2005-06-28 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / config / arm / arm.c
blob4e17d3a7fe316bed35f84fc81d3401c6488d9d81
1 /* Output routines for GCC for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
5 and Martin Simmons (@harleqn.co.uk).
6 More major hacks by Richard Earnshaw (rearnsha@arm.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 2, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "obstack.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "conditions.h"
37 #include "output.h"
38 #include "insn-attr.h"
39 #include "flags.h"
40 #include "reload.h"
41 #include "function.h"
42 #include "expr.h"
43 #include "optabs.h"
44 #include "toplev.h"
45 #include "recog.h"
46 #include "ggc.h"
47 #include "except.h"
48 #include "c-pragma.h"
49 #include "integrate.h"
50 #include "tm_p.h"
51 #include "target.h"
52 #include "target-def.h"
53 #include "debug.h"
54 #include "langhooks.h"
56 /* Forward definitions of types. */
57 typedef struct minipool_node Mnode;
58 typedef struct minipool_fixup Mfix;
60 const struct attribute_spec arm_attribute_table[];
62 /* Forward function declarations. */
63 static arm_stack_offsets *arm_get_frame_offsets (void);
64 static void arm_add_gc_roots (void);
65 static int arm_gen_constant (enum rtx_code, enum machine_mode, rtx,
66 HOST_WIDE_INT, rtx, rtx, int, int);
67 static unsigned bit_count (unsigned long);
68 static int arm_address_register_rtx_p (rtx, int);
69 static int arm_legitimate_index_p (enum machine_mode, rtx, RTX_CODE, int);
70 static int thumb_base_register_rtx_p (rtx, enum machine_mode, int);
71 inline static int thumb_index_register_rtx_p (rtx, int);
72 static int thumb_far_jump_used_p (void);
73 static bool thumb_force_lr_save (void);
74 static int const_ok_for_op (HOST_WIDE_INT, enum rtx_code);
75 static rtx emit_sfm (int, int);
76 static int arm_size_return_regs (void);
77 #ifndef AOF_ASSEMBLER
78 static bool arm_assemble_integer (rtx, unsigned int, int);
79 #endif
80 static const char *fp_const_from_val (REAL_VALUE_TYPE *);
81 static arm_cc get_arm_condition_code (rtx);
82 static HOST_WIDE_INT int_log2 (HOST_WIDE_INT);
83 static rtx is_jump_table (rtx);
84 static const char *output_multi_immediate (rtx *, const char *, const char *,
85 int, HOST_WIDE_INT);
86 static const char *shift_op (rtx, HOST_WIDE_INT *);
87 static struct machine_function *arm_init_machine_status (void);
88 static void thumb_exit (FILE *, int);
89 static rtx is_jump_table (rtx);
90 static HOST_WIDE_INT get_jump_table_size (rtx);
91 static Mnode *move_minipool_fix_forward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
92 static Mnode *add_minipool_forward_ref (Mfix *);
93 static Mnode *move_minipool_fix_backward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
94 static Mnode *add_minipool_backward_ref (Mfix *);
95 static void assign_minipool_offsets (Mfix *);
96 static void arm_print_value (FILE *, rtx);
97 static void dump_minipool (rtx);
98 static int arm_barrier_cost (rtx);
99 static Mfix *create_fix_barrier (Mfix *, HOST_WIDE_INT);
100 static void push_minipool_barrier (rtx, HOST_WIDE_INT);
101 static void push_minipool_fix (rtx, HOST_WIDE_INT, rtx *, enum machine_mode,
102 rtx);
103 static void arm_reorg (void);
104 static bool note_invalid_constants (rtx, HOST_WIDE_INT, int);
105 static int current_file_function_operand (rtx);
106 static unsigned long arm_compute_save_reg0_reg12_mask (void);
107 static unsigned long arm_compute_save_reg_mask (void);
108 static unsigned long arm_isr_value (tree);
109 static unsigned long arm_compute_func_type (void);
110 static tree arm_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
111 static tree arm_handle_isr_attribute (tree *, tree, tree, int, bool *);
112 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
113 static tree arm_handle_notshared_attribute (tree *, tree, tree, int, bool *);
114 #endif
115 static void arm_output_function_epilogue (FILE *, HOST_WIDE_INT);
116 static void arm_output_function_prologue (FILE *, HOST_WIDE_INT);
117 static void thumb_output_function_prologue (FILE *, HOST_WIDE_INT);
118 static int arm_comp_type_attributes (tree, tree);
119 static void arm_set_default_type_attributes (tree);
120 static int arm_adjust_cost (rtx, rtx, rtx, int);
121 static int count_insns_for_constant (HOST_WIDE_INT, int);
122 static int arm_get_strip_length (int);
123 static bool arm_function_ok_for_sibcall (tree, tree);
124 static void arm_internal_label (FILE *, const char *, unsigned long);
125 static void arm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
126 tree);
127 static int arm_rtx_costs_1 (rtx, enum rtx_code, enum rtx_code);
128 static bool arm_size_rtx_costs (rtx, int, int, int *);
129 static bool arm_slowmul_rtx_costs (rtx, int, int, int *);
130 static bool arm_fastmul_rtx_costs (rtx, int, int, int *);
131 static bool arm_xscale_rtx_costs (rtx, int, int, int *);
132 static bool arm_9e_rtx_costs (rtx, int, int, int *);
133 static int arm_address_cost (rtx);
134 static bool arm_memory_load_p (rtx);
135 static bool arm_cirrus_insn_p (rtx);
136 static void cirrus_reorg (rtx);
137 static void arm_init_builtins (void);
138 static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
139 static void arm_init_iwmmxt_builtins (void);
140 static rtx safe_vector_operand (rtx, enum machine_mode);
141 static rtx arm_expand_binop_builtin (enum insn_code, tree, rtx);
142 static rtx arm_expand_unop_builtin (enum insn_code, tree, rtx, int);
143 static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
144 static void emit_constant_insn (rtx cond, rtx pattern);
145 static int arm_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
146 tree, bool);
148 #ifdef OBJECT_FORMAT_ELF
149 static void arm_elf_asm_constructor (rtx, int);
150 #endif
151 #ifndef ARM_PE
152 static void arm_encode_section_info (tree, rtx, int);
153 #endif
155 static void arm_file_end (void);
157 #ifdef AOF_ASSEMBLER
158 static void aof_globalize_label (FILE *, const char *);
159 static void aof_dump_imports (FILE *);
160 static void aof_dump_pic_table (FILE *);
161 static void aof_file_start (void);
162 static void aof_file_end (void);
163 #endif
164 static rtx arm_struct_value_rtx (tree, int);
165 static void arm_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
166 tree, int *, int);
167 static bool arm_pass_by_reference (CUMULATIVE_ARGS *,
168 enum machine_mode, tree, bool);
169 static bool arm_promote_prototypes (tree);
170 static bool arm_default_short_enums (void);
171 static bool arm_align_anon_bitfield (void);
172 static bool arm_return_in_msb (tree);
173 static bool arm_must_pass_in_stack (enum machine_mode, tree);
174 #ifdef TARGET_UNWIND_INFO
175 static void arm_unwind_emit (FILE *, rtx);
176 static bool arm_output_ttype (rtx);
177 #endif
179 static tree arm_cxx_guard_type (void);
180 static bool arm_cxx_guard_mask_bit (void);
181 static tree arm_get_cookie_size (tree);
182 static bool arm_cookie_has_size (void);
183 static bool arm_cxx_cdtor_returns_this (void);
184 static bool arm_cxx_key_method_may_be_inline (void);
185 static void arm_cxx_determine_class_data_visibility (tree);
186 static bool arm_cxx_class_data_always_comdat (void);
187 static bool arm_cxx_use_aeabi_atexit (void);
188 static void arm_init_libfuncs (void);
189 static bool arm_handle_option (size_t, const char *, int);
190 static unsigned HOST_WIDE_INT arm_shift_truncation_mask (enum machine_mode);
192 /* Initialize the GCC target structure. */
193 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
194 #undef TARGET_MERGE_DECL_ATTRIBUTES
195 #define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
196 #endif
198 #undef TARGET_ATTRIBUTE_TABLE
199 #define TARGET_ATTRIBUTE_TABLE arm_attribute_table
201 #undef TARGET_ASM_FILE_END
202 #define TARGET_ASM_FILE_END arm_file_end
204 #ifdef AOF_ASSEMBLER
205 #undef TARGET_ASM_BYTE_OP
206 #define TARGET_ASM_BYTE_OP "\tDCB\t"
207 #undef TARGET_ASM_ALIGNED_HI_OP
208 #define TARGET_ASM_ALIGNED_HI_OP "\tDCW\t"
209 #undef TARGET_ASM_ALIGNED_SI_OP
210 #define TARGET_ASM_ALIGNED_SI_OP "\tDCD\t"
211 #undef TARGET_ASM_GLOBALIZE_LABEL
212 #define TARGET_ASM_GLOBALIZE_LABEL aof_globalize_label
213 #undef TARGET_ASM_FILE_START
214 #define TARGET_ASM_FILE_START aof_file_start
215 #undef TARGET_ASM_FILE_END
216 #define TARGET_ASM_FILE_END aof_file_end
217 #else
218 #undef TARGET_ASM_ALIGNED_SI_OP
219 #define TARGET_ASM_ALIGNED_SI_OP NULL
220 #undef TARGET_ASM_INTEGER
221 #define TARGET_ASM_INTEGER arm_assemble_integer
222 #endif
224 #undef TARGET_ASM_FUNCTION_PROLOGUE
225 #define TARGET_ASM_FUNCTION_PROLOGUE arm_output_function_prologue
227 #undef TARGET_ASM_FUNCTION_EPILOGUE
228 #define TARGET_ASM_FUNCTION_EPILOGUE arm_output_function_epilogue
230 #undef TARGET_DEFAULT_TARGET_FLAGS
231 #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | MASK_SCHED_PROLOG)
232 #undef TARGET_HANDLE_OPTION
233 #define TARGET_HANDLE_OPTION arm_handle_option
235 #undef TARGET_COMP_TYPE_ATTRIBUTES
236 #define TARGET_COMP_TYPE_ATTRIBUTES arm_comp_type_attributes
238 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
239 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES arm_set_default_type_attributes
241 #undef TARGET_SCHED_ADJUST_COST
242 #define TARGET_SCHED_ADJUST_COST arm_adjust_cost
244 #undef TARGET_ENCODE_SECTION_INFO
245 #ifdef ARM_PE
246 #define TARGET_ENCODE_SECTION_INFO arm_pe_encode_section_info
247 #else
248 #define TARGET_ENCODE_SECTION_INFO arm_encode_section_info
249 #endif
251 #undef TARGET_STRIP_NAME_ENCODING
252 #define TARGET_STRIP_NAME_ENCODING arm_strip_name_encoding
254 #undef TARGET_ASM_INTERNAL_LABEL
255 #define TARGET_ASM_INTERNAL_LABEL arm_internal_label
257 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
258 #define TARGET_FUNCTION_OK_FOR_SIBCALL arm_function_ok_for_sibcall
260 #undef TARGET_ASM_OUTPUT_MI_THUNK
261 #define TARGET_ASM_OUTPUT_MI_THUNK arm_output_mi_thunk
262 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
263 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
265 /* This will be overridden in arm_override_options. */
266 #undef TARGET_RTX_COSTS
267 #define TARGET_RTX_COSTS arm_slowmul_rtx_costs
268 #undef TARGET_ADDRESS_COST
269 #define TARGET_ADDRESS_COST arm_address_cost
271 #undef TARGET_SHIFT_TRUNCATION_MASK
272 #define TARGET_SHIFT_TRUNCATION_MASK arm_shift_truncation_mask
273 #undef TARGET_VECTOR_MODE_SUPPORTED_P
274 #define TARGET_VECTOR_MODE_SUPPORTED_P arm_vector_mode_supported_p
276 #undef TARGET_MACHINE_DEPENDENT_REORG
277 #define TARGET_MACHINE_DEPENDENT_REORG arm_reorg
279 #undef TARGET_INIT_BUILTINS
280 #define TARGET_INIT_BUILTINS arm_init_builtins
281 #undef TARGET_EXPAND_BUILTIN
282 #define TARGET_EXPAND_BUILTIN arm_expand_builtin
284 #undef TARGET_INIT_LIBFUNCS
285 #define TARGET_INIT_LIBFUNCS arm_init_libfuncs
287 #undef TARGET_PROMOTE_FUNCTION_ARGS
288 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
289 #undef TARGET_PROMOTE_FUNCTION_RETURN
290 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
291 #undef TARGET_PROMOTE_PROTOTYPES
292 #define TARGET_PROMOTE_PROTOTYPES arm_promote_prototypes
293 #undef TARGET_PASS_BY_REFERENCE
294 #define TARGET_PASS_BY_REFERENCE arm_pass_by_reference
295 #undef TARGET_ARG_PARTIAL_BYTES
296 #define TARGET_ARG_PARTIAL_BYTES arm_arg_partial_bytes
298 #undef TARGET_STRUCT_VALUE_RTX
299 #define TARGET_STRUCT_VALUE_RTX arm_struct_value_rtx
301 #undef TARGET_SETUP_INCOMING_VARARGS
302 #define TARGET_SETUP_INCOMING_VARARGS arm_setup_incoming_varargs
304 #undef TARGET_DEFAULT_SHORT_ENUMS
305 #define TARGET_DEFAULT_SHORT_ENUMS arm_default_short_enums
307 #undef TARGET_ALIGN_ANON_BITFIELD
308 #define TARGET_ALIGN_ANON_BITFIELD arm_align_anon_bitfield
310 #undef TARGET_CXX_GUARD_TYPE
311 #define TARGET_CXX_GUARD_TYPE arm_cxx_guard_type
313 #undef TARGET_CXX_GUARD_MASK_BIT
314 #define TARGET_CXX_GUARD_MASK_BIT arm_cxx_guard_mask_bit
316 #undef TARGET_CXX_GET_COOKIE_SIZE
317 #define TARGET_CXX_GET_COOKIE_SIZE arm_get_cookie_size
319 #undef TARGET_CXX_COOKIE_HAS_SIZE
320 #define TARGET_CXX_COOKIE_HAS_SIZE arm_cookie_has_size
322 #undef TARGET_CXX_CDTOR_RETURNS_THIS
323 #define TARGET_CXX_CDTOR_RETURNS_THIS arm_cxx_cdtor_returns_this
325 #undef TARGET_CXX_KEY_METHOD_MAY_BE_INLINE
326 #define TARGET_CXX_KEY_METHOD_MAY_BE_INLINE arm_cxx_key_method_may_be_inline
328 #undef TARGET_CXX_USE_AEABI_ATEXIT
329 #define TARGET_CXX_USE_AEABI_ATEXIT arm_cxx_use_aeabi_atexit
331 #undef TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY
332 #define TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY \
333 arm_cxx_determine_class_data_visibility
335 #undef TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT
336 #define TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT arm_cxx_class_data_always_comdat
338 #undef TARGET_RETURN_IN_MSB
339 #define TARGET_RETURN_IN_MSB arm_return_in_msb
341 #undef TARGET_MUST_PASS_IN_STACK
342 #define TARGET_MUST_PASS_IN_STACK arm_must_pass_in_stack
344 #ifdef TARGET_UNWIND_INFO
345 #undef TARGET_UNWIND_EMIT
346 #define TARGET_UNWIND_EMIT arm_unwind_emit
348 /* EABI unwinding tables use a different format for the typeinfo tables. */
349 #undef TARGET_ASM_TTYPE
350 #define TARGET_ASM_TTYPE arm_output_ttype
352 #undef TARGET_ARM_EABI_UNWINDER
353 #define TARGET_ARM_EABI_UNWINDER true
354 #endif /* TARGET_UNWIND_INFO */
356 struct gcc_target targetm = TARGET_INITIALIZER;
358 /* Obstack for minipool constant handling. */
359 static struct obstack minipool_obstack;
360 static char * minipool_startobj;
362 /* The maximum number of insns skipped which
363 will be conditionalised if possible. */
364 static int max_insns_skipped = 5;
366 extern FILE * asm_out_file;
368 /* True if we are currently building a constant table. */
369 int making_const_table;
371 /* Define the information needed to generate branch insns. This is
372 stored from the compare operation. */
373 rtx arm_compare_op0, arm_compare_op1;
375 /* The processor for which instructions should be scheduled. */
376 enum processor_type arm_tune = arm_none;
378 /* Which floating point model to use. */
379 enum arm_fp_model arm_fp_model;
381 /* Which floating point hardware is available. */
382 enum fputype arm_fpu_arch;
384 /* Which floating point hardware to schedule for. */
385 enum fputype arm_fpu_tune;
387 /* Whether to use floating point hardware. */
388 enum float_abi_type arm_float_abi;
390 /* Which ABI to use. */
391 enum arm_abi_type arm_abi;
393 /* Used to parse -mstructure_size_boundary command line option. */
394 int arm_structure_size_boundary = DEFAULT_STRUCTURE_SIZE_BOUNDARY;
396 /* Used for Thumb call_via trampolines. */
397 rtx thumb_call_via_label[14];
398 static int thumb_call_reg_needed;
400 /* Bit values used to identify processor capabilities. */
401 #define FL_CO_PROC (1 << 0) /* Has external co-processor bus */
402 #define FL_ARCH3M (1 << 1) /* Extended multiply */
403 #define FL_MODE26 (1 << 2) /* 26-bit mode support */
404 #define FL_MODE32 (1 << 3) /* 32-bit mode support */
405 #define FL_ARCH4 (1 << 4) /* Architecture rel 4 */
406 #define FL_ARCH5 (1 << 5) /* Architecture rel 5 */
407 #define FL_THUMB (1 << 6) /* Thumb aware */
408 #define FL_LDSCHED (1 << 7) /* Load scheduling necessary */
409 #define FL_STRONG (1 << 8) /* StrongARM */
410 #define FL_ARCH5E (1 << 9) /* DSP extensions to v5 */
411 #define FL_XSCALE (1 << 10) /* XScale */
412 #define FL_CIRRUS (1 << 11) /* Cirrus/DSP. */
413 #define FL_ARCH6 (1 << 12) /* Architecture rel 6. Adds
414 media instructions. */
415 #define FL_VFPV2 (1 << 13) /* Vector Floating Point V2. */
416 #define FL_WBUF (1 << 14) /* Schedule for write buffer ops.
417 Note: ARM6 & 7 derivatives only. */
419 #define FL_IWMMXT (1 << 29) /* XScale v2 or "Intel Wireless MMX technology". */
421 #define FL_FOR_ARCH2 0
422 #define FL_FOR_ARCH3 FL_MODE32
423 #define FL_FOR_ARCH3M (FL_FOR_ARCH3 | FL_ARCH3M)
424 #define FL_FOR_ARCH4 (FL_FOR_ARCH3M | FL_ARCH4)
425 #define FL_FOR_ARCH4T (FL_FOR_ARCH4 | FL_THUMB)
426 #define FL_FOR_ARCH5 (FL_FOR_ARCH4 | FL_ARCH5)
427 #define FL_FOR_ARCH5T (FL_FOR_ARCH5 | FL_THUMB)
428 #define FL_FOR_ARCH5E (FL_FOR_ARCH5 | FL_ARCH5E)
429 #define FL_FOR_ARCH5TE (FL_FOR_ARCH5E | FL_THUMB)
430 #define FL_FOR_ARCH5TEJ FL_FOR_ARCH5TE
431 #define FL_FOR_ARCH6 (FL_FOR_ARCH5TE | FL_ARCH6)
432 #define FL_FOR_ARCH6J FL_FOR_ARCH6
433 #define FL_FOR_ARCH6K FL_FOR_ARCH6
434 #define FL_FOR_ARCH6Z FL_FOR_ARCH6
435 #define FL_FOR_ARCH6ZK FL_FOR_ARCH6
437 /* The bits in this mask specify which
438 instructions we are allowed to generate. */
439 static unsigned long insn_flags = 0;
441 /* The bits in this mask specify which instruction scheduling options should
442 be used. */
443 static unsigned long tune_flags = 0;
445 /* The following are used in the arm.md file as equivalents to bits
446 in the above two flag variables. */
448 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
449 int arm_arch3m = 0;
451 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
452 int arm_arch4 = 0;
454 /* Nonzero if this chip supports the ARM Architecture 4t extensions. */
455 int arm_arch4t = 0;
457 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
458 int arm_arch5 = 0;
460 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
461 int arm_arch5e = 0;
463 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
464 int arm_arch6 = 0;
466 /* Nonzero if this chip can benefit from load scheduling. */
467 int arm_ld_sched = 0;
469 /* Nonzero if this chip is a StrongARM. */
470 int arm_tune_strongarm = 0;
472 /* Nonzero if this chip is a Cirrus variant. */
473 int arm_arch_cirrus = 0;
475 /* Nonzero if this chip supports Intel Wireless MMX technology. */
476 int arm_arch_iwmmxt = 0;
478 /* Nonzero if this chip is an XScale. */
479 int arm_arch_xscale = 0;
481 /* Nonzero if tuning for XScale */
482 int arm_tune_xscale = 0;
484 /* Nonzero if we want to tune for stores that access the write-buffer.
485 This typically means an ARM6 or ARM7 with MMU or MPU. */
486 int arm_tune_wbuf = 0;
488 /* Nonzero if generating Thumb instructions. */
489 int thumb_code = 0;
491 /* Nonzero if we should define __THUMB_INTERWORK__ in the
492 preprocessor.
493 XXX This is a bit of a hack, it's intended to help work around
494 problems in GLD which doesn't understand that armv5t code is
495 interworking clean. */
496 int arm_cpp_interwork = 0;
498 /* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
499 must report the mode of the memory reference from PRINT_OPERAND to
500 PRINT_OPERAND_ADDRESS. */
501 enum machine_mode output_memory_reference_mode;
503 /* The register number to be used for the PIC offset register. */
504 int arm_pic_register = INVALID_REGNUM;
506 /* Set to 1 when a return insn is output, this means that the epilogue
507 is not needed. */
508 int return_used_this_function;
510 /* Set to 1 after arm_reorg has started. Reset to start at the start of
511 the next function. */
512 static int after_arm_reorg = 0;
514 /* The maximum number of insns to be used when loading a constant. */
515 static int arm_constant_limit = 3;
517 /* For an explanation of these variables, see final_prescan_insn below. */
518 int arm_ccfsm_state;
519 enum arm_cond_code arm_current_cc;
520 rtx arm_target_insn;
521 int arm_target_label;
523 /* The condition codes of the ARM, and the inverse function. */
524 static const char * const arm_condition_codes[] =
526 "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
527 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
530 #define streq(string1, string2) (strcmp (string1, string2) == 0)
532 /* Initialization code. */
534 struct processors
536 const char *const name;
537 enum processor_type core;
538 const char *arch;
539 const unsigned long flags;
540 bool (* rtx_costs) (rtx, int, int, int *);
543 /* Not all of these give usefully different compilation alternatives,
544 but there is no simple way of generalizing them. */
545 static const struct processors all_cores[] =
547 /* ARM Cores */
548 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
549 {NAME, arm_none, #ARCH, FLAGS | FL_FOR_ARCH##ARCH, arm_##COSTS##_rtx_costs},
550 #include "arm-cores.def"
551 #undef ARM_CORE
552 {NULL, arm_none, NULL, 0, NULL}
555 static const struct processors all_architectures[] =
557 /* ARM Architectures */
558 /* We don't specify rtx_costs here as it will be figured out
559 from the core. */
561 {"armv2", arm2, "2", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH2, NULL},
562 {"armv2a", arm2, "2", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH2, NULL},
563 {"armv3", arm6, "3", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH3, NULL},
564 {"armv3m", arm7m, "3M", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH3M, NULL},
565 {"armv4", arm7tdmi, "4", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH4, NULL},
566 /* Strictly, FL_MODE26 is a permitted option for v4t, but there are no
567 implementations that support it, so we will leave it out for now. */
568 {"armv4t", arm7tdmi, "4T", FL_CO_PROC | FL_FOR_ARCH4T, NULL},
569 {"armv5", arm10tdmi, "5", FL_CO_PROC | FL_FOR_ARCH5, NULL},
570 {"armv5t", arm10tdmi, "5T", FL_CO_PROC | FL_FOR_ARCH5T, NULL},
571 {"armv5e", arm1026ejs, "5E", FL_CO_PROC | FL_FOR_ARCH5E, NULL},
572 {"armv5te", arm1026ejs, "5TE", FL_CO_PROC | FL_FOR_ARCH5TE, NULL},
573 {"armv6", arm1136js, "6", FL_CO_PROC | FL_FOR_ARCH6, NULL},
574 {"armv6j", arm1136js, "6J", FL_CO_PROC | FL_FOR_ARCH6J, NULL},
575 {"armv6k", mpcore, "6K", FL_CO_PROC | FL_FOR_ARCH6K, NULL},
576 {"armv6z", arm1176jzs, "6Z", FL_CO_PROC | FL_FOR_ARCH6Z, NULL},
577 {"armv6zk", arm1176jzs, "6ZK", FL_CO_PROC | FL_FOR_ARCH6ZK, NULL},
578 {"ep9312", ep9312, "4T", FL_LDSCHED | FL_CIRRUS | FL_FOR_ARCH4, NULL},
579 {"iwmmxt", iwmmxt, "5TE", FL_LDSCHED | FL_STRONG | FL_FOR_ARCH5TE | FL_XSCALE | FL_IWMMXT , NULL},
580 {NULL, arm_none, NULL, 0 , NULL}
583 struct arm_cpu_select
585 const char * string;
586 const char * name;
587 const struct processors * processors;
590 /* This is a magic structure. The 'string' field is magically filled in
591 with a pointer to the value specified by the user on the command line
592 assuming that the user has specified such a value. */
594 static struct arm_cpu_select arm_select[] =
596 /* string name processors */
597 { NULL, "-mcpu=", all_cores },
598 { NULL, "-march=", all_architectures },
599 { NULL, "-mtune=", all_cores }
602 /* Defines representing the indexes into the above table. */
603 #define ARM_OPT_SET_CPU 0
604 #define ARM_OPT_SET_ARCH 1
605 #define ARM_OPT_SET_TUNE 2
607 /* The name of the proprocessor macro to define for this architecture. */
609 char arm_arch_name[] = "__ARM_ARCH_0UNK__";
611 struct fpu_desc
613 const char * name;
614 enum fputype fpu;
618 /* Available values for for -mfpu=. */
620 static const struct fpu_desc all_fpus[] =
622 {"fpa", FPUTYPE_FPA},
623 {"fpe2", FPUTYPE_FPA_EMU2},
624 {"fpe3", FPUTYPE_FPA_EMU2},
625 {"maverick", FPUTYPE_MAVERICK},
626 {"vfp", FPUTYPE_VFP}
630 /* Floating point models used by the different hardware.
631 See fputype in arm.h. */
633 static const enum fputype fp_model_for_fpu[] =
635 /* No FP hardware. */
636 ARM_FP_MODEL_UNKNOWN, /* FPUTYPE_NONE */
637 ARM_FP_MODEL_FPA, /* FPUTYPE_FPA */
638 ARM_FP_MODEL_FPA, /* FPUTYPE_FPA_EMU2 */
639 ARM_FP_MODEL_FPA, /* FPUTYPE_FPA_EMU3 */
640 ARM_FP_MODEL_MAVERICK, /* FPUTYPE_MAVERICK */
641 ARM_FP_MODEL_VFP /* FPUTYPE_VFP */
645 struct float_abi
647 const char * name;
648 enum float_abi_type abi_type;
652 /* Available values for -mfloat-abi=. */
654 static const struct float_abi all_float_abis[] =
656 {"soft", ARM_FLOAT_ABI_SOFT},
657 {"softfp", ARM_FLOAT_ABI_SOFTFP},
658 {"hard", ARM_FLOAT_ABI_HARD}
662 struct abi_name
664 const char *name;
665 enum arm_abi_type abi_type;
669 /* Available values for -mabi=. */
671 static const struct abi_name arm_all_abis[] =
673 {"apcs-gnu", ARM_ABI_APCS},
674 {"atpcs", ARM_ABI_ATPCS},
675 {"aapcs", ARM_ABI_AAPCS},
676 {"iwmmxt", ARM_ABI_IWMMXT}
679 /* Return the number of bits set in VALUE. */
680 static unsigned
681 bit_count (unsigned long value)
683 unsigned long count = 0;
685 while (value)
687 count++;
688 value &= value - 1; /* Clear the least-significant set bit. */
691 return count;
694 /* Set up library functions unique to ARM. */
696 static void
697 arm_init_libfuncs (void)
699 /* There are no special library functions unless we are using the
700 ARM BPABI. */
701 if (!TARGET_BPABI)
702 return;
704 /* The functions below are described in Section 4 of the "Run-Time
705 ABI for the ARM architecture", Version 1.0. */
707 /* Double-precision floating-point arithmetic. Table 2. */
708 set_optab_libfunc (add_optab, DFmode, "__aeabi_dadd");
709 set_optab_libfunc (sdiv_optab, DFmode, "__aeabi_ddiv");
710 set_optab_libfunc (smul_optab, DFmode, "__aeabi_dmul");
711 set_optab_libfunc (neg_optab, DFmode, "__aeabi_dneg");
712 set_optab_libfunc (sub_optab, DFmode, "__aeabi_dsub");
714 /* Double-precision comparisons. Table 3. */
715 set_optab_libfunc (eq_optab, DFmode, "__aeabi_dcmpeq");
716 set_optab_libfunc (ne_optab, DFmode, NULL);
717 set_optab_libfunc (lt_optab, DFmode, "__aeabi_dcmplt");
718 set_optab_libfunc (le_optab, DFmode, "__aeabi_dcmple");
719 set_optab_libfunc (ge_optab, DFmode, "__aeabi_dcmpge");
720 set_optab_libfunc (gt_optab, DFmode, "__aeabi_dcmpgt");
721 set_optab_libfunc (unord_optab, DFmode, "__aeabi_dcmpun");
723 /* Single-precision floating-point arithmetic. Table 4. */
724 set_optab_libfunc (add_optab, SFmode, "__aeabi_fadd");
725 set_optab_libfunc (sdiv_optab, SFmode, "__aeabi_fdiv");
726 set_optab_libfunc (smul_optab, SFmode, "__aeabi_fmul");
727 set_optab_libfunc (neg_optab, SFmode, "__aeabi_fneg");
728 set_optab_libfunc (sub_optab, SFmode, "__aeabi_fsub");
730 /* Single-precision comparisons. Table 5. */
731 set_optab_libfunc (eq_optab, SFmode, "__aeabi_fcmpeq");
732 set_optab_libfunc (ne_optab, SFmode, NULL);
733 set_optab_libfunc (lt_optab, SFmode, "__aeabi_fcmplt");
734 set_optab_libfunc (le_optab, SFmode, "__aeabi_fcmple");
735 set_optab_libfunc (ge_optab, SFmode, "__aeabi_fcmpge");
736 set_optab_libfunc (gt_optab, SFmode, "__aeabi_fcmpgt");
737 set_optab_libfunc (unord_optab, SFmode, "__aeabi_fcmpun");
739 /* Floating-point to integer conversions. Table 6. */
740 set_conv_libfunc (sfix_optab, SImode, DFmode, "__aeabi_d2iz");
741 set_conv_libfunc (ufix_optab, SImode, DFmode, "__aeabi_d2uiz");
742 set_conv_libfunc (sfix_optab, DImode, DFmode, "__aeabi_d2lz");
743 set_conv_libfunc (ufix_optab, DImode, DFmode, "__aeabi_d2ulz");
744 set_conv_libfunc (sfix_optab, SImode, SFmode, "__aeabi_f2iz");
745 set_conv_libfunc (ufix_optab, SImode, SFmode, "__aeabi_f2uiz");
746 set_conv_libfunc (sfix_optab, DImode, SFmode, "__aeabi_f2lz");
747 set_conv_libfunc (ufix_optab, DImode, SFmode, "__aeabi_f2ulz");
749 /* Conversions between floating types. Table 7. */
750 set_conv_libfunc (trunc_optab, SFmode, DFmode, "__aeabi_d2f");
751 set_conv_libfunc (sext_optab, DFmode, SFmode, "__aeabi_f2d");
753 /* Integer to floating-point conversions. Table 8. */
754 set_conv_libfunc (sfloat_optab, DFmode, SImode, "__aeabi_i2d");
755 set_conv_libfunc (ufloat_optab, DFmode, SImode, "__aeabi_ui2d");
756 set_conv_libfunc (sfloat_optab, DFmode, DImode, "__aeabi_l2d");
757 set_conv_libfunc (ufloat_optab, DFmode, DImode, "__aeabi_ul2d");
758 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__aeabi_i2f");
759 set_conv_libfunc (ufloat_optab, SFmode, SImode, "__aeabi_ui2f");
760 set_conv_libfunc (sfloat_optab, SFmode, DImode, "__aeabi_l2f");
761 set_conv_libfunc (ufloat_optab, SFmode, DImode, "__aeabi_ul2f");
763 /* Long long. Table 9. */
764 set_optab_libfunc (smul_optab, DImode, "__aeabi_lmul");
765 set_optab_libfunc (sdivmod_optab, DImode, "__aeabi_ldivmod");
766 set_optab_libfunc (udivmod_optab, DImode, "__aeabi_uldivmod");
767 set_optab_libfunc (ashl_optab, DImode, "__aeabi_llsl");
768 set_optab_libfunc (lshr_optab, DImode, "__aeabi_llsr");
769 set_optab_libfunc (ashr_optab, DImode, "__aeabi_lasr");
770 set_optab_libfunc (cmp_optab, DImode, "__aeabi_lcmp");
771 set_optab_libfunc (ucmp_optab, DImode, "__aeabi_ulcmp");
773 /* Integer (32/32->32) division. \S 4.3.1. */
774 set_optab_libfunc (sdivmod_optab, SImode, "__aeabi_idivmod");
775 set_optab_libfunc (udivmod_optab, SImode, "__aeabi_uidivmod");
777 /* The divmod functions are designed so that they can be used for
778 plain division, even though they return both the quotient and the
779 remainder. The quotient is returned in the usual location (i.e.,
780 r0 for SImode, {r0, r1} for DImode), just as would be expected
781 for an ordinary division routine. Because the AAPCS calling
782 conventions specify that all of { r0, r1, r2, r3 } are
783 callee-saved registers, there is no need to tell the compiler
784 explicitly that those registers are clobbered by these
785 routines. */
786 set_optab_libfunc (sdiv_optab, DImode, "__aeabi_ldivmod");
787 set_optab_libfunc (udiv_optab, DImode, "__aeabi_uldivmod");
788 set_optab_libfunc (sdiv_optab, SImode, "__aeabi_idivmod");
789 set_optab_libfunc (udiv_optab, SImode, "__aeabi_uidivmod");
791 /* We don't have mod libcalls. Fortunately gcc knows how to use the
792 divmod libcalls instead. */
793 set_optab_libfunc (smod_optab, DImode, NULL);
794 set_optab_libfunc (umod_optab, DImode, NULL);
795 set_optab_libfunc (smod_optab, SImode, NULL);
796 set_optab_libfunc (umod_optab, SImode, NULL);
799 /* Implement TARGET_HANDLE_OPTION. */
801 static bool
802 arm_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
804 switch (code)
806 case OPT_march_:
807 arm_select[1].string = arg;
808 return true;
810 case OPT_mcpu_:
811 arm_select[0].string = arg;
812 return true;
814 case OPT_mhard_float:
815 target_float_abi_name = "hard";
816 return true;
818 case OPT_msoft_float:
819 target_float_abi_name = "soft";
820 return true;
822 case OPT_mtune_:
823 arm_select[2].string = arg;
824 return true;
826 default:
827 return true;
831 /* Fix up any incompatible options that the user has specified.
832 This has now turned into a maze. */
833 void
834 arm_override_options (void)
836 unsigned i;
837 enum processor_type target_arch_cpu = arm_none;
839 /* Set up the flags based on the cpu/architecture selected by the user. */
840 for (i = ARRAY_SIZE (arm_select); i--;)
842 struct arm_cpu_select * ptr = arm_select + i;
844 if (ptr->string != NULL && ptr->string[0] != '\0')
846 const struct processors * sel;
848 for (sel = ptr->processors; sel->name != NULL; sel++)
849 if (streq (ptr->string, sel->name))
851 /* Set the architecture define. */
852 if (i != ARM_OPT_SET_TUNE)
853 sprintf (arm_arch_name, "__ARM_ARCH_%s__", sel->arch);
855 /* Determine the processor core for which we should
856 tune code-generation. */
857 if (/* -mcpu= is a sensible default. */
858 i == ARM_OPT_SET_CPU
859 /* -mtune= overrides -mcpu= and -march=. */
860 || i == ARM_OPT_SET_TUNE)
861 arm_tune = (enum processor_type) (sel - ptr->processors);
863 /* Remember the CPU associated with this architecture.
864 If no other option is used to set the CPU type,
865 we'll use this to guess the most suitable tuning
866 options. */
867 if (i == ARM_OPT_SET_ARCH)
868 target_arch_cpu = sel->core;
870 if (i != ARM_OPT_SET_TUNE)
872 /* If we have been given an architecture and a processor
873 make sure that they are compatible. We only generate
874 a warning though, and we prefer the CPU over the
875 architecture. */
876 if (insn_flags != 0 && (insn_flags ^ sel->flags))
877 warning (0, "switch -mcpu=%s conflicts with -march= switch",
878 ptr->string);
880 insn_flags = sel->flags;
883 break;
886 if (sel->name == NULL)
887 error ("bad value (%s) for %s switch", ptr->string, ptr->name);
891 /* Guess the tuning options from the architecture if necessary. */
892 if (arm_tune == arm_none)
893 arm_tune = target_arch_cpu;
895 /* If the user did not specify a processor, choose one for them. */
896 if (insn_flags == 0)
898 const struct processors * sel;
899 unsigned int sought;
900 enum processor_type cpu;
902 cpu = TARGET_CPU_DEFAULT;
903 if (cpu == arm_none)
905 #ifdef SUBTARGET_CPU_DEFAULT
906 /* Use the subtarget default CPU if none was specified by
907 configure. */
908 cpu = SUBTARGET_CPU_DEFAULT;
909 #endif
910 /* Default to ARM6. */
911 if (cpu == arm_none)
912 cpu = arm6;
914 sel = &all_cores[cpu];
916 insn_flags = sel->flags;
918 /* Now check to see if the user has specified some command line
919 switch that require certain abilities from the cpu. */
920 sought = 0;
922 if (TARGET_INTERWORK || TARGET_THUMB)
924 sought |= (FL_THUMB | FL_MODE32);
926 /* There are no ARM processors that support both APCS-26 and
927 interworking. Therefore we force FL_MODE26 to be removed
928 from insn_flags here (if it was set), so that the search
929 below will always be able to find a compatible processor. */
930 insn_flags &= ~FL_MODE26;
933 if (sought != 0 && ((sought & insn_flags) != sought))
935 /* Try to locate a CPU type that supports all of the abilities
936 of the default CPU, plus the extra abilities requested by
937 the user. */
938 for (sel = all_cores; sel->name != NULL; sel++)
939 if ((sel->flags & sought) == (sought | insn_flags))
940 break;
942 if (sel->name == NULL)
944 unsigned current_bit_count = 0;
945 const struct processors * best_fit = NULL;
947 /* Ideally we would like to issue an error message here
948 saying that it was not possible to find a CPU compatible
949 with the default CPU, but which also supports the command
950 line options specified by the programmer, and so they
951 ought to use the -mcpu=<name> command line option to
952 override the default CPU type.
954 If we cannot find a cpu that has both the
955 characteristics of the default cpu and the given
956 command line options we scan the array again looking
957 for a best match. */
958 for (sel = all_cores; sel->name != NULL; sel++)
959 if ((sel->flags & sought) == sought)
961 unsigned count;
963 count = bit_count (sel->flags & insn_flags);
965 if (count >= current_bit_count)
967 best_fit = sel;
968 current_bit_count = count;
972 gcc_assert (best_fit);
973 sel = best_fit;
976 insn_flags = sel->flags;
978 sprintf (arm_arch_name, "__ARM_ARCH_%s__", sel->arch);
979 if (arm_tune == arm_none)
980 arm_tune = (enum processor_type) (sel - all_cores);
983 /* The processor for which we should tune should now have been
984 chosen. */
985 gcc_assert (arm_tune != arm_none);
987 tune_flags = all_cores[(int)arm_tune].flags;
988 if (optimize_size)
989 targetm.rtx_costs = arm_size_rtx_costs;
990 else
991 targetm.rtx_costs = all_cores[(int)arm_tune].rtx_costs;
993 /* Make sure that the processor choice does not conflict with any of the
994 other command line choices. */
995 if (TARGET_INTERWORK && !(insn_flags & FL_THUMB))
997 warning (0, "target CPU does not support interworking" );
998 target_flags &= ~MASK_INTERWORK;
1001 if (TARGET_THUMB && !(insn_flags & FL_THUMB))
1003 warning (0, "target CPU does not support THUMB instructions");
1004 target_flags &= ~MASK_THUMB;
1007 if (TARGET_APCS_FRAME && TARGET_THUMB)
1009 /* warning (0, "ignoring -mapcs-frame because -mthumb was used"); */
1010 target_flags &= ~MASK_APCS_FRAME;
1013 /* TARGET_BACKTRACE calls leaf_function_p, which causes a crash if done
1014 from here where no function is being compiled currently. */
1015 if ((TARGET_TPCS_FRAME || TARGET_TPCS_LEAF_FRAME) && TARGET_ARM)
1016 warning (0, "enabling backtrace support is only meaningful when compiling for the Thumb");
1018 if (TARGET_ARM && TARGET_CALLEE_INTERWORKING)
1019 warning (0, "enabling callee interworking support is only meaningful when compiling for the Thumb");
1021 if (TARGET_ARM && TARGET_CALLER_INTERWORKING)
1022 warning (0, "enabling caller interworking support is only meaningful when compiling for the Thumb");
1024 if (TARGET_APCS_STACK && !TARGET_APCS_FRAME)
1026 warning (0, "-mapcs-stack-check incompatible with -mno-apcs-frame");
1027 target_flags |= MASK_APCS_FRAME;
1030 if (TARGET_POKE_FUNCTION_NAME)
1031 target_flags |= MASK_APCS_FRAME;
1033 if (TARGET_APCS_REENT && flag_pic)
1034 error ("-fpic and -mapcs-reent are incompatible");
1036 if (TARGET_APCS_REENT)
1037 warning (0, "APCS reentrant code not supported. Ignored");
1039 /* If this target is normally configured to use APCS frames, warn if they
1040 are turned off and debugging is turned on. */
1041 if (TARGET_ARM
1042 && write_symbols != NO_DEBUG
1043 && !TARGET_APCS_FRAME
1044 && (TARGET_DEFAULT & MASK_APCS_FRAME))
1045 warning (0, "-g with -mno-apcs-frame may not give sensible debugging");
1047 /* If stack checking is disabled, we can use r10 as the PIC register,
1048 which keeps r9 available. */
1049 if (flag_pic)
1050 arm_pic_register = TARGET_APCS_STACK ? 9 : 10;
1052 if (TARGET_APCS_FLOAT)
1053 warning (0, "passing floating point arguments in fp regs not yet supported");
1055 /* Initialize boolean versions of the flags, for use in the arm.md file. */
1056 arm_arch3m = (insn_flags & FL_ARCH3M) != 0;
1057 arm_arch4 = (insn_flags & FL_ARCH4) != 0;
1058 arm_arch4t = arm_arch4 & ((insn_flags & FL_THUMB) != 0);
1059 arm_arch5 = (insn_flags & FL_ARCH5) != 0;
1060 arm_arch5e = (insn_flags & FL_ARCH5E) != 0;
1061 arm_arch6 = (insn_flags & FL_ARCH6) != 0;
1062 arm_arch_xscale = (insn_flags & FL_XSCALE) != 0;
1063 arm_arch_cirrus = (insn_flags & FL_CIRRUS) != 0;
1065 arm_ld_sched = (tune_flags & FL_LDSCHED) != 0;
1066 arm_tune_strongarm = (tune_flags & FL_STRONG) != 0;
1067 thumb_code = (TARGET_ARM == 0);
1068 arm_tune_wbuf = (tune_flags & FL_WBUF) != 0;
1069 arm_tune_xscale = (tune_flags & FL_XSCALE) != 0;
1070 arm_arch_iwmmxt = (insn_flags & FL_IWMMXT) != 0;
1072 /* V5 code we generate is completely interworking capable, so we turn off
1073 TARGET_INTERWORK here to avoid many tests later on. */
1075 /* XXX However, we must pass the right pre-processor defines to CPP
1076 or GLD can get confused. This is a hack. */
1077 if (TARGET_INTERWORK)
1078 arm_cpp_interwork = 1;
1080 if (arm_arch5)
1081 target_flags &= ~MASK_INTERWORK;
1083 if (target_abi_name)
1085 for (i = 0; i < ARRAY_SIZE (arm_all_abis); i++)
1087 if (streq (arm_all_abis[i].name, target_abi_name))
1089 arm_abi = arm_all_abis[i].abi_type;
1090 break;
1093 if (i == ARRAY_SIZE (arm_all_abis))
1094 error ("invalid ABI option: -mabi=%s", target_abi_name);
1096 else
1097 arm_abi = ARM_DEFAULT_ABI;
1099 if (TARGET_IWMMXT && !ARM_DOUBLEWORD_ALIGN)
1100 error ("iwmmxt requires an AAPCS compatible ABI for proper operation");
1102 if (TARGET_IWMMXT_ABI && !TARGET_IWMMXT)
1103 error ("iwmmxt abi requires an iwmmxt capable cpu");
1105 arm_fp_model = ARM_FP_MODEL_UNKNOWN;
1106 if (target_fpu_name == NULL && target_fpe_name != NULL)
1108 if (streq (target_fpe_name, "2"))
1109 target_fpu_name = "fpe2";
1110 else if (streq (target_fpe_name, "3"))
1111 target_fpu_name = "fpe3";
1112 else
1113 error ("invalid floating point emulation option: -mfpe=%s",
1114 target_fpe_name);
1116 if (target_fpu_name != NULL)
1118 /* The user specified a FPU. */
1119 for (i = 0; i < ARRAY_SIZE (all_fpus); i++)
1121 if (streq (all_fpus[i].name, target_fpu_name))
1123 arm_fpu_arch = all_fpus[i].fpu;
1124 arm_fpu_tune = arm_fpu_arch;
1125 arm_fp_model = fp_model_for_fpu[arm_fpu_arch];
1126 break;
1129 if (arm_fp_model == ARM_FP_MODEL_UNKNOWN)
1130 error ("invalid floating point option: -mfpu=%s", target_fpu_name);
1132 else
1134 #ifdef FPUTYPE_DEFAULT
1135 /* Use the default if it is specified for this platform. */
1136 arm_fpu_arch = FPUTYPE_DEFAULT;
1137 arm_fpu_tune = FPUTYPE_DEFAULT;
1138 #else
1139 /* Pick one based on CPU type. */
1140 /* ??? Some targets assume FPA is the default.
1141 if ((insn_flags & FL_VFP) != 0)
1142 arm_fpu_arch = FPUTYPE_VFP;
1143 else
1145 if (arm_arch_cirrus)
1146 arm_fpu_arch = FPUTYPE_MAVERICK;
1147 else
1148 arm_fpu_arch = FPUTYPE_FPA_EMU2;
1149 #endif
1150 if (tune_flags & FL_CO_PROC && arm_fpu_arch == FPUTYPE_FPA_EMU2)
1151 arm_fpu_tune = FPUTYPE_FPA;
1152 else
1153 arm_fpu_tune = arm_fpu_arch;
1154 arm_fp_model = fp_model_for_fpu[arm_fpu_arch];
1155 gcc_assert (arm_fp_model != ARM_FP_MODEL_UNKNOWN);
1158 if (target_float_abi_name != NULL)
1160 /* The user specified a FP ABI. */
1161 for (i = 0; i < ARRAY_SIZE (all_float_abis); i++)
1163 if (streq (all_float_abis[i].name, target_float_abi_name))
1165 arm_float_abi = all_float_abis[i].abi_type;
1166 break;
1169 if (i == ARRAY_SIZE (all_float_abis))
1170 error ("invalid floating point abi: -mfloat-abi=%s",
1171 target_float_abi_name);
1173 else
1174 arm_float_abi = TARGET_DEFAULT_FLOAT_ABI;
1176 if (arm_float_abi == ARM_FLOAT_ABI_HARD && TARGET_VFP)
1177 sorry ("-mfloat-abi=hard and VFP");
1179 /* If soft-float is specified then don't use FPU. */
1180 if (TARGET_SOFT_FLOAT)
1181 arm_fpu_arch = FPUTYPE_NONE;
1183 /* For arm2/3 there is no need to do any scheduling if there is only
1184 a floating point emulator, or we are doing software floating-point. */
1185 if ((TARGET_SOFT_FLOAT
1186 || arm_fpu_tune == FPUTYPE_FPA_EMU2
1187 || arm_fpu_tune == FPUTYPE_FPA_EMU3)
1188 && (tune_flags & FL_MODE32) == 0)
1189 flag_schedule_insns = flag_schedule_insns_after_reload = 0;
1191 /* Override the default structure alignment for AAPCS ABI. */
1192 if (arm_abi == ARM_ABI_AAPCS)
1193 arm_structure_size_boundary = 8;
1195 if (structure_size_string != NULL)
1197 int size = strtol (structure_size_string, NULL, 0);
1199 if (size == 8 || size == 32
1200 || (ARM_DOUBLEWORD_ALIGN && size == 64))
1201 arm_structure_size_boundary = size;
1202 else
1203 warning (0, "structure size boundary can only be set to %s",
1204 ARM_DOUBLEWORD_ALIGN ? "8, 32 or 64": "8 or 32");
1207 if (arm_pic_register_string != NULL)
1209 int pic_register = decode_reg_name (arm_pic_register_string);
1211 if (!flag_pic)
1212 warning (0, "-mpic-register= is useless without -fpic");
1214 /* Prevent the user from choosing an obviously stupid PIC register. */
1215 else if (pic_register < 0 || call_used_regs[pic_register]
1216 || pic_register == HARD_FRAME_POINTER_REGNUM
1217 || pic_register == STACK_POINTER_REGNUM
1218 || pic_register >= PC_REGNUM)
1219 error ("unable to use '%s' for PIC register", arm_pic_register_string);
1220 else
1221 arm_pic_register = pic_register;
1224 if (TARGET_THUMB && flag_schedule_insns)
1226 /* Don't warn since it's on by default in -O2. */
1227 flag_schedule_insns = 0;
1230 if (optimize_size)
1232 /* There's some dispute as to whether this should be 1 or 2. However,
1233 experiments seem to show that in pathological cases a setting of
1234 1 degrades less severely than a setting of 2. This could change if
1235 other parts of the compiler change their behavior. */
1236 arm_constant_limit = 1;
1238 /* If optimizing for size, bump the number of instructions that we
1239 are prepared to conditionally execute (even on a StrongARM). */
1240 max_insns_skipped = 6;
1242 else
1244 /* For processors with load scheduling, it never costs more than
1245 2 cycles to load a constant, and the load scheduler may well
1246 reduce that to 1. */
1247 if (arm_ld_sched)
1248 arm_constant_limit = 1;
1250 /* On XScale the longer latency of a load makes it more difficult
1251 to achieve a good schedule, so it's faster to synthesize
1252 constants that can be done in two insns. */
1253 if (arm_tune_xscale)
1254 arm_constant_limit = 2;
1256 /* StrongARM has early execution of branches, so a sequence
1257 that is worth skipping is shorter. */
1258 if (arm_tune_strongarm)
1259 max_insns_skipped = 3;
1262 /* Register global variables with the garbage collector. */
1263 arm_add_gc_roots ();
1266 static void
1267 arm_add_gc_roots (void)
1269 gcc_obstack_init(&minipool_obstack);
1270 minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
1273 /* A table of known ARM exception types.
1274 For use with the interrupt function attribute. */
1276 typedef struct
1278 const char *const arg;
1279 const unsigned long return_value;
1281 isr_attribute_arg;
1283 static const isr_attribute_arg isr_attribute_args [] =
1285 { "IRQ", ARM_FT_ISR },
1286 { "irq", ARM_FT_ISR },
1287 { "FIQ", ARM_FT_FIQ },
1288 { "fiq", ARM_FT_FIQ },
1289 { "ABORT", ARM_FT_ISR },
1290 { "abort", ARM_FT_ISR },
1291 { "ABORT", ARM_FT_ISR },
1292 { "abort", ARM_FT_ISR },
1293 { "UNDEF", ARM_FT_EXCEPTION },
1294 { "undef", ARM_FT_EXCEPTION },
1295 { "SWI", ARM_FT_EXCEPTION },
1296 { "swi", ARM_FT_EXCEPTION },
1297 { NULL, ARM_FT_NORMAL }
1300 /* Returns the (interrupt) function type of the current
1301 function, or ARM_FT_UNKNOWN if the type cannot be determined. */
1303 static unsigned long
1304 arm_isr_value (tree argument)
1306 const isr_attribute_arg * ptr;
1307 const char * arg;
1309 /* No argument - default to IRQ. */
1310 if (argument == NULL_TREE)
1311 return ARM_FT_ISR;
1313 /* Get the value of the argument. */
1314 if (TREE_VALUE (argument) == NULL_TREE
1315 || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
1316 return ARM_FT_UNKNOWN;
1318 arg = TREE_STRING_POINTER (TREE_VALUE (argument));
1320 /* Check it against the list of known arguments. */
1321 for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
1322 if (streq (arg, ptr->arg))
1323 return ptr->return_value;
1325 /* An unrecognized interrupt type. */
1326 return ARM_FT_UNKNOWN;
1329 /* Computes the type of the current function. */
1331 static unsigned long
1332 arm_compute_func_type (void)
1334 unsigned long type = ARM_FT_UNKNOWN;
1335 tree a;
1336 tree attr;
1338 gcc_assert (TREE_CODE (current_function_decl) == FUNCTION_DECL);
1340 /* Decide if the current function is volatile. Such functions
1341 never return, and many memory cycles can be saved by not storing
1342 register values that will never be needed again. This optimization
1343 was added to speed up context switching in a kernel application. */
1344 if (optimize > 0
1345 && TREE_NOTHROW (current_function_decl)
1346 && TREE_THIS_VOLATILE (current_function_decl))
1347 type |= ARM_FT_VOLATILE;
1349 if (cfun->static_chain_decl != NULL)
1350 type |= ARM_FT_NESTED;
1352 attr = DECL_ATTRIBUTES (current_function_decl);
1354 a = lookup_attribute ("naked", attr);
1355 if (a != NULL_TREE)
1356 type |= ARM_FT_NAKED;
1358 a = lookup_attribute ("isr", attr);
1359 if (a == NULL_TREE)
1360 a = lookup_attribute ("interrupt", attr);
1362 if (a == NULL_TREE)
1363 type |= TARGET_INTERWORK ? ARM_FT_INTERWORKED : ARM_FT_NORMAL;
1364 else
1365 type |= arm_isr_value (TREE_VALUE (a));
1367 return type;
1370 /* Returns the type of the current function. */
1372 unsigned long
1373 arm_current_func_type (void)
1375 if (ARM_FUNC_TYPE (cfun->machine->func_type) == ARM_FT_UNKNOWN)
1376 cfun->machine->func_type = arm_compute_func_type ();
1378 return cfun->machine->func_type;
1381 /* Return 1 if it is possible to return using a single instruction.
1382 If SIBLING is non-null, this is a test for a return before a sibling
1383 call. SIBLING is the call insn, so we can examine its register usage. */
1386 use_return_insn (int iscond, rtx sibling)
1388 int regno;
1389 unsigned int func_type;
1390 unsigned long saved_int_regs;
1391 unsigned HOST_WIDE_INT stack_adjust;
1392 arm_stack_offsets *offsets;
1394 /* Never use a return instruction before reload has run. */
1395 if (!reload_completed)
1396 return 0;
1398 func_type = arm_current_func_type ();
1400 /* Naked functions and volatile functions need special
1401 consideration. */
1402 if (func_type & (ARM_FT_VOLATILE | ARM_FT_NAKED))
1403 return 0;
1405 /* So do interrupt functions that use the frame pointer. */
1406 if (IS_INTERRUPT (func_type) && frame_pointer_needed)
1407 return 0;
1409 offsets = arm_get_frame_offsets ();
1410 stack_adjust = offsets->outgoing_args - offsets->saved_regs;
1412 /* As do variadic functions. */
1413 if (current_function_pretend_args_size
1414 || cfun->machine->uses_anonymous_args
1415 /* Or if the function calls __builtin_eh_return () */
1416 || current_function_calls_eh_return
1417 /* Or if the function calls alloca */
1418 || current_function_calls_alloca
1419 /* Or if there is a stack adjustment. However, if the stack pointer
1420 is saved on the stack, we can use a pre-incrementing stack load. */
1421 || !(stack_adjust == 0 || (frame_pointer_needed && stack_adjust == 4)))
1422 return 0;
1424 saved_int_regs = arm_compute_save_reg_mask ();
1426 /* Unfortunately, the insn
1428 ldmib sp, {..., sp, ...}
1430 triggers a bug on most SA-110 based devices, such that the stack
1431 pointer won't be correctly restored if the instruction takes a
1432 page fault. We work around this problem by popping r3 along with
1433 the other registers, since that is never slower than executing
1434 another instruction.
1436 We test for !arm_arch5 here, because code for any architecture
1437 less than this could potentially be run on one of the buggy
1438 chips. */
1439 if (stack_adjust == 4 && !arm_arch5)
1441 /* Validate that r3 is a call-clobbered register (always true in
1442 the default abi) ... */
1443 if (!call_used_regs[3])
1444 return 0;
1446 /* ... that it isn't being used for a return value ... */
1447 if (arm_size_return_regs () >= (4 * UNITS_PER_WORD))
1448 return 0;
1450 /* ... or for a tail-call argument ... */
1451 if (sibling)
1453 gcc_assert (GET_CODE (sibling) == CALL_INSN);
1455 if (find_regno_fusage (sibling, USE, 3))
1456 return 0;
1459 /* ... and that there are no call-saved registers in r0-r2
1460 (always true in the default ABI). */
1461 if (saved_int_regs & 0x7)
1462 return 0;
1465 /* Can't be done if interworking with Thumb, and any registers have been
1466 stacked. */
1467 if (TARGET_INTERWORK && saved_int_regs != 0)
1468 return 0;
1470 /* On StrongARM, conditional returns are expensive if they aren't
1471 taken and multiple registers have been stacked. */
1472 if (iscond && arm_tune_strongarm)
1474 /* Conditional return when just the LR is stored is a simple
1475 conditional-load instruction, that's not expensive. */
1476 if (saved_int_regs != 0 && saved_int_regs != (1 << LR_REGNUM))
1477 return 0;
1479 if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
1480 return 0;
1483 /* If there are saved registers but the LR isn't saved, then we need
1484 two instructions for the return. */
1485 if (saved_int_regs && !(saved_int_regs & (1 << LR_REGNUM)))
1486 return 0;
1488 /* Can't be done if any of the FPA regs are pushed,
1489 since this also requires an insn. */
1490 if (TARGET_HARD_FLOAT && TARGET_FPA)
1491 for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
1492 if (regs_ever_live[regno] && !call_used_regs[regno])
1493 return 0;
1495 /* Likewise VFP regs. */
1496 if (TARGET_HARD_FLOAT && TARGET_VFP)
1497 for (regno = FIRST_VFP_REGNUM; regno <= LAST_VFP_REGNUM; regno++)
1498 if (regs_ever_live[regno] && !call_used_regs[regno])
1499 return 0;
1501 if (TARGET_REALLY_IWMMXT)
1502 for (regno = FIRST_IWMMXT_REGNUM; regno <= LAST_IWMMXT_REGNUM; regno++)
1503 if (regs_ever_live[regno] && ! call_used_regs [regno])
1504 return 0;
1506 return 1;
1509 /* Return TRUE if int I is a valid immediate ARM constant. */
1512 const_ok_for_arm (HOST_WIDE_INT i)
1514 int lowbit;
1516 /* For machines with >32 bit HOST_WIDE_INT, the bits above bit 31 must
1517 be all zero, or all one. */
1518 if ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0
1519 && ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff)
1520 != ((~(unsigned HOST_WIDE_INT) 0)
1521 & ~(unsigned HOST_WIDE_INT) 0xffffffff)))
1522 return FALSE;
1524 i &= (unsigned HOST_WIDE_INT) 0xffffffff;
1526 /* Fast return for 0 and small values. We must do this for zero, since
1527 the code below can't handle that one case. */
1528 if ((i & ~(unsigned HOST_WIDE_INT) 0xff) == 0)
1529 return TRUE;
1531 /* Get the number of trailing zeros, rounded down to the nearest even
1532 number. */
1533 lowbit = (ffs ((int) i) - 1) & ~1;
1535 if ((i & ~(((unsigned HOST_WIDE_INT) 0xff) << lowbit)) == 0)
1536 return TRUE;
1537 else if (lowbit <= 4
1538 && ((i & ~0xc000003f) == 0
1539 || (i & ~0xf000000f) == 0
1540 || (i & ~0xfc000003) == 0))
1541 return TRUE;
1543 return FALSE;
1546 /* Return true if I is a valid constant for the operation CODE. */
1547 static int
1548 const_ok_for_op (HOST_WIDE_INT i, enum rtx_code code)
1550 if (const_ok_for_arm (i))
1551 return 1;
1553 switch (code)
1555 case PLUS:
1556 return const_ok_for_arm (ARM_SIGN_EXTEND (-i));
1558 case MINUS: /* Should only occur with (MINUS I reg) => rsb */
1559 case XOR:
1560 case IOR:
1561 return 0;
1563 case AND:
1564 return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
1566 default:
1567 gcc_unreachable ();
1571 /* Emit a sequence of insns to handle a large constant.
