2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / postreload-gcse.c
blobcf6dc519ad2680d8eb20f4fcc8ad3c617ea61db5
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "basic-block.h"
37 #include "output.h"
38 #include "function.h"
39 #include "expr.h"
40 #include "except.h"
41 #include "intl.h"
42 #include "obstack.h"
43 #include "hashtab.h"
44 #include "params.h"
45 #include "target.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
48 #include "dbgcnt.h"
50 /* The following code implements gcse after reload, the purpose of this
51 pass is to cleanup redundant loads generated by reload and other
52 optimizations that come after gcse. It searches for simple inter-block
53 redundancies and tries to eliminate them by adding moves and loads
54 in cold places.
56 Perform partially redundant load elimination, try to eliminate redundant
57 loads created by the reload pass. We try to look for full or partial
58 redundant loads fed by one or more loads/stores in predecessor BBs,
59 and try adding loads to make them fully redundant. We also check if
60 it's worth adding loads to be able to delete the redundant load.
62 Algorithm:
63 1. Build available expressions hash table:
64 For each load/store instruction, if the loaded/stored memory didn't
65 change until the end of the basic block add this memory expression to
66 the hash table.
67 2. Perform Redundancy elimination:
68 For each load instruction do the following:
69 perform partial redundancy elimination, check if it's worth adding
70 loads to make the load fully redundant. If so add loads and
71 register copies and delete the load.
72 3. Delete instructions made redundant in step 2.
74 Future enhancement:
75 If the loaded register is used/defined between load and some store,
76 look for some other free register between load and all its stores,
77 and replace the load with a copy from this register to the loaded
78 register.
82 /* Keep statistics of this pass. */
83 static struct
85 int moves_inserted;
86 int copies_inserted;
87 int insns_deleted;
88 } stats;
90 /* We need to keep a hash table of expressions. The table entries are of
91 type 'struct expr', and for each expression there is a single linked
92 list of occurrences. */
94 /* The table itself. */
95 static htab_t expr_table;
97 /* Expression elements in the hash table. */
98 struct expr
100 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
101 rtx expr;
103 /* The same hash for this entry. */
104 hashval_t hash;
106 /* List of available occurrence in basic blocks in the function. */
107 struct occr *avail_occr;
110 static struct obstack expr_obstack;
112 /* Occurrence of an expression.
113 There is at most one occurrence per basic block. If a pattern appears
114 more than once, the last appearance is used. */
116 struct occr
118 /* Next occurrence of this expression. */
119 struct occr *next;
120 /* The insn that computes the expression. */
121 rtx insn;
122 /* Nonzero if this [anticipatable] occurrence has been deleted. */
123 char deleted_p;
126 static struct obstack occr_obstack;
128 /* The following structure holds the information about the occurrences of
129 the redundant instructions. */
130 struct unoccr
132 struct unoccr *next;
133 edge pred;
134 rtx insn;
137 static struct obstack unoccr_obstack;
139 /* Array where each element is the CUID if the insn that last set the hard
140 register with the number of the element, since the start of the current
141 basic block.
143 This array is used during the building of the hash table (step 1) to
144 determine if a reg is killed before the end of a basic block.
146 It is also used when eliminating partial redundancies (step 2) to see
147 if a reg was modified since the start of a basic block. */
148 static int *reg_avail_info;
150 /* A list of insns that may modify memory within the current basic block. */
151 struct modifies_mem
153 rtx insn;
154 struct modifies_mem *next;
156 static struct modifies_mem *modifies_mem_list;
158 /* The modifies_mem structs also go on an obstack, only this obstack is
159 freed each time after completing the analysis or transformations on
160 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
161 object on the obstack to keep track of the bottom of the obstack. */
162 static struct obstack modifies_mem_obstack;
163 static struct modifies_mem *modifies_mem_obstack_bottom;
165 /* Mapping of insn UIDs to CUIDs.
