Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / gcc / config / xtensa / xtensa.h
blob01c0caef91de70a7918d200c59e95cb8e8b5e5d3
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int target_flags;
28 extern int optimize;
30 /* External variables defined in xtensa.c. */
32 /* comparison type */
33 enum cmp_type {
34 CMP_SI, /* four byte integers */
35 CMP_DI, /* eight byte integers */
36 CMP_SF, /* single precision floats */
37 CMP_DF, /* double precision floats */
38 CMP_MAX /* max comparison type */
41 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
42 extern enum cmp_type branch_type; /* what type of branch to use */
43 extern unsigned xtensa_current_frame_size;
45 /* Masks for the -m switches */
46 #define MASK_NO_FUSED_MADD 0x00000001 /* avoid f-p mul/add */
47 #define MASK_CONST16 0x00000002 /* use CONST16 instruction */
49 /* Macros used in the machine description to select various Xtensa
50 configuration options. */
51 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
52 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
53 #define TARGET_MAC16 XCHAL_HAVE_MAC16
54 #define TARGET_MUL16 XCHAL_HAVE_MUL16
55 #define TARGET_MUL32 XCHAL_HAVE_MUL32
56 #define TARGET_DIV32 XCHAL_HAVE_DIV32
57 #define TARGET_NSA XCHAL_HAVE_NSA
58 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
59 #define TARGET_SEXT XCHAL_HAVE_SEXT
60 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
61 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
62 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
63 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
64 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
65 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
66 #define TARGET_ABS XCHAL_HAVE_ABS
67 #define TARGET_ADDX XCHAL_HAVE_ADDX
69 /* Macros controlled by command-line options. */
70 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
71 #define TARGET_CONST16 (target_flags & MASK_CONST16)
73 #define TARGET_DEFAULT ( \
74 (XCHAL_HAVE_L32R ? 0 : MASK_CONST16))
76 #define TARGET_SWITCHES \
77 { \
78 {"const16", MASK_CONST16, \
79 N_("Use CONST16 instruction to load constants")}, \
80 {"no-const16", -MASK_CONST16, \
81 N_("Use PC-relative L32R instruction to load constants")}, \
82 {"no-fused-madd", MASK_NO_FUSED_MADD, \
83 N_("Disable fused multiply/add and multiply/subtract FP instructions")}, \
84 {"fused-madd", -MASK_NO_FUSED_MADD, \
85 N_("Enable fused multiply/add and multiply/subtract FP instructions")}, \
86 {"text-section-literals", 0, \
87 N_("Intersperse literal pools with code in the text section")}, \
88 {"no-text-section-literals", 0, \
89 N_("Put literal pools in a separate literal section")}, \
90 {"target-align", 0, \
91 N_("Automatically align branch targets to reduce branch penalties")}, \
92 {"no-target-align", 0, \
93 N_("Do not automatically align branch targets")}, \
94 {"longcalls", 0, \
95 N_("Use indirect CALLXn instructions for large programs")}, \
96 {"no-longcalls", 0, \
97 N_("Use direct CALLn instructions for fast calls")}, \
98 {"", TARGET_DEFAULT, 0} \
102 #define OVERRIDE_OPTIONS override_options ()
104 /* Target CPU builtins. */
105 #define TARGET_CPU_CPP_BUILTINS() \
106 do { \
107 builtin_assert ("cpu=xtensa"); \
108 builtin_assert ("machine=xtensa"); \
109 builtin_define ("__xtensa__"); \
110 builtin_define ("__XTENSA__"); \
111 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
112 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
113 if (!TARGET_HARD_FLOAT) \
114 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
115 if (flag_pic) \
117 builtin_define ("__PIC__"); \
118 builtin_define ("__pic__"); \
120 } while (0)
122 #define CPP_SPEC " %(subtarget_cpp_spec) "
124 #ifndef SUBTARGET_CPP_SPEC
125 #define SUBTARGET_CPP_SPEC ""
126 #endif
128 #define EXTRA_SPECS \
129 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
131 #ifdef __XTENSA_EB__
132 #define LIBGCC2_WORDS_BIG_ENDIAN 1
133 #else
134 #define LIBGCC2_WORDS_BIG_ENDIAN 0
135 #endif
137 /* Show we can debug even without a frame pointer. */
138 #define CAN_DEBUG_WITHOUT_FP
141 /* Target machine storage layout */
143 /* Define this if most significant bit is lowest numbered
144 in instructions that operate on numbered bit-fields. */
145 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
147 /* Define this if most significant byte of a word is the lowest numbered. */
148 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
150 /* Define this if most significant word of a multiword number is the lowest. */
151 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
153 #define MAX_BITS_PER_WORD 32
155 /* Width of a word, in units (bytes). */
156 #define UNITS_PER_WORD 4
157 #define MIN_UNITS_PER_WORD 4
159 /* Width of a floating point register. */
160 #define UNITS_PER_FPREG 4
162 /* Size in bits of various types on the target machine. */
163 #define INT_TYPE_SIZE 32
164 #define SHORT_TYPE_SIZE 16
165 #define LONG_TYPE_SIZE 32
166 #define LONG_LONG_TYPE_SIZE 64
167 #define FLOAT_TYPE_SIZE 32
168 #define DOUBLE_TYPE_SIZE 64
169 #define LONG_DOUBLE_TYPE_SIZE 64
171 /* Allocation boundary (in *bits*) for storing pointers in memory. */
172 #define POINTER_BOUNDARY 32
174 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
175 #define PARM_BOUNDARY 32
177 /* Allocation boundary (in *bits*) for the code of a function. */
178 #define FUNCTION_BOUNDARY 32
180 /* Alignment of field after 'int : 0' in a structure. */
181 #define EMPTY_FIELD_BOUNDARY 32
183 /* Every structure's size must be a multiple of this. */
184 #define STRUCTURE_SIZE_BOUNDARY 8
186 /* There is no point aligning anything to a rounder boundary than this. */
187 #define BIGGEST_ALIGNMENT 128
189 /* Set this nonzero if move instructions will actually fail to work
190 when given unaligned data. */
191 #define STRICT_ALIGNMENT 1
193 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
194 for QImode, because there is no 8-bit load from memory with sign
195 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
196 loads both with and without sign extension. */
197 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
198 do { \
199 if (GET_MODE_CLASS (MODE) == MODE_INT \
200 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
202 if ((MODE) == QImode) \
203 (UNSIGNEDP) = 1; \
204 (MODE) = SImode; \
206 } while (0)
208 /* Imitate the way many other C compilers handle alignment of
209 bitfields and the structures that contain them. */
210 #define PCC_BITFIELD_TYPE_MATTERS 1
212 /* Align string constants and constructors to at least a word boundary.
