");
6349 return igo;
6351 igo = TREE_CHAIN (binfo);
6353 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6354 tree_low_cst (BINFO_OFFSET (binfo), 0));
6355 if (is_empty_class (BINFO_TYPE (binfo)))
6356 fprintf (stream, " empty");
6357 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6358 fprintf (stream, " nearly-empty");
6359 if (BINFO_VIRTUAL_P (binfo))
6360 fprintf (stream, " virtual");
6361 fprintf (stream, "\n");
6363 indented = 0;
6364 if (BINFO_PRIMARY_P (binfo))
6366 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6367 fprintf (stream, " primary-for %s (0x%lx)",
6368 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6369 TFF_PLAIN_IDENTIFIER),
6370 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6372 if (BINFO_LOST_PRIMARY_P (binfo))
6374 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6375 fprintf (stream, " lost-primary");
6377 if (indented)
6378 fprintf (stream, "\n");
6380 if (!(flags & TDF_SLIM))
6382 int indented = 0;
6384 if (BINFO_SUBVTT_INDEX (binfo))
6386 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6387 fprintf (stream, " subvttidx=%s",
6388 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6389 TFF_PLAIN_IDENTIFIER));
6391 if (BINFO_VPTR_INDEX (binfo))
6393 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6394 fprintf (stream, " vptridx=%s",
6395 expr_as_string (BINFO_VPTR_INDEX (binfo),
6396 TFF_PLAIN_IDENTIFIER));
6398 if (BINFO_VPTR_FIELD (binfo))
6400 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6401 fprintf (stream, " vbaseoffset=%s",
6402 expr_as_string (BINFO_VPTR_FIELD (binfo),
6403 TFF_PLAIN_IDENTIFIER));
6405 if (BINFO_VTABLE (binfo))
6407 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6408 fprintf (stream, " vptr=%s",
6409 expr_as_string (BINFO_VTABLE (binfo),
6410 TFF_PLAIN_IDENTIFIER));
6413 if (indented)
6414 fprintf (stream, "\n");
6417 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6418 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6420 return igo;
6423 /* Dump the BINFO hierarchy for T. */
6425 static void
6426 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6428 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6429 fprintf (stream, " size=%lu align=%lu\n",
6430 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6431 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6432 fprintf (stream, " base size=%lu base align=%lu\n",
6433 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6434 / BITS_PER_UNIT),
6435 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6436 / BITS_PER_UNIT));
6437 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6438 fprintf (stream, "\n");
6441 /* Debug interface to hierarchy dumping. */
6443 extern void
6444 debug_class (tree t)
6446 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6449 static void
6450 dump_class_hierarchy (tree t)
6452 int flags;
6453 FILE *stream = dump_begin (TDI_class, &flags);
6455 if (stream)
6457 dump_class_hierarchy_1 (stream, flags, t);
6458 dump_end (TDI_class, stream);
6462 static void
6463 dump_array (FILE * stream, tree decl)
6465 tree inits;
6466 int ix;
6467 HOST_WIDE_INT elt;
6468 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6470 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6471 / BITS_PER_UNIT);
6472 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6473 fprintf (stream, " %s entries",
6474 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6475 TFF_PLAIN_IDENTIFIER));
6476 fprintf (stream, "\n");
6478 for (ix = 0, inits = CONSTRUCTOR_ELTS (DECL_INITIAL (decl));
6479 inits; ix++, inits = TREE_CHAIN (inits))
6480 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6481 expr_as_string (TREE_VALUE (inits), TFF_PLAIN_IDENTIFIER));
6484 static void
6485 dump_vtable (tree t, tree binfo, tree vtable)
6487 int flags;
6488 FILE *stream = dump_begin (TDI_class, &flags);
6490 if (!stream)
6491 return;
6493 if (!(flags & TDF_SLIM))
6495 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6497 fprintf (stream, "%s for %s",
6498 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6499 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6500 if (ctor_vtbl_p)
6502 if (!BINFO_VIRTUAL_P (binfo))
6503 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6504 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6506 fprintf (stream, "\n");
6507 dump_array (stream, vtable);
6508 fprintf (stream, "\n");
6511 dump_end (TDI_class, stream);
6514 static void
6515 dump_vtt (tree t, tree vtt)
6517 int flags;
6518 FILE *stream = dump_begin (TDI_class, &flags);
6520 if (!stream)
6521 return;
6523 if (!(flags & TDF_SLIM))
6525 fprintf (stream, "VTT for %s\n",
6526 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6527 dump_array (stream, vtt);
6528 fprintf (stream, "\n");
6531 dump_end (TDI_class, stream);
6534 /* Dump a function or thunk and its thunkees. */
6536 static void
6537 dump_thunk (FILE *stream, int indent, tree thunk)
6539 static const char spaces[] = " ";
6540 tree name = DECL_NAME (thunk);
6541 tree thunks;
6543 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6544 (void *)thunk,
6545 !DECL_THUNK_P (thunk) ? "function"
6546 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6547 name ? IDENTIFIER_POINTER (name) : "<unset>");
6548 if (DECL_THUNK_P (thunk))
6550 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6551 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6553 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6554 if (!virtual_adjust)
6555 /*NOP*/;
6556 else if (DECL_THIS_THUNK_P (thunk))
6557 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6558 tree_low_cst (virtual_adjust, 0));
6559 else
6560 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6561 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6562 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6563 if (THUNK_ALIAS (thunk))
