2005-06-28 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / config / ia64 / ia64.h
blob9e52773fdcbbdca1c36c3976d21dfd51981c1033
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson <wilson@cygnus.com> and
5 David Mosberger <davidm@hpl.hp.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
24 /* ??? Look at ABI group documents for list of preprocessor macros and
25 other features required for ABI compliance. */
27 /* ??? Functions containing a non-local goto target save many registers. Why?
28 See for instance execute/920428-2.c. */
31 /* Run-time target specifications */
33 /* Target CPU builtins. */
34 #define TARGET_CPU_CPP_BUILTINS() \
35 do { \
36 builtin_assert("cpu=ia64"); \
37 builtin_assert("machine=ia64"); \
38 builtin_define("__ia64"); \
39 builtin_define("__ia64__"); \
40 builtin_define("__itanium__"); \
41 if (TARGET_BIG_ENDIAN) \
42 builtin_define("__BIG_ENDIAN__"); \
43 } while (0)
45 #ifndef SUBTARGET_EXTRA_SPECS
46 #define SUBTARGET_EXTRA_SPECS
47 #endif
49 #define EXTRA_SPECS \
50 { "asm_extra", ASM_EXTRA_SPEC }, \
51 SUBTARGET_EXTRA_SPECS
53 #define CC1_SPEC "%(cc1_cpu) "
55 #define ASM_EXTRA_SPEC ""
57 /* Variables which are this size or smaller are put in the sdata/sbss
58 sections. */
59 extern unsigned int ia64_section_threshold;
61 /* If the assembler supports thread-local storage, assume that the
62 system does as well. If a particular target system has an
63 assembler that supports TLS -- but the rest of the system does not
64 support TLS -- that system should explicit define TARGET_HAVE_TLS
65 to false in its own configuration file. */
66 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
67 #define TARGET_HAVE_TLS true
68 #endif
70 #define TARGET_TLS14 (ia64_tls_size == 14)
71 #define TARGET_TLS22 (ia64_tls_size == 22)
72 #define TARGET_TLS64 (ia64_tls_size == 64)
74 #define TARGET_HPUX 0
75 #define TARGET_HPUX_LD 0
77 #ifndef TARGET_ILP32
78 #define TARGET_ILP32 0
79 #endif
81 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
82 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
83 #endif
85 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
86 TARGET_INLINE_SQRT. */
88 enum ia64_inline_type
90 INL_NO = 0,
91 INL_MIN_LAT = 1,
92 INL_MAX_THR = 2
95 /* Default target_flags if no switches are specified */
97 #ifndef TARGET_DEFAULT
98 #define TARGET_DEFAULT (MASK_DWARF2_ASM)
99 #endif
101 #ifndef TARGET_CPU_DEFAULT
102 #define TARGET_CPU_DEFAULT 0
103 #endif
105 /* Which processor to schedule for. The cpu attribute defines a list
106 that mirrors this list, so changes to ia64.md must be made at the
107 same time. */
109 enum processor_type
111 PROCESSOR_ITANIUM, /* Original Itanium. */
112 PROCESSOR_ITANIUM2,
113 PROCESSOR_max
116 extern enum processor_type ia64_tune;
118 /* Sometimes certain combinations of command options do not make sense on a
119 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
120 take account of this. This macro, if defined, is executed once just after
121 all the command options have been parsed. */
123 #define OVERRIDE_OPTIONS ia64_override_options ()
125 /* Some machines may desire to change what optimizations are performed for
126 various optimization levels. This macro, if defined, is executed once just
127 after the optimization level is determined and before the remainder of the
128 command options have been parsed. Values set in this macro are used as the
129 default values for the other command line options. */
131 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
133 /* Driver configuration */
135 /* A C string constant that tells the GCC driver program options to pass to
136 `cc1'. It can also specify how to translate options you give to GCC into
137 options for GCC to pass to the `cc1'. */
139 #undef CC1_SPEC
140 #define CC1_SPEC "%{G*}"
142 /* A C string constant that tells the GCC driver program options to pass to
143 `cc1plus'. It can also specify how to translate options you give to GCC
144 into options for GCC to pass to the `cc1plus'. */
146 /* #define CC1PLUS_SPEC "" */
148 /* Storage Layout */
150 /* Define this macro to have the value 1 if the most significant bit in a byte
151 has the lowest number; otherwise define it to have the value zero. */
153 #define BITS_BIG_ENDIAN 0
155 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
157 /* Define this macro to have the value 1 if, in a multiword object, the most
158 significant word has the lowest number. */
160 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
162 #if defined(__BIG_ENDIAN__)
163 #define LIBGCC2_WORDS_BIG_ENDIAN 1
164 #else
165 #define LIBGCC2_WORDS_BIG_ENDIAN 0
166 #endif
168 #define UNITS_PER_WORD 8
170 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
172 /* A C expression whose value is zero if pointers that need to be extended
173 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
174 they are zero-extended and negative one if there is a ptr_extend operation.
176 You need not define this macro if the `POINTER_SIZE' is equal to the width
177 of `Pmode'. */
178 /* Need this for 32 bit pointers, see hpux.h for setting it. */
179 /* #define POINTERS_EXTEND_UNSIGNED */
181 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
182 which has the specified mode and signedness is to be stored in a register.
183 This macro is only called when TYPE is a scalar type. */
184 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
185 do \
187 if (GET_MODE_CLASS (MODE) == MODE_INT \
188 && GET_MODE_SIZE (MODE) < 4) \
189 (MODE) = SImode; \
191 while (0)
193 #define PARM_BOUNDARY 64
195 /* Define this macro if you wish to preserve a certain alignment for the stack
196 pointer. The definition is a C expression for the desired alignment
197 (measured in bits). */
199 #define STACK_BOUNDARY 128
201 /* Align frames on double word boundaries */
202 #ifndef IA64_STACK_ALIGN
203 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
204 #endif
206 #define FUNCTION_BOUNDARY 128
208 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
209 128 bit integers all require 128 bit alignment. */
210 #define BIGGEST_ALIGNMENT 128
212 /* If defined, a C expression to compute the alignment for a static variable.
213 TYPE is the data type, and ALIGN is the alignment that the object
214 would ordinarily have. The value of this macro is used instead of that
215 alignment to align the object. */
217 #define DATA_ALIGNMENT(TYPE, ALIGN) \
218 (TREE_CODE (TYPE) == ARRAY_TYPE \
219 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
220 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
222 /* If defined, a C expression to compute the alignment given to a constant that
223 is being placed in memory. CONSTANT is the constant and ALIGN is the
224 alignment that the object would ordinarily have. The value of this macro is
225 used instead of that alignment to align the object. */
227 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
228 (TREE_CODE (EXP) == STRING_CST \
229 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
231 #define STRICT_ALIGNMENT 1
233 /* Define this if you wish to imitate the way many other C compilers handle
234 alignment of bitfields and the structures that contain them.
235 The behavior is that the type written for a bit-field (`int', `short', or
236 other integer type) imposes an alignment for the entire structure, as if the
237 structure really did contain an ordinary field of that type. In addition,
238 the bit-field is placed within the structure so that it would fit within such
239 a field, not crossing a boundary for it. */
240 #define PCC_BITFIELD_TYPE_MATTERS 1
242 /* An integer expression for the size in bits of the largest integer machine
243 mode that should actually be used. */
245 /* Allow pairs of registers to be used, which is the intent of the default. */
246 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
248 /* By default, the C++ compiler will use function addresses in the
249 vtable entries. Setting this nonzero tells the compiler to use
250 function descriptors instead. The value of this macro says how
251 many words wide the descriptor is (normally 2). It is assumed
252 that the address of a function descriptor may be treated as a
253 pointer to a function.