166 CUIDs are like UIDs except they increase monotonically in each basic
167 block, have no gaps, and only apply to real insns. */
168 static int *uid_cuid;
169 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
172 /* Helpers for memory allocation/freeing. */
173 static void alloc_mem (void);
174 static void free_mem (void);
176 /* Support for hash table construction and transformations. */
177 static bool oprs_unchanged_p (rtx, rtx, bool);
178 static void record_last_reg_set_info (rtx, rtx);
179 static void record_last_reg_set_info_regno (rtx, int);
180 static void record_last_mem_set_info (rtx);
181 static void record_last_set_info (rtx, const_rtx, void *);
182 static void record_opr_changes (rtx);
184 static void find_mem_conflicts (rtx, const_rtx, void *);
185 static int load_killed_in_block_p (int, rtx, bool);
186 static void reset_opr_set_tables (void);
188 /* Hash table support. */
189 static hashval_t hash_expr (rtx, int *);
190 static hashval_t hash_expr_for_htab (const void *);
191 static int expr_equiv_p (const void *, const void *);
192 static void insert_expr_in_table (rtx, rtx);
193 static struct expr *lookup_expr_in_table (rtx);
194 static int dump_hash_table_entry (void **, void *);
195 static void dump_hash_table (FILE *);
197 /* Helpers for eliminate_partially_redundant_load. */
198 static bool reg_killed_on_edge (rtx, edge);
199 static bool reg_used_on_edge (rtx, edge);
201 static rtx get_avail_load_store_reg (rtx);
203 static bool bb_has_well_behaved_predecessors (basic_block);
204 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
205 static void hash_scan_set (rtx);
206 static void compute_hash_table (void);
208 /* The work horses of this pass. */
209 static void eliminate_partially_redundant_load (basic_block,
210 rtx,
211 struct expr *);
212 static void eliminate_partially_redundant_loads (void);
215 /* Allocate memory for the CUID mapping array and register/memory
216 tracking tables. */
218 static void
219 alloc_mem (void)
221 int i;
222 basic_block bb;
223 rtx insn;
225 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
226 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
227 i = 1;
228 FOR_EACH_BB (bb)
229 FOR_BB_INSNS (bb, insn)
231 if (INSN_P (insn))
232 uid_cuid[INSN_UID (insn)] = i++;
233 else
234 uid_cuid[INSN_UID (insn)] = i;
237 /* Allocate the available expressions hash table. We don't want to
238 make the hash table too small, but unnecessarily making it too large
239 also doesn't help. The i/4 is a gcse.c relic, and seems like a
240 reasonable choice. */
241 expr_table = htab_create (MAX (i / 4, 13),
242 hash_expr_for_htab, expr_equiv_p, NULL);
244 /* We allocate everything on obstacks because we often can roll back
245 the whole obstack to some point. Freeing obstacks is very fast. */
246 gcc_obstack_init (&expr_obstack);
247 gcc_obstack_init (&occr_obstack);
248 gcc_obstack_init (&unoccr_obstack);
249 gcc_obstack_init (&modifies_mem_obstack);
251 /* Working array used to track the last set for each register
252 in the current block. */
253 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
255 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
256 can roll it back in reset_opr_set_tables. */
257 modifies_mem_obstack_bottom =
258 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
259 sizeof (struct modifies_mem));
262 /* Free memory allocated by alloc_mem. */
264 static void
265 free_mem (void)
267 free (uid_cuid);
269 htab_delete (expr_table);
271 obstack_free (&expr_obstack, NULL);
272 obstack_free (&occr_obstack, NULL);
273 obstack_free (&unoccr_obstack, NULL);
274 obstack_free (&modifies_mem_obstack, NULL);
276 free (reg_avail_info);
280 /* Hash expression X.
281 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
282 or if the expression contains something we don't want to insert in the
283 table. */
285 static hashval_t
286 hash_expr (rtx x, int *do_not_record_p)
288 *do_not_record_p = 0;
289 return hash_rtx (x, GET_MODE (x), do_not_record_p,
290 NULL, /*have_reg_qty=*/false);
293 /* Callback for hashtab.
294 Return the hash value for expression EXP. We don't actually hash
295 here, we just return the cached hash value. */
297 static hashval_t
298 hash_expr_for_htab (const void *expp)
300 const struct expr *const exp = (const struct expr *) expp;
301 return exp->hash;
304 /* Callback for hashtab.
305 Return nonzero if exp1 is equivalent to exp2. */
307 static int
308 expr_equiv_p (const void *exp1p, const void *exp2p)
310 const struct expr *const exp1 = (const struct expr *) exp1p;
311 const struct expr *const exp2 = (const struct expr *) exp2p;
312 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
314 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
315 return equiv_p;
319 /* Insert expression X in INSN in the hash TABLE.
320 If it is already present, record it as the last occurrence in INSN's
321 basic block. */
323 static void
324 insert_expr_in_table (rtx x, rtx insn)
326 int do_not_record_p;
327 hashval_t hash;
328 struct expr *cur_expr, **slot;
329 struct occr *avail_occr, *last_occr = NULL;
331 hash = hash_expr (x, &do_not_record_p);
333 /* Do not insert expression in the table if it contains volatile operands,
334 or if hash_expr determines the expression is something we don't want
335 to or can't handle. */
336 if (do_not_record_p)
337 return;
339 /* We anticipate that redundant expressions are rare, so for convenience
340 allocate a new hash table element here already and set its fields.
