2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / fortran / interface.c
blobf2ad4f6734e62741194cc992ddd8ffd284327465
1 /* Deal with interfaces.
2 Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Andy Vaught
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Deal with interfaces. An explicit interface is represented as a
24 singly linked list of formal argument structures attached to the
25 relevant symbols. For an implicit interface, the arguments don't
26 point to symbols. Explicit interfaces point to namespaces that
27 contain the symbols within that interface.
29 Implicit interfaces are linked together in a singly linked list
30 along the next_if member of symbol nodes. Since a particular
31 symbol can only have a single explicit interface, the symbol cannot
32 be part of multiple lists and a single next-member suffices.
34 This is not the case for general classes, though. An operator
35 definition is independent of just about all other uses and has it's
36 own head pointer.
38 Nameless interfaces:
39 Nameless interfaces create symbols with explicit interfaces within
40 the current namespace. They are otherwise unlinked.
42 Generic interfaces:
43 The generic name points to a linked list of symbols. Each symbol
44 has an explicit interface. Each explicit interface has its own
45 namespace containing the arguments. Module procedures are symbols in
46 which the interface is added later when the module procedure is parsed.
48 User operators:
49 User-defined operators are stored in a their own set of symtrees
50 separate from regular symbols. The symtrees point to gfc_user_op
51 structures which in turn head up a list of relevant interfaces.
53 Extended intrinsics and assignment:
54 The head of these interface lists are stored in the containing namespace.
56 Implicit interfaces:
57 An implicit interface is represented as a singly linked list of
58 formal argument list structures that don't point to any symbol
59 nodes -- they just contain types.
62 When a subprogram is defined, the program unit's name points to an
63 interface as usual, but the link to the namespace is NULL and the
64 formal argument list points to symbols within the same namespace as
65 the program unit name. */
67 #include "config.h"
68 #include "system.h"
69 #include "gfortran.h"
70 #include "match.h"
72 /* The current_interface structure holds information about the
73 interface currently being parsed. This structure is saved and
74 restored during recursive interfaces. */
76 gfc_interface_info current_interface;
79 /* Free a singly linked list of gfc_interface structures. */
81 void
82 gfc_free_interface (gfc_interface *intr)
84 gfc_interface *next;
86 for (; intr; intr = next)
88 next = intr->next;
89 gfc_free (intr);
94 /* Change the operators unary plus and minus into binary plus and
95 minus respectively, leaving the rest unchanged. */
97 static gfc_intrinsic_op
98 fold_unary (gfc_intrinsic_op operator)
100 switch (operator)
102 case INTRINSIC_UPLUS:
103 operator = INTRINSIC_PLUS;
104 break;
105 case INTRINSIC_UMINUS:
106 operator = INTRINSIC_MINUS;
107 break;
108 default:
109 break;
112 return operator;
116 /* Match a generic specification. Depending on which type of
117 interface is found, the 'name' or 'operator' pointers may be set.
118 This subroutine doesn't return MATCH_NO. */
120 match
121 gfc_match_generic_spec (interface_type *type,
122 char *name,
123 gfc_intrinsic_op *operator)
125 char buffer[GFC_MAX_SYMBOL_LEN + 1];
126 match m;
127 gfc_intrinsic_op i;
129 if (gfc_match (" assignment ( = )") == MATCH_YES)
131 *type = INTERFACE_INTRINSIC_OP;
132 *operator = INTRINSIC_ASSIGN;
133 return MATCH_YES;
136 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
137 { /* Operator i/f */
138 *type = INTERFACE_INTRINSIC_OP;
139 *operator = fold_unary (i);
140 return MATCH_YES;
143 if (gfc_match (" operator ( ") == MATCH_YES)
145 m = gfc_match_defined_op_name (buffer, 1);
146 if (m == MATCH_NO)
147 goto syntax;
148 if (m != MATCH_YES)
149 return MATCH_ERROR;
151 m = gfc_match_char (')');
152 if (m == MATCH_NO)
153 goto syntax;
154 if (m != MATCH_YES)
155 return MATCH_ERROR;
157 strcpy (name, buffer);
158 *type = INTERFACE_USER_OP;
159 return MATCH_YES;
162 if (gfc_match_name (buffer) == MATCH_YES)
164 strcpy (name, buffer);
165 *type = INTERFACE_GENERIC;
166 return MATCH_YES;
169 *type = INTERFACE_NAMELESS;
170 return MATCH_YES;
172 syntax:
173 gfc_error ("Syntax error in generic specification at %C");
174 return MATCH_ERROR;
178 /* Match one of the five F95 forms of an interface statement. The
179 matcher for the abstract interface follows. */
181 match
182 gfc_match_interface (void)
184 char name[GFC_MAX_SYMBOL_LEN + 1];
185 interface_type type;
186 gfc_symbol *sym;
187 gfc_intrinsic_op operator;
188 match m;
190 m = gfc_match_space ();
192 if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR)
193 return MATCH_ERROR;
195 /* If we're not looking at the end of the statement now, or if this
196 is not a nameless interface but we did not see a space, punt. */
197 if (gfc_match_eos () != MATCH_YES
198 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
200 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
201 "at %C");
202 return MATCH_ERROR;
205 current_interface.type = type;
207 switch (type)
209 case INTERFACE_GENERIC:
210 if (gfc_get_symbol (name, NULL, &sym))
211 return MATCH_ERROR;
213 if (!sym->attr.generic
214 && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
215 return MATCH_ERROR;
217 if (sym->attr.dummy)
219 gfc_error ("Dummy procedure '%s' at %C cannot have a "
220 "generic interface", sym->name);
221 return MATCH_ERROR;
224 current_interface.sym = gfc_new_block = sym;
225 break;
227 case INTERFACE_USER_OP:
228 current_interface.uop = gfc_get_uop (name);
229 break;
231 case INTERFACE_INTRINSIC_OP:
232 current_interface.op = operator;
233 break;
235 case INTERFACE_NAMELESS:
236 case INTERFACE_ABSTRACT:
237 break;
240 return MATCH_YES;
245 /* Match a F2003 abstract interface. */
247 match
248 gfc_match_abstract_interface (void)
250 match m;
252 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ABSTRACT INTERFACE at %C")
253 == FAILURE)
254 return MATCH_ERROR;
256 m = gfc_match_eos ();
258 if (m != MATCH_YES)
260 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
261 return MATCH_ERROR;
264 current_interface.type = INTERFACE_ABSTRACT;
266 return m;
270 /* Match the different sort of generic-specs that can be present after
271 the END INTERFACE itself. */
273 match
274 gfc_match_end_interface (void)
276 char name[GFC_MAX_SYMBOL_LEN + 1];
277 interface_type type;
278 gfc_intrinsic_op operator;
279 match m;
281 m = gfc_match_space ();
283 if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR)
284 return MATCH_ERROR;
286 /* If we're not looking at the end of the statement now, or if this
287 is not a nameless interface but we did not see a space, punt. */
288 if (gfc_match_eos () != MATCH_YES
289 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
291 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
292 "statement at %C");
293 return MATCH_ERROR;
296 m = MATCH_YES;
298 switch (current_interface.type)
300 case INTERFACE_NAMELESS:
301 case INTERFACE_ABSTRACT:
302 if (type != INTERFACE_NAMELESS)
304 gfc_error ("Expected a nameless interface at %C");
305 m = MATCH_ERROR;
308 break;
310 case INTERFACE_INTRINSIC_OP:
311 if (type != current_interface.type || operator != current_interface.op)
314 if (current_interface.op == INTRINSIC_ASSIGN)
315 gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
316 else
317 gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
318 gfc_op2string (current_interface.op));
320 m = MATCH_ERROR;
323 break;
325 case INTERFACE_USER_OP:
326 /* Comparing the symbol node names is OK because only use-associated
327 symbols can be renamed. */
328 if (type != current_interface.type
329 || strcmp (current_interface.uop->name, name) != 0)
331 gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
332 current_interface.uop->name);
333 m = MATCH_ERROR;
336 break;
338 case INTERFACE_GENERIC:
339 if (type != current_interface.type
340 || strcmp (current_interface.sym->name, name) != 0)
342 gfc_error ("Expecting 'END INTERFACE %s' at %C",
343 current_interface.sym->name);
344 m = MATCH_ERROR;
347 break;
350 return m;
354 /* Compare two derived types using the criteria in 4.4.2 of the standard,
355 recursing through gfc_compare_types for the components. */
358 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
360 gfc_component *dt1, *dt2;
362 /* Special case for comparing derived types across namespaces. If the
363 true names and module names are the same and the module name is
364 nonnull, then they are equal. */
365 if (derived1 != NULL && derived2 != NULL
366 && strcmp (derived1->name, derived2->name) == 0
367 && derived1->module != NULL && derived2->module != NULL
368 && strcmp (derived1->module, derived2->module) == 0)
369 return 1;
371 /* Compare type via the rules of the standard. Both types must have
372 the SEQUENCE attribute to be equal. */
374 if (strcmp (derived1->name, derived2->name))
375 return 0;
377 if (derived1->component_access == ACCESS_PRIVATE
378 || derived2->component_access == ACCESS_PRIVATE)
379 return 0;
381 if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
382 return 0;
384 dt1 = derived1->components;
385 dt2 = derived2->components;
387 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
388 simple test can speed things up. Otherwise, lots of things have to
389 match. */
390 for (;;)
392 if (strcmp (dt1->name, dt2->name) != 0)
393 return 0;
395 if (dt1->access != dt2->access)
396 return 0;
398 if (dt1->pointer != dt2->pointer)
399 return 0;
401 if (dt1->dimension != dt2->dimension)
402 return 0;
404 if (dt1->allocatable != dt2->allocatable)
405 return 0;
407 if (dt1->dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
408 return 0;
410 /* Make sure that link lists do not put this function into an
411 endless recursive loop! */
412 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.derived)
413 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.derived)
414 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
415 return 0;
417 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.derived)
418 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.derived))
419 return 0;
421 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.derived)
422 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.derived))
423 return 0;
425 dt1 = dt1->next;
426 dt2 = dt2->next;
428 if (dt1 == NULL && dt2 == NULL)
429 break;
430 if (dt1 == NULL || dt2 == NULL)
431 return 0;
434 return 1;
438 /* Compare two typespecs, recursively if necessary. */
441 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
443 /* See if one of the typespecs is a BT_VOID, which is what is being used
444 to allow the funcs like c_f_pointer to accept any pointer type.