255 For reasons known only to HP, the vtable entries (as opposed to
256 normal function descriptors) are 16 bytes wide in 32-bit mode as
257 well, even though the 3rd and 4th words are unused. */
258 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
260 /* Due to silliness in the HPUX linker, vtable entries must be
261 8-byte aligned even in 32-bit mode. Rather than create multiple
262 ABIs, force this restriction on everyone else too. */
263 #define TARGET_VTABLE_ENTRY_ALIGN 64
265 /* Due to the above, we need extra padding for the data entries below 0
266 to retain the alignment of the descriptors. */
267 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
269 /* Layout of Source Language Data Types */
271 #define INT_TYPE_SIZE 32
273 #define SHORT_TYPE_SIZE 16
275 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
277 #define LONG_LONG_TYPE_SIZE 64
279 #define FLOAT_TYPE_SIZE 32
281 #define DOUBLE_TYPE_SIZE 64
283 /* long double is XFmode normally, TFmode for HPUX. */
284 #define LONG_DOUBLE_TYPE_SIZE (TARGET_HPUX ? 128 : 80)
286 /* We always want the XFmode operations from libgcc2.c. */
287 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
289 #define DEFAULT_SIGNED_CHAR 1
291 /* A C expression for a string describing the name of the data type to use for
292 size values. The typedef name `size_t' is defined using the contents of the
293 string. */
294 /* ??? Needs to be defined for P64 code. */
295 /* #define SIZE_TYPE */
297 /* A C expression for a string describing the name of the data type to use for
298 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
299 defined using the contents of the string. See `SIZE_TYPE' above for more
300 information. */
301 /* ??? Needs to be defined for P64 code. */
302 /* #define PTRDIFF_TYPE */
304 /* A C expression for a string describing the name of the data type to use for
305 wide characters. The typedef name `wchar_t' is defined using the contents
306 of the string. See `SIZE_TYPE' above for more information. */
307 /* #define WCHAR_TYPE */
309 /* A C expression for the size in bits of the data type for wide characters.
310 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
311 /* #define WCHAR_TYPE_SIZE */
314 /* Register Basics */
316 /* Number of hardware registers known to the compiler.
317 We have 128 general registers, 128 floating point registers,
318 64 predicate registers, 8 branch registers, one frame pointer,
319 and several "application" registers. */
321 #define FIRST_PSEUDO_REGISTER 334
323 /* Ranges for the various kinds of registers. */
324 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
325 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
326 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
327 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
328 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
329 #define GENERAL_REGNO_P(REGNO) \
330 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
332 #define GR_REG(REGNO) ((REGNO) + 0)
333 #define FR_REG(REGNO) ((REGNO) + 128)
334 #define PR_REG(REGNO) ((REGNO) + 256)
335 #define BR_REG(REGNO) ((REGNO) + 320)
336 #define OUT_REG(REGNO) ((REGNO) + 120)
337 #define IN_REG(REGNO) ((REGNO) + 112)
338 #define LOC_REG(REGNO) ((REGNO) + 32)
340 #define AR_CCV_REGNUM 329
341 #define AR_UNAT_REGNUM 330
342 #define AR_PFS_REGNUM 331
343 #define AR_LC_REGNUM 332
344 #define AR_EC_REGNUM 333
346 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
347 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
348 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
350 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
351 || (REGNO) == AR_UNAT_REGNUM)
352 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
353 && (REGNO) < FIRST_PSEUDO_REGISTER)
354 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
355 && (REGNO) < FIRST_PSEUDO_REGISTER)
358 /* ??? Don't really need two sets of macros. I like this one better because
359 it is less typing. */
360 #define R_GR(REGNO) GR_REG (REGNO)
361 #define R_FR(REGNO) FR_REG (REGNO)
362 #define R_PR(REGNO) PR_REG (REGNO)
363 #define R_BR(REGNO) BR_REG (REGNO)
365 /* An initializer that says which registers are used for fixed purposes all
366 throughout the compiled code and are therefore not available for general
367 allocation.
369 r0: constant 0
370 r1: global pointer (gp)
371 r12: stack pointer (sp)
372 r13: thread pointer (tp)
373 f0: constant 0.0
374 f1: constant 1.0
375 p0: constant true
376 fp: eliminable frame pointer */
378 /* The last 16 stacked regs are reserved for the 8 input and 8 output
379 registers. */
381 #define FIXED_REGISTERS \
382 { /* General registers. */ \
383 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
384 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
385 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
386 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
387 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
388 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
389 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
390 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
391 /* Floating-point registers. */ \
392 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
393 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
394 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
395 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
396 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
397 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
398 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
399 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
400 /* Predicate registers. */ \
401 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
402 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
403 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
404 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
405 /* Branch registers. */ \
406 0, 0, 0, 0, 0, 0, 0, 0, \
407 /*FP CCV UNAT PFS LC EC */ \
408 1, 1, 1, 1, 0, 1 \
411 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
412 (in general) by function calls as well as for fixed registers. This
413 macro therefore identifies the registers that are not available for
414 general allocation of values that must live across function calls. */
416 #define CALL_USED_REGISTERS \
417 { /* General registers. */ \
418 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
419 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
420 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
421 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
422 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
423 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
424 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
425 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
426 /* Floating-point registers. */ \
427 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
428 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
429 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
430 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
431 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
432 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
433 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
434 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
435 /* Predicate registers. */ \
436 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
437 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
438 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
439 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
440 /* Branch registers. */ \
441 1, 0, 0, 0, 0, 0, 1, 1, \
442 /*FP CCV UNAT PFS LC EC */ \
443 1, 1, 1, 1, 0, 1 \
446 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
447 problem which makes CALL_USED_REGISTERS *always* include
448 all the FIXED_REGISTERS. Until this problem has been
449 resolved this macro can be used to overcome this situation.
450 In particular, block_propagate() requires this list
451 be accurate, or we can remove registers which should be live.
452 This macro is used in regs_invalidated_by_call. */
454 #define CALL_REALLY_USED_REGISTERS \
455 { /* General registers. */ \
456 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, \
457 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
458 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
459 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
460 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
461 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
464 /* Floating-point registers. */ \
465 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
466 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
467 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
468 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
469 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
470 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
471 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
472 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
473 /* Predicate registers. */ \
474 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
475 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
476 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
477 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
478 /* Branch registers. */ \
479 1, 0, 0, 0, 0, 0, 1, 1, \
480 /*FP CCV UNAT PFS LC EC */ \
481 0, 1, 0, 1, 0, 0 \
485 /* Define this macro if the target machine has register windows. This C
486 expression returns the register number as seen by the called function
487 corresponding to the register number OUT as seen by the calling function.
488 Return OUT if register number OUT is not an outbound register. */
490 #define INCOMING_REGNO(OUT) \
491 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
493 /* Define this macro if the target machine has register windows. This C
494 expression returns the register number as seen by the calling function
495 corresponding to the register number IN as seen by the called function.
496 Return IN if register number IN is not an inbound register. */
498 #define OUTGOING_REGNO(IN) \
499 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
501 /* Define this macro if the target machine has register windows. This
502 C expression returns true if the register is call-saved but is in the
503 register window. */
505 #define LOCAL_REGNO(REGNO) \
506 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
508 /* We define CCImode in ia64-modes.def so we need a selector. */
510 #define SELECT_CC_MODE(OP,X,Y) CCmode
512 /* Order of allocation of registers */
514 /* If defined, an initializer for a vector of integers, containing the numbers
515 of hard registers in the order in which GCC should prefer to use them
516 (from most preferred to least).
518 If this macro is not defined, registers are used lowest numbered first (all
519 else being equal).