1572 CODE is the code of the operation required, it can be any of SET, PLUS,
1573 IOR, AND, XOR, MINUS;
1574 MODE is the mode in which the operation is being performed;
1575 VAL is the integer to operate on;
1576 SOURCE is the other operand (a register, or a null-pointer for SET);
1577 SUBTARGETS means it is safe to create scratch registers if that will
1578 either produce a simpler sequence, or we will want to cse the values.
1579 Return value is the number of insns emitted. */
1582 arm_split_constant (enum rtx_code code, enum machine_mode mode, rtx insn,
1583 HOST_WIDE_INT val, rtx target, rtx source, int subtargets)
1585 rtx cond;
1587 if (insn && GET_CODE (PATTERN (insn)) == COND_EXEC)
1588 cond = COND_EXEC_TEST (PATTERN (insn));
1589 else
1590 cond = NULL_RTX;
1592 if (subtargets || code == SET
1593 || (GET_CODE (target) == REG && GET_CODE (source) == REG
1594 && REGNO (target) != REGNO (source)))
1596 /* After arm_reorg has been called, we can't fix up expensive
1597 constants by pushing them into memory so we must synthesize
1598 them in-line, regardless of the cost. This is only likely to
1599 be more costly on chips that have load delay slots and we are
1600 compiling without running the scheduler (so no splitting
1601 occurred before the final instruction emission).
1603 Ref: gcc -O1 -mcpu=strongarm gcc.c-torture/compile/980506-2.c
1605 if (!after_arm_reorg
1606 && !cond
1607 && (arm_gen_constant (code, mode, NULL_RTX, val, target, source,
1608 1, 0)
1609 > arm_constant_limit + (code != SET)))
1611 if (code == SET)
1613 /* Currently SET is the only monadic value for CODE, all
1614 the rest are diadic. */
1615 emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (val)));
1616 return 1;
1618 else
1620 rtx temp = subtargets ? gen_reg_rtx (mode) : target;
1622 emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (val)));
1623 /* For MINUS, the value is subtracted from, since we never
1624 have subtraction of a constant. */
1625 if (code == MINUS)
1626 emit_insn (gen_rtx_SET (VOIDmode, target,
1627 gen_rtx_MINUS (mode, temp, source)));
1628 else
1629 emit_insn (gen_rtx_SET (VOIDmode, target,
1630 gen_rtx_fmt_ee (code, mode, source, temp)));
1631 return 2;
1636 return arm_gen_constant (code, mode, cond, val, target, source, subtargets,
1640 static int
1641 count_insns_for_constant (HOST_WIDE_INT remainder, int i)
1643 HOST_WIDE_INT temp1;
1644 int num_insns = 0;
1647 int end;
1649 if (i <= 0)
1650 i += 32;
1651 if (remainder & (3 << (i - 2)))
1653 end = i - 8;
1654 if (end < 0)
1655 end += 32;
1656 temp1 = remainder & ((0x0ff << end)
1657 | ((i < end) ? (0xff >> (32 - end)) : 0));
1658 remainder &= ~temp1;
1659 num_insns++;
1660 i -= 6;
1662 i -= 2;
1663 } while (remainder);
1664 return num_insns;
1667 /* Emit an instruction with the indicated PATTERN. If COND is
1668 non-NULL, conditionalize the execution of the instruction on COND
1669 being true. */
1671 static void
1672 emit_constant_insn (rtx cond, rtx pattern)
1674 if (cond)
1675 pattern = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond), pattern);
1676 emit_insn (pattern);
1679 /* As above, but extra parameter GENERATE which, if clear, suppresses
1680 RTL generation. */
1682 static int
1683 arm_gen_constant (enum rtx_code code, enum machine_mode mode, rtx cond,
1684 HOST_WIDE_INT val, rtx target, rtx source, int subtargets,
1685 int generate)
1687 int can_invert = 0;
1688 int can_negate = 0;
1689 int can_negate_initial = 0;
1690 int can_shift = 0;
1691 int i;
1692 int num_bits_set = 0;
1693 int set_sign_bit_copies = 0;
1694 int clear_sign_bit_copies = 0;
1695 int clear_zero_bit_copies = 0;
1696 int set_zero_bit_copies = 0;
1697 int insns = 0;
1698 unsigned HOST_WIDE_INT temp1, temp2;
1699 unsigned HOST_WIDE_INT remainder = val & 0xffffffff;
1701 /* Find out which operations are safe for a given CODE. Also do a quick
1702 check for degenerate cases; these can occur when DImode operations
1703 are split. */
1704 switch (code)
1706 case SET:
1707 can_invert = 1;
1708 can_shift = 1;
1709 can_negate = 1;
1710 break;
1712 case PLUS:
1713 can_negate = 1;
1714 can_negate_initial = 1;
1715 break;
1717 case IOR:
1718 if (remainder == 0xffffffff)
1720 if (generate)
1721 emit_constant_insn (cond,
1722 gen_rtx_SET (VOIDmode, target,
1723 GEN_INT (ARM_SIGN_EXTEND (val))));
1724 return 1;
1726 if (remainder == 0)
1728 if (reload_completed && rtx_equal_p (target, source))
1729 return 0;
1730 if (generate)
1731 emit_constant_insn (cond,
1732 gen_rtx_SET (VOIDmode, target, source));
1733 return 1;
1735 break;
1737 case AND:
1738 if (remainder == 0)
1740 if (generate)
1741 emit_constant_insn (cond,
1742 gen_rtx_SET (VOIDmode, target, const0_rtx));
1743 return 1;
1745 if (remainder == 0xffffffff)
1747 if (reload_completed && rtx_equal_p (target, source))
1748 return 0;
1749 if (generate)
1750 emit_constant_insn (cond,
1751 gen_rtx_SET (VOIDmode, target, source));
1752 return 1;
1754 can_invert = 1;
1755 break;
1757 case XOR:
1758 if (remainder == 0)
1760 if (reload_completed && rtx_equal_p (target, source))
1761 return 0;
1762 if (generate)
1763 emit_constant_insn (cond,
1764 gen_rtx_SET (VOIDmode, target, source));
1765 return 1;
1768 /* We don't know how to handle other cases yet. */
1769 gcc_assert (remainder == 0xffffffff);
1771 if (generate)
1772 emit_constant_insn (cond,
1773 gen_rtx_SET (VOIDmode, target,
1774 gen_rtx_NOT (mode, source)));
1775 return 1;
1777 case MINUS:
1778 /* We treat MINUS as (val - source), since (source - val) is always
1779 passed as (source + (-val)). */
1780 if (remainder == 0)
1782 if (generate)
1783 emit_constant_insn (cond,
1784 gen_rtx_SET (VOIDmode, target,
1785 gen_rtx_NEG (mode, source)));
1786 return 1;
1788 if (const_ok_for_arm (val))
1790 if (generate)
1791 emit_constant_insn (cond,
1792 gen_rtx_SET (VOIDmode, target,
1793 gen_rtx_MINUS (mode, GEN_INT (val),
1794 source)));
1795 return 1;
1797 can_negate = 1;
1799 break;
1801 default:
1802 gcc_unreachable ();
1805 /* If we can do it in one insn get out quickly. */
1806 if (const_ok_for_arm (val)
1807 || (can_negate_initial && const_ok_for_arm (-val))
1808 || (can_invert && const_ok_for_arm (~val)))
1810 if (generate)
1811 emit_constant_insn (cond,
1812 gen_rtx_SET (VOIDmode, target,
1813 (source
1814 ? gen_rtx_fmt_ee (code, mode, source,
1815 GEN_INT (val))
1816 : GEN_INT (val))));
1817 return 1;
1820 /* Calculate a few attributes that may be useful for specific
1821 optimizations. */
1822 for (i = 31; i >= 0; i--)
1824 if ((remainder & (1 << i)) == 0)
1825 clear_sign_bit_copies++;
1826 else
1827 break;
1830 for (i = 31; i >= 0; i--)
1832 if ((remainder & (1 << i)) != 0)
1833 set_sign_bit_copies++;
1834 else
1835 break;
1838 for (i = 0; i <= 31; i++)
1840 if ((remainder & (1 << i)) == 0)
1841 clear_zero_bit_copies++;
1842 else
1843 break;
1846 for (i = 0; i <= 31; i++)
1848 if ((remainder & (1 << i)) != 0)
1849 set_zero_bit_copies++;
1850 else
1851 break;
1854 switch (code)
1856 case SET:
1857 /* See if we can do this by sign_extending a constant that is known
1858 to be negative. This is a good, way of doing it, since the shift
1859 may well merge into a subsequent insn. */
1860 if (set_sign_bit_copies > 1)
1862 if (const_ok_for_arm
1863 (temp1 = ARM_SIGN_EXTEND (remainder
1864 << (set_sign_bit_copies - 1))))
1866 if (generate)
1868 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
1869 emit_constant_insn (cond,
1870 gen_rtx_SET (VOIDmode, new_src,
1871 GEN_INT (temp1)));
1872 emit_constant_insn (cond,
1873 gen_ashrsi3 (target, new_src,
1874 GEN_INT (set_sign_bit_copies - 1)));
1876 return 2;
1878 /* For an inverted constant, we will need to set the low bits,
1879 these will be shifted out of harm's way. */
1880 temp1 |= (1 << (set_sign_bit_copies - 1)) - 1;
1881 if (const_ok_for_arm (~temp1))
1883 if (generate)
1885 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
1886 emit_constant_insn (cond,
1887 gen_rtx_SET (VOIDmode, new_src,
1888 GEN_INT (temp1)));
1889 emit_constant_insn (cond,
1890 gen_ashrsi3 (target, new_src,
1891 GEN_INT (set_sign_bit_copies - 1)));
1893 return 2;
1897 /* See if we can calculate the value as the difference between two
1898 valid immediates. */
1899 if (clear_sign_bit_copies + clear_zero_bit_copies <= 16)
1901 int topshift = clear_sign_bit_copies & ~1;
1903 temp1 = ARM_SIGN_EXTEND ((remainder + (0x00800000 >> topshift))
1904 & (0xff000000 >> topshift));
1906 /* If temp1 is zero, then that means the 9 most significant
1907 bits of remainder were 1 and we've caused it to overflow.
1908 When topshift is 0 we don't need to do anything since we
1909 can borrow from 'bit 32'. */
1910 if (temp1 == 0 && topshift != 0)
1911 temp1 = 0x80000000 >> (topshift - 1);
1913 temp2 = ARM_SIGN_EXTEND (temp1 - remainder);
1915 if (const_ok_for_arm (temp2))
1917 if (generate)
1919 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
1920 emit_constant_insn (cond,
1921 gen_rtx_SET (VOIDmode, new_src,
1922 GEN_INT (temp1)));
1923 emit_constant_insn (cond,
1924 gen_addsi3 (target, new_src,
1925 GEN_INT (-temp2)));
1928 return 2;
1932 /* See if we can generate this by setting the bottom (or the top)
1933 16 bits, and then shifting these into the other half of the
1934 word. We only look for the simplest cases, to do more would cost
1935 too much. Be careful, however, not to generate this when the
1936 alternative would take fewer insns. */
1937 if (val & 0xffff0000)
1939 temp1 = remainder & 0xffff0000;
1940 temp2 = remainder & 0x0000ffff;
1942 /* Overlaps outside this range are best done using other methods. */
1943 for (i = 9; i < 24; i++)
1945 if ((((temp2 | (temp2 << i)) & 0xffffffff) == remainder)
1946 && !const_ok_for_arm (temp2))
1948 rtx new_src = (subtargets
1949 ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
1950 : target);
1951 insns = arm_gen_constant (code, mode, cond, temp2, new_src,
1952 source, subtargets, generate);
1953 source = new_src;
1954 if (generate)
1955 emit_constant_insn
1956 (cond,
1957 gen_rtx_SET
1958 (VOIDmode, target,
1959 gen_rtx_IOR (mode,
1960 gen_rtx_ASHIFT (mode, source,
1961 GEN_INT (i)),
1962 source)));
1963 return insns + 1;
1967 /* Don't duplicate cases already considered. */
1968 for (i = 17; i < 24; i++)
1970 if (((temp1 | (temp1 >> i)) == remainder)
1971 && !const_ok_for_arm (temp1))
1973 rtx new_src = (subtargets
1974 ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
1975 : target);
1976 insns = arm_gen_constant (code, mode, cond, temp1, new_src,
1977 source, subtargets, generate);
1978 source = new_src;
1979 if (generate)
1980 emit_constant_insn
1981 (cond,
1982 gen_rtx_SET (VOIDmode, target,
1983 gen_rtx_IOR
1984 (mode,
1985 gen_rtx_LSHIFTRT (mode, source,
1986 GEN_INT (i)),
1987 source)));
1988 return insns + 1;
1992 break;
1994 case IOR:
1995 case XOR:
1996 /* If we have IOR or XOR, and the constant can be loaded in a
1997 single instruction, and we can find a temporary to put it in,
1998 then this can be done in two instructions instead of 3-4. */
1999 if (subtargets
2000 /* TARGET can't be NULL if SUBTARGETS is 0 */
2001 || (reload_completed && !reg_mentioned_p (target, source)))
2003 if (const_ok_for_arm (ARM_SIGN_EXTEND (~val)))
2005 if (generate)
2007 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
2009 emit_constant_insn (cond,
2010 gen_rtx_SET (VOIDmode, sub,
2011 GEN_INT (val)));
2012 emit_constant_insn (cond,
2013 gen_rtx_SET (VOIDmode, target,
2014 gen_rtx_fmt_ee (code, mode,
2015 source, sub)));
2017 return 2;
2021 if (code == XOR)
2022 break;
2024 if (set_sign_bit_copies > 8
2025 && (val & (-1 << (32 - set_sign_bit_copies))) == val)
2027 if (generate)
2029 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
2030 rtx shift = GEN_INT (set_sign_bit_copies);
2032 emit_constant_insn
2033 (cond,
2034 gen_rtx_SET (VOIDmode, sub,
2035 gen_rtx_NOT (mode,
2036 gen_rtx_ASHIFT (mode,
2037 source,
2038 shift))));
2039 emit_constant_insn
2040 (cond,
2041 gen_rtx_SET (VOIDmode, target,
2042 gen_rtx_NOT (mode,
2043 gen_rtx_LSHIFTRT (mode, sub,
2044 shift))));
2046 return 2;
2049 if (set_zero_bit_copies > 8
2050 && (remainder & ((1 << set_zero_bit_copies) - 1)) == remainder)
2052 if (generate)
2054 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
2055 rtx shift = GEN_INT (set_zero_bit_copies);
2057 emit_constant_insn
2058 (cond,
2059 gen_rtx_SET (VOIDmode, sub,
2060 gen_rtx_NOT (mode,
2061 gen_rtx_LSHIFTRT (mode,
2062 source,
2063 shift))));
2064 emit_constant_insn
2065 (cond,
2066 gen_rtx_SET (VOIDmode, target,
2067 gen_rtx_NOT (mode,
2068 gen_rtx_ASHIFT (mode, sub,
2069 shift))));
2071 return 2;
2074 if (const_ok_for_arm (temp1 = ARM_SIGN_EXTEND (~val)))
2076 if (generate)
2078 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
2079 emit_constant_insn (cond,
2080 gen_rtx_SET (VOIDmode, sub,
2081 gen_rtx_NOT (mode, source)));
2082 source = sub;
2083 if (subtargets)
2084 sub = gen_reg_rtx (mode);
2085 emit_constant_insn (cond,
2086 gen_rtx_SET (VOIDmode, sub,
2087 gen_rtx_AND (mode, source,
2088 GEN_INT (temp1))));
2089 emit_constant_insn (cond,
2090 gen_rtx_SET (VOIDmode, target,
2091 gen_rtx_NOT (mode, sub)));
2093 return 3;
2095 break;
2097 case AND:
2098 /* See if two shifts will do 2 or more insn's worth of work. */
2099 if (clear_sign_bit_copies >= 16 && clear_sign_bit_copies < 24)
2101 HOST_WIDE_INT shift_mask = ((0xffffffff
2102 << (32 - clear_sign_bit_copies))
2103 & 0xffffffff);
2105 if ((remainder | shift_mask) != 0xffffffff)
2107 if (generate)
2109 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2110 insns = arm_gen_constant (AND, mode, cond,
2111 remainder | shift_mask,
2112 new_src, source, subtargets, 1);
2113 source = new_src;
2115 else
2117 rtx targ = subtargets ? NULL_RTX : target;
2118 insns = arm_gen_constant (AND, mode, cond,
2119 remainder | shift_mask,
2120 targ, source, subtargets, 0);
2124 if (generate)
2126 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2127 rtx shift = GEN_INT (clear_sign_bit_copies);
2129 emit_insn (gen_ashlsi3 (new_src, source, shift));
2130 emit_insn (gen_lshrsi3 (target, new_src, shift));
2133 return insns + 2;
2136 if (clear_zero_bit_copies >= 16 && clear_zero_bit_copies < 24)
2138 HOST_WIDE_INT shift_mask = (1 << clear_zero_bit_copies) - 1;
2140 if ((remainder | shift_mask) != 0xffffffff)
2142 if (generate)
2144 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2146 insns = arm_gen_constant (AND, mode, cond,
2147 remainder | shift_mask,
2148 new_src, source, subtargets, 1);
2149 source = new_src;
2151 else
2153 rtx targ = subtargets ? NULL_RTX : target;
2155 insns = arm_gen_constant (AND, mode, cond,
2156 remainder | shift_mask,
2157 targ, source, subtargets, 0);
2161 if (generate)
2163 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2164 rtx shift = GEN_INT (clear_zero_bit_copies);
2166 emit_insn (gen_lshrsi3 (new_src, source, shift));
2167 emit_insn (gen_ashlsi3 (target, new_src, shift));
2170 return insns + 2;
2173 break;
2175 default:
2176 break;
2179 for (i = 0; i < 32; i++)
2180 if (remainder & (1 << i))
2181 num_bits_set++;
2183 if (code == AND || (can_invert && num_bits_set > 16))
2184 remainder = (~remainder) & 0xffffffff;
2185 else if (code == PLUS && num_bits_set > 16)
2186 remainder = (-remainder) & 0xffffffff;
2187 else
2189 can_invert = 0;
2190 can_negate = 0;
2193 /* Now try and find a way of doing the job in either two or three
2194 instructions.
2195 We start by looking for the largest block of zeros that are aligned on
2196 a 2-bit boundary, we then fill up the temps, wrapping around to the
2197 top of the word when we drop off the bottom.
2198 In the worst case this code should produce no more than four insns. */
2200 int best_start = 0;
2201 int best_consecutive_zeros = 0;
2203 for (i = 0; i < 32; i += 2)
2205 int consecutive_zeros = 0;
2207 if (!(remainder & (3 << i)))
2209 while ((i < 32) && !(remainder & (3 << i)))
2211 consecutive_zeros += 2;
2212 i += 2;
2214 if (consecutive_zeros > best_consecutive_zeros)
2216 best_consecutive_zeros = consecutive_zeros;
2217 best_start = i - consecutive_zeros;
2219 i -= 2;
2223 /* So long as it won't require any more insns to do so, it's
2224 desirable to emit a small constant (in bits 0...9) in the last
2225 insn. This way there is more chance that it can be combined with
2226 a later addressing insn to form a pre-indexed load or store
2227 operation. Consider:
2229 *((volatile int *)0xe0000100) = 1;
2230 *((volatile int *)0xe0000110) = 2;
2232 We want this to wind up as:
2234 mov rA, #0xe0000000
2235 mov rB, #1
2236 str rB, [rA, #0x100]
2237 mov rB, #2
2238 str rB, [rA, #0x110]
2240 rather than having to synthesize both large constants from scratch.
2242 Therefore, we calculate how many insns would be required to emit
2243 the constant starting from `best_start', and also starting from
2244 zero (i.e. with bit 31 first to be output). If `best_start' doesn't
2245 yield a shorter sequence, we may as well use zero. */
2246 if (best_start != 0
2247 && ((((unsigned HOST_WIDE_INT) 1) << best_start) < remainder)
2248 && (count_insns_for_constant (remainder, 0) <=
2249 count_insns_for_constant (remainder, best_start)))
2250 best_start = 0;
2252 /* Now start emitting the insns. */
2253 i = best_start;
2256 int end;
2258 if (i <= 0)
2259 i += 32;
2260 if (remainder & (3 << (i - 2)))
2262 end = i - 8;
2263 if (end < 0)
2264 end += 32;
2265 temp1 = remainder & ((0x0ff << end)
2266 | ((i < end) ? (0xff >> (32 - end)) : 0));
2267 remainder &= ~temp1;
2269 if (generate)
2271 rtx new_src, temp1_rtx;
2273 if (code == SET || code == MINUS)
2275 new_src = (subtargets ? gen_reg_rtx (mode) : target);
2276 if (can_invert && code != MINUS)
2277 temp1 = ~temp1;
2279 else
2281 if (remainder && subtargets)
2282 new_src = gen_reg_rtx (mode);
2283 else
2284 new_src = target;
2285 if (can_invert)
2286 temp1 = ~temp1;
2287 else if (can_negate)
2288 temp1 = -temp1;
2291 temp1 = trunc_int_for_mode (temp1, mode);
2292 temp1_rtx = GEN_INT (temp1);
2294 if (code == SET)
2296 else if (code == MINUS)
2297 temp1_rtx = gen_rtx_MINUS (mode, temp1_rtx, source);
2298 else
2299 temp1_rtx = gen_rtx_fmt_ee (code, mode, source, temp1_rtx);
2301 emit_constant_insn (cond,
2302 gen_rtx_SET (VOIDmode, new_src,
2303 temp1_rtx));
2304 source = new_src;
2307 if (code == SET)
2309 can_invert = 0;
2310 code = PLUS;
2312 else if (code == MINUS)
2313 code = PLUS;
2315 insns++;
2316 i -= 6;
2318 i -= 2;
2320 while (remainder);
2323 return insns;
2326 /* Canonicalize a comparison so that we are more likely to recognize it.
2327 This can be done for a few constant compares, where we can make the
2328 immediate value easier to load. */
2330 enum rtx_code
2331 arm_canonicalize_comparison (enum rtx_code code, rtx * op1)
2333 unsigned HOST_WIDE_INT i = INTVAL (*op1);
2335 switch (code)
2337 case EQ:
2338 case NE:
2339 return code;
2341 case GT:
2342 case LE:
2343 if (i != ((((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
2344 && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
2346 *op1 = GEN_INT (i + 1);
2347 return code == GT ? GE : LT;
2349 break;
2351 case GE:
2352 case LT:
2353 if (i != (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1))
2354 && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
2356 *op1 = GEN_INT (i - 1);
2357 return code == GE ? GT : LE;
2359 break;
2361 case GTU:
2362 case LEU:
2363 if (i != ~((unsigned HOST_WIDE_INT) 0)
2364 && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
2366 *op1 = GEN_INT (i + 1);
2367 return code == GTU ? GEU : LTU;
2369 break;
2371 case GEU:
2372 case LTU:
2373 if (i != 0
2374 && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
2376 *op1 = GEN_INT (i - 1);
2377 return code == GEU ? GTU : LEU;
2379 break;
2381 default:
2382 gcc_unreachable ();
2385 return code;
2389 /* Define how to find the value returned by a function. */
2392 arm_function_value(tree type, tree func ATTRIBUTE_UNUSED)
2394 enum machine_mode mode;
2395 int unsignedp ATTRIBUTE_UNUSED;
2396 rtx r ATTRIBUTE_UNUSED;
2398 mode = TYPE_MODE (type);
2399 /* Promote integer types. */
2400 if (INTEGRAL_TYPE_P (type))
2401 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
2403 /* Promotes small structs returned in a register to full-word size
2404 for big-endian AAPCS. */
2405 if (arm_return_in_msb (type))
2407 HOST_WIDE_INT size = int_size_in_bytes (type);
2408 if (size % UNITS_PER_WORD != 0)
2410 size += UNITS_PER_WORD - size % UNITS_PER_WORD;
2411 mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2415 return LIBCALL_VALUE(mode);
2418 /* Determine the amount of memory needed to store the possible return
2419 registers of an untyped call. */
2421 arm_apply_result_size (void)
2423 int size = 16;
2425 if (TARGET_ARM)
2427 if (TARGET_HARD_FLOAT_ABI)
2429 if (TARGET_FPA)
2430 size += 12;
2431 if (TARGET_MAVERICK)
2432 size += 8;
2434 if (TARGET_IWMMXT_ABI)
2435 size += 8;
2438 return size;
2441 /* Decide whether a type should be returned in memory (true)
2442 or in a register (false). This is called by the macro
2443 RETURN_IN_MEMORY. */
2445 arm_return_in_memory (tree type)
2447 HOST_WIDE_INT size;
2449 if (!AGGREGATE_TYPE_P (type) &&
2450 (TREE_CODE (type) != VECTOR_TYPE) &&
2451 !(TARGET_AAPCS_BASED && TREE_CODE (type) == COMPLEX_TYPE))
2452 /* All simple types are returned in registers.
2453 For AAPCS, complex types are treated the same as aggregates. */
2454 return 0;
2456 size = int_size_in_bytes (type);
2458 if (arm_abi != ARM_ABI_APCS)
2460 /* ATPCS and later return aggregate types in memory only if they are
2461 larger than a word (or are variable size). */
2462 return (size < 0 || size > UNITS_PER_WORD);
2465 /* To maximize backwards compatibility with previous versions of gcc,
2466 return vectors up to 4 words in registers. */
2467 if (TREE_CODE (type) == VECTOR_TYPE)
2468 return (size < 0 || size > (4 * UNITS_PER_WORD));
2470 /* For the arm-wince targets we choose to be compatible with Microsoft's
2471 ARM and Thumb compilers, which always return aggregates in memory. */
2472 #ifndef ARM_WINCE
2473 /* All structures/unions bigger than one word are returned in memory.
2474 Also catch the case where int_size_in_bytes returns -1. In this case
2475 the aggregate is either huge or of variable size, and in either case
2476 we will want to return it via memory and not in a register. */
2477 if (size < 0 || size > UNITS_PER_WORD)
2478 return 1;
2480 if (TREE_CODE (type) == RECORD_TYPE)
2482 tree field;
2484 /* For a struct the APCS says that we only return in a register
2485 if the type is 'integer like' and every addressable element
2486 has an offset of zero. For practical purposes this means
2487 that the structure can have at most one non bit-field element
2488 and that this element must be the first one in the structure. */
2490 /* Find the first field, ignoring non FIELD_DECL things which will
2491 have been created by C++. */
2492 for (field = TYPE_FIELDS (type);
2493 field && TREE_CODE (field) != FIELD_DECL;
2494 field = TREE_CHAIN (field))
2495 continue;
2497 if (field == NULL)
2498 return 0; /* An empty structure. Allowed by an extension to ANSI C. */
2500 /* Check that the first field is valid for returning in a register. */
2502 /* ... Floats are not allowed */
2503 if (FLOAT_TYPE_P (TREE_TYPE (field)))
2504 return 1;
2506 /* ... Aggregates that are not themselves valid for returning in
2507 a register are not allowed. */
2508 if (RETURN_IN_MEMORY (TREE_TYPE (field)))
2509 return 1;
2511 /* Now check the remaining fields, if any. Only bitfields are allowed,
2512 since they are not addressable. */
2513 for (field = TREE_CHAIN (field);
2514 field;
2515 field = TREE_CHAIN (field))
2517 if (TREE_CODE (field) != FIELD_DECL)
2518 continue;
2520 if (!DECL_BIT_FIELD_TYPE (field))
2521 return 1;
2524 return 0;
2527 if (TREE_CODE (type) == UNION_TYPE)
2529 tree field;
2531 /* Unions can be returned in registers if every element is
2532 integral, or can be returned in an integer register. */
2533 for (field = TYPE_FIELDS (type);
2534 field;
2535 field = TREE_CHAIN (field))
2537 if (TREE_CODE (field) != FIELD_DECL)
2538 continue;
2540 if (FLOAT_TYPE_P (TREE_TYPE (field)))
2541 return 1;
2543 if (RETURN_IN_MEMORY (TREE_TYPE (field)))
2544 return 1;
2547 return 0;
2549 #endif /* not ARM_WINCE */
2551 /* Return all other types in memory. */
2552 return 1;
2555 /* Indicate whether or not words of a double are in big-endian order. */
2558 arm_float_words_big_endian (void)
2560 if (TARGET_MAVERICK)
2561 return 0;
2563 /* For FPA, float words are always big-endian. For VFP, floats words
2564 follow the memory system mode. */
2566 if (TARGET_FPA)
2568 return 1;
2571 if (TARGET_VFP)
2572 return (TARGET_BIG_END ? 1 : 0);
2574 return 1;
2577 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2578 for a call to a function whose data type is FNTYPE.
2579 For a library call, FNTYPE is NULL. */
2580 void
2581 arm_init_cumulative_args (CUMULATIVE_ARGS *pcum, tree fntype,
2582 rtx libname ATTRIBUTE_UNUSED,
2583 tree fndecl ATTRIBUTE_UNUSED)
2585 /* On the ARM, the offset starts at 0. */
2586 pcum->nregs = ((fntype && aggregate_value_p (TREE_TYPE (fntype), fntype)) ? 1 : 0);
2587 pcum->iwmmxt_nregs = 0;
2588 pcum->can_split = true;
2590 pcum->call_cookie = CALL_NORMAL;
2592 if (TARGET_LONG_CALLS)
2593 pcum->call_cookie = CALL_LONG;
2595 /* Check for long call/short call attributes. The attributes
2596 override any command line option. */
2597 if (fntype)
2599 if (lookup_attribute ("short_call", TYPE_ATTRIBUTES (fntype)))
2600 pcum->call_cookie = CALL_SHORT;
2601 else if (lookup_attribute ("long_call", TYPE_ATTRIBUTES (fntype)))
2602 pcum->call_cookie = CALL_LONG;
2605 /* Varargs vectors are treated the same as long long.
2606 named_count avoids having to change the way arm handles 'named' */
2607 pcum->named_count = 0;
2608 pcum->nargs = 0;
2610 if (TARGET_REALLY_IWMMXT && fntype)
2612 tree fn_arg;
2614 for (fn_arg = TYPE_ARG_TYPES (fntype);
2615 fn_arg;
2616 fn_arg = TREE_CHAIN (fn_arg))
2617 pcum->named_count += 1;
2619 if (! pcum->named_count)
2620 pcum->named_count = INT_MAX;
2625 /* Return true if mode/type need doubleword alignment. */
2626 bool
2627 arm_needs_doubleword_align (enum machine_mode mode, tree type)
2629 return (GET_MODE_ALIGNMENT (mode) > PARM_BOUNDARY
2630 || (type && TYPE_ALIGN (type) > PARM_BOUNDARY));
2634 /* Determine where to put an argument to a function.
2635 Value is zero to push the argument on the stack,
2636 or a hard register in which to store the argument.
2638 MODE is the argument's machine mode.
2639 TYPE is the data type of the argument (as a tree).
2640 This is null for libcalls where that information may
2641 not be available.
2642 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2643 the preceding args and about the function being called.
2644 NAMED is nonzero if this argument is a named parameter
2645 (otherwise it is an extra parameter matching an ellipsis). */
2648 arm_function_arg (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
2649 tree type, int named)
2651 int nregs;
2653 /* Varargs vectors are treated the same as long long.
2654 named_count avoids having to change the way arm handles 'named' */
2655 if (TARGET_IWMMXT_ABI
2656 && arm_vector_mode_supported_p (mode)
2657 && pcum->named_count > pcum->nargs + 1)
2659 if (pcum->iwmmxt_nregs <= 9)
2660 return gen_rtx_REG (mode, pcum->iwmmxt_nregs + FIRST_IWMMXT_REGNUM);
2661 else
2663 pcum->can_split = false;
2664 return NULL_RTX;
2668 /* Put doubleword aligned quantities in even register pairs. */
2669 if (pcum->nregs & 1
2670 && ARM_DOUBLEWORD_ALIGN
2671 && arm_needs_doubleword_align (mode, type))
2672 pcum->nregs++;
2674 if (mode == VOIDmode)
2675 /* Compute operand 2 of the call insn. */
2676 return GEN_INT (pcum->call_cookie);
2678 /* Only allow splitting an arg between regs and memory if all preceding
2679 args were allocated to regs. For args passed by reference we only count
2680 the reference pointer. */
2681 if (pcum->can_split)
2682 nregs = 1;
2683 else
2684 nregs = ARM_NUM_REGS2 (mode, type);
2686 if (!named || pcum->nregs + nregs > NUM_ARG_REGS)
2687 return NULL_RTX;
2689 return gen_rtx_REG (mode, pcum->nregs);
2692 static int
2693 arm_arg_partial_bytes (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
2694 tree type, bool named ATTRIBUTE_UNUSED)
2696 int nregs = pcum->nregs;
2698 if (arm_vector_mode_supported_p (mode))
2699 return 0;
2701 if (NUM_ARG_REGS > nregs
2702 && (NUM_ARG_REGS < nregs + ARM_NUM_REGS2 (mode, type))
2703 && pcum->can_split)
2704 return (NUM_ARG_REGS - nregs) * UNITS_PER_WORD;
2706 return 0;
2709 /* Variable sized types are passed by reference. This is a GCC
2710 extension to the ARM ABI. */
2712 static bool
2713 arm_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
2714 enum machine_mode mode ATTRIBUTE_UNUSED,
2715 tree type, bool named ATTRIBUTE_UNUSED)
2717 return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
2720 /* Encode the current state of the #pragma [no_]long_calls. */
2721 typedef enum
2723 OFF, /* No #pramgma [no_]long_calls is in effect. */
2724 LONG, /* #pragma long_calls is in effect. */
2725 SHORT /* #pragma no_long_calls is in effect. */
2726 } arm_pragma_enum;
2728 static arm_pragma_enum arm_pragma_long_calls = OFF;
2730 void
2731 arm_pr_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
2733 arm_pragma_long_calls = LONG;
2736 void
2737 arm_pr_no_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
2739 arm_pragma_long_calls = SHORT;
2742 void
2743 arm_pr_long_calls_off (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
2745 arm_pragma_long_calls = OFF;
2748 /* Table of machine attributes. */
2749 const struct attribute_spec arm_attribute_table[] =
2751 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
2752 /* Function calls made to this symbol must be done indirectly, because
2753 it may lie outside of the 26 bit addressing range of a normal function
2754 call. */
2755 { "long_call", 0, 0, false, true, true, NULL },
2756 /* Whereas these functions are always known to reside within the 26 bit
2757 addressing range. */
2758 { "short_call", 0, 0, false, true, true, NULL },
2759 /* Interrupt Service Routines have special prologue and epilogue requirements. */
2760 { "isr", 0, 1, false, false, false, arm_handle_isr_attribute },
2761 { "interrupt", 0, 1, false, false, false, arm_handle_isr_attribute },
2762 { "naked", 0, 0, true, false, false, arm_handle_fndecl_attribute },
2763 #ifdef ARM_PE
2764 /* ARM/PE has three new attributes:
2765 interfacearm - ?
2766 dllexport - for exporting a function/variable that will live in a dll
2767 dllimport - for importing a function/variable from a dll
2769 Microsoft allows multiple declspecs in one __declspec, separating
2770 them with spaces. We do NOT support this. Instead, use __declspec
2771 multiple times.
2773 { "dllimport", 0, 0, true, false, false, NULL },
2774 { "dllexport", 0, 0, true, false, false, NULL },
2775 { "interfacearm", 0, 0, true, false, false, arm_handle_fndecl_attribute },
2776 #elif TARGET_DLLIMPORT_DECL_ATTRIBUTES
2777 { "dllimport", 0, 0, false, false, false, handle_dll_attribute },
2778 { "dllexport", 0, 0, false, false, false, handle_dll_attribute },
2779 { "notshared", 0, 0, false, true, false, arm_handle_notshared_attribute },
2780 #endif
2781 { NULL, 0, 0, false, false, false, NULL }
2784 /* Handle an attribute requiring a FUNCTION_DECL;
2785 arguments as in struct attribute_spec.handler. */
2786 static tree
2787 arm_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
2788 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
2790 if (TREE_CODE (*node) != FUNCTION_DECL)
2792 warning (OPT_Wattributes, "%qs attribute only applies to functions",
2793 IDENTIFIER_POINTER (name));
2794 *no_add_attrs = true;
2797 return NULL_TREE;
2800 /* Handle an "interrupt" or "isr" attribute;
2801 arguments as in struct attribute_spec.handler. */
2802 static tree
2803 arm_handle_isr_attribute (tree *node, tree name, tree args, int flags,
2804 bool *no_add_attrs)
2806 if (DECL_P (*node))
2808 if (TREE_CODE (*node) != FUNCTION_DECL)
2810 warning (OPT_Wattributes, "%qs attribute only applies to functions",
2811 IDENTIFIER_POINTER (name));
2812 *no_add_attrs = true;
2814 /* FIXME: the argument if any is checked for type attributes;
2815 should it be checked for decl ones? */
2817 else
2819 if (TREE_CODE (*node) == FUNCTION_TYPE
2820 || TREE_CODE (*node) == METHOD_TYPE)
2822 if (arm_isr_value (args) == ARM_FT_UNKNOWN)
2824 warning (OPT_Wattributes, "%qs attribute ignored",
2825 IDENTIFIER_POINTER (name));
2826 *no_add_attrs = true;
2829 else if (TREE_CODE (*node) == POINTER_TYPE
2830 && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
2831 || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
2832 && arm_isr_value (args) != ARM_FT_UNKNOWN)
2834 *node = build_variant_type_copy (*node);
2835 TREE_TYPE (*node) = build_type_attribute_variant
2836 (TREE_TYPE (*node),
2837 tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
2838 *no_add_attrs = true;
2840 else
2842 /* Possibly pass this attribute on from the type to a decl. */
2843 if (flags & ((int) ATTR_FLAG_DECL_NEXT
2844 | (int) ATTR_FLAG_FUNCTION_NEXT
2845 | (int) ATTR_FLAG_ARRAY_NEXT))
2847 *no_add_attrs = true;
2848 return tree_cons (name, args, NULL_TREE);
2850 else
2852 warning (OPT_Wattributes, "%qs attribute ignored",
2853 IDENTIFIER_POINTER (name));
2858 return NULL_TREE;
2861 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
2862 /* Handle the "notshared" attribute. This attribute is another way of
2863 requesting hidden visibility. ARM's compiler supports
2864 "__declspec(notshared)"; we support the same thing via an
2865 attribute. */
2867 static tree
2868 arm_handle_notshared_attribute (tree *node,
2869 tree name ATTRIBUTE_UNUSED,
2870 tree args ATTRIBUTE_UNUSED,
2871 int flags ATTRIBUTE_UNUSED,
2872 bool *no_add_attrs)
2874 tree decl = TYPE_NAME (*node);
2876 if (decl)
2878 DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
2879 DECL_VISIBILITY_SPECIFIED (decl) = 1;
2880 *no_add_attrs = false;
2882 return NULL_TREE;
2884 #endif
2886 /* Return 0 if the attributes for two types are incompatible, 1 if they
2887 are compatible, and 2 if they are nearly compatible (which causes a
2888 warning to be generated). */
2889 static int
2890 arm_comp_type_attributes (tree type1, tree type2)
2892 int l1, l2, s1, s2;
2894 /* Check for mismatch of non-default calling convention. */
2895 if (TREE_CODE (type1) != FUNCTION_TYPE)
2896 return 1;
2898 /* Check for mismatched call attributes. */
2899 l1 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type1)) != NULL;
2900 l2 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type2)) != NULL;
2901 s1 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type1)) != NULL;
2902 s2 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type2)) != NULL;
2904 /* Only bother to check if an attribute is defined. */
2905 if (l1 | l2 | s1 | s2)
2907 /* If one type has an attribute, the other must have the same attribute. */
2908 if ((l1 != l2) || (s1 != s2))
2909 return 0;
2911 /* Disallow mixed attributes. */
2912 if ((l1 & s2) || (l2 & s1))
2913 return 0;
2916 /* Check for mismatched ISR attribute. */
2917 l1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
2918 if (! l1)
2919 l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
2920 l2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
2921 if (! l2)
2922 l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
2923 if (l1 != l2)
2924 return 0;
2926 return 1;
2929 /* Encode long_call or short_call attribute by prefixing
2930 symbol name in DECL with a special character FLAG. */
2931 void
2932 arm_encode_call_attribute (tree decl, int flag)
2934 const char * str = XSTR (XEXP (DECL_RTL (decl), 0), 0);
2935 int len = strlen (str);
2936 char * newstr;
2938 /* Do not allow weak functions to be treated as short call. */
2939 if (DECL_WEAK (decl) && flag == SHORT_CALL_FLAG_CHAR)
2940 return;
2942 newstr = alloca (len + 2);
2943 newstr[0] = flag;
2944 strcpy (newstr + 1, str);
2946 newstr = (char *) ggc_alloc_string (newstr, len + 1);
2947 XSTR (XEXP (DECL_RTL (decl), 0), 0) = newstr;
2950 /* Assigns default attributes to newly defined type. This is used to
2951 set short_call/long_call attributes for function types of
2952 functions defined inside corresponding #pragma scopes. */
2953 static void
2954 arm_set_default_type_attributes (tree type)
2956 /* Add __attribute__ ((long_call)) to all functions, when
2957 inside #pragma long_calls or __attribute__ ((short_call)),
2958 when inside #pragma no_long_calls. */
2959 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
2961 tree type_attr_list, attr_name;
2962 type_attr_list = TYPE_ATTRIBUTES (type);
2964 if (arm_pragma_long_calls == LONG)
2965 attr_name = get_identifier ("long_call");
2966 else if (arm_pragma_long_calls == SHORT)
2967 attr_name = get_identifier ("short_call");
2968 else
2969 return;
2971 type_attr_list = tree_cons (attr_name, NULL_TREE, type_attr_list);
2972 TYPE_ATTRIBUTES (type) = type_attr_list;
2976 /* Return 1 if the operand is a SYMBOL_REF for a function known to be
2977 defined within the current compilation unit. If this cannot be
2978 determined, then 0 is returned. */
2979 static int
2980 current_file_function_operand (rtx sym_ref)
2982 /* This is a bit of a fib. A function will have a short call flag
2983 applied to its name if it has the short call attribute, or it has
2984 already been defined within the current compilation unit. */
2985 if (ENCODED_SHORT_CALL_ATTR_P (XSTR (sym_ref, 0)))
2986 return 1;
2988 /* The current function is always defined within the current compilation
2989 unit. If it s a weak definition however, then this may not be the real
2990 definition of the function, and so we have to say no. */
2991 if (sym_ref == XEXP (DECL_RTL (current_function_decl), 0)
2992 && !DECL_WEAK (current_function_decl))
2993 return 1;
2995 /* We cannot make the determination - default to returning 0. */
2996 return 0;
2999 /* Return nonzero if a 32 bit "long_call" should be generated for
3000 this call. We generate a long_call if the function:
3002 a. has an __attribute__((long call))
3003 or b. is within the scope of a #pragma long_calls
3004 or c. the -mlong-calls command line switch has been specified
3005 . and either:
3006 1. -ffunction-sections is in effect
3007 or 2. the current function has __attribute__ ((section))
3008 or 3. the target function has __attribute__ ((section))
3010 However we do not generate a long call if the function:
3012 d. has an __attribute__ ((short_call))
3013 or e. is inside the scope of a #pragma no_long_calls
3014 or f. is defined within the current compilation unit.
3016 This function will be called by C fragments contained in the machine
3017 description file. SYM_REF and CALL_COOKIE correspond to the matched
3018 rtl operands. CALL_SYMBOL is used to distinguish between
3019 two different callers of the function. It is set to 1 in the
3020 "call_symbol" and "call_symbol_value" patterns and to 0 in the "call"
3021 and "call_value" patterns. This is because of the difference in the
3022 SYM_REFs passed by these patterns. */
3024 arm_is_longcall_p (rtx sym_ref, int call_cookie, int call_symbol)
3026 if (!call_symbol)
3028 if (GET_CODE (sym_ref) != MEM)
3029 return 0;
3031 sym_ref = XEXP (sym_ref, 0);
3034 if (GET_CODE (sym_ref) != SYMBOL_REF)
3035 return 0;
3037 if (call_cookie & CALL_SHORT)
3038 return 0;
3040 if (TARGET_LONG_CALLS)
3042 if (flag_function_sections
3043 || DECL_SECTION_NAME (current_function_decl))
3044 /* c.3 is handled by the definition of the
3045 ARM_DECLARE_FUNCTION_SIZE macro. */
3046 return 1;
3049 if (current_file_function_operand (sym_ref))
3050 return 0;
3052 return (call_cookie & CALL_LONG)
3053 || ENCODED_LONG_CALL_ATTR_P (XSTR (sym_ref, 0))
3054 || TARGET_LONG_CALLS;
3057 /* Return nonzero if it is ok to make a tail-call to DECL. */
3058 static bool
3059 arm_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
3061 int call_type = TARGET_LONG_CALLS ? CALL_LONG : CALL_NORMAL;
3063 if (cfun->machine->sibcall_blocked)
3064 return false;
3066 /* Never tailcall something for which we have no decl, or if we
3067 are in Thumb mode. */
3068 if (decl == NULL || TARGET_THUMB)
3069 return false;
3071 /* Get the calling method. */
3072 if (lookup_attribute ("short_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
3073 call_type = CALL_SHORT;
3074 else if (lookup_attribute ("long_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
3075 call_type = CALL_LONG;
3077 /* Cannot tail-call to long calls, since these are out of range of
3078 a branch instruction. However, if not compiling PIC, we know
3079 we can reach the symbol if it is in this compilation unit. */
3080 if (call_type == CALL_LONG && (flag_pic || !TREE_ASM_WRITTEN (decl)))
3081 return false;
3083 /* If we are interworking and the function is not declared static
3084 then we can't tail-call it unless we know that it exists in this
3085 compilation unit (since it might be a Thumb routine). */
3086 if (TARGET_INTERWORK && TREE_PUBLIC (decl) && !TREE_ASM_WRITTEN (decl))
3087 return false;
3089 /* Never tailcall from an ISR routine - it needs a special exit sequence. */
3090 if (IS_INTERRUPT (arm_current_func_type ()))
3091 return false;
3093 /* Everything else is ok. */
3094 return true;
3098 /* Addressing mode support functions. */
3100 /* Return nonzero if X is a legitimate immediate operand when compiling
3101 for PIC. */
3103 legitimate_pic_operand_p (rtx x)
3105 if (CONSTANT_P (x)
3106 && flag_pic
3107 && (GET_CODE (x) == SYMBOL_REF
3108 || (GET_CODE (x) == CONST
3109 && GET_CODE (XEXP (x, 0)) == PLUS
3110 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)))
3111 return 0;
3113 return 1;
3117 legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
3119 if (GET_CODE (orig) == SYMBOL_REF
3120 || GET_CODE (orig) == LABEL_REF)
3122 #ifndef AOF_ASSEMBLER
3123 rtx pic_ref, address;
3124 #endif
3125 rtx insn;
3126 int subregs = 0;
3128 if (reg == 0)
3130 gcc_assert (!no_new_pseudos);
3131 reg = gen_reg_rtx (Pmode);
3133 subregs = 1;
3136 #ifdef AOF_ASSEMBLER
3137 /* The AOF assembler can generate relocations for these directly, and
3138 understands that the PIC register has to be added into the offset. */
3139 insn = emit_insn (gen_pic_load_addr_based (reg, orig));
3140 #else
3141 if (subregs)
3142 address = gen_reg_rtx (Pmode);
3143 else
3144 address = reg;
3146 if (TARGET_ARM)
3147 emit_insn (gen_pic_load_addr_arm (address, orig));
3148 else
3149 emit_insn (gen_pic_load_addr_thumb (address, orig));
3151 if ((GET_CODE (orig) == LABEL_REF
3152 || (GET_CODE (orig) == SYMBOL_REF &&
3153 SYMBOL_REF_LOCAL_P (orig)))
3154 && NEED_GOT_RELOC)
3155 pic_ref = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, address);
3156 else
3158 pic_ref = gen_const_mem (Pmode,
3159 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
3160 address));
3163 insn = emit_move_insn (reg, pic_ref);
3164 #endif
3165 current_function_uses_pic_offset_table = 1;
3166 /* Put a REG_EQUAL note on this insn, so that it can be optimized
3167 by loop. */
3168 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig,
3169 REG_NOTES (insn));
3170 return reg;
3172 else if (GET_CODE (orig) == CONST)
3174 rtx base, offset;
3176 if (GET_CODE (XEXP (orig, 0)) == PLUS
3177 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
3178 return orig;
3180 if (reg == 0)
3182 gcc_assert (!no_new_pseudos);
3183 reg = gen_reg_rtx (Pmode);
3186 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
3188 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
3189 offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
3190 base == reg ? 0 : reg);
3192 if (GET_CODE (offset) == CONST_INT)
3194 /* The base register doesn't really matter, we only want to
3195 test the index for the appropriate mode. */
3196 if (!arm_legitimate_index_p (mode, offset, SET, 0))
3198 gcc_assert (!no_new_pseudos);
3199 offset = force_reg (Pmode, offset);
3202 if (GET_CODE (offset) == CONST_INT)
3203 return plus_constant (base, INTVAL (offset));
3206 if (GET_MODE_SIZE (mode) > 4
3207 && (GET_MODE_CLASS (mode) == MODE_INT
3208 || TARGET_SOFT_FLOAT))
3210 emit_insn (gen_addsi3 (reg, base, offset));
3211 return reg;
3214 return gen_rtx_PLUS (Pmode, base, offset);
3217 return orig;
3221 /* Find a spare low register to use during the prolog of a function. */
3223 static int
3224 thumb_find_work_register (unsigned long pushed_regs_mask)
3226 int reg;
3228 /* Check the argument registers first as these are call-used. The
3229 register allocation order means that sometimes r3 might be used
3230 but earlier argument registers might not, so check them all. */
3231 for (reg = LAST_ARG_REGNUM; reg >= 0; reg --)
3232 if (!regs_ever_live[reg])
3233 return reg;
3235 /* Before going on to check the call-saved registers we can try a couple
3236 more ways of deducing that r3 is available. The first is when we are
3237 pushing anonymous arguments onto the stack and we have less than 4
3238 registers worth of fixed arguments(*). In this case r3 will be part of
3239 the variable argument list and so we can be sure that it will be
3240 pushed right at the start of the function. Hence it will be available
3241 for the rest of the prologue.
3242 (*): ie current_function_pretend_args_size is greater than 0. */
3243 if (cfun->machine->uses_anonymous_args
3244 && current_function_pretend_args_size > 0)
3245 return LAST_ARG_REGNUM;
3247 /* The other case is when we have fixed arguments but less than 4 registers
3248 worth. In this case r3 might be used in the body of the function, but
3249 it is not being used to convey an argument into the function. In theory
3250 we could just check current_function_args_size to see how many bytes are
3251 being passed in argument registers, but it seems that it is unreliable.
3252 Sometimes it will have the value 0 when in fact arguments are being
3253 passed. (See testcase execute/20021111-1.c for an example). So we also
3254 check the args_info.nregs field as well. The problem with this field is
3255 that it makes no allowances for arguments that are passed to the
3256 function but which are not used. Hence we could miss an opportunity
3257 when a function has an unused argument in r3. But it is better to be
3258 safe than to be sorry. */
3259 if (! cfun->machine->uses_anonymous_args
3260 && current_function_args_size >= 0
3261 && current_function_args_size <= (LAST_ARG_REGNUM * UNITS_PER_WORD)
3262 && cfun->args_info.nregs < 4)
3263 return LAST_ARG_REGNUM;
3265 /* Otherwise look for a call-saved register that is going to be pushed. */
3266 for (reg = LAST_LO_REGNUM; reg > LAST_ARG_REGNUM; reg --)
3267 if (pushed_regs_mask & (1 << reg))
3268 return reg;
3270 /* Something went wrong - thumb_compute_save_reg_mask()
3271 should have arranged for a suitable register to be pushed. */
3272 gcc_unreachable ();
3276 /* Generate code to load the PIC register. In thumb mode SCRATCH is a
3277 low register. */
3279 void
3280 arm_load_pic_register (unsigned int scratch)
3282 #ifndef AOF_ASSEMBLER
3283 rtx l1, pic_tmp, pic_tmp2, pic_rtx;
3284 rtx global_offset_table;
3286 if (current_function_uses_pic_offset_table == 0 || TARGET_SINGLE_PIC_BASE)
3287 return;
3289 gcc_assert (flag_pic);
3291 l1 = gen_label_rtx ();
3293 global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
3294 /* On the ARM the PC register contains 'dot + 8' at the time of the
3295 addition, on the Thumb it is 'dot + 4'. */
3296 pic_tmp = plus_constant (gen_rtx_LABEL_REF (Pmode, l1), TARGET_ARM ? 8 : 4);
3297 if (GOT_PCREL)
3298 pic_tmp2 = gen_rtx_CONST (VOIDmode,
3299 gen_rtx_PLUS (Pmode, global_offset_table, pc_rtx));
3300 else
3301 pic_tmp2 = gen_rtx_CONST (VOIDmode, global_offset_table);
3303 pic_rtx = gen_rtx_CONST (Pmode, gen_rtx_MINUS (Pmode, pic_tmp2, pic_tmp));
3305 if (TARGET_ARM)
3307 emit_insn (gen_pic_load_addr_arm (pic_offset_table_rtx, pic_rtx));
3308 emit_insn (gen_pic_add_dot_plus_eight (pic_offset_table_rtx, l1));
3310 else
3312 if (REGNO (pic_offset_table_rtx) > LAST_LO_REGNUM)
3314 /* We will have pushed the pic register, so should always be
3315 able to find a work register. */
3316 pic_tmp = gen_rtx_REG (SImode, scratch);
3317 emit_insn (gen_pic_load_addr_thumb (pic_tmp, pic_rtx));
3318 emit_insn (gen_movsi (pic_offset_table_rtx, pic_tmp));
3320 else
3321 emit_insn (gen_pic_load_addr_thumb (pic_offset_table_rtx, pic_rtx));
3322 emit_insn (gen_pic_add_dot_plus_four (pic_offset_table_rtx, l1));
3325 /* Need to emit this whether or not we obey regdecls,
3326 since setjmp/longjmp can cause life info to screw up. */
3327 emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
3328 #endif /* AOF_ASSEMBLER */
3332 /* Return nonzero if X is valid as an ARM state addressing register. */
3333 static int
3334 arm_address_register_rtx_p (rtx x, int strict_p)
3336 int regno;
3338 if (GET_CODE (x) != REG)
3339 return 0;
3341 regno = REGNO (x);
3343 if (strict_p)
3344 return ARM_REGNO_OK_FOR_BASE_P (regno);
3346 return (regno <= LAST_ARM_REGNUM
3347 || regno >= FIRST_PSEUDO_REGISTER
3348 || regno == FRAME_POINTER_REGNUM
3349 || regno == ARG_POINTER_REGNUM);
3352 /* Return nonzero if X is a valid ARM state address operand. */
3354 arm_legitimate_address_p (enum machine_mode mode, rtx x, RTX_CODE outer,
3355 int strict_p)
3357 bool use_ldrd;
3358 enum rtx_code code = GET_CODE (x);
3360 if (arm_address_register_rtx_p (x, strict_p))
3361 return 1;
3363 use_ldrd = (TARGET_LDRD
3364 && (mode == DImode
3365 || (mode == DFmode && (TARGET_SOFT_FLOAT || TARGET_VFP))));
3367 if (code == POST_INC || code == PRE_DEC
3368 || ((code == PRE_INC || code == POST_DEC)
3369 && (use_ldrd || GET_MODE_SIZE (mode) <= 4)))
3370 return arm_address_register_rtx_p (XEXP (x, 0), strict_p);
3372 else if ((code == POST_MODIFY || code == PRE_MODIFY)
3373 && arm_address_register_rtx_p (XEXP (x, 0), strict_p)
3374 && GET_CODE (XEXP (x, 1)) == PLUS
3375 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3377 rtx addend = XEXP (XEXP (x, 1), 1);
3379 /* Don't allow ldrd post increment by register because it's hard
3380 to fixup invalid register choices. */
3381 if (use_ldrd
3382 && GET_CODE (x) == POST_MODIFY
3383 && GET_CODE (addend) == REG)
3384 return 0;
3386 return ((use_ldrd || GET_MODE_SIZE (mode) <= 4)
3387 && arm_legitimate_index_p (mode, addend, outer, strict_p));
3390 /* After reload constants split into minipools will have addresses
3391 from a LABEL_REF. */
3392 else if (reload_completed
3393 && (code == LABEL_REF
3394 || (code == CONST
3395 && GET_CODE (XEXP (x, 0)) == PLUS
3396 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
3397 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
3398 return 1;
3400 else if (mode == TImode)
3401 return 0;
3403 else if (code == PLUS)
3405 rtx xop0 = XEXP (x, 0);
3406 rtx xop1 = XEXP (x, 1);
3408 return ((arm_address_register_rtx_p (xop0, strict_p)
3409 && arm_legitimate_index_p (mode, xop1, outer, strict_p))
3410 || (arm_address_register_rtx_p (xop1, strict_p)
3411 && arm_legitimate_index_p (mode, xop0, outer, strict_p)));
3414 #if 0
3415 /* Reload currently can't handle MINUS, so disable this for now */
3416 else if (GET_CODE (x) == MINUS)
3418 rtx xop0 = XEXP (x, 0);
3419 rtx xop1 = XEXP (x, 1);
3421 return (arm_address_register_rtx_p (xop0, strict_p)
3422 && arm_legitimate_index_p (mode, xop1, outer, strict_p));
3424 #endif
3426 else if (GET_MODE_CLASS (mode) != MODE_FLOAT
3427 && code == SYMBOL_REF
3428 && CONSTANT_POOL_ADDRESS_P (x)
3429 && ! (flag_pic
3430 && symbol_mentioned_p (get_pool_constant (x))))
3431 return 1;
3433 return 0;
3436 /* Return nonzero if INDEX is valid for an address index operand in
3437 ARM state. */
3438 static int
3439 arm_legitimate_index_p (enum machine_mode mode, rtx index, RTX_CODE outer,
3440 int strict_p)
3442 HOST_WIDE_INT range;
3443 enum rtx_code code = GET_CODE (index);
3445 /* Standard coprocessor addressing modes. */
3446 if (TARGET_HARD_FLOAT
3447 && (TARGET_FPA || TARGET_MAVERICK)
3448 && (GET_MODE_CLASS (mode) == MODE_FLOAT
3449 || (TARGET_MAVERICK && mode == DImode)))
3450 return (code == CONST_INT && INTVAL (index) < 1024
3451 && INTVAL (index) > -1024
3452 && (INTVAL (index) & 3) == 0);
3454 if (TARGET_REALLY_IWMMXT && VALID_IWMMXT_REG_MODE (mode))
3455 return (code == CONST_INT
3456 && INTVAL (index) < 1024
3457 && INTVAL (index) > -1024
3458 && (INTVAL (index) & 3) == 0);
3460 if (arm_address_register_rtx_p (index, strict_p)
3461 && (GET_MODE_SIZE (mode) <= 4))
3462 return 1;
3464 if (mode == DImode || mode == DFmode)
3466 if (code == CONST_INT)
3468 HOST_WIDE_INT val = INTVAL (index);
3470 if (TARGET_LDRD)
3471 return val > -256 && val < 256;
3472 else
3473 return val > -4096 && val < 4092;
3476 return TARGET_LDRD && arm_address_register_rtx_p (index, strict_p);
3479 if (GET_MODE_SIZE (mode) <= 4
3480 && ! (arm_arch4
3481 && (mode == HImode
3482 || (mode == QImode && outer == SIGN_EXTEND))))
3484 if (code == MULT)
3486 rtx xiop0 = XEXP (index, 0);
3487 rtx xiop1 = XEXP (index, 1);
3489 return ((arm_address_register_rtx_p (xiop0, strict_p)
3490 && power_of_two_operand (xiop1, SImode))
3491 || (arm_address_register_rtx_p (xiop1, strict_p)
3492 && power_of_two_operand (xiop0, SImode)));
3494 else if (code == LSHIFTRT || code == ASHIFTRT
3495 || code == ASHIFT || code == ROTATERT)
3497 rtx op = XEXP (index, 1);
3499 return (arm_address_register_rtx_p (XEXP (index, 0), strict_p)
3500 && GET_CODE (op) == CONST_INT
3501 && INTVAL (op) > 0
3502 && INTVAL (op) <= 31);
3506 /* For ARM v4 we may be doing a sign-extend operation during the
3507 load. */
3508 if (arm_arch4)
3510 if (mode == HImode || (outer == SIGN_EXTEND && mode == QImode))
3511 range = 256;
3512 else
3513 range = 4096;
3515 else
3516 range = (mode == HImode) ? 4095 : 4096;
3518 return (code == CONST_INT
3519 && INTVAL (index) < range
3520 && INTVAL (index) > -range);
3523 /* Return nonzero if X is valid as a Thumb state base register. */
3524 static int
3525 thumb_base_register_rtx_p (rtx x, enum machine_mode mode, int strict_p)
3527 int regno;
3529 if (GET_CODE (x) != REG)
3530 return 0;
3532 regno = REGNO (x);
3534 if (strict_p)
3535 return THUMB_REGNO_MODE_OK_FOR_BASE_P (regno, mode);
3537 return (regno <= LAST_LO_REGNUM
3538 || regno > LAST_VIRTUAL_REGISTER
3539 || regno == FRAME_POINTER_REGNUM
3540 || (GET_MODE_SIZE (mode) >= 4
3541 && (regno == STACK_POINTER_REGNUM
3542 || regno >= FIRST_PSEUDO_REGISTER
3543 || x == hard_frame_pointer_rtx
3544 || x == arg_pointer_rtx)));
3547 /* Return nonzero if x is a legitimate index register. This is the case
3548 for any base register that can access a QImode object. */
3549 inline static int
3550 thumb_index_register_rtx_p (rtx x, int strict_p)
3552 return thumb_base_register_rtx_p (x, QImode, strict_p);
3555 /* Return nonzero if x is a legitimate Thumb-state address.
