2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / lambda-code.c
blob5ae74ffa1ce831196354a9520794ce888accd120
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "obstack.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
42 #include "vec.h"
43 #include "lambda.h"
44 #include "vecprim.h"
45 #include "pointer-set.h"
47 /* This loop nest code generation is based on non-singular matrix
48 math.
50 A little terminology and a general sketch of the algorithm. See "A singular
51 loop transformation framework based on non-singular matrices" by Wei Li and
52 Keshav Pingali for formal proofs that the various statements below are
53 correct.
55 A loop iteration space represents the points traversed by the loop. A point in the
56 iteration space can be represented by a vector of size <loop depth>. You can
57 therefore represent the iteration space as an integral combinations of a set
58 of basis vectors.
60 A loop iteration space is dense if every integer point between the loop
61 bounds is a point in the iteration space. Every loop with a step of 1
62 therefore has a dense iteration space.
64 for i = 1 to 3, step 1 is a dense iteration space.
66 A loop iteration space is sparse if it is not dense. That is, the iteration
67 space skips integer points that are within the loop bounds.
69 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
70 2 is skipped.
72 Dense source spaces are easy to transform, because they don't skip any
73 points to begin with. Thus we can compute the exact bounds of the target
74 space using min/max and floor/ceil.
76 For a dense source space, we take the transformation matrix, decompose it
77 into a lower triangular part (H) and a unimodular part (U).
78 We then compute the auxiliary space from the unimodular part (source loop
79 nest . U = auxiliary space) , which has two important properties:
80 1. It traverses the iterations in the same lexicographic order as the source
81 space.
82 2. It is a dense space when the source is a dense space (even if the target
83 space is going to be sparse).
85 Given the auxiliary space, we use the lower triangular part to compute the
86 bounds in the target space by simple matrix multiplication.
87 The gaps in the target space (IE the new loop step sizes) will be the
88 diagonals of the H matrix.
90 Sparse source spaces require another step, because you can't directly compute
91 the exact bounds of the auxiliary and target space from the sparse space.
92 Rather than try to come up with a separate algorithm to handle sparse source
93 spaces directly, we just find a legal transformation matrix that gives you
94 the sparse source space, from a dense space, and then transform the dense
95 space.
97 For a regular sparse space, you can represent the source space as an integer
98 lattice, and the base space of that lattice will always be dense. Thus, we
99 effectively use the lattice to figure out the transformation from the lattice
100 base space, to the sparse iteration space (IE what transform was applied to
101 the dense space to make it sparse). We then compose this transform with the
102 transformation matrix specified by the user (since our matrix transformations
103 are closed under composition, this is okay). We can then use the base space
104 (which is dense) plus the composed transformation matrix, to compute the rest
105 of the transform using the dense space algorithm above.
107 In other words, our sparse source space (B) is decomposed into a dense base
108 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
109 We then compute the composition of L and the user transformation matrix (T),
110 so that T is now a transform from A to the result, instead of from B to the
111 result.
112 IE A.(LT) = result instead of B.T = result
113 Since A is now a dense source space, we can use the dense source space
114 algorithm above to compute the result of applying transform (LT) to A.
116 Fourier-Motzkin elimination is used to compute the bounds of the base space
117 of the lattice. */
119 static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
120 VEC(tree,heap) *, VEC(int,heap) *,
121 VEC(tree,heap) *);
122 /* Lattice stuff that is internal to the code generation algorithm. */
124 typedef struct lambda_lattice_s
126 /* Lattice base matrix. */
127 lambda_matrix base;
128 /* Lattice dimension. */
129 int dimension;
130 /* Origin vector for the coefficients. */
131 lambda_vector origin;
132 /* Origin matrix for the invariants. */
133 lambda_matrix origin_invariants;
134 /* Number of invariants. */
135 int invariants;
136 } *lambda_lattice;
138 #define LATTICE_BASE(T) ((T)->base)
139 #define LATTICE_DIMENSION(T) ((T)->dimension)
140 #define LATTICE_ORIGIN(T) ((T)->origin)
141 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
142 #define LATTICE_INVARIANTS(T) ((T)->invariants)
144 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
145 int, int);
146 static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
147 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
148 struct obstack *);
150 static tree find_induction_var_from_exit_cond (struct loop *);
151 static bool can_convert_to_perfect_nest (struct loop *);
153 /* Create a new lambda body vector. */
155 lambda_body_vector
156 lambda_body_vector_new (int size, struct obstack * lambda_obstack)
158 lambda_body_vector ret;
160 ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret));
161 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
162 LBV_SIZE (ret) = size;
163 LBV_DENOMINATOR (ret) = 1;
164 return ret;
167 /* Compute the new coefficients for the vector based on the
168 *inverse* of the transformation matrix. */
170 lambda_body_vector
171 lambda_body_vector_compute_new (lambda_trans_matrix transform,
172 lambda_body_vector vect,
173 struct obstack * lambda_obstack)
175 lambda_body_vector temp;
176 int depth;
178 /* Make sure the matrix is square. */
179 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
181 depth = LTM_ROWSIZE (transform);
183 temp = lambda_body_vector_new (depth, lambda_obstack);
184 LBV_DENOMINATOR (temp) =
185 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
186 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
187 LTM_MATRIX (transform), depth,
188 LBV_COEFFICIENTS (temp));
189 LBV_SIZE (temp) = LBV_SIZE (vect);
190 return temp;
193 /* Print out a lambda body vector. */
195 void
196 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
198 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
201 /* Return TRUE if two linear expressions are equal. */
203 static bool
204 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
205 int depth, int invariants)
207 int i;
209 if (lle1 == NULL || lle2 == NULL)
210 return false;
211 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
212 return false;
213 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
214 return false;
215 for (i = 0; i < depth; i++)
216 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
217 return false;
218 for (i = 0; i < invariants; i++)
219 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
220 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
221 return false;
222 return true;
225 /* Create a new linear expression with dimension DIM, and total number
226 of invariants INVARIANTS. */
228 lambda_linear_expression
229 lambda_linear_expression_new (int dim, int invariants,
230 struct obstack * lambda_obstack)
232 lambda_linear_expression ret;
234 ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
235 sizeof (*ret));
236 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
237 LLE_CONSTANT (ret) = 0;
238 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
239 LLE_DENOMINATOR (ret) = 1;
240 LLE_NEXT (ret) = NULL;
242 return ret;
245 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
246 The starting letter used for variable names is START. */
248 static void
249 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
250 char start)
252 int i;
253 bool first = true;
254 for (i = 0; i < size; i++)
256 if (expr[i] != 0)
258 if (first)
260 if (expr[i] < 0)
261 fprintf (outfile, "-");
262 first = false;
264 else if (expr[i] > 0)
265 fprintf (outfile, " + ");
266 else
267 fprintf (outfile, " - ");
268 if (abs (expr[i]) == 1)
269 fprintf (outfile, "%c", start + i);
270 else
271 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
276 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
277 depth/number of coefficients is given by DEPTH, the number of invariants is
278 given by INVARIANTS, and the character to start variable names with is given
279 by START. */
281 void
282 print_lambda_linear_expression (FILE * outfile,
283 lambda_linear_expression expr,
284 int depth, int invariants, char start)
286 fprintf (outfile, "\tLinear expression: ");
287 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
288 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
289 fprintf (outfile, " invariants: ");
290 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
291 invariants, 'A');
292 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
295 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
296 coefficients is given by DEPTH, the number of invariants is
297 given by INVARIANTS, and the character to start variable names with is given
298 by START. */
300 void
301 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
302 int invariants, char start)
304 int step;
305 lambda_linear_expression expr;
307 gcc_assert (loop);
309 expr = LL_LINEAR_OFFSET (loop);
310 step = LL_STEP (loop);
311 fprintf (outfile, " step size = %d \n", step);
313 if (expr)
315 fprintf (outfile, " linear offset: \n");
316 print_lambda_linear_expression (outfile, expr, depth, invariants,
317 start);
320 fprintf (outfile, " lower bound: \n");
321 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
322 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
323 fprintf (outfile, " upper bound: \n");
324 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
325 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
328 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
329 number of invariants. */
331 lambda_loopnest
332 lambda_loopnest_new (int depth, int invariants,
333 struct obstack * lambda_obstack)
335 lambda_loopnest ret;
336 ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
338 LN_LOOPS (ret) = (lambda_loop *)
339 obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
340 LN_DEPTH (ret) = depth;
341 LN_INVARIANTS (ret) = invariants;
343 return ret;
346 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
347 character to use for loop names is given by START. */
349 void
350 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
352 int i;
353 for (i = 0; i < LN_DEPTH (nest); i++)
355 fprintf (outfile, "Loop %c\n", start + i);
356 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
357 LN_INVARIANTS (nest), 'i');
358 fprintf (outfile, "\n");
362 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
363 of invariants. */
365 static lambda_lattice
366 lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
368 lambda_lattice ret
369 = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
370 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
371 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
372 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
373 LATTICE_DIMENSION (ret) = depth;
374 LATTICE_INVARIANTS (ret) = invariants;
375 return ret;
378 /* Compute the lattice base for NEST. The lattice base is essentially a
379 non-singular transform from a dense base space to a sparse iteration space.
