Merge from mainline (gomp-merge-2005-02-26).
[official-gcc.git] / gcc / ada / checks.adb
blob6801837afc7df837fe288756bff03c8e583d4f00
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Ch2; use Exp_Ch2;
32 with Exp_Util; use Exp_Util;
33 with Elists; use Elists;
34 with Eval_Fat; use Eval_Fat;
35 with Freeze; use Freeze;
36 with Lib; use Lib;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Eval; use Sem_Eval;
46 with Sem_Ch3; use Sem_Ch3;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Res; use Sem_Res;
49 with Sem_Util; use Sem_Util;
50 with Sem_Warn; use Sem_Warn;
51 with Sinfo; use Sinfo;
52 with Sinput; use Sinput;
53 with Snames; use Snames;
54 with Sprint; use Sprint;
55 with Stand; use Stand;
56 with Targparm; use Targparm;
57 with Tbuild; use Tbuild;
58 with Ttypes; use Ttypes;
59 with Urealp; use Urealp;
60 with Validsw; use Validsw;
62 package body Checks is
64 -- General note: many of these routines are concerned with generating
65 -- checking code to make sure that constraint error is raised at runtime.
66 -- Clearly this code is only needed if the expander is active, since
67 -- otherwise we will not be generating code or going into the runtime
68 -- execution anyway.
70 -- We therefore disconnect most of these checks if the expander is
71 -- inactive. This has the additional benefit that we do not need to
72 -- worry about the tree being messed up by previous errors (since errors
73 -- turn off expansion anyway).
75 -- There are a few exceptions to the above rule. For instance routines
76 -- such as Apply_Scalar_Range_Check that do not insert any code can be
77 -- safely called even when the Expander is inactive (but Errors_Detected
78 -- is 0). The benefit of executing this code when expansion is off, is
79 -- the ability to emit constraint error warning for static expressions
80 -- even when we are not generating code.
82 -------------------------------------
83 -- Suppression of Redundant Checks --
84 -------------------------------------
86 -- This unit implements a limited circuit for removal of redundant
87 -- checks. The processing is based on a tracing of simple sequential
88 -- flow. For any sequence of statements, we save expressions that are
89 -- marked to be checked, and then if the same expression appears later
90 -- with the same check, then under certain circumstances, the second
91 -- check can be suppressed.
93 -- Basically, we can suppress the check if we know for certain that
94 -- the previous expression has been elaborated (together with its
95 -- check), and we know that the exception frame is the same, and that
96 -- nothing has happened to change the result of the exception.
98 -- Let us examine each of these three conditions in turn to describe
99 -- how we ensure that this condition is met.
101 -- First, we need to know for certain that the previous expression has
102 -- been executed. This is done principly by the mechanism of calling
103 -- Conditional_Statements_Begin at the start of any statement sequence
104 -- and Conditional_Statements_End at the end. The End call causes all
105 -- checks remembered since the Begin call to be discarded. This does
106 -- miss a few cases, notably the case of a nested BEGIN-END block with
107 -- no exception handlers. But the important thing is to be conservative.
108 -- The other protection is that all checks are discarded if a label
109 -- is encountered, since then the assumption of sequential execution
110 -- is violated, and we don't know enough about the flow.
112 -- Second, we need to know that the exception frame is the same. We
113 -- do this by killing all remembered checks when we enter a new frame.
114 -- Again, that's over-conservative, but generally the cases we can help
115 -- with are pretty local anyway (like the body of a loop for example).
117 -- Third, we must be sure to forget any checks which are no longer valid.
118 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
119 -- used to note any changes to local variables. We only attempt to deal
120 -- with checks involving local variables, so we do not need to worry
121 -- about global variables. Second, a call to any non-global procedure
122 -- causes us to abandon all stored checks, since such a all may affect
123 -- the values of any local variables.
125 -- The following define the data structures used to deal with remembering
126 -- checks so that redundant checks can be eliminated as described above.
128 -- Right now, the only expressions that we deal with are of the form of
129 -- simple local objects (either declared locally, or IN parameters) or
130 -- such objects plus/minus a compile time known constant. We can do
131 -- more later on if it seems worthwhile, but this catches many simple
132 -- cases in practice.
134 -- The following record type reflects a single saved check. An entry
135 -- is made in the stack of saved checks if and only if the expression
136 -- has been elaborated with the indicated checks.
138 type Saved_Check is record
139 Killed : Boolean;
140 -- Set True if entry is killed by Kill_Checks
142 Entity : Entity_Id;
143 -- The entity involved in the expression that is checked
145 Offset : Uint;
146 -- A compile time value indicating the result of adding or
147 -- subtracting a compile time value. This value is to be
148 -- added to the value of the Entity. A value of zero is
149 -- used for the case of a simple entity reference.
151 Check_Type : Character;
152 -- This is set to 'R' for a range check (in which case Target_Type
153 -- is set to the target type for the range check) or to 'O' for an
154 -- overflow check (in which case Target_Type is set to Empty).
156 Target_Type : Entity_Id;
157 -- Used only if Do_Range_Check is set. Records the target type for
158 -- the check. We need this, because a check is a duplicate only if
159 -- it has a the same target type (or more accurately one with a
160 -- range that is smaller or equal to the stored target type of a
161 -- saved check).
162 end record;
164 -- The following table keeps track of saved checks. Rather than use an
165 -- extensible table. We just use a table of fixed size, and we discard
166 -- any saved checks that do not fit. That's very unlikely to happen and
167 -- this is only an optimization in any case.
169 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
170 -- Array of saved checks
172 Num_Saved_Checks : Nat := 0;
173 -- Number of saved checks
175 -- The following stack keeps track of statement ranges. It is treated
176 -- as a stack. When Conditional_Statements_Begin is called, an entry
177 -- is pushed onto this stack containing the value of Num_Saved_Checks
178 -- at the time of the call. Then when Conditional_Statements_End is
179 -- called, this value is popped off and used to reset Num_Saved_Checks.
181 -- Note: again, this is a fixed length stack with a size that should
182 -- always be fine. If the value of the stack pointer goes above the
183 -- limit, then we just forget all saved checks.
185 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
186 Saved_Checks_TOS : Nat := 0;
188 -----------------------
189 -- Local Subprograms --
190 -----------------------
192 procedure Apply_Float_Conversion_Check
193 (Ck_Node : Node_Id;
194 Target_Typ : Entity_Id);
195 -- The checks on a conversion from a floating-point type to an integer
196 -- type are delicate. They have to be performed before conversion, they
197 -- have to raise an exception when the operand is a NaN, and rounding must
198 -- be taken into account to determine the safe bounds of the operand.
200 procedure Apply_Selected_Length_Checks
201 (Ck_Node : Node_Id;
202 Target_Typ : Entity_Id;
203 Source_Typ : Entity_Id;
204 Do_Static : Boolean);
205 -- This is the subprogram that does all the work for Apply_Length_Check
206 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
207 -- described for the above routines. The Do_Static flag indicates that
208 -- only a static check is to be done.
210 procedure Apply_Selected_Range_Checks
211 (Ck_Node : Node_Id;
212 Target_Typ : Entity_Id;
213 Source_Typ : Entity_Id;
214 Do_Static : Boolean);
215 -- This is the subprogram that does all the work for Apply_Range_Check.
216 -- Expr, Target_Typ and Source_Typ are as described for the above
217 -- routine. The Do_Static flag indicates that only a static check is
218 -- to be done.
220 procedure Find_Check
221 (Expr : Node_Id;
222 Check_Type : Character;
223 Target_Type : Entity_Id;
224 Entry_OK : out Boolean;
225 Check_Num : out Nat;
226 Ent : out Entity_Id;
227 Ofs : out Uint);
228 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
229 -- to see if a check is of the form for optimization, and if so, to see
230 -- if it has already been performed. Expr is the expression to check,
231 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
232 -- Target_Type is the target type for a range check, and Empty for an
233 -- overflow check. If the entry is not of the form for optimization,
234 -- then Entry_OK is set to False, and the remaining out parameters
235 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
236 -- entity and offset from the expression. Check_Num is the number of
237 -- a matching saved entry in Saved_Checks, or zero if no such entry
238 -- is located.
240 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
241 -- If a discriminal is used in constraining a prival, Return reference
242 -- to the discriminal of the protected body (which renames the parameter
243 -- of the enclosing protected operation). This clumsy transformation is
244 -- needed because privals are created too late and their actual subtypes
245 -- are not available when analysing the bodies of the protected operations.
246 -- To be cleaned up???
248 function Guard_Access
249 (Cond : Node_Id;
250 Loc : Source_Ptr;
251 Ck_Node : Node_Id) return Node_Id;
252 -- In the access type case, guard the test with a test to ensure
253 -- that the access value is non-null, since the checks do not
254 -- not apply to null access values.
256 procedure Install_Null_Excluding_Check (N : Node_Id);
257 -- Determines whether an access node requires a runtime access check and
258 -- if so inserts the appropriate run-time check
260 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
261 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
262 -- Constraint_Error node.
264 function Selected_Length_Checks
265 (Ck_Node : Node_Id;
266 Target_Typ : Entity_Id;
267 Source_Typ : Entity_Id;
268 Warn_Node : Node_Id) return Check_Result;
269 -- Like Apply_Selected_Length_Checks, except it doesn't modify
270 -- anything, just returns a list of nodes as described in the spec of
271 -- this package for the Range_Check function.
273 function Selected_Range_Checks
274 (Ck_Node : Node_Id;
275 Target_Typ : Entity_Id;
276 Source_Typ : Entity_Id;
277 Warn_Node : Node_Id) return Check_Result;
278 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
279 -- just returns a list of nodes as described in the spec of this package
280 -- for the Range_Check function.
282 ------------------------------
283 -- Access_Checks_Suppressed --
284 ------------------------------
286 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
287 begin
288 if Present (E) and then Checks_May_Be_Suppressed (E) then
289 return Is_Check_Suppressed (E, Access_Check);
290 else
291 return Scope_Suppress (Access_Check);
292 end if;
293 end Access_Checks_Suppressed;
295 -------------------------------------
296 -- Accessibility_Checks_Suppressed --
297 -------------------------------------
299 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
300 begin
301 if Present (E) and then Checks_May_Be_Suppressed (E) then
302 return Is_Check_Suppressed (E, Accessibility_Check);
303 else
304 return Scope_Suppress (Accessibility_Check);
305 end if;
306 end Accessibility_Checks_Suppressed;
308 -------------------------
309 -- Append_Range_Checks --
310 -------------------------
312 procedure Append_Range_Checks
313 (Checks : Check_Result;
314 Stmts : List_Id;
315 Suppress_Typ : Entity_Id;
316 Static_Sloc : Source_Ptr;
317 Flag_Node : Node_Id)
319 Internal_Flag_Node : constant Node_Id := Flag_Node;
320 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
322 Checks_On : constant Boolean :=
323 (not Index_Checks_Suppressed (Suppress_Typ))
324 or else
325 (not Range_Checks_Suppressed (Suppress_Typ));
327 begin
328 -- For now we just return if Checks_On is false, however this should
329 -- be enhanced to check for an always True value in the condition
330 -- and to generate a compilation warning???
332 if not Checks_On then
333 return;
334 end if;
336 for J in 1 .. 2 loop
337 exit when No (Checks (J));
339 if Nkind (Checks (J)) = N_Raise_Constraint_Error
340 and then Present (Condition (Checks (J)))
341 then
342 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
343 Append_To (Stmts, Checks (J));
344 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
345 end if;
347 else
348 Append_To
349 (Stmts,
350 Make_Raise_Constraint_Error (Internal_Static_Sloc,
351 Reason => CE_Range_Check_Failed));
352 end if;
353 end loop;
354 end Append_Range_Checks;
356 ------------------------
357 -- Apply_Access_Check --
358 ------------------------
360 procedure Apply_Access_Check (N : Node_Id) is
361 P : constant Node_Id := Prefix (N);
363 begin
364 if Inside_A_Generic then
365 return;
366 end if;
368 if Is_Entity_Name (P) then
369 Check_Unset_Reference (P);
370 end if;
372 -- We do not need access checks if prefix is known to be non-null
374 if Known_Non_Null (P) then
375 return;
377 -- We do not need access checks if they are suppressed on the type
379 elsif Access_Checks_Suppressed (Etype (P)) then
380 return;
382 -- We do not need checks if we are not generating code (i.e. the
383 -- expander is not active). This is not just an optimization, there
384 -- are cases (e.g. with pragma Debug) where generating the checks
385 -- can cause real trouble).
387 elsif not Expander_Active then
388 return;
389 end if;
391 -- Case where P is an entity name
393 if Is_Entity_Name (P) then
394 declare
395 Ent : constant Entity_Id := Entity (P);
397 begin
398 if Access_Checks_Suppressed (Ent) then
399 return;
400 end if;
402 -- Otherwise we are going to generate an access check, and
403 -- are we have done it, the entity will now be known non null
404 -- But we have to check for safe sequential semantics here!
406 if Safe_To_Capture_Value (N, Ent) then
407 Set_Is_Known_Non_Null (Ent);
408 end if;
409 end;
410 end if;
412 -- Access check is required
414 Install_Null_Excluding_Check (P);
415 end Apply_Access_Check;
417 -------------------------------
418 -- Apply_Accessibility_Check --
419 -------------------------------
421 procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id) is
422 Loc : constant Source_Ptr := Sloc (N);
423 Param_Ent : constant Entity_Id := Param_Entity (N);
424 Param_Level : Node_Id;
425 Type_Level : Node_Id;
427 begin
428 if Inside_A_Generic then
429 return;
431 -- Only apply the run-time check if the access parameter
432 -- has an associated extra access level parameter and
433 -- when the level of the type is less deep than the level
434 -- of the access parameter.
436 elsif Present (Param_Ent)
437 and then Present (Extra_Accessibility (Param_Ent))
438 and then UI_Gt (Object_Access_Level (N),
439 Type_Access_Level (Typ))
440 and then not Accessibility_Checks_Suppressed (Param_Ent)
441 and then not Accessibility_Checks_Suppressed (Typ)
442 then
443 Param_Level :=
444 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
446 Type_Level :=
447 Make_Integer_Literal (Loc, Type_Access_Level (Typ));
449 -- Raise Program_Error if the accessibility level of the
450 -- the access parameter is deeper than the level of the
451 -- target access type.
453 Insert_Action (N,
454 Make_Raise_Program_Error (Loc,
455 Condition =>
456 Make_Op_Gt (Loc,
457 Left_Opnd => Param_Level,
458 Right_Opnd => Type_Level),
459 Reason => PE_Accessibility_Check_Failed));
461 Analyze_And_Resolve (N);
462 end if;
463 end Apply_Accessibility_Check;
465 ---------------------------
466 -- Apply_Alignment_Check --
467 ---------------------------
469 procedure Apply_Alignment_Check (E : Entity_Id; N : Node_Id) is
470 AC : constant Node_Id := Address_Clause (E);
471 Typ : constant Entity_Id := Etype (E);
472 Expr : Node_Id;
473 Loc : Source_Ptr;
475 Alignment_Required : constant Boolean := Maximum_Alignment > 1;
476 -- Constant to show whether target requires alignment checks
478 begin
479 -- See if check needed. Note that we never need a check if the
480 -- maximum alignment is one, since the check will always succeed
482 if No (AC)
483 or else not Check_Address_Alignment (AC)
484 or else not Alignment_Required
485 then
486 return;
487 end if;
489 Loc := Sloc (AC);
490 Expr := Expression (AC);
492 if Nkind (Expr) = N_Unchecked_Type_Conversion then
493 Expr := Expression (Expr);
495 elsif Nkind (Expr) = N_Function_Call
496 and then Is_Entity_Name (Name (Expr))
497 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
498 then
499 Expr := First (Parameter_Associations (Expr));
501 if Nkind (Expr) = N_Parameter_Association then
502 Expr := Explicit_Actual_Parameter (Expr);
503 end if;
504 end if;
506 -- Here Expr is the address value. See if we know that the
507 -- value is unacceptable at compile time.
509 if Compile_Time_Known_Value (Expr)
510 and then (Known_Alignment (E) or else Known_Alignment (Typ))
511 then
512 declare
513 AL : Uint := Alignment (Typ);
515 begin
516 -- The object alignment might be more restrictive than the
517 -- type alignment.
519 if Known_Alignment (E) then
520 AL := Alignment (E);
521 end if;
523 if Expr_Value (Expr) mod AL /= 0 then
524 Insert_Action (N,
525 Make_Raise_Program_Error (Loc,
526 Reason => PE_Misaligned_Address_Value));
527 Error_Msg_NE
528 ("?specified address for& not " &
529 "consistent with alignment ('R'M 13.3(27))", Expr, E);
530 end if;
531 end;
533 -- Here we do not know if the value is acceptable, generate
534 -- code to raise PE if alignment is inappropriate.
536 else
537 -- Skip generation of this code if we don't want elab code
539 if not Restriction_Active (No_Elaboration_Code) then
540 Insert_After_And_Analyze (N,
541 Make_Raise_Program_Error (Loc,
542 Condition =>
543 Make_Op_Ne (Loc,
544 Left_Opnd =>
545 Make_Op_Mod (Loc,
546 Left_Opnd =>
547 Unchecked_Convert_To
548 (RTE (RE_Integer_Address),
549 Duplicate_Subexpr_No_Checks (Expr)),
550 Right_Opnd =>
551 Make_Attribute_Reference (Loc,
552 Prefix => New_Occurrence_Of (E, Loc),
553 Attribute_Name => Name_Alignment)),
554 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
555 Reason => PE_Misaligned_Address_Value),
556 Suppress => All_Checks);
557 end if;
558 end if;
560 return;
562 exception
563 when RE_Not_Available =>
564 return;
565 end Apply_Alignment_Check;
567 -------------------------------------
568 -- Apply_Arithmetic_Overflow_Check --
569 -------------------------------------
571 -- This routine is called only if the type is an integer type, and
572 -- a software arithmetic overflow check must be performed for op
573 -- (add, subtract, multiply). The check is performed only if
574 -- Software_Overflow_Checking is enabled and Do_Overflow_Check
575 -- is set. In this case we expand the operation into a more complex
576 -- sequence of tests that ensures that overflow is properly caught.
578 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
579 Loc : constant Source_Ptr := Sloc (N);
580 Typ : constant Entity_Id := Etype (N);
581 Rtyp : constant Entity_Id := Root_Type (Typ);
582 Siz : constant Int := UI_To_Int (Esize (Rtyp));
583 Dsiz : constant Int := Siz * 2;
584 Opnod : Node_Id;
585 Ctyp : Entity_Id;
586 Opnd : Node_Id;
587 Cent : RE_Id;
589 begin
590 -- Skip this if overflow checks are done in back end, or the overflow
591 -- flag is not set anyway, or we are not doing code expansion.
593 if Backend_Overflow_Checks_On_Target
594 or else not Do_Overflow_Check (N)
595 or else not Expander_Active
596 then
597 return;
598 end if;
600 -- Otherwise, we generate the full general code for front end overflow
601 -- detection, which works by doing arithmetic in a larger type:
603 -- x op y
605 -- is expanded into
607 -- Typ (Checktyp (x) op Checktyp (y));
609 -- where Typ is the type of the original expression, and Checktyp is
610 -- an integer type of sufficient length to hold the largest possible
611 -- result.
613 -- In the case where check type exceeds the size of Long_Long_Integer,
614 -- we use a different approach, expanding to:
616 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
618 -- where xxx is Add, Multiply or Subtract as appropriate
620 -- Find check type if one exists
622 if Dsiz <= Standard_Integer_Size then
623 Ctyp := Standard_Integer;
625 elsif Dsiz <= Standard_Long_Long_Integer_Size then
626 Ctyp := Standard_Long_Long_Integer;
628 -- No check type exists, use runtime call
630 else
631 if Nkind (N) = N_Op_Add then
632 Cent := RE_Add_With_Ovflo_Check;
634 elsif Nkind (N) = N_Op_Multiply then
635 Cent := RE_Multiply_With_Ovflo_Check;
637 else
638 pragma Assert (Nkind (N) = N_Op_Subtract);
639 Cent := RE_Subtract_With_Ovflo_Check;
640 end if;
642 Rewrite (N,
643 OK_Convert_To (Typ,
644 Make_Function_Call (Loc,
645 Name => New_Reference_To (RTE (Cent), Loc),
646 Parameter_Associations => New_List (
647 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
648 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
650 Analyze_And_Resolve (N, Typ);
651 return;
652 end if;
654 -- If we fall through, we have the case where we do the arithmetic in
655 -- the next higher type and get the check by conversion. In these cases
656 -- Ctyp is set to the type to be used as the check type.
658 Opnod := Relocate_Node (N);
660 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
662 Analyze (Opnd);
663 Set_Etype (Opnd, Ctyp);
664 Set_Analyzed (Opnd, True);
665 Set_Left_Opnd (Opnod, Opnd);
667 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
669 Analyze (Opnd);
670 Set_Etype (Opnd, Ctyp);
671 Set_Analyzed (Opnd, True);
672 Set_Right_Opnd (Opnod, Opnd);
674 -- The type of the operation changes to the base type of the check
675 -- type, and we reset the overflow check indication, since clearly
676 -- no overflow is possible now that we are using a double length
677 -- type. We also set the Analyzed flag to avoid a recursive attempt
678 -- to expand the node.
680 Set_Etype (Opnod, Base_Type (Ctyp));
681 Set_Do_Overflow_Check (Opnod, False);
682 Set_Analyzed (Opnod, True);
684 -- Now build the outer conversion
686 Opnd := OK_Convert_To (Typ, Opnod);
687 Analyze (Opnd);
688 Set_Etype (Opnd, Typ);
690 -- In the discrete type case, we directly generate the range check
691 -- for the outer operand. This range check will implement the required
692 -- overflow check.
694 if Is_Discrete_Type (Typ) then
695 Rewrite (N, Opnd);
696 Generate_Range_Check (Expression (N), Typ, CE_Overflow_Check_Failed);
698 -- For other types, we enable overflow checking on the conversion,
699 -- after setting the node as analyzed to prevent recursive attempts
700 -- to expand the conversion node.
702 else
703 Set_Analyzed (Opnd, True);
704 Enable_Overflow_Check (Opnd);
705 Rewrite (N, Opnd);
706 end if;
708 exception
709 when RE_Not_Available =>
710 return;
711 end Apply_Arithmetic_Overflow_Check;
713 ----------------------------
714 -- Apply_Array_Size_Check --
715 ----------------------------
717 -- Note: Really of course this entre check should be in the backend,
718 -- and perhaps this is not quite the right value, but it is good
719 -- enough to catch the normal cases (and the relevant ACVC tests!)
721 -- The situation is as follows. In GNAT 3 (GCC 2.x), the size in bits
722 -- is computed in 32 bits without an overflow check. That's a real
723 -- problem for Ada. So what we do in GNAT 3 is to approximate the
724 -- size of an array by manually multiplying the element size by the
725 -- number of elements, and comparing that against the allowed limits.
727 -- In GNAT 5, the size in byte is still computed in 32 bits without
728 -- an overflow check in the dynamic case, but the size in bits is
729 -- computed in 64 bits. We assume that's good enough, so we use the
730 -- size in bits for the test.
732 procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id) is
733 Loc : constant Source_Ptr := Sloc (N);
734 Ctyp : constant Entity_Id := Component_Type (Typ);
735 Ent : constant Entity_Id := Defining_Identifier (N);
736 Decl : Node_Id;
737 Lo : Node_Id;
738 Hi : Node_Id;
739 Lob : Uint;
740 Hib : Uint;
741 Siz : Uint;
742 Xtyp : Entity_Id;
743 Indx : Node_Id;
744 Sizx : Node_Id;
745 Code : Node_Id;
747 Static : Boolean := True;
748 -- Set false if any index subtye bound is non-static
750 Umark : constant Uintp.Save_Mark := Uintp.Mark;
751 -- We can throw away all the Uint computations here, since they are
752 -- done only to generate boolean test results.
754 Check_Siz : Uint;
755 -- Size to check against
757 function Is_Address_Or_Import (Decl : Node_Id) return Boolean;
758 -- Determines if Decl is an address clause or Import/Interface pragma
759 -- that references the defining identifier of the current declaration.