3557 The AP may be eliminated to either the SP or the FP, so we use the
3558 least common denominator, e.g. SImode, and offsets from 0 to 64.
3560 ??? Verify whether the above is the right approach.
3562 ??? Also, the FP may be eliminated to the SP, so perhaps that
3563 needs special handling also.
3565 ??? Look at how the mips16 port solves this problem. It probably uses
3566 better ways to solve some of these problems.
3568 Although it is not incorrect, we don't accept QImode and HImode
3569 addresses based on the frame pointer or arg pointer until the
3570 reload pass starts. This is so that eliminating such addresses
3571 into stack based ones won't produce impossible code. */
3573 thumb_legitimate_address_p (enum machine_mode mode, rtx x, int strict_p)
3575 /* ??? Not clear if this is right. Experiment. */
3576 if (GET_MODE_SIZE (mode) < 4
3577 && !(reload_in_progress || reload_completed)
3578 && (reg_mentioned_p (frame_pointer_rtx, x)
3579 || reg_mentioned_p (arg_pointer_rtx, x)
3580 || reg_mentioned_p (virtual_incoming_args_rtx, x)
3581 || reg_mentioned_p (virtual_outgoing_args_rtx, x)
3582 || reg_mentioned_p (virtual_stack_dynamic_rtx, x)
3583 || reg_mentioned_p (virtual_stack_vars_rtx, x)))
3584 return 0;
3586 /* Accept any base register. SP only in SImode or larger. */
3587 else if (thumb_base_register_rtx_p (x, mode, strict_p))
3588 return 1;
3590 /* This is PC relative data before arm_reorg runs. */
3591 else if (GET_MODE_SIZE (mode) >= 4 && CONSTANT_P (x)
3592 && GET_CODE (x) == SYMBOL_REF
3593 && CONSTANT_POOL_ADDRESS_P (x) && ! flag_pic)
3594 return 1;
3596 /* This is PC relative data after arm_reorg runs. */
3597 else if (GET_MODE_SIZE (mode) >= 4 && reload_completed
3598 && (GET_CODE (x) == LABEL_REF
3599 || (GET_CODE (x) == CONST
3600 && GET_CODE (XEXP (x, 0)) == PLUS
3601 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
3602 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
3603 return 1;
3605 /* Post-inc indexing only supported for SImode and larger. */
3606 else if (GET_CODE (x) == POST_INC && GET_MODE_SIZE (mode) >= 4
3607 && thumb_index_register_rtx_p (XEXP (x, 0), strict_p))
3608 return 1;
3610 else if (GET_CODE (x) == PLUS)
3612 /* REG+REG address can be any two index registers. */
3613 /* We disallow FRAME+REG addressing since we know that FRAME
3614 will be replaced with STACK, and SP relative addressing only
3615 permits SP+OFFSET. */
3616 if (GET_MODE_SIZE (mode) <= 4
3617 && XEXP (x, 0) != frame_pointer_rtx
3618 && XEXP (x, 1) != frame_pointer_rtx
3619 && thumb_index_register_rtx_p (XEXP (x, 0), strict_p)
3620 && thumb_index_register_rtx_p (XEXP (x, 1), strict_p))
3621 return 1;
3623 /* REG+const has 5-7 bit offset for non-SP registers. */
3624 else if ((thumb_index_register_rtx_p (XEXP (x, 0), strict_p)
3625 || XEXP (x, 0) == arg_pointer_rtx)
3626 && GET_CODE (XEXP (x, 1)) == CONST_INT
3627 && thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
3628 return 1;
3630 /* REG+const has 10 bit offset for SP, but only SImode and
3631 larger is supported. */
3632 /* ??? Should probably check for DI/DFmode overflow here
3633 just like GO_IF_LEGITIMATE_OFFSET does. */
3634 else if (GET_CODE (XEXP (x, 0)) == REG
3635 && REGNO (XEXP (x, 0)) == STACK_POINTER_REGNUM
3636 && GET_MODE_SIZE (mode) >= 4
3637 && GET_CODE (XEXP (x, 1)) == CONST_INT
3638 && INTVAL (XEXP (x, 1)) >= 0
3639 && INTVAL (XEXP (x, 1)) + GET_MODE_SIZE (mode) <= 1024
3640 && (INTVAL (XEXP (x, 1)) & 3) == 0)
3641 return 1;
3643 else if (GET_CODE (XEXP (x, 0)) == REG
3644 && REGNO (XEXP (x, 0)) == FRAME_POINTER_REGNUM
3645 && GET_MODE_SIZE (mode) >= 4
3646 && GET_CODE (XEXP (x, 1)) == CONST_INT
3647 && (INTVAL (XEXP (x, 1)) & 3) == 0)
3648 return 1;
3651 else if (GET_MODE_CLASS (mode) != MODE_FLOAT
3652 && GET_MODE_SIZE (mode) == 4
3653 && GET_CODE (x) == SYMBOL_REF
3654 && CONSTANT_POOL_ADDRESS_P (x)
3655 && !(flag_pic
3656 && symbol_mentioned_p (get_pool_constant (x))))
3657 return 1;
3659 return 0;
3662 /* Return nonzero if VAL can be used as an offset in a Thumb-state address
3663 instruction of mode MODE. */
3665 thumb_legitimate_offset_p (enum machine_mode mode, HOST_WIDE_INT val)
3667 switch (GET_MODE_SIZE (mode))
3669 case 1:
3670 return val >= 0 && val < 32;
3672 case 2:
3673 return val >= 0 && val < 64 && (val & 1) == 0;
3675 default:
3676 return (val >= 0
3677 && (val + GET_MODE_SIZE (mode)) <= 128
3678 && (val & 3) == 0);
3682 /* Try machine-dependent ways of modifying an illegitimate address
3683 to be legitimate. If we find one, return the new, valid address. */
3685 arm_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
3687 if (GET_CODE (x) == PLUS)
3689 rtx xop0 = XEXP (x, 0);
3690 rtx xop1 = XEXP (x, 1);
3692 if (CONSTANT_P (xop0) && !symbol_mentioned_p (xop0))
3693 xop0 = force_reg (SImode, xop0);
3695 if (CONSTANT_P (xop1) && !symbol_mentioned_p (xop1))
3696 xop1 = force_reg (SImode, xop1);
3698 if (ARM_BASE_REGISTER_RTX_P (xop0)
3699 && GET_CODE (xop1) == CONST_INT)
3701 HOST_WIDE_INT n, low_n;
3702 rtx base_reg, val;
3703 n = INTVAL (xop1);
3705 /* VFP addressing modes actually allow greater offsets, but for
3706 now we just stick with the lowest common denominator. */
3707 if (mode == DImode
3708 || ((TARGET_SOFT_FLOAT || TARGET_VFP) && mode == DFmode))
3710 low_n = n & 0x0f;
3711 n &= ~0x0f;
3712 if (low_n > 4)
3714 n += 16;
3715 low_n -= 16;
3718 else
3720 low_n = ((mode) == TImode ? 0
3721 : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff));
3722 n -= low_n;
3725 base_reg = gen_reg_rtx (SImode);
3726 val = force_operand (gen_rtx_PLUS (SImode, xop0,
3727 GEN_INT (n)), NULL_RTX);
3728 emit_move_insn (base_reg, val);
3729 x = (low_n == 0 ? base_reg
3730 : gen_rtx_PLUS (SImode, base_reg, GEN_INT (low_n)));
3732 else if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
3733 x = gen_rtx_PLUS (SImode, xop0, xop1);
3736 /* XXX We don't allow MINUS any more -- see comment in
3737 arm_legitimate_address_p (). */
3738 else if (GET_CODE (x) == MINUS)
3740 rtx xop0 = XEXP (x, 0);
3741 rtx xop1 = XEXP (x, 1);
3743 if (CONSTANT_P (xop0))
3744 xop0 = force_reg (SImode, xop0);
3746 if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1))
3747 xop1 = force_reg (SImode, xop1);
3749 if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
3750 x = gen_rtx_MINUS (SImode, xop0, xop1);
3753 if (flag_pic)
3755 /* We need to find and carefully transform any SYMBOL and LABEL
3756 references; so go back to the original address expression. */
3757 rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
3759 if (new_x != orig_x)
3760 x = new_x;
3763 return x;
3767 /* Try machine-dependent ways of modifying an illegitimate Thumb address
3768 to be legitimate. If we find one, return the new, valid address. */
3770 thumb_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
3772 if (GET_CODE (x) == PLUS
3773 && GET_CODE (XEXP (x, 1)) == CONST_INT
3774 && (INTVAL (XEXP (x, 1)) >= 32 * GET_MODE_SIZE (mode)
3775 || INTVAL (XEXP (x, 1)) < 0))
3777 rtx xop0 = XEXP (x, 0);
3778 rtx xop1 = XEXP (x, 1);
3779 HOST_WIDE_INT offset = INTVAL (xop1);
3781 /* Try and fold the offset into a biasing of the base register and
3782 then offsetting that. Don't do this when optimizing for space
3783 since it can cause too many CSEs. */
3784 if (optimize_size && offset >= 0
3785 && offset < 256 + 31 * GET_MODE_SIZE (mode))
3787 HOST_WIDE_INT delta;
3789 if (offset >= 256)
3790 delta = offset - (256 - GET_MODE_SIZE (mode));
3791 else if (offset < 32 * GET_MODE_SIZE (mode) + 8)
3792 delta = 31 * GET_MODE_SIZE (mode);
3793 else
3794 delta = offset & (~31 * GET_MODE_SIZE (mode));
3796 xop0 = force_operand (plus_constant (xop0, offset - delta),
3797 NULL_RTX);
3798 x = plus_constant (xop0, delta);
3800 else if (offset < 0 && offset > -256)
3801 /* Small negative offsets are best done with a subtract before the
3802 dereference, forcing these into a register normally takes two
3803 instructions. */
3804 x = force_operand (x, NULL_RTX);
3805 else
3807 /* For the remaining cases, force the constant into a register. */
3808 xop1 = force_reg (SImode, xop1);
3809 x = gen_rtx_PLUS (SImode, xop0, xop1);
3812 else if (GET_CODE (x) == PLUS
3813 && s_register_operand (XEXP (x, 1), SImode)
3814 && !s_register_operand (XEXP (x, 0), SImode))
3816 rtx xop0 = force_operand (XEXP (x, 0), NULL_RTX);
3818 x = gen_rtx_PLUS (SImode, xop0, XEXP (x, 1));
3821 if (flag_pic)
3823 /* We need to find and carefully transform any SYMBOL and LABEL
3824 references; so go back to the original address expression. */
3825 rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
3827 if (new_x != orig_x)
3828 x = new_x;
3831 return x;
3836 #define REG_OR_SUBREG_REG(X) \
3837 (GET_CODE (X) == REG \
3838 || (GET_CODE (X) == SUBREG && GET_CODE (SUBREG_REG (X)) == REG))
3840 #define REG_OR_SUBREG_RTX(X) \
3841 (GET_CODE (X) == REG ? (X) : SUBREG_REG (X))
3843 #ifndef COSTS_N_INSNS
3844 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
3845 #endif
3846 static inline int
3847 thumb_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer)
3849 enum machine_mode mode = GET_MODE (x);
3851 switch (code)
3853 case ASHIFT:
3854 case ASHIFTRT:
3855 case LSHIFTRT:
3856 case ROTATERT:
3857 case PLUS:
3858 case MINUS:
3859 case COMPARE:
3860 case NEG:
3861 case NOT:
3862 return COSTS_N_INSNS (1);
3864 case MULT:
3865 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3867 int cycles = 0;
3868 unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));
3870 while (i)
3872 i >>= 2;
3873 cycles++;
3875 return COSTS_N_INSNS (2) + cycles;
3877 return COSTS_N_INSNS (1) + 16;
3879 case SET:
3880 return (COSTS_N_INSNS (1)
3881 + 4 * ((GET_CODE (SET_SRC (x)) == MEM)
3882 + GET_CODE (SET_DEST (x)) == MEM));
3884 case CONST_INT:
3885 if (outer == SET)
3887 if ((unsigned HOST_WIDE_INT) INTVAL (x) < 256)
3888 return 0;
3889 if (thumb_shiftable_const (INTVAL (x)))
3890 return COSTS_N_INSNS (2);
3891 return COSTS_N_INSNS (3);
3893 else if ((outer == PLUS || outer == COMPARE)
3894 && INTVAL (x) < 256 && INTVAL (x) > -256)
3895 return 0;
3896 else if (outer == AND
3897 && INTVAL (x) < 256 && INTVAL (x) >= -256)
3898 return COSTS_N_INSNS (1);
3899 else if (outer == ASHIFT || outer == ASHIFTRT
3900 || outer == LSHIFTRT)
3901 return 0;
3902 return COSTS_N_INSNS (2);
3904 case CONST:
3905 case CONST_DOUBLE:
3906 case LABEL_REF:
3907 case SYMBOL_REF:
3908 return COSTS_N_INSNS (3);
3910 case UDIV:
3911 case UMOD:
3912 case DIV:
3913 case MOD:
3914 return 100;
3916 case TRUNCATE:
3917 return 99;
3919 case AND:
3920 case XOR:
3921 case IOR:
3922 /* XXX guess. */
3923 return 8;
3925 case MEM:
3926 /* XXX another guess. */
3927 /* Memory costs quite a lot for the first word, but subsequent words
3928 load at the equivalent of a single insn each. */
3929 return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
3930 + ((GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
3931 ? 4 : 0));
3933 case IF_THEN_ELSE:
3934 /* XXX a guess. */
3935 if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
3936 return 14;
3937 return 2;
3939 case ZERO_EXTEND:
3940 /* XXX still guessing. */
3941 switch (GET_MODE (XEXP (x, 0)))
3943 case QImode:
3944 return (1 + (mode == DImode ? 4 : 0)
3945 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
3947 case HImode:
3948 return (4 + (mode == DImode ? 4 : 0)
3949 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
3951 case SImode:
3952 return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
3954 default:
3955 return 99;
3958 default:
3959 return 99;
3964 /* Worker routine for arm_rtx_costs. */
3965 static inline int
3966 arm_rtx_costs_1 (rtx x, enum rtx_code code, enum rtx_code outer)
3968 enum machine_mode mode = GET_MODE (x);
3969 enum rtx_code subcode;
3970 int extra_cost;
3972 switch (code)
3974 case MEM:
3975 /* Memory costs quite a lot for the first word, but subsequent words
3976 load at the equivalent of a single insn each. */
3977 return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
3978 + (GET_CODE (x) == SYMBOL_REF
3979 && CONSTANT_POOL_ADDRESS_P (x) ? 4 : 0));
3981 case DIV:
3982 case MOD:
3983 case UDIV:
3984 case UMOD:
3985 return optimize_size ? COSTS_N_INSNS (2) : 100;
3987 case ROTATE:
3988 if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
3989 return 4;
3990 /* Fall through */
3991 case ROTATERT:
3992 if (mode != SImode)
3993 return 8;
3994 /* Fall through */
3995 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3996 if (mode == DImode)
3997 return (8 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : 8)
3998 + ((GET_CODE (XEXP (x, 0)) == REG
3999 || (GET_CODE (XEXP (x, 0)) == SUBREG
4000 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
4001 ? 0 : 8));
4002 return (1 + ((GET_CODE (XEXP (x, 0)) == REG
4003 || (GET_CODE (XEXP (x, 0)) == SUBREG
4004 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
4005 ? 0 : 4)
4006 + ((GET_CODE (XEXP (x, 1)) == REG
4007 || (GET_CODE (XEXP (x, 1)) == SUBREG
4008 && GET_CODE (SUBREG_REG (XEXP (x, 1))) == REG)
4009 || (GET_CODE (XEXP (x, 1)) == CONST_INT))
4010 ? 0 : 4));
4012 case MINUS:
4013 if (mode == DImode)
4014 return (4 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 8)
4015 + ((REG_OR_SUBREG_REG (XEXP (x, 0))
4016 || (GET_CODE (XEXP (x, 0)) == CONST_INT
4017 && const_ok_for_arm (INTVAL (XEXP (x, 0)))))
4018 ? 0 : 8));
4020 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4021 return (2 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
4022 || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
4023 && arm_const_double_rtx (XEXP (x, 1))))
4024 ? 0 : 8)
4025 + ((REG_OR_SUBREG_REG (XEXP (x, 0))
4026 || (GET_CODE (XEXP (x, 0)) == CONST_DOUBLE
4027 && arm_const_double_rtx (XEXP (x, 0))))
4028 ? 0 : 8));
4030 if (((GET_CODE (XEXP (x, 0)) == CONST_INT
4031 && const_ok_for_arm (INTVAL (XEXP (x, 0)))
4032 && REG_OR_SUBREG_REG (XEXP (x, 1))))
4033 || (((subcode = GET_CODE (XEXP (x, 1))) == ASHIFT
4034 || subcode == ASHIFTRT || subcode == LSHIFTRT
4035 || subcode == ROTATE || subcode == ROTATERT
4036 || (subcode == MULT
4037 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4038 && ((INTVAL (XEXP (XEXP (x, 1), 1)) &
4039 (INTVAL (XEXP (XEXP (x, 1), 1)) - 1)) == 0)))
4040 && REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 0))
4041 && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 1))
4042 || GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
4043 && REG_OR_SUBREG_REG (XEXP (x, 0))))
4044 return 1;
4045 /* Fall through */
4047 case PLUS:
4048 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4049 return (2 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
4050 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
4051 || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
4052 && arm_const_double_rtx (XEXP (x, 1))))
4053 ? 0 : 8));
4055 /* Fall through */
4056 case AND: case XOR: case IOR:
4057 extra_cost = 0;
4059 /* Normally the frame registers will be spilt into reg+const during
4060 reload, so it is a bad idea to combine them with other instructions,
4061 since then they might not be moved outside of loops. As a compromise
4062 we allow integration with ops that have a constant as their second
4063 operand. */
4064 if ((REG_OR_SUBREG_REG (XEXP (x, 0))
4065 && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))
4066 && GET_CODE (XEXP (x, 1)) != CONST_INT)
4067 || (REG_OR_SUBREG_REG (XEXP (x, 0))
4068 && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))))
4069 extra_cost = 4;
4071 if (mode == DImode)
4072 return (4 + extra_cost + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
4073 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
4074 || (GET_CODE (XEXP (x, 1)) == CONST_INT
4075 && const_ok_for_op (INTVAL (XEXP (x, 1)), code)))
4076 ? 0 : 8));
4078 if (REG_OR_SUBREG_REG (XEXP (x, 0)))
4079 return (1 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : extra_cost)
4080 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
4081 || (GET_CODE (XEXP (x, 1)) == CONST_INT
4082 && const_ok_for_op (INTVAL (XEXP (x, 1)), code)))
4083 ? 0 : 4));
4085 else if (REG_OR_SUBREG_REG (XEXP (x, 1)))
4086 return (1 + extra_cost
4087 + ((((subcode = GET_CODE (XEXP (x, 0))) == ASHIFT
4088 || subcode == LSHIFTRT || subcode == ASHIFTRT
4089 || subcode == ROTATE || subcode == ROTATERT
4090 || (subcode == MULT
4091 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4092 && ((INTVAL (XEXP (XEXP (x, 0), 1)) &
4093 (INTVAL (XEXP (XEXP (x, 0), 1)) - 1)) == 0)))
4094 && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 0)))
4095 && ((REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 1)))
4096 || GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4097 ? 0 : 4));
4099 return 8;
4101 case MULT:
4102 /* This should have been handled by the CPU specific routines. */
4103 gcc_unreachable ();
4105 case TRUNCATE:
4106 if (arm_arch3m && mode == SImode
4107 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
4108 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
4109 && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0))
4110 == GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)))
4111 && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
4112 || GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND))
4113 return 8;
4114 return 99;
4116 case NEG:
4117 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4118 return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 6);
4119 /* Fall through */
4120 case NOT:
4121 if (mode == DImode)
4122 return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
4124 return 1 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
4126 case IF_THEN_ELSE:
4127 if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
4128 return 14;
4129 return 2;
4131 case COMPARE:
4132 return 1;
4134 case ABS:
4135 return 4 + (mode == DImode ? 4 : 0);
4137 case SIGN_EXTEND:
4138 if (GET_MODE (XEXP (x, 0)) == QImode)
4139 return (4 + (mode == DImode ? 4 : 0)
4140 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4141 /* Fall through */
4142 case ZERO_EXTEND:
4143 switch (GET_MODE (XEXP (x, 0)))
4145 case QImode:
4146 return (1 + (mode == DImode ? 4 : 0)
4147 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4149 case HImode:
4150 return (4 + (mode == DImode ? 4 : 0)
4151 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4153 case SImode:
4154 return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4156 case V8QImode:
4157 case V4HImode:
4158 case V2SImode:
4159 case V4QImode:
4160 case V2HImode:
4161 return 1;
4163 default:
4164 gcc_unreachable ();
4166 gcc_unreachable ();
4168 case CONST_INT:
4169 if (const_ok_for_arm (INTVAL (x)))
4170 return outer == SET ? 2 : -1;
4171 else if (outer == AND
4172 && const_ok_for_arm (~INTVAL (x)))
4173 return -1;
4174 else if ((outer == COMPARE
4175 || outer == PLUS || outer == MINUS)
4176 && const_ok_for_arm (-INTVAL (x)))
4177 return -1;
4178 else
4179 return 5;
4181 case CONST:
4182 case LABEL_REF:
4183 case SYMBOL_REF:
4184 return 6;
4186 case CONST_DOUBLE:
4187 if (arm_const_double_rtx (x))
4188 return outer == SET ? 2 : -1;
4189 else if ((outer == COMPARE || outer == PLUS)
4190 && neg_const_double_rtx_ok_for_fpa (x))
4191 return -1;
4192 return 7;
4194 default:
4195 return 99;
4199 /* RTX costs when optimizing for size. */
4200 static bool
4201 arm_size_rtx_costs (rtx x, int code, int outer_code, int *total)
4203 enum machine_mode mode = GET_MODE (x);
4205 if (TARGET_THUMB)
4207 /* XXX TBD. For now, use the standard costs. */
4208 *total = thumb_rtx_costs (x, code, outer_code);
4209 return true;
4212 switch (code)
4214 case MEM:
4215 /* A memory access costs 1 insn if the mode is small, or the address is
4216 a single register, otherwise it costs one insn per word. */
4217 if (REG_P (XEXP (x, 0)))
4218 *total = COSTS_N_INSNS (1);
4219 else
4220 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4221 return true;
4223 case DIV:
4224 case MOD:
4225 case UDIV:
4226 case UMOD:
4227 /* Needs a libcall, so it costs about this. */
4228 *total = COSTS_N_INSNS (2);
4229 return false;
4231 case ROTATE:
4232 if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
4234 *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code);
4235 return true;
4237 /* Fall through */
4238 case ROTATERT:
4239 case ASHIFT:
4240 case LSHIFTRT:
4241 case ASHIFTRT:
4242 if (mode == DImode && GET_CODE (XEXP (x, 1)) == CONST_INT)
4244 *total = COSTS_N_INSNS (3) + rtx_cost (XEXP (x, 0), code);
4245 return true;
4247 else if (mode == SImode)
4249 *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code);
4250 /* Slightly disparage register shifts, but not by much. */
4251 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
4252 *total += 1 + rtx_cost (XEXP (x, 1), code);
4253 return true;
4256 /* Needs a libcall. */
4257 *total = COSTS_N_INSNS (2);
4258 return false;
4260 case MINUS:
4261 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4263 *total = COSTS_N_INSNS (1);
4264 return false;
4267 if (mode == SImode)
4269 enum rtx_code subcode0 = GET_CODE (XEXP (x, 0));
4270 enum rtx_code subcode1 = GET_CODE (XEXP (x, 1));
4272 if (subcode0 == ROTATE || subcode0 == ROTATERT || subcode0 == ASHIFT
4273 || subcode0 == LSHIFTRT || subcode0 == ASHIFTRT
4274 || subcode1 == ROTATE || subcode1 == ROTATERT
4275 || subcode1 == ASHIFT || subcode1 == LSHIFTRT
4276 || subcode1 == ASHIFTRT)
4278 /* It's just the cost of the two operands. */
4279 *total = 0;
4280 return false;
4283 *total = COSTS_N_INSNS (1);
4284 return false;
4287 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4288 return false;
4290 case PLUS:
4291 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4293 *total = COSTS_N_INSNS (1);
4294 return false;
4297 /* Fall through */
4298 case AND: case XOR: case IOR:
4299 if (mode == SImode)
4301 enum rtx_code subcode = GET_CODE (XEXP (x, 0));
4303 if (subcode == ROTATE || subcode == ROTATERT || subcode == ASHIFT
4304 || subcode == LSHIFTRT || subcode == ASHIFTRT
4305 || (code == AND && subcode == NOT))
4307 /* It's just the cost of the two operands. */
4308 *total = 0;
4309 return false;
4313 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4314 return false;
4316 case MULT:
4317 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4318 return false;
4320 case NEG:
4321 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4322 *total = COSTS_N_INSNS (1);
4323 /* Fall through */
4324 case NOT:
4325 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4327 return false;
4329 case IF_THEN_ELSE:
4330 *total = 0;
4331 return false;
4333 case COMPARE:
4334 if (cc_register (XEXP (x, 0), VOIDmode))
4335 * total = 0;
4336 else
4337 *total = COSTS_N_INSNS (1);
4338 return false;
4340 case ABS:
4341 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4342 *total = COSTS_N_INSNS (1);
4343 else
4344 *total = COSTS_N_INSNS (1 + ARM_NUM_REGS (mode));
4345 return false;
4347 case SIGN_EXTEND:
4348 *total = 0;
4349 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) < 4)
4351 if (!(arm_arch4 && MEM_P (XEXP (x, 0))))
4352 *total += COSTS_N_INSNS (arm_arch6 ? 1 : 2);
4354 if (mode == DImode)
4355 *total += COSTS_N_INSNS (1);
4356 return false;
4358 case ZERO_EXTEND:
4359 *total = 0;
4360 if (!(arm_arch4 && MEM_P (XEXP (x, 0))))
4362 switch (GET_MODE (XEXP (x, 0)))
4364 case QImode:
4365 *total += COSTS_N_INSNS (1);
4366 break;
4368 case HImode:
4369 *total += COSTS_N_INSNS (arm_arch6 ? 1 : 2);
4371 case SImode:
4372 break;
4374 default:
4375 *total += COSTS_N_INSNS (2);
4379 if (mode == DImode)
4380 *total += COSTS_N_INSNS (1);
4382 return false;
4384 case CONST_INT:
4385 if (const_ok_for_arm (INTVAL (x)))
4386 *total = COSTS_N_INSNS (outer_code == SET ? 1 : 0);
4387 else if (const_ok_for_arm (~INTVAL (x)))
4388 *total = COSTS_N_INSNS (outer_code == AND ? 0 : 1);
4389 else if (const_ok_for_arm (-INTVAL (x)))
4391 if (outer_code == COMPARE || outer_code == PLUS
4392 || outer_code == MINUS)
4393 *total = 0;
4394 else
4395 *total = COSTS_N_INSNS (1);
4397 else
4398 *total = COSTS_N_INSNS (2);
4399 return true;
4401 case CONST:
4402 case LABEL_REF:
4403 case SYMBOL_REF:
4404 *total = COSTS_N_INSNS (2);
4405 return true;
4407 case CONST_DOUBLE:
4408 *total = COSTS_N_INSNS (4);
4409 return true;
4411 default:
4412 if (mode != VOIDmode)
4413 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4414 else
4415 *total = COSTS_N_INSNS (4); /* How knows? */
4416 return false;
4420 /* RTX costs for cores with a slow MUL implementation. */
4422 static bool
4423 arm_slowmul_rtx_costs (rtx x, int code, int outer_code, int *total)
4425 enum machine_mode mode = GET_MODE (x);
4427 if (TARGET_THUMB)
4429 *total = thumb_rtx_costs (x, code, outer_code);
4430 return true;
4433 switch (code)
4435 case MULT:
4436 if (GET_MODE_CLASS (mode) == MODE_FLOAT
4437 || mode == DImode)
4439 *total = 30;
4440 return true;
4443 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4445 unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
4446 & (unsigned HOST_WIDE_INT) 0xffffffff);
4447 int cost, const_ok = const_ok_for_arm (i);
4448 int j, booth_unit_size;
4450 /* Tune as appropriate. */
4451 cost = const_ok ? 4 : 8;
4452 booth_unit_size = 2;
4453 for (j = 0; i && j < 32; j += booth_unit_size)
4455 i >>= booth_unit_size;
4456 cost += 2;
4459 *total = cost;
4460 return true;
4463 *total = 30 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
4464 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
4465 return true;
4467 default:
4468 *total = arm_rtx_costs_1 (x, code, outer_code);
4469 return true;
4474 /* RTX cost for cores with a fast multiply unit (M variants). */
4476 static bool
4477 arm_fastmul_rtx_costs (rtx x, int code, int outer_code, int *total)
4479 enum machine_mode mode = GET_MODE (x);
4481 if (TARGET_THUMB)
4483 *total = thumb_rtx_costs (x, code, outer_code);
4484 return true;
4487 switch (code)
4489 case MULT:
4490 /* There is no point basing this on the tuning, since it is always the
4491 fast variant if it exists at all. */
4492 if (mode == DImode
4493 && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
4494 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
4495 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
4497 *total = 8;
4498 return true;
4502 if (GET_MODE_CLASS (mode) == MODE_FLOAT
4503 || mode == DImode)
4505 *total = 30;
4506 return true;
4509 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4511 unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
4512 & (unsigned HOST_WIDE_INT) 0xffffffff);
4513 int cost, const_ok = const_ok_for_arm (i);
4514 int j, booth_unit_size;
4516 /* Tune as appropriate. */
4517 cost = const_ok ? 4 : 8;
4518 booth_unit_size = 8;
4519 for (j = 0; i && j < 32; j += booth_unit_size)
4521 i >>= booth_unit_size;
4522 cost += 2;
4525 *total = cost;
4526 return true;
4529 *total = 8 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
4530 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
4531 return true;
4533 default:
4534 *total = arm_rtx_costs_1 (x, code, outer_code);
4535 return true;
4540 /* RTX cost for XScale CPUs. */
4542 static bool
4543 arm_xscale_rtx_costs (rtx x, int code, int outer_code, int *total)
4545 enum machine_mode mode = GET_MODE (x);
4547 if (TARGET_THUMB)
4549 *total = thumb_rtx_costs (x, code, outer_code);
4550 return true;
4553 switch (code)
4555 case MULT:
4556 /* There is no point basing this on the tuning, since it is always the
4557 fast variant if it exists at all. */
4558 if (mode == DImode
4559 && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
4560 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
4561 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
4563 *total = 8;
4564 return true;
4568 if (GET_MODE_CLASS (mode) == MODE_FLOAT
4569 || mode == DImode)
4571 *total = 30;
4572 return true;
4575 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4577 unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
4578 & (unsigned HOST_WIDE_INT) 0xffffffff);
4579 int cost, const_ok = const_ok_for_arm (i);
4580 unsigned HOST_WIDE_INT masked_const;
4582 /* The cost will be related to two insns.
4583 First a load of the constant (MOV or LDR), then a multiply. */
4584 cost = 2;
4585 if (! const_ok)
4586 cost += 1; /* LDR is probably more expensive because
4587 of longer result latency. */
4588 masked_const = i & 0xffff8000;
4589 if (masked_const != 0 && masked_const != 0xffff8000)
4591 masked_const = i & 0xf8000000;
4592 if (masked_const == 0 || masked_const == 0xf8000000)
4593 cost += 1;
4594 else
4595 cost += 2;
4597 *total = cost;
4598 return true;
4601 *total = 8 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
4602 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
4603 return true;
4605 case COMPARE:
4606 /* A COMPARE of a MULT is slow on XScale; the muls instruction
4607 will stall until the multiplication is complete. */
4608 if (GET_CODE (XEXP (x, 0)) == MULT)
4609 *total = 4 + rtx_cost (XEXP (x, 0), code);
4610 else
4611 *total = arm_rtx_costs_1 (x, code, outer_code);
4612 return true;
4614 default:
4615 *total = arm_rtx_costs_1 (x, code, outer_code);
4616 return true;
4621 /* RTX costs for 9e (and later) cores. */
4623 static bool
4624 arm_9e_rtx_costs (rtx x, int code, int outer_code, int *total)
4626 enum machine_mode mode = GET_MODE (x);
4627 int nonreg_cost;
4628 int cost;
4630 if (TARGET_THUMB)
4632 switch (code)
4634 case MULT:
4635 *total = COSTS_N_INSNS (3);
4636 return true;
4638 default:
4639 *total = thumb_rtx_costs (x, code, outer_code);
4640 return true;
4644 switch (code)
4646 case MULT:
4647 /* There is no point basing this on the tuning, since it is always the
4648 fast variant if it exists at all. */
4649 if (mode == DImode
4650 && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
4651 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
4652 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
4654 *total = 3;
4655 return true;
4659 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4661 *total = 30;
4662 return true;
4664 if (mode == DImode)
4666 cost = 7;
4667 nonreg_cost = 8;
4669 else
4671 cost = 2;
4672 nonreg_cost = 4;
4676 *total = cost + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : nonreg_cost)
4677 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : nonreg_cost);
4678 return true;
4680 default:
4681 *total = arm_rtx_costs_1 (x, code, outer_code);
4682 return true;
4685 /* All address computations that can be done are free, but rtx cost returns
4686 the same for practically all of them. So we weight the different types
4687 of address here in the order (most pref first):
4688 PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
4689 static inline int
4690 arm_arm_address_cost (rtx x)
4692 enum rtx_code c = GET_CODE (x);
4694 if (c == PRE_INC || c == PRE_DEC || c == POST_INC || c == POST_DEC)
4695 return 0;
4696 if (c == MEM || c == LABEL_REF || c == SYMBOL_REF)
4697 return 10;
4699 if (c == PLUS || c == MINUS)
4701 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
4702 return 2;
4704 if (ARITHMETIC_P (XEXP (x, 0)) || ARITHMETIC_P (XEXP (x, 1)))
4705 return 3;
4707 return 4;
4710 return 6;
4713 static inline int
4714 arm_thumb_address_cost (rtx x)
4716 enum rtx_code c = GET_CODE (x);
4718 if (c == REG)
4719 return 1;
4720 if (c == PLUS
4721 && GET_CODE (XEXP (x, 0)) == REG
4722 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4723 return 1;
4725 return 2;
4728 static int
4729 arm_address_cost (rtx x)
4731 return TARGET_ARM ? arm_arm_address_cost (x) : arm_thumb_address_cost (x);
4734 static int
4735 arm_adjust_cost (rtx insn, rtx link, rtx dep, int cost)
4737 rtx i_pat, d_pat;
4739 /* Some true dependencies can have a higher cost depending
4740 on precisely how certain input operands are used. */
4741 if (arm_tune_xscale
4742 && REG_NOTE_KIND (link) == 0
4743 && recog_memoized (insn) >= 0
4744 && recog_memoized (dep) >= 0)
4746 int shift_opnum = get_attr_shift (insn);
4747 enum attr_type attr_type = get_attr_type (dep);
4749 /* If nonzero, SHIFT_OPNUM contains the operand number of a shifted
4750 operand for INSN. If we have a shifted input operand and the
4751 instruction we depend on is another ALU instruction, then we may
4752 have to account for an additional stall. */
4753 if (shift_opnum != 0
4754 && (attr_type == TYPE_ALU_SHIFT || attr_type == TYPE_ALU_SHIFT_REG))
4756 rtx shifted_operand;
4757 int opno;
4759 /* Get the shifted operand. */
4760 extract_insn (insn);
4761 shifted_operand = recog_data.operand[shift_opnum];
4763 /* Iterate over all the operands in DEP. If we write an operand
4764 that overlaps with SHIFTED_OPERAND, then we have increase the
4765 cost of this dependency. */
4766 extract_insn (dep);
4767 preprocess_constraints ();
4768 for (opno = 0; opno < recog_data.n_operands; opno++)
4770 /* We can ignore strict inputs. */
4771 if (recog_data.operand_type[opno] == OP_IN)
4772 continue;
4774 if (reg_overlap_mentioned_p (recog_data.operand[opno],
4775 shifted_operand))
4776 return 2;
4781 /* XXX This is not strictly true for the FPA. */
4782 if (REG_NOTE_KIND (link) == REG_DEP_ANTI
4783 || REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
4784 return 0;
4786 /* Call insns don't incur a stall, even if they follow a load. */
4787 if (REG_NOTE_KIND (link) == 0
4788 && GET_CODE (insn) == CALL_INSN)
4789 return 1;
4791 if ((i_pat = single_set (insn)) != NULL
4792 && GET_CODE (SET_SRC (i_pat)) == MEM
4793 && (d_pat = single_set (dep)) != NULL
4794 && GET_CODE (SET_DEST (d_pat)) == MEM)
4796 rtx src_mem = XEXP (SET_SRC (i_pat), 0);
4797 /* This is a load after a store, there is no conflict if the load reads
4798 from a cached area. Assume that loads from the stack, and from the
4799 constant pool are cached, and that others will miss. This is a
4800 hack. */
4802 if ((GET_CODE (src_mem) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (src_mem))
4803 || reg_mentioned_p (stack_pointer_rtx, src_mem)
4804 || reg_mentioned_p (frame_pointer_rtx, src_mem)
4805 || reg_mentioned_p (hard_frame_pointer_rtx, src_mem))
4806 return 1;
4809 return cost;
4812 static int fp_consts_inited = 0;
4814 /* Only zero is valid for VFP. Other values are also valid for FPA. */
4815 static const char * const strings_fp[8] =
4817 "0", "1", "2", "3",
4818 "4", "5", "0.5", "10"
4821 static REAL_VALUE_TYPE values_fp[8];
4823 static void
4824 init_fp_table (void)
4826 int i;
4827 REAL_VALUE_TYPE r;
4829 if (TARGET_VFP)
4830 fp_consts_inited = 1;
4831 else
4832 fp_consts_inited = 8;
4834 for (i = 0; i < fp_consts_inited; i++)
4836 r = REAL_VALUE_ATOF (strings_fp[i], DFmode);
4837 values_fp[i] = r;
4841 /* Return TRUE if rtx X is a valid immediate FP constant. */
4843 arm_const_double_rtx (rtx x)
4845 REAL_VALUE_TYPE r;
4846 int i;
4848 if (!fp_consts_inited)
4849 init_fp_table ();
4851 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4852 if (REAL_VALUE_MINUS_ZERO (r))
4853 return 0;
4855 for (i = 0; i < fp_consts_inited; i++)
4856 if (REAL_VALUES_EQUAL (r, values_fp[i]))
4857 return 1;
4859 return 0;
4862 /* Return TRUE if rtx X is a valid immediate FPA constant. */
4864 neg_const_double_rtx_ok_for_fpa (rtx x)
4866 REAL_VALUE_TYPE r;
4867 int i;
4869 if (!fp_consts_inited)
4870 init_fp_table ();
4872 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4873 r = REAL_VALUE_NEGATE (r);
4874 if (REAL_VALUE_MINUS_ZERO (r))
4875 return 0;
4877 for (i = 0; i < 8; i++)
4878 if (REAL_VALUES_EQUAL (r, values_fp[i]))
4879 return 1;
4881 return 0;
4884 /* Predicates for `match_operand' and `match_operator'. */
4886 /* Return nonzero if OP is a valid Cirrus memory address pattern. */
4888 cirrus_memory_offset (rtx op)
4890 /* Reject eliminable registers. */
4891 if (! (reload_in_progress || reload_completed)
4892 && ( reg_mentioned_p (frame_pointer_rtx, op)
4893 || reg_mentioned_p (arg_pointer_rtx, op)
4894 || reg_mentioned_p (virtual_incoming_args_rtx, op)
4895 || reg_mentioned_p (virtual_outgoing_args_rtx, op)
4896 || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
4897 || reg_mentioned_p (virtual_stack_vars_rtx, op)))
4898 return 0;
4900 if (GET_CODE (op) == MEM)
4902 rtx ind;
4904 ind = XEXP (op, 0);
4906 /* Match: (mem (reg)). */
4907 if (GET_CODE (ind) == REG)
4908 return 1;
4910 /* Match:
4911 (mem (plus (reg)
4912 (const))). */
4913 if (GET_CODE (ind) == PLUS
4914 && GET_CODE (XEXP (ind, 0)) == REG
4915 && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
4916 && GET_CODE (XEXP (ind, 1)) == CONST_INT)
4917 return 1;
4920 return 0;
4923 /* Return TRUE if OP is a valid VFP memory address pattern.
4924 WB if true if writeback address modes are allowed. */
4927 arm_coproc_mem_operand (rtx op, bool wb)
4929 rtx ind;
4931 /* Reject eliminable registers. */
4932 if (! (reload_in_progress || reload_completed)
4933 && ( reg_mentioned_p (frame_pointer_rtx, op)
4934 || reg_mentioned_p (arg_pointer_rtx, op)
4935 || reg_mentioned_p (virtual_incoming_args_rtx, op)
4936 || reg_mentioned_p (virtual_outgoing_args_rtx, op)
4937 || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
4938 || reg_mentioned_p (virtual_stack_vars_rtx, op)))
4939 return FALSE;
4941 /* Constants are converted into offsets from labels. */
4942 if (GET_CODE (op) != MEM)
4943 return FALSE;
4945 ind = XEXP (op, 0);
4947 if (reload_completed
4948 && (GET_CODE (ind) == LABEL_REF
4949 || (GET_CODE (ind) == CONST
4950 && GET_CODE (XEXP (ind, 0)) == PLUS
4951 && GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
4952 && GET_CODE (XEXP (XEXP (ind, 0), 1)) == CONST_INT)))
4953 return TRUE;
4955 /* Match: (mem (reg)). */
4956 if (GET_CODE (ind) == REG)
4957 return arm_address_register_rtx_p (ind, 0);
4959 /* Autoincremment addressing modes. */
4960 if (wb
4961 && (GET_CODE (ind) == PRE_INC
4962 || GET_CODE (ind) == POST_INC
4963 || GET_CODE (ind) == PRE_DEC
4964 || GET_CODE (ind) == POST_DEC))
4965 return arm_address_register_rtx_p (XEXP (ind, 0), 0);
4967 if (wb
4968 && (GET_CODE (ind) == POST_MODIFY || GET_CODE (ind) == PRE_MODIFY)
4969 && arm_address_register_rtx_p (XEXP (ind, 0), 0)
4970 && GET_CODE (XEXP (ind, 1)) == PLUS
4971 && rtx_equal_p (XEXP (XEXP (ind, 1), 0), XEXP (ind, 0)))
4972 ind = XEXP (ind, 1);
4974 /* Match:
4975 (plus (reg)
4976 (const)). */
4977 if (GET_CODE (ind) == PLUS
4978 && GET_CODE (XEXP (ind, 0)) == REG
4979 && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
4980 && GET_CODE (XEXP (ind, 1)) == CONST_INT
4981 && INTVAL (XEXP (ind, 1)) > -1024
4982 && INTVAL (XEXP (ind, 1)) < 1024
4983 && (INTVAL (XEXP (ind, 1)) & 3) == 0)
4984 return TRUE;
4986 return FALSE;
4989 /* Return true if X is a register that will be eliminated later on. */
4991 arm_eliminable_register (rtx x)
4993 return REG_P (x) && (REGNO (x) == FRAME_POINTER_REGNUM
4994 || REGNO (x) == ARG_POINTER_REGNUM
4995 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
4996 && REGNO (x) <= LAST_VIRTUAL_REGISTER));
4999 /* Return GENERAL_REGS if a scratch register required to reload x to/from
5000 VFP registers. Otherwise return NO_REGS. */
5002 enum reg_class
5003 vfp_secondary_reload_class (enum machine_mode mode, rtx x)
5005 if (arm_coproc_mem_operand (x, FALSE) || s_register_operand (x, mode))
5006 return NO_REGS;
5008 return GENERAL_REGS;
5011 /* Values which must be returned in the most-significant end of the return
5012 register. */
5014 static bool
5015 arm_return_in_msb (tree valtype)
5017 return (TARGET_AAPCS_BASED
5018 && BYTES_BIG_ENDIAN
5019 && (AGGREGATE_TYPE_P (valtype)
5020 || TREE_CODE (valtype) == COMPLEX_TYPE));
5023 /* Returns TRUE if INSN is an "LDR REG, ADDR" instruction.
5024 Use by the Cirrus Maverick code which has to workaround
5025 a hardware bug triggered by such instructions. */
5026 static bool
5027 arm_memory_load_p (rtx insn)
5029 rtx body, lhs, rhs;;
5031 if (insn == NULL_RTX || GET_CODE (insn) != INSN)
5032 return false;
5034 body = PATTERN (insn);
5036 if (GET_CODE (body) != SET)
5037 return false;
5039 lhs = XEXP (body, 0);
5040 rhs = XEXP (body, 1);
5042 lhs = REG_OR_SUBREG_RTX (lhs);
5044 /* If the destination is not a general purpose
5045 register we do not have to worry. */
5046 if (GET_CODE (lhs) != REG
5047 || REGNO_REG_CLASS (REGNO (lhs)) != GENERAL_REGS)
5048 return false;
5050 /* As well as loads from memory we also have to react
5051 to loads of invalid constants which will be turned
5052 into loads from the minipool. */
5053 return (GET_CODE (rhs) == MEM
5054 || GET_CODE (rhs) == SYMBOL_REF
5055 || note_invalid_constants (insn, -1, false));
5058 /* Return TRUE if INSN is a Cirrus instruction. */
5059 static bool
5060 arm_cirrus_insn_p (rtx insn)
5062 enum attr_cirrus attr;
5064 /* get_attr cannot accept USE or CLOBBER. */
5065 if (!insn
5066 || GET_CODE (insn) != INSN
5067 || GET_CODE (PATTERN (insn)) == USE
5068 || GET_CODE (PATTERN (insn)) == CLOBBER)
5069 return 0;
5071 attr = get_attr_cirrus (insn);
5073 return attr != CIRRUS_NOT;
5076 /* Cirrus reorg for invalid instruction combinations. */
5077 static void
5078 cirrus_reorg (rtx first)
5080 enum attr_cirrus attr;
5081 rtx body = PATTERN (first);
5082 rtx t;
5083 int nops;
5085 /* Any branch must be followed by 2 non Cirrus instructions. */
5086 if (GET_CODE (first) == JUMP_INSN && GET_CODE (body) != RETURN)
5088 nops = 0;
5089 t = next_nonnote_insn (first);
5091 if (arm_cirrus_insn_p (t))
5092 ++ nops;
5094 if (arm_cirrus_insn_p (next_nonnote_insn (t)))
5095 ++ nops;
5097 while (nops --)
5098 emit_insn_after (gen_nop (), first);
5100 return;
5103 /* (float (blah)) is in parallel with a clobber. */
5104 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
5105 body = XVECEXP (body, 0, 0);
5107 if (GET_CODE (body) == SET)
5109 rtx lhs = XEXP (body, 0), rhs = XEXP (body, 1);
5111 /* cfldrd, cfldr64, cfstrd, cfstr64 must
5112 be followed by a non Cirrus insn. */
5113 if (get_attr_cirrus (first) == CIRRUS_DOUBLE)
5115 if (arm_cirrus_insn_p (next_nonnote_insn (first)))
5116 emit_insn_after (gen_nop (), first);
5118 return;
5120 else if (arm_memory_load_p (first))
5122 unsigned int arm_regno;
5124 /* Any ldr/cfmvdlr, ldr/cfmvdhr, ldr/cfmvsr, ldr/cfmv64lr,
5125 ldr/cfmv64hr combination where the Rd field is the same
5126 in both instructions must be split with a non Cirrus
5127 insn. Example:
5129 ldr r0, blah
5131 cfmvsr mvf0, r0. */
5133 /* Get Arm register number for ldr insn. */
5134 if (GET_CODE (lhs) == REG)
5135 arm_regno = REGNO (lhs);
5136 else
5138 gcc_assert (GET_CODE (rhs) == REG);
5139 arm_regno = REGNO (rhs);
5142 /* Next insn. */
5143 first = next_nonnote_insn (first);
5145 if (! arm_cirrus_insn_p (first))
5146 return;
5148 body = PATTERN (first);
5150 /* (float (blah)) is in parallel with a clobber. */
5151 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0))
5152 body = XVECEXP (body, 0, 0);
5154 if (GET_CODE (body) == FLOAT)
5155 body = XEXP (body, 0);
5157 if (get_attr_cirrus (first) == CIRRUS_MOVE
5158 && GET_CODE (XEXP (body, 1)) == REG
5159 && arm_regno == REGNO (XEXP (body, 1)))
5160 emit_insn_after (gen_nop (), first);
5162 return;
5166 /* get_attr cannot accept USE or CLOBBER. */
5167 if (!first
5168 || GET_CODE (first) != INSN
5169 || GET_CODE (PATTERN (first)) == USE
5170 || GET_CODE (PATTERN (first)) == CLOBBER)
5171 return;
5173 attr = get_attr_cirrus (first);
5175 /* Any coprocessor compare instruction (cfcmps, cfcmpd, ...)
5176 must be followed by a non-coprocessor instruction. */
5177 if (attr == CIRRUS_COMPARE)
5179 nops = 0;
5181 t = next_nonnote_insn (first);
5183 if (arm_cirrus_insn_p (t))
5184 ++ nops;
5186 if (arm_cirrus_insn_p (next_nonnote_insn (t)))
5187 ++ nops;
5189 while (nops --)
5190 emit_insn_after (gen_nop (), first);
5192 return;
5196 /* Return TRUE if X references a SYMBOL_REF. */
5198 symbol_mentioned_p (rtx x)
5200 const char * fmt;
5201 int i;
5203 if (GET_CODE (x) == SYMBOL_REF)
5204 return 1;
5206 fmt = GET_RTX_FORMAT (GET_CODE (x));
5208 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5210 if (fmt[i] == 'E')
5212 int j;
5214 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5215 if (symbol_mentioned_p (XVECEXP (x, i, j)))
5216 return 1;
5218 else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
5219 return 1;
5222 return 0;
5225 /* Return TRUE if X references a LABEL_REF. */
5227 label_mentioned_p (rtx x)
5229 const char * fmt;
5230 int i;
5232 if (GET_CODE (x) == LABEL_REF)
5233 return 1;
5235 fmt = GET_RTX_FORMAT (GET_CODE (x));
5236 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5238 if (fmt[i] == 'E')
5240 int j;
5242 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5243 if (label_mentioned_p (XVECEXP (x, i, j)))
5244 return 1;
5246 else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
5247 return 1;
5250 return 0;
5253 enum rtx_code
5254 minmax_code (rtx x)
5256 enum rtx_code code = GET_CODE (x);
5258 switch (code)
5260 case SMAX:
5261 return GE;
5262 case SMIN:
5263 return LE;
5264 case UMIN:
5265 return LEU;
5266 case UMAX:
5267 return GEU;
5268 default:
5269 gcc_unreachable ();
5273 /* Return 1 if memory locations are adjacent. */
5275 adjacent_mem_locations (rtx a, rtx b)
5277 /* We don't guarantee to preserve the order of these memory refs. */
5278 if (volatile_refs_p (a) || volatile_refs_p (b))
5279 return 0;
5281 if ((GET_CODE (XEXP (a, 0)) == REG
5282 || (GET_CODE (XEXP (a, 0)) == PLUS
5283 && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
5284 && (GET_CODE (XEXP (b, 0)) == REG
5285 || (GET_CODE (XEXP (b, 0)) == PLUS
5286 && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
5288 HOST_WIDE_INT val0 = 0, val1 = 0;
5289 rtx reg0, reg1;
5290 int val_diff;
5292 if (GET_CODE (XEXP (a, 0)) == PLUS)
5294 reg0 = XEXP (XEXP (a, 0), 0);
5295 val0 = INTVAL (XEXP (XEXP (a, 0), 1));
5297 else
5298 reg0 = XEXP (a, 0);
5300 if (GET_CODE (XEXP (b, 0)) == PLUS)
5302 reg1 = XEXP (XEXP (b, 0), 0);
5303 val1 = INTVAL (XEXP (XEXP (b, 0), 1));
5305 else
5306 reg1 = XEXP (b, 0);
5308 /* Don't accept any offset that will require multiple
5309 instructions to handle, since this would cause the
5310 arith_adjacentmem pattern to output an overlong sequence. */
5311 if (!const_ok_for_op (PLUS, val0) || !const_ok_for_op (PLUS, val1))
5312 return 0;
5314 /* Don't allow an eliminable register: register elimination can make
5315 the offset too large. */
5316 if (arm_eliminable_register (reg0))
5317 return 0;
5319 val_diff = val1 - val0;
5321 if (arm_ld_sched)
5323 /* If the target has load delay slots, then there's no benefit
5324 to using an ldm instruction unless the offset is zero and
5325 we are optimizing for size. */
5326 return (optimize_size && (REGNO (reg0) == REGNO (reg1))
5327 && (val0 == 0 || val1 == 0 || val0 == 4 || val1 == 4)
5328 && (val_diff == 4 || val_diff == -4));
5331 return ((REGNO (reg0) == REGNO (reg1))
5332 && (val_diff == 4 || val_diff == -4));
5335 return 0;
5339 load_multiple_sequence (rtx *operands, int nops, int *regs, int *base,
5340 HOST_WIDE_INT *load_offset)
5342 int unsorted_regs[4];
5343 HOST_WIDE_INT unsorted_offsets[4];
5344 int order[4];
5345 int base_reg = -1;
5346 int i;
5348 /* Can only handle 2, 3, or 4 insns at present,
5349 though could be easily extended if required. */
5350 gcc_assert (nops >= 2 && nops <= 4);
5352 /* Loop over the operands and check that the memory references are
5353 suitable (i.e. immediate offsets from the same base register). At
5354 the same time, extract the target register, and the memory
5355 offsets. */
5356 for (i = 0; i < nops; i++)
5358 rtx reg;
5359 rtx offset;
5361 /* Convert a subreg of a mem into the mem itself. */
5362 if (GET_CODE (operands[nops + i]) == SUBREG)
5363 operands[nops + i] = alter_subreg (operands + (nops + i));
5365 gcc_assert (GET_CODE (operands[nops + i]) == MEM);
5367 /* Don't reorder volatile memory references; it doesn't seem worth
5368 looking for the case where the order is ok anyway. */
5369 if (MEM_VOLATILE_P (operands[nops + i]))
5370 return 0;
5372 offset = const0_rtx;
5374 if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
5375 || (GET_CODE (reg) == SUBREG
5376 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5377 || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
5378 && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
5379 == REG)
5380 || (GET_CODE (reg) == SUBREG
5381 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5382 && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
5383 == CONST_INT)))
5385 if (i == 0)
5387 base_reg = REGNO (reg);
5388 unsorted_regs[0] = (GET_CODE (operands[i]) == REG
5389 ? REGNO (operands[i])
5390 : REGNO (SUBREG_REG (operands[i])));
5391 order[0] = 0;
5393 else
5395 if (base_reg != (int) REGNO (reg))
5396 /* Not addressed from the same base register. */
5397 return 0;
5399 unsorted_regs[i] = (GET_CODE (operands[i]) == REG
5400 ? REGNO (operands[i])
5401 : REGNO (SUBREG_REG (operands[i])));
5402 if (unsorted_regs[i] < unsorted_regs[order[0]])
5403 order[0] = i;
5406 /* If it isn't an integer register, or if it overwrites the
5407 base register but isn't the last insn in the list, then
5408 we can't do this. */
5409 if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14
5410 || (i != nops - 1 && unsorted_regs[i] == base_reg))
5411 return 0;
5413 unsorted_offsets[i] = INTVAL (offset);
5415 else
5416 /* Not a suitable memory address. */
5417 return 0;
5420 /* All the useful information has now been extracted from the
5421 operands into unsorted_regs and unsorted_offsets; additionally,
5422 order[0] has been set to the lowest numbered register in the
5423 list. Sort the registers into order, and check that the memory
5424 offsets are ascending and adjacent. */
5426 for (i = 1; i < nops; i++)
5428 int j;
5430 order[i] = order[i - 1];
5431 for (j = 0; j < nops; j++)
5432 if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
5433 && (order[i] == order[i - 1]
5434 || unsorted_regs[j] < unsorted_regs[order[i]]))
5435 order[i] = j;
5437 /* Have we found a suitable register? if not, one must be used more
5438 than once. */
5439 if (order[i] == order[i - 1])
5440 return 0;
5442 /* Is the memory address adjacent and ascending? */
5443 if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
5444 return 0;
5447 if (base)
5449 *base = base_reg;
5451 for (i = 0; i < nops; i++)
5452 regs[i] = unsorted_regs[order[i]];
5454 *load_offset = unsorted_offsets[order[0]];
5457 if (unsorted_offsets[order[0]] == 0)
5458 return 1; /* ldmia */
5460 if (unsorted_offsets[order[0]] == 4)
5461 return 2; /* ldmib */
5463 if (unsorted_offsets[order[nops - 1]] == 0)
5464 return 3; /* ldmda */
5466 if (unsorted_offsets[order[nops - 1]] == -4)
5467 return 4; /* ldmdb */
5469 /* For ARM8,9 & StrongARM, 2 ldr instructions are faster than an ldm
5470 if the offset isn't small enough. The reason 2 ldrs are faster
5471 is because these ARMs are able to do more than one cache access
5472 in a single cycle. The ARM9 and StrongARM have Harvard caches,
5473 whilst the ARM8 has a double bandwidth cache. This means that
5474 these cores can do both an instruction fetch and a data fetch in
5475 a single cycle, so the trick of calculating the address into a
5476 scratch register (one of the result regs) and then doing a load
5477 multiple actually becomes slower (and no smaller in code size).
5478 That is the transformation
5480 ldr rd1, [rbase + offset]
5481 ldr rd2, [rbase + offset + 4]
5485 add rd1, rbase, offset
5486 ldmia rd1, {rd1, rd2}
5488 produces worse code -- '3 cycles + any stalls on rd2' instead of
5489 '2 cycles + any stalls on rd2'. On ARMs with only one cache
5490 access per cycle, the first sequence could never complete in less
5491 than 6 cycles, whereas the ldm sequence would only take 5 and
5492 would make better use of sequential accesses if not hitting the
5493 cache.