380 We use it so that we don't have to specially handle the case of a sparse
381 iteration space in other parts of the algorithm. As a result, this routine
382 only does something interesting (IE produce a matrix that isn't the
383 identity matrix) if NEST is a sparse space. */
385 static lambda_lattice
386 lambda_lattice_compute_base (lambda_loopnest nest,
387 struct obstack * lambda_obstack)
389 lambda_lattice ret;
390 int depth, invariants;
391 lambda_matrix base;
393 int i, j, step;
394 lambda_loop loop;
395 lambda_linear_expression expression;
397 depth = LN_DEPTH (nest);
398 invariants = LN_INVARIANTS (nest);
400 ret = lambda_lattice_new (depth, invariants, lambda_obstack);
401 base = LATTICE_BASE (ret);
402 for (i = 0; i < depth; i++)
404 loop = LN_LOOPS (nest)[i];
405 gcc_assert (loop);
406 step = LL_STEP (loop);
407 /* If we have a step of 1, then the base is one, and the
408 origin and invariant coefficients are 0. */
409 if (step == 1)
411 for (j = 0; j < depth; j++)
412 base[i][j] = 0;
413 base[i][i] = 1;
414 LATTICE_ORIGIN (ret)[i] = 0;
415 for (j = 0; j < invariants; j++)
416 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
418 else
420 /* Otherwise, we need the lower bound expression (which must
421 be an affine function) to determine the base. */
422 expression = LL_LOWER_BOUND (loop);
423 gcc_assert (expression && !LLE_NEXT (expression)
424 && LLE_DENOMINATOR (expression) == 1);
426 /* The lower triangular portion of the base is going to be the
427 coefficient times the step */
428 for (j = 0; j < i; j++)
429 base[i][j] = LLE_COEFFICIENTS (expression)[j]
430 * LL_STEP (LN_LOOPS (nest)[j]);
431 base[i][i] = step;
432 for (j = i + 1; j < depth; j++)
433 base[i][j] = 0;
435 /* Origin for this loop is the constant of the lower bound
436 expression. */
437 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
439 /* Coefficient for the invariants are equal to the invariant
440 coefficients in the expression. */
441 for (j = 0; j < invariants; j++)
442 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
443 LLE_INVARIANT_COEFFICIENTS (expression)[j];
446 return ret;
449 /* Compute the least common multiple of two numbers A and B . */
452 least_common_multiple (int a, int b)
454 return (abs (a) * abs (b) / gcd (a, b));
457 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
458 auxiliary nest.
459 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
460 it is easy to calculate the answer and bounds.
461 A sketch of how it works:
462 Given a system of linear inequalities, ai * xj >= bk, you can always
463 rewrite the constraints so they are all of the form
464 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
465 in b1 ... bk, and some a in a1...ai)
466 You can then eliminate this x from the non-constant inequalities by
467 rewriting these as a <= b, x >= constant, and delete the x variable.
468 You can then repeat this for any remaining x variables, and then we have
469 an easy to use variable <= constant (or no variables at all) form that we
470 can construct our bounds from.
472 In our case, each time we eliminate, we construct part of the bound from
473 the ith variable, then delete the ith variable.
475 Remember the constant are in our vector a, our coefficient matrix is A,
476 and our invariant coefficient matrix is B.
478 SIZE is the size of the matrices being passed.
479 DEPTH is the loop nest depth.
480 INVARIANTS is the number of loop invariants.
481 A, B, and a are the coefficient matrix, invariant coefficient, and a
482 vector of constants, respectively. */
484 static lambda_loopnest
485 compute_nest_using_fourier_motzkin (int size,
486 int depth,
487 int invariants,
488 lambda_matrix A,
489 lambda_matrix B,
490 lambda_vector a,
491 struct obstack * lambda_obstack)
494 int multiple, f1, f2;
495 int i, j, k;
496 lambda_linear_expression expression;
497 lambda_loop loop;
498 lambda_loopnest auxillary_nest;
499 lambda_matrix swapmatrix, A1, B1;
500 lambda_vector swapvector, a1;
501 int newsize;
503 A1 = lambda_matrix_new (128, depth);
504 B1 = lambda_matrix_new (128, invariants);
505 a1 = lambda_vector_new (128);
507 auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
509 for (i = depth - 1; i >= 0; i--)
511 loop = lambda_loop_new ();
512 LN_LOOPS (auxillary_nest)[i] = loop;
513 LL_STEP (loop) = 1;
515 for (j = 0; j < size; j++)
517 if (A[j][i] < 0)
519 /* Any linear expression in the matrix with a coefficient less
520 than 0 becomes part of the new lower bound. */
521 expression = lambda_linear_expression_new (depth, invariants,
522 lambda_obstack);
524 for (k = 0; k < i; k++)
525 LLE_COEFFICIENTS (expression)[k] = A[j][k];
527 for (k = 0; k < invariants; k++)
528 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
530 LLE_DENOMINATOR (expression) = -1 * A[j][i];
531 LLE_CONSTANT (expression) = -1 * a[j];
533 /* Ignore if identical to the existing lower bound. */
534 if (!lle_equal (LL_LOWER_BOUND (loop),
535 expression, depth, invariants))
537 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
538 LL_LOWER_BOUND (loop) = expression;
542 else if (A[j][i] > 0)
544 /* Any linear expression with a coefficient greater than 0
545 becomes part of the new upper bound. */
546 expression = lambda_linear_expression_new (depth, invariants,
547 lambda_obstack);
548 for (k = 0; k < i; k++)
549 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
551 for (k = 0; k < invariants; k++)
552 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
554 LLE_DENOMINATOR (expression) = A[j][i];
555 LLE_CONSTANT (expression) = a[j];
557 /* Ignore if identical to the existing upper bound. */
558 if (!lle_equal (LL_UPPER_BOUND (loop),
559 expression, depth, invariants))
561 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
562 LL_UPPER_BOUND (loop) = expression;
568 /* This portion creates a new system of linear inequalities by deleting
569 the i'th variable, reducing the system by one variable. */
570 newsize = 0;
571 for (j = 0; j < size; j++)
573 /* If the coefficient for the i'th variable is 0, then we can just
574 eliminate the variable straightaway. Otherwise, we have to
575 multiply through by the coefficients we are eliminating. */
576 if (A[j][i] == 0)
578 lambda_vector_copy (A[j], A1[newsize], depth);
579 lambda_vector_copy (B[j], B1[newsize], invariants);
580 a1[newsize] = a[j];
581 newsize++;
583 else if (A[j][i] > 0)
585 for (k = 0; k < size; k++)
587 if (A[k][i] < 0)
589 multiple = least_common_multiple (A[j][i], A[k][i]);
590 f1 = multiple / A[j][i];
591 f2 = -1 * multiple / A[k][i];
593 lambda_vector_add_mc (A[j], f1, A[k], f2,
594 A1[newsize], depth);
595 lambda_vector_add_mc (B[j], f1, B[k], f2,
596 B1[newsize], invariants);
597 a1[newsize] = f1 * a[j] + f2 * a[k];
598 newsize++;
604 swapmatrix = A;
605 A = A1;
606 A1 = swapmatrix;
608 swapmatrix = B;
609 B = B1;
610 B1 = swapmatrix;
612 swapvector = a;
613 a = a1;
614 a1 = swapvector;
616 size = newsize;
619 return auxillary_nest;
622 /* Compute the loop bounds for the auxiliary space NEST.
623 Input system used is Ax <= b. TRANS is the unimodular transformation.
624 Given the original nest, this function will
625 1. Convert the nest into matrix form, which consists of a matrix for the
626 coefficients, a matrix for the
627 invariant coefficients, and a vector for the constants.
628 2. Use the matrix form to calculate the lattice base for the nest (which is
629 a dense space)
630 3. Compose the dense space transform with the user specified transform, to
631 get a transform we can easily calculate transformed bounds for.
632 4. Multiply the composed transformation matrix times the matrix form of the
633 loop.
634 5. Transform the newly created matrix (from step 4) back into a loop nest
635 using Fourier-Motzkin elimination to figure out the bounds. */
637 static lambda_loopnest
638 lambda_compute_auxillary_space (lambda_loopnest nest,
639 lambda_trans_matrix trans,
640 struct obstack * lambda_obstack)
642 lambda_matrix A, B, A1, B1;
643 lambda_vector a, a1;
644 lambda_matrix invertedtrans;
645 int depth, invariants, size;
646 int i, j;
647 lambda_loop loop;
648 lambda_linear_expression expression;
649 lambda_lattice lattice;
651 depth = LN_DEPTH (nest);
652 invariants = LN_INVARIANTS (nest);
654 /* Unfortunately, we can't know the number of constraints we'll have
655 ahead of time, but this should be enough even in ridiculous loop nest
656 cases. We must not go over this limit. */
657 A = lambda_matrix_new (128, depth);
658 B = lambda_matrix_new (128, invariants);
659 a = lambda_vector_new (128);
661 A1 = lambda_matrix_new (128, depth);
662 B1 = lambda_matrix_new (128, invariants);
663 a1 = lambda_vector_new (128);
665 /* Store the bounds in the equation matrix A, constant vector a, and
666 invariant matrix B, so that we have Ax <= a + B.