761 --------------------------
762 -- Is_Address_Or_Import --
763 --------------------------
765 function Is_Address_Or_Import (Decl : Node_Id) return Boolean is
766 begin
767 if Nkind (Decl) = N_At_Clause then
768 return Chars (Identifier (Decl)) = Chars (Ent);
770 elsif Nkind (Decl) = N_Attribute_Definition_Clause then
771 return
772 Chars (Decl) = Name_Address
773 and then
774 Nkind (Name (Decl)) = N_Identifier
775 and then
776 Chars (Name (Decl)) = Chars (Ent);
778 elsif Nkind (Decl) = N_Pragma then
779 if (Chars (Decl) = Name_Import
780 or else
781 Chars (Decl) = Name_Interface)
782 and then Present (Pragma_Argument_Associations (Decl))
783 then
784 declare
785 F : constant Node_Id :=
786 First (Pragma_Argument_Associations (Decl));
788 begin
789 return
790 Present (F)
791 and then
792 Present (Next (F))
793 and then
794 Nkind (Expression (Next (F))) = N_Identifier
795 and then
796 Chars (Expression (Next (F))) = Chars (Ent);
797 end;
799 else
800 return False;
801 end if;
803 else
804 return False;
805 end if;
806 end Is_Address_Or_Import;
808 -- Start of processing for Apply_Array_Size_Check
810 begin
811 -- No need for a check if not expanding
813 if not Expander_Active then
814 return;
815 end if;
817 -- No need for a check if checks are suppressed
819 if Storage_Checks_Suppressed (Typ) then
820 return;
821 end if;
823 -- It is pointless to insert this check inside an init proc, because
824 -- that's too late, we have already built the object to be the right
825 -- size, and if it's too large, too bad!
827 if Inside_Init_Proc then
828 return;
829 end if;
831 -- Look head for pragma interface/import or address clause applying
832 -- to this entity. If found, we suppress the check entirely. For now
833 -- we only look ahead 20 declarations to stop this becoming too slow
834 -- Note that eventually this whole routine gets moved to gigi.
836 Decl := N;
837 for Ctr in 1 .. 20 loop
838 Next (Decl);
839 exit when No (Decl);
841 if Is_Address_Or_Import (Decl) then
842 return;
843 end if;
844 end loop;
846 -- GCC 3 case
848 if Opt.GCC_Version = 3 then
850 -- No problem if size is known at compile time (even if the front
851 -- end does not know it) because the back end does do overflow
852 -- checking on the size in bytes if it is compile time known.
854 if Size_Known_At_Compile_Time (Typ) then
855 return;
856 end if;
857 end if;
859 -- Following code is temporarily deleted, since GCC 3 is returning
860 -- zero for size in bits of large dynamic arrays. ???
862 -- -- Otherwise we check for the size in bits exceeding 2**31-1 * 8.
863 -- -- This is the case in which we could end up with problems from
864 -- -- an unnoticed overflow in computing the size in bytes
866 -- Check_Siz := (Uint_2 ** 31 - Uint_1) * Uint_8;
868 -- Sizx :=
869 -- Make_Attribute_Reference (Loc,
870 -- Prefix => New_Occurrence_Of (Typ, Loc),
871 -- Attribute_Name => Name_Size);
873 -- GCC 2 case (for now this is for GCC 3 dynamic case as well)
875 begin
876 -- First step is to calculate the maximum number of elements. For
877 -- this calculation, we use the actual size of the subtype if it is
878 -- static, and if a bound of a subtype is non-static, we go to the
879 -- bound of the base type.
881 Siz := Uint_1;
882 Indx := First_Index (Typ);
883 while Present (Indx) loop
884 Xtyp := Etype (Indx);
885 Lo := Type_Low_Bound (Xtyp);
886 Hi := Type_High_Bound (Xtyp);
888 -- If any bound raises constraint error, we will never get this
889 -- far, so there is no need to generate any kind of check.
891 if Raises_Constraint_Error (Lo)
892 or else
893 Raises_Constraint_Error (Hi)
894 then
895 Uintp.Release (Umark);
896 return;
897 end if;
899 -- Otherwise get bounds values
901 if Is_Static_Expression (Lo) then
902 Lob := Expr_Value (Lo);
903 else
904 Lob := Expr_Value (Type_Low_Bound (Base_Type (Xtyp)));
905 Static := False;
906 end if;
908 if Is_Static_Expression (Hi) then
909 Hib := Expr_Value (Hi);
910 else
911 Hib := Expr_Value (Type_High_Bound (Base_Type (Xtyp)));
912 Static := False;
913 end if;
915 Siz := Siz * UI_Max (Hib - Lob + 1, Uint_0);
916 Next_Index (Indx);
917 end loop;
919 -- Compute the limit against which we want to check. For subprograms,
920 -- where the array will go on the stack, we use 8*2**24, which (in
921 -- bits) is the size of a 16 megabyte array.
923 if Is_Subprogram (Scope (Ent)) then
924 Check_Siz := Uint_2 ** 27;
925 else
926 Check_Siz := Uint_2 ** 31;
927 end if;
929 -- If we have all static bounds and Siz is too large, then we know
930 -- we know we have a storage error right now, so generate message
932 if Static and then Siz >= Check_Siz then
933 Insert_Action (N,
934 Make_Raise_Storage_Error (Loc,
935 Reason => SE_Object_Too_Large));
936 Error_Msg_N ("?Storage_Error will be raised at run-time", N);
937 Uintp.Release (Umark);
938 return;
939 end if;
941 -- Case of component size known at compile time. If the array
942 -- size is definitely in range, then we do not need a check.
944 if Known_Esize (Ctyp)
945 and then Siz * Esize (Ctyp) < Check_Siz
946 then
947 Uintp.Release (Umark);
948 return;
949 end if;
951 -- Here if a dynamic check is required
953 -- What we do is to build an expression for the size of the array,
954 -- which is computed as the 'Size of the array component, times
955 -- the size of each dimension.
957 Uintp.Release (Umark);
959 Sizx :=
960 Make_Attribute_Reference (Loc,
961 Prefix => New_Occurrence_Of (Ctyp, Loc),
962 Attribute_Name => Name_Size);
964 Indx := First_Index (Typ);
965 for J in 1 .. Number_Dimensions (Typ) loop
966 if Sloc (Etype (Indx)) = Sloc (N) then
967 Ensure_Defined (Etype (Indx), N);
968 end if;
970 Sizx :=
971 Make_Op_Multiply (Loc,
972 Left_Opnd => Sizx,
973 Right_Opnd =>
974 Make_Attribute_Reference (Loc,
975 Prefix => New_Occurrence_Of (Typ, Loc),
976 Attribute_Name => Name_Length,
977 Expressions => New_List (
978 Make_Integer_Literal (Loc, J))));
979 Next_Index (Indx);
980 end loop;
981 end;
983 -- Common code to actually emit the check
985 Code :=
986 Make_Raise_Storage_Error (Loc,
987 Condition =>
988 Make_Op_Ge (Loc,
989 Left_Opnd => Sizx,
990 Right_Opnd =>
991 Make_Integer_Literal (Loc,
992 Intval => Check_Siz)),
993 Reason => SE_Object_Too_Large);
995 Set_Size_Check_Code (Defining_Identifier (N), Code);
996 Insert_Action (N, Code, Suppress => All_Checks);
997 end Apply_Array_Size_Check;
999 ----------------------------
1000 -- Apply_Constraint_Check --
1001 ----------------------------
1003 procedure Apply_Constraint_Check
1004 (N : Node_Id;
1005 Typ : Entity_Id;
1006 No_Sliding : Boolean := False)
1008 Desig_Typ : Entity_Id;
1010 begin
1011 if Inside_A_Generic then
1012 return;
1014 elsif Is_Scalar_Type (Typ) then
1015 Apply_Scalar_Range_Check (N, Typ);
1017 elsif Is_Array_Type (Typ) then
1019 -- A useful optimization: an aggregate with only an Others clause
1020 -- always has the right bounds.
1022 if Nkind (N) = N_Aggregate
1023 and then No (Expressions (N))
1024 and then Nkind
1025 (First (Choices (First (Component_Associations (N)))))
1026 = N_Others_Choice
1027 then
1028 return;
1029 end if;
1031 if Is_Constrained (Typ) then
1032 Apply_Length_Check (N, Typ);
1034 if No_Sliding then
1035 Apply_Range_Check (N, Typ);
1036 end if;
1037 else
1038 Apply_Range_Check (N, Typ);
1039 end if;
1041 elsif (Is_Record_Type (Typ)
1042 or else Is_Private_Type (Typ))
1043 and then Has_Discriminants (Base_Type (Typ))
1044 and then Is_Constrained (Typ)
1045 then
1046 Apply_Discriminant_Check (N, Typ);
1048 elsif Is_Access_Type (Typ) then
1050 Desig_Typ := Designated_Type (Typ);
1052 -- No checks necessary if expression statically null
1054 if Nkind (N) = N_Null then
1055 null;
1057 -- No sliding possible on access to arrays
1059 elsif Is_Array_Type (Desig_Typ) then
1060 if Is_Constrained (Desig_Typ) then
1061 Apply_Length_Check (N, Typ);
1062 end if;
1064 Apply_Range_Check (N, Typ);
1066 elsif Has_Discriminants (Base_Type (Desig_Typ))
1067 and then Is_Constrained (Desig_Typ)
1068 then
1069 Apply_Discriminant_Check (N, Typ);
1070 end if;
1072 if Can_Never_Be_Null (Typ)
1073 and then not Can_Never_Be_Null (Etype (N))
1074 then
1075 Install_Null_Excluding_Check (N);
1076 end if;
1077 end if;
1078 end Apply_Constraint_Check;
1080 ------------------------------
1081 -- Apply_Discriminant_Check --
1082 ------------------------------
1084 procedure Apply_Discriminant_Check
1085 (N : Node_Id;
1086 Typ : Entity_Id;
1087 Lhs : Node_Id := Empty)
1089 Loc : constant Source_Ptr := Sloc (N);
1090 Do_Access : constant Boolean := Is_Access_Type (Typ);
1091 S_Typ : Entity_Id := Etype (N);
1092 Cond : Node_Id;
1093 T_Typ : Entity_Id;
1095 function Is_Aliased_Unconstrained_Component return Boolean;
1096 -- It is possible for an aliased component to have a nominal
1097 -- unconstrained subtype (through instantiation). If this is a
1098 -- discriminated component assigned in the expansion of an aggregate
1099 -- in an initialization, the check must be suppressed. This unusual
1100 -- situation requires a predicate of its own (see 7503-008).
1102 ----------------------------------------
1103 -- Is_Aliased_Unconstrained_Component --
1104 ----------------------------------------
1106 function Is_Aliased_Unconstrained_Component return Boolean is
1107 Comp : Entity_Id;
1108 Pref : Node_Id;
1110 begin
1111 if Nkind (Lhs) /= N_Selected_Component then
1112 return False;
1113 else
1114 Comp := Entity (Selector_Name (Lhs));
1115 Pref := Prefix (Lhs);
1116 end if;
1118 if Ekind (Comp) /= E_Component
1119 or else not Is_Aliased (Comp)
1120 then
1121 return False;
1122 end if;
1124 return not Comes_From_Source (Pref)
1125 and then In_Instance
1126 and then not Is_Constrained (Etype (Comp));
1127 end Is_Aliased_Unconstrained_Component;
1129 -- Start of processing for Apply_Discriminant_Check
1131 begin
1132 if Do_Access then
1133 T_Typ := Designated_Type (Typ);
1134 else
1135 T_Typ := Typ;
1136 end if;
1138 -- Nothing to do if discriminant checks are suppressed or else no code
1139 -- is to be generated
1141 if not Expander_Active
1142 or else Discriminant_Checks_Suppressed (T_Typ)
1143 then
1144 return;
1145 end if;
1147 -- No discriminant checks necessary for access when expression
1148 -- is statically Null. This is not only an optimization, this is
1149 -- fundamental because otherwise discriminant checks may be generated
1150 -- in init procs for types containing an access to a non-frozen yet
1151 -- record, causing a deadly forward reference.
1153 -- Also, if the expression is of an access type whose designated
1154 -- type is incomplete, then the access value must be null and
1155 -- we suppress the check.
1157 if Nkind (N) = N_Null then
1158 return;
1160 elsif Is_Access_Type (S_Typ) then
1161 S_Typ := Designated_Type (S_Typ);
1163 if Ekind (S_Typ) = E_Incomplete_Type then
1164 return;
1165 end if;
1166 end if;
1168 -- If an assignment target is present, then we need to generate
1169 -- the actual subtype if the target is a parameter or aliased
1170 -- object with an unconstrained nominal subtype.
1172 if Present (Lhs)
1173 and then (Present (Param_Entity (Lhs))
1174 or else (not Is_Constrained (T_Typ)
1175 and then Is_Aliased_View (Lhs)
1176 and then not Is_Aliased_Unconstrained_Component))
1177 then
1178 T_Typ := Get_Actual_Subtype (Lhs);
1179 end if;
1181 -- Nothing to do if the type is unconstrained (this is the case
1182 -- where the actual subtype in the RM sense of N is unconstrained
1183 -- and no check is required).
1185 if not Is_Constrained (T_Typ) then
1186 return;
1187 end if;
1189 -- Nothing to do if the type is an Unchecked_Union
1191 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1192 return;
1193 end if;
1195 -- Suppress checks if the subtypes are the same.
1196 -- the check must be preserved in an assignment to a formal, because
1197 -- the constraint is given by the actual.
1199 if Nkind (Original_Node (N)) /= N_Allocator
1200 and then (No (Lhs)
1201 or else not Is_Entity_Name (Lhs)
1202 or else No (Param_Entity (Lhs)))
1203 then
1204 if (Etype (N) = Typ
1205 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1206 and then not Is_Aliased_View (Lhs)
1207 then
1208 return;
1209 end if;
1211 -- We can also eliminate checks on allocators with a subtype mark
1212 -- that coincides with the context type. The context type may be a
1213 -- subtype without a constraint (common case, a generic actual).
1215 elsif Nkind (Original_Node (N)) = N_Allocator
1216 and then Is_Entity_Name (Expression (Original_Node (N)))
1217 then
1218 declare
1219 Alloc_Typ : constant Entity_Id :=
1220 Entity (Expression (Original_Node (N)));
1222 begin
1223 if Alloc_Typ = T_Typ
1224 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1225 and then Is_Entity_Name (
1226 Subtype_Indication (Parent (T_Typ)))
1227 and then Alloc_Typ = Base_Type (T_Typ))
1229 then
1230 return;
1231 end if;
1232 end;
1233 end if;
1235 -- See if we have a case where the types are both constrained, and
1236 -- all the constraints are constants. In this case, we can do the
1237 -- check successfully at compile time.
1239 -- We skip this check for the case where the node is a rewritten`
1240 -- allocator, because it already carries the context subtype, and
1241 -- extracting the discriminants from the aggregate is messy.
1243 if Is_Constrained (S_Typ)
1244 and then Nkind (Original_Node (N)) /= N_Allocator
1245 then
1246 declare
1247 DconT : Elmt_Id;
1248 Discr : Entity_Id;
1249 DconS : Elmt_Id;
1250 ItemS : Node_Id;
1251 ItemT : Node_Id;
1253 begin
1254 -- S_Typ may not have discriminants in the case where it is a
1255 -- private type completed by a default discriminated type. In
1256 -- that case, we need to get the constraints from the
1257 -- underlying_type. If the underlying type is unconstrained (i.e.
1258 -- has no default discriminants) no check is needed.
1260 if Has_Discriminants (S_Typ) then
1261 Discr := First_Discriminant (S_Typ);
1262 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1264 else
1265 Discr := First_Discriminant (Underlying_Type (S_Typ));
1266 DconS :=
1267 First_Elmt
1268 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1270 if No (DconS) then
1271 return;
1272 end if;
1274 -- A further optimization: if T_Typ is derived from S_Typ
1275 -- without imposing a constraint, no check is needed.
1277 if Nkind (Original_Node (Parent (T_Typ))) =
1278 N_Full_Type_Declaration
1279 then
1280 declare
1281 Type_Def : constant Node_Id :=
1282 Type_Definition
1283 (Original_Node (Parent (T_Typ)));
1284 begin
1285 if Nkind (Type_Def) = N_Derived_Type_Definition
1286 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1287 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1288 then
1289 return;
1290 end if;
1291 end;
1292 end if;
1293 end if;
1295 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1297 while Present (Discr) loop
1298 ItemS := Node (DconS);
1299 ItemT := Node (DconT);
1301 exit when
1302 not Is_OK_Static_Expression (ItemS)
1303 or else
1304 not Is_OK_Static_Expression (ItemT);
1306 if Expr_Value (ItemS) /= Expr_Value (ItemT) then
1307 if Do_Access then -- needs run-time check.
1308 exit;
1309 else
1310 Apply_Compile_Time_Constraint_Error
1311 (N, "incorrect value for discriminant&?",
1312 CE_Discriminant_Check_Failed, Ent => Discr);
1313 return;
1314 end if;
1315 end if;
1317 Next_Elmt (DconS);
1318 Next_Elmt (DconT);
1319 Next_Discriminant (Discr);
1320 end loop;
1322 if No (Discr) then
1323 return;
1324 end if;
1325 end;
1326 end if;
1328 -- Here we need a discriminant check. First build the expression
1329 -- for the comparisons of the discriminants:
1331 -- (n.disc1 /= typ.disc1) or else
1332 -- (n.disc2 /= typ.disc2) or else
1333 -- ...
1334 -- (n.discn /= typ.discn)
1336 Cond := Build_Discriminant_Checks (N, T_Typ);
1338 -- If Lhs is set and is a parameter, then the condition is
1339 -- guarded by: lhs'constrained and then (condition built above)
1341 if Present (Param_Entity (Lhs)) then
1342 Cond :=
1343 Make_And_Then (Loc,
1344 Left_Opnd =>
1345 Make_Attribute_Reference (Loc,
1346 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1347 Attribute_Name => Name_Constrained),
1348 Right_Opnd => Cond);
1349 end if;
1351 if Do_Access then
1352 Cond := Guard_Access (Cond, Loc, N);
1353 end if;
1355 Insert_Action (N,
1356 Make_Raise_Constraint_Error (Loc,
1357 Condition => Cond,
1358 Reason => CE_Discriminant_Check_Failed));
1359 end Apply_Discriminant_Check;
1361 ------------------------
1362 -- Apply_Divide_Check --
1363 ------------------------
1365 procedure Apply_Divide_Check (N : Node_Id) is
1366 Loc : constant Source_Ptr := Sloc (N);
1367 Typ : constant Entity_Id := Etype (N);
1368 Left : constant Node_Id := Left_Opnd (N);
1369 Right : constant Node_Id := Right_Opnd (N);
1371 LLB : Uint;
1372 Llo : Uint;
1373 Lhi : Uint;
1374 LOK : Boolean;
1375 Rlo : Uint;
1376 Rhi : Uint;
1377 ROK : Boolean;
1379 begin
1380 if Expander_Active
1381 and not Backend_Divide_Checks_On_Target
1382 then
1383 Determine_Range (Right, ROK, Rlo, Rhi);
1385 -- See if division by zero possible, and if so generate test. This
1386 -- part of the test is not controlled by the -gnato switch.
1388 if Do_Division_Check (N) then
1389 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1390 Insert_Action (N,
1391 Make_Raise_Constraint_Error (Loc,
1392 Condition =>
1393 Make_Op_Eq (Loc,
1394 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1395 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1396 Reason => CE_Divide_By_Zero));
1397 end if;
1398 end if;
1400 -- Test for extremely annoying case of xxx'First divided by -1
1402 if Do_Overflow_Check (N) then
1404 if Nkind (N) = N_Op_Divide
1405 and then Is_Signed_Integer_Type (Typ)
1406 then
1407 Determine_Range (Left, LOK, Llo, Lhi);
1408 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1410 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1411 and then
1412 ((not LOK) or else (Llo = LLB))
1413 then
1414 Insert_Action (N,
1415 Make_Raise_Constraint_Error (Loc,
1416 Condition =>
1417 Make_And_Then (Loc,
1419 Make_Op_Eq (Loc,
1420 Left_Opnd =>
1421 Duplicate_Subexpr_Move_Checks (Left),
1422 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1424 Make_Op_Eq (Loc,
1425 Left_Opnd =>
1426 Duplicate_Subexpr (Right),
1427 Right_Opnd =>
1428 Make_Integer_Literal (Loc, -1))),
1429 Reason => CE_Overflow_Check_Failed));
1430 end if;
1431 end if;
1432 end if;
1433 end if;
1434 end Apply_Divide_Check;
1436 ----------------------------------
1437 -- Apply_Float_Conversion_Check --
1438 ----------------------------------
1440 -- Let F and I be the source and target types of the conversion.
1441 -- The Ada standard specifies that a floating-point value X is rounded
1442 -- to the nearest integer, with halfway cases being rounded away from
1443 -- zero. The rounded value of X is checked against I'Range.
1445 -- The catch in the above paragraph is that there is no good way
1446 -- to know whether the round-to-integer operation resulted in
1447 -- overflow. A remedy is to perform a range check in the floating-point
1448 -- domain instead, however:
1449 -- (1) The bounds may not be known at compile time
1450 -- (2) The check must take into account possible rounding.
1451 -- (3) The range of type I may not be exactly representable in F.
1452 -- (4) The end-points I'First - 0.5 and I'Last + 0.5 may or may
1453 -- not be in range, depending on the sign of I'First and I'Last.
1454 -- (5) X may be a NaN, which will fail any comparison
1456 -- The following steps take care of these issues converting X:
1457 -- (1) If either I'First or I'Last is not known at compile time, use
1458 -- I'Base instead of I in the next three steps and perform a
1459 -- regular range check against I'Range after conversion.
1460 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1461 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1462 -- F'Machine (T) and let Lo_OK be (Lo >= I'First). In other words,
1463 -- take one of the closest floating-point numbers to T, and see if
1464 -- it is in range or not.
1465 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1466 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1467 -- F'Rounding (T) and let Hi_OK be (Hi <= I'Last).
1468 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1469 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1471 procedure Apply_Float_Conversion_Check
1472 (Ck_Node : Node_Id;
1473 Target_Typ : Entity_Id)
1475 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1476 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1477 Loc : constant Source_Ptr := Sloc (Ck_Node);
1478 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1479 Target_Base : constant Entity_Id := Implementation_Base_Type
1480 (Target_Typ);
1481 Max_Bound : constant Uint := UI_Expon
1482 (Machine_Radix (Expr_Type),
1483 Machine_Mantissa (Expr_Type) - 1) - 1;
1484 -- Largest bound, so bound plus or minus half is a machine number of F
1486 Ifirst,
1487 Ilast : Uint; -- Bounds of integer type
1488 Lo, Hi : Ureal; -- Bounds to check in floating-point domain
1489 Lo_OK,
1490 Hi_OK : Boolean; -- True iff Lo resp. Hi belongs to I'Range
1492 Lo_Chk,
1493 Hi_Chk : Node_Id; -- Expressions that are False iff check fails
1495 Reason : RT_Exception_Code;
1497 begin
1498 if not Compile_Time_Known_Value (LB)
1499 or not Compile_Time_Known_Value (HB)
1500 then
1501 declare
1502 -- First check that the value falls in the range of the base
1503 -- type, to prevent overflow during conversion and then
1504 -- perform a regular range check against the (dynamic) bounds.