6564 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6566 fprintf (stream, "\n");
6567 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6568 dump_thunk (stream, indent + 2, thunks);
6571 /* Dump the thunks for FN. */
6573 extern void
6574 debug_thunks (tree fn)
6576 dump_thunk (stderr, 0, fn);
6579 /* Virtual function table initialization. */
6581 /* Create all the necessary vtables for T and its base classes. */
6583 static void
6584 finish_vtbls (tree t)
6586 tree list;
6587 tree vbase;
6589 /* We lay out the primary and secondary vtables in one contiguous
6590 vtable. The primary vtable is first, followed by the non-virtual
6591 secondary vtables in inheritance graph order. */
6592 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6593 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6594 TYPE_BINFO (t), t, list);
6596 /* Then come the virtual bases, also in inheritance graph order. */
6597 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6599 if (!BINFO_VIRTUAL_P (vbase))
6600 continue;
6601 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6604 if (BINFO_VTABLE (TYPE_BINFO (t)))
6605 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6608 /* Initialize the vtable for BINFO with the INITS. */
6610 static void
6611 initialize_vtable (tree binfo, tree inits)
6613 tree decl;
6615 layout_vtable_decl (binfo, list_length (inits));
6616 decl = get_vtbl_decl_for_binfo (binfo);
6617 initialize_artificial_var (decl, inits);
6618 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6621 /* Build the VTT (virtual table table) for T.
6622 A class requires a VTT if it has virtual bases.
6624 This holds
6625 1 - primary virtual pointer for complete object T
6626 2 - secondary VTTs for each direct non-virtual base of T which requires a
6628 3 - secondary virtual pointers for each direct or indirect base of T which
6629 has virtual bases or is reachable via a virtual path from T.
6630 4 - secondary VTTs for each direct or indirect virtual base of T.
6632 Secondary VTTs look like complete object VTTs without part 4. */
6634 static void
6635 build_vtt (tree t)
6637 tree inits;
6638 tree type;
6639 tree vtt;
6640 tree index;
6642 /* Build up the initializers for the VTT. */
6643 inits = NULL_TREE;
6644 index = size_zero_node;
6645 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6647 /* If we didn't need a VTT, we're done. */
6648 if (!inits)
6649 return;
6651 /* Figure out the type of the VTT. */
6652 type = build_index_type (size_int (list_length (inits) - 1));
6653 type = build_cplus_array_type (const_ptr_type_node, type);
6655 /* Now, build the VTT object itself. */
6656 vtt = build_vtable (t, get_vtt_name (t), type);
6657 initialize_artificial_var (vtt, inits);
6658 /* Add the VTT to the vtables list. */
6659 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6660 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6662 dump_vtt (t, vtt);
6665 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6666 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6667 and CHAIN the vtable pointer for this binfo after construction is
6668 complete. VALUE can also be another BINFO, in which case we recurse. */
6670 static tree
6671 binfo_ctor_vtable (tree binfo)
6673 tree vt;
6675 while (1)
6677 vt = BINFO_VTABLE (binfo);
6678 if (TREE_CODE (vt) == TREE_LIST)
6679 vt = TREE_VALUE (vt);
6680 if (TREE_CODE (vt) == TREE_BINFO)
6681 binfo = vt;
6682 else
6683 break;
6686 return vt;
6689 /* Data for secondary VTT initialization. */
6690 typedef struct secondary_vptr_vtt_init_data_s
6692 /* Is this the primary VTT? */
6693 bool top_level_p;
6695 /* Current index into the VTT. */
6696 tree index;
6698 /* TREE_LIST of initializers built up. */
6699 tree inits;
6701 /* The type being constructed by this secondary VTT. */
6702 tree type_being_constructed;
6703 } secondary_vptr_vtt_init_data;
6705 /* Recursively build the VTT-initializer for BINFO (which is in the
6706 hierarchy dominated by T). INITS points to the end of the initializer
6707 list to date. INDEX is the VTT index where the next element will be
6708 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6709 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6710 for virtual bases of T. When it is not so, we build the constructor
6711 vtables for the BINFO-in-T variant. */
6713 static tree *
6714 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6716 int i;
6717 tree b;
6718 tree init;
6719 tree secondary_vptrs;
6720 secondary_vptr_vtt_init_data data;
6721 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6723 /* We only need VTTs for subobjects with virtual bases. */
6724 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6725 return inits;
6727 /* We need to use a construction vtable if this is not the primary
6728 VTT. */
6729 if (!top_level_p)
6731 build_ctor_vtbl_group (binfo, t);
6733 /* Record the offset in the VTT where this sub-VTT can be found. */
6734 BINFO_SUBVTT_INDEX (binfo) = *index;
6737 /* Add the address of the primary vtable for the complete object. */
6738 init = binfo_ctor_vtable (binfo);
6739 *inits = build_tree_list (NULL_TREE, init);
6740 inits = &TREE_CHAIN (*inits);
6741 if (top_level_p)
6743 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6744 BINFO_VPTR_INDEX (binfo) = *index;
6746 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6748 /* Recursively add the secondary VTTs for non-virtual bases. */
6749 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6750 if (!BINFO_VIRTUAL_P (b))
6751 inits = build_vtt_inits (b, t, inits, index);
6753 /* Add secondary virtual pointers for all subobjects of BINFO with