341 If we don't do this, we need a hack with a static struct expr. Anyway,
342 obstack_free is really fast and one more obstack_alloc doesn't hurt if
343 we're going to see more expressions later on. */
344 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
345 sizeof (struct expr));
346 cur_expr->expr = x;
347 cur_expr->hash = hash;
348 cur_expr->avail_occr = NULL;
350 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
351 hash, INSERT);
353 if (! (*slot))
354 /* The expression isn't found, so insert it. */
355 *slot = cur_expr;
356 else
358 /* The expression is already in the table, so roll back the
359 obstack and use the existing table entry. */
360 obstack_free (&expr_obstack, cur_expr);
361 cur_expr = *slot;
364 /* Search for another occurrence in the same basic block. */
365 avail_occr = cur_expr->avail_occr;
366 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
368 /* If an occurrence isn't found, save a pointer to the end of
369 the list. */
370 last_occr = avail_occr;
371 avail_occr = avail_occr->next;
374 if (avail_occr)
375 /* Found another instance of the expression in the same basic block.
376 Prefer this occurrence to the currently recorded one. We want
377 the last one in the block and the block is scanned from start
378 to end. */
379 avail_occr->insn = insn;
380 else
382 /* First occurrence of this expression in this basic block. */
383 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
384 sizeof (struct occr));
386 /* First occurrence of this expression in any block? */
387 if (cur_expr->avail_occr == NULL)
388 cur_expr->avail_occr = avail_occr;
389 else
390 last_occr->next = avail_occr;
392 avail_occr->insn = insn;
393 avail_occr->next = NULL;
394 avail_occr->deleted_p = 0;
399 /* Lookup pattern PAT in the expression hash table.
400 The result is a pointer to the table entry, or NULL if not found. */
402 static struct expr *
403 lookup_expr_in_table (rtx pat)
405 int do_not_record_p;
406 struct expr **slot, *tmp_expr;
407 hashval_t hash = hash_expr (pat, &do_not_record_p);
409 if (do_not_record_p)
410 return NULL;
412 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
413 sizeof (struct expr));
414 tmp_expr->expr = pat;
415 tmp_expr->hash = hash;
416 tmp_expr->avail_occr = NULL;
418 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
419 hash, INSERT);
420 obstack_free (&expr_obstack, tmp_expr);
422 if (!slot)
423 return NULL;
424 else
425 return (*slot);
429 /* Dump all expressions and occurrences that are currently in the
430 expression hash table to FILE. */
432 /* This helper is called via htab_traverse. */
433 static int
434 dump_hash_table_entry (void **slot, void *filep)
436 struct expr *expr = (struct expr *) *slot;
437 FILE *file = (FILE *) filep;
438 struct occr *occr;
440 fprintf (file, "expr: ");
441 print_rtl (file, expr->expr);
442 fprintf (file,"\nhashcode: %u\n", expr->hash);
443 fprintf (file,"list of occurrences:\n");
444 occr = expr->avail_occr;
445 while (occr)
447 rtx insn = occr->insn;
448 print_rtl_single (file, insn);
449 fprintf (file, "\n");
450 occr = occr->next;
452 fprintf (file, "\n");
453 return 1;
456 static void
457 dump_hash_table (FILE *file)
459 fprintf (file, "\n\nexpression hash table\n");
460 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
461 (long) htab_size (expr_table),
462 (long) htab_elements (expr_table),
463 htab_collisions (expr_table));
464 if (htab_elements (expr_table) > 0)
466 fprintf (file, "\n\ntable entries:\n");
467 htab_traverse (expr_table, dump_hash_table_entry, file);
469 fprintf (file, "\n");
472 /* Return true if register X is recorded as being set by an instruction
473 whose CUID is greater than the one given. */
475 static bool
476 reg_changed_after_insn_p (rtx x, int cuid)
478 unsigned int regno, end_regno;
480 regno = REGNO (x);
481 end_regno = END_HARD_REGNO (x);
483 if (reg_avail_info[regno] > cuid)
484 return true;
485 while (++regno < end_regno);
486 return false;
489 /* Return nonzero if the operands of expression X are unchanged
490 1) from the start of INSN's basic block up to but not including INSN
491 if AFTER_INSN is false, or
492 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
494 static bool
495 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
497 int i, j;
498 enum rtx_code code;
499 const char *fmt;
501 if (x == 0)
502 return 1;
504 code = GET_CODE (x);
505 switch (code)
507 case REG:
508 /* We are called after register allocation. */
509 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
510 if (after_insn)
511 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
512 else
513 return !reg_changed_after_insn_p (x, 0);
515 case MEM:
516 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
517 return 0;
518 else
519 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
521 case PC:
522 case CC0: /*FIXME*/
523 case CONST:
524 case CONST_INT:
525 case CONST_DOUBLE:
526 case CONST_FIXED:
527 case CONST_VECTOR:
528 case SYMBOL_REF:
529 case LABEL_REF:
530 case ADDR_VEC:
531 case ADDR_DIFF_VEC:
532 return 1;
534 case PRE_DEC:
535 case PRE_INC:
536 case POST_DEC:
537 case POST_INC:
538 case PRE_MODIFY:
539 case POST_MODIFY:
540 if (after_insn)
541 return 0;
542 break;
544 default:
545 break;
548 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
550 if (fmt[i] == 'e')
552 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
553 return 0;
555 else if (fmt[i] == 'E')
556 for (j = 0; j < XVECLEN (x, i); j++)
557 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
558 return 0;
561 return 1;
565 /* Used for communication between find_mem_conflicts and
566 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
567 conflict between two memory references.
568 This is a bit of a hack to work around the limitations of note_stores. */
569 static int mems_conflict_p;
571 /* DEST is the output of an instruction. If it is a memory reference, and
572 possibly conflicts with the load found in DATA, then set mems_conflict_p
573 to a nonzero value. */
575 static void
576 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
577 void *data)
579 rtx mem_op = (rtx) data;
581 while (GET_CODE (dest) == SUBREG
582 || GET_CODE (dest) == ZERO_EXTRACT
583 || GET_CODE (dest) == STRICT_LOW_PART)
584 dest = XEXP (dest, 0);
586 /* If DEST is not a MEM, then it will not conflict with the load. Note
587 that function calls are assumed to clobber memory, but are handled
588 elsewhere. */
589 if (! MEM_P (dest))
590 return;
592 if (true_dependence (dest, GET_MODE (dest), mem_op,
593 rtx_addr_varies_p))
594 mems_conflict_p = 1;
598 /* Return nonzero if the expression in X (a memory reference) is killed
599 in the current basic block before (if AFTER_INSN is false) or after
600 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
602 This function assumes that the modifies_mem table is flushed when
603 the hash table construction or redundancy elimination phases start
604 processing a new basic block. */
606 static int
607 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
609 struct modifies_mem *list_entry = modifies_mem_list;
611 while (list_entry)
613 rtx setter = list_entry->insn;
615 /* Ignore entries in the list that do not apply. */
616 if ((after_insn
617 && INSN_CUID (setter) < uid_limit)
618 || (! after_insn
619 && INSN_CUID (setter) > uid_limit))
621 list_entry = list_entry->next;
622 continue;
625 /* If SETTER is a call everything is clobbered. Note that calls
626 to pure functions are never put on the list, so we need not
627 worry about them. */
628 if (CALL_P (setter))
629 return 1;
631 /* SETTER must be an insn of some kind that sets memory. Call
632 note_stores to examine each hunk of memory that is modified.
633 It will set mems_conflict_p to nonzero if there may be a
634 conflict between X and SETTER. */
635 mems_conflict_p = 0;
636 note_stores (PATTERN (setter), find_mem_conflicts, x);
637 if (mems_conflict_p)
638 return 1;
640 list_entry = list_entry->next;
642 return 0;
646 /* Record register first/last/block set information for REGNO in INSN. */
648 static inline void
649 record_last_reg_set_info (rtx insn, rtx reg)
651 unsigned int regno, end_regno;
653 regno = REGNO (reg);
654 end_regno = END_HARD_REGNO (reg);
656 reg_avail_info[regno] = INSN_CUID (insn);
657 while (++regno < end_regno);
660 static inline void
661 record_last_reg_set_info_regno (rtx insn, int regno)
663 reg_avail_info[regno] = INSN_CUID (insn);
667 /* Record memory modification information for INSN. We do not actually care
668 about the memory location(s) that are set, or even how they are set (consider
669 a CALL_INSN). We merely need to record which insns modify memory. */
671 static void
672 record_last_mem_set_info (rtx insn)
674 struct modifies_mem *list_entry;
676 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
677 sizeof (struct modifies_mem));
678 list_entry->insn = insn;
679 list_entry->next = modifies_mem_list;
680 modifies_mem_list = list_entry;
683 /* Called from compute_hash_table via note_stores to handle one
684 SET or CLOBBER in an insn. DATA is really the instruction in which
685 the SET is taking place. */
687 static void
688 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
690 rtx last_set_insn = (rtx) data;
692 if (GET_CODE (dest) == SUBREG)
693 dest = SUBREG_REG (dest);
695 if (REG_P (dest))
696 record_last_reg_set_info (last_set_insn, dest);
697 else if (MEM_P (dest))
699 /* Ignore pushes, they don't clobber memory. They may still
700 clobber the stack pointer though. Some targets do argument
701 pushes without adding REG_INC notes. See e.g. PR25196,
702 where a pushsi2 on i386 doesn't have REG_INC notes. Note
703 such changes here too. */
704 if (! push_operand (dest, GET_MODE (dest)))
705 record_last_mem_set_info (last_set_insn);
706 else
707 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
712 /* Reset tables used to keep track of what's still available since the
713 start of the block. */
715 static void
716 reset_opr_set_tables (void)
718 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
719 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
720 modifies_mem_list = NULL;
724 /* Record things set by INSN.