1506 Par : constant Node_Id := Parent (Ck_Node);
1508 pragma Assert (Target_Base /= Target_Typ);
1509 pragma Assert (Nkind (Par) = N_Type_Conversion);
1511 Temp : constant Entity_Id :=
1512 Make_Defining_Identifier (Loc,
1513 Chars => New_Internal_Name ('T'));
1515 begin
1516 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1517 Set_Etype (Temp, Target_Base);
1519 Insert_Action (Parent (Par),
1520 Make_Object_Declaration (Loc,
1521 Defining_Identifier => Temp,
1522 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1523 Expression => New_Copy_Tree (Par)),
1524 Suppress => All_Checks);
1526 Insert_Action (Par,
1527 Make_Raise_Constraint_Error (Loc,
1528 Condition =>
1529 Make_Not_In (Loc,
1530 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1531 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1532 Reason => CE_Range_Check_Failed));
1533 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1535 return;
1536 end;
1537 end if;
1539 -- Get the bounds of the target type
1541 Ifirst := Expr_Value (LB);
1542 Ilast := Expr_Value (HB);
1544 -- Check against lower bound
1546 if abs (Ifirst) < Max_Bound then
1547 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1548 Lo_OK := (Ifirst > 0);
1549 else
1550 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1551 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1552 end if;
1554 if Lo_OK then
1556 -- Lo_Chk := (X >= Lo)
1558 Lo_Chk := Make_Op_Ge (Loc,
1559 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1560 Right_Opnd => Make_Real_Literal (Loc, Lo));
1562 else
1563 -- Lo_Chk := (X > Lo)
1565 Lo_Chk := Make_Op_Gt (Loc,
1566 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1567 Right_Opnd => Make_Real_Literal (Loc, Lo));
1568 end if;
1570 -- Check against higher bound
1572 if abs (Ilast) < Max_Bound then
1573 Hi := UR_From_Uint (Ilast) + Ureal_Half;
1574 Hi_OK := (Ilast < 0);
1575 else
1576 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1577 Hi_OK := (Hi <= UR_From_Uint (Ilast));
1578 end if;
1580 if Hi_OK then
1582 -- Hi_Chk := (X <= Hi)
1584 Hi_Chk := Make_Op_Le (Loc,
1585 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1586 Right_Opnd => Make_Real_Literal (Loc, Hi));
1588 else
1589 -- Hi_Chk := (X < Hi)
1591 Hi_Chk := Make_Op_Lt (Loc,
1592 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1593 Right_Opnd => Make_Real_Literal (Loc, Hi));
1594 end if;
1596 -- If the bounds of the target type are the same as those of the
1597 -- base type, the check is an overflow check as a range check is
1598 -- not performed in these cases.
1600 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1601 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1602 then
1603 Reason := CE_Overflow_Check_Failed;
1604 else
1605 Reason := CE_Range_Check_Failed;
1606 end if;
1608 -- Raise CE if either conditions does not hold
1610 Insert_Action (Ck_Node,
1611 Make_Raise_Constraint_Error (Loc,
1612 Condition => Make_Op_Not (Loc, Make_Op_And (Loc, Lo_Chk, Hi_Chk)),
1613 Reason => Reason));
1614 end Apply_Float_Conversion_Check;
1616 ------------------------
1617 -- Apply_Length_Check --
1618 ------------------------
1620 procedure Apply_Length_Check
1621 (Ck_Node : Node_Id;
1622 Target_Typ : Entity_Id;
1623 Source_Typ : Entity_Id := Empty)
1625 begin
1626 Apply_Selected_Length_Checks
1627 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1628 end Apply_Length_Check;
1630 -----------------------
1631 -- Apply_Range_Check --
1632 -----------------------
1634 procedure Apply_Range_Check
1635 (Ck_Node : Node_Id;
1636 Target_Typ : Entity_Id;
1637 Source_Typ : Entity_Id := Empty)
1639 begin
1640 Apply_Selected_Range_Checks
1641 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1642 end Apply_Range_Check;
1644 ------------------------------
1645 -- Apply_Scalar_Range_Check --
1646 ------------------------------
1648 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check
1649 -- flag off if it is already set on.
1651 procedure Apply_Scalar_Range_Check
1652 (Expr : Node_Id;
1653 Target_Typ : Entity_Id;
1654 Source_Typ : Entity_Id := Empty;
1655 Fixed_Int : Boolean := False)
1657 Parnt : constant Node_Id := Parent (Expr);
1658 S_Typ : Entity_Id;
1659 Arr : Node_Id := Empty; -- initialize to prevent warning
1660 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
1661 OK : Boolean;
1663 Is_Subscr_Ref : Boolean;
1664 -- Set true if Expr is a subscript
1666 Is_Unconstrained_Subscr_Ref : Boolean;
1667 -- Set true if Expr is a subscript of an unconstrained array. In this
1668 -- case we do not attempt to do an analysis of the value against the
1669 -- range of the subscript, since we don't know the actual subtype.
1671 Int_Real : Boolean;
1672 -- Set to True if Expr should be regarded as a real value
1673 -- even though the type of Expr might be discrete.
1675 procedure Bad_Value;
1676 -- Procedure called if value is determined to be out of range
1678 ---------------
1679 -- Bad_Value --
1680 ---------------
1682 procedure Bad_Value is
1683 begin
1684 Apply_Compile_Time_Constraint_Error
1685 (Expr, "value not in range of}?", CE_Range_Check_Failed,
1686 Ent => Target_Typ,
1687 Typ => Target_Typ);
1688 end Bad_Value;
1690 -- Start of processing for Apply_Scalar_Range_Check
1692 begin
1693 if Inside_A_Generic then
1694 return;
1696 -- Return if check obviously not needed. Note that we do not check
1697 -- for the expander being inactive, since this routine does not
1698 -- insert any code, but it does generate useful warnings sometimes,
1699 -- which we would like even if we are in semantics only mode.
1701 elsif Target_Typ = Any_Type
1702 or else not Is_Scalar_Type (Target_Typ)
1703 or else Raises_Constraint_Error (Expr)
1704 then
1705 return;
1706 end if;
1708 -- Now, see if checks are suppressed
1710 Is_Subscr_Ref :=
1711 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1713 if Is_Subscr_Ref then
1714 Arr := Prefix (Parnt);
1715 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1716 end if;
1718 if not Do_Range_Check (Expr) then
1720 -- Subscript reference. Check for Index_Checks suppressed
1722 if Is_Subscr_Ref then
1724 -- Check array type and its base type
1726 if Index_Checks_Suppressed (Arr_Typ)
1727 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
1728 then
1729 return;
1731 -- Check array itself if it is an entity name
1733 elsif Is_Entity_Name (Arr)
1734 and then Index_Checks_Suppressed (Entity (Arr))
1735 then
1736 return;
1738 -- Check expression itself if it is an entity name
1740 elsif Is_Entity_Name (Expr)
1741 and then Index_Checks_Suppressed (Entity (Expr))
1742 then
1743 return;
1744 end if;
1746 -- All other cases, check for Range_Checks suppressed
1748 else
1749 -- Check target type and its base type
1751 if Range_Checks_Suppressed (Target_Typ)
1752 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
1753 then
1754 return;
1756 -- Check expression itself if it is an entity name
1758 elsif Is_Entity_Name (Expr)
1759 and then Range_Checks_Suppressed (Entity (Expr))
1760 then
1761 return;
1763 -- If Expr is part of an assignment statement, then check
1764 -- left side of assignment if it is an entity name.
1766 elsif Nkind (Parnt) = N_Assignment_Statement
1767 and then Is_Entity_Name (Name (Parnt))
1768 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
1769 then
1770 return;
1771 end if;
1772 end if;
1773 end if;
1775 -- Do not set range checks if they are killed
1777 if Nkind (Expr) = N_Unchecked_Type_Conversion
1778 and then Kill_Range_Check (Expr)
1779 then
1780 return;
1781 end if;
1783 -- Do not set range checks for any values from System.Scalar_Values
1784 -- since the whole idea of such values is to avoid checking them!
1786 if Is_Entity_Name (Expr)
1787 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1788 then
1789 return;
1790 end if;
1792 -- Now see if we need a check
1794 if No (Source_Typ) then
1795 S_Typ := Etype (Expr);
1796 else
1797 S_Typ := Source_Typ;
1798 end if;
1800 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1801 return;
1802 end if;
1804 Is_Unconstrained_Subscr_Ref :=
1805 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1807 -- Always do a range check if the source type includes infinities
1808 -- and the target type does not include infinities. We do not do
1809 -- this if range checks are killed.
1811 if Is_Floating_Point_Type (S_Typ)
1812 and then Has_Infinities (S_Typ)
1813 and then not Has_Infinities (Target_Typ)
1814 then
1815 Enable_Range_Check (Expr);
1816 end if;
1818 -- Return if we know expression is definitely in the range of
1819 -- the target type as determined by Determine_Range. Right now
1820 -- we only do this for discrete types, and not fixed-point or
1821 -- floating-point types.
1823 -- The additional less-precise tests below catch these cases
1825 -- Note: skip this if we are given a source_typ, since the point
1826 -- of supplying a Source_Typ is to stop us looking at the expression.
1827 -- could sharpen this test to be out parameters only ???
1829 if Is_Discrete_Type (Target_Typ)
1830 and then Is_Discrete_Type (Etype (Expr))
1831 and then not Is_Unconstrained_Subscr_Ref
1832 and then No (Source_Typ)
1833 then
1834 declare
1835 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
1836 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1837 Lo : Uint;
1838 Hi : Uint;
1840 begin
1841 if Compile_Time_Known_Value (Tlo)
1842 and then Compile_Time_Known_Value (Thi)
1843 then
1844 declare
1845 Lov : constant Uint := Expr_Value (Tlo);
1846 Hiv : constant Uint := Expr_Value (Thi);
1848 begin
1849 -- If range is null, we for sure have a constraint error
1850 -- (we don't even need to look at the value involved,
1851 -- since all possible values will raise CE).
1853 if Lov > Hiv then
1854 Bad_Value;
1855 return;
1856 end if;
1858 -- Otherwise determine range of value
1860 Determine_Range (Expr, OK, Lo, Hi);
1862 if OK then
1864 -- If definitely in range, all OK
1866 if Lo >= Lov and then Hi <= Hiv then
1867 return;
1869 -- If definitely not in range, warn
1871 elsif Lov > Hi or else Hiv < Lo then
1872 Bad_Value;
1873 return;
1875 -- Otherwise we don't know
1877 else
1878 null;
1879 end if;
1880 end if;
1881 end;
1882 end if;
1883 end;
1884 end if;
1886 Int_Real :=
1887 Is_Floating_Point_Type (S_Typ)
1888 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
1890 -- Check if we can determine at compile time whether Expr is in the
1891 -- range of the target type. Note that if S_Typ is within the bounds
1892 -- of Target_Typ then this must be the case. This check is meaningful
1893 -- only if this is not a conversion between integer and real types.
1895 if not Is_Unconstrained_Subscr_Ref
1896 and then
1897 Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
1898 and then
1899 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
1900 or else
1901 Is_In_Range (Expr, Target_Typ, Fixed_Int, Int_Real))
1902 then
1903 return;
1905 elsif Is_Out_Of_Range (Expr, Target_Typ, Fixed_Int, Int_Real) then
1906 Bad_Value;
1907 return;
1909 -- In the floating-point case, we only do range checks if the
1910 -- type is constrained. We definitely do NOT want range checks
1911 -- for unconstrained types, since we want to have infinities
1913 elsif Is_Floating_Point_Type (S_Typ) then
1914 if Is_Constrained (S_Typ) then
1915 Enable_Range_Check (Expr);
1916 end if;
1918 -- For all other cases we enable a range check unconditionally
1920 else
1921 Enable_Range_Check (Expr);
1922 return;
1923 end if;
1924 end Apply_Scalar_Range_Check;
1926 ----------------------------------
1927 -- Apply_Selected_Length_Checks --
1928 ----------------------------------
1930 procedure Apply_Selected_Length_Checks
1931 (Ck_Node : Node_Id;
1932 Target_Typ : Entity_Id;
1933 Source_Typ : Entity_Id;
1934 Do_Static : Boolean)
1936 Cond : Node_Id;
1937 R_Result : Check_Result;
1938 R_Cno : Node_Id;
1940 Loc : constant Source_Ptr := Sloc (Ck_Node);
1941 Checks_On : constant Boolean :=
1942 (not Index_Checks_Suppressed (Target_Typ))
1943 or else
1944 (not Length_Checks_Suppressed (Target_Typ));
1946 begin
1947 if not Expander_Active then
1948 return;
1949 end if;
1951 R_Result :=
1952 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
1954 for J in 1 .. 2 loop
1955 R_Cno := R_Result (J);
1956 exit when No (R_Cno);
1958 -- A length check may mention an Itype which is attached to a
1959 -- subsequent node. At the top level in a package this can cause
1960 -- an order-of-elaboration problem, so we make sure that the itype
1961 -- is referenced now.
1963 if Ekind (Current_Scope) = E_Package
1964 and then Is_Compilation_Unit (Current_Scope)
1965 then
1966 Ensure_Defined (Target_Typ, Ck_Node);
1968 if Present (Source_Typ) then
1969 Ensure_Defined (Source_Typ, Ck_Node);
1971 elsif Is_Itype (Etype (Ck_Node)) then
1972 Ensure_Defined (Etype (Ck_Node), Ck_Node);
1973 end if;
1974 end if;
1976 -- If the item is a conditional raise of constraint error,
1977 -- then have a look at what check is being performed and
1978 -- ???
1980 if Nkind (R_Cno) = N_Raise_Constraint_Error
1981 and then Present (Condition (R_Cno))
1982 then
1983 Cond := Condition (R_Cno);
1985 if not Has_Dynamic_Length_Check (Ck_Node)
1986 and then Checks_On
1987 then
1988 Insert_Action (Ck_Node, R_Cno);
1990 if not Do_Static then
1991 Set_Has_Dynamic_Length_Check (Ck_Node);
1992 end if;
1993 end if;
1995 -- Output a warning if the condition is known to be True
1997 if Is_Entity_Name (Cond)
1998 and then Entity (Cond) = Standard_True
1999 then
2000 Apply_Compile_Time_Constraint_Error
2001 (Ck_Node, "wrong length for array of}?",
2002 CE_Length_Check_Failed,
2003 Ent => Target_Typ,
2004 Typ => Target_Typ);
2006 -- If we were only doing a static check, or if checks are not
2007 -- on, then we want to delete the check, since it is not needed.
2008 -- We do this by replacing the if statement by a null statement
2010 elsif Do_Static or else not Checks_On then
2011 Rewrite (R_Cno, Make_Null_Statement (Loc));
2012 end if;
2014 else
2015 Install_Static_Check (R_Cno, Loc);
2016 end if;
2018 end loop;
2020 end Apply_Selected_Length_Checks;
2022 ---------------------------------
2023 -- Apply_Selected_Range_Checks --
2024 ---------------------------------
2026 procedure Apply_Selected_Range_Checks
2027 (Ck_Node : Node_Id;
2028 Target_Typ : Entity_Id;
2029 Source_Typ : Entity_Id;
2030 Do_Static : Boolean)
2032 Cond : Node_Id;
2033 R_Result : Check_Result;
2034 R_Cno : Node_Id;
2036 Loc : constant Source_Ptr := Sloc (Ck_Node);
2037 Checks_On : constant Boolean :=
2038 (not Index_Checks_Suppressed (Target_Typ))
2039 or else
2040 (not Range_Checks_Suppressed (Target_Typ));
2042 begin
2043 if not Expander_Active or else not Checks_On then
2044 return;
2045 end if;
2047 R_Result :=
2048 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2050 for J in 1 .. 2 loop
2052 R_Cno := R_Result (J);
2053 exit when No (R_Cno);
2055 -- If the item is a conditional raise of constraint error,
2056 -- then have a look at what check is being performed and
2057 -- ???
2059 if Nkind (R_Cno) = N_Raise_Constraint_Error
2060 and then Present (Condition (R_Cno))
2061 then
2062 Cond := Condition (R_Cno);
2064 if not Has_Dynamic_Range_Check (Ck_Node) then
2065 Insert_Action (Ck_Node, R_Cno);
2067 if not Do_Static then
2068 Set_Has_Dynamic_Range_Check (Ck_Node);
2069 end if;
2070 end if;
2072 -- Output a warning if the condition is known to be True
2074 if Is_Entity_Name (Cond)
2075 and then Entity (Cond) = Standard_True
2076 then
2077 -- Since an N_Range is technically not an expression, we
2078 -- have to set one of the bounds to C_E and then just flag
2079 -- the N_Range. The warning message will point to the
2080 -- lower bound and complain about a range, which seems OK.
2082 if Nkind (Ck_Node) = N_Range then
2083 Apply_Compile_Time_Constraint_Error
2084 (Low_Bound (Ck_Node), "static range out of bounds of}?",
2085 CE_Range_Check_Failed,
2086 Ent => Target_Typ,
2087 Typ => Target_Typ);
2089 Set_Raises_Constraint_Error (Ck_Node);
2091 else
2092 Apply_Compile_Time_Constraint_Error
2093 (Ck_Node, "static value out of range of}?",
2094 CE_Range_Check_Failed,
2095 Ent => Target_Typ,
2096 Typ => Target_Typ);
2097 end if;
2099 -- If we were only doing a static check, or if checks are not
2100 -- on, then we want to delete the check, since it is not needed.
2101 -- We do this by replacing the if statement by a null statement
2103 elsif Do_Static or else not Checks_On then
2104 Rewrite (R_Cno, Make_Null_Statement (Loc));
2105 end if;
2107 else
2108 Install_Static_Check (R_Cno, Loc);
2109 end if;
2110 end loop;
2111 end Apply_Selected_Range_Checks;
2113 -------------------------------
2114 -- Apply_Static_Length_Check --
2115 -------------------------------
2117 procedure Apply_Static_Length_Check
2118 (Expr : Node_Id;
2119 Target_Typ : Entity_Id;
2120 Source_Typ : Entity_Id := Empty)
2122 begin
2123 Apply_Selected_Length_Checks
2124 (Expr, Target_Typ, Source_Typ, Do_Static => True);
2125 end Apply_Static_Length_Check;
2127 -------------------------------------
2128 -- Apply_Subscript_Validity_Checks --
2129 -------------------------------------
2131 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2132 Sub : Node_Id;
2134 begin
2135 pragma Assert (Nkind (Expr) = N_Indexed_Component);
2137 -- Loop through subscripts
2139 Sub := First (Expressions (Expr));
2140 while Present (Sub) loop
2142 -- Check one subscript. Note that we do not worry about
2143 -- enumeration type with holes, since we will convert the
2144 -- value to a Pos value for the subscript, and that convert
2145 -- will do the necessary validity check.
2147 Ensure_Valid (Sub, Holes_OK => True);
2149 -- Move to next subscript
2151 Sub := Next (Sub);
2152 end loop;
2153 end Apply_Subscript_Validity_Checks;
2155 ----------------------------------
2156 -- Apply_Type_Conversion_Checks --
2157 ----------------------------------
2159 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2160 Target_Type : constant Entity_Id := Etype (N);
2161 Target_Base : constant Entity_Id := Base_Type (Target_Type);
2162 Expr : constant Node_Id := Expression (N);
2163 Expr_Type : constant Entity_Id := Etype (Expr);
2165 begin
2166 if Inside_A_Generic then
2167 return;
2169 -- Skip these checks if serious errors detected, there are some nasty
2170 -- situations of incomplete trees that blow things up.
2172 elsif Serious_Errors_Detected > 0 then
2173 return;
2175 -- Scalar type conversions of the form Target_Type (Expr) require
2176 -- a range check if we cannot be sure that Expr is in the base type
2177 -- of Target_Typ and also that Expr is in the range of Target_Typ.
2178 -- These are not quite the same condition from an implementation
2179 -- point of view, but clearly the second includes the first.
2181 elsif Is_Scalar_Type (Target_Type) then
2182 declare
2183 Conv_OK : constant Boolean := Conversion_OK (N);
2184 -- If the Conversion_OK flag on the type conversion is set
2185 -- and no floating point type is involved in the type conversion
2186 -- then fixed point values must be read as integral values.
2188 Float_To_Int : constant Boolean :=
2189 Is_Floating_Point_Type (Expr_Type)
2190 and then Is_Integer_Type (Target_Type);
2192 begin
2193 if not Overflow_Checks_Suppressed (Target_Base)
2194 and then not In_Subrange_Of (Expr_Type, Target_Base, Conv_OK)
2195 and then not Float_To_Int
2196 then
2197 Set_Do_Overflow_Check (N);
2198 end if;
2200 if not Range_Checks_Suppressed (Target_Type)
2201 and then not Range_Checks_Suppressed (Expr_Type)
2202 then
2203 if Float_To_Int then
2204 Apply_Float_Conversion_Check (Expr, Target_Type);
2205 else
2206 Apply_Scalar_Range_Check
2207 (Expr, Target_Type, Fixed_Int => Conv_OK);
2208 end if;
2209 end if;
2210 end;
2212 elsif Comes_From_Source (N)
2213 and then Is_Record_Type (Target_Type)
2214 and then Is_Derived_Type (Target_Type)
2215 and then not Is_Tagged_Type (Target_Type)
2216 and then not Is_Constrained (Target_Type)
2217 and then Present (Stored_Constraint (Target_Type))
2218 then
2219 -- An unconstrained derived type may have inherited discriminant
2220 -- Build an actual discriminant constraint list using the stored
2221 -- constraint, to verify that the expression of the parent type
2222 -- satisfies the constraints imposed by the (unconstrained!)
2223 -- derived type. This applies to value conversions, not to view
2224 -- conversions of tagged types.
2226 declare
2227 Loc : constant Source_Ptr := Sloc (N);
2228 Cond : Node_Id;
2229 Constraint : Elmt_Id;
2230 Discr_Value : Node_Id;
2231 Discr : Entity_Id;
2233 New_Constraints : constant Elist_Id := New_Elmt_List;
2234 Old_Constraints : constant Elist_Id :=
2235 Discriminant_Constraint (Expr_Type);
2237 begin
2238 Constraint := First_Elmt (Stored_Constraint (Target_Type));
2240 while Present (Constraint) loop
2241 Discr_Value := Node (Constraint);
2243 if Is_Entity_Name (Discr_Value)
2244 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2245 then
2246 Discr := Corresponding_Discriminant (Entity (Discr_Value));
2248 if Present (Discr)
2249 and then Scope (Discr) = Base_Type (Expr_Type)
2250 then
2251 -- Parent is constrained by new discriminant. Obtain
2252 -- Value of original discriminant in expression. If
2253 -- the new discriminant has been used to constrain more
2254 -- than one of the stored discriminants, this will
2255 -- provide the required consistency check.
2257 Append_Elmt (
2258 Make_Selected_Component (Loc,
2259 Prefix =>
2260 Duplicate_Subexpr_No_Checks
2261 (Expr, Name_Req => True),
2262 Selector_Name =>
2263 Make_Identifier (Loc, Chars (Discr))),
2264 New_Constraints);
2266 else
2267 -- Discriminant of more remote ancestor ???
2269 return;
2270 end if;
2272 -- Derived type definition has an explicit value for
2273 -- this stored discriminant.
2275 else
2276 Append_Elmt
2277 (Duplicate_Subexpr_No_Checks (Discr_Value),
2278 New_Constraints);
2279 end if;
2281 Next_Elmt (Constraint);
2282 end loop;
2284 -- Use the unconstrained expression type to retrieve the
2285 -- discriminants of the parent, and apply momentarily the
2286 -- discriminant constraint synthesized above.
2288 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2289 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2290 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2292 Insert_Action (N,
2293 Make_Raise_Constraint_Error (Loc,
2294 Condition => Cond,
2295 Reason => CE_Discriminant_Check_Failed));
2296 end;
2298 -- For arrays, conversions are applied during expansion, to take
2299 -- into accounts changes of representation. The checks become range
2300 -- checks on the base type or length checks on the subtype, depending
2301 -- on whether the target type is unconstrained or constrained.
2303 else
2304 null;
2305 end if;
2306 end Apply_Type_Conversion_Checks;
2308 ----------------------------------------------
2309 -- Apply_Universal_Integer_Attribute_Checks --
2310 ----------------------------------------------
2312 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2313 Loc : constant Source_Ptr := Sloc (N);
2314 Typ : constant Entity_Id := Etype (N);
2316 begin
2317 if Inside_A_Generic then
2318 return;
2320 -- Nothing to do if checks are suppressed
2322 elsif Range_Checks_Suppressed (Typ)
2323 and then Overflow_Checks_Suppressed (Typ)
2324 then
2325 return;
2327 -- Nothing to do if the attribute does not come from source. The
2328 -- internal attributes we generate of this type do not need checks,
2329 -- and furthermore the attempt to check them causes some circular
2330 -- elaboration orders when dealing with packed types.
2332 elsif not Comes_From_Source (N) then
2333 return;
2335 -- If the prefix is a selected component that depends on a discriminant
2336 -- the check may improperly expose a discriminant instead of using
2337 -- the bounds of the object itself. Set the type of the attribute to
2338 -- the base type of the context, so that a check will be imposed when
2339 -- needed (e.g. if the node appears as an index).