5495 We cheat here and test 'arm_ld_sched' which we currently know to
5496 only be true for the ARM8, ARM9 and StrongARM. If this ever
5497 changes, then the test below needs to be reworked. */
5498 if (nops == 2 && arm_ld_sched)
5499 return 0;
5501 /* Can't do it without setting up the offset, only do this if it takes
5502 no more than one insn. */
5503 return (const_ok_for_arm (unsorted_offsets[order[0]])
5504 || const_ok_for_arm (-unsorted_offsets[order[0]])) ? 5 : 0;
5507 const char *
5508 emit_ldm_seq (rtx *operands, int nops)
5510 int regs[4];
5511 int base_reg;
5512 HOST_WIDE_INT offset;
5513 char buf[100];
5514 int i;
5516 switch (load_multiple_sequence (operands, nops, regs, &base_reg, &offset))
5518 case 1:
5519 strcpy (buf, "ldm%?ia\t");
5520 break;
5522 case 2:
5523 strcpy (buf, "ldm%?ib\t");
5524 break;
5526 case 3:
5527 strcpy (buf, "ldm%?da\t");
5528 break;
5530 case 4:
5531 strcpy (buf, "ldm%?db\t");
5532 break;
5534 case 5:
5535 if (offset >= 0)
5536 sprintf (buf, "add%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
5537 reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
5538 (long) offset);
5539 else
5540 sprintf (buf, "sub%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
5541 reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
5542 (long) -offset);
5543 output_asm_insn (buf, operands);
5544 base_reg = regs[0];
5545 strcpy (buf, "ldm%?ia\t");
5546 break;
5548 default:
5549 gcc_unreachable ();
5552 sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
5553 reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
5555 for (i = 1; i < nops; i++)
5556 sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
5557 reg_names[regs[i]]);
5559 strcat (buf, "}\t%@ phole ldm");
5561 output_asm_insn (buf, operands);
5562 return "";
5566 store_multiple_sequence (rtx *operands, int nops, int *regs, int *base,
5567 HOST_WIDE_INT * load_offset)
5569 int unsorted_regs[4];
5570 HOST_WIDE_INT unsorted_offsets[4];
5571 int order[4];
5572 int base_reg = -1;
5573 int i;
5575 /* Can only handle 2, 3, or 4 insns at present, though could be easily
5576 extended if required. */
5577 gcc_assert (nops >= 2 && nops <= 4);
5579 /* Loop over the operands and check that the memory references are
5580 suitable (i.e. immediate offsets from the same base register). At
5581 the same time, extract the target register, and the memory
5582 offsets. */
5583 for (i = 0; i < nops; i++)
5585 rtx reg;
5586 rtx offset;
5588 /* Convert a subreg of a mem into the mem itself. */
5589 if (GET_CODE (operands[nops + i]) == SUBREG)
5590 operands[nops + i] = alter_subreg (operands + (nops + i));
5592 gcc_assert (GET_CODE (operands[nops + i]) == MEM);
5594 /* Don't reorder volatile memory references; it doesn't seem worth
5595 looking for the case where the order is ok anyway. */
5596 if (MEM_VOLATILE_P (operands[nops + i]))
5597 return 0;
5599 offset = const0_rtx;
5601 if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
5602 || (GET_CODE (reg) == SUBREG
5603 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5604 || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
5605 && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
5606 == REG)
5607 || (GET_CODE (reg) == SUBREG
5608 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5609 && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
5610 == CONST_INT)))
5612 if (i == 0)
5614 base_reg = REGNO (reg);
5615 unsorted_regs[0] = (GET_CODE (operands[i]) == REG
5616 ? REGNO (operands[i])
5617 : REGNO (SUBREG_REG (operands[i])));
5618 order[0] = 0;
5620 else
5622 if (base_reg != (int) REGNO (reg))
5623 /* Not addressed from the same base register. */
5624 return 0;
5626 unsorted_regs[i] = (GET_CODE (operands[i]) == REG
5627 ? REGNO (operands[i])
5628 : REGNO (SUBREG_REG (operands[i])));
5629 if (unsorted_regs[i] < unsorted_regs[order[0]])
5630 order[0] = i;
5633 /* If it isn't an integer register, then we can't do this. */
5634 if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14)
5635 return 0;
5637 unsorted_offsets[i] = INTVAL (offset);
5639 else
5640 /* Not a suitable memory address. */
5641 return 0;
5644 /* All the useful information has now been extracted from the
5645 operands into unsorted_regs and unsorted_offsets; additionally,
5646 order[0] has been set to the lowest numbered register in the
5647 list. Sort the registers into order, and check that the memory
5648 offsets are ascending and adjacent. */
5650 for (i = 1; i < nops; i++)
5652 int j;
5654 order[i] = order[i - 1];
5655 for (j = 0; j < nops; j++)
5656 if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
5657 && (order[i] == order[i - 1]
5658 || unsorted_regs[j] < unsorted_regs[order[i]]))
5659 order[i] = j;
5661 /* Have we found a suitable register? if not, one must be used more
5662 than once. */
5663 if (order[i] == order[i - 1])
5664 return 0;
5666 /* Is the memory address adjacent and ascending? */
5667 if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
5668 return 0;
5671 if (base)
5673 *base = base_reg;
5675 for (i = 0; i < nops; i++)
5676 regs[i] = unsorted_regs[order[i]];
5678 *load_offset = unsorted_offsets[order[0]];
5681 if (unsorted_offsets[order[0]] == 0)
5682 return 1; /* stmia */
5684 if (unsorted_offsets[order[0]] == 4)
5685 return 2; /* stmib */
5687 if (unsorted_offsets[order[nops - 1]] == 0)
5688 return 3; /* stmda */
5690 if (unsorted_offsets[order[nops - 1]] == -4)
5691 return 4; /* stmdb */
5693 return 0;
5696 const char *
5697 emit_stm_seq (rtx *operands, int nops)
5699 int regs[4];
5700 int base_reg;
5701 HOST_WIDE_INT offset;
5702 char buf[100];
5703 int i;
5705 switch (store_multiple_sequence (operands, nops, regs, &base_reg, &offset))
5707 case 1:
5708 strcpy (buf, "stm%?ia\t");
5709 break;
5711 case 2:
5712 strcpy (buf, "stm%?ib\t");
5713 break;
5715 case 3:
5716 strcpy (buf, "stm%?da\t");
5717 break;
5719 case 4:
5720 strcpy (buf, "stm%?db\t");
5721 break;
5723 default:
5724 gcc_unreachable ();
5727 sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
5728 reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
5730 for (i = 1; i < nops; i++)
5731 sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
5732 reg_names[regs[i]]);
5734 strcat (buf, "}\t%@ phole stm");
5736 output_asm_insn (buf, operands);
5737 return "";
5741 /* Routines for use in generating RTL. */
5744 arm_gen_load_multiple (int base_regno, int count, rtx from, int up,
5745 int write_back, rtx basemem, HOST_WIDE_INT *offsetp)
5747 HOST_WIDE_INT offset = *offsetp;
5748 int i = 0, j;
5749 rtx result;
5750 int sign = up ? 1 : -1;
5751 rtx mem, addr;
5753 /* XScale has load-store double instructions, but they have stricter
5754 alignment requirements than load-store multiple, so we cannot
5755 use them.
5757 For XScale ldm requires 2 + NREGS cycles to complete and blocks
5758 the pipeline until completion.
5760 NREGS CYCLES
5766 An ldr instruction takes 1-3 cycles, but does not block the
5767 pipeline.
5769 NREGS CYCLES
5770 1 1-3
5771 2 2-6
5772 3 3-9
5773 4 4-12
5775 Best case ldr will always win. However, the more ldr instructions
5776 we issue, the less likely we are to be able to schedule them well.
5777 Using ldr instructions also increases code size.
5779 As a compromise, we use ldr for counts of 1 or 2 regs, and ldm
5780 for counts of 3 or 4 regs. */
5781 if (arm_tune_xscale && count <= 2 && ! optimize_size)
5783 rtx seq;
5785 start_sequence ();
5787 for (i = 0; i < count; i++)
5789 addr = plus_constant (from, i * 4 * sign);
5790 mem = adjust_automodify_address (basemem, SImode, addr, offset);
5791 emit_move_insn (gen_rtx_REG (SImode, base_regno + i), mem);
5792 offset += 4 * sign;
5795 if (write_back)
5797 emit_move_insn (from, plus_constant (from, count * 4 * sign));
5798 *offsetp = offset;
5801 seq = get_insns ();
5802 end_sequence ();
5804 return seq;
5807 result = gen_rtx_PARALLEL (VOIDmode,
5808 rtvec_alloc (count + (write_back ? 1 : 0)));
5809 if (write_back)
5811 XVECEXP (result, 0, 0)
5812 = gen_rtx_SET (GET_MODE (from), from,
5813 plus_constant (from, count * 4 * sign));
5814 i = 1;
5815 count++;
5818 for (j = 0; i < count; i++, j++)
5820 addr = plus_constant (from, j * 4 * sign);
5821 mem = adjust_automodify_address_nv (basemem, SImode, addr, offset);
5822 XVECEXP (result, 0, i)
5823 = gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, base_regno + j), mem);
5824 offset += 4 * sign;
5827 if (write_back)
5828 *offsetp = offset;
5830 return result;
5834 arm_gen_store_multiple (int base_regno, int count, rtx to, int up,
5835 int write_back, rtx basemem, HOST_WIDE_INT *offsetp)
5837 HOST_WIDE_INT offset = *offsetp;
5838 int i = 0, j;
5839 rtx result;
5840 int sign = up ? 1 : -1;
5841 rtx mem, addr;
5843 /* See arm_gen_load_multiple for discussion of
5844 the pros/cons of ldm/stm usage for XScale. */
5845 if (arm_tune_xscale && count <= 2 && ! optimize_size)
5847 rtx seq;
5849 start_sequence ();
5851 for (i = 0; i < count; i++)
5853 addr = plus_constant (to, i * 4 * sign);
5854 mem = adjust_automodify_address (basemem, SImode, addr, offset);
5855 emit_move_insn (mem, gen_rtx_REG (SImode, base_regno + i));
5856 offset += 4 * sign;
5859 if (write_back)
5861 emit_move_insn (to, plus_constant (to, count * 4 * sign));
5862 *offsetp = offset;
5865 seq = get_insns ();
5866 end_sequence ();
5868 return seq;
5871 result = gen_rtx_PARALLEL (VOIDmode,
5872 rtvec_alloc (count + (write_back ? 1 : 0)));
5873 if (write_back)
5875 XVECEXP (result, 0, 0)
5876 = gen_rtx_SET (GET_MODE (to), to,
5877 plus_constant (to, count * 4 * sign));
5878 i = 1;
5879 count++;
5882 for (j = 0; i < count; i++, j++)
5884 addr = plus_constant (to, j * 4 * sign);
5885 mem = adjust_automodify_address_nv (basemem, SImode, addr, offset);
5886 XVECEXP (result, 0, i)
5887 = gen_rtx_SET (VOIDmode, mem, gen_rtx_REG (SImode, base_regno + j));
5888 offset += 4 * sign;
5891 if (write_back)
5892 *offsetp = offset;
5894 return result;
5898 arm_gen_movmemqi (rtx *operands)
5900 HOST_WIDE_INT in_words_to_go, out_words_to_go, last_bytes;
5901 HOST_WIDE_INT srcoffset, dstoffset;
5902 int i;
5903 rtx src, dst, srcbase, dstbase;
5904 rtx part_bytes_reg = NULL;
5905 rtx mem;
5907 if (GET_CODE (operands[2]) != CONST_INT
5908 || GET_CODE (operands[3]) != CONST_INT
5909 || INTVAL (operands[2]) > 64
5910 || INTVAL (operands[3]) & 3)
5911 return 0;
5913 dstbase = operands[0];
5914 srcbase = operands[1];
5916 dst = copy_to_mode_reg (SImode, XEXP (dstbase, 0));
5917 src = copy_to_mode_reg (SImode, XEXP (srcbase, 0));
5919 in_words_to_go = ARM_NUM_INTS (INTVAL (operands[2]));
5920 out_words_to_go = INTVAL (operands[2]) / 4;
5921 last_bytes = INTVAL (operands[2]) & 3;
5922 dstoffset = srcoffset = 0;
5924 if (out_words_to_go != in_words_to_go && ((in_words_to_go - 1) & 3) != 0)
5925 part_bytes_reg = gen_rtx_REG (SImode, (in_words_to_go - 1) & 3);
5927 for (i = 0; in_words_to_go >= 2; i+=4)
5929 if (in_words_to_go > 4)
5930 emit_insn (arm_gen_load_multiple (0, 4, src, TRUE, TRUE,
5931 srcbase, &srcoffset));
5932 else
5933 emit_insn (arm_gen_load_multiple (0, in_words_to_go, src, TRUE,
5934 FALSE, srcbase, &srcoffset));
5936 if (out_words_to_go)
5938 if (out_words_to_go > 4)
5939 emit_insn (arm_gen_store_multiple (0, 4, dst, TRUE, TRUE,
5940 dstbase, &dstoffset));
5941 else if (out_words_to_go != 1)
5942 emit_insn (arm_gen_store_multiple (0, out_words_to_go,
5943 dst, TRUE,
5944 (last_bytes == 0
5945 ? FALSE : TRUE),
5946 dstbase, &dstoffset));
5947 else
5949 mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
5950 emit_move_insn (mem, gen_rtx_REG (SImode, 0));
5951 if (last_bytes != 0)
5953 emit_insn (gen_addsi3 (dst, dst, GEN_INT (4)));
5954 dstoffset += 4;
5959 in_words_to_go -= in_words_to_go < 4 ? in_words_to_go : 4;
5960 out_words_to_go -= out_words_to_go < 4 ? out_words_to_go : 4;
5963 /* OUT_WORDS_TO_GO will be zero here if there are byte stores to do. */
5964 if (out_words_to_go)
5966 rtx sreg;
5968 mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
5969 sreg = copy_to_reg (mem);
5971 mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
5972 emit_move_insn (mem, sreg);
5973 in_words_to_go--;
5975 gcc_assert (!in_words_to_go); /* Sanity check */
5978 if (in_words_to_go)
5980 gcc_assert (in_words_to_go > 0);
5982 mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
5983 part_bytes_reg = copy_to_mode_reg (SImode, mem);
5986 gcc_assert (!last_bytes || part_bytes_reg);
5988 if (BYTES_BIG_ENDIAN && last_bytes)
5990 rtx tmp = gen_reg_rtx (SImode);
5992 /* The bytes we want are in the top end of the word. */
5993 emit_insn (gen_lshrsi3 (tmp, part_bytes_reg,
5994 GEN_INT (8 * (4 - last_bytes))));
5995 part_bytes_reg = tmp;
5997 while (last_bytes)
5999 mem = adjust_automodify_address (dstbase, QImode,
6000 plus_constant (dst, last_bytes - 1),
6001 dstoffset + last_bytes - 1);
6002 emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
6004 if (--last_bytes)
6006 tmp = gen_reg_rtx (SImode);
6007 emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (8)));
6008 part_bytes_reg = tmp;
6013 else
6015 if (last_bytes > 1)
6017 mem = adjust_automodify_address (dstbase, HImode, dst, dstoffset);
6018 emit_move_insn (mem, gen_lowpart (HImode, part_bytes_reg));
6019 last_bytes -= 2;
6020 if (last_bytes)
6022 rtx tmp = gen_reg_rtx (SImode);
6023 emit_insn (gen_addsi3 (dst, dst, const2_rtx));
6024 emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (16)));
6025 part_bytes_reg = tmp;
6026 dstoffset += 2;
6030 if (last_bytes)
6032 mem = adjust_automodify_address (dstbase, QImode, dst, dstoffset);
6033 emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
6037 return 1;
6040 /* Generate a memory reference for a half word, such that it will be loaded
6041 into the top 16 bits of the word. We can assume that the address is
6042 known to be alignable and of the form reg, or plus (reg, const). */
6045 arm_gen_rotated_half_load (rtx memref)
6047 HOST_WIDE_INT offset = 0;
6048 rtx base = XEXP (memref, 0);
6050 if (GET_CODE (base) == PLUS)
6052 offset = INTVAL (XEXP (base, 1));
6053 base = XEXP (base, 0);
6056 /* If we aren't allowed to generate unaligned addresses, then fail. */
6057 if ((BYTES_BIG_ENDIAN ? 1 : 0) ^ ((offset & 2) == 0))
6058 return NULL;
6060 base = gen_rtx_MEM (SImode, plus_constant (base, offset & ~2));
6062 if ((BYTES_BIG_ENDIAN ? 1 : 0) ^ ((offset & 2) == 2))
6063 return base;
6065 return gen_rtx_ROTATE (SImode, base, GEN_INT (16));
6068 /* Select a dominance comparison mode if possible for a test of the general
6069 form (OP (COND_OR (X) (Y)) (const_int 0)). We support three forms.
6070 COND_OR == DOM_CC_X_AND_Y => (X && Y)
6071 COND_OR == DOM_CC_NX_OR_Y => ((! X) || Y)
6072 COND_OR == DOM_CC_X_OR_Y => (X || Y)
6073 In all cases OP will be either EQ or NE, but we don't need to know which
6074 here. If we are unable to support a dominance comparison we return
6075 CC mode. This will then fail to match for the RTL expressions that
6076 generate this call. */
6077 enum machine_mode
6078 arm_select_dominance_cc_mode (rtx x, rtx y, HOST_WIDE_INT cond_or)
6080 enum rtx_code cond1, cond2;
6081 int swapped = 0;
6083 /* Currently we will probably get the wrong result if the individual
6084 comparisons are not simple. This also ensures that it is safe to
6085 reverse a comparison if necessary. */
6086 if ((arm_select_cc_mode (cond1 = GET_CODE (x), XEXP (x, 0), XEXP (x, 1))
6087 != CCmode)
6088 || (arm_select_cc_mode (cond2 = GET_CODE (y), XEXP (y, 0), XEXP (y, 1))
6089 != CCmode))
6090 return CCmode;
6092 /* The if_then_else variant of this tests the second condition if the
6093 first passes, but is true if the first fails. Reverse the first
6094 condition to get a true "inclusive-or" expression. */
6095 if (cond_or == DOM_CC_NX_OR_Y)
6096 cond1 = reverse_condition (cond1);
6098 /* If the comparisons are not equal, and one doesn't dominate the other,
6099 then we can't do this. */
6100 if (cond1 != cond2
6101 && !comparison_dominates_p (cond1, cond2)
6102 && (swapped = 1, !comparison_dominates_p (cond2, cond1)))
6103 return CCmode;
6105 if (swapped)
6107 enum rtx_code temp = cond1;
6108 cond1 = cond2;
6109 cond2 = temp;
6112 switch (cond1)
6114 case EQ:
6115 if (cond_or == DOM_CC_X_AND_Y)
6116 return CC_DEQmode;
6118 switch (cond2)
6120 case EQ: return CC_DEQmode;
6121 case LE: return CC_DLEmode;
6122 case LEU: return CC_DLEUmode;
6123 case GE: return CC_DGEmode;
6124 case GEU: return CC_DGEUmode;
6125 default: gcc_unreachable ();
6128 case LT:
6129 if (cond_or == DOM_CC_X_AND_Y)
6130 return CC_DLTmode;
6132 switch (cond2)
6134 case LT:
6135 return CC_DLTmode;
6136 case LE:
6137 return CC_DLEmode;
6138 case NE:
6139 return CC_DNEmode;
6140 default:
6141 gcc_unreachable ();
6144 case GT:
6145 if (cond_or == DOM_CC_X_AND_Y)
6146 return CC_DGTmode;
6148 switch (cond2)
6150 case GT:
6151 return CC_DGTmode;
6152 case GE:
6153 return CC_DGEmode;
6154 case NE:
6155 return CC_DNEmode;
6156 default:
6157 gcc_unreachable ();
6160 case LTU:
6161 if (cond_or == DOM_CC_X_AND_Y)
6162 return CC_DLTUmode;
6164 switch (cond2)
6166 case LTU:
6167 return CC_DLTUmode;
6168 case LEU:
6169 return CC_DLEUmode;
6170 case NE:
6171 return CC_DNEmode;
6172 default:
6173 gcc_unreachable ();
6176 case GTU:
6177 if (cond_or == DOM_CC_X_AND_Y)
6178 return CC_DGTUmode;
6180 switch (cond2)
6182 case GTU:
6183 return CC_DGTUmode;
6184 case GEU:
6185 return CC_DGEUmode;
6186 case NE:
6187 return CC_DNEmode;
6188 default:
6189 gcc_unreachable ();
6192 /* The remaining cases only occur when both comparisons are the
6193 same. */
6194 case NE:
6195 gcc_assert (cond1 == cond2);
6196 return CC_DNEmode;
6198 case LE:
6199 gcc_assert (cond1 == cond2);
6200 return CC_DLEmode;
6202 case GE:
6203 gcc_assert (cond1 == cond2);
6204 return CC_DGEmode;
6206 case LEU:
6207 gcc_assert (cond1 == cond2);
6208 return CC_DLEUmode;
6210 case GEU:
6211 gcc_assert (cond1 == cond2);
6212 return CC_DGEUmode;
6214 default:
6215 gcc_unreachable ();
6219 enum machine_mode
6220 arm_select_cc_mode (enum rtx_code op, rtx x, rtx y)
6222 /* All floating point compares return CCFP if it is an equality
6223 comparison, and CCFPE otherwise. */
6224 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
6226 switch (op)
6228 case EQ:
6229 case NE:
6230 case UNORDERED:
6231 case ORDERED:
6232 case UNLT:
6233 case UNLE:
6234 case UNGT:
6235 case UNGE:
6236 case UNEQ:
6237 case LTGT:
6238 return CCFPmode;
6240 case LT:
6241 case LE:
6242 case GT:
6243 case GE:
6244 if (TARGET_HARD_FLOAT && TARGET_MAVERICK)
6245 return CCFPmode;
6246 return CCFPEmode;
6248 default:
6249 gcc_unreachable ();
6253 /* A compare with a shifted operand. Because of canonicalization, the
6254 comparison will have to be swapped when we emit the assembler. */
6255 if (GET_MODE (y) == SImode && GET_CODE (y) == REG
6256 && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
6257 || GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ROTATE
6258 || GET_CODE (x) == ROTATERT))
6259 return CC_SWPmode;
6261 /* This operation is performed swapped, but since we only rely on the Z
6262 flag we don't need an additional mode. */
6263 if (GET_MODE (y) == SImode && REG_P (y)
6264 && GET_CODE (x) == NEG
6265 && (op == EQ || op == NE))
6266 return CC_Zmode;
6268 /* This is a special case that is used by combine to allow a
6269 comparison of a shifted byte load to be split into a zero-extend
6270 followed by a comparison of the shifted integer (only valid for
6271 equalities and unsigned inequalities). */
6272 if (GET_MODE (x) == SImode
6273 && GET_CODE (x) == ASHIFT
6274 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 24
6275 && GET_CODE (XEXP (x, 0)) == SUBREG
6276 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == MEM
6277 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == QImode
6278 && (op == EQ || op == NE
6279 || op == GEU || op == GTU || op == LTU || op == LEU)
6280 && GET_CODE (y) == CONST_INT)
6281 return CC_Zmode;
6283 /* A construct for a conditional compare, if the false arm contains
6284 0, then both conditions must be true, otherwise either condition
6285 must be true. Not all conditions are possible, so CCmode is
6286 returned if it can't be done. */
6287 if (GET_CODE (x) == IF_THEN_ELSE
6288 && (XEXP (x, 2) == const0_rtx
6289 || XEXP (x, 2) == const1_rtx)
6290 && COMPARISON_P (XEXP (x, 0))
6291 && COMPARISON_P (XEXP (x, 1)))
6292 return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
6293 INTVAL (XEXP (x, 2)));
6295 /* Alternate canonicalizations of the above. These are somewhat cleaner. */
6296 if (GET_CODE (x) == AND
6297 && COMPARISON_P (XEXP (x, 0))
6298 && COMPARISON_P (XEXP (x, 1)))
6299 return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
6300 DOM_CC_X_AND_Y);
6302 if (GET_CODE (x) == IOR
6303 && COMPARISON_P (XEXP (x, 0))
6304 && COMPARISON_P (XEXP (x, 1)))
6305 return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
6306 DOM_CC_X_OR_Y);
6308 /* An operation (on Thumb) where we want to test for a single bit.
6309 This is done by shifting that bit up into the top bit of a
6310 scratch register; we can then branch on the sign bit. */
6311 if (TARGET_THUMB
6312 && GET_MODE (x) == SImode
6313 && (op == EQ || op == NE)
6314 && (GET_CODE (x) == ZERO_EXTRACT))
6315 return CC_Nmode;
6317 /* An operation that sets the condition codes as a side-effect, the
6318 V flag is not set correctly, so we can only use comparisons where
6319 this doesn't matter. (For LT and GE we can use "mi" and "pl"
6320 instead.) */
6321 if (GET_MODE (x) == SImode
6322 && y == const0_rtx
6323 && (op == EQ || op == NE || op == LT || op == GE)
6324 && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
6325 || GET_CODE (x) == AND || GET_CODE (x) == IOR
6326 || GET_CODE (x) == XOR || GET_CODE (x) == MULT
6327 || GET_CODE (x) == NOT || GET_CODE (x) == NEG
6328 || GET_CODE (x) == LSHIFTRT
6329 || GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
6330 || GET_CODE (x) == ROTATERT
6331 || (TARGET_ARM && GET_CODE (x) == ZERO_EXTRACT)))
6332 return CC_NOOVmode;
6334 if (GET_MODE (x) == QImode && (op == EQ || op == NE))
6335 return CC_Zmode;
6337 if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
6338 && GET_CODE (x) == PLUS
6339 && (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
6340 return CC_Cmode;
6342 return CCmode;
6345 /* X and Y are two things to compare using CODE. Emit the compare insn and
6346 return the rtx for register 0 in the proper mode. FP means this is a
6347 floating point compare: I don't think that it is needed on the arm. */
6349 arm_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
6351 enum machine_mode mode = SELECT_CC_MODE (code, x, y);
6352 rtx cc_reg = gen_rtx_REG (mode, CC_REGNUM);
6354 emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
6355 gen_rtx_COMPARE (mode, x, y)));
6357 return cc_reg;
6360 /* Generate a sequence of insns that will generate the correct return
6361 address mask depending on the physical architecture that the program
6362 is running on. */
6364 arm_gen_return_addr_mask (void)
6366 rtx reg = gen_reg_rtx (Pmode);
6368 emit_insn (gen_return_addr_mask (reg));
6369 return reg;
6372 void
6373 arm_reload_in_hi (rtx *operands)
6375 rtx ref = operands[1];
6376 rtx base, scratch;
6377 HOST_WIDE_INT offset = 0;
6379 if (GET_CODE (ref) == SUBREG)
6381 offset = SUBREG_BYTE (ref);
6382 ref = SUBREG_REG (ref);
6385 if (GET_CODE (ref) == REG)
6387 /* We have a pseudo which has been spilt onto the stack; there
6388 are two cases here: the first where there is a simple
6389 stack-slot replacement and a second where the stack-slot is
6390 out of range, or is used as a subreg. */
6391 if (reg_equiv_mem[REGNO (ref)])
6393 ref = reg_equiv_mem[REGNO (ref)];
6394 base = find_replacement (&XEXP (ref, 0));
6396 else
6397 /* The slot is out of range, or was dressed up in a SUBREG. */
6398 base = reg_equiv_address[REGNO (ref)];
6400 else
6401 base = find_replacement (&XEXP (ref, 0));
6403 /* Handle the case where the address is too complex to be offset by 1. */
6404 if (GET_CODE (base) == MINUS
6405 || (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
6407 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6409 emit_insn (gen_rtx_SET (VOIDmode, base_plus, base));
6410 base = base_plus;
6412 else if (GET_CODE (base) == PLUS)
6414 /* The addend must be CONST_INT, or we would have dealt with it above. */
6415 HOST_WIDE_INT hi, lo;
6417 offset += INTVAL (XEXP (base, 1));
6418 base = XEXP (base, 0);
6420 /* Rework the address into a legal sequence of insns. */
6421 /* Valid range for lo is -4095 -> 4095 */
6422 lo = (offset >= 0
6423 ? (offset & 0xfff)
6424 : -((-offset) & 0xfff));
6426 /* Corner case, if lo is the max offset then we would be out of range
6427 once we have added the additional 1 below, so bump the msb into the
6428 pre-loading insn(s). */
6429 if (lo == 4095)
6430 lo &= 0x7ff;
6432 hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
6433 ^ (HOST_WIDE_INT) 0x80000000)
6434 - (HOST_WIDE_INT) 0x80000000);
6436 gcc_assert (hi + lo == offset);
6438 if (hi != 0)
6440 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6442 /* Get the base address; addsi3 knows how to handle constants
6443 that require more than one insn. */
6444 emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
6445 base = base_plus;
6446 offset = lo;
6450 /* Operands[2] may overlap operands[0] (though it won't overlap
6451 operands[1]), that's why we asked for a DImode reg -- so we can
6452 use the bit that does not overlap. */
6453 if (REGNO (operands[2]) == REGNO (operands[0]))
6454 scratch = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6455 else
6456 scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
6458 emit_insn (gen_zero_extendqisi2 (scratch,
6459 gen_rtx_MEM (QImode,
6460 plus_constant (base,
6461 offset))));
6462 emit_insn (gen_zero_extendqisi2 (gen_rtx_SUBREG (SImode, operands[0], 0),
6463 gen_rtx_MEM (QImode,
6464 plus_constant (base,
6465 offset + 1))));
6466 if (!BYTES_BIG_ENDIAN)
6467 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_SUBREG (SImode, operands[0], 0),
6468 gen_rtx_IOR (SImode,
6469 gen_rtx_ASHIFT
6470 (SImode,
6471 gen_rtx_SUBREG (SImode, operands[0], 0),
6472 GEN_INT (8)),
6473 scratch)));
6474 else
6475 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_SUBREG (SImode, operands[0], 0),
6476 gen_rtx_IOR (SImode,
6477 gen_rtx_ASHIFT (SImode, scratch,
6478 GEN_INT (8)),
6479 gen_rtx_SUBREG (SImode, operands[0],
6480 0))));
6483 /* Handle storing a half-word to memory during reload by synthesizing as two
6484 byte stores. Take care not to clobber the input values until after we
6485 have moved them somewhere safe. This code assumes that if the DImode
6486 scratch in operands[2] overlaps either the input value or output address
6487 in some way, then that value must die in this insn (we absolutely need
6488 two scratch registers for some corner cases). */
6489 void
6490 arm_reload_out_hi (rtx *operands)
6492 rtx ref = operands[0];
6493 rtx outval = operands[1];
6494 rtx base, scratch;
6495 HOST_WIDE_INT offset = 0;
6497 if (GET_CODE (ref) == SUBREG)
6499 offset = SUBREG_BYTE (ref);
6500 ref = SUBREG_REG (ref);
6503 if (GET_CODE (ref) == REG)
6505 /* We have a pseudo which has been spilt onto the stack; there
6506 are two cases here: the first where there is a simple
6507 stack-slot replacement and a second where the stack-slot is
6508 out of range, or is used as a subreg. */
6509 if (reg_equiv_mem[REGNO (ref)])
6511 ref = reg_equiv_mem[REGNO (ref)];
6512 base = find_replacement (&XEXP (ref, 0));
6514 else
6515 /* The slot is out of range, or was dressed up in a SUBREG. */
6516 base = reg_equiv_address[REGNO (ref)];
6518 else
6519 base = find_replacement (&XEXP (ref, 0));
6521 scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
6523 /* Handle the case where the address is too complex to be offset by 1. */
6524 if (GET_CODE (base) == MINUS
6525 || (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
6527 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6529 /* Be careful not to destroy OUTVAL. */
6530 if (reg_overlap_mentioned_p (base_plus, outval))
6532 /* Updating base_plus might destroy outval, see if we can
6533 swap the scratch and base_plus. */
6534 if (!reg_overlap_mentioned_p (scratch, outval))
6536 rtx tmp = scratch;
6537 scratch = base_plus;
6538 base_plus = tmp;
6540 else
6542 rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
6544 /* Be conservative and copy OUTVAL into the scratch now,
6545 this should only be necessary if outval is a subreg
6546 of something larger than a word. */
6547 /* XXX Might this clobber base? I can't see how it can,
6548 since scratch is known to overlap with OUTVAL, and
6549 must be wider than a word. */
6550 emit_insn (gen_movhi (scratch_hi, outval));
6551 outval = scratch_hi;
6555 emit_insn (gen_rtx_SET (VOIDmode, base_plus, base));
6556 base = base_plus;
6558 else if (GET_CODE (base) == PLUS)
6560 /* The addend must be CONST_INT, or we would have dealt with it above. */
6561 HOST_WIDE_INT hi, lo;
6563 offset += INTVAL (XEXP (base, 1));
6564 base = XEXP (base, 0);
6566 /* Rework the address into a legal sequence of insns. */
6567 /* Valid range for lo is -4095 -> 4095 */
6568 lo = (offset >= 0
6569 ? (offset & 0xfff)
6570 : -((-offset) & 0xfff));
6572 /* Corner case, if lo is the max offset then we would be out of range
6573 once we have added the additional 1 below, so bump the msb into the
6574 pre-loading insn(s). */
6575 if (lo == 4095)
6576 lo &= 0x7ff;
6578 hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
6579 ^ (HOST_WIDE_INT) 0x80000000)
6580 - (HOST_WIDE_INT) 0x80000000);
6582 gcc_assert (hi + lo == offset);
6584 if (hi != 0)
6586 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6588 /* Be careful not to destroy OUTVAL. */
6589 if (reg_overlap_mentioned_p (base_plus, outval))
6591 /* Updating base_plus might destroy outval, see if we
6592 can swap the scratch and base_plus. */
6593 if (!reg_overlap_mentioned_p (scratch, outval))
6595 rtx tmp = scratch;
6596 scratch = base_plus;
6597 base_plus = tmp;
6599 else
6601 rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
6603 /* Be conservative and copy outval into scratch now,
6604 this should only be necessary if outval is a
6605 subreg of something larger than a word. */
6606 /* XXX Might this clobber base? I can't see how it
6607 can, since scratch is known to overlap with
6608 outval. */
6609 emit_insn (gen_movhi (scratch_hi, outval));
6610 outval = scratch_hi;
6614 /* Get the base address; addsi3 knows how to handle constants
6615 that require more than one insn. */
6616 emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
6617 base = base_plus;
6618 offset = lo;
6622 if (BYTES_BIG_ENDIAN)
6624 emit_insn (gen_movqi (gen_rtx_MEM (QImode,
6625 plus_constant (base, offset + 1)),
6626 gen_lowpart (QImode, outval)));
6627 emit_insn (gen_lshrsi3 (scratch,
6628 gen_rtx_SUBREG (SImode, outval, 0),
6629 GEN_INT (8)));
6630 emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
6631 gen_lowpart (QImode, scratch)));
6633 else
6635 emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
6636 gen_lowpart (QImode, outval)));
6637 emit_insn (gen_lshrsi3 (scratch,
6638 gen_rtx_SUBREG (SImode, outval, 0),
6639 GEN_INT (8)));
6640 emit_insn (gen_movqi (gen_rtx_MEM (QImode,
6641 plus_constant (base, offset + 1)),
6642 gen_lowpart (QImode, scratch)));
6646 /* Return true if a type must be passed in memory. For AAPCS, small aggregates
6647 (padded to the size of a word) should be passed in a register. */
6649 static bool
6650 arm_must_pass_in_stack (enum machine_mode mode, tree type)
6652 if (TARGET_AAPCS_BASED)
6653 return must_pass_in_stack_var_size (mode, type);
6654 else
6655 return must_pass_in_stack_var_size_or_pad (mode, type);
6659 /* For use by FUNCTION_ARG_PADDING (MODE, TYPE).
6660 Return true if an argument passed on the stack should be padded upwards,
6661 i.e. if the least-significant byte has useful data. */
6663 bool
6664 arm_pad_arg_upward (enum machine_mode mode, tree type)
6666 if (!TARGET_AAPCS_BASED)
6667 return DEFAULT_FUNCTION_ARG_PADDING(mode, type);
6669 if (type && BYTES_BIG_ENDIAN && INTEGRAL_TYPE_P (type))
6670 return false;
6672 return true;
6676 /* Similarly, for use by BLOCK_REG_PADDING (MODE, TYPE, FIRST).
6677 For non-AAPCS, return !BYTES_BIG_ENDIAN if the least significant
6678 byte of the register has useful data, and return the opposite if the
6679 most significant byte does.
6680 For AAPCS, small aggregates and small complex types are always padded
6681 upwards. */
6683 bool
6684 arm_pad_reg_upward (enum machine_mode mode ATTRIBUTE_UNUSED,
6685 tree type, int first ATTRIBUTE_UNUSED)
6687 if (TARGET_AAPCS_BASED
6688 && BYTES_BIG_ENDIAN
6689 && (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
6690 && int_size_in_bytes (type) <= 4)
6691 return true;
6693 /* Otherwise, use default padding. */
6694 return !BYTES_BIG_ENDIAN;
6699 /* Print a symbolic form of X to the debug file, F. */
6700 static void
6701 arm_print_value (FILE *f, rtx x)
6703 switch (GET_CODE (x))
6705 case CONST_INT:
6706 fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
6707 return;
6709 case CONST_DOUBLE:
6710 fprintf (f, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
6711 return;
6713 case CONST_VECTOR:
6715 int i;
6717 fprintf (f, "<");
6718 for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
6720 fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (CONST_VECTOR_ELT (x, i)));
6721 if (i < (CONST_VECTOR_NUNITS (x) - 1))
6722 fputc (',', f);
6724 fprintf (f, ">");
6726 return;
6728 case CONST_STRING:
6729 fprintf (f, "\"%s\"", XSTR (x, 0));
6730 return;
6732 case SYMBOL_REF:
6733 fprintf (f, "`%s'", XSTR (x, 0));
6734 return;
6736 case LABEL_REF:
6737 fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
6738 return;
6740 case CONST:
6741 arm_print_value (f, XEXP (x, 0));
6742 return;
6744 case PLUS:
6745 arm_print_value (f, XEXP (x, 0));
6746 fprintf (f, "+");
6747 arm_print_value (f, XEXP (x, 1));
6748 return;
6750 case PC:
6751 fprintf (f, "pc");
6752 return;
6754 default:
6755 fprintf (f, "????");
6756 return;
6760 /* Routines for manipulation of the constant pool. */
6762 /* Arm instructions cannot load a large constant directly into a
6763 register; they have to come from a pc relative load. The constant
6764 must therefore be placed in the addressable range of the pc
6765 relative load. Depending on the precise pc relative load
6766 instruction the range is somewhere between 256 bytes and 4k. This
6767 means that we often have to dump a constant inside a function, and
6768 generate code to branch around it.
6770 It is important to minimize this, since the branches will slow
6771 things down and make the code larger.
6773 Normally we can hide the table after an existing unconditional
6774 branch so that there is no interruption of the flow, but in the
6775 worst case the code looks like this:
6777 ldr rn, L1
6779 b L2
6780 align
6781 L1: .long value
6785 ldr rn, L3
6787 b L4
6788 align
6789 L3: .long value
6793 We fix this by performing a scan after scheduling, which notices
6794 which instructions need to have their operands fetched from the
6795 constant table and builds the table.
6797 The algorithm starts by building a table of all the constants that
6798 need fixing up and all the natural barriers in the function (places
6799 where a constant table can be dropped without breaking the flow).
6800 For each fixup we note how far the pc-relative replacement will be
6801 able to reach and the offset of the instruction into the function.
6803 Having built the table we then group the fixes together to form
6804 tables that are as large as possible (subject to addressing
6805 constraints) and emit each table of constants after the last
6806 barrier that is within range of all the instructions in the group.
6807 If a group does not contain a barrier, then we forcibly create one
6808 by inserting a jump instruction into the flow. Once the table has
6809 been inserted, the insns are then modified to reference the
6810 relevant entry in the pool.
6812 Possible enhancements to the algorithm (not implemented) are:
6814 1) For some processors and object formats, there may be benefit in
6815 aligning the pools to the start of cache lines; this alignment
6816 would need to be taken into account when calculating addressability
6817 of a pool. */
6819 /* These typedefs are located at the start of this file, so that
6820 they can be used in the prototypes there. This comment is to
6821 remind readers of that fact so that the following structures
6822 can be understood more easily.
6824 typedef struct minipool_node Mnode;
6825 typedef struct minipool_fixup Mfix; */
6827 struct minipool_node
6829 /* Doubly linked chain of entries. */
6830 Mnode * next;
6831 Mnode * prev;
6832 /* The maximum offset into the code that this entry can be placed. While
6833 pushing fixes for forward references, all entries are sorted in order
6834 of increasing max_address. */
6835 HOST_WIDE_INT max_address;
6836 /* Similarly for an entry inserted for a backwards ref. */
6837 HOST_WIDE_INT min_address;
6838 /* The number of fixes referencing this entry. This can become zero
6839 if we "unpush" an entry. In this case we ignore the entry when we
6840 come to emit the code. */
6841 int refcount;
6842 /* The offset from the start of the minipool. */
6843 HOST_WIDE_INT offset;
6844 /* The value in table. */
6845 rtx value;
6846 /* The mode of value. */
6847 enum machine_mode mode;
6848 /* The size of the value. With iWMMXt enabled
6849 sizes > 4 also imply an alignment of 8-bytes. */
6850 int fix_size;
6853 struct minipool_fixup
6855 Mfix * next;
6856 rtx insn;
6857 HOST_WIDE_INT address;
6858 rtx * loc;
6859 enum machine_mode mode;
6860 int fix_size;
6861 rtx value;
6862 Mnode * minipool;
6863 HOST_WIDE_INT forwards;
6864 HOST_WIDE_INT backwards;
6867 /* Fixes less than a word need padding out to a word boundary. */
6868 #define MINIPOOL_FIX_SIZE(mode) \
6869 (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)
6871 static Mnode * minipool_vector_head;
6872 static Mnode * minipool_vector_tail;
6873 static rtx minipool_vector_label;
6875 /* The linked list of all minipool fixes required for this function. */
6876 Mfix * minipool_fix_head;
6877 Mfix * minipool_fix_tail;
6878 /* The fix entry for the current minipool, once it has been placed. */
6879 Mfix * minipool_barrier;
6881 /* Determines if INSN is the start of a jump table. Returns the end
6882 of the TABLE or NULL_RTX. */
6883 static rtx
6884 is_jump_table (rtx insn)
6886 rtx table;
6888 if (GET_CODE (insn) == JUMP_INSN
6889 && JUMP_LABEL (insn) != NULL
6890 && ((table = next_real_insn (JUMP_LABEL (insn)))
6891 == next_real_insn (insn))
6892 && table != NULL
6893 && GET_CODE (table) == JUMP_INSN
6894 && (GET_CODE (PATTERN (table)) == ADDR_VEC
6895 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
6896 return table;
6898 return NULL_RTX;
6901 #ifndef JUMP_TABLES_IN_TEXT_SECTION
6902 #define JUMP_TABLES_IN_TEXT_SECTION 0
6903 #endif
6905 static HOST_WIDE_INT
6906 get_jump_table_size (rtx insn)
6908 /* ADDR_VECs only take room if read-only data does into the text
6909 section. */
6910 if (JUMP_TABLES_IN_TEXT_SECTION
6911 #if !defined(READONLY_DATA_SECTION) && !defined(READONLY_DATA_SECTION_ASM_OP)
6912 || 1
6913 #endif
6916 rtx body = PATTERN (insn);
6917 int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
6919 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt);
6922 return 0;
6925 /* Move a minipool fix MP from its current location to before MAX_MP.
6926 If MAX_MP is NULL, then MP doesn't need moving, but the addressing
6927 constraints may need updating. */
6928 static Mnode *
6929 move_minipool_fix_forward_ref (Mnode *mp, Mnode *max_mp,
6930 HOST_WIDE_INT max_address)
6932 /* The code below assumes these are different. */
6933 gcc_assert (mp != max_mp);
6935 if (max_mp == NULL)
6937 if (max_address < mp->max_address)
6938 mp->max_address = max_address;
6940 else
6942 if (max_address > max_mp->max_address - mp->fix_size)
6943 mp->max_address = max_mp->max_address - mp->fix_size;
6944 else
6945 mp->max_address = max_address;
6947 /* Unlink MP from its current position. Since max_mp is non-null,
6948 mp->prev must be non-null. */
6949 mp->prev->next = mp->next;
6950 if (mp->next != NULL)
6951 mp->next->prev = mp->prev;
6952 else
6953 minipool_vector_tail = mp->prev;
6955 /* Re-insert it before MAX_MP. */
6956 mp->next = max_mp;
6957 mp->prev = max_mp->prev;
6958 max_mp->prev = mp;
6960 if (mp->prev != NULL)
6961 mp->prev->next = mp;
6962 else
6963 minipool_vector_head = mp;
6966 /* Save the new entry. */
6967 max_mp = mp;
6969 /* Scan over the preceding entries and adjust their addresses as
6970 required. */
6971 while (mp->prev != NULL
6972 && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
6974 mp->prev->max_address = mp->max_address - mp->prev->fix_size;
6975 mp = mp->prev;
6978 return max_mp;
6981 /* Add a constant to the minipool for a forward reference. Returns the
6982 node added or NULL if the constant will not fit in this pool. */
6983 static Mnode *
6984 add_minipool_forward_ref (Mfix *fix)
6986 /* If set, max_mp is the first pool_entry that has a lower
6987 constraint than the one we are trying to add. */
6988 Mnode * max_mp = NULL;
6989 HOST_WIDE_INT max_address = fix->address + fix->forwards;
6990 Mnode * mp;
6992 /* If this fix's address is greater than the address of the first
6993 entry, then we can't put the fix in this pool. We subtract the
6994 size of the current fix to ensure that if the table is fully
6995 packed we still have enough room to insert this value by shuffling
6996 the other fixes forwards. */
6997 if (minipool_vector_head &&
6998 fix->address >= minipool_vector_head->max_address - fix->fix_size)
6999 return NULL;
7001 /* Scan the pool to see if a constant with the same value has
7002 already been added. While we are doing this, also note the
7003 location where we must insert the constant if it doesn't already
7004 exist. */
7005 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
7007 if (GET_CODE (fix->value) == GET_CODE (mp->value)
7008 && fix->mode == mp->mode
7009 && (GET_CODE (fix->value) != CODE_LABEL
7010 || (CODE_LABEL_NUMBER (fix->value)
7011 == CODE_LABEL_NUMBER (mp->value)))
7012 && rtx_equal_p (fix->value, mp->value))
7014 /* More than one fix references this entry. */
7015 mp->refcount++;
7016 return move_minipool_fix_forward_ref (mp, max_mp, max_address);
7019 /* Note the insertion point if necessary. */
7020 if (max_mp == NULL
7021 && mp->max_address > max_address)
7022 max_mp = mp;
7024 /* If we are inserting an 8-bytes aligned quantity and
7025 we have not already found an insertion point, then
7026 make sure that all such 8-byte aligned quantities are
7027 placed at the start of the pool. */
7028 if (ARM_DOUBLEWORD_ALIGN
7029 && max_mp == NULL
7030 && fix->fix_size == 8
7031 && mp->fix_size != 8)
7033 max_mp = mp;
7034 max_address = mp->max_address;
7038 /* The value is not currently in the minipool, so we need to create
7039 a new entry for it. If MAX_MP is NULL, the entry will be put on
7040 the end of the list since the placement is less constrained than
7041 any existing entry. Otherwise, we insert the new fix before
7042 MAX_MP and, if necessary, adjust the constraints on the other
7043 entries. */
7044 mp = xmalloc (sizeof (* mp));
7045 mp->fix_size = fix->fix_size;
7046 mp->mode = fix->mode;
7047 mp->value = fix->value;
7048 mp->refcount = 1;
7049 /* Not yet required for a backwards ref. */
7050 mp->min_address = -65536;
7052 if (max_mp == NULL)
7054 mp->max_address = max_address;
7055 mp->next = NULL;
7056 mp->prev = minipool_vector_tail;
7058 if (mp->prev == NULL)
7060 minipool_vector_head = mp;
7061 minipool_vector_label = gen_label_rtx ();
7063 else
7064 mp->prev->next = mp;
7066 minipool_vector_tail = mp;
7068 else
7070 if (max_address > max_mp->max_address - mp->fix_size)
7071 mp->max_address = max_mp->max_address - mp->fix_size;
7072 else
7073 mp->max_address = max_address;
7075 mp->next = max_mp;
7076 mp->prev = max_mp->prev;
7077 max_mp->prev = mp;
7078 if (mp->prev != NULL)
7079 mp->prev->next = mp;
7080 else
7081 minipool_vector_head = mp;
7084 /* Save the new entry. */
7085 max_mp = mp;
7087 /* Scan over the preceding entries and adjust their addresses as
7088 required. */
7089 while (mp->prev != NULL
7090 && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
7092 mp->prev->max_address = mp->max_address - mp->prev->fix_size;
7093 mp = mp->prev;
7096 return max_mp;
7099 static Mnode *
7100 move_minipool_fix_backward_ref (Mnode *mp, Mnode *min_mp,
7101 HOST_WIDE_INT min_address)
7103 HOST_WIDE_INT offset;
7105 /* The code below assumes these are different. */
7106 gcc_assert (mp != min_mp);
7108 if (min_mp == NULL)
7110 if (min_address > mp->min_address)
7111 mp->min_address = min_address;
7113 else
7115 /* We will adjust this below if it is too loose. */
7116 mp->min_address = min_address;
7118 /* Unlink MP from its current position. Since min_mp is non-null,
7119 mp->next must be non-null. */
7120 mp->next->prev = mp->prev;
7121 if (mp->prev != NULL)
7122 mp->prev->next = mp->next;
7123 else
7124 minipool_vector_head = mp->next;
7126 /* Reinsert it after MIN_MP. */
7127 mp->prev = min_mp;
7128 mp->next = min_mp->next;
7129 min_mp->next = mp;
7130 if (mp->next != NULL)
7131 mp->next->prev = mp;
7132 else
7133 minipool_vector_tail = mp;
7136 min_mp = mp;
7138 offset = 0;
7139 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
7141 mp->offset = offset;
7142 if (mp->refcount > 0)
7143 offset += mp->fix_size;
7145 if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
7146 mp->next->min_address = mp->min_address + mp->fix_size;
7149 return min_mp;
7152 /* Add a constant to the minipool for a backward reference. Returns the
7153 node added or NULL if the constant will not fit in this pool.
7155 Note that the code for insertion for a backwards reference can be
7156 somewhat confusing because the calculated offsets for each fix do
7157 not take into account the size of the pool (which is still under
7158 construction. */
7159 static Mnode *
7160 add_minipool_backward_ref (Mfix *fix)
7162 /* If set, min_mp is the last pool_entry that has a lower constraint
7163 than the one we are trying to add. */
7164 Mnode *min_mp = NULL;
7165 /* This can be negative, since it is only a constraint. */
7166 HOST_WIDE_INT min_address = fix->address - fix->backwards;
7167 Mnode *mp;
7169 /* If we can't reach the current pool from this insn, or if we can't
7170 insert this entry at the end of the pool without pushing other
7171 fixes out of range, then we don't try. This ensures that we
7172 can't fail later on. */
7173 if (min_address >= minipool_barrier->address
7174 || (minipool_vector_tail->min_address + fix->fix_size
7175 >= minipool_barrier->address))
7176 return NULL;
7178 /* Scan the pool to see if a constant with the same value has
7179 already been added. While we are doing this, also note the
7180 location where we must insert the constant if it doesn't already
7181 exist. */
7182 for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
7184 if (GET_CODE (fix->value) == GET_CODE (mp->value)
7185 && fix->mode == mp->mode
7186 && (GET_CODE (fix->value) != CODE_LABEL
7187 || (CODE_LABEL_NUMBER (fix->value)
7188 == CODE_LABEL_NUMBER (mp->value)))
7189 && rtx_equal_p (fix->value, mp->value)
7190 /* Check that there is enough slack to move this entry to the
7191 end of the table (this is conservative). */
7192 && (mp->max_address
7193 > (minipool_barrier->address
7194 + minipool_vector_tail->offset
7195 + minipool_vector_tail->fix_size)))
7197 mp->refcount++;
7198 return move_minipool_fix_backward_ref (mp, min_mp, min_address);
7201 if (min_mp != NULL)
7202 mp->min_address += fix->fix_size;
7203 else
7205 /* Note the insertion point if necessary. */
7206 if (mp->min_address < min_address)
7208 /* For now, we do not allow the insertion of 8-byte alignment
7209 requiring nodes anywhere but at the start of the pool. */
7210 if (ARM_DOUBLEWORD_ALIGN
7211 && fix->fix_size == 8 && mp->fix_size != 8)
7212 return NULL;
7213 else
7214 min_mp = mp;
7216 else if (mp->max_address
7217 < minipool_barrier->address + mp->offset + fix->fix_size)
7219 /* Inserting before this entry would push the fix beyond
7220 its maximum address (which can happen if we have
7221 re-located a forwards fix); force the new fix to come
7222 after it. */
7223 min_mp = mp;
7224 min_address = mp->min_address + fix->fix_size;
7226 /* If we are inserting an 8-bytes aligned quantity and
7227 we have not already found an insertion point, then
7228 make sure that all such 8-byte aligned quantities are
7229 placed at the start of the pool. */
7230 else if (ARM_DOUBLEWORD_ALIGN
7231 && min_mp == NULL
7232 && fix->fix_size == 8
7233 && mp->fix_size < 8)
7235 min_mp = mp;
7236 min_address = mp->min_address + fix->fix_size;
7241 /* We need to create a new entry. */
7242 mp = xmalloc (sizeof (* mp));
7243 mp->fix_size = fix->fix_size;
7244 mp->mode = fix->mode;
7245 mp->value = fix->value;
7246 mp->refcount = 1;
7247 mp->max_address = minipool_barrier->address + 65536;
7249 mp->min_address = min_address;
7251 if (min_mp == NULL)
7253 mp->prev = NULL;
7254 mp->next = minipool_vector_head;
7256 if (mp->next == NULL)
7258 minipool_vector_tail = mp;
7259 minipool_vector_label = gen_label_rtx ();
7261 else
7262 mp->next->prev = mp;
7264 minipool_vector_head = mp;
7266 else
7268 mp->next = min_mp->next;
7269 mp->prev = min_mp;
7270 min_mp->next = mp;
7272 if (mp->next != NULL)
7273 mp->next->prev = mp;
7274 else
7275 minipool_vector_tail = mp;
7278 /* Save the new entry. */
7279 min_mp = mp;
7281 if (mp->prev)
7282 mp = mp->prev;
7283 else
7284 mp->offset = 0;
7286 /* Scan over the following entries and adjust their offsets. */
7287 while (mp->next != NULL)
7289 if (mp->next->min_address < mp->min_address + mp->fix_size)
7290 mp->next->min_address = mp->min_address + mp->fix_size;
7292 if (mp->refcount)
7293 mp->next->offset = mp->offset + mp->fix_size;
7294 else
7295 mp->next->offset = mp->offset;
7297 mp = mp->next;
7300 return min_mp;
7303 static void
7304 assign_minipool_offsets (Mfix *barrier)
7306 HOST_WIDE_INT offset = 0;
7307 Mnode *mp;
7309 minipool_barrier = barrier;
7311 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
7313 mp->offset = offset;
7315 if (mp->refcount > 0)
7316 offset += mp->fix_size;
7320 /* Output the literal table */
7321 static void
7322 dump_minipool (rtx scan)
7324 Mnode * mp;
7325 Mnode * nmp;
7326 int align64 = 0;
7328 if (ARM_DOUBLEWORD_ALIGN)
7329 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
7330 if (mp->refcount > 0 && mp->fix_size == 8)
7332 align64 = 1;
7333 break;
7336 if (dump_file)
7337 fprintf (dump_file,
7338 ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
7339 INSN_UID (scan), (unsigned long) minipool_barrier->address, align64 ? 8 : 4);
7341 scan = emit_label_after (gen_label_rtx (), scan);
7342 scan = emit_insn_after (align64 ? gen_align_8 () : gen_align_4 (), scan);
7343 scan = emit_label_after (minipool_vector_label, scan);
7345 for (mp = minipool_vector_head; mp != NULL; mp = nmp)
7347 if (mp->refcount > 0)
7349 if (dump_file)
7351 fprintf (dump_file,
7352 ";; Offset %u, min %ld, max %ld ",
7353 (unsigned) mp->offset, (unsigned long) mp->min_address,
7354 (unsigned long) mp->max_address);
7355 arm_print_value (dump_file, mp->value);
7356 fputc ('\n', dump_file);
7359 switch (mp->fix_size)
7361 #ifdef HAVE_consttable_1
7362 case 1:
7363 scan = emit_insn_after (gen_consttable_1 (mp->value), scan);
7364 break;
7366 #endif
7367 #ifdef HAVE_consttable_2
7368 case 2:
7369 scan = emit_insn_after (gen_consttable_2 (mp->value), scan);
7370 break;
7372 #endif
7373 #ifdef HAVE_consttable_4
7374 case 4:
7375 scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
7376 break;
7378 #endif
7379 #ifdef HAVE_consttable_8
7380 case 8:
7381 scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
7382 break;
7384 #endif
7385 default:
7386 gcc_unreachable ();
7390 nmp = mp->next;
7391 free (mp);
7394 minipool_vector_head = minipool_vector_tail = NULL;
7395 scan = emit_insn_after (gen_consttable_end (), scan);
7396 scan = emit_barrier_after (scan);
7399 /* Return the cost of forcibly inserting a barrier after INSN. */
7400 static int
7401 arm_barrier_cost (rtx insn)
7403 /* Basing the location of the pool on the loop depth is preferable,
7404 but at the moment, the basic block information seems to be
7405 corrupt by this stage of the compilation. */
7406 int base_cost = 50;
7407 rtx next = next_nonnote_insn (insn);
7409 if (next != NULL && GET_CODE (next) == CODE_LABEL)
7410 base_cost -= 20;
7412 switch (GET_CODE (insn))
7414 case CODE_LABEL:
7415 /* It will always be better to place the table before the label, rather
7416 than after it. */
7417 return 50;
7419 case INSN:
7420 case CALL_INSN:
7421 return base_cost;
7423 case JUMP_INSN:
7424 return base_cost - 10;
7426 default:
7427 return base_cost + 10;
7431 /* Find the best place in the insn stream in the range
7432 (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
7433 Create the barrier by inserting a jump and add a new fix entry for
7434 it. */
7435 static Mfix *
7436 create_fix_barrier (Mfix *fix, HOST_WIDE_INT max_address)
7438 HOST_WIDE_INT count = 0;
7439 rtx barrier;
7440 rtx from = fix->insn;
7441 rtx selected = from;
7442 int selected_cost;
7443 HOST_WIDE_INT selected_address;
7444 Mfix * new_fix;
7445 HOST_WIDE_INT max_count = max_address - fix->address;
7446 rtx label = gen_label_rtx ();
7448 selected_cost = arm_barrier_cost (from);
7449 selected_address = fix->address;
7451 while (from && count < max_count)
7453 rtx tmp;
7454 int new_cost;
7456 /* This code shouldn't have been called if there was a natural barrier
7457 within range. */
7458 gcc_assert (GET_CODE (from) != BARRIER);
7460 /* Count the length of this insn. */
7461 count += get_attr_length (from);
7463 /* If there is a jump table, add its length. */
7464 tmp = is_jump_table (from);
7465 if (tmp != NULL)
7467 count += get_jump_table_size (tmp);
7469 /* Jump tables aren't in a basic block, so base the cost on
7470 the dispatch insn. If we select this location, we will
7471 still put the pool after the table. */
7472 new_cost = arm_barrier_cost (from);
7474 if (count < max_count && new_cost <= selected_cost)
7476 selected = tmp;
7477 selected_cost = new_cost;
7478 selected_address = fix->address + count;
7481 /* Continue after the dispatch table. */
7482 from = NEXT_INSN (tmp);
7483 continue;
7486 new_cost = arm_barrier_cost (from);
7488 if (count < max_count && new_cost <= selected_cost)
7490 selected = from;
7491 selected_cost = new_cost;
7492 selected_address = fix->address + count;
7495 from = NEXT_INSN (from);
7498 /* Create a new JUMP_INSN that branches around a barrier. */
7499 from = emit_jump_insn_after (gen_jump (label), selected);
7500 JUMP_LABEL (from) = label;
7501 barrier = emit_barrier_after (from);
7502 emit_label_after (label, barrier);
7504 /* Create a minipool barrier entry for the new barrier. */
7505 new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* new_fix));
7506 new_fix->insn = barrier;
7507 new_fix->address = selected_address;
7508 new_fix->next = fix->next;
7509 fix->next = new_fix;
7511 return new_fix;
7514 /* Record that there is a natural barrier in the insn stream at
7515 ADDRESS. */
7516 static void
7517 push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
7519 Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
7521 fix->insn = insn;
7522 fix->address = address;
7524 fix->next = NULL;
7525 if (minipool_fix_head != NULL)
7526 minipool_fix_tail->next = fix;
7527 else
7528 minipool_fix_head = fix;
7530 minipool_fix_tail = fix;
7533 /* Record INSN, which will need fixing up to load a value from the
7534 minipool. ADDRESS is the offset of the insn since the start of the
7535 function; LOC is a pointer to the part of the insn which requires
7536 fixing; VALUE is the constant that must be loaded, which is of type
7537 MODE. */
7538 static void
7539 push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx *loc,
7540 enum machine_mode mode, rtx value)
7542 Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
7544 #ifdef AOF_ASSEMBLER
7545 /* PIC symbol references need to be converted into offsets into the
7546 based area. */
7547 /* XXX This shouldn't be done here. */
7548 if (flag_pic && GET_CODE (value) == SYMBOL_REF)
7549 value = aof_pic_entry (value);
7550 #endif /* AOF_ASSEMBLER */
7552 fix->insn = insn;
7553 fix->address = address;
7554 fix->loc = loc;
7555 fix->mode = mode;
7556 fix->fix_size = MINIPOOL_FIX_SIZE (mode);
7557 fix->value = value;
7558 fix->forwards = get_attr_pool_range (insn);
7559 fix->backwards = get_attr_neg_pool_range (insn);
7560 fix->minipool = NULL;
7562 /* If an insn doesn't have a range defined for it, then it isn't
7563 expecting to be reworked by this code. Better to stop now than
7564 to generate duff assembly code. */
7565 gcc_assert (fix->forwards || fix->backwards);
7567 /* With AAPCS/iWMMXt enabled, the pool is aligned to an 8-byte boundary.
7568 So there might be an empty word before the start of the pool.
7569 Hence we reduce the forward range by 4 to allow for this
7570 possibility. */
7571 if (ARM_DOUBLEWORD_ALIGN && fix->fix_size == 8)
7572 fix->forwards -= 4;
7574 if (dump_file)
7576 fprintf (dump_file,
7577 ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
7578 GET_MODE_NAME (mode),
7579 INSN_UID (insn), (unsigned long) address,
7580 -1 * (long)fix->backwards, (long)fix->forwards);
7581 arm_print_value (dump_file, fix->value);
7582 fprintf (dump_file, "\n");
7585 /* Add it to the chain of fixes. */
7586 fix->next = NULL;
7588 if (minipool_fix_head != NULL)
7589 minipool_fix_tail->next = fix;
7590 else
7591 minipool_fix_head = fix;
7593 minipool_fix_tail = fix;
7596 /* Return the cost of synthesizing a 64-bit constant VAL inline.
7597 Returns the number of insns needed, or 99 if we don't know how to
7598 do it. */
7600 arm_const_double_inline_cost (rtx val)
7602 rtx lowpart, highpart;
7603 enum machine_mode mode;
7605 mode = GET_MODE (val);
7607 if (mode == VOIDmode)
7608 mode = DImode;
7610 gcc_assert (GET_MODE_SIZE (mode) == 8);
7612 lowpart = gen_lowpart (SImode, val);
7613 highpart = gen_highpart_mode (SImode, mode, val);
7615 gcc_assert (GET_CODE (lowpart) == CONST_INT);
7616 gcc_assert (GET_CODE (highpart) == CONST_INT);
7618 return (arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (lowpart),
7619 NULL_RTX, NULL_RTX, 0, 0)
7620 + arm_gen_constant (SET, SImode, NULL_RTX, INTVAL (highpart),
7621 NULL_RTX, NULL_RTX, 0, 0));
7624 /* Return true if it is worthwhile to split a 64-bit constant into two
7625 32-bit operations. This is the case if optimizing for size, or
7626 if we have load delay slots, or if one 32-bit part can be done with
7627 a single data operation. */
7628 bool
7629 arm_const_double_by_parts (rtx val)
7631 enum machine_mode mode = GET_MODE (val);
7632 rtx part;
7634 if (optimize_size || arm_ld_sched)
7635 return true;
7637 if (mode == VOIDmode)
7638 mode = DImode;
7640 part = gen_highpart_mode (SImode, mode, val);
7642 gcc_assert (GET_CODE (part) == CONST_INT);
7644 if (const_ok_for_arm (INTVAL (part))
7645 || const_ok_for_arm (~INTVAL (part)))
7646 return true;
7648 part = gen_lowpart (SImode, val);
7650 gcc_assert (GET_CODE (part) == CONST_INT);
7652 if (const_ok_for_arm (INTVAL (part))
7653 || const_ok_for_arm (~INTVAL (part)))
7654 return true;
7656 return false;
7659 /* Scan INSN and note any of its operands that need fixing.