725 This data is used by oprs_unchanged_p. */
727 static void
728 record_opr_changes (rtx insn)
730 rtx note;
732 /* Find all stores and record them. */
733 note_stores (PATTERN (insn), record_last_set_info, insn);
735 /* Also record autoincremented REGs for this insn as changed. */
736 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
737 if (REG_NOTE_KIND (note) == REG_INC)
738 record_last_reg_set_info (insn, XEXP (note, 0));
740 /* Finally, if this is a call, record all call clobbers. */
741 if (CALL_P (insn))
743 unsigned int regno;
744 rtx link, x;
745 HARD_REG_SET clobbered_regs;
747 get_call_invalidated_used_regs (insn, &clobbered_regs, true);
748 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
749 if (TEST_HARD_REG_BIT (clobbered_regs, regno))
750 record_last_reg_set_info_regno (insn, regno);
752 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
753 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
755 x = XEXP (XEXP (link, 0), 0);
756 if (REG_P (x))
758 gcc_assert (HARD_REGISTER_P (x));
759 record_last_reg_set_info (insn, x);
763 if (! RTL_CONST_OR_PURE_CALL_P (insn))
764 record_last_mem_set_info (insn);
769 /* Scan the pattern of INSN and add an entry to the hash TABLE.
770 After reload we are interested in loads/stores only. */
772 static void
773 hash_scan_set (rtx insn)
775 rtx pat = PATTERN (insn);
776 rtx src = SET_SRC (pat);
777 rtx dest = SET_DEST (pat);
779 /* We are only interested in loads and stores. */
780 if (! MEM_P (src) && ! MEM_P (dest))
781 return;
783 /* Don't mess with jumps and nops. */
784 if (JUMP_P (insn) || set_noop_p (pat))
785 return;
787 if (REG_P (dest))
789 if (/* Don't CSE something if we can't do a reg/reg copy. */
790 can_copy_p (GET_MODE (dest))
791 /* Is SET_SRC something we want to gcse? */
792 && general_operand (src, GET_MODE (src))
793 #ifdef STACK_REGS
794 /* Never consider insns touching the register stack. It may
795 create situations that reg-stack cannot handle (e.g. a stack
796 register live across an abnormal edge). */
797 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
798 #endif
799 /* An expression is not available if its operands are
800 subsequently modified, including this insn. */
801 && oprs_unchanged_p (src, insn, true))
803 insert_expr_in_table (src, insn);
806 else if (REG_P (src))
808 /* Only record sets of pseudo-regs in the hash table. */
809 if (/* Don't CSE something if we can't do a reg/reg copy. */
810 can_copy_p (GET_MODE (src))
811 /* Is SET_DEST something we want to gcse? */
812 && general_operand (dest, GET_MODE (dest))
813 #ifdef STACK_REGS
814 /* As above for STACK_REGS. */
815 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
816 #endif
817 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
818 /* Check if the memory expression is killed after insn. */
819 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
820 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
822 insert_expr_in_table (dest, insn);
828 /* Create hash table of memory expressions available at end of basic
829 blocks. Basically you should think of this hash table as the
830 representation of AVAIL_OUT. This is the set of expressions that
831 is generated in a basic block and not killed before the end of the
832 same basic block. Notice that this is really a local computation. */
834 static void
835 compute_hash_table (void)
837 basic_block bb;
839 FOR_EACH_BB (bb)
841 rtx insn;
843 /* First pass over the instructions records information used to
844 determine when registers and memory are last set.