521 One use of this macro is on machines where the highest numbered registers
522 must always be saved and the save-multiple-registers instruction supports
523 only sequences of consecutive registers. On such machines, define
524 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
525 allocatable register first. */
527 /* ??? Should the GR return value registers come before or after the rest
528 of the caller-save GRs? */
530 #define REG_ALLOC_ORDER \
532 /* Caller-saved general registers. */ \
533 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
534 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
535 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
536 R_GR (30), R_GR (31), \
537 /* Output registers. */ \
538 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
539 R_GR (126), R_GR (127), \
540 /* Caller-saved general registers, also used for return values. */ \
541 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
542 /* addl caller-saved general registers. */ \
543 R_GR (2), R_GR (3), \
544 /* Caller-saved FP registers. */ \
545 R_FR (6), R_FR (7), \
546 /* Caller-saved FP registers, used for parameters and return values. */ \
547 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
548 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
549 /* Rotating caller-saved FP registers. */ \
550 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
551 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
552 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
553 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
554 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
555 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
556 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
557 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
558 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
559 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
560 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
561 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
562 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
563 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
564 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
565 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
566 R_FR (126), R_FR (127), \
567 /* Caller-saved predicate registers. */ \
568 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
569 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
570 /* Rotating caller-saved predicate registers. */ \
571 R_PR (16), R_PR (17), \
572 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
573 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
574 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
575 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
576 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
577 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
578 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
579 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
580 /* Caller-saved branch registers. */ \
581 R_BR (6), R_BR (7), \
583 /* Stacked callee-saved general registers. */ \
584 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
585 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
586 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
587 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
588 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
589 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
590 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
591 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
592 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
593 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
594 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
595 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
596 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
597 R_GR (108), \
598 /* Input registers. */ \
599 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
600 R_GR (118), R_GR (119), \
601 /* Callee-saved general registers. */ \
602 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
603 /* Callee-saved FP registers. */ \
604 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
605 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
606 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
607 R_FR (30), R_FR (31), \
608 /* Callee-saved predicate registers. */ \
609 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
610 /* Callee-saved branch registers. */ \
611 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
613 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
614 R_GR (109), R_GR (110), R_GR (111), \
616 /* Special general registers. */ \
617 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
618 /* Special FP registers. */ \
619 R_FR (0), R_FR (1), \
620 /* Special predicate registers. */ \
621 R_PR (0), \
622 /* Special branch registers. */ \
623 R_BR (0), \
624 /* Other fixed registers. */ \
625 FRAME_POINTER_REGNUM, \
626 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
627 AR_EC_REGNUM \
630 /* How Values Fit in Registers */
632 /* A C expression for the number of consecutive hard registers, starting at
633 register number REGNO, required to hold a value of mode MODE. */
635 /* ??? We say that BImode PR values require two registers. This allows us to
636 easily store the normal and inverted values. We use CCImode to indicate
637 a single predicate register. */
639 #define HARD_REGNO_NREGS(REGNO, MODE) \
640 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
641 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
642 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
643 : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1 \
644 : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2 \
645 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
647 /* A C expression that is nonzero if it is permissible to store a value of mode
648 MODE in hard register number REGNO (or in several registers starting with
649 that one). */
651 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
652 (FR_REGNO_P (REGNO) ? \
653 GET_MODE_CLASS (MODE) != MODE_CC && \
654 (MODE) != TImode && \
655 (MODE) != BImode && \
656 (MODE) != TFmode \
657 : PR_REGNO_P (REGNO) ? \
658 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
659 : GR_REGNO_P (REGNO) ? \
660 (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode \
661 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
662 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
663 : 0)
665 /* A C expression that is nonzero if it is desirable to choose register
666 allocation so as to avoid move instructions between a value of mode MODE1
667 and a value of mode MODE2.
669 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
670 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
671 zero. */
672 /* Don't tie integer and FP modes, as that causes us to get integer registers
673 allocated for FP instructions. XFmode only supported in FP registers so
674 we can't tie it with any other modes. */
675 #define MODES_TIEABLE_P(MODE1, MODE2) \
676 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
677 && ((((MODE1) == XFmode) || ((MODE1) == XCmode)) \
678 == (((MODE2) == XFmode) || ((MODE2) == XCmode))) \
679 && (((MODE1) == BImode) == ((MODE2) == BImode)))
681 /* Specify the modes required to caller save a given hard regno.
682 We need to ensure floating pt regs are not saved as DImode. */
684 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
685 ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? XFmode \
686 : choose_hard_reg_mode ((REGNO), (NREGS), false))
688 /* Handling Leaf Functions */
690 /* A C initializer for a vector, indexed by hard register number, which
691 contains 1 for a register that is allowable in a candidate for leaf function
692 treatment. */
693 /* ??? This might be useful. */
694 /* #define LEAF_REGISTERS */
696 /* A C expression whose value is the register number to which REGNO should be
697 renumbered, when a function is treated as a leaf function. */
698 /* ??? This might be useful. */
699 /* #define LEAF_REG_REMAP(REGNO) */
702 /* Register Classes */
704 /* An enumeral type that must be defined with all the register class names as
705 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
706 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
707 which is not a register class but rather tells how many classes there
708 are. */
709 /* ??? When compiling without optimization, it is possible for the only use of
710 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
711 Regclass handles this case specially and does not assign any costs to the
712 pseudo. The pseudo then ends up using the last class before ALL_REGS.
713 Thus we must not let either PR_REGS or BR_REGS be the last class. The
714 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
715 enum reg_class
717 NO_REGS,
718 PR_REGS,
719 BR_REGS,
720 AR_M_REGS,
721 AR_I_REGS,
722 ADDL_REGS,
723 GR_REGS,
724 FR_REGS,
725 GR_AND_BR_REGS,
726 GR_AND_FR_REGS,
727 ALL_REGS,
728 LIM_REG_CLASSES
731 #define GENERAL_REGS GR_REGS
733 /* The number of distinct register classes. */
734 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
736 /* An initializer containing the names of the register classes as C string
737 constants. These names are used in writing some of the debugging dumps. */
738 #define REG_CLASS_NAMES \
739 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
740 "ADDL_REGS", "GR_REGS", "FR_REGS", \
741 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
743 /* An initializer containing the contents of the register classes, as integers
744 which are bit masks. The Nth integer specifies the contents of class N.