667 This requires a little equation rearranging so that everything is on the
668 correct side of the inequality. */
669 size = 0;
670 for (i = 0; i < depth; i++)
672 loop = LN_LOOPS (nest)[i];
674 /* First we do the lower bound. */
675 if (LL_STEP (loop) > 0)
676 expression = LL_LOWER_BOUND (loop);
677 else
678 expression = LL_UPPER_BOUND (loop);
680 for (; expression != NULL; expression = LLE_NEXT (expression))
682 /* Fill in the coefficient. */
683 for (j = 0; j < i; j++)
684 A[size][j] = LLE_COEFFICIENTS (expression)[j];
686 /* And the invariant coefficient. */
687 for (j = 0; j < invariants; j++)
688 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
690 /* And the constant. */
691 a[size] = LLE_CONSTANT (expression);
693 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
694 constants and single variables on */
695 A[size][i] = -1 * LLE_DENOMINATOR (expression);
696 a[size] *= -1;
697 for (j = 0; j < invariants; j++)
698 B[size][j] *= -1;
700 size++;
701 /* Need to increase matrix sizes above. */
702 gcc_assert (size <= 127);
706 /* Then do the exact same thing for the upper bounds. */
707 if (LL_STEP (loop) > 0)
708 expression = LL_UPPER_BOUND (loop);
709 else
710 expression = LL_LOWER_BOUND (loop);
712 for (; expression != NULL; expression = LLE_NEXT (expression))
714 /* Fill in the coefficient. */
715 for (j = 0; j < i; j++)
716 A[size][j] = LLE_COEFFICIENTS (expression)[j];
718 /* And the invariant coefficient. */
719 for (j = 0; j < invariants; j++)
720 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
722 /* And the constant. */
723 a[size] = LLE_CONSTANT (expression);
725 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
726 for (j = 0; j < i; j++)
727 A[size][j] *= -1;
728 A[size][i] = LLE_DENOMINATOR (expression);
729 size++;
730 /* Need to increase matrix sizes above. */
731 gcc_assert (size <= 127);
736 /* Compute the lattice base x = base * y + origin, where y is the
737 base space. */
738 lattice = lambda_lattice_compute_base (nest, lambda_obstack);
740 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
742 /* A1 = A * L */
743 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
745 /* a1 = a - A * origin constant. */
746 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
747 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
749 /* B1 = B - A * origin invariant. */
750 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
751 invariants);
752 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
754 /* Now compute the auxiliary space bounds by first inverting U, multiplying
755 it by A1, then performing Fourier-Motzkin. */
757 invertedtrans = lambda_matrix_new (depth, depth);
759 /* Compute the inverse of U. */
760 lambda_matrix_inverse (LTM_MATRIX (trans),
761 invertedtrans, depth);
763 /* A = A1 inv(U). */
764 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
766 return compute_nest_using_fourier_motzkin (size, depth, invariants,
767 A, B1, a1, lambda_obstack);
770 /* Compute the loop bounds for the target space, using the bounds of
771 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
772 The target space loop bounds are computed by multiplying the triangular
773 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
774 the loop steps (positive or negative) is then used to swap the bounds if
775 the loop counts downwards.
776 Return the target loopnest. */
778 static lambda_loopnest
779 lambda_compute_target_space (lambda_loopnest auxillary_nest,
780 lambda_trans_matrix H, lambda_vector stepsigns,
781 struct obstack * lambda_obstack)
783 lambda_matrix inverse, H1;
784 int determinant, i, j;
785 int gcd1, gcd2;
786 int factor;
788 lambda_loopnest target_nest;
789 int depth, invariants;
790 lambda_matrix target;
792 lambda_loop auxillary_loop, target_loop;
793 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
795 depth = LN_DEPTH (auxillary_nest);
796 invariants = LN_INVARIANTS (auxillary_nest);
798 inverse = lambda_matrix_new (depth, depth);
799 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
801 /* H1 is H excluding its diagonal. */
802 H1 = lambda_matrix_new (depth, depth);
803 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
805 for (i = 0; i < depth; i++)
806 H1[i][i] = 0;
808 /* Computes the linear offsets of the loop bounds. */
809 target = lambda_matrix_new (depth, depth);
810 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
812 target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
814 for (i = 0; i < depth; i++)
817 /* Get a new loop structure. */
818 target_loop = lambda_loop_new ();
819 LN_LOOPS (target_nest)[i] = target_loop;
821 /* Computes the gcd of the coefficients of the linear part. */
822 gcd1 = lambda_vector_gcd (target[i], i);
824 /* Include the denominator in the GCD. */
825 gcd1 = gcd (gcd1, determinant);
827 /* Now divide through by the gcd. */
828 for (j = 0; j < i; j++)
829 target[i][j] = target[i][j] / gcd1;
831 expression = lambda_linear_expression_new (depth, invariants,
832 lambda_obstack);
833 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
834 LLE_DENOMINATOR (expression) = determinant / gcd1;
835 LLE_CONSTANT (expression) = 0;
836 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
837 invariants);
838 LL_LINEAR_OFFSET (target_loop) = expression;
841 /* For each loop, compute the new bounds from H. */
842 for (i = 0; i < depth; i++)
844 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
845 target_loop = LN_LOOPS (target_nest)[i];
846 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
847 factor = LTM_MATRIX (H)[i][i];
849 /* First we do the lower bound. */
850 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
852 for (; auxillary_expr != NULL;
853 auxillary_expr = LLE_NEXT (auxillary_expr))
855 target_expr = lambda_linear_expression_new (depth, invariants,
856 lambda_obstack);
857 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
858 depth, inverse, depth,
859 LLE_COEFFICIENTS (target_expr));
860 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
861 LLE_COEFFICIENTS (target_expr), depth,
862 factor);
864 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
865 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
866 LLE_INVARIANT_COEFFICIENTS (target_expr),
867 invariants);
868 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
869 LLE_INVARIANT_COEFFICIENTS (target_expr),
870 invariants, factor);
871 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
873 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
875 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
876 * determinant;
877 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
878 (target_expr),
879 LLE_INVARIANT_COEFFICIENTS
880 (target_expr), invariants,
881 determinant);
882 LLE_DENOMINATOR (target_expr) =
883 LLE_DENOMINATOR (target_expr) * determinant;
885 /* Find the gcd and divide by it here, rather than doing it
886 at the tree level. */
887 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
888 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
889 invariants);
890 gcd1 = gcd (gcd1, gcd2);
891 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
892 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
893 for (j = 0; j < depth; j++)
894 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
895 for (j = 0; j < invariants; j++)
896 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
897 LLE_CONSTANT (target_expr) /= gcd1;
898 LLE_DENOMINATOR (target_expr) /= gcd1;
899 /* Ignore if identical to existing bound. */
900 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
901 invariants))
903 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
904 LL_LOWER_BOUND (target_loop) = target_expr;
907 /* Now do the upper bound. */
908 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
910 for (; auxillary_expr != NULL;
911 auxillary_expr = LLE_NEXT (auxillary_expr))
913 target_expr = lambda_linear_expression_new (depth, invariants,
914 lambda_obstack);
915 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
916 depth, inverse, depth,
917 LLE_COEFFICIENTS (target_expr));
918 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
919 LLE_COEFFICIENTS (target_expr), depth,
920 factor);
921 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
922 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
923 LLE_INVARIANT_COEFFICIENTS (target_expr),
924 invariants);
925 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
926 LLE_INVARIANT_COEFFICIENTS (target_expr),
927 invariants, factor);
928 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
930 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
932 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
933 * determinant;
934 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
935 (target_expr),
936 LLE_INVARIANT_COEFFICIENTS
937 (target_expr), invariants,
938 determinant);
939 LLE_DENOMINATOR (target_expr) =
940 LLE_DENOMINATOR (target_expr) * determinant;
942 /* Find the gcd and divide by it here, instead of at the
943 tree level. */
944 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
945 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
946 invariants);
947 gcd1 = gcd (gcd1, gcd2);
948 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
949 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
950 for (j = 0; j < depth; j++)
951 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
952 for (j = 0; j < invariants; j++)
953 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
954 LLE_CONSTANT (target_expr) /= gcd1;
955 LLE_DENOMINATOR (target_expr) /= gcd1;
956 /* Ignore if equal to existing bound. */
957 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
958 invariants))
960 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
961 LL_UPPER_BOUND (target_loop) = target_expr;
965 for (i = 0; i < depth; i++)
967 target_loop = LN_LOOPS (target_nest)[i];
968 /* If necessary, exchange the upper and lower bounds and negate
969 the step size. */
970 if (stepsigns[i] < 0)
972 LL_STEP (target_loop) *= -1;
973 tmp_expr = LL_LOWER_BOUND (target_loop);
974 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
975 LL_UPPER_BOUND (target_loop) = tmp_expr;
978 return target_nest;
981 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
982 result. */
984 static lambda_vector
985 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
987 lambda_matrix matrix, H;
988 int size;
989 lambda_vector newsteps;
990 int i, j, factor, minimum_column;
991 int temp;
993 matrix = LTM_MATRIX (trans);
994 size = LTM_ROWSIZE (trans);
995 H = lambda_matrix_new (size, size);
997 newsteps = lambda_vector_new (size);
998 lambda_vector_copy (stepsigns, newsteps, size);
1000 lambda_matrix_copy (matrix, H, size, size);
1002 for (j = 0; j < size; j++)
1004 lambda_vector row;
1005 row = H[j];
1006 for (i = j; i < size; i++)
1007 if (row[i] < 0)
1008 lambda_matrix_col_negate (H, size, i);
1009 while (lambda_vector_first_nz (row, size, j + 1) < size)
1011 minimum_column = lambda_vector_min_nz (row, size, j);
1012 lambda_matrix_col_exchange (H, size, j, minimum_column);
1014 temp = newsteps[j];
1015 newsteps[j] = newsteps[minimum_column];
1016 newsteps[minimum_column] = temp;
1018 for (i = j + 1; i < size; i++)
1020 factor = row[i] / row[j];
1021 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1025 return newsteps;
1028 /* Transform NEST according to TRANS, and return the new loopnest.
1029 This involves
1030 1. Computing a lattice base for the transformation
1031 2. Composing the dense base with the specified transformation (TRANS)
1032 3. Decomposing the combined transformation into a lower triangular portion,
1033 and a unimodular portion.
1034 4. Computing the auxiliary nest using the unimodular portion.