6754 either virtual bases or reachable along a virtual path, except
6755 subobjects that are non-virtual primary bases. */
6756 data.top_level_p = top_level_p;
6757 data.index = *index;
6758 data.inits = NULL;
6759 data.type_being_constructed = BINFO_TYPE (binfo);
6761 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6763 *index = data.index;
6765 /* The secondary vptrs come back in reverse order. After we reverse
6766 them, and add the INITS, the last init will be the first element
6767 of the chain. */
6768 secondary_vptrs = data.inits;
6769 if (secondary_vptrs)
6771 *inits = nreverse (secondary_vptrs);
6772 inits = &TREE_CHAIN (secondary_vptrs);
6773 gcc_assert (*inits == NULL_TREE);
6776 if (top_level_p)
6777 /* Add the secondary VTTs for virtual bases in inheritance graph
6778 order. */
6779 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6781 if (!BINFO_VIRTUAL_P (b))
6782 continue;
6784 inits = build_vtt_inits (b, t, inits, index);
6786 else
6787 /* Remove the ctor vtables we created. */
6788 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6790 return inits;
6793 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6794 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6796 static tree
6797 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6799 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6801 /* We don't care about bases that don't have vtables. */
6802 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6803 return dfs_skip_bases;
6805 /* We're only interested in proper subobjects of the type being
6806 constructed. */
6807 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6808 return NULL_TREE;
6810 /* We're only interested in bases with virtual bases or reachable
6811 via a virtual path from the type being constructed. */
6812 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6813 || binfo_via_virtual (binfo, data->type_being_constructed)))
6814 return dfs_skip_bases;
6816 /* We're not interested in non-virtual primary bases. */
6817 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6818 return NULL_TREE;
6820 /* Record the index where this secondary vptr can be found. */
6821 if (data->top_level_p)
6823 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6824 BINFO_VPTR_INDEX (binfo) = data->index;
6826 if (BINFO_VIRTUAL_P (binfo))
6828 /* It's a primary virtual base, and this is not a
6829 construction vtable. Find the base this is primary of in
6830 the inheritance graph, and use that base's vtable
6831 now. */
6832 while (BINFO_PRIMARY_P (binfo))
6833 binfo = BINFO_INHERITANCE_CHAIN (binfo);
6837 /* Add the initializer for the secondary vptr itself. */
6838 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
6840 /* Advance the vtt index. */
6841 data->index = size_binop (PLUS_EXPR, data->index,
6842 TYPE_SIZE_UNIT (ptr_type_node));
6844 return NULL_TREE;
6847 /* Called from build_vtt_inits via dfs_walk. After building
6848 constructor vtables and generating the sub-vtt from them, we need
6849 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6850 binfo of the base whose sub vtt was generated. */
6852 static tree
6853 dfs_fixup_binfo_vtbls (tree binfo, void* data)
6855 tree vtable = BINFO_VTABLE (binfo);
6857 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6858 /* If this class has no vtable, none of its bases do. */
6859 return dfs_skip_bases;
6861 if (!vtable)
6862 /* This might be a primary base, so have no vtable in this
6863 hierarchy. */
6864 return NULL_TREE;
6866 /* If we scribbled the construction vtable vptr into BINFO, clear it
6867 out now. */
6868 if (TREE_CODE (vtable) == TREE_LIST
6869 && (TREE_PURPOSE (vtable) == (tree) data))
6870 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
6872 return NULL_TREE;
6875 /* Build the construction vtable group for BINFO which is in the
6876 hierarchy dominated by T. */
6878 static void
6879 build_ctor_vtbl_group (tree binfo, tree t)
6881 tree list;
6882 tree type;
6883 tree vtbl;
6884 tree inits;
6885 tree id;
6886 tree vbase;
6888 /* See if we've already created this construction vtable group. */
6889 id = mangle_ctor_vtbl_for_type (t, binfo);
6890 if (IDENTIFIER_GLOBAL_VALUE (id))
6891 return;
6893 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
6894 /* Build a version of VTBL (with the wrong type) for use in
6895 constructing the addresses of secondary vtables in the
6896 construction vtable group. */
6897 vtbl = build_vtable (t, id, ptr_type_node);
6898 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
6899 list = build_tree_list (vtbl, NULL_TREE);
6900 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
6901 binfo, t, list);
6903 /* Add the vtables for each of our virtual bases using the vbase in T
6904 binfo. */
6905 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
6906 vbase;
6907 vbase = TREE_CHAIN (vbase))
6909 tree b;
6911 if (!BINFO_VIRTUAL_P (vbase))
6912 continue;
6913 b = copied_binfo (vbase, binfo);
6915 accumulate_vtbl_inits (b, vbase, binfo, t, list);
6917 inits = TREE_VALUE (list);
6919 /* Figure out the type of the construction vtable. */
6920 type = build_index_type (size_int (list_length (inits) - 1));
6921 type = build_cplus_array_type (vtable_entry_type, type);
6922 TREE_TYPE (vtbl) = type;
6924 /* Initialize the construction vtable. */
6925 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
6926 initialize_artificial_var (vtbl, inits);
6927 dump_vtable (t, binfo, vtbl);
6930 /* Add the vtbl initializers for BINFO (and its bases other than
6931 non-virtual primaries) to the list of INITS. BINFO is in the
6932 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
6933 the constructor the vtbl inits should be accumulated for. (If this
6934 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