213 The typical use of this macro is to increase alignment for string
214 constants to be word aligned so that 'strcpy' calls that copy
215 constants can be done inline. */
216 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
217 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
218 && (ALIGN) < BITS_PER_WORD \
219 ? BITS_PER_WORD \
220 : (ALIGN))
222 /* Align arrays, unions and records to at least a word boundary.
223 One use of this macro is to increase alignment of medium-size
224 data to make it all fit in fewer cache lines. Another is to
225 cause character arrays to be word-aligned so that 'strcpy' calls
226 that copy constants to character arrays can be done inline. */
227 #undef DATA_ALIGNMENT
228 #define DATA_ALIGNMENT(TYPE, ALIGN) \
229 ((((ALIGN) < BITS_PER_WORD) \
230 && (TREE_CODE (TYPE) == ARRAY_TYPE \
231 || TREE_CODE (TYPE) == UNION_TYPE \
232 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
234 /* Operations between registers always perform the operation
235 on the full register even if a narrower mode is specified. */
236 #define WORD_REGISTER_OPERATIONS
238 /* Xtensa loads are zero-extended by default. */
239 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
241 /* Standard register usage. */
243 /* Number of actual hardware registers.
244 The hardware registers are assigned numbers for the compiler
245 from 0 to just below FIRST_PSEUDO_REGISTER.
246 All registers that the compiler knows about must be given numbers,
247 even those that are not normally considered general registers.
249 The fake frame pointer and argument pointer will never appear in
250 the generated code, since they will always be eliminated and replaced
251 by either the stack pointer or the hard frame pointer.
253 0 - 15 AR[0] - AR[15]
254 16 FRAME_POINTER (fake = initial sp)
255 17 ARG_POINTER (fake = initial sp + framesize)
256 18 BR[0] for floating-point CC
257 19 - 34 FR[0] - FR[15]
258 35 MAC16 accumulator */
260 #define FIRST_PSEUDO_REGISTER 36
262 /* Return the stabs register number to use for REGNO. */
263 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
265 /* 1 for registers that have pervasive standard uses
266 and are not available for the register allocator. */
267 #define FIXED_REGISTERS \
269 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
270 1, 1, 0, \
271 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
272 0, \
275 /* 1 for registers not available across function calls.
276 These must include the FIXED_REGISTERS and also any
277 registers that can be used without being saved.
278 The latter must include the registers where values are returned
279 and the register where structure-value addresses are passed.
280 Aside from that, you can include as many other registers as you like. */
281 #define CALL_USED_REGISTERS \
283 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
284 1, 1, 1, \
285 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
286 1, \
289 /* For non-leaf procedures on Xtensa processors, the allocation order
290 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
291 want to use the lowest numbered registers first to minimize
292 register window overflows. However, local-alloc is not smart
293 enough to consider conflicts with incoming arguments. If an
294 incoming argument in a2 is live throughout the function and
295 local-alloc decides to use a2, then the incoming argument must
296 either be spilled or copied to another register. To get around
297 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
298 reg_alloc_order for leaf functions such that lowest numbered
299 registers are used first with the exception that the incoming
300 argument registers are not used until after other register choices
301 have been exhausted. */
303 #define REG_ALLOC_ORDER \
304 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
305 18, \
306 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
307 0, 1, 16, 17, \
308 35, \
311 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
313 /* For Xtensa, the only point of this is to prevent GCC from otherwise
314 giving preference to call-used registers. To minimize window
315 overflows for the AR registers, we want to give preference to the
316 lower-numbered AR registers. For other register files, which are
317 not windowed, we still prefer call-used registers, if there are any. */
318 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
319 #define LEAF_REGISTERS xtensa_leaf_regs
321 /* For Xtensa, no remapping is necessary, but this macro must be
322 defined if LEAF_REGISTERS is defined. */
323 #define LEAF_REG_REMAP(REGNO) (REGNO)
325 /* This must be declared if LEAF_REGISTERS is set. */
326 extern int leaf_function;
328 /* Internal macros to classify a register number. */
330 /* 16 address registers + fake registers */
331 #define GP_REG_FIRST 0
332 #define GP_REG_LAST 17
333 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
335 /* Coprocessor registers */
336 #define BR_REG_FIRST 18
337 #define BR_REG_LAST 18
338 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
340 /* 16 floating-point registers */
341 #define FP_REG_FIRST 19
342 #define FP_REG_LAST 34
343 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
345 /* MAC16 accumulator */
346 #define ACC_REG_FIRST 35
347 #define ACC_REG_LAST 35
348 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
350 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
351 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
352 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
353 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
355 /* Return number of consecutive hard regs needed starting at reg REGNO
356 to hold something of mode MODE. */
357 #define HARD_REGNO_NREGS(REGNO, MODE) \
358 (FP_REG_P (REGNO) ? \
359 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
360 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
362 /* Value is 1 if hard register REGNO can hold a value of machine-mode
363 MODE. */
364 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
366 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
367 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
369 /* Value is 1 if it is a good idea to tie two pseudo registers
370 when one has mode MODE1 and one has mode MODE2.