445 TODO: Possibly should narrow this to just the one typespec coming in
446 that is for the formal arg, but oh well. */
447 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
448 return 1;
450 if (ts1->type != ts2->type)
451 return 0;
452 if (ts1->type != BT_DERIVED)
453 return (ts1->kind == ts2->kind);
455 /* Compare derived types. */
456 if (ts1->derived == ts2->derived)
457 return 1;
459 return gfc_compare_derived_types (ts1->derived ,ts2->derived);
463 /* Given two symbols that are formal arguments, compare their ranks
464 and types. Returns nonzero if they have the same rank and type,
465 zero otherwise. */
467 static int
468 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
470 int r1, r2;
472 r1 = (s1->as != NULL) ? s1->as->rank : 0;
473 r2 = (s2->as != NULL) ? s2->as->rank : 0;
475 if (r1 != r2)
476 return 0; /* Ranks differ. */
478 return gfc_compare_types (&s1->ts, &s2->ts);
482 static int compare_interfaces (gfc_symbol *, gfc_symbol *, int);
483 static int compare_intr_interfaces (gfc_symbol *, gfc_symbol *);
485 /* Given two symbols that are formal arguments, compare their types
486 and rank and their formal interfaces if they are both dummy
487 procedures. Returns nonzero if the same, zero if different. */
489 static int
490 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
492 if (s1 == NULL || s2 == NULL)
493 return s1 == s2 ? 1 : 0;
495 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
496 return compare_type_rank (s1, s2);
498 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
499 return 0;
501 /* At this point, both symbols are procedures. */
502 if ((s1->attr.function == 0 && s1->attr.subroutine == 0)
503 || (s2->attr.function == 0 && s2->attr.subroutine == 0))
504 return 0;
506 if (s1->attr.function != s2->attr.function
507 || s1->attr.subroutine != s2->attr.subroutine)
508 return 0;
510 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
511 return 0;
513 /* Originally, gfortran recursed here to check the interfaces of passed
514 procedures. This is explicitly not required by the standard. */
515 return 1;
519 /* Given a formal argument list and a keyword name, search the list
520 for that keyword. Returns the correct symbol node if found, NULL
521 if not found. */
523 static gfc_symbol *
524 find_keyword_arg (const char *name, gfc_formal_arglist *f)
526 for (; f; f = f->next)
527 if (strcmp (f->sym->name, name) == 0)
528 return f->sym;
530 return NULL;
534 /******** Interface checking subroutines **********/
537 /* Given an operator interface and the operator, make sure that all
538 interfaces for that operator are legal. */
540 static void
541 check_operator_interface (gfc_interface *intr, gfc_intrinsic_op operator)
543 gfc_formal_arglist *formal;
544 sym_intent i1, i2;
545 gfc_symbol *sym;
546 bt t1, t2;
547 int args, r1, r2, k1, k2;
549 if (intr == NULL)
550 return;
552 args = 0;
553 t1 = t2 = BT_UNKNOWN;
554 i1 = i2 = INTENT_UNKNOWN;
555 r1 = r2 = -1;
556 k1 = k2 = -1;
558 for (formal = intr->sym->formal; formal; formal = formal->next)
560 sym = formal->sym;
561 if (sym == NULL)
563 gfc_error ("Alternate return cannot appear in operator "
564 "interface at %L", &intr->sym->declared_at);
565 return;
567 if (args == 0)
569 t1 = sym->ts.type;
570 i1 = sym->attr.intent;
571 r1 = (sym->as != NULL) ? sym->as->rank : 0;
572 k1 = sym->ts.kind;
574 if (args == 1)
576 t2 = sym->ts.type;
577 i2 = sym->attr.intent;
578 r2 = (sym->as != NULL) ? sym->as->rank : 0;
579 k2 = sym->ts.kind;
581 args++;
584 sym = intr->sym;
586 /* Only +, - and .not. can be unary operators.
587 .not. cannot be a binary operator. */
588 if (args == 0 || args > 2 || (args == 1 && operator != INTRINSIC_PLUS
589 && operator != INTRINSIC_MINUS
590 && operator != INTRINSIC_NOT)
591 || (args == 2 && operator == INTRINSIC_NOT))
593 gfc_error ("Operator interface at %L has the wrong number of arguments",
594 &intr->sym->declared_at);
595 return;
598 /* Check that intrinsics are mapped to functions, except
599 INTRINSIC_ASSIGN which should map to a subroutine. */
600 if (operator == INTRINSIC_ASSIGN)
602 if (!sym->attr.subroutine)
604 gfc_error ("Assignment operator interface at %L must be "
605 "a SUBROUTINE", &intr->sym->declared_at);
606 return;
608 if (args != 2)
610 gfc_error ("Assignment operator interface at %L must have "
611 "two arguments", &intr->sym->declared_at);
612 return;
615 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
616 - First argument an array with different rank than second,
617 - Types and kinds do not conform, and
618 - First argument is of derived type. */
619 if (sym->formal->sym->ts.type != BT_DERIVED
620 && (r1 == 0 || r1 == r2)
621 && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
622 || (gfc_numeric_ts (&sym->formal->sym->ts)
623 && gfc_numeric_ts (&sym->formal->next->sym->ts))))
625 gfc_error ("Assignment operator interface at %L must not redefine "
626 "an INTRINSIC type assignment", &intr->sym->declared_at);
627 return;
630 else
632 if (!sym->attr.function)
634 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
635 &intr->sym->declared_at);
636 return;
640 /* Check intents on operator interfaces. */
641 if (operator == INTRINSIC_ASSIGN)
643 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
644 gfc_error ("First argument of defined assignment at %L must be "
645 "INTENT(OUT) or INTENT(INOUT)", &intr->sym->declared_at);
647 if (i2 != INTENT_IN)
648 gfc_error ("Second argument of defined assignment at %L must be "
649 "INTENT(IN)", &intr->sym->declared_at);
651 else
653 if (i1 != INTENT_IN)
654 gfc_error ("First argument of operator interface at %L must be "
655 "INTENT(IN)", &intr->sym->declared_at);
657 if (args == 2 && i2 != INTENT_IN)
658 gfc_error ("Second argument of operator interface at %L must be "
659 "INTENT(IN)", &intr->sym->declared_at);
662 /* From now on, all we have to do is check that the operator definition
663 doesn't conflict with an intrinsic operator. The rules for this
664 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
665 as well as 12.3.2.1.1 of Fortran 2003:
667 "If the operator is an intrinsic-operator (R310), the number of
668 function arguments shall be consistent with the intrinsic uses of
669 that operator, and the types, kind type parameters, or ranks of the
670 dummy arguments shall differ from those required for the intrinsic
671 operation (7.1.2)." */
673 #define IS_NUMERIC_TYPE(t) \
674 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
676 /* Unary ops are easy, do them first. */
677 if (operator == INTRINSIC_NOT)
679 if (t1 == BT_LOGICAL)
680 goto bad_repl;
681 else
682 return;
685 if (args == 1 && (operator == INTRINSIC_PLUS || operator == INTRINSIC_MINUS))
687 if (IS_NUMERIC_TYPE (t1))
688 goto bad_repl;
689 else
690 return;
693 /* Character intrinsic operators have same character kind, thus
694 operator definitions with operands of different character kinds
695 are always safe. */
696 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
697 return;
699 /* Intrinsic operators always perform on arguments of same rank,
700 so different ranks is also always safe. (rank == 0) is an exception
701 to that, because all intrinsic operators are elemental. */
702 if (r1 != r2 && r1 != 0 && r2 != 0)
703 return;
705 switch (operator)
707 case INTRINSIC_EQ:
708 case INTRINSIC_EQ_OS:
709 case INTRINSIC_NE:
710 case INTRINSIC_NE_OS:
711 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
712 goto bad_repl;
713 /* Fall through. */
715 case INTRINSIC_PLUS:
716 case INTRINSIC_MINUS:
717 case INTRINSIC_TIMES:
718 case INTRINSIC_DIVIDE:
719 case INTRINSIC_POWER:
720 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
721 goto bad_repl;
722 break;
724 case INTRINSIC_GT:
725 case INTRINSIC_GT_OS:
726 case INTRINSIC_GE:
727 case INTRINSIC_GE_OS:
728 case INTRINSIC_LT:
729 case INTRINSIC_LT_OS:
730 case INTRINSIC_LE:
731 case INTRINSIC_LE_OS:
732 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
733 goto bad_repl;
734 if ((t1 == BT_INTEGER || t1 == BT_REAL)
735 && (t2 == BT_INTEGER || t2 == BT_REAL))
736 goto bad_repl;
737 break;
739 case INTRINSIC_CONCAT:
740 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
741 goto bad_repl;
742 break;
744 case INTRINSIC_AND:
745 case INTRINSIC_OR:
746 case INTRINSIC_EQV:
747 case INTRINSIC_NEQV:
748 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
749 goto bad_repl;
750 break;
752 default:
753 break;
756 return;
758 #undef IS_NUMERIC_TYPE
760 bad_repl:
761 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
762 &intr->where);
763 return;
767 /* Given a pair of formal argument lists, we see if the two lists can
768 be distinguished by counting the number of nonoptional arguments of
769 a given type/rank in f1 and seeing if there are less then that
770 number of those arguments in f2 (including optional arguments).
