Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / gcc / config / sparc / sparc.h
blobcddf48a927d4552619cefb4715d06a5205cf45d9
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
28 /* Define the specific costs for a given cpu */
30 struct processor_costs {
31 /* Integer load */
32 const int int_load;
34 /* Integer signed load */
35 const int int_sload;
37 /* Integer zeroed load */
38 const int int_zload;
40 /* Float load */
41 const int float_load;
43 /* fmov, fneg, fabs */
44 const int float_move;
46 /* fadd, fsub */
47 const int float_plusminus;
49 /* fcmp */
50 const int float_cmp;
52 /* fmov, fmovr */
53 const int float_cmove;
55 /* fmul */
56 const int float_mul;
58 /* fdivs */
59 const int float_div_sf;
61 /* fdivd */
62 const int float_div_df;
64 /* fsqrts */
65 const int float_sqrt_sf;
67 /* fsqrtd */
68 const int float_sqrt_df;
70 /* umul/smul */
71 const int int_mul;
73 /* mulX */
74 const int int_mulX;
76 /* integer multiply cost for each bit set past the most
77 significant 3, so the formula for multiply cost becomes:
79 if (rs1 < 0)
80 highest_bit = highest_clear_bit(rs1);
81 else
82 highest_bit = highest_set_bit(rs1);
83 if (highest_bit < 3)
84 highest_bit = 3;
85 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
87 A value of zero indicates that the multiply costs is fixed,
88 and not variable. */
89 const int int_mul_bit_factor;
91 /* udiv/sdiv */
92 const int int_div;
94 /* divX */
95 const int int_divX;
97 /* movcc, movr */
98 const int int_cmove;
100 /* penalty for shifts, due to scheduling rules etc. */
101 const int shift_penalty;
104 extern const struct processor_costs *sparc_costs;
106 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
107 Solaris only; otherwise just define __sparc__. Sadly the headers
108 are such a mess there is no Solaris-specific header. */
109 #define TARGET_CPU_CPP_BUILTINS() \
110 do \
112 builtin_define_std ("sparc"); \
113 if (TARGET_64BIT) \
115 builtin_assert ("cpu=sparc64"); \
116 builtin_assert ("machine=sparc64"); \
118 else \
120 builtin_assert ("cpu=sparc"); \
121 builtin_assert ("machine=sparc"); \
124 while (0)
126 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
127 /* #define SPARC_BI_ARCH */
129 /* Macro used later in this file to determine default architecture. */
130 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
132 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
133 architectures to compile for. We allow targets to choose compile time or
134 runtime selection. */
135 #ifdef IN_LIBGCC2
136 #if defined(__sparcv9) || defined(__arch64__)
137 #define TARGET_ARCH32 0
138 #else
139 #define TARGET_ARCH32 1
140 #endif /* sparc64 */
141 #else
142 #ifdef SPARC_BI_ARCH
143 #define TARGET_ARCH32 (! TARGET_64BIT)
144 #else
145 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
146 #endif /* SPARC_BI_ARCH */
147 #endif /* IN_LIBGCC2 */
148 #define TARGET_ARCH64 (! TARGET_ARCH32)
150 /* Code model selection in 64-bit environment.
152 The machine mode used for addresses is 32-bit wide:
154 TARGET_CM_32: 32-bit address space.
155 It is the code model used when generating 32-bit code.
157 The machine mode used for addresses is 64-bit wide:
159 TARGET_CM_MEDLOW: 32-bit address space.
160 The executable must be in the low 32 bits of memory.
161 This avoids generating %uhi and %ulo terms. Programs
162 can be statically or dynamically linked.
164 TARGET_CM_MEDMID: 44-bit address space.
165 The executable must be in the low 44 bits of memory,
166 and the %[hml]44 terms are used. The text and data
167 segments have a maximum size of 2GB (31-bit span).
168 The maximum offset from any instruction to the label
169 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
171 TARGET_CM_MEDANY: 64-bit address space.
172 The text and data segments have a maximum size of 2GB
173 (31-bit span) and may be located anywhere in memory.
174 The maximum offset from any instruction to the label
175 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
177 TARGET_CM_EMBMEDANY: 64-bit address space.
178 The text and data segments have a maximum size of 2GB
179 (31-bit span) and may be located anywhere in memory.
180 The global register %g4 contains the start address of
181 the data segment. Programs are statically linked and
182 PIC is not supported.
184 Different code models are not supported in 32-bit environment. */
186 enum cmodel {
187 CM_32,
188 CM_MEDLOW,
189 CM_MEDMID,
190 CM_MEDANY,
191 CM_EMBMEDANY
194 /* Value of -mcmodel specified by user. */
195 extern const char *sparc_cmodel_string;
196 /* One of CM_FOO. */
197 extern enum cmodel sparc_cmodel;
199 /* V9 code model selection. */
200 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
201 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
202 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
203 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
205 #define SPARC_DEFAULT_CMODEL CM_32
207 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
208 which requires the following macro to be true if enabled. Prior to V9,
209 there are no instructions to even talk about memory synchronization.
210 Note that the UltraSPARC III processors don't implement RMO, unlike the
211 UltraSPARC II processors.
213 Default to false; for example, Solaris never enables RMO, only ever uses
214 total memory ordering (TMO). */
215 #define SPARC_RELAXED_ORDERING false
217 /* This is call-clobbered in the normal ABI, but is reserved in the
218 home grown (aka upward compatible) embedded ABI. */
219 #define EMBMEDANY_BASE_REG "%g4"
221 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
222 and specified by the user via --with-cpu=foo.
223 This specifies the cpu implementation, not the architecture size. */
224 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
225 capable cpu's. */
226 #define TARGET_CPU_sparc 0
227 #define TARGET_CPU_v7 0 /* alias for previous */
228 #define TARGET_CPU_sparclet 1
229 #define TARGET_CPU_sparclite 2
230 #define TARGET_CPU_v8 3 /* generic v8 implementation */
231 #define TARGET_CPU_supersparc 4
232 #define TARGET_CPU_hypersparc 5
233 #define TARGET_CPU_sparc86x 6
234 #define TARGET_CPU_sparclite86x 6
235 #define TARGET_CPU_v9 7 /* generic v9 implementation */
236 #define TARGET_CPU_sparcv9 7 /* alias */
237 #define TARGET_CPU_sparc64 7 /* alias */
238 #define TARGET_CPU_ultrasparc 8
239 #define TARGET_CPU_ultrasparc3 9
241 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
242 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
243 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
245 #define CPP_CPU32_DEFAULT_SPEC ""
246 #define ASM_CPU32_DEFAULT_SPEC ""
248 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
249 /* ??? What does Sun's CC pass? */
250 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
251 /* ??? It's not clear how other assemblers will handle this, so by default
252 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
253 is handled in sol2.h. */
254 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
255 #endif
256 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
257 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
258 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
259 #endif
260 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
261 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
262 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
263 #endif
265 #else
267 #define CPP_CPU64_DEFAULT_SPEC ""
268 #define ASM_CPU64_DEFAULT_SPEC ""
270 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
271 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
272 #define CPP_CPU32_DEFAULT_SPEC ""
273 #define ASM_CPU32_DEFAULT_SPEC ""
274 #endif
276 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
277 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
278 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
279 #endif
281 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
282 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
283 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
284 #endif
286 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
287 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
288 #define ASM_CPU32_DEFAULT_SPEC ""
289 #endif
291 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
292 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
293 #define ASM_CPU32_DEFAULT_SPEC ""
294 #endif
296 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
297 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
298 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
299 #endif
301 #endif
303 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
304 #error Unrecognized value in TARGET_CPU_DEFAULT.
305 #endif
307 #ifdef SPARC_BI_ARCH
309 #define CPP_CPU_DEFAULT_SPEC \
310 (DEFAULT_ARCH32_P ? "\
311 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
312 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
313 " : "\
314 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
315 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
317 #define ASM_CPU_DEFAULT_SPEC \
318 (DEFAULT_ARCH32_P ? "\
319 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
320 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
321 " : "\
322 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
323 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
326 #else /* !SPARC_BI_ARCH */
328 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
329 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
331 #endif /* !SPARC_BI_ARCH */
333 /* Define macros to distinguish architectures. */
335 /* Common CPP definitions used by CPP_SPEC amongst the various targets
336 for handling -mcpu=xxx switches. */
337 #define CPP_CPU_SPEC "\
338 %{msoft-float:-D_SOFT_FLOAT} \
339 %{mcypress:} \
340 %{msparclite:-D__sparclite__} \
341 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
342 %{mv8:-D__sparc_v8__} \
343 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
344 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
345 %{mcpu=sparclite:-D__sparclite__} \
346 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
347 %{mcpu=v8:-D__sparc_v8__} \
348 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
349 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
350 %{mcpu=sparclite86x:-D__sparclite86x__} \
351 %{mcpu=v9:-D__sparc_v9__} \
352 %{mcpu=ultrasparc:-D__sparc_v9__} \
353 %{mcpu=ultrasparc3:-D__sparc_v9__} \
354 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
356 #define CPP_ARCH32_SPEC ""
357 #define CPP_ARCH64_SPEC "-D__arch64__"
359 #define CPP_ARCH_DEFAULT_SPEC \
360 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
362 #define CPP_ARCH_SPEC "\
363 %{m32:%(cpp_arch32)} \
364 %{m64:%(cpp_arch64)} \
365 %{!m32:%{!m64:%(cpp_arch_default)}} \
368 /* Macros to distinguish endianness. */
369 #define CPP_ENDIAN_SPEC "\
370 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
371 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
373 /* Macros to distinguish the particular subtarget. */
374 #define CPP_SUBTARGET_SPEC ""
376 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
378 /* Prevent error on `-sun4' and `-target sun4' options. */
379 /* This used to translate -dalign to -malign, but that is no good
380 because it can't turn off the usual meaning of making debugging dumps. */
381 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
382 ??? Delete support for -m<cpu> for 2.9. */
384 #define CC1_SPEC "\
385 %{sun4:} %{target:} \
386 %{mcypress:-mcpu=cypress} \
387 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
388 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
391 /* Override in target specific files. */
392 #define ASM_CPU_SPEC "\
393 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
394 %{msparclite:-Asparclite} \
395 %{mf930:-Asparclite} %{mf934:-Asparclite} \
396 %{mcpu=sparclite:-Asparclite} \
397 %{mcpu=sparclite86x:-Asparclite} \
398 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
399 %{mv8plus:-Av8plus} \
400 %{mcpu=v9:-Av9} \
401 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
402 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
403 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
406 /* Word size selection, among other things.