7660 If DO_PUSHES is false we do not actually push any of the fixups
7661 needed. The function returns TRUE if any fixups were needed/pushed.
7662 This is used by arm_memory_load_p() which needs to know about loads
7663 of constants that will be converted into minipool loads. */
7664 static bool
7665 note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
7667 bool result = false;
7668 int opno;
7670 extract_insn (insn);
7672 if (!constrain_operands (1))
7673 fatal_insn_not_found (insn);
7675 if (recog_data.n_alternatives == 0)
7676 return false;
7678 /* Fill in recog_op_alt with information about the constraints of
7679 this insn. */
7680 preprocess_constraints ();
7682 for (opno = 0; opno < recog_data.n_operands; opno++)
7684 /* Things we need to fix can only occur in inputs. */
7685 if (recog_data.operand_type[opno] != OP_IN)
7686 continue;
7688 /* If this alternative is a memory reference, then any mention
7689 of constants in this alternative is really to fool reload
7690 into allowing us to accept one there. We need to fix them up
7691 now so that we output the right code. */
7692 if (recog_op_alt[opno][which_alternative].memory_ok)
7694 rtx op = recog_data.operand[opno];
7696 if (CONSTANT_P (op))
7698 if (do_pushes)
7699 push_minipool_fix (insn, address, recog_data.operand_loc[opno],
7700 recog_data.operand_mode[opno], op);
7701 result = true;
7703 else if (GET_CODE (op) == MEM
7704 && GET_CODE (XEXP (op, 0)) == SYMBOL_REF
7705 && CONSTANT_POOL_ADDRESS_P (XEXP (op, 0)))
7707 if (do_pushes)
7709 rtx cop = avoid_constant_pool_reference (op);
7711 /* Casting the address of something to a mode narrower
7712 than a word can cause avoid_constant_pool_reference()
7713 to return the pool reference itself. That's no good to
7714 us here. Lets just hope that we can use the
7715 constant pool value directly. */
7716 if (op == cop)
7717 cop = get_pool_constant (XEXP (op, 0));
7719 push_minipool_fix (insn, address,
7720 recog_data.operand_loc[opno],
7721 recog_data.operand_mode[opno], cop);
7724 result = true;
7729 return result;
7732 /* Gcc puts the pool in the wrong place for ARM, since we can only
7733 load addresses a limited distance around the pc. We do some
7734 special munging to move the constant pool values to the correct
7735 point in the code. */
7736 static void
7737 arm_reorg (void)
7739 rtx insn;
7740 HOST_WIDE_INT address = 0;
7741 Mfix * fix;
7743 minipool_fix_head = minipool_fix_tail = NULL;
7745 /* The first insn must always be a note, or the code below won't
7746 scan it properly. */
7747 insn = get_insns ();
7748 gcc_assert (GET_CODE (insn) == NOTE);
7750 /* Scan all the insns and record the operands that will need fixing. */
7751 for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
7753 if (TARGET_CIRRUS_FIX_INVALID_INSNS
7754 && (arm_cirrus_insn_p (insn)
7755 || GET_CODE (insn) == JUMP_INSN
7756 || arm_memory_load_p (insn)))
7757 cirrus_reorg (insn);
7759 if (GET_CODE (insn) == BARRIER)
7760 push_minipool_barrier (insn, address);
7761 else if (INSN_P (insn))
7763 rtx table;
7765 note_invalid_constants (insn, address, true);
7766 address += get_attr_length (insn);
7768 /* If the insn is a vector jump, add the size of the table
7769 and skip the table. */
7770 if ((table = is_jump_table (insn)) != NULL)
7772 address += get_jump_table_size (table);
7773 insn = table;
7778 fix = minipool_fix_head;
7780 /* Now scan the fixups and perform the required changes. */
7781 while (fix)
7783 Mfix * ftmp;
7784 Mfix * fdel;
7785 Mfix * last_added_fix;
7786 Mfix * last_barrier = NULL;
7787 Mfix * this_fix;
7789 /* Skip any further barriers before the next fix. */
7790 while (fix && GET_CODE (fix->insn) == BARRIER)
7791 fix = fix->next;
7793 /* No more fixes. */
7794 if (fix == NULL)
7795 break;
7797 last_added_fix = NULL;
7799 for (ftmp = fix; ftmp; ftmp = ftmp->next)
7801 if (GET_CODE (ftmp->insn) == BARRIER)
7803 if (ftmp->address >= minipool_vector_head->max_address)
7804 break;
7806 last_barrier = ftmp;
7808 else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
7809 break;
7811 last_added_fix = ftmp; /* Keep track of the last fix added. */
7814 /* If we found a barrier, drop back to that; any fixes that we
7815 could have reached but come after the barrier will now go in
7816 the next mini-pool. */
7817 if (last_barrier != NULL)
7819 /* Reduce the refcount for those fixes that won't go into this
7820 pool after all. */
7821 for (fdel = last_barrier->next;
7822 fdel && fdel != ftmp;
7823 fdel = fdel->next)
7825 fdel->minipool->refcount--;
7826 fdel->minipool = NULL;
7829 ftmp = last_barrier;
7831 else
7833 /* ftmp is first fix that we can't fit into this pool and
7834 there no natural barriers that we could use. Insert a
7835 new barrier in the code somewhere between the previous
7836 fix and this one, and arrange to jump around it. */
7837 HOST_WIDE_INT max_address;
7839 /* The last item on the list of fixes must be a barrier, so
7840 we can never run off the end of the list of fixes without
7841 last_barrier being set. */
7842 gcc_assert (ftmp);
7844 max_address = minipool_vector_head->max_address;
7845 /* Check that there isn't another fix that is in range that
7846 we couldn't fit into this pool because the pool was
7847 already too large: we need to put the pool before such an
7848 instruction. */
7849 if (ftmp->address < max_address)
7850 max_address = ftmp->address;
7852 last_barrier = create_fix_barrier (last_added_fix, max_address);
7855 assign_minipool_offsets (last_barrier);
7857 while (ftmp)
7859 if (GET_CODE (ftmp->insn) != BARRIER
7860 && ((ftmp->minipool = add_minipool_backward_ref (ftmp))
7861 == NULL))
7862 break;
7864 ftmp = ftmp->next;
7867 /* Scan over the fixes we have identified for this pool, fixing them
7868 up and adding the constants to the pool itself. */
7869 for (this_fix = fix; this_fix && ftmp != this_fix;
7870 this_fix = this_fix->next)
7871 if (GET_CODE (this_fix->insn) != BARRIER)
7873 rtx addr
7874 = plus_constant (gen_rtx_LABEL_REF (VOIDmode,
7875 minipool_vector_label),
7876 this_fix->minipool->offset);
7877 *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
7880 dump_minipool (last_barrier->insn);
7881 fix = ftmp;
7884 /* From now on we must synthesize any constants that we can't handle
7885 directly. This can happen if the RTL gets split during final
7886 instruction generation. */
7887 after_arm_reorg = 1;
7889 /* Free the minipool memory. */
7890 obstack_free (&minipool_obstack, minipool_startobj);
7893 /* Routines to output assembly language. */
7895 /* If the rtx is the correct value then return the string of the number.
7896 In this way we can ensure that valid double constants are generated even
7897 when cross compiling. */
7898 const char *
7899 fp_immediate_constant (rtx x)
7901 REAL_VALUE_TYPE r;
7902 int i;
7904 if (!fp_consts_inited)
7905 init_fp_table ();
7907 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
7908 for (i = 0; i < 8; i++)
7909 if (REAL_VALUES_EQUAL (r, values_fp[i]))
7910 return strings_fp[i];
7912 gcc_unreachable ();
7915 /* As for fp_immediate_constant, but value is passed directly, not in rtx. */
7916 static const char *
7917 fp_const_from_val (REAL_VALUE_TYPE *r)
7919 int i;
7921 if (!fp_consts_inited)
7922 init_fp_table ();
7924 for (i = 0; i < 8; i++)
7925 if (REAL_VALUES_EQUAL (*r, values_fp[i]))
7926 return strings_fp[i];
7928 gcc_unreachable ();
7931 /* Output the operands of a LDM/STM instruction to STREAM.
7932 MASK is the ARM register set mask of which only bits 0-15 are important.
7933 REG is the base register, either the frame pointer or the stack pointer,
7934 INSTR is the possibly suffixed load or store instruction. */
7936 static void
7937 print_multi_reg (FILE *stream, const char *instr, unsigned reg,
7938 unsigned long mask)
7940 unsigned i;
7941 bool not_first = FALSE;
7943 fputc ('\t', stream);
7944 asm_fprintf (stream, instr, reg);
7945 fputs (", {", stream);
7947 for (i = 0; i <= LAST_ARM_REGNUM; i++)
7948 if (mask & (1 << i))
7950 if (not_first)
7951 fprintf (stream, ", ");
7953 asm_fprintf (stream, "%r", i);
7954 not_first = TRUE;
7957 fprintf (stream, "}\n");
7961 /* Output a FLDMX instruction to STREAM.
7962 BASE if the register containing the address.
7963 REG and COUNT specify the register range.
7964 Extra registers may be added to avoid hardware bugs. */
7966 static void
7967 arm_output_fldmx (FILE * stream, unsigned int base, int reg, int count)
7969 int i;
7971 /* Workaround ARM10 VFPr1 bug. */
7972 if (count == 2 && !arm_arch6)
7974 if (reg == 15)
7975 reg--;
7976 count++;
7979 fputc ('\t', stream);
7980 asm_fprintf (stream, "fldmfdx\t%r!, {", base);
7982 for (i = reg; i < reg + count; i++)
7984 if (i > reg)
7985 fputs (", ", stream);
7986 asm_fprintf (stream, "d%d", i);
7988 fputs ("}\n", stream);
7993 /* Output the assembly for a store multiple. */
7995 const char *
7996 vfp_output_fstmx (rtx * operands)
7998 char pattern[100];
7999 int p;
8000 int base;
8001 int i;
8003 strcpy (pattern, "fstmfdx\t%m0!, {%P1");
8004 p = strlen (pattern);
8006 gcc_assert (GET_CODE (operands[1]) == REG);
8008 base = (REGNO (operands[1]) - FIRST_VFP_REGNUM) / 2;
8009 for (i = 1; i < XVECLEN (operands[2], 0); i++)
8011 p += sprintf (&pattern[p], ", d%d", base + i);
8013 strcpy (&pattern[p], "}");
8015 output_asm_insn (pattern, operands);
8016 return "";
8020 /* Emit RTL to save block of VFP register pairs to the stack. Returns the
8021 number of bytes pushed. */
8023 static int
8024 vfp_emit_fstmx (int base_reg, int count)
8026 rtx par;
8027 rtx dwarf;
8028 rtx tmp, reg;
8029 int i;
8031 /* Workaround ARM10 VFPr1 bug. Data corruption can occur when exactly two
8032 register pairs are stored by a store multiple insn. We avoid this
8033 by pushing an extra pair. */
8034 if (count == 2 && !arm_arch6)
8036 if (base_reg == LAST_VFP_REGNUM - 3)
8037 base_reg -= 2;
8038 count++;
8041 /* ??? The frame layout is implementation defined. We describe
8042 standard format 1 (equivalent to a FSTMD insn and unused pad word).
8043 We really need some way of representing the whole block so that the
8044 unwinder can figure it out at runtime. */
8045 par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
8046 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
8048 reg = gen_rtx_REG (DFmode, base_reg);
8049 base_reg += 2;
8051 XVECEXP (par, 0, 0)
8052 = gen_rtx_SET (VOIDmode,
8053 gen_rtx_MEM (BLKmode,
8054 gen_rtx_PRE_DEC (BLKmode, stack_pointer_rtx)),
8055 gen_rtx_UNSPEC (BLKmode,
8056 gen_rtvec (1, reg),
8057 UNSPEC_PUSH_MULT));
8059 tmp = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
8060 gen_rtx_PLUS (SImode, stack_pointer_rtx,
8061 GEN_INT (-(count * 8 + 4))));
8062 RTX_FRAME_RELATED_P (tmp) = 1;
8063 XVECEXP (dwarf, 0, 0) = tmp;
8065 tmp = gen_rtx_SET (VOIDmode,
8066 gen_rtx_MEM (DFmode, stack_pointer_rtx),
8067 reg);
8068 RTX_FRAME_RELATED_P (tmp) = 1;
8069 XVECEXP (dwarf, 0, 1) = tmp;
8071 for (i = 1; i < count; i++)
8073 reg = gen_rtx_REG (DFmode, base_reg);
8074 base_reg += 2;
8075 XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
8077 tmp = gen_rtx_SET (VOIDmode,
8078 gen_rtx_MEM (DFmode,
8079 gen_rtx_PLUS (SImode,
8080 stack_pointer_rtx,
8081 GEN_INT (i * 8))),
8082 reg);
8083 RTX_FRAME_RELATED_P (tmp) = 1;
8084 XVECEXP (dwarf, 0, i + 1) = tmp;
8087 par = emit_insn (par);
8088 REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
8089 REG_NOTES (par));
8090 RTX_FRAME_RELATED_P (par) = 1;
8092 return count * 8 + 4;
8096 /* Output a 'call' insn. */
8097 const char *
8098 output_call (rtx *operands)
8100 gcc_assert (!arm_arch5); /* Patterns should call blx <reg> directly. */
8102 /* Handle calls to lr using ip (which may be clobbered in subr anyway). */
8103 if (REGNO (operands[0]) == LR_REGNUM)
8105 operands[0] = gen_rtx_REG (SImode, IP_REGNUM);
8106 output_asm_insn ("mov%?\t%0, %|lr", operands);
8109 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
8111 if (TARGET_INTERWORK || arm_arch4t)
8112 output_asm_insn ("bx%?\t%0", operands);
8113 else
8114 output_asm_insn ("mov%?\t%|pc, %0", operands);
8116 return "";
8119 /* Output a 'call' insn that is a reference in memory. */
8120 const char *
8121 output_call_mem (rtx *operands)
8123 if (TARGET_INTERWORK && !arm_arch5)
8125 output_asm_insn ("ldr%?\t%|ip, %0", operands);
8126 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
8127 output_asm_insn ("bx%?\t%|ip", operands);
8129 else if (regno_use_in (LR_REGNUM, operands[0]))
8131 /* LR is used in the memory address. We load the address in the
8132 first instruction. It's safe to use IP as the target of the
8133 load since the call will kill it anyway. */
8134 output_asm_insn ("ldr%?\t%|ip, %0", operands);
8135 if (arm_arch5)
8136 output_asm_insn ("blx%?\t%|ip", operands);
8137 else
8139 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
8140 if (arm_arch4t)
8141 output_asm_insn ("bx%?\t%|ip", operands);
8142 else
8143 output_asm_insn ("mov%?\t%|pc, %|ip", operands);
8146 else
8148 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
8149 output_asm_insn ("ldr%?\t%|pc, %0", operands);
8152 return "";
8156 /* Output a move from arm registers to an fpa registers.
8157 OPERANDS[0] is an fpa register.
8158 OPERANDS[1] is the first registers of an arm register pair. */
8159 const char *
8160 output_mov_long_double_fpa_from_arm (rtx *operands)
8162 int arm_reg0 = REGNO (operands[1]);
8163 rtx ops[3];
8165 gcc_assert (arm_reg0 != IP_REGNUM);
8167 ops[0] = gen_rtx_REG (SImode, arm_reg0);
8168 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
8169 ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
8171 output_asm_insn ("stm%?fd\t%|sp!, {%0, %1, %2}", ops);
8172 output_asm_insn ("ldf%?e\t%0, [%|sp], #12", operands);
8174 return "";
8177 /* Output a move from an fpa register to arm registers.
8178 OPERANDS[0] is the first registers of an arm register pair.
8179 OPERANDS[1] is an fpa register. */
8180 const char *
8181 output_mov_long_double_arm_from_fpa (rtx *operands)
8183 int arm_reg0 = REGNO (operands[0]);
8184 rtx ops[3];
8186 gcc_assert (arm_reg0 != IP_REGNUM);
8188 ops[0] = gen_rtx_REG (SImode, arm_reg0);
8189 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
8190 ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
8192 output_asm_insn ("stf%?e\t%1, [%|sp, #-12]!", operands);
8193 output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1, %2}", ops);
8194 return "";
8197 /* Output a move from arm registers to arm registers of a long double
8198 OPERANDS[0] is the destination.
8199 OPERANDS[1] is the source. */
8200 const char *
8201 output_mov_long_double_arm_from_arm (rtx *operands)
8203 /* We have to be careful here because the two might overlap. */
8204 int dest_start = REGNO (operands[0]);
8205 int src_start = REGNO (operands[1]);
8206 rtx ops[2];
8207 int i;
8209 if (dest_start < src_start)
8211 for (i = 0; i < 3; i++)
8213 ops[0] = gen_rtx_REG (SImode, dest_start + i);
8214 ops[1] = gen_rtx_REG (SImode, src_start + i);
8215 output_asm_insn ("mov%?\t%0, %1", ops);
8218 else
8220 for (i = 2; i >= 0; i--)
8222 ops[0] = gen_rtx_REG (SImode, dest_start + i);
8223 ops[1] = gen_rtx_REG (SImode, src_start + i);
8224 output_asm_insn ("mov%?\t%0, %1", ops);
8228 return "";
8232 /* Output a move from arm registers to an fpa registers.
8233 OPERANDS[0] is an fpa register.
8234 OPERANDS[1] is the first registers of an arm register pair. */
8235 const char *
8236 output_mov_double_fpa_from_arm (rtx *operands)
8238 int arm_reg0 = REGNO (operands[1]);
8239 rtx ops[2];
8241 gcc_assert (arm_reg0 != IP_REGNUM);
8243 ops[0] = gen_rtx_REG (SImode, arm_reg0);
8244 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
8245 output_asm_insn ("stm%?fd\t%|sp!, {%0, %1}", ops);
8246 output_asm_insn ("ldf%?d\t%0, [%|sp], #8", operands);
8247 return "";
8250 /* Output a move from an fpa register to arm registers.
8251 OPERANDS[0] is the first registers of an arm register pair.
8252 OPERANDS[1] is an fpa register. */
8253 const char *
8254 output_mov_double_arm_from_fpa (rtx *operands)
8256 int arm_reg0 = REGNO (operands[0]);
8257 rtx ops[2];
8259 gcc_assert (arm_reg0 != IP_REGNUM);
8261 ops[0] = gen_rtx_REG (SImode, arm_reg0);
8262 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
8263 output_asm_insn ("stf%?d\t%1, [%|sp, #-8]!", operands);
8264 output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1}", ops);
8265 return "";
8268 /* Output a move between double words.
8269 It must be REG<-REG, REG<-CONST_DOUBLE, REG<-CONST_INT, REG<-MEM
8270 or MEM<-REG and all MEMs must be offsettable addresses. */
8271 const char *
8272 output_move_double (rtx *operands)
8274 enum rtx_code code0 = GET_CODE (operands[0]);
8275 enum rtx_code code1 = GET_CODE (operands[1]);
8276 rtx otherops[3];
8278 if (code0 == REG)
8280 int reg0 = REGNO (operands[0]);
8282 otherops[0] = gen_rtx_REG (SImode, 1 + reg0);
8284 gcc_assert (code1 == MEM); /* Constraints should ensure this. */
8286 switch (GET_CODE (XEXP (operands[1], 0)))
8288 case REG:
8289 output_asm_insn ("ldm%?ia\t%m1, %M0", operands);
8290 break;
8292 case PRE_INC:
8293 gcc_assert (TARGET_LDRD);
8294 output_asm_insn ("ldr%?d\t%0, [%m1, #8]!", operands);
8295 break;
8297 case PRE_DEC:
8298 output_asm_insn ("ldm%?db\t%m1!, %M0", operands);
8299 break;
8301 case POST_INC:
8302 output_asm_insn ("ldm%?ia\t%m1!, %M0", operands);
8303 break;
8305 case POST_DEC:
8306 gcc_assert (TARGET_LDRD);
8307 output_asm_insn ("ldr%?d\t%0, [%m1], #-8", operands);
8308 break;
8310 case PRE_MODIFY:
8311 case POST_MODIFY:
8312 otherops[0] = operands[0];
8313 otherops[1] = XEXP (XEXP (XEXP (operands[1], 0), 1), 0);
8314 otherops[2] = XEXP (XEXP (XEXP (operands[1], 0), 1), 1);
8316 if (GET_CODE (XEXP (operands[1], 0)) == PRE_MODIFY)
8318 if (reg_overlap_mentioned_p (otherops[0], otherops[2]))
8320 /* Registers overlap so split out the increment. */
8321 output_asm_insn ("add%?\t%1, %1, %2", otherops);
8322 output_asm_insn ("ldr%?d\t%0, [%1] @split", otherops);
8324 else
8325 output_asm_insn ("ldr%?d\t%0, [%1, %2]!", otherops);
8327 else
8329 /* We only allow constant increments, so this is safe. */
8330 output_asm_insn ("ldr%?d\t%0, [%1], %2", otherops);
8332 break;
8334 case LABEL_REF:
8335 case CONST:
8336 output_asm_insn ("adr%?\t%0, %1", operands);
8337 output_asm_insn ("ldm%?ia\t%0, %M0", operands);
8338 break;
8340 default:
8341 if (arm_add_operand (XEXP (XEXP (operands[1], 0), 1),
8342 GET_MODE (XEXP (XEXP (operands[1], 0), 1))))
8344 otherops[0] = operands[0];
8345 otherops[1] = XEXP (XEXP (operands[1], 0), 0);
8346 otherops[2] = XEXP (XEXP (operands[1], 0), 1);
8348 if (GET_CODE (XEXP (operands[1], 0)) == PLUS)
8350 if (GET_CODE (otherops[2]) == CONST_INT)
8352 switch ((int) INTVAL (otherops[2]))
8354 case -8:
8355 output_asm_insn ("ldm%?db\t%1, %M0", otherops);
8356 return "";
8357 case -4:
8358 output_asm_insn ("ldm%?da\t%1, %M0", otherops);
8359 return "";
8360 case 4:
8361 output_asm_insn ("ldm%?ib\t%1, %M0", otherops);
8362 return "";
8365 if (TARGET_LDRD
8366 && (GET_CODE (otherops[2]) == REG
8367 || (GET_CODE (otherops[2]) == CONST_INT
8368 && INTVAL (otherops[2]) > -256
8369 && INTVAL (otherops[2]) < 256)))
8371 if (reg_overlap_mentioned_p (otherops[0],
8372 otherops[2]))
8374 /* Swap base and index registers over to
8375 avoid a conflict. */
8376 otherops[1] = XEXP (XEXP (operands[1], 0), 1);
8377 otherops[2] = XEXP (XEXP (operands[1], 0), 0);
8380 /* If both registers conflict, it will usually
8381 have been fixed by a splitter. */
8382 if (reg_overlap_mentioned_p (otherops[0], otherops[2]))
8384 output_asm_insn ("add%?\t%1, %1, %2", otherops);
8385 output_asm_insn ("ldr%?d\t%0, [%1]",
8386 otherops);
8388 else
8389 output_asm_insn ("ldr%?d\t%0, [%1, %2]", otherops);
8390 return "";
8393 if (GET_CODE (otherops[2]) == CONST_INT)
8395 if (!(const_ok_for_arm (INTVAL (otherops[2]))))
8396 output_asm_insn ("sub%?\t%0, %1, #%n2", otherops);
8397 else
8398 output_asm_insn ("add%?\t%0, %1, %2", otherops);
8400 else
8401 output_asm_insn ("add%?\t%0, %1, %2", otherops);
8403 else
8404 output_asm_insn ("sub%?\t%0, %1, %2", otherops);
8406 return "ldm%?ia\t%0, %M0";
8408 else
8410 otherops[1] = adjust_address (operands[1], SImode, 4);
8411 /* Take care of overlapping base/data reg. */
8412 if (reg_mentioned_p (operands[0], operands[1]))
8414 output_asm_insn ("ldr%?\t%0, %1", otherops);
8415 output_asm_insn ("ldr%?\t%0, %1", operands);
8417 else
8419 output_asm_insn ("ldr%?\t%0, %1", operands);
8420 output_asm_insn ("ldr%?\t%0, %1", otherops);
8425 else
8427 /* Constraints should ensure this. */
8428 gcc_assert (code0 == MEM && code1 == REG);
8429 gcc_assert (REGNO (operands[1]) != IP_REGNUM);
8431 switch (GET_CODE (XEXP (operands[0], 0)))
8433 case REG:
8434 output_asm_insn ("stm%?ia\t%m0, %M1", operands);
8435 break;
8437 case PRE_INC:
8438 gcc_assert (TARGET_LDRD);
8439 output_asm_insn ("str%?d\t%1, [%m0, #8]!", operands);
8440 break;
8442 case PRE_DEC:
8443 output_asm_insn ("stm%?db\t%m0!, %M1", operands);
8444 break;
8446 case POST_INC:
8447 output_asm_insn ("stm%?ia\t%m0!, %M1", operands);
8448 break;
8450 case POST_DEC:
8451 gcc_assert (TARGET_LDRD);
8452 output_asm_insn ("str%?d\t%1, [%m0], #-8", operands);
8453 break;
8455 case PRE_MODIFY:
8456 case POST_MODIFY:
8457 otherops[0] = operands[1];
8458 otherops[1] = XEXP (XEXP (XEXP (operands[0], 0), 1), 0);
8459 otherops[2] = XEXP (XEXP (XEXP (operands[0], 0), 1), 1);
8461 if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
8462 output_asm_insn ("str%?d\t%0, [%1, %2]!", otherops);
8463 else
8464 output_asm_insn ("str%?d\t%0, [%1], %2", otherops);
8465 break;
8467 case PLUS:
8468 otherops[2] = XEXP (XEXP (operands[0], 0), 1);
8469 if (GET_CODE (otherops[2]) == CONST_INT)
8471 switch ((int) INTVAL (XEXP (XEXP (operands[0], 0), 1)))
8473 case -8:
8474 output_asm_insn ("stm%?db\t%m0, %M1", operands);
8475 return "";
8477 case -4:
8478 output_asm_insn ("stm%?da\t%m0, %M1", operands);
8479 return "";
8481 case 4:
8482 output_asm_insn ("stm%?ib\t%m0, %M1", operands);
8483 return "";
8486 if (TARGET_LDRD
8487 && (GET_CODE (otherops[2]) == REG
8488 || (GET_CODE (otherops[2]) == CONST_INT
8489 && INTVAL (otherops[2]) > -256
8490 && INTVAL (otherops[2]) < 256)))
8492 otherops[0] = operands[1];
8493 otherops[1] = XEXP (XEXP (operands[0], 0), 0);
8494 output_asm_insn ("str%?d\t%0, [%1, %2]", otherops);
8495 return "";
8497 /* Fall through */
8499 default:
8500 otherops[0] = adjust_address (operands[0], SImode, 4);
8501 otherops[1] = gen_rtx_REG (SImode, 1 + REGNO (operands[1]));
8502 output_asm_insn ("str%?\t%1, %0", operands);
8503 output_asm_insn ("str%?\t%1, %0", otherops);
8507 return "";
8510 /* Output an ADD r, s, #n where n may be too big for one instruction.
8511 If adding zero to one register, output nothing. */
8512 const char *
8513 output_add_immediate (rtx *operands)
8515 HOST_WIDE_INT n = INTVAL (operands[2]);
8517 if (n != 0 || REGNO (operands[0]) != REGNO (operands[1]))
8519 if (n < 0)
8520 output_multi_immediate (operands,
8521 "sub%?\t%0, %1, %2", "sub%?\t%0, %0, %2", 2,
8522 -n);
8523 else
8524 output_multi_immediate (operands,
8525 "add%?\t%0, %1, %2", "add%?\t%0, %0, %2", 2,
8529 return "";
8532 /* Output a multiple immediate operation.
8533 OPERANDS is the vector of operands referred to in the output patterns.
8534 INSTR1 is the output pattern to use for the first constant.
8535 INSTR2 is the output pattern to use for subsequent constants.
8536 IMMED_OP is the index of the constant slot in OPERANDS.
8537 N is the constant value. */
8538 static const char *
8539 output_multi_immediate (rtx *operands, const char *instr1, const char *instr2,
8540 int immed_op, HOST_WIDE_INT n)
8542 #if HOST_BITS_PER_WIDE_INT > 32
8543 n &= 0xffffffff;
8544 #endif
8546 if (n == 0)
8548 /* Quick and easy output. */
8549 operands[immed_op] = const0_rtx;
8550 output_asm_insn (instr1, operands);
8552 else
8554 int i;
8555 const char * instr = instr1;
8557 /* Note that n is never zero here (which would give no output). */
8558 for (i = 0; i < 32; i += 2)
8560 if (n & (3 << i))
8562 operands[immed_op] = GEN_INT (n & (255 << i));
8563 output_asm_insn (instr, operands);
8564 instr = instr2;
8565 i += 6;
8570 return "";
8573 /* Return the appropriate ARM instruction for the operation code.
8574 The returned result should not be overwritten. OP is the rtx of the
8575 operation. SHIFT_FIRST_ARG is TRUE if the first argument of the operator
8576 was shifted. */
8577 const char *
8578 arithmetic_instr (rtx op, int shift_first_arg)
8580 switch (GET_CODE (op))
8582 case PLUS:
8583 return "add";
8585 case MINUS:
8586 return shift_first_arg ? "rsb" : "sub";
8588 case IOR:
8589 return "orr";
8591 case XOR:
8592 return "eor";
8594 case AND:
8595 return "and";
8597 default:
8598 gcc_unreachable ();
8602 /* Ensure valid constant shifts and return the appropriate shift mnemonic
8603 for the operation code. The returned result should not be overwritten.
8604 OP is the rtx code of the shift.
8605 On exit, *AMOUNTP will be -1 if the shift is by a register, or a constant
8606 shift. */
8607 static const char *
8608 shift_op (rtx op, HOST_WIDE_INT *amountp)
8610 const char * mnem;
8611 enum rtx_code code = GET_CODE (op);
8613 switch (GET_CODE (XEXP (op, 1)))
8615 case REG:
8616 case SUBREG:
8617 *amountp = -1;
8618 break;
8620 case CONST_INT:
8621 *amountp = INTVAL (XEXP (op, 1));
8622 break;
8624 default:
8625 gcc_unreachable ();
8628 switch (code)
8630 case ASHIFT:
8631 mnem = "asl";
8632 break;
8634 case ASHIFTRT:
8635 mnem = "asr";
8636 break;
8638 case LSHIFTRT:
8639 mnem = "lsr";
8640 break;
8642 case ROTATE:
8643 gcc_assert (*amountp != -1);
8644 *amountp = 32 - *amountp;
8646 /* Fall through. */
8648 case ROTATERT:
8649 mnem = "ror";
8650 break;
8652 case MULT:
8653 /* We never have to worry about the amount being other than a
8654 power of 2, since this case can never be reloaded from a reg. */
8655 gcc_assert (*amountp != -1);
8656 *amountp = int_log2 (*amountp);
8657 return "asl";
8659 default:
8660 gcc_unreachable ();
8663 if (*amountp != -1)
8665 /* This is not 100% correct, but follows from the desire to merge
8666 multiplication by a power of 2 with the recognizer for a
8667 shift. >=32 is not a valid shift for "asl", so we must try and
8668 output a shift that produces the correct arithmetical result.
8669 Using lsr #32 is identical except for the fact that the carry bit
8670 is not set correctly if we set the flags; but we never use the
8671 carry bit from such an operation, so we can ignore that. */
8672 if (code == ROTATERT)
8673 /* Rotate is just modulo 32. */
8674 *amountp &= 31;
8675 else if (*amountp != (*amountp & 31))
8677 if (code == ASHIFT)
8678 mnem = "lsr";
8679 *amountp = 32;
8682 /* Shifts of 0 are no-ops. */
8683 if (*amountp == 0)
8684 return NULL;
8687 return mnem;
8690 /* Obtain the shift from the POWER of two. */
8692 static HOST_WIDE_INT
8693 int_log2 (HOST_WIDE_INT power)
8695 HOST_WIDE_INT shift = 0;
8697 while ((((HOST_WIDE_INT) 1 << shift) & power) == 0)
8699 gcc_assert (shift <= 31);
8700 shift++;
8703 return shift;
8706 /* Output a .ascii pseudo-op, keeping track of lengths. This is
8707 because /bin/as is horribly restrictive. The judgement about
8708 whether or not each character is 'printable' (and can be output as
8709 is) or not (and must be printed with an octal escape) must be made
8710 with reference to the *host* character set -- the situation is
8711 similar to that discussed in the comments above pp_c_char in
8712 c-pretty-print.c. */
8714 #define MAX_ASCII_LEN 51
8716 void
8717 output_ascii_pseudo_op (FILE *stream, const unsigned char *p, int len)
8719 int i;
8720 int len_so_far = 0;
8722 fputs ("\t.ascii\t\"", stream);
8724 for (i = 0; i < len; i++)
8726 int c = p[i];
8728 if (len_so_far >= MAX_ASCII_LEN)
8730 fputs ("\"\n\t.ascii\t\"", stream);
8731 len_so_far = 0;
8734 if (ISPRINT (c))
8736 if (c == '\\' || c == '\"')
8738 putc ('\\', stream);
8739 len_so_far++;
8741 putc (c, stream);
8742 len_so_far++;
8744 else
8746 fprintf (stream, "\\%03o", c);
8747 len_so_far += 4;
8751 fputs ("\"\n", stream);
8754 /* Compute the register save mask for registers 0 through 12
8755 inclusive. This code is used by arm_compute_save_reg_mask. */
8757 static unsigned long
8758 arm_compute_save_reg0_reg12_mask (void)
8760 unsigned long func_type = arm_current_func_type ();
8761 unsigned long save_reg_mask = 0;
8762 unsigned int reg;
8764 if (IS_INTERRUPT (func_type))
8766 unsigned int max_reg;
8767 /* Interrupt functions must not corrupt any registers,
8768 even call clobbered ones. If this is a leaf function
8769 we can just examine the registers used by the RTL, but
8770 otherwise we have to assume that whatever function is
8771 called might clobber anything, and so we have to save
8772 all the call-clobbered registers as well. */
8773 if (ARM_FUNC_TYPE (func_type) == ARM_FT_FIQ)
8774 /* FIQ handlers have registers r8 - r12 banked, so
8775 we only need to check r0 - r7, Normal ISRs only
8776 bank r14 and r15, so we must check up to r12.
8777 r13 is the stack pointer which is always preserved,
8778 so we do not need to consider it here. */
8779 max_reg = 7;
8780 else
8781 max_reg = 12;
8783 for (reg = 0; reg <= max_reg; reg++)
8784 if (regs_ever_live[reg]
8785 || (! current_function_is_leaf && call_used_regs [reg]))
8786 save_reg_mask |= (1 << reg);
8788 /* Also save the pic base register if necessary. */
8789 if (flag_pic
8790 && !TARGET_SINGLE_PIC_BASE
8791 && current_function_uses_pic_offset_table)
8792 save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
8794 else
8796 /* In the normal case we only need to save those registers
8797 which are call saved and which are used by this function. */
8798 for (reg = 0; reg <= 10; reg++)
8799 if (regs_ever_live[reg] && ! call_used_regs [reg])
8800 save_reg_mask |= (1 << reg);
8802 /* Handle the frame pointer as a special case. */
8803 if (! TARGET_APCS_FRAME
8804 && ! frame_pointer_needed
8805 && regs_ever_live[HARD_FRAME_POINTER_REGNUM]
8806 && ! call_used_regs[HARD_FRAME_POINTER_REGNUM])
8807 save_reg_mask |= 1 << HARD_FRAME_POINTER_REGNUM;
8809 /* If we aren't loading the PIC register,
8810 don't stack it even though it may be live. */
8811 if (flag_pic
8812 && !TARGET_SINGLE_PIC_BASE
8813 && (regs_ever_live[PIC_OFFSET_TABLE_REGNUM]
8814 || current_function_uses_pic_offset_table))
8815 save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
8818 /* Save registers so the exception handler can modify them. */
8819 if (current_function_calls_eh_return)
8821 unsigned int i;
8823 for (i = 0; ; i++)
8825 reg = EH_RETURN_DATA_REGNO (i);
8826 if (reg == INVALID_REGNUM)
8827 break;
8828 save_reg_mask |= 1 << reg;
8832 return save_reg_mask;
8835 /* Compute a bit mask of which registers need to be
8836 saved on the stack for the current function. */
8838 static unsigned long
8839 arm_compute_save_reg_mask (void)
8841 unsigned int save_reg_mask = 0;
8842 unsigned long func_type = arm_current_func_type ();
8844 if (IS_NAKED (func_type))
8845 /* This should never really happen. */
8846 return 0;
8848 /* If we are creating a stack frame, then we must save the frame pointer,
8849 IP (which will hold the old stack pointer), LR and the PC. */
8850 if (frame_pointer_needed)
8851 save_reg_mask |=
8852 (1 << ARM_HARD_FRAME_POINTER_REGNUM)
8853 | (1 << IP_REGNUM)
8854 | (1 << LR_REGNUM)
8855 | (1 << PC_REGNUM);
8857 /* Volatile functions do not return, so there
8858 is no need to save any other registers. */
8859 if (IS_VOLATILE (func_type))
8860 return save_reg_mask;
8862 save_reg_mask |= arm_compute_save_reg0_reg12_mask ();
8864 /* Decide if we need to save the link register.
8865 Interrupt routines have their own banked link register,
8866 so they never need to save it.
8867 Otherwise if we do not use the link register we do not need to save
8868 it. If we are pushing other registers onto the stack however, we
8869 can save an instruction in the epilogue by pushing the link register
8870 now and then popping it back into the PC. This incurs extra memory
8871 accesses though, so we only do it when optimizing for size, and only
8872 if we know that we will not need a fancy return sequence. */
8873 if (regs_ever_live [LR_REGNUM]
8874 || (save_reg_mask
8875 && optimize_size
8876 && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
8877 && !current_function_calls_eh_return))
8878 save_reg_mask |= 1 << LR_REGNUM;
8880 if (cfun->machine->lr_save_eliminated)
8881 save_reg_mask &= ~ (1 << LR_REGNUM);
8883 if (TARGET_REALLY_IWMMXT
8884 && ((bit_count (save_reg_mask)
8885 + ARM_NUM_INTS (current_function_pretend_args_size)) % 2) != 0)
8887 unsigned int reg;
8889 /* The total number of registers that are going to be pushed
8890 onto the stack is odd. We need to ensure that the stack
8891 is 64-bit aligned before we start to save iWMMXt registers,
8892 and also before we start to create locals. (A local variable
8893 might be a double or long long which we will load/store using
8894 an iWMMXt instruction). Therefore we need to push another
8895 ARM register, so that the stack will be 64-bit aligned. We
8896 try to avoid using the arg registers (r0 -r3) as they might be
8897 used to pass values in a tail call. */
8898 for (reg = 4; reg <= 12; reg++)
8899 if ((save_reg_mask & (1 << reg)) == 0)
8900 break;
8902 if (reg <= 12)
8903 save_reg_mask |= (1 << reg);
8904 else
8906 cfun->machine->sibcall_blocked = 1;
8907 save_reg_mask |= (1 << 3);
8911 return save_reg_mask;
8915 /* Compute a bit mask of which registers need to be
8916 saved on the stack for the current function. */
8917 static unsigned long
8918 thumb_compute_save_reg_mask (void)
8920 unsigned long mask;
8921 unsigned reg;
8923 mask = 0;
8924 for (reg = 0; reg < 12; reg ++)
8925 if (regs_ever_live[reg] && !call_used_regs[reg])
8926 mask |= 1 << reg;
8928 if (flag_pic && !TARGET_SINGLE_PIC_BASE)
8929 mask |= (1 << PIC_OFFSET_TABLE_REGNUM);
8931 if (TARGET_SINGLE_PIC_BASE)
8932 mask &= ~(1 << arm_pic_register);
8934 /* See if we might need r11 for calls to _interwork_r11_call_via_rN(). */
8935 if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
8936 mask |= 1 << ARM_HARD_FRAME_POINTER_REGNUM;
8938 /* LR will also be pushed if any lo regs are pushed. */
8939 if (mask & 0xff || thumb_force_lr_save ())
8940 mask |= (1 << LR_REGNUM);
8942 /* Make sure we have a low work register if we need one.
8943 We will need one if we are going to push a high register,
8944 but we are not currently intending to push a low register. */
8945 if ((mask & 0xff) == 0
8946 && ((mask & 0x0f00) || TARGET_BACKTRACE))
8948 /* Use thumb_find_work_register to choose which register
8949 we will use. If the register is live then we will
8950 have to push it. Use LAST_LO_REGNUM as our fallback
8951 choice for the register to select. */
8952 reg = thumb_find_work_register (1 << LAST_LO_REGNUM);
8954 if (! call_used_regs[reg])
8955 mask |= 1 << reg;
8958 return mask;
8962 /* Return the number of bytes required to save VFP registers. */
8963 static int
8964 arm_get_vfp_saved_size (void)
8966 unsigned int regno;
8967 int count;
8968 int saved;
8970 saved = 0;
8971 /* Space for saved VFP registers. */
8972 if (TARGET_HARD_FLOAT && TARGET_VFP)
8974 count = 0;
8975 for (regno = FIRST_VFP_REGNUM;
8976 regno < LAST_VFP_REGNUM;
8977 regno += 2)
8979 if ((!regs_ever_live[regno] || call_used_regs[regno])
8980 && (!regs_ever_live[regno + 1] || call_used_regs[regno + 1]))
8982 if (count > 0)
8984 /* Workaround ARM10 VFPr1 bug. */
8985 if (count == 2 && !arm_arch6)
8986 count++;
8987 saved += count * 8 + 4;
8989 count = 0;
8991 else
8992 count++;
8994 if (count > 0)
8996 if (count == 2 && !arm_arch6)
8997 count++;
8998 saved += count * 8 + 4;
9001 return saved;
9005 /* Generate a function exit sequence. If REALLY_RETURN is false, then do
9006 everything bar the final return instruction. */
9007 const char *
9008 output_return_instruction (rtx operand, int really_return, int reverse)
9010 char conditional[10];
9011 char instr[100];
9012 unsigned reg;
9013 unsigned long live_regs_mask;
9014 unsigned long func_type;
9015 arm_stack_offsets *offsets;
9017 func_type = arm_current_func_type ();
9019 if (IS_NAKED (func_type))
9020 return "";
9022 if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
9024 /* If this function was declared non-returning, and we have
9025 found a tail call, then we have to trust that the called
9026 function won't return. */
9027 if (really_return)
9029 rtx ops[2];
9031 /* Otherwise, trap an attempted return by aborting. */
9032 ops[0] = operand;
9033 ops[1] = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)"
9034 : "abort");
9035 assemble_external_libcall (ops[1]);
9036 output_asm_insn (reverse ? "bl%D0\t%a1" : "bl%d0\t%a1", ops);
9039 return "";
9042 gcc_assert (!current_function_calls_alloca || really_return);
9044 sprintf (conditional, "%%?%%%c0", reverse ? 'D' : 'd');
9046 return_used_this_function = 1;
9048 live_regs_mask = arm_compute_save_reg_mask ();
9050 if (live_regs_mask)
9052 const char * return_reg;
9054 /* If we do not have any special requirements for function exit
9055 (e.g. interworking, or ISR) then we can load the return address
9056 directly into the PC. Otherwise we must load it into LR. */
9057 if (really_return
9058 && ! TARGET_INTERWORK)
9059 return_reg = reg_names[PC_REGNUM];
9060 else
9061 return_reg = reg_names[LR_REGNUM];
9063 if ((live_regs_mask & (1 << IP_REGNUM)) == (1 << IP_REGNUM))
9065 /* There are three possible reasons for the IP register
9066 being saved. 1) a stack frame was created, in which case
9067 IP contains the old stack pointer, or 2) an ISR routine
9068 corrupted it, or 3) it was saved to align the stack on
9069 iWMMXt. In case 1, restore IP into SP, otherwise just
9070 restore IP. */
9071 if (frame_pointer_needed)
9073 live_regs_mask &= ~ (1 << IP_REGNUM);
9074 live_regs_mask |= (1 << SP_REGNUM);
9076 else
9077 gcc_assert (IS_INTERRUPT (func_type) || TARGET_REALLY_IWMMXT);
9080 /* On some ARM architectures it is faster to use LDR rather than
9081 LDM to load a single register. On other architectures, the
9082 cost is the same. In 26 bit mode, or for exception handlers,
9083 we have to use LDM to load the PC so that the CPSR is also
9084 restored. */
9085 for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
9086 if (live_regs_mask == (1U << reg))
9087 break;
9089 if (reg <= LAST_ARM_REGNUM
9090 && (reg != LR_REGNUM
9091 || ! really_return
9092 || ! IS_INTERRUPT (func_type)))
9094 sprintf (instr, "ldr%s\t%%|%s, [%%|sp], #4", conditional,
9095 (reg == LR_REGNUM) ? return_reg : reg_names[reg]);
9097 else
9099 char *p;
9100 int first = 1;
9102 /* Generate the load multiple instruction to restore the
9103 registers. Note we can get here, even if
9104 frame_pointer_needed is true, but only if sp already
9105 points to the base of the saved core registers. */
9106 if (live_regs_mask & (1 << SP_REGNUM))
9108 unsigned HOST_WIDE_INT stack_adjust;
9110 offsets = arm_get_frame_offsets ();
9111 stack_adjust = offsets->outgoing_args - offsets->saved_regs;
9112 gcc_assert (stack_adjust == 0 || stack_adjust == 4);
9114 if (stack_adjust && arm_arch5)
9115 sprintf (instr, "ldm%sib\t%%|sp, {", conditional);
9116 else
9118 /* If we can't use ldmib (SA110 bug),
9119 then try to pop r3 instead. */
9120 if (stack_adjust)
9121 live_regs_mask |= 1 << 3;
9122 sprintf (instr, "ldm%sfd\t%%|sp, {", conditional);
9125 else
9126 sprintf (instr, "ldm%sfd\t%%|sp!, {", conditional);
9128 p = instr + strlen (instr);
9130 for (reg = 0; reg <= SP_REGNUM; reg++)
9131 if (live_regs_mask & (1 << reg))
9133 int l = strlen (reg_names[reg]);
9135 if (first)
9136 first = 0;
9137 else
9139 memcpy (p, ", ", 2);
9140 p += 2;
9143 memcpy (p, "%|", 2);
9144 memcpy (p + 2, reg_names[reg], l);
9145 p += l + 2;
9148 if (live_regs_mask & (1 << LR_REGNUM))
9150 sprintf (p, "%s%%|%s}", first ? "" : ", ", return_reg);
9151 /* If returning from an interrupt, restore the CPSR. */
9152 if (IS_INTERRUPT (func_type))
9153 strcat (p, "^");
9155 else
9156 strcpy (p, "}");
9159 output_asm_insn (instr, & operand);
9161 /* See if we need to generate an extra instruction to
9162 perform the actual function return. */
9163 if (really_return
9164 && func_type != ARM_FT_INTERWORKED
9165 && (live_regs_mask & (1 << LR_REGNUM)) != 0)
9167 /* The return has already been handled
9168 by loading the LR into the PC. */
9169 really_return = 0;
9173 if (really_return)
9175 switch ((int) ARM_FUNC_TYPE (func_type))
9177 case ARM_FT_ISR:
9178 case ARM_FT_FIQ:
9179 sprintf (instr, "sub%ss\t%%|pc, %%|lr, #4", conditional);
9180 break;
9182 case ARM_FT_INTERWORKED:
9183 sprintf (instr, "bx%s\t%%|lr", conditional);
9184 break;
9186 case ARM_FT_EXCEPTION:
9187 sprintf (instr, "mov%ss\t%%|pc, %%|lr", conditional);
9188 break;
9190 default:
9191 /* Use bx if it's available. */
9192 if (arm_arch5 || arm_arch4t)
9193 sprintf (instr, "bx%s\t%%|lr", conditional);
9194 else
9195 sprintf (instr, "mov%s\t%%|pc, %%|lr", conditional);
9196 break;
9199 output_asm_insn (instr, & operand);
9202 return "";
9205 /* Write the function name into the code section, directly preceding
9206 the function prologue.
9208 Code will be output similar to this:
9210 .ascii "arm_poke_function_name", 0
9211 .align
9213 .word 0xff000000 + (t1 - t0)
9214 arm_poke_function_name
9215 mov ip, sp
9216 stmfd sp!, {fp, ip, lr, pc}
9217 sub fp, ip, #4
9219 When performing a stack backtrace, code can inspect the value
9220 of 'pc' stored at 'fp' + 0. If the trace function then looks
9221 at location pc - 12 and the top 8 bits are set, then we know
9222 that there is a function name embedded immediately preceding this
9223 location and has length ((pc[-3]) & 0xff000000).
9225 We assume that pc is declared as a pointer to an unsigned long.
9227 It is of no benefit to output the function name if we are assembling
9228 a leaf function. These function types will not contain a stack
9229 backtrace structure, therefore it is not possible to determine the
9230 function name. */
9231 void
9232 arm_poke_function_name (FILE *stream, const char *name)
9234 unsigned long alignlength;
9235 unsigned long length;
9236 rtx x;
9238 length = strlen (name) + 1;
9239 alignlength = ROUND_UP_WORD (length);
9241 ASM_OUTPUT_ASCII (stream, name, length);
9242 ASM_OUTPUT_ALIGN (stream, 2);
9243 x = GEN_INT ((unsigned HOST_WIDE_INT) 0xff000000 + alignlength);
9244 assemble_aligned_integer (UNITS_PER_WORD, x);
9247 /* Place some comments into the assembler stream
9248 describing the current function. */
9249 static void
9250 arm_output_function_prologue (FILE *f, HOST_WIDE_INT frame_size)
9252 unsigned long func_type;
9254 if (!TARGET_ARM)
9256 thumb_output_function_prologue (f, frame_size);
9257 return;
9260 /* Sanity check. */
9261 gcc_assert (!arm_ccfsm_state && !arm_target_insn);
9263 func_type = arm_current_func_type ();
9265 switch ((int) ARM_FUNC_TYPE (func_type))
9267 default:
9268 case ARM_FT_NORMAL:
9269 break;
9270 case ARM_FT_INTERWORKED:
9271 asm_fprintf (f, "\t%@ Function supports interworking.\n");
9272 break;
9273 case ARM_FT_ISR:
9274 asm_fprintf (f, "\t%@ Interrupt Service Routine.\n");
9275 break;
9276 case ARM_FT_FIQ:
9277 asm_fprintf (f, "\t%@ Fast Interrupt Service Routine.\n");
9278 break;
9279 case ARM_FT_EXCEPTION:
9280 asm_fprintf (f, "\t%@ ARM Exception Handler.\n");
9281 break;
9284 if (IS_NAKED (func_type))
9285 asm_fprintf (f, "\t%@ Naked Function: prologue and epilogue provided by programmer.\n");
9287 if (IS_VOLATILE (func_type))
9288 asm_fprintf (f, "\t%@ Volatile: function does not return.\n");
9290 if (IS_NESTED (func_type))
9291 asm_fprintf (f, "\t%@ Nested: function declared inside another function.\n");
9293 asm_fprintf (f, "\t%@ args = %d, pretend = %d, frame = %wd\n",
9294 current_function_args_size,
9295 current_function_pretend_args_size, frame_size);
9297 asm_fprintf (f, "\t%@ frame_needed = %d, uses_anonymous_args = %d\n",
9298 frame_pointer_needed,
9299 cfun->machine->uses_anonymous_args);
9301 if (cfun->machine->lr_save_eliminated)
9302 asm_fprintf (f, "\t%@ link register save eliminated.\n");
9304 if (current_function_calls_eh_return)
9305 asm_fprintf (f, "\t@ Calls __builtin_eh_return.\n");
9307 #ifdef AOF_ASSEMBLER
9308 if (flag_pic)
9309 asm_fprintf (f, "\tmov\t%r, %r\n", IP_REGNUM, PIC_OFFSET_TABLE_REGNUM);
9310 #endif
9312 return_used_this_function = 0;
9315 const char *
9316 arm_output_epilogue (rtx sibling)
9318 int reg;
9319 unsigned long saved_regs_mask;
9320 unsigned long func_type;
9321 /* Floats_offset is the offset from the "virtual" frame. In an APCS
9322 frame that is $fp + 4 for a non-variadic function. */
9323 int floats_offset = 0;
9324 rtx operands[3];
9325 FILE * f = asm_out_file;
9326 unsigned int lrm_count = 0;
9327 int really_return = (sibling == NULL);
9328 int start_reg;
9329 arm_stack_offsets *offsets;
9331 /* If we have already generated the return instruction
9332 then it is futile to generate anything else. */
9333 if (use_return_insn (FALSE, sibling) && return_used_this_function)
9334 return "";
9336 func_type = arm_current_func_type ();
9338 if (IS_NAKED (func_type))
9339 /* Naked functions don't have epilogues. */
9340 return "";
9342 if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
9344 rtx op;
9346 /* A volatile function should never return. Call abort. */
9347 op = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)" : "abort");
9348 assemble_external_libcall (op);
9349 output_asm_insn ("bl\t%a0", &op);
9351 return "";
9354 /* If we are throwing an exception, then we really must be doing a
9355 return, so we can't tail-call. */
9356 gcc_assert (!current_function_calls_eh_return || really_return);
9358 offsets = arm_get_frame_offsets ();
9359 saved_regs_mask = arm_compute_save_reg_mask ();
9361 if (TARGET_IWMMXT)
9362 lrm_count = bit_count (saved_regs_mask);
9364 floats_offset = offsets->saved_args;
9365 /* Compute how far away the floats will be. */
9366 for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
9367 if (saved_regs_mask & (1 << reg))
9368 floats_offset += 4;
9370 if (frame_pointer_needed)
9372 /* This variable is for the Virtual Frame Pointer, not VFP regs. */
9373 int vfp_offset = offsets->frame;
9375 if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
9377 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
9378 if (regs_ever_live[reg] && !call_used_regs[reg])
9380 floats_offset += 12;
9381 asm_fprintf (f, "\tldfe\t%r, [%r, #-%d]\n",
9382 reg, FP_REGNUM, floats_offset - vfp_offset);
9385 else
9387 start_reg = LAST_FPA_REGNUM;
9389 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
9391 if (regs_ever_live[reg] && !call_used_regs[reg])
9393 floats_offset += 12;
9395 /* We can't unstack more than four registers at once. */
9396 if (start_reg - reg == 3)
9398 asm_fprintf (f, "\tlfm\t%r, 4, [%r, #-%d]\n",
9399 reg, FP_REGNUM, floats_offset - vfp_offset);
9400 start_reg = reg - 1;
9403 else
9405 if (reg != start_reg)
9406 asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
9407 reg + 1, start_reg - reg,
9408 FP_REGNUM, floats_offset - vfp_offset);
9409 start_reg = reg - 1;
9413 /* Just in case the last register checked also needs unstacking. */
9414 if (reg != start_reg)
9415 asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
9416 reg + 1, start_reg - reg,
9417 FP_REGNUM, floats_offset - vfp_offset);
9420 if (TARGET_HARD_FLOAT && TARGET_VFP)
9422 int saved_size;
9424 /* The fldmx insn does not have base+offset addressing modes,
9425 so we use IP to hold the address. */
9426 saved_size = arm_get_vfp_saved_size ();
9428 if (saved_size > 0)
9430 floats_offset += saved_size;
9431 asm_fprintf (f, "\tsub\t%r, %r, #%d\n", IP_REGNUM,
9432 FP_REGNUM, floats_offset - vfp_offset);
9434 start_reg = FIRST_VFP_REGNUM;
9435 for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
9437 if ((!regs_ever_live[reg] || call_used_regs[reg])
9438 && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
9440 if (start_reg != reg)
9441 arm_output_fldmx (f, IP_REGNUM,
9442 (start_reg - FIRST_VFP_REGNUM) / 2,
9443 (reg - start_reg) / 2);
9444 start_reg = reg + 2;
9447 if (start_reg != reg)
9448 arm_output_fldmx (f, IP_REGNUM,
9449 (start_reg - FIRST_VFP_REGNUM) / 2,
9450 (reg - start_reg) / 2);
9453 if (TARGET_IWMMXT)
9455 /* The frame pointer is guaranteed to be non-double-word aligned.
9456 This is because it is set to (old_stack_pointer - 4) and the
9457 old_stack_pointer was double word aligned. Thus the offset to
9458 the iWMMXt registers to be loaded must also be non-double-word
9459 sized, so that the resultant address *is* double-word aligned.
9460 We can ignore floats_offset since that was already included in
9461 the live_regs_mask. */
9462 lrm_count += (lrm_count % 2 ? 2 : 1);
9464 for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
9465 if (regs_ever_live[reg] && !call_used_regs[reg])
9467 asm_fprintf (f, "\twldrd\t%r, [%r, #-%d]\n",
9468 reg, FP_REGNUM, lrm_count * 4);
9469 lrm_count += 2;
9473 /* saved_regs_mask should contain the IP, which at the time of stack
9474 frame generation actually contains the old stack pointer. So a
9475 quick way to unwind the stack is just pop the IP register directly
9476 into the stack pointer. */
9477 gcc_assert (saved_regs_mask & (1 << IP_REGNUM));
9478 saved_regs_mask &= ~ (1 << IP_REGNUM);
9479 saved_regs_mask |= (1 << SP_REGNUM);
9481 /* There are two registers left in saved_regs_mask - LR and PC. We
9482 only need to restore the LR register (the return address), but to
9483 save time we can load it directly into the PC, unless we need a
9484 special function exit sequence, or we are not really returning. */
9485 if (really_return
9486 && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
9487 && !current_function_calls_eh_return)
9488 /* Delete the LR from the register mask, so that the LR on
9489 the stack is loaded into the PC in the register mask. */
9490 saved_regs_mask &= ~ (1 << LR_REGNUM);
9491 else
9492 saved_regs_mask &= ~ (1 << PC_REGNUM);
9494 /* We must use SP as the base register, because SP is one of the
9495 registers being restored. If an interrupt or page fault
9496 happens in the ldm instruction, the SP might or might not
9497 have been restored. That would be bad, as then SP will no
9498 longer indicate the safe area of stack, and we can get stack
9499 corruption. Using SP as the base register means that it will
9500 be reset correctly to the original value, should an interrupt
9501 occur. If the stack pointer already points at the right
9502 place, then omit the subtraction. */
9503 if (offsets->outgoing_args != (1 + (int) bit_count (saved_regs_mask))
9504 || current_function_calls_alloca)
9505 asm_fprintf (f, "\tsub\t%r, %r, #%d\n", SP_REGNUM, FP_REGNUM,
9506 4 * bit_count (saved_regs_mask));
9507 print_multi_reg (f, "ldmfd\t%r", SP_REGNUM, saved_regs_mask);
9509 if (IS_INTERRUPT (func_type))
9510 /* Interrupt handlers will have pushed the
9511 IP onto the stack, so restore it now. */
9512 print_multi_reg (f, "ldmfd\t%r!", SP_REGNUM, 1 << IP_REGNUM);
9514 else
9516 /* Restore stack pointer if necessary. */
9517 if (offsets->outgoing_args != offsets->saved_regs)
9519 operands[0] = operands[1] = stack_pointer_rtx;
9520 operands[2] = GEN_INT (offsets->outgoing_args - offsets->saved_regs);
9521 output_add_immediate (operands);
9524 if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
9526 for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
9527 if (regs_ever_live[reg] && !call_used_regs[reg])
9528 asm_fprintf (f, "\tldfe\t%r, [%r], #12\n",
9529 reg, SP_REGNUM);
9531 else
9533 start_reg = FIRST_FPA_REGNUM;
9535 for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
9537 if (regs_ever_live[reg] && !call_used_regs[reg])
9539 if (reg - start_reg == 3)
9541 asm_fprintf (f, "\tlfmfd\t%r, 4, [%r]!\n",
9542 start_reg, SP_REGNUM);
9543 start_reg = reg + 1;
9546 else
9548 if (reg != start_reg)
9549 asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
9550 start_reg, reg - start_reg,
9551 SP_REGNUM);
9553 start_reg = reg + 1;
9557 /* Just in case the last register checked also needs unstacking. */
9558 if (reg != start_reg)
9559 asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
9560 start_reg, reg - start_reg, SP_REGNUM);
9563 if (TARGET_HARD_FLOAT && TARGET_VFP)
9565 start_reg = FIRST_VFP_REGNUM;
9566 for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
9568 if ((!regs_ever_live[reg] || call_used_regs[reg])
9569 && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
9571 if (start_reg != reg)
9572 arm_output_fldmx (f, SP_REGNUM,
9573 (start_reg - FIRST_VFP_REGNUM) / 2,
9574 (reg - start_reg) / 2);
9575 start_reg = reg + 2;
9578 if (start_reg != reg)
9579 arm_output_fldmx (f, SP_REGNUM,
9580 (start_reg - FIRST_VFP_REGNUM) / 2,
9581 (reg - start_reg) / 2);
9583 if (TARGET_IWMMXT)
9584 for (reg = FIRST_IWMMXT_REGNUM; reg <= LAST_IWMMXT_REGNUM; reg++)
9585 if (regs_ever_live[reg] && !call_used_regs[reg])
9586 asm_fprintf (f, "\twldrd\t%r, [%r], #8\n", reg, SP_REGNUM);
9588 /* If we can, restore the LR into the PC. */
9589 if (ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
9590 && really_return
9591 && current_function_pretend_args_size == 0
9592 && saved_regs_mask & (1 << LR_REGNUM)
9593 && !current_function_calls_eh_return)
9595 saved_regs_mask &= ~ (1 << LR_REGNUM);
9596 saved_regs_mask |= (1 << PC_REGNUM);
9599 /* Load the registers off the stack. If we only have one register
9600 to load use the LDR instruction - it is faster. */
9601 if (saved_regs_mask == (1 << LR_REGNUM))
9603 asm_fprintf (f, "\tldr\t%r, [%r], #4\n", LR_REGNUM, SP_REGNUM);
9605 else if (saved_regs_mask)
9607 if (saved_regs_mask & (1 << SP_REGNUM))
9608 /* Note - write back to the stack register is not enabled
9609 (i.e. "ldmfd sp!..."). We know that the stack pointer is
9610 in the list of registers and if we add writeback the
9611 instruction becomes UNPREDICTABLE. */
9612 print_multi_reg (f, "ldmfd\t%r", SP_REGNUM, saved_regs_mask);
9613 else
9614 print_multi_reg (f, "ldmfd\t%r!", SP_REGNUM, saved_regs_mask);
9617 if (current_function_pretend_args_size)
9619 /* Unwind the pre-pushed regs. */
9620 operands[0] = operands[1] = stack_pointer_rtx;
9621 operands[2] = GEN_INT (current_function_pretend_args_size);
9622 output_add_immediate (operands);
9626 /* We may have already restored PC directly from the stack. */
9627 if (!really_return || saved_regs_mask & (1 << PC_REGNUM))
9628 return "";
9630 /* Stack adjustment for exception handler. */
9631 if (current_function_calls_eh_return)
9632 asm_fprintf (f, "\tadd\t%r, %r, %r\n", SP_REGNUM, SP_REGNUM,
9633 ARM_EH_STACKADJ_REGNUM);
9635 /* Generate the return instruction. */
9636 switch ((int) ARM_FUNC_TYPE (func_type))
9638 case ARM_FT_ISR:
9639 case ARM_FT_FIQ:
9640 asm_fprintf (f, "\tsubs\t%r, %r, #4\n", PC_REGNUM, LR_REGNUM);
9641 break;
9643 case ARM_FT_EXCEPTION:
9644 asm_fprintf (f, "\tmovs\t%r, %r\n", PC_REGNUM, LR_REGNUM);
9645 break;
9647 case ARM_FT_INTERWORKED:
9648 asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
9649 break;
9651 default:
9652 if (arm_arch5 || arm_arch4t)
9653 asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
9654 else
9655 asm_fprintf (f, "\tmov\t%r, %r\n", PC_REGNUM, LR_REGNUM);
9656 break;
9659 return "";
9662 static void
9663 arm_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
9664 HOST_WIDE_INT frame_size ATTRIBUTE_UNUSED)
9666 arm_stack_offsets *offsets;
9668 if (TARGET_THUMB)
9670 int regno;
9672 /* Emit any call-via-reg trampolines that are needed for v4t support
9673 of call_reg and call_value_reg type insns. */
9674 for (regno = 0; regno < LR_REGNUM; regno++)
9676 rtx label = cfun->machine->call_via[regno];
9678 if (label != NULL)
9680 function_section (current_function_decl);
9681 targetm.asm_out.internal_label (asm_out_file, "L",
9682 CODE_LABEL_NUMBER (label));
9683 asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
9687 /* ??? Probably not safe to set this here, since it assumes that a
9688 function will be emitted as assembly immediately after we generate
9689 RTL for it. This does not happen for inline functions. */
9690 return_used_this_function = 0;
9692 else
9694 /* We need to take into account any stack-frame rounding. */
9695 offsets = arm_get_frame_offsets ();
9697 gcc_assert (!use_return_insn (FALSE, NULL)
9698 || !return_used_this_function
9699 || offsets->saved_regs == offsets->outgoing_args
9700 || frame_pointer_needed);
9702 /* Reset the ARM-specific per-function variables. */
9703 after_arm_reorg = 0;
9707 /* Generate and emit an insn that we will recognize as a push_multi.