771 Since this test is asymmetric, it has to be called twice to make it
772 symmetric. Returns nonzero if the argument lists are incompatible
773 by this test. This subroutine implements rule 1 of section
774 14.1.2.3. */
776 static int
777 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
779 int rc, ac1, ac2, i, j, k, n1;
780 gfc_formal_arglist *f;
782 typedef struct
784 int flag;
785 gfc_symbol *sym;
787 arginfo;
789 arginfo *arg;
791 n1 = 0;
793 for (f = f1; f; f = f->next)
794 n1++;
796 /* Build an array of integers that gives the same integer to
797 arguments of the same type/rank. */
798 arg = gfc_getmem (n1 * sizeof (arginfo));
800 f = f1;
801 for (i = 0; i < n1; i++, f = f->next)
803 arg[i].flag = -1;
804 arg[i].sym = f->sym;
807 k = 0;
809 for (i = 0; i < n1; i++)
811 if (arg[i].flag != -1)
812 continue;
814 if (arg[i].sym && arg[i].sym->attr.optional)
815 continue; /* Skip optional arguments. */
817 arg[i].flag = k;
819 /* Find other nonoptional arguments of the same type/rank. */
820 for (j = i + 1; j < n1; j++)
821 if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
822 && compare_type_rank_if (arg[i].sym, arg[j].sym))
823 arg[j].flag = k;
825 k++;
828 /* Now loop over each distinct type found in f1. */
829 k = 0;
830 rc = 0;
832 for (i = 0; i < n1; i++)
834 if (arg[i].flag != k)
835 continue;
837 ac1 = 1;
838 for (j = i + 1; j < n1; j++)
839 if (arg[j].flag == k)
840 ac1++;
842 /* Count the number of arguments in f2 with that type, including
843 those that are optional. */
844 ac2 = 0;
846 for (f = f2; f; f = f->next)
847 if (compare_type_rank_if (arg[i].sym, f->sym))
848 ac2++;
850 if (ac1 > ac2)
852 rc = 1;
853 break;
856 k++;
859 gfc_free (arg);
861 return rc;
865 /* Perform the abbreviated correspondence test for operators. The
866 arguments cannot be optional and are always ordered correctly,
867 which makes this test much easier than that for generic tests.
869 This subroutine is also used when comparing a formal and actual
870 argument list when an actual parameter is a dummy procedure. At
871 that point, two formal interfaces must be compared for equality
872 which is what happens here. */
874 static int
875 operator_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
877 for (;;)
879 if (f1 == NULL && f2 == NULL)
880 break;
881 if (f1 == NULL || f2 == NULL)
882 return 1;
884 if (!compare_type_rank (f1->sym, f2->sym))
885 return 1;
887 f1 = f1->next;
888 f2 = f2->next;
891 return 0;
895 /* Perform the correspondence test in rule 2 of section 14.1.2.3.
896 Returns zero if no argument is found that satisfies rule 2, nonzero
897 otherwise.
899 This test is also not symmetric in f1 and f2 and must be called
900 twice. This test finds problems caused by sorting the actual
901 argument list with keywords. For example:
903 INTERFACE FOO
904 SUBROUTINE F1(A, B)
905 INTEGER :: A ; REAL :: B
906 END SUBROUTINE F1
908 SUBROUTINE F2(B, A)
909 INTEGER :: A ; REAL :: B
910 END SUBROUTINE F1
911 END INTERFACE FOO
913 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
915 static int
916 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
918 gfc_formal_arglist *f2_save, *g;
919 gfc_symbol *sym;
921 f2_save = f2;
923 while (f1)
925 if (f1->sym->attr.optional)
926 goto next;
928 if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
929 goto next;
931 /* Now search for a disambiguating keyword argument starting at
932 the current non-match. */
933 for (g = f1; g; g = g->next)
935 if (g->sym->attr.optional)
936 continue;
938 sym = find_keyword_arg (g->sym->name, f2_save);
939 if (sym == NULL || !compare_type_rank (g->sym, sym))
940 return 1;
943 next:
944 f1 = f1->next;
945 if (f2 != NULL)
946 f2 = f2->next;
949 return 0;
953 /* 'Compare' two formal interfaces associated with a pair of symbols.
954 We return nonzero if there exists an actual argument list that
955 would be ambiguous between the two interfaces, zero otherwise. */
957 static int
958 compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, int generic_flag)
960 gfc_formal_arglist *f1, *f2;
962 if (s1->attr.function != s2->attr.function
963 || s1->attr.subroutine != s2->attr.subroutine)
964 return 0; /* Disagreement between function/subroutine. */
966 f1 = s1->formal;
967 f2 = s2->formal;
969 if (f1 == NULL && f2 == NULL)
970 return 1; /* Special case. */
972 if (count_types_test (f1, f2))
973 return 0;
974 if (count_types_test (f2, f1))
975 return 0;
977 if (generic_flag)
979 if (generic_correspondence (f1, f2))
980 return 0;
981 if (generic_correspondence (f2, f1))
982 return 0;
984 else
986 if (operator_correspondence (f1, f2))
987 return 0;
990 return 1;
994 static int
995 compare_intr_interfaces (gfc_symbol *s1, gfc_symbol *s2)
997 gfc_formal_arglist *f, *f1;
998 gfc_intrinsic_arg *fi, *f2;
999 gfc_intrinsic_sym *isym;
1001 if (s1->attr.function != s2->attr.function
1002 || s1->attr.subroutine != s2->attr.subroutine)
1003 return 0; /* Disagreement between function/subroutine. */
1005 /* If the arguments are functions, check type and kind. */
1007 if (s1->attr.dummy && s1->attr.function && s2->attr.function)
1009 if (s1->ts.type != s2->ts.type)
1010 return 0;
1011 if (s1->ts.kind != s2->ts.kind)
1012 return 0;
1013 if (s1->attr.if_source == IFSRC_DECL)
1014 return 1;
1017 isym = gfc_find_function (s2->name);
1019 /* This should already have been checked in
1020 resolve.c (resolve_actual_arglist). */
1021 gcc_assert (isym);
1023 f1 = s1->formal;
1024 f2 = isym->formal;
1026 /* Special case. */
1027 if (f1 == NULL && f2 == NULL)
1028 return 1;
1030 /* First scan through the formal argument list and check the intrinsic. */
1031 fi = f2;
1032 for (f = f1; f; f = f->next)
1034 if (fi == NULL)
1035 return 0;
1036 if ((fi->ts.type != f->sym->ts.type) || (fi->ts.kind != f->sym->ts.kind))
1037 return 0;
1038 fi = fi->next;
1041 /* Now scan through the intrinsic argument list and check the formal. */
1042 f = f1;
1043 for (fi = f2; fi; fi = fi->next)
1045 if (f == NULL)
1046 return 0;
1047 if ((fi->ts.type != f->sym->ts.type) || (fi->ts.kind != f->sym->ts.kind))
1048 return 0;
1049 f = f->next;
1052 return 1;
1056 /* Compare an actual argument list with an intrinsic argument list. */
1058 static int
1059 compare_actual_formal_intr (gfc_actual_arglist **ap, gfc_symbol *s2)
1061 gfc_actual_arglist *a;
1062 gfc_intrinsic_arg *fi, *f2;
1063 gfc_intrinsic_sym *isym;
1065 isym = gfc_find_function (s2->name);
1067 /* This should already have been checked in
1068 resolve.c (resolve_actual_arglist). */
1069 gcc_assert (isym);
1071 f2 = isym->formal;
1073 /* Special case. */
1074 if (*ap == NULL && f2 == NULL)
1075 return 1;
1077 /* First scan through the actual argument list and check the intrinsic. */
1078 fi = f2;
1079 for (a = *ap; a; a = a->next)
1081 if (fi == NULL)
1082 return 0;
1083 if ((fi->ts.type != a->expr->ts.type)
1084 || (fi->ts.kind != a->expr->ts.kind))
1085 return 0;
1086 fi = fi->next;
1089 /* Now scan through the intrinsic argument list and check the formal. */
1090 a = *ap;
1091 for (fi = f2; fi; fi = fi->next)
1093 if (a == NULL)
1094 return 0;
1095 if ((fi->ts.type != a->expr->ts.type)
1096 || (fi->ts.kind != a->expr->ts.kind))
1097 return 0;
1098 a = a->next;
1101 return 1;
1105 /* Given a pointer to an interface pointer, remove duplicate
1106 interfaces and make sure that all symbols are either functions or
1107 subroutines. Returns nonzero if something goes wrong. */
1109 static int
1110 check_interface0 (gfc_interface *p, const char *interface_name)
1112 gfc_interface *psave, *q, *qlast;
1114 psave = p;
1115 /* Make sure all symbols in the interface have been defined as
1116 functions or subroutines. */
1117 for (; p; p = p->next)
1118 if ((!p->sym->attr.function && !p->sym->attr.subroutine)
1119 || !p->sym->attr.if_source)
1121 if (p->sym->attr.external)
1122 gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
1123 p->sym->name, interface_name, &p->sym->declared_at);
1124 else
1125 gfc_error ("Procedure '%s' in %s at %L is neither function nor "
1126 "subroutine", p->sym->name, interface_name,
1127 &p->sym->declared_at);
1128 return 1;
1130 p = psave;
1132 /* Remove duplicate interfaces in this interface list. */
1133 for (; p; p = p->next)
1135 qlast = p;
1137 for (q = p->next; q;)
1139 if (p->sym != q->sym)
1141 qlast = q;
1142 q = q->next;
1144 else
1146 /* Duplicate interface. */
1147 qlast->next = q->next;
1148 gfc_free (q);
1149 q = qlast->next;
1154 return 0;
1158 /* Check lists of interfaces to make sure that no two interfaces are
1159 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1161 static int