6935 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
6936 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
6937 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
6938 but are not necessarily the same in terms of layout. */
6940 static void
6941 accumulate_vtbl_inits (tree binfo,
6942 tree orig_binfo,
6943 tree rtti_binfo,
6944 tree t,
6945 tree inits)
6947 int i;
6948 tree base_binfo;
6949 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
6951 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
6953 /* If it doesn't have a vptr, we don't do anything. */
6954 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6955 return;
6957 /* If we're building a construction vtable, we're not interested in
6958 subobjects that don't require construction vtables. */
6959 if (ctor_vtbl_p
6960 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6961 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
6962 return;
6964 /* Build the initializers for the BINFO-in-T vtable. */
6965 TREE_VALUE (inits)
6966 = chainon (TREE_VALUE (inits),
6967 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
6968 rtti_binfo, t, inits));
6970 /* Walk the BINFO and its bases. We walk in preorder so that as we
6971 initialize each vtable we can figure out at what offset the
6972 secondary vtable lies from the primary vtable. We can't use
6973 dfs_walk here because we need to iterate through bases of BINFO
6974 and RTTI_BINFO simultaneously. */
6975 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6977 /* Skip virtual bases. */
6978 if (BINFO_VIRTUAL_P (base_binfo))
6979 continue;
6980 accumulate_vtbl_inits (base_binfo,
6981 BINFO_BASE_BINFO (orig_binfo, i),
6982 rtti_binfo, t,
6983 inits);
6987 /* Called from accumulate_vtbl_inits. Returns the initializers for
6988 the BINFO vtable. */
6990 static tree
6991 dfs_accumulate_vtbl_inits (tree binfo,
6992 tree orig_binfo,
6993 tree rtti_binfo,
6994 tree t,
6995 tree l)
6997 tree inits = NULL_TREE;
6998 tree vtbl = NULL_TREE;
6999 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7001 if (ctor_vtbl_p
7002 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7004 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7005 primary virtual base. If it is not the same primary in
7006 the hierarchy of T, we'll need to generate a ctor vtable
7007 for it, to place at its location in T. If it is the same
7008 primary, we still need a VTT entry for the vtable, but it
7009 should point to the ctor vtable for the base it is a
7010 primary for within the sub-hierarchy of RTTI_BINFO.
7012 There are three possible cases:
7014 1) We are in the same place.
7015 2) We are a primary base within a lost primary virtual base of
7016 RTTI_BINFO.
7017 3) We are primary to something not a base of RTTI_BINFO. */
7019 tree b;
7020 tree last = NULL_TREE;
7022 /* First, look through the bases we are primary to for RTTI_BINFO
7023 or a virtual base. */
7024 b = binfo;
7025 while (BINFO_PRIMARY_P (b))
7027 b = BINFO_INHERITANCE_CHAIN (b);
7028 last = b;
7029 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7030 goto found;
7032 /* If we run out of primary links, keep looking down our
7033 inheritance chain; we might be an indirect primary. */
7034 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7035 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7036 break;
7037 found:
7039 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7040 base B and it is a base of RTTI_BINFO, this is case 2. In
7041 either case, we share our vtable with LAST, i.e. the
7042 derived-most base within B of which we are a primary. */
7043 if (b == rtti_binfo
7044 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7045 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7046 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7047 binfo_ctor_vtable after everything's been set up. */
7048 vtbl = last;
7050 /* Otherwise, this is case 3 and we get our own. */
7052 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7053 return inits;
7055 if (!vtbl)
7057 tree index;
7058 int non_fn_entries;
7060 /* Compute the initializer for this vtable. */
7061 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7062 &non_fn_entries);
7064 /* Figure out the position to which the VPTR should point. */
7065 vtbl = TREE_PURPOSE (l);
7066 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7067 index = size_binop (PLUS_EXPR,
7068 size_int (non_fn_entries),
7069 size_int (list_length (TREE_VALUE (l))));
7070 index = size_binop (MULT_EXPR,
7071 TYPE_SIZE_UNIT (vtable_entry_type),
7072 index);
7073 vtbl = build2 (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7076 if (ctor_vtbl_p)
7077 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7078 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7079 straighten this out. */
7080 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7081 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7082 inits = NULL_TREE;
7083 else
7084 /* For an ordinary vtable, set BINFO_VTABLE. */
7085 BINFO_VTABLE (binfo) = vtbl;
7087 return inits;
7090 static GTY(()) tree abort_fndecl_addr;
7092 /* Construct the initializer for BINFO's virtual function table. BINFO
7093 is part of the hierarchy dominated by T. If we're building a
7094 construction vtable, the ORIG_BINFO is the binfo we should use to
7095 find the actual function pointers to put in the vtable - but they
7096 can be overridden on the path to most-derived in the graph that
7097 ORIG_BINFO belongs. Otherwise,
7098 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7099 BINFO that should be indicated by the RTTI information in the
7100 vtable; it will be a base class of T, rather than T itself, if we
7101 are building a construction vtable.