845 Since we compute a "local" AVAIL_OUT, reset the tables that
846 help us keep track of what has been modified since the start
847 of the block. */
848 reset_opr_set_tables ();
849 FOR_BB_INSNS (bb, insn)
851 if (INSN_P (insn))
852 record_opr_changes (insn);
855 /* The next pass actually builds the hash table. */
856 FOR_BB_INSNS (bb, insn)
857 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
858 hash_scan_set (insn);
863 /* Check if register REG is killed in any insn waiting to be inserted on
864 edge E. This function is required to check that our data flow analysis
865 is still valid prior to commit_edge_insertions. */
867 static bool
868 reg_killed_on_edge (rtx reg, edge e)
870 rtx insn;
872 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
873 if (INSN_P (insn) && reg_set_p (reg, insn))
874 return true;
876 return false;
879 /* Similar to above - check if register REG is used in any insn waiting
880 to be inserted on edge E.
881 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
882 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
884 static bool
885 reg_used_on_edge (rtx reg, edge e)
887 rtx insn;
889 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
890 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
891 return true;
893 return false;
896 /* Return the loaded/stored register of a load/store instruction. */
898 static rtx
899 get_avail_load_store_reg (rtx insn)
901 if (REG_P (SET_DEST (PATTERN (insn))))
902 /* A load. */
903 return SET_DEST(PATTERN(insn));
904 else
906 /* A store. */
907 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
908 return SET_SRC (PATTERN (insn));
912 /* Return nonzero if the predecessors of BB are "well behaved". */
914 static bool
915 bb_has_well_behaved_predecessors (basic_block bb)
917 edge pred;
918 edge_iterator ei;
920 if (EDGE_COUNT (bb->preds) == 0)
921 return false;
923 FOR_EACH_EDGE (pred, ei, bb->preds)
925 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
926 return false;
928 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
929 return false;
931 return true;
935 /* Search for the occurrences of expression in BB. */
937 static struct occr*
938 get_bb_avail_insn (basic_block bb, struct occr *occr)
940 for (; occr != NULL; occr = occr->next)
941 if (BLOCK_FOR_INSN (occr->insn) == bb)
942 return occr;
943 return NULL;
947 /* This handles the case where several stores feed a partially redundant
948 load. It checks if the redundancy elimination is possible and if it's
949 worth it.
951 Redundancy elimination is possible if,
952 1) None of the operands of an insn have been modified since the start
953 of the current basic block.
954 2) In any predecessor of the current basic block, the same expression
955 is generated.
957 See the function body for the heuristics that determine if eliminating
958 a redundancy is also worth doing, assuming it is possible. */
960 static void
961 eliminate_partially_redundant_load (basic_block bb, rtx insn,
962 struct expr *expr)
964 edge pred;
965 rtx avail_insn = NULL_RTX;
966 rtx avail_reg;
967 rtx dest, pat;
968 struct occr *a_occr;
969 struct unoccr *occr, *avail_occrs = NULL;
970 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
971 int npred_ok = 0;
972 gcov_type ok_count = 0; /* Redundant load execution count. */
973 gcov_type critical_count = 0; /* Execution count of critical edges. */
974 edge_iterator ei;
975 bool critical_edge_split = false;
977 /* The execution count of the loads to be added to make the
978 load fully redundant. */
979 gcov_type not_ok_count = 0;
980 basic_block pred_bb;
982 pat = PATTERN (insn);
983 dest = SET_DEST (pat);
985 /* Check that the loaded register is not used, set, or killed from the
986 beginning of the block. */
987 if (reg_changed_after_insn_p (dest, 0)
988 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
989 return;
991 /* Check potential for replacing load with copy for predecessors. */
992 FOR_EACH_EDGE (pred, ei, bb->preds)
994 rtx next_pred_bb_end;
996 avail_insn = NULL_RTX;
997 avail_reg = NULL_RTX;
998 pred_bb = pred->src;
999 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1000 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1001 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1003 /* Check if the loaded register is not used. */
1004 avail_insn = a_occr->insn;
1005 avail_reg = get_avail_load_store_reg (avail_insn);