371 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
372 for any hard reg, then this must be 0 for correct output. */
373 #define MODES_TIEABLE_P(MODE1, MODE2) \
374 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
375 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
376 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
377 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
379 /* Register to use for pushing function arguments. */
380 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
382 /* Base register for access to local variables of the function. */
383 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
385 /* The register number of the frame pointer register, which is used to
386 access automatic variables in the stack frame. For Xtensa, this
387 register never appears in the output. It is always eliminated to
388 either the stack pointer or the hard frame pointer. */
389 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
391 /* Value should be nonzero if functions must have frame pointers.
392 Zero means the frame pointer need not be set up (and parms
393 may be accessed via the stack pointer) in functions that seem suitable.
394 This is computed in 'reload', in reload1.c. */
395 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
397 /* Base register for access to arguments of the function. */
398 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
400 /* If the static chain is passed in memory, these macros provide rtx
401 giving 'mem' expressions that denote where they are stored.
402 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
403 seen by the calling and called functions, respectively. */
405 #define STATIC_CHAIN \
406 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
408 #define STATIC_CHAIN_INCOMING \
409 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
411 /* For now we don't try to use the full set of boolean registers. Without
412 software pipelining of FP operations, there's not much to gain and it's
413 a real pain to get them reloaded. */
414 #define FPCC_REGNUM (BR_REG_FIRST + 0)
416 /* It is as good or better to call a constant function address than to
417 call an address kept in a register. */
418 #define NO_FUNCTION_CSE 1
420 /* Xtensa processors have "register windows". GCC does not currently
421 take advantage of the possibility for variable-sized windows; instead,
422 we use a fixed window size of 8. */
424 #define INCOMING_REGNO(OUT) \
425 ((GP_REG_P (OUT) && \
426 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
427 (OUT) - WINDOW_SIZE : (OUT))
429 #define OUTGOING_REGNO(IN) \
430 ((GP_REG_P (IN) && \
431 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
432 (IN) + WINDOW_SIZE : (IN))
435 /* Define the classes of registers for register constraints in the
436 machine description. */
437 enum reg_class
439 NO_REGS, /* no registers in set */
440 BR_REGS, /* coprocessor boolean registers */
441 FP_REGS, /* floating point registers */
442 ACC_REG, /* MAC16 accumulator */
443 SP_REG, /* sp register (aka a1) */
444 RL_REGS, /* preferred reload regs (not sp or fp) */
445 GR_REGS, /* integer registers except sp */
446 AR_REGS, /* all integer registers */
447 ALL_REGS, /* all registers */
448 LIM_REG_CLASSES /* max value + 1 */
451 #define N_REG_CLASSES (int) LIM_REG_CLASSES
453 #define GENERAL_REGS AR_REGS
455 /* An initializer containing the names of the register classes as C
456 string constants. These names are used in writing some of the
457 debugging dumps. */
458 #define REG_CLASS_NAMES \
460 "NO_REGS", \
461 "BR_REGS", \
462 "FP_REGS", \
463 "ACC_REG", \
464 "SP_REG", \
465 "RL_REGS", \
466 "GR_REGS", \
467 "AR_REGS", \
468 "ALL_REGS" \
471 /* Contents of the register classes. The Nth integer specifies the
472 contents of class N. The way the integer MASK is interpreted is
473 that register R is in the class if 'MASK & (1 << R)' is 1. */
474 #define REG_CLASS_CONTENTS \
476 { 0x00000000, 0x00000000 }, /* no registers */ \
477 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
478 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
479 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
480 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
481 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
482 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
483 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
484 { 0xffffffff, 0x0000000f } /* all registers */ \
487 /* A C expression whose value is a register class containing hard
488 register REGNO. In general there is more that one such class;
489 choose a class which is "minimal", meaning that no smaller class
490 also contains the register. */
491 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
493 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
495 /* Use the Xtensa AR register file for base registers.
496 No index registers. */
497 #define BASE_REG_CLASS AR_REGS
498 #define INDEX_REG_CLASS NO_REGS
500 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
501 16 AR registers may be explicitly used in the RTL, as either
502 incoming or outgoing arguments. */
503 #define SMALL_REGISTER_CLASSES 1
506 /* REGISTER AND CONSTANT CLASSES */
508 /* Get reg_class from a letter such as appears in the machine
509 description.
511 Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
513 DEFINED REGISTER CLASSES:
515 'a' general-purpose registers except sp
516 'q' sp (aka a1)
517 'D' general-purpose registers (only if density option enabled)
518 'd' general-purpose registers, including sp (only if density enabled)
519 'A' MAC16 accumulator (only if MAC16 option enabled)
520 'B' general-purpose registers (only if sext instruction enabled)
521 'C' general-purpose registers (only if mul16 option enabled)
522 'W' general-purpose registers (only if const16 option enabled)
523 'b' coprocessor boolean registers
524 'f' floating-point registers
527 extern enum reg_class xtensa_char_to_class[256];
529 #define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
531 /* The letters I, J, K, L, M, N, O, and P in a register constraint
532 string can be used to stand for particular ranges of immediate
533 operands. This macro defines what the ranges are. C is the
534 letter, and VALUE is a constant value. Return 1 if VALUE is
535 in the range specified by C.