9708 Unfortunately, since this insn does not reflect very well the actual
9709 semantics of the operation, we need to annotate the insn for the benefit
9710 of DWARF2 frame unwind information. */
9711 static rtx
9712 emit_multi_reg_push (unsigned long mask)
9714 int num_regs = 0;
9715 int num_dwarf_regs;
9716 int i, j;
9717 rtx par;
9718 rtx dwarf;
9719 int dwarf_par_index;
9720 rtx tmp, reg;
9722 for (i = 0; i <= LAST_ARM_REGNUM; i++)
9723 if (mask & (1 << i))
9724 num_regs++;
9726 gcc_assert (num_regs && num_regs <= 16);
9728 /* We don't record the PC in the dwarf frame information. */
9729 num_dwarf_regs = num_regs;
9730 if (mask & (1 << PC_REGNUM))
9731 num_dwarf_regs--;
9733 /* For the body of the insn we are going to generate an UNSPEC in
9734 parallel with several USEs. This allows the insn to be recognized
9735 by the push_multi pattern in the arm.md file. The insn looks
9736 something like this:
9738 (parallel [
9739 (set (mem:BLK (pre_dec:BLK (reg:SI sp)))
9740 (unspec:BLK [(reg:SI r4)] UNSPEC_PUSH_MULT))
9741 (use (reg:SI 11 fp))
9742 (use (reg:SI 12 ip))
9743 (use (reg:SI 14 lr))
9744 (use (reg:SI 15 pc))
9747 For the frame note however, we try to be more explicit and actually
9748 show each register being stored into the stack frame, plus a (single)
9749 decrement of the stack pointer. We do it this way in order to be
9750 friendly to the stack unwinding code, which only wants to see a single
9751 stack decrement per instruction. The RTL we generate for the note looks
9752 something like this:
9754 (sequence [
9755 (set (reg:SI sp) (plus:SI (reg:SI sp) (const_int -20)))
9756 (set (mem:SI (reg:SI sp)) (reg:SI r4))
9757 (set (mem:SI (plus:SI (reg:SI sp) (const_int 4))) (reg:SI fp))
9758 (set (mem:SI (plus:SI (reg:SI sp) (const_int 8))) (reg:SI ip))
9759 (set (mem:SI (plus:SI (reg:SI sp) (const_int 12))) (reg:SI lr))
9762 This sequence is used both by the code to support stack unwinding for
9763 exceptions handlers and the code to generate dwarf2 frame debugging. */
9765 par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_regs));
9766 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (num_dwarf_regs + 1));
9767 dwarf_par_index = 1;
9769 for (i = 0; i <= LAST_ARM_REGNUM; i++)
9771 if (mask & (1 << i))
9773 reg = gen_rtx_REG (SImode, i);
9775 XVECEXP (par, 0, 0)
9776 = gen_rtx_SET (VOIDmode,
9777 gen_rtx_MEM (BLKmode,
9778 gen_rtx_PRE_DEC (BLKmode,
9779 stack_pointer_rtx)),
9780 gen_rtx_UNSPEC (BLKmode,
9781 gen_rtvec (1, reg),
9782 UNSPEC_PUSH_MULT));
9784 if (i != PC_REGNUM)
9786 tmp = gen_rtx_SET (VOIDmode,
9787 gen_rtx_MEM (SImode, stack_pointer_rtx),
9788 reg);
9789 RTX_FRAME_RELATED_P (tmp) = 1;
9790 XVECEXP (dwarf, 0, dwarf_par_index) = tmp;
9791 dwarf_par_index++;
9794 break;
9798 for (j = 1, i++; j < num_regs; i++)
9800 if (mask & (1 << i))
9802 reg = gen_rtx_REG (SImode, i);
9804 XVECEXP (par, 0, j) = gen_rtx_USE (VOIDmode, reg);
9806 if (i != PC_REGNUM)
9808 tmp = gen_rtx_SET (VOIDmode,
9809 gen_rtx_MEM (SImode,
9810 plus_constant (stack_pointer_rtx,
9811 4 * j)),
9812 reg);
9813 RTX_FRAME_RELATED_P (tmp) = 1;
9814 XVECEXP (dwarf, 0, dwarf_par_index++) = tmp;
9817 j++;
9821 par = emit_insn (par);
9823 tmp = gen_rtx_SET (SImode,
9824 stack_pointer_rtx,
9825 gen_rtx_PLUS (SImode,
9826 stack_pointer_rtx,
9827 GEN_INT (-4 * num_regs)));
9828 RTX_FRAME_RELATED_P (tmp) = 1;
9829 XVECEXP (dwarf, 0, 0) = tmp;
9831 REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
9832 REG_NOTES (par));
9833 return par;
9836 /* Calculate the size of the return value that is passed in registers. */
9837 static int
9838 arm_size_return_regs (void)
9840 enum machine_mode mode;
9842 if (current_function_return_rtx != 0)
9843 mode = GET_MODE (current_function_return_rtx);
9844 else
9845 mode = DECL_MODE (DECL_RESULT (current_function_decl));
9847 return GET_MODE_SIZE (mode);
9850 static rtx
9851 emit_sfm (int base_reg, int count)
9853 rtx par;
9854 rtx dwarf;
9855 rtx tmp, reg;
9856 int i;
9858 par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
9859 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
9861 reg = gen_rtx_REG (XFmode, base_reg++);
9863 XVECEXP (par, 0, 0)
9864 = gen_rtx_SET (VOIDmode,
9865 gen_rtx_MEM (BLKmode,
9866 gen_rtx_PRE_DEC (BLKmode, stack_pointer_rtx)),
9867 gen_rtx_UNSPEC (BLKmode,
9868 gen_rtvec (1, reg),
9869 UNSPEC_PUSH_MULT));
9870 tmp = gen_rtx_SET (VOIDmode,
9871 gen_rtx_MEM (XFmode, stack_pointer_rtx), reg);
9872 RTX_FRAME_RELATED_P (tmp) = 1;
9873 XVECEXP (dwarf, 0, 1) = tmp;
9875 for (i = 1; i < count; i++)
9877 reg = gen_rtx_REG (XFmode, base_reg++);
9878 XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
9880 tmp = gen_rtx_SET (VOIDmode,
9881 gen_rtx_MEM (XFmode,
9882 plus_constant (stack_pointer_rtx,
9883 i * 12)),
9884 reg);
9885 RTX_FRAME_RELATED_P (tmp) = 1;
9886 XVECEXP (dwarf, 0, i + 1) = tmp;
9889 tmp = gen_rtx_SET (VOIDmode,
9890 stack_pointer_rtx,
9891 gen_rtx_PLUS (SImode,
9892 stack_pointer_rtx,
9893 GEN_INT (-12 * count)));
9894 RTX_FRAME_RELATED_P (tmp) = 1;
9895 XVECEXP (dwarf, 0, 0) = tmp;
9897 par = emit_insn (par);
9898 REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
9899 REG_NOTES (par));
9900 return par;
9904 /* Return true if the current function needs to save/restore LR. */
9906 static bool
9907 thumb_force_lr_save (void)
9909 return !cfun->machine->lr_save_eliminated
9910 && (!leaf_function_p ()
9911 || thumb_far_jump_used_p ()
9912 || regs_ever_live [LR_REGNUM]);
9916 /* Compute the distance from register FROM to register TO.
9917 These can be the arg pointer (26), the soft frame pointer (25),
9918 the stack pointer (13) or the hard frame pointer (11).
9919 In thumb mode r7 is used as the soft frame pointer, if needed.
9920 Typical stack layout looks like this:
9922 old stack pointer -> | |
9923 ----
9924 | | \
9925 | | saved arguments for
9926 | | vararg functions
9927 | | /
9929 hard FP & arg pointer -> | | \
9930 | | stack
9931 | | frame
9932 | | /
9934 | | \
9935 | | call saved
9936 | | registers
9937 soft frame pointer -> | | /
9939 | | \
9940 | | local
9941 | | variables
9942 | | /
9944 | | \
9945 | | outgoing
9946 | | arguments
9947 current stack pointer -> | | /
9950 For a given function some or all of these stack components
9951 may not be needed, giving rise to the possibility of
9952 eliminating some of the registers.
9954 The values returned by this function must reflect the behavior
9955 of arm_expand_prologue() and arm_compute_save_reg_mask().
9957 The sign of the number returned reflects the direction of stack
9958 growth, so the values are positive for all eliminations except
9959 from the soft frame pointer to the hard frame pointer.
9961 SFP may point just inside the local variables block to ensure correct
9962 alignment. */
9965 /* Calculate stack offsets. These are used to calculate register elimination
9966 offsets and in prologue/epilogue code. */
9968 static arm_stack_offsets *
9969 arm_get_frame_offsets (void)
9971 struct arm_stack_offsets *offsets;
9972 unsigned long func_type;
9973 int leaf;
9974 int saved;
9975 HOST_WIDE_INT frame_size;
9977 offsets = &cfun->machine->stack_offsets;
9979 /* We need to know if we are a leaf function. Unfortunately, it
9980 is possible to be called after start_sequence has been called,
9981 which causes get_insns to return the insns for the sequence,
9982 not the function, which will cause leaf_function_p to return
9983 the incorrect result.
9985 to know about leaf functions once reload has completed, and the
9986 frame size cannot be changed after that time, so we can safely
9987 use the cached value. */
9989 if (reload_completed)
9990 return offsets;
9992 /* Initially this is the size of the local variables. It will translated
9993 into an offset once we have determined the size of preceding data. */
9994 frame_size = ROUND_UP_WORD (get_frame_size ());
9996 leaf = leaf_function_p ();
9998 /* Space for variadic functions. */
9999 offsets->saved_args = current_function_pretend_args_size;
10001 offsets->frame = offsets->saved_args + (frame_pointer_needed ? 4 : 0);
10003 if (TARGET_ARM)
10005 unsigned int regno;
10007 saved = bit_count (arm_compute_save_reg_mask ()) * 4;
10009 /* We know that SP will be doubleword aligned on entry, and we must
10010 preserve that condition at any subroutine call. We also require the
10011 soft frame pointer to be doubleword aligned. */
10013 if (TARGET_REALLY_IWMMXT)
10015 /* Check for the call-saved iWMMXt registers. */
10016 for (regno = FIRST_IWMMXT_REGNUM;
10017 regno <= LAST_IWMMXT_REGNUM;
10018 regno++)
10019 if (regs_ever_live [regno] && ! call_used_regs [regno])
10020 saved += 8;
10023 func_type = arm_current_func_type ();
10024 if (! IS_VOLATILE (func_type))
10026 /* Space for saved FPA registers. */
10027 for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
10028 if (regs_ever_live[regno] && ! call_used_regs[regno])
10029 saved += 12;
10031 /* Space for saved VFP registers. */
10032 if (TARGET_HARD_FLOAT && TARGET_VFP)
10033 saved += arm_get_vfp_saved_size ();
10036 else /* TARGET_THUMB */
10038 saved = bit_count (thumb_compute_save_reg_mask ()) * 4;
10039 if (TARGET_BACKTRACE)
10040 saved += 16;
10043 /* Saved registers include the stack frame. */
10044 offsets->saved_regs = offsets->saved_args + saved;
10045 offsets->soft_frame = offsets->saved_regs + CALLER_INTERWORKING_SLOT_SIZE;
10046 /* A leaf function does not need any stack alignment if it has nothing
10047 on the stack. */
10048 if (leaf && frame_size == 0)
10050 offsets->outgoing_args = offsets->soft_frame;
10051 return offsets;
10054 /* Ensure SFP has the correct alignment. */
10055 if (ARM_DOUBLEWORD_ALIGN
10056 && (offsets->soft_frame & 7))
10057 offsets->soft_frame += 4;
10059 offsets->outgoing_args = offsets->soft_frame + frame_size
10060 + current_function_outgoing_args_size;
10062 if (ARM_DOUBLEWORD_ALIGN)
10064 /* Ensure SP remains doubleword aligned. */
10065 if (offsets->outgoing_args & 7)
10066 offsets->outgoing_args += 4;
10067 gcc_assert (!(offsets->outgoing_args & 7));
10070 return offsets;
10074 /* Calculate the relative offsets for the different stack pointers. Positive
10075 offsets are in the direction of stack growth. */
10077 HOST_WIDE_INT
10078 arm_compute_initial_elimination_offset (unsigned int from, unsigned int to)
10080 arm_stack_offsets *offsets;
10082 offsets = arm_get_frame_offsets ();
10084 /* OK, now we have enough information to compute the distances.
10085 There must be an entry in these switch tables for each pair
10086 of registers in ELIMINABLE_REGS, even if some of the entries
10087 seem to be redundant or useless. */
10088 switch (from)
10090 case ARG_POINTER_REGNUM:
10091 switch (to)
10093 case THUMB_HARD_FRAME_POINTER_REGNUM:
10094 return 0;
10096 case FRAME_POINTER_REGNUM:
10097 /* This is the reverse of the soft frame pointer
10098 to hard frame pointer elimination below. */
10099 return offsets->soft_frame - offsets->saved_args;
10101 case ARM_HARD_FRAME_POINTER_REGNUM:
10102 /* If there is no stack frame then the hard
10103 frame pointer and the arg pointer coincide. */
10104 if (offsets->frame == offsets->saved_regs)
10105 return 0;
10106 /* FIXME: Not sure about this. Maybe we should always return 0 ? */
10107 return (frame_pointer_needed
10108 && cfun->static_chain_decl != NULL
10109 && ! cfun->machine->uses_anonymous_args) ? 4 : 0;
10111 case STACK_POINTER_REGNUM:
10112 /* If nothing has been pushed on the stack at all
10113 then this will return -4. This *is* correct! */
10114 return offsets->outgoing_args - (offsets->saved_args + 4);
10116 default:
10117 gcc_unreachable ();
10119 gcc_unreachable ();
10121 case FRAME_POINTER_REGNUM:
10122 switch (to)
10124 case THUMB_HARD_FRAME_POINTER_REGNUM:
10125 return 0;
10127 case ARM_HARD_FRAME_POINTER_REGNUM:
10128 /* The hard frame pointer points to the top entry in the
10129 stack frame. The soft frame pointer to the bottom entry
10130 in the stack frame. If there is no stack frame at all,
10131 then they are identical. */
10133 return offsets->frame - offsets->soft_frame;
10135 case STACK_POINTER_REGNUM:
10136 return offsets->outgoing_args - offsets->soft_frame;
10138 default:
10139 gcc_unreachable ();
10141 gcc_unreachable ();
10143 default:
10144 /* You cannot eliminate from the stack pointer.
10145 In theory you could eliminate from the hard frame
10146 pointer to the stack pointer, but this will never
10147 happen, since if a stack frame is not needed the
10148 hard frame pointer will never be used. */
10149 gcc_unreachable ();
10154 /* Generate the prologue instructions for entry into an ARM function. */
10155 void
10156 arm_expand_prologue (void)
10158 int reg;
10159 rtx amount;
10160 rtx insn;
10161 rtx ip_rtx;
10162 unsigned long live_regs_mask;
10163 unsigned long func_type;
10164 int fp_offset = 0;
10165 int saved_pretend_args = 0;
10166 int saved_regs = 0;
10167 unsigned HOST_WIDE_INT args_to_push;
10168 arm_stack_offsets *offsets;
10170 func_type = arm_current_func_type ();
10172 /* Naked functions don't have prologues. */
10173 if (IS_NAKED (func_type))
10174 return;
10176 /* Make a copy of c_f_p_a_s as we may need to modify it locally. */
10177 args_to_push = current_function_pretend_args_size;
10179 /* Compute which register we will have to save onto the stack. */
10180 live_regs_mask = arm_compute_save_reg_mask ();
10182 ip_rtx = gen_rtx_REG (SImode, IP_REGNUM);
10184 if (frame_pointer_needed)
10186 if (IS_INTERRUPT (func_type))
10188 /* Interrupt functions must not corrupt any registers.
10189 Creating a frame pointer however, corrupts the IP
10190 register, so we must push it first. */
10191 insn = emit_multi_reg_push (1 << IP_REGNUM);
10193 /* Do not set RTX_FRAME_RELATED_P on this insn.
10194 The dwarf stack unwinding code only wants to see one
10195 stack decrement per function, and this is not it. If
10196 this instruction is labeled as being part of the frame
10197 creation sequence then dwarf2out_frame_debug_expr will
10198 die when it encounters the assignment of IP to FP
10199 later on, since the use of SP here establishes SP as
10200 the CFA register and not IP.
10202 Anyway this instruction is not really part of the stack
10203 frame creation although it is part of the prologue. */
10205 else if (IS_NESTED (func_type))
10207 /* The Static chain register is the same as the IP register
10208 used as a scratch register during stack frame creation.
10209 To get around this need to find somewhere to store IP
10210 whilst the frame is being created. We try the following
10211 places in order:
10213 1. The last argument register.
10214 2. A slot on the stack above the frame. (This only
10215 works if the function is not a varargs function).
10216 3. Register r3, after pushing the argument registers
10217 onto the stack.
10219 Note - we only need to tell the dwarf2 backend about the SP
10220 adjustment in the second variant; the static chain register
10221 doesn't need to be unwound, as it doesn't contain a value
10222 inherited from the caller. */
10224 if (regs_ever_live[3] == 0)
10226 insn = gen_rtx_REG (SImode, 3);
10227 insn = gen_rtx_SET (SImode, insn, ip_rtx);
10228 insn = emit_insn (insn);
10230 else if (args_to_push == 0)
10232 rtx dwarf;
10233 insn = gen_rtx_PRE_DEC (SImode, stack_pointer_rtx);
10234 insn = gen_rtx_MEM (SImode, insn);
10235 insn = gen_rtx_SET (VOIDmode, insn, ip_rtx);
10236 insn = emit_insn (insn);
10238 fp_offset = 4;
10240 /* Just tell the dwarf backend that we adjusted SP. */
10241 dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
10242 gen_rtx_PLUS (SImode, stack_pointer_rtx,
10243 GEN_INT (-fp_offset)));
10244 RTX_FRAME_RELATED_P (insn) = 1;
10245 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
10246 dwarf, REG_NOTES (insn));
10248 else
10250 /* Store the args on the stack. */
10251 if (cfun->machine->uses_anonymous_args)
10252 insn = emit_multi_reg_push
10253 ((0xf0 >> (args_to_push / 4)) & 0xf);
10254 else
10255 insn = emit_insn
10256 (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
10257 GEN_INT (- args_to_push)));
10259 RTX_FRAME_RELATED_P (insn) = 1;
10261 saved_pretend_args = 1;
10262 fp_offset = args_to_push;
10263 args_to_push = 0;
10265 /* Now reuse r3 to preserve IP. */
10266 insn = gen_rtx_REG (SImode, 3);
10267 insn = gen_rtx_SET (SImode, insn, ip_rtx);
10268 (void) emit_insn (insn);
10272 if (fp_offset)
10274 insn = gen_rtx_PLUS (SImode, stack_pointer_rtx, GEN_INT (fp_offset));
10275 insn = gen_rtx_SET (SImode, ip_rtx, insn);
10277 else
10278 insn = gen_movsi (ip_rtx, stack_pointer_rtx);
10280 insn = emit_insn (insn);
10281 RTX_FRAME_RELATED_P (insn) = 1;
10284 if (args_to_push)
10286 /* Push the argument registers, or reserve space for them. */
10287 if (cfun->machine->uses_anonymous_args)
10288 insn = emit_multi_reg_push
10289 ((0xf0 >> (args_to_push / 4)) & 0xf);
10290 else
10291 insn = emit_insn
10292 (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
10293 GEN_INT (- args_to_push)));
10294 RTX_FRAME_RELATED_P (insn) = 1;
10297 /* If this is an interrupt service routine, and the link register
10298 is going to be pushed, and we are not creating a stack frame,
10299 (which would involve an extra push of IP and a pop in the epilogue)
10300 subtracting four from LR now will mean that the function return
10301 can be done with a single instruction. */
10302 if ((func_type == ARM_FT_ISR || func_type == ARM_FT_FIQ)
10303 && (live_regs_mask & (1 << LR_REGNUM)) != 0
10304 && ! frame_pointer_needed)
10305 emit_insn (gen_rtx_SET (SImode,
10306 gen_rtx_REG (SImode, LR_REGNUM),
10307 gen_rtx_PLUS (SImode,
10308 gen_rtx_REG (SImode, LR_REGNUM),
10309 GEN_INT (-4))));
10311 if (live_regs_mask)
10313 insn = emit_multi_reg_push (live_regs_mask);
10314 saved_regs += bit_count (live_regs_mask) * 4;
10315 RTX_FRAME_RELATED_P (insn) = 1;
10318 if (TARGET_IWMMXT)
10319 for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
10320 if (regs_ever_live[reg] && ! call_used_regs [reg])
10322 insn = gen_rtx_PRE_DEC (V2SImode, stack_pointer_rtx);
10323 insn = gen_rtx_MEM (V2SImode, insn);
10324 insn = emit_insn (gen_rtx_SET (VOIDmode, insn,
10325 gen_rtx_REG (V2SImode, reg)));
10326 RTX_FRAME_RELATED_P (insn) = 1;
10327 saved_regs += 8;
10330 if (! IS_VOLATILE (func_type))
10332 int start_reg;
10334 /* Save any floating point call-saved registers used by this
10335 function. */
10336 if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
10338 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
10339 if (regs_ever_live[reg] && !call_used_regs[reg])
10341 insn = gen_rtx_PRE_DEC (XFmode, stack_pointer_rtx);
10342 insn = gen_rtx_MEM (XFmode, insn);
10343 insn = emit_insn (gen_rtx_SET (VOIDmode, insn,
10344 gen_rtx_REG (XFmode, reg)));
10345 RTX_FRAME_RELATED_P (insn) = 1;
10346 saved_regs += 12;
10349 else
10351 start_reg = LAST_FPA_REGNUM;
10353 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
10355 if (regs_ever_live[reg] && !call_used_regs[reg])
10357 if (start_reg - reg == 3)
10359 insn = emit_sfm (reg, 4);
10360 RTX_FRAME_RELATED_P (insn) = 1;
10361 saved_regs += 48;
10362 start_reg = reg - 1;
10365 else
10367 if (start_reg != reg)
10369 insn = emit_sfm (reg + 1, start_reg - reg);
10370 RTX_FRAME_RELATED_P (insn) = 1;
10371 saved_regs += (start_reg - reg) * 12;
10373 start_reg = reg - 1;
10377 if (start_reg != reg)
10379 insn = emit_sfm (reg + 1, start_reg - reg);
10380 saved_regs += (start_reg - reg) * 12;
10381 RTX_FRAME_RELATED_P (insn) = 1;
10384 if (TARGET_HARD_FLOAT && TARGET_VFP)
10386 start_reg = FIRST_VFP_REGNUM;
10388 for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
10390 if ((!regs_ever_live[reg] || call_used_regs[reg])
10391 && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
10393 if (start_reg != reg)
10394 saved_regs += vfp_emit_fstmx (start_reg,
10395 (reg - start_reg) / 2);
10396 start_reg = reg + 2;
10399 if (start_reg != reg)
10400 saved_regs += vfp_emit_fstmx (start_reg,
10401 (reg - start_reg) / 2);
10405 if (frame_pointer_needed)
10407 /* Create the new frame pointer. */
10408 insn = GEN_INT (-(4 + args_to_push + fp_offset));
10409 insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx, ip_rtx, insn));
10410 RTX_FRAME_RELATED_P (insn) = 1;
10412 if (IS_NESTED (func_type))
10414 /* Recover the static chain register. */
10415 if (regs_ever_live [3] == 0
10416 || saved_pretend_args)
10417 insn = gen_rtx_REG (SImode, 3);
10418 else /* if (current_function_pretend_args_size == 0) */
10420 insn = gen_rtx_PLUS (SImode, hard_frame_pointer_rtx,
10421 GEN_INT (4));
10422 insn = gen_rtx_MEM (SImode, insn);
10425 emit_insn (gen_rtx_SET (SImode, ip_rtx, insn));
10426 /* Add a USE to stop propagate_one_insn() from barfing. */
10427 emit_insn (gen_prologue_use (ip_rtx));
10431 offsets = arm_get_frame_offsets ();
10432 if (offsets->outgoing_args != offsets->saved_args + saved_regs)
10434 /* This add can produce multiple insns for a large constant, so we
10435 need to get tricky. */
10436 rtx last = get_last_insn ();
10438 amount = GEN_INT (offsets->saved_args + saved_regs
10439 - offsets->outgoing_args);
10441 insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
10442 amount));
10445 last = last ? NEXT_INSN (last) : get_insns ();
10446 RTX_FRAME_RELATED_P (last) = 1;
10448 while (last != insn);
10450 /* If the frame pointer is needed, emit a special barrier that
10451 will prevent the scheduler from moving stores to the frame
10452 before the stack adjustment. */
10453 if (frame_pointer_needed)
10454 insn = emit_insn (gen_stack_tie (stack_pointer_rtx,
10455 hard_frame_pointer_rtx));
10459 if (flag_pic)
10460 arm_load_pic_register (INVALID_REGNUM);
10462 /* If we are profiling, make sure no instructions are scheduled before
10463 the call to mcount. Similarly if the user has requested no
10464 scheduling in the prolog. */
10465 if (current_function_profile || !TARGET_SCHED_PROLOG)
10466 emit_insn (gen_blockage ());
10468 /* If the link register is being kept alive, with the return address in it,
10469 then make sure that it does not get reused by the ce2 pass. */
10470 if ((live_regs_mask & (1 << LR_REGNUM)) == 0)
10472 emit_insn (gen_prologue_use (gen_rtx_REG (SImode, LR_REGNUM)));
10473 cfun->machine->lr_save_eliminated = 1;
10477 /* If CODE is 'd', then the X is a condition operand and the instruction
10478 should only be executed if the condition is true.
10479 if CODE is 'D', then the X is a condition operand and the instruction
10480 should only be executed if the condition is false: however, if the mode
10481 of the comparison is CCFPEmode, then always execute the instruction -- we
10482 do this because in these circumstances !GE does not necessarily imply LT;
10483 in these cases the instruction pattern will take care to make sure that
10484 an instruction containing %d will follow, thereby undoing the effects of
10485 doing this instruction unconditionally.
10486 If CODE is 'N' then X is a floating point operand that must be negated
10487 before output.
10488 If CODE is 'B' then output a bitwise inverted value of X (a const int).
10489 If X is a REG and CODE is `M', output a ldm/stm style multi-reg. */
10490 void
10491 arm_print_operand (FILE *stream, rtx x, int code)
10493 switch (code)
10495 case '@':
10496 fputs (ASM_COMMENT_START, stream);
10497 return;
10499 case '_':
10500 fputs (user_label_prefix, stream);
10501 return;
10503 case '|':
10504 fputs (REGISTER_PREFIX, stream);
10505 return;
10507 case '?':
10508 if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4)
10510 if (TARGET_THUMB)
10512 output_operand_lossage ("predicated Thumb instruction");
10513 break;
10515 if (current_insn_predicate != NULL)
10517 output_operand_lossage
10518 ("predicated instruction in conditional sequence");
10519 break;
10522 fputs (arm_condition_codes[arm_current_cc], stream);
10524 else if (current_insn_predicate)
10526 enum arm_cond_code code;
10528 if (TARGET_THUMB)
10530 output_operand_lossage ("predicated Thumb instruction");
10531 break;
10534 code = get_arm_condition_code (current_insn_predicate);
10535 fputs (arm_condition_codes[code], stream);
10537 return;
10539 case 'N':
10541 REAL_VALUE_TYPE r;
10542 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
10543 r = REAL_VALUE_NEGATE (r);
10544 fprintf (stream, "%s", fp_const_from_val (&r));
10546 return;
10548 case 'B':
10549 if (GET_CODE (x) == CONST_INT)
10551 HOST_WIDE_INT val;
10552 val = ARM_SIGN_EXTEND (~INTVAL (x));
10553 fprintf (stream, HOST_WIDE_INT_PRINT_DEC, val);
10555 else
10557 putc ('~', stream);
10558 output_addr_const (stream, x);
10560 return;
10562 case 'i':
10563 fprintf (stream, "%s", arithmetic_instr (x, 1));
10564 return;
10566 /* Truncate Cirrus shift counts. */
10567 case 's':
10568 if (GET_CODE (x) == CONST_INT)
10570 fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0x3f);
10571 return;
10573 arm_print_operand (stream, x, 0);
10574 return;
10576 case 'I':
10577 fprintf (stream, "%s", arithmetic_instr (x, 0));
10578 return;
10580 case 'S':
10582 HOST_WIDE_INT val;
10583 const char * shift = shift_op (x, &val);
10585 if (shift)
10587 fprintf (stream, ", %s ", shift_op (x, &val));
10588 if (val == -1)
10589 arm_print_operand (stream, XEXP (x, 1), 0);
10590 else
10591 fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, val);
10594 return;
10596 /* An explanation of the 'Q', 'R' and 'H' register operands:
10598 In a pair of registers containing a DI or DF value the 'Q'
10599 operand returns the register number of the register containing
10600 the least significant part of the value. The 'R' operand returns
10601 the register number of the register containing the most
10602 significant part of the value.
10604 The 'H' operand returns the higher of the two register numbers.
10605 On a run where WORDS_BIG_ENDIAN is true the 'H' operand is the
10606 same as the 'Q' operand, since the most significant part of the
10607 value is held in the lower number register. The reverse is true
10608 on systems where WORDS_BIG_ENDIAN is false.
10610 The purpose of these operands is to distinguish between cases
10611 where the endian-ness of the values is important (for example
10612 when they are added together), and cases where the endian-ness
10613 is irrelevant, but the order of register operations is important.
10614 For example when loading a value from memory into a register
10615 pair, the endian-ness does not matter. Provided that the value
10616 from the lower memory address is put into the lower numbered
10617 register, and the value from the higher address is put into the
10618 higher numbered register, the load will work regardless of whether
10619 the value being loaded is big-wordian or little-wordian. The
10620 order of the two register loads can matter however, if the address
10621 of the memory location is actually held in one of the registers
10622 being overwritten by the load. */
10623 case 'Q':
10624 if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
10626 output_operand_lossage ("invalid operand for code '%c'", code);
10627 return;
10630 asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 1 : 0));
10631 return;
10633 case 'R':
10634 if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
10636 output_operand_lossage ("invalid operand for code '%c'", code);
10637 return;
10640 asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 0 : 1));
10641 return;
10643 case 'H':
10644 if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
10646 output_operand_lossage ("invalid operand for code '%c'", code);
10647 return;
10650 asm_fprintf (stream, "%r", REGNO (x) + 1);
10651 return;
10653 case 'm':
10654 asm_fprintf (stream, "%r",
10655 GET_CODE (XEXP (x, 0)) == REG
10656 ? REGNO (XEXP (x, 0)) : REGNO (XEXP (XEXP (x, 0), 0)));
10657 return;
10659 case 'M':
10660 asm_fprintf (stream, "{%r-%r}",
10661 REGNO (x),
10662 REGNO (x) + ARM_NUM_REGS (GET_MODE (x)) - 1);
10663 return;
10665 case 'd':
10666 /* CONST_TRUE_RTX means always -- that's the default. */
10667 if (x == const_true_rtx)
10668 return;
10670 if (!COMPARISON_P (x))
10672 output_operand_lossage ("invalid operand for code '%c'", code);
10673 return;
10676 fputs (arm_condition_codes[get_arm_condition_code (x)],
10677 stream);
10678 return;
10680 case 'D':
10681 /* CONST_TRUE_RTX means not always -- i.e. never. We shouldn't ever
10682 want to do that. */
10683 if (x == const_true_rtx)
10685 output_operand_lossage ("instruction never exectued");
10686 return;
10688 if (!COMPARISON_P (x))
10690 output_operand_lossage ("invalid operand for code '%c'", code);
10691 return;
10694 fputs (arm_condition_codes[ARM_INVERSE_CONDITION_CODE
10695 (get_arm_condition_code (x))],
10696 stream);
10697 return;
10699 /* Cirrus registers can be accessed in a variety of ways:
10700 single floating point (f)
10701 double floating point (d)
10702 32bit integer (fx)
10703 64bit integer (dx). */
10704 case 'W': /* Cirrus register in F mode. */
10705 case 'X': /* Cirrus register in D mode. */
10706 case 'Y': /* Cirrus register in FX mode. */
10707 case 'Z': /* Cirrus register in DX mode. */
10708 gcc_assert (GET_CODE (x) == REG
10709 && REGNO_REG_CLASS (REGNO (x)) == CIRRUS_REGS);
10711 fprintf (stream, "mv%s%s",
10712 code == 'W' ? "f"
10713 : code == 'X' ? "d"
10714 : code == 'Y' ? "fx" : "dx", reg_names[REGNO (x)] + 2);
10716 return;
10718 /* Print cirrus register in the mode specified by the register's mode. */
10719 case 'V':
10721 int mode = GET_MODE (x);
10723 if (GET_CODE (x) != REG || REGNO_REG_CLASS (REGNO (x)) != CIRRUS_REGS)
10725 output_operand_lossage ("invalid operand for code '%c'", code);
10726 return;
10729 fprintf (stream, "mv%s%s",
10730 mode == DFmode ? "d"
10731 : mode == SImode ? "fx"
10732 : mode == DImode ? "dx"
10733 : "f", reg_names[REGNO (x)] + 2);
10735 return;
10738 case 'U':
10739 if (GET_CODE (x) != REG
10740 || REGNO (x) < FIRST_IWMMXT_GR_REGNUM
10741 || REGNO (x) > LAST_IWMMXT_GR_REGNUM)
10742 /* Bad value for wCG register number. */
10744 output_operand_lossage ("invalid operand for code '%c'", code);
10745 return;
10748 else
10749 fprintf (stream, "%d", REGNO (x) - FIRST_IWMMXT_GR_REGNUM);
10750 return;
10752 /* Print an iWMMXt control register name. */
10753 case 'w':
10754 if (GET_CODE (x) != CONST_INT
10755 || INTVAL (x) < 0
10756 || INTVAL (x) >= 16)
10757 /* Bad value for wC register number. */
10759 output_operand_lossage ("invalid operand for code '%c'", code);
10760 return;
10763 else
10765 static const char * wc_reg_names [16] =
10767 "wCID", "wCon", "wCSSF", "wCASF",
10768 "wC4", "wC5", "wC6", "wC7",
10769 "wCGR0", "wCGR1", "wCGR2", "wCGR3",
10770 "wC12", "wC13", "wC14", "wC15"
10773 fprintf (stream, wc_reg_names [INTVAL (x)]);
10775 return;
10777 /* Print a VFP double precision register name. */
10778 case 'P':
10780 int mode = GET_MODE (x);
10781 int num;
10783 if (mode != DImode && mode != DFmode)
10785 output_operand_lossage ("invalid operand for code '%c'", code);
10786 return;
10789 if (GET_CODE (x) != REG
10790 || !IS_VFP_REGNUM (REGNO (x)))
10792 output_operand_lossage ("invalid operand for code '%c'", code);
10793 return;
10796 num = REGNO(x) - FIRST_VFP_REGNUM;
10797 if (num & 1)
10799 output_operand_lossage ("invalid operand for code '%c'", code);
10800 return;
10803 fprintf (stream, "d%d", num >> 1);
10805 return;
10807 default:
10808 if (x == 0)
10810 output_operand_lossage ("missing operand");
10811 return;
10814 switch (GET_CODE (x))
10816 case REG:
10817 asm_fprintf (stream, "%r", REGNO (x));
10818 break;
10820 case MEM:
10821 output_memory_reference_mode = GET_MODE (x);
10822 output_address (XEXP (x, 0));
10823 break;
10825 case CONST_DOUBLE:
10826 fprintf (stream, "#%s", fp_immediate_constant (x));
10827 break;
10829 default:
10830 gcc_assert (GET_CODE (x) != NEG);
10831 fputc ('#', stream);
10832 output_addr_const (stream, x);
10833 break;
10838 #ifndef AOF_ASSEMBLER
10839 /* Target hook for assembling integer objects. The ARM version needs to
10840 handle word-sized values specially. */
10841 static bool
10842 arm_assemble_integer (rtx x, unsigned int size, int aligned_p)
10844 if (size == UNITS_PER_WORD && aligned_p)
10846 fputs ("\t.word\t", asm_out_file);
10847 output_addr_const (asm_out_file, x);
10849 /* Mark symbols as position independent. We only do this in the
10850 .text segment, not in the .data segment. */
10851 if (NEED_GOT_RELOC && flag_pic && making_const_table &&
10852 (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF))
10854 if (GET_CODE (x) == SYMBOL_REF
10855 && (CONSTANT_POOL_ADDRESS_P (x)
10856 || SYMBOL_REF_LOCAL_P (x)))
10857 fputs ("(GOTOFF)", asm_out_file);
10858 else if (GET_CODE (x) == LABEL_REF)
10859 fputs ("(GOTOFF)", asm_out_file);
10860 else
10861 fputs ("(GOT)", asm_out_file);
10863 fputc ('\n', asm_out_file);
10864 return true;
10867 if (arm_vector_mode_supported_p (GET_MODE (x)))
10869 int i, units;
10871 gcc_assert (GET_CODE (x) == CONST_VECTOR);
10873 units = CONST_VECTOR_NUNITS (x);
10875 switch (GET_MODE (x))
10877 case V2SImode: size = 4; break;
10878 case V4HImode: size = 2; break;
10879 case V8QImode: size = 1; break;
10880 default:
10881 gcc_unreachable ();
10884 for (i = 0; i < units; i++)
10886 rtx elt;
10888 elt = CONST_VECTOR_ELT (x, i);
10889 assemble_integer
10890 (elt, size, i == 0 ? BIGGEST_ALIGNMENT : size * BITS_PER_UNIT, 1);
10893 return true;
10896 return default_assemble_integer (x, size, aligned_p);
10900 /* Add a function to the list of static constructors. */
10902 static void
10903 arm_elf_asm_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
10905 if (!TARGET_AAPCS_BASED)
10907 default_named_section_asm_out_constructor (symbol, priority);
10908 return;
10911 /* Put these in the .init_array section, using a special relocation. */
10912 ctors_section ();
10913 assemble_align (POINTER_SIZE);
10914 fputs ("\t.word\t", asm_out_file);
10915 output_addr_const (asm_out_file, symbol);
10916 fputs ("(target1)\n", asm_out_file);
10918 #endif
10920 /* A finite state machine takes care of noticing whether or not instructions
10921 can be conditionally executed, and thus decrease execution time and code
10922 size by deleting branch instructions. The fsm is controlled by
10923 final_prescan_insn, and controls the actions of ASM_OUTPUT_OPCODE. */
10925 /* The state of the fsm controlling condition codes are:
10926 0: normal, do nothing special
10927 1: make ASM_OUTPUT_OPCODE not output this instruction
10928 2: make ASM_OUTPUT_OPCODE not output this instruction
10929 3: make instructions conditional
10930 4: make instructions conditional
10932 State transitions (state->state by whom under condition):
10933 0 -> 1 final_prescan_insn if the `target' is a label
10934 0 -> 2 final_prescan_insn if the `target' is an unconditional branch
10935 1 -> 3 ASM_OUTPUT_OPCODE after not having output the conditional branch
10936 2 -> 4 ASM_OUTPUT_OPCODE after not having output the conditional branch
10937 3 -> 0 (*targetm.asm_out.internal_label) if the `target' label is reached
10938 (the target label has CODE_LABEL_NUMBER equal to arm_target_label).
10939 4 -> 0 final_prescan_insn if the `target' unconditional branch is reached
10940 (the target insn is arm_target_insn).
10942 If the jump clobbers the conditions then we use states 2 and 4.
10944 A similar thing can be done with conditional return insns.
10946 XXX In case the `target' is an unconditional branch, this conditionalising
10947 of the instructions always reduces code size, but not always execution
10948 time. But then, I want to reduce the code size to somewhere near what
10949 /bin/cc produces. */
10951 /* Returns the index of the ARM condition code string in
10952 `arm_condition_codes'. COMPARISON should be an rtx like
10953 `(eq (...) (...))'. */
10954 static enum arm_cond_code
10955 get_arm_condition_code (rtx comparison)
10957 enum machine_mode mode = GET_MODE (XEXP (comparison, 0));
10958 int code;
10959 enum rtx_code comp_code = GET_CODE (comparison);
10961 if (GET_MODE_CLASS (mode) != MODE_CC)
10962 mode = SELECT_CC_MODE (comp_code, XEXP (comparison, 0),
10963 XEXP (comparison, 1));
10965 switch (mode)
10967 case CC_DNEmode: code = ARM_NE; goto dominance;
10968 case CC_DEQmode: code = ARM_EQ; goto dominance;
10969 case CC_DGEmode: code = ARM_GE; goto dominance;
10970 case CC_DGTmode: code = ARM_GT; goto dominance;
10971 case CC_DLEmode: code = ARM_LE; goto dominance;
10972 case CC_DLTmode: code = ARM_LT; goto dominance;
10973 case CC_DGEUmode: code = ARM_CS; goto dominance;
10974 case CC_DGTUmode: code = ARM_HI; goto dominance;
10975 case CC_DLEUmode: code = ARM_LS; goto dominance;
10976 case CC_DLTUmode: code = ARM_CC;
10978 dominance:
10979 gcc_assert (comp_code == EQ || comp_code == NE);
10981 if (comp_code == EQ)
10982 return ARM_INVERSE_CONDITION_CODE (code);
10983 return code;
10985 case CC_NOOVmode:
10986 switch (comp_code)
10988 case NE: return ARM_NE;
10989 case EQ: return ARM_EQ;
10990 case GE: return ARM_PL;
10991 case LT: return ARM_MI;
10992 default: gcc_unreachable ();
10995 case CC_Zmode:
10996 switch (comp_code)
10998 case NE: return ARM_NE;
10999 case EQ: return ARM_EQ;
11000 default: gcc_unreachable ();
11003 case CC_Nmode:
11004 switch (comp_code)
11006 case NE: return ARM_MI;
11007 case EQ: return ARM_PL;
11008 default: gcc_unreachable ();
11011 case CCFPEmode:
11012 case CCFPmode:
11013 /* These encodings assume that AC=1 in the FPA system control
11014 byte. This allows us to handle all cases except UNEQ and
11015 LTGT. */
11016 switch (comp_code)
11018 case GE: return ARM_GE;
11019 case GT: return ARM_GT;
11020 case LE: return ARM_LS;
11021 case LT: return ARM_MI;
11022 case NE: return ARM_NE;
11023 case EQ: return ARM_EQ;
11024 case ORDERED: return ARM_VC;
11025 case UNORDERED: return ARM_VS;
11026 case UNLT: return ARM_LT;
11027 case UNLE: return ARM_LE;
11028 case UNGT: return ARM_HI;
11029 case UNGE: return ARM_PL;
11030 /* UNEQ and LTGT do not have a representation. */
11031 case UNEQ: /* Fall through. */
11032 case LTGT: /* Fall through. */
11033 default: gcc_unreachable ();
11036 case CC_SWPmode:
11037 switch (comp_code)
11039 case NE: return ARM_NE;
11040 case EQ: return ARM_EQ;
11041 case GE: return ARM_LE;
11042 case GT: return ARM_LT;
11043 case LE: return ARM_GE;
11044 case LT: return ARM_GT;
11045 case GEU: return ARM_LS;
11046 case GTU: return ARM_CC;
11047 case LEU: return ARM_CS;
11048 case LTU: return ARM_HI;
11049 default: gcc_unreachable ();
11052 case CC_Cmode:
11053 switch (comp_code)
11055 case LTU: return ARM_CS;
11056 case GEU: return ARM_CC;
11057 default: gcc_unreachable ();
11060 case CCmode:
11061 switch (comp_code)
11063 case NE: return ARM_NE;
11064 case EQ: return ARM_EQ;
11065 case GE: return ARM_GE;
11066 case GT: return ARM_GT;
11067 case LE: return ARM_LE;
11068 case LT: return ARM_LT;
11069 case GEU: return ARM_CS;
11070 case GTU: return ARM_HI;
11071 case LEU: return ARM_LS;
11072 case LTU: return ARM_CC;
11073 default: gcc_unreachable ();
11076 default: gcc_unreachable ();
11080 void
11081 arm_final_prescan_insn (rtx insn)
11083 /* BODY will hold the body of INSN. */
11084 rtx body = PATTERN (insn);
11086 /* This will be 1 if trying to repeat the trick, and things need to be
11087 reversed if it appears to fail. */
11088 int reverse = 0;
11090 /* JUMP_CLOBBERS will be one implies that the conditions if a branch is
11091 taken are clobbered, even if the rtl suggests otherwise. It also
11092 means that we have to grub around within the jump expression to find
11093 out what the conditions are when the jump isn't taken. */
11094 int jump_clobbers = 0;
11096 /* If we start with a return insn, we only succeed if we find another one. */
11097 int seeking_return = 0;
11099 /* START_INSN will hold the insn from where we start looking. This is the
11100 first insn after the following code_label if REVERSE is true. */
11101 rtx start_insn = insn;
11103 /* If in state 4, check if the target branch is reached, in order to
11104 change back to state 0. */
11105 if (arm_ccfsm_state == 4)
11107 if (insn == arm_target_insn)
11109 arm_target_insn = NULL;
11110 arm_ccfsm_state = 0;
11112 return;
11115 /* If in state 3, it is possible to repeat the trick, if this insn is an
11116 unconditional branch to a label, and immediately following this branch
11117 is the previous target label which is only used once, and the label this
11118 branch jumps to is not too far off. */
11119 if (arm_ccfsm_state == 3)
11121 if (simplejump_p (insn))
11123 start_insn = next_nonnote_insn (start_insn);
11124 if (GET_CODE (start_insn) == BARRIER)
11126 /* XXX Isn't this always a barrier? */
11127 start_insn = next_nonnote_insn (start_insn);
11129 if (GET_CODE (start_insn) == CODE_LABEL
11130 && CODE_LABEL_NUMBER (start_insn) == arm_target_label
11131 && LABEL_NUSES (start_insn) == 1)
11132 reverse = TRUE;
11133 else
11134 return;
11136 else if (GET_CODE (body) == RETURN)
11138 start_insn = next_nonnote_insn (start_insn);
11139 if (GET_CODE (start_insn) == BARRIER)
11140 start_insn = next_nonnote_insn (start_insn);
11141 if (GET_CODE (start_insn) == CODE_LABEL
11142 && CODE_LABEL_NUMBER (start_insn) == arm_target_label
11143 && LABEL_NUSES (start_insn) == 1)
11145 reverse = TRUE;
11146 seeking_return = 1;
11148 else
11149 return;
11151 else
11152 return;
11155 gcc_assert (!arm_ccfsm_state || reverse);
11156 if (GET_CODE (insn) != JUMP_INSN)
11157 return;
11159 /* This jump might be paralleled with a clobber of the condition codes
11160 the jump should always come first */
11161 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
11162 body = XVECEXP (body, 0, 0);
11164 if (reverse
11165 || (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
11166 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
11168 int insns_skipped;
11169 int fail = FALSE, succeed = FALSE;
11170 /* Flag which part of the IF_THEN_ELSE is the LABEL_REF. */
11171 int then_not_else = TRUE;
11172 rtx this_insn = start_insn, label = 0;
11174 /* If the jump cannot be done with one instruction, we cannot
11175 conditionally execute the instruction in the inverse case. */
11176 if (get_attr_conds (insn) == CONDS_JUMP_CLOB)
11178 jump_clobbers = 1;
11179 return;
11182 /* Register the insn jumped to. */
11183 if (reverse)
11185 if (!seeking_return)
11186 label = XEXP (SET_SRC (body), 0);
11188 else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
11189 label = XEXP (XEXP (SET_SRC (body), 1), 0);
11190 else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
11192 label = XEXP (XEXP (SET_SRC (body), 2), 0);
11193 then_not_else = FALSE;
11195 else if (GET_CODE (XEXP (SET_SRC (body), 1)) == RETURN)
11196 seeking_return = 1;
11197 else if (GET_CODE (XEXP (SET_SRC (body), 2)) == RETURN)
11199 seeking_return = 1;
11200 then_not_else = FALSE;
11202 else
11203 gcc_unreachable ();
11205 /* See how many insns this branch skips, and what kind of insns. If all
11206 insns are okay, and the label or unconditional branch to the same
11207 label is not too far away, succeed. */
11208 for (insns_skipped = 0;
11209 !fail && !succeed && insns_skipped++ < max_insns_skipped;)
11211 rtx scanbody;
11213 this_insn = next_nonnote_insn (this_insn);
11214 if (!this_insn)
11215 break;
11217 switch (GET_CODE (this_insn))
11219 case CODE_LABEL:
11220 /* Succeed if it is the target label, otherwise fail since
11221 control falls in from somewhere else. */
11222 if (this_insn == label)
11224 if (jump_clobbers)
11226 arm_ccfsm_state = 2;
11227 this_insn = next_nonnote_insn (this_insn);
11229 else
11230 arm_ccfsm_state = 1;
11231 succeed = TRUE;
11233 else
11234 fail = TRUE;
11235 break;
11237 case BARRIER:
11238 /* Succeed if the following insn is the target label.
11239 Otherwise fail.
11240 If return insns are used then the last insn in a function
11241 will be a barrier. */
11242 this_insn = next_nonnote_insn (this_insn);
11243 if (this_insn && this_insn == label)
11245 if (jump_clobbers)
11247 arm_ccfsm_state = 2;
11248 this_insn = next_nonnote_insn (this_insn);
11250 else
11251 arm_ccfsm_state = 1;
11252 succeed = TRUE;
11254 else
11255 fail = TRUE;
11256 break;
11258 case CALL_INSN:
11259 /* The AAPCS says that conditional calls should not be
11260 used since they make interworking inefficient (the
11261 linker can't transform BL<cond> into BLX). That's
11262 only a problem if the machine has BLX. */
11263 if (arm_arch5)
11265 fail = TRUE;
11266 break;
11269 /* Succeed if the following insn is the target label, or
11270 if the following two insns are a barrier and the
11271 target label. */
11272 this_insn = next_nonnote_insn (this_insn);
11273 if (this_insn && GET_CODE (this_insn) == BARRIER)
11274 this_insn = next_nonnote_insn (this_insn);
11276 if (this_insn && this_insn == label
11277 && insns_skipped < max_insns_skipped)
11279 if (jump_clobbers)
11281 arm_ccfsm_state = 2;
11282 this_insn = next_nonnote_insn (this_insn);
11284 else
11285 arm_ccfsm_state = 1;
11286 succeed = TRUE;
11288 else
11289 fail = TRUE;
11290 break;
11292 case JUMP_INSN:
11293 /* If this is an unconditional branch to the same label, succeed.
11294 If it is to another label, do nothing. If it is conditional,
11295 fail. */
11296 /* XXX Probably, the tests for SET and the PC are
11297 unnecessary. */
11299 scanbody = PATTERN (this_insn);
11300 if (GET_CODE (scanbody) == SET
11301 && GET_CODE (SET_DEST (scanbody)) == PC)
11303 if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
11304 && XEXP (SET_SRC (scanbody), 0) == label && !reverse)
11306 arm_ccfsm_state = 2;
11307 succeed = TRUE;
11309 else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
11310 fail = TRUE;
11312 /* Fail if a conditional return is undesirable (e.g. on a
11313 StrongARM), but still allow this if optimizing for size. */
11314 else if (GET_CODE (scanbody) == RETURN
11315 && !use_return_insn (TRUE, NULL)
11316 && !optimize_size)
11317 fail = TRUE;
11318 else if (GET_CODE (scanbody) == RETURN
11319 && seeking_return)
11321 arm_ccfsm_state = 2;
11322 succeed = TRUE;
11324 else if (GET_CODE (scanbody) == PARALLEL)
11326 switch (get_attr_conds (this_insn))
11328 case CONDS_NOCOND:
11329 break;
11330 default:
11331 fail = TRUE;
11332 break;
11335 else
11336 fail = TRUE; /* Unrecognized jump (e.g. epilogue). */
11338 break;
11340 case INSN:
11341 /* Instructions using or affecting the condition codes make it
11342 fail. */
11343 scanbody = PATTERN (this_insn);
11344 if (!(GET_CODE (scanbody) == SET
11345 || GET_CODE (scanbody) == PARALLEL)
11346 || get_attr_conds (this_insn) != CONDS_NOCOND)
11347 fail = TRUE;
11349 /* A conditional cirrus instruction must be followed by
11350 a non Cirrus instruction. However, since we
11351 conditionalize instructions in this function and by
11352 the time we get here we can't add instructions
11353 (nops), because shorten_branches() has already been
11354 called, we will disable conditionalizing Cirrus
11355 instructions to be safe. */
11356 if (GET_CODE (scanbody) != USE
11357 && GET_CODE (scanbody) != CLOBBER
11358 && get_attr_cirrus (this_insn) != CIRRUS_NOT)
11359 fail = TRUE;
11360 break;
11362 default:
11363 break;
11366 if (succeed)
11368 if ((!seeking_return) && (arm_ccfsm_state == 1 || reverse))
11369 arm_target_label = CODE_LABEL_NUMBER (label);
11370 else
11372 gcc_assert (seeking_return || arm_ccfsm_state == 2);
11374 while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
11376 this_insn = next_nonnote_insn (this_insn);
11377 gcc_assert (!this_insn
11378 || (GET_CODE (this_insn) != BARRIER
11379 && GET_CODE (this_insn) != CODE_LABEL));
11381 if (!this_insn)
11383 /* Oh, dear! we ran off the end.. give up. */
11384 recog (PATTERN (insn), insn, NULL);
11385 arm_ccfsm_state = 0;
11386 arm_target_insn = NULL;
11387 return;
11389 arm_target_insn = this_insn;
11391 if (jump_clobbers)
11393 gcc_assert (!reverse);
11394 arm_current_cc =
11395 get_arm_condition_code (XEXP (XEXP (XEXP (SET_SRC (body),
11396 0), 0), 1));
11397 if (GET_CODE (XEXP (XEXP (SET_SRC (body), 0), 0)) == AND)
11398 arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
11399 if (GET_CODE (XEXP (SET_SRC (body), 0)) == NE)
11400 arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
11402 else
11404 /* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
11405 what it was. */
11406 if (!reverse)
11407 arm_current_cc = get_arm_condition_code (XEXP (SET_SRC (body),
11408 0));
11411 if (reverse || then_not_else)
11412 arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
11415 /* Restore recog_data (getting the attributes of other insns can
11416 destroy this array, but final.c assumes that it remains intact
11417 across this call; since the insn has been recognized already we
11418 call recog direct). */
11419 recog (PATTERN (insn), insn, NULL);
11423 /* Returns true if REGNO is a valid register
11424 for holding a quantity of type MODE. */
11426 arm_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
11428 if (GET_MODE_CLASS (mode) == MODE_CC)
11429 return regno == CC_REGNUM || regno == VFPCC_REGNUM;
11431 if (TARGET_THUMB)
11432 /* For the Thumb we only allow values bigger than SImode in
11433 registers 0 - 6, so that there is always a second low
11434 register available to hold the upper part of the value.
11435 We probably we ought to ensure that the register is the
11436 start of an even numbered register pair. */
11437 return (ARM_NUM_REGS (mode) < 2) || (regno < LAST_LO_REGNUM);
11439 if (IS_CIRRUS_REGNUM (regno))
11440 /* We have outlawed SI values in Cirrus registers because they
11441 reside in the lower 32 bits, but SF values reside in the
11442 upper 32 bits. This causes gcc all sorts of grief. We can't
11443 even split the registers into pairs because Cirrus SI values
11444 get sign extended to 64bits-- aldyh. */
11445 return (GET_MODE_CLASS (mode) == MODE_FLOAT) || (mode == DImode);
11447 if (IS_VFP_REGNUM (regno))
11449 if (mode == SFmode || mode == SImode)
11450 return TRUE;
11452 /* DFmode values are only valid in even register pairs. */
11453 if (mode == DFmode)
11454 return ((regno - FIRST_VFP_REGNUM) & 1) == 0;
11455 return FALSE;
11458 if (IS_IWMMXT_GR_REGNUM (regno))
11459 return mode == SImode;
11461 if (IS_IWMMXT_REGNUM (regno))
11462 return VALID_IWMMXT_REG_MODE (mode);
11464 /* We allow any value to be stored in the general registers.
11465 Restrict doubleword quantities to even register pairs so that we can
11466 use ldrd. */
11467 if (regno <= LAST_ARM_REGNUM)
11468 return !(TARGET_LDRD && GET_MODE_SIZE (mode) > 4 && (regno & 1) != 0);
11470 if ( regno == FRAME_POINTER_REGNUM
11471 || regno == ARG_POINTER_REGNUM)
11472 /* We only allow integers in the fake hard registers. */
11473 return GET_MODE_CLASS (mode) == MODE_INT;
11475 /* The only registers left are the FPA registers
11476 which we only allow to hold FP values. */
11477 return GET_MODE_CLASS (mode) == MODE_FLOAT
11478 && regno >= FIRST_FPA_REGNUM
11479 && regno <= LAST_FPA_REGNUM;
11483 arm_regno_class (int regno)
11485 if (TARGET_THUMB)
11487 if (regno == STACK_POINTER_REGNUM)
11488 return STACK_REG;
11489 if (regno == CC_REGNUM)
11490 return CC_REG;
11491 if (regno < 8)
11492 return LO_REGS;
11493 return HI_REGS;
11496 if ( regno <= LAST_ARM_REGNUM
11497 || regno == FRAME_POINTER_REGNUM
11498 || regno == ARG_POINTER_REGNUM)
11499 return GENERAL_REGS;
11501 if (regno == CC_REGNUM || regno == VFPCC_REGNUM)
11502 return NO_REGS;
11504 if (IS_CIRRUS_REGNUM (regno))
11505 return CIRRUS_REGS;
11507 if (IS_VFP_REGNUM (regno))
11508 return VFP_REGS;
11510 if (IS_IWMMXT_REGNUM (regno))
11511 return IWMMXT_REGS;
11513 if (IS_IWMMXT_GR_REGNUM (regno))
11514 return IWMMXT_GR_REGS;
11516 return FPA_REGS;
11519 /* Handle a special case when computing the offset
11520 of an argument from the frame pointer. */
11522 arm_debugger_arg_offset (int value, rtx addr)
11524 rtx insn;
11526 /* We are only interested if dbxout_parms() failed to compute the offset. */
11527 if (value != 0)
11528 return 0;
11530 /* We can only cope with the case where the address is held in a register. */
11531 if (GET_CODE (addr) != REG)
11532 return 0;
11534 /* If we are using the frame pointer to point at the argument, then
11535 an offset of 0 is correct. */
11536 if (REGNO (addr) == (unsigned) HARD_FRAME_POINTER_REGNUM)
11537 return 0;
11539 /* If we are using the stack pointer to point at the
11540 argument, then an offset of 0 is correct. */
11541 if ((TARGET_THUMB || !frame_pointer_needed)
11542 && REGNO (addr) == SP_REGNUM)
11543 return 0;
11545 /* Oh dear. The argument is pointed to by a register rather
11546 than being held in a register, or being stored at a known
11547 offset from the frame pointer. Since GDB only understands
11548 those two kinds of argument we must translate the address
11549 held in the register into an offset from the frame pointer.