1035 5. Computing the target nest using the auxiliary nest and the lower
1036 triangular portion. */
1038 lambda_loopnest
1039 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
1040 struct obstack * lambda_obstack)
1042 lambda_loopnest auxillary_nest, target_nest;
1044 int depth, invariants;
1045 int i, j;
1046 lambda_lattice lattice;
1047 lambda_trans_matrix trans1, H, U;
1048 lambda_loop loop;
1049 lambda_linear_expression expression;
1050 lambda_vector origin;
1051 lambda_matrix origin_invariants;
1052 lambda_vector stepsigns;
1053 int f;
1055 depth = LN_DEPTH (nest);
1056 invariants = LN_INVARIANTS (nest);
1058 /* Keep track of the signs of the loop steps. */
1059 stepsigns = lambda_vector_new (depth);
1060 for (i = 0; i < depth; i++)
1062 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1063 stepsigns[i] = 1;
1064 else
1065 stepsigns[i] = -1;
1068 /* Compute the lattice base. */
1069 lattice = lambda_lattice_compute_base (nest, lambda_obstack);
1070 trans1 = lambda_trans_matrix_new (depth, depth);
1072 /* Multiply the transformation matrix by the lattice base. */
1074 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1075 LTM_MATRIX (trans1), depth, depth, depth);
1077 /* Compute the Hermite normal form for the new transformation matrix. */
1078 H = lambda_trans_matrix_new (depth, depth);
1079 U = lambda_trans_matrix_new (depth, depth);
1080 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1081 LTM_MATRIX (U));
1083 /* Compute the auxiliary loop nest's space from the unimodular
1084 portion. */
1085 auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack);
1087 /* Compute the loop step signs from the old step signs and the
1088 transformation matrix. */
1089 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1091 /* Compute the target loop nest space from the auxiliary nest and
1092 the lower triangular matrix H. */
1093 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
1094 lambda_obstack);
1095 origin = lambda_vector_new (depth);
1096 origin_invariants = lambda_matrix_new (depth, invariants);
1097 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1098 LATTICE_ORIGIN (lattice), origin);
1099 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1100 origin_invariants, depth, depth, invariants);
1102 for (i = 0; i < depth; i++)
1104 loop = LN_LOOPS (target_nest)[i];
1105 expression = LL_LINEAR_OFFSET (loop);
1106 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1107 f = 1;
1108 else
1109 f = LLE_DENOMINATOR (expression);
1111 LLE_CONSTANT (expression) += f * origin[i];
1113 for (j = 0; j < invariants; j++)
1114 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1115 f * origin_invariants[i][j];
1118 return target_nest;
1122 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1123 return the new expression. DEPTH is the depth of the loopnest.
1124 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1125 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1126 is the amount we have to add/subtract from the expression because of the
1127 type of comparison it is used in. */
1129 static lambda_linear_expression
1130 gcc_tree_to_linear_expression (int depth, tree expr,
1131 VEC(tree,heap) *outerinductionvars,
1132 VEC(tree,heap) *invariants, int extra,
1133 struct obstack * lambda_obstack)
1135 lambda_linear_expression lle = NULL;
1136 switch (TREE_CODE (expr))
1138 case INTEGER_CST:
1140 lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
1141 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1142 if (extra != 0)
1143 LLE_CONSTANT (lle) += extra;
1145 LLE_DENOMINATOR (lle) = 1;
1147 break;
1148 case SSA_NAME:
1150 tree iv, invar;
1151 size_t i;
1152 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1153 if (iv != NULL)
1155 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1157 lle = lambda_linear_expression_new (depth, 2 * depth,
1158 lambda_obstack);
1159 LLE_COEFFICIENTS (lle)[i] = 1;
1160 if (extra != 0)
1161 LLE_CONSTANT (lle) = extra;
1163 LLE_DENOMINATOR (lle) = 1;
1166 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1167 if (invar != NULL)
1169 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1171 lle = lambda_linear_expression_new (depth, 2 * depth,
1172 lambda_obstack);
1173 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1174 if (extra != 0)
1175 LLE_CONSTANT (lle) = extra;
1176 LLE_DENOMINATOR (lle) = 1;
1180 break;
1181 default:
1182 return NULL;
1185 return lle;
1188 /* Return the depth of the loopnest NEST */
1190 static int
1191 depth_of_nest (struct loop *nest)
1193 size_t depth = 0;
1194 while (nest)
1196 depth++;
1197 nest = nest->inner;
1199 return depth;
1203 /* Return true if OP is invariant in LOOP and all outer loops. */
1205 static bool
1206 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1208 if (is_gimple_min_invariant (op))
1209 return true;
1210 if (loop_depth (loop) == 0)
1211 return true;
1212 if (!expr_invariant_in_loop_p (loop, op))
1213 return false;
1214 if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
1215 return false;
1216 return true;
1219 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1220 or NULL if it could not be converted.
1221 DEPTH is the depth of the loop.
1222 INVARIANTS is a pointer to the array of loop invariants.
1223 The induction variable for this loop should be stored in the parameter
1224 OURINDUCTIONVAR.
1225 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1227 static lambda_loop
1228 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1229 VEC(tree,heap) ** invariants,
1230 tree * ourinductionvar,
1231 VEC(tree,heap) * outerinductionvars,
1232 VEC(tree,heap) ** lboundvars,
1233 VEC(tree,heap) ** uboundvars,
1234 VEC(int,heap) ** steps,
1235 struct obstack * lambda_obstack)
1237 tree phi;
1238 tree exit_cond;
1239 tree access_fn, inductionvar;
1240 tree step;
1241 lambda_loop lloop = NULL;
1242 lambda_linear_expression lbound, ubound;
1243 tree test;
1244 int stepint;
1245 int extra = 0;
1246 tree lboundvar, uboundvar, uboundresult;
1248 /* Find out induction var and exit condition. */
1249 inductionvar = find_induction_var_from_exit_cond (loop);
1250 exit_cond = get_loop_exit_condition (loop);
1252 if (inductionvar == NULL || exit_cond == NULL)
1254 if (dump_file && (dump_flags & TDF_DETAILS))
1255 fprintf (dump_file,
1256 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1257 return NULL;
1260 test = TREE_OPERAND (exit_cond, 0);
1262 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1265 if (dump_file && (dump_flags & TDF_DETAILS))
1266 fprintf (dump_file,
1267 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1269 return NULL;
1272 phi = SSA_NAME_DEF_STMT (inductionvar);
1273 if (TREE_CODE (phi) != PHI_NODE)
1275 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1276 if (!phi)
1279 if (dump_file && (dump_flags & TDF_DETAILS))
1280 fprintf (dump_file,
1281 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1283 return NULL;
1286 phi = SSA_NAME_DEF_STMT (phi);
1287 if (TREE_CODE (phi) != PHI_NODE)
1290 if (dump_file && (dump_flags & TDF_DETAILS))
1291 fprintf (dump_file,
1292 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1293 return NULL;
1298 /* The induction variable name/version we want to put in the array is the
1299 result of the induction variable phi node. */
1300 *ourinductionvar = PHI_RESULT (phi);
1301 access_fn = instantiate_parameters
1302 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1303 if (access_fn == chrec_dont_know)
1305 if (dump_file && (dump_flags & TDF_DETAILS))
1306 fprintf (dump_file,
1307 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1309 return NULL;
1312 step = evolution_part_in_loop_num (access_fn, loop->num);
1313 if (!step || step == chrec_dont_know)
1315 if (dump_file && (dump_flags & TDF_DETAILS))
1316 fprintf (dump_file,
1317 "Unable to convert loop: Cannot determine step of loop.\n");
1319 return NULL;
1321 if (TREE_CODE (step) != INTEGER_CST)
1324 if (dump_file && (dump_flags & TDF_DETAILS))
1325 fprintf (dump_file,
1326 "Unable to convert loop: Step of loop is not integer.\n");
1327 return NULL;
1330 stepint = TREE_INT_CST_LOW (step);
1332 /* Only want phis for induction vars, which will have two
1333 arguments. */
1334 if (PHI_NUM_ARGS (phi) != 2)
1336 if (dump_file && (dump_flags & TDF_DETAILS))
1337 fprintf (dump_file,
1338 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1339 return NULL;
1342 /* Another induction variable check. One argument's source should be
1343 in the loop, one outside the loop. */
1344 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1345 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1348 if (dump_file && (dump_flags & TDF_DETAILS))
1349 fprintf (dump_file,
1350 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1352 return NULL;
1355 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1357 lboundvar = PHI_ARG_DEF (phi, 1);
1358 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1359 outerinductionvars, *invariants,
1360 0, lambda_obstack);
1362 else
1364 lboundvar = PHI_ARG_DEF (phi, 0);
1365 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1366 outerinductionvars, *invariants,
1367 0, lambda_obstack);
1370 if (!lbound)
1373 if (dump_file && (dump_flags & TDF_DETAILS))
1374 fprintf (dump_file,
1375 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1377 return NULL;
1379 /* One part of the test may be a loop invariant tree. */
1380 VEC_reserve (tree, heap, *invariants, 1);
1381 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1382 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1383 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1384 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1385 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1386 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1388 /* The non-induction variable part of the test is the upper bound variable.
1390 if (TREE_OPERAND (test, 0) == inductionvar)
1391 uboundvar = TREE_OPERAND (test, 1);
1392 else
1393 uboundvar = TREE_OPERAND (test, 0);
1396 /* We only size the vectors assuming we have, at max, 2 times as many
1397 invariants as we do loops (one for each bound).
1398 This is just an arbitrary number, but it has to be matched against the
1399 code below. */
1400 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1403 /* We might have some leftover. */
1404 if (TREE_CODE (test) == LT_EXPR)
1405 extra = -1 * stepint;
1406 else if (TREE_CODE (test) == NE_EXPR)
1407 extra = -1 * stepint;
1408 else if (TREE_CODE (test) == GT_EXPR)
1409 extra = -1 * stepint;
1410 else if (TREE_CODE (test) == EQ_EXPR)
1411 extra = 1 * stepint;
1413 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1414 outerinductionvars,
1415 *invariants, extra, lambda_obstack);
1416 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1417 build_int_cst (TREE_TYPE (uboundvar), extra));
1418 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1419 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1420 VEC_safe_push (int, heap, *steps, stepint);
1421 if (!ubound)
1423 if (dump_file && (dump_flags & TDF_DETAILS))
1424 fprintf (dump_file,
1425 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1426 return NULL;
1429 lloop = lambda_loop_new ();
1430 LL_STEP (lloop) = stepint;
1431 LL_LOWER_BOUND (lloop) = lbound;
1432 LL_UPPER_BOUND (lloop) = ubound;
1433 return lloop;
1436 /* Given a LOOP, find the induction variable it is testing against in the exit
1437 condition. Return the induction variable if found, NULL otherwise. */
1439 static tree
1440 find_induction_var_from_exit_cond (struct loop *loop)
1442 tree expr = get_loop_exit_condition (loop);
1443 tree ivarop;
1444 tree test;
1445 if (expr == NULL_TREE)
1446 return NULL_TREE;
1447 if (TREE_CODE (expr) != COND_EXPR)
1448 return NULL_TREE;
1449 test = TREE_OPERAND (expr, 0);
1450 if (!COMPARISON_CLASS_P (test))
1451 return NULL_TREE;
1453 /* Find the side that is invariant in this loop. The ivar must be the other
1454 side. */
1456 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1457 ivarop = TREE_OPERAND (test, 1);
1458 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1459 ivarop = TREE_OPERAND (test, 0);
1460 else
1461 return NULL_TREE;
1463 if (TREE_CODE (ivarop) != SSA_NAME)
1464 return NULL_TREE;
1465 return ivarop;
1468 DEF_VEC_P(lambda_loop);
1469 DEF_VEC_ALLOC_P(lambda_loop,heap);
1471 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1472 Return the new loop nest.