2341 elsif Nkind (Prefix (N)) = N_Selected_Component
2342 and then Ekind (Typ) = E_Signed_Integer_Subtype
2343 and then Depends_On_Discriminant (Scalar_Range (Typ))
2344 then
2345 Set_Etype (N, Base_Type (Typ));
2347 -- Otherwise, replace the attribute node with a type conversion
2348 -- node whose expression is the attribute, retyped to universal
2349 -- integer, and whose subtype mark is the target type. The call
2350 -- to analyze this conversion will set range and overflow checks
2351 -- as required for proper detection of an out of range value.
2353 else
2354 Set_Etype (N, Universal_Integer);
2355 Set_Analyzed (N, True);
2357 Rewrite (N,
2358 Make_Type_Conversion (Loc,
2359 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2360 Expression => Relocate_Node (N)));
2362 Analyze_And_Resolve (N, Typ);
2363 return;
2364 end if;
2366 end Apply_Universal_Integer_Attribute_Checks;
2368 -------------------------------
2369 -- Build_Discriminant_Checks --
2370 -------------------------------
2372 function Build_Discriminant_Checks
2373 (N : Node_Id;
2374 T_Typ : Entity_Id) return Node_Id
2376 Loc : constant Source_Ptr := Sloc (N);
2377 Cond : Node_Id;
2378 Disc : Elmt_Id;
2379 Disc_Ent : Entity_Id;
2380 Dref : Node_Id;
2381 Dval : Node_Id;
2383 begin
2384 Cond := Empty;
2385 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2387 -- For a fully private type, use the discriminants of the parent type
2389 if Is_Private_Type (T_Typ)
2390 and then No (Full_View (T_Typ))
2391 then
2392 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2393 else
2394 Disc_Ent := First_Discriminant (T_Typ);
2395 end if;
2397 while Present (Disc) loop
2398 Dval := Node (Disc);
2400 if Nkind (Dval) = N_Identifier
2401 and then Ekind (Entity (Dval)) = E_Discriminant
2402 then
2403 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2404 else
2405 Dval := Duplicate_Subexpr_No_Checks (Dval);
2406 end if;
2408 -- If we have an Unchecked_Union node, we can infer the discriminants
2409 -- of the node.
2411 if Is_Unchecked_Union (Base_Type (T_Typ)) then
2412 Dref := New_Copy (
2413 Get_Discriminant_Value (
2414 First_Discriminant (T_Typ),
2415 T_Typ,
2416 Stored_Constraint (T_Typ)));
2418 else
2419 Dref :=
2420 Make_Selected_Component (Loc,
2421 Prefix =>
2422 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2423 Selector_Name =>
2424 Make_Identifier (Loc, Chars (Disc_Ent)));
2426 Set_Is_In_Discriminant_Check (Dref);
2427 end if;
2429 Evolve_Or_Else (Cond,
2430 Make_Op_Ne (Loc,
2431 Left_Opnd => Dref,
2432 Right_Opnd => Dval));
2434 Next_Elmt (Disc);
2435 Next_Discriminant (Disc_Ent);
2436 end loop;
2438 return Cond;
2439 end Build_Discriminant_Checks;
2441 -----------------------------------
2442 -- Check_Valid_Lvalue_Subscripts --
2443 -----------------------------------
2445 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2446 begin
2447 -- Skip this if range checks are suppressed
2449 if Range_Checks_Suppressed (Etype (Expr)) then
2450 return;
2452 -- Only do this check for expressions that come from source. We
2453 -- assume that expander generated assignments explicitly include
2454 -- any necessary checks. Note that this is not just an optimization,
2455 -- it avoids infinite recursions!
2457 elsif not Comes_From_Source (Expr) then
2458 return;
2460 -- For a selected component, check the prefix
2462 elsif Nkind (Expr) = N_Selected_Component then
2463 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2464 return;
2466 -- Case of indexed component
2468 elsif Nkind (Expr) = N_Indexed_Component then
2469 Apply_Subscript_Validity_Checks (Expr);
2471 -- Prefix may itself be or contain an indexed component, and
2472 -- these subscripts need checking as well
2474 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2475 end if;
2476 end Check_Valid_Lvalue_Subscripts;
2478 ----------------------------------
2479 -- Null_Exclusion_Static_Checks --
2480 ----------------------------------
2482 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
2483 K : constant Node_Kind := Nkind (N);
2484 Typ : Entity_Id;
2485 Related_Nod : Node_Id;
2486 Has_Null_Exclusion : Boolean := False;
2488 type Msg_Kind is (Components, Formals, Objects);
2489 Msg_K : Msg_Kind := Objects;
2490 -- Used by local subprograms to generate precise error messages
2492 procedure Check_Must_Be_Access
2493 (Typ : Entity_Id;
2494 Has_Null_Exclusion : Boolean);
2495 -- ??? local subprograms must have comment on spec
2497 procedure Check_Already_Null_Excluding_Type
2498 (Typ : Entity_Id;
2499 Has_Null_Exclusion : Boolean;
2500 Related_Nod : Node_Id);
2501 -- ??? local subprograms must have comment on spec
2503 procedure Check_Must_Be_Initialized
2504 (N : Node_Id;
2505 Related_Nod : Node_Id);
2506 -- ??? local subprograms must have comment on spec
2508 procedure Check_Null_Not_Allowed (N : Node_Id);
2509 -- ??? local subprograms must have comment on spec
2511 -- ??? following bodies lack comments
2513 --------------------------
2514 -- Check_Must_Be_Access --
2515 --------------------------
2517 procedure Check_Must_Be_Access
2518 (Typ : Entity_Id;
2519 Has_Null_Exclusion : Boolean)
2521 begin
2522 if Has_Null_Exclusion
2523 and then not Is_Access_Type (Typ)
2524 then
2525 Error_Msg_N ("(Ada 2005) must be an access type", Related_Nod);
2526 end if;
2527 end Check_Must_Be_Access;
2529 ---------------------------------------
2530 -- Check_Already_Null_Excluding_Type --
2531 ---------------------------------------
2533 procedure Check_Already_Null_Excluding_Type
2534 (Typ : Entity_Id;
2535 Has_Null_Exclusion : Boolean;
2536 Related_Nod : Node_Id)
2538 begin
2539 if Has_Null_Exclusion
2540 and then Can_Never_Be_Null (Typ)
2541 then
2542 Error_Msg_N
2543 ("(Ada 2005) already a null-excluding type", Related_Nod);
2544 end if;
2545 end Check_Already_Null_Excluding_Type;
2547 -------------------------------
2548 -- Check_Must_Be_Initialized --
2549 -------------------------------
2551 procedure Check_Must_Be_Initialized
2552 (N : Node_Id;
2553 Related_Nod : Node_Id)
2555 Expr : constant Node_Id := Expression (N);
2557 begin
2558 pragma Assert (Nkind (N) = N_Component_Declaration
2559 or else Nkind (N) = N_Object_Declaration);
2561 if not Present (Expr) then
2562 case Msg_K is
2563 when Components =>
2564 Error_Msg_N
2565 ("(Ada 2005) null-excluding components must be " &
2566 "initialized", Related_Nod);
2568 when Formals =>
2569 Error_Msg_N
2570 ("(Ada 2005) null-excluding formals must be initialized",
2571 Related_Nod);
2573 when Objects =>
2574 Error_Msg_N
2575 ("(Ada 2005) null-excluding objects must be initialized",
2576 Related_Nod);
2577 end case;
2578 end if;
2579 end Check_Must_Be_Initialized;
2581 ----------------------------
2582 -- Check_Null_Not_Allowed --
2583 ----------------------------
2585 procedure Check_Null_Not_Allowed (N : Node_Id) is
2586 Expr : constant Node_Id := Expression (N);
2588 begin
2589 if Present (Expr)
2590 and then Nkind (Expr) = N_Null
2591 then
2592 case Msg_K is
2593 when Components =>
2594 Apply_Compile_Time_Constraint_Error
2595 (N => Expr,
2596 Msg => "(Ada 2005) NULL not allowed in"
2597 & " null-excluding components?",
2598 Reason => CE_Null_Not_Allowed,
2599 Rep => False);
2601 when Formals =>
2602 Apply_Compile_Time_Constraint_Error
2603 (N => Expr,
2604 Msg => "(Ada 2005) NULL not allowed in"
2605 & " null-excluding formals?",
2606 Reason => CE_Null_Not_Allowed,
2607 Rep => False);
2609 when Objects =>
2610 Apply_Compile_Time_Constraint_Error
2611 (N => Expr,
2612 Msg => "(Ada 2005) NULL not allowed in"
2613 & " null-excluding objects?",
2614 Reason => CE_Null_Not_Allowed,
2615 Rep => False);
2616 end case;
2617 end if;
2618 end Check_Null_Not_Allowed;
2620 -- Start of processing for Null_Exclusion_Static_Checks
2622 begin
2623 pragma Assert (K = N_Component_Declaration
2624 or else K = N_Parameter_Specification
2625 or else K = N_Object_Declaration
2626 or else K = N_Discriminant_Specification
2627 or else K = N_Allocator);
2629 case K is
2630 when N_Component_Declaration =>
2631 Msg_K := Components;
2633 if not Present (Access_Definition (Component_Definition (N))) then
2634 Has_Null_Exclusion := Null_Exclusion_Present
2635 (Component_Definition (N));
2636 Typ := Etype (Subtype_Indication (Component_Definition (N)));
2637 Related_Nod := Subtype_Indication (Component_Definition (N));
2638 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2639 Check_Already_Null_Excluding_Type
2640 (Typ, Has_Null_Exclusion, Related_Nod);
2641 Check_Must_Be_Initialized (N, Related_Nod);
2642 end if;
2644 Check_Null_Not_Allowed (N);
2646 when N_Parameter_Specification =>
2647 Msg_K := Formals;
2648 Has_Null_Exclusion := Null_Exclusion_Present (N);
2649 Typ := Entity (Parameter_Type (N));
2650 Related_Nod := Parameter_Type (N);
2651 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2652 Check_Already_Null_Excluding_Type
2653 (Typ, Has_Null_Exclusion, Related_Nod);
2654 Check_Null_Not_Allowed (N);
2656 when N_Object_Declaration =>
2657 Msg_K := Objects;
2658 Has_Null_Exclusion := Null_Exclusion_Present (N);
2659 Typ := Entity (Object_Definition (N));
2660 Related_Nod := Object_Definition (N);
2661 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2662 Check_Already_Null_Excluding_Type
2663 (Typ, Has_Null_Exclusion, Related_Nod);
2664 Check_Must_Be_Initialized (N, Related_Nod);
2665 Check_Null_Not_Allowed (N);
2667 when N_Discriminant_Specification =>
2668 Msg_K := Components;
2670 if Nkind (Discriminant_Type (N)) /= N_Access_Definition then
2671 Has_Null_Exclusion := Null_Exclusion_Present (N);
2672 Typ := Etype (Defining_Identifier (N));
2673 Related_Nod := Discriminant_Type (N);
2674 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2675 Check_Already_Null_Excluding_Type
2676 (Typ, Has_Null_Exclusion, Related_Nod);
2677 end if;
2679 Check_Null_Not_Allowed (N);
2681 when N_Allocator =>
2682 Msg_K := Objects;
2683 Has_Null_Exclusion := Null_Exclusion_Present (N);
2684 Typ := Etype (Expression (N));
2686 if Nkind (Expression (N)) = N_Qualified_Expression then
2687 Related_Nod := Subtype_Mark (Expression (N));
2688 else
2689 Related_Nod := Expression (N);
2690 end if;
2692 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2693 Check_Already_Null_Excluding_Type
2694 (Typ, Has_Null_Exclusion, Related_Nod);
2695 Check_Null_Not_Allowed (N);
2697 when others =>
2698 raise Program_Error;
2699 end case;
2700 end Null_Exclusion_Static_Checks;
2702 ----------------------------------
2703 -- Conditional_Statements_Begin --
2704 ----------------------------------
2706 procedure Conditional_Statements_Begin is
2707 begin
2708 Saved_Checks_TOS := Saved_Checks_TOS + 1;
2710 -- If stack overflows, kill all checks, that way we know to
2711 -- simply reset the number of saved checks to zero on return.
2712 -- This should never occur in practice.
2714 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2715 Kill_All_Checks;
2717 -- In the normal case, we just make a new stack entry saving
2718 -- the current number of saved checks for a later restore.
2720 else
2721 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2723 if Debug_Flag_CC then
2724 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2725 Num_Saved_Checks);
2726 end if;
2727 end if;
2728 end Conditional_Statements_Begin;
2730 --------------------------------
2731 -- Conditional_Statements_End --
2732 --------------------------------
2734 procedure Conditional_Statements_End is
2735 begin
2736 pragma Assert (Saved_Checks_TOS > 0);
2738 -- If the saved checks stack overflowed, then we killed all
2739 -- checks, so setting the number of saved checks back to
2740 -- zero is correct. This should never occur in practice.
2742 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2743 Num_Saved_Checks := 0;
2745 -- In the normal case, restore the number of saved checks
2746 -- from the top stack entry.
2748 else
2749 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
2750 if Debug_Flag_CC then
2751 w ("Conditional_Statements_End: Num_Saved_Checks = ",
2752 Num_Saved_Checks);
2753 end if;
2754 end if;
2756 Saved_Checks_TOS := Saved_Checks_TOS - 1;
2757 end Conditional_Statements_End;
2759 ---------------------
2760 -- Determine_Range --
2761 ---------------------
2763 Cache_Size : constant := 2 ** 10;
2764 type Cache_Index is range 0 .. Cache_Size - 1;
2765 -- Determine size of below cache (power of 2 is more efficient!)
2767 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
2768 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
2769 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
2770 -- The above arrays are used to implement a small direct cache
2771 -- for Determine_Range calls. Because of the way Determine_Range
2772 -- recursively traces subexpressions, and because overflow checking
2773 -- calls the routine on the way up the tree, a quadratic behavior
2774 -- can otherwise be encountered in large expressions. The cache
2775 -- entry for node N is stored in the (N mod Cache_Size) entry, and
2776 -- can be validated by checking the actual node value stored there.
2778 procedure Determine_Range
2779 (N : Node_Id;
2780 OK : out Boolean;
2781 Lo : out Uint;
2782 Hi : out Uint)
2784 Typ : constant Entity_Id := Etype (N);
2786 Lo_Left : Uint;
2787 Hi_Left : Uint;
2788 -- Lo and Hi bounds of left operand
2790 Lo_Right : Uint;
2791 Hi_Right : Uint;
2792 -- Lo and Hi bounds of right (or only) operand
2794 Bound : Node_Id;
2795 -- Temp variable used to hold a bound node
2797 Hbound : Uint;
2798 -- High bound of base type of expression
2800 Lor : Uint;
2801 Hir : Uint;
2802 -- Refined values for low and high bounds, after tightening
2804 OK1 : Boolean;
2805 -- Used in lower level calls to indicate if call succeeded
2807 Cindex : Cache_Index;
2808 -- Used to search cache
2810 function OK_Operands return Boolean;
2811 -- Used for binary operators. Determines the ranges of the left and
2812 -- right operands, and if they are both OK, returns True, and puts
2813 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
2815 -----------------
2816 -- OK_Operands --
2817 -----------------
2819 function OK_Operands return Boolean is
2820 begin
2821 Determine_Range (Left_Opnd (N), OK1, Lo_Left, Hi_Left);
2823 if not OK1 then
2824 return False;
2825 end if;
2827 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2828 return OK1;
2829 end OK_Operands;
2831 -- Start of processing for Determine_Range
2833 begin
2834 -- Prevent junk warnings by initializing range variables
2836 Lo := No_Uint;
2837 Hi := No_Uint;
2838 Lor := No_Uint;
2839 Hir := No_Uint;
2841 -- If the type is not discrete, or is undefined, then we can't
2842 -- do anything about determining the range.
2844 if No (Typ) or else not Is_Discrete_Type (Typ)
2845 or else Error_Posted (N)
2846 then
2847 OK := False;
2848 return;
2849 end if;
2851 -- For all other cases, we can determine the range
2853 OK := True;
2855 -- If value is compile time known, then the possible range is the
2856 -- one value that we know this expression definitely has!
2858 if Compile_Time_Known_Value (N) then
2859 Lo := Expr_Value (N);
2860 Hi := Lo;
2861 return;
2862 end if;
2864 -- Return if already in the cache
2866 Cindex := Cache_Index (N mod Cache_Size);
2868 if Determine_Range_Cache_N (Cindex) = N then
2869 Lo := Determine_Range_Cache_Lo (Cindex);
2870 Hi := Determine_Range_Cache_Hi (Cindex);
2871 return;
2872 end if;
2874 -- Otherwise, start by finding the bounds of the type of the
2875 -- expression, the value cannot be outside this range (if it
2876 -- is, then we have an overflow situation, which is a separate
2877 -- check, we are talking here only about the expression value).
2879 -- We use the actual bound unless it is dynamic, in which case
2880 -- use the corresponding base type bound if possible. If we can't
2881 -- get a bound then we figure we can't determine the range (a
2882 -- peculiar case, that perhaps cannot happen, but there is no
2883 -- point in bombing in this optimization circuit.
2885 -- First the low bound
2887 Bound := Type_Low_Bound (Typ);
2889 if Compile_Time_Known_Value (Bound) then
2890 Lo := Expr_Value (Bound);
2892 elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
2893 Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
2895 else
2896 OK := False;
2897 return;
2898 end if;
2900 -- Now the high bound
2902 Bound := Type_High_Bound (Typ);
2904 -- We need the high bound of the base type later on, and this should
2905 -- always be compile time known. Again, it is not clear that this
2906 -- can ever be false, but no point in bombing.
2908 if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
2909 Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
2910 Hi := Hbound;
2912 else
2913 OK := False;
2914 return;
2915 end if;
2917 -- If we have a static subtype, then that may have a tighter bound
2918 -- so use the upper bound of the subtype instead in this case.
2920 if Compile_Time_Known_Value (Bound) then
2921 Hi := Expr_Value (Bound);
2922 end if;
2924 -- We may be able to refine this value in certain situations. If
2925 -- refinement is possible, then Lor and Hir are set to possibly
2926 -- tighter bounds, and OK1 is set to True.
2928 case Nkind (N) is
2930 -- For unary plus, result is limited by range of operand
2932 when N_Op_Plus =>
2933 Determine_Range (Right_Opnd (N), OK1, Lor, Hir);
2935 -- For unary minus, determine range of operand, and negate it
2937 when N_Op_Minus =>
2938 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2940 if OK1 then
2941 Lor := -Hi_Right;
2942 Hir := -Lo_Right;
2943 end if;
2945 -- For binary addition, get range of each operand and do the
2946 -- addition to get the result range.
2948 when N_Op_Add =>
2949 if OK_Operands then
2950 Lor := Lo_Left + Lo_Right;
2951 Hir := Hi_Left + Hi_Right;
2952 end if;
2954 -- Division is tricky. The only case we consider is where the
2955 -- right operand is a positive constant, and in this case we
2956 -- simply divide the bounds of the left operand
2958 when N_Op_Divide =>
2959 if OK_Operands then
2960 if Lo_Right = Hi_Right
2961 and then Lo_Right > 0
2962 then
2963 Lor := Lo_Left / Lo_Right;
2964 Hir := Hi_Left / Lo_Right;
2966 else
2967 OK1 := False;
2968 end if;
2969 end if;
2971 -- For binary subtraction, get range of each operand and do
2972 -- the worst case subtraction to get the result range.
2974 when N_Op_Subtract =>
2975 if OK_Operands then
2976 Lor := Lo_Left - Hi_Right;
2977 Hir := Hi_Left - Lo_Right;
2978 end if;
2980 -- For MOD, if right operand is a positive constant, then
2981 -- result must be in the allowable range of mod results.
2983 when N_Op_Mod =>
2984 if OK_Operands then
2985 if Lo_Right = Hi_Right
2986 and then Lo_Right /= 0
2987 then
2988 if Lo_Right > 0 then
2989 Lor := Uint_0;
2990 Hir := Lo_Right - 1;
2992 else -- Lo_Right < 0
2993 Lor := Lo_Right + 1;
2994 Hir := Uint_0;
2995 end if;
2997 else
2998 OK1 := False;
2999 end if;
3000 end if;
3002 -- For REM, if right operand is a positive constant, then
3003 -- result must be in the allowable range of mod results.
3005 when N_Op_Rem =>
3006 if OK_Operands then
3007 if Lo_Right = Hi_Right
3008 and then Lo_Right /= 0
3009 then
3010 declare
3011 Dval : constant Uint := (abs Lo_Right) - 1;
3013 begin
3014 -- The sign of the result depends on the sign of the
3015 -- dividend (but not on the sign of the divisor, hence
3016 -- the abs operation above).
3018 if Lo_Left < 0 then
3019 Lor := -Dval;
3020 else
3021 Lor := Uint_0;
3022 end if;
3024 if Hi_Left < 0 then
3025 Hir := Uint_0;
3026 else
3027 Hir := Dval;
3028 end if;
3029 end;
3031 else
3032 OK1 := False;
3033 end if;
3034 end if;
3036 -- Attribute reference cases
3038 when N_Attribute_Reference =>
3039 case Attribute_Name (N) is
3041 -- For Pos/Val attributes, we can refine the range using the
3042 -- possible range of values of the attribute expression
3044 when Name_Pos | Name_Val =>
3045 Determine_Range (First (Expressions (N)), OK1, Lor, Hir);
3047 -- For Length attribute, use the bounds of the corresponding
3048 -- index type to refine the range.
3050 when Name_Length =>
3051 declare
3052 Atyp : Entity_Id := Etype (Prefix (N));
3053 Inum : Nat;
3054 Indx : Node_Id;
3056 LL, LU : Uint;
3057 UL, UU : Uint;
3059 begin
3060 if Is_Access_Type (Atyp) then
3061 Atyp := Designated_Type (Atyp);
3062 end if;
3064 -- For string literal, we know exact value
3066 if Ekind (Atyp) = E_String_Literal_Subtype then
3067 OK := True;
3068 Lo := String_Literal_Length (Atyp);
3069 Hi := String_Literal_Length (Atyp);
3070 return;
3071 end if;
3073 -- Otherwise check for expression given
3075 if No (Expressions (N)) then
3076 Inum := 1;
3077 else
3078 Inum :=
3079 UI_To_Int (Expr_Value (First (Expressions (N))));
3080 end if;
3082 Indx := First_Index (Atyp);
3083 for J in 2 .. Inum loop
3084 Indx := Next_Index (Indx);
3085 end loop;
3087 Determine_Range
3088 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU);
3090 if OK1 then
3091 Determine_Range
3092 (Type_High_Bound (Etype (Indx)), OK1, UL, UU);
3094 if OK1 then
3096 -- The maximum value for Length is the biggest
3097 -- possible gap between the values of the bounds.
3098 -- But of course, this value cannot be negative.
3100 Hir := UI_Max (Uint_0, UU - LL);
3102 -- For constrained arrays, the minimum value for
3103 -- Length is taken from the actual value of the
3104 -- bounds, since the index will be exactly of
3105 -- this subtype.
3107 if Is_Constrained (Atyp) then
3108 Lor := UI_Max (Uint_0, UL - LU);
3110 -- For an unconstrained array, the minimum value
3111 -- for length is always zero.
3113 else
3114 Lor := Uint_0;
3115 end if;
3116 end if;
3117 end if;
3118 end;
3120 -- No special handling for other attributes
3121 -- Probably more opportunities exist here ???
3123 when others =>
3124 OK1 := False;
3126 end case;
3128 -- For type conversion from one discrete type to another, we
3129 -- can refine the range using the converted value.
3131 when N_Type_Conversion =>
3132 Determine_Range (Expression (N), OK1, Lor, Hir);
3134 -- Nothing special to do for all other expression kinds
3136 when others =>
3137 OK1 := False;
3138 Lor := No_Uint;
3139 Hir := No_Uint;
3140 end case;
3142 -- At this stage, if OK1 is true, then we know that the actual
3143 -- result of the computed expression is in the range Lor .. Hir.
3144 -- We can use this to restrict the possible range of results.
3146 if OK1 then
3148 -- If the refined value of the low bound is greater than the
3149 -- type high bound, then reset it to the more restrictive
3150 -- value. However, we do NOT do this for the case of a modular
3151 -- type where the possible upper bound on the value is above the
3152 -- base type high bound, because that means the result could wrap.