745 The way the integer MASK is interpreted is that register R is in the class
746 if `MASK & (1 << R)' is 1. */
747 #define REG_CLASS_CONTENTS \
749 /* NO_REGS. */ \
750 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
751 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
752 0x00000000, 0x00000000, 0x0000 }, \
753 /* PR_REGS. */ \
754 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
755 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
756 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
757 /* BR_REGS. */ \
758 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
759 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
760 0x00000000, 0x00000000, 0x00FF }, \
761 /* AR_M_REGS. */ \
762 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
763 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
764 0x00000000, 0x00000000, 0x0600 }, \
765 /* AR_I_REGS. */ \
766 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
767 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
768 0x00000000, 0x00000000, 0x3800 }, \
769 /* ADDL_REGS. */ \
770 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
771 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
772 0x00000000, 0x00000000, 0x0000 }, \
773 /* GR_REGS. */ \
774 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
775 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
776 0x00000000, 0x00000000, 0x0100 }, \
777 /* FR_REGS. */ \
778 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
779 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
780 0x00000000, 0x00000000, 0x0000 }, \
781 /* GR_AND_BR_REGS. */ \
782 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
783 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
784 0x00000000, 0x00000000, 0x01FF }, \
785 /* GR_AND_FR_REGS. */ \
786 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
787 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
788 0x00000000, 0x00000000, 0x0100 }, \
789 /* ALL_REGS. */ \
790 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
791 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
792 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
795 /* A C expression whose value is a register class containing hard register
796 REGNO. In general there is more than one such class; choose a class which
797 is "minimal", meaning that no smaller class also contains the register. */
798 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
799 may call here with private (invalid) register numbers, such as
800 REG_VOLATILE. */
801 #define REGNO_REG_CLASS(REGNO) \
802 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
803 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
804 : FR_REGNO_P (REGNO) ? FR_REGS \
805 : PR_REGNO_P (REGNO) ? PR_REGS \
806 : BR_REGNO_P (REGNO) ? BR_REGS \
807 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
808 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
809 : NO_REGS)
811 /* A macro whose definition is the name of the class to which a valid base
812 register must belong. A base register is one used in an address which is
813 the register value plus a displacement. */
814 #define BASE_REG_CLASS GENERAL_REGS
816 /* A macro whose definition is the name of the class to which a valid index
817 register must belong. An index register is one used in an address where its
818 value is either multiplied by a scale factor or added to another register
819 (as well as added to a displacement). This is needed for POST_MODIFY. */
820 #define INDEX_REG_CLASS GENERAL_REGS
822 /* A C expression which defines the machine-dependent operand constraint
823 letters for register classes. If CHAR is such a letter, the value should be
824 the register class corresponding to it. Otherwise, the value should be
825 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
826 will not be passed to this macro; you do not need to handle it. */
828 #define REG_CLASS_FROM_LETTER(CHAR) \
829 ((CHAR) == 'f' ? FR_REGS \
830 : (CHAR) == 'a' ? ADDL_REGS \
831 : (CHAR) == 'b' ? BR_REGS \
832 : (CHAR) == 'c' ? PR_REGS \
833 : (CHAR) == 'd' ? AR_M_REGS \
834 : (CHAR) == 'e' ? AR_I_REGS \
835 : NO_REGS)
837 /* A C expression which is nonzero if register number NUM is suitable for use
838 as a base register in operand addresses. It may be either a suitable hard
839 register or a pseudo register that has been allocated such a hard reg. */
840 #define REGNO_OK_FOR_BASE_P(REGNO) \
841 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
843 /* A C expression which is nonzero if register number NUM is suitable for use
844 as an index register in operand addresses. It may be either a suitable hard
845 register or a pseudo register that has been allocated such a hard reg.
846 This is needed for POST_MODIFY. */
847 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
849 /* A C expression that places additional restrictions on the register class to
850 use when it is necessary to copy value X into a register in class CLASS.
851 The value is a register class; perhaps CLASS, or perhaps another, smaller
852 class. */
854 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
855 ia64_preferred_reload_class (X, CLASS)
857 /* You should define this macro to indicate to the reload phase that it may
858 need to allocate at least one register for a reload in addition to the
859 register to contain the data. Specifically, if copying X to a register
860 CLASS in MODE requires an intermediate register, you should define this
861 to return the largest register class all of whose registers can be used
862 as intermediate registers or scratch registers. */
864 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
865 ia64_secondary_reload_class (CLASS, MODE, X)
867 /* Certain machines have the property that some registers cannot be copied to
868 some other registers without using memory. Define this macro on those
869 machines to be a C expression that is nonzero if objects of mode M in
870 registers of CLASS1 can only be copied to registers of class CLASS2 by
871 storing a register of CLASS1 into memory and loading that memory location
872 into a register of CLASS2. */
874 #if 0
875 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
876 I'm not quite sure how it could be invoked. The normal problems
877 with unions should be solved with the addressof fiddling done by
878 movxf and friends. */
879 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
880 (((MODE) == XFmode || (MODE) == XCmode) \
881 && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
882 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
883 #endif
885 /* A C expression for the maximum number of consecutive registers of
886 class CLASS needed to hold a value of mode MODE.
887 This is closely related to the macro `HARD_REGNO_NREGS'. */
889 #define CLASS_MAX_NREGS(CLASS, MODE) \
890 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
891 : ((CLASS) == FR_REGS && (MODE) == XFmode) ? 1 \
892 : ((CLASS) == FR_REGS && (MODE) == XCmode) ? 2 \
893 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
895 /* In FP regs, we can't change FP values to integer values and vice versa,
896 but we can change e.g. DImode to SImode, and V2SFmode into DImode. */
898 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
899 (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO) \
900 ? reg_classes_intersect_p (CLASS, FR_REGS) : 0)
902 /* A C expression that defines the machine-dependent operand constraint
903 letters (`I', `J', `K', .. 'P') that specify particular ranges of
904 integer values. */
906 /* 14 bit signed immediate for arithmetic instructions. */
907 #define CONST_OK_FOR_I(VALUE) \
908 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
909 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
910 #define CONST_OK_FOR_J(VALUE) \
911 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
912 /* 8 bit signed immediate for logical instructions. */
913 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
914 /* 8 bit adjusted signed immediate for compare pseudo-ops. */
915 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
916 /* 6 bit unsigned immediate for shift counts. */
917 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
918 /* 9 bit signed immediate for load/store post-increments. */
919 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
920 /* 0 for r0. Used by Linux kernel, do not change. */
921 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
922 /* 0 or -1 for dep instruction. */
923 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
925 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
926 ia64_const_ok_for_letter_p (VALUE, C)
928 /* A C expression that defines the machine-dependent operand constraint letters
929 (`G', `H') that specify particular ranges of `const_double' values. */
931 /* 0.0 and 1.0 for fr0 and fr1. */
932 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
933 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
934 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
936 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
937 ia64_const_double_ok_for_letter_p (VALUE, C)
939 /* A C expression that defines the optional machine-dependent constraint
940 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
941 types of operands, usually memory references, for the target machine. */
943 #define EXTRA_CONSTRAINT(VALUE, C) \
944 ia64_extra_constraint (VALUE, C)
946 /* Basic Stack Layout */
948 /* Define this macro if pushing a word onto the stack moves the stack pointer
949 to a smaller address. */
950 #define STACK_GROWS_DOWNWARD 1
952 /* Define this macro to non-zero if the addresses of local variable slots
953 are at negative offsets from the frame pointer. */
954 #define FRAME_GROWS_DOWNWARD 0
956 /* Offset from the frame pointer to the first local variable slot to
957 be allocated. */
958 #define STARTING_FRAME_OFFSET 0
960 /* Offset from the stack pointer register to the first location at which
961 outgoing arguments are placed. If not specified, the default value of zero
962 is used. This is the proper value for most machines. */
963 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
964 #define STACK_POINTER_OFFSET 16
966 /* Offset from the argument pointer register to the first argument's address.
967 On some machines it may depend on the data type of the function. */
968 #define FIRST_PARM_OFFSET(FUNDECL) 0
970 /* A C expression whose value is RTL representing the value of the return
971 address for the frame COUNT steps up from the current frame, after the
972 prologue. */
974 /* ??? Frames other than zero would likely require interpreting the frame
975 unwind info, so we don't try to support them. We would also need to define
976 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
978 #define RETURN_ADDR_RTX(COUNT, FRAME) \
979 ia64_return_addr_rtx (COUNT, FRAME)
981 /* A C expression whose value is RTL representing the location of the incoming
982 return address at the beginning of any function, before the prologue. This
983 RTL is either a `REG', indicating that the return value is saved in `REG',
984 or a `MEM' representing a location in the stack. This enables DWARF2
985 unwind info for C++ EH. */
986 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
988 /* ??? This is not defined because of three problems.
989 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
990 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
991 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
992 unused register number.