1162 check_interface1 (gfc_interface *p, gfc_interface *q0,
1163 int generic_flag, const char *interface_name,
1164 bool referenced)
1166 gfc_interface *q;
1167 for (; p; p = p->next)
1168 for (q = q0; q; q = q->next)
1170 if (p->sym == q->sym)
1171 continue; /* Duplicates OK here. */
1173 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1174 continue;
1176 if (compare_interfaces (p->sym, q->sym, generic_flag))
1178 if (referenced)
1180 gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1181 p->sym->name, q->sym->name, interface_name,
1182 &p->where);
1185 if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1186 gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1187 p->sym->name, q->sym->name, interface_name,
1188 &p->where);
1189 return 1;
1192 return 0;
1196 /* Check the generic and operator interfaces of symbols to make sure
1197 that none of the interfaces conflict. The check has to be done
1198 after all of the symbols are actually loaded. */
1200 static void
1201 check_sym_interfaces (gfc_symbol *sym)
1203 char interface_name[100];
1204 bool k;
1205 gfc_interface *p;
1207 if (sym->ns != gfc_current_ns)
1208 return;
1210 if (sym->generic != NULL)
1212 sprintf (interface_name, "generic interface '%s'", sym->name);
1213 if (check_interface0 (sym->generic, interface_name))
1214 return;
1216 for (p = sym->generic; p; p = p->next)
1218 if (p->sym->attr.mod_proc
1219 && (p->sym->attr.if_source != IFSRC_DECL
1220 || p->sym->attr.procedure))
1222 gfc_error ("'%s' at %L is not a module procedure",
1223 p->sym->name, &p->where);
1224 return;
1228 /* Originally, this test was applied to host interfaces too;
1229 this is incorrect since host associated symbols, from any
1230 source, cannot be ambiguous with local symbols. */
1231 k = sym->attr.referenced || !sym->attr.use_assoc;
1232 if (check_interface1 (sym->generic, sym->generic, 1, interface_name, k))
1233 sym->attr.ambiguous_interfaces = 1;
1238 static void
1239 check_uop_interfaces (gfc_user_op *uop)
1241 char interface_name[100];
1242 gfc_user_op *uop2;
1243 gfc_namespace *ns;
1245 sprintf (interface_name, "operator interface '%s'", uop->name);
1246 if (check_interface0 (uop->operator, interface_name))
1247 return;
1249 for (ns = gfc_current_ns; ns; ns = ns->parent)
1251 uop2 = gfc_find_uop (uop->name, ns);
1252 if (uop2 == NULL)
1253 continue;
1255 check_interface1 (uop->operator, uop2->operator, 0,
1256 interface_name, true);
1261 /* For the namespace, check generic, user operator and intrinsic
1262 operator interfaces for consistency and to remove duplicate
1263 interfaces. We traverse the whole namespace, counting on the fact
1264 that most symbols will not have generic or operator interfaces. */
1266 void
1267 gfc_check_interfaces (gfc_namespace *ns)
1269 gfc_namespace *old_ns, *ns2;
1270 char interface_name[100];
1271 gfc_intrinsic_op i;
1273 old_ns = gfc_current_ns;
1274 gfc_current_ns = ns;
1276 gfc_traverse_ns (ns, check_sym_interfaces);
1278 gfc_traverse_user_op (ns, check_uop_interfaces);
1280 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1282 if (i == INTRINSIC_USER)
1283 continue;
1285 if (i == INTRINSIC_ASSIGN)
1286 strcpy (interface_name, "intrinsic assignment operator");
1287 else
1288 sprintf (interface_name, "intrinsic '%s' operator",
1289 gfc_op2string (i));
1291 if (check_interface0 (ns->operator[i], interface_name))
1292 continue;
1294 check_operator_interface (ns->operator[i], i);
1296 for (ns2 = ns; ns2; ns2 = ns2->parent)
1298 if (check_interface1 (ns->operator[i], ns2->operator[i], 0,
1299 interface_name, true))
1300 goto done;
1302 switch (i)
1304 case INTRINSIC_EQ:
1305 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_EQ_OS],
1306 0, interface_name, true)) goto done;
1307 break;
1309 case INTRINSIC_EQ_OS:
1310 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_EQ],
1311 0, interface_name, true)) goto done;
1312 break;
1314 case INTRINSIC_NE:
1315 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_NE_OS],
1316 0, interface_name, true)) goto done;
1317 break;
1319 case INTRINSIC_NE_OS:
1320 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_NE],
1321 0, interface_name, true)) goto done;
1322 break;
1324 case INTRINSIC_GT:
1325 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_GT_OS],
1326 0, interface_name, true)) goto done;
1327 break;
1329 case INTRINSIC_GT_OS:
1330 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_GT],
1331 0, interface_name, true)) goto done;
1332 break;
1334 case INTRINSIC_GE:
1335 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_GE_OS],
1336 0, interface_name, true)) goto done;
1337 break;
1339 case INTRINSIC_GE_OS:
1340 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_GE],
1341 0, interface_name, true)) goto done;
1342 break;
1344 case INTRINSIC_LT:
1345 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_LT_OS],
1346 0, interface_name, true)) goto done;
1347 break;
1349 case INTRINSIC_LT_OS:
1350 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_LT],
1351 0, interface_name, true)) goto done;
1352 break;
1354 case INTRINSIC_LE:
1355 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_LE_OS],
1356 0, interface_name, true)) goto done;
1357 break;
1359 case INTRINSIC_LE_OS:
1360 if (check_interface1 (ns->operator[i], ns2->operator[INTRINSIC_LE],
1361 0, interface_name, true)) goto done;
1362 break;
1364 default:
1365 break;
1370 done:
1371 gfc_current_ns = old_ns;
1375 static int
1376 symbol_rank (gfc_symbol *sym)
1378 return (sym->as == NULL) ? 0 : sym->as->rank;
1382 /* Given a symbol of a formal argument list and an expression, if the
1383 formal argument is allocatable, check that the actual argument is
1384 allocatable. Returns nonzero if compatible, zero if not compatible. */
1386 static int
1387 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1389 symbol_attribute attr;
1391 if (formal->attr.allocatable)
1393 attr = gfc_expr_attr (actual);
1394 if (!attr.allocatable)
1395 return 0;
1398 return 1;
1402 /* Given a symbol of a formal argument list and an expression, if the
1403 formal argument is a pointer, see if the actual argument is a
1404 pointer. Returns nonzero if compatible, zero if not compatible. */
1406 static int
1407 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1409 symbol_attribute attr;
1411 if (formal->attr.pointer)
1413 attr = gfc_expr_attr (actual);
1414 if (!attr.pointer)
1415 return 0;
1418 return 1;
1422 /* Given a symbol of a formal argument list and an expression, see if
1423 the two are compatible as arguments. Returns nonzero if
1424 compatible, zero if not compatible. */
1426 static int
1427 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1428 int ranks_must_agree, int is_elemental, locus *where)
1430 gfc_ref *ref;
1431 bool rank_check;
1433 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1434 procs c_f_pointer or c_f_procpointer, and we need to accept most
1435 pointers the user could give us. This should allow that. */
1436 if (formal->ts.type == BT_VOID)
1437 return 1;
1439 if (formal->ts.type == BT_DERIVED
1440 && formal->ts.derived && formal->ts.derived->ts.is_iso_c
1441 && actual->ts.type == BT_DERIVED
1442 && actual->ts.derived && actual->ts.derived->ts.is_iso_c)
1443 return 1;
1445 if (actual->ts.type == BT_PROCEDURE)
1447 if (formal->attr.flavor != FL_PROCEDURE)
1448 goto proc_fail;
1450 if (formal->attr.function
1451 && !compare_type_rank (formal, actual->symtree->n.sym))
1452 goto proc_fail;
1454 if (formal->attr.if_source == IFSRC_UNKNOWN
1455 || actual->symtree->n.sym->attr.external)
1456 return 1; /* Assume match. */
1458 if (actual->symtree->n.sym->attr.intrinsic)
1460 if (!compare_intr_interfaces (formal, actual->symtree->n.sym))
1461 goto proc_fail;
1463 else if (!compare_interfaces (formal, actual->symtree->n.sym, 0))
1464 goto proc_fail;
1466 return 1;
1468 proc_fail:
1469 if (where)
1470 gfc_error ("Type/rank mismatch in argument '%s' at %L",
1471 formal->name, &actual->where);
1472 return 0;
1475 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1476 && !gfc_compare_types (&formal->ts, &actual->ts))
1478 if (where)
1479 gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
1480 formal->name, &actual->where, gfc_typename (&actual->ts),
1481 gfc_typename (&formal->ts));
1482 return 0;
1485 if (symbol_rank (formal) == actual->rank)
1486 return 1;
1488 rank_check = where != NULL && !is_elemental && formal->as
1489 && (formal->as->type == AS_ASSUMED_SHAPE
1490 || formal->as->type == AS_DEFERRED);
1492 if (rank_check || ranks_must_agree || formal->attr.pointer
1493 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