3154 if Lor > Lo
3155 and then not (Is_Modular_Integer_Type (Typ)
3156 and then Hir > Hbound)
3157 then
3158 Lo := Lor;
3159 end if;
3161 -- Similarly, if the refined value of the high bound is less
3162 -- than the value so far, then reset it to the more restrictive
3163 -- value. Again, we do not do this if the refined low bound is
3164 -- negative for a modular type, since this would wrap.
3166 if Hir < Hi
3167 and then not (Is_Modular_Integer_Type (Typ)
3168 and then Lor < Uint_0)
3169 then
3170 Hi := Hir;
3171 end if;
3172 end if;
3174 -- Set cache entry for future call and we are all done
3176 Determine_Range_Cache_N (Cindex) := N;
3177 Determine_Range_Cache_Lo (Cindex) := Lo;
3178 Determine_Range_Cache_Hi (Cindex) := Hi;
3179 return;
3181 -- If any exception occurs, it means that we have some bug in the compiler
3182 -- possibly triggered by a previous error, or by some unforseen peculiar
3183 -- occurrence. However, this is only an optimization attempt, so there is
3184 -- really no point in crashing the compiler. Instead we just decide, too
3185 -- bad, we can't figure out a range in this case after all.
3187 exception
3188 when others =>
3190 -- Debug flag K disables this behavior (useful for debugging)
3192 if Debug_Flag_K then
3193 raise;
3194 else
3195 OK := False;
3196 Lo := No_Uint;
3197 Hi := No_Uint;
3198 return;
3199 end if;
3200 end Determine_Range;
3202 ------------------------------------
3203 -- Discriminant_Checks_Suppressed --
3204 ------------------------------------
3206 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3207 begin
3208 if Present (E) then
3209 if Is_Unchecked_Union (E) then
3210 return True;
3211 elsif Checks_May_Be_Suppressed (E) then
3212 return Is_Check_Suppressed (E, Discriminant_Check);
3213 end if;
3214 end if;
3216 return Scope_Suppress (Discriminant_Check);
3217 end Discriminant_Checks_Suppressed;
3219 --------------------------------
3220 -- Division_Checks_Suppressed --
3221 --------------------------------
3223 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3224 begin
3225 if Present (E) and then Checks_May_Be_Suppressed (E) then
3226 return Is_Check_Suppressed (E, Division_Check);
3227 else
3228 return Scope_Suppress (Division_Check);
3229 end if;
3230 end Division_Checks_Suppressed;
3232 -----------------------------------
3233 -- Elaboration_Checks_Suppressed --
3234 -----------------------------------
3236 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3237 begin
3238 if Present (E) then
3239 if Kill_Elaboration_Checks (E) then
3240 return True;
3241 elsif Checks_May_Be_Suppressed (E) then
3242 return Is_Check_Suppressed (E, Elaboration_Check);
3243 end if;
3244 end if;
3246 return Scope_Suppress (Elaboration_Check);
3247 end Elaboration_Checks_Suppressed;
3249 ---------------------------
3250 -- Enable_Overflow_Check --
3251 ---------------------------
3253 procedure Enable_Overflow_Check (N : Node_Id) is
3254 Typ : constant Entity_Id := Base_Type (Etype (N));
3255 Chk : Nat;
3256 OK : Boolean;
3257 Ent : Entity_Id;
3258 Ofs : Uint;
3259 Lo : Uint;
3260 Hi : Uint;
3262 begin
3263 if Debug_Flag_CC then
3264 w ("Enable_Overflow_Check for node ", Int (N));
3265 Write_Str (" Source location = ");
3266 wl (Sloc (N));
3267 pg (N);
3268 end if;
3270 -- Nothing to do if the range of the result is known OK. We skip
3271 -- this for conversions, since the caller already did the check,
3272 -- and in any case the condition for deleting the check for a
3273 -- type conversion is different in any case.
3275 if Nkind (N) /= N_Type_Conversion then
3276 Determine_Range (N, OK, Lo, Hi);
3278 -- Note in the test below that we assume that if a bound of the
3279 -- range is equal to that of the type. That's not quite accurate
3280 -- but we do this for the following reasons:
3282 -- a) The way that Determine_Range works, it will typically report
3283 -- the bounds of the value as being equal to the bounds of the
3284 -- type, because it either can't tell anything more precise, or
3285 -- does not think it is worth the effort to be more precise.
3287 -- b) It is very unusual to have a situation in which this would
3288 -- generate an unnecessary overflow check (an example would be
3289 -- a subtype with a range 0 .. Integer'Last - 1 to which the
3290 -- literal value one is added.
3292 -- c) The alternative is a lot of special casing in this routine
3293 -- which would partially duplicate Determine_Range processing.
3295 if OK
3296 and then Lo > Expr_Value (Type_Low_Bound (Typ))
3297 and then Hi < Expr_Value (Type_High_Bound (Typ))
3298 then
3299 if Debug_Flag_CC then
3300 w ("No overflow check required");
3301 end if;
3303 return;
3304 end if;
3305 end if;
3307 -- If not in optimizing mode, set flag and we are done. We are also
3308 -- done (and just set the flag) if the type is not a discrete type,
3309 -- since it is not worth the effort to eliminate checks for other
3310 -- than discrete types. In addition, we take this same path if we
3311 -- have stored the maximum number of checks possible already (a
3312 -- very unlikely situation, but we do not want to blow up!)
3314 if Optimization_Level = 0
3315 or else not Is_Discrete_Type (Etype (N))
3316 or else Num_Saved_Checks = Saved_Checks'Last
3317 then
3318 Set_Do_Overflow_Check (N, True);
3320 if Debug_Flag_CC then
3321 w ("Optimization off");
3322 end if;
3324 return;
3325 end if;
3327 -- Otherwise evaluate and check the expression
3329 Find_Check
3330 (Expr => N,
3331 Check_Type => 'O',
3332 Target_Type => Empty,
3333 Entry_OK => OK,
3334 Check_Num => Chk,
3335 Ent => Ent,
3336 Ofs => Ofs);
3338 if Debug_Flag_CC then
3339 w ("Called Find_Check");
3340 w (" OK = ", OK);
3342 if OK then
3343 w (" Check_Num = ", Chk);
3344 w (" Ent = ", Int (Ent));
3345 Write_Str (" Ofs = ");
3346 pid (Ofs);
3347 end if;
3348 end if;
3350 -- If check is not of form to optimize, then set flag and we are done
3352 if not OK then
3353 Set_Do_Overflow_Check (N, True);
3354 return;
3355 end if;
3357 -- If check is already performed, then return without setting flag
3359 if Chk /= 0 then
3360 if Debug_Flag_CC then
3361 w ("Check suppressed!");
3362 end if;
3364 return;
3365 end if;
3367 -- Here we will make a new entry for the new check
3369 Set_Do_Overflow_Check (N, True);
3370 Num_Saved_Checks := Num_Saved_Checks + 1;
3371 Saved_Checks (Num_Saved_Checks) :=
3372 (Killed => False,
3373 Entity => Ent,
3374 Offset => Ofs,
3375 Check_Type => 'O',
3376 Target_Type => Empty);
3378 if Debug_Flag_CC then
3379 w ("Make new entry, check number = ", Num_Saved_Checks);
3380 w (" Entity = ", Int (Ent));
3381 Write_Str (" Offset = ");
3382 pid (Ofs);
3383 w (" Check_Type = O");
3384 w (" Target_Type = Empty");
3385 end if;
3387 -- If we get an exception, then something went wrong, probably because
3388 -- of an error in the structure of the tree due to an incorrect program.
3389 -- Or it may be a bug in the optimization circuit. In either case the
3390 -- safest thing is simply to set the check flag unconditionally.
3392 exception
3393 when others =>
3394 Set_Do_Overflow_Check (N, True);
3396 if Debug_Flag_CC then
3397 w (" exception occurred, overflow flag set");
3398 end if;
3400 return;
3401 end Enable_Overflow_Check;
3403 ------------------------
3404 -- Enable_Range_Check --
3405 ------------------------
3407 procedure Enable_Range_Check (N : Node_Id) is
3408 Chk : Nat;
3409 OK : Boolean;
3410 Ent : Entity_Id;
3411 Ofs : Uint;
3412 Ttyp : Entity_Id;
3413 P : Node_Id;
3415 begin
3416 -- Return if unchecked type conversion with range check killed.
3417 -- In this case we never set the flag (that's what Kill_Range_Check
3418 -- is all about!)
3420 if Nkind (N) = N_Unchecked_Type_Conversion
3421 and then Kill_Range_Check (N)
3422 then
3423 return;
3424 end if;
3426 -- Debug trace output
3428 if Debug_Flag_CC then
3429 w ("Enable_Range_Check for node ", Int (N));
3430 Write_Str (" Source location = ");
3431 wl (Sloc (N));
3432 pg (N);
3433 end if;
3435 -- If not in optimizing mode, set flag and we are done. We are also
3436 -- done (and just set the flag) if the type is not a discrete type,
3437 -- since it is not worth the effort to eliminate checks for other
3438 -- than discrete types. In addition, we take this same path if we
3439 -- have stored the maximum number of checks possible already (a
3440 -- very unlikely situation, but we do not want to blow up!)
3442 if Optimization_Level = 0
3443 or else No (Etype (N))
3444 or else not Is_Discrete_Type (Etype (N))
3445 or else Num_Saved_Checks = Saved_Checks'Last
3446 then
3447 Set_Do_Range_Check (N, True);
3449 if Debug_Flag_CC then
3450 w ("Optimization off");
3451 end if;
3453 return;
3454 end if;
3456 -- Otherwise find out the target type
3458 P := Parent (N);
3460 -- For assignment, use left side subtype
3462 if Nkind (P) = N_Assignment_Statement
3463 and then Expression (P) = N
3464 then
3465 Ttyp := Etype (Name (P));
3467 -- For indexed component, use subscript subtype
3469 elsif Nkind (P) = N_Indexed_Component then
3470 declare
3471 Atyp : Entity_Id;
3472 Indx : Node_Id;
3473 Subs : Node_Id;
3475 begin
3476 Atyp := Etype (Prefix (P));
3478 if Is_Access_Type (Atyp) then
3479 Atyp := Designated_Type (Atyp);
3481 -- If the prefix is an access to an unconstrained array,
3482 -- perform check unconditionally: it depends on the bounds
3483 -- of an object and we cannot currently recognize whether
3484 -- the test may be redundant.
3486 if not Is_Constrained (Atyp) then
3487 Set_Do_Range_Check (N, True);
3488 return;
3489 end if;
3491 -- Ditto if the prefix is an explicit dereference whose
3492 -- designated type is unconstrained.
3494 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
3495 and then not Is_Constrained (Atyp)
3496 then
3497 Set_Do_Range_Check (N, True);
3498 return;
3499 end if;
3501 Indx := First_Index (Atyp);
3502 Subs := First (Expressions (P));
3503 loop
3504 if Subs = N then
3505 Ttyp := Etype (Indx);
3506 exit;
3507 end if;
3509 Next_Index (Indx);
3510 Next (Subs);
3511 end loop;
3512 end;
3514 -- For now, ignore all other cases, they are not so interesting
3516 else
3517 if Debug_Flag_CC then
3518 w (" target type not found, flag set");
3519 end if;
3521 Set_Do_Range_Check (N, True);
3522 return;
3523 end if;
3525 -- Evaluate and check the expression
3527 Find_Check
3528 (Expr => N,
3529 Check_Type => 'R',
3530 Target_Type => Ttyp,
3531 Entry_OK => OK,
3532 Check_Num => Chk,
3533 Ent => Ent,
3534 Ofs => Ofs);
3536 if Debug_Flag_CC then
3537 w ("Called Find_Check");
3538 w ("Target_Typ = ", Int (Ttyp));
3539 w (" OK = ", OK);
3541 if OK then
3542 w (" Check_Num = ", Chk);
3543 w (" Ent = ", Int (Ent));
3544 Write_Str (" Ofs = ");
3545 pid (Ofs);
3546 end if;
3547 end if;
3549 -- If check is not of form to optimize, then set flag and we are done
3551 if not OK then
3552 if Debug_Flag_CC then
3553 w (" expression not of optimizable type, flag set");
3554 end if;
3556 Set_Do_Range_Check (N, True);
3557 return;
3558 end if;
3560 -- If check is already performed, then return without setting flag
3562 if Chk /= 0 then
3563 if Debug_Flag_CC then
3564 w ("Check suppressed!");
3565 end if;
3567 return;
3568 end if;
3570 -- Here we will make a new entry for the new check
3572 Set_Do_Range_Check (N, True);
3573 Num_Saved_Checks := Num_Saved_Checks + 1;
3574 Saved_Checks (Num_Saved_Checks) :=
3575 (Killed => False,
3576 Entity => Ent,
3577 Offset => Ofs,
3578 Check_Type => 'R',
3579 Target_Type => Ttyp);
3581 if Debug_Flag_CC then
3582 w ("Make new entry, check number = ", Num_Saved_Checks);
3583 w (" Entity = ", Int (Ent));
3584 Write_Str (" Offset = ");
3585 pid (Ofs);
3586 w (" Check_Type = R");
3587 w (" Target_Type = ", Int (Ttyp));
3588 pg (Ttyp);
3589 end if;
3591 -- If we get an exception, then something went wrong, probably because
3592 -- of an error in the structure of the tree due to an incorrect program.
3593 -- Or it may be a bug in the optimization circuit. In either case the
3594 -- safest thing is simply to set the check flag unconditionally.
3596 exception
3597 when others =>
3598 Set_Do_Range_Check (N, True);
3600 if Debug_Flag_CC then
3601 w (" exception occurred, range flag set");
3602 end if;
3604 return;
3605 end Enable_Range_Check;
3607 ------------------
3608 -- Ensure_Valid --
3609 ------------------
3611 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3612 Typ : constant Entity_Id := Etype (Expr);
3614 begin
3615 -- Ignore call if we are not doing any validity checking
3617 if not Validity_Checks_On then
3618 return;
3620 -- Ignore call if range checks suppressed on entity in question
3622 elsif Is_Entity_Name (Expr)
3623 and then Range_Checks_Suppressed (Entity (Expr))
3624 then
3625 return;
3627 -- No check required if expression is from the expander, we assume
3628 -- the expander will generate whatever checks are needed. Note that
3629 -- this is not just an optimization, it avoids infinite recursions!
3631 -- Unchecked conversions must be checked, unless they are initialized
3632 -- scalar values, as in a component assignment in an init proc.
3634 -- In addition, we force a check if Force_Validity_Checks is set
3636 elsif not Comes_From_Source (Expr)
3637 and then not Force_Validity_Checks
3638 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3639 or else Kill_Range_Check (Expr))
3640 then
3641 return;
3643 -- No check required if expression is known to have valid value
3645 elsif Expr_Known_Valid (Expr) then
3646 return;
3648 -- No check required if checks off
3650 elsif Range_Checks_Suppressed (Typ) then
3651 return;
3653 -- Ignore case of enumeration with holes where the flag is set not
3654 -- to worry about holes, since no special validity check is needed
3656 elsif Is_Enumeration_Type (Typ)
3657 and then Has_Non_Standard_Rep (Typ)
3658 and then Holes_OK
3659 then
3660 return;
3662 -- No check required on the left-hand side of an assignment
3664 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3665 and then Expr = Name (Parent (Expr))
3666 then
3667 return;
3669 -- An annoying special case. If this is an out parameter of a scalar
3670 -- type, then the value is not going to be accessed, therefore it is
3671 -- inappropriate to do any validity check at the call site.
3673 else
3674 -- Only need to worry about scalar types
3676 if Is_Scalar_Type (Typ) then
3677 declare
3678 P : Node_Id;
3679 N : Node_Id;
3680 E : Entity_Id;
3681 F : Entity_Id;
3682 A : Node_Id;
3683 L : List_Id;
3685 begin
3686 -- Find actual argument (which may be a parameter association)
3687 -- and the parent of the actual argument (the call statement)
3689 N := Expr;
3690 P := Parent (Expr);
3692 if Nkind (P) = N_Parameter_Association then
3693 N := P;
3694 P := Parent (N);
3695 end if;
3697 -- Only need to worry if we are argument of a procedure
3698 -- call since functions don't have out parameters. If this
3699 -- is an indirect or dispatching call, get signature from
3700 -- the subprogram type.
3702 if Nkind (P) = N_Procedure_Call_Statement then
3703 L := Parameter_Associations (P);
3705 if Is_Entity_Name (Name (P)) then
3706 E := Entity (Name (P));
3707 else
3708 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
3709 E := Etype (Name (P));
3710 end if;
3712 -- Only need to worry if there are indeed actuals, and
3713 -- if this could be a procedure call, otherwise we cannot
3714 -- get a match (either we are not an argument, or the
3715 -- mode of the formal is not OUT). This test also filters
3716 -- out the generic case.
3718 if Is_Non_Empty_List (L)
3719 and then Is_Subprogram (E)
3720 then
3721 -- This is the loop through parameters, looking to
3722 -- see if there is an OUT parameter for which we are
3723 -- the argument.
3725 F := First_Formal (E);
3726 A := First (L);
3728 while Present (F) loop
3729 if Ekind (F) = E_Out_Parameter and then A = N then
3730 return;
3731 end if;
3733 Next_Formal (F);
3734 Next (A);
3735 end loop;
3736 end if;
3737 end if;
3738 end;
3739 end if;
3740 end if;
3742 -- If we fall through, a validity check is required. Note that it would
3743 -- not be good to set Do_Range_Check, even in contexts where this is
3744 -- permissible, since this flag causes checking against the target type,
3745 -- not the source type in contexts such as assignments
3747 Insert_Valid_Check (Expr);
3748 end Ensure_Valid;
3750 ----------------------
3751 -- Expr_Known_Valid --
3752 ----------------------
3754 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
3755 Typ : constant Entity_Id := Etype (Expr);
3757 begin
3758 -- Non-scalar types are always considered valid, since they never
3759 -- give rise to the issues of erroneous or bounded error behavior
3760 -- that are the concern. In formal reference manual terms the
3761 -- notion of validity only applies to scalar types. Note that
3762 -- even when packed arrays are represented using modular types,
3763 -- they are still arrays semantically, so they are also always
3764 -- valid (in particular, the unused bits can be random rubbish
3765 -- without affecting the validity of the array value).
3767 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
3768 return True;
3770 -- If no validity checking, then everything is considered valid
3772 elsif not Validity_Checks_On then
3773 return True;
3775 -- Floating-point types are considered valid unless floating-point
3776 -- validity checks have been specifically turned on.
3778 elsif Is_Floating_Point_Type (Typ)
3779 and then not Validity_Check_Floating_Point
3780 then
3781 return True;
3783 -- If the expression is the value of an object that is known to
3784 -- be valid, then clearly the expression value itself is valid.
3786 elsif Is_Entity_Name (Expr)
3787 and then Is_Known_Valid (Entity (Expr))
3788 then
3789 return True;
3791 -- If the type is one for which all values are known valid, then
3792 -- we are sure that the value is valid except in the slightly odd
3793 -- case where the expression is a reference to a variable whose size
3794 -- has been explicitly set to a value greater than the object size.
3796 elsif Is_Known_Valid (Typ) then
3797 if Is_Entity_Name (Expr)
3798 and then Ekind (Entity (Expr)) = E_Variable
3799 and then Esize (Entity (Expr)) > Esize (Typ)
3800 then
3801 return False;
3802 else
3803 return True;
3804 end if;
3806 -- Integer and character literals always have valid values, where
3807 -- appropriate these will be range checked in any case.
3809 elsif Nkind (Expr) = N_Integer_Literal
3810 or else
3811 Nkind (Expr) = N_Character_Literal
3812 then
3813 return True;
3815 -- If we have a type conversion or a qualification of a known valid
3816 -- value, then the result will always be valid.
3818 elsif Nkind (Expr) = N_Type_Conversion
3819 or else
3820 Nkind (Expr) = N_Qualified_Expression
3821 then
3822 return Expr_Known_Valid (Expression (Expr));
3824 -- The result of any function call or operator is always considered
3825 -- valid, since we assume the necessary checks are done by the call.
3826 -- For operators on floating-point operations, we must also check
3827 -- when the operation is the right-hand side of an assignment, or
3828 -- is an actual in a call.
3830 elsif
3831 Nkind (Expr) in N_Binary_Op or else Nkind (Expr) in N_Unary_Op
3832 then
3833 if Is_Floating_Point_Type (Typ)
3834 and then Validity_Check_Floating_Point
3835 and then
3836 (Nkind (Parent (Expr)) = N_Assignment_Statement
3837 or else Nkind (Parent (Expr)) = N_Function_Call
3838 or else Nkind (Parent (Expr)) = N_Parameter_Association)
3839 then
3840 return False;
3841 else
3842 return True;
3843 end if;
3845 elsif Nkind (Expr) = N_Function_Call then
3846 return True;
3848 -- For all other cases, we do not know the expression is valid
3850 else
3851 return False;
3852 end if;
3853 end Expr_Known_Valid;
3855 ----------------
3856 -- Find_Check --
3857 ----------------
3859 procedure Find_Check
3860 (Expr : Node_Id;
3861 Check_Type : Character;
3862 Target_Type : Entity_Id;
3863 Entry_OK : out Boolean;
3864 Check_Num : out Nat;
3865 Ent : out Entity_Id;
3866 Ofs : out Uint)
3868 function Within_Range_Of
3869 (Target_Type : Entity_Id;
3870 Check_Type : Entity_Id) return Boolean;
3871 -- Given a requirement for checking a range against Target_Type, and
3872 -- and a range Check_Type against which a check has already been made,
3873 -- determines if the check against check type is sufficient to ensure
3874 -- that no check against Target_Type is required.
3876 ---------------------
3877 -- Within_Range_Of --
3878 ---------------------
3880 function Within_Range_Of
3881 (Target_Type : Entity_Id;
3882 Check_Type : Entity_Id) return Boolean
3884 begin
3885 if Target_Type = Check_Type then
3886 return True;
3888 else
3889 declare
3890 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
3891 Thi : constant Node_Id := Type_High_Bound (Target_Type);
3892 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
3893 Chi : constant Node_Id := Type_High_Bound (Check_Type);
3895 begin
3896 if (Tlo = Clo
3897 or else (Compile_Time_Known_Value (Tlo)
3898 and then
3899 Compile_Time_Known_Value (Clo)
3900 and then
3901 Expr_Value (Clo) >= Expr_Value (Tlo)))
3902 and then
3903 (Thi = Chi
3904 or else (Compile_Time_Known_Value (Thi)
3905 and then
3906 Compile_Time_Known_Value (Chi)
3907 and then
3908 Expr_Value (Chi) <= Expr_Value (Clo)))
3909 then
3910 return True;
3911 else
3912 return False;
3913 end if;
3914 end;
3915 end if;
3916 end Within_Range_Of;
3918 -- Start of processing for Find_Check
3920 begin
3921 -- Establish default, to avoid warnings from GCC
3923 Check_Num := 0;
3925 -- Case of expression is simple entity reference
3927 if Is_Entity_Name (Expr) then
3928 Ent := Entity (Expr);
3929 Ofs := Uint_0;
3931 -- Case of expression is entity + known constant
3933 elsif Nkind (Expr) = N_Op_Add
3934 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3935 and then Is_Entity_Name (Left_Opnd (Expr))
3936 then
3937 Ent := Entity (Left_Opnd (Expr));
3938 Ofs := Expr_Value (Right_Opnd (Expr));
3940 -- Case of expression is entity - known constant
3942 elsif Nkind (Expr) = N_Op_Subtract
3943 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3944 and then Is_Entity_Name (Left_Opnd (Expr))
3945 then
3946 Ent := Entity (Left_Opnd (Expr));
3947 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
3949 -- Any other expression is not of the right form
3951 else
3952 Ent := Empty;
3953 Ofs := Uint_0;
3954 Entry_OK := False;
3955 return;
3956 end if;
3958 -- Come here with expression of appropriate form, check if
3959 -- entity is an appropriate one for our purposes.