1473 INDUCTIONVARS is a pointer to an array of induction variables for the
1474 loopnest that will be filled in during this process.
1475 INVARIANTS is a pointer to an array of invariants that will be filled in
1476 during this process. */
1478 lambda_loopnest
1479 gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
1480 VEC(tree,heap) **inductionvars,
1481 VEC(tree,heap) **invariants,
1482 struct obstack * lambda_obstack)
1484 lambda_loopnest ret = NULL;
1485 struct loop *temp = loop_nest;
1486 int depth = depth_of_nest (loop_nest);
1487 size_t i;
1488 VEC(lambda_loop,heap) *loops = NULL;
1489 VEC(tree,heap) *uboundvars = NULL;
1490 VEC(tree,heap) *lboundvars = NULL;
1491 VEC(int,heap) *steps = NULL;
1492 lambda_loop newloop;
1493 tree inductionvar = NULL;
1494 bool perfect_nest = perfect_nest_p (loop_nest);
1496 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1497 goto fail;
1499 while (temp)
1501 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1502 &inductionvar, *inductionvars,
1503 &lboundvars, &uboundvars,
1504 &steps, lambda_obstack);
1505 if (!newloop)
1506 goto fail;
1508 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1509 VEC_safe_push (lambda_loop, heap, loops, newloop);
1510 temp = temp->inner;
1513 if (!perfect_nest)
1515 if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
1516 *inductionvars))
1518 if (dump_file)
1519 fprintf (dump_file,
1520 "Not a perfect loop nest and couldn't convert to one.\n");
1521 goto fail;
1523 else if (dump_file)
1524 fprintf (dump_file,
1525 "Successfully converted loop nest to perfect loop nest.\n");
1528 ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
1530 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1531 LN_LOOPS (ret)[i] = newloop;
1533 fail:
1534 VEC_free (lambda_loop, heap, loops);
1535 VEC_free (tree, heap, uboundvars);
1536 VEC_free (tree, heap, lboundvars);
1537 VEC_free (int, heap, steps);
1539 return ret;
1542 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1543 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1544 inserted for us are stored. INDUCTION_VARS is the array of induction
1545 variables for the loop this LBV is from. TYPE is the tree type to use for
1546 the variables and trees involved. */
1548 static tree
1549 lbv_to_gcc_expression (lambda_body_vector lbv,
1550 tree type, VEC(tree,heap) *induction_vars,
1551 tree *stmts_to_insert)
1553 int k;
1554 tree resvar;
1555 tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
1557 k = LBV_DENOMINATOR (lbv);
1558 gcc_assert (k != 0);
1559 if (k != 1)
1560 expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
1562 resvar = create_tmp_var (type, "lbvtmp");
1563 add_referenced_var (resvar);
1564 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1567 /* Convert a linear expression from coefficient and constant form to a
1568 gcc tree.
1569 Return the tree that represents the final value of the expression.
1570 LLE is the linear expression to convert.
1571 OFFSET is the linear offset to apply to the expression.
1572 TYPE is the tree type to use for the variables and math.
1573 INDUCTION_VARS is a vector of induction variables for the loops.
1574 INVARIANTS is a vector of the loop nest invariants.
1575 WRAP specifies what tree code to wrap the results in, if there is more than
1576 one (it is either MAX_EXPR, or MIN_EXPR).
1577 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1578 statements that need to be inserted for the linear expression. */
1580 static tree
1581 lle_to_gcc_expression (lambda_linear_expression lle,
1582 lambda_linear_expression offset,
1583 tree type,
1584 VEC(tree,heap) *induction_vars,
1585 VEC(tree,heap) *invariants,
1586 enum tree_code wrap, tree *stmts_to_insert)
1588 int k;
1589 tree resvar;
1590 tree expr = NULL_TREE;
1591 VEC(tree,heap) *results = NULL;
1593 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1595 /* Build up the linear expressions. */
1596 for (; lle != NULL; lle = LLE_NEXT (lle))
1598 expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
1599 expr = fold_build2 (PLUS_EXPR, type, expr,
1600 build_linear_expr (type,
1601 LLE_INVARIANT_COEFFICIENTS (lle),
1602 invariants));
1604 k = LLE_CONSTANT (lle);
1605 if (k)
1606 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1608 k = LLE_CONSTANT (offset);
1609 if (k)
1610 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1612 k = LLE_DENOMINATOR (lle);
1613 if (k != 1)
1614 expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1615 type, expr, build_int_cst (type, k));
1617 expr = fold (expr);
1618 VEC_safe_push (tree, heap, results, expr);
1621 gcc_assert (expr);
1623 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1624 if (VEC_length (tree, results) > 1)
1626 size_t i;
1627 tree op;
1629 expr = VEC_index (tree, results, 0);
1630 for (i = 1; VEC_iterate (tree, results, i, op); i++)
1631 expr = fold_build2 (wrap, type, expr, op);
1634 VEC_free (tree, heap, results);
1636 resvar = create_tmp_var (type, "lletmp");
1637 add_referenced_var (resvar);
1638 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1641 /* Remove the induction variable defined at IV_STMT. */
1643 void
1644 remove_iv (tree iv_stmt)
1646 if (TREE_CODE (iv_stmt) == PHI_NODE)
1648 int i;
1650 for (i = 0; i < PHI_NUM_ARGS (iv_stmt); i++)
1652 tree stmt;
1653 imm_use_iterator imm_iter;
1654 tree arg = PHI_ARG_DEF (iv_stmt, i);
1655 bool used = false;
1657 if (TREE_CODE (arg) != SSA_NAME)
1658 continue;
1660 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
1661 if (stmt != iv_stmt)
1662 used = true;
1664 if (!used)
1665 remove_iv (SSA_NAME_DEF_STMT (arg));
1668 remove_phi_node (iv_stmt, NULL_TREE, true);
1670 else
1672 block_stmt_iterator bsi = bsi_for_stmt (iv_stmt);
1674 bsi_remove (&bsi, true);
1675 release_defs (iv_stmt);
1679 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1680 it, back into gcc code. This changes the
1681 loops, their induction variables, and their bodies, so that they
1682 match the transformed loopnest.
1683 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1684 loopnest.
1685 OLD_IVS is a vector of induction variables from the old loopnest.
1686 INVARIANTS is a vector of loop invariants from the old loopnest.
1687 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1688 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1689 NEW_LOOPNEST. */
1691 void
1692 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1693 VEC(tree,heap) *old_ivs,
1694 VEC(tree,heap) *invariants,
1695 VEC(tree,heap) **remove_ivs,
1696 lambda_loopnest new_loopnest,
1697 lambda_trans_matrix transform,
1698 struct obstack * lambda_obstack)
1700 struct loop *temp;
1701 size_t i = 0;
1702 int j;
1703 size_t depth = 0;
1704 VEC(tree,heap) *new_ivs = NULL;
1705 tree oldiv;
1706 block_stmt_iterator bsi;
1708 transform = lambda_trans_matrix_inverse (transform);
1710 if (dump_file)
1712 fprintf (dump_file, "Inverse of transformation matrix:\n");
1713 print_lambda_trans_matrix (dump_file, transform);
1715 depth = depth_of_nest (old_loopnest);
1716 temp = old_loopnest;
1718 while (temp)
1720 lambda_loop newloop;
1721 basic_block bb;
1722 edge exit;
1723 tree ivvar, ivvarinced, exitcond, stmts;
1724 enum tree_code testtype;
1725 tree newupperbound, newlowerbound;
1726 lambda_linear_expression offset;
1727 tree type;
1728 bool insert_after;
1729 tree inc_stmt;
1731 oldiv = VEC_index (tree, old_ivs, i);
1732 type = TREE_TYPE (oldiv);
1734 /* First, build the new induction variable temporary */
1736 ivvar = create_tmp_var (type, "lnivtmp");
1737 add_referenced_var (ivvar);
1739 VEC_safe_push (tree, heap, new_ivs, ivvar);
1741 newloop = LN_LOOPS (new_loopnest)[i];
1743 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1744 cases for now. */
1745 offset = LL_LINEAR_OFFSET (newloop);
1747 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1748 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1750 /* Now build the new lower bounds, and insert the statements
1751 necessary to generate it on the loop preheader. */
1752 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1753 LL_LINEAR_OFFSET (newloop),
1754 type,
1755 new_ivs,
1756 invariants, MAX_EXPR, &stmts);
1758 if (stmts)
1760 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1761 bsi_commit_edge_inserts ();
1763 /* Build the new upper bound and insert its statements in the
1764 basic block of the exit condition */
1765 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1766 LL_LINEAR_OFFSET (newloop),
1767 type,
1768 new_ivs,
1769 invariants, MIN_EXPR, &stmts);
1770 exit = single_exit (temp);
1771 exitcond = get_loop_exit_condition (temp);
1772 bb = bb_for_stmt (exitcond);
1773 bsi = bsi_after_labels (bb);
1774 if (stmts)
1775 bsi_insert_before (&bsi, stmts, BSI_NEW_STMT);
1777 /* Create the new iv. */
1779 standard_iv_increment_position (temp, &bsi, &insert_after);
1780 create_iv (newlowerbound,
1781 build_int_cst (type, LL_STEP (newloop)),
1782 ivvar, temp, &bsi, insert_after, &ivvar,
1783 NULL);
1785 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1786 dominate the block containing the exit condition.
1787 So we simply create our own incremented iv to use in the new exit
1788 test, and let redundancy elimination sort it out. */
1789 inc_stmt = build2 (PLUS_EXPR, type,
1790 ivvar, build_int_cst (type, LL_STEP (newloop)));
1791 inc_stmt = build_gimple_modify_stmt (SSA_NAME_VAR (ivvar), inc_stmt);
1792 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1793 GIMPLE_STMT_OPERAND (inc_stmt, 0) = ivvarinced;
1794 bsi = bsi_for_stmt (exitcond);
1795 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1797 /* Replace the exit condition with the new upper bound
1798 comparison. */
1800 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1802 /* We want to build a conditional where true means exit the loop, and
1803 false means continue the loop.
1804 So swap the testtype if this isn't the way things are.*/
1806 if (exit->flags & EDGE_FALSE_VALUE)
1807 testtype = swap_tree_comparison (testtype);
1809 COND_EXPR_COND (exitcond) = build2 (testtype,
1810 boolean_type_node,
1811 newupperbound, ivvarinced);
1812 update_stmt (exitcond);
1813 VEC_replace (tree, new_ivs, i, ivvar);
1815 i++;
1816 temp = temp->inner;
1819 /* Rewrite uses of the old ivs so that they are now specified in terms of
1820 the new ivs. */
1822 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1824 imm_use_iterator imm_iter;
1825 use_operand_p use_p;
1826 tree oldiv_def;
1827 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1828 tree stmt;
1830 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1831 oldiv_def = PHI_RESULT (oldiv_stmt);
1832 else
1833 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1834 gcc_assert (oldiv_def != NULL_TREE);
1836 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1838 tree newiv, stmts;
1839 lambda_body_vector lbv, newlbv;
1841 /* Compute the new expression for the induction
1842 variable. */
1843 depth = VEC_length (tree, new_ivs);
1844 lbv = lambda_body_vector_new (depth, lambda_obstack);
1845 LBV_COEFFICIENTS (lbv)[i] = 1;
1847 newlbv = lambda_body_vector_compute_new (transform, lbv,
1848 lambda_obstack);
1850 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1851 new_ivs, &stmts);
1853 if (stmts && TREE_CODE (stmt) != PHI_NODE)
1855 bsi = bsi_for_stmt (stmt);
1856 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1859 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1860 propagate_value (use_p, newiv);
1862 if (stmts && TREE_CODE (stmt) == PHI_NODE)
1863 for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
1864 if (PHI_ARG_DEF (stmt, j) == newiv)
1865 bsi_insert_on_edge (PHI_ARG_EDGE (stmt, j), stmts);
1867 update_stmt (stmt);
1870 /* Remove the now unused induction variable. */
1871 VEC_safe_push (tree, heap, *remove_ivs, oldiv_stmt);
1873 VEC_free (tree, heap, new_ivs);
1876 /* Return TRUE if this is not interesting statement from the perspective of
1877 determining if we have a perfect loop nest. */
1879 static bool
1880 not_interesting_stmt (tree stmt)
1882 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1883 loop, we would have already failed the number of exits tests. */
1884 if (TREE_CODE (stmt) == LABEL_EXPR
1885 || TREE_CODE (stmt) == GOTO_EXPR
1886 || TREE_CODE (stmt) == COND_EXPR)
1887 return true;
1888 return false;
1891 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1893 static bool
1894 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
1896 int i;
1897 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1898 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
1899 if (PHI_ARG_DEF (phi, i) == def)
1900 return true;
1901 return false;
1904 /* Return TRUE if STMT is a use of PHI_RESULT. */
1906 static bool
1907 stmt_uses_phi_result (tree stmt, tree phi_result)
1909 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1911 /* This is conservatively true, because we only want SIMPLE bumpers
1912 of the form x +- constant for our pass. */
1913 return (use == phi_result);
1916 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
1917 in-loop-edge in a phi node, and the operand it uses is the result of that
1918 phi node.
1919 I.E. i_29 = i_3 + 1
1920 i_3 = PHI (0, i_29); */
1922 static bool
1923 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
1925 tree use;
1926 tree def;
1927 imm_use_iterator iter;
1928 use_operand_p use_p;
1930 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
1931 if (!def)
1932 return false;
1934 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
1936 use = USE_STMT (use_p);
1937 if (TREE_CODE (use) == PHI_NODE)
1939 if (phi_loop_edge_uses_def (loop, use, def))
1940 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
1941 return true;
1944 return false;
1948 /* Return true if LOOP is a perfect loop nest.
1949 Perfect loop nests are those loop nests where all code occurs in the
1950 innermost loop body.
1951 If S is a program statement, then
1953 i.e.
1954 DO I = 1, 20
1956 DO J = 1, 20
1958 END DO
1959 END DO
1960 is not a perfect loop nest because of S1.
1962 DO I = 1, 20
1963 DO J = 1, 20
1966 END DO
1967 END DO
1968 is a perfect loop nest.
1970 Since we don't have high level loops anymore, we basically have to walk our
1971 statements and ignore those that are there because the loop needs them (IE
1972 the induction variable increment, and jump back to the top of the loop). */
1974 bool
1975 perfect_nest_p (struct loop *loop)
1977 basic_block *bbs;
1978 size_t i;
1979 tree exit_cond;
1981 /* Loops at depth 0 are perfect nests. */
1982 if (!loop->inner)
1983 return true;
1985 bbs = get_loop_body (loop);
1986 exit_cond = get_loop_exit_condition (loop);
1988 for (i = 0; i < loop->num_nodes; i++)
1990 if (bbs[i]->loop_father == loop)
1992 block_stmt_iterator bsi;
1994 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
1996 tree stmt = bsi_stmt (bsi);
1998 if (TREE_CODE (stmt) == COND_EXPR
1999 && exit_cond != stmt)
2000 goto non_perfectly_nested;
2002 if (stmt == exit_cond
2003 || not_interesting_stmt (stmt)
2004 || stmt_is_bumper_for_loop (loop, stmt))
2005 continue;
2007 non_perfectly_nested:
2008 free (bbs);
2009 return false;
2014 free (bbs);
2016 return perfect_nest_p (loop->inner);
2019 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
2020 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
2021 avoid creating duplicate temporaries and FIRSTBSI is statement
2022 iterator where new temporaries should be inserted at the beginning
2023 of body basic block. */
2025 static void
2026 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
2027 int xstep, tree y, tree yinit,
2028 htab_t replacements,
2029 block_stmt_iterator *firstbsi)
2031 ssa_op_iter iter;
2032 use_operand_p use_p;
2034 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2036 tree use = USE_FROM_PTR (use_p);
2037 tree step = NULL_TREE;
2038 tree scev, init, val, var, setstmt;
2039 struct tree_map *h, in;
2040 void **loc;
2042 /* Replace uses of X with Y right away. */
2043 if (use == x)
2045 SET_USE (use_p, y);
2046 continue;
2049 scev = instantiate_parameters (loop,
2050 analyze_scalar_evolution (loop, use));
2052 if (scev == NULL || scev == chrec_dont_know)
2053 continue;
2055 step = evolution_part_in_loop_num (scev, loop->num);
2056 if (step == NULL
2057 || step == chrec_dont_know
2058 || TREE_CODE (step) != INTEGER_CST
2059 || int_cst_value (step) != xstep)
2060 continue;
2062 /* Use REPLACEMENTS hash table to cache already created
2063 temporaries. */
2064 in.hash = htab_hash_pointer (use);
2065 in.base.from = use;
2066 h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
2067 if (h != NULL)
2069 SET_USE (use_p, h->to);
2070 continue;
2073 /* USE which has the same step as X should be replaced
2074 with a temporary set to Y + YINIT - INIT. */
2075 init = initial_condition_in_loop_num (scev, loop->num);
2076 gcc_assert (init != NULL && init != chrec_dont_know);
2077 if (TREE_TYPE (use) == TREE_TYPE (y))
2079 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
2080 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2081 if (val == y)
2083 /* If X has the same type as USE, the same step
2084 and same initial value, it can be replaced by Y. */
2085 SET_USE (use_p, y);
2086 continue;
2089 else
2091 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2092 val = fold_convert (TREE_TYPE (use), val);
2093 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2096 /* Create a temporary variable and insert it at the beginning
2097 of the loop body basic block, right after the PHI node
2098 which sets Y. */
2099 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2100 add_referenced_var (var);
2101 val = force_gimple_operand_bsi (firstbsi, val, false, NULL,
2102 true, BSI_SAME_STMT);
2103 setstmt = build_gimple_modify_stmt (var, val);
2104 var = make_ssa_name (var, setstmt);
2105 GIMPLE_STMT_OPERAND (setstmt, 0) = var;
2106 bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
2107 update_stmt (setstmt);
2108 SET_USE (use_p, var);
2109 h = GGC_NEW (struct tree_map);
2110 h->hash = in.hash;
2111 h->base.from = use;
2112 h->to = var;
2113 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2114 gcc_assert ((*(struct tree_map **)loc) == NULL);
2115 *(struct tree_map **) loc = h;
2119 /* Return true if STMT is an exit PHI for LOOP */
2121 static bool
2122 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2125 if (TREE_CODE (stmt) != PHI_NODE
2126 || PHI_NUM_ARGS (stmt) != 1
2127 || bb_for_stmt (stmt) != single_exit (loop)->dest)
2128 return false;
2130 return true;
2133 /* Return true if STMT can be put back into the loop INNER, by
2134 copying it to the beginning of that loop and changing the uses. */
2136 static bool
2137 can_put_in_inner_loop (struct loop *inner, tree stmt)
2139 imm_use_iterator imm_iter;
2140 use_operand_p use_p;
2142 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
2143 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2144 || !expr_invariant_in_loop_p (inner, GIMPLE_STMT_OPERAND (stmt, 1)))
2145 return false;
2147 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2149 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2151 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2153 if (!flow_bb_inside_loop_p (inner, immbb))
2154 return false;
2157 return true;
2160 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2161 static bool
2162 can_put_after_inner_loop (struct loop *loop, tree stmt)
2164 imm_use_iterator imm_iter;