407 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
409 #define ASM_ARCH32_SPEC "-32"
410 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
411 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
412 #else
413 #define ASM_ARCH64_SPEC "-64"
414 #endif
415 #define ASM_ARCH_DEFAULT_SPEC \
416 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
418 #define ASM_ARCH_SPEC "\
419 %{m32:%(asm_arch32)} \
420 %{m64:%(asm_arch64)} \
421 %{!m32:%{!m64:%(asm_arch_default)}} \
424 #ifdef HAVE_AS_RELAX_OPTION
425 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
426 #else
427 #define ASM_RELAX_SPEC ""
428 #endif
430 /* Special flags to the Sun-4 assembler when using pipe for input. */
432 #define ASM_SPEC "\
433 %{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
434 %(asm_cpu) %(asm_relax)"
436 #define AS_NEEDS_DASH_FOR_PIPED_INPUT
438 /* This macro defines names of additional specifications to put in the specs
439 that can be used in various specifications like CC1_SPEC. Its definition
440 is an initializer with a subgrouping for each command option.
442 Each subgrouping contains a string constant, that defines the
443 specification name, and a string constant that used by the GCC driver
444 program.
446 Do not define this macro if it does not need to do anything. */
448 #define EXTRA_SPECS \
449 { "cpp_cpu", CPP_CPU_SPEC }, \
450 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
451 { "cpp_arch32", CPP_ARCH32_SPEC }, \
452 { "cpp_arch64", CPP_ARCH64_SPEC }, \
453 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
454 { "cpp_arch", CPP_ARCH_SPEC }, \
455 { "cpp_endian", CPP_ENDIAN_SPEC }, \
456 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
457 { "asm_cpu", ASM_CPU_SPEC }, \
458 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
459 { "asm_arch32", ASM_ARCH32_SPEC }, \
460 { "asm_arch64", ASM_ARCH64_SPEC }, \
461 { "asm_relax", ASM_RELAX_SPEC }, \
462 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
463 { "asm_arch", ASM_ARCH_SPEC }, \
464 SUBTARGET_EXTRA_SPECS
466 #define SUBTARGET_EXTRA_SPECS
468 /* Because libgcc can generate references back to libc (via .umul etc.) we have
469 to list libc again after the second libgcc. */
470 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
473 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
474 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
476 /* ??? This should be 32 bits for v9 but what can we do? */
477 #define WCHAR_TYPE "short unsigned int"
478 #define WCHAR_TYPE_SIZE 16
480 /* Show we can debug even without a frame pointer. */
481 #define CAN_DEBUG_WITHOUT_FP
483 #define OVERRIDE_OPTIONS sparc_override_options ()
485 /* Run-time compilation parameters selecting different hardware subsets. */
487 extern int target_flags;
489 /* Nonzero if we should generate code to use the fpu. */
490 #define MASK_FPU 1
491 #define TARGET_FPU (target_flags & MASK_FPU)
493 /* Nonzero if we should assume that double pointers might be unaligned.
494 This can happen when linking gcc compiled code with other compilers,
495 because the ABI only guarantees 4 byte alignment. */
496 #define MASK_UNALIGNED_DOUBLES 4
497 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
499 /* Nonzero means that we should generate code for a v8 sparc. */
500 #define MASK_V8 0x8
501 #define TARGET_V8 (target_flags & MASK_V8)
503 /* Nonzero means that we should generate code for a sparclite.
504 This enables the sparclite specific instructions, but does not affect
505 whether FPU instructions are emitted. */
506 #define MASK_SPARCLITE 0x10
507 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
509 /* Nonzero if we're compiling for the sparclet. */
510 #define MASK_SPARCLET 0x20
511 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
513 /* Nonzero if we're compiling for v9 sparc.
514 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
515 the word size is 64. */
516 #define MASK_V9 0x40
517 #define TARGET_V9 (target_flags & MASK_V9)
519 /* Nonzero to generate code that uses the instructions deprecated in
520 the v9 architecture. This option only applies to v9 systems. */
521 /* ??? This isn't user selectable yet. It's used to enable such insns
522 on 32 bit v9 systems and for the moment they're permanently disabled
523 on 64 bit v9 systems. */
524 #define MASK_DEPRECATED_V8_INSNS 0x80
525 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
527 /* Mask of all CPU selection flags. */
528 #define MASK_ISA \
529 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
531 /* Nonzero means don't pass `-assert pure-text' to the linker. */
532 #define MASK_IMPURE_TEXT 0x100
533 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
535 /* 0x200 is unused */
537 /* Nonzero means use the registers that the SPARC ABI reserves for
538 application software. This must be the default to coincide with the
539 setting in FIXED_REGISTERS. */
540 #define MASK_APP_REGS 0x400
541 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
543 /* Option to select how quad word floating point is implemented.
544 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
545 Otherwise, we use the SPARC ABI quad library functions. */
546 #define MASK_HARD_QUAD 0x800
547 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
549 /* Nonzero on little-endian machines. */
550 /* ??? Little endian support currently only exists for sparc86x-elf and
551 sparc64-elf configurations. May eventually want to expand the support
552 to all targets, but for now it's kept local to only those two. */
553 #define MASK_LITTLE_ENDIAN 0x1000
554 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
556 /* 0x2000, 0x4000 are unused */
558 /* Nonzero if pointers are 64 bits. */
559 #define MASK_PTR64 0x8000
560 #define TARGET_PTR64 (target_flags & MASK_PTR64)
562 /* Nonzero if generating code to run in a 64 bit environment.
563 This is intended to only be used by TARGET_ARCH{32,64} as they are the
564 mechanism used to control compile time or run time selection. */
565 #define MASK_64BIT 0x10000
566 #define TARGET_64BIT (target_flags & MASK_64BIT)
568 /* 0x20000,0x40000 unused */
570 /* Nonzero means use a stack bias of 2047. Stack offsets are obtained by
571 adding 2047 to %sp. This option is for v9 only and is the default. */
572 #define MASK_STACK_BIAS 0x80000
573 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
575 /* 0x100000,0x200000 unused */
577 /* Nonzero means -m{,no-}fpu was passed on the command line. */
578 #define MASK_FPU_SET 0x400000
579 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
581 /* Use the UltraSPARC Visual Instruction Set extensions. */
582 #define MASK_VIS 0x1000000
583 #define TARGET_VIS (target_flags & MASK_VIS)
585 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
586 the current out and global registers and Linux 2.2+ as well. */
587 #define MASK_V8PLUS 0x2000000
588 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
590 /* Force a the fastest alignment on structures to take advantage of
591 faster copies. */
592 #define MASK_FASTER_STRUCTS 0x4000000
593 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
595 /* Use IEEE quad long double. */
596 #define MASK_LONG_DOUBLE_128 0x8000000
597 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
599 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
600 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
601 to get high 32 bits. False in V8+ or V9 because multiply stores
602 a 64 bit result in a register. */
604 #define TARGET_HARD_MUL32 \
605 ((TARGET_V8 || TARGET_SPARCLITE \
606 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
607 && ! TARGET_V8PLUS && TARGET_ARCH32)
609 #define TARGET_HARD_MUL \
610 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
611 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
614 /* Macro to define tables used to set the flags.
615 This is a list in braces of pairs in braces,
616 each pair being { "NAME", VALUE }
617 where VALUE is the bits to set or minus the bits to clear.
618 An empty string NAME is used to identify the default VALUE. */
620 #define TARGET_SWITCHES \
621 { {"fpu", MASK_FPU | MASK_FPU_SET, \
622 N_("Use hardware fp") }, \
623 {"no-fpu", -MASK_FPU, \
624 N_("Do not use hardware fp") }, \
625 {"no-fpu", MASK_FPU_SET, NULL, }, \
626 {"hard-float", MASK_FPU | MASK_FPU_SET, \
627 N_("Use hardware fp") }, \
628 {"soft-float", -MASK_FPU, \
629 N_("Do not use hardware fp") }, \
630 {"soft-float", MASK_FPU_SET, NULL }, \
631 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
632 N_("Assume possible double misalignment") }, \
633 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
634 N_("Assume all doubles are aligned") }, \
635 {"impure-text", MASK_IMPURE_TEXT, \
636 N_("Pass -assert pure-text to linker") }, \
637 {"no-impure-text", -MASK_IMPURE_TEXT, \
638 N_("Do not pass -assert pure-text to linker") }, \
639 {"app-regs", MASK_APP_REGS, \
640 N_("Use ABI reserved registers") }, \
641 {"no-app-regs", -MASK_APP_REGS, \
642 N_("Do not use ABI reserved registers") }, \
643 {"hard-quad-float", MASK_HARD_QUAD, \
644 N_("Use hardware quad fp instructions") }, \
645 {"soft-quad-float", -MASK_HARD_QUAD, \
646 N_("Do not use hardware quad fp instructions") }, \
647 {"v8plus", MASK_V8PLUS, \
648 N_("Compile for v8plus ABI") }, \
649 {"no-v8plus", -MASK_V8PLUS, \
650 N_("Do not compile for v8plus ABI") }, \
651 {"vis", MASK_VIS, \
652 N_("Utilize Visual Instruction Set") }, \
653 {"no-vis", -MASK_VIS, \
654 N_("Do not utilize Visual Instruction Set") }, \
655 {"ptr64", MASK_PTR64, \
656 N_("Pointers are 64-bit") }, \
657 {"ptr32", -MASK_PTR64, \
658 N_("Pointers are 32-bit") }, \
659 {"32", -MASK_64BIT, \
660 N_("Use 32-bit ABI") }, \
661 {"64", MASK_64BIT, \
662 N_("Use 64-bit ABI") }, \
663 {"stack-bias", MASK_STACK_BIAS, \
664 N_("Use stack bias") }, \
665 {"no-stack-bias", -MASK_STACK_BIAS, \
666 N_("Do not use stack bias") }, \
667 {"faster-structs", MASK_FASTER_STRUCTS, \
668 N_("Use structs on stronger alignment for double-word copies") }, \
669 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
670 N_("Do not use structs on stronger alignment for double-word copies") }, \
671 {"relax", 0, \
672 N_("Optimize tail call instructions in assembler and linker") }, \
673 {"no-relax", 0, \
674 N_("Do not optimize tail call instructions in assembler or linker") }, \
675 SUBTARGET_SWITCHES \
676 { "", TARGET_DEFAULT, ""}}
678 /* MASK_APP_REGS must always be the default because that's what
679 FIXED_REGISTERS is set to and -ffixed- is processed before
680 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
681 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
683 /* This is meant to be redefined in target specific files. */
684 #define SUBTARGET_SWITCHES
686 /* Processor type.