3961 if (Ekind (Ent) = E_Variable
3962 or else
3963 Ekind (Ent) = E_Constant
3964 or else
3965 Ekind (Ent) = E_Loop_Parameter
3966 or else
3967 Ekind (Ent) = E_In_Parameter)
3968 and then not Is_Library_Level_Entity (Ent)
3969 then
3970 Entry_OK := True;
3971 else
3972 Entry_OK := False;
3973 return;
3974 end if;
3976 -- See if there is matching check already
3978 for J in reverse 1 .. Num_Saved_Checks loop
3979 declare
3980 SC : Saved_Check renames Saved_Checks (J);
3982 begin
3983 if SC.Killed = False
3984 and then SC.Entity = Ent
3985 and then SC.Offset = Ofs
3986 and then SC.Check_Type = Check_Type
3987 and then Within_Range_Of (Target_Type, SC.Target_Type)
3988 then
3989 Check_Num := J;
3990 return;
3991 end if;
3992 end;
3993 end loop;
3995 -- If we fall through entry was not found
3997 Check_Num := 0;
3998 return;
3999 end Find_Check;
4001 ---------------------------------
4002 -- Generate_Discriminant_Check --
4003 ---------------------------------
4005 -- Note: the code for this procedure is derived from the
4006 -- emit_discriminant_check routine a-trans.c v1.659.
4008 procedure Generate_Discriminant_Check (N : Node_Id) is
4009 Loc : constant Source_Ptr := Sloc (N);
4010 Pref : constant Node_Id := Prefix (N);
4011 Sel : constant Node_Id := Selector_Name (N);
4013 Orig_Comp : constant Entity_Id :=
4014 Original_Record_Component (Entity (Sel));
4015 -- The original component to be checked
4017 Discr_Fct : constant Entity_Id :=
4018 Discriminant_Checking_Func (Orig_Comp);
4019 -- The discriminant checking function
4021 Discr : Entity_Id;
4022 -- One discriminant to be checked in the type
4024 Real_Discr : Entity_Id;
4025 -- Actual discriminant in the call
4027 Pref_Type : Entity_Id;
4028 -- Type of relevant prefix (ignoring private/access stuff)
4030 Args : List_Id;
4031 -- List of arguments for function call
4033 Formal : Entity_Id;
4034 -- Keep track of the formal corresponding to the actual we build
4035 -- for each discriminant, in order to be able to perform the
4036 -- necessary type conversions.
4038 Scomp : Node_Id;
4039 -- Selected component reference for checking function argument
4041 begin
4042 Pref_Type := Etype (Pref);
4044 -- Force evaluation of the prefix, so that it does not get evaluated
4045 -- twice (once for the check, once for the actual reference). Such a
4046 -- double evaluation is always a potential source of inefficiency,
4047 -- and is functionally incorrect in the volatile case, or when the
4048 -- prefix may have side-effects. An entity or a component of an
4049 -- entity requires no evaluation.
4051 if Is_Entity_Name (Pref) then
4052 if Treat_As_Volatile (Entity (Pref)) then
4053 Force_Evaluation (Pref, Name_Req => True);
4054 end if;
4056 elsif Treat_As_Volatile (Etype (Pref)) then
4057 Force_Evaluation (Pref, Name_Req => True);
4059 elsif Nkind (Pref) = N_Selected_Component
4060 and then Is_Entity_Name (Prefix (Pref))
4061 then
4062 null;
4064 else
4065 Force_Evaluation (Pref, Name_Req => True);
4066 end if;
4068 -- For a tagged type, use the scope of the original component to
4069 -- obtain the type, because ???
4071 if Is_Tagged_Type (Scope (Orig_Comp)) then
4072 Pref_Type := Scope (Orig_Comp);
4074 -- For an untagged derived type, use the discriminants of the
4075 -- parent which have been renamed in the derivation, possibly
4076 -- by a one-to-many discriminant constraint.
4077 -- For non-tagged type, initially get the Etype of the prefix
4079 else
4080 if Is_Derived_Type (Pref_Type)
4081 and then Number_Discriminants (Pref_Type) /=
4082 Number_Discriminants (Etype (Base_Type (Pref_Type)))
4083 then
4084 Pref_Type := Etype (Base_Type (Pref_Type));
4085 end if;
4086 end if;
4088 -- We definitely should have a checking function, This routine should
4089 -- not be called if no discriminant checking function is present.
4091 pragma Assert (Present (Discr_Fct));
4093 -- Create the list of the actual parameters for the call. This list
4094 -- is the list of the discriminant fields of the record expression to
4095 -- be discriminant checked.
4097 Args := New_List;
4098 Formal := First_Formal (Discr_Fct);
4099 Discr := First_Discriminant (Pref_Type);
4100 while Present (Discr) loop
4102 -- If we have a corresponding discriminant field, and a parent
4103 -- subtype is present, then we want to use the corresponding
4104 -- discriminant since this is the one with the useful value.
4106 if Present (Corresponding_Discriminant (Discr))
4107 and then Ekind (Pref_Type) = E_Record_Type
4108 and then Present (Parent_Subtype (Pref_Type))
4109 then
4110 Real_Discr := Corresponding_Discriminant (Discr);
4111 else
4112 Real_Discr := Discr;
4113 end if;
4115 -- Construct the reference to the discriminant
4117 Scomp :=
4118 Make_Selected_Component (Loc,
4119 Prefix =>
4120 Unchecked_Convert_To (Pref_Type,
4121 Duplicate_Subexpr (Pref)),
4122 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4124 -- Manually analyze and resolve this selected component. We really
4125 -- want it just as it appears above, and do not want the expander
4126 -- playing discriminal games etc with this reference. Then we
4127 -- append the argument to the list we are gathering.
4129 Set_Etype (Scomp, Etype (Real_Discr));
4130 Set_Analyzed (Scomp, True);
4131 Append_To (Args, Convert_To (Etype (Formal), Scomp));
4133 Next_Formal_With_Extras (Formal);
4134 Next_Discriminant (Discr);
4135 end loop;
4137 -- Now build and insert the call
4139 Insert_Action (N,
4140 Make_Raise_Constraint_Error (Loc,
4141 Condition =>
4142 Make_Function_Call (Loc,
4143 Name => New_Occurrence_Of (Discr_Fct, Loc),
4144 Parameter_Associations => Args),
4145 Reason => CE_Discriminant_Check_Failed));
4146 end Generate_Discriminant_Check;
4148 ---------------------------
4149 -- Generate_Index_Checks --
4150 ---------------------------
4152 procedure Generate_Index_Checks (N : Node_Id) is
4153 Loc : constant Source_Ptr := Sloc (N);
4154 A : constant Node_Id := Prefix (N);
4155 Sub : Node_Id;
4156 Ind : Nat;
4157 Num : List_Id;
4159 begin
4160 Sub := First (Expressions (N));
4161 Ind := 1;
4162 while Present (Sub) loop
4163 if Do_Range_Check (Sub) then
4164 Set_Do_Range_Check (Sub, False);
4166 -- Force evaluation except for the case of a simple name of
4167 -- a non-volatile entity.
4169 if not Is_Entity_Name (Sub)
4170 or else Treat_As_Volatile (Entity (Sub))
4171 then
4172 Force_Evaluation (Sub);
4173 end if;
4175 -- Generate a raise of constraint error with the appropriate
4176 -- reason and a condition of the form:
4178 -- Base_Type(Sub) not in array'range (subscript)
4180 -- Note that the reason we generate the conversion to the
4181 -- base type here is that we definitely want the range check
4182 -- to take place, even if it looks like the subtype is OK.
4183 -- Optimization considerations that allow us to omit the
4184 -- check have already been taken into account in the setting
4185 -- of the Do_Range_Check flag earlier on.
4187 if Ind = 1 then
4188 Num := No_List;
4189 else
4190 Num := New_List (Make_Integer_Literal (Loc, Ind));
4191 end if;
4193 Insert_Action (N,
4194 Make_Raise_Constraint_Error (Loc,
4195 Condition =>
4196 Make_Not_In (Loc,
4197 Left_Opnd =>
4198 Convert_To (Base_Type (Etype (Sub)),
4199 Duplicate_Subexpr_Move_Checks (Sub)),
4200 Right_Opnd =>
4201 Make_Attribute_Reference (Loc,
4202 Prefix => Duplicate_Subexpr_Move_Checks (A),
4203 Attribute_Name => Name_Range,
4204 Expressions => Num)),
4205 Reason => CE_Index_Check_Failed));
4206 end if;
4208 Ind := Ind + 1;
4209 Next (Sub);
4210 end loop;
4211 end Generate_Index_Checks;
4213 --------------------------
4214 -- Generate_Range_Check --
4215 --------------------------
4217 procedure Generate_Range_Check
4218 (N : Node_Id;
4219 Target_Type : Entity_Id;
4220 Reason : RT_Exception_Code)
4222 Loc : constant Source_Ptr := Sloc (N);
4223 Source_Type : constant Entity_Id := Etype (N);
4224 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
4225 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
4227 begin
4228 -- First special case, if the source type is already within the
4229 -- range of the target type, then no check is needed (probably we
4230 -- should have stopped Do_Range_Check from being set in the first
4231 -- place, but better late than later in preventing junk code!
4233 -- We do NOT apply this if the source node is a literal, since in
4234 -- this case the literal has already been labeled as having the
4235 -- subtype of the target.
4237 if In_Subrange_Of (Source_Type, Target_Type)
4238 and then not
4239 (Nkind (N) = N_Integer_Literal
4240 or else
4241 Nkind (N) = N_Real_Literal
4242 or else
4243 Nkind (N) = N_Character_Literal
4244 or else
4245 (Is_Entity_Name (N)
4246 and then Ekind (Entity (N)) = E_Enumeration_Literal))
4247 then
4248 return;
4249 end if;
4251 -- We need a check, so force evaluation of the node, so that it does
4252 -- not get evaluated twice (once for the check, once for the actual
4253 -- reference). Such a double evaluation is always a potential source
4254 -- of inefficiency, and is functionally incorrect in the volatile case.
4256 if not Is_Entity_Name (N)
4257 or else Treat_As_Volatile (Entity (N))
4258 then
4259 Force_Evaluation (N);
4260 end if;
4262 -- The easiest case is when Source_Base_Type and Target_Base_Type
4263 -- are the same since in this case we can simply do a direct
4264 -- check of the value of N against the bounds of Target_Type.
4266 -- [constraint_error when N not in Target_Type]
4268 -- Note: this is by far the most common case, for example all cases of
4269 -- checks on the RHS of assignments are in this category, but not all
4270 -- cases are like this. Notably conversions can involve two types.
4272 if Source_Base_Type = Target_Base_Type then
4273 Insert_Action (N,
4274 Make_Raise_Constraint_Error (Loc,
4275 Condition =>
4276 Make_Not_In (Loc,
4277 Left_Opnd => Duplicate_Subexpr (N),
4278 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4279 Reason => Reason));
4281 -- Next test for the case where the target type is within the bounds
4282 -- of the base type of the source type, since in this case we can
4283 -- simply convert these bounds to the base type of T to do the test.
4285 -- [constraint_error when N not in
4286 -- Source_Base_Type (Target_Type'First)
4287 -- ..
4288 -- Source_Base_Type(Target_Type'Last))]
4290 -- The conversions will always work and need no check
4292 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
4293 Insert_Action (N,
4294 Make_Raise_Constraint_Error (Loc,
4295 Condition =>
4296 Make_Not_In (Loc,
4297 Left_Opnd => Duplicate_Subexpr (N),
4299 Right_Opnd =>
4300 Make_Range (Loc,
4301 Low_Bound =>
4302 Convert_To (Source_Base_Type,
4303 Make_Attribute_Reference (Loc,
4304 Prefix =>
4305 New_Occurrence_Of (Target_Type, Loc),
4306 Attribute_Name => Name_First)),
4308 High_Bound =>
4309 Convert_To (Source_Base_Type,
4310 Make_Attribute_Reference (Loc,
4311 Prefix =>
4312 New_Occurrence_Of (Target_Type, Loc),
4313 Attribute_Name => Name_Last)))),
4314 Reason => Reason));
4316 -- Note that at this stage we now that the Target_Base_Type is
4317 -- not in the range of the Source_Base_Type (since even the
4318 -- Target_Type itself is not in this range). It could still be
4319 -- the case that the Source_Type is in range of the target base
4320 -- type, since we have not checked that case.
4322 -- If that is the case, we can freely convert the source to the
4323 -- target, and then test the target result against the bounds.
4325 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
4327 -- We make a temporary to hold the value of the converted
4328 -- value (converted to the base type), and then we will
4329 -- do the test against this temporary.
4331 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4332 -- [constraint_error when Tnn not in Target_Type]
4334 -- Then the conversion itself is replaced by an occurrence of Tnn
4336 declare
4337 Tnn : constant Entity_Id :=
4338 Make_Defining_Identifier (Loc,
4339 Chars => New_Internal_Name ('T'));
4341 begin
4342 Insert_Actions (N, New_List (
4343 Make_Object_Declaration (Loc,
4344 Defining_Identifier => Tnn,
4345 Object_Definition =>
4346 New_Occurrence_Of (Target_Base_Type, Loc),
4347 Constant_Present => True,
4348 Expression =>
4349 Make_Type_Conversion (Loc,
4350 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4351 Expression => Duplicate_Subexpr (N))),
4353 Make_Raise_Constraint_Error (Loc,
4354 Condition =>
4355 Make_Not_In (Loc,
4356 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4357 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4359 Reason => Reason)));
4361 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4362 end;
4364 -- At this stage, we know that we have two scalar types, which are
4365 -- directly convertible, and where neither scalar type has a base
4366 -- range that is in the range of the other scalar type.
4368 -- The only way this can happen is with a signed and unsigned type.
4369 -- So test for these two cases:
4371 else
4372 -- Case of the source is unsigned and the target is signed
4374 if Is_Unsigned_Type (Source_Base_Type)
4375 and then not Is_Unsigned_Type (Target_Base_Type)
4376 then
4377 -- If the source is unsigned and the target is signed, then we
4378 -- know that the source is not shorter than the target (otherwise
4379 -- the source base type would be in the target base type range).
4381 -- In other words, the unsigned type is either the same size
4382 -- as the target, or it is larger. It cannot be smaller.
4384 pragma Assert
4385 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4387 -- We only need to check the low bound if the low bound of the
4388 -- target type is non-negative. If the low bound of the target
4389 -- type is negative, then we know that we will fit fine.
4391 -- If the high bound of the target type is negative, then we
4392 -- know we have a constraint error, since we can't possibly
4393 -- have a negative source.
4395 -- With these two checks out of the way, we can do the check
4396 -- using the source type safely
4398 -- This is definitely the most annoying case!
4400 -- [constraint_error
4401 -- when (Target_Type'First >= 0
4402 -- and then
4403 -- N < Source_Base_Type (Target_Type'First))
4404 -- or else Target_Type'Last < 0
4405 -- or else N > Source_Base_Type (Target_Type'Last)];
4407 -- We turn off all checks since we know that the conversions
4408 -- will work fine, given the guards for negative values.
4410 Insert_Action (N,
4411 Make_Raise_Constraint_Error (Loc,
4412 Condition =>
4413 Make_Or_Else (Loc,
4414 Make_Or_Else (Loc,
4415 Left_Opnd =>
4416 Make_And_Then (Loc,
4417 Left_Opnd => Make_Op_Ge (Loc,
4418 Left_Opnd =>
4419 Make_Attribute_Reference (Loc,
4420 Prefix =>
4421 New_Occurrence_Of (Target_Type, Loc),
4422 Attribute_Name => Name_First),
4423 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4425 Right_Opnd =>
4426 Make_Op_Lt (Loc,
4427 Left_Opnd => Duplicate_Subexpr (N),
4428 Right_Opnd =>
4429 Convert_To (Source_Base_Type,
4430 Make_Attribute_Reference (Loc,
4431 Prefix =>
4432 New_Occurrence_Of (Target_Type, Loc),
4433 Attribute_Name => Name_First)))),
4435 Right_Opnd =>
4436 Make_Op_Lt (Loc,
4437 Left_Opnd =>
4438 Make_Attribute_Reference (Loc,
4439 Prefix => New_Occurrence_Of (Target_Type, Loc),
4440 Attribute_Name => Name_Last),
4441 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4443 Right_Opnd =>
4444 Make_Op_Gt (Loc,
4445 Left_Opnd => Duplicate_Subexpr (N),
4446 Right_Opnd =>
4447 Convert_To (Source_Base_Type,
4448 Make_Attribute_Reference (Loc,
4449 Prefix => New_Occurrence_Of (Target_Type, Loc),
4450 Attribute_Name => Name_Last)))),
4452 Reason => Reason),
4453 Suppress => All_Checks);
4455 -- Only remaining possibility is that the source is signed and
4456 -- the target is unsigned
4458 else
4459 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4460 and then Is_Unsigned_Type (Target_Base_Type));
4462 -- If the source is signed and the target is unsigned, then
4463 -- we know that the target is not shorter than the source
4464 -- (otherwise the target base type would be in the source
4465 -- base type range).
4467 -- In other words, the unsigned type is either the same size
4468 -- as the target, or it is larger. It cannot be smaller.
4470 -- Clearly we have an error if the source value is negative
4471 -- since no unsigned type can have negative values. If the
4472 -- source type is non-negative, then the check can be done
4473 -- using the target type.
4475 -- Tnn : constant Target_Base_Type (N) := Target_Type;
4477 -- [constraint_error
4478 -- when N < 0 or else Tnn not in Target_Type];
4480 -- We turn off all checks for the conversion of N to the
4481 -- target base type, since we generate the explicit check
4482 -- to ensure that the value is non-negative
4484 declare
4485 Tnn : constant Entity_Id :=
4486 Make_Defining_Identifier (Loc,
4487 Chars => New_Internal_Name ('T'));
4489 begin
4490 Insert_Actions (N, New_List (
4491 Make_Object_Declaration (Loc,
4492 Defining_Identifier => Tnn,
4493 Object_Definition =>
4494 New_Occurrence_Of (Target_Base_Type, Loc),
4495 Constant_Present => True,
4496 Expression =>
4497 Make_Type_Conversion (Loc,
4498 Subtype_Mark =>
4499 New_Occurrence_Of (Target_Base_Type, Loc),
4500 Expression => Duplicate_Subexpr (N))),
4502 Make_Raise_Constraint_Error (Loc,
4503 Condition =>
4504 Make_Or_Else (Loc,
4505 Left_Opnd =>
4506 Make_Op_Lt (Loc,
4507 Left_Opnd => Duplicate_Subexpr (N),
4508 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4510 Right_Opnd =>
4511 Make_Not_In (Loc,
4512 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4513 Right_Opnd =>
4514 New_Occurrence_Of (Target_Type, Loc))),
4516 Reason => Reason)),
4517 Suppress => All_Checks);
4519 -- Set the Etype explicitly, because Insert_Actions may
4520 -- have placed the declaration in the freeze list for an
4521 -- enclosing construct, and thus it is not analyzed yet.
4523 Set_Etype (Tnn, Target_Base_Type);
4524 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4525 end;
4526 end if;
4527 end if;
4528 end Generate_Range_Check;
4530 ---------------------
4531 -- Get_Discriminal --
4532 ---------------------
4534 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4535 Loc : constant Source_Ptr := Sloc (E);
4536 D : Entity_Id;
4537 Sc : Entity_Id;
4539 begin
4540 -- The entity E is the type of a private component of the protected
4541 -- type, or the type of a renaming of that component within a protected
4542 -- operation of that type.
4544 Sc := Scope (E);
4546 if Ekind (Sc) /= E_Protected_Type then
4547 Sc := Scope (Sc);
4549 if Ekind (Sc) /= E_Protected_Type then
4550 return Bound;
4551 end if;
4552 end if;
4554 D := First_Discriminant (Sc);
4556 while Present (D)
4557 and then Chars (D) /= Chars (Bound)
4558 loop
4559 Next_Discriminant (D);
4560 end loop;
4562 return New_Occurrence_Of (Discriminal (D), Loc);
4563 end Get_Discriminal;
4565 ------------------
4566 -- Guard_Access --
4567 ------------------
4569 function Guard_Access
4570 (Cond : Node_Id;
4571 Loc : Source_Ptr;
4572 Ck_Node : Node_Id) return Node_Id
4574 begin
4575 if Nkind (Cond) = N_Or_Else then
4576 Set_Paren_Count (Cond, 1);
4577 end if;
4579 if Nkind (Ck_Node) = N_Allocator then
4580 return Cond;
4581 else
4582 return
4583 Make_And_Then (Loc,
4584 Left_Opnd =>
4585 Make_Op_Ne (Loc,
4586 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
4587 Right_Opnd => Make_Null (Loc)),
4588 Right_Opnd => Cond);
4589 end if;
4590 end Guard_Access;
4592 -----------------------------
4593 -- Index_Checks_Suppressed --
4594 -----------------------------
4596 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
4597 begin
4598 if Present (E) and then Checks_May_Be_Suppressed (E) then
4599 return Is_Check_Suppressed (E, Index_Check);
4600 else
4601 return Scope_Suppress (Index_Check);
4602 end if;
4603 end Index_Checks_Suppressed;
4605 ----------------
4606 -- Initialize --
4607 ----------------
4609 procedure Initialize is
4610 begin
4611 for J in Determine_Range_Cache_N'Range loop
4612 Determine_Range_Cache_N (J) := Empty;
4613 end loop;
4614 end Initialize;
4616 -------------------------
4617 -- Insert_Range_Checks --
4618 -------------------------
4620 procedure Insert_Range_Checks
4621 (Checks : Check_Result;
4622 Node : Node_Id;
4623 Suppress_Typ : Entity_Id;
4624 Static_Sloc : Source_Ptr := No_Location;
4625 Flag_Node : Node_Id := Empty;
4626 Do_Before : Boolean := False)
4628 Internal_Flag_Node : Node_Id := Flag_Node;
4629 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
4631 Check_Node : Node_Id;
4632 Checks_On : constant Boolean :=
4633 (not Index_Checks_Suppressed (Suppress_Typ))
4634 or else
4635 (not Range_Checks_Suppressed (Suppress_Typ));
4637 begin
4638 -- For now we just return if Checks_On is false, however this should
4639 -- be enhanced to check for an always True value in the condition
4640 -- and to generate a compilation warning???
4642 if not Expander_Active or else not Checks_On then
4643 return;
4644 end if;
4646 if Static_Sloc = No_Location then
4647 Internal_Static_Sloc := Sloc (Node);
4648 end if;
4650 if No (Flag_Node) then
4651 Internal_Flag_Node := Node;
4652 end if;
4654 for J in 1 .. 2 loop
4655 exit when No (Checks (J));
4657 if Nkind (Checks (J)) = N_Raise_Constraint_Error
4658 and then Present (Condition (Checks (J)))
4659 then
4660 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
4661 Check_Node := Checks (J);
4662 Mark_Rewrite_Insertion (Check_Node);
4664 if Do_Before then
4665 Insert_Before_And_Analyze (Node, Check_Node);
4666 else
4667 Insert_After_And_Analyze (Node, Check_Node);
4668 end if;
4670 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
4671 end if;
4673 else
4674 Check_Node :=
4675 Make_Raise_Constraint_Error (Internal_Static_Sloc,
4676 Reason => CE_Range_Check_Failed);
4677 Mark_Rewrite_Insertion (Check_Node);
4679 if Do_Before then
4680 Insert_Before_And_Analyze (Node, Check_Node);
4681 else
4682 Insert_After_And_Analyze (Node, Check_Node);
4683 end if;
4684 end if;
4685 end loop;
4686 end Insert_Range_Checks;
4688 ------------------------
4689 -- Insert_Valid_Check --
4690 ------------------------
4692 procedure Insert_Valid_Check (Expr : Node_Id) is
4693 Loc : constant Source_Ptr := Sloc (Expr);
4694 Exp : Node_Id;
4696 begin
4697 -- Do not insert if checks off, or if not checking validity
4699 if Range_Checks_Suppressed (Etype (Expr))
4700 or else (not Validity_Checks_On)
4701 then
4702 return;
4703 end if;
4705 -- If we have a checked conversion, then validity check applies to
4706 -- the expression inside the conversion, not the result, since if
4707 -- the expression inside is valid, then so is the conversion result.
4709 Exp := Expr;
4710 while Nkind (Exp) = N_Type_Conversion loop
4711 Exp := Expression (Exp);
4712 end loop;
4714 -- Insert the validity check. Note that we do this with validity
4715 -- checks turned off, to avoid recursion, we do not want validity
4716 -- checks on the validity checking code itself!