1494 || (actual->rank == 0 && formal->as->type == AS_ASSUMED_SHAPE))
1496 if (where)
1497 gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
1498 formal->name, &actual->where, symbol_rank (formal),
1499 actual->rank);
1500 return 0;
1502 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
1503 return 1;
1505 /* At this point, we are considering a scalar passed to an array. This
1506 is valid (cf. F95 12.4.1.1; F2003 12.4.1.2),
1507 - if the actual argument is (a substring of) an element of a
1508 non-assumed-shape/non-pointer array;
1509 - (F2003) if the actual argument is of type character. */
1511 for (ref = actual->ref; ref; ref = ref->next)
1512 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT)
1513 break;
1515 /* Not an array element. */
1516 if (formal->ts.type == BT_CHARACTER
1517 && (ref == NULL
1518 || (actual->expr_type == EXPR_VARIABLE
1519 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1520 || actual->symtree->n.sym->attr.pointer))))
1522 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
1524 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
1525 "array dummy argument '%s' at %L",
1526 formal->name, &actual->where);
1527 return 0;
1529 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
1530 return 0;
1531 else
1532 return 1;
1534 else if (ref == NULL)
1536 if (where)
1537 gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
1538 formal->name, &actual->where, symbol_rank (formal),
1539 actual->rank);
1540 return 0;
1543 if (actual->expr_type == EXPR_VARIABLE
1544 && actual->symtree->n.sym->as
1545 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1546 || actual->symtree->n.sym->attr.pointer))
1548 if (where)
1549 gfc_error ("Element of assumed-shaped array passed to dummy "
1550 "argument '%s' at %L", formal->name, &actual->where);
1551 return 0;
1554 return 1;
1558 /* Given a symbol of a formal argument list and an expression, see if
1559 the two are compatible as arguments. Returns nonzero if
1560 compatible, zero if not compatible. */
1562 static int
1563 compare_parameter_protected (gfc_symbol *formal, gfc_expr *actual)
1565 if (actual->expr_type != EXPR_VARIABLE)
1566 return 1;
1568 if (!actual->symtree->n.sym->attr.protected)
1569 return 1;
1571 if (!actual->symtree->n.sym->attr.use_assoc)
1572 return 1;
1574 if (formal->attr.intent == INTENT_IN
1575 || formal->attr.intent == INTENT_UNKNOWN)
1576 return 1;
1578 if (!actual->symtree->n.sym->attr.pointer)
1579 return 0;
1581 if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
1582 return 0;
1584 return 1;
1588 /* Returns the storage size of a symbol (formal argument) or
1589 zero if it cannot be determined. */
1591 static unsigned long
1592 get_sym_storage_size (gfc_symbol *sym)
1594 int i;
1595 unsigned long strlen, elements;
1597 if (sym->ts.type == BT_CHARACTER)
1599 if (sym->ts.cl && sym->ts.cl->length
1600 && sym->ts.cl->length->expr_type == EXPR_CONSTANT)
1601 strlen = mpz_get_ui (sym->ts.cl->length->value.integer);
1602 else
1603 return 0;
1605 else
1606 strlen = 1;
1608 if (symbol_rank (sym) == 0)
1609 return strlen;
1611 elements = 1;
1612 if (sym->as->type != AS_EXPLICIT)
1613 return 0;
1614 for (i = 0; i < sym->as->rank; i++)
1616 if (!sym->as || sym->as->upper[i]->expr_type != EXPR_CONSTANT
1617 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
1618 return 0;
1620 elements *= mpz_get_ui (sym->as->upper[i]->value.integer)
1621 - mpz_get_ui (sym->as->lower[i]->value.integer) + 1L;
1624 return strlen*elements;
1628 /* Returns the storage size of an expression (actual argument) or
1629 zero if it cannot be determined. For an array element, it returns
1630 the remaining size as the element sequence consists of all storage
1631 units of the actual argument up to the end of the array. */
1633 static unsigned long
1634 get_expr_storage_size (gfc_expr *e)
1636 int i;
1637 long int strlen, elements;
1638 long int substrlen = 0;
1639 bool is_str_storage = false;
1640 gfc_ref *ref;
1642 if (e == NULL)
1643 return 0;
1645 if (e->ts.type == BT_CHARACTER)
1647 if (e->ts.cl && e->ts.cl->length
1648 && e->ts.cl->length->expr_type == EXPR_CONSTANT)
1649 strlen = mpz_get_si (e->ts.cl->length->value.integer);
1650 else if (e->expr_type == EXPR_CONSTANT
1651 && (e->ts.cl == NULL || e->ts.cl->length == NULL))
1652 strlen = e->value.character.length;
1653 else
1654 return 0;
1656 else
1657 strlen = 1; /* Length per element. */
1659 if (e->rank == 0 && !e->ref)
1660 return strlen;
1662 elements = 1;
1663 if (!e->ref)
1665 if (!e->shape)
1666 return 0;
1667 for (i = 0; i < e->rank; i++)
1668 elements *= mpz_get_si (e->shape[i]);
1669 return elements*strlen;
1672 for (ref = e->ref; ref; ref = ref->next)
1674 if (ref->type == REF_SUBSTRING && ref->u.ss.start
1675 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
1677 if (is_str_storage)
1679 /* The string length is the substring length.
1680 Set now to full string length. */
1681 if (ref->u.ss.length == NULL
1682 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
1683 return 0;
1685 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
1687 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
1688 continue;
1691 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION
1692 && ref->u.ar.start && ref->u.ar.end && ref->u.ar.stride
1693 && ref->u.ar.as->upper)
1694 for (i = 0; i < ref->u.ar.dimen; i++)
1696 long int start, end, stride;
1697 stride = 1;
1699 if (ref->u.ar.stride[i])
1701 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
1702 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
1703 else
1704 return 0;
1707 if (ref->u.ar.start[i])
1709 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
1710 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
1711 else
1712 return 0;
1714 else if (ref->u.ar.as->lower[i]
1715 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
1716 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
1717 else
1718 return 0;
1720 if (ref->u.ar.end[i])
1722 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
1723 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
1724 else
1725 return 0;
1727 else if (ref->u.ar.as->upper[i]
1728 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
1729 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
1730 else
1731 return 0;
1733 elements *= (end - start)/stride + 1L;
1735 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL
1736 && ref->u.ar.as->lower && ref->u.ar.as->upper)
1737 for (i = 0; i < ref->u.ar.as->rank; i++)
1739 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
1740 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
1741 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
1742 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1743 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
1744 + 1L;
1745 else
1746 return 0;
1748 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
1749 && e->expr_type == EXPR_VARIABLE)
1751 if (e->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1752 || e->symtree->n.sym->attr.pointer)
1754 elements = 1;
1755 continue;
1758 /* Determine the number of remaining elements in the element
1759 sequence for array element designators. */
1760 is_str_storage = true;
1761 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
1763 if (ref->u.ar.start[i] == NULL
1764 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
1765 || ref->u.ar.as->upper[i] == NULL
1766 || ref->u.ar.as->lower[i] == NULL
1767 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
1768 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
1769 return 0;
1771 elements
1772 = elements
1773 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1774 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
1775 + 1L)
1776 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
1777 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
1780 else
1781 return 0;
1784 if (substrlen)
1785 return (is_str_storage) ? substrlen + (elements-1)*strlen
1786 : elements*strlen;
1787 else
1788 return elements*strlen;
1792 /* Given an expression, check whether it is an array section
1793 which has a vector subscript. If it has, one is returned,
1794 otherwise zero. */
1796 static int
1797 has_vector_subscript (gfc_expr *e)
1799 int i;
1800 gfc_ref *ref;
1802 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
1803 return 0;
1805 for (ref = e->ref; ref; ref = ref->next)
1806 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
1807 for (i = 0; i < ref->u.ar.dimen; i++)
1808 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
1809 return 1;
1811 return 0;
1815 /* Given formal and actual argument lists, see if they are compatible.