7103 The value returned is a TREE_LIST suitable for wrapping in a
7104 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7105 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7106 number of non-function entries in the vtable.
7108 It might seem that this function should never be called with a
7109 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7110 base is always subsumed by a derived class vtable. However, when
7111 we are building construction vtables, we do build vtables for
7112 primary bases; we need these while the primary base is being
7113 constructed. */
7115 static tree
7116 build_vtbl_initializer (tree binfo,
7117 tree orig_binfo,
7118 tree t,
7119 tree rtti_binfo,
7120 int* non_fn_entries_p)
7122 tree v, b;
7123 tree vfun_inits;
7124 vtbl_init_data vid;
7125 unsigned ix;
7126 tree vbinfo;
7127 VEC (tree) *vbases;
7129 /* Initialize VID. */
7130 memset (&vid, 0, sizeof (vid));
7131 vid.binfo = binfo;
7132 vid.derived = t;
7133 vid.rtti_binfo = rtti_binfo;
7134 vid.last_init = &vid.inits;
7135 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7136 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7137 vid.generate_vcall_entries = true;
7138 /* The first vbase or vcall offset is at index -3 in the vtable. */
7139 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7141 /* Add entries to the vtable for RTTI. */
7142 build_rtti_vtbl_entries (binfo, &vid);
7144 /* Create an array for keeping track of the functions we've
7145 processed. When we see multiple functions with the same
7146 signature, we share the vcall offsets. */
7147 VARRAY_TREE_INIT (vid.fns, 32, "fns");
7148 /* Add the vcall and vbase offset entries. */
7149 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7151 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7152 build_vbase_offset_vtbl_entries. */
7153 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7154 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7155 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7157 /* If the target requires padding between data entries, add that now. */
7158 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7160 tree cur, *prev;
7162 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7164 tree add = cur;
7165 int i;
7167 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7168 add = tree_cons (NULL_TREE,
7169 build1 (NOP_EXPR, vtable_entry_type,
7170 null_pointer_node),
7171 add);
7172 *prev = add;
7176 if (non_fn_entries_p)
7177 *non_fn_entries_p = list_length (vid.inits);
7179 /* Go through all the ordinary virtual functions, building up
7180 initializers. */
7181 vfun_inits = NULL_TREE;
7182 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7184 tree delta;
7185 tree vcall_index;
7186 tree fn, fn_original;
7187 tree init = NULL_TREE;
7189 fn = BV_FN (v);
7190 fn_original = fn;
7191 if (DECL_THUNK_P (fn))
7193 if (!DECL_NAME (fn))
7194 finish_thunk (fn);
7195 if (THUNK_ALIAS (fn))
7197 fn = THUNK_ALIAS (fn);
7198 BV_FN (v) = fn;
7200 fn_original = THUNK_TARGET (fn);
7203 /* If the only definition of this function signature along our
7204 primary base chain is from a lost primary, this vtable slot will
7205 never be used, so just zero it out. This is important to avoid
7206 requiring extra thunks which cannot be generated with the function.
7208 We first check this in update_vtable_entry_for_fn, so we handle
7209 restored primary bases properly; we also need to do it here so we
7210 zero out unused slots in ctor vtables, rather than filling themff
7211 with erroneous values (though harmless, apart from relocation
7212 costs). */
7213 for (b = binfo; ; b = get_primary_binfo (b))
7215 /* We found a defn before a lost primary; go ahead as normal. */
7216 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7217 break;
7219 /* The nearest definition is from a lost primary; clear the
7220 slot. */
7221 if (BINFO_LOST_PRIMARY_P (b))
7223 init = size_zero_node;
7224 break;
7228 if (! init)
7230 /* Pull the offset for `this', and the function to call, out of
7231 the list. */
7232 delta = BV_DELTA (v);
7233 vcall_index = BV_VCALL_INDEX (v);
7235 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7236 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7238 /* You can't call an abstract virtual function; it's abstract.
7239 So, we replace these functions with __pure_virtual. */
7240 if (DECL_PURE_VIRTUAL_P (fn_original))
7242 fn = abort_fndecl;
7243 if (abort_fndecl_addr == NULL)
7244 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7245 init = abort_fndecl_addr;
7247 else
7249 if (!integer_zerop (delta) || vcall_index)
7251 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7252 if (!DECL_NAME (fn))
7253 finish_thunk (fn);
7255 /* Take the address of the function, considering it to be of an
7256 appropriate generic type. */
7257 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7261 /* And add it to the chain of initializers. */
7262 if (TARGET_VTABLE_USES_DESCRIPTORS)
7264 int i;
7265 if (init == size_zero_node)
7266 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7267 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7268 else
7269 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7271 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7272 TREE_OPERAND (init, 0),
7273 build_int_cst (NULL_TREE, i));
7274 TREE_CONSTANT (fdesc) = 1;
7275 TREE_INVARIANT (fdesc) = 1;
7277 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7280 else
7281 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7284 /* The initializers for virtual functions were built up in reverse
7285 order; straighten them out now. */
7286 vfun_inits = nreverse (vfun_inits);
7288 /* The negative offset initializers are also in reverse order. */
7289 vid.inits = nreverse (vid.inits);
7291 /* Chain the two together. */
7292 return chainon (vid.inits, vfun_inits);
7295 /* Adds to vid->inits the initializers for the vbase and vcall
7296 offsets in BINFO, which is in the hierarchy dominated by T. */
7298 static void
7299 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7301 tree b;
7303 /* If this is a derived class, we must first create entries
7304 corresponding to the primary base class. */
7305 b = get_primary_binfo (binfo);
7306 if (b)
7307 build_vcall_and_vbase_vtbl_entries (b, vid);
7309 /* Add the vbase entries for this base. */
7310 build_vbase_offset_vtbl_entries (binfo, vid);
7311 /* Add the vcall entries for this base. */
7312 build_vcall_offset_vtbl_entries (binfo, vid);
7315 /* Returns the initializers for the vbase offset entries in the vtable
7316 for BINFO (which is part of the class hierarchy dominated by T), in
7317 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7318 where the next vbase offset will go. */
7320 static void
7321 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7323 tree vbase;
7324 tree t;
7325 tree non_primary_binfo;
7327 /* If there are no virtual baseclasses, then there is nothing to
7328 do. */
7329 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7330 return;
7332 t = vid->derived;
7334 /* We might be a primary base class. Go up the inheritance hierarchy
7335 until we find the most derived class of which we are a primary base:
7336 it is the offset of that which we need to use. */
7337 non_primary_binfo = binfo;
7338 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7340 tree b;
7342 /* If we have reached a virtual base, then it must be a primary
7343 base (possibly multi-level) of vid->binfo, or we wouldn't
7344 have called build_vcall_and_vbase_vtbl_entries for it. But it
7345 might be a lost primary, so just skip down to vid->binfo. */
7346 if (BINFO_VIRTUAL_P (non_primary_binfo))
7348 non_primary_binfo = vid->binfo;
7349 break;
7352 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7353 if (get_primary_binfo (b) != non_primary_binfo)
7354 break;
7355 non_primary_binfo = b;
7358 /* Go through the virtual bases, adding the offsets. */
7359 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7360 vbase;
7361 vbase = TREE_CHAIN (vbase))
7363 tree b;
7364 tree delta;
7366 if (!BINFO_VIRTUAL_P (vbase))
7367 continue;
7369 /* Find the instance of this virtual base in the complete
7370 object. */
7371 b = copied_binfo (vbase, binfo);
7373 /* If we've already got an offset for this virtual base, we
7374 don't need another one. */
7375 if (BINFO_VTABLE_PATH_MARKED (b))
7376 continue;
7377 BINFO_VTABLE_PATH_MARKED (b) = 1;
7379 /* Figure out where we can find this vbase offset. */
7380 delta = size_binop (MULT_EXPR,
7381 vid->index,
7382 convert (ssizetype,
7383 TYPE_SIZE_UNIT (vtable_entry_type)));
7384 if (vid->primary_vtbl_p)
7385 BINFO_VPTR_FIELD (b) = delta;
7387 if (binfo != TYPE_BINFO (t))
7388 /* The vbase offset had better be the same. */
7389 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7391 /* The next vbase will come at a more negative offset. */
7392 vid->index = size_binop (MINUS_EXPR, vid->index,
7393 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7395 /* The initializer is the delta from BINFO to this virtual base.