4718 Validity_Checks_On := False;
4719 Insert_Action
4720 (Expr,
4721 Make_Raise_Constraint_Error (Loc,
4722 Condition =>
4723 Make_Op_Not (Loc,
4724 Right_Opnd =>
4725 Make_Attribute_Reference (Loc,
4726 Prefix =>
4727 Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
4728 Attribute_Name => Name_Valid)),
4729 Reason => CE_Invalid_Data),
4730 Suppress => All_Checks);
4731 Validity_Checks_On := True;
4732 end Insert_Valid_Check;
4734 ----------------------------------
4735 -- Install_Null_Excluding_Check --
4736 ----------------------------------
4738 procedure Install_Null_Excluding_Check (N : Node_Id) is
4739 Loc : constant Source_Ptr := Sloc (N);
4740 Etyp : constant Entity_Id := Etype (N);
4742 begin
4743 pragma Assert (Is_Access_Type (Etyp));
4745 -- Don't need access check if: 1) we are analyzing a generic, 2) it is
4746 -- known to be non-null, or 3) the check was suppressed on the type
4748 if Inside_A_Generic
4749 or else Access_Checks_Suppressed (Etyp)
4750 then
4751 return;
4753 -- Otherwise install access check
4755 else
4756 Insert_Action (N,
4757 Make_Raise_Constraint_Error (Loc,
4758 Condition =>
4759 Make_Op_Eq (Loc,
4760 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
4761 Right_Opnd => Make_Null (Loc)),
4762 Reason => CE_Access_Check_Failed));
4763 end if;
4764 end Install_Null_Excluding_Check;
4766 --------------------------
4767 -- Install_Static_Check --
4768 --------------------------
4770 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
4771 Stat : constant Boolean := Is_Static_Expression (R_Cno);
4772 Typ : constant Entity_Id := Etype (R_Cno);
4774 begin
4775 Rewrite (R_Cno,
4776 Make_Raise_Constraint_Error (Loc,
4777 Reason => CE_Range_Check_Failed));
4778 Set_Analyzed (R_Cno);
4779 Set_Etype (R_Cno, Typ);
4780 Set_Raises_Constraint_Error (R_Cno);
4781 Set_Is_Static_Expression (R_Cno, Stat);
4782 end Install_Static_Check;
4784 ---------------------
4785 -- Kill_All_Checks --
4786 ---------------------
4788 procedure Kill_All_Checks is
4789 begin
4790 if Debug_Flag_CC then
4791 w ("Kill_All_Checks");
4792 end if;
4794 -- We reset the number of saved checks to zero, and also modify
4795 -- all stack entries for statement ranges to indicate that the
4796 -- number of checks at each level is now zero.
4798 Num_Saved_Checks := 0;
4800 for J in 1 .. Saved_Checks_TOS loop
4801 Saved_Checks_Stack (J) := 0;
4802 end loop;
4803 end Kill_All_Checks;
4805 -----------------
4806 -- Kill_Checks --
4807 -----------------
4809 procedure Kill_Checks (V : Entity_Id) is
4810 begin
4811 if Debug_Flag_CC then
4812 w ("Kill_Checks for entity", Int (V));
4813 end if;
4815 for J in 1 .. Num_Saved_Checks loop
4816 if Saved_Checks (J).Entity = V then
4817 if Debug_Flag_CC then
4818 w (" Checks killed for saved check ", J);
4819 end if;
4821 Saved_Checks (J).Killed := True;
4822 end if;
4823 end loop;
4824 end Kill_Checks;
4826 ------------------------------
4827 -- Length_Checks_Suppressed --
4828 ------------------------------
4830 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
4831 begin
4832 if Present (E) and then Checks_May_Be_Suppressed (E) then
4833 return Is_Check_Suppressed (E, Length_Check);
4834 else
4835 return Scope_Suppress (Length_Check);
4836 end if;
4837 end Length_Checks_Suppressed;
4839 --------------------------------
4840 -- Overflow_Checks_Suppressed --
4841 --------------------------------
4843 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
4844 begin
4845 if Present (E) and then Checks_May_Be_Suppressed (E) then
4846 return Is_Check_Suppressed (E, Overflow_Check);
4847 else
4848 return Scope_Suppress (Overflow_Check);
4849 end if;
4850 end Overflow_Checks_Suppressed;
4852 -----------------
4853 -- Range_Check --
4854 -----------------
4856 function Range_Check
4857 (Ck_Node : Node_Id;
4858 Target_Typ : Entity_Id;
4859 Source_Typ : Entity_Id := Empty;
4860 Warn_Node : Node_Id := Empty) return Check_Result
4862 begin
4863 return Selected_Range_Checks
4864 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4865 end Range_Check;
4867 -----------------------------
4868 -- Range_Checks_Suppressed --
4869 -----------------------------
4871 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
4872 begin
4873 if Present (E) then
4875 -- Note: for now we always suppress range checks on Vax float types,
4876 -- since Gigi does not know how to generate these checks.
4878 if Vax_Float (E) then
4879 return True;
4880 elsif Kill_Range_Checks (E) then
4881 return True;
4882 elsif Checks_May_Be_Suppressed (E) then
4883 return Is_Check_Suppressed (E, Range_Check);
4884 end if;
4885 end if;
4887 return Scope_Suppress (Range_Check);
4888 end Range_Checks_Suppressed;
4890 -------------------
4891 -- Remove_Checks --
4892 -------------------
4894 procedure Remove_Checks (Expr : Node_Id) is
4895 Discard : Traverse_Result;
4896 pragma Warnings (Off, Discard);
4898 function Process (N : Node_Id) return Traverse_Result;
4899 -- Process a single node during the traversal
4901 function Traverse is new Traverse_Func (Process);
4902 -- The traversal function itself
4904 -------------
4905 -- Process --
4906 -------------
4908 function Process (N : Node_Id) return Traverse_Result is
4909 begin
4910 if Nkind (N) not in N_Subexpr then
4911 return Skip;
4912 end if;
4914 Set_Do_Range_Check (N, False);
4916 case Nkind (N) is
4917 when N_And_Then =>
4918 Discard := Traverse (Left_Opnd (N));
4919 return Skip;
4921 when N_Attribute_Reference =>
4922 Set_Do_Overflow_Check (N, False);
4924 when N_Function_Call =>
4925 Set_Do_Tag_Check (N, False);
4927 when N_Op =>
4928 Set_Do_Overflow_Check (N, False);
4930 case Nkind (N) is
4931 when N_Op_Divide =>
4932 Set_Do_Division_Check (N, False);
4934 when N_Op_And =>
4935 Set_Do_Length_Check (N, False);
4937 when N_Op_Mod =>
4938 Set_Do_Division_Check (N, False);
4940 when N_Op_Or =>
4941 Set_Do_Length_Check (N, False);
4943 when N_Op_Rem =>
4944 Set_Do_Division_Check (N, False);
4946 when N_Op_Xor =>
4947 Set_Do_Length_Check (N, False);
4949 when others =>
4950 null;
4951 end case;
4953 when N_Or_Else =>
4954 Discard := Traverse (Left_Opnd (N));
4955 return Skip;
4957 when N_Selected_Component =>
4958 Set_Do_Discriminant_Check (N, False);
4960 when N_Type_Conversion =>
4961 Set_Do_Length_Check (N, False);
4962 Set_Do_Tag_Check (N, False);
4963 Set_Do_Overflow_Check (N, False);
4965 when others =>
4966 null;
4967 end case;
4969 return OK;
4970 end Process;
4972 -- Start of processing for Remove_Checks
4974 begin
4975 Discard := Traverse (Expr);
4976 end Remove_Checks;
4978 ----------------------------
4979 -- Selected_Length_Checks --
4980 ----------------------------
4982 function Selected_Length_Checks
4983 (Ck_Node : Node_Id;
4984 Target_Typ : Entity_Id;
4985 Source_Typ : Entity_Id;
4986 Warn_Node : Node_Id) return Check_Result
4988 Loc : constant Source_Ptr := Sloc (Ck_Node);
4989 S_Typ : Entity_Id;
4990 T_Typ : Entity_Id;
4991 Expr_Actual : Node_Id;
4992 Exptyp : Entity_Id;
4993 Cond : Node_Id := Empty;
4994 Do_Access : Boolean := False;
4995 Wnode : Node_Id := Warn_Node;
4996 Ret_Result : Check_Result := (Empty, Empty);
4997 Num_Checks : Natural := 0;
4999 procedure Add_Check (N : Node_Id);
5000 -- Adds the action given to Ret_Result if N is non-Empty
5002 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
5003 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
5004 -- Comments required ???
5006 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
5007 -- True for equal literals and for nodes that denote the same constant
5008 -- entity, even if its value is not a static constant. This includes the
5009 -- case of a discriminal reference within an init proc. Removes some
5010 -- obviously superfluous checks.
5012 function Length_E_Cond
5013 (Exptyp : Entity_Id;
5014 Typ : Entity_Id;
5015 Indx : Nat) return Node_Id;
5016 -- Returns expression to compute:
5017 -- Typ'Length /= Exptyp'Length
5019 function Length_N_Cond
5020 (Expr : Node_Id;
5021 Typ : Entity_Id;
5022 Indx : Nat) return Node_Id;
5023 -- Returns expression to compute:
5024 -- Typ'Length /= Expr'Length
5026 ---------------
5027 -- Add_Check --
5028 ---------------
5030 procedure Add_Check (N : Node_Id) is
5031 begin
5032 if Present (N) then
5034 -- For now, ignore attempt to place more than 2 checks ???
5036 if Num_Checks = 2 then
5037 return;
5038 end if;
5040 pragma Assert (Num_Checks <= 1);
5041 Num_Checks := Num_Checks + 1;
5042 Ret_Result (Num_Checks) := N;
5043 end if;
5044 end Add_Check;
5046 ------------------
5047 -- Get_E_Length --
5048 ------------------
5050 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
5051 Pt : constant Entity_Id := Scope (Scope (E));
5052 N : Node_Id;
5053 E1 : Entity_Id := E;
5055 begin
5056 if Ekind (Scope (E)) = E_Record_Type
5057 and then Has_Discriminants (Scope (E))
5058 then
5059 N := Build_Discriminal_Subtype_Of_Component (E);
5061 if Present (N) then
5062 Insert_Action (Ck_Node, N);
5063 E1 := Defining_Identifier (N);
5064 end if;
5065 end if;
5067 if Ekind (E1) = E_String_Literal_Subtype then
5068 return
5069 Make_Integer_Literal (Loc,
5070 Intval => String_Literal_Length (E1));
5072 elsif Ekind (Pt) = E_Protected_Type
5073 and then Has_Discriminants (Pt)
5074 and then Has_Completion (Pt)
5075 and then not Inside_Init_Proc
5076 then
5078 -- If the type whose length is needed is a private component
5079 -- constrained by a discriminant, we must expand the 'Length
5080 -- attribute into an explicit computation, using the discriminal
5081 -- of the current protected operation. This is because the actual
5082 -- type of the prival is constructed after the protected opera-
5083 -- tion has been fully expanded.
5085 declare
5086 Indx_Type : Node_Id;
5087 Lo : Node_Id;
5088 Hi : Node_Id;
5089 Do_Expand : Boolean := False;
5091 begin
5092 Indx_Type := First_Index (E);
5094 for J in 1 .. Indx - 1 loop
5095 Next_Index (Indx_Type);
5096 end loop;
5098 Get_Index_Bounds (Indx_Type, Lo, Hi);
5100 if Nkind (Lo) = N_Identifier
5101 and then Ekind (Entity (Lo)) = E_In_Parameter
5102 then
5103 Lo := Get_Discriminal (E, Lo);
5104 Do_Expand := True;
5105 end if;
5107 if Nkind (Hi) = N_Identifier
5108 and then Ekind (Entity (Hi)) = E_In_Parameter
5109 then
5110 Hi := Get_Discriminal (E, Hi);
5111 Do_Expand := True;
5112 end if;
5114 if Do_Expand then
5115 if not Is_Entity_Name (Lo) then
5116 Lo := Duplicate_Subexpr_No_Checks (Lo);
5117 end if;
5119 if not Is_Entity_Name (Hi) then
5120 Lo := Duplicate_Subexpr_No_Checks (Hi);
5121 end if;
5123 N :=
5124 Make_Op_Add (Loc,
5125 Left_Opnd =>
5126 Make_Op_Subtract (Loc,
5127 Left_Opnd => Hi,
5128 Right_Opnd => Lo),
5130 Right_Opnd => Make_Integer_Literal (Loc, 1));
5131 return N;
5133 else
5134 N :=
5135 Make_Attribute_Reference (Loc,
5136 Attribute_Name => Name_Length,
5137 Prefix =>
5138 New_Occurrence_Of (E1, Loc));
5140 if Indx > 1 then
5141 Set_Expressions (N, New_List (
5142 Make_Integer_Literal (Loc, Indx)));
5143 end if;
5145 return N;
5146 end if;
5147 end;
5149 else
5150 N :=
5151 Make_Attribute_Reference (Loc,
5152 Attribute_Name => Name_Length,
5153 Prefix =>
5154 New_Occurrence_Of (E1, Loc));
5156 if Indx > 1 then
5157 Set_Expressions (N, New_List (
5158 Make_Integer_Literal (Loc, Indx)));
5159 end if;
5161 return N;
5163 end if;
5164 end Get_E_Length;
5166 ------------------
5167 -- Get_N_Length --
5168 ------------------
5170 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5171 begin
5172 return
5173 Make_Attribute_Reference (Loc,
5174 Attribute_Name => Name_Length,
5175 Prefix =>
5176 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5177 Expressions => New_List (
5178 Make_Integer_Literal (Loc, Indx)));
5180 end Get_N_Length;
5182 -------------------
5183 -- Length_E_Cond --
5184 -------------------
5186 function Length_E_Cond
5187 (Exptyp : Entity_Id;
5188 Typ : Entity_Id;
5189 Indx : Nat) return Node_Id
5191 begin
5192 return
5193 Make_Op_Ne (Loc,
5194 Left_Opnd => Get_E_Length (Typ, Indx),
5195 Right_Opnd => Get_E_Length (Exptyp, Indx));
5197 end Length_E_Cond;
5199 -------------------
5200 -- Length_N_Cond --
5201 -------------------
5203 function Length_N_Cond
5204 (Expr : Node_Id;
5205 Typ : Entity_Id;
5206 Indx : Nat) return Node_Id
5208 begin
5209 return
5210 Make_Op_Ne (Loc,
5211 Left_Opnd => Get_E_Length (Typ, Indx),
5212 Right_Opnd => Get_N_Length (Expr, Indx));
5214 end Length_N_Cond;
5216 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5217 begin
5218 return
5219 (Nkind (L) = N_Integer_Literal
5220 and then Nkind (R) = N_Integer_Literal
5221 and then Intval (L) = Intval (R))
5223 or else
5224 (Is_Entity_Name (L)
5225 and then Ekind (Entity (L)) = E_Constant
5226 and then ((Is_Entity_Name (R)
5227 and then Entity (L) = Entity (R))
5228 or else
5229 (Nkind (R) = N_Type_Conversion
5230 and then Is_Entity_Name (Expression (R))
5231 and then Entity (L) = Entity (Expression (R)))))
5233 or else
5234 (Is_Entity_Name (R)
5235 and then Ekind (Entity (R)) = E_Constant
5236 and then Nkind (L) = N_Type_Conversion
5237 and then Is_Entity_Name (Expression (L))
5238 and then Entity (R) = Entity (Expression (L)))
5240 or else
5241 (Is_Entity_Name (L)
5242 and then Is_Entity_Name (R)
5243 and then Entity (L) = Entity (R)
5244 and then Ekind (Entity (L)) = E_In_Parameter
5245 and then Inside_Init_Proc);
5246 end Same_Bounds;
5248 -- Start of processing for Selected_Length_Checks
5250 begin
5251 if not Expander_Active then
5252 return Ret_Result;
5253 end if;
5255 if Target_Typ = Any_Type
5256 or else Target_Typ = Any_Composite
5257 or else Raises_Constraint_Error (Ck_Node)
5258 then
5259 return Ret_Result;
5260 end if;
5262 if No (Wnode) then
5263 Wnode := Ck_Node;
5264 end if;
5266 T_Typ := Target_Typ;
5268 if No (Source_Typ) then
5269 S_Typ := Etype (Ck_Node);
5270 else
5271 S_Typ := Source_Typ;
5272 end if;
5274 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5275 return Ret_Result;
5276 end if;
5278 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5279 S_Typ := Designated_Type (S_Typ);
5280 T_Typ := Designated_Type (T_Typ);
5281 Do_Access := True;
5283 -- A simple optimization
5285 if Nkind (Ck_Node) = N_Null then
5286 return Ret_Result;
5287 end if;
5288 end if;
5290 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
5291 if Is_Constrained (T_Typ) then
5293 -- The checking code to be generated will freeze the
5294 -- corresponding array type. However, we must freeze the
5295 -- type now, so that the freeze node does not appear within
5296 -- the generated condional expression, but ahead of it.
5298 Freeze_Before (Ck_Node, T_Typ);
5300 Expr_Actual := Get_Referenced_Object (Ck_Node);
5301 Exptyp := Get_Actual_Subtype (Expr_Actual);
5303 if Is_Access_Type (Exptyp) then
5304 Exptyp := Designated_Type (Exptyp);
5305 end if;
5307 -- String_Literal case. This needs to be handled specially be-
5308 -- cause no index types are available for string literals. The
5309 -- condition is simply:
5311 -- T_Typ'Length = string-literal-length
5313 if Nkind (Expr_Actual) = N_String_Literal
5314 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
5315 then
5316 Cond :=
5317 Make_Op_Ne (Loc,
5318 Left_Opnd => Get_E_Length (T_Typ, 1),
5319 Right_Opnd =>
5320 Make_Integer_Literal (Loc,
5321 Intval =>
5322 String_Literal_Length (Etype (Expr_Actual))));
5324 -- General array case. Here we have a usable actual subtype for
5325 -- the expression, and the condition is built from the two types
5326 -- (Do_Length):
5328 -- T_Typ'Length /= Exptyp'Length or else
5329 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
5330 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
5331 -- ...
5333 elsif Is_Constrained (Exptyp) then
5334 declare
5335 Ndims : constant Nat := Number_Dimensions (T_Typ);
5337 L_Index : Node_Id;
5338 R_Index : Node_Id;
5339 L_Low : Node_Id;
5340 L_High : Node_Id;
5341 R_Low : Node_Id;
5342 R_High : Node_Id;
5343 L_Length : Uint;
5344 R_Length : Uint;
5345 Ref_Node : Node_Id;
5347 begin
5349 -- At the library level, we need to ensure that the
5350 -- type of the object is elaborated before the check
5351 -- itself is emitted. This is only done if the object
5352 -- is in the current compilation unit, otherwise the
5353 -- type is frozen and elaborated in its unit.
5355 if Is_Itype (Exptyp)
5356 and then
5357 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
5358 and then
5359 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
5360 and then In_Open_Scopes (Scope (Exptyp))
5361 then
5362 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
5363 Set_Itype (Ref_Node, Exptyp);
5364 Insert_Action (Ck_Node, Ref_Node);
5365 end if;
5367 L_Index := First_Index (T_Typ);
5368 R_Index := First_Index (Exptyp);
5370 for Indx in 1 .. Ndims loop
5371 if not (Nkind (L_Index) = N_Raise_Constraint_Error
5372 or else
5373 Nkind (R_Index) = N_Raise_Constraint_Error)
5374 then
5375 Get_Index_Bounds (L_Index, L_Low, L_High);
5376 Get_Index_Bounds (R_Index, R_Low, R_High);
5378 -- Deal with compile time length check. Note that we
5379 -- skip this in the access case, because the access
5380 -- value may be null, so we cannot know statically.
5382 if not Do_Access
5383 and then Compile_Time_Known_Value (L_Low)
5384 and then Compile_Time_Known_Value (L_High)
5385 and then Compile_Time_Known_Value (R_Low)
5386 and then Compile_Time_Known_Value (R_High)
5387 then
5388 if Expr_Value (L_High) >= Expr_Value (L_Low) then
5389 L_Length := Expr_Value (L_High) -
5390 Expr_Value (L_Low) + 1;
5391 else
5392 L_Length := UI_From_Int (0);
5393 end if;
5395 if Expr_Value (R_High) >= Expr_Value (R_Low) then
5396 R_Length := Expr_Value (R_High) -
5397 Expr_Value (R_Low) + 1;
5398 else
5399 R_Length := UI_From_Int (0);
5400 end if;
5402 if L_Length > R_Length then
5403 Add_Check
5404 (Compile_Time_Constraint_Error
5405 (Wnode, "too few elements for}?", T_Typ));
5407 elsif L_Length < R_Length then
5408 Add_Check
5409 (Compile_Time_Constraint_Error
5410 (Wnode, "too many elements for}?", T_Typ));
5411 end if;
5413 -- The comparison for an individual index subtype
5414 -- is omitted if the corresponding index subtypes
5415 -- statically match, since the result is known to
5416 -- be true. Note that this test is worth while even
5417 -- though we do static evaluation, because non-static
5418 -- subtypes can statically match.
5420 elsif not
5421 Subtypes_Statically_Match
5422 (Etype (L_Index), Etype (R_Index))
5424 and then not
5425 (Same_Bounds (L_Low, R_Low)
5426 and then Same_Bounds (L_High, R_High))
5427 then
5428 Evolve_Or_Else
5429 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
5430 end if;
5432 Next (L_Index);
5433 Next (R_Index);
5434 end if;
5435 end loop;
5436 end;
5438 -- Handle cases where we do not get a usable actual subtype that
5439 -- is constrained. This happens for example in the function call
5440 -- and explicit dereference cases. In these cases, we have to get
5441 -- the length or range from the expression itself, making sure we
5442 -- do not evaluate it more than once.
5444 -- Here Ck_Node is the original expression, or more properly the
5445 -- result of applying Duplicate_Expr to the original tree,
5446 -- forcing the result to be a name.
5448 else
5449 declare
5450 Ndims : constant Nat := Number_Dimensions (T_Typ);
5452 begin
5453 -- Build the condition for the explicit dereference case
5455 for Indx in 1 .. Ndims loop
5456 Evolve_Or_Else
5457 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
5458 end loop;
5459 end;
5460 end if;
5461 end if;
5462 end if;
5464 -- Construct the test and insert into the tree
5466 if Present (Cond) then
5467 if Do_Access then
5468 Cond := Guard_Access (Cond, Loc, Ck_Node);
5469 end if;
5471 Add_Check
5472 (Make_Raise_Constraint_Error (Loc,
5473 Condition => Cond,
5474 Reason => CE_Length_Check_Failed));
5475 end if;
5477 return Ret_Result;
5478 end Selected_Length_Checks;
5480 ---------------------------
5481 -- Selected_Range_Checks --
5482 ---------------------------
5484 function Selected_Range_Checks
5485 (Ck_Node : Node_Id;
5486 Target_Typ : Entity_Id;
5487 Source_Typ : Entity_Id;
5488 Warn_Node : Node_Id) return Check_Result
5490 Loc : constant Source_Ptr := Sloc (Ck_Node);
5491 S_Typ : Entity_Id;
5492 T_Typ : Entity_Id;
5493 Expr_Actual : Node_Id;
5494 Exptyp : Entity_Id;
5495 Cond : Node_Id := Empty;
5496 Do_Access : Boolean := False;
5497 Wnode : Node_Id := Warn_Node;
5498 Ret_Result : Check_Result := (Empty, Empty);
5499 Num_Checks : Integer := 0;
5501 procedure Add_Check (N : Node_Id);
5502 -- Adds the action given to Ret_Result if N is non-Empty
5504 function Discrete_Range_Cond
5505 (Expr : Node_Id;
5506 Typ : Entity_Id) return Node_Id;
5507 -- Returns expression to compute:
5508 -- Low_Bound (Expr) < Typ'First
5509 -- or else
5510 -- High_Bound (Expr) > Typ'Last
5512 function Discrete_Expr_Cond
5513 (Expr : Node_Id;
5514 Typ : Entity_Id) return Node_Id;
5515 -- Returns expression to compute:
5516 -- Expr < Typ'First
5517 -- or else
5518 -- Expr > Typ'Last
5520 function Get_E_First_Or_Last
5521 (E : Entity_Id;
5522 Indx : Nat;
5523 Nam : Name_Id) return Node_Id;
5524 -- Returns expression to compute:
5525 -- E'First or E'Last
5527 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
5528 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
5529 -- Returns expression to compute:
5530 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
5532 function Range_E_Cond
5533 (Exptyp : Entity_Id;
5534 Typ : Entity_Id;
5535 Indx : Nat)
5536 return Node_Id;
5537 -- Returns expression to compute:
5538 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
5540 function Range_Equal_E_Cond
5541 (Exptyp : Entity_Id;
5542 Typ : Entity_Id;
5543 Indx : Nat) return Node_Id;
5544 -- Returns expression to compute:
5545 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
5547 function Range_N_Cond
5548 (Expr : Node_Id;
5549 Typ : Entity_Id;
5550 Indx : Nat) return Node_Id;
5551 -- Return expression to compute:
5552 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
5554 ---------------
5555 -- Add_Check --
5556 ---------------
5558 procedure Add_Check (N : Node_Id) is
5559 begin
5560 if Present (N) then
5562 -- For now, ignore attempt to place more than 2 checks ???