11550 We do this by searching through the insns for the function
11551 looking to see where this register gets its value. If the
11552 register is initialized from the frame pointer plus an offset
11553 then we are in luck and we can continue, otherwise we give up.
11555 This code is exercised by producing debugging information
11556 for a function with arguments like this:
11558 double func (double a, double b, int c, double d) {return d;}
11560 Without this code the stab for parameter 'd' will be set to
11561 an offset of 0 from the frame pointer, rather than 8. */
11563 /* The if() statement says:
11565 If the insn is a normal instruction
11566 and if the insn is setting the value in a register
11567 and if the register being set is the register holding the address of the argument
11568 and if the address is computing by an addition
11569 that involves adding to a register
11570 which is the frame pointer
11571 a constant integer
11573 then... */
11575 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
11577 if ( GET_CODE (insn) == INSN
11578 && GET_CODE (PATTERN (insn)) == SET
11579 && REGNO (XEXP (PATTERN (insn), 0)) == REGNO (addr)
11580 && GET_CODE (XEXP (PATTERN (insn), 1)) == PLUS
11581 && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 0)) == REG
11582 && REGNO (XEXP (XEXP (PATTERN (insn), 1), 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
11583 && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 1)) == CONST_INT
11586 value = INTVAL (XEXP (XEXP (PATTERN (insn), 1), 1));
11588 break;
11592 if (value == 0)
11594 debug_rtx (addr);
11595 warning (0, "unable to compute real location of stacked parameter");
11596 value = 8; /* XXX magic hack */
11599 return value;
11602 #define def_mbuiltin(MASK, NAME, TYPE, CODE) \
11603 do \
11605 if ((MASK) & insn_flags) \
11606 lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
11607 BUILT_IN_MD, NULL, NULL_TREE); \
11609 while (0)
11611 struct builtin_description
11613 const unsigned int mask;
11614 const enum insn_code icode;
11615 const char * const name;
11616 const enum arm_builtins code;
11617 const enum rtx_code comparison;
11618 const unsigned int flag;
11621 static const struct builtin_description bdesc_2arg[] =
11623 #define IWMMXT_BUILTIN(code, string, builtin) \
11624 { FL_IWMMXT, CODE_FOR_##code, "__builtin_arm_" string, \
11625 ARM_BUILTIN_##builtin, 0, 0 },
11627 IWMMXT_BUILTIN (addv8qi3, "waddb", WADDB)
11628 IWMMXT_BUILTIN (addv4hi3, "waddh", WADDH)
11629 IWMMXT_BUILTIN (addv2si3, "waddw", WADDW)
11630 IWMMXT_BUILTIN (subv8qi3, "wsubb", WSUBB)
11631 IWMMXT_BUILTIN (subv4hi3, "wsubh", WSUBH)
11632 IWMMXT_BUILTIN (subv2si3, "wsubw", WSUBW)
11633 IWMMXT_BUILTIN (ssaddv8qi3, "waddbss", WADDSSB)
11634 IWMMXT_BUILTIN (ssaddv4hi3, "waddhss", WADDSSH)
11635 IWMMXT_BUILTIN (ssaddv2si3, "waddwss", WADDSSW)
11636 IWMMXT_BUILTIN (sssubv8qi3, "wsubbss", WSUBSSB)
11637 IWMMXT_BUILTIN (sssubv4hi3, "wsubhss", WSUBSSH)
11638 IWMMXT_BUILTIN (sssubv2si3, "wsubwss", WSUBSSW)
11639 IWMMXT_BUILTIN (usaddv8qi3, "waddbus", WADDUSB)
11640 IWMMXT_BUILTIN (usaddv4hi3, "waddhus", WADDUSH)
11641 IWMMXT_BUILTIN (usaddv2si3, "waddwus", WADDUSW)
11642 IWMMXT_BUILTIN (ussubv8qi3, "wsubbus", WSUBUSB)
11643 IWMMXT_BUILTIN (ussubv4hi3, "wsubhus", WSUBUSH)
11644 IWMMXT_BUILTIN (ussubv2si3, "wsubwus", WSUBUSW)
11645 IWMMXT_BUILTIN (mulv4hi3, "wmulul", WMULUL)
11646 IWMMXT_BUILTIN (smulv4hi3_highpart, "wmulsm", WMULSM)
11647 IWMMXT_BUILTIN (umulv4hi3_highpart, "wmulum", WMULUM)
11648 IWMMXT_BUILTIN (eqv8qi3, "wcmpeqb", WCMPEQB)
11649 IWMMXT_BUILTIN (eqv4hi3, "wcmpeqh", WCMPEQH)
11650 IWMMXT_BUILTIN (eqv2si3, "wcmpeqw", WCMPEQW)
11651 IWMMXT_BUILTIN (gtuv8qi3, "wcmpgtub", WCMPGTUB)
11652 IWMMXT_BUILTIN (gtuv4hi3, "wcmpgtuh", WCMPGTUH)
11653 IWMMXT_BUILTIN (gtuv2si3, "wcmpgtuw", WCMPGTUW)
11654 IWMMXT_BUILTIN (gtv8qi3, "wcmpgtsb", WCMPGTSB)
11655 IWMMXT_BUILTIN (gtv4hi3, "wcmpgtsh", WCMPGTSH)
11656 IWMMXT_BUILTIN (gtv2si3, "wcmpgtsw", WCMPGTSW)
11657 IWMMXT_BUILTIN (umaxv8qi3, "wmaxub", WMAXUB)
11658 IWMMXT_BUILTIN (smaxv8qi3, "wmaxsb", WMAXSB)
11659 IWMMXT_BUILTIN (umaxv4hi3, "wmaxuh", WMAXUH)
11660 IWMMXT_BUILTIN (smaxv4hi3, "wmaxsh", WMAXSH)
11661 IWMMXT_BUILTIN (umaxv2si3, "wmaxuw", WMAXUW)
11662 IWMMXT_BUILTIN (smaxv2si3, "wmaxsw", WMAXSW)
11663 IWMMXT_BUILTIN (uminv8qi3, "wminub", WMINUB)
11664 IWMMXT_BUILTIN (sminv8qi3, "wminsb", WMINSB)
11665 IWMMXT_BUILTIN (uminv4hi3, "wminuh", WMINUH)
11666 IWMMXT_BUILTIN (sminv4hi3, "wminsh", WMINSH)
11667 IWMMXT_BUILTIN (uminv2si3, "wminuw", WMINUW)
11668 IWMMXT_BUILTIN (sminv2si3, "wminsw", WMINSW)
11669 IWMMXT_BUILTIN (iwmmxt_anddi3, "wand", WAND)
11670 IWMMXT_BUILTIN (iwmmxt_nanddi3, "wandn", WANDN)
11671 IWMMXT_BUILTIN (iwmmxt_iordi3, "wor", WOR)
11672 IWMMXT_BUILTIN (iwmmxt_xordi3, "wxor", WXOR)
11673 IWMMXT_BUILTIN (iwmmxt_uavgv8qi3, "wavg2b", WAVG2B)
11674 IWMMXT_BUILTIN (iwmmxt_uavgv4hi3, "wavg2h", WAVG2H)
11675 IWMMXT_BUILTIN (iwmmxt_uavgrndv8qi3, "wavg2br", WAVG2BR)
11676 IWMMXT_BUILTIN (iwmmxt_uavgrndv4hi3, "wavg2hr", WAVG2HR)
11677 IWMMXT_BUILTIN (iwmmxt_wunpckilb, "wunpckilb", WUNPCKILB)
11678 IWMMXT_BUILTIN (iwmmxt_wunpckilh, "wunpckilh", WUNPCKILH)
11679 IWMMXT_BUILTIN (iwmmxt_wunpckilw, "wunpckilw", WUNPCKILW)
11680 IWMMXT_BUILTIN (iwmmxt_wunpckihb, "wunpckihb", WUNPCKIHB)
11681 IWMMXT_BUILTIN (iwmmxt_wunpckihh, "wunpckihh", WUNPCKIHH)
11682 IWMMXT_BUILTIN (iwmmxt_wunpckihw, "wunpckihw", WUNPCKIHW)
11683 IWMMXT_BUILTIN (iwmmxt_wmadds, "wmadds", WMADDS)
11684 IWMMXT_BUILTIN (iwmmxt_wmaddu, "wmaddu", WMADDU)
11686 #define IWMMXT_BUILTIN2(code, builtin) \
11687 { FL_IWMMXT, CODE_FOR_##code, NULL, ARM_BUILTIN_##builtin, 0, 0 },
11689 IWMMXT_BUILTIN2 (iwmmxt_wpackhss, WPACKHSS)
11690 IWMMXT_BUILTIN2 (iwmmxt_wpackwss, WPACKWSS)
11691 IWMMXT_BUILTIN2 (iwmmxt_wpackdss, WPACKDSS)
11692 IWMMXT_BUILTIN2 (iwmmxt_wpackhus, WPACKHUS)
11693 IWMMXT_BUILTIN2 (iwmmxt_wpackwus, WPACKWUS)
11694 IWMMXT_BUILTIN2 (iwmmxt_wpackdus, WPACKDUS)
11695 IWMMXT_BUILTIN2 (ashlv4hi3_di, WSLLH)
11696 IWMMXT_BUILTIN2 (ashlv4hi3, WSLLHI)
11697 IWMMXT_BUILTIN2 (ashlv2si3_di, WSLLW)
11698 IWMMXT_BUILTIN2 (ashlv2si3, WSLLWI)
11699 IWMMXT_BUILTIN2 (ashldi3_di, WSLLD)
11700 IWMMXT_BUILTIN2 (ashldi3_iwmmxt, WSLLDI)
11701 IWMMXT_BUILTIN2 (lshrv4hi3_di, WSRLH)
11702 IWMMXT_BUILTIN2 (lshrv4hi3, WSRLHI)
11703 IWMMXT_BUILTIN2 (lshrv2si3_di, WSRLW)
11704 IWMMXT_BUILTIN2 (lshrv2si3, WSRLWI)
11705 IWMMXT_BUILTIN2 (lshrdi3_di, WSRLD)
11706 IWMMXT_BUILTIN2 (lshrdi3_iwmmxt, WSRLDI)
11707 IWMMXT_BUILTIN2 (ashrv4hi3_di, WSRAH)
11708 IWMMXT_BUILTIN2 (ashrv4hi3, WSRAHI)
11709 IWMMXT_BUILTIN2 (ashrv2si3_di, WSRAW)
11710 IWMMXT_BUILTIN2 (ashrv2si3, WSRAWI)
11711 IWMMXT_BUILTIN2 (ashrdi3_di, WSRAD)
11712 IWMMXT_BUILTIN2 (ashrdi3_iwmmxt, WSRADI)
11713 IWMMXT_BUILTIN2 (rorv4hi3_di, WRORH)
11714 IWMMXT_BUILTIN2 (rorv4hi3, WRORHI)
11715 IWMMXT_BUILTIN2 (rorv2si3_di, WRORW)
11716 IWMMXT_BUILTIN2 (rorv2si3, WRORWI)
11717 IWMMXT_BUILTIN2 (rordi3_di, WRORD)
11718 IWMMXT_BUILTIN2 (rordi3, WRORDI)
11719 IWMMXT_BUILTIN2 (iwmmxt_wmacuz, WMACUZ)
11720 IWMMXT_BUILTIN2 (iwmmxt_wmacsz, WMACSZ)
11723 static const struct builtin_description bdesc_1arg[] =
11725 IWMMXT_BUILTIN (iwmmxt_tmovmskb, "tmovmskb", TMOVMSKB)
11726 IWMMXT_BUILTIN (iwmmxt_tmovmskh, "tmovmskh", TMOVMSKH)
11727 IWMMXT_BUILTIN (iwmmxt_tmovmskw, "tmovmskw", TMOVMSKW)
11728 IWMMXT_BUILTIN (iwmmxt_waccb, "waccb", WACCB)
11729 IWMMXT_BUILTIN (iwmmxt_wacch, "wacch", WACCH)
11730 IWMMXT_BUILTIN (iwmmxt_waccw, "waccw", WACCW)
11731 IWMMXT_BUILTIN (iwmmxt_wunpckehub, "wunpckehub", WUNPCKEHUB)
11732 IWMMXT_BUILTIN (iwmmxt_wunpckehuh, "wunpckehuh", WUNPCKEHUH)
11733 IWMMXT_BUILTIN (iwmmxt_wunpckehuw, "wunpckehuw", WUNPCKEHUW)
11734 IWMMXT_BUILTIN (iwmmxt_wunpckehsb, "wunpckehsb", WUNPCKEHSB)
11735 IWMMXT_BUILTIN (iwmmxt_wunpckehsh, "wunpckehsh", WUNPCKEHSH)
11736 IWMMXT_BUILTIN (iwmmxt_wunpckehsw, "wunpckehsw", WUNPCKEHSW)
11737 IWMMXT_BUILTIN (iwmmxt_wunpckelub, "wunpckelub", WUNPCKELUB)
11738 IWMMXT_BUILTIN (iwmmxt_wunpckeluh, "wunpckeluh", WUNPCKELUH)
11739 IWMMXT_BUILTIN (iwmmxt_wunpckeluw, "wunpckeluw", WUNPCKELUW)
11740 IWMMXT_BUILTIN (iwmmxt_wunpckelsb, "wunpckelsb", WUNPCKELSB)
11741 IWMMXT_BUILTIN (iwmmxt_wunpckelsh, "wunpckelsh", WUNPCKELSH)
11742 IWMMXT_BUILTIN (iwmmxt_wunpckelsw, "wunpckelsw", WUNPCKELSW)
11745 /* Set up all the iWMMXt builtins. This is
11746 not called if TARGET_IWMMXT is zero. */
11748 static void
11749 arm_init_iwmmxt_builtins (void)
11751 const struct builtin_description * d;
11752 size_t i;
11753 tree endlink = void_list_node;
11755 tree V2SI_type_node = build_vector_type_for_mode (intSI_type_node, V2SImode);
11756 tree V4HI_type_node = build_vector_type_for_mode (intHI_type_node, V4HImode);
11757 tree V8QI_type_node = build_vector_type_for_mode (intQI_type_node, V8QImode);
11759 tree int_ftype_int
11760 = build_function_type (integer_type_node,
11761 tree_cons (NULL_TREE, integer_type_node, endlink));
11762 tree v8qi_ftype_v8qi_v8qi_int
11763 = build_function_type (V8QI_type_node,
11764 tree_cons (NULL_TREE, V8QI_type_node,
11765 tree_cons (NULL_TREE, V8QI_type_node,
11766 tree_cons (NULL_TREE,
11767 integer_type_node,
11768 endlink))));
11769 tree v4hi_ftype_v4hi_int
11770 = build_function_type (V4HI_type_node,
11771 tree_cons (NULL_TREE, V4HI_type_node,
11772 tree_cons (NULL_TREE, integer_type_node,
11773 endlink)));
11774 tree v2si_ftype_v2si_int
11775 = build_function_type (V2SI_type_node,
11776 tree_cons (NULL_TREE, V2SI_type_node,
11777 tree_cons (NULL_TREE, integer_type_node,
11778 endlink)));
11779 tree v2si_ftype_di_di
11780 = build_function_type (V2SI_type_node,
11781 tree_cons (NULL_TREE, long_long_integer_type_node,
11782 tree_cons (NULL_TREE, long_long_integer_type_node,
11783 endlink)));
11784 tree di_ftype_di_int
11785 = build_function_type (long_long_integer_type_node,
11786 tree_cons (NULL_TREE, long_long_integer_type_node,
11787 tree_cons (NULL_TREE, integer_type_node,
11788 endlink)));
11789 tree di_ftype_di_int_int
11790 = build_function_type (long_long_integer_type_node,
11791 tree_cons (NULL_TREE, long_long_integer_type_node,
11792 tree_cons (NULL_TREE, integer_type_node,
11793 tree_cons (NULL_TREE,
11794 integer_type_node,
11795 endlink))));
11796 tree int_ftype_v8qi
11797 = build_function_type (integer_type_node,
11798 tree_cons (NULL_TREE, V8QI_type_node,
11799 endlink));
11800 tree int_ftype_v4hi
11801 = build_function_type (integer_type_node,
11802 tree_cons (NULL_TREE, V4HI_type_node,
11803 endlink));
11804 tree int_ftype_v2si
11805 = build_function_type (integer_type_node,
11806 tree_cons (NULL_TREE, V2SI_type_node,
11807 endlink));
11808 tree int_ftype_v8qi_int
11809 = build_function_type (integer_type_node,
11810 tree_cons (NULL_TREE, V8QI_type_node,
11811 tree_cons (NULL_TREE, integer_type_node,
11812 endlink)));
11813 tree int_ftype_v4hi_int
11814 = build_function_type (integer_type_node,
11815 tree_cons (NULL_TREE, V4HI_type_node,
11816 tree_cons (NULL_TREE, integer_type_node,
11817 endlink)));
11818 tree int_ftype_v2si_int
11819 = build_function_type (integer_type_node,
11820 tree_cons (NULL_TREE, V2SI_type_node,
11821 tree_cons (NULL_TREE, integer_type_node,
11822 endlink)));
11823 tree v8qi_ftype_v8qi_int_int
11824 = build_function_type (V8QI_type_node,
11825 tree_cons (NULL_TREE, V8QI_type_node,
11826 tree_cons (NULL_TREE, integer_type_node,
11827 tree_cons (NULL_TREE,
11828 integer_type_node,
11829 endlink))));
11830 tree v4hi_ftype_v4hi_int_int
11831 = build_function_type (V4HI_type_node,
11832 tree_cons (NULL_TREE, V4HI_type_node,
11833 tree_cons (NULL_TREE, integer_type_node,
11834 tree_cons (NULL_TREE,
11835 integer_type_node,
11836 endlink))));
11837 tree v2si_ftype_v2si_int_int
11838 = build_function_type (V2SI_type_node,
11839 tree_cons (NULL_TREE, V2SI_type_node,
11840 tree_cons (NULL_TREE, integer_type_node,
11841 tree_cons (NULL_TREE,
11842 integer_type_node,
11843 endlink))));
11844 /* Miscellaneous. */
11845 tree v8qi_ftype_v4hi_v4hi
11846 = build_function_type (V8QI_type_node,
11847 tree_cons (NULL_TREE, V4HI_type_node,
11848 tree_cons (NULL_TREE, V4HI_type_node,
11849 endlink)));
11850 tree v4hi_ftype_v2si_v2si
11851 = build_function_type (V4HI_type_node,
11852 tree_cons (NULL_TREE, V2SI_type_node,
11853 tree_cons (NULL_TREE, V2SI_type_node,
11854 endlink)));
11855 tree v2si_ftype_v4hi_v4hi
11856 = build_function_type (V2SI_type_node,
11857 tree_cons (NULL_TREE, V4HI_type_node,
11858 tree_cons (NULL_TREE, V4HI_type_node,
11859 endlink)));
11860 tree v2si_ftype_v8qi_v8qi
11861 = build_function_type (V2SI_type_node,
11862 tree_cons (NULL_TREE, V8QI_type_node,
11863 tree_cons (NULL_TREE, V8QI_type_node,
11864 endlink)));
11865 tree v4hi_ftype_v4hi_di
11866 = build_function_type (V4HI_type_node,
11867 tree_cons (NULL_TREE, V4HI_type_node,
11868 tree_cons (NULL_TREE,
11869 long_long_integer_type_node,
11870 endlink)));
11871 tree v2si_ftype_v2si_di
11872 = build_function_type (V2SI_type_node,
11873 tree_cons (NULL_TREE, V2SI_type_node,
11874 tree_cons (NULL_TREE,
11875 long_long_integer_type_node,
11876 endlink)));
11877 tree void_ftype_int_int
11878 = build_function_type (void_type_node,
11879 tree_cons (NULL_TREE, integer_type_node,
11880 tree_cons (NULL_TREE, integer_type_node,
11881 endlink)));
11882 tree di_ftype_void
11883 = build_function_type (long_long_unsigned_type_node, endlink);
11884 tree di_ftype_v8qi
11885 = build_function_type (long_long_integer_type_node,
11886 tree_cons (NULL_TREE, V8QI_type_node,
11887 endlink));
11888 tree di_ftype_v4hi
11889 = build_function_type (long_long_integer_type_node,
11890 tree_cons (NULL_TREE, V4HI_type_node,
11891 endlink));
11892 tree di_ftype_v2si
11893 = build_function_type (long_long_integer_type_node,
11894 tree_cons (NULL_TREE, V2SI_type_node,
11895 endlink));
11896 tree v2si_ftype_v4hi
11897 = build_function_type (V2SI_type_node,
11898 tree_cons (NULL_TREE, V4HI_type_node,
11899 endlink));
11900 tree v4hi_ftype_v8qi
11901 = build_function_type (V4HI_type_node,
11902 tree_cons (NULL_TREE, V8QI_type_node,
11903 endlink));
11905 tree di_ftype_di_v4hi_v4hi
11906 = build_function_type (long_long_unsigned_type_node,
11907 tree_cons (NULL_TREE,
11908 long_long_unsigned_type_node,
11909 tree_cons (NULL_TREE, V4HI_type_node,
11910 tree_cons (NULL_TREE,
11911 V4HI_type_node,
11912 endlink))));
11914 tree di_ftype_v4hi_v4hi
11915 = build_function_type (long_long_unsigned_type_node,
11916 tree_cons (NULL_TREE, V4HI_type_node,
11917 tree_cons (NULL_TREE, V4HI_type_node,
11918 endlink)));
11920 /* Normal vector binops. */
11921 tree v8qi_ftype_v8qi_v8qi
11922 = build_function_type (V8QI_type_node,
11923 tree_cons (NULL_TREE, V8QI_type_node,
11924 tree_cons (NULL_TREE, V8QI_type_node,
11925 endlink)));
11926 tree v4hi_ftype_v4hi_v4hi
11927 = build_function_type (V4HI_type_node,
11928 tree_cons (NULL_TREE, V4HI_type_node,
11929 tree_cons (NULL_TREE, V4HI_type_node,
11930 endlink)));
11931 tree v2si_ftype_v2si_v2si
11932 = build_function_type (V2SI_type_node,
11933 tree_cons (NULL_TREE, V2SI_type_node,
11934 tree_cons (NULL_TREE, V2SI_type_node,
11935 endlink)));
11936 tree di_ftype_di_di
11937 = build_function_type (long_long_unsigned_type_node,
11938 tree_cons (NULL_TREE, long_long_unsigned_type_node,
11939 tree_cons (NULL_TREE,
11940 long_long_unsigned_type_node,
11941 endlink)));
11943 /* Add all builtins that are more or less simple operations on two
11944 operands. */
11945 for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
11947 /* Use one of the operands; the target can have a different mode for
11948 mask-generating compares. */
11949 enum machine_mode mode;
11950 tree type;
11952 if (d->name == 0)
11953 continue;
11955 mode = insn_data[d->icode].operand[1].mode;
11957 switch (mode)
11959 case V8QImode:
11960 type = v8qi_ftype_v8qi_v8qi;
11961 break;
11962 case V4HImode:
11963 type = v4hi_ftype_v4hi_v4hi;
11964 break;
11965 case V2SImode:
11966 type = v2si_ftype_v2si_v2si;
11967 break;
11968 case DImode:
11969 type = di_ftype_di_di;
11970 break;
11972 default:
11973 gcc_unreachable ();
11976 def_mbuiltin (d->mask, d->name, type, d->code);
11979 /* Add the remaining MMX insns with somewhat more complicated types. */
11980 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wzero", di_ftype_void, ARM_BUILTIN_WZERO);
11981 def_mbuiltin (FL_IWMMXT, "__builtin_arm_setwcx", void_ftype_int_int, ARM_BUILTIN_SETWCX);
11982 def_mbuiltin (FL_IWMMXT, "__builtin_arm_getwcx", int_ftype_int, ARM_BUILTIN_GETWCX);
11984 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSLLH);
11985 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllw", v2si_ftype_v2si_di, ARM_BUILTIN_WSLLW);
11986 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wslld", di_ftype_di_di, ARM_BUILTIN_WSLLD);
11987 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSLLHI);
11988 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllwi", v2si_ftype_v2si_int, ARM_BUILTIN_WSLLWI);
11989 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wslldi", di_ftype_di_int, ARM_BUILTIN_WSLLDI);
11991 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSRLH);
11992 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlw", v2si_ftype_v2si_di, ARM_BUILTIN_WSRLW);
11993 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrld", di_ftype_di_di, ARM_BUILTIN_WSRLD);
11994 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSRLHI);
11995 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlwi", v2si_ftype_v2si_int, ARM_BUILTIN_WSRLWI);
11996 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrldi", di_ftype_di_int, ARM_BUILTIN_WSRLDI);
11998 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrah", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSRAH);
11999 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsraw", v2si_ftype_v2si_di, ARM_BUILTIN_WSRAW);
12000 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrad", di_ftype_di_di, ARM_BUILTIN_WSRAD);
12001 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrahi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSRAHI);
12002 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrawi", v2si_ftype_v2si_int, ARM_BUILTIN_WSRAWI);
12003 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsradi", di_ftype_di_int, ARM_BUILTIN_WSRADI);
12005 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WRORH);
12006 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorw", v2si_ftype_v2si_di, ARM_BUILTIN_WRORW);
12007 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrord", di_ftype_di_di, ARM_BUILTIN_WRORD);
12008 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WRORHI);
12009 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorwi", v2si_ftype_v2si_int, ARM_BUILTIN_WRORWI);
12010 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrordi", di_ftype_di_int, ARM_BUILTIN_WRORDI);
12012 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wshufh", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSHUFH);
12014 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadb", v2si_ftype_v8qi_v8qi, ARM_BUILTIN_WSADB);
12015 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadh", v2si_ftype_v4hi_v4hi, ARM_BUILTIN_WSADH);
12016 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadbz", v2si_ftype_v8qi_v8qi, ARM_BUILTIN_WSADBZ);
12017 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadhz", v2si_ftype_v4hi_v4hi, ARM_BUILTIN_WSADHZ);
12019 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsb", int_ftype_v8qi_int, ARM_BUILTIN_TEXTRMSB);
12020 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsh", int_ftype_v4hi_int, ARM_BUILTIN_TEXTRMSH);
12021 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsw", int_ftype_v2si_int, ARM_BUILTIN_TEXTRMSW);
12022 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmub", int_ftype_v8qi_int, ARM_BUILTIN_TEXTRMUB);
12023 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmuh", int_ftype_v4hi_int, ARM_BUILTIN_TEXTRMUH);
12024 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmuw", int_ftype_v2si_int, ARM_BUILTIN_TEXTRMUW);
12025 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrb", v8qi_ftype_v8qi_int_int, ARM_BUILTIN_TINSRB);
12026 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrh", v4hi_ftype_v4hi_int_int, ARM_BUILTIN_TINSRH);
12027 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrw", v2si_ftype_v2si_int_int, ARM_BUILTIN_TINSRW);
12029 def_mbuiltin (FL_IWMMXT, "__builtin_arm_waccb", di_ftype_v8qi, ARM_BUILTIN_WACCB);
12030 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wacch", di_ftype_v4hi, ARM_BUILTIN_WACCH);
12031 def_mbuiltin (FL_IWMMXT, "__builtin_arm_waccw", di_ftype_v2si, ARM_BUILTIN_WACCW);
12033 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskb", int_ftype_v8qi, ARM_BUILTIN_TMOVMSKB);
12034 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskh", int_ftype_v4hi, ARM_BUILTIN_TMOVMSKH);
12035 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskw", int_ftype_v2si, ARM_BUILTIN_TMOVMSKW);
12037 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackhss", v8qi_ftype_v4hi_v4hi, ARM_BUILTIN_WPACKHSS);
12038 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackhus", v8qi_ftype_v4hi_v4hi, ARM_BUILTIN_WPACKHUS);
12039 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackwus", v4hi_ftype_v2si_v2si, ARM_BUILTIN_WPACKWUS);
12040 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackwss", v4hi_ftype_v2si_v2si, ARM_BUILTIN_WPACKWSS);
12041 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackdus", v2si_ftype_di_di, ARM_BUILTIN_WPACKDUS);
12042 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackdss", v2si_ftype_di_di, ARM_BUILTIN_WPACKDSS);
12044 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehub", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKEHUB);
12045 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehuh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKEHUH);
12046 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehuw", di_ftype_v2si, ARM_BUILTIN_WUNPCKEHUW);
12047 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsb", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKEHSB);
12048 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKEHSH);
12049 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsw", di_ftype_v2si, ARM_BUILTIN_WUNPCKEHSW);
12050 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelub", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKELUB);
12051 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckeluh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKELUH);
12052 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckeluw", di_ftype_v2si, ARM_BUILTIN_WUNPCKELUW);
12053 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsb", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKELSB);
12054 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKELSH);
12055 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsw", di_ftype_v2si, ARM_BUILTIN_WUNPCKELSW);
12057 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacs", di_ftype_di_v4hi_v4hi, ARM_BUILTIN_WMACS);
12058 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacsz", di_ftype_v4hi_v4hi, ARM_BUILTIN_WMACSZ);
12059 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacu", di_ftype_di_v4hi_v4hi, ARM_BUILTIN_WMACU);
12060 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacuz", di_ftype_v4hi_v4hi, ARM_BUILTIN_WMACUZ);
12062 def_mbuiltin (FL_IWMMXT, "__builtin_arm_walign", v8qi_ftype_v8qi_v8qi_int, ARM_BUILTIN_WALIGN);
12063 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmia", di_ftype_di_int_int, ARM_BUILTIN_TMIA);
12064 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiaph", di_ftype_di_int_int, ARM_BUILTIN_TMIAPH);
12065 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiabb", di_ftype_di_int_int, ARM_BUILTIN_TMIABB);
12066 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiabt", di_ftype_di_int_int, ARM_BUILTIN_TMIABT);
12067 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiatb", di_ftype_di_int_int, ARM_BUILTIN_TMIATB);
12068 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiatt", di_ftype_di_int_int, ARM_BUILTIN_TMIATT);
12071 static void
12072 arm_init_builtins (void)
12074 if (TARGET_REALLY_IWMMXT)
12075 arm_init_iwmmxt_builtins ();
12078 /* Errors in the source file can cause expand_expr to return const0_rtx
12079 where we expect a vector. To avoid crashing, use one of the vector
12080 clear instructions. */
12082 static rtx
12083 safe_vector_operand (rtx x, enum machine_mode mode)
12085 if (x != const0_rtx)
12086 return x;
12087 x = gen_reg_rtx (mode);
12089 emit_insn (gen_iwmmxt_clrdi (mode == DImode ? x
12090 : gen_rtx_SUBREG (DImode, x, 0)));
12091 return x;
12094 /* Subroutine of arm_expand_builtin to take care of binop insns. */
12096 static rtx
12097 arm_expand_binop_builtin (enum insn_code icode,
12098 tree arglist, rtx target)
12100 rtx pat;
12101 tree arg0 = TREE_VALUE (arglist);
12102 tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12103 rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12104 rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12105 enum machine_mode tmode = insn_data[icode].operand[0].mode;
12106 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
12107 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
12109 if (VECTOR_MODE_P (mode0))
12110 op0 = safe_vector_operand (op0, mode0);
12111 if (VECTOR_MODE_P (mode1))
12112 op1 = safe_vector_operand (op1, mode1);
12114 if (! target
12115 || GET_MODE (target) != tmode
12116 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12117 target = gen_reg_rtx (tmode);
12119 gcc_assert (GET_MODE (op0) == mode0 && GET_MODE (op1) == mode1);
12121 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12122 op0 = copy_to_mode_reg (mode0, op0);
12123 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12124 op1 = copy_to_mode_reg (mode1, op1);
12126 pat = GEN_FCN (icode) (target, op0, op1);
12127 if (! pat)
12128 return 0;
12129 emit_insn (pat);
12130 return target;
12133 /* Subroutine of arm_expand_builtin to take care of unop insns. */
12135 static rtx
12136 arm_expand_unop_builtin (enum insn_code icode,
12137 tree arglist, rtx target, int do_load)
12139 rtx pat;
12140 tree arg0 = TREE_VALUE (arglist);
12141 rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12142 enum machine_mode tmode = insn_data[icode].operand[0].mode;
12143 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
12145 if (! target
12146 || GET_MODE (target) != tmode
12147 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12148 target = gen_reg_rtx (tmode);
12149 if (do_load)
12150 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
12151 else
12153 if (VECTOR_MODE_P (mode0))
12154 op0 = safe_vector_operand (op0, mode0);
12156 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12157 op0 = copy_to_mode_reg (mode0, op0);
12160 pat = GEN_FCN (icode) (target, op0);
12161 if (! pat)
12162 return 0;
12163 emit_insn (pat);
12164 return target;
12167 /* Expand an expression EXP that calls a built-in function,
12168 with result going to TARGET if that's convenient
12169 (and in mode MODE if that's convenient).
12170 SUBTARGET may be used as the target for computing one of EXP's operands.
12171 IGNORE is nonzero if the value is to be ignored. */
12173 static rtx
12174 arm_expand_builtin (tree exp,
12175 rtx target,
12176 rtx subtarget ATTRIBUTE_UNUSED,
12177 enum machine_mode mode ATTRIBUTE_UNUSED,
12178 int ignore ATTRIBUTE_UNUSED)
12180 const struct builtin_description * d;
12181 enum insn_code icode;
12182 tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
12183 tree arglist = TREE_OPERAND (exp, 1);
12184 tree arg0;
12185 tree arg1;
12186 tree arg2;
12187 rtx op0;
12188 rtx op1;
12189 rtx op2;
12190 rtx pat;
12191 int fcode = DECL_FUNCTION_CODE (fndecl);
12192 size_t i;
12193 enum machine_mode tmode;
12194 enum machine_mode mode0;
12195 enum machine_mode mode1;
12196 enum machine_mode mode2;
12198 switch (fcode)
12200 case ARM_BUILTIN_TEXTRMSB:
12201 case ARM_BUILTIN_TEXTRMUB:
12202 case ARM_BUILTIN_TEXTRMSH:
12203 case ARM_BUILTIN_TEXTRMUH:
12204 case ARM_BUILTIN_TEXTRMSW:
12205 case ARM_BUILTIN_TEXTRMUW:
12206 icode = (fcode == ARM_BUILTIN_TEXTRMSB ? CODE_FOR_iwmmxt_textrmsb
12207 : fcode == ARM_BUILTIN_TEXTRMUB ? CODE_FOR_iwmmxt_textrmub
12208 : fcode == ARM_BUILTIN_TEXTRMSH ? CODE_FOR_iwmmxt_textrmsh
12209 : fcode == ARM_BUILTIN_TEXTRMUH ? CODE_FOR_iwmmxt_textrmuh
12210 : CODE_FOR_iwmmxt_textrmw);
12212 arg0 = TREE_VALUE (arglist);
12213 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12214 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12215 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12216 tmode = insn_data[icode].operand[0].mode;
12217 mode0 = insn_data[icode].operand[1].mode;
12218 mode1 = insn_data[icode].operand[2].mode;
12220 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12221 op0 = copy_to_mode_reg (mode0, op0);
12222 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12224 /* @@@ better error message */
12225 error ("selector must be an immediate");
12226 return gen_reg_rtx (tmode);
12228 if (target == 0
12229 || GET_MODE (target) != tmode
12230 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12231 target = gen_reg_rtx (tmode);
12232 pat = GEN_FCN (icode) (target, op0, op1);
12233 if (! pat)
12234 return 0;
12235 emit_insn (pat);
12236 return target;
12238 case ARM_BUILTIN_TINSRB:
12239 case ARM_BUILTIN_TINSRH:
12240 case ARM_BUILTIN_TINSRW:
12241 icode = (fcode == ARM_BUILTIN_TINSRB ? CODE_FOR_iwmmxt_tinsrb
12242 : fcode == ARM_BUILTIN_TINSRH ? CODE_FOR_iwmmxt_tinsrh
12243 : CODE_FOR_iwmmxt_tinsrw);
12244 arg0 = TREE_VALUE (arglist);
12245 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12246 arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
12247 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12248 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12249 op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
12250 tmode = insn_data[icode].operand[0].mode;
12251 mode0 = insn_data[icode].operand[1].mode;
12252 mode1 = insn_data[icode].operand[2].mode;
12253 mode2 = insn_data[icode].operand[3].mode;
12255 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12256 op0 = copy_to_mode_reg (mode0, op0);
12257 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12258 op1 = copy_to_mode_reg (mode1, op1);
12259 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
12261 /* @@@ better error message */
12262 error ("selector must be an immediate");
12263 return const0_rtx;
12265 if (target == 0
12266 || GET_MODE (target) != tmode
12267 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12268 target = gen_reg_rtx (tmode);
12269 pat = GEN_FCN (icode) (target, op0, op1, op2);
12270 if (! pat)
12271 return 0;
12272 emit_insn (pat);
12273 return target;
12275 case ARM_BUILTIN_SETWCX:
12276 arg0 = TREE_VALUE (arglist);
12277 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12278 op0 = force_reg (SImode, expand_expr (arg0, NULL_RTX, VOIDmode, 0));
12279 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12280 emit_insn (gen_iwmmxt_tmcr (op1, op0));
12281 return 0;
12283 case ARM_BUILTIN_GETWCX:
12284 arg0 = TREE_VALUE (arglist);
12285 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12286 target = gen_reg_rtx (SImode);
12287 emit_insn (gen_iwmmxt_tmrc (target, op0));
12288 return target;
12290 case ARM_BUILTIN_WSHUFH:
12291 icode = CODE_FOR_iwmmxt_wshufh;
12292 arg0 = TREE_VALUE (arglist);
12293 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12294 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12295 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12296 tmode = insn_data[icode].operand[0].mode;
12297 mode1 = insn_data[icode].operand[1].mode;
12298 mode2 = insn_data[icode].operand[2].mode;
12300 if (! (*insn_data[icode].operand[1].predicate) (op0, mode1))
12301 op0 = copy_to_mode_reg (mode1, op0);
12302 if (! (*insn_data[icode].operand[2].predicate) (op1, mode2))
12304 /* @@@ better error message */
12305 error ("mask must be an immediate");
12306 return const0_rtx;
12308 if (target == 0
12309 || GET_MODE (target) != tmode
12310 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12311 target = gen_reg_rtx (tmode);
12312 pat = GEN_FCN (icode) (target, op0, op1);
12313 if (! pat)
12314 return 0;
12315 emit_insn (pat);
12316 return target;
12318 case ARM_BUILTIN_WSADB:
12319 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadb, arglist, target);
12320 case ARM_BUILTIN_WSADH:
12321 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadh, arglist, target);
12322 case ARM_BUILTIN_WSADBZ:
12323 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadbz, arglist, target);
12324 case ARM_BUILTIN_WSADHZ:
12325 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadhz, arglist, target);
12327 /* Several three-argument builtins. */
12328 case ARM_BUILTIN_WMACS:
12329 case ARM_BUILTIN_WMACU:
12330 case ARM_BUILTIN_WALIGN:
12331 case ARM_BUILTIN_TMIA:
12332 case ARM_BUILTIN_TMIAPH:
12333 case ARM_BUILTIN_TMIATT:
12334 case ARM_BUILTIN_TMIATB:
12335 case ARM_BUILTIN_TMIABT:
12336 case ARM_BUILTIN_TMIABB:
12337 icode = (fcode == ARM_BUILTIN_WMACS ? CODE_FOR_iwmmxt_wmacs
12338 : fcode == ARM_BUILTIN_WMACU ? CODE_FOR_iwmmxt_wmacu
12339 : fcode == ARM_BUILTIN_TMIA ? CODE_FOR_iwmmxt_tmia
12340 : fcode == ARM_BUILTIN_TMIAPH ? CODE_FOR_iwmmxt_tmiaph
12341 : fcode == ARM_BUILTIN_TMIABB ? CODE_FOR_iwmmxt_tmiabb
12342 : fcode == ARM_BUILTIN_TMIABT ? CODE_FOR_iwmmxt_tmiabt
12343 : fcode == ARM_BUILTIN_TMIATB ? CODE_FOR_iwmmxt_tmiatb
12344 : fcode == ARM_BUILTIN_TMIATT ? CODE_FOR_iwmmxt_tmiatt
12345 : CODE_FOR_iwmmxt_walign);
12346 arg0 = TREE_VALUE (arglist);
12347 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12348 arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
12349 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12350 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12351 op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
12352 tmode = insn_data[icode].operand[0].mode;
12353 mode0 = insn_data[icode].operand[1].mode;
12354 mode1 = insn_data[icode].operand[2].mode;
12355 mode2 = insn_data[icode].operand[3].mode;
12357 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12358 op0 = copy_to_mode_reg (mode0, op0);
12359 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12360 op1 = copy_to_mode_reg (mode1, op1);
12361 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
12362 op2 = copy_to_mode_reg (mode2, op2);
12363 if (target == 0
12364 || GET_MODE (target) != tmode
12365 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12366 target = gen_reg_rtx (tmode);
12367 pat = GEN_FCN (icode) (target, op0, op1, op2);
12368 if (! pat)
12369 return 0;
12370 emit_insn (pat);
12371 return target;
12373 case ARM_BUILTIN_WZERO:
12374 target = gen_reg_rtx (DImode);
12375 emit_insn (gen_iwmmxt_clrdi (target));
12376 return target;
12378 default:
12379 break;
12382 for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
12383 if (d->code == (const enum arm_builtins) fcode)
12384 return arm_expand_binop_builtin (d->icode, arglist, target);
12386 for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
12387 if (d->code == (const enum arm_builtins) fcode)
12388 return arm_expand_unop_builtin (d->icode, arglist, target, 0);
12390 /* @@@ Should really do something sensible here. */
12391 return NULL_RTX;
12394 /* Return the number (counting from 0) of
12395 the least significant set bit in MASK. */
12397 inline static int
12398 number_of_first_bit_set (unsigned mask)
12400 int bit;
12402 for (bit = 0;
12403 (mask & (1 << bit)) == 0;
12404 ++bit)
12405 continue;
12407 return bit;
12410 /* Emit code to push or pop registers to or from the stack. F is the
12411 assembly file. MASK is the registers to push or pop. PUSH is
12412 nonzero if we should push, and zero if we should pop. For debugging
12413 output, if pushing, adjust CFA_OFFSET by the amount of space added
12414 to the stack. REAL_REGS should have the same number of bits set as
12415 MASK, and will be used instead (in the same order) to describe which
12416 registers were saved - this is used to mark the save slots when we
12417 push high registers after moving them to low registers. */
12418 static void
12419 thumb_pushpop (FILE *f, unsigned long mask, int push, int *cfa_offset,
12420 unsigned long real_regs)
12422 int regno;
12423 int lo_mask = mask & 0xFF;
12424 int pushed_words = 0;
12426 gcc_assert (mask);
12428 if (lo_mask == 0 && !push && (mask & (1 << PC_REGNUM)))
12430 /* Special case. Do not generate a POP PC statement here, do it in
12431 thumb_exit() */
12432 thumb_exit (f, -1);
12433 return;
12436 if (ARM_EABI_UNWIND_TABLES && push)
12438 fprintf (f, "\t.save\t{");
12439 for (regno = 0; regno < 15; regno++)
12441 if (real_regs & (1 << regno))
12443 if (real_regs & ((1 << regno) -1))
12444 fprintf (f, ", ");
12445 asm_fprintf (f, "%r", regno);
12448 fprintf (f, "}\n");
12451 fprintf (f, "\t%s\t{", push ? "push" : "pop");
12453 /* Look at the low registers first. */
12454 for (regno = 0; regno <= LAST_LO_REGNUM; regno++, lo_mask >>= 1)
12456 if (lo_mask & 1)
12458 asm_fprintf (f, "%r", regno);
12460 if ((lo_mask & ~1) != 0)
12461 fprintf (f, ", ");
12463 pushed_words++;
12467 if (push && (mask & (1 << LR_REGNUM)))
12469 /* Catch pushing the LR. */
12470 if (mask & 0xFF)
12471 fprintf (f, ", ");
12473 asm_fprintf (f, "%r", LR_REGNUM);
12475 pushed_words++;
12477 else if (!push && (mask & (1 << PC_REGNUM)))
12479 /* Catch popping the PC. */
12480 if (TARGET_INTERWORK || TARGET_BACKTRACE
12481 || current_function_calls_eh_return)
12483 /* The PC is never poped directly, instead
12484 it is popped into r3 and then BX is used. */
12485 fprintf (f, "}\n");
12487 thumb_exit (f, -1);
12489 return;
12491 else
12493 if (mask & 0xFF)
12494 fprintf (f, ", ");
12496 asm_fprintf (f, "%r", PC_REGNUM);
12500 fprintf (f, "}\n");
12502 if (push && pushed_words && dwarf2out_do_frame ())
12504 char *l = dwarf2out_cfi_label ();
12505 int pushed_mask = real_regs;
12507 *cfa_offset += pushed_words * 4;
12508 dwarf2out_def_cfa (l, SP_REGNUM, *cfa_offset);
12510 pushed_words = 0;
12511 pushed_mask = real_regs;
12512 for (regno = 0; regno <= 14; regno++, pushed_mask >>= 1)
12514 if (pushed_mask & 1)
12515 dwarf2out_reg_save (l, regno, 4 * pushed_words++ - *cfa_offset);
12520 /* Generate code to return from a thumb function.
12521 If 'reg_containing_return_addr' is -1, then the return address is
12522 actually on the stack, at the stack pointer. */
12523 static void
12524 thumb_exit (FILE *f, int reg_containing_return_addr)
12526 unsigned regs_available_for_popping;
12527 unsigned regs_to_pop;
12528 int pops_needed;
12529 unsigned available;
12530 unsigned required;
12531 int mode;
12532 int size;
12533 int restore_a4 = FALSE;
12535 /* Compute the registers we need to pop. */
12536 regs_to_pop = 0;
12537 pops_needed = 0;
12539 if (reg_containing_return_addr == -1)
12541 regs_to_pop |= 1 << LR_REGNUM;
12542 ++pops_needed;
12545 if (TARGET_BACKTRACE)
12547 /* Restore the (ARM) frame pointer and stack pointer. */
12548 regs_to_pop |= (1 << ARM_HARD_FRAME_POINTER_REGNUM) | (1 << SP_REGNUM);
12549 pops_needed += 2;
12552 /* If there is nothing to pop then just emit the BX instruction and
12553 return. */
12554 if (pops_needed == 0)
12556 if (current_function_calls_eh_return)
12557 asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
12559 asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
12560 return;
12562 /* Otherwise if we are not supporting interworking and we have not created
12563 a backtrace structure and the function was not entered in ARM mode then
12564 just pop the return address straight into the PC. */
12565 else if (!TARGET_INTERWORK
12566 && !TARGET_BACKTRACE
12567 && !is_called_in_ARM_mode (current_function_decl)
12568 && !current_function_calls_eh_return)
12570 asm_fprintf (f, "\tpop\t{%r}\n", PC_REGNUM);
12571 return;
12574 /* Find out how many of the (return) argument registers we can corrupt. */
12575 regs_available_for_popping = 0;
12577 /* If returning via __builtin_eh_return, the bottom three registers
12578 all contain information needed for the return. */
12579 if (current_function_calls_eh_return)
12580 size = 12;
12581 else
12583 /* If we can deduce the registers used from the function's
12584 return value. This is more reliable that examining
12585 regs_ever_live[] because that will be set if the register is
12586 ever used in the function, not just if the register is used
12587 to hold a return value. */
12589 if (current_function_return_rtx != 0)
12590 mode = GET_MODE (current_function_return_rtx);
12591 else
12592 mode = DECL_MODE (DECL_RESULT (current_function_decl));
12594 size = GET_MODE_SIZE (mode);
12596 if (size == 0)
12598 /* In a void function we can use any argument register.
12599 In a function that returns a structure on the stack
12600 we can use the second and third argument registers. */
12601 if (mode == VOIDmode)
12602 regs_available_for_popping =
12603 (1 << ARG_REGISTER (1))
12604 | (1 << ARG_REGISTER (2))
12605 | (1 << ARG_REGISTER (3));
12606 else
12607 regs_available_for_popping =
12608 (1 << ARG_REGISTER (2))
12609 | (1 << ARG_REGISTER (3));
12611 else if (size <= 4)
12612 regs_available_for_popping =
12613 (1 << ARG_REGISTER (2))
12614 | (1 << ARG_REGISTER (3));
12615 else if (size <= 8)
12616 regs_available_for_popping =
12617 (1 << ARG_REGISTER (3));
12620 /* Match registers to be popped with registers into which we pop them. */
12621 for (available = regs_available_for_popping,
12622 required = regs_to_pop;
12623 required != 0 && available != 0;
12624 available &= ~(available & - available),
12625 required &= ~(required & - required))
12626 -- pops_needed;
12628 /* If we have any popping registers left over, remove them. */
12629 if (available > 0)
12630 regs_available_for_popping &= ~available;
12632 /* Otherwise if we need another popping register we can use
12633 the fourth argument register. */
12634 else if (pops_needed)
12636 /* If we have not found any free argument registers and
12637 reg a4 contains the return address, we must move it. */
12638 if (regs_available_for_popping == 0
12639 && reg_containing_return_addr == LAST_ARG_REGNUM)
12641 asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
12642 reg_containing_return_addr = LR_REGNUM;
12644 else if (size > 12)
12646 /* Register a4 is being used to hold part of the return value,
12647 but we have dire need of a free, low register. */
12648 restore_a4 = TRUE;
12650 asm_fprintf (f, "\tmov\t%r, %r\n",IP_REGNUM, LAST_ARG_REGNUM);
12653 if (reg_containing_return_addr != LAST_ARG_REGNUM)
12655 /* The fourth argument register is available. */
12656 regs_available_for_popping |= 1 << LAST_ARG_REGNUM;
12658 --pops_needed;
12662 /* Pop as many registers as we can. */
12663 thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
12664 regs_available_for_popping);
12666 /* Process the registers we popped. */
12667 if (reg_containing_return_addr == -1)
12669 /* The return address was popped into the lowest numbered register. */
12670 regs_to_pop &= ~(1 << LR_REGNUM);
12672 reg_containing_return_addr =
12673 number_of_first_bit_set (regs_available_for_popping);
12675 /* Remove this register for the mask of available registers, so that
12676 the return address will not be corrupted by further pops. */
12677 regs_available_for_popping &= ~(1 << reg_containing_return_addr);
12680 /* If we popped other registers then handle them here. */
12681 if (regs_available_for_popping)
12683 int frame_pointer;
12685 /* Work out which register currently contains the frame pointer. */
12686 frame_pointer = number_of_first_bit_set (regs_available_for_popping);
12688 /* Move it into the correct place. */
12689 asm_fprintf (f, "\tmov\t%r, %r\n",
12690 ARM_HARD_FRAME_POINTER_REGNUM, frame_pointer);
12692 /* (Temporarily) remove it from the mask of popped registers. */
12693 regs_available_for_popping &= ~(1 << frame_pointer);
12694 regs_to_pop &= ~(1 << ARM_HARD_FRAME_POINTER_REGNUM);
12696 if (regs_available_for_popping)
12698 int stack_pointer;
12700 /* We popped the stack pointer as well,
12701 find the register that contains it. */
12702 stack_pointer = number_of_first_bit_set (regs_available_for_popping);
12704 /* Move it into the stack register. */
12705 asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, stack_pointer);
12707 /* At this point we have popped all necessary registers, so
12708 do not worry about restoring regs_available_for_popping
12709 to its correct value:
12711 assert (pops_needed == 0)
12712 assert (regs_available_for_popping == (1 << frame_pointer))
12713 assert (regs_to_pop == (1 << STACK_POINTER)) */
12715 else
12717 /* Since we have just move the popped value into the frame
12718 pointer, the popping register is available for reuse, and
12719 we know that we still have the stack pointer left to pop. */
12720 regs_available_for_popping |= (1 << frame_pointer);
12724 /* If we still have registers left on the stack, but we no longer have
12725 any registers into which we can pop them, then we must move the return
12726 address into the link register and make available the register that
12727 contained it. */
12728 if (regs_available_for_popping == 0 && pops_needed > 0)
12730 regs_available_for_popping |= 1 << reg_containing_return_addr;
12732 asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM,
12733 reg_containing_return_addr);
12735 reg_containing_return_addr = LR_REGNUM;
12738 /* If we have registers left on the stack then pop some more.
12739 We know that at most we will want to pop FP and SP. */
12740 if (pops_needed > 0)
12742 int popped_into;
12743 int move_to;
12745 thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
12746 regs_available_for_popping);
12748 /* We have popped either FP or SP.
12749 Move whichever one it is into the correct register. */
12750 popped_into = number_of_first_bit_set (regs_available_for_popping);
12751 move_to = number_of_first_bit_set (regs_to_pop);
12753 asm_fprintf (f, "\tmov\t%r, %r\n", move_to, popped_into);
12755 regs_to_pop &= ~(1 << move_to);
12757 --pops_needed;
12760 /* If we still have not popped everything then we must have only
12761 had one register available to us and we are now popping the SP. */
12762 if (pops_needed > 0)
12764 int popped_into;
12766 thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
12767 regs_available_for_popping);
12769 popped_into = number_of_first_bit_set (regs_available_for_popping);
12771 asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, popped_into);
12773 assert (regs_to_pop == (1 << STACK_POINTER))
12774 assert (pops_needed == 1)
12778 /* If necessary restore the a4 register. */
12779 if (restore_a4)
12781 if (reg_containing_return_addr != LR_REGNUM)
12783 asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
12784 reg_containing_return_addr = LR_REGNUM;
12787 asm_fprintf (f, "\tmov\t%r, %r\n", LAST_ARG_REGNUM, IP_REGNUM);
12790 if (current_function_calls_eh_return)
12791 asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
12793 /* Return to caller. */
12794 asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
12798 void
12799 thumb_final_prescan_insn (rtx insn)
12801 if (flag_print_asm_name)
12802 asm_fprintf (asm_out_file, "%@ 0x%04x\n",
12803 INSN_ADDRESSES (INSN_UID (insn)));
12807 thumb_shiftable_const (unsigned HOST_WIDE_INT val)
12809 unsigned HOST_WIDE_INT mask = 0xff;
12810 int i;
12812 if (val == 0) /* XXX */
12813 return 0;
12815 for (i = 0; i < 25; i++)
12816 if ((val & (mask << i)) == val)
12817 return 1;
12819 return 0;
12822 /* Returns nonzero if the current function contains,
12823 or might contain a far jump. */
12824 static int
12825 thumb_far_jump_used_p (void)
12827 rtx insn;
12829 /* This test is only important for leaf functions. */
12830 /* assert (!leaf_function_p ()); */
12832 /* If we have already decided that far jumps may be used,
12833 do not bother checking again, and always return true even if
12834 it turns out that they are not being used. Once we have made
12835 the decision that far jumps are present (and that hence the link
12836 register will be pushed onto the stack) we cannot go back on it. */
12837 if (cfun->machine->far_jump_used)
12838 return 1;
12840 /* If this function is not being called from the prologue/epilogue
12841 generation code then it must be being called from the
12842 INITIAL_ELIMINATION_OFFSET macro. */
12843 if (!(ARM_DOUBLEWORD_ALIGN || reload_completed))
12845 /* In this case we know that we are being asked about the elimination
12846 of the arg pointer register. If that register is not being used,
12847 then there are no arguments on the stack, and we do not have to
12848 worry that a far jump might force the prologue to push the link
12849 register, changing the stack offsets. In this case we can just
12850 return false, since the presence of far jumps in the function will
12851 not affect stack offsets.
12853 If the arg pointer is live (or if it was live, but has now been
12854 eliminated and so set to dead) then we do have to test to see if
12855 the function might contain a far jump. This test can lead to some
12856 false negatives, since before reload is completed, then length of
12857 branch instructions is not known, so gcc defaults to returning their
12858 longest length, which in turn sets the far jump attribute to true.
12860 A false negative will not result in bad code being generated, but it
12861 will result in a needless push and pop of the link register. We
12862 hope that this does not occur too often.
12864 If we need doubleword stack alignment this could affect the other
12865 elimination offsets so we can't risk getting it wrong. */
12866 if (regs_ever_live [ARG_POINTER_REGNUM])
12867 cfun->machine->arg_pointer_live = 1;
12868 else if (!cfun->machine->arg_pointer_live)
12869 return 0;
12872 /* Check to see if the function contains a branch
12873 insn with the far jump attribute set. */
12874 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
12876 if (GET_CODE (insn) == JUMP_INSN
12877 /* Ignore tablejump patterns. */
12878 && GET_CODE (PATTERN (insn)) != ADDR_VEC
12879 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
12880 && get_attr_far_jump (insn) == FAR_JUMP_YES
12883 /* Record the fact that we have decided that
12884 the function does use far jumps. */
12885 cfun->machine->far_jump_used = 1;
12886 return 1;
12890 return 0;
12893 /* Return nonzero if FUNC must be entered in ARM mode. */
12895 is_called_in_ARM_mode (tree func)
12897 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
12899 /* Ignore the problem about functions whose address is taken. */
12900 if (TARGET_CALLEE_INTERWORKING && TREE_PUBLIC (func))
12901 return TRUE;
12903 #ifdef ARM_PE
12904 return lookup_attribute ("interfacearm", DECL_ATTRIBUTES (func)) != NULL_TREE;
12905 #else
12906 return FALSE;
12907 #endif
12910 /* The bits which aren't usefully expanded as rtl. */
12911 const char *
12912 thumb_unexpanded_epilogue (void)
12914 int regno;
12915 unsigned long live_regs_mask = 0;
12916 int high_regs_pushed = 0;
12917 int had_to_push_lr;
12918 int size;
12920 if (return_used_this_function)
12921 return "";
12923 if (IS_NAKED (arm_current_func_type ()))
12924 return "";
12926 live_regs_mask = thumb_compute_save_reg_mask ();
12927 high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
12929 /* If we can deduce the registers used from the function's return value.