1006 gcc_assert (avail_reg);
1008 /* Make sure we can generate a move from register avail_reg to
1009 dest. */
1010 extract_insn (gen_move_insn (copy_rtx (dest),
1011 copy_rtx (avail_reg)));
1012 if (! constrain_operands (1)
1013 || reg_killed_on_edge (avail_reg, pred)
1014 || reg_used_on_edge (dest, pred))
1016 avail_insn = NULL;
1017 continue;
1019 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1020 /* AVAIL_INSN remains non-null. */
1021 break;
1022 else
1023 avail_insn = NULL;
1026 if (EDGE_CRITICAL_P (pred))
1027 critical_count += pred->count;
1029 if (avail_insn != NULL_RTX)
1031 npred_ok++;
1032 ok_count += pred->count;
1033 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1034 copy_rtx (avail_reg)))))
1036 /* Check if there is going to be a split. */
1037 if (EDGE_CRITICAL_P (pred))
1038 critical_edge_split = true;
1040 else /* Its a dead move no need to generate. */
1041 continue;
1042 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1043 sizeof (struct unoccr));
1044 occr->insn = avail_insn;
1045 occr->pred = pred;
1046 occr->next = avail_occrs;
1047 avail_occrs = occr;
1048 if (! rollback_unoccr)
1049 rollback_unoccr = occr;
1051 else
1053 /* Adding a load on a critical edge will cause a split. */
1054 if (EDGE_CRITICAL_P (pred))
1055 critical_edge_split = true;
1056 not_ok_count += pred->count;
1057 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1058 sizeof (struct unoccr));
1059 unoccr->insn = NULL_RTX;
1060 unoccr->pred = pred;
1061 unoccr->next = unavail_occrs;
1062 unavail_occrs = unoccr;
1063 if (! rollback_unoccr)
1064 rollback_unoccr = unoccr;
1068 if (/* No load can be replaced by copy. */
1069 npred_ok == 0
1070 /* Prevent exploding the code. */
1071 || (optimize_size && npred_ok > 1)
1072 /* If we don't have profile information we cannot tell if splitting
1073 a critical edge is profitable or not so don't do it. */
1074 || ((! profile_info || ! flag_branch_probabilities
1075 || targetm.cannot_modify_jumps_p ())
1076 && critical_edge_split))
1077 goto cleanup;
1079 /* Check if it's worth applying the partial redundancy elimination. */
1080 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1081 goto cleanup;
1082 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1083 goto cleanup;
1085 /* Generate moves to the loaded register from where
1086 the memory is available. */
1087 for (occr = avail_occrs; occr; occr = occr->next)
1089 avail_insn = occr->insn;
1090 pred = occr->pred;
1091 /* Set avail_reg to be the register having the value of the
1092 memory. */
1093 avail_reg = get_avail_load_store_reg (avail_insn);
1094 gcc_assert (avail_reg);
1096 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1097 copy_rtx (avail_reg)),
1098 pred);
1099 stats.moves_inserted++;
1101 if (dump_file)
1102 fprintf (dump_file,
1103 "generating move from %d to %d on edge from %d to %d\n",
1104 REGNO (avail_reg),
1105 REGNO (dest),
1106 pred->src->index,
1107 pred->dest->index);
1110 /* Regenerate loads where the memory is unavailable. */
1111 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1113 pred = unoccr->pred;
1114 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1115 stats.copies_inserted++;
1117 if (dump_file)
1119 fprintf (dump_file,
1120 "generating on edge from %d to %d a copy of load: ",
1121 pred->src->index,
1122 pred->dest->index);
1123 print_rtl (dump_file, PATTERN (insn));
1124 fprintf (dump_file, "\n");
1128 /* Delete the insn if it is not available in this block and mark it
1129 for deletion if it is available. If insn is available it may help
1130 discover additional redundancies, so mark it for later deletion. */
1131 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1132 a_occr && (a_occr->insn != insn);
1133 a_occr = get_bb_avail_insn (bb, a_occr->next));
1135 if (!a_occr)
1137 stats.insns_deleted++;
1139 if (dump_file)
1141 fprintf (dump_file, "deleting insn:\n");
1142 print_rtl_single (dump_file, insn);
1143 fprintf (dump_file, "\n");
1145 delete_insn (insn);
1147 else
1148 a_occr->deleted_p = 1;
1150 cleanup:
1151 if (rollback_unoccr)
1152 obstack_free (&unoccr_obstack, rollback_unoccr);
1155 /* Performing the redundancy elimination as described before. */
1157 static void
1158 eliminate_partially_redundant_loads (void)
1160 rtx insn;
1161 basic_block bb;
1163 /* Note we start at block 1. */