5564 if Num_Checks = 2 then
5565 return;
5566 end if;
5568 pragma Assert (Num_Checks <= 1);
5569 Num_Checks := Num_Checks + 1;
5570 Ret_Result (Num_Checks) := N;
5571 end if;
5572 end Add_Check;
5574 -------------------------
5575 -- Discrete_Expr_Cond --
5576 -------------------------
5578 function Discrete_Expr_Cond
5579 (Expr : Node_Id;
5580 Typ : Entity_Id) return Node_Id
5582 begin
5583 return
5584 Make_Or_Else (Loc,
5585 Left_Opnd =>
5586 Make_Op_Lt (Loc,
5587 Left_Opnd =>
5588 Convert_To (Base_Type (Typ),
5589 Duplicate_Subexpr_No_Checks (Expr)),
5590 Right_Opnd =>
5591 Convert_To (Base_Type (Typ),
5592 Get_E_First_Or_Last (Typ, 0, Name_First))),
5594 Right_Opnd =>
5595 Make_Op_Gt (Loc,
5596 Left_Opnd =>
5597 Convert_To (Base_Type (Typ),
5598 Duplicate_Subexpr_No_Checks (Expr)),
5599 Right_Opnd =>
5600 Convert_To
5601 (Base_Type (Typ),
5602 Get_E_First_Or_Last (Typ, 0, Name_Last))));
5603 end Discrete_Expr_Cond;
5605 -------------------------
5606 -- Discrete_Range_Cond --
5607 -------------------------
5609 function Discrete_Range_Cond
5610 (Expr : Node_Id;
5611 Typ : Entity_Id) return Node_Id
5613 LB : Node_Id := Low_Bound (Expr);
5614 HB : Node_Id := High_Bound (Expr);
5616 Left_Opnd : Node_Id;
5617 Right_Opnd : Node_Id;
5619 begin
5620 if Nkind (LB) = N_Identifier
5621 and then Ekind (Entity (LB)) = E_Discriminant then
5622 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
5623 end if;
5625 if Nkind (HB) = N_Identifier
5626 and then Ekind (Entity (HB)) = E_Discriminant then
5627 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
5628 end if;
5630 Left_Opnd :=
5631 Make_Op_Lt (Loc,
5632 Left_Opnd =>
5633 Convert_To
5634 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
5636 Right_Opnd =>
5637 Convert_To
5638 (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
5640 if Base_Type (Typ) = Typ then
5641 return Left_Opnd;
5643 elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
5644 and then
5645 Compile_Time_Known_Value (High_Bound (Scalar_Range
5646 (Base_Type (Typ))))
5647 then
5648 if Is_Floating_Point_Type (Typ) then
5649 if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
5650 Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
5651 then
5652 return Left_Opnd;
5653 end if;
5655 else
5656 if Expr_Value (High_Bound (Scalar_Range (Typ))) =
5657 Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
5658 then
5659 return Left_Opnd;
5660 end if;
5661 end if;
5662 end if;
5664 Right_Opnd :=
5665 Make_Op_Gt (Loc,
5666 Left_Opnd =>
5667 Convert_To
5668 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
5670 Right_Opnd =>
5671 Convert_To
5672 (Base_Type (Typ),
5673 Get_E_First_Or_Last (Typ, 0, Name_Last)));
5675 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
5676 end Discrete_Range_Cond;
5678 -------------------------
5679 -- Get_E_First_Or_Last --
5680 -------------------------
5682 function Get_E_First_Or_Last
5683 (E : Entity_Id;
5684 Indx : Nat;
5685 Nam : Name_Id) return Node_Id
5687 N : Node_Id;
5688 LB : Node_Id;
5689 HB : Node_Id;
5690 Bound : Node_Id;
5692 begin
5693 if Is_Array_Type (E) then
5694 N := First_Index (E);
5696 for J in 2 .. Indx loop
5697 Next_Index (N);
5698 end loop;
5700 else
5701 N := Scalar_Range (E);
5702 end if;
5704 if Nkind (N) = N_Subtype_Indication then
5705 LB := Low_Bound (Range_Expression (Constraint (N)));
5706 HB := High_Bound (Range_Expression (Constraint (N)));
5708 elsif Is_Entity_Name (N) then
5709 LB := Type_Low_Bound (Etype (N));
5710 HB := Type_High_Bound (Etype (N));
5712 else
5713 LB := Low_Bound (N);
5714 HB := High_Bound (N);
5715 end if;
5717 if Nam = Name_First then
5718 Bound := LB;
5719 else
5720 Bound := HB;
5721 end if;
5723 if Nkind (Bound) = N_Identifier
5724 and then Ekind (Entity (Bound)) = E_Discriminant
5725 then
5726 -- If this is a task discriminant, and we are the body, we must
5727 -- retrieve the corresponding body discriminal. This is another
5728 -- consequence of the early creation of discriminals, and the
5729 -- need to generate constraint checks before their declarations
5730 -- are made visible.
5732 if Is_Concurrent_Record_Type (Scope (Entity (Bound))) then
5733 declare
5734 Tsk : constant Entity_Id :=
5735 Corresponding_Concurrent_Type
5736 (Scope (Entity (Bound)));
5737 Disc : Entity_Id;
5739 begin
5740 if In_Open_Scopes (Tsk)
5741 and then Has_Completion (Tsk)
5742 then
5743 -- Find discriminant of original task, and use its
5744 -- current discriminal, which is the renaming within
5745 -- the task body.
5747 Disc := First_Discriminant (Tsk);
5748 while Present (Disc) loop
5749 if Chars (Disc) = Chars (Entity (Bound)) then
5750 Set_Scope (Discriminal (Disc), Tsk);
5751 return New_Occurrence_Of (Discriminal (Disc), Loc);
5752 end if;
5754 Next_Discriminant (Disc);
5755 end loop;
5757 -- That loop should always succeed in finding a matching
5758 -- entry and returning. Fatal error if not.
5760 raise Program_Error;
5762 else
5763 return
5764 New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5765 end if;
5766 end;
5767 else
5768 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5769 end if;
5771 elsif Nkind (Bound) = N_Identifier
5772 and then Ekind (Entity (Bound)) = E_In_Parameter
5773 and then not Inside_Init_Proc
5774 then
5775 return Get_Discriminal (E, Bound);
5777 elsif Nkind (Bound) = N_Integer_Literal then
5778 return Make_Integer_Literal (Loc, Intval (Bound));
5780 else
5781 return Duplicate_Subexpr_No_Checks (Bound);
5782 end if;
5783 end Get_E_First_Or_Last;
5785 -----------------
5786 -- Get_N_First --
5787 -----------------
5789 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
5790 begin
5791 return
5792 Make_Attribute_Reference (Loc,
5793 Attribute_Name => Name_First,
5794 Prefix =>
5795 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5796 Expressions => New_List (
5797 Make_Integer_Literal (Loc, Indx)));
5798 end Get_N_First;
5800 ----------------
5801 -- Get_N_Last --
5802 ----------------
5804 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
5805 begin
5806 return
5807 Make_Attribute_Reference (Loc,
5808 Attribute_Name => Name_Last,
5809 Prefix =>
5810 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5811 Expressions => New_List (
5812 Make_Integer_Literal (Loc, Indx)));
5813 end Get_N_Last;
5815 ------------------
5816 -- Range_E_Cond --
5817 ------------------
5819 function Range_E_Cond
5820 (Exptyp : Entity_Id;
5821 Typ : Entity_Id;
5822 Indx : Nat) return Node_Id
5824 begin
5825 return
5826 Make_Or_Else (Loc,
5827 Left_Opnd =>
5828 Make_Op_Lt (Loc,
5829 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5830 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5832 Right_Opnd =>
5833 Make_Op_Gt (Loc,
5834 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5835 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5837 end Range_E_Cond;
5839 ------------------------
5840 -- Range_Equal_E_Cond --
5841 ------------------------
5843 function Range_Equal_E_Cond
5844 (Exptyp : Entity_Id;
5845 Typ : Entity_Id;
5846 Indx : Nat) return Node_Id
5848 begin
5849 return
5850 Make_Or_Else (Loc,
5851 Left_Opnd =>
5852 Make_Op_Ne (Loc,
5853 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5854 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5855 Right_Opnd =>
5856 Make_Op_Ne (Loc,
5857 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5858 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5859 end Range_Equal_E_Cond;
5861 ------------------
5862 -- Range_N_Cond --
5863 ------------------
5865 function Range_N_Cond
5866 (Expr : Node_Id;
5867 Typ : Entity_Id;
5868 Indx : Nat) return Node_Id
5870 begin
5871 return
5872 Make_Or_Else (Loc,
5873 Left_Opnd =>
5874 Make_Op_Lt (Loc,
5875 Left_Opnd => Get_N_First (Expr, Indx),
5876 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5878 Right_Opnd =>
5879 Make_Op_Gt (Loc,
5880 Left_Opnd => Get_N_Last (Expr, Indx),
5881 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5882 end Range_N_Cond;
5884 -- Start of processing for Selected_Range_Checks
5886 begin
5887 if not Expander_Active then
5888 return Ret_Result;
5889 end if;
5891 if Target_Typ = Any_Type
5892 or else Target_Typ = Any_Composite
5893 or else Raises_Constraint_Error (Ck_Node)
5894 then
5895 return Ret_Result;
5896 end if;
5898 if No (Wnode) then
5899 Wnode := Ck_Node;
5900 end if;
5902 T_Typ := Target_Typ;
5904 if No (Source_Typ) then
5905 S_Typ := Etype (Ck_Node);
5906 else
5907 S_Typ := Source_Typ;
5908 end if;
5910 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5911 return Ret_Result;
5912 end if;
5914 -- The order of evaluating T_Typ before S_Typ seems to be critical
5915 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
5916 -- in, and since Node can be an N_Range node, it might be invalid.
5917 -- Should there be an assert check somewhere for taking the Etype of
5918 -- an N_Range node ???
5920 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5921 S_Typ := Designated_Type (S_Typ);
5922 T_Typ := Designated_Type (T_Typ);
5923 Do_Access := True;
5925 -- A simple optimization
5927 if Nkind (Ck_Node) = N_Null then
5928 return Ret_Result;
5929 end if;
5930 end if;
5932 -- For an N_Range Node, check for a null range and then if not
5933 -- null generate a range check action.
5935 if Nkind (Ck_Node) = N_Range then
5937 -- There's no point in checking a range against itself
5939 if Ck_Node = Scalar_Range (T_Typ) then
5940 return Ret_Result;
5941 end if;
5943 declare
5944 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
5945 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
5946 LB : constant Node_Id := Low_Bound (Ck_Node);
5947 HB : constant Node_Id := High_Bound (Ck_Node);
5948 Null_Range : Boolean;
5950 Out_Of_Range_L : Boolean;
5951 Out_Of_Range_H : Boolean;
5953 begin
5954 -- Check for case where everything is static and we can
5955 -- do the check at compile time. This is skipped if we
5956 -- have an access type, since the access value may be null.
5958 -- ??? This code can be improved since you only need to know
5959 -- that the two respective bounds (LB & T_LB or HB & T_HB)
5960 -- are known at compile time to emit pertinent messages.
5962 if Compile_Time_Known_Value (LB)
5963 and then Compile_Time_Known_Value (HB)
5964 and then Compile_Time_Known_Value (T_LB)
5965 and then Compile_Time_Known_Value (T_HB)
5966 and then not Do_Access
5967 then
5968 -- Floating-point case
5970 if Is_Floating_Point_Type (S_Typ) then
5971 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
5972 Out_Of_Range_L :=
5973 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
5974 or else
5975 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
5977 Out_Of_Range_H :=
5978 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
5979 or else
5980 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
5982 -- Fixed or discrete type case
5984 else
5985 Null_Range := Expr_Value (HB) < Expr_Value (LB);
5986 Out_Of_Range_L :=
5987 (Expr_Value (LB) < Expr_Value (T_LB))
5988 or else
5989 (Expr_Value (LB) > Expr_Value (T_HB));
5991 Out_Of_Range_H :=
5992 (Expr_Value (HB) > Expr_Value (T_HB))
5993 or else
5994 (Expr_Value (HB) < Expr_Value (T_LB));
5995 end if;
5997 if not Null_Range then
5998 if Out_Of_Range_L then
5999 if No (Warn_Node) then
6000 Add_Check
6001 (Compile_Time_Constraint_Error
6002 (Low_Bound (Ck_Node),
6003 "static value out of range of}?", T_Typ));
6005 else
6006 Add_Check
6007 (Compile_Time_Constraint_Error
6008 (Wnode,
6009 "static range out of bounds of}?", T_Typ));
6010 end if;
6011 end if;
6013 if Out_Of_Range_H then
6014 if No (Warn_Node) then
6015 Add_Check
6016 (Compile_Time_Constraint_Error
6017 (High_Bound (Ck_Node),
6018 "static value out of range of}?", T_Typ));
6020 else
6021 Add_Check
6022 (Compile_Time_Constraint_Error
6023 (Wnode,
6024 "static range out of bounds of}?", T_Typ));
6025 end if;
6026 end if;
6028 end if;
6030 else
6031 declare
6032 LB : Node_Id := Low_Bound (Ck_Node);
6033 HB : Node_Id := High_Bound (Ck_Node);
6035 begin
6037 -- If either bound is a discriminant and we are within
6038 -- the record declaration, it is a use of the discriminant
6039 -- in a constraint of a component, and nothing can be
6040 -- checked here. The check will be emitted within the
6041 -- init proc. Before then, the discriminal has no real
6042 -- meaning.
6044 if Nkind (LB) = N_Identifier
6045 and then Ekind (Entity (LB)) = E_Discriminant
6046 then
6047 if Current_Scope = Scope (Entity (LB)) then
6048 return Ret_Result;
6049 else
6050 LB :=
6051 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6052 end if;
6053 end if;
6055 if Nkind (HB) = N_Identifier
6056 and then Ekind (Entity (HB)) = E_Discriminant
6057 then
6058 if Current_Scope = Scope (Entity (HB)) then
6059 return Ret_Result;
6060 else
6061 HB :=
6062 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6063 end if;
6064 end if;
6066 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6067 Set_Paren_Count (Cond, 1);
6069 Cond :=
6070 Make_And_Then (Loc,
6071 Left_Opnd =>
6072 Make_Op_Ge (Loc,
6073 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
6074 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
6075 Right_Opnd => Cond);
6076 end;
6078 end if;
6079 end;
6081 elsif Is_Scalar_Type (S_Typ) then
6083 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
6084 -- except the above simply sets a flag in the node and lets
6085 -- gigi generate the check base on the Etype of the expression.
6086 -- Sometimes, however we want to do a dynamic check against an
6087 -- arbitrary target type, so we do that here.
6089 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6090 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6092 -- For literals, we can tell if the constraint error will be
6093 -- raised at compile time, so we never need a dynamic check, but
6094 -- if the exception will be raised, then post the usual warning,
6095 -- and replace the literal with a raise constraint error
6096 -- expression. As usual, skip this for access types
6098 elsif Compile_Time_Known_Value (Ck_Node)
6099 and then not Do_Access
6100 then
6101 declare
6102 LB : constant Node_Id := Type_Low_Bound (T_Typ);
6103 UB : constant Node_Id := Type_High_Bound (T_Typ);
6105 Out_Of_Range : Boolean;
6106 Static_Bounds : constant Boolean :=
6107 Compile_Time_Known_Value (LB)
6108 and Compile_Time_Known_Value (UB);
6110 begin
6111 -- Following range tests should use Sem_Eval routine ???
6113 if Static_Bounds then
6114 if Is_Floating_Point_Type (S_Typ) then
6115 Out_Of_Range :=
6116 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6117 or else
6118 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6120 else -- fixed or discrete type
6121 Out_Of_Range :=
6122 Expr_Value (Ck_Node) < Expr_Value (LB)
6123 or else
6124 Expr_Value (Ck_Node) > Expr_Value (UB);
6125 end if;
6127 -- Bounds of the type are static and the literal is
6128 -- out of range so make a warning message.
6130 if Out_Of_Range then
6131 if No (Warn_Node) then
6132 Add_Check
6133 (Compile_Time_Constraint_Error
6134 (Ck_Node,
6135 "static value out of range of}?", T_Typ));
6137 else
6138 Add_Check
6139 (Compile_Time_Constraint_Error
6140 (Wnode,
6141 "static value out of range of}?", T_Typ));
6142 end if;
6143 end if;
6145 else
6146 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6147 end if;
6148 end;
6150 -- Here for the case of a non-static expression, we need a runtime
6151 -- check unless the source type range is guaranteed to be in the
6152 -- range of the target type.
6154 else
6155 if not In_Subrange_Of (S_Typ, T_Typ) then
6156 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6157 end if;
6158 end if;
6159 end if;
6161 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6162 if Is_Constrained (T_Typ) then
6164 Expr_Actual := Get_Referenced_Object (Ck_Node);
6165 Exptyp := Get_Actual_Subtype (Expr_Actual);
6167 if Is_Access_Type (Exptyp) then
6168 Exptyp := Designated_Type (Exptyp);
6169 end if;
6171 -- String_Literal case. This needs to be handled specially be-
6172 -- cause no index types are available for string literals. The
6173 -- condition is simply:
6175 -- T_Typ'Length = string-literal-length
6177 if Nkind (Expr_Actual) = N_String_Literal then
6178 null;
6180 -- General array case. Here we have a usable actual subtype for
6181 -- the expression, and the condition is built from the two types
6183 -- T_Typ'First < Exptyp'First or else
6184 -- T_Typ'Last > Exptyp'Last or else
6185 -- T_Typ'First(1) < Exptyp'First(1) or else
6186 -- T_Typ'Last(1) > Exptyp'Last(1) or else
6187 -- ...
6189 elsif Is_Constrained (Exptyp) then
6190 declare
6191 Ndims : constant Nat := Number_Dimensions (T_Typ);
6193 L_Index : Node_Id;
6194 R_Index : Node_Id;
6195 L_Low : Node_Id;
6196 L_High : Node_Id;
6197 R_Low : Node_Id;
6198 R_High : Node_Id;
6200 begin
6201 L_Index := First_Index (T_Typ);
6202 R_Index := First_Index (Exptyp);
6204 for Indx in 1 .. Ndims loop
6205 if not (Nkind (L_Index) = N_Raise_Constraint_Error
6206 or else
6207 Nkind (R_Index) = N_Raise_Constraint_Error)
6208 then
6209 Get_Index_Bounds (L_Index, L_Low, L_High);
6210 Get_Index_Bounds (R_Index, R_Low, R_High);
6212 -- Deal with compile time length check. Note that we
6213 -- skip this in the access case, because the access
6214 -- value may be null, so we cannot know statically.
6216 if not
6217 Subtypes_Statically_Match
6218 (Etype (L_Index), Etype (R_Index))
6219 then
6220 -- If the target type is constrained then we
6221 -- have to check for exact equality of bounds
6222 -- (required for qualified expressions).
6224 if Is_Constrained (T_Typ) then
6225 Evolve_Or_Else
6226 (Cond,
6227 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
6229 else
6230 Evolve_Or_Else
6231 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6232 end if;
6233 end if;
6235 Next (L_Index);
6236 Next (R_Index);
6238 end if;
6239 end loop;
6240 end;
6242 -- Handle cases where we do not get a usable actual subtype that
6243 -- is constrained. This happens for example in the function call
6244 -- and explicit dereference cases. In these cases, we have to get
6245 -- the length or range from the expression itself, making sure we
6246 -- do not evaluate it more than once.
6248 -- Here Ck_Node is the original expression, or more properly the
6249 -- result of applying Duplicate_Expr to the original tree,
6250 -- forcing the result to be a name.
6252 else
6253 declare
6254 Ndims : constant Nat := Number_Dimensions (T_Typ);
6256 begin
6257 -- Build the condition for the explicit dereference case
6259 for Indx in 1 .. Ndims loop
6260 Evolve_Or_Else
6261 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
6262 end loop;
6263 end;
6265 end if;
6267 else
6268 -- Generate an Action to check that the bounds of the
6269 -- source value are within the constraints imposed by the
6270 -- target type for a conversion to an unconstrained type.
6271 -- Rule is 4.6(38).
6273 if Nkind (Parent (Ck_Node)) = N_Type_Conversion then
6274 declare
6275 Opnd_Index : Node_Id;
6276 Targ_Index : Node_Id;
6278 begin
6279 Opnd_Index
6280 := First_Index (Get_Actual_Subtype (Ck_Node));
6281 Targ_Index := First_Index (T_Typ);
6283 while Opnd_Index /= Empty loop
6284 if Nkind (Opnd_Index) = N_Range then
6285 if Is_In_Range
6286 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6287 and then
6288 Is_In_Range
6289 (High_Bound (Opnd_Index), Etype (Targ_Index))
6290 then
6291 null;
6293 -- If null range, no check needed
6295 elsif
6296 Compile_Time_Known_Value (High_Bound (Opnd_Index))
6297 and then
6298 Compile_Time_Known_Value (Low_Bound (Opnd_Index))
6299 and then
6300 Expr_Value (High_Bound (Opnd_Index)) <
6301 Expr_Value (Low_Bound (Opnd_Index))
6302 then
6303 null;
6305 elsif Is_Out_Of_Range
6306 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6307 or else
6308 Is_Out_Of_Range
6309 (High_Bound (Opnd_Index), Etype (Targ_Index))
6310 then
6311 Add_Check
6312 (Compile_Time_Constraint_Error
6313 (Wnode, "value out of range of}?", T_Typ));
6315 else
6316 Evolve_Or_Else
6317 (Cond,
6318 Discrete_Range_Cond
6319 (Opnd_Index, Etype (Targ_Index)));
6320 end if;
6321 end if;
6323 Next_Index (Opnd_Index);
6324 Next_Index (Targ_Index);
6325 end loop;
6326 end;
6327 end if;
6328 end if;
6329 end if;
6331 -- Construct the test and insert into the tree
6333 if Present (Cond) then
6334 if Do_Access then
6335 Cond := Guard_Access (Cond, Loc, Ck_Node);
6336 end if;
6338 Add_Check
6339 (Make_Raise_Constraint_Error (Loc,
6340 Condition => Cond,
6341 Reason => CE_Range_Check_Failed));
6342 end if;
6344 return Ret_Result;
6345 end Selected_Range_Checks;
6347 -------------------------------
6348 -- Storage_Checks_Suppressed --
6349 -------------------------------
6351 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
6352 begin
6353 if Present (E) and then Checks_May_Be_Suppressed (E) then
6354 return Is_Check_Suppressed (E, Storage_Check);
6355 else
6356 return Scope_Suppress (Storage_Check);
6357 end if;
6358 end Storage_Checks_Suppressed;
6360 ---------------------------
6361 -- Tag_Checks_Suppressed --
6362 ---------------------------
6364 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6365 begin
6366 if Present (E) then
6367 if Kill_Tag_Checks (E) then
6368 return True;
6369 elsif Checks_May_Be_Suppressed (E) then
6370 return Is_Check_Suppressed (E, Tag_Check);
6371 end if;
6372 end if;
6374 return Scope_Suppress (Tag_Check);
6375 end Tag_Checks_Suppressed;
6377 end Checks;