7396 The vbase offsets go in reverse inheritance-graph order, and
7397 we are walking in inheritance graph order so these end up in
7398 the right order. */
7399 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7401 *vid->last_init
7402 = build_tree_list (NULL_TREE,
7403 fold (build1 (NOP_EXPR,
7404 vtable_entry_type,
7405 delta)));
7406 vid->last_init = &TREE_CHAIN (*vid->last_init);
7410 /* Adds the initializers for the vcall offset entries in the vtable
7411 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7412 to VID->INITS. */
7414 static void
7415 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7417 /* We only need these entries if this base is a virtual base. We
7418 compute the indices -- but do not add to the vtable -- when
7419 building the main vtable for a class. */
7420 if (BINFO_VIRTUAL_P (binfo) || binfo == TYPE_BINFO (vid->derived))
7422 /* We need a vcall offset for each of the virtual functions in this
7423 vtable. For example:
7425 class A { virtual void f (); };
7426 class B1 : virtual public A { virtual void f (); };
7427 class B2 : virtual public A { virtual void f (); };
7428 class C: public B1, public B2 { virtual void f (); };
7430 A C object has a primary base of B1, which has a primary base of A. A
7431 C also has a secondary base of B2, which no longer has a primary base
7432 of A. So the B2-in-C construction vtable needs a secondary vtable for
7433 A, which will adjust the A* to a B2* to call f. We have no way of
7434 knowing what (or even whether) this offset will be when we define B2,
7435 so we store this "vcall offset" in the A sub-vtable and look it up in
7436 a "virtual thunk" for B2::f.
7438 We need entries for all the functions in our primary vtable and
7439 in our non-virtual bases' secondary vtables. */
7440 vid->vbase = binfo;
7441 /* If we are just computing the vcall indices -- but do not need
7442 the actual entries -- not that. */
7443 if (!BINFO_VIRTUAL_P (binfo))
7444 vid->generate_vcall_entries = false;
7445 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7446 add_vcall_offset_vtbl_entries_r (binfo, vid);
7450 /* Build vcall offsets, starting with those for BINFO. */
7452 static void
7453 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7455 int i;
7456 tree primary_binfo;
7457 tree base_binfo;
7459 /* Don't walk into virtual bases -- except, of course, for the
7460 virtual base for which we are building vcall offsets. Any
7461 primary virtual base will have already had its offsets generated
7462 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7463 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7464 return;
7466 /* If BINFO has a primary base, process it first. */
7467 primary_binfo = get_primary_binfo (binfo);
7468 if (primary_binfo)
7469 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7471 /* Add BINFO itself to the list. */
7472 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7474 /* Scan the non-primary bases of BINFO. */
7475 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7476 if (base_binfo != primary_binfo)
7477 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7480 /* Called from build_vcall_offset_vtbl_entries_r. */
7482 static void
7483 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7485 /* Make entries for the rest of the virtuals. */
7486 if (abi_version_at_least (2))
7488 tree orig_fn;
7490 /* The ABI requires that the methods be processed in declaration
7491 order. G++ 3.2 used the order in the vtable. */
7492 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7493 orig_fn;
7494 orig_fn = TREE_CHAIN (orig_fn))
7495 if (DECL_VINDEX (orig_fn))
7496 add_vcall_offset (orig_fn, binfo, vid);
7498 else
7500 tree derived_virtuals;
7501 tree base_virtuals;
7502 tree orig_virtuals;
7503 /* If BINFO is a primary base, the most derived class which has
7504 BINFO as a primary base; otherwise, just BINFO. */
7505 tree non_primary_binfo;
7507 /* We might be a primary base class. Go up the inheritance hierarchy
7508 until we find the most derived class of which we are a primary base:
7509 it is the BINFO_VIRTUALS there that we need to consider. */
7510 non_primary_binfo = binfo;
7511 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7513 tree b;
7515 /* If we have reached a virtual base, then it must be vid->vbase,
7516 because we ignore other virtual bases in
7517 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7518 base (possibly multi-level) of vid->binfo, or we wouldn't
7519 have called build_vcall_and_vbase_vtbl_entries for it. But it
7520 might be a lost primary, so just skip down to vid->binfo. */
7521 if (BINFO_VIRTUAL_P (non_primary_binfo))
7523 gcc_assert (non_primary_binfo == vid->vbase);
7524 non_primary_binfo = vid->binfo;
7525 break;
7528 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7529 if (get_primary_binfo (b) != non_primary_binfo)
7530 break;
7531 non_primary_binfo = b;
7534 if (vid->ctor_vtbl_p)
7535 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7536 where rtti_binfo is the most derived type. */
7537 non_primary_binfo
7538 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7540 for (base_virtuals = BINFO_VIRTUALS (binfo),
7541 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7542 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7543 base_virtuals;
7544 base_virtuals = TREE_CHAIN (base_virtuals),
7545 derived_virtuals = TREE_CHAIN (derived_virtuals),
7546 orig_virtuals = TREE_CHAIN (orig_virtuals))
7548 tree orig_fn;
7550 /* Find the declaration that originally caused this function to
7551 be present in BINFO_TYPE (binfo). */
7552 orig_fn = BV_FN (orig_virtuals);
7554 /* When processing BINFO, we only want to generate vcall slots for
7555 function slots introduced in BINFO. So don't try to generate
7556 one if the function isn't even defined in BINFO. */
7557 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7558 continue;
7560 add_vcall_offset (orig_fn, binfo, vid);
7565 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7567 static void
7568 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7570 size_t i;
7571 tree vcall_offset;
7573 /* If there is already an entry for a function with the same
7574 signature as FN, then we do not need a second vcall offset.