2165 use_operand_p use_p;
2167 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2168 return false;
2170 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2172 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2174 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2176 if (!dominated_by_p (CDI_DOMINATORS,
2177 immbb,
2178 loop->inner->header)
2179 && !can_put_in_inner_loop (loop->inner, stmt))
2180 return false;
2183 return true;
2186 /* Return true when the induction variable IV is simple enough to be
2187 re-synthesized. */
2189 static bool
2190 can_duplicate_iv (tree iv, struct loop *loop)
2192 tree scev = instantiate_parameters
2193 (loop, analyze_scalar_evolution (loop, iv));
2195 if (!automatically_generated_chrec_p (scev))
2197 tree step = evolution_part_in_loop_num (scev, loop->num);
2199 if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
2200 return true;
2203 return false;
2206 /* If this is a scalar operation that can be put back into the inner
2207 loop, or after the inner loop, through copying, then do so. This
2208 works on the theory that any amount of scalar code we have to
2209 reduplicate into or after the loops is less expensive that the win
2210 we get from rearranging the memory walk the loop is doing so that
2211 it has better cache behavior. */
2213 static bool
2214 cannot_convert_modify_to_perfect_nest (tree stmt, struct loop *loop)
2217 use_operand_p use_a, use_b;
2218 imm_use_iterator imm_iter;
2219 ssa_op_iter op_iter, op_iter1;
2220 tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
2222 /* The statement should not define a variable used in the inner
2223 loop. */
2224 if (TREE_CODE (op0) == SSA_NAME
2225 && !can_duplicate_iv (op0, loop))
2226 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2227 if (bb_for_stmt (USE_STMT (use_a))->loop_father
2228 == loop->inner)
2229 return true;
2231 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2233 tree node, op = USE_FROM_PTR (use_a);
2235 /* The variables should not be used in both loops. */
2236 if (!can_duplicate_iv (op, loop))
2237 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2238 if (bb_for_stmt (USE_STMT (use_b))->loop_father
2239 == loop->inner)
2240 return true;
2242 /* The statement should not use the value of a scalar that was
2243 modified in the loop. */
2244 node = SSA_NAME_DEF_STMT (op);
2245 if (TREE_CODE (node) == PHI_NODE)
2246 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2248 tree arg = USE_FROM_PTR (use_b);
2250 if (TREE_CODE (arg) == SSA_NAME)
2252 tree arg_stmt = SSA_NAME_DEF_STMT (arg);
2254 if (bb_for_stmt (arg_stmt)
2255 && (bb_for_stmt (arg_stmt)->loop_father
2256 == loop->inner))
2257 return true;
2262 return false;
2265 /* Return true when BB contains statements that can harm the transform
2266 to a perfect loop nest. */
2268 static bool
2269 cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
2271 block_stmt_iterator bsi;
2272 tree exit_condition = get_loop_exit_condition (loop);
2274 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
2276 tree stmt = bsi_stmt (bsi);
2278 if (stmt == exit_condition
2279 || not_interesting_stmt (stmt)
2280 || stmt_is_bumper_for_loop (loop, stmt))
2281 continue;
2283 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
2285 if (cannot_convert_modify_to_perfect_nest (stmt, loop))
2286 return true;
2288 if (can_duplicate_iv (GIMPLE_STMT_OPERAND (stmt, 0), loop))
2289 continue;
2291 if (can_put_in_inner_loop (loop->inner, stmt)
2292 || can_put_after_inner_loop (loop, stmt))
2293 continue;
2296 /* If the bb of a statement we care about isn't dominated by the
2297 header of the inner loop, then we can't handle this case
2298 right now. This test ensures that the statement comes
2299 completely *after* the inner loop. */
2300 if (!dominated_by_p (CDI_DOMINATORS,
2301 bb_for_stmt (stmt),
2302 loop->inner->header))
2303 return true;
2306 return false;
2309 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2310 perfect one. At the moment, we only handle imperfect nests of
2311 depth 2, where all of the statements occur after the inner loop. */
2313 static bool
2314 can_convert_to_perfect_nest (struct loop *loop)
2316 basic_block *bbs;
2317 tree phi;
2318 size_t i;
2320 /* Can't handle triply nested+ loops yet. */
2321 if (!loop->inner || loop->inner->inner)
2322 return false;
2324 bbs = get_loop_body (loop);
2325 for (i = 0; i < loop->num_nodes; i++)
2326 if (bbs[i]->loop_father == loop
2327 && cannot_convert_bb_to_perfect_nest (bbs[i], loop))
2328 goto fail;
2330 /* We also need to make sure the loop exit only has simple copy phis in it,
2331 otherwise we don't know how to transform it into a perfect nest. */
2332 for (phi = phi_nodes (single_exit (loop)->dest); phi; phi = PHI_CHAIN (phi))
2333 if (PHI_NUM_ARGS (phi) != 1)
2334 goto fail;
2336 free (bbs);
2337 return true;
2339 fail:
2340 free (bbs);
2341 return false;
2344 /* Transform the loop nest into a perfect nest, if possible.
2345 LOOP is the loop nest to transform into a perfect nest
2346 LBOUNDS are the lower bounds for the loops to transform
2347 UBOUNDS are the upper bounds for the loops to transform
2348 STEPS is the STEPS for the loops to transform.
2349 LOOPIVS is the induction variables for the loops to transform.
2351 Basically, for the case of
2353 FOR (i = 0; i < 50; i++)
2355 FOR (j =0; j < 50; j++)
2357 <whatever>
2359 <some code>
2362 This function will transform it into a perfect loop nest by splitting the
2363 outer loop into two loops, like so:
2365 FOR (i = 0; i < 50; i++)
2367 FOR (j = 0; j < 50; j++)
2369 <whatever>
2373 FOR (i = 0; i < 50; i ++)
2375 <some code>
2378 Return FALSE if we can't make this loop into a perfect nest. */
2380 static bool
2381 perfect_nestify (struct loop *loop,
2382 VEC(tree,heap) *lbounds,
2383 VEC(tree,heap) *ubounds,
2384 VEC(int,heap) *steps,
2385 VEC(tree,heap) *loopivs)
2387 basic_block *bbs;
2388 tree exit_condition;
2389 tree cond_stmt;
2390 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2391 int i;
2392 block_stmt_iterator bsi, firstbsi;
2393 bool insert_after;
2394 edge e;
2395 struct loop *newloop;
2396 tree phi;
2397 tree uboundvar;
2398 tree stmt;
2399 tree oldivvar, ivvar, ivvarinced;
2400 VEC(tree,heap) *phis = NULL;
2401 htab_t replacements = NULL;
2403 /* Create the new loop. */
2404 olddest = single_exit (loop)->dest;
2405 preheaderbb = split_edge (single_exit (loop));
2406 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2408 /* Push the exit phi nodes that we are moving. */
2409 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2411 VEC_reserve (tree, heap, phis, 2);
2412 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2413 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2415 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2417 /* Remove the exit phis from the old basic block. */
2418 while (phi_nodes (olddest) != NULL)
2419 remove_phi_node (phi_nodes (olddest), NULL, false);
2421 /* and add them back to the new basic block. */
2422 while (VEC_length (tree, phis) != 0)
2424 tree def;
2425 tree phiname;
2426 def = VEC_pop (tree, phis);
2427 phiname = VEC_pop (tree, phis);
2428 phi = create_phi_node (phiname, preheaderbb);
2429 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2431 flush_pending_stmts (e);
2432 VEC_free (tree, heap, phis);
2434 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2435 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2436 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2437 cond_stmt = build3 (COND_EXPR, void_type_node,
2438 build2 (NE_EXPR, boolean_type_node,
2439 integer_one_node,
2440 integer_zero_node),
2441 NULL_TREE, NULL_TREE);
2442 bsi = bsi_start (bodybb);
2443 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2444 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2445 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2446 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2448 /* Update the loop structures. */
2449 newloop = duplicate_loop (loop, olddest->loop_father);
2450 newloop->header = headerbb;
2451 newloop->latch = latchbb;
2452 add_bb_to_loop (latchbb, newloop);
2453 add_bb_to_loop (bodybb, newloop);
2454 add_bb_to_loop (headerbb, newloop);
2455 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2456 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2457 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2458 single_exit (loop)->src);
2459 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2460 set_immediate_dominator (CDI_DOMINATORS, olddest,
2461 recompute_dominator (CDI_DOMINATORS, olddest));
2462 /* Create the new iv. */
2463 oldivvar = VEC_index (tree, loopivs, 0);
2464 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2465 add_referenced_var (ivvar);
2466 standard_iv_increment_position (newloop, &bsi, &insert_after);
2467 create_iv (VEC_index (tree, lbounds, 0),
2468 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2469 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2471 /* Create the new upper bound. This may be not just a variable, so we copy
2472 it to one just in case. */
2474 exit_condition = get_loop_exit_condition (newloop);
2475 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2476 add_referenced_var (uboundvar);
2477 stmt = build_gimple_modify_stmt (uboundvar, VEC_index (tree, ubounds, 0));
2478 uboundvar = make_ssa_name (uboundvar, stmt);
2479 GIMPLE_STMT_OPERAND (stmt, 0) = uboundvar;
2481 if (insert_after)
2482 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2483 else
2484 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2485 update_stmt (stmt);
2486 COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
2487 boolean_type_node,
2488 uboundvar,
2489 ivvarinced);
2490 update_stmt (exit_condition);
2491 replacements = htab_create_ggc (20, tree_map_hash,
2492 tree_map_eq, NULL);
2493 bbs = get_loop_body_in_dom_order (loop);
2494 /* Now move the statements, and replace the induction variable in the moved
2495 statements with the correct loop induction variable. */
2496 oldivvar = VEC_index (tree, loopivs, 0);
2497 firstbsi = bsi_start (bodybb);
2498 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2500 block_stmt_iterator tobsi = bsi_last (bodybb);
2501 if (bbs[i]->loop_father == loop)
2503 /* If this is true, we are *before* the inner loop.