687 These must match the values for the cpu attribute in sparc.md. */
688 enum processor_type {
689 PROCESSOR_V7,
690 PROCESSOR_CYPRESS,
691 PROCESSOR_V8,
692 PROCESSOR_SUPERSPARC,
693 PROCESSOR_SPARCLITE,
694 PROCESSOR_F930,
695 PROCESSOR_F934,
696 PROCESSOR_HYPERSPARC,
697 PROCESSOR_SPARCLITE86X,
698 PROCESSOR_SPARCLET,
699 PROCESSOR_TSC701,
700 PROCESSOR_V9,
701 PROCESSOR_ULTRASPARC,
702 PROCESSOR_ULTRASPARC3
705 /* This is set from -m{cpu,tune}=xxx. */
706 extern enum processor_type sparc_cpu;
708 /* Recast the cpu class to be the cpu attribute.
709 Every file includes us, but not every file includes insn-attr.h. */
710 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
712 #define TARGET_OPTIONS \
714 { "cpu=", &sparc_select[1].string, \
715 N_("Use features of and schedule code for given CPU"), 0}, \
716 { "tune=", &sparc_select[2].string, \
717 N_("Schedule code for given CPU"), 0}, \
718 { "cmodel=", &sparc_cmodel_string, \
719 N_("Use given SPARC code model"), 0}, \
720 SUBTARGET_OPTIONS \
723 /* This is meant to be redefined in target specific files. */
724 #define SUBTARGET_OPTIONS
726 /* Support for a compile-time default CPU, et cetera. The rules are:
727 --with-cpu is ignored if -mcpu is specified.
728 --with-tune is ignored if -mtune is specified.
729 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
730 are specified. */
731 #define OPTION_DEFAULT_SPECS \
732 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
733 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
734 {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
736 /* sparc_select[0] is reserved for the default cpu. */
737 struct sparc_cpu_select
739 const char *string;
740 const char *const name;
741 const int set_tune_p;
742 const int set_arch_p;
745 extern struct sparc_cpu_select sparc_select[];
747 /* target machine storage layout */
749 /* Define this if most significant bit is lowest numbered
750 in instructions that operate on numbered bit-fields. */
751 #define BITS_BIG_ENDIAN 1
753 /* Define this if most significant byte of a word is the lowest numbered. */
754 #define BYTES_BIG_ENDIAN 1
756 /* Define this if most significant word of a multiword number is the lowest
757 numbered. */
758 #define WORDS_BIG_ENDIAN 1
760 /* Define this to set the endianness to use in libgcc2.c, which can
761 not depend on target_flags. */
762 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
763 #define LIBGCC2_WORDS_BIG_ENDIAN 0
764 #else
765 #define LIBGCC2_WORDS_BIG_ENDIAN 1
766 #endif
768 #define MAX_BITS_PER_WORD 64
770 /* Width of a word, in units (bytes). */
771 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
772 #ifdef IN_LIBGCC2
773 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
774 #else
775 #define MIN_UNITS_PER_WORD 4
776 #endif
778 #define UNITS_PER_SIMD_WORD (TARGET_VIS ? 8 : 0)
780 /* Now define the sizes of the C data types. */
782 #define SHORT_TYPE_SIZE 16
783 #define INT_TYPE_SIZE 32
784 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
785 #define LONG_LONG_TYPE_SIZE 64
786 #define FLOAT_TYPE_SIZE 32
787 #define DOUBLE_TYPE_SIZE 64
788 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
789 SPARC ABI says that it is 128-bit wide. */
790 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
792 /* Width in bits of a pointer.
793 See also the macro `Pmode' defined below. */
794 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
796 /* If we have to extend pointers (only when TARGET_ARCH64 and not
797 TARGET_PTR64), we want to do it unsigned. This macro does nothing
798 if ptr_mode and Pmode are the same. */
799 #define POINTERS_EXTEND_UNSIGNED 1
801 /* For TARGET_ARCH64 we need this, as we don't have instructions
802 for arithmetic operations which do zero/sign extension at the same time,
803 so without this we end up with a srl/sra after every assignment to an
804 user variable, which means very very bad code. */
805 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
806 if (TARGET_ARCH64 \
807 && GET_MODE_CLASS (MODE) == MODE_INT \
808 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
809 (MODE) = word_mode;
811 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
812 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
814 /* Boundary (in *bits*) on which stack pointer should be aligned. */
815 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
816 then sp+2047 is 128-bit aligned so sp is really only byte-aligned. */
817 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
818 /* Temporary hack until the FIXME above is fixed. This macro is used
819 only in pad_to_arg_alignment in function.c; see the comment there
820 for details about what it does. */
821 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
823 /* ALIGN FRAMES on double word boundaries */
825 #define SPARC_STACK_ALIGN(LOC) \
826 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
828 /* Allocation boundary (in *bits*) for the code of a function. */
829 #define FUNCTION_BOUNDARY 32
831 /* Alignment of field after `int : 0' in a structure. */
832 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
834 /* Every structure's size must be a multiple of this. */
835 #define STRUCTURE_SIZE_BOUNDARY 8
837 /* A bit-field declared as `int' forces `int' alignment for the struct. */
838 #define PCC_BITFIELD_TYPE_MATTERS 1
840 /* No data type wants to be aligned rounder than this. */
841 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
843 /* The best alignment to use in cases where we have a choice. */
844 #define FASTEST_ALIGNMENT 64
846 /* Define this macro as an expression for the alignment of a structure
847 (given by STRUCT as a tree node) if the alignment computed in the
848 usual way is COMPUTED and the alignment explicitly specified was
849 SPECIFIED.
851 The default is to use SPECIFIED if it is larger; otherwise, use
852 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
853 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
854 (TARGET_FASTER_STRUCTS ? \
855 ((TREE_CODE (STRUCT) == RECORD_TYPE \
856 || TREE_CODE (STRUCT) == UNION_TYPE \
857 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
858 && TYPE_FIELDS (STRUCT) != 0 \
859 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
860 : MAX ((COMPUTED), (SPECIFIED))) \
861 : MAX ((COMPUTED), (SPECIFIED)))
863 /* Make strings word-aligned so strcpy from constants will be faster. */
864 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
865 ((TREE_CODE (EXP) == STRING_CST \
866 && (ALIGN) < FASTEST_ALIGNMENT) \
867 ? FASTEST_ALIGNMENT : (ALIGN))
869 /* Make arrays of chars word-aligned for the same reasons. */
870 #define DATA_ALIGNMENT(TYPE, ALIGN) \
871 (TREE_CODE (TYPE) == ARRAY_TYPE \
872 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
873 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
875 /* Set this nonzero if move instructions will actually fail to work
876 when given unaligned data. */
877 #define STRICT_ALIGNMENT 1
879 /* Things that must be doubleword aligned cannot go in the text section,
880 because the linker fails to align the text section enough!
881 Put them in the data section. This macro is only used in this file. */
882 #define MAX_TEXT_ALIGN 32
884 /* Standard register usage. */
886 /* Number of actual hardware registers.
887 The hardware registers are assigned numbers for the compiler
888 from 0 to just below FIRST_PSEUDO_REGISTER.
889 All registers that the compiler knows about must be given numbers,
890 even those that are not normally considered general registers.
892 SPARC has 32 integer registers and 32 floating point registers.
893 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
894 accessible. We still account for them to simplify register computations
895 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
896 32+32+32+4 == 100.
897 Register 100 is used as the integer condition code register.
898 Register 101 is used as the soft frame pointer register. */
900 #define FIRST_PSEUDO_REGISTER 102
902 #define SPARC_FIRST_FP_REG 32
903 /* Additional V9 fp regs. */
904 #define SPARC_FIRST_V9_FP_REG 64
905 #define SPARC_LAST_V9_FP_REG 95
906 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
907 #define SPARC_FIRST_V9_FCC_REG 96
908 #define SPARC_LAST_V9_FCC_REG 99
909 /* V8 fcc reg. */
910 #define SPARC_FCC_REG 96
911 /* Integer CC reg. We don't distinguish %icc from %xcc. */
912 #define SPARC_ICC_REG 100
914 /* Nonzero if REGNO is an fp reg. */
915 #define SPARC_FP_REG_P(REGNO) \
916 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
918 /* Argument passing regs. */
919 #define SPARC_OUTGOING_INT_ARG_FIRST 8
920 #define SPARC_INCOMING_INT_ARG_FIRST 24
921 #define SPARC_FP_ARG_FIRST 32
923 /* 1 for registers that have pervasive standard uses
924 and are not available for the register allocator.
926 On non-v9 systems:
927 g1 is free to use as temporary.
928 g2-g4 are reserved for applications. Gcc normally uses them as
929 temporaries, but this can be disabled via the -mno-app-regs option.
930 g5 through g7 are reserved for the operating system.
932 On v9 systems:
933 g1,g5 are free to use as temporaries, and are free to use between calls
934 if the call is to an external function via the PLT.
935 g4 is free to use as a temporary in the non-embedded case.
936 g4 is reserved in the embedded case.
937 g2-g3 are reserved for applications. Gcc normally uses them as
938 temporaries, but this can be disabled via the -mno-app-regs option.
939 g6-g7 are reserved for the operating system (or application in
940 embedded case).
941 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
942 currently be a fixed register until this pattern is rewritten.
943 Register 1 is also used when restoring call-preserved registers in large
944 stack frames.
946 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
947 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
950 #define FIXED_REGISTERS \
951 {1, 0, 2, 2, 2, 2, 1, 1, \
952 0, 0, 0, 0, 0, 0, 1, 0, \
953 0, 0, 0, 0, 0, 0, 0, 0, \
954 0, 0, 0, 0, 0, 0, 1, 1, \
956 0, 0, 0, 0, 0, 0, 0, 0, \
957 0, 0, 0, 0, 0, 0, 0, 0, \
958 0, 0, 0, 0, 0, 0, 0, 0, \
959 0, 0, 0, 0, 0, 0, 0, 0, \
961 0, 0, 0, 0, 0, 0, 0, 0, \
962 0, 0, 0, 0, 0, 0, 0, 0, \
963 0, 0, 0, 0, 0, 0, 0, 0, \
964 0, 0, 0, 0, 0, 0, 0, 0, \
966 0, 0, 0, 0, 0, 1}
968 /* 1 for registers not available across function calls.
969 These must include the FIXED_REGISTERS and also any
970 registers that can be used without being saved.
971 The latter must include the registers where values are returned
972 and the register where structure-value addresses are passed.
973 Aside from that, you can include as many other registers as you like. */
975 #define CALL_USED_REGISTERS \
976 {1, 1, 1, 1, 1, 1, 1, 1, \
977 1, 1, 1, 1, 1, 1, 1, 1, \
978 0, 0, 0, 0, 0, 0, 0, 0, \
979 0, 0, 0, 0, 0, 0, 1, 1, \
981 1, 1, 1, 1, 1, 1, 1, 1, \
982 1, 1, 1, 1, 1, 1, 1, 1, \
983 1, 1, 1, 1, 1, 1, 1, 1, \
984 1, 1, 1, 1, 1, 1, 1, 1, \
986 1, 1, 1, 1, 1, 1, 1, 1, \
987 1, 1, 1, 1, 1, 1, 1, 1, \
988 1, 1, 1, 1, 1, 1, 1, 1, \
989 1, 1, 1, 1, 1, 1, 1, 1, \
991 1, 1, 1, 1, 1, 1}
993 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
994 they won't be allocated. */
996 #define CONDITIONAL_REGISTER_USAGE \
997 do \
999 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1001 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1002 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1004 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
1005 /* then honor it. */ \
1006 if (TARGET_ARCH32 && fixed_regs[5]) \
1007 fixed_regs[5] = 1; \
1008 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
1009 fixed_regs[5] = 0; \
1010 if (! TARGET_V9) \
1012 int regno; \
1013 for (regno = SPARC_FIRST_V9_FP_REG; \
1014 regno <= SPARC_LAST_V9_FP_REG; \
1015 regno++) \
1016 fixed_regs[regno] = 1; \
1017 /* %fcc0 is used by v8 and v9. */ \
1018 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1019 regno <= SPARC_LAST_V9_FCC_REG; \
1020 regno++) \
1021 fixed_regs[regno] = 1; \
1023 if (! TARGET_FPU) \
1025 int regno; \
1026 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1027 fixed_regs[regno] = 1; \
1029 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1030 /* then honor it. Likewise with g3 and g4. */ \
1031 if (fixed_regs[2] == 2) \
1032 fixed_regs[2] = ! TARGET_APP_REGS; \
1033 if (fixed_regs[3] == 2) \
1034 fixed_regs[3] = ! TARGET_APP_REGS; \
1035 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1036 fixed_regs[4] = ! TARGET_APP_REGS; \
1037 else if (TARGET_CM_EMBMEDANY) \
1038 fixed_regs[4] = 1; \
1039 else if (fixed_regs[4] == 2) \
1040 fixed_regs[4] = 0; \
1042 while (0)
1044 /* Return number of consecutive hard regs needed starting at reg REGNO
1045 to hold something of mode MODE.
1046 This is ordinarily the length in words of a value of mode MODE
1047 but can be less for certain modes in special long registers.
1049 On SPARC, ordinary registers hold 32 bits worth;
1050 this means both integer and floating point registers.
1051 On v9, integer regs hold 64 bits worth; floating point regs hold
1052 32 bits worth (this includes the new fp regs as even the odd ones are
1053 included in the hard register count). */
1055 #define HARD_REGNO_NREGS(REGNO, MODE) \
1056 (TARGET_ARCH64 \
1057 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1058 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1059 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1060 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1062 /* Due to the ARCH64 discrepancy above we must override this next
1063 macro too. */
1064 #define REGMODE_NATURAL_SIZE(MODE) \
1065 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1067 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1068 See sparc.c for how we initialize this. */
1069 extern const int *hard_regno_mode_classes;
1070 extern int sparc_mode_class[];
1072 /* ??? Because of the funny way we pass parameters we should allow certain
1073 ??? types of float/complex values to be in integer registers during
1074 ??? RTL generation. This only matters on arch32. */
1075 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1076 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1078 /* Value is 1 if it is a good idea to tie two pseudo registers
1079 when one has mode MODE1 and one has mode MODE2.
1080 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1081 for any hard reg, then this must be 0 for correct output.
1083 For V9: SFmode can't be combined with other float modes, because they can't
1084 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1085 registers, but SFmode will. */
1086 #define MODES_TIEABLE_P(MODE1, MODE2) \
1087 ((MODE1) == (MODE2) \
1088 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1089 && (! TARGET_V9 \
1090 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1091 || (MODE1 != SFmode && MODE2 != SFmode)))))
1093 /* Specify the registers used for certain standard purposes.
1094 The values of these macros are register numbers. */
1096 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1097 /* #define PC_REGNUM */
1099 /* Register to use for pushing function arguments. */
1100 #define STACK_POINTER_REGNUM 14
1102 /* The stack bias (amount by which the hardware register is offset by). */
1103 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1105 /* Actual top-of-stack address is 92/176 greater than the contents of the
1106 stack pointer register for !v9/v9. That is:
1107 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1108 address, and 6*4 bytes for the 6 register parameters.
1109 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1110 parameter regs. */
1111 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1113 /* Base register for access to local variables of the function. */
1114 #define HARD_FRAME_POINTER_REGNUM 30
1116 /* The soft frame pointer does not have the stack bias applied. */
1117 #define FRAME_POINTER_REGNUM 101
1119 /* Given the stack bias, the stack pointer isn't actually aligned. */
1120 #define INIT_EXPANDERS \
1121 do { \
1122 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1124 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1125 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1127 } while (0)
1129 /* Value should be nonzero if functions must have frame pointers.
1130 Zero means the frame pointer need not be set up (and parms
1131 may be accessed via the stack pointer) in functions that seem suitable.
1132 Used in flow.c, global.c, ra.c and reload1.c. */
1133 #define FRAME_POINTER_REQUIRED \
1134 (! (leaf_function_p () && only_leaf_regs_used ()))
1136 /* Base register for access to arguments of the function. */
1137 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1139 /* Register in which static-chain is passed to a function. This must
1140 not be a register used by the prologue. */
1141 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1143 /* Register which holds offset table for position-independent
1144 data references. */
1146 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1148 /* Pick a default value we can notice from override_options:
1149 !v9: Default is on.
1150 v9: Default is off. */
1152 #define DEFAULT_PCC_STRUCT_RETURN -1
1154 /* Functions which return large structures get the address
1155 to place the wanted value at offset 64 from the frame.
1156 Must reserve 64 bytes for the in and local registers.
1157 v9: Functions which return large structures get the address to place the
1158 wanted value from an invisible first argument. */
1159 #define STRUCT_VALUE_OFFSET 64
1161 /* Define the classes of registers for register constraints in the
1162 machine description. Also define ranges of constants.
1164 One of the classes must always be named ALL_REGS and include all hard regs.
1165 If there is more than one class, another class must be named NO_REGS
1166 and contain no registers.
1168 The name GENERAL_REGS must be the name of a class (or an alias for
1169 another name such as ALL_REGS). This is the class of registers
1170 that is allowed by "g" or "r" in a register constraint.
1171 Also, registers outside this class are allocated only when
1172 instructions express preferences for them.
1174 The classes must be numbered in nondecreasing order; that is,
1175 a larger-numbered class must never be contained completely
1176 in a smaller-numbered class.
1178 For any two classes, it is very desirable that there be another
1179 class that represents their union. */
1181 /* The SPARC has various kinds of registers: general, floating point,
1182 and condition codes [well, it has others as well, but none that we
1183 care directly about].
1185 For v9 we must distinguish between the upper and lower floating point
1186 registers because the upper ones can't hold SFmode values.
1187 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1188 satisfying a group need for a class will also satisfy a single need for
1189 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1190 regs.
1192 It is important that one class contains all the general and all the standard
1193 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1194 because reg_class_record() will bias the selection in favor of fp regs,
1195 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1196 because FP_REGS > GENERAL_REGS.
1198 It is also important that one class contain all the general and all the
1199 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1200 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1201 allocate_reload_reg() to bypass it causing an abort because the compiler
1202 thinks it doesn't have a spill reg when in fact it does.
1204 v9 also has 4 floating point condition code registers. Since we don't
1205 have a class that is the union of FPCC_REGS with either of the others,
1206 it is important that it appear first. Otherwise the compiler will die
1207 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1208 constraints.
1210 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1211 may try to use it to hold an SImode value. See register_operand.
1212 ??? Should %fcc[0123] be handled similarly?
1215 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1216 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1217 ALL_REGS, LIM_REG_CLASSES };
1219 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1221 /* Give names of register classes as strings for dump file. */
1223 #define REG_CLASS_NAMES \
1224 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1225 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1226 "ALL_REGS" }
1228 /* Define which registers fit in which classes.
1229 This is an initializer for a vector of HARD_REG_SET
1230 of length N_REG_CLASSES. */
1232 #define REG_CLASS_CONTENTS \
1233 {{0, 0, 0, 0}, /* NO_REGS */ \
1234 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1235 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1236 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1237 {0, -1, 0, 0}, /* FP_REGS */ \
1238 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1239 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1240 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1241 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1243 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
1245 SImode loads to floating-point registers are not zero-extended.
1246 The definition for LOAD_EXTEND_OP specifies that integer loads
1247 narrower than BITS_PER_WORD will be zero-extended. As a result,
1248 we inhibit changes from SImode unless they are to a mode that is
1249 identical in size. */
1251 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1252 (TARGET_ARCH64 \
1253 && (FROM) == SImode \
1254 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1255 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1257 /* The same information, inverted:
1258 Return the class number of the smallest class containing
1259 reg number REGNO. This could be a conditional expression
1260 or could index an array. */
1262 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1264 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1266 /* This is the order in which to allocate registers normally.
1268 We put %f0-%f7 last among the float registers, so as to make it more
1269 likely that a pseudo-register which dies in the float return register
1270 area will get allocated to the float return register, thus saving a move
1271 instruction at the end of the function.
1273 Similarly for integer return value registers.
1275 We know in this case that we will not end up with a leaf function.
1277 The register allocator is given the global and out registers first
1278 because these registers are call clobbered and thus less useful to
1279 global register allocation.
1281 Next we list the local and in registers. They are not call clobbered
1282 and thus very useful for global register allocation. We list the input
1283 registers before the locals so that it is more likely the incoming
1284 arguments received in those registers can just stay there and not be
1285 reloaded. */
1287 #define REG_ALLOC_ORDER \
1288 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1289 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1290 15, /* %o7 */ \
1291 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1292 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1293 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1294 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1295 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1296 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1297 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1298 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1299 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1300 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1301 96, 97, 98, 99, /* %fcc0-3 */ \
1302 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1304 /* This is the order in which to allocate registers for
1305 leaf functions. If all registers can fit in the global and
1306 output registers, then we have the possibility of having a leaf
1307 function.
1309 The macro actually mentioned the input registers first,
1310 because they get renumbered into the output registers once
1311 we know really do have a leaf function.
1313 To be more precise, this register allocation order is used
1314 when %o7 is found to not be clobbered right before register
1315 allocation. Normally, the reason %o7 would be clobbered is
1316 due to a call which could not be transformed into a sibling
1317 call.
1319 As a consequence, it is possible to use the leaf register
1320 allocation order and not end up with a leaf function. We will
1321 not get suboptimal register allocation in that case because by
1322 definition of being potentially leaf, there were no function
1323 calls. Therefore, allocation order within the local register
1324 window is not critical like it is when we do have function calls. */
1326 #define REG_LEAF_ALLOC_ORDER \
1327 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1328 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1329 15, /* %o7 */ \
1330 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1331 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1332 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1333 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1334 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1335 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1336 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1337 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1338 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1339 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1340 96, 97, 98, 99, /* %fcc0-3 */ \
1341 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1343 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1345 extern char sparc_leaf_regs[];
1346 #define LEAF_REGISTERS sparc_leaf_regs
1348 extern char leaf_reg_remap[];
1349 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1351 /* The class value for index registers, and the one for base regs. */
1352 #define INDEX_REG_CLASS GENERAL_REGS
1353 #define BASE_REG_CLASS GENERAL_REGS
1355 /* Local macro to handle the two v9 classes of FP regs. */
1356 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1358 /* Get reg_class from a letter such as appears in the machine description.
1359 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1360 .md file for v8 and v9.
1361 'd' and 'b' are used for single and double precision VIS operations,
1362 if TARGET_VIS.
1363 'h' is used for V8+ 64 bit global and out registers. */
1365 #define REG_CLASS_FROM_LETTER(C) \
1366 (TARGET_V9 \
1367 ? ((C) == 'f' ? FP_REGS \
1368 : (C) == 'e' ? EXTRA_FP_REGS \
1369 : (C) == 'c' ? FPCC_REGS \
1370 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1371 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1372 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1373 : NO_REGS) \
1374 : ((C) == 'f' ? FP_REGS \
1375 : (C) == 'e' ? FP_REGS \
1376 : (C) == 'c' ? FPCC_REGS \
1377 : NO_REGS))
1379 /* The letters I, J, K, L and M in a register constraint string
1380 can be used to stand for particular ranges of immediate operands.
1381 This macro defines what the ranges are.
1382 C is the letter, and VALUE is a constant value.
1383 Return 1 if VALUE is in the range specified by C.
1385 `I' is used for the range of constants an insn can actually contain.
1386 `J' is used for the range which is just zero (since that is R0).
1387 `K' is used for constants which can be loaded with a single sethi insn.
1388 `L' is used for the range of constants supported by the movcc insns.
1389 `M' is used for the range of constants supported by the movrcc insns.
1390 `N' is like K, but for constants wider than 32 bits.
1391 `O' is used for the range which is just 4096. */
1393 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1394 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1395 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1396 /* 10 and 11 bit immediates are only used for a few specific insns.
1397 SMALL_INT is used throughout the port so we continue to use it. */
1398 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1399 /* 13 bit immediate, considering only the low 32 bits */
1400 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1401 (INTVAL (X), SImode)))
1402 #define SPARC_SETHI_P(X) \
1403 (((unsigned HOST_WIDE_INT) (X) \
1404 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1405 #define SPARC_SETHI32_P(X) \
1406 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1408 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1409 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1410 : (C) == 'J' ? (VALUE) == 0 \
1411 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1412 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1413 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1414 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1415 : (C) == 'O' ? (VALUE) == 4096 \
1416 : 0)
1418 /* Similar, but for floating constants, and defining letters G and H.
1419 Here VALUE is the CONST_DOUBLE rtx itself. */
1421 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1422 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1423 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1424 : (C) == 'O' ? arith_double_4096_operand (VALUE, DImode) \
1425 : 0)
1427 /* Given an rtx X being reloaded into a reg required to be
1428 in class CLASS, return the class of reg to actually use.
1429 In general this is just CLASS; but on some machines
1430 in some cases it is preferable to use a more restrictive class. */
1431 /* - We can't load constants into FP registers.
1432 - We can't load FP constants into integer registers when soft-float,
1433 because there is no soft-float pattern with a r/F constraint.
1434 - We can't load FP constants into integer registers for TFmode unless
1435 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1436 - Try and reload integer constants (symbolic or otherwise) back into
1437 registers directly, rather than having them dumped to memory. */
1439 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1440 (CONSTANT_P (X) \
1441 ? ((FP_REG_CLASS_P (CLASS) \
1442 || (CLASS) == GENERAL_OR_FP_REGS \
1443 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1444 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1445 && ! TARGET_FPU) \
1446 || (GET_MODE (X) == TFmode \
1447 && ! fp_zero_operand (X, TFmode))) \
1448 ? NO_REGS \
1449 : (!FP_REG_CLASS_P (CLASS) \
1450 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1451 ? GENERAL_REGS \
1452 : (CLASS)) \
1453 : (CLASS))
1455 /* Return the register class of a scratch register needed to load IN into
1456 a register of class CLASS in MODE.
1458 We need a temporary when loading/storing a HImode/QImode value
1459 between memory and the FPU registers. This can happen when combine puts
1460 a paradoxical subreg in a float/fix conversion insn.
1462 We need a temporary when loading/storing a DFmode value between
1463 unaligned memory and the upper FPU registers. */
1465 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1466 ((FP_REG_CLASS_P (CLASS) \
1467 && ((MODE) == HImode || (MODE) == QImode) \
1468 && (GET_CODE (IN) == MEM \
1469 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1470 && true_regnum (IN) == -1))) \
1471 ? GENERAL_REGS \
1472 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1473 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1474 && ! mem_min_alignment ((IN), 8)) \
1475 ? FP_REGS \
1476 : (((TARGET_CM_MEDANY \
1477 && symbolic_operand ((IN), (MODE))) \
1478 || (TARGET_CM_EMBMEDANY \
1479 && text_segment_operand ((IN), (MODE)))) \
1480 && !flag_pic) \
1481 ? GENERAL_REGS \
1482 : NO_REGS)
1484 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1485 ((FP_REG_CLASS_P (CLASS) \
1486 && ((MODE) == HImode || (MODE) == QImode) \
1487 && (GET_CODE (IN) == MEM \
1488 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1489 && true_regnum (IN) == -1))) \
1490 ? GENERAL_REGS \
1491 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1492 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1493 && ! mem_min_alignment ((IN), 8)) \
1494 ? FP_REGS \
1495 : (((TARGET_CM_MEDANY \
1496 && symbolic_operand ((IN), (MODE))) \
1497 || (TARGET_CM_EMBMEDANY \
1498 && text_segment_operand ((IN), (MODE)))) \
1499 && !flag_pic) \
1500 ? GENERAL_REGS \
1501 : NO_REGS)
1503 /* On SPARC it is not possible to directly move data between
1504 GENERAL_REGS and FP_REGS. */
1505 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1506 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1508 /* Return the stack location to use for secondary memory needed reloads.
1509 We want to use the reserved location just below the frame pointer.
1510 However, we must ensure that there is a frame, so use assign_stack_local
1511 if the frame size is zero. */
1512 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1513 (get_frame_size () == 0 \
1514 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1515 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1516 STARTING_FRAME_OFFSET)))
1518 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1519 because the movsi and movsf patterns don't handle r/f moves.
1520 For v8 we copy the default definition. */
1521 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1522 (TARGET_ARCH64 \
1523 ? (GET_MODE_BITSIZE (MODE) < 32 \
1524 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1525 : MODE) \
1526 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1527 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1528 : MODE))
1530 /* Return the maximum number of consecutive registers
1531 needed to represent mode MODE in a register of class CLASS. */
1532 /* On SPARC, this is the size of MODE in words. */
1533 #define CLASS_MAX_NREGS(CLASS, MODE) \
1534 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1535 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1537 /* Stack layout; function entry, exit and calling. */
1539 /* Define this if pushing a word on the stack
1540 makes the stack pointer a smaller address. */
1541 #define STACK_GROWS_DOWNWARD
1543 /* Define this if the nominal address of the stack frame
1544 is at the high-address end of the local variables;
1545 that is, each additional local variable allocated
1546 goes at a more negative offset in the frame. */
1547 #define FRAME_GROWS_DOWNWARD
1549 /* Offset within stack frame to start allocating local variables at.
1550 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1551 first local allocated. Otherwise, it is the offset to the BEGINNING
1552 of the first local allocated. */
1553 /* This allows space for one TFmode floating point value. */
1554 #define STARTING_FRAME_OFFSET \
1555 (TARGET_ARCH64 ? -16 \
1556 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1558 /* If we generate an insn to push BYTES bytes,
1559 this says how many the stack pointer really advances by.
1560 On SPARC, don't define this because there are no push insns. */
1561 /* #define PUSH_ROUNDING(BYTES) */
1563 /* Offset of first parameter from the argument pointer register value.
1564 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1565 even if this function isn't going to use it.
1566 v9: This is 128 for the ins and locals. */
1567 #define FIRST_PARM_OFFSET(FNDECL) \
1568 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1570 /* Offset from the argument pointer register value to the CFA.
1571 This is different from FIRST_PARM_OFFSET because the register window
1572 comes between the CFA and the arguments. */
1573 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1575 /* When a parameter is passed in a register, stack space is still
1576 allocated for it.
1577 !v9: All 6 possible integer registers have backing store allocated.
1578 v9: Only space for the arguments passed is allocated. */
1579 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1580 meaning to the backend. Further, we need to be able to detect if a
1581 varargs/unprototyped function is called, as they may want to spill more
1582 registers than we've provided space. Ugly, ugly. So for now we retain
1583 all 6 slots even for v9. */
1584 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1586 /* Definitions for register elimination. */
1588 #define ELIMINABLE_REGS \
1589 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1590 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1592 /* The way this is structured, we can't eliminate SFP in favor of SP
1593 if the frame pointer is required: we want to use the SFP->HFP elimination
1594 in that case. But the test in update_eliminables doesn't know we are
1595 assuming below that we only do the former elimination. */
1596 #define CAN_ELIMINATE(FROM, TO) \
1597 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1599 /* We always pretend that this is a leaf function because if it's not,
1600 there's no point in trying to eliminate the frame pointer. If it
1601 is a leaf function, we guessed right! */
1602 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1603 do { \
1604 if ((TO) == STACK_POINTER_REGNUM) \
1605 (OFFSET) = sparc_compute_frame_size (get_frame_size (), 1); \
1606 else \
1607 (OFFSET) = 0; \
1608 (OFFSET) += SPARC_STACK_BIAS; \
1609 } while (0)
1611 /* Keep the stack pointer constant throughout the function.
1612 This is both an optimization and a necessity: longjmp
1613 doesn't behave itself when the stack pointer moves within
1614 the function! */
1615 #define ACCUMULATE_OUTGOING_ARGS 1
1617 /* Value is the number of bytes of arguments automatically
1618 popped when returning from a subroutine call.
1619 FUNDECL is the declaration node of the function (as a tree),
1620 FUNTYPE is the data type of the function (as a tree),
1621 or for a library call it is an identifier node for the subroutine name.
1622 SIZE is the number of bytes of arguments passed on the stack. */
1624 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1626 /* Define this macro if the target machine has "register windows". This
1627 C expression returns the register number as seen by the called function
1628 corresponding to register number OUT as seen by the calling function.
1629 Return OUT if register number OUT is not an outbound register. */
1631 #define INCOMING_REGNO(OUT) \
1632 (((OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1634 /* Define this macro if the target machine has "register windows". This
1635 C expression returns the register number as seen by the calling function
1636 corresponding to register number IN as seen by the called function.
1637 Return IN if register number IN is not an inbound register. */
1639 #define OUTGOING_REGNO(IN) \
1640 (((IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1642 /* Define this macro if the target machine has register windows. This
1643 C expression returns true if the register is call-saved but is in the
1644 register window. */
1646 #define LOCAL_REGNO(REGNO) \
1647 ((REGNO) >= 16 && (REGNO) <= 31)
1649 /* Define how to find the value returned by a function.
1650 VALTYPE is the data type of the value (as a tree).
1651 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1652 otherwise, FUNC is 0. */
1654 /* On SPARC the value is found in the first "output" register. */
1656 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1657 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1659 /* But the called function leaves it in the first "input" register. */
1661 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1662 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1664 /* Define how to find the value returned by a library function
1665 assuming the value has mode MODE. */
1667 #define LIBCALL_VALUE(MODE) \
1668 function_value (NULL_TREE, (MODE), 1)
1670 /* 1 if N is a possible register number for a function value
1671 as seen by the caller.
1672 On SPARC, the first "output" reg is used for integer values,
1673 and the first floating point register is used for floating point values. */
1675 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1677 /* Define the size of space to allocate for the return value of an
1678 untyped_call. */
1680 #define APPLY_RESULT_SIZE 16
1682 /* 1 if N is a possible register number for function argument passing.
1683 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1685 #define FUNCTION_ARG_REGNO_P(N) \
1686 (TARGET_ARCH64 \
1687 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1688 : ((N) >= 8 && (N) <= 13))
1690 /* Define a data type for recording info about an argument list
1691 during the scan of that argument list. This data type should
1692 hold all necessary information about the function itself
1693 and about the args processed so far, enough to enable macros
1694 such as FUNCTION_ARG to determine where the next arg should go.
1696 On SPARC (!v9), this is a single integer, which is a number of words
1697 of arguments scanned so far (including the invisible argument,
1698 if any, which holds the structure-value-address).
1699 Thus 7 or more means all following args should go on the stack.
1701 For v9, we also need to know whether a prototype is present. */
1703 struct sparc_args {
1704 int words; /* number of words passed so far */
1705 int prototype_p; /* nonzero if a prototype is present */
1706 int libcall_p; /* nonzero if a library call */
1708 #define CUMULATIVE_ARGS struct sparc_args
1710 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1711 for a call to a function whose data type is FNTYPE.
1712 For a library call, FNTYPE is 0. */
1714 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1715 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1717 /* Update the data in CUM to advance over an argument
1718 of mode MODE and data type TYPE.
1719 TYPE is null for libcalls where that information may not be available. */
1721 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1722 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1724 /* Determine where to put an argument to a function.
1725 Value is zero to push the argument on the stack,
1726 or a hard register in which to store the argument.
1728 MODE is the argument's machine mode.
1729 TYPE is the data type of the argument (as a tree).
1730 This is null for libcalls where that information may
1731 not be available.
1732 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1733 the preceding args and about the function being called.
1734 NAMED is nonzero if this argument is a named parameter
1735 (otherwise it is an extra parameter matching an ellipsis). */
1737 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1738 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1740 /* Define where a function finds its arguments.
1741 This is different from FUNCTION_ARG because of register windows. */
1743 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1744 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1746 /* If defined, a C expression which determines whether, and in which direction,
1747 to pad out an argument with extra space. The value should be of type
1748 `enum direction': either `upward' to pad above the argument,
1749 `downward' to pad below, or `none' to inhibit padding. */
1751 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1752 function_arg_padding ((MODE), (TYPE))
1754 /* If defined, a C expression that gives the alignment boundary, in bits,
1755 of an argument with the specified mode and type. If it is not defined,
1756 PARM_BOUNDARY is used for all arguments.
1757 For sparc64, objects requiring 16 byte alignment are passed that way. */
1759 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1760 ((TARGET_ARCH64 \
1761 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1762 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1763 ? 128 : PARM_BOUNDARY)
1765 /* Define the information needed to generate branch and scc insns. This is
1766 stored from the compare operation. Note that we can't use "rtx" here
1767 since it hasn't been defined! */
1769 extern GTY(()) rtx sparc_compare_op0;
1770 extern GTY(()) rtx sparc_compare_op1;
1773 /* Generate the special assembly code needed to tell the assembler whatever
1774 it might need to know about the return value of a function.
1776 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1777 information to the assembler relating to peephole optimization (done in
1778 the assembler). */
1780 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1781 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1783 /* Output the special assembly code needed to tell the assembler some
1784 register is used as global register variable.
1786 SPARC 64bit psABI declares registers %g2 and %g3 as application
1787 registers and %g6 and %g7 as OS registers. Any object using them
1788 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1789 and how they are used (scratch or some global variable).
1790 Linker will then refuse to link together objects which use those
1791 registers incompatibly.
1793 Unless the registers are used for scratch, two different global
1794 registers cannot be declared to the same name, so in the unlikely
1795 case of a global register variable occupying more than one register
1796 we prefix the second and following registers with .gnu.part1. etc. */
1798 extern char sparc_hard_reg_printed[8];
1800 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1801 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1802 do { \
1803 if (TARGET_ARCH64) \
1805 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1806 int reg; \
1807 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1808 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1810 if (reg == (REGNO)) \
1811 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1812 else \
1813 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1814 reg, reg - (REGNO), (NAME)); \
1815 sparc_hard_reg_printed[reg] = 1; \
1818 } while (0)
1819 #endif
1822 /* Emit rtl for profiling. */
1823 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1825 /* All the work done in PROFILE_HOOK, but still required. */
1826 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1828 /* Set the name of the mcount function for the system. */
1829 #define MCOUNT_FUNCTION "*mcount"
1831 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1832 the stack pointer does not matter. The value is tested only in
1833 functions that have frame pointers.
1834 No definition is equivalent to always zero. */
1836 #define EXIT_IGNORE_STACK \
1837 (get_frame_size () != 0 \
1838 || current_function_calls_alloca || current_function_outgoing_args_size)
1840 /* Define registers used by the epilogue and return instruction. */
1841 #define EPILOGUE_USES(REGNO) ((REGNO) == 31 \
1842 || (current_function_calls_eh_return && (REGNO) == 1))
1844 /* Length in units of the trampoline for entering a nested function. */
1846 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1848 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1850 /* Emit RTL insns to initialize the variable parts of a trampoline.
1851 FNADDR is an RTX for the address of the function's pure code.
1852 CXT is an RTX for the static chain value for the function. */
1854 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1855 if (TARGET_ARCH64) \
1856 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1857 else \
1858 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1860 /* Implement `va_start' for varargs and stdarg. */
1861 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1862 sparc_va_start (valist, nextarg)
1864 /* Generate RTL to flush the register windows so as to make arbitrary frames
1865 available. */
1866 #define SETUP_FRAME_ADDRESSES() \
1867 emit_insn (gen_flush_register_windows ())
1869 /* Given an rtx for the address of a frame,
1870 return an rtx for the address of the word in the frame
1871 that holds the dynamic chain--the previous frame's address. */
1872 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1873 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1875 /* The return address isn't on the stack, it is in a register, so we can't
1876 access it from the current frame pointer. We can access it from the
1877 previous frame pointer though by reading a value from the register window
1878 save area. */
1879 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1881 /* This is the offset of the return address to the true next instruction to be
1882 executed for the current function. */
1883 #define RETURN_ADDR_OFFSET \
1884 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1886 /* The current return address is in %i7. The return address of anything
1887 farther back is in the register window save area at [%fp+60]. */
1888 /* ??? This ignores the fact that the actual return address is +8 for normal
1889 returns, and +12 for structure returns. */
1890 #define RETURN_ADDR_RTX(count, frame) \
1891 ((count == -1) \
1892 ? gen_rtx_REG (Pmode, 31) \
1893 : gen_rtx_MEM (Pmode, \
1894 memory_address (Pmode, plus_constant (frame, \
1895 15 * UNITS_PER_WORD \
1896 + SPARC_STACK_BIAS))))
1898 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1899 +12, but always using +8 is close enough for frame unwind purposes.
1900 Actually, just using %o7 is close enough for unwinding, but %o7+8
1901 is something you can return to. */
1902 #define INCOMING_RETURN_ADDR_RTX \
1903 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1904 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1906 /* The offset from the incoming value of %sp to the top of the stack frame
1907 for the current function. On sparc64, we have to account for the stack
1908 bias if present. */
1909 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1911 /* Describe how we implement __builtin_eh_return. */
1912 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1913 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1914 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1916 /* Select a format to encode pointers in exception handling data. CODE
1917 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1918 true if the symbol may be affected by dynamic relocations.
1920 If assembler and linker properly support .uaword %r_disp32(foo),
1921 then use PC relative 32-bit relocations instead of absolute relocs
1922 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1923 for binaries, to save memory.
1925 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1926 symbol %r_disp32() is against was not local, but .hidden. In that
1927 case, we have to use DW_EH_PE_absptr for pic personality. */
1928 #ifdef HAVE_AS_SPARC_UA_PCREL
1929 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1930 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1931 (flag_pic \
1932 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1933 : ((TARGET_ARCH64 && ! GLOBAL) \
1934 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1935 : DW_EH_PE_absptr))
1936 #else
1937 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1938 (flag_pic \
1939 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1940 : ((TARGET_ARCH64 && ! GLOBAL) \
1941 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1942 : DW_EH_PE_absptr))
1943 #endif
1945 /* Emit a PC-relative relocation. */
1946 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1947 do { \
1948 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1949 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1950 assemble_name (FILE, LABEL); \
1951 fputc (')', FILE); \
1952 } while (0)
1953 #endif
1955 /* Addressing modes, and classification of registers for them. */
1957 /* Macros to check register numbers against specific register classes. */
1959 /* These assume that REGNO is a hard or pseudo reg number.
1960 They give nonzero only if REGNO is a hard reg of the suitable class
1961 or a pseudo reg currently allocated to a suitable hard reg.
1962 Since they use reg_renumber, they are safe only once reg_renumber
1963 has been allocated, which happens in local-alloc.c. */
1965 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1966 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1967 || (REGNO) == FRAME_POINTER_REGNUM \
1968 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1970 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1972 #define REGNO_OK_FOR_FP_P(REGNO) \
1973 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1974 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1975 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1976 (TARGET_V9 \
1977 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1978 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1980 /* Now macros that check whether X is a register and also,
1981 strictly, whether it is in a specified class.