993 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
994 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
995 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
996 to zero, despite what the documentation implies, because it is tested in
997 a few places with #ifdef instead of #if. */
998 #undef INCOMING_RETURN_ADDR_RTX
1000 /* A C expression whose value is an integer giving the offset, in bytes, from
1001 the value of the stack pointer register to the top of the stack frame at the
1002 beginning of any function, before the prologue. The top of the frame is
1003 defined to be the value of the stack pointer in the previous frame, just
1004 before the call instruction. */
1005 #define INCOMING_FRAME_SP_OFFSET 0
1008 /* Register That Address the Stack Frame. */
1010 /* The register number of the stack pointer register, which must also be a
1011 fixed register according to `FIXED_REGISTERS'. On most machines, the
1012 hardware determines which register this is. */
1014 #define STACK_POINTER_REGNUM 12
1016 /* The register number of the frame pointer register, which is used to access
1017 automatic variables in the stack frame. On some machines, the hardware
1018 determines which register this is. On other machines, you can choose any
1019 register you wish for this purpose. */
1021 #define FRAME_POINTER_REGNUM 328
1023 /* Base register for access to local variables of the function. */
1024 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
1026 /* The register number of the arg pointer register, which is used to access the
1027 function's argument list. */
1028 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1029 in it. */
1030 #define ARG_POINTER_REGNUM R_GR(0)
1032 /* Due to the way varargs and argument spilling happens, the argument
1033 pointer is not 16-byte aligned like the stack pointer. */
1034 #define INIT_EXPANDERS \
1035 do { \
1036 if (cfun && cfun->emit->regno_pointer_align) \
1037 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
1038 } while (0)
1040 /* Register numbers used for passing a function's static chain pointer. */
1041 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1042 #define STATIC_CHAIN_REGNUM 15
1044 /* Eliminating the Frame Pointer and the Arg Pointer */
1046 /* A C expression which is nonzero if a function must have and use a frame
1047 pointer. This expression is evaluated in the reload pass. If its value is
1048 nonzero the function will have a frame pointer. */
1049 #define FRAME_POINTER_REQUIRED 0
1051 /* Show we can debug even without a frame pointer. */
1052 #define CAN_DEBUG_WITHOUT_FP
1054 /* If defined, this macro specifies a table of register pairs used to eliminate
1055 unneeded registers that point into the stack frame. */
1057 #define ELIMINABLE_REGS \
1059 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1060 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1061 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1062 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1065 /* A C expression that returns nonzero if the compiler is allowed to try to
1066 replace register number FROM with register number TO. The frame pointer
1067 is automatically handled. */
1069 #define CAN_ELIMINATE(FROM, TO) \
1070 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1072 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1073 specifies the initial difference between the specified pair of
1074 registers. This macro must be defined if `ELIMINABLE_REGS' is
1075 defined. */
1076 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1077 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1079 /* Passing Function Arguments on the Stack */
1081 /* If defined, the maximum amount of space required for outgoing arguments will
1082 be computed and placed into the variable
1083 `current_function_outgoing_args_size'. */
1085 #define ACCUMULATE_OUTGOING_ARGS 1
1087 /* A C expression that should indicate the number of bytes of its own arguments
1088 that a function pops on returning, or 0 if the function pops no arguments
1089 and the caller must therefore pop them all after the function returns. */
1091 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1094 /* Function Arguments in Registers */
1096 #define MAX_ARGUMENT_SLOTS 8
1097 #define MAX_INT_RETURN_SLOTS 4
1098 #define GR_ARG_FIRST IN_REG (0)
1099 #define GR_RET_FIRST GR_REG (8)
1100 #define GR_RET_LAST GR_REG (11)
1101 #define FR_ARG_FIRST FR_REG (8)
1102 #define FR_RET_FIRST FR_REG (8)
1103 #define FR_RET_LAST FR_REG (15)
1104 #define AR_ARG_FIRST OUT_REG (0)
1106 /* A C expression that controls whether a function argument is passed in a
1107 register, and which register. */
1109 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1110 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1112 /* Define this macro if the target machine has "register windows", so that the
1113 register in which a function sees an arguments is not necessarily the same
1114 as the one in which the caller passed the argument. */
1116 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1117 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1119 /* A C type for declaring a variable that is used as the first argument of
1120 `FUNCTION_ARG' and other related values. For some target machines, the type
1121 `int' suffices and can hold the number of bytes of argument so far. */
1123 typedef struct ia64_args
1125 int words; /* # words of arguments so far */
1126 int int_regs; /* # GR registers used so far */
1127 int fp_regs; /* # FR registers used so far */
1128 int prototype; /* whether function prototyped */
1129 } CUMULATIVE_ARGS;
1131 /* A C statement (sans semicolon) for initializing the variable CUM for the
1132 state at the beginning of the argument list. */
1134 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1135 do { \
1136 (CUM).words = 0; \
1137 (CUM).int_regs = 0; \
1138 (CUM).fp_regs = 0; \
1139 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1140 } while (0)
1142 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1143 arguments for the function being compiled. If this macro is undefined,
1144 `INIT_CUMULATIVE_ARGS' is used instead. */
1146 /* We set prototype to true so that we never try to return a PARALLEL from
1147 function_arg. */
1148 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1149 do { \
1150 (CUM).words = 0; \
1151 (CUM).int_regs = 0; \
1152 (CUM).fp_regs = 0; \
1153 (CUM).prototype = 1; \
1154 } while (0)
1156 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1157 advance past an argument in the argument list. The values MODE, TYPE and
1158 NAMED describe that argument. Once this is done, the variable CUM is
1159 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1161 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1162 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1164 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1165 argument with the specified mode and type. */
1167 /* Return the alignment boundary in bits for an argument with a specified
1168 mode and type. */
1170 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1171 ia64_function_arg_boundary (MODE, TYPE)
1173 /* A C expression that is nonzero if REGNO is the number of a hard register in
1174 which function arguments are sometimes passed. This does *not* include
1175 implicit arguments such as the static chain and the structure-value address.
1176 On many machines, no registers can be used for this purpose since all
1177 function arguments are pushed on the stack. */
1178 #define FUNCTION_ARG_REGNO_P(REGNO) \
1179 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1180 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1182 /* How Scalar Function Values are Returned */
1184 /* A C expression to create an RTX representing the place where a function
1185 returns a value of data type VALTYPE. */
1187 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1188 ia64_function_value (VALTYPE, FUNC)
1190 /* A C expression to create an RTX representing the place where a library
1191 function returns a value of mode MODE. */
1193 #define LIBCALL_VALUE(MODE) \
1194 gen_rtx_REG (MODE, \
1195 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1196 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1197 (MODE) != TFmode) \
1198 ? FR_RET_FIRST : GR_RET_FIRST))
1200 /* A C expression that is nonzero if REGNO is the number of a hard register in
1201 which the values of called function may come back. */
1203 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1204 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1205 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1208 /* How Large Values are Returned */
1210 #define DEFAULT_PCC_STRUCT_RETURN 0
1213 /* Caller-Saves Register Allocation */
1215 /* A C expression to determine whether it is worthwhile to consider placing a
1216 pseudo-register in a call-clobbered hard register and saving and restoring
1217 it around each function call. The expression should be 1 when this is worth
1218 doing, and 0 otherwise.
1220 If you don't define this macro, a default is used which is good on most
1221 machines: `4 * CALLS < REFS'. */
1222 /* ??? Investigate. */
1223 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1226 /* Function Entry and Exit */
1228 /* Define this macro as a C expression that is nonzero if the return
1229 instruction or the function epilogue ignores the value of the stack pointer;
1230 in other words, if it is safe to delete an instruction to adjust the stack
1231 pointer before a return from the function. */
1233 #define EXIT_IGNORE_STACK 1
1235 /* Define this macro as a C expression that is nonzero for registers
1236 used by the epilogue or the `return' pattern. */
1238 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1240 /* Nonzero for registers used by the exception handling mechanism. */
1242 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1244 /* Output part N of a function descriptor for DECL. For ia64, both
1245 words are emitted with a single relocation, so ignore N > 0. */
1246 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1247 do { \
1248 if ((PART) == 0) \
1250 if (TARGET_ILP32) \
1251 fputs ("\tdata8.ua @iplt(", FILE); \
1252 else \
1253 fputs ("\tdata16.ua @iplt(", FILE); \
1254 mark_decl_referenced (DECL); \
1255 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1256 fputs (")\n", FILE); \
1257 if (TARGET_ILP32) \
1258 fputs ("\tdata8.ua 0\n", FILE); \
1260 } while (0)
1262 /* Generating Code for Profiling. */
1264 /* A C statement or compound statement to output to FILE some assembler code to
1265 call the profiling subroutine `mcount'. */
1267 #undef FUNCTION_PROFILER
1268 #define FUNCTION_PROFILER(FILE, LABELNO) \
1269 ia64_output_function_profiler(FILE, LABELNO)
1271 /* Neither hpux nor linux use profile counters. */
1272 #define NO_PROFILE_COUNTERS 1
1274 /* Trampolines for Nested Functions. */
1276 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1277 the function containing a non-local goto target. */
1279 #define STACK_SAVEAREA_MODE(LEVEL) \
1280 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1282 /* Output assembler code for a block containing the constant parts of
1283 a trampoline, leaving space for the variable parts.