12930 This is more reliable that examining regs_ever_live[] because that
12931 will be set if the register is ever used in the function, not just if
12932 the register is used to hold a return value. */
12933 size = arm_size_return_regs ();
12935 /* The prolog may have pushed some high registers to use as
12936 work registers. e.g. the testsuite file:
12937 gcc/testsuite/gcc/gcc.c-torture/execute/complex-2.c
12938 compiles to produce:
12939 push {r4, r5, r6, r7, lr}
12940 mov r7, r9
12941 mov r6, r8
12942 push {r6, r7}
12943 as part of the prolog. We have to undo that pushing here. */
12945 if (high_regs_pushed)
12947 unsigned long mask = live_regs_mask & 0xff;
12948 int next_hi_reg;
12950 /* The available low registers depend on the size of the value we are
12951 returning. */
12952 if (size <= 12)
12953 mask |= 1 << 3;
12954 if (size <= 8)
12955 mask |= 1 << 2;
12957 if (mask == 0)
12958 /* Oh dear! We have no low registers into which we can pop
12959 high registers! */
12960 internal_error
12961 ("no low registers available for popping high registers");
12963 for (next_hi_reg = 8; next_hi_reg < 13; next_hi_reg++)
12964 if (live_regs_mask & (1 << next_hi_reg))
12965 break;
12967 while (high_regs_pushed)
12969 /* Find lo register(s) into which the high register(s) can
12970 be popped. */
12971 for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
12973 if (mask & (1 << regno))
12974 high_regs_pushed--;
12975 if (high_regs_pushed == 0)
12976 break;
12979 mask &= (2 << regno) - 1; /* A noop if regno == 8 */
12981 /* Pop the values into the low register(s). */
12982 thumb_pushpop (asm_out_file, mask, 0, NULL, mask);
12984 /* Move the value(s) into the high registers. */
12985 for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
12987 if (mask & (1 << regno))
12989 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", next_hi_reg,
12990 regno);
12992 for (next_hi_reg++; next_hi_reg < 13; next_hi_reg++)
12993 if (live_regs_mask & (1 << next_hi_reg))
12994 break;
12998 live_regs_mask &= ~0x0f00;
13001 had_to_push_lr = (live_regs_mask & (1 << LR_REGNUM)) != 0;
13002 live_regs_mask &= 0xff;
13004 if (current_function_pretend_args_size == 0 || TARGET_BACKTRACE)
13006 /* Pop the return address into the PC. */
13007 if (had_to_push_lr)
13008 live_regs_mask |= 1 << PC_REGNUM;
13010 /* Either no argument registers were pushed or a backtrace
13011 structure was created which includes an adjusted stack
13012 pointer, so just pop everything. */
13013 if (live_regs_mask)
13014 thumb_pushpop (asm_out_file, live_regs_mask, FALSE, NULL,
13015 live_regs_mask);
13017 /* We have either just popped the return address into the
13018 PC or it is was kept in LR for the entire function. */
13019 if (!had_to_push_lr)
13020 thumb_exit (asm_out_file, LR_REGNUM);
13022 else
13024 /* Pop everything but the return address. */
13025 if (live_regs_mask)
13026 thumb_pushpop (asm_out_file, live_regs_mask, FALSE, NULL,
13027 live_regs_mask);
13029 if (had_to_push_lr)
13031 if (size > 12)
13033 /* We have no free low regs, so save one. */
13034 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", IP_REGNUM,
13035 LAST_ARG_REGNUM);
13038 /* Get the return address into a temporary register. */
13039 thumb_pushpop (asm_out_file, 1 << LAST_ARG_REGNUM, 0, NULL,
13040 1 << LAST_ARG_REGNUM);
13042 if (size > 12)
13044 /* Move the return address to lr. */
13045 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LR_REGNUM,
13046 LAST_ARG_REGNUM);
13047 /* Restore the low register. */
13048 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LAST_ARG_REGNUM,
13049 IP_REGNUM);
13050 regno = LR_REGNUM;
13052 else
13053 regno = LAST_ARG_REGNUM;
13055 else
13056 regno = LR_REGNUM;
13058 /* Remove the argument registers that were pushed onto the stack. */
13059 asm_fprintf (asm_out_file, "\tadd\t%r, %r, #%d\n",
13060 SP_REGNUM, SP_REGNUM,
13061 current_function_pretend_args_size);
13063 thumb_exit (asm_out_file, regno);
13066 return "";
13069 /* Functions to save and restore machine-specific function data. */
13070 static struct machine_function *
13071 arm_init_machine_status (void)
13073 struct machine_function *machine;
13074 machine = (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
13076 #if ARM_FT_UNKNOWN != 0
13077 machine->func_type = ARM_FT_UNKNOWN;
13078 #endif
13079 return machine;
13082 /* Return an RTX indicating where the return address to the
13083 calling function can be found. */
13085 arm_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
13087 if (count != 0)
13088 return NULL_RTX;
13090 return get_hard_reg_initial_val (Pmode, LR_REGNUM);
13093 /* Do anything needed before RTL is emitted for each function. */
13094 void
13095 arm_init_expanders (void)
13097 /* Arrange to initialize and mark the machine per-function status. */
13098 init_machine_status = arm_init_machine_status;
13100 /* This is to stop the combine pass optimizing away the alignment
13101 adjustment of va_arg. */
13102 /* ??? It is claimed that this should not be necessary. */
13103 if (cfun)
13104 mark_reg_pointer (arg_pointer_rtx, PARM_BOUNDARY);
13108 /* Like arm_compute_initial_elimination offset. Simpler because
13109 THUMB_HARD_FRAME_POINTER isn't actually the ABI specified frame pointer. */
13111 HOST_WIDE_INT
13112 thumb_compute_initial_elimination_offset (unsigned int from, unsigned int to)
13114 arm_stack_offsets *offsets;
13116 offsets = arm_get_frame_offsets ();
13118 switch (from)
13120 case ARG_POINTER_REGNUM:
13121 switch (to)
13123 case STACK_POINTER_REGNUM:
13124 return offsets->outgoing_args - offsets->saved_args;
13126 case FRAME_POINTER_REGNUM:
13127 return offsets->soft_frame - offsets->saved_args;
13129 case THUMB_HARD_FRAME_POINTER_REGNUM:
13130 case ARM_HARD_FRAME_POINTER_REGNUM:
13131 return offsets->saved_regs - offsets->saved_args;
13133 default:
13134 gcc_unreachable ();
13136 break;
13138 case FRAME_POINTER_REGNUM:
13139 switch (to)
13141 case STACK_POINTER_REGNUM:
13142 return offsets->outgoing_args - offsets->soft_frame;
13144 case THUMB_HARD_FRAME_POINTER_REGNUM:
13145 case ARM_HARD_FRAME_POINTER_REGNUM:
13146 return offsets->saved_regs - offsets->soft_frame;
13148 default:
13149 gcc_unreachable ();
13151 break;
13153 default:
13154 gcc_unreachable ();
13159 /* Generate the rest of a function's prologue. */
13160 void
13161 thumb_expand_prologue (void)
13163 rtx insn, dwarf;
13165 HOST_WIDE_INT amount;
13166 arm_stack_offsets *offsets;
13167 unsigned long func_type;
13168 int regno;
13169 unsigned long live_regs_mask;
13171 func_type = arm_current_func_type ();
13173 /* Naked functions don't have prologues. */
13174 if (IS_NAKED (func_type))
13175 return;
13177 if (IS_INTERRUPT (func_type))
13179 error ("interrupt Service Routines cannot be coded in Thumb mode");
13180 return;
13183 live_regs_mask = thumb_compute_save_reg_mask ();
13184 /* Load the pic register before setting the frame pointer,
13185 so we can use r7 as a temporary work register. */
13186 if (flag_pic)
13187 arm_load_pic_register (thumb_find_work_register (live_regs_mask));
13189 offsets = arm_get_frame_offsets ();
13191 if (frame_pointer_needed)
13193 insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
13194 stack_pointer_rtx));
13195 RTX_FRAME_RELATED_P (insn) = 1;
13197 else if (CALLER_INTERWORKING_SLOT_SIZE > 0)
13198 emit_move_insn (gen_rtx_REG (Pmode, ARM_HARD_FRAME_POINTER_REGNUM),
13199 stack_pointer_rtx);
13201 amount = offsets->outgoing_args - offsets->saved_regs;
13202 if (amount)
13204 if (amount < 512)
13206 insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
13207 GEN_INT (- amount)));
13208 RTX_FRAME_RELATED_P (insn) = 1;
13210 else
13212 rtx reg;
13214 /* The stack decrement is too big for an immediate value in a single
13215 insn. In theory we could issue multiple subtracts, but after
13216 three of them it becomes more space efficient to place the full
13217 value in the constant pool and load into a register. (Also the
13218 ARM debugger really likes to see only one stack decrement per
13219 function). So instead we look for a scratch register into which
13220 we can load the decrement, and then we subtract this from the
13221 stack pointer. Unfortunately on the thumb the only available
13222 scratch registers are the argument registers, and we cannot use
13223 these as they may hold arguments to the function. Instead we
13224 attempt to locate a call preserved register which is used by this
13225 function. If we can find one, then we know that it will have
13226 been pushed at the start of the prologue and so we can corrupt
13227 it now. */
13228 for (regno = LAST_ARG_REGNUM + 1; regno <= LAST_LO_REGNUM; regno++)
13229 if (live_regs_mask & (1 << regno)
13230 && !(frame_pointer_needed
13231 && (regno == THUMB_HARD_FRAME_POINTER_REGNUM)))
13232 break;
13234 if (regno > LAST_LO_REGNUM) /* Very unlikely. */
13236 rtx spare = gen_rtx_REG (SImode, IP_REGNUM);
13238 /* Choose an arbitrary, non-argument low register. */
13239 reg = gen_rtx_REG (SImode, LAST_LO_REGNUM);
13241 /* Save it by copying it into a high, scratch register. */
13242 emit_insn (gen_movsi (spare, reg));
13243 /* Add a USE to stop propagate_one_insn() from barfing. */
13244 emit_insn (gen_prologue_use (spare));
13246 /* Decrement the stack. */
13247 emit_insn (gen_movsi (reg, GEN_INT (- amount)));
13248 insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
13249 stack_pointer_rtx, reg));
13250 RTX_FRAME_RELATED_P (insn) = 1;
13251 dwarf = gen_rtx_SET (SImode, stack_pointer_rtx,
13252 plus_constant (stack_pointer_rtx,
13253 -amount));
13254 RTX_FRAME_RELATED_P (dwarf) = 1;
13255 REG_NOTES (insn)
13256 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
13257 REG_NOTES (insn));
13259 /* Restore the low register's original value. */
13260 emit_insn (gen_movsi (reg, spare));
13262 /* Emit a USE of the restored scratch register, so that flow
13263 analysis will not consider the restore redundant. The
13264 register won't be used again in this function and isn't
13265 restored by the epilogue. */
13266 emit_insn (gen_prologue_use (reg));
13268 else
13270 reg = gen_rtx_REG (SImode, regno);
13272 emit_insn (gen_movsi (reg, GEN_INT (- amount)));
13274 insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
13275 stack_pointer_rtx, reg));
13276 RTX_FRAME_RELATED_P (insn) = 1;
13277 dwarf = gen_rtx_SET (SImode, stack_pointer_rtx,
13278 plus_constant (stack_pointer_rtx,
13279 -amount));
13280 RTX_FRAME_RELATED_P (dwarf) = 1;
13281 REG_NOTES (insn)
13282 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
13283 REG_NOTES (insn));
13286 /* If the frame pointer is needed, emit a special barrier that
13287 will prevent the scheduler from moving stores to the frame
13288 before the stack adjustment. */
13289 if (frame_pointer_needed)
13290 emit_insn (gen_stack_tie (stack_pointer_rtx,
13291 hard_frame_pointer_rtx));
13294 if (current_function_profile || !TARGET_SCHED_PROLOG)
13295 emit_insn (gen_blockage ());
13297 cfun->machine->lr_save_eliminated = !thumb_force_lr_save ();
13298 if (live_regs_mask & 0xff)
13299 cfun->machine->lr_save_eliminated = 0;
13301 /* If the link register is being kept alive, with the return address in it,
13302 then make sure that it does not get reused by the ce2 pass. */
13303 if (cfun->machine->lr_save_eliminated)
13304 emit_insn (gen_prologue_use (gen_rtx_REG (SImode, LR_REGNUM)));
13308 void
13309 thumb_expand_epilogue (void)
13311 HOST_WIDE_INT amount;
13312 arm_stack_offsets *offsets;
13313 int regno;
13315 /* Naked functions don't have prologues. */
13316 if (IS_NAKED (arm_current_func_type ()))
13317 return;
13319 offsets = arm_get_frame_offsets ();
13320 amount = offsets->outgoing_args - offsets->saved_regs;
13322 if (frame_pointer_needed)
13323 emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
13324 else if (amount)
13326 if (amount < 512)
13327 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
13328 GEN_INT (amount)));
13329 else
13331 /* r3 is always free in the epilogue. */
13332 rtx reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
13334 emit_insn (gen_movsi (reg, GEN_INT (amount)));
13335 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg));
13339 /* Emit a USE (stack_pointer_rtx), so that
13340 the stack adjustment will not be deleted. */
13341 emit_insn (gen_prologue_use (stack_pointer_rtx));
13343 if (current_function_profile || !TARGET_SCHED_PROLOG)
13344 emit_insn (gen_blockage ());
13346 /* Emit a clobber for each insn that will be restored in the epilogue,
13347 so that flow2 will get register lifetimes correct. */
13348 for (regno = 0; regno < 13; regno++)
13349 if (regs_ever_live[regno] && !call_used_regs[regno])
13350 emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, regno)));
13352 if (! regs_ever_live[LR_REGNUM])
13353 emit_insn (gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, LR_REGNUM)));
13356 static void
13357 thumb_output_function_prologue (FILE *f, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
13359 unsigned long live_regs_mask = 0;
13360 unsigned long l_mask;
13361 unsigned high_regs_pushed = 0;
13362 int cfa_offset = 0;
13363 int regno;
13365 if (IS_NAKED (arm_current_func_type ()))
13366 return;
13368 if (is_called_in_ARM_mode (current_function_decl))
13370 const char * name;
13372 gcc_assert (GET_CODE (DECL_RTL (current_function_decl)) == MEM);
13373 gcc_assert (GET_CODE (XEXP (DECL_RTL (current_function_decl), 0))
13374 == SYMBOL_REF);
13375 name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
13377 /* Generate code sequence to switch us into Thumb mode. */
13378 /* The .code 32 directive has already been emitted by
13379 ASM_DECLARE_FUNCTION_NAME. */
13380 asm_fprintf (f, "\torr\t%r, %r, #1\n", IP_REGNUM, PC_REGNUM);
13381 asm_fprintf (f, "\tbx\t%r\n", IP_REGNUM);
13383 /* Generate a label, so that the debugger will notice the
13384 change in instruction sets. This label is also used by
13385 the assembler to bypass the ARM code when this function
13386 is called from a Thumb encoded function elsewhere in the
13387 same file. Hence the definition of STUB_NAME here must
13388 agree with the definition in gas/config/tc-arm.c. */
13390 #define STUB_NAME ".real_start_of"
13392 fprintf (f, "\t.code\t16\n");
13393 #ifdef ARM_PE
13394 if (arm_dllexport_name_p (name))
13395 name = arm_strip_name_encoding (name);
13396 #endif
13397 asm_fprintf (f, "\t.globl %s%U%s\n", STUB_NAME, name);
13398 fprintf (f, "\t.thumb_func\n");
13399 asm_fprintf (f, "%s%U%s:\n", STUB_NAME, name);
13402 if (current_function_pretend_args_size)
13404 /* Output unwind directive for the stack adjustment. */
13405 if (ARM_EABI_UNWIND_TABLES)
13406 fprintf (f, "\t.pad #%d\n",
13407 current_function_pretend_args_size);
13409 if (cfun->machine->uses_anonymous_args)
13411 int num_pushes;
13413 fprintf (f, "\tpush\t{");
13415 num_pushes = ARM_NUM_INTS (current_function_pretend_args_size);
13417 for (regno = LAST_ARG_REGNUM + 1 - num_pushes;
13418 regno <= LAST_ARG_REGNUM;
13419 regno++)
13420 asm_fprintf (f, "%r%s", regno,
13421 regno == LAST_ARG_REGNUM ? "" : ", ");
13423 fprintf (f, "}\n");
13425 else
13426 asm_fprintf (f, "\tsub\t%r, %r, #%d\n",
13427 SP_REGNUM, SP_REGNUM,
13428 current_function_pretend_args_size);
13430 /* We don't need to record the stores for unwinding (would it
13431 help the debugger any if we did?), but record the change in
13432 the stack pointer. */
13433 if (dwarf2out_do_frame ())
13435 char *l = dwarf2out_cfi_label ();
13437 cfa_offset = cfa_offset + current_function_pretend_args_size;
13438 dwarf2out_def_cfa (l, SP_REGNUM, cfa_offset);
13442 /* Get the registers we are going to push. */
13443 live_regs_mask = thumb_compute_save_reg_mask ();
13444 /* Extract a mask of the ones we can give to the Thumb's push instruction. */
13445 l_mask = live_regs_mask & 0x40ff;
13446 /* Then count how many other high registers will need to be pushed. */
13447 high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
13449 if (TARGET_BACKTRACE)
13451 unsigned offset;
13452 unsigned work_register;
13454 /* We have been asked to create a stack backtrace structure.
13455 The code looks like this:
13457 0 .align 2
13458 0 func:
13459 0 sub SP, #16 Reserve space for 4 registers.
13460 2 push {R7} Push low registers.
13461 4 add R7, SP, #20 Get the stack pointer before the push.
13462 6 str R7, [SP, #8] Store the stack pointer (before reserving the space).
13463 8 mov R7, PC Get hold of the start of this code plus 12.
13464 10 str R7, [SP, #16] Store it.
13465 12 mov R7, FP Get hold of the current frame pointer.
13466 14 str R7, [SP, #4] Store it.
13467 16 mov R7, LR Get hold of the current return address.
13468 18 str R7, [SP, #12] Store it.
13469 20 add R7, SP, #16 Point at the start of the backtrace structure.
13470 22 mov FP, R7 Put this value into the frame pointer. */
13472 work_register = thumb_find_work_register (live_regs_mask);
13474 if (ARM_EABI_UNWIND_TABLES)
13475 asm_fprintf (f, "\t.pad #16\n");
13477 asm_fprintf
13478 (f, "\tsub\t%r, %r, #16\t%@ Create stack backtrace structure\n",
13479 SP_REGNUM, SP_REGNUM);
13481 if (dwarf2out_do_frame ())
13483 char *l = dwarf2out_cfi_label ();
13485 cfa_offset = cfa_offset + 16;
13486 dwarf2out_def_cfa (l, SP_REGNUM, cfa_offset);
13489 if (l_mask)
13491 thumb_pushpop (f, l_mask, 1, &cfa_offset, l_mask);
13492 offset = bit_count (l_mask);
13494 else
13495 offset = 0;
13497 asm_fprintf (f, "\tadd\t%r, %r, #%d\n", work_register, SP_REGNUM,
13498 offset + 16 + current_function_pretend_args_size);
13500 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13501 offset + 4);
13503 /* Make sure that the instruction fetching the PC is in the right place
13504 to calculate "start of backtrace creation code + 12". */
13505 if (l_mask)
13507 asm_fprintf (f, "\tmov\t%r, %r\n", work_register, PC_REGNUM);
13508 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13509 offset + 12);
13510 asm_fprintf (f, "\tmov\t%r, %r\n", work_register,
13511 ARM_HARD_FRAME_POINTER_REGNUM);
13512 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13513 offset);
13515 else
13517 asm_fprintf (f, "\tmov\t%r, %r\n", work_register,
13518 ARM_HARD_FRAME_POINTER_REGNUM);
13519 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13520 offset);
13521 asm_fprintf (f, "\tmov\t%r, %r\n", work_register, PC_REGNUM);
13522 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13523 offset + 12);
13526 asm_fprintf (f, "\tmov\t%r, %r\n", work_register, LR_REGNUM);
13527 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13528 offset + 8);
13529 asm_fprintf (f, "\tadd\t%r, %r, #%d\n", work_register, SP_REGNUM,
13530 offset + 12);
13531 asm_fprintf (f, "\tmov\t%r, %r\t\t%@ Backtrace structure created\n",
13532 ARM_HARD_FRAME_POINTER_REGNUM, work_register);
13534 /* Optimization: If we are not pushing any low registers but we are going
13535 to push some high registers then delay our first push. This will just
13536 be a push of LR and we can combine it with the push of the first high
13537 register. */
13538 else if ((l_mask & 0xff) != 0
13539 || (high_regs_pushed == 0 && l_mask))
13540 thumb_pushpop (f, l_mask, 1, &cfa_offset, l_mask);
13542 if (high_regs_pushed)
13544 unsigned pushable_regs;
13545 unsigned next_hi_reg;
13547 for (next_hi_reg = 12; next_hi_reg > LAST_LO_REGNUM; next_hi_reg--)
13548 if (live_regs_mask & (1 << next_hi_reg))
13549 break;
13551 pushable_regs = l_mask & 0xff;
13553 if (pushable_regs == 0)
13554 pushable_regs = 1 << thumb_find_work_register (live_regs_mask);
13556 while (high_regs_pushed > 0)
13558 unsigned long real_regs_mask = 0;
13560 for (regno = LAST_LO_REGNUM; regno >= 0; regno --)
13562 if (pushable_regs & (1 << regno))
13564 asm_fprintf (f, "\tmov\t%r, %r\n", regno, next_hi_reg);
13566 high_regs_pushed --;
13567 real_regs_mask |= (1 << next_hi_reg);
13569 if (high_regs_pushed)
13571 for (next_hi_reg --; next_hi_reg > LAST_LO_REGNUM;
13572 next_hi_reg --)
13573 if (live_regs_mask & (1 << next_hi_reg))
13574 break;
13576 else
13578 pushable_regs &= ~((1 << regno) - 1);
13579 break;
13584 /* If we had to find a work register and we have not yet
13585 saved the LR then add it to the list of regs to push. */
13586 if (l_mask == (1 << LR_REGNUM))
13588 thumb_pushpop (f, pushable_regs | (1 << LR_REGNUM),
13589 1, &cfa_offset,
13590 real_regs_mask | (1 << LR_REGNUM));
13591 l_mask = 0;
13593 else
13594 thumb_pushpop (f, pushable_regs, 1, &cfa_offset, real_regs_mask);
13599 /* Handle the case of a double word load into a low register from
13600 a computed memory address. The computed address may involve a
13601 register which is overwritten by the load. */
13602 const char *
13603 thumb_load_double_from_address (rtx *operands)
13605 rtx addr;
13606 rtx base;
13607 rtx offset;
13608 rtx arg1;
13609 rtx arg2;
13611 gcc_assert (GET_CODE (operands[0]) == REG);
13612 gcc_assert (GET_CODE (operands[1]) == MEM);
13614 /* Get the memory address. */
13615 addr = XEXP (operands[1], 0);
13617 /* Work out how the memory address is computed. */
13618 switch (GET_CODE (addr))
13620 case REG:
13621 operands[2] = gen_rtx_MEM (SImode,
13622 plus_constant (XEXP (operands[1], 0), 4));
13624 if (REGNO (operands[0]) == REGNO (addr))
13626 output_asm_insn ("ldr\t%H0, %2", operands);
13627 output_asm_insn ("ldr\t%0, %1", operands);
13629 else
13631 output_asm_insn ("ldr\t%0, %1", operands);
13632 output_asm_insn ("ldr\t%H0, %2", operands);
13634 break;
13636 case CONST:
13637 /* Compute <address> + 4 for the high order load. */
13638 operands[2] = gen_rtx_MEM (SImode,
13639 plus_constant (XEXP (operands[1], 0), 4));
13641 output_asm_insn ("ldr\t%0, %1", operands);
13642 output_asm_insn ("ldr\t%H0, %2", operands);
13643 break;
13645 case PLUS:
13646 arg1 = XEXP (addr, 0);
13647 arg2 = XEXP (addr, 1);
13649 if (CONSTANT_P (arg1))
13650 base = arg2, offset = arg1;
13651 else
13652 base = arg1, offset = arg2;
13654 gcc_assert (GET_CODE (base) == REG);
13656 /* Catch the case of <address> = <reg> + <reg> */
13657 if (GET_CODE (offset) == REG)
13659 int reg_offset = REGNO (offset);
13660 int reg_base = REGNO (base);
13661 int reg_dest = REGNO (operands[0]);
13663 /* Add the base and offset registers together into the
13664 higher destination register. */
13665 asm_fprintf (asm_out_file, "\tadd\t%r, %r, %r",
13666 reg_dest + 1, reg_base, reg_offset);
13668 /* Load the lower destination register from the address in
13669 the higher destination register. */
13670 asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #0]",
13671 reg_dest, reg_dest + 1);
13673 /* Load the higher destination register from its own address
13674 plus 4. */
13675 asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #4]",
13676 reg_dest + 1, reg_dest + 1);
13678 else
13680 /* Compute <address> + 4 for the high order load. */
13681 operands[2] = gen_rtx_MEM (SImode,
13682 plus_constant (XEXP (operands[1], 0), 4));
13684 /* If the computed address is held in the low order register
13685 then load the high order register first, otherwise always
13686 load the low order register first. */
13687 if (REGNO (operands[0]) == REGNO (base))
13689 output_asm_insn ("ldr\t%H0, %2", operands);
13690 output_asm_insn ("ldr\t%0, %1", operands);
13692 else
13694 output_asm_insn ("ldr\t%0, %1", operands);
13695 output_asm_insn ("ldr\t%H0, %2", operands);
13698 break;
13700 case LABEL_REF:
13701 /* With no registers to worry about we can just load the value
13702 directly. */
13703 operands[2] = gen_rtx_MEM (SImode,
13704 plus_constant (XEXP (operands[1], 0), 4));
13706 output_asm_insn ("ldr\t%H0, %2", operands);
13707 output_asm_insn ("ldr\t%0, %1", operands);
13708 break;
13710 default:
13711 gcc_unreachable ();
13714 return "";
13717 const char *
13718 thumb_output_move_mem_multiple (int n, rtx *operands)
13720 rtx tmp;
13722 switch (n)
13724 case 2:
13725 if (REGNO (operands[4]) > REGNO (operands[5]))
13727 tmp = operands[4];
13728 operands[4] = operands[5];
13729 operands[5] = tmp;
13731 output_asm_insn ("ldmia\t%1!, {%4, %5}", operands);
13732 output_asm_insn ("stmia\t%0!, {%4, %5}", operands);
13733 break;
13735 case 3:
13736 if (REGNO (operands[4]) > REGNO (operands[5]))
13738 tmp = operands[4];
13739 operands[4] = operands[5];
13740 operands[5] = tmp;
13742 if (REGNO (operands[5]) > REGNO (operands[6]))
13744 tmp = operands[5];
13745 operands[5] = operands[6];
13746 operands[6] = tmp;
13748 if (REGNO (operands[4]) > REGNO (operands[5]))
13750 tmp = operands[4];
13751 operands[4] = operands[5];
13752 operands[5] = tmp;
13755 output_asm_insn ("ldmia\t%1!, {%4, %5, %6}", operands);
13756 output_asm_insn ("stmia\t%0!, {%4, %5, %6}", operands);
13757 break;
13759 default:
13760 gcc_unreachable ();
13763 return "";
13766 /* Output a call-via instruction for thumb state. */
13767 const char *
13768 thumb_call_via_reg (rtx reg)
13770 int regno = REGNO (reg);
13771 rtx *labelp;
13773 gcc_assert (regno < LR_REGNUM);
13775 /* If we are in the normal text section we can use a single instance
13776 per compilation unit. If we are doing function sections, then we need
13777 an entry per section, since we can't rely on reachability. */
13778 if (in_text_section ())
13780 thumb_call_reg_needed = 1;
13782 if (thumb_call_via_label[regno] == NULL)
13783 thumb_call_via_label[regno] = gen_label_rtx ();
13784 labelp = thumb_call_via_label + regno;
13786 else
13788 if (cfun->machine->call_via[regno] == NULL)
13789 cfun->machine->call_via[regno] = gen_label_rtx ();
13790 labelp = cfun->machine->call_via + regno;
13793 output_asm_insn ("bl\t%a0", labelp);
13794 return "";
13797 /* Routines for generating rtl. */
13798 void
13799 thumb_expand_movmemqi (rtx *operands)
13801 rtx out = copy_to_mode_reg (SImode, XEXP (operands[0], 0));
13802 rtx in = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
13803 HOST_WIDE_INT len = INTVAL (operands[2]);
13804 HOST_WIDE_INT offset = 0;
13806 while (len >= 12)
13808 emit_insn (gen_movmem12b (out, in, out, in));
13809 len -= 12;
13812 if (len >= 8)
13814 emit_insn (gen_movmem8b (out, in, out, in));
13815 len -= 8;
13818 if (len >= 4)
13820 rtx reg = gen_reg_rtx (SImode);
13821 emit_insn (gen_movsi (reg, gen_rtx_MEM (SImode, in)));
13822 emit_insn (gen_movsi (gen_rtx_MEM (SImode, out), reg));
13823 len -= 4;
13824 offset += 4;
13827 if (len >= 2)
13829 rtx reg = gen_reg_rtx (HImode);
13830 emit_insn (gen_movhi (reg, gen_rtx_MEM (HImode,
13831 plus_constant (in, offset))));
13832 emit_insn (gen_movhi (gen_rtx_MEM (HImode, plus_constant (out, offset)),
13833 reg));
13834 len -= 2;
13835 offset += 2;
13838 if (len)
13840 rtx reg = gen_reg_rtx (QImode);
13841 emit_insn (gen_movqi (reg, gen_rtx_MEM (QImode,
13842 plus_constant (in, offset))));
13843 emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (out, offset)),
13844 reg));
13848 void
13849 thumb_reload_out_hi (rtx *operands)
13851 emit_insn (gen_thumb_movhi_clobber (operands[0], operands[1], operands[2]));
13854 /* Handle reading a half-word from memory during reload. */
13855 void
13856 thumb_reload_in_hi (rtx *operands ATTRIBUTE_UNUSED)
13858 gcc_unreachable ();
13861 /* Return the length of a function name prefix
13862 that starts with the character 'c'. */
13863 static int
13864 arm_get_strip_length (int c)
13866 switch (c)
13868 ARM_NAME_ENCODING_LENGTHS
13869 default: return 0;
13873 /* Return a pointer to a function's name with any
13874 and all prefix encodings stripped from it. */
13875 const char *
13876 arm_strip_name_encoding (const char *name)
13878 int skip;
13880 while ((skip = arm_get_strip_length (* name)))
13881 name += skip;
13883 return name;
13886 /* If there is a '*' anywhere in the name's prefix, then
13887 emit the stripped name verbatim, otherwise prepend an
13888 underscore if leading underscores are being used. */
13889 void
13890 arm_asm_output_labelref (FILE *stream, const char *name)
13892 int skip;
13893 int verbatim = 0;
13895 while ((skip = arm_get_strip_length (* name)))
13897 verbatim |= (*name == '*');
13898 name += skip;
13901 if (verbatim)
13902 fputs (name, stream);
13903 else
13904 asm_fprintf (stream, "%U%s", name);
13907 static void
13908 arm_file_end (void)
13910 int regno;
13912 if (! thumb_call_reg_needed)
13913 return;
13915 text_section ();
13916 asm_fprintf (asm_out_file, "\t.code 16\n");
13917 ASM_OUTPUT_ALIGN (asm_out_file, 1);
13919 for (regno = 0; regno < LR_REGNUM; regno++)
13921 rtx label = thumb_call_via_label[regno];
13923 if (label != 0)
13925 targetm.asm_out.internal_label (asm_out_file, "L",
13926 CODE_LABEL_NUMBER (label));
13927 asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
13932 rtx aof_pic_label;
13934 #ifdef AOF_ASSEMBLER
13935 /* Special functions only needed when producing AOF syntax assembler. */
13937 struct pic_chain
13939 struct pic_chain * next;
13940 const char * symname;
13943 static struct pic_chain * aof_pic_chain = NULL;
13946 aof_pic_entry (rtx x)
13948 struct pic_chain ** chainp;
13949 int offset;
13951 if (aof_pic_label == NULL_RTX)
13953 aof_pic_label = gen_rtx_SYMBOL_REF (Pmode, "x$adcons");
13956 for (offset = 0, chainp = &aof_pic_chain; *chainp;
13957 offset += 4, chainp = &(*chainp)->next)
13958 if ((*chainp)->symname == XSTR (x, 0))
13959 return plus_constant (aof_pic_label, offset);
13961 *chainp = (struct pic_chain *) xmalloc (sizeof (struct pic_chain));
13962 (*chainp)->next = NULL;
13963 (*chainp)->symname = XSTR (x, 0);
13964 return plus_constant (aof_pic_label, offset);
13967 void
13968 aof_dump_pic_table (FILE *f)
13970 struct pic_chain * chain;
13972 if (aof_pic_chain == NULL)
13973 return;
13975 asm_fprintf (f, "\tAREA |%r$$adcons|, BASED %r\n",
13976 PIC_OFFSET_TABLE_REGNUM,
13977 PIC_OFFSET_TABLE_REGNUM);
13978 fputs ("|x$adcons|\n", f);
13980 for (chain = aof_pic_chain; chain; chain = chain->next)
13982 fputs ("\tDCD\t", f);
13983 assemble_name (f, chain->symname);
13984 fputs ("\n", f);
13988 int arm_text_section_count = 1;
13990 char *
13991 aof_text_section (void )
13993 static char buf[100];
13994 sprintf (buf, "\tAREA |C$$code%d|, CODE, READONLY",
13995 arm_text_section_count++);
13996 if (flag_pic)
13997 strcat (buf, ", PIC, REENTRANT");
13998 return buf;
14001 static int arm_data_section_count = 1;
14003 char *
14004 aof_data_section (void)
14006 static char buf[100];
14007 sprintf (buf, "\tAREA |C$$data%d|, DATA", arm_data_section_count++);
14008 return buf;
14011 /* The AOF assembler is religiously strict about declarations of
14012 imported and exported symbols, so that it is impossible to declare
14013 a function as imported near the beginning of the file, and then to
14014 export it later on. It is, however, possible to delay the decision
14015 until all the functions in the file have been compiled. To get
14016 around this, we maintain a list of the imports and exports, and
14017 delete from it any that are subsequently defined. At the end of
14018 compilation we spit the remainder of the list out before the END
14019 directive. */
14021 struct import
14023 struct import * next;
14024 const char * name;
14027 static struct import * imports_list = NULL;
14029 void
14030 aof_add_import (const char *name)
14032 struct import * new;
14034 for (new = imports_list; new; new = new->next)
14035 if (new->name == name)
14036 return;
14038 new = (struct import *) xmalloc (sizeof (struct import));
14039 new->next = imports_list;
14040 imports_list = new;
14041 new->name = name;
14044 void
14045 aof_delete_import (const char *name)
14047 struct import ** old;
14049 for (old = &imports_list; *old; old = & (*old)->next)
14051 if ((*old)->name == name)
14053 *old = (*old)->next;
14054 return;
14059 int arm_main_function = 0;
14061 static void
14062 aof_dump_imports (FILE *f)
14064 /* The AOF assembler needs this to cause the startup code to be extracted
14065 from the library. Brining in __main causes the whole thing to work
14066 automagically. */
14067 if (arm_main_function)
14069 text_section ();
14070 fputs ("\tIMPORT __main\n", f);
14071 fputs ("\tDCD __main\n", f);
14074 /* Now dump the remaining imports. */
14075 while (imports_list)
14077 fprintf (f, "\tIMPORT\t");
14078 assemble_name (f, imports_list->name);
14079 fputc ('\n', f);
14080 imports_list = imports_list->next;
14084 static void
14085 aof_globalize_label (FILE *stream, const char *name)
14087 default_globalize_label (stream, name);
14088 if (! strcmp (name, "main"))
14089 arm_main_function = 1;
14092 static void
14093 aof_file_start (void)
14095 fputs ("__r0\tRN\t0\n", asm_out_file);
14096 fputs ("__a1\tRN\t0\n", asm_out_file);
14097 fputs ("__a2\tRN\t1\n", asm_out_file);
14098 fputs ("__a3\tRN\t2\n", asm_out_file);
14099 fputs ("__a4\tRN\t3\n", asm_out_file);
14100 fputs ("__v1\tRN\t4\n", asm_out_file);
14101 fputs ("__v2\tRN\t5\n", asm_out_file);
14102 fputs ("__v3\tRN\t6\n", asm_out_file);
14103 fputs ("__v4\tRN\t7\n", asm_out_file);
14104 fputs ("__v5\tRN\t8\n", asm_out_file);
14105 fputs ("__v6\tRN\t9\n", asm_out_file);
14106 fputs ("__sl\tRN\t10\n", asm_out_file);
14107 fputs ("__fp\tRN\t11\n", asm_out_file);
14108 fputs ("__ip\tRN\t12\n", asm_out_file);
14109 fputs ("__sp\tRN\t13\n", asm_out_file);
14110 fputs ("__lr\tRN\t14\n", asm_out_file);
14111 fputs ("__pc\tRN\t15\n", asm_out_file);
14112 fputs ("__f0\tFN\t0\n", asm_out_file);
14113 fputs ("__f1\tFN\t1\n", asm_out_file);
14114 fputs ("__f2\tFN\t2\n", asm_out_file);
14115 fputs ("__f3\tFN\t3\n", asm_out_file);
14116 fputs ("__f4\tFN\t4\n", asm_out_file);
14117 fputs ("__f5\tFN\t5\n", asm_out_file);
14118 fputs ("__f6\tFN\t6\n", asm_out_file);
14119 fputs ("__f7\tFN\t7\n", asm_out_file);
14120 text_section ();
14123 static void
14124 aof_file_end (void)
14126 if (flag_pic)
14127 aof_dump_pic_table (asm_out_file);
14128 arm_file_end ();
14129 aof_dump_imports (asm_out_file);
14130 fputs ("\tEND\n", asm_out_file);
14132 #endif /* AOF_ASSEMBLER */
14134 #ifndef ARM_PE
14135 /* Symbols in the text segment can be accessed without indirecting via the
14136 constant pool; it may take an extra binary operation, but this is still
14137 faster than indirecting via memory. Don't do this when not optimizing,
14138 since we won't be calculating al of the offsets necessary to do this
14139 simplification. */
14141 static void
14142 arm_encode_section_info (tree decl, rtx rtl, int first)
14144 /* This doesn't work with AOF syntax, since the string table may be in
14145 a different AREA. */
14146 #ifndef AOF_ASSEMBLER
14147 if (optimize > 0 && TREE_CONSTANT (decl))
14148 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
14149 #endif
14151 /* If we are referencing a function that is weak then encode a long call
14152 flag in the function name, otherwise if the function is static or
14153 or known to be defined in this file then encode a short call flag. */
14154 if (first && DECL_P (decl))
14156 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_WEAK (decl))
14157 arm_encode_call_attribute (decl, LONG_CALL_FLAG_CHAR);
14158 else if (! TREE_PUBLIC (decl))
14159 arm_encode_call_attribute (decl, SHORT_CALL_FLAG_CHAR);
14162 #endif /* !ARM_PE */
14164 static void
14165 arm_internal_label (FILE *stream, const char *prefix, unsigned long labelno)
14167 if (arm_ccfsm_state == 3 && (unsigned) arm_target_label == labelno
14168 && !strcmp (prefix, "L"))
14170 arm_ccfsm_state = 0;
14171 arm_target_insn = NULL;
14173 default_internal_label (stream, prefix, labelno);
14176 /* Output code to add DELTA to the first argument, and then jump
14177 to FUNCTION. Used for C++ multiple inheritance. */
14178 static void
14179 arm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
14180 HOST_WIDE_INT delta,
14181 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
14182 tree function)
14184 static int thunk_label = 0;
14185 char label[256];
14186 int mi_delta = delta;
14187 const char *const mi_op = mi_delta < 0 ? "sub" : "add";
14188 int shift = 0;
14189 int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)
14190 ? 1 : 0);
14191 if (mi_delta < 0)
14192 mi_delta = - mi_delta;
14193 if (TARGET_THUMB)
14195 int labelno = thunk_label++;
14196 ASM_GENERATE_INTERNAL_LABEL (label, "LTHUMBFUNC", labelno);
14197 fputs ("\tldr\tr12, ", file);
14198 assemble_name (file, label);
14199 fputc ('\n', file);
14201 while (mi_delta != 0)
14203 if ((mi_delta & (3 << shift)) == 0)
14204 shift += 2;
14205 else
14207 asm_fprintf (file, "\t%s\t%r, %r, #%d\n",
14208 mi_op, this_regno, this_regno,
14209 mi_delta & (0xff << shift));
14210 mi_delta &= ~(0xff << shift);
14211 shift += 8;
14214 if (TARGET_THUMB)
14216 fprintf (file, "\tbx\tr12\n");
14217 ASM_OUTPUT_ALIGN (file, 2);
14218 assemble_name (file, label);
14219 fputs (":\n", file);
14220 assemble_integer (XEXP (DECL_RTL (function), 0), 4, BITS_PER_WORD, 1);
14222 else
14224 fputs ("\tb\t", file);
14225 assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
14226 if (NEED_PLT_RELOC)
14227 fputs ("(PLT)", file);
14228 fputc ('\n', file);
14233 arm_emit_vector_const (FILE *file, rtx x)
14235 int i;
14236 const char * pattern;
14238 gcc_assert (GET_CODE (x) == CONST_VECTOR);
14240 switch (GET_MODE (x))
14242 case V2SImode: pattern = "%08x"; break;
14243 case V4HImode: pattern = "%04x"; break;
14244 case V8QImode: pattern = "%02x"; break;
14245 default: gcc_unreachable ();
14248 fprintf (file, "0x");
14249 for (i = CONST_VECTOR_NUNITS (x); i--;)
14251 rtx element;
14253 element = CONST_VECTOR_ELT (x, i);
14254 fprintf (file, pattern, INTVAL (element));
14257 return 1;
14260 const char *
14261 arm_output_load_gr (rtx *operands)
14263 rtx reg;
14264 rtx offset;
14265 rtx wcgr;
14266 rtx sum;
14268 if (GET_CODE (operands [1]) != MEM
14269 || GET_CODE (sum = XEXP (operands [1], 0)) != PLUS
14270 || GET_CODE (reg = XEXP (sum, 0)) != REG
14271 || GET_CODE (offset = XEXP (sum, 1)) != CONST_INT
14272 || ((INTVAL (offset) < 1024) && (INTVAL (offset) > -1024)))
14273 return "wldrw%?\t%0, %1";
14275 /* Fix up an out-of-range load of a GR register. */
14276 output_asm_insn ("str%?\t%0, [sp, #-4]!\t@ Start of GR load expansion", & reg);
14277 wcgr = operands[0];
14278 operands[0] = reg;
14279 output_asm_insn ("ldr%?\t%0, %1", operands);
14281 operands[0] = wcgr;
14282 operands[1] = reg;
14283 output_asm_insn ("tmcr%?\t%0, %1", operands);
14284 output_asm_insn ("ldr%?\t%0, [sp], #4\t@ End of GR load expansion", & reg);
14286 return "";
14289 static rtx
14290 arm_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
14291 int incoming ATTRIBUTE_UNUSED)
14293 #if 0
14294 /* FIXME: The ARM backend has special code to handle structure
14295 returns, and will reserve its own hidden first argument. So
14296 if this macro is enabled a *second* hidden argument will be
14297 reserved, which will break binary compatibility with old
14298 toolchains and also thunk handling. One day this should be
14299 fixed. */
14300 return 0;
14301 #else
14302 /* Register in which address to store a structure value
14303 is passed to a function. */
14304 return gen_rtx_REG (Pmode, ARG_REGISTER (1));
14305 #endif
14308 /* Worker function for TARGET_SETUP_INCOMING_VARARGS.
14310 On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
14311 named arg and all anonymous args onto the stack.
14312 XXX I know the prologue shouldn't be pushing registers, but it is faster
14313 that way. */
14315 static void
14316 arm_setup_incoming_varargs (CUMULATIVE_ARGS *cum,
14317 enum machine_mode mode ATTRIBUTE_UNUSED,
14318 tree type ATTRIBUTE_UNUSED,
14319 int *pretend_size,
14320 int second_time ATTRIBUTE_UNUSED)
14322 cfun->machine->uses_anonymous_args = 1;
14323 if (cum->nregs < NUM_ARG_REGS)
14324 *pretend_size = (NUM_ARG_REGS - cum->nregs) * UNITS_PER_WORD;
14327 /* Return nonzero if the CONSUMER instruction (a store) does not need
14328 PRODUCER's value to calculate the address. */
14331 arm_no_early_store_addr_dep (rtx producer, rtx consumer)
14333 rtx value = PATTERN (producer);
14334 rtx addr = PATTERN (consumer);
14336 if (GET_CODE (value) == COND_EXEC)
14337 value = COND_EXEC_CODE (value);
14338 if (GET_CODE (value) == PARALLEL)
14339 value = XVECEXP (value, 0, 0);
14340 value = XEXP (value, 0);
14341 if (GET_CODE (addr) == COND_EXEC)
14342 addr = COND_EXEC_CODE (addr);
14343 if (GET_CODE (addr) == PARALLEL)
14344 addr = XVECEXP (addr, 0, 0);
14345 addr = XEXP (addr, 0);
14347 return !reg_overlap_mentioned_p (value, addr);
14350 /* Return nonzero if the CONSUMER instruction (an ALU op) does not
14351 have an early register shift value or amount dependency on the
14352 result of PRODUCER. */
14355 arm_no_early_alu_shift_dep (rtx producer, rtx consumer)
14357 rtx value = PATTERN (producer);
14358 rtx op = PATTERN (consumer);
14359 rtx early_op;
14361 if (GET_CODE (value) == COND_EXEC)
14362 value = COND_EXEC_CODE (value);
14363 if (GET_CODE (value) == PARALLEL)
14364 value = XVECEXP (value, 0, 0);
14365 value = XEXP (value, 0);
14366 if (GET_CODE (op) == COND_EXEC)
14367 op = COND_EXEC_CODE (op);
14368 if (GET_CODE (op) == PARALLEL)
14369 op = XVECEXP (op, 0, 0);
14370 op = XEXP (op, 1);
14372 early_op = XEXP (op, 0);
14373 /* This is either an actual independent shift, or a shift applied to
14374 the first operand of another operation. We want the whole shift
14375 operation. */
14376 if (GET_CODE (early_op) == REG)
14377 early_op = op;
14379 return !reg_overlap_mentioned_p (value, early_op);
14382 /* Return nonzero if the CONSUMER instruction (an ALU op) does not
14383 have an early register shift value dependency on the result of
14384 PRODUCER. */
14387 arm_no_early_alu_shift_value_dep (rtx producer, rtx consumer)
14389 rtx value = PATTERN (producer);
14390 rtx op = PATTERN (consumer);
14391 rtx early_op;
14393 if (GET_CODE (value) == COND_EXEC)
14394 value = COND_EXEC_CODE (value);
14395 if (GET_CODE (value) == PARALLEL)
14396 value = XVECEXP (value, 0, 0);
14397 value = XEXP (value, 0);
14398 if (GET_CODE (op) == COND_EXEC)
14399 op = COND_EXEC_CODE (op);
14400 if (GET_CODE (op) == PARALLEL)
14401 op = XVECEXP (op, 0, 0);
14402 op = XEXP (op, 1);
14404 early_op = XEXP (op, 0);
14406 /* This is either an actual independent shift, or a shift applied to
14407 the first operand of another operation. We want the value being
14408 shifted, in either case. */
14409 if (GET_CODE (early_op) != REG)
14410 early_op = XEXP (early_op, 0);
14412 return !reg_overlap_mentioned_p (value, early_op);
14415 /* Return nonzero if the CONSUMER (a mul or mac op) does not
14416 have an early register mult dependency on the result of
14417 PRODUCER. */
14420 arm_no_early_mul_dep (rtx producer, rtx consumer)
14422 rtx value = PATTERN (producer);
14423 rtx op = PATTERN (consumer);
14425 if (GET_CODE (value) == COND_EXEC)
14426 value = COND_EXEC_CODE (value);
14427 if (GET_CODE (value) == PARALLEL)
14428 value = XVECEXP (value, 0, 0);
14429 value = XEXP (value, 0);
14430 if (GET_CODE (op) == COND_EXEC)
14431 op = COND_EXEC_CODE (op);
14432 if (GET_CODE (op) == PARALLEL)
14433 op = XVECEXP (op, 0, 0);
14434 op = XEXP (op, 1);
14436 return (GET_CODE (op) == PLUS
14437 && !reg_overlap_mentioned_p (value, XEXP (op, 0)));
14441 /* We can't rely on the caller doing the proper promotion when
14442 using APCS or ATPCS. */
14444 static bool
14445 arm_promote_prototypes (tree t ATTRIBUTE_UNUSED)
14447 return !TARGET_AAPCS_BASED;
14451 /* AAPCS based ABIs use short enums by default. */
14453 static bool
14454 arm_default_short_enums (void)
14456 return TARGET_AAPCS_BASED;
14460 /* AAPCS requires that anonymous bitfields affect structure alignment. */
14462 static bool
14463 arm_align_anon_bitfield (void)
14465 return TARGET_AAPCS_BASED;
14469 /* The generic C++ ABI says 64-bit (long long). The EABI says 32-bit. */
14471 static tree
14472 arm_cxx_guard_type (void)
14474 return TARGET_AAPCS_BASED ? integer_type_node : long_long_integer_type_node;
14478 /* The EABI says test the least significant bit of a guard variable. */
14480 static bool
14481 arm_cxx_guard_mask_bit (void)
14483 return TARGET_AAPCS_BASED;
14487 /* The EABI specifies that all array cookies are 8 bytes long. */
14489 static tree
14490 arm_get_cookie_size (tree type)
14492 tree size;
14494 if (!TARGET_AAPCS_BASED)
14495 return default_cxx_get_cookie_size (type);
14497 size = build_int_cst (sizetype, 8);
14498 return size;
14502 /* The EABI says that array cookies should also contain the element size. */
14504 static bool
14505 arm_cookie_has_size (void)
14507 return TARGET_AAPCS_BASED;
14511 /* The EABI says constructors and destructors should return a pointer to
14512 the object constructed/destroyed. */
14514 static bool
14515 arm_cxx_cdtor_returns_this (void)
14517 return TARGET_AAPCS_BASED;
14520 /* The EABI says that an inline function may never be the key
14521 method. */
14523 static bool
14524 arm_cxx_key_method_may_be_inline (void)
14526 return !TARGET_AAPCS_BASED;
14529 static void
14530 arm_cxx_determine_class_data_visibility (tree decl)
14532 if (!TARGET_AAPCS_BASED)
14533 return;
14535 /* In general, \S 3.2.5.5 of the ARM EABI requires that class data
14536 is exported. However, on systems without dynamic vague linkage,
14537 \S 3.2.5.6 says that COMDAT class data has hidden linkage. */
14538 if (!TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P && DECL_COMDAT (decl))
14539 DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
14540 else
14541 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
14542 DECL_VISIBILITY_SPECIFIED (decl) = 1;
14545 static bool
14546 arm_cxx_class_data_always_comdat (void)
14548 /* \S 3.2.5.4 of the ARM C++ ABI says that class data only have
14549 vague linkage if the class has no key function. */
14550 return !TARGET_AAPCS_BASED;
14554 /* The EABI says __aeabi_atexit should be used to register static
14555 destructors. */
14557 static bool
14558 arm_cxx_use_aeabi_atexit (void)
14560 return TARGET_AAPCS_BASED;
14564 void
14565 arm_set_return_address (rtx source, rtx scratch)
14567 arm_stack_offsets *offsets;
14568 HOST_WIDE_INT delta;
14569 rtx addr;
14570 unsigned long saved_regs;
14572 saved_regs = arm_compute_save_reg_mask ();
14574 if ((saved_regs & (1 << LR_REGNUM)) == 0)
14575 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
14576 else
14578 if (frame_pointer_needed)
14579 addr = plus_constant(hard_frame_pointer_rtx, -4);
14580 else
14582 /* LR will be the first saved register. */
14583 offsets = arm_get_frame_offsets ();
14584 delta = offsets->outgoing_args - (offsets->frame + 4);
14587 if (delta >= 4096)
14589 emit_insn (gen_addsi3 (scratch, stack_pointer_rtx,
14590 GEN_INT (delta & ~4095)));
14591 addr = scratch;
14592 delta &= 4095;
14594 else
14595 addr = stack_pointer_rtx;
14597 addr = plus_constant (addr, delta);
14599 emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
14604 void
14605 thumb_set_return_address (rtx source, rtx scratch)
14607 arm_stack_offsets *offsets;
14608 HOST_WIDE_INT delta;
14609 int reg;
14610 rtx addr;
14611 unsigned long mask;
14613 emit_insn (gen_rtx_USE (VOIDmode, source));
14615 mask = thumb_compute_save_reg_mask ();
14616 if (mask & (1 << LR_REGNUM))
14618 offsets = arm_get_frame_offsets ();
14620 /* Find the saved regs. */
14621 if (frame_pointer_needed)
14623 delta = offsets->soft_frame - offsets->saved_args;
14624 reg = THUMB_HARD_FRAME_POINTER_REGNUM;
14626 else
14628 delta = offsets->outgoing_args - offsets->saved_args;
14629 reg = SP_REGNUM;
14631 /* Allow for the stack frame. */
14632 if (TARGET_BACKTRACE)
14633 delta -= 16;
14634 /* The link register is always the first saved register. */
14635 delta -= 4;
14637 /* Construct the address. */
14638 addr = gen_rtx_REG (SImode, reg);
14639 if ((reg != SP_REGNUM && delta >= 128)
14640 || delta >= 1024)
14642 emit_insn (gen_movsi (scratch, GEN_INT (delta)));
14643 emit_insn (gen_addsi3 (scratch, scratch, stack_pointer_rtx));
14644 addr = scratch;
14646 else
14647 addr = plus_constant (addr, delta);
14649 emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
14651 else
14652 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
14655 /* Implements target hook vector_mode_supported_p. */
14656 bool
14657 arm_vector_mode_supported_p (enum machine_mode mode)
14659 if ((mode == V2SImode)
14660 || (mode == V4HImode)
14661 || (mode == V8QImode))
14662 return true;
14664 return false;
14667 /* Implement TARGET_SHIFT_TRUNCATION_MASK. SImode shifts use normal
14668 ARM insns and therefore guarantee that the shift count is modulo 256.
14669 DImode shifts (those implemented by lib1funcs.asm or by optabs.c)
14670 guarantee no particular behavior for out-of-range counts. */
14672 static unsigned HOST_WIDE_INT
14673 arm_shift_truncation_mask (enum machine_mode mode)
14675 return mode == SImode ? 255 : 0;
14679 /* Map internal gcc register numbers to DWARF2 register numbers. */
14681 unsigned int
14682 arm_dbx_register_number (unsigned int regno)
14684 if (regno < 16)
14685 return regno;
14687 /* TODO: Legacy targets output FPA regs as registers 16-23 for backwards
14688 compatibility. The EABI defines them as registers 96-103. */
14689 if (IS_FPA_REGNUM (regno))
14690 return (TARGET_AAPCS_BASED ? 96 : 16) + regno - FIRST_FPA_REGNUM;
14692 if (IS_VFP_REGNUM (regno))
14693 return 64 + regno - FIRST_VFP_REGNUM;
14695 if (IS_IWMMXT_GR_REGNUM (regno))
14696 return 104 + regno - FIRST_IWMMXT_GR_REGNUM;
14698 if (IS_IWMMXT_REGNUM (regno))
14699 return 112 + regno - FIRST_IWMMXT_REGNUM;
14701 gcc_unreachable ();
14705 #ifdef TARGET_UNWIND_INFO
14706 /* Emit unwind directives for a store-multiple instruction. This should
14707 only ever be generated by the function prologue code, so we expect it
14708 to have a particular form. */
14710 static void
14711 arm_unwind_emit_stm (FILE * asm_out_file, rtx p)
14713 int i;
14714 HOST_WIDE_INT offset;
14715 HOST_WIDE_INT nregs;
14716 int reg_size;
14717 unsigned reg;
14718 unsigned lastreg;
14719 rtx e;
14721 /* First insn will adjust the stack pointer. */
14722 e = XVECEXP (p, 0, 0);
14723 if (GET_CODE (e) != SET
14724 || GET_CODE (XEXP (e, 0)) != REG
14725 || REGNO (XEXP (e, 0)) != SP_REGNUM
14726 || GET_CODE (XEXP (e, 1)) != PLUS)
14727 abort ();
14729 offset = -INTVAL (XEXP (XEXP (e, 1), 1));
14730 nregs = XVECLEN (p, 0) - 1;
14732 reg = REGNO (XEXP (XVECEXP (p, 0, 1), 1));
14733 if (reg < 16)
14735 /* The function prologue may also push pc, but not annotate it as it is
14736 never restored. We turn this into an stack pointer adjustment. */
14737 if (nregs * 4 == offset - 4)
14739 fprintf (asm_out_file, "\t.pad #4\n");
14740 offset -= 4;
14742 reg_size = 4;
14744 else if (IS_VFP_REGNUM (reg))
14746 /* FPA register saves use an additional word. */
14747 offset -= 4;
14748 reg_size = 8;
14750 else if (reg >= FIRST_FPA_REGNUM && reg <= LAST_FPA_REGNUM)
14752 /* FPA registers are done differently. */
14753 asm_fprintf (asm_out_file, "\t.save %r, %d\n", reg, nregs);
14754 return;
14756 else
14757 /* Unknown register type. */
14758 abort ();
14760 /* If the stack increment doesn't match the size of the saved registers,
14761 something has gone horribly wrong. */
14762 if (offset != nregs * reg_size)
14763 abort ();
14765 fprintf (asm_out_file, "\t.save {");
14767 offset = 0;
14768 lastreg = 0;
14769 /* The remaining insns will describe the stores. */
14770 for (i = 1; i <= nregs; i++)
14772 /* Expect (set (mem <addr>) (reg)).
14773 Where <addr> is (reg:SP) or (plus (reg:SP) (const_int)). */
14774 e = XVECEXP (p, 0, i);
14775 if (GET_CODE (e) != SET
14776 || GET_CODE (XEXP (e, 0)) != MEM
14777 || GET_CODE (XEXP (e, 1)) != REG)
14778 abort ();
14780 reg = REGNO (XEXP (e, 1));
14781 if (reg < lastreg)
14782 abort ();
14784 if (i != 1)
14785 fprintf (asm_out_file, ", ");
14786 /* We can't use %r for vfp because we need to use the
14787 double precision register names. */
14788 if (IS_VFP_REGNUM (reg))
14789 asm_fprintf (asm_out_file, "d%d", (reg - FIRST_VFP_REGNUM) / 2);
14790 else
14791 asm_fprintf (asm_out_file, "%r", reg);
14793 #ifdef ENABLE_CHECKING
14794 /* Check that the addresses are consecutive. */
14795 e = XEXP (XEXP (e, 0), 0);
14796 if (GET_CODE (e) == PLUS)
14798 offset += reg_size;
14799 if (GET_CODE (XEXP (e, 0)) != REG
14800 || REGNO (XEXP (e, 0)) != SP_REGNUM
14801 || GET_CODE (XEXP (e, 1)) != CONST_INT
14802 || offset != INTVAL (XEXP (e, 1)))
14803 abort ();
14805 else if (i != 1
14806 || GET_CODE (e) != REG
14807 || REGNO (e) != SP_REGNUM)
14808 abort ();
14809 #endif
14811 fprintf (asm_out_file, "}\n");
14814 /* Emit unwind directives for a SET. */
14816 static void
14817 arm_unwind_emit_set (FILE * asm_out_file, rtx p)
14819 rtx e0;
14820 rtx e1;
14822 e0 = XEXP (p, 0);
14823 e1 = XEXP (p, 1);
14824 switch (GET_CODE (e0))
14826 case MEM:
14827 /* Pushing a single register. */
14828 if (GET_CODE (XEXP (e0, 0)) != PRE_DEC
14829 || GET_CODE (XEXP (XEXP (e0, 0), 0)) != REG
14830 || REGNO (XEXP (XEXP (e0, 0), 0)) != SP_REGNUM)
14831 abort ();
14833 asm_fprintf (asm_out_file, "\t.save ");
14834 if (IS_VFP_REGNUM (REGNO (e1)))
14835 asm_fprintf(asm_out_file, "{d%d}\n",
14836 (REGNO (e1) - FIRST_VFP_REGNUM) / 2);
14837 else
14838 asm_fprintf(asm_out_file, "{%r}\n", REGNO (e1));
14839 break;
14841 case REG:
14842 if (REGNO (e0) == SP_REGNUM)
14844 /* A stack increment. */
14845 if (GET_CODE (e1) != PLUS
14846 || GET_CODE (XEXP (e1, 0)) != REG
14847 || REGNO (XEXP (e1, 0)) != SP_REGNUM
14848 || GET_CODE (XEXP (e1, 1)) != CONST_INT)
14849 abort ();
14851 asm_fprintf (asm_out_file, "\t.pad #%d\n",
14852 -INTVAL (XEXP (e1, 1)));
14854 else if (REGNO (e0) == HARD_FRAME_POINTER_REGNUM)
14856 HOST_WIDE_INT offset;
14857 unsigned reg;
14859 if (GET_CODE (e1) == PLUS)
14861 if (GET_CODE (XEXP (e1, 0)) != REG
14862 || GET_CODE (XEXP (e1, 1)) != CONST_INT)
14863 abort ();
14864 reg = REGNO (XEXP (e1, 0));
14865 offset = INTVAL (XEXP (e1, 1));
14866 asm_fprintf (asm_out_file, "\t.setfp %r, %r, #%d\n",
14867 HARD_FRAME_POINTER_REGNUM, reg,
14868 INTVAL (XEXP (e1, 1)));
14870 else if (GET_CODE (e1) == REG)
14872 reg = REGNO (e1);
14873 asm_fprintf (asm_out_file, "\t.setfp %r, %r\n",
14874 HARD_FRAME_POINTER_REGNUM, reg);
14876 else
14877 abort ();
14879 else if (GET_CODE (e1) == REG && REGNO (e1) == SP_REGNUM)
14881 /* Move from sp to reg. */
14882 asm_fprintf (asm_out_file, "\t.movsp %r\n", REGNO (e0));
14884 else
14885 abort ();
14886 break;
14888 default:
14889 abort ();
14894 /* Emit unwind directives for the given insn. */
14896 static void
14897 arm_unwind_emit (FILE * asm_out_file, rtx insn)
14899 rtx pat;
14901 if (!ARM_EABI_UNWIND_TABLES)
14902 return;
14904 if (GET_CODE (insn) == NOTE || !RTX_FRAME_RELATED_P (insn))
14905 return;
14907 pat = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
14908 if (pat)
14909 pat = XEXP (pat, 0);
14910 else
14911 pat = PATTERN (insn);
14913 switch (GET_CODE (pat))
14915 case SET:
14916 arm_unwind_emit_set (asm_out_file, pat);
14917 break;
14919 case SEQUENCE:
14920 /* Store multiple. */
14921 arm_unwind_emit_stm (asm_out_file, pat);
14922 break;
14924 default:
14925 abort();
14930 /* Output a reference from a function exception table to the type_info
14931 object X. The EABI specifies that the symbol should be relocated by
14932 an R_ARM_TARGET2 relocation. */
14934 static bool
14935 arm_output_ttype (rtx x)
14937 fputs ("\t.word\t", asm_out_file);
14938 output_addr_const (asm_out_file, x);
14939 /* Use special relocations for symbol references. */
14940 if (GET_CODE (x) != CONST_INT)
14941 fputs ("(TARGET2)", asm_out_file);
14942 fputc ('\n', asm_out_file);
14944 return TRUE;
14946 #endif /* TARGET_UNWIND_INFO */
14949 /* Output unwind directives for the start/end of a function. */
14951 void
14952 arm_output_fn_unwind (FILE * f, bool prologue)
14954 if (!ARM_EABI_UNWIND_TABLES)
14955 return;
14957 if (prologue)
14958 fputs ("\t.fnstart\n", f);
14959 else
14960 fputs ("\t.fnend\n", f);