1816 If they are compatible, the actual argument list is sorted to
1817 correspond with the formal list, and elements for missing optional
1818 arguments are inserted. If WHERE pointer is nonnull, then we issue
1819 errors when things don't match instead of just returning the status
1820 code. */
1822 static int
1823 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
1824 int ranks_must_agree, int is_elemental, locus *where)
1826 gfc_actual_arglist **new, *a, *actual, temp;
1827 gfc_formal_arglist *f;
1828 int i, n, na;
1829 unsigned long actual_size, formal_size;
1831 actual = *ap;
1833 if (actual == NULL && formal == NULL)
1834 return 1;
1836 n = 0;
1837 for (f = formal; f; f = f->next)
1838 n++;
1840 new = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *));
1842 for (i = 0; i < n; i++)
1843 new[i] = NULL;
1845 na = 0;
1846 f = formal;
1847 i = 0;
1849 for (a = actual; a; a = a->next, f = f->next)
1851 /* Look for keywords but ignore g77 extensions like %VAL. */
1852 if (a->name != NULL && a->name[0] != '%')
1854 i = 0;
1855 for (f = formal; f; f = f->next, i++)
1857 if (f->sym == NULL)
1858 continue;
1859 if (strcmp (f->sym->name, a->name) == 0)
1860 break;
1863 if (f == NULL)
1865 if (where)
1866 gfc_error ("Keyword argument '%s' at %L is not in "
1867 "the procedure", a->name, &a->expr->where);
1868 return 0;
1871 if (new[i] != NULL)
1873 if (where)
1874 gfc_error ("Keyword argument '%s' at %L is already associated "
1875 "with another actual argument", a->name,
1876 &a->expr->where);
1877 return 0;
1881 if (f == NULL)
1883 if (where)
1884 gfc_error ("More actual than formal arguments in procedure "
1885 "call at %L", where);
1887 return 0;
1890 if (f->sym == NULL && a->expr == NULL)
1891 goto match;
1893 if (f->sym == NULL)
1895 if (where)
1896 gfc_error ("Missing alternate return spec in subroutine call "
1897 "at %L", where);
1898 return 0;
1901 if (a->expr == NULL)
1903 if (where)
1904 gfc_error ("Unexpected alternate return spec in subroutine "
1905 "call at %L", where);
1906 return 0;
1909 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
1910 is_elemental, where))
1911 return 0;
1913 /* Special case for character arguments. For allocatable, pointer
1914 and assumed-shape dummies, the string length needs to match
1915 exactly. */
1916 if (a->expr->ts.type == BT_CHARACTER
1917 && a->expr->ts.cl && a->expr->ts.cl->length
1918 && a->expr->ts.cl->length->expr_type == EXPR_CONSTANT
1919 && f->sym->ts.cl && f->sym->ts.cl && f->sym->ts.cl->length
1920 && f->sym->ts.cl->length->expr_type == EXPR_CONSTANT
1921 && (f->sym->attr.pointer || f->sym->attr.allocatable
1922 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
1923 && (mpz_cmp (a->expr->ts.cl->length->value.integer,
1924 f->sym->ts.cl->length->value.integer) != 0))
1926 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
1927 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
1928 "argument and pointer or allocatable dummy argument "
1929 "'%s' at %L",
1930 mpz_get_si (a->expr->ts.cl->length->value.integer),
1931 mpz_get_si (f->sym->ts.cl->length->value.integer),
1932 f->sym->name, &a->expr->where);
1933 else if (where)
1934 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
1935 "argument and assumed-shape dummy argument '%s' "
1936 "at %L",
1937 mpz_get_si (a->expr->ts.cl->length->value.integer),
1938 mpz_get_si (f->sym->ts.cl->length->value.integer),
1939 f->sym->name, &a->expr->where);
1940 return 0;
1943 actual_size = get_expr_storage_size (a->expr);
1944 formal_size = get_sym_storage_size (f->sym);
1945 if (actual_size != 0
1946 && actual_size < formal_size
1947 && a->expr->ts.type != BT_PROCEDURE)
1949 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
1950 gfc_warning ("Character length of actual argument shorter "
1951 "than of dummy argument '%s' (%lu/%lu) at %L",
1952 f->sym->name, actual_size, formal_size,
1953 &a->expr->where);
1954 else if (where)
1955 gfc_warning ("Actual argument contains too few "
1956 "elements for dummy argument '%s' (%lu/%lu) at %L",
1957 f->sym->name, actual_size, formal_size,
1958 &a->expr->where);
1959 return 0;
1962 /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
1963 provided for a procedure formal argument. */
1964 if (a->expr->ts.type != BT_PROCEDURE
1965 && a->expr->expr_type == EXPR_VARIABLE
1966 && f->sym->attr.flavor == FL_PROCEDURE)
1968 if (where)
1969 gfc_error ("Expected a procedure for argument '%s' at %L",
1970 f->sym->name, &a->expr->where);
1971 return 0;
1974 if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure
1975 && a->expr->ts.type == BT_PROCEDURE
1976 && !a->expr->symtree->n.sym->attr.pure)
1978 if (where)
1979 gfc_error ("Expected a PURE procedure for argument '%s' at %L",
1980 f->sym->name, &a->expr->where);
1981 return 0;
1984 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
1985 && a->expr->expr_type == EXPR_VARIABLE
1986 && a->expr->symtree->n.sym->as
1987 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
1988 && (a->expr->ref == NULL
1989 || (a->expr->ref->type == REF_ARRAY
1990 && a->expr->ref->u.ar.type == AR_FULL)))
1992 if (where)
1993 gfc_error ("Actual argument for '%s' cannot be an assumed-size"
1994 " array at %L", f->sym->name, where);
1995 return 0;
1998 if (a->expr->expr_type != EXPR_NULL
1999 && compare_pointer (f->sym, a->expr) == 0)
2001 if (where)
2002 gfc_error ("Actual argument for '%s' must be a pointer at %L",
2003 f->sym->name, &a->expr->where);
2004 return 0;
2007 if (a->expr->expr_type != EXPR_NULL
2008 && compare_allocatable (f->sym, a->expr) == 0)
2010 if (where)
2011 gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
2012 f->sym->name, &a->expr->where);
2013 return 0;
2016 /* Check intent = OUT/INOUT for definable actual argument. */
2017 if ((a->expr->expr_type != EXPR_VARIABLE
2018 || (a->expr->symtree->n.sym->attr.flavor != FL_VARIABLE
2019 && a->expr->symtree->n.sym->attr.flavor != FL_PROCEDURE))
2020 && (f->sym->attr.intent == INTENT_OUT
2021 || f->sym->attr.intent == INTENT_INOUT))
2023 if (where)
2024 gfc_error ("Actual argument at %L must be definable as "
2025 "the dummy argument '%s' is INTENT = OUT/INOUT",
2026 &a->expr->where, f->sym->name);
2027 return 0;
2030 if (!compare_parameter_protected(f->sym, a->expr))
2032 if (where)
2033 gfc_error ("Actual argument at %L is use-associated with "
2034 "PROTECTED attribute and dummy argument '%s' is "
2035 "INTENT = OUT/INOUT",
2036 &a->expr->where,f->sym->name);
2037 return 0;
2040 if ((f->sym->attr.intent == INTENT_OUT
2041 || f->sym->attr.intent == INTENT_INOUT
2042 || f->sym->attr.volatile_)
2043 && has_vector_subscript (a->expr))
2045 if (where)
2046 gfc_error ("Array-section actual argument with vector subscripts "
2047 "at %L is incompatible with INTENT(OUT), INTENT(INOUT) "
2048 "or VOLATILE attribute of the dummy argument '%s'",
2049 &a->expr->where, f->sym->name);
2050 return 0;
2053 /* C1232 (R1221) For an actual argument which is an array section or
2054 an assumed-shape array, the dummy argument shall be an assumed-
2055 shape array, if the dummy argument has the VOLATILE attribute. */
2057 if (f->sym->attr.volatile_
2058 && a->expr->symtree->n.sym->as
2059 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2060 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2062 if (where)
2063 gfc_error ("Assumed-shape actual argument at %L is "
2064 "incompatible with the non-assumed-shape "
2065 "dummy argument '%s' due to VOLATILE attribute",
2066 &a->expr->where,f->sym->name);
2067 return 0;
2070 if (f->sym->attr.volatile_
2071 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2072 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2074 if (where)
2075 gfc_error ("Array-section actual argument at %L is "
2076 "incompatible with the non-assumed-shape "
2077 "dummy argument '%s' due to VOLATILE attribute",
2078 &a->expr->where,f->sym->name);
2079 return 0;
2082 /* C1233 (R1221) For an actual argument which is a pointer array, the
2083 dummy argument shall be an assumed-shape or pointer array, if the
2084 dummy argument has the VOLATILE attribute. */
2086 if (f->sym->attr.volatile_
2087 && a->expr->symtree->n.sym->attr.pointer
2088 && a->expr->symtree->n.sym->as
2089 && !(f->sym->as
2090 && (f->sym->as->type == AS_ASSUMED_SHAPE
2091 || f->sym->attr.pointer)))
2093 if (where)
2094 gfc_error ("Pointer-array actual argument at %L requires "
2095 "an assumed-shape or pointer-array dummy "
2096 "argument '%s' due to VOLATILE attribute",
2097 &a->expr->where,f->sym->name);
2098 return 0;
2101 match:
2102 if (a == actual)
2103 na = i;
2105 new[i++] = a;
2108 /* Make sure missing actual arguments are optional. */
2109 i = 0;
2110 for (f = formal; f; f = f->next, i++)
2112 if (new[i] != NULL)
2113 continue;
2114 if (f->sym == NULL)
2116 if (where)
2117 gfc_error ("Missing alternate return spec in subroutine call "
2118 "at %L", where);
2119 return 0;
2121 if (!f->sym->attr.optional)
2123 if (where)
2124 gfc_error ("Missing actual argument for argument '%s' at %L",
2125 f->sym->name, where);
2126 return 0;
2130 /* The argument lists are compatible. We now relink a new actual
2131 argument list with null arguments in the right places. The head
2132 of the list remains the head. */
2133 for (i = 0; i < n; i++)
2134 if (new[i] == NULL)
2135 new[i] = gfc_get_actual_arglist ();
2137 if (na != 0)
2139 temp = *new[0];
2140 *new[0] = *actual;
2141 *actual = temp;
2143 a = new[0];
2144 new[0] = new[na];
2145 new[na] = a;
2148 for (i = 0; i < n - 1; i++)
2149 new[i]->next = new[i + 1];
2151 new[i]->next = NULL;
2153 if (*ap == NULL && n > 0)
2154 *ap = new[0];
2156 /* Note the types of omitted optional arguments. */
2157 for (a = *ap, f = formal; a; a = a->next, f = f->next)
2158 if (a->expr == NULL && a->label == NULL)
2159 a->missing_arg_type = f->sym->ts.type;
2161 return 1;
2165 typedef struct
2167 gfc_formal_arglist *f;
2168 gfc_actual_arglist *a;
2170 argpair;
2172 /* qsort comparison function for argument pairs, with the following
2173 order:
2174 - p->a->expr == NULL
2175 - p->a->expr->expr_type != EXPR_VARIABLE
2176 - growing p->a->expr->symbol. */
2178 static int
2179 pair_cmp (const void *p1, const void *p2)
2181 const gfc_actual_arglist *a1, *a2;
2183 /* *p1 and *p2 are elements of the to-be-sorted array. */
2184 a1 = ((const argpair *) p1)->a;
2185 a2 = ((const argpair *) p2)->a;
2186 if (!a1->expr)
2188 if (!a2->expr)
2189 return 0;
2190 return -1;
2192 if (!a2->expr)
2193 return 1;
2194 if (a1->expr->expr_type != EXPR_VARIABLE)
2196 if (a2->expr->expr_type != EXPR_VARIABLE)
2197 return 0;
2198 return -1;
2200 if (a2->expr->expr_type != EXPR_VARIABLE)
2201 return 1;
2202 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
2206 /* Given two expressions from some actual arguments, test whether they
2207 refer to the same expression. The analysis is conservative.