1285 The trampoline should set the static chain pointer to value placed
1286 into the trampoline and should branch to the specified routine.
1287 To make the normal indirect-subroutine calling convention work,
1288 the trampoline must look like a function descriptor; the first
1289 word being the target address and the second being the target's
1290 global pointer.
1292 We abuse the concept of a global pointer by arranging for it
1293 to point to the data we need to load. The complete trampoline
1294 has the following form:
1296 +-------------------+ \
1297 TRAMP: | __ia64_trampoline | |
1298 +-------------------+ > fake function descriptor
1299 | TRAMP+16 | |
1300 +-------------------+ /
1301 | target descriptor |
1302 +-------------------+
1303 | static link |
1304 +-------------------+
1307 /* A C expression for the size in bytes of the trampoline, as an integer. */
1309 #define TRAMPOLINE_SIZE 32
1311 /* Alignment required for trampolines, in bits. */
1313 #define TRAMPOLINE_ALIGNMENT 64
1315 /* A C statement to initialize the variable parts of a trampoline. */
1317 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1318 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1320 /* Addressing Modes */
1322 /* Define this macro if the machine supports post-increment addressing. */
1324 #define HAVE_POST_INCREMENT 1
1325 #define HAVE_POST_DECREMENT 1
1326 #define HAVE_POST_MODIFY_DISP 1
1327 #define HAVE_POST_MODIFY_REG 1
1329 /* A C expression that is 1 if the RTX X is a constant which is a valid
1330 address. */
1332 #define CONSTANT_ADDRESS_P(X) 0
1334 /* The max number of registers that can appear in a valid memory address. */
1336 #define MAX_REGS_PER_ADDRESS 2
1338 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1339 RTX) is a legitimate memory address on the target machine for a memory
1340 operand of mode MODE. */
1342 #define LEGITIMATE_ADDRESS_REG(X) \
1343 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1344 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1345 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1347 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1348 (GET_CODE (X) == PLUS \
1349 && rtx_equal_p (R, XEXP (X, 0)) \
1350 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1351 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1352 && INTVAL (XEXP (X, 1)) >= -256 \
1353 && INTVAL (XEXP (X, 1)) < 256)))
1355 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1356 do { \
1357 if (LEGITIMATE_ADDRESS_REG (X)) \
1358 goto LABEL; \
1359 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1360 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1361 && XEXP (X, 0) != arg_pointer_rtx) \
1362 goto LABEL; \
1363 else if (GET_CODE (X) == POST_MODIFY \
1364 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1365 && XEXP (X, 0) != arg_pointer_rtx \
1366 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1367 goto LABEL; \
1368 } while (0)
1370 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1371 use as a base register. */
1373 #ifdef REG_OK_STRICT
1374 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1375 #else
1376 #define REG_OK_FOR_BASE_P(X) \
1377 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1378 #endif
1380 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1381 use as an index register. This is needed for POST_MODIFY. */
1383 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1385 /* A C statement or compound statement with a conditional `goto LABEL;'
1386 executed if memory address X (an RTX) can have different meanings depending
1387 on the machine mode of the memory reference it is used for or if the address
1388 is valid for some modes but not others. */
1390 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1391 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1392 goto LABEL;
1394 /* A C expression that is nonzero if X is a legitimate constant for an
1395 immediate operand on the target machine. */
1397 #define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1399 /* Condition Code Status */
1401 /* One some machines not all possible comparisons are defined, but you can
1402 convert an invalid comparison into a valid one. */
1403 /* ??? Investigate. See the alpha definition. */
1404 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1407 /* Describing Relative Costs of Operations */
1409 /* A C expression for the cost of moving data from a register in class FROM to
1410 one in class TO, using MODE. */
1412 #define REGISTER_MOVE_COST ia64_register_move_cost
1414 /* A C expression for the cost of moving data of mode M between a
1415 register and memory. */
1416 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1417 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
1418 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1420 /* A C expression for the cost of a branch instruction. A value of 1 is the
1421 default; other values are interpreted relative to that. Used by the
1422 if-conversion code as max instruction count. */
1423 /* ??? This requires investigation. The primary effect might be how
1424 many additional insn groups we run into, vs how good the dynamic
1425 branch predictor is. */
1427 #define BRANCH_COST 6
1429 /* Define this macro as a C expression which is nonzero if accessing less than
1430 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1431 word of memory. */
1433 #define SLOW_BYTE_ACCESS 1
1435 /* Define this macro if it is as good or better to call a constant function
1436 address than to call an address kept in a register.
1438 Indirect function calls are more expensive that direct function calls, so
1439 don't cse function addresses. */
1441 #define NO_FUNCTION_CSE
1444 /* Dividing the output into sections. */
1446 /* A C expression whose value is a string containing the assembler operation
1447 that should precede instructions and read-only data. */
1449 #define TEXT_SECTION_ASM_OP "\t.text"
1451 /* A C expression whose value is a string containing the assembler operation to
1452 identify the following data as writable initialized data. */
1454 #define DATA_SECTION_ASM_OP "\t.data"
1456 /* If defined, a C expression whose value is a string containing the assembler
1457 operation to identify the following data as uninitialized global data. */
1459 #define BSS_SECTION_ASM_OP "\t.bss"
1461 #define IA64_DEFAULT_GVALUE 8
1463 /* Position Independent Code. */
1465 /* The register number of the register used to address a table of static data
1466 addresses in memory. */
1468 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1469 gen_rtx_REG (DImode, 1). */
1471 /* ??? Should we set flag_pic? Probably need to define
1472 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1474 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1476 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1477 clobbered by calls. */
1479 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1482 /* The Overall Framework of an Assembler File. */
1484 /* A C string constant describing how to begin a comment in the target
1485 assembler language. The compiler assumes that the comment will end at the
1486 end of the line. */
1488 #define ASM_COMMENT_START "//"
1490 /* A C string constant for text to be output before each `asm' statement or
1491 group of consecutive ones. */
1493 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1495 /* A C string constant for text to be output after each `asm' statement or
1496 group of consecutive ones. */
1498 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1500 /* Output of Uninitialized Variables. */
1502 /* This is all handled by svr4.h. */
1505 /* Output and Generation of Labels. */
1507 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1508 assembler definition of a label named NAME. */
1510 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1511 why ia64_asm_output_label exists. */
1513 extern int ia64_asm_output_label;
1514 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1515 do { \
1516 ia64_asm_output_label = 1; \
1517 assemble_name (STREAM, NAME); \
1518 fputs (":\n", STREAM); \
1519 ia64_asm_output_label = 0; \
1520 } while (0)
1522 /* Globalizing directive for a label. */
1523 #define GLOBAL_ASM_OP "\t.global "