1983 These macros are specific to the SPARC, and may be used only
1984 in code for printing assembler insns and in conditions for
1985 define_optimization. */
1987 /* 1 if X is an fp register. */
1989 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1991 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
1992 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
1994 /* Maximum number of registers that can appear in a valid memory address. */
1996 #define MAX_REGS_PER_ADDRESS 2
1998 /* Recognize any constant value that is a valid address.
1999 When PIC, we do not accept an address that would require a scratch reg
2000 to load into a register. */
2002 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
2004 /* Define this, so that when PIC, reload won't try to reload invalid
2005 addresses which require two reload registers. */
2007 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2009 /* Nonzero if the constant value X is a legitimate general operand.
2010 Anything can be made to work except floating point constants.
2011 If TARGET_VIS, 0.0 can be made to work as well. */
2013 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
2015 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2016 and check its validity for a certain class.
2017 We have two alternate definitions for each of them.
2018 The usual definition accepts all pseudo regs; the other rejects
2019 them unless they have been allocated suitable hard regs.
2020 The symbol REG_OK_STRICT causes the latter definition to be used.
2022 Most source files want to accept pseudo regs in the hope that
2023 they will get allocated to the class that the insn wants them to be in.
2024 Source files for reload pass need to be strict.
2025 After reload, it makes no difference, since pseudo regs have
2026 been eliminated by then. */
2028 /* Optional extra constraints for this machine.
2030 'Q' handles floating point constants which can be moved into
2031 an integer register with a single sethi instruction.
2033 'R' handles floating point constants which can be moved into
2034 an integer register with a single mov instruction.
2036 'S' handles floating point constants which can be moved into
2037 an integer register using a high/lo_sum sequence.
2039 'T' handles memory addresses where the alignment is known to
2040 be at least 8 bytes.
2042 `U' handles all pseudo registers or a hard even numbered
2043 integer register, needed for ldd/std instructions.
2045 'W' handles the memory operand when moving operands in/out
2046 of 'e' constraint floating point registers.
2048 'Y' handles the zero vector constant. */
2050 #ifndef REG_OK_STRICT
2052 /* Nonzero if X is a hard reg that can be used as an index
2053 or if it is a pseudo reg. */
2054 #define REG_OK_FOR_INDEX_P(X) \
2055 (REGNO (X) < 32 \
2056 || REGNO (X) == FRAME_POINTER_REGNUM \
2057 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2059 /* Nonzero if X is a hard reg that can be used as a base reg
2060 or if it is a pseudo reg. */
2061 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2063 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2064 'W' is like 'T' but is assumed true on arch64.
2066 Remember to accept pseudo-registers for memory constraints if reload is
2067 in progress. */
2069 #define EXTRA_CONSTRAINT(OP, C) \
2070 sparc_extra_constraint_check(OP, C, 0)
2072 #else
2074 /* Nonzero if X is a hard reg that can be used as an index. */
2075 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2076 /* Nonzero if X is a hard reg that can be used as a base reg. */
2077 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2079 #define EXTRA_CONSTRAINT(OP, C) \
2080 sparc_extra_constraint_check(OP, C, 1)
2082 #endif
2084 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2086 #ifdef HAVE_AS_OFFSETABLE_LO10
2087 #define USE_AS_OFFSETABLE_LO10 1
2088 #else
2089 #define USE_AS_OFFSETABLE_LO10 0
2090 #endif
2092 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2093 that is a valid memory address for an instruction.
2094 The MODE argument is the machine mode for the MEM expression
2095 that wants to use this address.
2097 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2098 ordinarily. This changes a bit when generating PIC.
2100 If you change this, execute "rm explow.o recog.o reload.o". */
2102 #define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
2104 #define RTX_OK_FOR_BASE_P(X) \
2105 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2106 || (GET_CODE (X) == SUBREG \
2107 && GET_CODE (SUBREG_REG (X)) == REG \
2108 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2110 #define RTX_OK_FOR_INDEX_P(X) \
2111 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2112 || (GET_CODE (X) == SUBREG \
2113 && GET_CODE (SUBREG_REG (X)) == REG \
2114 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2116 #define RTX_OK_FOR_OFFSET_P(X) \
2117 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2119 #define RTX_OK_FOR_OLO10_P(X) \
2120 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2122 #ifdef REG_OK_STRICT
2123 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2125 if (legitimate_address_p (MODE, X, 1)) \
2126 goto ADDR; \
2128 #else
2129 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2131 if (legitimate_address_p (MODE, X, 0)) \
2132 goto ADDR; \
2134 #endif
2136 /* Go to LABEL if ADDR (a legitimate address expression)
2137 has an effect that depends on the machine mode it is used for.
2139 In PIC mode,
2141 (mem:HI [%l7+a])
2143 is not equivalent to
2145 (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
2147 because [%l7+a+1] is interpreted as the address of (a+1). */
2149 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
2151 if (flag_pic == 1) \
2153 if (GET_CODE (ADDR) == PLUS) \
2155 rtx op0 = XEXP (ADDR, 0); \
2156 rtx op1 = XEXP (ADDR, 1); \
2157 if (op0 == pic_offset_table_rtx \
2158 && SYMBOLIC_CONST (op1)) \
2159 goto LABEL; \
2164 /* Try machine-dependent ways of modifying an illegitimate address
2165 to be legitimate. If we find one, return the new, valid address.
2166 This macro is used in only one place: `memory_address' in explow.c.
2168 OLDX is the address as it was before break_out_memory_refs was called.
2169 In some cases it is useful to look at this to decide what needs to be done.
2171 MODE and WIN are passed so that this macro can use
2172 GO_IF_LEGITIMATE_ADDRESS.
2174 It is always safe for this macro to do nothing. It exists to recognize
2175 opportunities to optimize the output. */
2177 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2178 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2180 (X) = legitimize_address (X, OLDX, MODE); \
2181 if (memory_address_p (MODE, X)) \
2182 goto WIN; \
2185 /* Try a machine-dependent way of reloading an illegitimate address
2186 operand. If we find one, push the reload and jump to WIN. This
2187 macro is used in only one place: `find_reloads_address' in reload.c.
2189 For SPARC 32, we wish to handle addresses by splitting them into
2190 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2191 This cuts the number of extra insns by one.
2193 Do nothing when generating PIC code and the address is a
2194 symbolic operand or requires a scratch register. */
2196 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2197 do { \
2198 /* Decompose SImode constants into hi+lo_sum. We do have to \
2199 rerecognize what we produce, so be careful. */ \
2200 if (CONSTANT_P (X) \
2201 && (MODE != TFmode || TARGET_ARCH64) \
2202 && GET_MODE (X) == SImode \
2203 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2204 && ! (flag_pic \
2205 && (symbolic_operand (X, Pmode) \
2206 || pic_address_needs_scratch (X))) \
2207 && sparc_cmodel <= CM_MEDLOW) \
2209 X = gen_rtx_LO_SUM (GET_MODE (X), \
2210 gen_rtx_HIGH (GET_MODE (X), X), X); \
2211 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2212 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2213 OPNUM, TYPE); \
2214 goto WIN; \
2216 /* ??? 64-bit reloads. */ \
2217 } while (0)
2219 /* Specify the machine mode that this machine uses
2220 for the index in the tablejump instruction. */
2221 /* If we ever implement any of the full models (such as CM_FULLANY),
2222 this has to be DImode in that case */
2223 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2224 #define CASE_VECTOR_MODE \
2225 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2226 #else
2227 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2228 we have to sign extend which slows things down. */
2229 #define CASE_VECTOR_MODE \
2230 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2231 #endif
2233 /* Define this as 1 if `char' should by default be signed; else as 0. */
2234 #define DEFAULT_SIGNED_CHAR 1
2236 /* Max number of bytes we can move from memory to memory
2237 in one reasonably fast instruction. */
2238 #define MOVE_MAX 8
2240 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2241 move-instruction pairs, we will do a movmem or libcall instead. */
2243 #define MOVE_RATIO (optimize_size ? 3 : 8)
2245 /* Define if operations between registers always perform the operation
2246 on the full register even if a narrower mode is specified. */
2247 #define WORD_REGISTER_OPERATIONS
2249 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2250 will either zero-extend or sign-extend. The value of this macro should
2251 be the code that says which one of the two operations is implicitly
2252 done, UNKNOWN if none. */
2253 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2255 /* Nonzero if access to memory by bytes is slow and undesirable.
2256 For RISC chips, it means that access to memory by bytes is no
2257 better than access by words when possible, so grab a whole word
2258 and maybe make use of that. */
2259 #define SLOW_BYTE_ACCESS 1
2261 /* Define this to be nonzero if shift instructions ignore all but the low-order
2262 few bits. */
2263 #define SHIFT_COUNT_TRUNCATED 1
2265 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2266 is done just by pretending it is already truncated. */
2267 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2269 /* Specify the machine mode used for addresses. */
2270 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2272 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2273 return the mode to be used for the comparison. For floating-point,
2274 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2275 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2276 processing is needed. */
2277 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2279 /* Return nonzero if MODE implies a floating point inequality can be
2280 reversed. For SPARC this is always true because we have a full
2281 compliment of ordered and unordered comparisons, but until generic
2282 code knows how to reverse it correctly we keep the old definition. */
2283 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2285 /* A function address in a call instruction for indexing purposes. */
2286 #define FUNCTION_MODE Pmode
2288 /* Define this if addresses of constant functions
2289 shouldn't be put through pseudo regs where they can be cse'd.
2290 Desirable on machines where ordinary constants are expensive
2291 but a CALL with constant address is cheap. */
2292 #define NO_FUNCTION_CSE
2294 /* alloca should avoid clobbering the old register save area. */
2295 #define SETJMP_VIA_SAVE_AREA
2297 /* The _Q_* comparison libcalls return booleans. */
2298 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2300 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2301 that the inputs are fully consumed before the output memory is clobbered. */
2303 #define TARGET_BUGGY_QP_LIB 0
2305 /* Assume by default that we do not have the Solaris-specific conversion
2306 routines nor 64-bit integer multiply and divide routines. */
2308 #define SUN_CONVERSION_LIBFUNCS 0
2309 #define DITF_CONVERSION_LIBFUNCS 0
2310 #define SUN_INTEGER_MULTIPLY_64 0
2312 /* Compute extra cost of moving data between one register class
2313 and another. */
2314 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2315 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2316 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2317 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2318 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2319 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2320 || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2322 /* Provide the cost of a branch. For pre-v9 processors we use
2323 a value of 3 to take into account the potential annulling of
2324 the delay slot (which ends up being a bubble in the pipeline slot)
2325 plus a cycle to take into consideration the instruction cache
2326 effects.