537 For Xtensa:
539 I = 12-bit signed immediate for movi
540 J = 8-bit signed immediate for addi
541 K = 4-bit value in (b4const U {0})
542 L = 4-bit value in b4constu
543 M = 7-bit value in simm7
544 N = 8-bit unsigned immediate shifted left by 8 bits for addmi
545 O = 4-bit value in ai4const
546 P = valid immediate mask value for extui */
548 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
549 ((C) == 'I' ? (xtensa_simm12b (VALUE)) \
550 : (C) == 'J' ? (xtensa_simm8 (VALUE)) \
551 : (C) == 'K' ? (((VALUE) == 0) || xtensa_b4const (VALUE)) \
552 : (C) == 'L' ? (xtensa_b4constu (VALUE)) \
553 : (C) == 'M' ? (xtensa_simm7 (VALUE)) \
554 : (C) == 'N' ? (xtensa_simm8x256 (VALUE)) \
555 : (C) == 'O' ? (xtensa_ai4const (VALUE)) \
556 : (C) == 'P' ? (xtensa_mask_immediate (VALUE)) \
557 : FALSE)
560 /* Similar, but for floating constants, and defining letters G and H.
561 Here VALUE is the CONST_DOUBLE rtx itself. */
562 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
565 /* Other letters can be defined in a machine-dependent fashion to
566 stand for particular classes of registers or other arbitrary
567 operand types.
569 R = memory that can be accessed with a 4-bit unsigned offset
570 T = memory in a constant pool (addressable with a pc-relative load)
571 U = memory *NOT* in a constant pool
573 The offset range should not be checked here (except to distinguish
574 denser versions of the instructions for which more general versions
575 are available). Doing so leads to problems in reloading: an
576 argptr-relative address may become invalid when the phony argptr is
577 eliminated in favor of the stack pointer (the offset becomes too
578 large to fit in the instruction's immediate field); a reload is
579 generated to fix this but the RTL is not immediately updated; in
580 the meantime, the constraints are checked and none match. The
581 solution seems to be to simply skip the offset check here. The
582 address will be checked anyway because of the code in
583 GO_IF_LEGITIMATE_ADDRESS. */
585 #define EXTRA_CONSTRAINT(OP, CODE) \
586 ((GET_CODE (OP) != MEM) ? \
587 ((CODE) >= 'R' && (CODE) <= 'U' \
588 && reload_in_progress && GET_CODE (OP) == REG \
589 && REGNO (OP) >= FIRST_PSEUDO_REGISTER) \
590 : ((CODE) == 'R') ? smalloffset_mem_p (OP) \
591 : ((CODE) == 'T') ? !TARGET_CONST16 && constantpool_mem_p (OP) \
592 : ((CODE) == 'U') ? !constantpool_mem_p (OP) \
593 : FALSE)
595 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
596 xtensa_preferred_reload_class (X, CLASS, 0)
598 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
599 xtensa_preferred_reload_class (X, CLASS, 1)
601 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
602 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
604 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
605 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
607 /* Return the maximum number of consecutive registers
608 needed to represent mode MODE in a register of class CLASS. */
609 #define CLASS_UNITS(mode, size) \
610 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
612 #define CLASS_MAX_NREGS(CLASS, MODE) \
613 (CLASS_UNITS (MODE, UNITS_PER_WORD))
616 /* Stack layout; function entry, exit and calling. */
618 #define STACK_GROWS_DOWNWARD
620 /* Offset within stack frame to start allocating local variables at. */
621 #define STARTING_FRAME_OFFSET \
622 current_function_outgoing_args_size
624 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
625 they are eliminated to either the stack pointer or hard frame pointer. */
626 #define ELIMINABLE_REGS \
627 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
628 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
629 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
630 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
632 #define CAN_ELIMINATE(FROM, TO) 1
634 /* Specify the initial difference between the specified pair of registers. */
635 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
636 do { \
637 compute_frame_size (get_frame_size ()); \
638 if ((FROM) == FRAME_POINTER_REGNUM) \
639 (OFFSET) = 0; \
640 else if ((FROM) == ARG_POINTER_REGNUM) \
641 (OFFSET) = xtensa_current_frame_size; \
642 else \
643 abort (); \
644 } while (0)
646 /* If defined, the maximum amount of space required for outgoing
647 arguments will be computed and placed into the variable
648 'current_function_outgoing_args_size'. No space will be pushed
649 onto the stack for each call; instead, the function prologue
650 should increase the stack frame size by this amount. */
651 #define ACCUMULATE_OUTGOING_ARGS 1
653 /* Offset from the argument pointer register to the first argument's
654 address. On some machines it may depend on the data type of the
655 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
656 location above the first argument's address. */
657 #define FIRST_PARM_OFFSET(FNDECL) 0
659 /* Align stack frames on 128 bits for Xtensa. This is necessary for
660 128-bit datatypes defined in TIE (e.g., for Vectra). */
661 #define STACK_BOUNDARY 128
663 /* Functions do not pop arguments off the stack. */
664 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
666 /* Use a fixed register window size of 8. */
667 #define WINDOW_SIZE 8
669 /* Symbolic macros for the registers used to return integer, floating
670 point, and values of coprocessor and user-defined modes. */
671 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
672 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
674 /* Symbolic macros for the first/last argument registers. */
675 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
676 #define GP_ARG_LAST (GP_REG_FIRST + 7)
677 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
678 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
680 #define MAX_ARGS_IN_REGISTERS 6
682 /* Don't worry about compatibility with PCC. */
683 #define DEFAULT_PCC_STRUCT_RETURN 0
685 /* Define how to find the value returned by a library function
686 assuming the value has mode MODE. Because we have defined
687 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
688 perform the same promotions as PROMOTE_MODE. */
689 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
690 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
691 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
692 ? SImode : (MODE), \
693 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
695 #define LIBCALL_VALUE(MODE) \
696 XTENSA_LIBCALL_VALUE ((MODE), 0)
698 #define LIBCALL_OUTGOING_VALUE(MODE) \
699 XTENSA_LIBCALL_VALUE ((MODE), 1)
701 /* Define how to find the value returned by a function.
702 VALTYPE is the data type of the value (as a tree).
703 If the precise function being called is known, FUNC is its FUNCTION_DECL;
704 otherwise, FUNC is 0. */
705 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
706 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
707 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
708 ? SImode: TYPE_MODE (VALTYPE), \
709 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
711 #define FUNCTION_VALUE(VALTYPE, FUNC) \
712 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
714 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
715 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
717 /* A C expression that is nonzero if REGNO is the number of a hard
718 register in which the values of called function may come back. A
719 register whose use for returning values is limited to serving as
720 the second of a pair (for a value of type 'double', say) need not
721 be recognized by this macro. If the machine has register windows,
722 so that the caller and the called function use different registers
723 for the return value, this macro should recognize only the caller's
724 register numbers. */
725 #define FUNCTION_VALUE_REGNO_P(N) \
726 ((N) == GP_RETURN)
728 /* A C expression that is nonzero if REGNO is the number of a hard
729 register in which function arguments are sometimes passed. This
730 does *not* include implicit arguments such as the static chain and
731 the structure-value address. On many machines, no registers can be
732 used for this purpose since all function arguments are pushed on
733 the stack. */
734 #define FUNCTION_ARG_REGNO_P(N) \
735 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
737 /* Record the number of argument words seen so far, along with a flag to
738 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
739 is used for both incoming and outgoing args, so a separate flag is
740 needed. */
741 typedef struct xtensa_args
743 int arg_words;
744 int incoming;
745 } CUMULATIVE_ARGS;
747 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
748 init_cumulative_args (&CUM, 0)
750 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
751 init_cumulative_args (&CUM, 1)
753 /* Update the data in CUM to advance over an argument
754 of mode MODE and data type TYPE.
755 (TYPE is null for libcalls where that information may not be available.) */
756 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
757 function_arg_advance (&CUM, MODE, TYPE)
759 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
760 function_arg (&CUM, MODE, TYPE, FALSE)
762 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
763 function_arg (&CUM, MODE, TYPE, TRUE)
765 /* Specify function argument alignment. */
766 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
767 ((TYPE) != 0 \
768 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
769 ? PARM_BOUNDARY \
770 : TYPE_ALIGN (TYPE)) \
771 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
772 ? PARM_BOUNDARY \
773 : GET_MODE_ALIGNMENT (MODE)))
775 /* Profiling Xtensa code is typically done with the built-in profiling
776 feature of Tensilica's instruction set simulator, which does not
777 require any compiler support. Profiling code on a real (i.e.,
778 non-simulated) Xtensa processor is currently only supported by
779 GNU/Linux with glibc. The glibc version of _mcount doesn't require
780 counter variables. The _mcount function needs the current PC and
781 the current return address to identify an arc in the call graph.
782 Pass the current return address as the first argument; the current
783 PC is available as a0 in _mcount's register window. Both of these
784 values contain window size information in the two most significant
785 bits; we assume that _mcount will mask off those bits. The call to
786 _mcount uses a window size of 8 to make sure that it doesn't clobber
787 any incoming argument values. */
789 #define NO_PROFILE_COUNTERS 1
791 #define FUNCTION_PROFILER(FILE, LABELNO) \
792 do { \
793 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
794 if (flag_pic) \
796 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
797 fprintf (FILE, "\tcallx8\ta8\n"); \
799 else \
800 fprintf (FILE, "\tcall8\t_mcount\n"); \
801 } while (0)
803 /* Stack pointer value doesn't matter at exit. */
804 #define EXIT_IGNORE_STACK 1
806 /* A C statement to output, on the stream FILE, assembler code for a
807 block of data that contains the constant parts of a trampoline.
808 This code should not include a label--the label is taken care of
809 automatically.
811 For Xtensa, the trampoline must perform an entry instruction with a
812 minimal stack frame in order to get some free registers. Once the
813 actual call target is known, the proper stack frame size is extracted
814 from the entry instruction at the target and the current frame is
815 adjusted to match. The trampoline then transfers control to the
816 instruction following the entry at the target. Note: this assumes
817 that the target begins with an entry instruction. */
819 /* minimum frame = reg save area (4 words) plus static chain (1 word)
820 and the total number of words must be a multiple of 128 bits */
821 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
823 #define TRAMPOLINE_TEMPLATE(STREAM) \
824 do { \
825 fprintf (STREAM, "\t.begin no-generics\n"); \
826 fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
828 /* save the return address */ \
829 fprintf (STREAM, "\tmov\ta10, a0\n"); \
831 /* Use a CALL0 instruction to skip past the constants and in the \
832 process get the PC into A0. This allows PC-relative access to \
833 the constants without relying on L32R, which may not always be \
834 available. */ \
836 fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
837 fprintf (STREAM, "\t.align\t4\n"); \
838 fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
839 fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
840 fprintf (STREAM, ".Lskipconsts:\n"); \
842 /* store the static chain */ \
843 fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
844 fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
845 fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
847 /* set the proper stack pointer value */ \
848 fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
849 fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
850 fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
851 TARGET_BIG_ENDIAN ? 8 : 12); \
852 fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
853 fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
854 fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
855 fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
857 /* restore the return address */ \
858 fprintf (STREAM, "\tmov\ta0, a10\n"); \
860 /* jump to the instruction following the entry */ \
861 fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
862 fprintf (STREAM, "\tjx\ta8\n"); \
863 fprintf (STREAM, "\t.end no-generics\n"); \
864 } while (0)
866 /* Size in bytes of the trampoline, as an integer. */
867 #define TRAMPOLINE_SIZE 59
869 /* Alignment required for trampolines, in bits. */
870 #define TRAMPOLINE_ALIGNMENT (32)
872 /* A C statement to initialize the variable parts of a trampoline. */
873 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
874 do { \
875 rtx addr = ADDR; \
876 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
877 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
878 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
879 0, VOIDmode, 1, addr, Pmode); \
880 } while (0)
882 /* Implement `va_start' for varargs and stdarg. */
883 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
884 xtensa_va_start (valist, nextarg)
886 /* If defined, a C expression that produces the machine-specific code
887 to setup the stack so that arbitrary frames can be accessed.
889 On Xtensa, a stack back-trace must always begin from the stack pointer,
890 so that the register overflow save area can be located. However, the
891 stack-walking code in GCC always begins from the hard_frame_pointer
892 register, not the stack pointer. The frame pointer is usually equal
893 to the stack pointer, but the __builtin_return_address and
894 __builtin_frame_address functions will not work if count > 0 and
895 they are called from a routine that uses alloca. These functions
896 are not guaranteed to work at all if count > 0 so maybe that is OK.
898 A nicer solution would be to allow the architecture-specific files to
899 specify whether to start from the stack pointer or frame pointer. That
900 would also allow us to skip the machine->accesses_prev_frame stuff that
901 we currently need to ensure that there is a frame pointer when these
902 builtin functions are used. */
904 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
906 /* A C expression whose value is RTL representing the address in a
907 stack frame where the pointer to the caller's frame is stored.
908 Assume that FRAMEADDR is an RTL expression for the address of the
909 stack frame itself.
911 For Xtensa, there is no easy way to get the frame pointer if it is
912 not equivalent to the stack pointer. Moreover, the result of this
913 macro is used for continuing to walk back up the stack, so it must
914 return the stack pointer address. Thus, there is some inconsistency
915 here in that __builtin_frame_address will return the frame pointer
916 when count == 0 and the stack pointer when count > 0. */
918 #define DYNAMIC_CHAIN_ADDRESS(frame) \
919 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
921 /* Define this if the return address of a particular stack frame is
922 accessed from the frame pointer of the previous stack frame. */
923 #define RETURN_ADDR_IN_PREVIOUS_FRAME
925 /* A C expression whose value is RTL representing the value of the
926 return address for the frame COUNT steps up from the current
927 frame, after the prologue. */
928 #define RETURN_ADDR_RTX xtensa_return_addr
930 /* Addressing modes, and classification of registers for them. */
932 /* C expressions which are nonzero if register number NUM is suitable
933 for use as a base or index register in operand addresses. It may
934 be either a suitable hard register or a pseudo register that has
935 been allocated such a hard register. The difference between an
936 index register and a base register is that the index register may
937 be scaled. */
939 #define REGNO_OK_FOR_BASE_P(NUM) \
940 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
942 #define REGNO_OK_FOR_INDEX_P(NUM) 0
944 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
945 valid for use as a base or index register. For hard registers, it
946 should always accept those which the hardware permits and reject
947 the others. Whether the macro accepts or rejects pseudo registers
948 must be controlled by `REG_OK_STRICT'. This usually requires two
949 variant definitions, of which `REG_OK_STRICT' controls the one
950 actually used. The difference between an index register and a base
951 register is that the index register may be scaled. */
953 #ifdef REG_OK_STRICT
955 #define REG_OK_FOR_INDEX_P(X) 0
956 #define REG_OK_FOR_BASE_P(X) \
957 REGNO_OK_FOR_BASE_P (REGNO (X))
959 #else /* !REG_OK_STRICT */
961 #define REG_OK_FOR_INDEX_P(X) 0
962 #define REG_OK_FOR_BASE_P(X) \
963 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
965 #endif /* !REG_OK_STRICT */
967 /* Maximum number of registers that can appear in a valid memory address. */
968 #define MAX_REGS_PER_ADDRESS 1
970 /* Identify valid Xtensa addresses. */
971 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
972 do { \
973 rtx xinsn = (ADDR); \
975 /* allow constant pool addresses */ \
976 if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
977 && !TARGET_CONST16 && constantpool_address_p (xinsn)) \
978 goto LABEL; \
980 while (GET_CODE (xinsn) == SUBREG) \
981 xinsn = SUBREG_REG (xinsn); \
983 /* allow base registers */ \
984 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
985 goto LABEL; \
987 /* check for "register + offset" addressing */ \
988 if (GET_CODE (xinsn) == PLUS) \
990 rtx xplus0 = XEXP (xinsn, 0); \
991 rtx xplus1 = XEXP (xinsn, 1); \
992 enum rtx_code code0; \
993 enum rtx_code code1; \
995 while (GET_CODE (xplus0) == SUBREG) \
996 xplus0 = SUBREG_REG (xplus0); \
997 code0 = GET_CODE (xplus0); \
999 while (GET_CODE (xplus1) == SUBREG) \
1000 xplus1 = SUBREG_REG (xplus1); \
1001 code1 = GET_CODE (xplus1); \
1003 /* swap operands if necessary so the register is first */ \
1004 if (code0 != REG && code1 == REG) \
1006 xplus0 = XEXP (xinsn, 1); \
1007 xplus1 = XEXP (xinsn, 0); \
1008 code0 = GET_CODE (xplus0); \
1009 code1 = GET_CODE (xplus1); \
1012 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
1013 && code1 == CONST_INT \
1014 && xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
1016 goto LABEL; \
1019 } while (0)
1021 /* A C expression that is 1 if the RTX X is a constant which is a
1022 valid address. This is defined to be the same as 'CONSTANT_P (X)',
1023 but rejecting CONST_DOUBLE. */
1024 #define CONSTANT_ADDRESS_P(X) \
1025 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1026 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1027 || (GET_CODE (X) == CONST)))
1029 /* Nonzero if the constant value X is a legitimate general operand.
1030 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1031 #define LEGITIMATE_CONSTANT_P(X) 1
1033 /* A C expression that is nonzero if X is a legitimate immediate
1034 operand on the target machine when generating position independent
1035 code. */
1036 #define LEGITIMATE_PIC_OPERAND_P(X) \
1037 ((GET_CODE (X) != SYMBOL_REF \
1038 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
1039 && GET_CODE (X) != LABEL_REF \
1040 && GET_CODE (X) != CONST)
1042 /* Tell GCC how to use ADDMI to generate addresses. */
1043 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1044 do { \
1045 rtx xinsn = (X); \
1046 if (GET_CODE (xinsn) == PLUS) \
1048 rtx plus0 = XEXP (xinsn, 0); \
1049 rtx plus1 = XEXP (xinsn, 1); \
1051 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
1053 plus0 = XEXP (xinsn, 1); \
1054 plus1 = XEXP (xinsn, 0); \
1057 if (GET_CODE (plus0) == REG \
1058 && GET_CODE (plus1) == CONST_INT \
1059 && !xtensa_mem_offset (INTVAL (plus1), MODE) \
1060 && !xtensa_simm8 (INTVAL (plus1)) \
1061 && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
1062 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
1064 rtx temp = gen_reg_rtx (Pmode); \
1065 emit_insn (gen_rtx_SET (Pmode, temp, \
1066 gen_rtx_PLUS (Pmode, plus0, \
1067 GEN_INT (INTVAL (plus1) & ~0xff)))); \
1068 (X) = gen_rtx_PLUS (Pmode, temp, \
1069 GEN_INT (INTVAL (plus1) & 0xff)); \
1070 goto WIN; \
1073 } while (0)
1076 /* Treat constant-pool references as "mode dependent" since they can
1077 only be accessed with SImode loads. This works around a bug in the
1078 combiner where a constant pool reference is temporarily converted
1079 to an HImode load, which is then assumed to zero-extend based on
1080 our definition of LOAD_EXTEND_OP. This is wrong because the high
1081 bits of a 16-bit value in the constant pool are now sign-extended
1082 by default. */
1084 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1085 do { \
1086 if (constantpool_address_p (ADDR)) \
1087 goto LABEL; \
1088 } while (0)
1090 /* Specify the machine mode that this machine uses
1091 for the index in the tablejump instruction. */
1092 #define CASE_VECTOR_MODE (SImode)
1094 /* Define this as 1 if 'char' should by default be signed; else as 0. */
1095 #define DEFAULT_SIGNED_CHAR 0
1097 /* Max number of bytes we can move from memory to memory
1098 in one reasonably fast instruction. */
1099 #define MOVE_MAX 4
1100 #define MAX_MOVE_MAX 4
1102 /* Prefer word-sized loads. */
1103 #define SLOW_BYTE_ACCESS 1
1105 /* Shift instructions ignore all but the low-order few bits. */
1106 #define SHIFT_COUNT_TRUNCATED 1
1108 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1109 is done just by pretending it is already truncated. */
1110 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1112 /* Specify the machine mode that pointers have.
1113 After generation of rtl, the compiler makes no further distinction
1114 between pointers and any other objects of this machine mode. */
1115 #define Pmode SImode
1117 /* A function address in a call instruction is a word address (for
1118 indexing purposes) so give the MEM rtx a words's mode. */
1119 #define FUNCTION_MODE SImode
1121 /* A C expression for the cost of moving data from a register in
1122 class FROM to one in class TO. The classes are expressed using
1123 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
1124 the default; other values are interpreted relative to that. */
1125 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1126 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
1127 ? 2 \
1128 : (reg_class_subset_p ((FROM), AR_REGS) \
1129 && reg_class_subset_p ((TO), AR_REGS) \
1130 ? 2 \
1131 : (reg_class_subset_p ((FROM), AR_REGS) \
1132 && (TO) == ACC_REG \
1133 ? 3 \
1134 : ((FROM) == ACC_REG \
1135 && reg_class_subset_p ((TO), AR_REGS) \
1136 ? 3 \
1137 : 10))))
1139 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1141 #define BRANCH_COST 3
1143 /* Optionally define this if you have added predicates to
1144 'MACHINE.c'. This macro is called within an initializer of an
1145 array of structures. The first field in the structure is the
1146 name of a predicate and the second field is an array of rtl
1147 codes. For each predicate, list all rtl codes that can be in
1148 expressions matched by the predicate. The list should have a
1149 trailing comma. */
1151 #define PREDICATE_CODES \
1152 {"add_operand", { REG, CONST_INT, SUBREG }}, \
1153 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
1154 {"nonimmed_operand", { REG, SUBREG, MEM }}, \
1155 {"mem_operand", { MEM }}, \
1156 {"mask_operand", { REG, CONST_INT, SUBREG }}, \
1157 {"extui_fldsz_operand", { CONST_INT }}, \
1158 {"sext_fldsz_operand", { CONST_INT }}, \
1159 {"lsbitnum_operand", { CONST_INT }}, \
1160 {"fpmem_offset_operand", { CONST_INT }}, \
1161 {"sext_operand", { REG, SUBREG, MEM }}, \
1162 {"branch_operand", { REG, CONST_INT, SUBREG }}, \
1163 {"ubranch_operand", { REG, CONST_INT, SUBREG }}, \
1164 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG }}, \
1165 {"move_operand", { REG, SUBREG, MEM, CONST_INT, CONST_DOUBLE, \
1166 CONST, SYMBOL_REF, LABEL_REF }}, \
1167 {"const_float_1_operand", { CONST_DOUBLE }}, \
1168 {"branch_operator", { EQ, NE, LT, GE }}, \
1169 {"ubranch_operator", { LTU, GEU }}, \
1170 {"boolean_operator", { EQ, NE }},
1172 /* Control the assembler format that we output. */
1174 /* How to refer to registers in assembler output.
1175 This sequence is indexed by compiler's hard-register-number (see above). */
1176 #define REGISTER_NAMES \
1178 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
1179 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
1180 "fp", "argp", "b0", \
1181 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1182 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
1183 "acc" \
1186 /* If defined, a C initializer for an array of structures containing a
1187 name and a register number. This macro defines additional names
1188 for hard registers, thus allowing the 'asm' option in declarations
1189 to refer to registers using alternate names. */
1190 #define ADDITIONAL_REGISTER_NAMES \
1192 { "a1", 1 + GP_REG_FIRST } \
1195 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1196 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1198 /* Recognize machine-specific patterns that may appear within
1199 constants. Used for PIC-specific UNSPECs. */
1200 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
1201 do { \
1202 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
1204 switch (XINT ((X), 1)) \
1206 case UNSPEC_PLT: \
1207 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
1208 fputs ("@PLT", (STREAM)); \
1209 break; \
1210 default: \
1211 goto FAIL; \
1213 break; \
1215 else \
1216 goto FAIL; \
1217 } while (0)
1219 /* Globalizing directive for a label. */
1220 #define GLOBAL_ASM_OP "\t.global\t"
1222 /* Declare an uninitialized external linkage data object. */
1223 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1224 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1226 /* This is how to output an element of a case-vector that is absolute. */
1227 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1228 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
1229 LOCAL_LABEL_PREFIX, VALUE)
1231 /* This is how to output an element of a case-vector that is relative.
1232 This is used for pc-relative code. */
1233 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1234 do { \
1235 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
1236 LOCAL_LABEL_PREFIX, (VALUE), \
1237 LOCAL_LABEL_PREFIX, (REL)); \
1238 } while (0)
1240 /* This is how to output an assembler line that says to advance the
1241 location counter to a multiple of 2**LOG bytes. */
1242 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
1243 do { \
1244 if ((LOG) != 0) \
1245 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
1246 } while (0)
1248 /* Indicate that jump tables go in the text section. This is
1249 necessary when compiling PIC code. */
1250 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1253 /* Define the strings to put out for each section in the object file. */
1254 #define TEXT_SECTION_ASM_OP "\t.text"
1255 #define DATA_SECTION_ASM_OP "\t.data"
1256 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1259 /* Define output to appear before the constant pool. If the function
1260 has been assigned to a specific ELF section, or if it goes into a
1261 unique section, set the name of that section to be the literal
1262 prefix. */
1263 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
1264 do { \
1265 tree fnsection; \
1266 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
1267 fnsection = DECL_SECTION_NAME (FUNDECL); \
1268 if (fnsection != NULL_TREE) \
1270 const char *fnsectname = TREE_STRING_POINTER (fnsection); \
1271 fprintf (FILE, "\t.begin\tliteral_prefix %s\n", \
1272 strcmp (fnsectname, ".text") ? fnsectname : ""); \
1274 if ((SIZE) > 0) \
1276 function_section (FUNDECL); \
1277 fprintf (FILE, "\t.literal_position\n"); \
1279 } while (0)
1282 /* Define code to write out the ".end literal_prefix" directive for a
1283 function in a special section. This is appended to the standard ELF
1284 code for ASM_DECLARE_FUNCTION_SIZE. */
1285 #define XTENSA_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1286 if (DECL_SECTION_NAME (DECL) != NULL_TREE) \
1287 fprintf (FILE, "\t.end\tliteral_prefix\n")
1289 /* A C statement (with or without semicolon) to output a constant in
1290 the constant pool, if it needs special treatment. */
1291 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1292 do { \
1293 xtensa_output_literal (FILE, X, MODE, LABELNO); \
1294 goto JUMPTO; \
1295 } while (0)
1297 /* How to start an assembler comment. */
1298 #define ASM_COMMENT_START "#"
1300 /* Exception handling TODO!! */
1301 #define DWARF_UNWIND_INFO 0
1303 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1304 section in where code resides. We have to write it as asm code. Use
1305 a MOVI and let the assembler relax it -- for the .init and .fini
1306 sections, the assembler knows to put the literal in the right
1307 place. */
1308 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1309 asm (SECTION_OP "\n\
1310 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1311 callx8\ta8\n" \
1312 TEXT_SECTION_ASM_OP);