1525 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1526 necessary for declaring the name of an external symbol named NAME which is
1527 referenced in this compilation but not defined. */
1529 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1530 ia64_asm_output_external (FILE, DECL, NAME)
1532 /* A C statement to store into the string STRING a label whose name is made
1533 from the string PREFIX and the number NUM. */
1535 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1536 do { \
1537 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1538 } while (0)
1540 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1542 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1544 /* A C statement to output to the stdio stream STREAM assembler code which
1545 defines (equates) the symbol NAME to have the value VALUE. */
1547 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1548 do { \
1549 assemble_name (STREAM, NAME); \
1550 fputs (" = ", STREAM); \
1551 assemble_name (STREAM, VALUE); \
1552 fputc ('\n', STREAM); \
1553 } while (0)
1556 /* Macros Controlling Initialization Routines. */
1558 /* This is handled by svr4.h and sysv4.h. */
1561 /* Output of Assembler Instructions. */
1563 /* A C initializer containing the assembler's names for the machine registers,
1564 each one as a C string constant. */
1566 #define REGISTER_NAMES \
1568 /* General registers. */ \
1569 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1570 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1571 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1572 "r30", "r31", \
1573 /* Local registers. */ \
1574 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1575 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1576 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1577 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1578 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1579 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1580 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1581 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1582 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1583 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1584 /* Input registers. */ \
1585 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1586 /* Output registers. */ \
1587 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1588 /* Floating-point registers. */ \
1589 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1590 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1591 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1592 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1593 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1594 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1595 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1596 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1597 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1598 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1599 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1600 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1601 "f120","f121","f122","f123","f124","f125","f126","f127", \
1602 /* Predicate registers. */ \
1603 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1604 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1605 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1606 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1607 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1608 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1609 "p60", "p61", "p62", "p63", \
1610 /* Branch registers. */ \
1611 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1612 /* Frame pointer. Application registers. */ \
1613 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1616 /* If defined, a C initializer for an array of structures containing a name and
1617 a register number. This macro defines additional names for hard registers,
1618 thus allowing the `asm' option in declarations to refer to registers using
1619 alternate names. */
1621 #define ADDITIONAL_REGISTER_NAMES \
1623 { "gp", R_GR (1) }, \
1624 { "sp", R_GR (12) }, \
1625 { "in0", IN_REG (0) }, \
1626 { "in1", IN_REG (1) }, \
1627 { "in2", IN_REG (2) }, \
1628 { "in3", IN_REG (3) }, \
1629 { "in4", IN_REG (4) }, \
1630 { "in5", IN_REG (5) }, \
1631 { "in6", IN_REG (6) }, \
1632 { "in7", IN_REG (7) }, \
1633 { "out0", OUT_REG (0) }, \
1634 { "out1", OUT_REG (1) }, \
1635 { "out2", OUT_REG (2) }, \
1636 { "out3", OUT_REG (3) }, \
1637 { "out4", OUT_REG (4) }, \
1638 { "out5", OUT_REG (5) }, \
1639 { "out6", OUT_REG (6) }, \
1640 { "out7", OUT_REG (7) }, \
1641 { "loc0", LOC_REG (0) }, \
1642 { "loc1", LOC_REG (1) }, \
1643 { "loc2", LOC_REG (2) }, \
1644 { "loc3", LOC_REG (3) }, \
1645 { "loc4", LOC_REG (4) }, \
1646 { "loc5", LOC_REG (5) }, \
1647 { "loc6", LOC_REG (6) }, \
1648 { "loc7", LOC_REG (7) }, \
1649 { "loc8", LOC_REG (8) }, \
1650 { "loc9", LOC_REG (9) }, \
1651 { "loc10", LOC_REG (10) }, \
1652 { "loc11", LOC_REG (11) }, \
1653 { "loc12", LOC_REG (12) }, \
1654 { "loc13", LOC_REG (13) }, \
1655 { "loc14", LOC_REG (14) }, \
1656 { "loc15", LOC_REG (15) }, \
1657 { "loc16", LOC_REG (16) }, \
1658 { "loc17", LOC_REG (17) }, \
1659 { "loc18", LOC_REG (18) }, \
1660 { "loc19", LOC_REG (19) }, \
1661 { "loc20", LOC_REG (20) }, \
1662 { "loc21", LOC_REG (21) }, \
1663 { "loc22", LOC_REG (22) }, \
1664 { "loc23", LOC_REG (23) }, \
1665 { "loc24", LOC_REG (24) }, \
1666 { "loc25", LOC_REG (25) }, \
1667 { "loc26", LOC_REG (26) }, \
1668 { "loc27", LOC_REG (27) }, \
1669 { "loc28", LOC_REG (28) }, \
1670 { "loc29", LOC_REG (29) }, \
1671 { "loc30", LOC_REG (30) }, \
1672 { "loc31", LOC_REG (31) }, \
1673 { "loc32", LOC_REG (32) }, \
1674 { "loc33", LOC_REG (33) }, \
1675 { "loc34", LOC_REG (34) }, \
1676 { "loc35", LOC_REG (35) }, \
1677 { "loc36", LOC_REG (36) }, \
1678 { "loc37", LOC_REG (37) }, \
1679 { "loc38", LOC_REG (38) }, \
1680 { "loc39", LOC_REG (39) }, \
1681 { "loc40", LOC_REG (40) }, \
1682 { "loc41", LOC_REG (41) }, \
1683 { "loc42", LOC_REG (42) }, \
1684 { "loc43", LOC_REG (43) }, \
1685 { "loc44", LOC_REG (44) }, \
1686 { "loc45", LOC_REG (45) }, \
1687 { "loc46", LOC_REG (46) }, \
1688 { "loc47", LOC_REG (47) }, \
1689 { "loc48", LOC_REG (48) }, \
1690 { "loc49", LOC_REG (49) }, \
1691 { "loc50", LOC_REG (50) }, \
1692 { "loc51", LOC_REG (51) }, \
1693 { "loc52", LOC_REG (52) }, \
1694 { "loc53", LOC_REG (53) }, \
1695 { "loc54", LOC_REG (54) }, \
1696 { "loc55", LOC_REG (55) }, \
1697 { "loc56", LOC_REG (56) }, \
1698 { "loc57", LOC_REG (57) }, \
1699 { "loc58", LOC_REG (58) }, \
1700 { "loc59", LOC_REG (59) }, \
1701 { "loc60", LOC_REG (60) }, \
1702 { "loc61", LOC_REG (61) }, \
1703 { "loc62", LOC_REG (62) }, \
1704 { "loc63", LOC_REG (63) }, \
1705 { "loc64", LOC_REG (64) }, \
1706 { "loc65", LOC_REG (65) }, \
1707 { "loc66", LOC_REG (66) }, \
1708 { "loc67", LOC_REG (67) }, \
1709 { "loc68", LOC_REG (68) }, \
1710 { "loc69", LOC_REG (69) }, \
1711 { "loc70", LOC_REG (70) }, \
1712 { "loc71", LOC_REG (71) }, \
1713 { "loc72", LOC_REG (72) }, \
1714 { "loc73", LOC_REG (73) }, \
1715 { "loc74", LOC_REG (74) }, \
1716 { "loc75", LOC_REG (75) }, \
1717 { "loc76", LOC_REG (76) }, \
1718 { "loc77", LOC_REG (77) }, \
1719 { "loc78", LOC_REG (78) }, \
1720 { "loc79", LOC_REG (79) }, \
1723 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1724 for an instruction operand X. X is an RTL expression. */
1726 #define PRINT_OPERAND(STREAM, X, CODE) \
1727 ia64_print_operand (STREAM, X, CODE)
1729 /* A C expression which evaluates to true if CODE is a valid punctuation
1730 character for use in the `PRINT_OPERAND' macro. */
1732 /* ??? Keep this around for now, as we might need it later. */
1734 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1735 ((CODE) == '+' || (CODE) == ',')
1737 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1738 for an instruction operand that is a memory reference whose address is X. X
1739 is an RTL expression. */
1741 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
1742 ia64_print_operand_address (STREAM, X)
1744 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1745 `%I' options of `asm_fprintf' (see `final.c'). */
1747 #define REGISTER_PREFIX ""
1748 #define LOCAL_LABEL_PREFIX "."