2328 On v9 and later, which have branch prediction facilities, we set
2329 it to the depth of the pipeline as that is the cost of a
2330 mispredicted branch. */
2332 #define BRANCH_COST \
2333 ((sparc_cpu == PROCESSOR_V9 \
2334 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2335 ? 7 \
2336 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2337 ? 9 : 3))
2339 #define PREFETCH_BLOCK \
2340 ((sparc_cpu == PROCESSOR_ULTRASPARC \
2341 || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2342 ? 64 : 32)
2344 #define SIMULTANEOUS_PREFETCHES \
2345 ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2346 ? 2 \
2347 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2348 ? 8 : 3))
2350 /* Control the assembler format that we output. */
2352 /* A C string constant describing how to begin a comment in the target
2353 assembler language. The compiler assumes that the comment will end at
2354 the end of the line. */
2356 #define ASM_COMMENT_START "!"
2358 /* Output to assembler file text saying following lines
2359 may contain character constants, extra white space, comments, etc. */
2361 #define ASM_APP_ON ""
2363 /* Output to assembler file text saying following lines
2364 no longer contain unusual constructs. */
2366 #define ASM_APP_OFF ""
2368 /* How to refer to registers in assembler output.
2369 This sequence is indexed by compiler's hard-register-number (see above). */
2371 #define REGISTER_NAMES \
2372 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2373 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2374 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2375 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2376 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2377 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2378 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2379 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2380 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2381 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2382 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2383 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2384 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2386 /* Define additional names for use in asm clobbers and asm declarations. */
2388 #define ADDITIONAL_REGISTER_NAMES \
2389 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2391 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2392 can run past this up to a continuation point. Once we used 1500, but
2393 a single entry in C++ can run more than 500 bytes, due to the length of
2394 mangled symbol names. dbxout.c should really be fixed to do
2395 continuations when they are actually needed instead of trying to
2396 guess... */
2397 #define DBX_CONTIN_LENGTH 1000
2399 /* This is how to output a command to make the user-level label named NAME
2400 defined for reference from other files. */
2402 /* Globalizing directive for a label. */
2403 #define GLOBAL_ASM_OP "\t.global "
2405 /* The prefix to add to user-visible assembler symbols. */
2407 #define USER_LABEL_PREFIX "_"
2409 /* This is how to store into the string LABEL
2410 the symbol_ref name of an internal numbered label where
2411 PREFIX is the class of label and NUM is the number within the class.
2412 This is suitable for output with `assemble_name'. */
2414 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2415 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2417 /* This is how we hook in and defer the case-vector until the end of
2418 the function. */
2419 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2420 sparc_defer_case_vector ((LAB),(VEC), 0)
2422 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2423 sparc_defer_case_vector ((LAB),(VEC), 1)
2425 /* This is how to output an element of a case-vector that is absolute. */
2427 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2428 do { \
2429 char label[30]; \
2430 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2431 if (CASE_VECTOR_MODE == SImode) \
2432 fprintf (FILE, "\t.word\t"); \
2433 else \
2434 fprintf (FILE, "\t.xword\t"); \
2435 assemble_name (FILE, label); \
2436 fputc ('\n', FILE); \
2437 } while (0)
2439 /* This is how to output an element of a case-vector that is relative.
2440 (SPARC uses such vectors only when generating PIC.) */
2442 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2443 do { \
2444 char label[30]; \
2445 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2446 if (CASE_VECTOR_MODE == SImode) \
2447 fprintf (FILE, "\t.word\t"); \
2448 else \
2449 fprintf (FILE, "\t.xword\t"); \
2450 assemble_name (FILE, label); \
2451 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2452 fputc ('-', FILE); \
2453 assemble_name (FILE, label); \
2454 fputc ('\n', FILE); \
2455 } while (0)
2457 /* This is what to output before and after case-vector (both
2458 relative and absolute). If .subsection -1 works, we put case-vectors
2459 at the beginning of the current section. */
2461 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2463 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2464 fprintf(FILE, "\t.subsection\t-1\n")
2466 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2467 fprintf(FILE, "\t.previous\n")
2469 #endif
2471 /* This is how to output an assembler line
2472 that says to advance the location counter
2473 to a multiple of 2**LOG bytes. */
2475 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2476 if ((LOG) != 0) \
2477 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2479 /* This is how to output an assembler line that says to advance
2480 the location counter to a multiple of 2**LOG bytes using the
2481 "nop" instruction as padding. */
2482 #define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG) \
2483 if ((LOG) != 0) \
2484 fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2486 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2487 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2489 /* This says how to output an assembler line
2490 to define a global common symbol. */
2492 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2493 ( fputs ("\t.common ", (FILE)), \
2494 assemble_name ((FILE), (NAME)), \
2495 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2497 /* This says how to output an assembler line to define a local common
2498 symbol. */
2500 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2501 ( fputs ("\t.reserve ", (FILE)), \
2502 assemble_name ((FILE), (NAME)), \
2503 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
2504 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2506 /* A C statement (sans semicolon) to output to the stdio stream
2507 FILE the assembler definition of uninitialized global DECL named
2508 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2509 Try to use asm_output_aligned_bss to implement this macro. */
2511 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2512 do { \
2513 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2514 } while (0)
2516 #define IDENT_ASM_OP "\t.ident\t"
2518 /* Output #ident as a .ident. */
2520 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2521 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2523 /* Prettify the assembly. */
2525 extern int sparc_indent_opcode;
2527 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
2528 do { \
2529 if (sparc_indent_opcode) \
2531 putc (' ', FILE); \
2532 sparc_indent_opcode = 0; \
2534 } while (0)
2536 /* Emit a dtp-relative reference to a TLS variable. */
2538 #ifdef HAVE_AS_TLS
2539 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2540 sparc_output_dwarf_dtprel (FILE, SIZE, X)
2541 #endif
2543 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2544 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '(' \
2545 || (CHAR) == ')' || (CHAR) == '_' || (CHAR) == '&')
2547 /* Print operand X (an rtx) in assembler syntax to file FILE.
2548 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2549 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2551 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2553 /* Print a memory address as an operand to reference that memory location. */
2555 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2556 { register rtx base, index = 0; \
2557 int offset = 0; \
2558 register rtx addr = ADDR; \
2559 if (GET_CODE (addr) == REG) \
2560 fputs (reg_names[REGNO (addr)], FILE); \
2561 else if (GET_CODE (addr) == PLUS) \
2563 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2564 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2565 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2566 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2567 else \
2568 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2569 if (GET_CODE (base) == LO_SUM) \
2571 if (! USE_AS_OFFSETABLE_LO10 \
2572 || TARGET_ARCH32 \
2573 || TARGET_CM_MEDMID) \
2574 abort (); \
2575 output_operand (XEXP (base, 0), 0); \
2576 fputs ("+%lo(", FILE); \
2577 output_address (XEXP (base, 1)); \
2578 fprintf (FILE, ")+%d", offset); \
2580 else \
2582 fputs (reg_names[REGNO (base)], FILE); \
2583 if (index == 0) \
2584 fprintf (FILE, "%+d", offset); \
2585 else if (GET_CODE (index) == REG) \
2586 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2587 else if (GET_CODE (index) == SYMBOL_REF \
2588 || GET_CODE (index) == CONST) \
2589 fputc ('+', FILE), output_addr_const (FILE, index); \
2590 else abort (); \
2593 else if (GET_CODE (addr) == MINUS \
2594 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2596 output_addr_const (FILE, XEXP (addr, 0)); \
2597 fputs ("-(", FILE); \
2598 output_addr_const (FILE, XEXP (addr, 1)); \
2599 fputs ("-.)", FILE); \
2601 else if (GET_CODE (addr) == LO_SUM) \
2603 output_operand (XEXP (addr, 0), 0); \
2604 if (TARGET_CM_MEDMID) \
2605 fputs ("+%l44(", FILE); \
2606 else \
2607 fputs ("+%lo(", FILE); \
2608 output_address (XEXP (addr, 1)); \
2609 fputc (')', FILE); \
2611 else if (flag_pic && GET_CODE (addr) == CONST \
2612 && GET_CODE (XEXP (addr, 0)) == MINUS \
2613 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2614 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2615 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2617 addr = XEXP (addr, 0); \
2618 output_addr_const (FILE, XEXP (addr, 0)); \
2619 /* Group the args of the second CONST in parenthesis. */ \
2620 fputs ("-(", FILE); \
2621 /* Skip past the second CONST--it does nothing for us. */\
2622 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2623 /* Close the parenthesis. */ \
2624 fputc (')', FILE); \
2626 else \
2628 output_addr_const (FILE, addr); \
2632 #ifdef HAVE_AS_TLS
2633 #define TARGET_TLS 1
2634 #else
2635 #define TARGET_TLS 0
2636 #endif
2637 #define TARGET_SUN_TLS TARGET_TLS
2638 #define TARGET_GNU_TLS 0
2640 /* Define the codes that are matched by predicates in sparc.c. */
2642 #define PREDICATE_CODES \
2643 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2644 {"const1_operand", {CONST_INT}}, \
2645 {"fp_zero_operand", {CONST_DOUBLE}}, \
2646 {"fp_register_operand", {SUBREG, REG}}, \
2647 {"intreg_operand", {SUBREG, REG}}, \
2648 {"fcc_reg_operand", {REG}}, \
2649 {"fcc0_reg_operand", {REG}}, \
2650 {"icc_or_fcc_reg_operand", {REG}}, \
2651 {"call_operand", {MEM}}, \
2652 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
2653 SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
2654 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2655 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2656 {"label_ref_operand", {LABEL_REF}}, \
2657 {"sp64_medium_pic_operand", {CONST}}, \
2658 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
2659 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
2660 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
2661 {"splittable_symbolic_memory_operand", {MEM}}, \
2662 {"splittable_immediate_memory_operand", {MEM}}, \
2663 {"eq_or_neq", {EQ, NE}}, \
2664 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
2665 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2666 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2667 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
2668 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
2669 {"cc_arithop", {AND, IOR, XOR}}, \
2670 {"cc_arithopn", {AND, IOR}}, \
2671 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2672 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
2673 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2674 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
2675 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2676 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2677 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2678 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2679 {"small_int", {CONST_INT}}, \
2680 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
2681 {"uns_small_int", {CONST_INT}}, \
2682 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
2683 {"clobbered_register", {REG}}, \
2684 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
2685 {"compare_operand", {SUBREG, REG, ZERO_EXTRACT}}, \
2686 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
2687 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}}, \
2688 {"tgd_symbolic_operand", {SYMBOL_REF}}, \
2689 {"tld_symbolic_operand", {SYMBOL_REF}}, \
2690 {"tie_symbolic_operand", {SYMBOL_REF}}, \
2691 {"tle_symbolic_operand", {SYMBOL_REF}},
2693 /* The number of Pmode words for the setjmp buffer. */
2694 #define JMP_BUF_SIZE 12
2696 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)