7575 Check the list of functions already present in the derived
7576 class vtable. */
7577 for (i = 0; i < VARRAY_ACTIVE_SIZE (vid->fns); ++i)
7579 tree derived_entry;
7581 derived_entry = VARRAY_TREE (vid->fns, i);
7582 if (same_signature_p (derived_entry, orig_fn)
7583 /* We only use one vcall offset for virtual destructors,
7584 even though there are two virtual table entries. */
7585 || (DECL_DESTRUCTOR_P (derived_entry)
7586 && DECL_DESTRUCTOR_P (orig_fn)))
7587 return;
7590 /* If we are building these vcall offsets as part of building
7591 the vtable for the most derived class, remember the vcall
7592 offset. */
7593 if (vid->binfo == TYPE_BINFO (vid->derived))
7595 tree_pair_p elt = VEC_safe_push (tree_pair_s,
7596 CLASSTYPE_VCALL_INDICES (vid->derived),
7597 NULL);
7598 elt->purpose = orig_fn;
7599 elt->value = vid->index;
7602 /* The next vcall offset will be found at a more negative
7603 offset. */
7604 vid->index = size_binop (MINUS_EXPR, vid->index,
7605 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7607 /* Keep track of this function. */
7608 VARRAY_PUSH_TREE (vid->fns, orig_fn);
7610 if (vid->generate_vcall_entries)
7612 tree base;
7613 tree fn;
7615 /* Find the overriding function. */
7616 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7617 if (fn == error_mark_node)
7618 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7619 integer_zero_node);
7620 else
7622 base = TREE_VALUE (fn);
7624 /* The vbase we're working on is a primary base of
7625 vid->binfo. But it might be a lost primary, so its
7626 BINFO_OFFSET might be wrong, so we just use the
7627 BINFO_OFFSET from vid->binfo. */
7628 vcall_offset = size_diffop (BINFO_OFFSET (base),
7629 BINFO_OFFSET (vid->binfo));
7630 vcall_offset = fold (build1 (NOP_EXPR, vtable_entry_type,
7631 vcall_offset));
7633 /* Add the initializer to the vtable. */
7634 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7635 vid->last_init = &TREE_CHAIN (*vid->last_init);
7639 /* Return vtbl initializers for the RTTI entries corresponding to the
7640 BINFO's vtable. The RTTI entries should indicate the object given
7641 by VID->rtti_binfo. */
7643 static void
7644 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7646 tree b;
7647 tree t;
7648 tree basetype;
7649 tree offset;
7650 tree decl;
7651 tree init;
7653 basetype = BINFO_TYPE (binfo);
7654 t = BINFO_TYPE (vid->rtti_binfo);
7656 /* To find the complete object, we will first convert to our most
7657 primary base, and then add the offset in the vtbl to that value. */
7658 b = binfo;
7659 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7660 && !BINFO_LOST_PRIMARY_P (b))
7662 tree primary_base;
7664 primary_base = get_primary_binfo (b);
7665 gcc_assert (BINFO_PRIMARY_P (primary_base)
7666 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7667 b = primary_base;
7669 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7671 /* The second entry is the address of the typeinfo object. */
7672 if (flag_rtti)
7673 decl = build_address (get_tinfo_decl (t));
7674 else
7675 decl = integer_zero_node;
7677 /* Convert the declaration to a type that can be stored in the
7678 vtable. */
7679 init = build_nop (vfunc_ptr_type_node, decl);
7680 *vid->last_init = build_tree_list (NULL_TREE, init);
7681 vid->last_init = &TREE_CHAIN (*vid->last_init);
7683 /* Add the offset-to-top entry. It comes earlier in the vtable than
7684 the typeinfo entry. Convert the offset to look like a
7685 function pointer, so that we can put it in the vtable. */
7686 init = build_nop (vfunc_ptr_type_node, offset);
7687 *vid->last_init = build_tree_list (NULL_TREE, init);
7688 vid->last_init = &TREE_CHAIN (*vid->last_init);
7691 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7692 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7694 tree
7695 cp_fold_obj_type_ref (tree ref, tree known_type)
7697 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7698 HOST_WIDE_INT i = 0;
7699 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7700 tree fndecl;
7702 while (i != index)
7704 i += (TARGET_VTABLE_USES_DESCRIPTORS
7705 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7706 v = TREE_CHAIN (v);
7709 fndecl = BV_FN (v);
7711 #ifdef ENABLE_CHECKING
7712 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7713 DECL_VINDEX (fndecl)));
7714 #endif
7716 return build_address (fndecl);
7719 #include "gt-cp-class.h"