1749 #define USER_LABEL_PREFIX ""
1750 #define IMMEDIATE_PREFIX ""
1753 /* Output of dispatch tables. */
1755 /* This macro should be provided on machines where the addresses in a dispatch
1756 table are relative to the table's own address. */
1758 /* ??? Depends on the pointer size. */
1760 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1761 do { \
1762 if (TARGET_ILP32) \
1763 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
1764 else \
1765 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
1766 } while (0)
1768 /* This is how to output an element of a case-vector that is absolute.
1769 (Ia64 does not use such vectors, but we must define this macro anyway.) */
1771 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) gcc_unreachable ()
1773 /* Jump tables only need 8 byte alignment. */
1775 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
1778 /* Assembler Commands for Exception Regions. */
1780 /* Select a format to encode pointers in exception handling data. CODE
1781 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1782 true if the symbol may be affected by dynamic relocations. */
1783 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1784 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
1785 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
1786 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1788 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1789 indirect are handled automatically. */
1790 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1791 do { \
1792 const char *reltag = NULL; \
1793 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
1794 reltag = "@segrel("; \
1795 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
1796 reltag = "@gprel("; \
1797 if (reltag) \
1799 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1800 fputs (reltag, FILE); \
1801 assemble_name (FILE, XSTR (ADDR, 0)); \
1802 fputc (')', FILE); \
1803 goto DONE; \
1805 } while (0)
1808 /* Assembler Commands for Alignment. */
1810 /* ??? Investigate. */
1812 /* The alignment (log base 2) to put in front of LABEL, which follows
1813 a BARRIER. */
1815 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1817 /* The desired alignment for the location counter at the beginning
1818 of a loop. */
1820 /* #define LOOP_ALIGN(LABEL) */
1822 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1823 section because it fails put zeros in the bytes that are skipped. */
1825 #define ASM_NO_SKIP_IN_TEXT 1
1827 /* A C statement to output to the stdio stream STREAM an assembler command to
1828 advance the location counter to a multiple of 2 to the POWER bytes. */
1830 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1831 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1834 /* Macros Affecting all Debug Formats. */
1836 /* This is handled in svr4.h and sysv4.h. */
1839 /* Specific Options for DBX Output. */
1841 /* This is handled by dbxelf.h which is included by svr4.h. */
1844 /* Open ended Hooks for DBX Output. */
1846 /* Likewise. */
1849 /* File names in DBX format. */
1851 /* Likewise. */
1854 /* Macros for SDB and Dwarf Output. */
1856 /* Define this macro if GCC should produce dwarf version 2 format debugging
1857 output in response to the `-g' option. */
1859 #define DWARF2_DEBUGGING_INFO 1
1861 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1863 /* Use tags for debug info labels, so that they don't break instruction
1864 bundles. This also avoids getting spurious DV warnings from the
1865 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
1866 add brackets around the label. */
1868 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1869 fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1871 /* Use section-relative relocations for debugging offsets. Unlike other
1872 targets that fake this by putting the section VMA at 0, IA-64 has
1873 proper relocations for them. */
1874 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
1875 do { \
1876 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1877 fputs ("@secrel(", FILE); \
1878 assemble_name (FILE, LABEL); \
1879 fputc (')', FILE); \
1880 } while (0)
1882 /* Emit a PC-relative relocation. */
1883 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1884 do { \
1885 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1886 fputs ("@pcrel(", FILE); \
1887 assemble_name (FILE, LABEL); \
1888 fputc (')', FILE); \
1889 } while (0)
1891 /* Register Renaming Parameters. */
1893 /* A C expression that is nonzero if hard register number REGNO2 can be
1894 considered for use as a rename register for REGNO1 */
1896 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1897 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1900 /* Miscellaneous Parameters. */
1902 /* Flag to mark data that is in the small address area (addressable
1903 via "addl", that is, within a 2MByte offset of 0. */
1904 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
1905 #define SYMBOL_REF_SMALL_ADDR_P(X) \
1906 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1908 /* An alias for a machine mode name. This is the machine mode that elements of
1909 a jump-table should have. */
1911 #define CASE_VECTOR_MODE ptr_mode
1913 /* Define as C expression which evaluates to nonzero if the tablejump
1914 instruction expects the table to contain offsets from the address of the
1915 table. */
1917 #define CASE_VECTOR_PC_RELATIVE 1
1919 /* Define this macro if operations between registers with integral mode smaller
1920 than a word are always performed on the entire register. */
1922 #define WORD_REGISTER_OPERATIONS
1924 /* Define this macro to be a C expression indicating when insns that read
1925 memory in MODE, an integral mode narrower than a word, set the bits outside
1926 of MODE to be either the sign-extension or the zero-extension of the data
1927 read. */
1929 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1931 /* The maximum number of bytes that a single instruction can move quickly from
1932 memory to memory. */
1933 #define MOVE_MAX 8
1935 /* A C expression which is nonzero if on this machine it is safe to "convert"
1936 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1937 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
1939 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1941 /* A C expression describing the value returned by a comparison operator with
1942 an integral mode and stored by a store-flag instruction (`sCOND') when the
1943 condition is true. */
1945 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
1947 /* An alias for the machine mode for pointers. */
1949 /* ??? This would change if we had ILP32 support. */
1951 #define Pmode DImode
1953 /* An alias for the machine mode used for memory references to functions being
1954 called, in `call' RTL expressions. */
1956 #define FUNCTION_MODE Pmode
1958 /* Define this macro to handle System V style pragmas: #pragma pack and
1959 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
1960 defined. */
1962 /* If this architecture supports prefetch, define this to be the number of
1963 prefetch commands that can be executed in parallel.
1965 ??? This number is bogus and needs to be replaced before the value is
1966 actually used in optimizations. */
1968 #define SIMULTANEOUS_PREFETCHES 6
1970 /* If this architecture supports prefetch, define this to be the size of
1971 the cache line that is prefetched. */
1973 #define PREFETCH_BLOCK 32
1975 #define HANDLE_SYSV_PRAGMA 1
1977 /* A C expression for the maximum number of instructions to execute via
1978 conditional execution instructions instead of a branch. A value of
1979 BRANCH_COST+1 is the default if the machine does not use
1980 cc0, and 1 if it does use cc0. */
1981 /* ??? Investigate. */
1982 #define MAX_CONDITIONAL_EXECUTE 12
1984 extern int ia64_final_schedule;
1986 #define TARGET_UNWIND_INFO 1
1988 #define TARGET_UNWIND_TABLES_DEFAULT true
1990 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1992 /* This function contains machine specific function data. */
1993 struct machine_function GTY(())
1995 /* The new stack pointer when unwinding from EH. */
1996 rtx ia64_eh_epilogue_sp;
1998 /* The new bsp value when unwinding from EH. */
1999 rtx ia64_eh_epilogue_bsp;
2001 /* The GP value save register. */
2002 rtx ia64_gp_save;
2004 /* The number of varargs registers to save. */
2005 int n_varargs;
2007 /* The number of the next unwind state to copy. */
2008 int state_num;
2011 #define DONT_USE_BUILTIN_SETJMP
2013 /* Output any profiling code before the prologue. */
2015 #undef PROFILE_BEFORE_PROLOGUE
2016 #define PROFILE_BEFORE_PROLOGUE 1
2018 /* Initialize library function table. */
2019 #undef TARGET_INIT_LIBFUNCS
2020 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
2023 /* Switch on code for querying unit reservations. */
2024 #define CPU_UNITS_QUERY 1
2026 /* End of ia64.h */