2504 If this isn't true, we are *after* it.
2506 The only time can_convert_to_perfect_nest returns true when we
2507 have statements before the inner loop is if they can be moved
2508 into the inner loop.
2510 The only time can_convert_to_perfect_nest returns true when we
2511 have statements after the inner loop is if they can be moved into
2512 the new split loop. */
2514 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2516 block_stmt_iterator header_bsi
2517 = bsi_after_labels (loop->inner->header);
2519 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2521 tree stmt = bsi_stmt (bsi);
2523 if (stmt == exit_condition
2524 || not_interesting_stmt (stmt)
2525 || stmt_is_bumper_for_loop (loop, stmt))
2527 bsi_next (&bsi);
2528 continue;
2531 bsi_move_before (&bsi, &header_bsi);
2534 else
2536 /* Note that the bsi only needs to be explicitly incremented
2537 when we don't move something, since it is automatically
2538 incremented when we do. */
2539 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2541 ssa_op_iter i;
2542 tree n, stmt = bsi_stmt (bsi);
2544 if (stmt == exit_condition
2545 || not_interesting_stmt (stmt)
2546 || stmt_is_bumper_for_loop (loop, stmt))
2548 bsi_next (&bsi);
2549 continue;
2552 replace_uses_equiv_to_x_with_y
2553 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2554 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2556 bsi_move_before (&bsi, &tobsi);
2558 /* If the statement has any virtual operands, they may
2559 need to be rewired because the original loop may
2560 still reference them. */
2561 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2562 mark_sym_for_renaming (SSA_NAME_VAR (n));
2569 free (bbs);
2570 htab_delete (replacements);
2571 return perfect_nest_p (loop);
2574 /* Return true if TRANS is a legal transformation matrix that respects
2575 the dependence vectors in DISTS and DIRS. The conservative answer
2576 is false.
2578 "Wolfe proves that a unimodular transformation represented by the
2579 matrix T is legal when applied to a loop nest with a set of
2580 lexicographically non-negative distance vectors RDG if and only if
2581 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2582 i.e.: if and only if it transforms the lexicographically positive
2583 distance vectors to lexicographically positive vectors. Note that
2584 a unimodular matrix must transform the zero vector (and only it) to
2585 the zero vector." S.Muchnick. */
2587 bool
2588 lambda_transform_legal_p (lambda_trans_matrix trans,
2589 int nb_loops,
2590 VEC (ddr_p, heap) *dependence_relations)
2592 unsigned int i, j;
2593 lambda_vector distres;
2594 struct data_dependence_relation *ddr;
2596 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2597 && LTM_ROWSIZE (trans) == nb_loops);
2599 /* When there are no dependences, the transformation is correct. */
2600 if (VEC_length (ddr_p, dependence_relations) == 0)
2601 return true;
2603 ddr = VEC_index (ddr_p, dependence_relations, 0);
2604 if (ddr == NULL)
2605 return true;
2607 /* When there is an unknown relation in the dependence_relations, we
2608 know that it is no worth looking at this loop nest: give up. */
2609 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2610 return false;
2612 distres = lambda_vector_new (nb_loops);
2614 /* For each distance vector in the dependence graph. */
2615 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2617 /* Don't care about relations for which we know that there is no
2618 dependence, nor about read-read (aka. output-dependences):
2619 these data accesses can happen in any order. */
2620 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2621 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2622 continue;
2624 /* Conservatively answer: "this transformation is not valid". */
2625 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2626 return false;
2628 /* If the dependence could not be captured by a distance vector,
2629 conservatively answer that the transform is not valid. */
2630 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2631 return false;
2633 /* Compute trans.dist_vect */
2634 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2636 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2637 DDR_DIST_VECT (ddr, j), distres);
2639 if (!lambda_vector_lexico_pos (distres, nb_loops))
2640 return false;
2643 return true;
2647 /* Collects parameters from affine function ACCESS_FUNCTION, and push
2648 them in PARAMETERS. */
2650 static void
2651 lambda_collect_parameters_from_af (tree access_function,
2652 struct pointer_set_t *param_set,
2653 VEC (tree, heap) **parameters)
2655 if (access_function == NULL)
2656 return;
2658 if (TREE_CODE (access_function) == SSA_NAME
2659 && pointer_set_contains (param_set, access_function) == 0)
2661 pointer_set_insert (param_set, access_function);
2662 VEC_safe_push (tree, heap, *parameters, access_function);
2664 else
2666 int i, num_operands = tree_operand_length (access_function);
2668 for (i = 0; i < num_operands; i++)
2669 lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i),
2670 param_set, parameters);
2674 /* Collects parameters from DATAREFS, and push them in PARAMETERS. */
2676 void
2677 lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs,
2678 VEC (tree, heap) **parameters)
2680 unsigned i, j;
2681 struct pointer_set_t *parameter_set = pointer_set_create ();
2682 data_reference_p data_reference;
2684 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, data_reference); i++)
2685 for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++)
2686 lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j),
2687 parameter_set, parameters);
2690 /* Translates BASE_EXPR to vector CY. AM is needed for inferring
2691 indexing positions in the data access vector. CST is the analyzed
2692 integer constant. */
2694 static bool
2695 av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am,
2696 int cst)
2698 bool result = true;
2700 switch (TREE_CODE (base_expr))
2702 case INTEGER_CST:
2703 /* Constant part. */
2704 cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst;
2705 return true;
2707 case SSA_NAME:
2709 int param_index =
2710 access_matrix_get_index_for_parameter (base_expr, am);
2712 if (param_index >= 0)
2714 cy[param_index] = cst + cy[param_index];
2715 return true;
2718 return false;
2721 case PLUS_EXPR:
2722 return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
2723 && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst);
2725 case MINUS_EXPR:
2726 return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
2727 && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst);
2729 case MULT_EXPR:
2730 if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST)
2731 result = av_for_af_base (TREE_OPERAND (base_expr, 1),
2732 cy, am, cst *
2733 int_cst_value (TREE_OPERAND (base_expr, 0)));
2734 else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST)
2735 result = av_for_af_base (TREE_OPERAND (base_expr, 0),
2736 cy, am, cst *
2737 int_cst_value (TREE_OPERAND (base_expr, 1)));
2738 else
2739 result = false;
2741 return result;
2743 case NEGATE_EXPR:
2744 return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst);
2746 default:
2747 return false;
2750 return result;
2753 /* Translates ACCESS_FUN to vector CY. AM is needed for inferring
2754 indexing positions in the data access vector. */
2756 static bool
2757 av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am)
2759 switch (TREE_CODE (access_fun))
2761 case POLYNOMIAL_CHREC:
2763 tree left = CHREC_LEFT (access_fun);
2764 tree right = CHREC_RIGHT (access_fun);
2765 unsigned var;
2767 if (TREE_CODE (right) != INTEGER_CST)
2768 return false;
2770 var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun));
2771 cy[var] = int_cst_value (right);
2773 if (TREE_CODE (left) == POLYNOMIAL_CHREC)
2774 return av_for_af (left, cy, am);
2775 else
2776 return av_for_af_base (left, cy, am, 1);
2779 case INTEGER_CST:
2780 /* Constant part. */
2781 return av_for_af_base (access_fun, cy, am, 1);
2783 default:
2784 return false;
2788 /* Initializes the access matrix for DATA_REFERENCE. */
2790 static bool
2791 build_access_matrix (data_reference_p data_reference,
2792 VEC (tree, heap) *parameters, int loop_nest_num)
2794 struct access_matrix *am = GGC_NEW (struct access_matrix);
2795 unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference);
2796 struct loop *loop = bb_for_stmt (DR_STMT (data_reference))->loop_father;
2797 struct loop *loop_nest = get_loop (loop_nest_num);
2798 unsigned nivs = loop_depth (loop) - loop_depth (loop_nest) + 1;
2799 unsigned lambda_nb_columns;
2800 lambda_vector_vec_p matrix;
2802 AM_LOOP_NEST_NUM (am) = loop_nest_num;
2803 AM_NB_INDUCTION_VARS (am) = nivs;
2804 AM_PARAMETERS (am) = parameters;
2806 lambda_nb_columns = AM_NB_COLUMNS (am);
2807 matrix = VEC_alloc (lambda_vector, heap, lambda_nb_columns);
2808 AM_MATRIX (am) = matrix;
2810 for (i = 0; i < ndim; i++)
2812 lambda_vector access_vector = lambda_vector_new (lambda_nb_columns);
2813 tree access_function = DR_ACCESS_FN (data_reference, i);
2815 if (!av_for_af (access_function, access_vector, am))
2816 return false;
2818 VEC_safe_push (lambda_vector, heap, matrix, access_vector);
2821 DR_ACCESS_MATRIX (data_reference) = am;
2822 return true;
2825 /* Returns false when one of the access matrices cannot be built. */
2827 bool
2828 lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs,
2829 VEC (tree, heap) *parameters,
2830 int loop_nest_num)
2832 data_reference_p dataref;
2833 unsigned ix;
2835 for (ix = 0; VEC_iterate (data_reference_p, datarefs, ix, dataref); ix++)
2836 if (!build_access_matrix (dataref, parameters, loop_nest_num))
2837 return false;
2839 return true;