1165 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1166 return;
1168 FOR_BB_BETWEEN (bb,
1169 ENTRY_BLOCK_PTR->next_bb->next_bb,
1170 EXIT_BLOCK_PTR,
1171 next_bb)
1173 /* Don't try anything on basic blocks with strange predecessors. */
1174 if (! bb_has_well_behaved_predecessors (bb))
1175 continue;
1177 /* Do not try anything on cold basic blocks. */
1178 if (probably_cold_bb_p (bb))
1179 continue;
1181 /* Reset the table of things changed since the start of the current
1182 basic block. */
1183 reset_opr_set_tables ();
1185 /* Look at all insns in the current basic block and see if there are
1186 any loads in it that we can record. */
1187 FOR_BB_INSNS (bb, insn)
1189 /* Is it a load - of the form (set (reg) (mem))? */
1190 if (NONJUMP_INSN_P (insn)
1191 && GET_CODE (PATTERN (insn)) == SET
1192 && REG_P (SET_DEST (PATTERN (insn)))
1193 && MEM_P (SET_SRC (PATTERN (insn))))
1195 rtx pat = PATTERN (insn);
1196 rtx src = SET_SRC (pat);
1197 struct expr *expr;
1199 if (!MEM_VOLATILE_P (src)
1200 && GET_MODE (src) != BLKmode
1201 && general_operand (src, GET_MODE (src))
1202 /* Are the operands unchanged since the start of the
1203 block? */
1204 && oprs_unchanged_p (src, insn, false)
1205 && !(flag_non_call_exceptions && may_trap_p (src))
1206 && !side_effects_p (src)
1207 /* Is the expression recorded? */
1208 && (expr = lookup_expr_in_table (src)) != NULL)
1210 /* We now have a load (insn) and an available memory at
1211 its BB start (expr). Try to remove the loads if it is
1212 redundant. */
1213 eliminate_partially_redundant_load (bb, insn, expr);
1217 /* Keep track of everything modified by this insn, so that we
1218 know what has been modified since the start of the current
1219 basic block. */
1220 if (INSN_P (insn))
1221 record_opr_changes (insn);
1225 commit_edge_insertions ();
1228 /* Go over the expression hash table and delete insns that were
1229 marked for later deletion. */
1231 /* This helper is called via htab_traverse. */
1232 static int
1233 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1235 struct expr *expr = (struct expr *) *slot;
1236 struct occr *occr;
1238 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1240 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1242 delete_insn (occr->insn);
1243 stats.insns_deleted++;
1245 if (dump_file)
1247 fprintf (dump_file, "deleting insn:\n");
1248 print_rtl_single (dump_file, occr->insn);
1249 fprintf (dump_file, "\n");
1254 return 1;
1257 static void
1258 delete_redundant_insns (void)
1260 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1261 if (dump_file)
1262 fprintf (dump_file, "\n");
1265 /* Main entry point of the GCSE after reload - clean some redundant loads
1266 due to spilling. */
1268 static void
1269 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1272 memset (&stats, 0, sizeof (stats));
1274 /* Allocate ememory for this pass.
1275 Also computes and initializes the insns' CUIDs. */
1276 alloc_mem ();
1278 /* We need alias analysis. */
1279 init_alias_analysis ();
1281 compute_hash_table ();
1283 if (dump_file)
1284 dump_hash_table (dump_file);
1286 if (htab_elements (expr_table) > 0)
1288 eliminate_partially_redundant_loads ();
1289 delete_redundant_insns ();
1291 if (dump_file)
1293 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1294 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1295 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1296 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1297 fprintf (dump_file, "\n\n");
1301 /* We are finished with alias. */
1302 end_alias_analysis ();
1304 free_mem ();
1308 static bool
1309 gate_handle_gcse2 (void)
1311 return (optimize > 0 && flag_gcse_after_reload);
1315 static unsigned int
1316 rest_of_handle_gcse2 (void)
1318 gcse_after_reload_main (get_insns ());
1319 rebuild_jump_labels (get_insns ());
1320 return 0;
1323 struct rtl_opt_pass pass_gcse2 =
1326 RTL_PASS,
1327 "gcse2", /* name */
1328 gate_handle_gcse2, /* gate */
1329 rest_of_handle_gcse2, /* execute */
1330 NULL, /* sub */
1331 NULL, /* next */
1332 0, /* static_pass_number */
1333 TV_GCSE_AFTER_RELOAD, /* tv_id */
1334 0, /* properties_required */
1335 0, /* properties_provided */
1336 0, /* properties_destroyed */
1337 0, /* todo_flags_start */
1338 TODO_dump_func | TODO_verify_rtl_sharing
1339 | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */