2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / libgfortran / generated / count_8_l.c
blob3c1c565361089ba55a97a7a9c19f09f240e7ee9a
1 /* Implementation of the COUNT intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
36 #if defined (HAVE_GFC_INTEGER_8)
39 extern void count_8_l (gfc_array_i8 * const restrict,
40 gfc_array_l1 * const restrict, const index_type * const restrict);
41 export_proto(count_8_l);
43 void
44 count_8_l (gfc_array_i8 * const restrict retarray,
45 gfc_array_l1 * const restrict array,
46 const index_type * const restrict pdim)
48 index_type count[GFC_MAX_DIMENSIONS];
49 index_type extent[GFC_MAX_DIMENSIONS];
50 index_type sstride[GFC_MAX_DIMENSIONS];
51 index_type dstride[GFC_MAX_DIMENSIONS];
52 const GFC_LOGICAL_1 * restrict base;
53 GFC_INTEGER_8 * restrict dest;
54 index_type rank;
55 index_type n;
56 index_type len;
57 index_type delta;
58 index_type dim;
59 int src_kind;
60 int continue_loop;
62 /* Make dim zero based to avoid confusion. */
63 dim = (*pdim) - 1;
64 rank = GFC_DESCRIPTOR_RANK (array) - 1;
66 src_kind = GFC_DESCRIPTOR_SIZE (array);
68 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
69 if (len < 0)
70 len = 0;
72 delta = array->dim[dim].stride * src_kind;
74 for (n = 0; n < dim; n++)
76 sstride[n] = array->dim[n].stride * src_kind;
77 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
79 if (extent[n] < 0)
80 extent[n] = 0;
82 for (n = dim; n < rank; n++)
84 sstride[n] = array->dim[n + 1].stride * src_kind;
85 extent[n] =
86 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
88 if (extent[n] < 0)
89 extent[n] = 0;
92 if (retarray->data == NULL)
94 size_t alloc_size;
96 for (n = 0; n < rank; n++)
98 retarray->dim[n].lbound = 0;
99 retarray->dim[n].ubound = extent[n]-1;
100 if (n == 0)
101 retarray->dim[n].stride = 1;
102 else
103 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
106 retarray->offset = 0;
107 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
109 alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
110 * extent[rank-1];
112 if (alloc_size == 0)
114 /* Make sure we have a zero-sized array. */
115 retarray->dim[0].lbound = 0;
116 retarray->dim[0].ubound = -1;
117 return;
119 else
120 retarray->data = internal_malloc_size (alloc_size);
122 else
124 if (rank != GFC_DESCRIPTOR_RANK (retarray))
125 runtime_error ("rank of return array incorrect in"
126 " COUNT intrinsic: is %ld, should be %ld",
127 (long int) GFC_DESCRIPTOR_RANK (retarray),
128 (long int) rank);
130 if (compile_options.bounds_check)
132 for (n=0; n < rank; n++)
134 index_type ret_extent;
136 ret_extent = retarray->dim[n].ubound + 1
137 - retarray->dim[n].lbound;
138 if (extent[n] != ret_extent)
139 runtime_error ("Incorrect extent in return value of"
140 " COUNT intrinsic in dimension %d:"
141 " is %ld, should be %ld", n + 1,
142 (long int) ret_extent, (long int) extent[n]);
147 for (n = 0; n < rank; n++)
149 count[n] = 0;
150 dstride[n] = retarray->dim[n].stride;
151 if (extent[n] <= 0)
152 len = 0;
155 base = array->data;
157 if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8
158 #ifdef HAVE_GFC_LOGICAL_16
159 || src_kind == 16
160 #endif
163 if (base)
164 base = GFOR_POINTER_TO_L1 (base, src_kind);
166 else
167 internal_error (NULL, "Funny sized logical array in COUNT intrinsic");
169 dest = retarray->data;
171 continue_loop = 1;
172 while (continue_loop)
174 const GFC_LOGICAL_1 * restrict src;
175 GFC_INTEGER_8 result;
176 src = base;
179 result = 0;
180 if (len <= 0)
181 *dest = 0;
182 else
184 for (n = 0; n < len; n++, src += delta)
187 if (*src)
188 result++;
190 *dest = result;
193 /* Advance to the next element. */
194 count[0]++;
195 base += sstride[0];
196 dest += dstride[0];
197 n = 0;
198 while (count[n] == extent[n])
200 /* When we get to the end of a dimension, reset it and increment
201 the next dimension. */
202 count[n] = 0;
203 /* We could precalculate these products, but this is a less
204 frequently used path so probably not worth it. */
205 base -= sstride[n] * extent[n];
206 dest -= dstride[n] * extent[n];
207 n++;
208 if (n == rank)
210 /* Break out of the look. */
211 continue_loop = 0;
212 break;
214 else
216 count[n]++;
217 base += sstride[n];
218 dest += dstride[n];
224 #endif