2208 Returning FAILURE will produce no warning. */
2210 static try
2211 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
2213 const gfc_ref *r1, *r2;
2215 if (!e1 || !e2
2216 || e1->expr_type != EXPR_VARIABLE
2217 || e2->expr_type != EXPR_VARIABLE
2218 || e1->symtree->n.sym != e2->symtree->n.sym)
2219 return FAILURE;
2221 /* TODO: improve comparison, see expr.c:show_ref(). */
2222 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
2224 if (r1->type != r2->type)
2225 return FAILURE;
2226 switch (r1->type)
2228 case REF_ARRAY:
2229 if (r1->u.ar.type != r2->u.ar.type)
2230 return FAILURE;
2231 /* TODO: At the moment, consider only full arrays;
2232 we could do better. */
2233 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
2234 return FAILURE;
2235 break;
2237 case REF_COMPONENT:
2238 if (r1->u.c.component != r2->u.c.component)
2239 return FAILURE;
2240 break;
2242 case REF_SUBSTRING:
2243 return FAILURE;
2245 default:
2246 gfc_internal_error ("compare_actual_expr(): Bad component code");
2249 if (!r1 && !r2)
2250 return SUCCESS;
2251 return FAILURE;
2255 /* Given formal and actual argument lists that correspond to one
2256 another, check that identical actual arguments aren't not
2257 associated with some incompatible INTENTs. */
2259 static try
2260 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
2262 sym_intent f1_intent, f2_intent;
2263 gfc_formal_arglist *f1;
2264 gfc_actual_arglist *a1;
2265 size_t n, i, j;
2266 argpair *p;
2267 try t = SUCCESS;
2269 n = 0;
2270 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
2272 if (f1 == NULL && a1 == NULL)
2273 break;
2274 if (f1 == NULL || a1 == NULL)
2275 gfc_internal_error ("check_some_aliasing(): List mismatch");
2276 n++;
2278 if (n == 0)
2279 return t;
2280 p = (argpair *) alloca (n * sizeof (argpair));
2282 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
2284 p[i].f = f1;
2285 p[i].a = a1;
2288 qsort (p, n, sizeof (argpair), pair_cmp);
2290 for (i = 0; i < n; i++)
2292 if (!p[i].a->expr
2293 || p[i].a->expr->expr_type != EXPR_VARIABLE
2294 || p[i].a->expr->ts.type == BT_PROCEDURE)
2295 continue;
2296 f1_intent = p[i].f->sym->attr.intent;
2297 for (j = i + 1; j < n; j++)
2299 /* Expected order after the sort. */
2300 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
2301 gfc_internal_error ("check_some_aliasing(): corrupted data");
2303 /* Are the expression the same? */
2304 if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
2305 break;
2306 f2_intent = p[j].f->sym->attr.intent;
2307 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
2308 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
2310 gfc_warning ("Same actual argument associated with INTENT(%s) "
2311 "argument '%s' and INTENT(%s) argument '%s' at %L",
2312 gfc_intent_string (f1_intent), p[i].f->sym->name,
2313 gfc_intent_string (f2_intent), p[j].f->sym->name,
2314 &p[i].a->expr->where);
2315 t = FAILURE;
2320 return t;
2324 /* Given a symbol of a formal argument list and an expression,
2325 return nonzero if their intents are compatible, zero otherwise. */
2327 static int
2328 compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual)
2330 if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer)
2331 return 1;
2333 if (actual->symtree->n.sym->attr.intent != INTENT_IN)
2334 return 1;
2336 if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT)
2337 return 0;
2339 return 1;
2343 /* Given formal and actual argument lists that correspond to one
2344 another, check that they are compatible in the sense that intents
2345 are not mismatched. */
2347 static try
2348 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
2350 sym_intent f_intent;
2352 for (;; f = f->next, a = a->next)
2354 if (f == NULL && a == NULL)
2355 break;
2356 if (f == NULL || a == NULL)
2357 gfc_internal_error ("check_intents(): List mismatch");
2359 if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
2360 continue;
2362 f_intent = f->sym->attr.intent;
2364 if (!compare_parameter_intent(f->sym, a->expr))
2366 gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
2367 "specifies INTENT(%s)", &a->expr->where,
2368 gfc_intent_string (f_intent));
2369 return FAILURE;
2372 if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
2374 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
2376 gfc_error ("Procedure argument at %L is local to a PURE "
2377 "procedure and is passed to an INTENT(%s) argument",
2378 &a->expr->where, gfc_intent_string (f_intent));
2379 return FAILURE;
2382 if (a->expr->symtree->n.sym->attr.pointer)
2384 gfc_error ("Procedure argument at %L is local to a PURE "
2385 "procedure and has the POINTER attribute",
2386 &a->expr->where);
2387 return FAILURE;
2392 return SUCCESS;
2396 /* Check how a procedure is used against its interface. If all goes
2397 well, the actual argument list will also end up being properly
2398 sorted. */
2400 void
2401 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
2404 /* Warn about calls with an implicit interface. */
2405 if (gfc_option.warn_implicit_interface
2406 && sym->attr.if_source == IFSRC_UNKNOWN)
2407 gfc_warning ("Procedure '%s' called with an implicit interface at %L",
2408 sym->name, where);
2410 if (sym->ts.interface && sym->ts.interface->attr.intrinsic)
2412 gfc_intrinsic_sym *isym;
2413 isym = gfc_find_function (sym->ts.interface->name);
2414 if (isym != NULL)
2416 if (compare_actual_formal_intr (ap, sym->ts.interface))
2417 return;
2418 gfc_error ("Type/rank mismatch in argument '%s' at %L",
2419 sym->name, where);
2420 return;
2424 if (sym->attr.if_source == IFSRC_UNKNOWN)
2426 gfc_actual_arglist *a;
2427 for (a = *ap; a; a = a->next)
2429 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
2430 if (a->name != NULL && a->name[0] != '%')
2432 gfc_error("Keyword argument requires explicit interface "
2433 "for procedure '%s' at %L", sym->name, &a->expr->where);
2434 break;
2438 return;
2441 if (!compare_actual_formal (ap, sym->formal, 0,
2442 sym->attr.elemental, where))
2443 return;
2445 check_intents (sym->formal, *ap);
2446 if (gfc_option.warn_aliasing)
2447 check_some_aliasing (sym->formal, *ap);
2451 /* Given an interface pointer and an actual argument list, search for
2452 a formal argument list that matches the actual. If found, returns
2453 a pointer to the symbol of the correct interface. Returns NULL if
2454 not found. */
2456 gfc_symbol *
2457 gfc_search_interface (gfc_interface *intr, int sub_flag,
2458 gfc_actual_arglist **ap)
2460 int r;
2462 for (; intr; intr = intr->next)
2464 if (sub_flag && intr->sym->attr.function)
2465 continue;
2466 if (!sub_flag && intr->sym->attr.subroutine)
2467 continue;
2469 r = !intr->sym->attr.elemental;
2471 if (compare_actual_formal (ap, intr->sym->formal, r, !r, NULL))
2473 check_intents (intr->sym->formal, *ap);
2474 if (gfc_option.warn_aliasing)
2475 check_some_aliasing (intr->sym->formal, *ap);
2476 return intr->sym;
2480 return NULL;
2484 /* Do a brute force recursive search for a symbol. */
2486 static gfc_symtree *
2487 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
2489 gfc_symtree * st;
2491 if (root->n.sym == sym)
2492 return root;
2494 st = NULL;
2495 if (root->left)
2496 st = find_symtree0 (root->left, sym);
2497 if (root->right && ! st)
2498 st = find_symtree0 (root->right, sym);
2499 return st;
2503 /* Find a symtree for a symbol. */
2505 static gfc_symtree *
2506 find_sym_in_symtree (gfc_symbol *sym)
2508 gfc_symtree *st;
2509 gfc_namespace *ns;
2511 /* First try to find it by name. */
2512 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
2513 if (st && st->n.sym == sym)
2514 return st;
2516 /* If it's been renamed, resort to a brute-force search. */
2517 /* TODO: avoid having to do this search. If the symbol doesn't exist
2518 in the symtree for the current namespace, it should probably be added. */
2519 for (ns = gfc_current_ns; ns; ns = ns->parent)
2521 st = find_symtree0 (ns->sym_root, sym);
2522 if (st)
2523 return st;
2525 gfc_internal_error ("Unable to find symbol %s", sym->name);
2526 /* Not reached. */
2530 /* This subroutine is called when an expression is being resolved.
2531 The expression node in question is either a user defined operator
2532 or an intrinsic operator with arguments that aren't compatible
2533 with the operator. This subroutine builds an actual argument list
2534 corresponding to the operands, then searches for a compatible
2535 interface. If one is found, the expression node is replaced with
2536 the appropriate function call. */
2539 gfc_extend_expr (gfc_expr *e)
2541 gfc_actual_arglist *actual;
2542 gfc_symbol *sym;
2543 gfc_namespace *ns;
2544 gfc_user_op *uop;
2545 gfc_intrinsic_op i;
2547 sym = NULL;
2549 actual = gfc_get_actual_arglist ();
2550 actual->expr = e->value.op.op1;
2552 if (e->value.op.op2 != NULL)
2554 actual->next = gfc_get_actual_arglist ();
2555 actual->next->expr = e->value.op.op2;
2558 i = fold_unary (e->value.op.operator);
2560 if (i == INTRINSIC_USER)
2562 for (ns = gfc_current_ns; ns; ns = ns->parent)
2564 uop = gfc_find_uop (e->value.op.uop->name, ns);
2565 if (uop == NULL)
2566 continue;
2568 sym = gfc_search_interface (uop->operator, 0, &actual);
2569 if (sym != NULL)
2570 break;
2573 else
2575 for (ns = gfc_current_ns; ns; ns = ns->parent)
2577 /* Due to the distinction between '==' and '.eq.' and friends, one has
2578 to check if either is defined. */
2579 switch (i)
2581 case INTRINSIC_EQ:
2582 case INTRINSIC_EQ_OS:
2583 sym = gfc_search_interface (ns->operator[INTRINSIC_EQ], 0, &actual);
2584 if (sym == NULL)
2585 sym = gfc_search_interface (ns->operator[INTRINSIC_EQ_OS], 0, &actual);
2586 break;
2588 case INTRINSIC_NE:
2589 case INTRINSIC_NE_OS:
2590 sym = gfc_search_interface (ns->operator[INTRINSIC_NE], 0, &actual);
2591 if (sym == NULL)
2592 sym = gfc_search_interface (ns->operator[INTRINSIC_NE_OS], 0, &actual);
2593 break;
2595 case INTRINSIC_GT:
2596 case INTRINSIC_GT_OS:
2597 sym = gfc_search_interface (ns->operator[INTRINSIC_GT], 0, &actual);
2598 if (sym == NULL)
2599 sym = gfc_search_interface (ns->operator[INTRINSIC_GT_OS], 0, &actual);
2600 break;
2602 case INTRINSIC_GE:
2603 case INTRINSIC_GE_OS:
2604 sym = gfc_search_interface (ns->operator[INTRINSIC_GE], 0, &actual);
2605 if (sym == NULL)
2606 sym = gfc_search_interface (ns->operator[INTRINSIC_GE_OS], 0, &actual);
2607 break;
2609 case INTRINSIC_LT:
2610 case INTRINSIC_LT_OS:
2611 sym = gfc_search_interface (ns->operator[INTRINSIC_LT], 0, &actual);
2612 if (sym == NULL)
2613 sym = gfc_search_interface (ns->operator[INTRINSIC_LT_OS], 0, &actual);
2614 break;
2616 case INTRINSIC_LE:
2617 case INTRINSIC_LE_OS:
2618 sym = gfc_search_interface (ns->operator[INTRINSIC_LE], 0, &actual);
2619 if (sym == NULL)
2620 sym = gfc_search_interface (ns->operator[INTRINSIC_LE_OS], 0, &actual);
2621 break;
2623 default:
2624 sym = gfc_search_interface (ns->operator[i], 0, &actual);
2627 if (sym != NULL)
2628 break;
2632 if (sym == NULL)
2634 /* Don't use gfc_free_actual_arglist(). */
2635 if (actual->next != NULL)
2636 gfc_free (actual->next);
2637 gfc_free (actual);
2639 return FAILURE;
2642 /* Change the expression node to a function call. */
2643 e->expr_type = EXPR_FUNCTION;
2644 e->symtree = find_sym_in_symtree (sym);
2645 e->value.function.actual = actual;
2646 e->value.function.esym = NULL;
2647 e->value.function.isym = NULL;
2648 e->value.function.name = NULL;
2650 if (gfc_pure (NULL) && !gfc_pure (sym))
2652 gfc_error ("Function '%s' called in lieu of an operator at %L must "
2653 "be PURE", sym->name, &e->where);
2654 return FAILURE;
2657 if (gfc_resolve_expr (e) == FAILURE)
2658 return FAILURE;
2660 return SUCCESS;
2664 /* Tries to replace an assignment code node with a subroutine call to
2665 the subroutine associated with the assignment operator. Return
2666 SUCCESS if the node was replaced. On FAILURE, no error is
2667 generated. */
2670 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
2672 gfc_actual_arglist *actual;
2673 gfc_expr *lhs, *rhs;
2674 gfc_symbol *sym;
2676 lhs = c->expr;
2677 rhs = c->expr2;
2679 /* Don't allow an intrinsic assignment to be replaced. */
2680 if (lhs->ts.type != BT_DERIVED
2681 && (rhs->rank == 0 || rhs->rank == lhs->rank)
2682 && (lhs->ts.type == rhs->ts.type
2683 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
2684 return FAILURE;
2686 actual = gfc_get_actual_arglist ();
2687 actual->expr = lhs;
2689 actual->next = gfc_get_actual_arglist ();
2690 actual->next->expr = rhs;
2692 sym = NULL;
2694 for (; ns; ns = ns->parent)
2696 sym = gfc_search_interface (ns->operator[INTRINSIC_ASSIGN], 1, &actual);
2697 if (sym != NULL)
2698 break;
2701 if (sym == NULL)
2703 gfc_free (actual->next);
2704 gfc_free (actual);
2705 return FAILURE;
2708 /* Replace the assignment with the call. */
2709 c->op = EXEC_ASSIGN_CALL;
2710 c->symtree = find_sym_in_symtree (sym);
2711 c->expr = NULL;
2712 c->expr2 = NULL;
2713 c->ext.actual = actual;
2715 return SUCCESS;
2719 /* Make sure that the interface just parsed is not already present in
2720 the given interface list. Ambiguity isn't checked yet since module
2721 procedures can be present without interfaces. */
2723 static try
2724 check_new_interface (gfc_interface *base, gfc_symbol *new)
2726 gfc_interface *ip;
2728 for (ip = base; ip; ip = ip->next)
2730 if (ip->sym == new)
2732 gfc_error ("Entity '%s' at %C is already present in the interface",
2733 new->name);
2734 return FAILURE;
2738 return SUCCESS;
2742 /* Add a symbol to the current interface. */
2745 gfc_add_interface (gfc_symbol *new)
2747 gfc_interface **head, *intr;
2748 gfc_namespace *ns;
2749 gfc_symbol *sym;
2751 switch (current_interface.type)
2753 case INTERFACE_NAMELESS:
2754 case INTERFACE_ABSTRACT:
2755 return SUCCESS;
2757 case INTERFACE_INTRINSIC_OP:
2758 for (ns = current_interface.ns; ns; ns = ns->parent)
2759 switch (current_interface.op)
2761 case INTRINSIC_EQ:
2762 case INTRINSIC_EQ_OS:
2763 if (check_new_interface (ns->operator[INTRINSIC_EQ], new) == FAILURE ||
2764 check_new_interface (ns->operator[INTRINSIC_EQ_OS], new) == FAILURE)
2765 return FAILURE;
2766 break;
2768 case INTRINSIC_NE:
2769 case INTRINSIC_NE_OS:
2770 if (check_new_interface (ns->operator[INTRINSIC_NE], new) == FAILURE ||
2771 check_new_interface (ns->operator[INTRINSIC_NE_OS], new) == FAILURE)
2772 return FAILURE;
2773 break;
2775 case INTRINSIC_GT:
2776 case INTRINSIC_GT_OS:
2777 if (check_new_interface (ns->operator[INTRINSIC_GT], new) == FAILURE ||
2778 check_new_interface (ns->operator[INTRINSIC_GT_OS], new) == FAILURE)
2779 return FAILURE;
2780 break;
2782 case INTRINSIC_GE:
2783 case INTRINSIC_GE_OS:
2784 if (check_new_interface (ns->operator[INTRINSIC_GE], new) == FAILURE ||
2785 check_new_interface (ns->operator[INTRINSIC_GE_OS], new) == FAILURE)
2786 return FAILURE;
2787 break;
2789 case INTRINSIC_LT:
2790 case INTRINSIC_LT_OS:
2791 if (check_new_interface (ns->operator[INTRINSIC_LT], new) == FAILURE ||
2792 check_new_interface (ns->operator[INTRINSIC_LT_OS], new) == FAILURE)
2793 return FAILURE;
2794 break;
2796 case INTRINSIC_LE:
2797 case INTRINSIC_LE_OS:
2798 if (check_new_interface (ns->operator[INTRINSIC_LE], new) == FAILURE ||
2799 check_new_interface (ns->operator[INTRINSIC_LE_OS], new) == FAILURE)
2800 return FAILURE;
2801 break;
2803 default:
2804 if (check_new_interface (ns->operator[current_interface.op], new) == FAILURE)
2805 return FAILURE;
2808 head = &current_interface.ns->operator[current_interface.op];
2809 break;
2811 case INTERFACE_GENERIC:
2812 for (ns = current_interface.ns; ns; ns = ns->parent)
2814 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
2815 if (sym == NULL)
2816 continue;
2818 if (check_new_interface (sym->generic, new) == FAILURE)
2819 return FAILURE;
2822 head = &current_interface.sym->generic;
2823 break;
2825 case INTERFACE_USER_OP:
2826 if (check_new_interface (current_interface.uop->operator, new)
2827 == FAILURE)
2828 return FAILURE;
2830 head = &current_interface.uop->operator;
2831 break;
2833 default:
2834 gfc_internal_error ("gfc_add_interface(): Bad interface type");
2837 intr = gfc_get_interface ();
2838 intr->sym = new;
2839 intr->where = gfc_current_locus;
2841 intr->next = *head;
2842 *head = intr;
2844 return SUCCESS;
2848 gfc_interface *
2849 gfc_current_interface_head (void)
2851 switch (current_interface.type)
2853 case INTERFACE_INTRINSIC_OP:
2854 return current_interface.ns->operator[current_interface.op];
2855 break;
2857 case INTERFACE_GENERIC:
2858 return current_interface.sym->generic;
2859 break;
2861 case INTERFACE_USER_OP:
2862 return current_interface.uop->operator;
2863 break;
2865 default:
2866 gcc_unreachable ();
2871 void
2872 gfc_set_current_interface_head (gfc_interface *i)
2874 switch (current_interface.type)
2876 case INTERFACE_INTRINSIC_OP:
2877 current_interface.ns->operator[current_interface.op] = i;
2878 break;
2880 case INTERFACE_GENERIC:
2881 current_interface.sym->generic = i;
2882 break;
2884 case INTERFACE_USER_OP:
2885 current_interface.uop->operator = i;
2886 break;
2888 default:
2889 gcc_unreachable ();
2894 /* Gets rid of a formal argument list. We do not free symbols.
2895 Symbols are freed when a namespace is freed. */
2897 void
2898 gfc_free_formal_arglist (gfc_formal_arglist *p)
2900 gfc_formal_arglist *q;
2902 for (; p; p = q)
2904 q = p->next;
2905 gfc_free (p);