2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / dwarf2out.c
blob2113410232cef644f677e3ecba0cf87b0c198a6c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* TODO: Emit .debug_line header even when there are no functions, since
25 the file numbers are used by .debug_info. Alternately, leave
26 out locations for types and decls.
27 Avoid talking about ctors and op= for PODs.
28 Factor out common prologue sequences into multiple CIEs. */
30 /* The first part of this file deals with the DWARF 2 frame unwind
31 information, which is also used by the GCC efficient exception handling
32 mechanism. The second part, controlled only by an #ifdef
33 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
34 information. */
36 /* DWARF2 Abbreviation Glossary:
38 CFA = Canonical Frame Address
39 a fixed address on the stack which identifies a call frame.
40 We define it to be the value of SP just before the call insn.
41 The CFA register and offset, which may change during the course
42 of the function, are used to calculate its value at runtime.
44 CFI = Call Frame Instruction
45 an instruction for the DWARF2 abstract machine
47 CIE = Common Information Entry
48 information describing information common to one or more FDEs
50 DIE = Debugging Information Entry
52 FDE = Frame Description Entry
53 information describing the stack call frame, in particular,
54 how to restore registers
56 DW_CFA_... = DWARF2 CFA call frame instruction
57 DW_TAG_... = DWARF2 DIE tag */
59 #include "config.h"
60 #include "system.h"
61 #include "coretypes.h"
62 #include "tm.h"
63 #include "tree.h"
64 #include "version.h"
65 #include "flags.h"
66 #include "real.h"
67 #include "rtl.h"
68 #include "hard-reg-set.h"
69 #include "regs.h"
70 #include "insn-config.h"
71 #include "reload.h"
72 #include "function.h"
73 #include "output.h"
74 #include "expr.h"
75 #include "libfuncs.h"
76 #include "except.h"
77 #include "dwarf2.h"
78 #include "dwarf2out.h"
79 #include "dwarf2asm.h"
80 #include "toplev.h"
81 #include "varray.h"
82 #include "ggc.h"
83 #include "md5.h"
84 #include "tm_p.h"
85 #include "diagnostic.h"
86 #include "debug.h"
87 #include "target.h"
88 #include "langhooks.h"
89 #include "hashtab.h"
90 #include "cgraph.h"
91 #include "input.h"
93 #ifdef DWARF2_DEBUGGING_INFO
94 static void dwarf2out_source_line (unsigned int, const char *);
95 #endif
97 #ifndef DWARF2_FRAME_INFO
98 # ifdef DWARF2_DEBUGGING_INFO
99 # define DWARF2_FRAME_INFO \
100 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
101 # else
102 # define DWARF2_FRAME_INFO 0
103 # endif
104 #endif
106 /* Map register numbers held in the call frame info that gcc has
107 collected using DWARF_FRAME_REGNUM to those that should be output in
108 .debug_frame and .eh_frame. */
109 #ifndef DWARF2_FRAME_REG_OUT
110 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
111 #endif
113 /* Decide whether we want to emit frame unwind information for the current
114 translation unit. */
117 dwarf2out_do_frame (void)
119 /* We want to emit correct CFA location expressions or lists, so we
120 have to return true if we're going to output debug info, even if
121 we're not going to output frame or unwind info. */
122 return (write_symbols == DWARF2_DEBUG
123 || write_symbols == VMS_AND_DWARF2_DEBUG
124 || DWARF2_FRAME_INFO
125 #ifdef DWARF2_UNWIND_INFO
126 || (DWARF2_UNWIND_INFO
127 && (flag_unwind_tables
128 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
129 #endif
133 /* The size of the target's pointer type. */
134 #ifndef PTR_SIZE
135 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
136 #endif
138 /* Array of RTXes referenced by the debugging information, which therefore
139 must be kept around forever. */
140 static GTY(()) VEC(rtx,gc) *used_rtx_array;
142 /* A pointer to the base of a list of incomplete types which might be
143 completed at some later time. incomplete_types_list needs to be a
144 VEC(tree,gc) because we want to tell the garbage collector about
145 it. */
146 static GTY(()) VEC(tree,gc) *incomplete_types;
148 /* A pointer to the base of a table of references to declaration
149 scopes. This table is a display which tracks the nesting
150 of declaration scopes at the current scope and containing
151 scopes. This table is used to find the proper place to
152 define type declaration DIE's. */
153 static GTY(()) VEC(tree,gc) *decl_scope_table;
155 /* Pointers to various DWARF2 sections. */
156 static GTY(()) section *debug_info_section;
157 static GTY(()) section *debug_abbrev_section;
158 static GTY(()) section *debug_aranges_section;
159 static GTY(()) section *debug_macinfo_section;
160 static GTY(()) section *debug_line_section;
161 static GTY(()) section *debug_loc_section;
162 static GTY(()) section *debug_pubnames_section;
163 static GTY(()) section *debug_pubtypes_section;
164 static GTY(()) section *debug_str_section;
165 static GTY(()) section *debug_ranges_section;
166 static GTY(()) section *debug_frame_section;
168 /* How to start an assembler comment. */
169 #ifndef ASM_COMMENT_START
170 #define ASM_COMMENT_START ";#"
171 #endif
173 typedef struct dw_cfi_struct *dw_cfi_ref;
174 typedef struct dw_fde_struct *dw_fde_ref;
175 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
177 /* Call frames are described using a sequence of Call Frame
178 Information instructions. The register number, offset
179 and address fields are provided as possible operands;
180 their use is selected by the opcode field. */
182 enum dw_cfi_oprnd_type {
183 dw_cfi_oprnd_unused,
184 dw_cfi_oprnd_reg_num,
185 dw_cfi_oprnd_offset,
186 dw_cfi_oprnd_addr,
187 dw_cfi_oprnd_loc
190 typedef union dw_cfi_oprnd_struct GTY(())
192 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
193 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
194 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
195 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
197 dw_cfi_oprnd;
199 typedef struct dw_cfi_struct GTY(())
201 dw_cfi_ref dw_cfi_next;
202 enum dwarf_call_frame_info dw_cfi_opc;
203 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
204 dw_cfi_oprnd1;
205 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
206 dw_cfi_oprnd2;
208 dw_cfi_node;
210 /* This is how we define the location of the CFA. We use to handle it
211 as REG + OFFSET all the time, but now it can be more complex.
212 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
213 Instead of passing around REG and OFFSET, we pass a copy
214 of this structure. */
215 typedef struct cfa_loc GTY(())
217 HOST_WIDE_INT offset;
218 HOST_WIDE_INT base_offset;
219 unsigned int reg;
220 int indirect; /* 1 if CFA is accessed via a dereference. */
221 } dw_cfa_location;
223 /* All call frame descriptions (FDE's) in the GCC generated DWARF
224 refer to a single Common Information Entry (CIE), defined at
225 the beginning of the .debug_frame section. This use of a single
226 CIE obviates the need to keep track of multiple CIE's
227 in the DWARF generation routines below. */
229 typedef struct dw_fde_struct GTY(())
231 tree decl;
232 const char *dw_fde_begin;
233 const char *dw_fde_current_label;
234 const char *dw_fde_end;
235 const char *dw_fde_hot_section_label;
236 const char *dw_fde_hot_section_end_label;
237 const char *dw_fde_unlikely_section_label;
238 const char *dw_fde_unlikely_section_end_label;
239 bool dw_fde_switched_sections;
240 dw_cfi_ref dw_fde_cfi;
241 unsigned funcdef_number;
242 unsigned all_throwers_are_sibcalls : 1;
243 unsigned nothrow : 1;
244 unsigned uses_eh_lsda : 1;
246 dw_fde_node;
248 /* Maximum size (in bytes) of an artificially generated label. */
249 #define MAX_ARTIFICIAL_LABEL_BYTES 30
251 /* The size of addresses as they appear in the Dwarf 2 data.
252 Some architectures use word addresses to refer to code locations,
253 but Dwarf 2 info always uses byte addresses. On such machines,
254 Dwarf 2 addresses need to be larger than the architecture's
255 pointers. */
256 #ifndef DWARF2_ADDR_SIZE
257 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
258 #endif
260 /* The size in bytes of a DWARF field indicating an offset or length
261 relative to a debug info section, specified to be 4 bytes in the
262 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
263 as PTR_SIZE. */
265 #ifndef DWARF_OFFSET_SIZE
266 #define DWARF_OFFSET_SIZE 4
267 #endif
269 /* According to the (draft) DWARF 3 specification, the initial length
270 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
271 bytes are 0xffffffff, followed by the length stored in the next 8
272 bytes.
274 However, the SGI/MIPS ABI uses an initial length which is equal to
275 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
277 #ifndef DWARF_INITIAL_LENGTH_SIZE
278 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
279 #endif
281 #define DWARF_VERSION 2
283 /* Round SIZE up to the nearest BOUNDARY. */
284 #define DWARF_ROUND(SIZE,BOUNDARY) \
285 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
287 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
288 #ifndef DWARF_CIE_DATA_ALIGNMENT
289 #ifdef STACK_GROWS_DOWNWARD
290 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
291 #else
292 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
293 #endif
294 #endif
296 /* CIE identifier. */
297 #if HOST_BITS_PER_WIDE_INT >= 64
298 #define DWARF_CIE_ID \
299 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
300 #else
301 #define DWARF_CIE_ID DW_CIE_ID
302 #endif
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
318 /* Get the current fde_table entry we should use. */
320 static inline dw_fde_ref
321 current_fde (void)
323 return fde_table_in_use ? &fde_table[fde_table_in_use - 1] : NULL;
326 /* A list of call frame insns for the CIE. */
327 static GTY(()) dw_cfi_ref cie_cfi_head;
329 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
330 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
331 attribute that accelerates the lookup of the FDE associated
332 with the subprogram. This variable holds the table index of the FDE
333 associated with the current function (body) definition. */
334 static unsigned current_funcdef_fde;
335 #endif
337 struct indirect_string_node GTY(())
339 const char *str;
340 unsigned int refcount;
341 unsigned int form;
342 char *label;
345 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
347 static GTY(()) int dw2_string_counter;
348 static GTY(()) unsigned long dwarf2out_cfi_label_num;
350 /* True if the compilation unit places functions in more than one section. */
351 static GTY(()) bool have_multiple_function_sections = false;
353 /* Whether the default text and cold text sections have been used at all. */
355 static GTY(()) bool text_section_used = false;
356 static GTY(()) bool cold_text_section_used = false;
358 /* The default cold text section. */
359 static GTY(()) section *cold_text_section;
361 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
363 /* Forward declarations for functions defined in this file. */
365 static char *stripattributes (const char *);
366 static const char *dwarf_cfi_name (unsigned);
367 static dw_cfi_ref new_cfi (void);
368 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
369 static void add_fde_cfi (const char *, dw_cfi_ref);
370 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
371 static void lookup_cfa (dw_cfa_location *);
372 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
373 #ifdef DWARF2_UNWIND_INFO
374 static void initial_return_save (rtx);
375 #endif
376 static HOST_WIDE_INT stack_adjust_offset (const_rtx);
377 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
378 static void output_call_frame_info (int);
379 static void dwarf2out_note_section_used (void);
380 static void dwarf2out_stack_adjust (rtx, bool);
381 static void flush_queued_reg_saves (void);
382 static bool clobbers_queued_reg_save (const_rtx);
383 static void dwarf2out_frame_debug_expr (rtx, const char *);
385 /* Support for complex CFA locations. */
386 static void output_cfa_loc (dw_cfi_ref);
387 static void get_cfa_from_loc_descr (dw_cfa_location *,
388 struct dw_loc_descr_struct *);
389 static struct dw_loc_descr_struct *build_cfa_loc
390 (dw_cfa_location *, HOST_WIDE_INT);
391 static void def_cfa_1 (const char *, dw_cfa_location *);
393 /* How to start an assembler comment. */
394 #ifndef ASM_COMMENT_START
395 #define ASM_COMMENT_START ";#"
396 #endif
398 /* Data and reference forms for relocatable data. */
399 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
400 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
402 #ifndef DEBUG_FRAME_SECTION
403 #define DEBUG_FRAME_SECTION ".debug_frame"
404 #endif
406 #ifndef FUNC_BEGIN_LABEL
407 #define FUNC_BEGIN_LABEL "LFB"
408 #endif
410 #ifndef FUNC_END_LABEL
411 #define FUNC_END_LABEL "LFE"
412 #endif
414 #ifndef FRAME_BEGIN_LABEL
415 #define FRAME_BEGIN_LABEL "Lframe"
416 #endif
417 #define CIE_AFTER_SIZE_LABEL "LSCIE"
418 #define CIE_END_LABEL "LECIE"
419 #define FDE_LABEL "LSFDE"
420 #define FDE_AFTER_SIZE_LABEL "LASFDE"
421 #define FDE_END_LABEL "LEFDE"
422 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
423 #define LINE_NUMBER_END_LABEL "LELT"
424 #define LN_PROLOG_AS_LABEL "LASLTP"
425 #define LN_PROLOG_END_LABEL "LELTP"
426 #define DIE_LABEL_PREFIX "DW"
428 /* The DWARF 2 CFA column which tracks the return address. Normally this
429 is the column for PC, or the first column after all of the hard
430 registers. */
431 #ifndef DWARF_FRAME_RETURN_COLUMN
432 #ifdef PC_REGNUM
433 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
434 #else
435 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
436 #endif
437 #endif
439 /* The mapping from gcc register number to DWARF 2 CFA column number. By
440 default, we just provide columns for all registers. */
441 #ifndef DWARF_FRAME_REGNUM
442 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
443 #endif
445 /* Hook used by __throw. */
448 expand_builtin_dwarf_sp_column (void)
450 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
451 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
454 /* Return a pointer to a copy of the section string name S with all
455 attributes stripped off, and an asterisk prepended (for assemble_name). */
457 static inline char *
458 stripattributes (const char *s)
460 char *stripped = XNEWVEC (char, strlen (s) + 2);
461 char *p = stripped;
463 *p++ = '*';
465 while (*s && *s != ',')
466 *p++ = *s++;
468 *p = '\0';
469 return stripped;
472 /* MEM is a memory reference for the register size table, each element of
473 which has mode MODE. Initialize column C as a return address column. */
475 static void
476 init_return_column_size (enum machine_mode mode, rtx mem, unsigned int c)
478 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
479 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
480 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
483 /* Generate code to initialize the register size table. */
485 void
486 expand_builtin_init_dwarf_reg_sizes (tree address)
488 unsigned int i;
489 enum machine_mode mode = TYPE_MODE (char_type_node);
490 rtx addr = expand_normal (address);
491 rtx mem = gen_rtx_MEM (BLKmode, addr);
492 bool wrote_return_column = false;
494 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
496 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
498 if (rnum < DWARF_FRAME_REGISTERS)
500 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
501 enum machine_mode save_mode = reg_raw_mode[i];
502 HOST_WIDE_INT size;
504 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
505 save_mode = choose_hard_reg_mode (i, 1, true);
506 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
508 if (save_mode == VOIDmode)
509 continue;
510 wrote_return_column = true;
512 size = GET_MODE_SIZE (save_mode);
513 if (offset < 0)
514 continue;
516 emit_move_insn (adjust_address (mem, mode, offset),
517 gen_int_mode (size, mode));
521 if (!wrote_return_column)
522 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
524 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
525 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
526 #endif
528 targetm.init_dwarf_reg_sizes_extra (address);
531 /* Convert a DWARF call frame info. operation to its string name */
533 static const char *
534 dwarf_cfi_name (unsigned int cfi_opc)
536 switch (cfi_opc)
538 case DW_CFA_advance_loc:
539 return "DW_CFA_advance_loc";
540 case DW_CFA_offset:
541 return "DW_CFA_offset";
542 case DW_CFA_restore:
543 return "DW_CFA_restore";
544 case DW_CFA_nop:
545 return "DW_CFA_nop";
546 case DW_CFA_set_loc:
547 return "DW_CFA_set_loc";
548 case DW_CFA_advance_loc1:
549 return "DW_CFA_advance_loc1";
550 case DW_CFA_advance_loc2:
551 return "DW_CFA_advance_loc2";
552 case DW_CFA_advance_loc4:
553 return "DW_CFA_advance_loc4";
554 case DW_CFA_offset_extended:
555 return "DW_CFA_offset_extended";
556 case DW_CFA_restore_extended:
557 return "DW_CFA_restore_extended";
558 case DW_CFA_undefined:
559 return "DW_CFA_undefined";
560 case DW_CFA_same_value:
561 return "DW_CFA_same_value";
562 case DW_CFA_register:
563 return "DW_CFA_register";
564 case DW_CFA_remember_state:
565 return "DW_CFA_remember_state";
566 case DW_CFA_restore_state:
567 return "DW_CFA_restore_state";
568 case DW_CFA_def_cfa:
569 return "DW_CFA_def_cfa";
570 case DW_CFA_def_cfa_register:
571 return "DW_CFA_def_cfa_register";
572 case DW_CFA_def_cfa_offset:
573 return "DW_CFA_def_cfa_offset";
575 /* DWARF 3 */
576 case DW_CFA_def_cfa_expression:
577 return "DW_CFA_def_cfa_expression";
578 case DW_CFA_expression:
579 return "DW_CFA_expression";
580 case DW_CFA_offset_extended_sf:
581 return "DW_CFA_offset_extended_sf";
582 case DW_CFA_def_cfa_sf:
583 return "DW_CFA_def_cfa_sf";
584 case DW_CFA_def_cfa_offset_sf:
585 return "DW_CFA_def_cfa_offset_sf";
587 /* SGI/MIPS specific */
588 case DW_CFA_MIPS_advance_loc8:
589 return "DW_CFA_MIPS_advance_loc8";
591 /* GNU extensions */
592 case DW_CFA_GNU_window_save:
593 return "DW_CFA_GNU_window_save";
594 case DW_CFA_GNU_args_size:
595 return "DW_CFA_GNU_args_size";
596 case DW_CFA_GNU_negative_offset_extended:
597 return "DW_CFA_GNU_negative_offset_extended";
599 default:
600 return "DW_CFA_<unknown>";
604 /* Return a pointer to a newly allocated Call Frame Instruction. */
606 static inline dw_cfi_ref
607 new_cfi (void)
609 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
611 cfi->dw_cfi_next = NULL;
612 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
613 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
615 return cfi;
618 /* Add a Call Frame Instruction to list of instructions. */
620 static inline void
621 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
623 dw_cfi_ref *p;
625 /* Find the end of the chain. */
626 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
629 *p = cfi;
632 /* Generate a new label for the CFI info to refer to. */
634 char *
635 dwarf2out_cfi_label (void)
637 static char label[20];
639 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
640 ASM_OUTPUT_LABEL (asm_out_file, label);
641 return label;
644 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
645 or to the CIE if LABEL is NULL. */
647 static void
648 add_fde_cfi (const char *label, dw_cfi_ref cfi)
650 if (label)
652 dw_fde_ref fde = current_fde ();
654 gcc_assert (fde != NULL);
656 if (*label == 0)
657 label = dwarf2out_cfi_label ();
659 if (fde->dw_fde_current_label == NULL
660 || strcmp (label, fde->dw_fde_current_label) != 0)
662 dw_cfi_ref xcfi;
664 label = xstrdup (label);
666 /* Set the location counter to the new label. */
667 xcfi = new_cfi ();
668 /* If we have a current label, advance from there, otherwise
669 set the location directly using set_loc. */
670 xcfi->dw_cfi_opc = fde->dw_fde_current_label
671 ? DW_CFA_advance_loc4
672 : DW_CFA_set_loc;
673 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
674 add_cfi (&fde->dw_fde_cfi, xcfi);
676 fde->dw_fde_current_label = label;
679 add_cfi (&fde->dw_fde_cfi, cfi);
682 else
683 add_cfi (&cie_cfi_head, cfi);
686 /* Subroutine of lookup_cfa. */
688 static void
689 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
691 switch (cfi->dw_cfi_opc)
693 case DW_CFA_def_cfa_offset:
694 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
695 break;
696 case DW_CFA_def_cfa_offset_sf:
697 loc->offset
698 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
699 break;
700 case DW_CFA_def_cfa_register:
701 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
702 break;
703 case DW_CFA_def_cfa:
704 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
705 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
706 break;
707 case DW_CFA_def_cfa_sf:
708 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
709 loc->offset
710 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
711 break;
712 case DW_CFA_def_cfa_expression:
713 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
714 break;
715 default:
716 break;
720 /* Find the previous value for the CFA. */
722 static void
723 lookup_cfa (dw_cfa_location *loc)
725 dw_cfi_ref cfi;
726 dw_fde_ref fde;
728 loc->reg = INVALID_REGNUM;
729 loc->offset = 0;
730 loc->indirect = 0;
731 loc->base_offset = 0;
733 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
734 lookup_cfa_1 (cfi, loc);
736 fde = current_fde ();
737 if (fde)
738 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
739 lookup_cfa_1 (cfi, loc);
742 /* The current rule for calculating the DWARF2 canonical frame address. */
743 static dw_cfa_location cfa;
745 /* The register used for saving registers to the stack, and its offset
746 from the CFA. */
747 static dw_cfa_location cfa_store;
749 /* The running total of the size of arguments pushed onto the stack. */
750 static HOST_WIDE_INT args_size;
752 /* The last args_size we actually output. */
753 static HOST_WIDE_INT old_args_size;
755 /* Entry point to update the canonical frame address (CFA).
756 LABEL is passed to add_fde_cfi. The value of CFA is now to be
757 calculated from REG+OFFSET. */
759 void
760 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
762 dw_cfa_location loc;
763 loc.indirect = 0;
764 loc.base_offset = 0;
765 loc.reg = reg;
766 loc.offset = offset;
767 def_cfa_1 (label, &loc);
770 /* Determine if two dw_cfa_location structures define the same data. */
772 static bool
773 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
775 return (loc1->reg == loc2->reg
776 && loc1->offset == loc2->offset
777 && loc1->indirect == loc2->indirect
778 && (loc1->indirect == 0
779 || loc1->base_offset == loc2->base_offset));
782 /* This routine does the actual work. The CFA is now calculated from
783 the dw_cfa_location structure. */
785 static void
786 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
788 dw_cfi_ref cfi;
789 dw_cfa_location old_cfa, loc;
791 cfa = *loc_p;
792 loc = *loc_p;
794 if (cfa_store.reg == loc.reg && loc.indirect == 0)
795 cfa_store.offset = loc.offset;
797 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
798 lookup_cfa (&old_cfa);
800 /* If nothing changed, no need to issue any call frame instructions. */
801 if (cfa_equal_p (&loc, &old_cfa))
802 return;
804 cfi = new_cfi ();
806 if (loc.reg == old_cfa.reg && !loc.indirect)
808 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
809 the CFA register did not change but the offset did. */
810 if (loc.offset < 0)
812 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
813 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
815 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
816 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
818 else
820 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
821 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
825 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
826 else if (loc.offset == old_cfa.offset
827 && old_cfa.reg != INVALID_REGNUM
828 && !loc.indirect)
830 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
831 indicating the CFA register has changed to <register> but the
832 offset has not changed. */
833 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
834 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
836 #endif
838 else if (loc.indirect == 0)
840 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
841 indicating the CFA register has changed to <register> with
842 the specified offset. */
843 if (loc.offset < 0)
845 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
846 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
848 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
849 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
850 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
852 else
854 cfi->dw_cfi_opc = DW_CFA_def_cfa;
855 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
856 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
859 else
861 /* Construct a DW_CFA_def_cfa_expression instruction to
862 calculate the CFA using a full location expression since no
863 register-offset pair is available. */
864 struct dw_loc_descr_struct *loc_list;
866 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
867 loc_list = build_cfa_loc (&loc, 0);
868 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
871 add_fde_cfi (label, cfi);
874 /* Add the CFI for saving a register. REG is the CFA column number.
875 LABEL is passed to add_fde_cfi.
876 If SREG is -1, the register is saved at OFFSET from the CFA;
877 otherwise it is saved in SREG. */
879 static void
880 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
882 dw_cfi_ref cfi = new_cfi ();
884 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
886 if (sreg == INVALID_REGNUM)
888 if (reg & ~0x3f)
889 /* The register number won't fit in 6 bits, so we have to use
890 the long form. */
891 cfi->dw_cfi_opc = DW_CFA_offset_extended;
892 else
893 cfi->dw_cfi_opc = DW_CFA_offset;
895 #ifdef ENABLE_CHECKING
897 /* If we get an offset that is not a multiple of
898 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
899 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
900 description. */
901 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
903 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
905 #endif
906 offset /= DWARF_CIE_DATA_ALIGNMENT;
907 if (offset < 0)
908 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
910 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
912 else if (sreg == reg)
913 cfi->dw_cfi_opc = DW_CFA_same_value;
914 else
916 cfi->dw_cfi_opc = DW_CFA_register;
917 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
920 add_fde_cfi (label, cfi);
923 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
924 This CFI tells the unwinder that it needs to restore the window registers
925 from the previous frame's window save area.
927 ??? Perhaps we should note in the CIE where windows are saved (instead of
928 assuming 0(cfa)) and what registers are in the window. */
930 void
931 dwarf2out_window_save (const char *label)
933 dw_cfi_ref cfi = new_cfi ();
935 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
936 add_fde_cfi (label, cfi);
939 /* Add a CFI to update the running total of the size of arguments
940 pushed onto the stack. */
942 void
943 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
945 dw_cfi_ref cfi;
947 if (size == old_args_size)
948 return;
950 old_args_size = size;
952 cfi = new_cfi ();
953 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
954 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
955 add_fde_cfi (label, cfi);
958 /* Entry point for saving a register to the stack. REG is the GCC register
959 number. LABEL and OFFSET are passed to reg_save. */
961 void
962 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
964 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
967 /* Entry point for saving the return address in the stack.
968 LABEL and OFFSET are passed to reg_save. */
970 void
971 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
973 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
976 /* Entry point for saving the return address in a register.
977 LABEL and SREG are passed to reg_save. */
979 void
980 dwarf2out_return_reg (const char *label, unsigned int sreg)
982 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
985 #ifdef DWARF2_UNWIND_INFO
986 /* Record the initial position of the return address. RTL is
987 INCOMING_RETURN_ADDR_RTX. */
989 static void
990 initial_return_save (rtx rtl)
992 unsigned int reg = INVALID_REGNUM;
993 HOST_WIDE_INT offset = 0;
995 switch (GET_CODE (rtl))
997 case REG:
998 /* RA is in a register. */
999 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
1000 break;
1002 case MEM:
1003 /* RA is on the stack. */
1004 rtl = XEXP (rtl, 0);
1005 switch (GET_CODE (rtl))
1007 case REG:
1008 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
1009 offset = 0;
1010 break;
1012 case PLUS:
1013 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1014 offset = INTVAL (XEXP (rtl, 1));
1015 break;
1017 case MINUS:
1018 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
1019 offset = -INTVAL (XEXP (rtl, 1));
1020 break;
1022 default:
1023 gcc_unreachable ();
1026 break;
1028 case PLUS:
1029 /* The return address is at some offset from any value we can
1030 actually load. For instance, on the SPARC it is in %i7+8. Just
1031 ignore the offset for now; it doesn't matter for unwinding frames. */
1032 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1033 initial_return_save (XEXP (rtl, 0));
1034 return;
1036 default:
1037 gcc_unreachable ();
1040 if (reg != DWARF_FRAME_RETURN_COLUMN)
1041 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1043 #endif
1045 /* Given a SET, calculate the amount of stack adjustment it
1046 contains. */
1048 static HOST_WIDE_INT
1049 stack_adjust_offset (const_rtx pattern)
1051 const_rtx src = SET_SRC (pattern);
1052 const_rtx dest = SET_DEST (pattern);
1053 HOST_WIDE_INT offset = 0;
1054 enum rtx_code code;
1056 if (dest == stack_pointer_rtx)
1058 /* (set (reg sp) (plus (reg sp) (const_int))) */
1059 code = GET_CODE (src);
1060 if (! (code == PLUS || code == MINUS)
1061 || XEXP (src, 0) != stack_pointer_rtx
1062 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1063 return 0;
1065 offset = INTVAL (XEXP (src, 1));
1066 if (code == PLUS)
1067 offset = -offset;
1069 else if (MEM_P (dest))
1071 /* (set (mem (pre_dec (reg sp))) (foo)) */
1072 src = XEXP (dest, 0);
1073 code = GET_CODE (src);
1075 switch (code)
1077 case PRE_MODIFY:
1078 case POST_MODIFY:
1079 if (XEXP (src, 0) == stack_pointer_rtx)
1081 rtx val = XEXP (XEXP (src, 1), 1);
1082 /* We handle only adjustments by constant amount. */
1083 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1084 && GET_CODE (val) == CONST_INT);
1085 offset = -INTVAL (val);
1086 break;
1088 return 0;
1090 case PRE_DEC:
1091 case POST_DEC:
1092 if (XEXP (src, 0) == stack_pointer_rtx)
1094 offset = GET_MODE_SIZE (GET_MODE (dest));
1095 break;
1097 return 0;
1099 case PRE_INC:
1100 case POST_INC:
1101 if (XEXP (src, 0) == stack_pointer_rtx)
1103 offset = -GET_MODE_SIZE (GET_MODE (dest));
1104 break;
1106 return 0;
1108 default:
1109 return 0;
1112 else
1113 return 0;
1115 return offset;
1118 /* Check INSN to see if it looks like a push or a stack adjustment, and
1119 make a note of it if it does. EH uses this information to find out how
1120 much extra space it needs to pop off the stack. */
1122 static void
1123 dwarf2out_stack_adjust (rtx insn, bool after_p)
1125 HOST_WIDE_INT offset;
1126 const char *label;
1127 int i;
1129 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1130 with this function. Proper support would require all frame-related
1131 insns to be marked, and to be able to handle saving state around
1132 epilogues textually in the middle of the function. */
1133 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1134 return;
1136 /* If only calls can throw, and we have a frame pointer,
1137 save up adjustments until we see the CALL_INSN. */
1138 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1140 if (CALL_P (insn) && !after_p)
1142 /* Extract the size of the args from the CALL rtx itself. */
1143 insn = PATTERN (insn);
1144 if (GET_CODE (insn) == PARALLEL)
1145 insn = XVECEXP (insn, 0, 0);
1146 if (GET_CODE (insn) == SET)
1147 insn = SET_SRC (insn);
1148 gcc_assert (GET_CODE (insn) == CALL);
1149 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1151 return;
1154 if (CALL_P (insn) && !after_p)
1156 if (!flag_asynchronous_unwind_tables)
1157 dwarf2out_args_size ("", args_size);
1158 return;
1160 else if (BARRIER_P (insn))
1162 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1163 the compiler will have already emitted a stack adjustment, but
1164 doesn't bother for calls to noreturn functions. */
1165 #ifdef STACK_GROWS_DOWNWARD
1166 offset = -args_size;
1167 #else
1168 offset = args_size;
1169 #endif
1171 else if (GET_CODE (PATTERN (insn)) == SET)
1172 offset = stack_adjust_offset (PATTERN (insn));
1173 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1174 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1176 /* There may be stack adjustments inside compound insns. Search
1177 for them. */
1178 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1179 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1180 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1182 else
1183 return;
1185 if (offset == 0)
1186 return;
1188 if (cfa.reg == STACK_POINTER_REGNUM)
1189 cfa.offset += offset;
1191 #ifndef STACK_GROWS_DOWNWARD
1192 offset = -offset;
1193 #endif
1195 args_size += offset;
1196 if (args_size < 0)
1197 args_size = 0;
1199 label = dwarf2out_cfi_label ();
1200 def_cfa_1 (label, &cfa);
1201 if (flag_asynchronous_unwind_tables)
1202 dwarf2out_args_size (label, args_size);
1205 #endif
1207 /* We delay emitting a register save until either (a) we reach the end
1208 of the prologue or (b) the register is clobbered. This clusters
1209 register saves so that there are fewer pc advances. */
1211 struct queued_reg_save GTY(())
1213 struct queued_reg_save *next;
1214 rtx reg;
1215 HOST_WIDE_INT cfa_offset;
1216 rtx saved_reg;
1219 static GTY(()) struct queued_reg_save *queued_reg_saves;
1221 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1222 struct reg_saved_in_data GTY(()) {
1223 rtx orig_reg;
1224 rtx saved_in_reg;
1227 /* A list of registers saved in other registers.
1228 The list intentionally has a small maximum capacity of 4; if your
1229 port needs more than that, you might consider implementing a
1230 more efficient data structure. */
1231 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1232 static GTY(()) size_t num_regs_saved_in_regs;
1234 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1235 static const char *last_reg_save_label;
1237 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1238 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1240 static void
1241 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1243 struct queued_reg_save *q;
1245 /* Duplicates waste space, but it's also necessary to remove them
1246 for correctness, since the queue gets output in reverse
1247 order. */
1248 for (q = queued_reg_saves; q != NULL; q = q->next)
1249 if (REGNO (q->reg) == REGNO (reg))
1250 break;
1252 if (q == NULL)
1254 q = ggc_alloc (sizeof (*q));
1255 q->next = queued_reg_saves;
1256 queued_reg_saves = q;
1259 q->reg = reg;
1260 q->cfa_offset = offset;
1261 q->saved_reg = sreg;
1263 last_reg_save_label = label;
1266 /* Output all the entries in QUEUED_REG_SAVES. */
1268 static void
1269 flush_queued_reg_saves (void)
1271 struct queued_reg_save *q;
1273 for (q = queued_reg_saves; q; q = q->next)
1275 size_t i;
1276 unsigned int reg, sreg;
1278 for (i = 0; i < num_regs_saved_in_regs; i++)
1279 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1280 break;
1281 if (q->saved_reg && i == num_regs_saved_in_regs)
1283 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1284 num_regs_saved_in_regs++;
1286 if (i != num_regs_saved_in_regs)
1288 regs_saved_in_regs[i].orig_reg = q->reg;
1289 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1292 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1293 if (q->saved_reg)
1294 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1295 else
1296 sreg = INVALID_REGNUM;
1297 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1300 queued_reg_saves = NULL;
1301 last_reg_save_label = NULL;
1304 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1305 location for? Or, does it clobber a register which we've previously
1306 said that some other register is saved in, and for which we now
1307 have a new location for? */
1309 static bool
1310 clobbers_queued_reg_save (const_rtx insn)
1312 struct queued_reg_save *q;
1314 for (q = queued_reg_saves; q; q = q->next)
1316 size_t i;
1317 if (modified_in_p (q->reg, insn))
1318 return true;
1319 for (i = 0; i < num_regs_saved_in_regs; i++)
1320 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1321 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1322 return true;
1325 return false;
1328 /* Entry point for saving the first register into the second. */
1330 void
1331 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1333 size_t i;
1334 unsigned int regno, sregno;
1336 for (i = 0; i < num_regs_saved_in_regs; i++)
1337 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1338 break;
1339 if (i == num_regs_saved_in_regs)
1341 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1342 num_regs_saved_in_regs++;
1344 regs_saved_in_regs[i].orig_reg = reg;
1345 regs_saved_in_regs[i].saved_in_reg = sreg;
1347 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1348 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1349 reg_save (label, regno, sregno, 0);
1352 /* What register, if any, is currently saved in REG? */
1354 static rtx
1355 reg_saved_in (rtx reg)
1357 unsigned int regn = REGNO (reg);
1358 size_t i;
1359 struct queued_reg_save *q;
1361 for (q = queued_reg_saves; q; q = q->next)
1362 if (q->saved_reg && regn == REGNO (q->saved_reg))
1363 return q->reg;
1365 for (i = 0; i < num_regs_saved_in_regs; i++)
1366 if (regs_saved_in_regs[i].saved_in_reg
1367 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1368 return regs_saved_in_regs[i].orig_reg;
1370 return NULL_RTX;
1374 /* A temporary register holding an integral value used in adjusting SP
1375 or setting up the store_reg. The "offset" field holds the integer
1376 value, not an offset. */
1377 static dw_cfa_location cfa_temp;
1379 /* Record call frame debugging information for an expression EXPR,
1380 which either sets SP or FP (adjusting how we calculate the frame
1381 address) or saves a register to the stack or another register.
1382 LABEL indicates the address of EXPR.
1384 This function encodes a state machine mapping rtxes to actions on
1385 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1386 users need not read the source code.
1388 The High-Level Picture
1390 Changes in the register we use to calculate the CFA: Currently we
1391 assume that if you copy the CFA register into another register, we
1392 should take the other one as the new CFA register; this seems to
1393 work pretty well. If it's wrong for some target, it's simple
1394 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1396 Changes in the register we use for saving registers to the stack:
1397 This is usually SP, but not always. Again, we deduce that if you
1398 copy SP into another register (and SP is not the CFA register),
1399 then the new register is the one we will be using for register
1400 saves. This also seems to work.
1402 Register saves: There's not much guesswork about this one; if
1403 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1404 register save, and the register used to calculate the destination
1405 had better be the one we think we're using for this purpose.
1406 It's also assumed that a copy from a call-saved register to another
1407 register is saving that register if RTX_FRAME_RELATED_P is set on
1408 that instruction. If the copy is from a call-saved register to
1409 the *same* register, that means that the register is now the same
1410 value as in the caller.
1412 Except: If the register being saved is the CFA register, and the
1413 offset is nonzero, we are saving the CFA, so we assume we have to
1414 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1415 the intent is to save the value of SP from the previous frame.
1417 In addition, if a register has previously been saved to a different
1418 register,
1420 Invariants / Summaries of Rules
1422 cfa current rule for calculating the CFA. It usually
1423 consists of a register and an offset.
1424 cfa_store register used by prologue code to save things to the stack
1425 cfa_store.offset is the offset from the value of
1426 cfa_store.reg to the actual CFA
1427 cfa_temp register holding an integral value. cfa_temp.offset
1428 stores the value, which will be used to adjust the
1429 stack pointer. cfa_temp is also used like cfa_store,
1430 to track stores to the stack via fp or a temp reg.
1432 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1433 with cfa.reg as the first operand changes the cfa.reg and its
1434 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1435 cfa_temp.offset.
1437 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1438 expression yielding a constant. This sets cfa_temp.reg
1439 and cfa_temp.offset.
1441 Rule 5: Create a new register cfa_store used to save items to the
1442 stack.
1444 Rules 10-14: Save a register to the stack. Define offset as the
1445 difference of the original location and cfa_store's
1446 location (or cfa_temp's location if cfa_temp is used).
1448 The Rules
1450 "{a,b}" indicates a choice of a xor b.
1451 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1453 Rule 1:
1454 (set <reg1> <reg2>:cfa.reg)
1455 effects: cfa.reg = <reg1>
1456 cfa.offset unchanged
1457 cfa_temp.reg = <reg1>
1458 cfa_temp.offset = cfa.offset
1460 Rule 2:
1461 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1462 {<const_int>,<reg>:cfa_temp.reg}))
1463 effects: cfa.reg = sp if fp used
1464 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1465 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1466 if cfa_store.reg==sp
1468 Rule 3:
1469 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1470 effects: cfa.reg = fp
1471 cfa_offset += +/- <const_int>
1473 Rule 4:
1474 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1475 constraints: <reg1> != fp
1476 <reg1> != sp
1477 effects: cfa.reg = <reg1>
1478 cfa_temp.reg = <reg1>
1479 cfa_temp.offset = cfa.offset
1481 Rule 5:
1482 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1483 constraints: <reg1> != fp
1484 <reg1> != sp
1485 effects: cfa_store.reg = <reg1>
1486 cfa_store.offset = cfa.offset - cfa_temp.offset
1488 Rule 6:
1489 (set <reg> <const_int>)
1490 effects: cfa_temp.reg = <reg>
1491 cfa_temp.offset = <const_int>
1493 Rule 7:
1494 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1495 effects: cfa_temp.reg = <reg1>
1496 cfa_temp.offset |= <const_int>
1498 Rule 8:
1499 (set <reg> (high <exp>))
1500 effects: none
1502 Rule 9:
1503 (set <reg> (lo_sum <exp> <const_int>))
1504 effects: cfa_temp.reg = <reg>
1505 cfa_temp.offset = <const_int>
1507 Rule 10:
1508 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1509 effects: cfa_store.offset -= <const_int>
1510 cfa.offset = cfa_store.offset if cfa.reg == sp
1511 cfa.reg = sp
1512 cfa.base_offset = -cfa_store.offset
1514 Rule 11:
1515 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1516 effects: cfa_store.offset += -/+ mode_size(mem)
1517 cfa.offset = cfa_store.offset if cfa.reg == sp
1518 cfa.reg = sp
1519 cfa.base_offset = -cfa_store.offset
1521 Rule 12:
1522 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1524 <reg2>)
1525 effects: cfa.reg = <reg1>
1526 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1528 Rule 13:
1529 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1530 effects: cfa.reg = <reg1>
1531 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1533 Rule 14:
1534 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1535 effects: cfa.reg = <reg1>
1536 cfa.base_offset = -cfa_temp.offset
1537 cfa_temp.offset -= mode_size(mem)
1539 Rule 15:
1540 (set <reg> {unspec, unspec_volatile})
1541 effects: target-dependent */
1543 static void
1544 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1546 rtx src, dest, span;
1547 HOST_WIDE_INT offset;
1549 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1550 the PARALLEL independently. The first element is always processed if
1551 it is a SET. This is for backward compatibility. Other elements
1552 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1553 flag is set in them. */
1554 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1556 int par_index;
1557 int limit = XVECLEN (expr, 0);
1558 rtx elem;
1560 /* PARALLELs have strict read-modify-write semantics, so we
1561 ought to evaluate every rvalue before changing any lvalue.
1562 It's cumbersome to do that in general, but there's an
1563 easy approximation that is enough for all current users:
1564 handle register saves before register assignments. */
1565 if (GET_CODE (expr) == PARALLEL)
1566 for (par_index = 0; par_index < limit; par_index++)
1568 elem = XVECEXP (expr, 0, par_index);
1569 if (GET_CODE (elem) == SET
1570 && MEM_P (SET_DEST (elem))
1571 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1572 dwarf2out_frame_debug_expr (elem, label);
1575 for (par_index = 0; par_index < limit; par_index++)
1577 elem = XVECEXP (expr, 0, par_index);
1578 if (GET_CODE (elem) == SET
1579 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1580 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1581 dwarf2out_frame_debug_expr (elem, label);
1583 return;
1586 gcc_assert (GET_CODE (expr) == SET);
1588 src = SET_SRC (expr);
1589 dest = SET_DEST (expr);
1591 if (REG_P (src))
1593 rtx rsi = reg_saved_in (src);
1594 if (rsi)
1595 src = rsi;
1598 switch (GET_CODE (dest))
1600 case REG:
1601 switch (GET_CODE (src))
1603 /* Setting FP from SP. */
1604 case REG:
1605 if (cfa.reg == (unsigned) REGNO (src))
1607 /* Rule 1 */
1608 /* Update the CFA rule wrt SP or FP. Make sure src is
1609 relative to the current CFA register.
1611 We used to require that dest be either SP or FP, but the
1612 ARM copies SP to a temporary register, and from there to
1613 FP. So we just rely on the backends to only set
1614 RTX_FRAME_RELATED_P on appropriate insns. */
1615 cfa.reg = REGNO (dest);
1616 cfa_temp.reg = cfa.reg;
1617 cfa_temp.offset = cfa.offset;
1619 else
1621 /* Saving a register in a register. */
1622 gcc_assert (!fixed_regs [REGNO (dest)]
1623 /* For the SPARC and its register window. */
1624 || (DWARF_FRAME_REGNUM (REGNO (src))
1625 == DWARF_FRAME_RETURN_COLUMN));
1626 queue_reg_save (label, src, dest, 0);
1628 break;
1630 case PLUS:
1631 case MINUS:
1632 case LO_SUM:
1633 if (dest == stack_pointer_rtx)
1635 /* Rule 2 */
1636 /* Adjusting SP. */
1637 switch (GET_CODE (XEXP (src, 1)))
1639 case CONST_INT:
1640 offset = INTVAL (XEXP (src, 1));
1641 break;
1642 case REG:
1643 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1644 == cfa_temp.reg);
1645 offset = cfa_temp.offset;
1646 break;
1647 default:
1648 gcc_unreachable ();
1651 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1653 /* Restoring SP from FP in the epilogue. */
1654 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1655 cfa.reg = STACK_POINTER_REGNUM;
1657 else if (GET_CODE (src) == LO_SUM)
1658 /* Assume we've set the source reg of the LO_SUM from sp. */
1660 else
1661 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1663 if (GET_CODE (src) != MINUS)
1664 offset = -offset;
1665 if (cfa.reg == STACK_POINTER_REGNUM)
1666 cfa.offset += offset;
1667 if (cfa_store.reg == STACK_POINTER_REGNUM)
1668 cfa_store.offset += offset;
1670 else if (dest == hard_frame_pointer_rtx)
1672 /* Rule 3 */
1673 /* Either setting the FP from an offset of the SP,
1674 or adjusting the FP */
1675 gcc_assert (frame_pointer_needed);
1677 gcc_assert (REG_P (XEXP (src, 0))
1678 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1679 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1680 offset = INTVAL (XEXP (src, 1));
1681 if (GET_CODE (src) != MINUS)
1682 offset = -offset;
1683 cfa.offset += offset;
1684 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1686 else
1688 gcc_assert (GET_CODE (src) != MINUS);
1690 /* Rule 4 */
1691 if (REG_P (XEXP (src, 0))
1692 && REGNO (XEXP (src, 0)) == cfa.reg
1693 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1695 /* Setting a temporary CFA register that will be copied
1696 into the FP later on. */
1697 offset = - INTVAL (XEXP (src, 1));
1698 cfa.offset += offset;
1699 cfa.reg = REGNO (dest);
1700 /* Or used to save regs to the stack. */
1701 cfa_temp.reg = cfa.reg;
1702 cfa_temp.offset = cfa.offset;
1705 /* Rule 5 */
1706 else if (REG_P (XEXP (src, 0))
1707 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1708 && XEXP (src, 1) == stack_pointer_rtx)
1710 /* Setting a scratch register that we will use instead
1711 of SP for saving registers to the stack. */
1712 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1713 cfa_store.reg = REGNO (dest);
1714 cfa_store.offset = cfa.offset - cfa_temp.offset;
1717 /* Rule 9 */
1718 else if (GET_CODE (src) == LO_SUM
1719 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1721 cfa_temp.reg = REGNO (dest);
1722 cfa_temp.offset = INTVAL (XEXP (src, 1));
1724 else
1725 gcc_unreachable ();
1727 break;
1729 /* Rule 6 */
1730 case CONST_INT:
1731 cfa_temp.reg = REGNO (dest);
1732 cfa_temp.offset = INTVAL (src);
1733 break;
1735 /* Rule 7 */
1736 case IOR:
1737 gcc_assert (REG_P (XEXP (src, 0))
1738 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1739 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1741 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1742 cfa_temp.reg = REGNO (dest);
1743 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1744 break;
1746 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1747 which will fill in all of the bits. */
1748 /* Rule 8 */
1749 case HIGH:
1750 break;
1752 /* Rule 15 */
1753 case UNSPEC:
1754 case UNSPEC_VOLATILE:
1755 gcc_assert (targetm.dwarf_handle_frame_unspec);
1756 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1757 return;
1759 default:
1760 gcc_unreachable ();
1763 def_cfa_1 (label, &cfa);
1764 break;
1766 case MEM:
1767 gcc_assert (REG_P (src));
1769 /* Saving a register to the stack. Make sure dest is relative to the
1770 CFA register. */
1771 switch (GET_CODE (XEXP (dest, 0)))
1773 /* Rule 10 */
1774 /* With a push. */
1775 case PRE_MODIFY:
1776 /* We can't handle variable size modifications. */
1777 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1778 == CONST_INT);
1779 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1781 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1782 && cfa_store.reg == STACK_POINTER_REGNUM);
1784 cfa_store.offset += offset;
1785 if (cfa.reg == STACK_POINTER_REGNUM)
1786 cfa.offset = cfa_store.offset;
1788 offset = -cfa_store.offset;
1789 break;
1791 /* Rule 11 */
1792 case PRE_INC:
1793 case PRE_DEC:
1794 offset = GET_MODE_SIZE (GET_MODE (dest));
1795 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1796 offset = -offset;
1798 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1799 && cfa_store.reg == STACK_POINTER_REGNUM);
1801 cfa_store.offset += offset;
1802 if (cfa.reg == STACK_POINTER_REGNUM)
1803 cfa.offset = cfa_store.offset;
1805 offset = -cfa_store.offset;
1806 break;
1808 /* Rule 12 */
1809 /* With an offset. */
1810 case PLUS:
1811 case MINUS:
1812 case LO_SUM:
1814 int regno;
1816 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1817 && REG_P (XEXP (XEXP (dest, 0), 0)));
1818 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1819 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1820 offset = -offset;
1822 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1824 if (cfa_store.reg == (unsigned) regno)
1825 offset -= cfa_store.offset;
1826 else
1828 gcc_assert (cfa_temp.reg == (unsigned) regno);
1829 offset -= cfa_temp.offset;
1832 break;
1834 /* Rule 13 */
1835 /* Without an offset. */
1836 case REG:
1838 int regno = REGNO (XEXP (dest, 0));
1840 if (cfa_store.reg == (unsigned) regno)
1841 offset = -cfa_store.offset;
1842 else
1844 gcc_assert (cfa_temp.reg == (unsigned) regno);
1845 offset = -cfa_temp.offset;
1848 break;
1850 /* Rule 14 */
1851 case POST_INC:
1852 gcc_assert (cfa_temp.reg
1853 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1854 offset = -cfa_temp.offset;
1855 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1856 break;
1858 default:
1859 gcc_unreachable ();
1862 if (REGNO (src) != STACK_POINTER_REGNUM
1863 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1864 && (unsigned) REGNO (src) == cfa.reg)
1866 /* We're storing the current CFA reg into the stack. */
1868 if (cfa.offset == 0)
1870 /* If the source register is exactly the CFA, assume
1871 we're saving SP like any other register; this happens
1872 on the ARM. */
1873 def_cfa_1 (label, &cfa);
1874 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1875 break;
1877 else
1879 /* Otherwise, we'll need to look in the stack to
1880 calculate the CFA. */
1881 rtx x = XEXP (dest, 0);
1883 if (!REG_P (x))
1884 x = XEXP (x, 0);
1885 gcc_assert (REG_P (x));
1887 cfa.reg = REGNO (x);
1888 cfa.base_offset = offset;
1889 cfa.indirect = 1;
1890 def_cfa_1 (label, &cfa);
1891 break;
1895 def_cfa_1 (label, &cfa);
1897 span = targetm.dwarf_register_span (src);
1899 if (!span)
1900 queue_reg_save (label, src, NULL_RTX, offset);
1901 else
1903 /* We have a PARALLEL describing where the contents of SRC
1904 live. Queue register saves for each piece of the
1905 PARALLEL. */
1906 int par_index;
1907 int limit;
1908 HOST_WIDE_INT span_offset = offset;
1910 gcc_assert (GET_CODE (span) == PARALLEL);
1912 limit = XVECLEN (span, 0);
1913 for (par_index = 0; par_index < limit; par_index++)
1915 rtx elem = XVECEXP (span, 0, par_index);
1917 queue_reg_save (label, elem, NULL_RTX, span_offset);
1918 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1922 break;
1924 default:
1925 gcc_unreachable ();
1929 /* Record call frame debugging information for INSN, which either
1930 sets SP or FP (adjusting how we calculate the frame address) or saves a
1931 register to the stack. If INSN is NULL_RTX, initialize our state.
1933 If AFTER_P is false, we're being called before the insn is emitted,
1934 otherwise after. Call instructions get invoked twice. */
1936 void
1937 dwarf2out_frame_debug (rtx insn, bool after_p)
1939 const char *label;
1940 rtx src;
1942 if (insn == NULL_RTX)
1944 size_t i;
1946 /* Flush any queued register saves. */
1947 flush_queued_reg_saves ();
1949 /* Set up state for generating call frame debug info. */
1950 lookup_cfa (&cfa);
1951 gcc_assert (cfa.reg
1952 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1954 cfa.reg = STACK_POINTER_REGNUM;
1955 cfa_store = cfa;
1956 cfa_temp.reg = -1;
1957 cfa_temp.offset = 0;
1959 for (i = 0; i < num_regs_saved_in_regs; i++)
1961 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1962 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1964 num_regs_saved_in_regs = 0;
1965 return;
1968 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1969 flush_queued_reg_saves ();
1971 if (! RTX_FRAME_RELATED_P (insn))
1973 if (!ACCUMULATE_OUTGOING_ARGS)
1974 dwarf2out_stack_adjust (insn, after_p);
1975 return;
1978 label = dwarf2out_cfi_label ();
1979 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1980 if (src)
1981 insn = XEXP (src, 0);
1982 else
1983 insn = PATTERN (insn);
1985 dwarf2out_frame_debug_expr (insn, label);
1988 #endif
1990 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1991 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1992 (enum dwarf_call_frame_info cfi);
1994 static enum dw_cfi_oprnd_type
1995 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1997 switch (cfi)
1999 case DW_CFA_nop:
2000 case DW_CFA_GNU_window_save:
2001 return dw_cfi_oprnd_unused;
2003 case DW_CFA_set_loc:
2004 case DW_CFA_advance_loc1:
2005 case DW_CFA_advance_loc2:
2006 case DW_CFA_advance_loc4:
2007 case DW_CFA_MIPS_advance_loc8:
2008 return dw_cfi_oprnd_addr;
2010 case DW_CFA_offset:
2011 case DW_CFA_offset_extended:
2012 case DW_CFA_def_cfa:
2013 case DW_CFA_offset_extended_sf:
2014 case DW_CFA_def_cfa_sf:
2015 case DW_CFA_restore_extended:
2016 case DW_CFA_undefined:
2017 case DW_CFA_same_value:
2018 case DW_CFA_def_cfa_register:
2019 case DW_CFA_register:
2020 return dw_cfi_oprnd_reg_num;
2022 case DW_CFA_def_cfa_offset:
2023 case DW_CFA_GNU_args_size:
2024 case DW_CFA_def_cfa_offset_sf:
2025 return dw_cfi_oprnd_offset;
2027 case DW_CFA_def_cfa_expression:
2028 case DW_CFA_expression:
2029 return dw_cfi_oprnd_loc;
2031 default:
2032 gcc_unreachable ();
2036 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
2037 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
2038 (enum dwarf_call_frame_info cfi);
2040 static enum dw_cfi_oprnd_type
2041 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
2043 switch (cfi)
2045 case DW_CFA_def_cfa:
2046 case DW_CFA_def_cfa_sf:
2047 case DW_CFA_offset:
2048 case DW_CFA_offset_extended_sf:
2049 case DW_CFA_offset_extended:
2050 return dw_cfi_oprnd_offset;
2052 case DW_CFA_register:
2053 return dw_cfi_oprnd_reg_num;
2055 default:
2056 return dw_cfi_oprnd_unused;
2060 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2062 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
2063 switch to the data section instead, and write out a synthetic label
2064 for collect2. */
2066 static void
2067 switch_to_eh_frame_section (void)
2069 tree label;
2071 #ifdef EH_FRAME_SECTION_NAME
2072 if (eh_frame_section == 0)
2074 int flags;
2076 if (EH_TABLES_CAN_BE_READ_ONLY)
2078 int fde_encoding;
2079 int per_encoding;
2080 int lsda_encoding;
2082 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2083 /*global=*/0);
2084 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2085 /*global=*/1);
2086 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2087 /*global=*/0);
2088 flags = ((! flag_pic
2089 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2090 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2091 && (per_encoding & 0x70) != DW_EH_PE_absptr
2092 && (per_encoding & 0x70) != DW_EH_PE_aligned
2093 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2094 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2095 ? 0 : SECTION_WRITE);
2097 else
2098 flags = SECTION_WRITE;
2099 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2101 #endif
2103 if (eh_frame_section)
2104 switch_to_section (eh_frame_section);
2105 else
2107 /* We have no special eh_frame section. Put the information in
2108 the data section and emit special labels to guide collect2. */
2109 switch_to_section (data_section);
2110 label = get_file_function_name ("F");
2111 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2112 targetm.asm_out.globalize_label (asm_out_file,
2113 IDENTIFIER_POINTER (label));
2114 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2118 /* Output a Call Frame Information opcode and its operand(s). */
2120 static void
2121 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2123 unsigned long r;
2124 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2125 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2126 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2127 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2128 ((unsigned HOST_WIDE_INT)
2129 cfi->dw_cfi_oprnd1.dw_cfi_offset));
2130 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2132 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2133 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2134 "DW_CFA_offset, column 0x%lx", r);
2135 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2137 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2139 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2140 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2141 "DW_CFA_restore, column 0x%lx", r);
2143 else
2145 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2146 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2148 switch (cfi->dw_cfi_opc)
2150 case DW_CFA_set_loc:
2151 if (for_eh)
2152 dw2_asm_output_encoded_addr_rtx (
2153 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2154 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2155 false, NULL);
2156 else
2157 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2158 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2159 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2160 break;
2162 case DW_CFA_advance_loc1:
2163 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2164 fde->dw_fde_current_label, NULL);
2165 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2166 break;
2168 case DW_CFA_advance_loc2:
2169 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2170 fde->dw_fde_current_label, NULL);
2171 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2172 break;
2174 case DW_CFA_advance_loc4:
2175 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2176 fde->dw_fde_current_label, NULL);
2177 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2178 break;
2180 case DW_CFA_MIPS_advance_loc8:
2181 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2182 fde->dw_fde_current_label, NULL);
2183 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2184 break;
2186 case DW_CFA_offset_extended:
2187 case DW_CFA_def_cfa:
2188 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2189 dw2_asm_output_data_uleb128 (r, NULL);
2190 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2191 break;
2193 case DW_CFA_offset_extended_sf:
2194 case DW_CFA_def_cfa_sf:
2195 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2196 dw2_asm_output_data_uleb128 (r, NULL);
2197 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2198 break;
2200 case DW_CFA_restore_extended:
2201 case DW_CFA_undefined:
2202 case DW_CFA_same_value:
2203 case DW_CFA_def_cfa_register:
2204 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2205 dw2_asm_output_data_uleb128 (r, NULL);
2206 break;
2208 case DW_CFA_register:
2209 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2210 dw2_asm_output_data_uleb128 (r, NULL);
2211 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2212 dw2_asm_output_data_uleb128 (r, NULL);
2213 break;
2215 case DW_CFA_def_cfa_offset:
2216 case DW_CFA_GNU_args_size:
2217 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2218 break;
2220 case DW_CFA_def_cfa_offset_sf:
2221 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2222 break;
2224 case DW_CFA_GNU_window_save:
2225 break;
2227 case DW_CFA_def_cfa_expression:
2228 case DW_CFA_expression:
2229 output_cfa_loc (cfi);
2230 break;
2232 case DW_CFA_GNU_negative_offset_extended:
2233 /* Obsoleted by DW_CFA_offset_extended_sf. */
2234 gcc_unreachable ();
2236 default:
2237 break;
2242 /* Output the call frame information used to record information
2243 that relates to calculating the frame pointer, and records the
2244 location of saved registers. */
2246 static void
2247 output_call_frame_info (int for_eh)
2249 unsigned int i;
2250 dw_fde_ref fde;
2251 dw_cfi_ref cfi;
2252 char l1[20], l2[20], section_start_label[20];
2253 bool any_lsda_needed = false;
2254 char augmentation[6];
2255 int augmentation_size;
2256 int fde_encoding = DW_EH_PE_absptr;
2257 int per_encoding = DW_EH_PE_absptr;
2258 int lsda_encoding = DW_EH_PE_absptr;
2259 int return_reg;
2261 /* Don't emit a CIE if there won't be any FDEs. */
2262 if (fde_table_in_use == 0)
2263 return;
2265 /* If we make FDEs linkonce, we may have to emit an empty label for
2266 an FDE that wouldn't otherwise be emitted. We want to avoid
2267 having an FDE kept around when the function it refers to is
2268 discarded. Example where this matters: a primary function
2269 template in C++ requires EH information, but an explicit
2270 specialization doesn't. */
2271 if (TARGET_USES_WEAK_UNWIND_INFO
2272 && ! flag_asynchronous_unwind_tables
2273 && flag_exceptions
2274 && for_eh)
2275 for (i = 0; i < fde_table_in_use; i++)
2276 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2277 && !fde_table[i].uses_eh_lsda
2278 && ! DECL_WEAK (fde_table[i].decl))
2279 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2280 for_eh, /* empty */ 1);
2282 /* If we don't have any functions we'll want to unwind out of, don't
2283 emit any EH unwind information. Note that if exceptions aren't
2284 enabled, we won't have collected nothrow information, and if we
2285 asked for asynchronous tables, we always want this info. */
2286 if (for_eh)
2288 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2290 for (i = 0; i < fde_table_in_use; i++)
2291 if (fde_table[i].uses_eh_lsda)
2292 any_eh_needed = any_lsda_needed = true;
2293 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2294 any_eh_needed = true;
2295 else if (! fde_table[i].nothrow
2296 && ! fde_table[i].all_throwers_are_sibcalls)
2297 any_eh_needed = true;
2299 if (! any_eh_needed)
2300 return;
2303 /* We're going to be generating comments, so turn on app. */
2304 if (flag_debug_asm)
2305 app_enable ();
2307 if (for_eh)
2308 switch_to_eh_frame_section ();
2309 else
2311 if (!debug_frame_section)
2312 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2313 SECTION_DEBUG, NULL);
2314 switch_to_section (debug_frame_section);
2317 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2318 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2320 /* Output the CIE. */
2321 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2322 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2323 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2324 dw2_asm_output_data (4, 0xffffffff,
2325 "Initial length escape value indicating 64-bit DWARF extension");
2326 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2327 "Length of Common Information Entry");
2328 ASM_OUTPUT_LABEL (asm_out_file, l1);
2330 /* Now that the CIE pointer is PC-relative for EH,
2331 use 0 to identify the CIE. */
2332 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2333 (for_eh ? 0 : DWARF_CIE_ID),
2334 "CIE Identifier Tag");
2336 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2338 augmentation[0] = 0;
2339 augmentation_size = 0;
2340 if (for_eh)
2342 char *p;
2344 /* Augmentation:
2345 z Indicates that a uleb128 is present to size the
2346 augmentation section.
2347 L Indicates the encoding (and thus presence) of
2348 an LSDA pointer in the FDE augmentation.
2349 R Indicates a non-default pointer encoding for
2350 FDE code pointers.
2351 P Indicates the presence of an encoding + language
2352 personality routine in the CIE augmentation. */
2354 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2355 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2356 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2358 p = augmentation + 1;
2359 if (eh_personality_libfunc)
2361 *p++ = 'P';
2362 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2363 assemble_external_libcall (eh_personality_libfunc);
2365 if (any_lsda_needed)
2367 *p++ = 'L';
2368 augmentation_size += 1;
2370 if (fde_encoding != DW_EH_PE_absptr)
2372 *p++ = 'R';
2373 augmentation_size += 1;
2375 if (p > augmentation + 1)
2377 augmentation[0] = 'z';
2378 *p = '\0';
2381 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2382 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2384 int offset = ( 4 /* Length */
2385 + 4 /* CIE Id */
2386 + 1 /* CIE version */
2387 + strlen (augmentation) + 1 /* Augmentation */
2388 + size_of_uleb128 (1) /* Code alignment */
2389 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2390 + 1 /* RA column */
2391 + 1 /* Augmentation size */
2392 + 1 /* Personality encoding */ );
2393 int pad = -offset & (PTR_SIZE - 1);
2395 augmentation_size += pad;
2397 /* Augmentations should be small, so there's scarce need to
2398 iterate for a solution. Die if we exceed one uleb128 byte. */
2399 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2403 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2404 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2405 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2406 "CIE Data Alignment Factor");
2408 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2409 if (DW_CIE_VERSION == 1)
2410 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2411 else
2412 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2414 if (augmentation[0])
2416 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2417 if (eh_personality_libfunc)
2419 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2420 eh_data_format_name (per_encoding));
2421 dw2_asm_output_encoded_addr_rtx (per_encoding,
2422 eh_personality_libfunc,
2423 true, NULL);
2426 if (any_lsda_needed)
2427 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2428 eh_data_format_name (lsda_encoding));
2430 if (fde_encoding != DW_EH_PE_absptr)
2431 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2432 eh_data_format_name (fde_encoding));
2435 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2436 output_cfi (cfi, NULL, for_eh);
2438 /* Pad the CIE out to an address sized boundary. */
2439 ASM_OUTPUT_ALIGN (asm_out_file,
2440 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2441 ASM_OUTPUT_LABEL (asm_out_file, l2);
2443 /* Loop through all of the FDE's. */
2444 for (i = 0; i < fde_table_in_use; i++)
2446 fde = &fde_table[i];
2448 /* Don't emit EH unwind info for leaf functions that don't need it. */
2449 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2450 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2451 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2452 && !fde->uses_eh_lsda)
2453 continue;
2455 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2456 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2457 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2458 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2459 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2460 dw2_asm_output_data (4, 0xffffffff,
2461 "Initial length escape value indicating 64-bit DWARF extension");
2462 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2463 "FDE Length");
2464 ASM_OUTPUT_LABEL (asm_out_file, l1);
2466 if (for_eh)
2467 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2468 else
2469 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2470 debug_frame_section, "FDE CIE offset");
2472 if (for_eh)
2474 if (fde->dw_fde_switched_sections)
2476 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2477 fde->dw_fde_unlikely_section_label);
2478 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2479 fde->dw_fde_hot_section_label);
2480 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2481 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2482 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2483 "FDE initial location");
2484 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2485 fde->dw_fde_hot_section_end_label,
2486 fde->dw_fde_hot_section_label,
2487 "FDE address range");
2488 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2489 "FDE initial location");
2490 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2491 fde->dw_fde_unlikely_section_end_label,
2492 fde->dw_fde_unlikely_section_label,
2493 "FDE address range");
2495 else
2497 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2498 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2499 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2500 sym_ref,
2501 false,
2502 "FDE initial location");
2503 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2504 fde->dw_fde_end, fde->dw_fde_begin,
2505 "FDE address range");
2508 else
2510 if (fde->dw_fde_switched_sections)
2512 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2513 fde->dw_fde_hot_section_label,
2514 "FDE initial location");
2515 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2516 fde->dw_fde_hot_section_end_label,
2517 fde->dw_fde_hot_section_label,
2518 "FDE address range");
2519 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2520 fde->dw_fde_unlikely_section_label,
2521 "FDE initial location");
2522 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2523 fde->dw_fde_unlikely_section_end_label,
2524 fde->dw_fde_unlikely_section_label,
2525 "FDE address range");
2527 else
2529 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2530 "FDE initial location");
2531 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2532 fde->dw_fde_end, fde->dw_fde_begin,
2533 "FDE address range");
2537 if (augmentation[0])
2539 if (any_lsda_needed)
2541 int size = size_of_encoded_value (lsda_encoding);
2543 if (lsda_encoding == DW_EH_PE_aligned)
2545 int offset = ( 4 /* Length */
2546 + 4 /* CIE offset */
2547 + 2 * size_of_encoded_value (fde_encoding)
2548 + 1 /* Augmentation size */ );
2549 int pad = -offset & (PTR_SIZE - 1);
2551 size += pad;
2552 gcc_assert (size_of_uleb128 (size) == 1);
2555 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2557 if (fde->uses_eh_lsda)
2559 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2560 fde->funcdef_number);
2561 dw2_asm_output_encoded_addr_rtx (
2562 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2563 false, "Language Specific Data Area");
2565 else
2567 if (lsda_encoding == DW_EH_PE_aligned)
2568 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2569 dw2_asm_output_data
2570 (size_of_encoded_value (lsda_encoding), 0,
2571 "Language Specific Data Area (none)");
2574 else
2575 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2578 /* Loop through the Call Frame Instructions associated with
2579 this FDE. */
2580 fde->dw_fde_current_label = fde->dw_fde_begin;
2581 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2582 output_cfi (cfi, fde, for_eh);
2584 /* Pad the FDE out to an address sized boundary. */
2585 ASM_OUTPUT_ALIGN (asm_out_file,
2586 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2587 ASM_OUTPUT_LABEL (asm_out_file, l2);
2590 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2591 dw2_asm_output_data (4, 0, "End of Table");
2592 #ifdef MIPS_DEBUGGING_INFO
2593 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2594 get a value of 0. Putting .align 0 after the label fixes it. */
2595 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2596 #endif
2598 /* Turn off app to make assembly quicker. */
2599 if (flag_debug_asm)
2600 app_disable ();
2603 /* Output a marker (i.e. a label) for the beginning of a function, before
2604 the prologue. */
2606 void
2607 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2608 const char *file ATTRIBUTE_UNUSED)
2610 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2611 char * dup_label;
2612 dw_fde_ref fde;
2614 current_function_func_begin_label = NULL;
2616 #ifdef TARGET_UNWIND_INFO
2617 /* ??? current_function_func_begin_label is also used by except.c
2618 for call-site information. We must emit this label if it might
2619 be used. */
2620 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2621 && ! dwarf2out_do_frame ())
2622 return;
2623 #else
2624 if (! dwarf2out_do_frame ())
2625 return;
2626 #endif
2628 switch_to_section (function_section (current_function_decl));
2629 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2630 current_function_funcdef_no);
2631 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2632 current_function_funcdef_no);
2633 dup_label = xstrdup (label);
2634 current_function_func_begin_label = dup_label;
2636 #ifdef TARGET_UNWIND_INFO
2637 /* We can elide the fde allocation if we're not emitting debug info. */
2638 if (! dwarf2out_do_frame ())
2639 return;
2640 #endif
2642 /* Expand the fde table if necessary. */
2643 if (fde_table_in_use == fde_table_allocated)
2645 fde_table_allocated += FDE_TABLE_INCREMENT;
2646 fde_table = ggc_realloc (fde_table,
2647 fde_table_allocated * sizeof (dw_fde_node));
2648 memset (fde_table + fde_table_in_use, 0,
2649 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2652 /* Record the FDE associated with this function. */
2653 current_funcdef_fde = fde_table_in_use;
2655 /* Add the new FDE at the end of the fde_table. */
2656 fde = &fde_table[fde_table_in_use++];
2657 fde->decl = current_function_decl;
2658 fde->dw_fde_begin = dup_label;
2659 fde->dw_fde_current_label = dup_label;
2660 fde->dw_fde_hot_section_label = NULL;
2661 fde->dw_fde_hot_section_end_label = NULL;
2662 fde->dw_fde_unlikely_section_label = NULL;
2663 fde->dw_fde_unlikely_section_end_label = NULL;
2664 fde->dw_fde_switched_sections = false;
2665 fde->dw_fde_end = NULL;
2666 fde->dw_fde_cfi = NULL;
2667 fde->funcdef_number = current_function_funcdef_no;
2668 fde->nothrow = TREE_NOTHROW (current_function_decl);
2669 fde->uses_eh_lsda = crtl->uses_eh_lsda;
2670 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
2672 args_size = old_args_size = 0;
2674 /* We only want to output line number information for the genuine dwarf2
2675 prologue case, not the eh frame case. */
2676 #ifdef DWARF2_DEBUGGING_INFO
2677 if (file)
2678 dwarf2out_source_line (line, file);
2679 #endif
2682 /* Output a marker (i.e. a label) for the absolute end of the generated code
2683 for a function definition. This gets called *after* the epilogue code has
2684 been generated. */
2686 void
2687 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2688 const char *file ATTRIBUTE_UNUSED)
2690 dw_fde_ref fde;
2691 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2693 /* Output a label to mark the endpoint of the code generated for this
2694 function. */
2695 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2696 current_function_funcdef_no);
2697 ASM_OUTPUT_LABEL (asm_out_file, label);
2698 fde = current_fde ();
2699 gcc_assert (fde != NULL);
2700 fde->dw_fde_end = xstrdup (label);
2703 void
2704 dwarf2out_frame_init (void)
2706 /* Allocate the initial hunk of the fde_table. */
2707 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2708 fde_table_allocated = FDE_TABLE_INCREMENT;
2709 fde_table_in_use = 0;
2711 /* Generate the CFA instructions common to all FDE's. Do it now for the
2712 sake of lookup_cfa. */
2714 /* On entry, the Canonical Frame Address is at SP. */
2715 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2717 #ifdef DWARF2_UNWIND_INFO
2718 if (DWARF2_UNWIND_INFO || DWARF2_FRAME_INFO)
2719 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2720 #endif
2723 void
2724 dwarf2out_frame_finish (void)
2726 /* Output call frame information. */
2727 if (DWARF2_FRAME_INFO)
2728 output_call_frame_info (0);
2730 #ifndef TARGET_UNWIND_INFO
2731 /* Output another copy for the unwinder. */
2732 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2733 output_call_frame_info (1);
2734 #endif
2737 /* Note that the current function section is being used for code. */
2739 static void
2740 dwarf2out_note_section_used (void)
2742 section *sec = current_function_section ();
2743 if (sec == text_section)
2744 text_section_used = true;
2745 else if (sec == cold_text_section)
2746 cold_text_section_used = true;
2749 void
2750 dwarf2out_switch_text_section (void)
2752 dw_fde_ref fde = current_fde ();
2754 gcc_assert (cfun && fde);
2756 fde->dw_fde_switched_sections = true;
2757 fde->dw_fde_hot_section_label = crtl->subsections.hot_section_label;
2758 fde->dw_fde_hot_section_end_label = crtl->subsections.hot_section_end_label;
2759 fde->dw_fde_unlikely_section_label = crtl->subsections.cold_section_label;
2760 fde->dw_fde_unlikely_section_end_label = crtl->subsections.cold_section_end_label;
2761 have_multiple_function_sections = true;
2763 /* Reset the current label on switching text sections, so that we
2764 don't attempt to advance_loc4 between labels in different sections. */
2765 fde->dw_fde_current_label = NULL;
2767 /* There is no need to mark used sections when not debugging. */
2768 if (cold_text_section != NULL)
2769 dwarf2out_note_section_used ();
2771 #endif
2773 /* And now, the subset of the debugging information support code necessary
2774 for emitting location expressions. */
2776 /* Data about a single source file. */
2777 struct dwarf_file_data GTY(())
2779 const char * filename;
2780 int emitted_number;
2783 /* We need some way to distinguish DW_OP_addr with a direct symbol
2784 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2785 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2788 typedef struct dw_val_struct *dw_val_ref;
2789 typedef struct die_struct *dw_die_ref;
2790 typedef const struct die_struct *const_dw_die_ref;
2791 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2792 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2794 /* Each DIE may have a series of attribute/value pairs. Values
2795 can take on several forms. The forms that are used in this
2796 implementation are listed below. */
2798 enum dw_val_class
2800 dw_val_class_addr,
2801 dw_val_class_offset,
2802 dw_val_class_loc,
2803 dw_val_class_loc_list,
2804 dw_val_class_range_list,
2805 dw_val_class_const,
2806 dw_val_class_unsigned_const,
2807 dw_val_class_long_long,
2808 dw_val_class_vec,
2809 dw_val_class_flag,
2810 dw_val_class_die_ref,
2811 dw_val_class_fde_ref,
2812 dw_val_class_lbl_id,
2813 dw_val_class_lineptr,
2814 dw_val_class_str,
2815 dw_val_class_macptr,
2816 dw_val_class_file
2819 /* Describe a double word constant value. */
2820 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2822 typedef struct dw_long_long_struct GTY(())
2824 unsigned long hi;
2825 unsigned long low;
2827 dw_long_long_const;
2829 /* Describe a floating point constant value, or a vector constant value. */
2831 typedef struct dw_vec_struct GTY(())
2833 unsigned char * GTY((length ("%h.length"))) array;
2834 unsigned length;
2835 unsigned elt_size;
2837 dw_vec_const;
2839 /* The dw_val_node describes an attribute's value, as it is
2840 represented internally. */
2842 typedef struct dw_val_struct GTY(())
2844 enum dw_val_class val_class;
2845 union dw_val_struct_union
2847 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2848 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2849 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2850 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2851 HOST_WIDE_INT GTY ((default)) val_int;
2852 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2853 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2854 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2855 struct dw_val_die_union
2857 dw_die_ref die;
2858 int external;
2859 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2860 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2861 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2862 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2863 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2864 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2866 GTY ((desc ("%1.val_class"))) v;
2868 dw_val_node;
2870 /* Locations in memory are described using a sequence of stack machine
2871 operations. */
2873 typedef struct dw_loc_descr_struct GTY(())
2875 dw_loc_descr_ref dw_loc_next;
2876 enum dwarf_location_atom dw_loc_opc;
2877 dw_val_node dw_loc_oprnd1;
2878 dw_val_node dw_loc_oprnd2;
2879 int dw_loc_addr;
2881 dw_loc_descr_node;
2883 /* Location lists are ranges + location descriptions for that range,
2884 so you can track variables that are in different places over
2885 their entire life. */
2886 typedef struct dw_loc_list_struct GTY(())
2888 dw_loc_list_ref dw_loc_next;
2889 const char *begin; /* Label for begin address of range */
2890 const char *end; /* Label for end address of range */
2891 char *ll_symbol; /* Label for beginning of location list.
2892 Only on head of list */
2893 const char *section; /* Section this loclist is relative to */
2894 dw_loc_descr_ref expr;
2895 } dw_loc_list_node;
2897 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2899 static const char *dwarf_stack_op_name (unsigned);
2900 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2901 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2902 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2903 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2904 static unsigned long size_of_locs (dw_loc_descr_ref);
2905 static void output_loc_operands (dw_loc_descr_ref);
2906 static void output_loc_sequence (dw_loc_descr_ref);
2908 /* Convert a DWARF stack opcode into its string name. */
2910 static const char *
2911 dwarf_stack_op_name (unsigned int op)
2913 switch (op)
2915 case DW_OP_addr:
2916 case INTERNAL_DW_OP_tls_addr:
2917 return "DW_OP_addr";
2918 case DW_OP_deref:
2919 return "DW_OP_deref";
2920 case DW_OP_const1u:
2921 return "DW_OP_const1u";
2922 case DW_OP_const1s:
2923 return "DW_OP_const1s";
2924 case DW_OP_const2u:
2925 return "DW_OP_const2u";
2926 case DW_OP_const2s:
2927 return "DW_OP_const2s";
2928 case DW_OP_const4u:
2929 return "DW_OP_const4u";
2930 case DW_OP_const4s:
2931 return "DW_OP_const4s";
2932 case DW_OP_const8u:
2933 return "DW_OP_const8u";
2934 case DW_OP_const8s:
2935 return "DW_OP_const8s";
2936 case DW_OP_constu:
2937 return "DW_OP_constu";
2938 case DW_OP_consts:
2939 return "DW_OP_consts";
2940 case DW_OP_dup:
2941 return "DW_OP_dup";
2942 case DW_OP_drop:
2943 return "DW_OP_drop";
2944 case DW_OP_over:
2945 return "DW_OP_over";
2946 case DW_OP_pick:
2947 return "DW_OP_pick";
2948 case DW_OP_swap:
2949 return "DW_OP_swap";
2950 case DW_OP_rot:
2951 return "DW_OP_rot";
2952 case DW_OP_xderef:
2953 return "DW_OP_xderef";
2954 case DW_OP_abs:
2955 return "DW_OP_abs";
2956 case DW_OP_and:
2957 return "DW_OP_and";
2958 case DW_OP_div:
2959 return "DW_OP_div";
2960 case DW_OP_minus:
2961 return "DW_OP_minus";
2962 case DW_OP_mod:
2963 return "DW_OP_mod";
2964 case DW_OP_mul:
2965 return "DW_OP_mul";
2966 case DW_OP_neg:
2967 return "DW_OP_neg";
2968 case DW_OP_not:
2969 return "DW_OP_not";
2970 case DW_OP_or:
2971 return "DW_OP_or";
2972 case DW_OP_plus:
2973 return "DW_OP_plus";
2974 case DW_OP_plus_uconst:
2975 return "DW_OP_plus_uconst";
2976 case DW_OP_shl:
2977 return "DW_OP_shl";
2978 case DW_OP_shr:
2979 return "DW_OP_shr";
2980 case DW_OP_shra:
2981 return "DW_OP_shra";
2982 case DW_OP_xor:
2983 return "DW_OP_xor";
2984 case DW_OP_bra:
2985 return "DW_OP_bra";
2986 case DW_OP_eq:
2987 return "DW_OP_eq";
2988 case DW_OP_ge:
2989 return "DW_OP_ge";
2990 case DW_OP_gt:
2991 return "DW_OP_gt";
2992 case DW_OP_le:
2993 return "DW_OP_le";
2994 case DW_OP_lt:
2995 return "DW_OP_lt";
2996 case DW_OP_ne:
2997 return "DW_OP_ne";
2998 case DW_OP_skip:
2999 return "DW_OP_skip";
3000 case DW_OP_lit0:
3001 return "DW_OP_lit0";
3002 case DW_OP_lit1:
3003 return "DW_OP_lit1";
3004 case DW_OP_lit2:
3005 return "DW_OP_lit2";
3006 case DW_OP_lit3:
3007 return "DW_OP_lit3";
3008 case DW_OP_lit4:
3009 return "DW_OP_lit4";
3010 case DW_OP_lit5:
3011 return "DW_OP_lit5";
3012 case DW_OP_lit6:
3013 return "DW_OP_lit6";
3014 case DW_OP_lit7:
3015 return "DW_OP_lit7";
3016 case DW_OP_lit8:
3017 return "DW_OP_lit8";
3018 case DW_OP_lit9:
3019 return "DW_OP_lit9";
3020 case DW_OP_lit10:
3021 return "DW_OP_lit10";
3022 case DW_OP_lit11:
3023 return "DW_OP_lit11";
3024 case DW_OP_lit12:
3025 return "DW_OP_lit12";
3026 case DW_OP_lit13:
3027 return "DW_OP_lit13";
3028 case DW_OP_lit14:
3029 return "DW_OP_lit14";
3030 case DW_OP_lit15:
3031 return "DW_OP_lit15";
3032 case DW_OP_lit16:
3033 return "DW_OP_lit16";
3034 case DW_OP_lit17:
3035 return "DW_OP_lit17";
3036 case DW_OP_lit18:
3037 return "DW_OP_lit18";
3038 case DW_OP_lit19:
3039 return "DW_OP_lit19";
3040 case DW_OP_lit20:
3041 return "DW_OP_lit20";
3042 case DW_OP_lit21:
3043 return "DW_OP_lit21";
3044 case DW_OP_lit22:
3045 return "DW_OP_lit22";
3046 case DW_OP_lit23:
3047 return "DW_OP_lit23";
3048 case DW_OP_lit24:
3049 return "DW_OP_lit24";
3050 case DW_OP_lit25:
3051 return "DW_OP_lit25";
3052 case DW_OP_lit26:
3053 return "DW_OP_lit26";
3054 case DW_OP_lit27:
3055 return "DW_OP_lit27";
3056 case DW_OP_lit28:
3057 return "DW_OP_lit28";
3058 case DW_OP_lit29:
3059 return "DW_OP_lit29";
3060 case DW_OP_lit30:
3061 return "DW_OP_lit30";
3062 case DW_OP_lit31:
3063 return "DW_OP_lit31";
3064 case DW_OP_reg0:
3065 return "DW_OP_reg0";
3066 case DW_OP_reg1:
3067 return "DW_OP_reg1";
3068 case DW_OP_reg2:
3069 return "DW_OP_reg2";
3070 case DW_OP_reg3:
3071 return "DW_OP_reg3";
3072 case DW_OP_reg4:
3073 return "DW_OP_reg4";
3074 case DW_OP_reg5:
3075 return "DW_OP_reg5";
3076 case DW_OP_reg6:
3077 return "DW_OP_reg6";
3078 case DW_OP_reg7:
3079 return "DW_OP_reg7";
3080 case DW_OP_reg8:
3081 return "DW_OP_reg8";
3082 case DW_OP_reg9:
3083 return "DW_OP_reg9";
3084 case DW_OP_reg10:
3085 return "DW_OP_reg10";
3086 case DW_OP_reg11:
3087 return "DW_OP_reg11";
3088 case DW_OP_reg12:
3089 return "DW_OP_reg12";
3090 case DW_OP_reg13:
3091 return "DW_OP_reg13";
3092 case DW_OP_reg14:
3093 return "DW_OP_reg14";
3094 case DW_OP_reg15:
3095 return "DW_OP_reg15";
3096 case DW_OP_reg16:
3097 return "DW_OP_reg16";
3098 case DW_OP_reg17:
3099 return "DW_OP_reg17";
3100 case DW_OP_reg18:
3101 return "DW_OP_reg18";
3102 case DW_OP_reg19:
3103 return "DW_OP_reg19";
3104 case DW_OP_reg20:
3105 return "DW_OP_reg20";
3106 case DW_OP_reg21:
3107 return "DW_OP_reg21";
3108 case DW_OP_reg22:
3109 return "DW_OP_reg22";
3110 case DW_OP_reg23:
3111 return "DW_OP_reg23";
3112 case DW_OP_reg24:
3113 return "DW_OP_reg24";
3114 case DW_OP_reg25:
3115 return "DW_OP_reg25";
3116 case DW_OP_reg26:
3117 return "DW_OP_reg26";
3118 case DW_OP_reg27:
3119 return "DW_OP_reg27";
3120 case DW_OP_reg28:
3121 return "DW_OP_reg28";
3122 case DW_OP_reg29:
3123 return "DW_OP_reg29";
3124 case DW_OP_reg30:
3125 return "DW_OP_reg30";
3126 case DW_OP_reg31:
3127 return "DW_OP_reg31";
3128 case DW_OP_breg0:
3129 return "DW_OP_breg0";
3130 case DW_OP_breg1:
3131 return "DW_OP_breg1";
3132 case DW_OP_breg2:
3133 return "DW_OP_breg2";
3134 case DW_OP_breg3:
3135 return "DW_OP_breg3";
3136 case DW_OP_breg4:
3137 return "DW_OP_breg4";
3138 case DW_OP_breg5:
3139 return "DW_OP_breg5";
3140 case DW_OP_breg6:
3141 return "DW_OP_breg6";
3142 case DW_OP_breg7:
3143 return "DW_OP_breg7";
3144 case DW_OP_breg8:
3145 return "DW_OP_breg8";
3146 case DW_OP_breg9:
3147 return "DW_OP_breg9";
3148 case DW_OP_breg10:
3149 return "DW_OP_breg10";
3150 case DW_OP_breg11:
3151 return "DW_OP_breg11";
3152 case DW_OP_breg12:
3153 return "DW_OP_breg12";
3154 case DW_OP_breg13:
3155 return "DW_OP_breg13";
3156 case DW_OP_breg14:
3157 return "DW_OP_breg14";
3158 case DW_OP_breg15:
3159 return "DW_OP_breg15";
3160 case DW_OP_breg16:
3161 return "DW_OP_breg16";
3162 case DW_OP_breg17:
3163 return "DW_OP_breg17";
3164 case DW_OP_breg18:
3165 return "DW_OP_breg18";
3166 case DW_OP_breg19:
3167 return "DW_OP_breg19";
3168 case DW_OP_breg20:
3169 return "DW_OP_breg20";
3170 case DW_OP_breg21:
3171 return "DW_OP_breg21";
3172 case DW_OP_breg22:
3173 return "DW_OP_breg22";
3174 case DW_OP_breg23:
3175 return "DW_OP_breg23";
3176 case DW_OP_breg24:
3177 return "DW_OP_breg24";
3178 case DW_OP_breg25:
3179 return "DW_OP_breg25";
3180 case DW_OP_breg26:
3181 return "DW_OP_breg26";
3182 case DW_OP_breg27:
3183 return "DW_OP_breg27";
3184 case DW_OP_breg28:
3185 return "DW_OP_breg28";
3186 case DW_OP_breg29:
3187 return "DW_OP_breg29";
3188 case DW_OP_breg30:
3189 return "DW_OP_breg30";
3190 case DW_OP_breg31:
3191 return "DW_OP_breg31";
3192 case DW_OP_regx:
3193 return "DW_OP_regx";
3194 case DW_OP_fbreg:
3195 return "DW_OP_fbreg";
3196 case DW_OP_bregx:
3197 return "DW_OP_bregx";
3198 case DW_OP_piece:
3199 return "DW_OP_piece";
3200 case DW_OP_deref_size:
3201 return "DW_OP_deref_size";
3202 case DW_OP_xderef_size:
3203 return "DW_OP_xderef_size";
3204 case DW_OP_nop:
3205 return "DW_OP_nop";
3206 case DW_OP_push_object_address:
3207 return "DW_OP_push_object_address";
3208 case DW_OP_call2:
3209 return "DW_OP_call2";
3210 case DW_OP_call4:
3211 return "DW_OP_call4";
3212 case DW_OP_call_ref:
3213 return "DW_OP_call_ref";
3214 case DW_OP_GNU_push_tls_address:
3215 return "DW_OP_GNU_push_tls_address";
3216 case DW_OP_GNU_uninit:
3217 return "DW_OP_GNU_uninit";
3218 default:
3219 return "OP_<unknown>";
3223 /* Return a pointer to a newly allocated location description. Location
3224 descriptions are simple expression terms that can be strung
3225 together to form more complicated location (address) descriptions. */
3227 static inline dw_loc_descr_ref
3228 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3229 unsigned HOST_WIDE_INT oprnd2)
3231 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3233 descr->dw_loc_opc = op;
3234 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3235 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3236 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3237 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3239 return descr;
3242 /* Add a location description term to a location description expression. */
3244 static inline void
3245 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3247 dw_loc_descr_ref *d;
3249 /* Find the end of the chain. */
3250 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3253 *d = descr;
3256 /* Return the size of a location descriptor. */
3258 static unsigned long
3259 size_of_loc_descr (dw_loc_descr_ref loc)
3261 unsigned long size = 1;
3263 switch (loc->dw_loc_opc)
3265 case DW_OP_addr:
3266 case INTERNAL_DW_OP_tls_addr:
3267 size += DWARF2_ADDR_SIZE;
3268 break;
3269 case DW_OP_const1u:
3270 case DW_OP_const1s:
3271 size += 1;
3272 break;
3273 case DW_OP_const2u:
3274 case DW_OP_const2s:
3275 size += 2;
3276 break;
3277 case DW_OP_const4u:
3278 case DW_OP_const4s:
3279 size += 4;
3280 break;
3281 case DW_OP_const8u:
3282 case DW_OP_const8s:
3283 size += 8;
3284 break;
3285 case DW_OP_constu:
3286 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3287 break;
3288 case DW_OP_consts:
3289 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3290 break;
3291 case DW_OP_pick:
3292 size += 1;
3293 break;
3294 case DW_OP_plus_uconst:
3295 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3296 break;
3297 case DW_OP_skip:
3298 case DW_OP_bra:
3299 size += 2;
3300 break;
3301 case DW_OP_breg0:
3302 case DW_OP_breg1:
3303 case DW_OP_breg2:
3304 case DW_OP_breg3:
3305 case DW_OP_breg4:
3306 case DW_OP_breg5:
3307 case DW_OP_breg6:
3308 case DW_OP_breg7:
3309 case DW_OP_breg8:
3310 case DW_OP_breg9:
3311 case DW_OP_breg10:
3312 case DW_OP_breg11:
3313 case DW_OP_breg12:
3314 case DW_OP_breg13:
3315 case DW_OP_breg14:
3316 case DW_OP_breg15:
3317 case DW_OP_breg16:
3318 case DW_OP_breg17:
3319 case DW_OP_breg18:
3320 case DW_OP_breg19:
3321 case DW_OP_breg20:
3322 case DW_OP_breg21:
3323 case DW_OP_breg22:
3324 case DW_OP_breg23:
3325 case DW_OP_breg24:
3326 case DW_OP_breg25:
3327 case DW_OP_breg26:
3328 case DW_OP_breg27:
3329 case DW_OP_breg28:
3330 case DW_OP_breg29:
3331 case DW_OP_breg30:
3332 case DW_OP_breg31:
3333 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3334 break;
3335 case DW_OP_regx:
3336 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3337 break;
3338 case DW_OP_fbreg:
3339 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3340 break;
3341 case DW_OP_bregx:
3342 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3343 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3344 break;
3345 case DW_OP_piece:
3346 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3347 break;
3348 case DW_OP_deref_size:
3349 case DW_OP_xderef_size:
3350 size += 1;
3351 break;
3352 case DW_OP_call2:
3353 size += 2;
3354 break;
3355 case DW_OP_call4:
3356 size += 4;
3357 break;
3358 case DW_OP_call_ref:
3359 size += DWARF2_ADDR_SIZE;
3360 break;
3361 default:
3362 break;
3365 return size;
3368 /* Return the size of a series of location descriptors. */
3370 static unsigned long
3371 size_of_locs (dw_loc_descr_ref loc)
3373 dw_loc_descr_ref l;
3374 unsigned long size;
3376 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3377 field, to avoid writing to a PCH file. */
3378 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3380 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3381 break;
3382 size += size_of_loc_descr (l);
3384 if (! l)
3385 return size;
3387 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3389 l->dw_loc_addr = size;
3390 size += size_of_loc_descr (l);
3393 return size;
3396 /* Output location description stack opcode's operands (if any). */
3398 static void
3399 output_loc_operands (dw_loc_descr_ref loc)
3401 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3402 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3404 switch (loc->dw_loc_opc)
3406 #ifdef DWARF2_DEBUGGING_INFO
3407 case DW_OP_addr:
3408 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3409 break;
3410 case DW_OP_const2u:
3411 case DW_OP_const2s:
3412 dw2_asm_output_data (2, val1->v.val_int, NULL);
3413 break;
3414 case DW_OP_const4u:
3415 case DW_OP_const4s:
3416 dw2_asm_output_data (4, val1->v.val_int, NULL);
3417 break;
3418 case DW_OP_const8u:
3419 case DW_OP_const8s:
3420 gcc_assert (HOST_BITS_PER_LONG >= 64);
3421 dw2_asm_output_data (8, val1->v.val_int, NULL);
3422 break;
3423 case DW_OP_skip:
3424 case DW_OP_bra:
3426 int offset;
3428 gcc_assert (val1->val_class == dw_val_class_loc);
3429 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3431 dw2_asm_output_data (2, offset, NULL);
3433 break;
3434 #else
3435 case DW_OP_addr:
3436 case DW_OP_const2u:
3437 case DW_OP_const2s:
3438 case DW_OP_const4u:
3439 case DW_OP_const4s:
3440 case DW_OP_const8u:
3441 case DW_OP_const8s:
3442 case DW_OP_skip:
3443 case DW_OP_bra:
3444 /* We currently don't make any attempt to make sure these are
3445 aligned properly like we do for the main unwind info, so
3446 don't support emitting things larger than a byte if we're
3447 only doing unwinding. */
3448 gcc_unreachable ();
3449 #endif
3450 case DW_OP_const1u:
3451 case DW_OP_const1s:
3452 dw2_asm_output_data (1, val1->v.val_int, NULL);
3453 break;
3454 case DW_OP_constu:
3455 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3456 break;
3457 case DW_OP_consts:
3458 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3459 break;
3460 case DW_OP_pick:
3461 dw2_asm_output_data (1, val1->v.val_int, NULL);
3462 break;
3463 case DW_OP_plus_uconst:
3464 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3465 break;
3466 case DW_OP_breg0:
3467 case DW_OP_breg1:
3468 case DW_OP_breg2:
3469 case DW_OP_breg3:
3470 case DW_OP_breg4:
3471 case DW_OP_breg5:
3472 case DW_OP_breg6:
3473 case DW_OP_breg7:
3474 case DW_OP_breg8:
3475 case DW_OP_breg9:
3476 case DW_OP_breg10:
3477 case DW_OP_breg11:
3478 case DW_OP_breg12:
3479 case DW_OP_breg13:
3480 case DW_OP_breg14:
3481 case DW_OP_breg15:
3482 case DW_OP_breg16:
3483 case DW_OP_breg17:
3484 case DW_OP_breg18:
3485 case DW_OP_breg19:
3486 case DW_OP_breg20:
3487 case DW_OP_breg21:
3488 case DW_OP_breg22:
3489 case DW_OP_breg23:
3490 case DW_OP_breg24:
3491 case DW_OP_breg25:
3492 case DW_OP_breg26:
3493 case DW_OP_breg27:
3494 case DW_OP_breg28:
3495 case DW_OP_breg29:
3496 case DW_OP_breg30:
3497 case DW_OP_breg31:
3498 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3499 break;
3500 case DW_OP_regx:
3501 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3502 break;
3503 case DW_OP_fbreg:
3504 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3505 break;
3506 case DW_OP_bregx:
3507 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3508 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3509 break;
3510 case DW_OP_piece:
3511 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3512 break;
3513 case DW_OP_deref_size:
3514 case DW_OP_xderef_size:
3515 dw2_asm_output_data (1, val1->v.val_int, NULL);
3516 break;
3518 case INTERNAL_DW_OP_tls_addr:
3519 if (targetm.asm_out.output_dwarf_dtprel)
3521 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3522 DWARF2_ADDR_SIZE,
3523 val1->v.val_addr);
3524 fputc ('\n', asm_out_file);
3526 else
3527 gcc_unreachable ();
3528 break;
3530 default:
3531 /* Other codes have no operands. */
3532 break;
3536 /* Output a sequence of location operations. */
3538 static void
3539 output_loc_sequence (dw_loc_descr_ref loc)
3541 for (; loc != NULL; loc = loc->dw_loc_next)
3543 /* Output the opcode. */
3544 dw2_asm_output_data (1, loc->dw_loc_opc,
3545 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3547 /* Output the operand(s) (if any). */
3548 output_loc_operands (loc);
3552 /* This routine will generate the correct assembly data for a location
3553 description based on a cfi entry with a complex address. */
3555 static void
3556 output_cfa_loc (dw_cfi_ref cfi)
3558 dw_loc_descr_ref loc;
3559 unsigned long size;
3561 /* Output the size of the block. */
3562 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3563 size = size_of_locs (loc);
3564 dw2_asm_output_data_uleb128 (size, NULL);
3566 /* Now output the operations themselves. */
3567 output_loc_sequence (loc);
3570 /* This function builds a dwarf location descriptor sequence from a
3571 dw_cfa_location, adding the given OFFSET to the result of the
3572 expression. */
3574 static struct dw_loc_descr_struct *
3575 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3577 struct dw_loc_descr_struct *head, *tmp;
3579 offset += cfa->offset;
3581 if (cfa->indirect)
3583 if (cfa->base_offset)
3585 if (cfa->reg <= 31)
3586 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3587 else
3588 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3590 else if (cfa->reg <= 31)
3591 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3592 else
3593 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3595 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3596 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3597 add_loc_descr (&head, tmp);
3598 if (offset != 0)
3600 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3601 add_loc_descr (&head, tmp);
3604 else
3606 if (offset == 0)
3607 if (cfa->reg <= 31)
3608 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3609 else
3610 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3611 else if (cfa->reg <= 31)
3612 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3613 else
3614 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3617 return head;
3620 /* This function fills in aa dw_cfa_location structure from a dwarf location
3621 descriptor sequence. */
3623 static void
3624 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3626 struct dw_loc_descr_struct *ptr;
3627 cfa->offset = 0;
3628 cfa->base_offset = 0;
3629 cfa->indirect = 0;
3630 cfa->reg = -1;
3632 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3634 enum dwarf_location_atom op = ptr->dw_loc_opc;
3636 switch (op)
3638 case DW_OP_reg0:
3639 case DW_OP_reg1:
3640 case DW_OP_reg2:
3641 case DW_OP_reg3:
3642 case DW_OP_reg4:
3643 case DW_OP_reg5:
3644 case DW_OP_reg6:
3645 case DW_OP_reg7:
3646 case DW_OP_reg8:
3647 case DW_OP_reg9:
3648 case DW_OP_reg10:
3649 case DW_OP_reg11:
3650 case DW_OP_reg12:
3651 case DW_OP_reg13:
3652 case DW_OP_reg14:
3653 case DW_OP_reg15:
3654 case DW_OP_reg16:
3655 case DW_OP_reg17:
3656 case DW_OP_reg18:
3657 case DW_OP_reg19:
3658 case DW_OP_reg20:
3659 case DW_OP_reg21:
3660 case DW_OP_reg22:
3661 case DW_OP_reg23:
3662 case DW_OP_reg24:
3663 case DW_OP_reg25:
3664 case DW_OP_reg26:
3665 case DW_OP_reg27:
3666 case DW_OP_reg28:
3667 case DW_OP_reg29:
3668 case DW_OP_reg30:
3669 case DW_OP_reg31:
3670 cfa->reg = op - DW_OP_reg0;
3671 break;
3672 case DW_OP_regx:
3673 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3674 break;
3675 case DW_OP_breg0:
3676 case DW_OP_breg1:
3677 case DW_OP_breg2:
3678 case DW_OP_breg3:
3679 case DW_OP_breg4:
3680 case DW_OP_breg5:
3681 case DW_OP_breg6:
3682 case DW_OP_breg7:
3683 case DW_OP_breg8:
3684 case DW_OP_breg9:
3685 case DW_OP_breg10:
3686 case DW_OP_breg11:
3687 case DW_OP_breg12:
3688 case DW_OP_breg13:
3689 case DW_OP_breg14:
3690 case DW_OP_breg15:
3691 case DW_OP_breg16:
3692 case DW_OP_breg17:
3693 case DW_OP_breg18:
3694 case DW_OP_breg19:
3695 case DW_OP_breg20:
3696 case DW_OP_breg21:
3697 case DW_OP_breg22:
3698 case DW_OP_breg23:
3699 case DW_OP_breg24:
3700 case DW_OP_breg25:
3701 case DW_OP_breg26:
3702 case DW_OP_breg27:
3703 case DW_OP_breg28:
3704 case DW_OP_breg29:
3705 case DW_OP_breg30:
3706 case DW_OP_breg31:
3707 cfa->reg = op - DW_OP_breg0;
3708 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3709 break;
3710 case DW_OP_bregx:
3711 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3712 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3713 break;
3714 case DW_OP_deref:
3715 cfa->indirect = 1;
3716 break;
3717 case DW_OP_plus_uconst:
3718 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3719 break;
3720 default:
3721 internal_error ("DW_LOC_OP %s not implemented",
3722 dwarf_stack_op_name (ptr->dw_loc_opc));
3726 #endif /* .debug_frame support */
3728 /* And now, the support for symbolic debugging information. */
3729 #ifdef DWARF2_DEBUGGING_INFO
3731 /* .debug_str support. */
3732 static int output_indirect_string (void **, void *);
3734 static void dwarf2out_init (const char *);
3735 static void dwarf2out_finish (const char *);
3736 static void dwarf2out_define (unsigned int, const char *);
3737 static void dwarf2out_undef (unsigned int, const char *);
3738 static void dwarf2out_start_source_file (unsigned, const char *);
3739 static void dwarf2out_end_source_file (unsigned);
3740 static void dwarf2out_begin_block (unsigned, unsigned);
3741 static void dwarf2out_end_block (unsigned, unsigned);
3742 static bool dwarf2out_ignore_block (const_tree);
3743 static void dwarf2out_global_decl (tree);
3744 static void dwarf2out_type_decl (tree, int);
3745 static void dwarf2out_imported_module_or_decl (tree, tree);
3746 static void dwarf2out_abstract_function (tree);
3747 static void dwarf2out_var_location (rtx);
3748 static void dwarf2out_begin_function (tree);
3750 /* The debug hooks structure. */
3752 const struct gcc_debug_hooks dwarf2_debug_hooks =
3754 dwarf2out_init,
3755 dwarf2out_finish,
3756 dwarf2out_define,
3757 dwarf2out_undef,
3758 dwarf2out_start_source_file,
3759 dwarf2out_end_source_file,
3760 dwarf2out_begin_block,
3761 dwarf2out_end_block,
3762 dwarf2out_ignore_block,
3763 dwarf2out_source_line,
3764 dwarf2out_begin_prologue,
3765 debug_nothing_int_charstar, /* end_prologue */
3766 dwarf2out_end_epilogue,
3767 dwarf2out_begin_function,
3768 debug_nothing_int, /* end_function */
3769 dwarf2out_decl, /* function_decl */
3770 dwarf2out_global_decl,
3771 dwarf2out_type_decl, /* type_decl */
3772 dwarf2out_imported_module_or_decl,
3773 debug_nothing_tree, /* deferred_inline_function */
3774 /* The DWARF 2 backend tries to reduce debugging bloat by not
3775 emitting the abstract description of inline functions until
3776 something tries to reference them. */
3777 dwarf2out_abstract_function, /* outlining_inline_function */
3778 debug_nothing_rtx, /* label */
3779 debug_nothing_int, /* handle_pch */
3780 dwarf2out_var_location,
3781 dwarf2out_switch_text_section,
3782 1 /* start_end_main_source_file */
3784 #endif
3786 /* NOTE: In the comments in this file, many references are made to
3787 "Debugging Information Entries". This term is abbreviated as `DIE'
3788 throughout the remainder of this file. */
3790 /* An internal representation of the DWARF output is built, and then
3791 walked to generate the DWARF debugging info. The walk of the internal
3792 representation is done after the entire program has been compiled.
3793 The types below are used to describe the internal representation. */
3795 /* Various DIE's use offsets relative to the beginning of the
3796 .debug_info section to refer to each other. */
3798 typedef long int dw_offset;
3800 /* Define typedefs here to avoid circular dependencies. */
3802 typedef struct dw_attr_struct *dw_attr_ref;
3803 typedef struct dw_line_info_struct *dw_line_info_ref;
3804 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3805 typedef struct pubname_struct *pubname_ref;
3806 typedef struct dw_ranges_struct *dw_ranges_ref;
3807 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
3809 /* Each entry in the line_info_table maintains the file and
3810 line number associated with the label generated for that
3811 entry. The label gives the PC value associated with
3812 the line number entry. */
3814 typedef struct dw_line_info_struct GTY(())
3816 unsigned long dw_file_num;
3817 unsigned long dw_line_num;
3819 dw_line_info_entry;
3821 /* Line information for functions in separate sections; each one gets its
3822 own sequence. */
3823 typedef struct dw_separate_line_info_struct GTY(())
3825 unsigned long dw_file_num;
3826 unsigned long dw_line_num;
3827 unsigned long function;
3829 dw_separate_line_info_entry;
3831 /* Each DIE attribute has a field specifying the attribute kind,
3832 a link to the next attribute in the chain, and an attribute value.
3833 Attributes are typically linked below the DIE they modify. */
3835 typedef struct dw_attr_struct GTY(())
3837 enum dwarf_attribute dw_attr;
3838 dw_val_node dw_attr_val;
3840 dw_attr_node;
3842 DEF_VEC_O(dw_attr_node);
3843 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3845 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3846 The children of each node form a circular list linked by
3847 die_sib. die_child points to the node *before* the "first" child node. */
3849 typedef struct die_struct GTY((chain_circular ("%h.die_sib")))
3851 enum dwarf_tag die_tag;
3852 char *die_symbol;
3853 VEC(dw_attr_node,gc) * die_attr;
3854 dw_die_ref die_parent;
3855 dw_die_ref die_child;
3856 dw_die_ref die_sib;
3857 dw_die_ref die_definition; /* ref from a specification to its definition */
3858 dw_offset die_offset;
3859 unsigned long die_abbrev;
3860 int die_mark;
3861 /* Die is used and must not be pruned as unused. */
3862 int die_perennial_p;
3863 unsigned int decl_id;
3865 die_node;
3867 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3868 #define FOR_EACH_CHILD(die, c, expr) do { \
3869 c = die->die_child; \
3870 if (c) do { \
3871 c = c->die_sib; \
3872 expr; \
3873 } while (c != die->die_child); \
3874 } while (0)
3876 /* The pubname structure */
3878 typedef struct pubname_struct GTY(())
3880 dw_die_ref die;
3881 const char *name;
3883 pubname_entry;
3885 DEF_VEC_O(pubname_entry);
3886 DEF_VEC_ALLOC_O(pubname_entry, gc);
3888 struct dw_ranges_struct GTY(())
3890 /* If this is positive, it's a block number, otherwise it's a
3891 bitwise-negated index into dw_ranges_by_label. */
3892 int num;
3895 struct dw_ranges_by_label_struct GTY(())
3897 const char *begin;
3898 const char *end;
3901 /* The limbo die list structure. */
3902 typedef struct limbo_die_struct GTY(())
3904 dw_die_ref die;
3905 tree created_for;
3906 struct limbo_die_struct *next;
3908 limbo_die_node;
3910 /* How to start an assembler comment. */
3911 #ifndef ASM_COMMENT_START
3912 #define ASM_COMMENT_START ";#"
3913 #endif
3915 /* Define a macro which returns nonzero for a TYPE_DECL which was
3916 implicitly generated for a tagged type.
3918 Note that unlike the gcc front end (which generates a NULL named
3919 TYPE_DECL node for each complete tagged type, each array type, and
3920 each function type node created) the g++ front end generates a
3921 _named_ TYPE_DECL node for each tagged type node created.
3922 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3923 generate a DW_TAG_typedef DIE for them. */
3925 #define TYPE_DECL_IS_STUB(decl) \
3926 (DECL_NAME (decl) == NULL_TREE \
3927 || (DECL_ARTIFICIAL (decl) \
3928 && is_tagged_type (TREE_TYPE (decl)) \
3929 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3930 /* This is necessary for stub decls that \
3931 appear in nested inline functions. */ \
3932 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3933 && (decl_ultimate_origin (decl) \
3934 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3936 /* Information concerning the compilation unit's programming
3937 language, and compiler version. */
3939 /* Fixed size portion of the DWARF compilation unit header. */
3940 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3941 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3943 /* Fixed size portion of public names info. */
3944 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3946 /* Fixed size portion of the address range info. */
3947 #define DWARF_ARANGES_HEADER_SIZE \
3948 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3949 DWARF2_ADDR_SIZE * 2) \
3950 - DWARF_INITIAL_LENGTH_SIZE)
3952 /* Size of padding portion in the address range info. It must be
3953 aligned to twice the pointer size. */
3954 #define DWARF_ARANGES_PAD_SIZE \
3955 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3956 DWARF2_ADDR_SIZE * 2) \
3957 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3959 /* Use assembler line directives if available. */
3960 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3961 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3962 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3963 #else
3964 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3965 #endif
3966 #endif
3968 /* Minimum line offset in a special line info. opcode.
3969 This value was chosen to give a reasonable range of values. */
3970 #define DWARF_LINE_BASE -10
3972 /* First special line opcode - leave room for the standard opcodes. */
3973 #define DWARF_LINE_OPCODE_BASE 10
3975 /* Range of line offsets in a special line info. opcode. */
3976 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3978 /* Flag that indicates the initial value of the is_stmt_start flag.
3979 In the present implementation, we do not mark any lines as
3980 the beginning of a source statement, because that information
3981 is not made available by the GCC front-end. */
3982 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3984 #ifdef DWARF2_DEBUGGING_INFO
3985 /* This location is used by calc_die_sizes() to keep track
3986 the offset of each DIE within the .debug_info section. */
3987 static unsigned long next_die_offset;
3988 #endif
3990 /* Record the root of the DIE's built for the current compilation unit. */
3991 static GTY(()) dw_die_ref comp_unit_die;
3993 /* A list of DIEs with a NULL parent waiting to be relocated. */
3994 static GTY(()) limbo_die_node *limbo_die_list;
3996 /* Filenames referenced by this compilation unit. */
3997 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3999 /* A hash table of references to DIE's that describe declarations.
4000 The key is a DECL_UID() which is a unique number identifying each decl. */
4001 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
4003 /* Node of the variable location list. */
4004 struct var_loc_node GTY ((chain_next ("%h.next")))
4006 rtx GTY (()) var_loc_note;
4007 const char * GTY (()) label;
4008 const char * GTY (()) section_label;
4009 struct var_loc_node * GTY (()) next;
4012 /* Variable location list. */
4013 struct var_loc_list_def GTY (())
4015 struct var_loc_node * GTY (()) first;
4017 /* Do not mark the last element of the chained list because
4018 it is marked through the chain. */
4019 struct var_loc_node * GTY ((skip ("%h"))) last;
4021 /* DECL_UID of the variable decl. */
4022 unsigned int decl_id;
4024 typedef struct var_loc_list_def var_loc_list;
4027 /* Table of decl location linked lists. */
4028 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
4030 /* A pointer to the base of a list of references to DIE's that
4031 are uniquely identified by their tag, presence/absence of
4032 children DIE's, and list of attribute/value pairs. */
4033 static GTY((length ("abbrev_die_table_allocated")))
4034 dw_die_ref *abbrev_die_table;
4036 /* Number of elements currently allocated for abbrev_die_table. */
4037 static GTY(()) unsigned abbrev_die_table_allocated;
4039 /* Number of elements in type_die_table currently in use. */
4040 static GTY(()) unsigned abbrev_die_table_in_use;
4042 /* Size (in elements) of increments by which we may expand the
4043 abbrev_die_table. */
4044 #define ABBREV_DIE_TABLE_INCREMENT 256
4046 /* A pointer to the base of a table that contains line information
4047 for each source code line in .text in the compilation unit. */
4048 static GTY((length ("line_info_table_allocated")))
4049 dw_line_info_ref line_info_table;
4051 /* Number of elements currently allocated for line_info_table. */
4052 static GTY(()) unsigned line_info_table_allocated;
4054 /* Number of elements in line_info_table currently in use. */
4055 static GTY(()) unsigned line_info_table_in_use;
4057 /* A pointer to the base of a table that contains line information
4058 for each source code line outside of .text in the compilation unit. */
4059 static GTY ((length ("separate_line_info_table_allocated")))
4060 dw_separate_line_info_ref separate_line_info_table;
4062 /* Number of elements currently allocated for separate_line_info_table. */
4063 static GTY(()) unsigned separate_line_info_table_allocated;
4065 /* Number of elements in separate_line_info_table currently in use. */
4066 static GTY(()) unsigned separate_line_info_table_in_use;
4068 /* Size (in elements) of increments by which we may expand the
4069 line_info_table. */
4070 #define LINE_INFO_TABLE_INCREMENT 1024
4072 /* A pointer to the base of a table that contains a list of publicly
4073 accessible names. */
4074 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
4076 /* A pointer to the base of a table that contains a list of publicly
4077 accessible types. */
4078 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
4080 /* Array of dies for which we should generate .debug_arange info. */
4081 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
4083 /* Number of elements currently allocated for arange_table. */
4084 static GTY(()) unsigned arange_table_allocated;
4086 /* Number of elements in arange_table currently in use. */
4087 static GTY(()) unsigned arange_table_in_use;
4089 /* Size (in elements) of increments by which we may expand the
4090 arange_table. */
4091 #define ARANGE_TABLE_INCREMENT 64
4093 /* Array of dies for which we should generate .debug_ranges info. */
4094 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
4096 /* Number of elements currently allocated for ranges_table. */
4097 static GTY(()) unsigned ranges_table_allocated;
4099 /* Number of elements in ranges_table currently in use. */
4100 static GTY(()) unsigned ranges_table_in_use;
4102 /* Array of pairs of labels referenced in ranges_table. */
4103 static GTY ((length ("ranges_by_label_allocated")))
4104 dw_ranges_by_label_ref ranges_by_label;
4106 /* Number of elements currently allocated for ranges_by_label. */
4107 static GTY(()) unsigned ranges_by_label_allocated;
4109 /* Number of elements in ranges_by_label currently in use. */
4110 static GTY(()) unsigned ranges_by_label_in_use;
4112 /* Size (in elements) of increments by which we may expand the
4113 ranges_table. */
4114 #define RANGES_TABLE_INCREMENT 64
4116 /* Whether we have location lists that need outputting */
4117 static GTY(()) bool have_location_lists;
4119 /* Unique label counter. */
4120 static GTY(()) unsigned int loclabel_num;
4122 #ifdef DWARF2_DEBUGGING_INFO
4123 /* Record whether the function being analyzed contains inlined functions. */
4124 static int current_function_has_inlines;
4125 #endif
4126 #if 0 && defined (MIPS_DEBUGGING_INFO)
4127 static int comp_unit_has_inlines;
4128 #endif
4130 /* The last file entry emitted by maybe_emit_file(). */
4131 static GTY(()) struct dwarf_file_data * last_emitted_file;
4133 /* Number of internal labels generated by gen_internal_sym(). */
4134 static GTY(()) int label_num;
4136 /* Cached result of previous call to lookup_filename. */
4137 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4139 #ifdef DWARF2_DEBUGGING_INFO
4141 /* Offset from the "steady-state frame pointer" to the frame base,
4142 within the current function. */
4143 static HOST_WIDE_INT frame_pointer_fb_offset;
4145 /* Forward declarations for functions defined in this file. */
4147 static int is_pseudo_reg (const_rtx);
4148 static tree type_main_variant (tree);
4149 static int is_tagged_type (const_tree);
4150 static const char *dwarf_tag_name (unsigned);
4151 static const char *dwarf_attr_name (unsigned);
4152 static const char *dwarf_form_name (unsigned);
4153 static tree decl_ultimate_origin (const_tree);
4154 static tree block_ultimate_origin (const_tree);
4155 static tree decl_class_context (tree);
4156 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4157 static inline enum dw_val_class AT_class (dw_attr_ref);
4158 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4159 static inline unsigned AT_flag (dw_attr_ref);
4160 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4161 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4162 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4163 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4164 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4165 unsigned long);
4166 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4167 unsigned int, unsigned char *);
4168 static hashval_t debug_str_do_hash (const void *);
4169 static int debug_str_eq (const void *, const void *);
4170 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4171 static inline const char *AT_string (dw_attr_ref);
4172 static int AT_string_form (dw_attr_ref);
4173 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4174 static void add_AT_specification (dw_die_ref, dw_die_ref);
4175 static inline dw_die_ref AT_ref (dw_attr_ref);
4176 static inline int AT_ref_external (dw_attr_ref);
4177 static inline void set_AT_ref_external (dw_attr_ref, int);
4178 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4179 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4180 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4181 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4182 dw_loc_list_ref);
4183 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4184 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4185 static inline rtx AT_addr (dw_attr_ref);
4186 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4187 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4188 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4189 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4190 unsigned HOST_WIDE_INT);
4191 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4192 unsigned long);
4193 static inline const char *AT_lbl (dw_attr_ref);
4194 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4195 static const char *get_AT_low_pc (dw_die_ref);
4196 static const char *get_AT_hi_pc (dw_die_ref);
4197 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4198 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4199 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4200 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4201 static bool is_c_family (void);
4202 static bool is_cxx (void);
4203 static bool is_java (void);
4204 static bool is_fortran (void);
4205 static bool is_ada (void);
4206 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4207 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4208 static void add_child_die (dw_die_ref, dw_die_ref);
4209 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4210 static dw_die_ref lookup_type_die (tree);
4211 static void equate_type_number_to_die (tree, dw_die_ref);
4212 static hashval_t decl_die_table_hash (const void *);
4213 static int decl_die_table_eq (const void *, const void *);
4214 static dw_die_ref lookup_decl_die (tree);
4215 static hashval_t decl_loc_table_hash (const void *);
4216 static int decl_loc_table_eq (const void *, const void *);
4217 static var_loc_list *lookup_decl_loc (const_tree);
4218 static void equate_decl_number_to_die (tree, dw_die_ref);
4219 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4220 static void print_spaces (FILE *);
4221 static void print_die (dw_die_ref, FILE *);
4222 static void print_dwarf_line_table (FILE *);
4223 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4224 static dw_die_ref pop_compile_unit (dw_die_ref);
4225 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4226 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4227 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4228 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4229 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
4230 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4231 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4232 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4233 static void compute_section_prefix (dw_die_ref);
4234 static int is_type_die (dw_die_ref);
4235 static int is_comdat_die (dw_die_ref);
4236 static int is_symbol_die (dw_die_ref);
4237 static void assign_symbol_names (dw_die_ref);
4238 static void break_out_includes (dw_die_ref);
4239 static hashval_t htab_cu_hash (const void *);
4240 static int htab_cu_eq (const void *, const void *);
4241 static void htab_cu_del (void *);
4242 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4243 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4244 static void add_sibling_attributes (dw_die_ref);
4245 static void build_abbrev_table (dw_die_ref);
4246 static void output_location_lists (dw_die_ref);
4247 static int constant_size (long unsigned);
4248 static unsigned long size_of_die (dw_die_ref);
4249 static void calc_die_sizes (dw_die_ref);
4250 static void mark_dies (dw_die_ref);
4251 static void unmark_dies (dw_die_ref);
4252 static void unmark_all_dies (dw_die_ref);
4253 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4254 static unsigned long size_of_aranges (void);
4255 static enum dwarf_form value_format (dw_attr_ref);
4256 static void output_value_format (dw_attr_ref);
4257 static void output_abbrev_section (void);
4258 static void output_die_symbol (dw_die_ref);
4259 static void output_die (dw_die_ref);
4260 static void output_compilation_unit_header (void);
4261 static void output_comp_unit (dw_die_ref, int);
4262 static const char *dwarf2_name (tree, int);
4263 static void add_pubname (tree, dw_die_ref);
4264 static void add_pubname_string (const char *, dw_die_ref);
4265 static void add_pubtype (tree, dw_die_ref);
4266 static void output_pubnames (VEC (pubname_entry,gc) *);
4267 static void add_arange (tree, dw_die_ref);
4268 static void output_aranges (void);
4269 static unsigned int add_ranges_num (int);
4270 static unsigned int add_ranges (const_tree);
4271 static unsigned int add_ranges_by_labels (const char *, const char *);
4272 static void output_ranges (void);
4273 static void output_line_info (void);
4274 static void output_file_names (void);
4275 static dw_die_ref base_type_die (tree);
4276 static int is_base_type (tree);
4277 static bool is_subrange_type (const_tree);
4278 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4279 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4280 static int type_is_enum (const_tree);
4281 static unsigned int dbx_reg_number (const_rtx);
4282 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4283 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
4284 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
4285 enum var_init_status);
4286 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
4287 enum var_init_status);
4288 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4289 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
4290 enum var_init_status);
4291 static int is_based_loc (const_rtx);
4292 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode,
4293 enum var_init_status);
4294 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
4295 enum var_init_status);
4296 static dw_loc_descr_ref loc_descriptor (rtx, enum var_init_status);
4297 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4298 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4299 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4300 static tree field_type (const_tree);
4301 static unsigned int simple_type_align_in_bits (const_tree);
4302 static unsigned int simple_decl_align_in_bits (const_tree);
4303 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
4304 static HOST_WIDE_INT field_byte_offset (const_tree);
4305 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4306 dw_loc_descr_ref);
4307 static void add_data_member_location_attribute (dw_die_ref, tree);
4308 static void add_const_value_attribute (dw_die_ref, rtx);
4309 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4310 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4311 static void insert_float (const_rtx, unsigned char *);
4312 static rtx rtl_for_decl_location (tree);
4313 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4314 enum dwarf_attribute);
4315 static void tree_add_const_value_attribute (dw_die_ref, tree);
4316 static void add_name_attribute (dw_die_ref, const char *);
4317 static void add_comp_dir_attribute (dw_die_ref);
4318 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4319 static void add_subscript_info (dw_die_ref, tree);
4320 static void add_byte_size_attribute (dw_die_ref, tree);
4321 static void add_bit_offset_attribute (dw_die_ref, tree);
4322 static void add_bit_size_attribute (dw_die_ref, tree);
4323 static void add_prototyped_attribute (dw_die_ref, tree);
4324 static void add_abstract_origin_attribute (dw_die_ref, tree);
4325 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4326 static void add_src_coords_attributes (dw_die_ref, tree);
4327 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4328 static void push_decl_scope (tree);
4329 static void pop_decl_scope (void);
4330 static dw_die_ref scope_die_for (tree, dw_die_ref);
4331 static inline int local_scope_p (dw_die_ref);
4332 static inline int class_or_namespace_scope_p (dw_die_ref);
4333 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4334 static void add_calling_convention_attribute (dw_die_ref, tree);
4335 static const char *type_tag (const_tree);
4336 static tree member_declared_type (const_tree);
4337 #if 0
4338 static const char *decl_start_label (tree);
4339 #endif
4340 static void gen_array_type_die (tree, dw_die_ref);
4341 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
4342 #if 0
4343 static void gen_entry_point_die (tree, dw_die_ref);
4344 #endif
4345 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4346 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4347 static void gen_inlined_union_type_die (tree, dw_die_ref);
4348 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4349 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4350 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4351 static void gen_formal_types_die (tree, dw_die_ref);
4352 static void gen_subprogram_die (tree, dw_die_ref);
4353 static void gen_variable_die (tree, dw_die_ref);
4354 static void gen_label_die (tree, dw_die_ref);
4355 static void gen_lexical_block_die (tree, dw_die_ref, int);
4356 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4357 static void gen_field_die (tree, dw_die_ref);
4358 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4359 static dw_die_ref gen_compile_unit_die (const char *);
4360 static void gen_inheritance_die (tree, tree, dw_die_ref);
4361 static void gen_member_die (tree, dw_die_ref);
4362 static void gen_struct_or_union_type_die (tree, dw_die_ref,
4363 enum debug_info_usage);
4364 static void gen_subroutine_type_die (tree, dw_die_ref);
4365 static void gen_typedef_die (tree, dw_die_ref);
4366 static void gen_type_die (tree, dw_die_ref);
4367 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4368 static void gen_block_die (tree, dw_die_ref, int);
4369 static void decls_for_scope (tree, dw_die_ref, int);
4370 static int is_redundant_typedef (const_tree);
4371 static void gen_namespace_die (tree);
4372 static void gen_decl_die (tree, dw_die_ref);
4373 static dw_die_ref force_decl_die (tree);
4374 static dw_die_ref force_type_die (tree);
4375 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4376 static void declare_in_namespace (tree, dw_die_ref);
4377 static struct dwarf_file_data * lookup_filename (const char *);
4378 static void retry_incomplete_types (void);
4379 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4380 static void splice_child_die (dw_die_ref, dw_die_ref);
4381 static int file_info_cmp (const void *, const void *);
4382 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4383 const char *, const char *, unsigned);
4384 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4385 const char *, const char *,
4386 const char *);
4387 static void output_loc_list (dw_loc_list_ref);
4388 static char *gen_internal_sym (const char *);
4390 static void prune_unmark_dies (dw_die_ref);
4391 static void prune_unused_types_mark (dw_die_ref, int);
4392 static void prune_unused_types_walk (dw_die_ref);
4393 static void prune_unused_types_walk_attribs (dw_die_ref);
4394 static void prune_unused_types_prune (dw_die_ref);
4395 static void prune_unused_types (void);
4396 static int maybe_emit_file (struct dwarf_file_data *fd);
4398 /* Section names used to hold DWARF debugging information. */
4399 #ifndef DEBUG_INFO_SECTION
4400 #define DEBUG_INFO_SECTION ".debug_info"
4401 #endif
4402 #ifndef DEBUG_ABBREV_SECTION
4403 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4404 #endif
4405 #ifndef DEBUG_ARANGES_SECTION
4406 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4407 #endif
4408 #ifndef DEBUG_MACINFO_SECTION
4409 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4410 #endif
4411 #ifndef DEBUG_LINE_SECTION
4412 #define DEBUG_LINE_SECTION ".debug_line"
4413 #endif
4414 #ifndef DEBUG_LOC_SECTION
4415 #define DEBUG_LOC_SECTION ".debug_loc"
4416 #endif
4417 #ifndef DEBUG_PUBNAMES_SECTION
4418 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4419 #endif
4420 #ifndef DEBUG_STR_SECTION
4421 #define DEBUG_STR_SECTION ".debug_str"
4422 #endif
4423 #ifndef DEBUG_RANGES_SECTION
4424 #define DEBUG_RANGES_SECTION ".debug_ranges"
4425 #endif
4427 /* Standard ELF section names for compiled code and data. */
4428 #ifndef TEXT_SECTION_NAME
4429 #define TEXT_SECTION_NAME ".text"
4430 #endif
4432 /* Section flags for .debug_str section. */
4433 #define DEBUG_STR_SECTION_FLAGS \
4434 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
4435 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4436 : SECTION_DEBUG)
4438 /* Labels we insert at beginning sections we can reference instead of
4439 the section names themselves. */
4441 #ifndef TEXT_SECTION_LABEL
4442 #define TEXT_SECTION_LABEL "Ltext"
4443 #endif
4444 #ifndef COLD_TEXT_SECTION_LABEL
4445 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4446 #endif
4447 #ifndef DEBUG_LINE_SECTION_LABEL
4448 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4449 #endif
4450 #ifndef DEBUG_INFO_SECTION_LABEL
4451 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4452 #endif
4453 #ifndef DEBUG_ABBREV_SECTION_LABEL
4454 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4455 #endif
4456 #ifndef DEBUG_LOC_SECTION_LABEL
4457 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4458 #endif
4459 #ifndef DEBUG_RANGES_SECTION_LABEL
4460 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4461 #endif
4462 #ifndef DEBUG_MACINFO_SECTION_LABEL
4463 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4464 #endif
4466 /* Definitions of defaults for formats and names of various special
4467 (artificial) labels which may be generated within this file (when the -g
4468 options is used and DWARF2_DEBUGGING_INFO is in effect.
4469 If necessary, these may be overridden from within the tm.h file, but
4470 typically, overriding these defaults is unnecessary. */
4472 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4473 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4474 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4475 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4476 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4477 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4478 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4479 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4480 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4481 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4483 #ifndef TEXT_END_LABEL
4484 #define TEXT_END_LABEL "Letext"
4485 #endif
4486 #ifndef COLD_END_LABEL
4487 #define COLD_END_LABEL "Letext_cold"
4488 #endif
4489 #ifndef BLOCK_BEGIN_LABEL
4490 #define BLOCK_BEGIN_LABEL "LBB"
4491 #endif
4492 #ifndef BLOCK_END_LABEL
4493 #define BLOCK_END_LABEL "LBE"
4494 #endif
4495 #ifndef LINE_CODE_LABEL
4496 #define LINE_CODE_LABEL "LM"
4497 #endif
4498 #ifndef SEPARATE_LINE_CODE_LABEL
4499 #define SEPARATE_LINE_CODE_LABEL "LSM"
4500 #endif
4503 /* We allow a language front-end to designate a function that is to be
4504 called to "demangle" any name before it is put into a DIE. */
4506 static const char *(*demangle_name_func) (const char *);
4508 void
4509 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4511 demangle_name_func = func;
4514 /* Test if rtl node points to a pseudo register. */
4516 static inline int
4517 is_pseudo_reg (const_rtx rtl)
4519 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4520 || (GET_CODE (rtl) == SUBREG
4521 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4524 /* Return a reference to a type, with its const and volatile qualifiers
4525 removed. */
4527 static inline tree
4528 type_main_variant (tree type)
4530 type = TYPE_MAIN_VARIANT (type);
4532 /* ??? There really should be only one main variant among any group of
4533 variants of a given type (and all of the MAIN_VARIANT values for all
4534 members of the group should point to that one type) but sometimes the C
4535 front-end messes this up for array types, so we work around that bug
4536 here. */
4537 if (TREE_CODE (type) == ARRAY_TYPE)
4538 while (type != TYPE_MAIN_VARIANT (type))
4539 type = TYPE_MAIN_VARIANT (type);
4541 return type;
4544 /* Return nonzero if the given type node represents a tagged type. */
4546 static inline int
4547 is_tagged_type (const_tree type)
4549 enum tree_code code = TREE_CODE (type);
4551 return (code == RECORD_TYPE || code == UNION_TYPE
4552 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4555 /* Convert a DIE tag into its string name. */
4557 static const char *
4558 dwarf_tag_name (unsigned int tag)
4560 switch (tag)
4562 case DW_TAG_padding:
4563 return "DW_TAG_padding";
4564 case DW_TAG_array_type:
4565 return "DW_TAG_array_type";
4566 case DW_TAG_class_type:
4567 return "DW_TAG_class_type";
4568 case DW_TAG_entry_point:
4569 return "DW_TAG_entry_point";
4570 case DW_TAG_enumeration_type:
4571 return "DW_TAG_enumeration_type";
4572 case DW_TAG_formal_parameter:
4573 return "DW_TAG_formal_parameter";
4574 case DW_TAG_imported_declaration:
4575 return "DW_TAG_imported_declaration";
4576 case DW_TAG_label:
4577 return "DW_TAG_label";
4578 case DW_TAG_lexical_block:
4579 return "DW_TAG_lexical_block";
4580 case DW_TAG_member:
4581 return "DW_TAG_member";
4582 case DW_TAG_pointer_type:
4583 return "DW_TAG_pointer_type";
4584 case DW_TAG_reference_type:
4585 return "DW_TAG_reference_type";
4586 case DW_TAG_compile_unit:
4587 return "DW_TAG_compile_unit";
4588 case DW_TAG_string_type:
4589 return "DW_TAG_string_type";
4590 case DW_TAG_structure_type:
4591 return "DW_TAG_structure_type";
4592 case DW_TAG_subroutine_type:
4593 return "DW_TAG_subroutine_type";
4594 case DW_TAG_typedef:
4595 return "DW_TAG_typedef";
4596 case DW_TAG_union_type:
4597 return "DW_TAG_union_type";
4598 case DW_TAG_unspecified_parameters:
4599 return "DW_TAG_unspecified_parameters";
4600 case DW_TAG_variant:
4601 return "DW_TAG_variant";
4602 case DW_TAG_common_block:
4603 return "DW_TAG_common_block";
4604 case DW_TAG_common_inclusion:
4605 return "DW_TAG_common_inclusion";
4606 case DW_TAG_inheritance:
4607 return "DW_TAG_inheritance";
4608 case DW_TAG_inlined_subroutine:
4609 return "DW_TAG_inlined_subroutine";
4610 case DW_TAG_module:
4611 return "DW_TAG_module";
4612 case DW_TAG_ptr_to_member_type:
4613 return "DW_TAG_ptr_to_member_type";
4614 case DW_TAG_set_type:
4615 return "DW_TAG_set_type";
4616 case DW_TAG_subrange_type:
4617 return "DW_TAG_subrange_type";
4618 case DW_TAG_with_stmt:
4619 return "DW_TAG_with_stmt";
4620 case DW_TAG_access_declaration:
4621 return "DW_TAG_access_declaration";
4622 case DW_TAG_base_type:
4623 return "DW_TAG_base_type";
4624 case DW_TAG_catch_block:
4625 return "DW_TAG_catch_block";
4626 case DW_TAG_const_type:
4627 return "DW_TAG_const_type";
4628 case DW_TAG_constant:
4629 return "DW_TAG_constant";
4630 case DW_TAG_enumerator:
4631 return "DW_TAG_enumerator";
4632 case DW_TAG_file_type:
4633 return "DW_TAG_file_type";
4634 case DW_TAG_friend:
4635 return "DW_TAG_friend";
4636 case DW_TAG_namelist:
4637 return "DW_TAG_namelist";
4638 case DW_TAG_namelist_item:
4639 return "DW_TAG_namelist_item";
4640 case DW_TAG_packed_type:
4641 return "DW_TAG_packed_type";
4642 case DW_TAG_subprogram:
4643 return "DW_TAG_subprogram";
4644 case DW_TAG_template_type_param:
4645 return "DW_TAG_template_type_param";
4646 case DW_TAG_template_value_param:
4647 return "DW_TAG_template_value_param";
4648 case DW_TAG_thrown_type:
4649 return "DW_TAG_thrown_type";
4650 case DW_TAG_try_block:
4651 return "DW_TAG_try_block";
4652 case DW_TAG_variant_part:
4653 return "DW_TAG_variant_part";
4654 case DW_TAG_variable:
4655 return "DW_TAG_variable";
4656 case DW_TAG_volatile_type:
4657 return "DW_TAG_volatile_type";
4658 case DW_TAG_dwarf_procedure:
4659 return "DW_TAG_dwarf_procedure";
4660 case DW_TAG_restrict_type:
4661 return "DW_TAG_restrict_type";
4662 case DW_TAG_interface_type:
4663 return "DW_TAG_interface_type";
4664 case DW_TAG_namespace:
4665 return "DW_TAG_namespace";
4666 case DW_TAG_imported_module:
4667 return "DW_TAG_imported_module";
4668 case DW_TAG_unspecified_type:
4669 return "DW_TAG_unspecified_type";
4670 case DW_TAG_partial_unit:
4671 return "DW_TAG_partial_unit";
4672 case DW_TAG_imported_unit:
4673 return "DW_TAG_imported_unit";
4674 case DW_TAG_condition:
4675 return "DW_TAG_condition";
4676 case DW_TAG_shared_type:
4677 return "DW_TAG_shared_type";
4678 case DW_TAG_MIPS_loop:
4679 return "DW_TAG_MIPS_loop";
4680 case DW_TAG_format_label:
4681 return "DW_TAG_format_label";
4682 case DW_TAG_function_template:
4683 return "DW_TAG_function_template";
4684 case DW_TAG_class_template:
4685 return "DW_TAG_class_template";
4686 case DW_TAG_GNU_BINCL:
4687 return "DW_TAG_GNU_BINCL";
4688 case DW_TAG_GNU_EINCL:
4689 return "DW_TAG_GNU_EINCL";
4690 default:
4691 return "DW_TAG_<unknown>";
4695 /* Convert a DWARF attribute code into its string name. */
4697 static const char *
4698 dwarf_attr_name (unsigned int attr)
4700 switch (attr)
4702 case DW_AT_sibling:
4703 return "DW_AT_sibling";
4704 case DW_AT_location:
4705 return "DW_AT_location";
4706 case DW_AT_name:
4707 return "DW_AT_name";
4708 case DW_AT_ordering:
4709 return "DW_AT_ordering";
4710 case DW_AT_subscr_data:
4711 return "DW_AT_subscr_data";
4712 case DW_AT_byte_size:
4713 return "DW_AT_byte_size";
4714 case DW_AT_bit_offset:
4715 return "DW_AT_bit_offset";
4716 case DW_AT_bit_size:
4717 return "DW_AT_bit_size";
4718 case DW_AT_element_list:
4719 return "DW_AT_element_list";
4720 case DW_AT_stmt_list:
4721 return "DW_AT_stmt_list";
4722 case DW_AT_low_pc:
4723 return "DW_AT_low_pc";
4724 case DW_AT_high_pc:
4725 return "DW_AT_high_pc";
4726 case DW_AT_language:
4727 return "DW_AT_language";
4728 case DW_AT_member:
4729 return "DW_AT_member";
4730 case DW_AT_discr:
4731 return "DW_AT_discr";
4732 case DW_AT_discr_value:
4733 return "DW_AT_discr_value";
4734 case DW_AT_visibility:
4735 return "DW_AT_visibility";
4736 case DW_AT_import:
4737 return "DW_AT_import";
4738 case DW_AT_string_length:
4739 return "DW_AT_string_length";
4740 case DW_AT_common_reference:
4741 return "DW_AT_common_reference";
4742 case DW_AT_comp_dir:
4743 return "DW_AT_comp_dir";
4744 case DW_AT_const_value:
4745 return "DW_AT_const_value";
4746 case DW_AT_containing_type:
4747 return "DW_AT_containing_type";
4748 case DW_AT_default_value:
4749 return "DW_AT_default_value";
4750 case DW_AT_inline:
4751 return "DW_AT_inline";
4752 case DW_AT_is_optional:
4753 return "DW_AT_is_optional";
4754 case DW_AT_lower_bound:
4755 return "DW_AT_lower_bound";
4756 case DW_AT_producer:
4757 return "DW_AT_producer";
4758 case DW_AT_prototyped:
4759 return "DW_AT_prototyped";
4760 case DW_AT_return_addr:
4761 return "DW_AT_return_addr";
4762 case DW_AT_start_scope:
4763 return "DW_AT_start_scope";
4764 case DW_AT_bit_stride:
4765 return "DW_AT_bit_stride";
4766 case DW_AT_upper_bound:
4767 return "DW_AT_upper_bound";
4768 case DW_AT_abstract_origin:
4769 return "DW_AT_abstract_origin";
4770 case DW_AT_accessibility:
4771 return "DW_AT_accessibility";
4772 case DW_AT_address_class:
4773 return "DW_AT_address_class";
4774 case DW_AT_artificial:
4775 return "DW_AT_artificial";
4776 case DW_AT_base_types:
4777 return "DW_AT_base_types";
4778 case DW_AT_calling_convention:
4779 return "DW_AT_calling_convention";
4780 case DW_AT_count:
4781 return "DW_AT_count";
4782 case DW_AT_data_member_location:
4783 return "DW_AT_data_member_location";
4784 case DW_AT_decl_column:
4785 return "DW_AT_decl_column";
4786 case DW_AT_decl_file:
4787 return "DW_AT_decl_file";
4788 case DW_AT_decl_line:
4789 return "DW_AT_decl_line";
4790 case DW_AT_declaration:
4791 return "DW_AT_declaration";
4792 case DW_AT_discr_list:
4793 return "DW_AT_discr_list";
4794 case DW_AT_encoding:
4795 return "DW_AT_encoding";
4796 case DW_AT_external:
4797 return "DW_AT_external";
4798 case DW_AT_frame_base:
4799 return "DW_AT_frame_base";
4800 case DW_AT_friend:
4801 return "DW_AT_friend";
4802 case DW_AT_identifier_case:
4803 return "DW_AT_identifier_case";
4804 case DW_AT_macro_info:
4805 return "DW_AT_macro_info";
4806 case DW_AT_namelist_items:
4807 return "DW_AT_namelist_items";
4808 case DW_AT_priority:
4809 return "DW_AT_priority";
4810 case DW_AT_segment:
4811 return "DW_AT_segment";
4812 case DW_AT_specification:
4813 return "DW_AT_specification";
4814 case DW_AT_static_link:
4815 return "DW_AT_static_link";
4816 case DW_AT_type:
4817 return "DW_AT_type";
4818 case DW_AT_use_location:
4819 return "DW_AT_use_location";
4820 case DW_AT_variable_parameter:
4821 return "DW_AT_variable_parameter";
4822 case DW_AT_virtuality:
4823 return "DW_AT_virtuality";
4824 case DW_AT_vtable_elem_location:
4825 return "DW_AT_vtable_elem_location";
4827 case DW_AT_allocated:
4828 return "DW_AT_allocated";
4829 case DW_AT_associated:
4830 return "DW_AT_associated";
4831 case DW_AT_data_location:
4832 return "DW_AT_data_location";
4833 case DW_AT_byte_stride:
4834 return "DW_AT_byte_stride";
4835 case DW_AT_entry_pc:
4836 return "DW_AT_entry_pc";
4837 case DW_AT_use_UTF8:
4838 return "DW_AT_use_UTF8";
4839 case DW_AT_extension:
4840 return "DW_AT_extension";
4841 case DW_AT_ranges:
4842 return "DW_AT_ranges";
4843 case DW_AT_trampoline:
4844 return "DW_AT_trampoline";
4845 case DW_AT_call_column:
4846 return "DW_AT_call_column";
4847 case DW_AT_call_file:
4848 return "DW_AT_call_file";
4849 case DW_AT_call_line:
4850 return "DW_AT_call_line";
4852 case DW_AT_MIPS_fde:
4853 return "DW_AT_MIPS_fde";
4854 case DW_AT_MIPS_loop_begin:
4855 return "DW_AT_MIPS_loop_begin";
4856 case DW_AT_MIPS_tail_loop_begin:
4857 return "DW_AT_MIPS_tail_loop_begin";
4858 case DW_AT_MIPS_epilog_begin:
4859 return "DW_AT_MIPS_epilog_begin";
4860 case DW_AT_MIPS_loop_unroll_factor:
4861 return "DW_AT_MIPS_loop_unroll_factor";
4862 case DW_AT_MIPS_software_pipeline_depth:
4863 return "DW_AT_MIPS_software_pipeline_depth";
4864 case DW_AT_MIPS_linkage_name:
4865 return "DW_AT_MIPS_linkage_name";
4866 case DW_AT_MIPS_stride:
4867 return "DW_AT_MIPS_stride";
4868 case DW_AT_MIPS_abstract_name:
4869 return "DW_AT_MIPS_abstract_name";
4870 case DW_AT_MIPS_clone_origin:
4871 return "DW_AT_MIPS_clone_origin";
4872 case DW_AT_MIPS_has_inlines:
4873 return "DW_AT_MIPS_has_inlines";
4875 case DW_AT_sf_names:
4876 return "DW_AT_sf_names";
4877 case DW_AT_src_info:
4878 return "DW_AT_src_info";
4879 case DW_AT_mac_info:
4880 return "DW_AT_mac_info";
4881 case DW_AT_src_coords:
4882 return "DW_AT_src_coords";
4883 case DW_AT_body_begin:
4884 return "DW_AT_body_begin";
4885 case DW_AT_body_end:
4886 return "DW_AT_body_end";
4887 case DW_AT_GNU_vector:
4888 return "DW_AT_GNU_vector";
4890 case DW_AT_VMS_rtnbeg_pd_address:
4891 return "DW_AT_VMS_rtnbeg_pd_address";
4893 default:
4894 return "DW_AT_<unknown>";
4898 /* Convert a DWARF value form code into its string name. */
4900 static const char *
4901 dwarf_form_name (unsigned int form)
4903 switch (form)
4905 case DW_FORM_addr:
4906 return "DW_FORM_addr";
4907 case DW_FORM_block2:
4908 return "DW_FORM_block2";
4909 case DW_FORM_block4:
4910 return "DW_FORM_block4";
4911 case DW_FORM_data2:
4912 return "DW_FORM_data2";
4913 case DW_FORM_data4:
4914 return "DW_FORM_data4";
4915 case DW_FORM_data8:
4916 return "DW_FORM_data8";
4917 case DW_FORM_string:
4918 return "DW_FORM_string";
4919 case DW_FORM_block:
4920 return "DW_FORM_block";
4921 case DW_FORM_block1:
4922 return "DW_FORM_block1";
4923 case DW_FORM_data1:
4924 return "DW_FORM_data1";
4925 case DW_FORM_flag:
4926 return "DW_FORM_flag";
4927 case DW_FORM_sdata:
4928 return "DW_FORM_sdata";
4929 case DW_FORM_strp:
4930 return "DW_FORM_strp";
4931 case DW_FORM_udata:
4932 return "DW_FORM_udata";
4933 case DW_FORM_ref_addr:
4934 return "DW_FORM_ref_addr";
4935 case DW_FORM_ref1:
4936 return "DW_FORM_ref1";
4937 case DW_FORM_ref2:
4938 return "DW_FORM_ref2";
4939 case DW_FORM_ref4:
4940 return "DW_FORM_ref4";
4941 case DW_FORM_ref8:
4942 return "DW_FORM_ref8";
4943 case DW_FORM_ref_udata:
4944 return "DW_FORM_ref_udata";
4945 case DW_FORM_indirect:
4946 return "DW_FORM_indirect";
4947 default:
4948 return "DW_FORM_<unknown>";
4952 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4953 instance of an inlined instance of a decl which is local to an inline
4954 function, so we have to trace all of the way back through the origin chain
4955 to find out what sort of node actually served as the original seed for the
4956 given block. */
4958 static tree
4959 decl_ultimate_origin (const_tree decl)
4961 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4962 return NULL_TREE;
4964 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4965 nodes in the function to point to themselves; ignore that if
4966 we're trying to output the abstract instance of this function. */
4967 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4968 return NULL_TREE;
4970 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4971 most distant ancestor, this should never happen. */
4972 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4974 return DECL_ABSTRACT_ORIGIN (decl);
4977 /* Determine the "ultimate origin" of a block. The block may be an inlined
4978 instance of an inlined instance of a block which is local to an inline
4979 function, so we have to trace all of the way back through the origin chain
4980 to find out what sort of node actually served as the original seed for the
4981 given block. */
4983 static tree
4984 block_ultimate_origin (const_tree block)
4986 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4988 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4989 nodes in the function to point to themselves; ignore that if
4990 we're trying to output the abstract instance of this function. */
4991 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4992 return NULL_TREE;
4994 if (immediate_origin == NULL_TREE)
4995 return NULL_TREE;
4996 else
4998 tree ret_val;
4999 tree lookahead = immediate_origin;
5003 ret_val = lookahead;
5004 lookahead = (TREE_CODE (ret_val) == BLOCK
5005 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
5007 while (lookahead != NULL && lookahead != ret_val);
5009 /* The block's abstract origin chain may not be the *ultimate* origin of
5010 the block. It could lead to a DECL that has an abstract origin set.
5011 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
5012 will give us if it has one). Note that DECL's abstract origins are
5013 supposed to be the most distant ancestor (or so decl_ultimate_origin
5014 claims), so we don't need to loop following the DECL origins. */
5015 if (DECL_P (ret_val))
5016 return DECL_ORIGIN (ret_val);
5018 return ret_val;
5022 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
5023 of a virtual function may refer to a base class, so we check the 'this'
5024 parameter. */
5026 static tree
5027 decl_class_context (tree decl)
5029 tree context = NULL_TREE;
5031 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
5032 context = DECL_CONTEXT (decl);
5033 else
5034 context = TYPE_MAIN_VARIANT
5035 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5037 if (context && !TYPE_P (context))
5038 context = NULL_TREE;
5040 return context;
5043 /* Add an attribute/value pair to a DIE. */
5045 static inline void
5046 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
5048 /* Maybe this should be an assert? */
5049 if (die == NULL)
5050 return;
5052 if (die->die_attr == NULL)
5053 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
5054 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
5057 static inline enum dw_val_class
5058 AT_class (dw_attr_ref a)
5060 return a->dw_attr_val.val_class;
5063 /* Add a flag value attribute to a DIE. */
5065 static inline void
5066 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
5068 dw_attr_node attr;
5070 attr.dw_attr = attr_kind;
5071 attr.dw_attr_val.val_class = dw_val_class_flag;
5072 attr.dw_attr_val.v.val_flag = flag;
5073 add_dwarf_attr (die, &attr);
5076 static inline unsigned
5077 AT_flag (dw_attr_ref a)
5079 gcc_assert (a && AT_class (a) == dw_val_class_flag);
5080 return a->dw_attr_val.v.val_flag;
5083 /* Add a signed integer attribute value to a DIE. */
5085 static inline void
5086 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
5088 dw_attr_node attr;
5090 attr.dw_attr = attr_kind;
5091 attr.dw_attr_val.val_class = dw_val_class_const;
5092 attr.dw_attr_val.v.val_int = int_val;
5093 add_dwarf_attr (die, &attr);
5096 static inline HOST_WIDE_INT
5097 AT_int (dw_attr_ref a)
5099 gcc_assert (a && AT_class (a) == dw_val_class_const);
5100 return a->dw_attr_val.v.val_int;
5103 /* Add an unsigned integer attribute value to a DIE. */
5105 static inline void
5106 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
5107 unsigned HOST_WIDE_INT unsigned_val)
5109 dw_attr_node attr;
5111 attr.dw_attr = attr_kind;
5112 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
5113 attr.dw_attr_val.v.val_unsigned = unsigned_val;
5114 add_dwarf_attr (die, &attr);
5117 static inline unsigned HOST_WIDE_INT
5118 AT_unsigned (dw_attr_ref a)
5120 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
5121 return a->dw_attr_val.v.val_unsigned;
5124 /* Add an unsigned double integer attribute value to a DIE. */
5126 static inline void
5127 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
5128 long unsigned int val_hi, long unsigned int val_low)
5130 dw_attr_node attr;
5132 attr.dw_attr = attr_kind;
5133 attr.dw_attr_val.val_class = dw_val_class_long_long;
5134 attr.dw_attr_val.v.val_long_long.hi = val_hi;
5135 attr.dw_attr_val.v.val_long_long.low = val_low;
5136 add_dwarf_attr (die, &attr);
5139 /* Add a floating point attribute value to a DIE and return it. */
5141 static inline void
5142 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
5143 unsigned int length, unsigned int elt_size, unsigned char *array)
5145 dw_attr_node attr;
5147 attr.dw_attr = attr_kind;
5148 attr.dw_attr_val.val_class = dw_val_class_vec;
5149 attr.dw_attr_val.v.val_vec.length = length;
5150 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
5151 attr.dw_attr_val.v.val_vec.array = array;
5152 add_dwarf_attr (die, &attr);
5155 /* Hash and equality functions for debug_str_hash. */
5157 static hashval_t
5158 debug_str_do_hash (const void *x)
5160 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5163 static int
5164 debug_str_eq (const void *x1, const void *x2)
5166 return strcmp ((((const struct indirect_string_node *)x1)->str),
5167 (const char *)x2) == 0;
5170 /* Add a string attribute value to a DIE. */
5172 static inline void
5173 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5175 dw_attr_node attr;
5176 struct indirect_string_node *node;
5177 void **slot;
5179 if (! debug_str_hash)
5180 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5181 debug_str_eq, NULL);
5183 slot = htab_find_slot_with_hash (debug_str_hash, str,
5184 htab_hash_string (str), INSERT);
5185 if (*slot == NULL)
5187 node = (struct indirect_string_node *)
5188 ggc_alloc_cleared (sizeof (struct indirect_string_node));
5189 node->str = ggc_strdup (str);
5190 *slot = node;
5192 else
5193 node = (struct indirect_string_node *) *slot;
5195 node->refcount++;
5197 attr.dw_attr = attr_kind;
5198 attr.dw_attr_val.val_class = dw_val_class_str;
5199 attr.dw_attr_val.v.val_str = node;
5200 add_dwarf_attr (die, &attr);
5203 static inline const char *
5204 AT_string (dw_attr_ref a)
5206 gcc_assert (a && AT_class (a) == dw_val_class_str);
5207 return a->dw_attr_val.v.val_str->str;
5210 /* Find out whether a string should be output inline in DIE
5211 or out-of-line in .debug_str section. */
5213 static int
5214 AT_string_form (dw_attr_ref a)
5216 struct indirect_string_node *node;
5217 unsigned int len;
5218 char label[32];
5220 gcc_assert (a && AT_class (a) == dw_val_class_str);
5222 node = a->dw_attr_val.v.val_str;
5223 if (node->form)
5224 return node->form;
5226 len = strlen (node->str) + 1;
5228 /* If the string is shorter or equal to the size of the reference, it is
5229 always better to put it inline. */
5230 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5231 return node->form = DW_FORM_string;
5233 /* If we cannot expect the linker to merge strings in .debug_str
5234 section, only put it into .debug_str if it is worth even in this
5235 single module. */
5236 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5237 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5238 return node->form = DW_FORM_string;
5240 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5241 ++dw2_string_counter;
5242 node->label = xstrdup (label);
5244 return node->form = DW_FORM_strp;
5247 /* Add a DIE reference attribute value to a DIE. */
5249 static inline void
5250 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5252 dw_attr_node attr;
5254 attr.dw_attr = attr_kind;
5255 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5256 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5257 attr.dw_attr_val.v.val_die_ref.external = 0;
5258 add_dwarf_attr (die, &attr);
5261 /* Add an AT_specification attribute to a DIE, and also make the back
5262 pointer from the specification to the definition. */
5264 static inline void
5265 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5267 add_AT_die_ref (die, DW_AT_specification, targ_die);
5268 gcc_assert (!targ_die->die_definition);
5269 targ_die->die_definition = die;
5272 static inline dw_die_ref
5273 AT_ref (dw_attr_ref a)
5275 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5276 return a->dw_attr_val.v.val_die_ref.die;
5279 static inline int
5280 AT_ref_external (dw_attr_ref a)
5282 if (a && AT_class (a) == dw_val_class_die_ref)
5283 return a->dw_attr_val.v.val_die_ref.external;
5285 return 0;
5288 static inline void
5289 set_AT_ref_external (dw_attr_ref a, int i)
5291 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5292 a->dw_attr_val.v.val_die_ref.external = i;
5295 /* Add an FDE reference attribute value to a DIE. */
5297 static inline void
5298 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5300 dw_attr_node attr;
5302 attr.dw_attr = attr_kind;
5303 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5304 attr.dw_attr_val.v.val_fde_index = targ_fde;
5305 add_dwarf_attr (die, &attr);
5308 /* Add a location description attribute value to a DIE. */
5310 static inline void
5311 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5313 dw_attr_node attr;
5315 attr.dw_attr = attr_kind;
5316 attr.dw_attr_val.val_class = dw_val_class_loc;
5317 attr.dw_attr_val.v.val_loc = loc;
5318 add_dwarf_attr (die, &attr);
5321 static inline dw_loc_descr_ref
5322 AT_loc (dw_attr_ref a)
5324 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5325 return a->dw_attr_val.v.val_loc;
5328 static inline void
5329 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5331 dw_attr_node attr;
5333 attr.dw_attr = attr_kind;
5334 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5335 attr.dw_attr_val.v.val_loc_list = loc_list;
5336 add_dwarf_attr (die, &attr);
5337 have_location_lists = true;
5340 static inline dw_loc_list_ref
5341 AT_loc_list (dw_attr_ref a)
5343 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5344 return a->dw_attr_val.v.val_loc_list;
5347 /* Add an address constant attribute value to a DIE. */
5349 static inline void
5350 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5352 dw_attr_node attr;
5354 attr.dw_attr = attr_kind;
5355 attr.dw_attr_val.val_class = dw_val_class_addr;
5356 attr.dw_attr_val.v.val_addr = addr;
5357 add_dwarf_attr (die, &attr);
5360 /* Get the RTX from to an address DIE attribute. */
5362 static inline rtx
5363 AT_addr (dw_attr_ref a)
5365 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5366 return a->dw_attr_val.v.val_addr;
5369 /* Add a file attribute value to a DIE. */
5371 static inline void
5372 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5373 struct dwarf_file_data *fd)
5375 dw_attr_node attr;
5377 attr.dw_attr = attr_kind;
5378 attr.dw_attr_val.val_class = dw_val_class_file;
5379 attr.dw_attr_val.v.val_file = fd;
5380 add_dwarf_attr (die, &attr);
5383 /* Get the dwarf_file_data from a file DIE attribute. */
5385 static inline struct dwarf_file_data *
5386 AT_file (dw_attr_ref a)
5388 gcc_assert (a && AT_class (a) == dw_val_class_file);
5389 return a->dw_attr_val.v.val_file;
5392 /* Add a label identifier attribute value to a DIE. */
5394 static inline void
5395 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5397 dw_attr_node attr;
5399 attr.dw_attr = attr_kind;
5400 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5401 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5402 add_dwarf_attr (die, &attr);
5405 /* Add a section offset attribute value to a DIE, an offset into the
5406 debug_line section. */
5408 static inline void
5409 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5410 const char *label)
5412 dw_attr_node attr;
5414 attr.dw_attr = attr_kind;
5415 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5416 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5417 add_dwarf_attr (die, &attr);
5420 /* Add a section offset attribute value to a DIE, an offset into the
5421 debug_macinfo section. */
5423 static inline void
5424 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5425 const char *label)
5427 dw_attr_node attr;
5429 attr.dw_attr = attr_kind;
5430 attr.dw_attr_val.val_class = dw_val_class_macptr;
5431 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5432 add_dwarf_attr (die, &attr);
5435 /* Add an offset attribute value to a DIE. */
5437 static inline void
5438 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5439 unsigned HOST_WIDE_INT offset)
5441 dw_attr_node attr;
5443 attr.dw_attr = attr_kind;
5444 attr.dw_attr_val.val_class = dw_val_class_offset;
5445 attr.dw_attr_val.v.val_offset = offset;
5446 add_dwarf_attr (die, &attr);
5449 /* Add an range_list attribute value to a DIE. */
5451 static void
5452 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5453 long unsigned int offset)
5455 dw_attr_node attr;
5457 attr.dw_attr = attr_kind;
5458 attr.dw_attr_val.val_class = dw_val_class_range_list;
5459 attr.dw_attr_val.v.val_offset = offset;
5460 add_dwarf_attr (die, &attr);
5463 static inline const char *
5464 AT_lbl (dw_attr_ref a)
5466 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5467 || AT_class (a) == dw_val_class_lineptr
5468 || AT_class (a) == dw_val_class_macptr));
5469 return a->dw_attr_val.v.val_lbl_id;
5472 /* Get the attribute of type attr_kind. */
5474 static dw_attr_ref
5475 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5477 dw_attr_ref a;
5478 unsigned ix;
5479 dw_die_ref spec = NULL;
5481 if (! die)
5482 return NULL;
5484 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5485 if (a->dw_attr == attr_kind)
5486 return a;
5487 else if (a->dw_attr == DW_AT_specification
5488 || a->dw_attr == DW_AT_abstract_origin)
5489 spec = AT_ref (a);
5491 if (spec)
5492 return get_AT (spec, attr_kind);
5494 return NULL;
5497 /* Return the "low pc" attribute value, typically associated with a subprogram
5498 DIE. Return null if the "low pc" attribute is either not present, or if it
5499 cannot be represented as an assembler label identifier. */
5501 static inline const char *
5502 get_AT_low_pc (dw_die_ref die)
5504 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5506 return a ? AT_lbl (a) : NULL;
5509 /* Return the "high pc" attribute value, typically associated with a subprogram
5510 DIE. Return null if the "high pc" attribute is either not present, or if it
5511 cannot be represented as an assembler label identifier. */
5513 static inline const char *
5514 get_AT_hi_pc (dw_die_ref die)
5516 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5518 return a ? AT_lbl (a) : NULL;
5521 /* Return the value of the string attribute designated by ATTR_KIND, or
5522 NULL if it is not present. */
5524 static inline const char *
5525 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5527 dw_attr_ref a = get_AT (die, attr_kind);
5529 return a ? AT_string (a) : NULL;
5532 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5533 if it is not present. */
5535 static inline int
5536 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5538 dw_attr_ref a = get_AT (die, attr_kind);
5540 return a ? AT_flag (a) : 0;
5543 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5544 if it is not present. */
5546 static inline unsigned
5547 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5549 dw_attr_ref a = get_AT (die, attr_kind);
5551 return a ? AT_unsigned (a) : 0;
5554 static inline dw_die_ref
5555 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5557 dw_attr_ref a = get_AT (die, attr_kind);
5559 return a ? AT_ref (a) : NULL;
5562 static inline struct dwarf_file_data *
5563 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5565 dw_attr_ref a = get_AT (die, attr_kind);
5567 return a ? AT_file (a) : NULL;
5570 /* Return TRUE if the language is C or C++. */
5572 static inline bool
5573 is_c_family (void)
5575 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5577 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5578 || lang == DW_LANG_C99
5579 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5582 /* Return TRUE if the language is C++. */
5584 static inline bool
5585 is_cxx (void)
5587 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5589 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5592 /* Return TRUE if the language is Fortran. */
5594 static inline bool
5595 is_fortran (void)
5597 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5599 return (lang == DW_LANG_Fortran77
5600 || lang == DW_LANG_Fortran90
5601 || lang == DW_LANG_Fortran95);
5604 /* Return TRUE if the language is Java. */
5606 static inline bool
5607 is_java (void)
5609 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5611 return lang == DW_LANG_Java;
5614 /* Return TRUE if the language is Ada. */
5616 static inline bool
5617 is_ada (void)
5619 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5621 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5624 /* Remove the specified attribute if present. */
5626 static void
5627 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5629 dw_attr_ref a;
5630 unsigned ix;
5632 if (! die)
5633 return;
5635 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5636 if (a->dw_attr == attr_kind)
5638 if (AT_class (a) == dw_val_class_str)
5639 if (a->dw_attr_val.v.val_str->refcount)
5640 a->dw_attr_val.v.val_str->refcount--;
5642 /* VEC_ordered_remove should help reduce the number of abbrevs
5643 that are needed. */
5644 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5645 return;
5649 /* Remove CHILD from its parent. PREV must have the property that
5650 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5652 static void
5653 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5655 gcc_assert (child->die_parent == prev->die_parent);
5656 gcc_assert (prev->die_sib == child);
5657 if (prev == child)
5659 gcc_assert (child->die_parent->die_child == child);
5660 prev = NULL;
5662 else
5663 prev->die_sib = child->die_sib;
5664 if (child->die_parent->die_child == child)
5665 child->die_parent->die_child = prev;
5668 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5669 matches TAG. */
5671 static void
5672 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5674 dw_die_ref c;
5676 c = die->die_child;
5677 if (c) do {
5678 dw_die_ref prev = c;
5679 c = c->die_sib;
5680 while (c->die_tag == tag)
5682 remove_child_with_prev (c, prev);
5683 /* Might have removed every child. */
5684 if (c == c->die_sib)
5685 return;
5686 c = c->die_sib;
5688 } while (c != die->die_child);
5691 /* Add a CHILD_DIE as the last child of DIE. */
5693 static void
5694 add_child_die (dw_die_ref die, dw_die_ref child_die)
5696 /* FIXME this should probably be an assert. */
5697 if (! die || ! child_die)
5698 return;
5699 gcc_assert (die != child_die);
5701 child_die->die_parent = die;
5702 if (die->die_child)
5704 child_die->die_sib = die->die_child->die_sib;
5705 die->die_child->die_sib = child_die;
5707 else
5708 child_die->die_sib = child_die;
5709 die->die_child = child_die;
5712 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5713 is the specification, to the end of PARENT's list of children.
5714 This is done by removing and re-adding it. */
5716 static void
5717 splice_child_die (dw_die_ref parent, dw_die_ref child)
5719 dw_die_ref p;
5721 /* We want the declaration DIE from inside the class, not the
5722 specification DIE at toplevel. */
5723 if (child->die_parent != parent)
5725 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5727 if (tmp)
5728 child = tmp;
5731 gcc_assert (child->die_parent == parent
5732 || (child->die_parent
5733 == get_AT_ref (parent, DW_AT_specification)));
5735 for (p = child->die_parent->die_child; ; p = p->die_sib)
5736 if (p->die_sib == child)
5738 remove_child_with_prev (child, p);
5739 break;
5742 add_child_die (parent, child);
5745 /* Return a pointer to a newly created DIE node. */
5747 static inline dw_die_ref
5748 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5750 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5752 die->die_tag = tag_value;
5754 if (parent_die != NULL)
5755 add_child_die (parent_die, die);
5756 else
5758 limbo_die_node *limbo_node;
5760 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5761 limbo_node->die = die;
5762 limbo_node->created_for = t;
5763 limbo_node->next = limbo_die_list;
5764 limbo_die_list = limbo_node;
5767 return die;
5770 /* Return the DIE associated with the given type specifier. */
5772 static inline dw_die_ref
5773 lookup_type_die (tree type)
5775 return TYPE_SYMTAB_DIE (type);
5778 /* Equate a DIE to a given type specifier. */
5780 static inline void
5781 equate_type_number_to_die (tree type, dw_die_ref type_die)
5783 TYPE_SYMTAB_DIE (type) = type_die;
5786 /* Returns a hash value for X (which really is a die_struct). */
5788 static hashval_t
5789 decl_die_table_hash (const void *x)
5791 return (hashval_t) ((const_dw_die_ref) x)->decl_id;
5794 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5796 static int
5797 decl_die_table_eq (const void *x, const void *y)
5799 return (((const_dw_die_ref) x)->decl_id == DECL_UID ((const_tree) y));
5802 /* Return the DIE associated with a given declaration. */
5804 static inline dw_die_ref
5805 lookup_decl_die (tree decl)
5807 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5810 /* Returns a hash value for X (which really is a var_loc_list). */
5812 static hashval_t
5813 decl_loc_table_hash (const void *x)
5815 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5818 /* Return nonzero if decl_id of var_loc_list X is the same as
5819 UID of decl *Y. */
5821 static int
5822 decl_loc_table_eq (const void *x, const void *y)
5824 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const_tree) y));
5827 /* Return the var_loc list associated with a given declaration. */
5829 static inline var_loc_list *
5830 lookup_decl_loc (const_tree decl)
5832 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5835 /* Equate a DIE to a particular declaration. */
5837 static void
5838 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5840 unsigned int decl_id = DECL_UID (decl);
5841 void **slot;
5843 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5844 *slot = decl_die;
5845 decl_die->decl_id = decl_id;
5848 /* Add a variable location node to the linked list for DECL. */
5850 static void
5851 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5853 unsigned int decl_id = DECL_UID (decl);
5854 var_loc_list *temp;
5855 void **slot;
5857 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5858 if (*slot == NULL)
5860 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5861 temp->decl_id = decl_id;
5862 *slot = temp;
5864 else
5865 temp = *slot;
5867 if (temp->last)
5869 /* If the current location is the same as the end of the list,
5870 and either both or neither of the locations is uninitialized,
5871 we have nothing to do. */
5872 if ((!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5873 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5874 || ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
5875 != NOTE_VAR_LOCATION_STATUS (loc->var_loc_note))
5876 && ((NOTE_VAR_LOCATION_STATUS (temp->last->var_loc_note)
5877 == VAR_INIT_STATUS_UNINITIALIZED)
5878 || (NOTE_VAR_LOCATION_STATUS (loc->var_loc_note)
5879 == VAR_INIT_STATUS_UNINITIALIZED))))
5881 /* Add LOC to the end of list and update LAST. */
5882 temp->last->next = loc;
5883 temp->last = loc;
5886 /* Do not add empty location to the beginning of the list. */
5887 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5889 temp->first = loc;
5890 temp->last = loc;
5894 /* Keep track of the number of spaces used to indent the
5895 output of the debugging routines that print the structure of
5896 the DIE internal representation. */
5897 static int print_indent;
5899 /* Indent the line the number of spaces given by print_indent. */
5901 static inline void
5902 print_spaces (FILE *outfile)
5904 fprintf (outfile, "%*s", print_indent, "");
5907 /* Print the information associated with a given DIE, and its children.
5908 This routine is a debugging aid only. */
5910 static void
5911 print_die (dw_die_ref die, FILE *outfile)
5913 dw_attr_ref a;
5914 dw_die_ref c;
5915 unsigned ix;
5917 print_spaces (outfile);
5918 fprintf (outfile, "DIE %4ld: %s\n",
5919 die->die_offset, dwarf_tag_name (die->die_tag));
5920 print_spaces (outfile);
5921 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5922 fprintf (outfile, " offset: %ld\n", die->die_offset);
5924 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5926 print_spaces (outfile);
5927 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5929 switch (AT_class (a))
5931 case dw_val_class_addr:
5932 fprintf (outfile, "address");
5933 break;
5934 case dw_val_class_offset:
5935 fprintf (outfile, "offset");
5936 break;
5937 case dw_val_class_loc:
5938 fprintf (outfile, "location descriptor");
5939 break;
5940 case dw_val_class_loc_list:
5941 fprintf (outfile, "location list -> label:%s",
5942 AT_loc_list (a)->ll_symbol);
5943 break;
5944 case dw_val_class_range_list:
5945 fprintf (outfile, "range list");
5946 break;
5947 case dw_val_class_const:
5948 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5949 break;
5950 case dw_val_class_unsigned_const:
5951 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5952 break;
5953 case dw_val_class_long_long:
5954 fprintf (outfile, "constant (%lu,%lu)",
5955 a->dw_attr_val.v.val_long_long.hi,
5956 a->dw_attr_val.v.val_long_long.low);
5957 break;
5958 case dw_val_class_vec:
5959 fprintf (outfile, "floating-point or vector constant");
5960 break;
5961 case dw_val_class_flag:
5962 fprintf (outfile, "%u", AT_flag (a));
5963 break;
5964 case dw_val_class_die_ref:
5965 if (AT_ref (a) != NULL)
5967 if (AT_ref (a)->die_symbol)
5968 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5969 else
5970 fprintf (outfile, "die -> %ld", AT_ref (a)->die_offset);
5972 else
5973 fprintf (outfile, "die -> <null>");
5974 break;
5975 case dw_val_class_lbl_id:
5976 case dw_val_class_lineptr:
5977 case dw_val_class_macptr:
5978 fprintf (outfile, "label: %s", AT_lbl (a));
5979 break;
5980 case dw_val_class_str:
5981 if (AT_string (a) != NULL)
5982 fprintf (outfile, "\"%s\"", AT_string (a));
5983 else
5984 fprintf (outfile, "<null>");
5985 break;
5986 case dw_val_class_file:
5987 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5988 AT_file (a)->emitted_number);
5989 break;
5990 default:
5991 break;
5994 fprintf (outfile, "\n");
5997 if (die->die_child != NULL)
5999 print_indent += 4;
6000 FOR_EACH_CHILD (die, c, print_die (c, outfile));
6001 print_indent -= 4;
6003 if (print_indent == 0)
6004 fprintf (outfile, "\n");
6007 /* Print the contents of the source code line number correspondence table.
6008 This routine is a debugging aid only. */
6010 static void
6011 print_dwarf_line_table (FILE *outfile)
6013 unsigned i;
6014 dw_line_info_ref line_info;
6016 fprintf (outfile, "\n\nDWARF source line information\n");
6017 for (i = 1; i < line_info_table_in_use; i++)
6019 line_info = &line_info_table[i];
6020 fprintf (outfile, "%5d: %4ld %6ld\n", i,
6021 line_info->dw_file_num,
6022 line_info->dw_line_num);
6025 fprintf (outfile, "\n\n");
6028 /* Print the information collected for a given DIE. */
6030 void
6031 debug_dwarf_die (dw_die_ref die)
6033 print_die (die, stderr);
6036 /* Print all DWARF information collected for the compilation unit.
6037 This routine is a debugging aid only. */
6039 void
6040 debug_dwarf (void)
6042 print_indent = 0;
6043 print_die (comp_unit_die, stderr);
6044 if (! DWARF2_ASM_LINE_DEBUG_INFO)
6045 print_dwarf_line_table (stderr);
6048 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
6049 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
6050 DIE that marks the start of the DIEs for this include file. */
6052 static dw_die_ref
6053 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
6055 const char *filename = get_AT_string (bincl_die, DW_AT_name);
6056 dw_die_ref new_unit = gen_compile_unit_die (filename);
6058 new_unit->die_sib = old_unit;
6059 return new_unit;
6062 /* Close an include-file CU and reopen the enclosing one. */
6064 static dw_die_ref
6065 pop_compile_unit (dw_die_ref old_unit)
6067 dw_die_ref new_unit = old_unit->die_sib;
6069 old_unit->die_sib = NULL;
6070 return new_unit;
6073 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6074 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
6076 /* Calculate the checksum of a location expression. */
6078 static inline void
6079 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6081 CHECKSUM (loc->dw_loc_opc);
6082 CHECKSUM (loc->dw_loc_oprnd1);
6083 CHECKSUM (loc->dw_loc_oprnd2);
6086 /* Calculate the checksum of an attribute. */
6088 static void
6089 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
6091 dw_loc_descr_ref loc;
6092 rtx r;
6094 CHECKSUM (at->dw_attr);
6096 /* We don't care that this was compiled with a different compiler
6097 snapshot; if the output is the same, that's what matters. */
6098 if (at->dw_attr == DW_AT_producer)
6099 return;
6101 switch (AT_class (at))
6103 case dw_val_class_const:
6104 CHECKSUM (at->dw_attr_val.v.val_int);
6105 break;
6106 case dw_val_class_unsigned_const:
6107 CHECKSUM (at->dw_attr_val.v.val_unsigned);
6108 break;
6109 case dw_val_class_long_long:
6110 CHECKSUM (at->dw_attr_val.v.val_long_long);
6111 break;
6112 case dw_val_class_vec:
6113 CHECKSUM (at->dw_attr_val.v.val_vec);
6114 break;
6115 case dw_val_class_flag:
6116 CHECKSUM (at->dw_attr_val.v.val_flag);
6117 break;
6118 case dw_val_class_str:
6119 CHECKSUM_STRING (AT_string (at));
6120 break;
6122 case dw_val_class_addr:
6123 r = AT_addr (at);
6124 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6125 CHECKSUM_STRING (XSTR (r, 0));
6126 break;
6128 case dw_val_class_offset:
6129 CHECKSUM (at->dw_attr_val.v.val_offset);
6130 break;
6132 case dw_val_class_loc:
6133 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6134 loc_checksum (loc, ctx);
6135 break;
6137 case dw_val_class_die_ref:
6138 die_checksum (AT_ref (at), ctx, mark);
6139 break;
6141 case dw_val_class_fde_ref:
6142 case dw_val_class_lbl_id:
6143 case dw_val_class_lineptr:
6144 case dw_val_class_macptr:
6145 break;
6147 case dw_val_class_file:
6148 CHECKSUM_STRING (AT_file (at)->filename);
6149 break;
6151 default:
6152 break;
6156 /* Calculate the checksum of a DIE. */
6158 static void
6159 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6161 dw_die_ref c;
6162 dw_attr_ref a;
6163 unsigned ix;
6165 /* To avoid infinite recursion. */
6166 if (die->die_mark)
6168 CHECKSUM (die->die_mark);
6169 return;
6171 die->die_mark = ++(*mark);
6173 CHECKSUM (die->die_tag);
6175 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6176 attr_checksum (a, ctx, mark);
6178 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6181 #undef CHECKSUM
6182 #undef CHECKSUM_STRING
6184 /* Do the location expressions look same? */
6185 static inline int
6186 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6188 return loc1->dw_loc_opc == loc2->dw_loc_opc
6189 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6190 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6193 /* Do the values look the same? */
6194 static int
6195 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6197 dw_loc_descr_ref loc1, loc2;
6198 rtx r1, r2;
6200 if (v1->val_class != v2->val_class)
6201 return 0;
6203 switch (v1->val_class)
6205 case dw_val_class_const:
6206 return v1->v.val_int == v2->v.val_int;
6207 case dw_val_class_unsigned_const:
6208 return v1->v.val_unsigned == v2->v.val_unsigned;
6209 case dw_val_class_long_long:
6210 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6211 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6212 case dw_val_class_vec:
6213 if (v1->v.val_vec.length != v2->v.val_vec.length
6214 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6215 return 0;
6216 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6217 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6218 return 0;
6219 return 1;
6220 case dw_val_class_flag:
6221 return v1->v.val_flag == v2->v.val_flag;
6222 case dw_val_class_str:
6223 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6225 case dw_val_class_addr:
6226 r1 = v1->v.val_addr;
6227 r2 = v2->v.val_addr;
6228 if (GET_CODE (r1) != GET_CODE (r2))
6229 return 0;
6230 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6231 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6233 case dw_val_class_offset:
6234 return v1->v.val_offset == v2->v.val_offset;
6236 case dw_val_class_loc:
6237 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6238 loc1 && loc2;
6239 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6240 if (!same_loc_p (loc1, loc2, mark))
6241 return 0;
6242 return !loc1 && !loc2;
6244 case dw_val_class_die_ref:
6245 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6247 case dw_val_class_fde_ref:
6248 case dw_val_class_lbl_id:
6249 case dw_val_class_lineptr:
6250 case dw_val_class_macptr:
6251 return 1;
6253 case dw_val_class_file:
6254 return v1->v.val_file == v2->v.val_file;
6256 default:
6257 return 1;
6261 /* Do the attributes look the same? */
6263 static int
6264 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6266 if (at1->dw_attr != at2->dw_attr)
6267 return 0;
6269 /* We don't care that this was compiled with a different compiler
6270 snapshot; if the output is the same, that's what matters. */
6271 if (at1->dw_attr == DW_AT_producer)
6272 return 1;
6274 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6277 /* Do the dies look the same? */
6279 static int
6280 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6282 dw_die_ref c1, c2;
6283 dw_attr_ref a1;
6284 unsigned ix;
6286 /* To avoid infinite recursion. */
6287 if (die1->die_mark)
6288 return die1->die_mark == die2->die_mark;
6289 die1->die_mark = die2->die_mark = ++(*mark);
6291 if (die1->die_tag != die2->die_tag)
6292 return 0;
6294 if (VEC_length (dw_attr_node, die1->die_attr)
6295 != VEC_length (dw_attr_node, die2->die_attr))
6296 return 0;
6298 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6299 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6300 return 0;
6302 c1 = die1->die_child;
6303 c2 = die2->die_child;
6304 if (! c1)
6306 if (c2)
6307 return 0;
6309 else
6310 for (;;)
6312 if (!same_die_p (c1, c2, mark))
6313 return 0;
6314 c1 = c1->die_sib;
6315 c2 = c2->die_sib;
6316 if (c1 == die1->die_child)
6318 if (c2 == die2->die_child)
6319 break;
6320 else
6321 return 0;
6325 return 1;
6328 /* Do the dies look the same? Wrapper around same_die_p. */
6330 static int
6331 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6333 int mark = 0;
6334 int ret = same_die_p (die1, die2, &mark);
6336 unmark_all_dies (die1);
6337 unmark_all_dies (die2);
6339 return ret;
6342 /* The prefix to attach to symbols on DIEs in the current comdat debug
6343 info section. */
6344 static char *comdat_symbol_id;
6346 /* The index of the current symbol within the current comdat CU. */
6347 static unsigned int comdat_symbol_number;
6349 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6350 children, and set comdat_symbol_id accordingly. */
6352 static void
6353 compute_section_prefix (dw_die_ref unit_die)
6355 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6356 const char *base = die_name ? lbasename (die_name) : "anonymous";
6357 char *name = alloca (strlen (base) + 64);
6358 char *p;
6359 int i, mark;
6360 unsigned char checksum[16];
6361 struct md5_ctx ctx;
6363 /* Compute the checksum of the DIE, then append part of it as hex digits to
6364 the name filename of the unit. */
6366 md5_init_ctx (&ctx);
6367 mark = 0;
6368 die_checksum (unit_die, &ctx, &mark);
6369 unmark_all_dies (unit_die);
6370 md5_finish_ctx (&ctx, checksum);
6372 sprintf (name, "%s.", base);
6373 clean_symbol_name (name);
6375 p = name + strlen (name);
6376 for (i = 0; i < 4; i++)
6378 sprintf (p, "%.2x", checksum[i]);
6379 p += 2;
6382 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6383 comdat_symbol_number = 0;
6386 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6388 static int
6389 is_type_die (dw_die_ref die)
6391 switch (die->die_tag)
6393 case DW_TAG_array_type:
6394 case DW_TAG_class_type:
6395 case DW_TAG_interface_type:
6396 case DW_TAG_enumeration_type:
6397 case DW_TAG_pointer_type:
6398 case DW_TAG_reference_type:
6399 case DW_TAG_string_type:
6400 case DW_TAG_structure_type:
6401 case DW_TAG_subroutine_type:
6402 case DW_TAG_union_type:
6403 case DW_TAG_ptr_to_member_type:
6404 case DW_TAG_set_type:
6405 case DW_TAG_subrange_type:
6406 case DW_TAG_base_type:
6407 case DW_TAG_const_type:
6408 case DW_TAG_file_type:
6409 case DW_TAG_packed_type:
6410 case DW_TAG_volatile_type:
6411 case DW_TAG_typedef:
6412 return 1;
6413 default:
6414 return 0;
6418 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6419 Basically, we want to choose the bits that are likely to be shared between
6420 compilations (types) and leave out the bits that are specific to individual
6421 compilations (functions). */
6423 static int
6424 is_comdat_die (dw_die_ref c)
6426 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6427 we do for stabs. The advantage is a greater likelihood of sharing between
6428 objects that don't include headers in the same order (and therefore would
6429 put the base types in a different comdat). jason 8/28/00 */
6431 if (c->die_tag == DW_TAG_base_type)
6432 return 0;
6434 if (c->die_tag == DW_TAG_pointer_type
6435 || c->die_tag == DW_TAG_reference_type
6436 || c->die_tag == DW_TAG_const_type
6437 || c->die_tag == DW_TAG_volatile_type)
6439 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6441 return t ? is_comdat_die (t) : 0;
6444 return is_type_die (c);
6447 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6448 compilation unit. */
6450 static int
6451 is_symbol_die (dw_die_ref c)
6453 return (is_type_die (c)
6454 || (get_AT (c, DW_AT_declaration)
6455 && !get_AT (c, DW_AT_specification))
6456 || c->die_tag == DW_TAG_namespace);
6459 static char *
6460 gen_internal_sym (const char *prefix)
6462 char buf[256];
6464 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6465 return xstrdup (buf);
6468 /* Assign symbols to all worthy DIEs under DIE. */
6470 static void
6471 assign_symbol_names (dw_die_ref die)
6473 dw_die_ref c;
6475 if (is_symbol_die (die))
6477 if (comdat_symbol_id)
6479 char *p = alloca (strlen (comdat_symbol_id) + 64);
6481 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6482 comdat_symbol_id, comdat_symbol_number++);
6483 die->die_symbol = xstrdup (p);
6485 else
6486 die->die_symbol = gen_internal_sym ("LDIE");
6489 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6492 struct cu_hash_table_entry
6494 dw_die_ref cu;
6495 unsigned min_comdat_num, max_comdat_num;
6496 struct cu_hash_table_entry *next;
6499 /* Routines to manipulate hash table of CUs. */
6500 static hashval_t
6501 htab_cu_hash (const void *of)
6503 const struct cu_hash_table_entry *entry = of;
6505 return htab_hash_string (entry->cu->die_symbol);
6508 static int
6509 htab_cu_eq (const void *of1, const void *of2)
6511 const struct cu_hash_table_entry *entry1 = of1;
6512 const struct die_struct *entry2 = of2;
6514 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6517 static void
6518 htab_cu_del (void *what)
6520 struct cu_hash_table_entry *next, *entry = what;
6522 while (entry)
6524 next = entry->next;
6525 free (entry);
6526 entry = next;
6530 /* Check whether we have already seen this CU and set up SYM_NUM
6531 accordingly. */
6532 static int
6533 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6535 struct cu_hash_table_entry dummy;
6536 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6538 dummy.max_comdat_num = 0;
6540 slot = (struct cu_hash_table_entry **)
6541 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6542 INSERT);
6543 entry = *slot;
6545 for (; entry; last = entry, entry = entry->next)
6547 if (same_die_p_wrap (cu, entry->cu))
6548 break;
6551 if (entry)
6553 *sym_num = entry->min_comdat_num;
6554 return 1;
6557 entry = XCNEW (struct cu_hash_table_entry);
6558 entry->cu = cu;
6559 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6560 entry->next = *slot;
6561 *slot = entry;
6563 return 0;
6566 /* Record SYM_NUM to record of CU in HTABLE. */
6567 static void
6568 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6570 struct cu_hash_table_entry **slot, *entry;
6572 slot = (struct cu_hash_table_entry **)
6573 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6574 NO_INSERT);
6575 entry = *slot;
6577 entry->max_comdat_num = sym_num;
6580 /* Traverse the DIE (which is always comp_unit_die), and set up
6581 additional compilation units for each of the include files we see
6582 bracketed by BINCL/EINCL. */
6584 static void
6585 break_out_includes (dw_die_ref die)
6587 dw_die_ref c;
6588 dw_die_ref unit = NULL;
6589 limbo_die_node *node, **pnode;
6590 htab_t cu_hash_table;
6592 c = die->die_child;
6593 if (c) do {
6594 dw_die_ref prev = c;
6595 c = c->die_sib;
6596 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6597 || (unit && is_comdat_die (c)))
6599 dw_die_ref next = c->die_sib;
6601 /* This DIE is for a secondary CU; remove it from the main one. */
6602 remove_child_with_prev (c, prev);
6604 if (c->die_tag == DW_TAG_GNU_BINCL)
6605 unit = push_new_compile_unit (unit, c);
6606 else if (c->die_tag == DW_TAG_GNU_EINCL)
6607 unit = pop_compile_unit (unit);
6608 else
6609 add_child_die (unit, c);
6610 c = next;
6611 if (c == die->die_child)
6612 break;
6614 } while (c != die->die_child);
6616 #if 0
6617 /* We can only use this in debugging, since the frontend doesn't check
6618 to make sure that we leave every include file we enter. */
6619 gcc_assert (!unit);
6620 #endif
6622 assign_symbol_names (die);
6623 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6624 for (node = limbo_die_list, pnode = &limbo_die_list;
6625 node;
6626 node = node->next)
6628 int is_dupl;
6630 compute_section_prefix (node->die);
6631 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6632 &comdat_symbol_number);
6633 assign_symbol_names (node->die);
6634 if (is_dupl)
6635 *pnode = node->next;
6636 else
6638 pnode = &node->next;
6639 record_comdat_symbol_number (node->die, cu_hash_table,
6640 comdat_symbol_number);
6643 htab_delete (cu_hash_table);
6646 /* Traverse the DIE and add a sibling attribute if it may have the
6647 effect of speeding up access to siblings. To save some space,
6648 avoid generating sibling attributes for DIE's without children. */
6650 static void
6651 add_sibling_attributes (dw_die_ref die)
6653 dw_die_ref c;
6655 if (! die->die_child)
6656 return;
6658 if (die->die_parent && die != die->die_parent->die_child)
6659 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6661 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6664 /* Output all location lists for the DIE and its children. */
6666 static void
6667 output_location_lists (dw_die_ref die)
6669 dw_die_ref c;
6670 dw_attr_ref a;
6671 unsigned ix;
6673 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6674 if (AT_class (a) == dw_val_class_loc_list)
6675 output_loc_list (AT_loc_list (a));
6677 FOR_EACH_CHILD (die, c, output_location_lists (c));
6680 /* The format of each DIE (and its attribute value pairs) is encoded in an
6681 abbreviation table. This routine builds the abbreviation table and assigns
6682 a unique abbreviation id for each abbreviation entry. The children of each
6683 die are visited recursively. */
6685 static void
6686 build_abbrev_table (dw_die_ref die)
6688 unsigned long abbrev_id;
6689 unsigned int n_alloc;
6690 dw_die_ref c;
6691 dw_attr_ref a;
6692 unsigned ix;
6694 /* Scan the DIE references, and mark as external any that refer to
6695 DIEs from other CUs (i.e. those which are not marked). */
6696 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6697 if (AT_class (a) == dw_val_class_die_ref
6698 && AT_ref (a)->die_mark == 0)
6700 gcc_assert (AT_ref (a)->die_symbol);
6702 set_AT_ref_external (a, 1);
6705 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6707 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6708 dw_attr_ref die_a, abbrev_a;
6709 unsigned ix;
6710 bool ok = true;
6712 if (abbrev->die_tag != die->die_tag)
6713 continue;
6714 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6715 continue;
6717 if (VEC_length (dw_attr_node, abbrev->die_attr)
6718 != VEC_length (dw_attr_node, die->die_attr))
6719 continue;
6721 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6723 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6724 if ((abbrev_a->dw_attr != die_a->dw_attr)
6725 || (value_format (abbrev_a) != value_format (die_a)))
6727 ok = false;
6728 break;
6731 if (ok)
6732 break;
6735 if (abbrev_id >= abbrev_die_table_in_use)
6737 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6739 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6740 abbrev_die_table = ggc_realloc (abbrev_die_table,
6741 sizeof (dw_die_ref) * n_alloc);
6743 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6744 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6745 abbrev_die_table_allocated = n_alloc;
6748 ++abbrev_die_table_in_use;
6749 abbrev_die_table[abbrev_id] = die;
6752 die->die_abbrev = abbrev_id;
6753 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6756 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6758 static int
6759 constant_size (long unsigned int value)
6761 int log;
6763 if (value == 0)
6764 log = 0;
6765 else
6766 log = floor_log2 (value);
6768 log = log / 8;
6769 log = 1 << (floor_log2 (log) + 1);
6771 return log;
6774 /* Return the size of a DIE as it is represented in the
6775 .debug_info section. */
6777 static unsigned long
6778 size_of_die (dw_die_ref die)
6780 unsigned long size = 0;
6781 dw_attr_ref a;
6782 unsigned ix;
6784 size += size_of_uleb128 (die->die_abbrev);
6785 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6787 switch (AT_class (a))
6789 case dw_val_class_addr:
6790 size += DWARF2_ADDR_SIZE;
6791 break;
6792 case dw_val_class_offset:
6793 size += DWARF_OFFSET_SIZE;
6794 break;
6795 case dw_val_class_loc:
6797 unsigned long lsize = size_of_locs (AT_loc (a));
6799 /* Block length. */
6800 size += constant_size (lsize);
6801 size += lsize;
6803 break;
6804 case dw_val_class_loc_list:
6805 size += DWARF_OFFSET_SIZE;
6806 break;
6807 case dw_val_class_range_list:
6808 size += DWARF_OFFSET_SIZE;
6809 break;
6810 case dw_val_class_const:
6811 size += size_of_sleb128 (AT_int (a));
6812 break;
6813 case dw_val_class_unsigned_const:
6814 size += constant_size (AT_unsigned (a));
6815 break;
6816 case dw_val_class_long_long:
6817 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6818 break;
6819 case dw_val_class_vec:
6820 size += 1 + (a->dw_attr_val.v.val_vec.length
6821 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6822 break;
6823 case dw_val_class_flag:
6824 size += 1;
6825 break;
6826 case dw_val_class_die_ref:
6827 if (AT_ref_external (a))
6828 size += DWARF2_ADDR_SIZE;
6829 else
6830 size += DWARF_OFFSET_SIZE;
6831 break;
6832 case dw_val_class_fde_ref:
6833 size += DWARF_OFFSET_SIZE;
6834 break;
6835 case dw_val_class_lbl_id:
6836 size += DWARF2_ADDR_SIZE;
6837 break;
6838 case dw_val_class_lineptr:
6839 case dw_val_class_macptr:
6840 size += DWARF_OFFSET_SIZE;
6841 break;
6842 case dw_val_class_str:
6843 if (AT_string_form (a) == DW_FORM_strp)
6844 size += DWARF_OFFSET_SIZE;
6845 else
6846 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6847 break;
6848 case dw_val_class_file:
6849 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6850 break;
6851 default:
6852 gcc_unreachable ();
6856 return size;
6859 /* Size the debugging information associated with a given DIE. Visits the
6860 DIE's children recursively. Updates the global variable next_die_offset, on
6861 each time through. Uses the current value of next_die_offset to update the
6862 die_offset field in each DIE. */
6864 static void
6865 calc_die_sizes (dw_die_ref die)
6867 dw_die_ref c;
6869 die->die_offset = next_die_offset;
6870 next_die_offset += size_of_die (die);
6872 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6874 if (die->die_child != NULL)
6875 /* Count the null byte used to terminate sibling lists. */
6876 next_die_offset += 1;
6879 /* Set the marks for a die and its children. We do this so
6880 that we know whether or not a reference needs to use FORM_ref_addr; only
6881 DIEs in the same CU will be marked. We used to clear out the offset
6882 and use that as the flag, but ran into ordering problems. */
6884 static void
6885 mark_dies (dw_die_ref die)
6887 dw_die_ref c;
6889 gcc_assert (!die->die_mark);
6891 die->die_mark = 1;
6892 FOR_EACH_CHILD (die, c, mark_dies (c));
6895 /* Clear the marks for a die and its children. */
6897 static void
6898 unmark_dies (dw_die_ref die)
6900 dw_die_ref c;
6902 gcc_assert (die->die_mark);
6904 die->die_mark = 0;
6905 FOR_EACH_CHILD (die, c, unmark_dies (c));
6908 /* Clear the marks for a die, its children and referred dies. */
6910 static void
6911 unmark_all_dies (dw_die_ref die)
6913 dw_die_ref c;
6914 dw_attr_ref a;
6915 unsigned ix;
6917 if (!die->die_mark)
6918 return;
6919 die->die_mark = 0;
6921 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6923 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6924 if (AT_class (a) == dw_val_class_die_ref)
6925 unmark_all_dies (AT_ref (a));
6928 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6929 generated for the compilation unit. */
6931 static unsigned long
6932 size_of_pubnames (VEC (pubname_entry, gc) * names)
6934 unsigned long size;
6935 unsigned i;
6936 pubname_ref p;
6938 size = DWARF_PUBNAMES_HEADER_SIZE;
6939 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6940 if (names != pubtype_table
6941 || p->die->die_offset != 0
6942 || !flag_eliminate_unused_debug_types)
6943 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6945 size += DWARF_OFFSET_SIZE;
6946 return size;
6949 /* Return the size of the information in the .debug_aranges section. */
6951 static unsigned long
6952 size_of_aranges (void)
6954 unsigned long size;
6956 size = DWARF_ARANGES_HEADER_SIZE;
6958 /* Count the address/length pair for this compilation unit. */
6959 if (text_section_used)
6960 size += 2 * DWARF2_ADDR_SIZE;
6961 if (cold_text_section_used)
6962 size += 2 * DWARF2_ADDR_SIZE;
6963 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6965 /* Count the two zero words used to terminated the address range table. */
6966 size += 2 * DWARF2_ADDR_SIZE;
6967 return size;
6970 /* Select the encoding of an attribute value. */
6972 static enum dwarf_form
6973 value_format (dw_attr_ref a)
6975 switch (a->dw_attr_val.val_class)
6977 case dw_val_class_addr:
6978 return DW_FORM_addr;
6979 case dw_val_class_range_list:
6980 case dw_val_class_offset:
6981 case dw_val_class_loc_list:
6982 switch (DWARF_OFFSET_SIZE)
6984 case 4:
6985 return DW_FORM_data4;
6986 case 8:
6987 return DW_FORM_data8;
6988 default:
6989 gcc_unreachable ();
6991 case dw_val_class_loc:
6992 switch (constant_size (size_of_locs (AT_loc (a))))
6994 case 1:
6995 return DW_FORM_block1;
6996 case 2:
6997 return DW_FORM_block2;
6998 default:
6999 gcc_unreachable ();
7001 case dw_val_class_const:
7002 return DW_FORM_sdata;
7003 case dw_val_class_unsigned_const:
7004 switch (constant_size (AT_unsigned (a)))
7006 case 1:
7007 return DW_FORM_data1;
7008 case 2:
7009 return DW_FORM_data2;
7010 case 4:
7011 return DW_FORM_data4;
7012 case 8:
7013 return DW_FORM_data8;
7014 default:
7015 gcc_unreachable ();
7017 case dw_val_class_long_long:
7018 return DW_FORM_block1;
7019 case dw_val_class_vec:
7020 return DW_FORM_block1;
7021 case dw_val_class_flag:
7022 return DW_FORM_flag;
7023 case dw_val_class_die_ref:
7024 if (AT_ref_external (a))
7025 return DW_FORM_ref_addr;
7026 else
7027 return DW_FORM_ref;
7028 case dw_val_class_fde_ref:
7029 return DW_FORM_data;
7030 case dw_val_class_lbl_id:
7031 return DW_FORM_addr;
7032 case dw_val_class_lineptr:
7033 case dw_val_class_macptr:
7034 return DW_FORM_data;
7035 case dw_val_class_str:
7036 return AT_string_form (a);
7037 case dw_val_class_file:
7038 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
7040 case 1:
7041 return DW_FORM_data1;
7042 case 2:
7043 return DW_FORM_data2;
7044 case 4:
7045 return DW_FORM_data4;
7046 default:
7047 gcc_unreachable ();
7050 default:
7051 gcc_unreachable ();
7055 /* Output the encoding of an attribute value. */
7057 static void
7058 output_value_format (dw_attr_ref a)
7060 enum dwarf_form form = value_format (a);
7062 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
7065 /* Output the .debug_abbrev section which defines the DIE abbreviation
7066 table. */
7068 static void
7069 output_abbrev_section (void)
7071 unsigned long abbrev_id;
7073 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
7075 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
7076 unsigned ix;
7077 dw_attr_ref a_attr;
7079 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
7080 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
7081 dwarf_tag_name (abbrev->die_tag));
7083 if (abbrev->die_child != NULL)
7084 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
7085 else
7086 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
7088 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
7089 ix++)
7091 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
7092 dwarf_attr_name (a_attr->dw_attr));
7093 output_value_format (a_attr);
7096 dw2_asm_output_data (1, 0, NULL);
7097 dw2_asm_output_data (1, 0, NULL);
7100 /* Terminate the table. */
7101 dw2_asm_output_data (1, 0, NULL);
7104 /* Output a symbol we can use to refer to this DIE from another CU. */
7106 static inline void
7107 output_die_symbol (dw_die_ref die)
7109 char *sym = die->die_symbol;
7111 if (sym == 0)
7112 return;
7114 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
7115 /* We make these global, not weak; if the target doesn't support
7116 .linkonce, it doesn't support combining the sections, so debugging
7117 will break. */
7118 targetm.asm_out.globalize_label (asm_out_file, sym);
7120 ASM_OUTPUT_LABEL (asm_out_file, sym);
7123 /* Return a new location list, given the begin and end range, and the
7124 expression. gensym tells us whether to generate a new internal symbol for
7125 this location list node, which is done for the head of the list only. */
7127 static inline dw_loc_list_ref
7128 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
7129 const char *section, unsigned int gensym)
7131 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
7133 retlist->begin = begin;
7134 retlist->end = end;
7135 retlist->expr = expr;
7136 retlist->section = section;
7137 if (gensym)
7138 retlist->ll_symbol = gen_internal_sym ("LLST");
7140 return retlist;
7143 /* Add a location description expression to a location list. */
7145 static inline void
7146 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
7147 const char *begin, const char *end,
7148 const char *section)
7150 dw_loc_list_ref *d;
7152 /* Find the end of the chain. */
7153 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
7156 /* Add a new location list node to the list. */
7157 *d = new_loc_list (descr, begin, end, section, 0);
7160 /* Output the location list given to us. */
7162 static void
7163 output_loc_list (dw_loc_list_ref list_head)
7165 dw_loc_list_ref curr = list_head;
7167 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7169 /* Walk the location list, and output each range + expression. */
7170 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7172 unsigned long size;
7173 /* Don't output an entry that starts and ends at the same address. */
7174 if (strcmp (curr->begin, curr->end) == 0)
7175 continue;
7176 if (!have_multiple_function_sections)
7178 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7179 "Location list begin address (%s)",
7180 list_head->ll_symbol);
7181 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7182 "Location list end address (%s)",
7183 list_head->ll_symbol);
7185 else
7187 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7188 "Location list begin address (%s)",
7189 list_head->ll_symbol);
7190 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7191 "Location list end address (%s)",
7192 list_head->ll_symbol);
7194 size = size_of_locs (curr->expr);
7196 /* Output the block length for this list of location operations. */
7197 gcc_assert (size <= 0xffff);
7198 dw2_asm_output_data (2, size, "%s", "Location expression size");
7200 output_loc_sequence (curr->expr);
7203 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7204 "Location list terminator begin (%s)",
7205 list_head->ll_symbol);
7206 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7207 "Location list terminator end (%s)",
7208 list_head->ll_symbol);
7211 /* Output the DIE and its attributes. Called recursively to generate
7212 the definitions of each child DIE. */
7214 static void
7215 output_die (dw_die_ref die)
7217 dw_attr_ref a;
7218 dw_die_ref c;
7219 unsigned long size;
7220 unsigned ix;
7222 /* If someone in another CU might refer to us, set up a symbol for
7223 them to point to. */
7224 if (die->die_symbol)
7225 output_die_symbol (die);
7227 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7228 (unsigned long)die->die_offset,
7229 dwarf_tag_name (die->die_tag));
7231 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7233 const char *name = dwarf_attr_name (a->dw_attr);
7235 switch (AT_class (a))
7237 case dw_val_class_addr:
7238 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7239 break;
7241 case dw_val_class_offset:
7242 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7243 "%s", name);
7244 break;
7246 case dw_val_class_range_list:
7248 char *p = strchr (ranges_section_label, '\0');
7250 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7251 a->dw_attr_val.v.val_offset);
7252 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7253 debug_ranges_section, "%s", name);
7254 *p = '\0';
7256 break;
7258 case dw_val_class_loc:
7259 size = size_of_locs (AT_loc (a));
7261 /* Output the block length for this list of location operations. */
7262 dw2_asm_output_data (constant_size (size), size, "%s", name);
7264 output_loc_sequence (AT_loc (a));
7265 break;
7267 case dw_val_class_const:
7268 /* ??? It would be slightly more efficient to use a scheme like is
7269 used for unsigned constants below, but gdb 4.x does not sign
7270 extend. Gdb 5.x does sign extend. */
7271 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7272 break;
7274 case dw_val_class_unsigned_const:
7275 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7276 AT_unsigned (a), "%s", name);
7277 break;
7279 case dw_val_class_long_long:
7281 unsigned HOST_WIDE_INT first, second;
7283 dw2_asm_output_data (1,
7284 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7285 "%s", name);
7287 if (WORDS_BIG_ENDIAN)
7289 first = a->dw_attr_val.v.val_long_long.hi;
7290 second = a->dw_attr_val.v.val_long_long.low;
7292 else
7294 first = a->dw_attr_val.v.val_long_long.low;
7295 second = a->dw_attr_val.v.val_long_long.hi;
7298 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7299 first, "long long constant");
7300 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7301 second, NULL);
7303 break;
7305 case dw_val_class_vec:
7307 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7308 unsigned int len = a->dw_attr_val.v.val_vec.length;
7309 unsigned int i;
7310 unsigned char *p;
7312 dw2_asm_output_data (1, len * elt_size, "%s", name);
7313 if (elt_size > sizeof (HOST_WIDE_INT))
7315 elt_size /= 2;
7316 len *= 2;
7318 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7319 i < len;
7320 i++, p += elt_size)
7321 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7322 "fp or vector constant word %u", i);
7323 break;
7326 case dw_val_class_flag:
7327 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7328 break;
7330 case dw_val_class_loc_list:
7332 char *sym = AT_loc_list (a)->ll_symbol;
7334 gcc_assert (sym);
7335 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7336 "%s", name);
7338 break;
7340 case dw_val_class_die_ref:
7341 if (AT_ref_external (a))
7343 char *sym = AT_ref (a)->die_symbol;
7345 gcc_assert (sym);
7346 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7347 "%s", name);
7349 else
7351 gcc_assert (AT_ref (a)->die_offset);
7352 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7353 "%s", name);
7355 break;
7357 case dw_val_class_fde_ref:
7359 char l1[20];
7361 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7362 a->dw_attr_val.v.val_fde_index * 2);
7363 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7364 "%s", name);
7366 break;
7368 case dw_val_class_lbl_id:
7369 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7370 break;
7372 case dw_val_class_lineptr:
7373 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7374 debug_line_section, "%s", name);
7375 break;
7377 case dw_val_class_macptr:
7378 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7379 debug_macinfo_section, "%s", name);
7380 break;
7382 case dw_val_class_str:
7383 if (AT_string_form (a) == DW_FORM_strp)
7384 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7385 a->dw_attr_val.v.val_str->label,
7386 debug_str_section,
7387 "%s: \"%s\"", name, AT_string (a));
7388 else
7389 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7390 break;
7392 case dw_val_class_file:
7394 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7396 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7397 a->dw_attr_val.v.val_file->filename);
7398 break;
7401 default:
7402 gcc_unreachable ();
7406 FOR_EACH_CHILD (die, c, output_die (c));
7408 /* Add null byte to terminate sibling list. */
7409 if (die->die_child != NULL)
7410 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7411 (unsigned long) die->die_offset);
7414 /* Output the compilation unit that appears at the beginning of the
7415 .debug_info section, and precedes the DIE descriptions. */
7417 static void
7418 output_compilation_unit_header (void)
7420 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7421 dw2_asm_output_data (4, 0xffffffff,
7422 "Initial length escape value indicating 64-bit DWARF extension");
7423 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7424 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7425 "Length of Compilation Unit Info");
7426 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7427 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7428 debug_abbrev_section,
7429 "Offset Into Abbrev. Section");
7430 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7433 /* Output the compilation unit DIE and its children. */
7435 static void
7436 output_comp_unit (dw_die_ref die, int output_if_empty)
7438 const char *secname;
7439 char *oldsym, *tmp;
7441 /* Unless we are outputting main CU, we may throw away empty ones. */
7442 if (!output_if_empty && die->die_child == NULL)
7443 return;
7445 /* Even if there are no children of this DIE, we must output the information
7446 about the compilation unit. Otherwise, on an empty translation unit, we
7447 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7448 will then complain when examining the file. First mark all the DIEs in
7449 this CU so we know which get local refs. */
7450 mark_dies (die);
7452 build_abbrev_table (die);
7454 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7455 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7456 calc_die_sizes (die);
7458 oldsym = die->die_symbol;
7459 if (oldsym)
7461 tmp = alloca (strlen (oldsym) + 24);
7463 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7464 secname = tmp;
7465 die->die_symbol = NULL;
7466 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7468 else
7469 switch_to_section (debug_info_section);
7471 /* Output debugging information. */
7472 output_compilation_unit_header ();
7473 output_die (die);
7475 /* Leave the marks on the main CU, so we can check them in
7476 output_pubnames. */
7477 if (oldsym)
7479 unmark_dies (die);
7480 die->die_symbol = oldsym;
7484 /* Return the DWARF2/3 pubname associated with a decl. */
7486 static const char *
7487 dwarf2_name (tree decl, int scope)
7489 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7492 /* Add a new entry to .debug_pubnames if appropriate. */
7494 static void
7495 add_pubname_string (const char *str, dw_die_ref die)
7497 pubname_entry e;
7499 e.die = die;
7500 e.name = xstrdup (str);
7501 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7504 static void
7505 add_pubname (tree decl, dw_die_ref die)
7508 if (TREE_PUBLIC (decl))
7509 add_pubname_string (dwarf2_name (decl, 1), die);
7512 /* Add a new entry to .debug_pubtypes if appropriate. */
7514 static void
7515 add_pubtype (tree decl, dw_die_ref die)
7517 pubname_entry e;
7519 e.name = NULL;
7520 if ((TREE_PUBLIC (decl)
7521 || die->die_parent == comp_unit_die)
7522 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7524 e.die = die;
7525 if (TYPE_P (decl))
7527 if (TYPE_NAME (decl))
7529 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7530 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7531 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7532 && DECL_NAME (TYPE_NAME (decl)))
7533 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7534 else
7535 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7538 else
7539 e.name = xstrdup (dwarf2_name (decl, 1));
7541 /* If we don't have a name for the type, there's no point in adding
7542 it to the table. */
7543 if (e.name && e.name[0] != '\0')
7544 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7548 /* Output the public names table used to speed up access to externally
7549 visible names; or the public types table used to find type definitions. */
7551 static void
7552 output_pubnames (VEC (pubname_entry, gc) * names)
7554 unsigned i;
7555 unsigned long pubnames_length = size_of_pubnames (names);
7556 pubname_ref pub;
7558 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7559 dw2_asm_output_data (4, 0xffffffff,
7560 "Initial length escape value indicating 64-bit DWARF extension");
7561 if (names == pubname_table)
7562 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7563 "Length of Public Names Info");
7564 else
7565 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7566 "Length of Public Type Names Info");
7567 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7568 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7569 debug_info_section,
7570 "Offset of Compilation Unit Info");
7571 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7572 "Compilation Unit Length");
7574 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7576 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7577 if (names == pubname_table)
7578 gcc_assert (pub->die->die_mark);
7580 if (names != pubtype_table
7581 || pub->die->die_offset != 0
7582 || !flag_eliminate_unused_debug_types)
7584 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7585 "DIE offset");
7587 dw2_asm_output_nstring (pub->name, -1, "external name");
7591 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7594 /* Add a new entry to .debug_aranges if appropriate. */
7596 static void
7597 add_arange (tree decl, dw_die_ref die)
7599 if (! DECL_SECTION_NAME (decl))
7600 return;
7602 if (arange_table_in_use == arange_table_allocated)
7604 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7605 arange_table = ggc_realloc (arange_table,
7606 (arange_table_allocated
7607 * sizeof (dw_die_ref)));
7608 memset (arange_table + arange_table_in_use, 0,
7609 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7612 arange_table[arange_table_in_use++] = die;
7615 /* Output the information that goes into the .debug_aranges table.
7616 Namely, define the beginning and ending address range of the
7617 text section generated for this compilation unit. */
7619 static void
7620 output_aranges (void)
7622 unsigned i;
7623 unsigned long aranges_length = size_of_aranges ();
7625 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7626 dw2_asm_output_data (4, 0xffffffff,
7627 "Initial length escape value indicating 64-bit DWARF extension");
7628 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7629 "Length of Address Ranges Info");
7630 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7631 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7632 debug_info_section,
7633 "Offset of Compilation Unit Info");
7634 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7635 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7637 /* We need to align to twice the pointer size here. */
7638 if (DWARF_ARANGES_PAD_SIZE)
7640 /* Pad using a 2 byte words so that padding is correct for any
7641 pointer size. */
7642 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7643 2 * DWARF2_ADDR_SIZE);
7644 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7645 dw2_asm_output_data (2, 0, NULL);
7648 /* It is necessary not to output these entries if the sections were
7649 not used; if the sections were not used, the length will be 0 and
7650 the address may end up as 0 if the section is discarded by ld
7651 --gc-sections, leaving an invalid (0, 0) entry that can be
7652 confused with the terminator. */
7653 if (text_section_used)
7655 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7656 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7657 text_section_label, "Length");
7659 if (cold_text_section_used)
7661 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7662 "Address");
7663 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7664 cold_text_section_label, "Length");
7667 for (i = 0; i < arange_table_in_use; i++)
7669 dw_die_ref die = arange_table[i];
7671 /* We shouldn't see aranges for DIEs outside of the main CU. */
7672 gcc_assert (die->die_mark);
7674 if (die->die_tag == DW_TAG_subprogram)
7676 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7677 "Address");
7678 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7679 get_AT_low_pc (die), "Length");
7681 else
7683 /* A static variable; extract the symbol from DW_AT_location.
7684 Note that this code isn't currently hit, as we only emit
7685 aranges for functions (jason 9/23/99). */
7686 dw_attr_ref a = get_AT (die, DW_AT_location);
7687 dw_loc_descr_ref loc;
7689 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7691 loc = AT_loc (a);
7692 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7694 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7695 loc->dw_loc_oprnd1.v.val_addr, "Address");
7696 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7697 get_AT_unsigned (die, DW_AT_byte_size),
7698 "Length");
7702 /* Output the terminator words. */
7703 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7704 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7707 /* Add a new entry to .debug_ranges. Return the offset at which it
7708 was placed. */
7710 static unsigned int
7711 add_ranges_num (int num)
7713 unsigned int in_use = ranges_table_in_use;
7715 if (in_use == ranges_table_allocated)
7717 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7718 ranges_table
7719 = ggc_realloc (ranges_table, (ranges_table_allocated
7720 * sizeof (struct dw_ranges_struct)));
7721 memset (ranges_table + ranges_table_in_use, 0,
7722 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7725 ranges_table[in_use].num = num;
7726 ranges_table_in_use = in_use + 1;
7728 return in_use * 2 * DWARF2_ADDR_SIZE;
7731 /* Add a new entry to .debug_ranges corresponding to a block, or a
7732 range terminator if BLOCK is NULL. */
7734 static unsigned int
7735 add_ranges (const_tree block)
7737 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
7740 /* Add a new entry to .debug_ranges corresponding to a pair of
7741 labels. */
7743 static unsigned int
7744 add_ranges_by_labels (const char *begin, const char *end)
7746 unsigned int in_use = ranges_by_label_in_use;
7748 if (in_use == ranges_by_label_allocated)
7750 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
7751 ranges_by_label
7752 = ggc_realloc (ranges_by_label,
7753 (ranges_by_label_allocated
7754 * sizeof (struct dw_ranges_by_label_struct)));
7755 memset (ranges_by_label + ranges_by_label_in_use, 0,
7756 RANGES_TABLE_INCREMENT
7757 * sizeof (struct dw_ranges_by_label_struct));
7760 ranges_by_label[in_use].begin = begin;
7761 ranges_by_label[in_use].end = end;
7762 ranges_by_label_in_use = in_use + 1;
7764 return add_ranges_num (-(int)in_use - 1);
7767 static void
7768 output_ranges (void)
7770 unsigned i;
7771 static const char *const start_fmt = "Offset 0x%x";
7772 const char *fmt = start_fmt;
7774 for (i = 0; i < ranges_table_in_use; i++)
7776 int block_num = ranges_table[i].num;
7778 if (block_num > 0)
7780 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7781 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7783 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7784 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7786 /* If all code is in the text section, then the compilation
7787 unit base address defaults to DW_AT_low_pc, which is the
7788 base of the text section. */
7789 if (!have_multiple_function_sections)
7791 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7792 text_section_label,
7793 fmt, i * 2 * DWARF2_ADDR_SIZE);
7794 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7795 text_section_label, NULL);
7798 /* Otherwise, the compilation unit base address is zero,
7799 which allows us to use absolute addresses, and not worry
7800 about whether the target supports cross-section
7801 arithmetic. */
7802 else
7804 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7805 fmt, i * 2 * DWARF2_ADDR_SIZE);
7806 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7809 fmt = NULL;
7812 /* Negative block_num stands for an index into ranges_by_label. */
7813 else if (block_num < 0)
7815 int lab_idx = - block_num - 1;
7817 if (!have_multiple_function_sections)
7819 gcc_unreachable ();
7820 #if 0
7821 /* If we ever use add_ranges_by_labels () for a single
7822 function section, all we have to do is to take out
7823 the #if 0 above. */
7824 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
7825 ranges_by_label[lab_idx].begin,
7826 text_section_label,
7827 fmt, i * 2 * DWARF2_ADDR_SIZE);
7828 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
7829 ranges_by_label[lab_idx].end,
7830 text_section_label, NULL);
7831 #endif
7833 else
7835 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
7836 ranges_by_label[lab_idx].begin,
7837 fmt, i * 2 * DWARF2_ADDR_SIZE);
7838 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
7839 ranges_by_label[lab_idx].end,
7840 NULL);
7843 else
7845 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7846 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7847 fmt = start_fmt;
7852 /* Data structure containing information about input files. */
7853 struct file_info
7855 const char *path; /* Complete file name. */
7856 const char *fname; /* File name part. */
7857 int length; /* Length of entire string. */
7858 struct dwarf_file_data * file_idx; /* Index in input file table. */
7859 int dir_idx; /* Index in directory table. */
7862 /* Data structure containing information about directories with source
7863 files. */
7864 struct dir_info
7866 const char *path; /* Path including directory name. */
7867 int length; /* Path length. */
7868 int prefix; /* Index of directory entry which is a prefix. */
7869 int count; /* Number of files in this directory. */
7870 int dir_idx; /* Index of directory used as base. */
7873 /* Callback function for file_info comparison. We sort by looking at
7874 the directories in the path. */
7876 static int
7877 file_info_cmp (const void *p1, const void *p2)
7879 const struct file_info *s1 = p1;
7880 const struct file_info *s2 = p2;
7881 const unsigned char *cp1;
7882 const unsigned char *cp2;
7884 /* Take care of file names without directories. We need to make sure that
7885 we return consistent values to qsort since some will get confused if
7886 we return the same value when identical operands are passed in opposite
7887 orders. So if neither has a directory, return 0 and otherwise return
7888 1 or -1 depending on which one has the directory. */
7889 if ((s1->path == s1->fname || s2->path == s2->fname))
7890 return (s2->path == s2->fname) - (s1->path == s1->fname);
7892 cp1 = (const unsigned char *) s1->path;
7893 cp2 = (const unsigned char *) s2->path;
7895 while (1)
7897 ++cp1;
7898 ++cp2;
7899 /* Reached the end of the first path? If so, handle like above. */
7900 if ((cp1 == (const unsigned char *) s1->fname)
7901 || (cp2 == (const unsigned char *) s2->fname))
7902 return ((cp2 == (const unsigned char *) s2->fname)
7903 - (cp1 == (const unsigned char *) s1->fname));
7905 /* Character of current path component the same? */
7906 else if (*cp1 != *cp2)
7907 return *cp1 - *cp2;
7911 struct file_name_acquire_data
7913 struct file_info *files;
7914 int used_files;
7915 int max_files;
7918 /* Traversal function for the hash table. */
7920 static int
7921 file_name_acquire (void ** slot, void *data)
7923 struct file_name_acquire_data *fnad = data;
7924 struct dwarf_file_data *d = *slot;
7925 struct file_info *fi;
7926 const char *f;
7928 gcc_assert (fnad->max_files >= d->emitted_number);
7930 if (! d->emitted_number)
7931 return 1;
7933 gcc_assert (fnad->max_files != fnad->used_files);
7935 fi = fnad->files + fnad->used_files++;
7937 /* Skip all leading "./". */
7938 f = d->filename;
7939 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7940 f += 2;
7942 /* Create a new array entry. */
7943 fi->path = f;
7944 fi->length = strlen (f);
7945 fi->file_idx = d;
7947 /* Search for the file name part. */
7948 f = strrchr (f, DIR_SEPARATOR);
7949 #if defined (DIR_SEPARATOR_2)
7951 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7953 if (g != NULL)
7955 if (f == NULL || f < g)
7956 f = g;
7959 #endif
7961 fi->fname = f == NULL ? fi->path : f + 1;
7962 return 1;
7965 /* Output the directory table and the file name table. We try to minimize
7966 the total amount of memory needed. A heuristic is used to avoid large
7967 slowdowns with many input files. */
7969 static void
7970 output_file_names (void)
7972 struct file_name_acquire_data fnad;
7973 int numfiles;
7974 struct file_info *files;
7975 struct dir_info *dirs;
7976 int *saved;
7977 int *savehere;
7978 int *backmap;
7979 int ndirs;
7980 int idx_offset;
7981 int i;
7982 int idx;
7984 if (!last_emitted_file)
7986 dw2_asm_output_data (1, 0, "End directory table");
7987 dw2_asm_output_data (1, 0, "End file name table");
7988 return;
7991 numfiles = last_emitted_file->emitted_number;
7993 /* Allocate the various arrays we need. */
7994 files = alloca (numfiles * sizeof (struct file_info));
7995 dirs = alloca (numfiles * sizeof (struct dir_info));
7997 fnad.files = files;
7998 fnad.used_files = 0;
7999 fnad.max_files = numfiles;
8000 htab_traverse (file_table, file_name_acquire, &fnad);
8001 gcc_assert (fnad.used_files == fnad.max_files);
8003 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
8005 /* Find all the different directories used. */
8006 dirs[0].path = files[0].path;
8007 dirs[0].length = files[0].fname - files[0].path;
8008 dirs[0].prefix = -1;
8009 dirs[0].count = 1;
8010 dirs[0].dir_idx = 0;
8011 files[0].dir_idx = 0;
8012 ndirs = 1;
8014 for (i = 1; i < numfiles; i++)
8015 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
8016 && memcmp (dirs[ndirs - 1].path, files[i].path,
8017 dirs[ndirs - 1].length) == 0)
8019 /* Same directory as last entry. */
8020 files[i].dir_idx = ndirs - 1;
8021 ++dirs[ndirs - 1].count;
8023 else
8025 int j;
8027 /* This is a new directory. */
8028 dirs[ndirs].path = files[i].path;
8029 dirs[ndirs].length = files[i].fname - files[i].path;
8030 dirs[ndirs].count = 1;
8031 dirs[ndirs].dir_idx = ndirs;
8032 files[i].dir_idx = ndirs;
8034 /* Search for a prefix. */
8035 dirs[ndirs].prefix = -1;
8036 for (j = 0; j < ndirs; j++)
8037 if (dirs[j].length < dirs[ndirs].length
8038 && dirs[j].length > 1
8039 && (dirs[ndirs].prefix == -1
8040 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
8041 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
8042 dirs[ndirs].prefix = j;
8044 ++ndirs;
8047 /* Now to the actual work. We have to find a subset of the directories which
8048 allow expressing the file name using references to the directory table
8049 with the least amount of characters. We do not do an exhaustive search
8050 where we would have to check out every combination of every single
8051 possible prefix. Instead we use a heuristic which provides nearly optimal
8052 results in most cases and never is much off. */
8053 saved = alloca (ndirs * sizeof (int));
8054 savehere = alloca (ndirs * sizeof (int));
8056 memset (saved, '\0', ndirs * sizeof (saved[0]));
8057 for (i = 0; i < ndirs; i++)
8059 int j;
8060 int total;
8062 /* We can always save some space for the current directory. But this
8063 does not mean it will be enough to justify adding the directory. */
8064 savehere[i] = dirs[i].length;
8065 total = (savehere[i] - saved[i]) * dirs[i].count;
8067 for (j = i + 1; j < ndirs; j++)
8069 savehere[j] = 0;
8070 if (saved[j] < dirs[i].length)
8072 /* Determine whether the dirs[i] path is a prefix of the
8073 dirs[j] path. */
8074 int k;
8076 k = dirs[j].prefix;
8077 while (k != -1 && k != (int) i)
8078 k = dirs[k].prefix;
8080 if (k == (int) i)
8082 /* Yes it is. We can possibly save some memory by
8083 writing the filenames in dirs[j] relative to
8084 dirs[i]. */
8085 savehere[j] = dirs[i].length;
8086 total += (savehere[j] - saved[j]) * dirs[j].count;
8091 /* Check whether we can save enough to justify adding the dirs[i]
8092 directory. */
8093 if (total > dirs[i].length + 1)
8095 /* It's worthwhile adding. */
8096 for (j = i; j < ndirs; j++)
8097 if (savehere[j] > 0)
8099 /* Remember how much we saved for this directory so far. */
8100 saved[j] = savehere[j];
8102 /* Remember the prefix directory. */
8103 dirs[j].dir_idx = i;
8108 /* Emit the directory name table. */
8109 idx = 1;
8110 idx_offset = dirs[0].length > 0 ? 1 : 0;
8111 for (i = 1 - idx_offset; i < ndirs; i++)
8112 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
8113 "Directory Entry: 0x%x", i + idx_offset);
8115 dw2_asm_output_data (1, 0, "End directory table");
8117 /* We have to emit them in the order of emitted_number since that's
8118 used in the debug info generation. To do this efficiently we
8119 generate a back-mapping of the indices first. */
8120 backmap = alloca (numfiles * sizeof (int));
8121 for (i = 0; i < numfiles; i++)
8122 backmap[files[i].file_idx->emitted_number - 1] = i;
8124 /* Now write all the file names. */
8125 for (i = 0; i < numfiles; i++)
8127 int file_idx = backmap[i];
8128 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
8130 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
8131 "File Entry: 0x%x", (unsigned) i + 1);
8133 /* Include directory index. */
8134 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
8136 /* Modification time. */
8137 dw2_asm_output_data_uleb128 (0, NULL);
8139 /* File length in bytes. */
8140 dw2_asm_output_data_uleb128 (0, NULL);
8143 dw2_asm_output_data (1, 0, "End file name table");
8147 /* Output the source line number correspondence information. This
8148 information goes into the .debug_line section. */
8150 static void
8151 output_line_info (void)
8153 char l1[20], l2[20], p1[20], p2[20];
8154 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
8155 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
8156 unsigned opc;
8157 unsigned n_op_args;
8158 unsigned long lt_index;
8159 unsigned long current_line;
8160 long line_offset;
8161 long line_delta;
8162 unsigned long current_file;
8163 unsigned long function;
8165 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
8166 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
8167 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
8168 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
8170 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
8171 dw2_asm_output_data (4, 0xffffffff,
8172 "Initial length escape value indicating 64-bit DWARF extension");
8173 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
8174 "Length of Source Line Info");
8175 ASM_OUTPUT_LABEL (asm_out_file, l1);
8177 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
8178 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
8179 ASM_OUTPUT_LABEL (asm_out_file, p1);
8181 /* Define the architecture-dependent minimum instruction length (in
8182 bytes). In this implementation of DWARF, this field is used for
8183 information purposes only. Since GCC generates assembly language,
8184 we have no a priori knowledge of how many instruction bytes are
8185 generated for each source line, and therefore can use only the
8186 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
8187 commands. Accordingly, we fix this as `1', which is "correct
8188 enough" for all architectures, and don't let the target override. */
8189 dw2_asm_output_data (1, 1,
8190 "Minimum Instruction Length");
8192 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
8193 "Default is_stmt_start flag");
8194 dw2_asm_output_data (1, DWARF_LINE_BASE,
8195 "Line Base Value (Special Opcodes)");
8196 dw2_asm_output_data (1, DWARF_LINE_RANGE,
8197 "Line Range Value (Special Opcodes)");
8198 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
8199 "Special Opcode Base");
8201 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
8203 switch (opc)
8205 case DW_LNS_advance_pc:
8206 case DW_LNS_advance_line:
8207 case DW_LNS_set_file:
8208 case DW_LNS_set_column:
8209 case DW_LNS_fixed_advance_pc:
8210 n_op_args = 1;
8211 break;
8212 default:
8213 n_op_args = 0;
8214 break;
8217 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
8218 opc, n_op_args);
8221 /* Write out the information about the files we use. */
8222 output_file_names ();
8223 ASM_OUTPUT_LABEL (asm_out_file, p2);
8225 /* We used to set the address register to the first location in the text
8226 section here, but that didn't accomplish anything since we already
8227 have a line note for the opening brace of the first function. */
8229 /* Generate the line number to PC correspondence table, encoded as
8230 a series of state machine operations. */
8231 current_file = 1;
8232 current_line = 1;
8234 if (cfun && in_cold_section_p)
8235 strcpy (prev_line_label, crtl->subsections.cold_section_label);
8236 else
8237 strcpy (prev_line_label, text_section_label);
8238 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
8240 dw_line_info_ref line_info = &line_info_table[lt_index];
8242 #if 0
8243 /* Disable this optimization for now; GDB wants to see two line notes
8244 at the beginning of a function so it can find the end of the
8245 prologue. */
8247 /* Don't emit anything for redundant notes. Just updating the
8248 address doesn't accomplish anything, because we already assume
8249 that anything after the last address is this line. */
8250 if (line_info->dw_line_num == current_line
8251 && line_info->dw_file_num == current_file)
8252 continue;
8253 #endif
8255 /* Emit debug info for the address of the current line.
8257 Unfortunately, we have little choice here currently, and must always
8258 use the most general form. GCC does not know the address delta
8259 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8260 attributes which will give an upper bound on the address range. We
8261 could perhaps use length attributes to determine when it is safe to
8262 use DW_LNS_fixed_advance_pc. */
8264 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8265 if (0)
8267 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8268 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8269 "DW_LNS_fixed_advance_pc");
8270 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8272 else
8274 /* This can handle any delta. This takes
8275 4+DWARF2_ADDR_SIZE bytes. */
8276 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8277 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8278 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8279 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8282 strcpy (prev_line_label, line_label);
8284 /* Emit debug info for the source file of the current line, if
8285 different from the previous line. */
8286 if (line_info->dw_file_num != current_file)
8288 current_file = line_info->dw_file_num;
8289 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8290 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8293 /* Emit debug info for the current line number, choosing the encoding
8294 that uses the least amount of space. */
8295 if (line_info->dw_line_num != current_line)
8297 line_offset = line_info->dw_line_num - current_line;
8298 line_delta = line_offset - DWARF_LINE_BASE;
8299 current_line = line_info->dw_line_num;
8300 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8301 /* This can handle deltas from -10 to 234, using the current
8302 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8303 takes 1 byte. */
8304 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8305 "line %lu", current_line);
8306 else
8308 /* This can handle any delta. This takes at least 4 bytes,
8309 depending on the value being encoded. */
8310 dw2_asm_output_data (1, DW_LNS_advance_line,
8311 "advance to line %lu", current_line);
8312 dw2_asm_output_data_sleb128 (line_offset, NULL);
8313 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8316 else
8317 /* We still need to start a new row, so output a copy insn. */
8318 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8321 /* Emit debug info for the address of the end of the function. */
8322 if (0)
8324 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8325 "DW_LNS_fixed_advance_pc");
8326 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8328 else
8330 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8331 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8332 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8333 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8336 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8337 dw2_asm_output_data_uleb128 (1, NULL);
8338 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8340 function = 0;
8341 current_file = 1;
8342 current_line = 1;
8343 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8345 dw_separate_line_info_ref line_info
8346 = &separate_line_info_table[lt_index];
8348 #if 0
8349 /* Don't emit anything for redundant notes. */
8350 if (line_info->dw_line_num == current_line
8351 && line_info->dw_file_num == current_file
8352 && line_info->function == function)
8353 goto cont;
8354 #endif
8356 /* Emit debug info for the address of the current line. If this is
8357 a new function, or the first line of a function, then we need
8358 to handle it differently. */
8359 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8360 lt_index);
8361 if (function != line_info->function)
8363 function = line_info->function;
8365 /* Set the address register to the first line in the function. */
8366 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8367 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8368 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8369 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8371 else
8373 /* ??? See the DW_LNS_advance_pc comment above. */
8374 if (0)
8376 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8377 "DW_LNS_fixed_advance_pc");
8378 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8380 else
8382 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8383 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8384 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8385 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8389 strcpy (prev_line_label, line_label);
8391 /* Emit debug info for the source file of the current line, if
8392 different from the previous line. */
8393 if (line_info->dw_file_num != current_file)
8395 current_file = line_info->dw_file_num;
8396 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8397 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8400 /* Emit debug info for the current line number, choosing the encoding
8401 that uses the least amount of space. */
8402 if (line_info->dw_line_num != current_line)
8404 line_offset = line_info->dw_line_num - current_line;
8405 line_delta = line_offset - DWARF_LINE_BASE;
8406 current_line = line_info->dw_line_num;
8407 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8408 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8409 "line %lu", current_line);
8410 else
8412 dw2_asm_output_data (1, DW_LNS_advance_line,
8413 "advance to line %lu", current_line);
8414 dw2_asm_output_data_sleb128 (line_offset, NULL);
8415 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8418 else
8419 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8421 #if 0
8422 cont:
8423 #endif
8425 lt_index++;
8427 /* If we're done with a function, end its sequence. */
8428 if (lt_index == separate_line_info_table_in_use
8429 || separate_line_info_table[lt_index].function != function)
8431 current_file = 1;
8432 current_line = 1;
8434 /* Emit debug info for the address of the end of the function. */
8435 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8436 if (0)
8438 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8439 "DW_LNS_fixed_advance_pc");
8440 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8442 else
8444 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8445 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8446 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8447 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8450 /* Output the marker for the end of this sequence. */
8451 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8452 dw2_asm_output_data_uleb128 (1, NULL);
8453 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8457 /* Output the marker for the end of the line number info. */
8458 ASM_OUTPUT_LABEL (asm_out_file, l2);
8461 /* Given a pointer to a tree node for some base type, return a pointer to
8462 a DIE that describes the given type.
8464 This routine must only be called for GCC type nodes that correspond to
8465 Dwarf base (fundamental) types. */
8467 static dw_die_ref
8468 base_type_die (tree type)
8470 dw_die_ref base_type_result;
8471 enum dwarf_type encoding;
8473 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8474 return 0;
8476 switch (TREE_CODE (type))
8478 case INTEGER_TYPE:
8479 if (TYPE_STRING_FLAG (type))
8481 if (TYPE_UNSIGNED (type))
8482 encoding = DW_ATE_unsigned_char;
8483 else
8484 encoding = DW_ATE_signed_char;
8486 else if (TYPE_UNSIGNED (type))
8487 encoding = DW_ATE_unsigned;
8488 else
8489 encoding = DW_ATE_signed;
8490 break;
8492 case REAL_TYPE:
8493 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8494 encoding = DW_ATE_decimal_float;
8495 else
8496 encoding = DW_ATE_float;
8497 break;
8499 case FIXED_POINT_TYPE:
8500 if (TYPE_UNSIGNED (type))
8501 encoding = DW_ATE_unsigned_fixed;
8502 else
8503 encoding = DW_ATE_signed_fixed;
8504 break;
8506 /* Dwarf2 doesn't know anything about complex ints, so use
8507 a user defined type for it. */
8508 case COMPLEX_TYPE:
8509 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8510 encoding = DW_ATE_complex_float;
8511 else
8512 encoding = DW_ATE_lo_user;
8513 break;
8515 case BOOLEAN_TYPE:
8516 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8517 encoding = DW_ATE_boolean;
8518 break;
8520 default:
8521 /* No other TREE_CODEs are Dwarf fundamental types. */
8522 gcc_unreachable ();
8525 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8527 /* This probably indicates a bug. */
8528 if (! TYPE_NAME (type))
8529 add_name_attribute (base_type_result, "__unknown__");
8531 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8532 int_size_in_bytes (type));
8533 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8535 return base_type_result;
8538 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8539 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8541 static inline int
8542 is_base_type (tree type)
8544 switch (TREE_CODE (type))
8546 case ERROR_MARK:
8547 case VOID_TYPE:
8548 case INTEGER_TYPE:
8549 case REAL_TYPE:
8550 case FIXED_POINT_TYPE:
8551 case COMPLEX_TYPE:
8552 case BOOLEAN_TYPE:
8553 return 1;
8555 case ARRAY_TYPE:
8556 case RECORD_TYPE:
8557 case UNION_TYPE:
8558 case QUAL_UNION_TYPE:
8559 case ENUMERAL_TYPE:
8560 case FUNCTION_TYPE:
8561 case METHOD_TYPE:
8562 case POINTER_TYPE:
8563 case REFERENCE_TYPE:
8564 case OFFSET_TYPE:
8565 case LANG_TYPE:
8566 case VECTOR_TYPE:
8567 return 0;
8569 default:
8570 gcc_unreachable ();
8573 return 0;
8576 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8577 node, return the size in bits for the type if it is a constant, or else
8578 return the alignment for the type if the type's size is not constant, or
8579 else return BITS_PER_WORD if the type actually turns out to be an
8580 ERROR_MARK node. */
8582 static inline unsigned HOST_WIDE_INT
8583 simple_type_size_in_bits (const_tree type)
8585 if (TREE_CODE (type) == ERROR_MARK)
8586 return BITS_PER_WORD;
8587 else if (TYPE_SIZE (type) == NULL_TREE)
8588 return 0;
8589 else if (host_integerp (TYPE_SIZE (type), 1))
8590 return tree_low_cst (TYPE_SIZE (type), 1);
8591 else
8592 return TYPE_ALIGN (type);
8595 /* Return true if the debug information for the given type should be
8596 emitted as a subrange type. */
8598 static inline bool
8599 is_subrange_type (const_tree type)
8601 tree subtype = TREE_TYPE (type);
8603 /* Subrange types are identified by the fact that they are integer
8604 types, and that they have a subtype which is either an integer type
8605 or an enumeral type. */
8607 if (TREE_CODE (type) != INTEGER_TYPE
8608 || subtype == NULL_TREE)
8609 return false;
8611 if (TREE_CODE (subtype) != INTEGER_TYPE
8612 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8613 return false;
8615 if (TREE_CODE (type) == TREE_CODE (subtype)
8616 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8617 && TYPE_MIN_VALUE (type) != NULL
8618 && TYPE_MIN_VALUE (subtype) != NULL
8619 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8620 && TYPE_MAX_VALUE (type) != NULL
8621 && TYPE_MAX_VALUE (subtype) != NULL
8622 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8624 /* The type and its subtype have the same representation. If in
8625 addition the two types also have the same name, then the given
8626 type is not a subrange type, but rather a plain base type. */
8627 /* FIXME: brobecker/2004-03-22:
8628 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8629 therefore be sufficient to check the TYPE_SIZE node pointers
8630 rather than checking the actual size. Unfortunately, we have
8631 found some cases, such as in the Ada "integer" type, where
8632 this is not the case. Until this problem is solved, we need to
8633 keep checking the actual size. */
8634 tree type_name = TYPE_NAME (type);
8635 tree subtype_name = TYPE_NAME (subtype);
8637 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8638 type_name = DECL_NAME (type_name);
8640 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8641 subtype_name = DECL_NAME (subtype_name);
8643 if (type_name == subtype_name)
8644 return false;
8647 return true;
8650 /* Given a pointer to a tree node for a subrange type, return a pointer
8651 to a DIE that describes the given type. */
8653 static dw_die_ref
8654 subrange_type_die (tree type, dw_die_ref context_die)
8656 dw_die_ref subrange_die;
8657 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8659 if (context_die == NULL)
8660 context_die = comp_unit_die;
8662 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8664 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8666 /* The size of the subrange type and its base type do not match,
8667 so we need to generate a size attribute for the subrange type. */
8668 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8671 if (TYPE_MIN_VALUE (type) != NULL)
8672 add_bound_info (subrange_die, DW_AT_lower_bound,
8673 TYPE_MIN_VALUE (type));
8674 if (TYPE_MAX_VALUE (type) != NULL)
8675 add_bound_info (subrange_die, DW_AT_upper_bound,
8676 TYPE_MAX_VALUE (type));
8678 return subrange_die;
8681 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8682 entry that chains various modifiers in front of the given type. */
8684 static dw_die_ref
8685 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8686 dw_die_ref context_die)
8688 enum tree_code code = TREE_CODE (type);
8689 dw_die_ref mod_type_die;
8690 dw_die_ref sub_die = NULL;
8691 tree item_type = NULL;
8692 tree qualified_type;
8693 tree name;
8695 if (code == ERROR_MARK)
8696 return NULL;
8698 /* See if we already have the appropriately qualified variant of
8699 this type. */
8700 qualified_type
8701 = get_qualified_type (type,
8702 ((is_const_type ? TYPE_QUAL_CONST : 0)
8703 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8705 /* If we do, then we can just use its DIE, if it exists. */
8706 if (qualified_type)
8708 mod_type_die = lookup_type_die (qualified_type);
8709 if (mod_type_die)
8710 return mod_type_die;
8713 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8715 /* Handle C typedef types. */
8716 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8718 tree dtype = TREE_TYPE (name);
8720 if (qualified_type == dtype)
8722 /* For a named type, use the typedef. */
8723 gen_type_die (qualified_type, context_die);
8724 return lookup_type_die (qualified_type);
8726 else if (is_const_type < TYPE_READONLY (dtype)
8727 || is_volatile_type < TYPE_VOLATILE (dtype)
8728 || (is_const_type <= TYPE_READONLY (dtype)
8729 && is_volatile_type <= TYPE_VOLATILE (dtype)
8730 && DECL_ORIGINAL_TYPE (name) != type))
8731 /* cv-unqualified version of named type. Just use the unnamed
8732 type to which it refers. */
8733 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8734 is_const_type, is_volatile_type,
8735 context_die);
8736 /* Else cv-qualified version of named type; fall through. */
8739 if (is_const_type)
8741 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8742 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8744 else if (is_volatile_type)
8746 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8747 sub_die = modified_type_die (type, 0, 0, context_die);
8749 else if (code == POINTER_TYPE)
8751 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8752 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8753 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8754 item_type = TREE_TYPE (type);
8756 else if (code == REFERENCE_TYPE)
8758 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8759 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8760 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8761 item_type = TREE_TYPE (type);
8763 else if (is_subrange_type (type))
8765 mod_type_die = subrange_type_die (type, context_die);
8766 item_type = TREE_TYPE (type);
8768 else if (is_base_type (type))
8769 mod_type_die = base_type_die (type);
8770 else
8772 gen_type_die (type, context_die);
8774 /* We have to get the type_main_variant here (and pass that to the
8775 `lookup_type_die' routine) because the ..._TYPE node we have
8776 might simply be a *copy* of some original type node (where the
8777 copy was created to help us keep track of typedef names) and
8778 that copy might have a different TYPE_UID from the original
8779 ..._TYPE node. */
8780 if (TREE_CODE (type) != VECTOR_TYPE)
8781 return lookup_type_die (type_main_variant (type));
8782 else
8783 /* Vectors have the debugging information in the type,
8784 not the main variant. */
8785 return lookup_type_die (type);
8788 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8789 don't output a DW_TAG_typedef, since there isn't one in the
8790 user's program; just attach a DW_AT_name to the type. */
8791 if (name
8792 && (TREE_CODE (name) != TYPE_DECL
8793 || (TREE_TYPE (name) == qualified_type && DECL_NAME (name))))
8795 if (TREE_CODE (name) == TYPE_DECL)
8796 /* Could just call add_name_and_src_coords_attributes here,
8797 but since this is a builtin type it doesn't have any
8798 useful source coordinates anyway. */
8799 name = DECL_NAME (name);
8800 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8803 if (qualified_type)
8804 equate_type_number_to_die (qualified_type, mod_type_die);
8806 if (item_type)
8807 /* We must do this after the equate_type_number_to_die call, in case
8808 this is a recursive type. This ensures that the modified_type_die
8809 recursion will terminate even if the type is recursive. Recursive
8810 types are possible in Ada. */
8811 sub_die = modified_type_die (item_type,
8812 TYPE_READONLY (item_type),
8813 TYPE_VOLATILE (item_type),
8814 context_die);
8816 if (sub_die != NULL)
8817 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8819 return mod_type_die;
8822 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8823 an enumerated type. */
8825 static inline int
8826 type_is_enum (const_tree type)
8828 return TREE_CODE (type) == ENUMERAL_TYPE;
8831 /* Return the DBX register number described by a given RTL node. */
8833 static unsigned int
8834 dbx_reg_number (const_rtx rtl)
8836 unsigned regno = REGNO (rtl);
8838 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8840 #ifdef LEAF_REG_REMAP
8841 if (current_function_uses_only_leaf_regs)
8843 int leaf_reg = LEAF_REG_REMAP (regno);
8844 if (leaf_reg != -1)
8845 regno = (unsigned) leaf_reg;
8847 #endif
8849 return DBX_REGISTER_NUMBER (regno);
8852 /* Optionally add a DW_OP_piece term to a location description expression.
8853 DW_OP_piece is only added if the location description expression already
8854 doesn't end with DW_OP_piece. */
8856 static void
8857 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8859 dw_loc_descr_ref loc;
8861 if (*list_head != NULL)
8863 /* Find the end of the chain. */
8864 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8867 if (loc->dw_loc_opc != DW_OP_piece)
8868 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8872 /* Return a location descriptor that designates a machine register or
8873 zero if there is none. */
8875 static dw_loc_descr_ref
8876 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
8878 rtx regs;
8880 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8881 return 0;
8883 regs = targetm.dwarf_register_span (rtl);
8885 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8886 return multiple_reg_loc_descriptor (rtl, regs, initialized);
8887 else
8888 return one_reg_loc_descriptor (dbx_reg_number (rtl), initialized);
8891 /* Return a location descriptor that designates a machine register for
8892 a given hard register number. */
8894 static dw_loc_descr_ref
8895 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
8897 dw_loc_descr_ref reg_loc_descr;
8898 if (regno <= 31)
8899 reg_loc_descr = new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8900 else
8901 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
8903 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
8904 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
8906 return reg_loc_descr;
8909 /* Given an RTL of a register, return a location descriptor that
8910 designates a value that spans more than one register. */
8912 static dw_loc_descr_ref
8913 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
8914 enum var_init_status initialized)
8916 int nregs, size, i;
8917 unsigned reg;
8918 dw_loc_descr_ref loc_result = NULL;
8920 reg = REGNO (rtl);
8921 #ifdef LEAF_REG_REMAP
8922 if (current_function_uses_only_leaf_regs)
8924 int leaf_reg = LEAF_REG_REMAP (reg);
8925 if (leaf_reg != -1)
8926 reg = (unsigned) leaf_reg;
8928 #endif
8929 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8930 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8932 /* Simple, contiguous registers. */
8933 if (regs == NULL_RTX)
8935 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8937 loc_result = NULL;
8938 while (nregs--)
8940 dw_loc_descr_ref t;
8942 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
8943 VAR_INIT_STATUS_INITIALIZED);
8944 add_loc_descr (&loc_result, t);
8945 add_loc_descr_op_piece (&loc_result, size);
8946 ++reg;
8948 return loc_result;
8951 /* Now onto stupid register sets in non contiguous locations. */
8953 gcc_assert (GET_CODE (regs) == PARALLEL);
8955 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8956 loc_result = NULL;
8958 for (i = 0; i < XVECLEN (regs, 0); ++i)
8960 dw_loc_descr_ref t;
8962 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)),
8963 VAR_INIT_STATUS_INITIALIZED);
8964 add_loc_descr (&loc_result, t);
8965 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8966 add_loc_descr_op_piece (&loc_result, size);
8969 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
8970 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
8971 return loc_result;
8974 /* Return a location descriptor that designates a constant. */
8976 static dw_loc_descr_ref
8977 int_loc_descriptor (HOST_WIDE_INT i)
8979 enum dwarf_location_atom op;
8981 /* Pick the smallest representation of a constant, rather than just
8982 defaulting to the LEB encoding. */
8983 if (i >= 0)
8985 if (i <= 31)
8986 op = DW_OP_lit0 + i;
8987 else if (i <= 0xff)
8988 op = DW_OP_const1u;
8989 else if (i <= 0xffff)
8990 op = DW_OP_const2u;
8991 else if (HOST_BITS_PER_WIDE_INT == 32
8992 || i <= 0xffffffff)
8993 op = DW_OP_const4u;
8994 else
8995 op = DW_OP_constu;
8997 else
8999 if (i >= -0x80)
9000 op = DW_OP_const1s;
9001 else if (i >= -0x8000)
9002 op = DW_OP_const2s;
9003 else if (HOST_BITS_PER_WIDE_INT == 32
9004 || i >= -0x80000000)
9005 op = DW_OP_const4s;
9006 else
9007 op = DW_OP_consts;
9010 return new_loc_descr (op, i, 0);
9013 /* Return a location descriptor that designates a base+offset location. */
9015 static dw_loc_descr_ref
9016 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
9017 enum var_init_status initialized)
9019 unsigned int regno;
9020 dw_loc_descr_ref result;
9022 /* We only use "frame base" when we're sure we're talking about the
9023 post-prologue local stack frame. We do this by *not* running
9024 register elimination until this point, and recognizing the special
9025 argument pointer and soft frame pointer rtx's. */
9026 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
9028 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9030 if (elim != reg)
9032 if (GET_CODE (elim) == PLUS)
9034 offset += INTVAL (XEXP (elim, 1));
9035 elim = XEXP (elim, 0);
9037 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
9038 : stack_pointer_rtx));
9039 offset += frame_pointer_fb_offset;
9041 return new_loc_descr (DW_OP_fbreg, offset, 0);
9045 regno = dbx_reg_number (reg);
9046 if (regno <= 31)
9047 result = new_loc_descr (DW_OP_breg0 + regno, offset, 0);
9048 else
9049 result = new_loc_descr (DW_OP_bregx, regno, offset);
9051 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
9052 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9054 return result;
9057 /* Return true if this RTL expression describes a base+offset calculation. */
9059 static inline int
9060 is_based_loc (const_rtx rtl)
9062 return (GET_CODE (rtl) == PLUS
9063 && ((REG_P (XEXP (rtl, 0))
9064 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
9065 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
9068 /* Return a descriptor that describes the concatenation of N locations
9069 used to form the address of a memory location. */
9071 static dw_loc_descr_ref
9072 concatn_mem_loc_descriptor (rtx concatn, enum machine_mode mode,
9073 enum var_init_status initialized)
9075 unsigned int i;
9076 dw_loc_descr_ref cc_loc_result = NULL;
9077 unsigned int n = XVECLEN (concatn, 0);
9079 for (i = 0; i < n; ++i)
9081 dw_loc_descr_ref ref;
9082 rtx x = XVECEXP (concatn, 0, i);
9084 ref = mem_loc_descriptor (x, mode, VAR_INIT_STATUS_INITIALIZED);
9085 if (ref == NULL)
9086 return NULL;
9088 add_loc_descr (&cc_loc_result, ref);
9089 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9092 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9093 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9095 return cc_loc_result;
9098 /* The following routine converts the RTL for a variable or parameter
9099 (resident in memory) into an equivalent Dwarf representation of a
9100 mechanism for getting the address of that same variable onto the top of a
9101 hypothetical "address evaluation" stack.
9103 When creating memory location descriptors, we are effectively transforming
9104 the RTL for a memory-resident object into its Dwarf postfix expression
9105 equivalent. This routine recursively descends an RTL tree, turning
9106 it into Dwarf postfix code as it goes.
9108 MODE is the mode of the memory reference, needed to handle some
9109 autoincrement addressing modes.
9111 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
9112 location list for RTL.
9114 Return 0 if we can't represent the location. */
9116 static dw_loc_descr_ref
9117 mem_loc_descriptor (rtx rtl, enum machine_mode mode,
9118 enum var_init_status initialized)
9120 dw_loc_descr_ref mem_loc_result = NULL;
9121 enum dwarf_location_atom op;
9123 /* Note that for a dynamically sized array, the location we will generate a
9124 description of here will be the lowest numbered location which is
9125 actually within the array. That's *not* necessarily the same as the
9126 zeroth element of the array. */
9128 rtl = targetm.delegitimize_address (rtl);
9130 switch (GET_CODE (rtl))
9132 case POST_INC:
9133 case POST_DEC:
9134 case POST_MODIFY:
9135 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
9136 just fall into the SUBREG code. */
9138 /* ... fall through ... */
9140 case SUBREG:
9141 /* The case of a subreg may arise when we have a local (register)
9142 variable or a formal (register) parameter which doesn't quite fill
9143 up an entire register. For now, just assume that it is
9144 legitimate to make the Dwarf info refer to the whole register which
9145 contains the given subreg. */
9146 rtl = XEXP (rtl, 0);
9148 /* ... fall through ... */
9150 case REG:
9151 /* Whenever a register number forms a part of the description of the
9152 method for calculating the (dynamic) address of a memory resident
9153 object, DWARF rules require the register number be referred to as
9154 a "base register". This distinction is not based in any way upon
9155 what category of register the hardware believes the given register
9156 belongs to. This is strictly DWARF terminology we're dealing with
9157 here. Note that in cases where the location of a memory-resident
9158 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
9159 OP_CONST (0)) the actual DWARF location descriptor that we generate
9160 may just be OP_BASEREG (basereg). This may look deceptively like
9161 the object in question was allocated to a register (rather than in
9162 memory) so DWARF consumers need to be aware of the subtle
9163 distinction between OP_REG and OP_BASEREG. */
9164 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
9165 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
9166 break;
9168 case MEM:
9169 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
9170 VAR_INIT_STATUS_INITIALIZED);
9171 if (mem_loc_result != 0)
9172 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
9173 break;
9175 case LO_SUM:
9176 rtl = XEXP (rtl, 1);
9178 /* ... fall through ... */
9180 case LABEL_REF:
9181 /* Some ports can transform a symbol ref into a label ref, because
9182 the symbol ref is too far away and has to be dumped into a constant
9183 pool. */
9184 case CONST:
9185 case SYMBOL_REF:
9186 /* Alternatively, the symbol in the constant pool might be referenced
9187 by a different symbol. */
9188 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
9190 bool marked;
9191 rtx tmp = get_pool_constant_mark (rtl, &marked);
9193 if (GET_CODE (tmp) == SYMBOL_REF)
9195 rtl = tmp;
9196 if (CONSTANT_POOL_ADDRESS_P (tmp))
9197 get_pool_constant_mark (tmp, &marked);
9198 else
9199 marked = true;
9202 /* If all references to this pool constant were optimized away,
9203 it was not output and thus we can't represent it.
9204 FIXME: might try to use DW_OP_const_value here, though
9205 DW_OP_piece complicates it. */
9206 if (!marked)
9207 return 0;
9210 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
9211 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
9212 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
9213 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9214 break;
9216 case PRE_MODIFY:
9217 /* Extract the PLUS expression nested inside and fall into
9218 PLUS code below. */
9219 rtl = XEXP (rtl, 1);
9220 goto plus;
9222 case PRE_INC:
9223 case PRE_DEC:
9224 /* Turn these into a PLUS expression and fall into the PLUS code
9225 below. */
9226 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
9227 GEN_INT (GET_CODE (rtl) == PRE_INC
9228 ? GET_MODE_UNIT_SIZE (mode)
9229 : -GET_MODE_UNIT_SIZE (mode)));
9231 /* ... fall through ... */
9233 case PLUS:
9234 plus:
9235 if (is_based_loc (rtl))
9236 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
9237 INTVAL (XEXP (rtl, 1)),
9238 VAR_INIT_STATUS_INITIALIZED);
9239 else
9241 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
9242 VAR_INIT_STATUS_INITIALIZED);
9243 if (mem_loc_result == 0)
9244 break;
9246 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
9247 && INTVAL (XEXP (rtl, 1)) >= 0)
9248 add_loc_descr (&mem_loc_result,
9249 new_loc_descr (DW_OP_plus_uconst,
9250 INTVAL (XEXP (rtl, 1)), 0));
9251 else
9253 add_loc_descr (&mem_loc_result,
9254 mem_loc_descriptor (XEXP (rtl, 1), mode,
9255 VAR_INIT_STATUS_INITIALIZED));
9256 add_loc_descr (&mem_loc_result,
9257 new_loc_descr (DW_OP_plus, 0, 0));
9260 break;
9262 /* If a pseudo-reg is optimized away, it is possible for it to
9263 be replaced with a MEM containing a multiply or shift. */
9264 case MULT:
9265 op = DW_OP_mul;
9266 goto do_binop;
9268 case ASHIFT:
9269 op = DW_OP_shl;
9270 goto do_binop;
9272 case ASHIFTRT:
9273 op = DW_OP_shra;
9274 goto do_binop;
9276 case LSHIFTRT:
9277 op = DW_OP_shr;
9278 goto do_binop;
9280 do_binop:
9282 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
9283 VAR_INIT_STATUS_INITIALIZED);
9284 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
9285 VAR_INIT_STATUS_INITIALIZED);
9287 if (op0 == 0 || op1 == 0)
9288 break;
9290 mem_loc_result = op0;
9291 add_loc_descr (&mem_loc_result, op1);
9292 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9293 break;
9296 case CONST_INT:
9297 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9298 break;
9300 case CONCATN:
9301 mem_loc_result = concatn_mem_loc_descriptor (rtl, mode,
9302 VAR_INIT_STATUS_INITIALIZED);
9303 break;
9305 default:
9306 gcc_unreachable ();
9309 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9310 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9312 return mem_loc_result;
9315 /* Return a descriptor that describes the concatenation of two locations.
9316 This is typically a complex variable. */
9318 static dw_loc_descr_ref
9319 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
9321 dw_loc_descr_ref cc_loc_result = NULL;
9322 dw_loc_descr_ref x0_ref = loc_descriptor (x0, VAR_INIT_STATUS_INITIALIZED);
9323 dw_loc_descr_ref x1_ref = loc_descriptor (x1, VAR_INIT_STATUS_INITIALIZED);
9325 if (x0_ref == 0 || x1_ref == 0)
9326 return 0;
9328 cc_loc_result = x0_ref;
9329 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9331 add_loc_descr (&cc_loc_result, x1_ref);
9332 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9334 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
9335 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9337 return cc_loc_result;
9340 /* Return a descriptor that describes the concatenation of N
9341 locations. */
9343 static dw_loc_descr_ref
9344 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
9346 unsigned int i;
9347 dw_loc_descr_ref cc_loc_result = NULL;
9348 unsigned int n = XVECLEN (concatn, 0);
9350 for (i = 0; i < n; ++i)
9352 dw_loc_descr_ref ref;
9353 rtx x = XVECEXP (concatn, 0, i);
9355 ref = loc_descriptor (x, VAR_INIT_STATUS_INITIALIZED);
9356 if (ref == NULL)
9357 return NULL;
9359 add_loc_descr (&cc_loc_result, ref);
9360 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
9363 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
9364 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
9366 return cc_loc_result;
9369 /* Output a proper Dwarf location descriptor for a variable or parameter
9370 which is either allocated in a register or in a memory location. For a
9371 register, we just generate an OP_REG and the register number. For a
9372 memory location we provide a Dwarf postfix expression describing how to
9373 generate the (dynamic) address of the object onto the address stack.
9375 If we don't know how to describe it, return 0. */
9377 static dw_loc_descr_ref
9378 loc_descriptor (rtx rtl, enum var_init_status initialized)
9380 dw_loc_descr_ref loc_result = NULL;
9382 switch (GET_CODE (rtl))
9384 case SUBREG:
9385 /* The case of a subreg may arise when we have a local (register)
9386 variable or a formal (register) parameter which doesn't quite fill
9387 up an entire register. For now, just assume that it is
9388 legitimate to make the Dwarf info refer to the whole register which
9389 contains the given subreg. */
9390 rtl = SUBREG_REG (rtl);
9392 /* ... fall through ... */
9394 case REG:
9395 loc_result = reg_loc_descriptor (rtl, initialized);
9396 break;
9398 case MEM:
9399 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
9400 initialized);
9401 break;
9403 case CONCAT:
9404 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
9405 initialized);
9406 break;
9408 case CONCATN:
9409 loc_result = concatn_loc_descriptor (rtl, initialized);
9410 break;
9412 case VAR_LOCATION:
9413 /* Single part. */
9414 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9416 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), initialized);
9417 break;
9420 rtl = XEXP (rtl, 1);
9421 /* FALLTHRU */
9423 case PARALLEL:
9425 rtvec par_elems = XVEC (rtl, 0);
9426 int num_elem = GET_NUM_ELEM (par_elems);
9427 enum machine_mode mode;
9428 int i;
9430 /* Create the first one, so we have something to add to. */
9431 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
9432 initialized);
9433 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9434 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9435 for (i = 1; i < num_elem; i++)
9437 dw_loc_descr_ref temp;
9439 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
9440 initialized);
9441 add_loc_descr (&loc_result, temp);
9442 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9443 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9446 break;
9448 default:
9449 gcc_unreachable ();
9452 return loc_result;
9455 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9456 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9457 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9458 top-level invocation, and we require the address of LOC; is 0 if we require
9459 the value of LOC. */
9461 static dw_loc_descr_ref
9462 loc_descriptor_from_tree_1 (tree loc, int want_address)
9464 dw_loc_descr_ref ret, ret1;
9465 int have_address = 0;
9466 enum dwarf_location_atom op;
9468 /* ??? Most of the time we do not take proper care for sign/zero
9469 extending the values properly. Hopefully this won't be a real
9470 problem... */
9472 switch (TREE_CODE (loc))
9474 case ERROR_MARK:
9475 return 0;
9477 case PLACEHOLDER_EXPR:
9478 /* This case involves extracting fields from an object to determine the
9479 position of other fields. We don't try to encode this here. The
9480 only user of this is Ada, which encodes the needed information using
9481 the names of types. */
9482 return 0;
9484 case CALL_EXPR:
9485 return 0;
9487 case PREINCREMENT_EXPR:
9488 case PREDECREMENT_EXPR:
9489 case POSTINCREMENT_EXPR:
9490 case POSTDECREMENT_EXPR:
9491 /* There are no opcodes for these operations. */
9492 return 0;
9494 case ADDR_EXPR:
9495 /* If we already want an address, there's nothing we can do. */
9496 if (want_address)
9497 return 0;
9499 /* Otherwise, process the argument and look for the address. */
9500 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9502 case VAR_DECL:
9503 if (DECL_THREAD_LOCAL_P (loc))
9505 rtx rtl;
9506 unsigned first_op;
9507 unsigned second_op;
9509 if (targetm.have_tls)
9511 /* If this is not defined, we have no way to emit the
9512 data. */
9513 if (!targetm.asm_out.output_dwarf_dtprel)
9514 return 0;
9516 /* The way DW_OP_GNU_push_tls_address is specified, we
9517 can only look up addresses of objects in the current
9518 module. */
9519 if (DECL_EXTERNAL (loc))
9520 return 0;
9521 first_op = INTERNAL_DW_OP_tls_addr;
9522 second_op = DW_OP_GNU_push_tls_address;
9524 else
9526 if (!targetm.emutls.debug_form_tls_address)
9527 return 0;
9528 loc = emutls_decl (loc);
9529 first_op = DW_OP_addr;
9530 second_op = DW_OP_form_tls_address;
9533 rtl = rtl_for_decl_location (loc);
9534 if (rtl == NULL_RTX)
9535 return 0;
9537 if (!MEM_P (rtl))
9538 return 0;
9539 rtl = XEXP (rtl, 0);
9540 if (! CONSTANT_P (rtl))
9541 return 0;
9543 ret = new_loc_descr (first_op, 0, 0);
9544 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9545 ret->dw_loc_oprnd1.v.val_addr = rtl;
9547 ret1 = new_loc_descr (second_op, 0, 0);
9548 add_loc_descr (&ret, ret1);
9550 have_address = 1;
9551 break;
9553 /* FALLTHRU */
9555 case PARM_DECL:
9556 if (DECL_HAS_VALUE_EXPR_P (loc))
9557 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9558 want_address);
9559 /* FALLTHRU */
9561 case RESULT_DECL:
9562 case FUNCTION_DECL:
9564 rtx rtl = rtl_for_decl_location (loc);
9566 if (rtl == NULL_RTX)
9567 return 0;
9568 else if (GET_CODE (rtl) == CONST_INT)
9570 HOST_WIDE_INT val = INTVAL (rtl);
9571 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9572 val &= GET_MODE_MASK (DECL_MODE (loc));
9573 ret = int_loc_descriptor (val);
9575 else if (GET_CODE (rtl) == CONST_STRING)
9576 return 0;
9577 else if (CONSTANT_P (rtl))
9579 ret = new_loc_descr (DW_OP_addr, 0, 0);
9580 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9581 ret->dw_loc_oprnd1.v.val_addr = rtl;
9583 else
9585 enum machine_mode mode;
9587 /* Certain constructs can only be represented at top-level. */
9588 if (want_address == 2)
9589 return loc_descriptor (rtl, VAR_INIT_STATUS_INITIALIZED);
9591 mode = GET_MODE (rtl);
9592 if (MEM_P (rtl))
9594 rtl = XEXP (rtl, 0);
9595 have_address = 1;
9597 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
9600 break;
9602 case INDIRECT_REF:
9603 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9604 have_address = 1;
9605 break;
9607 case COMPOUND_EXPR:
9608 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9610 CASE_CONVERT:
9611 case VIEW_CONVERT_EXPR:
9612 case SAVE_EXPR:
9613 case GIMPLE_MODIFY_STMT:
9614 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc, 0),
9615 want_address);
9617 case COMPONENT_REF:
9618 case BIT_FIELD_REF:
9619 case ARRAY_REF:
9620 case ARRAY_RANGE_REF:
9622 tree obj, offset;
9623 HOST_WIDE_INT bitsize, bitpos, bytepos;
9624 enum machine_mode mode;
9625 int volatilep;
9626 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9628 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9629 &unsignedp, &volatilep, false);
9631 if (obj == loc)
9632 return 0;
9634 ret = loc_descriptor_from_tree_1 (obj, 1);
9635 if (ret == 0
9636 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9637 return 0;
9639 if (offset != NULL_TREE)
9641 /* Variable offset. */
9642 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9643 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9646 bytepos = bitpos / BITS_PER_UNIT;
9647 if (bytepos > 0)
9648 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9649 else if (bytepos < 0)
9651 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9652 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9655 have_address = 1;
9656 break;
9659 case INTEGER_CST:
9660 if (host_integerp (loc, 0))
9661 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9662 else
9663 return 0;
9664 break;
9666 case CONSTRUCTOR:
9668 /* Get an RTL for this, if something has been emitted. */
9669 rtx rtl = lookup_constant_def (loc);
9670 enum machine_mode mode;
9672 if (!rtl || !MEM_P (rtl))
9673 return 0;
9674 mode = GET_MODE (rtl);
9675 rtl = XEXP (rtl, 0);
9676 ret = mem_loc_descriptor (rtl, mode, VAR_INIT_STATUS_INITIALIZED);
9677 have_address = 1;
9678 break;
9681 case TRUTH_AND_EXPR:
9682 case TRUTH_ANDIF_EXPR:
9683 case BIT_AND_EXPR:
9684 op = DW_OP_and;
9685 goto do_binop;
9687 case TRUTH_XOR_EXPR:
9688 case BIT_XOR_EXPR:
9689 op = DW_OP_xor;
9690 goto do_binop;
9692 case TRUTH_OR_EXPR:
9693 case TRUTH_ORIF_EXPR:
9694 case BIT_IOR_EXPR:
9695 op = DW_OP_or;
9696 goto do_binop;
9698 case FLOOR_DIV_EXPR:
9699 case CEIL_DIV_EXPR:
9700 case ROUND_DIV_EXPR:
9701 case TRUNC_DIV_EXPR:
9702 op = DW_OP_div;
9703 goto do_binop;
9705 case MINUS_EXPR:
9706 op = DW_OP_minus;
9707 goto do_binop;
9709 case FLOOR_MOD_EXPR:
9710 case CEIL_MOD_EXPR:
9711 case ROUND_MOD_EXPR:
9712 case TRUNC_MOD_EXPR:
9713 op = DW_OP_mod;
9714 goto do_binop;
9716 case MULT_EXPR:
9717 op = DW_OP_mul;
9718 goto do_binop;
9720 case LSHIFT_EXPR:
9721 op = DW_OP_shl;
9722 goto do_binop;
9724 case RSHIFT_EXPR:
9725 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9726 goto do_binop;
9728 case POINTER_PLUS_EXPR:
9729 case PLUS_EXPR:
9730 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9731 && host_integerp (TREE_OPERAND (loc, 1), 0))
9733 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9734 if (ret == 0)
9735 return 0;
9737 add_loc_descr (&ret,
9738 new_loc_descr (DW_OP_plus_uconst,
9739 tree_low_cst (TREE_OPERAND (loc, 1),
9741 0));
9742 break;
9745 op = DW_OP_plus;
9746 goto do_binop;
9748 case LE_EXPR:
9749 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9750 return 0;
9752 op = DW_OP_le;
9753 goto do_binop;
9755 case GE_EXPR:
9756 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9757 return 0;
9759 op = DW_OP_ge;
9760 goto do_binop;
9762 case LT_EXPR:
9763 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9764 return 0;
9766 op = DW_OP_lt;
9767 goto do_binop;
9769 case GT_EXPR:
9770 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9771 return 0;
9773 op = DW_OP_gt;
9774 goto do_binop;
9776 case EQ_EXPR:
9777 op = DW_OP_eq;
9778 goto do_binop;
9780 case NE_EXPR:
9781 op = DW_OP_ne;
9782 goto do_binop;
9784 do_binop:
9785 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9786 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9787 if (ret == 0 || ret1 == 0)
9788 return 0;
9790 add_loc_descr (&ret, ret1);
9791 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9792 break;
9794 case TRUTH_NOT_EXPR:
9795 case BIT_NOT_EXPR:
9796 op = DW_OP_not;
9797 goto do_unop;
9799 case ABS_EXPR:
9800 op = DW_OP_abs;
9801 goto do_unop;
9803 case NEGATE_EXPR:
9804 op = DW_OP_neg;
9805 goto do_unop;
9807 do_unop:
9808 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9809 if (ret == 0)
9810 return 0;
9812 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9813 break;
9815 case MIN_EXPR:
9816 case MAX_EXPR:
9818 const enum tree_code code =
9819 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9821 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9822 build2 (code, integer_type_node,
9823 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9824 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9827 /* ... fall through ... */
9829 case COND_EXPR:
9831 dw_loc_descr_ref lhs
9832 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9833 dw_loc_descr_ref rhs
9834 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9835 dw_loc_descr_ref bra_node, jump_node, tmp;
9837 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9838 if (ret == 0 || lhs == 0 || rhs == 0)
9839 return 0;
9841 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9842 add_loc_descr (&ret, bra_node);
9844 add_loc_descr (&ret, rhs);
9845 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9846 add_loc_descr (&ret, jump_node);
9848 add_loc_descr (&ret, lhs);
9849 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9850 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9852 /* ??? Need a node to point the skip at. Use a nop. */
9853 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9854 add_loc_descr (&ret, tmp);
9855 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9856 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9858 break;
9860 case FIX_TRUNC_EXPR:
9861 return 0;
9863 default:
9864 /* Leave front-end specific codes as simply unknown. This comes
9865 up, for instance, with the C STMT_EXPR. */
9866 if ((unsigned int) TREE_CODE (loc)
9867 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9868 return 0;
9870 #ifdef ENABLE_CHECKING
9871 /* Otherwise this is a generic code; we should just lists all of
9872 these explicitly. We forgot one. */
9873 gcc_unreachable ();
9874 #else
9875 /* In a release build, we want to degrade gracefully: better to
9876 generate incomplete debugging information than to crash. */
9877 return NULL;
9878 #endif
9881 /* Show if we can't fill the request for an address. */
9882 if (want_address && !have_address)
9883 return 0;
9885 /* If we've got an address and don't want one, dereference. */
9886 if (!want_address && have_address && ret)
9888 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9890 if (size > DWARF2_ADDR_SIZE || size == -1)
9891 return 0;
9892 else if (size == DWARF2_ADDR_SIZE)
9893 op = DW_OP_deref;
9894 else
9895 op = DW_OP_deref_size;
9897 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9900 return ret;
9903 static inline dw_loc_descr_ref
9904 loc_descriptor_from_tree (tree loc)
9906 return loc_descriptor_from_tree_1 (loc, 2);
9909 /* Given a value, round it up to the lowest multiple of `boundary'
9910 which is not less than the value itself. */
9912 static inline HOST_WIDE_INT
9913 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9915 return (((value + boundary - 1) / boundary) * boundary);
9918 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9919 pointer to the declared type for the relevant field variable, or return
9920 `integer_type_node' if the given node turns out to be an
9921 ERROR_MARK node. */
9923 static inline tree
9924 field_type (const_tree decl)
9926 tree type;
9928 if (TREE_CODE (decl) == ERROR_MARK)
9929 return integer_type_node;
9931 type = DECL_BIT_FIELD_TYPE (decl);
9932 if (type == NULL_TREE)
9933 type = TREE_TYPE (decl);
9935 return type;
9938 /* Given a pointer to a tree node, return the alignment in bits for
9939 it, or else return BITS_PER_WORD if the node actually turns out to
9940 be an ERROR_MARK node. */
9942 static inline unsigned
9943 simple_type_align_in_bits (const_tree type)
9945 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9948 static inline unsigned
9949 simple_decl_align_in_bits (const_tree decl)
9951 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9954 /* Return the result of rounding T up to ALIGN. */
9956 static inline HOST_WIDE_INT
9957 round_up_to_align (HOST_WIDE_INT t, unsigned int align)
9959 /* We must be careful if T is negative because HOST_WIDE_INT can be
9960 either "above" or "below" unsigned int as per the C promotion
9961 rules, depending on the host, thus making the signedness of the
9962 direct multiplication and division unpredictable. */
9963 unsigned HOST_WIDE_INT u = (unsigned HOST_WIDE_INT) t;
9965 u += align - 1;
9966 u /= align;
9967 u *= align;
9969 return (HOST_WIDE_INT) u;
9972 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9973 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9974 or return 0 if we are unable to determine what that offset is, either
9975 because the argument turns out to be a pointer to an ERROR_MARK node, or
9976 because the offset is actually variable. (We can't handle the latter case
9977 just yet). */
9979 static HOST_WIDE_INT
9980 field_byte_offset (const_tree decl)
9982 HOST_WIDE_INT object_offset_in_bits;
9983 HOST_WIDE_INT bitpos_int;
9985 if (TREE_CODE (decl) == ERROR_MARK)
9986 return 0;
9988 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9990 /* We cannot yet cope with fields whose positions are variable, so
9991 for now, when we see such things, we simply return 0. Someday, we may
9992 be able to handle such cases, but it will be damn difficult. */
9993 if (! host_integerp (bit_position (decl), 0))
9994 return 0;
9996 bitpos_int = int_bit_position (decl);
9998 #ifdef PCC_BITFIELD_TYPE_MATTERS
9999 if (PCC_BITFIELD_TYPE_MATTERS)
10001 tree type;
10002 tree field_size_tree;
10003 HOST_WIDE_INT deepest_bitpos;
10004 unsigned HOST_WIDE_INT field_size_in_bits;
10005 unsigned int type_align_in_bits;
10006 unsigned int decl_align_in_bits;
10007 unsigned HOST_WIDE_INT type_size_in_bits;
10009 type = field_type (decl);
10010 field_size_tree = DECL_SIZE (decl);
10012 /* The size could be unspecified if there was an error, or for
10013 a flexible array member. */
10014 if (! field_size_tree)
10015 field_size_tree = bitsize_zero_node;
10017 /* If we don't know the size of the field, pretend it's a full word. */
10018 if (host_integerp (field_size_tree, 1))
10019 field_size_in_bits = tree_low_cst (field_size_tree, 1);
10020 else
10021 field_size_in_bits = BITS_PER_WORD;
10023 type_size_in_bits = simple_type_size_in_bits (type);
10024 type_align_in_bits = simple_type_align_in_bits (type);
10025 decl_align_in_bits = simple_decl_align_in_bits (decl);
10027 /* The GCC front-end doesn't make any attempt to keep track of the
10028 starting bit offset (relative to the start of the containing
10029 structure type) of the hypothetical "containing object" for a
10030 bit-field. Thus, when computing the byte offset value for the
10031 start of the "containing object" of a bit-field, we must deduce
10032 this information on our own. This can be rather tricky to do in
10033 some cases. For example, handling the following structure type
10034 definition when compiling for an i386/i486 target (which only
10035 aligns long long's to 32-bit boundaries) can be very tricky:
10037 struct S { int field1; long long field2:31; };
10039 Fortunately, there is a simple rule-of-thumb which can be used
10040 in such cases. When compiling for an i386/i486, GCC will
10041 allocate 8 bytes for the structure shown above. It decides to
10042 do this based upon one simple rule for bit-field allocation.
10043 GCC allocates each "containing object" for each bit-field at
10044 the first (i.e. lowest addressed) legitimate alignment boundary
10045 (based upon the required minimum alignment for the declared
10046 type of the field) which it can possibly use, subject to the
10047 condition that there is still enough available space remaining
10048 in the containing object (when allocated at the selected point)
10049 to fully accommodate all of the bits of the bit-field itself.
10051 This simple rule makes it obvious why GCC allocates 8 bytes for
10052 each object of the structure type shown above. When looking
10053 for a place to allocate the "containing object" for `field2',
10054 the compiler simply tries to allocate a 64-bit "containing
10055 object" at each successive 32-bit boundary (starting at zero)
10056 until it finds a place to allocate that 64- bit field such that
10057 at least 31 contiguous (and previously unallocated) bits remain
10058 within that selected 64 bit field. (As it turns out, for the
10059 example above, the compiler finds it is OK to allocate the
10060 "containing object" 64-bit field at bit-offset zero within the
10061 structure type.)
10063 Here we attempt to work backwards from the limited set of facts
10064 we're given, and we try to deduce from those facts, where GCC
10065 must have believed that the containing object started (within
10066 the structure type). The value we deduce is then used (by the
10067 callers of this routine) to generate DW_AT_location and
10068 DW_AT_bit_offset attributes for fields (both bit-fields and, in
10069 the case of DW_AT_location, regular fields as well). */
10071 /* Figure out the bit-distance from the start of the structure to
10072 the "deepest" bit of the bit-field. */
10073 deepest_bitpos = bitpos_int + field_size_in_bits;
10075 /* This is the tricky part. Use some fancy footwork to deduce
10076 where the lowest addressed bit of the containing object must
10077 be. */
10078 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
10080 /* Round up to type_align by default. This works best for
10081 bitfields. */
10082 object_offset_in_bits
10083 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
10085 if (object_offset_in_bits > bitpos_int)
10087 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
10089 /* Round up to decl_align instead. */
10090 object_offset_in_bits
10091 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
10094 else
10095 #endif
10096 object_offset_in_bits = bitpos_int;
10098 return object_offset_in_bits / BITS_PER_UNIT;
10101 /* The following routines define various Dwarf attributes and any data
10102 associated with them. */
10104 /* Add a location description attribute value to a DIE.
10106 This emits location attributes suitable for whole variables and
10107 whole parameters. Note that the location attributes for struct fields are
10108 generated by the routine `data_member_location_attribute' below. */
10110 static inline void
10111 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
10112 dw_loc_descr_ref descr)
10114 if (descr != 0)
10115 add_AT_loc (die, attr_kind, descr);
10118 /* Attach the specialized form of location attribute used for data members of
10119 struct and union types. In the special case of a FIELD_DECL node which
10120 represents a bit-field, the "offset" part of this special location
10121 descriptor must indicate the distance in bytes from the lowest-addressed
10122 byte of the containing struct or union type to the lowest-addressed byte of
10123 the "containing object" for the bit-field. (See the `field_byte_offset'
10124 function above).
10126 For any given bit-field, the "containing object" is a hypothetical object
10127 (of some integral or enum type) within which the given bit-field lives. The
10128 type of this hypothetical "containing object" is always the same as the
10129 declared type of the individual bit-field itself (for GCC anyway... the
10130 DWARF spec doesn't actually mandate this). Note that it is the size (in
10131 bytes) of the hypothetical "containing object" which will be given in the
10132 DW_AT_byte_size attribute for this bit-field. (See the
10133 `byte_size_attribute' function below.) It is also used when calculating the
10134 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
10135 function below.) */
10137 static void
10138 add_data_member_location_attribute (dw_die_ref die, tree decl)
10140 HOST_WIDE_INT offset;
10141 dw_loc_descr_ref loc_descr = 0;
10143 if (TREE_CODE (decl) == TREE_BINFO)
10145 /* We're working on the TAG_inheritance for a base class. */
10146 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
10148 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
10149 aren't at a fixed offset from all (sub)objects of the same
10150 type. We need to extract the appropriate offset from our
10151 vtable. The following dwarf expression means
10153 BaseAddr = ObAddr + *((*ObAddr) - Offset)
10155 This is specific to the V3 ABI, of course. */
10157 dw_loc_descr_ref tmp;
10159 /* Make a copy of the object address. */
10160 tmp = new_loc_descr (DW_OP_dup, 0, 0);
10161 add_loc_descr (&loc_descr, tmp);
10163 /* Extract the vtable address. */
10164 tmp = new_loc_descr (DW_OP_deref, 0, 0);
10165 add_loc_descr (&loc_descr, tmp);
10167 /* Calculate the address of the offset. */
10168 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
10169 gcc_assert (offset < 0);
10171 tmp = int_loc_descriptor (-offset);
10172 add_loc_descr (&loc_descr, tmp);
10173 tmp = new_loc_descr (DW_OP_minus, 0, 0);
10174 add_loc_descr (&loc_descr, tmp);
10176 /* Extract the offset. */
10177 tmp = new_loc_descr (DW_OP_deref, 0, 0);
10178 add_loc_descr (&loc_descr, tmp);
10180 /* Add it to the object address. */
10181 tmp = new_loc_descr (DW_OP_plus, 0, 0);
10182 add_loc_descr (&loc_descr, tmp);
10184 else
10185 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
10187 else
10188 offset = field_byte_offset (decl);
10190 if (! loc_descr)
10192 enum dwarf_location_atom op;
10194 /* The DWARF2 standard says that we should assume that the structure
10195 address is already on the stack, so we can specify a structure field
10196 address by using DW_OP_plus_uconst. */
10198 #ifdef MIPS_DEBUGGING_INFO
10199 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
10200 operator correctly. It works only if we leave the offset on the
10201 stack. */
10202 op = DW_OP_constu;
10203 #else
10204 op = DW_OP_plus_uconst;
10205 #endif
10207 loc_descr = new_loc_descr (op, offset, 0);
10210 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
10213 /* Writes integer values to dw_vec_const array. */
10215 static void
10216 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
10218 while (size != 0)
10220 *dest++ = val & 0xff;
10221 val >>= 8;
10222 --size;
10226 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
10228 static HOST_WIDE_INT
10229 extract_int (const unsigned char *src, unsigned int size)
10231 HOST_WIDE_INT val = 0;
10233 src += size;
10234 while (size != 0)
10236 val <<= 8;
10237 val |= *--src & 0xff;
10238 --size;
10240 return val;
10243 /* Writes floating point values to dw_vec_const array. */
10245 static void
10246 insert_float (const_rtx rtl, unsigned char *array)
10248 REAL_VALUE_TYPE rv;
10249 long val[4];
10250 int i;
10252 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
10253 real_to_target (val, &rv, GET_MODE (rtl));
10255 /* real_to_target puts 32-bit pieces in each long. Pack them. */
10256 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
10258 insert_int (val[i], 4, array);
10259 array += 4;
10263 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
10264 does not have a "location" either in memory or in a register. These
10265 things can arise in GNU C when a constant is passed as an actual parameter
10266 to an inlined function. They can also arise in C++ where declared
10267 constants do not necessarily get memory "homes". */
10269 static void
10270 add_const_value_attribute (dw_die_ref die, rtx rtl)
10272 switch (GET_CODE (rtl))
10274 case CONST_INT:
10276 HOST_WIDE_INT val = INTVAL (rtl);
10278 if (val < 0)
10279 add_AT_int (die, DW_AT_const_value, val);
10280 else
10281 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
10283 break;
10285 case CONST_DOUBLE:
10286 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
10287 floating-point constant. A CONST_DOUBLE is used whenever the
10288 constant requires more than one word in order to be adequately
10289 represented. We output CONST_DOUBLEs as blocks. */
10291 enum machine_mode mode = GET_MODE (rtl);
10293 if (SCALAR_FLOAT_MODE_P (mode))
10295 unsigned int length = GET_MODE_SIZE (mode);
10296 unsigned char *array = ggc_alloc (length);
10298 insert_float (rtl, array);
10299 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
10301 else
10303 /* ??? We really should be using HOST_WIDE_INT throughout. */
10304 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
10306 add_AT_long_long (die, DW_AT_const_value,
10307 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
10310 break;
10312 case CONST_VECTOR:
10314 enum machine_mode mode = GET_MODE (rtl);
10315 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
10316 unsigned int length = CONST_VECTOR_NUNITS (rtl);
10317 unsigned char *array = ggc_alloc (length * elt_size);
10318 unsigned int i;
10319 unsigned char *p;
10321 switch (GET_MODE_CLASS (mode))
10323 case MODE_VECTOR_INT:
10324 for (i = 0, p = array; i < length; i++, p += elt_size)
10326 rtx elt = CONST_VECTOR_ELT (rtl, i);
10327 HOST_WIDE_INT lo, hi;
10329 switch (GET_CODE (elt))
10331 case CONST_INT:
10332 lo = INTVAL (elt);
10333 hi = -(lo < 0);
10334 break;
10336 case CONST_DOUBLE:
10337 lo = CONST_DOUBLE_LOW (elt);
10338 hi = CONST_DOUBLE_HIGH (elt);
10339 break;
10341 default:
10342 gcc_unreachable ();
10345 if (elt_size <= sizeof (HOST_WIDE_INT))
10346 insert_int (lo, elt_size, p);
10347 else
10349 unsigned char *p0 = p;
10350 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
10352 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
10353 if (WORDS_BIG_ENDIAN)
10355 p0 = p1;
10356 p1 = p;
10358 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
10359 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
10362 break;
10364 case MODE_VECTOR_FLOAT:
10365 for (i = 0, p = array; i < length; i++, p += elt_size)
10367 rtx elt = CONST_VECTOR_ELT (rtl, i);
10368 insert_float (elt, p);
10370 break;
10372 default:
10373 gcc_unreachable ();
10376 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10378 break;
10380 case CONST_STRING:
10381 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10382 break;
10384 case SYMBOL_REF:
10385 case LABEL_REF:
10386 case CONST:
10387 add_AT_addr (die, DW_AT_const_value, rtl);
10388 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10389 break;
10391 case PLUS:
10392 /* In cases where an inlined instance of an inline function is passed
10393 the address of an `auto' variable (which is local to the caller) we
10394 can get a situation where the DECL_RTL of the artificial local
10395 variable (for the inlining) which acts as a stand-in for the
10396 corresponding formal parameter (of the inline function) will look
10397 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10398 exactly a compile-time constant expression, but it isn't the address
10399 of the (artificial) local variable either. Rather, it represents the
10400 *value* which the artificial local variable always has during its
10401 lifetime. We currently have no way to represent such quasi-constant
10402 values in Dwarf, so for now we just punt and generate nothing. */
10403 break;
10405 default:
10406 /* No other kinds of rtx should be possible here. */
10407 gcc_unreachable ();
10412 /* Determine whether the evaluation of EXPR references any variables
10413 or functions which aren't otherwise used (and therefore may not be
10414 output). */
10415 static tree
10416 reference_to_unused (tree * tp, int * walk_subtrees,
10417 void * data ATTRIBUTE_UNUSED)
10419 if (! EXPR_P (*tp) && ! GIMPLE_STMT_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10420 *walk_subtrees = 0;
10422 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10423 && ! TREE_ASM_WRITTEN (*tp))
10424 return *tp;
10425 else if (!flag_unit_at_a_time)
10426 return NULL_TREE;
10427 /* ??? The C++ FE emits debug information for using decls, so
10428 putting gcc_unreachable here falls over. See PR31899. For now
10429 be conservative. */
10430 else if (!cgraph_global_info_ready
10431 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
10432 return *tp;
10433 else if (DECL_P (*tp) && TREE_CODE (*tp) == VAR_DECL)
10435 struct varpool_node *node = varpool_node (*tp);
10436 if (!node->needed)
10437 return *tp;
10439 else if (DECL_P (*tp) && TREE_CODE (*tp) == FUNCTION_DECL
10440 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
10442 struct cgraph_node *node = cgraph_node (*tp);
10443 if (!node->output)
10444 return *tp;
10446 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
10447 return *tp;
10449 return NULL_TREE;
10452 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10453 for use in a later add_const_value_attribute call. */
10455 static rtx
10456 rtl_for_decl_init (tree init, tree type)
10458 rtx rtl = NULL_RTX;
10460 /* If a variable is initialized with a string constant without embedded
10461 zeros, build CONST_STRING. */
10462 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10464 tree enttype = TREE_TYPE (type);
10465 tree domain = TYPE_DOMAIN (type);
10466 enum machine_mode mode = TYPE_MODE (enttype);
10468 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10469 && domain
10470 && integer_zerop (TYPE_MIN_VALUE (domain))
10471 && compare_tree_int (TYPE_MAX_VALUE (domain),
10472 TREE_STRING_LENGTH (init) - 1) == 0
10473 && ((size_t) TREE_STRING_LENGTH (init)
10474 == strlen (TREE_STRING_POINTER (init)) + 1))
10475 rtl = gen_rtx_CONST_STRING (VOIDmode,
10476 ggc_strdup (TREE_STRING_POINTER (init)));
10478 /* Other aggregates, and complex values, could be represented using
10479 CONCAT: FIXME! */
10480 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10482 /* Vectors only work if their mode is supported by the target.
10483 FIXME: generic vectors ought to work too. */
10484 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10486 /* If the initializer is something that we know will expand into an
10487 immediate RTL constant, expand it now. We must be careful not to
10488 reference variables which won't be output. */
10489 else if (initializer_constant_valid_p (init, type)
10490 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10492 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
10493 possible. */
10494 if (TREE_CODE (type) == VECTOR_TYPE)
10495 switch (TREE_CODE (init))
10497 case VECTOR_CST:
10498 break;
10499 case CONSTRUCTOR:
10500 if (TREE_CONSTANT (init))
10502 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (init);
10503 bool constant_p = true;
10504 tree value;
10505 unsigned HOST_WIDE_INT ix;
10507 /* Even when ctor is constant, it might contain non-*_CST
10508 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
10509 belong into VECTOR_CST nodes. */
10510 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
10511 if (!CONSTANT_CLASS_P (value))
10513 constant_p = false;
10514 break;
10517 if (constant_p)
10519 init = build_vector_from_ctor (type, elts);
10520 break;
10523 /* FALLTHRU */
10525 default:
10526 return NULL;
10529 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10531 /* If expand_expr returns a MEM, it wasn't immediate. */
10532 gcc_assert (!rtl || !MEM_P (rtl));
10535 return rtl;
10538 /* Generate RTL for the variable DECL to represent its location. */
10540 static rtx
10541 rtl_for_decl_location (tree decl)
10543 rtx rtl;
10545 /* Here we have to decide where we are going to say the parameter "lives"
10546 (as far as the debugger is concerned). We only have a couple of
10547 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10549 DECL_RTL normally indicates where the parameter lives during most of the
10550 activation of the function. If optimization is enabled however, this
10551 could be either NULL or else a pseudo-reg. Both of those cases indicate
10552 that the parameter doesn't really live anywhere (as far as the code
10553 generation parts of GCC are concerned) during most of the function's
10554 activation. That will happen (for example) if the parameter is never
10555 referenced within the function.
10557 We could just generate a location descriptor here for all non-NULL
10558 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10559 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10560 where DECL_RTL is NULL or is a pseudo-reg.
10562 Note however that we can only get away with using DECL_INCOMING_RTL as
10563 a backup substitute for DECL_RTL in certain limited cases. In cases
10564 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10565 we can be sure that the parameter was passed using the same type as it is
10566 declared to have within the function, and that its DECL_INCOMING_RTL
10567 points us to a place where a value of that type is passed.
10569 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10570 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10571 because in these cases DECL_INCOMING_RTL points us to a value of some
10572 type which is *different* from the type of the parameter itself. Thus,
10573 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10574 such cases, the debugger would end up (for example) trying to fetch a
10575 `float' from a place which actually contains the first part of a
10576 `double'. That would lead to really incorrect and confusing
10577 output at debug-time.
10579 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10580 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10581 are a couple of exceptions however. On little-endian machines we can
10582 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10583 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10584 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10585 when (on a little-endian machine) a non-prototyped function has a
10586 parameter declared to be of type `short' or `char'. In such cases,
10587 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10588 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10589 passed `int' value. If the debugger then uses that address to fetch
10590 a `short' or a `char' (on a little-endian machine) the result will be
10591 the correct data, so we allow for such exceptional cases below.
10593 Note that our goal here is to describe the place where the given formal
10594 parameter lives during most of the function's activation (i.e. between the
10595 end of the prologue and the start of the epilogue). We'll do that as best
10596 as we can. Note however that if the given formal parameter is modified
10597 sometime during the execution of the function, then a stack backtrace (at
10598 debug-time) will show the function as having been called with the *new*
10599 value rather than the value which was originally passed in. This happens
10600 rarely enough that it is not a major problem, but it *is* a problem, and
10601 I'd like to fix it.
10603 A future version of dwarf2out.c may generate two additional attributes for
10604 any given DW_TAG_formal_parameter DIE which will describe the "passed
10605 type" and the "passed location" for the given formal parameter in addition
10606 to the attributes we now generate to indicate the "declared type" and the
10607 "active location" for each parameter. This additional set of attributes
10608 could be used by debuggers for stack backtraces. Separately, note that
10609 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10610 This happens (for example) for inlined-instances of inline function formal
10611 parameters which are never referenced. This really shouldn't be
10612 happening. All PARM_DECL nodes should get valid non-NULL
10613 DECL_INCOMING_RTL values. FIXME. */
10615 /* Use DECL_RTL as the "location" unless we find something better. */
10616 rtl = DECL_RTL_IF_SET (decl);
10618 /* When generating abstract instances, ignore everything except
10619 constants, symbols living in memory, and symbols living in
10620 fixed registers. */
10621 if (! reload_completed)
10623 if (rtl
10624 && (CONSTANT_P (rtl)
10625 || (MEM_P (rtl)
10626 && CONSTANT_P (XEXP (rtl, 0)))
10627 || (REG_P (rtl)
10628 && TREE_CODE (decl) == VAR_DECL
10629 && TREE_STATIC (decl))))
10631 rtl = targetm.delegitimize_address (rtl);
10632 return rtl;
10634 rtl = NULL_RTX;
10636 else if (TREE_CODE (decl) == PARM_DECL)
10638 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10640 tree declared_type = TREE_TYPE (decl);
10641 tree passed_type = DECL_ARG_TYPE (decl);
10642 enum machine_mode dmode = TYPE_MODE (declared_type);
10643 enum machine_mode pmode = TYPE_MODE (passed_type);
10645 /* This decl represents a formal parameter which was optimized out.
10646 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10647 all cases where (rtl == NULL_RTX) just below. */
10648 if (dmode == pmode)
10649 rtl = DECL_INCOMING_RTL (decl);
10650 else if (SCALAR_INT_MODE_P (dmode)
10651 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10652 && DECL_INCOMING_RTL (decl))
10654 rtx inc = DECL_INCOMING_RTL (decl);
10655 if (REG_P (inc))
10656 rtl = inc;
10657 else if (MEM_P (inc))
10659 if (BYTES_BIG_ENDIAN)
10660 rtl = adjust_address_nv (inc, dmode,
10661 GET_MODE_SIZE (pmode)
10662 - GET_MODE_SIZE (dmode));
10663 else
10664 rtl = inc;
10669 /* If the parm was passed in registers, but lives on the stack, then
10670 make a big endian correction if the mode of the type of the
10671 parameter is not the same as the mode of the rtl. */
10672 /* ??? This is the same series of checks that are made in dbxout.c before
10673 we reach the big endian correction code there. It isn't clear if all
10674 of these checks are necessary here, but keeping them all is the safe
10675 thing to do. */
10676 else if (MEM_P (rtl)
10677 && XEXP (rtl, 0) != const0_rtx
10678 && ! CONSTANT_P (XEXP (rtl, 0))
10679 /* Not passed in memory. */
10680 && !MEM_P (DECL_INCOMING_RTL (decl))
10681 /* Not passed by invisible reference. */
10682 && (!REG_P (XEXP (rtl, 0))
10683 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10684 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10685 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10686 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10687 #endif
10689 /* Big endian correction check. */
10690 && BYTES_BIG_ENDIAN
10691 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10692 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10693 < UNITS_PER_WORD))
10695 int offset = (UNITS_PER_WORD
10696 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10698 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10699 plus_constant (XEXP (rtl, 0), offset));
10702 else if (TREE_CODE (decl) == VAR_DECL
10703 && rtl
10704 && MEM_P (rtl)
10705 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10706 && BYTES_BIG_ENDIAN)
10708 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10709 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10711 /* If a variable is declared "register" yet is smaller than
10712 a register, then if we store the variable to memory, it
10713 looks like we're storing a register-sized value, when in
10714 fact we are not. We need to adjust the offset of the
10715 storage location to reflect the actual value's bytes,
10716 else gdb will not be able to display it. */
10717 if (rsize > dsize)
10718 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10719 plus_constant (XEXP (rtl, 0), rsize-dsize));
10722 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10723 and will have been substituted directly into all expressions that use it.
10724 C does not have such a concept, but C++ and other languages do. */
10725 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10726 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10728 if (rtl)
10729 rtl = targetm.delegitimize_address (rtl);
10731 /* If we don't look past the constant pool, we risk emitting a
10732 reference to a constant pool entry that isn't referenced from
10733 code, and thus is not emitted. */
10734 if (rtl)
10735 rtl = avoid_constant_pool_reference (rtl);
10737 return rtl;
10740 /* We need to figure out what section we should use as the base for the
10741 address ranges where a given location is valid.
10742 1. If this particular DECL has a section associated with it, use that.
10743 2. If this function has a section associated with it, use that.
10744 3. Otherwise, use the text section.
10745 XXX: If you split a variable across multiple sections, we won't notice. */
10747 static const char *
10748 secname_for_decl (const_tree decl)
10750 const char *secname;
10752 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10754 tree sectree = DECL_SECTION_NAME (decl);
10755 secname = TREE_STRING_POINTER (sectree);
10757 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10759 tree sectree = DECL_SECTION_NAME (current_function_decl);
10760 secname = TREE_STRING_POINTER (sectree);
10762 else if (cfun && in_cold_section_p)
10763 secname = crtl->subsections.cold_section_label;
10764 else
10765 secname = text_section_label;
10767 return secname;
10770 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_RTX is returned.
10771 If so, the rtx for the SYMBOL_REF for the COMMON block is returned, and the
10772 value is the offset into the common block for the symbol. */
10774 static tree
10775 fortran_common (tree decl, HOST_WIDE_INT *value)
10777 tree val_expr, cvar;
10778 enum machine_mode mode;
10779 HOST_WIDE_INT bitsize, bitpos;
10780 tree offset;
10781 int volatilep = 0, unsignedp = 0;
10783 /* If the decl isn't a VAR_DECL, or if it isn't public or static, or if
10784 it does not have a value (the offset into the common area), or if it
10785 is thread local (as opposed to global) then it isn't common, and shouldn't
10786 be handled as such. */
10787 if (TREE_CODE (decl) != VAR_DECL
10788 || !TREE_PUBLIC (decl)
10789 || !TREE_STATIC (decl)
10790 || !DECL_HAS_VALUE_EXPR_P (decl)
10791 || !is_fortran ())
10792 return NULL_TREE;
10794 val_expr = DECL_VALUE_EXPR (decl);
10795 if (TREE_CODE (val_expr) != COMPONENT_REF)
10796 return NULL_TREE;
10798 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset,
10799 &mode, &unsignedp, &volatilep, true);
10801 if (cvar == NULL_TREE
10802 || TREE_CODE (cvar) != VAR_DECL
10803 || DECL_ARTIFICIAL (cvar)
10804 || !TREE_PUBLIC (cvar))
10805 return NULL_TREE;
10807 *value = 0;
10808 if (offset != NULL)
10810 if (!host_integerp (offset, 0))
10811 return NULL_TREE;
10812 *value = tree_low_cst (offset, 0);
10814 if (bitpos != 0)
10815 *value += bitpos / BITS_PER_UNIT;
10817 return cvar;
10821 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10822 data attribute for a variable or a parameter. We generate the
10823 DW_AT_const_value attribute only in those cases where the given variable
10824 or parameter does not have a true "location" either in memory or in a
10825 register. This can happen (for example) when a constant is passed as an
10826 actual argument in a call to an inline function. (It's possible that
10827 these things can crop up in other ways also.) Note that one type of
10828 constant value which can be passed into an inlined function is a constant
10829 pointer. This can happen for example if an actual argument in an inlined
10830 function call evaluates to a compile-time constant address. */
10832 static void
10833 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10834 enum dwarf_attribute attr)
10836 rtx rtl;
10837 dw_loc_descr_ref descr;
10838 var_loc_list *loc_list;
10839 struct var_loc_node *node;
10840 if (TREE_CODE (decl) == ERROR_MARK)
10841 return;
10843 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10844 || TREE_CODE (decl) == RESULT_DECL);
10846 /* See if we possibly have multiple locations for this variable. */
10847 loc_list = lookup_decl_loc (decl);
10849 /* If it truly has multiple locations, the first and last node will
10850 differ. */
10851 if (loc_list && loc_list->first != loc_list->last)
10853 const char *endname, *secname;
10854 dw_loc_list_ref list;
10855 rtx varloc;
10856 enum var_init_status initialized;
10858 /* Now that we know what section we are using for a base,
10859 actually construct the list of locations.
10860 The first location information is what is passed to the
10861 function that creates the location list, and the remaining
10862 locations just get added on to that list.
10863 Note that we only know the start address for a location
10864 (IE location changes), so to build the range, we use
10865 the range [current location start, next location start].
10866 This means we have to special case the last node, and generate
10867 a range of [last location start, end of function label]. */
10869 node = loc_list->first;
10870 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10871 secname = secname_for_decl (decl);
10873 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note))
10874 initialized = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10875 else
10876 initialized = VAR_INIT_STATUS_INITIALIZED;
10878 list = new_loc_list (loc_descriptor (varloc, initialized),
10879 node->label, node->next->label, secname, 1);
10880 node = node->next;
10882 for (; node->next; node = node->next)
10883 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10885 /* The variable has a location between NODE->LABEL and
10886 NODE->NEXT->LABEL. */
10887 enum var_init_status initialized =
10888 NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10889 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10890 add_loc_descr_to_loc_list (&list,
10891 loc_descriptor (varloc, initialized),
10892 node->label, node->next->label, secname);
10895 /* If the variable has a location at the last label
10896 it keeps its location until the end of function. */
10897 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10899 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10900 enum var_init_status initialized =
10901 NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10903 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10904 if (!current_function_decl)
10905 endname = text_end_label;
10906 else
10908 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10909 current_function_funcdef_no);
10910 endname = ggc_strdup (label_id);
10912 add_loc_descr_to_loc_list (&list,
10913 loc_descriptor (varloc, initialized),
10914 node->label, endname, secname);
10917 /* Finally, add the location list to the DIE, and we are done. */
10918 add_AT_loc_list (die, attr, list);
10919 return;
10922 /* Try to get some constant RTL for this decl, and use that as the value of
10923 the location. */
10925 rtl = rtl_for_decl_location (decl);
10926 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10928 add_const_value_attribute (die, rtl);
10929 return;
10932 /* If we have tried to generate the location otherwise, and it
10933 didn't work out (we wouldn't be here if we did), and we have a one entry
10934 location list, try generating a location from that. */
10935 if (loc_list && loc_list->first)
10937 enum var_init_status status;
10938 node = loc_list->first;
10939 status = NOTE_VAR_LOCATION_STATUS (node->var_loc_note);
10940 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note), status);
10941 if (descr)
10943 add_AT_location_description (die, attr, descr);
10944 return;
10948 /* We couldn't get any rtl, so try directly generating the location
10949 description from the tree. */
10950 descr = loc_descriptor_from_tree (decl);
10951 if (descr)
10953 add_AT_location_description (die, attr, descr);
10954 return;
10956 /* None of that worked, so it must not really have a location;
10957 try adding a constant value attribute from the DECL_INITIAL. */
10958 tree_add_const_value_attribute (die, decl);
10961 /* If we don't have a copy of this variable in memory for some reason (such
10962 as a C++ member constant that doesn't have an out-of-line definition),
10963 we should tell the debugger about the constant value. */
10965 static void
10966 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10968 tree init = DECL_INITIAL (decl);
10969 tree type = TREE_TYPE (decl);
10970 rtx rtl;
10972 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10973 /* OK */;
10974 else
10975 return;
10977 rtl = rtl_for_decl_init (init, type);
10978 if (rtl)
10979 add_const_value_attribute (var_die, rtl);
10982 /* Convert the CFI instructions for the current function into a
10983 location list. This is used for DW_AT_frame_base when we targeting
10984 a dwarf2 consumer that does not support the dwarf3
10985 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10986 expressions. */
10988 static dw_loc_list_ref
10989 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10991 dw_fde_ref fde;
10992 dw_loc_list_ref list, *list_tail;
10993 dw_cfi_ref cfi;
10994 dw_cfa_location last_cfa, next_cfa;
10995 const char *start_label, *last_label, *section;
10997 fde = current_fde ();
10998 gcc_assert (fde != NULL);
11000 section = secname_for_decl (current_function_decl);
11001 list_tail = &list;
11002 list = NULL;
11004 next_cfa.reg = INVALID_REGNUM;
11005 next_cfa.offset = 0;
11006 next_cfa.indirect = 0;
11007 next_cfa.base_offset = 0;
11009 start_label = fde->dw_fde_begin;
11011 /* ??? Bald assumption that the CIE opcode list does not contain
11012 advance opcodes. */
11013 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
11014 lookup_cfa_1 (cfi, &next_cfa);
11016 last_cfa = next_cfa;
11017 last_label = start_label;
11019 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
11020 switch (cfi->dw_cfi_opc)
11022 case DW_CFA_set_loc:
11023 case DW_CFA_advance_loc1:
11024 case DW_CFA_advance_loc2:
11025 case DW_CFA_advance_loc4:
11026 if (!cfa_equal_p (&last_cfa, &next_cfa))
11028 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
11029 start_label, last_label, section,
11030 list == NULL);
11032 list_tail = &(*list_tail)->dw_loc_next;
11033 last_cfa = next_cfa;
11034 start_label = last_label;
11036 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
11037 break;
11039 case DW_CFA_advance_loc:
11040 /* The encoding is complex enough that we should never emit this. */
11041 case DW_CFA_remember_state:
11042 case DW_CFA_restore_state:
11043 /* We don't handle these two in this function. It would be possible
11044 if it were to be required. */
11045 gcc_unreachable ();
11047 default:
11048 lookup_cfa_1 (cfi, &next_cfa);
11049 break;
11052 if (!cfa_equal_p (&last_cfa, &next_cfa))
11054 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
11055 start_label, last_label, section,
11056 list == NULL);
11057 list_tail = &(*list_tail)->dw_loc_next;
11058 start_label = last_label;
11060 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
11061 start_label, fde->dw_fde_end, section,
11062 list == NULL);
11064 return list;
11067 /* Compute a displacement from the "steady-state frame pointer" to the
11068 frame base (often the same as the CFA), and store it in
11069 frame_pointer_fb_offset. OFFSET is added to the displacement
11070 before the latter is negated. */
11072 static void
11073 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
11075 rtx reg, elim;
11077 #ifdef FRAME_POINTER_CFA_OFFSET
11078 reg = frame_pointer_rtx;
11079 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
11080 #else
11081 reg = arg_pointer_rtx;
11082 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
11083 #endif
11085 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
11086 if (GET_CODE (elim) == PLUS)
11088 offset += INTVAL (XEXP (elim, 1));
11089 elim = XEXP (elim, 0);
11091 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
11092 : stack_pointer_rtx));
11094 frame_pointer_fb_offset = -offset;
11097 /* Generate a DW_AT_name attribute given some string value to be included as
11098 the value of the attribute. */
11100 static void
11101 add_name_attribute (dw_die_ref die, const char *name_string)
11103 if (name_string != NULL && *name_string != 0)
11105 if (demangle_name_func)
11106 name_string = (*demangle_name_func) (name_string);
11108 add_AT_string (die, DW_AT_name, name_string);
11112 /* Generate a DW_AT_comp_dir attribute for DIE. */
11114 static void
11115 add_comp_dir_attribute (dw_die_ref die)
11117 const char *wd = get_src_pwd ();
11118 if (wd != NULL)
11119 add_AT_string (die, DW_AT_comp_dir, remap_debug_filename (wd));
11122 /* Given a tree node describing an array bound (either lower or upper) output
11123 a representation for that bound. */
11125 static void
11126 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
11128 switch (TREE_CODE (bound))
11130 case ERROR_MARK:
11131 return;
11133 /* All fixed-bounds are represented by INTEGER_CST nodes. */
11134 case INTEGER_CST:
11135 if (! host_integerp (bound, 0)
11136 || (bound_attr == DW_AT_lower_bound
11137 && (((is_c_family () || is_java ()) && integer_zerop (bound))
11138 || (is_fortran () && integer_onep (bound)))))
11139 /* Use the default. */
11141 else
11142 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
11143 break;
11145 CASE_CONVERT:
11146 case VIEW_CONVERT_EXPR:
11147 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
11148 break;
11150 case SAVE_EXPR:
11151 break;
11153 case VAR_DECL:
11154 case PARM_DECL:
11155 case RESULT_DECL:
11157 dw_die_ref decl_die = lookup_decl_die (bound);
11159 /* ??? Can this happen, or should the variable have been bound
11160 first? Probably it can, since I imagine that we try to create
11161 the types of parameters in the order in which they exist in
11162 the list, and won't have created a forward reference to a
11163 later parameter. */
11164 if (decl_die != NULL)
11165 add_AT_die_ref (subrange_die, bound_attr, decl_die);
11166 break;
11169 default:
11171 /* Otherwise try to create a stack operation procedure to
11172 evaluate the value of the array bound. */
11174 dw_die_ref ctx, decl_die;
11175 dw_loc_descr_ref loc;
11177 loc = loc_descriptor_from_tree (bound);
11178 if (loc == NULL)
11179 break;
11181 if (current_function_decl == 0)
11182 ctx = comp_unit_die;
11183 else
11184 ctx = lookup_decl_die (current_function_decl);
11186 decl_die = new_die (DW_TAG_variable, ctx, bound);
11187 add_AT_flag (decl_die, DW_AT_artificial, 1);
11188 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
11189 add_AT_loc (decl_die, DW_AT_location, loc);
11191 add_AT_die_ref (subrange_die, bound_attr, decl_die);
11192 break;
11197 /* Note that the block of subscript information for an array type also
11198 includes information about the element type of type given array type. */
11200 static void
11201 add_subscript_info (dw_die_ref type_die, tree type)
11203 #ifndef MIPS_DEBUGGING_INFO
11204 unsigned dimension_number;
11205 #endif
11206 tree lower, upper;
11207 dw_die_ref subrange_die;
11209 /* The GNU compilers represent multidimensional array types as sequences of
11210 one dimensional array types whose element types are themselves array
11211 types. Here we squish that down, so that each multidimensional array
11212 type gets only one array_type DIE in the Dwarf debugging info. The draft
11213 Dwarf specification say that we are allowed to do this kind of
11214 compression in C (because there is no difference between an array or
11215 arrays and a multidimensional array in C) but for other source languages
11216 (e.g. Ada) we probably shouldn't do this. */
11218 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11219 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11220 We work around this by disabling this feature. See also
11221 gen_array_type_die. */
11222 #ifndef MIPS_DEBUGGING_INFO
11223 for (dimension_number = 0;
11224 TREE_CODE (type) == ARRAY_TYPE;
11225 type = TREE_TYPE (type), dimension_number++)
11226 #endif
11228 tree domain = TYPE_DOMAIN (type);
11230 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
11231 and (in GNU C only) variable bounds. Handle all three forms
11232 here. */
11233 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
11234 if (domain)
11236 /* We have an array type with specified bounds. */
11237 lower = TYPE_MIN_VALUE (domain);
11238 upper = TYPE_MAX_VALUE (domain);
11240 /* Define the index type. */
11241 if (TREE_TYPE (domain))
11243 /* ??? This is probably an Ada unnamed subrange type. Ignore the
11244 TREE_TYPE field. We can't emit debug info for this
11245 because it is an unnamed integral type. */
11246 if (TREE_CODE (domain) == INTEGER_TYPE
11247 && TYPE_NAME (domain) == NULL_TREE
11248 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
11249 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
11251 else
11252 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
11253 type_die);
11256 /* ??? If upper is NULL, the array has unspecified length,
11257 but it does have a lower bound. This happens with Fortran
11258 dimension arr(N:*)
11259 Since the debugger is definitely going to need to know N
11260 to produce useful results, go ahead and output the lower
11261 bound solo, and hope the debugger can cope. */
11263 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
11264 if (upper)
11265 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
11268 /* Otherwise we have an array type with an unspecified length. The
11269 DWARF-2 spec does not say how to handle this; let's just leave out the
11270 bounds. */
11274 static void
11275 add_byte_size_attribute (dw_die_ref die, tree tree_node)
11277 unsigned size;
11279 switch (TREE_CODE (tree_node))
11281 case ERROR_MARK:
11282 size = 0;
11283 break;
11284 case ENUMERAL_TYPE:
11285 case RECORD_TYPE:
11286 case UNION_TYPE:
11287 case QUAL_UNION_TYPE:
11288 size = int_size_in_bytes (tree_node);
11289 break;
11290 case FIELD_DECL:
11291 /* For a data member of a struct or union, the DW_AT_byte_size is
11292 generally given as the number of bytes normally allocated for an
11293 object of the *declared* type of the member itself. This is true
11294 even for bit-fields. */
11295 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
11296 break;
11297 default:
11298 gcc_unreachable ();
11301 /* Note that `size' might be -1 when we get to this point. If it is, that
11302 indicates that the byte size of the entity in question is variable. We
11303 have no good way of expressing this fact in Dwarf at the present time,
11304 so just let the -1 pass on through. */
11305 add_AT_unsigned (die, DW_AT_byte_size, size);
11308 /* For a FIELD_DECL node which represents a bit-field, output an attribute
11309 which specifies the distance in bits from the highest order bit of the
11310 "containing object" for the bit-field to the highest order bit of the
11311 bit-field itself.
11313 For any given bit-field, the "containing object" is a hypothetical object
11314 (of some integral or enum type) within which the given bit-field lives. The
11315 type of this hypothetical "containing object" is always the same as the
11316 declared type of the individual bit-field itself. The determination of the
11317 exact location of the "containing object" for a bit-field is rather
11318 complicated. It's handled by the `field_byte_offset' function (above).
11320 Note that it is the size (in bytes) of the hypothetical "containing object"
11321 which will be given in the DW_AT_byte_size attribute for this bit-field.
11322 (See `byte_size_attribute' above). */
11324 static inline void
11325 add_bit_offset_attribute (dw_die_ref die, tree decl)
11327 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
11328 tree type = DECL_BIT_FIELD_TYPE (decl);
11329 HOST_WIDE_INT bitpos_int;
11330 HOST_WIDE_INT highest_order_object_bit_offset;
11331 HOST_WIDE_INT highest_order_field_bit_offset;
11332 HOST_WIDE_INT unsigned bit_offset;
11334 /* Must be a field and a bit field. */
11335 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
11337 /* We can't yet handle bit-fields whose offsets are variable, so if we
11338 encounter such things, just return without generating any attribute
11339 whatsoever. Likewise for variable or too large size. */
11340 if (! host_integerp (bit_position (decl), 0)
11341 || ! host_integerp (DECL_SIZE (decl), 1))
11342 return;
11344 bitpos_int = int_bit_position (decl);
11346 /* Note that the bit offset is always the distance (in bits) from the
11347 highest-order bit of the "containing object" to the highest-order bit of
11348 the bit-field itself. Since the "high-order end" of any object or field
11349 is different on big-endian and little-endian machines, the computation
11350 below must take account of these differences. */
11351 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
11352 highest_order_field_bit_offset = bitpos_int;
11354 if (! BYTES_BIG_ENDIAN)
11356 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
11357 highest_order_object_bit_offset += simple_type_size_in_bits (type);
11360 bit_offset
11361 = (! BYTES_BIG_ENDIAN
11362 ? highest_order_object_bit_offset - highest_order_field_bit_offset
11363 : highest_order_field_bit_offset - highest_order_object_bit_offset);
11365 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
11368 /* For a FIELD_DECL node which represents a bit field, output an attribute
11369 which specifies the length in bits of the given field. */
11371 static inline void
11372 add_bit_size_attribute (dw_die_ref die, tree decl)
11374 /* Must be a field and a bit field. */
11375 gcc_assert (TREE_CODE (decl) == FIELD_DECL
11376 && DECL_BIT_FIELD_TYPE (decl));
11378 if (host_integerp (DECL_SIZE (decl), 1))
11379 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
11382 /* If the compiled language is ANSI C, then add a 'prototyped'
11383 attribute, if arg types are given for the parameters of a function. */
11385 static inline void
11386 add_prototyped_attribute (dw_die_ref die, tree func_type)
11388 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
11389 && TYPE_ARG_TYPES (func_type) != NULL)
11390 add_AT_flag (die, DW_AT_prototyped, 1);
11393 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
11394 by looking in either the type declaration or object declaration
11395 equate table. */
11397 static inline void
11398 add_abstract_origin_attribute (dw_die_ref die, tree origin)
11400 dw_die_ref origin_die = NULL;
11402 if (TREE_CODE (origin) != FUNCTION_DECL)
11404 /* We may have gotten separated from the block for the inlined
11405 function, if we're in an exception handler or some such; make
11406 sure that the abstract function has been written out.
11408 Doing this for nested functions is wrong, however; functions are
11409 distinct units, and our context might not even be inline. */
11410 tree fn = origin;
11412 if (TYPE_P (fn))
11413 fn = TYPE_STUB_DECL (fn);
11415 fn = decl_function_context (fn);
11416 if (fn)
11417 dwarf2out_abstract_function (fn);
11420 if (DECL_P (origin))
11421 origin_die = lookup_decl_die (origin);
11422 else if (TYPE_P (origin))
11423 origin_die = lookup_type_die (origin);
11425 /* XXX: Functions that are never lowered don't always have correct block
11426 trees (in the case of java, they simply have no block tree, in some other
11427 languages). For these functions, there is nothing we can really do to
11428 output correct debug info for inlined functions in all cases. Rather
11429 than die, we'll just produce deficient debug info now, in that we will
11430 have variables without a proper abstract origin. In the future, when all
11431 functions are lowered, we should re-add a gcc_assert (origin_die)
11432 here. */
11434 if (origin_die)
11435 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
11438 /* We do not currently support the pure_virtual attribute. */
11440 static inline void
11441 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
11443 if (DECL_VINDEX (func_decl))
11445 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11447 if (host_integerp (DECL_VINDEX (func_decl), 0))
11448 add_AT_loc (die, DW_AT_vtable_elem_location,
11449 new_loc_descr (DW_OP_constu,
11450 tree_low_cst (DECL_VINDEX (func_decl), 0),
11451 0));
11453 /* GNU extension: Record what type this method came from originally. */
11454 if (debug_info_level > DINFO_LEVEL_TERSE)
11455 add_AT_die_ref (die, DW_AT_containing_type,
11456 lookup_type_die (DECL_CONTEXT (func_decl)));
11460 /* Add source coordinate attributes for the given decl. */
11462 static void
11463 add_src_coords_attributes (dw_die_ref die, tree decl)
11465 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11467 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
11468 add_AT_unsigned (die, DW_AT_decl_line, s.line);
11471 /* Add a DW_AT_name attribute and source coordinate attribute for the
11472 given decl, but only if it actually has a name. */
11474 static void
11475 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
11477 tree decl_name;
11479 decl_name = DECL_NAME (decl);
11480 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
11482 add_name_attribute (die, dwarf2_name (decl, 0));
11483 if (! DECL_ARTIFICIAL (decl))
11484 add_src_coords_attributes (die, decl);
11486 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
11487 && TREE_PUBLIC (decl)
11488 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
11489 && !DECL_ABSTRACT (decl)
11490 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
11491 && !is_fortran ())
11492 add_AT_string (die, DW_AT_MIPS_linkage_name,
11493 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
11496 #ifdef VMS_DEBUGGING_INFO
11497 /* Get the function's name, as described by its RTL. This may be different
11498 from the DECL_NAME name used in the source file. */
11499 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11501 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11502 XEXP (DECL_RTL (decl), 0));
11503 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11505 #endif
11508 /* Push a new declaration scope. */
11510 static void
11511 push_decl_scope (tree scope)
11513 VEC_safe_push (tree, gc, decl_scope_table, scope);
11516 /* Pop a declaration scope. */
11518 static inline void
11519 pop_decl_scope (void)
11521 VEC_pop (tree, decl_scope_table);
11524 /* Return the DIE for the scope that immediately contains this type.
11525 Non-named types get global scope. Named types nested in other
11526 types get their containing scope if it's open, or global scope
11527 otherwise. All other types (i.e. function-local named types) get
11528 the current active scope. */
11530 static dw_die_ref
11531 scope_die_for (tree t, dw_die_ref context_die)
11533 dw_die_ref scope_die = NULL;
11534 tree containing_scope;
11535 int i;
11537 /* Non-types always go in the current scope. */
11538 gcc_assert (TYPE_P (t));
11540 containing_scope = TYPE_CONTEXT (t);
11542 /* Use the containing namespace if it was passed in (for a declaration). */
11543 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11545 if (context_die == lookup_decl_die (containing_scope))
11546 /* OK */;
11547 else
11548 containing_scope = NULL_TREE;
11551 /* Ignore function type "scopes" from the C frontend. They mean that
11552 a tagged type is local to a parmlist of a function declarator, but
11553 that isn't useful to DWARF. */
11554 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11555 containing_scope = NULL_TREE;
11557 if (containing_scope == NULL_TREE)
11558 scope_die = comp_unit_die;
11559 else if (TYPE_P (containing_scope))
11561 /* For types, we can just look up the appropriate DIE. But
11562 first we check to see if we're in the middle of emitting it
11563 so we know where the new DIE should go. */
11564 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11565 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11566 break;
11568 if (i < 0)
11570 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11571 || TREE_ASM_WRITTEN (containing_scope));
11573 /* If none of the current dies are suitable, we get file scope. */
11574 scope_die = comp_unit_die;
11576 else
11577 scope_die = lookup_type_die (containing_scope);
11579 else
11580 scope_die = context_die;
11582 return scope_die;
11585 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11587 static inline int
11588 local_scope_p (dw_die_ref context_die)
11590 for (; context_die; context_die = context_die->die_parent)
11591 if (context_die->die_tag == DW_TAG_inlined_subroutine
11592 || context_die->die_tag == DW_TAG_subprogram)
11593 return 1;
11595 return 0;
11598 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11599 whether or not to treat a DIE in this context as a declaration. */
11601 static inline int
11602 class_or_namespace_scope_p (dw_die_ref context_die)
11604 return (context_die
11605 && (context_die->die_tag == DW_TAG_structure_type
11606 || context_die->die_tag == DW_TAG_class_type
11607 || context_die->die_tag == DW_TAG_interface_type
11608 || context_die->die_tag == DW_TAG_union_type
11609 || context_die->die_tag == DW_TAG_namespace));
11612 /* Many forms of DIEs require a "type description" attribute. This
11613 routine locates the proper "type descriptor" die for the type given
11614 by 'type', and adds a DW_AT_type attribute below the given die. */
11616 static void
11617 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11618 int decl_volatile, dw_die_ref context_die)
11620 enum tree_code code = TREE_CODE (type);
11621 dw_die_ref type_die = NULL;
11623 /* ??? If this type is an unnamed subrange type of an integral, floating-point
11624 or fixed-point type, use the inner type. This is because we have no
11625 support for unnamed types in base_type_die. This can happen if this is
11626 an Ada subrange type. Correct solution is emit a subrange type die. */
11627 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
11628 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11629 type = TREE_TYPE (type), code = TREE_CODE (type);
11631 if (code == ERROR_MARK
11632 /* Handle a special case. For functions whose return type is void, we
11633 generate *no* type attribute. (Note that no object may have type
11634 `void', so this only applies to function return types). */
11635 || code == VOID_TYPE)
11636 return;
11638 type_die = modified_type_die (type,
11639 decl_const || TYPE_READONLY (type),
11640 decl_volatile || TYPE_VOLATILE (type),
11641 context_die);
11643 if (type_die != NULL)
11644 add_AT_die_ref (object_die, DW_AT_type, type_die);
11647 /* Given an object die, add the calling convention attribute for the
11648 function call type. */
11649 static void
11650 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
11652 enum dwarf_calling_convention value = DW_CC_normal;
11654 value = targetm.dwarf_calling_convention (TREE_TYPE (decl));
11656 /* DWARF doesn't provide a way to identify a program's source-level
11657 entry point. DW_AT_calling_convention attributes are only meant
11658 to describe functions' calling conventions. However, lacking a
11659 better way to signal the Fortran main program, we use this for the
11660 time being, following existing custom. */
11661 if (is_fortran ()
11662 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
11663 value = DW_CC_program;
11665 /* Only add the attribute if the backend requests it, and
11666 is not DW_CC_normal. */
11667 if (value && (value != DW_CC_normal))
11668 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11671 /* Given a tree pointer to a struct, class, union, or enum type node, return
11672 a pointer to the (string) tag name for the given type, or zero if the type
11673 was declared without a tag. */
11675 static const char *
11676 type_tag (const_tree type)
11678 const char *name = 0;
11680 if (TYPE_NAME (type) != 0)
11682 tree t = 0;
11684 /* Find the IDENTIFIER_NODE for the type name. */
11685 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11686 t = TYPE_NAME (type);
11688 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11689 a TYPE_DECL node, regardless of whether or not a `typedef' was
11690 involved. */
11691 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11692 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11694 /* We want to be extra verbose. Don't call dwarf_name if
11695 DECL_NAME isn't set. The default hook for decl_printable_name
11696 doesn't like that, and in this context it's correct to return
11697 0, instead of "<anonymous>" or the like. */
11698 if (DECL_NAME (TYPE_NAME (type)))
11699 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
11702 /* Now get the name as a string, or invent one. */
11703 if (!name && t != 0)
11704 name = IDENTIFIER_POINTER (t);
11707 return (name == 0 || *name == '\0') ? 0 : name;
11710 /* Return the type associated with a data member, make a special check
11711 for bit field types. */
11713 static inline tree
11714 member_declared_type (const_tree member)
11716 return (DECL_BIT_FIELD_TYPE (member)
11717 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11720 /* Get the decl's label, as described by its RTL. This may be different
11721 from the DECL_NAME name used in the source file. */
11723 #if 0
11724 static const char *
11725 decl_start_label (tree decl)
11727 rtx x;
11728 const char *fnname;
11730 x = DECL_RTL (decl);
11731 gcc_assert (MEM_P (x));
11733 x = XEXP (x, 0);
11734 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11736 fnname = XSTR (x, 0);
11737 return fnname;
11739 #endif
11741 /* These routines generate the internal representation of the DIE's for
11742 the compilation unit. Debugging information is collected by walking
11743 the declaration trees passed in from dwarf2out_decl(). */
11745 static void
11746 gen_array_type_die (tree type, dw_die_ref context_die)
11748 dw_die_ref scope_die = scope_die_for (type, context_die);
11749 dw_die_ref array_die;
11750 tree element_type;
11752 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11753 the inner array type comes before the outer array type. Thus we must
11754 call gen_type_die before we call new_die. See below also. */
11755 #ifdef MIPS_DEBUGGING_INFO
11756 gen_type_die (TREE_TYPE (type), context_die);
11757 #endif
11759 array_die = new_die (DW_TAG_array_type, scope_die, type);
11760 add_name_attribute (array_die, type_tag (type));
11761 equate_type_number_to_die (type, array_die);
11763 if (TREE_CODE (type) == VECTOR_TYPE)
11765 /* The frontend feeds us a representation for the vector as a struct
11766 containing an array. Pull out the array type. */
11767 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11768 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11771 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
11772 if (is_fortran ()
11773 && TREE_CODE (type) == ARRAY_TYPE
11774 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
11775 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
11777 #if 0
11778 /* We default the array ordering. SDB will probably do
11779 the right things even if DW_AT_ordering is not present. It's not even
11780 an issue until we start to get into multidimensional arrays anyway. If
11781 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11782 then we'll have to put the DW_AT_ordering attribute back in. (But if
11783 and when we find out that we need to put these in, we will only do so
11784 for multidimensional arrays. */
11785 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11786 #endif
11788 #ifdef MIPS_DEBUGGING_INFO
11789 /* The SGI compilers handle arrays of unknown bound by setting
11790 AT_declaration and not emitting any subrange DIEs. */
11791 if (! TYPE_DOMAIN (type))
11792 add_AT_flag (array_die, DW_AT_declaration, 1);
11793 else
11794 #endif
11795 add_subscript_info (array_die, type);
11797 /* Add representation of the type of the elements of this array type. */
11798 element_type = TREE_TYPE (type);
11800 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11801 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11802 We work around this by disabling this feature. See also
11803 add_subscript_info. */
11804 #ifndef MIPS_DEBUGGING_INFO
11805 while (TREE_CODE (element_type) == ARRAY_TYPE)
11806 element_type = TREE_TYPE (element_type);
11808 gen_type_die (element_type, context_die);
11809 #endif
11811 add_type_attribute (array_die, element_type, 0, 0, context_die);
11813 if (get_AT (array_die, DW_AT_name))
11814 add_pubtype (type, array_die);
11817 static dw_loc_descr_ref
11818 descr_info_loc (tree val, tree base_decl)
11820 HOST_WIDE_INT size;
11821 dw_loc_descr_ref loc, loc2;
11822 enum dwarf_location_atom op;
11824 if (val == base_decl)
11825 return new_loc_descr (DW_OP_push_object_address, 0, 0);
11827 switch (TREE_CODE (val))
11829 CASE_CONVERT:
11830 return descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11831 case INTEGER_CST:
11832 if (host_integerp (val, 0))
11833 return int_loc_descriptor (tree_low_cst (val, 0));
11834 break;
11835 case INDIRECT_REF:
11836 size = int_size_in_bytes (TREE_TYPE (val));
11837 if (size < 0)
11838 break;
11839 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11840 if (!loc)
11841 break;
11842 if (size == DWARF2_ADDR_SIZE)
11843 add_loc_descr (&loc, new_loc_descr (DW_OP_deref, 0, 0));
11844 else
11845 add_loc_descr (&loc, new_loc_descr (DW_OP_deref_size, size, 0));
11846 return loc;
11847 case POINTER_PLUS_EXPR:
11848 case PLUS_EXPR:
11849 if (host_integerp (TREE_OPERAND (val, 1), 1)
11850 && (unsigned HOST_WIDE_INT) tree_low_cst (TREE_OPERAND (val, 1), 1)
11851 < 16384)
11853 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11854 if (!loc)
11855 break;
11856 add_loc_descr (&loc,
11857 new_loc_descr (DW_OP_plus_uconst,
11858 tree_low_cst (TREE_OPERAND (val, 1),
11859 1), 0));
11861 else
11863 op = DW_OP_plus;
11864 do_binop:
11865 loc = descr_info_loc (TREE_OPERAND (val, 0), base_decl);
11866 if (!loc)
11867 break;
11868 loc2 = descr_info_loc (TREE_OPERAND (val, 1), base_decl);
11869 if (!loc2)
11870 break;
11871 add_loc_descr (&loc, loc2);
11872 add_loc_descr (&loc2, new_loc_descr (op, 0, 0));
11874 return loc;
11875 case MINUS_EXPR:
11876 op = DW_OP_minus;
11877 goto do_binop;
11878 case MULT_EXPR:
11879 op = DW_OP_mul;
11880 goto do_binop;
11881 case EQ_EXPR:
11882 op = DW_OP_eq;
11883 goto do_binop;
11884 case NE_EXPR:
11885 op = DW_OP_ne;
11886 goto do_binop;
11887 default:
11888 break;
11890 return NULL;
11893 static void
11894 add_descr_info_field (dw_die_ref die, enum dwarf_attribute attr,
11895 tree val, tree base_decl)
11897 dw_loc_descr_ref loc;
11899 if (host_integerp (val, 0))
11901 add_AT_unsigned (die, attr, tree_low_cst (val, 0));
11902 return;
11905 loc = descr_info_loc (val, base_decl);
11906 if (!loc)
11907 return;
11909 add_AT_loc (die, attr, loc);
11912 /* This routine generates DIE for array with hidden descriptor, details
11913 are filled into *info by a langhook. */
11915 static void
11916 gen_descr_array_type_die (tree type, struct array_descr_info *info,
11917 dw_die_ref context_die)
11919 dw_die_ref scope_die = scope_die_for (type, context_die);
11920 dw_die_ref array_die;
11921 int dim;
11923 array_die = new_die (DW_TAG_array_type, scope_die, type);
11924 add_name_attribute (array_die, type_tag (type));
11925 equate_type_number_to_die (type, array_die);
11927 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
11928 if (is_fortran ()
11929 && info->ndimensions >= 2)
11930 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
11932 if (info->data_location)
11933 add_descr_info_field (array_die, DW_AT_data_location, info->data_location,
11934 info->base_decl);
11935 if (info->associated)
11936 add_descr_info_field (array_die, DW_AT_associated, info->associated,
11937 info->base_decl);
11938 if (info->allocated)
11939 add_descr_info_field (array_die, DW_AT_allocated, info->allocated,
11940 info->base_decl);
11942 for (dim = 0; dim < info->ndimensions; dim++)
11944 dw_die_ref subrange_die
11945 = new_die (DW_TAG_subrange_type, array_die, NULL);
11947 if (info->dimen[dim].lower_bound)
11949 /* If it is the default value, omit it. */
11950 if ((is_c_family () || is_java ())
11951 && integer_zerop (info->dimen[dim].lower_bound))
11953 else if (is_fortran ()
11954 && integer_onep (info->dimen[dim].lower_bound))
11956 else
11957 add_descr_info_field (subrange_die, DW_AT_lower_bound,
11958 info->dimen[dim].lower_bound,
11959 info->base_decl);
11961 if (info->dimen[dim].upper_bound)
11962 add_descr_info_field (subrange_die, DW_AT_upper_bound,
11963 info->dimen[dim].upper_bound,
11964 info->base_decl);
11965 if (info->dimen[dim].stride)
11966 add_descr_info_field (subrange_die, DW_AT_byte_stride,
11967 info->dimen[dim].stride,
11968 info->base_decl);
11971 gen_type_die (info->element_type, context_die);
11972 add_type_attribute (array_die, info->element_type, 0, 0, context_die);
11974 if (get_AT (array_die, DW_AT_name))
11975 add_pubtype (type, array_die);
11978 #if 0
11979 static void
11980 gen_entry_point_die (tree decl, dw_die_ref context_die)
11982 tree origin = decl_ultimate_origin (decl);
11983 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11985 if (origin != NULL)
11986 add_abstract_origin_attribute (decl_die, origin);
11987 else
11989 add_name_and_src_coords_attributes (decl_die, decl);
11990 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11991 0, 0, context_die);
11994 if (DECL_ABSTRACT (decl))
11995 equate_decl_number_to_die (decl, decl_die);
11996 else
11997 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11999 #endif
12001 /* Walk through the list of incomplete types again, trying once more to
12002 emit full debugging info for them. */
12004 static void
12005 retry_incomplete_types (void)
12007 int i;
12009 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
12010 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
12013 /* Generate a DIE to represent an inlined instance of an enumeration type. */
12015 static void
12016 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
12018 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
12020 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
12021 be incomplete and such types are not marked. */
12022 add_abstract_origin_attribute (type_die, type);
12025 /* Determine what tag to use for a record type. */
12027 static enum dwarf_tag
12028 record_type_tag (tree type)
12030 if (! lang_hooks.types.classify_record)
12031 return DW_TAG_structure_type;
12033 switch (lang_hooks.types.classify_record (type))
12035 case RECORD_IS_STRUCT:
12036 return DW_TAG_structure_type;
12038 case RECORD_IS_CLASS:
12039 return DW_TAG_class_type;
12041 case RECORD_IS_INTERFACE:
12042 return DW_TAG_interface_type;
12044 default:
12045 gcc_unreachable ();
12049 /* Generate a DIE to represent an inlined instance of a structure type. */
12051 static void
12052 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
12054 dw_die_ref type_die = new_die (record_type_tag (type), context_die, type);
12056 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
12057 be incomplete and such types are not marked. */
12058 add_abstract_origin_attribute (type_die, type);
12061 /* Generate a DIE to represent an inlined instance of a union type. */
12063 static void
12064 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
12066 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
12068 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
12069 be incomplete and such types are not marked. */
12070 add_abstract_origin_attribute (type_die, type);
12073 /* Generate a DIE to represent an enumeration type. Note that these DIEs
12074 include all of the information about the enumeration values also. Each
12075 enumerated type name/value is listed as a child of the enumerated type
12076 DIE. */
12078 static dw_die_ref
12079 gen_enumeration_type_die (tree type, dw_die_ref context_die)
12081 dw_die_ref type_die = lookup_type_die (type);
12083 if (type_die == NULL)
12085 type_die = new_die (DW_TAG_enumeration_type,
12086 scope_die_for (type, context_die), type);
12087 equate_type_number_to_die (type, type_die);
12088 add_name_attribute (type_die, type_tag (type));
12090 else if (! TYPE_SIZE (type))
12091 return type_die;
12092 else
12093 remove_AT (type_die, DW_AT_declaration);
12095 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
12096 given enum type is incomplete, do not generate the DW_AT_byte_size
12097 attribute or the DW_AT_element_list attribute. */
12098 if (TYPE_SIZE (type))
12100 tree link;
12102 TREE_ASM_WRITTEN (type) = 1;
12103 add_byte_size_attribute (type_die, type);
12104 if (TYPE_STUB_DECL (type) != NULL_TREE)
12105 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12107 /* If the first reference to this type was as the return type of an
12108 inline function, then it may not have a parent. Fix this now. */
12109 if (type_die->die_parent == NULL)
12110 add_child_die (scope_die_for (type, context_die), type_die);
12112 for (link = TYPE_VALUES (type);
12113 link != NULL; link = TREE_CHAIN (link))
12115 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
12116 tree value = TREE_VALUE (link);
12118 add_name_attribute (enum_die,
12119 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
12121 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
12122 /* DWARF2 does not provide a way of indicating whether or
12123 not enumeration constants are signed or unsigned. GDB
12124 always assumes the values are signed, so we output all
12125 values as if they were signed. That means that
12126 enumeration constants with very large unsigned values
12127 will appear to have negative values in the debugger. */
12128 add_AT_int (enum_die, DW_AT_const_value,
12129 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
12132 else
12133 add_AT_flag (type_die, DW_AT_declaration, 1);
12135 if (get_AT (type_die, DW_AT_name))
12136 add_pubtype (type, type_die);
12138 return type_die;
12141 /* Generate a DIE to represent either a real live formal parameter decl or to
12142 represent just the type of some formal parameter position in some function
12143 type.
12145 Note that this routine is a bit unusual because its argument may be a
12146 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
12147 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
12148 node. If it's the former then this function is being called to output a
12149 DIE to represent a formal parameter object (or some inlining thereof). If
12150 it's the latter, then this function is only being called to output a
12151 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
12152 argument type of some subprogram type. */
12154 static dw_die_ref
12155 gen_formal_parameter_die (tree node, dw_die_ref context_die)
12157 dw_die_ref parm_die
12158 = new_die (DW_TAG_formal_parameter, context_die, node);
12159 tree origin;
12161 switch (TREE_CODE_CLASS (TREE_CODE (node)))
12163 case tcc_declaration:
12164 origin = decl_ultimate_origin (node);
12165 if (origin != NULL)
12166 add_abstract_origin_attribute (parm_die, origin);
12167 else
12169 tree type = TREE_TYPE (node);
12170 add_name_and_src_coords_attributes (parm_die, node);
12171 if (DECL_BY_REFERENCE (node))
12172 type = TREE_TYPE (type);
12173 add_type_attribute (parm_die, type,
12174 TREE_READONLY (node),
12175 TREE_THIS_VOLATILE (node),
12176 context_die);
12177 if (DECL_ARTIFICIAL (node))
12178 add_AT_flag (parm_die, DW_AT_artificial, 1);
12181 equate_decl_number_to_die (node, parm_die);
12182 if (! DECL_ABSTRACT (node))
12183 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
12185 break;
12187 case tcc_type:
12188 /* We were called with some kind of a ..._TYPE node. */
12189 add_type_attribute (parm_die, node, 0, 0, context_die);
12190 break;
12192 default:
12193 gcc_unreachable ();
12196 return parm_die;
12199 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
12200 at the end of an (ANSI prototyped) formal parameters list. */
12202 static void
12203 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
12205 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
12208 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
12209 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
12210 parameters as specified in some function type specification (except for
12211 those which appear as part of a function *definition*). */
12213 static void
12214 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
12216 tree link;
12217 tree formal_type = NULL;
12218 tree first_parm_type;
12219 tree arg;
12221 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
12223 arg = DECL_ARGUMENTS (function_or_method_type);
12224 function_or_method_type = TREE_TYPE (function_or_method_type);
12226 else
12227 arg = NULL_TREE;
12229 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
12231 /* Make our first pass over the list of formal parameter types and output a
12232 DW_TAG_formal_parameter DIE for each one. */
12233 for (link = first_parm_type; link; )
12235 dw_die_ref parm_die;
12237 formal_type = TREE_VALUE (link);
12238 if (formal_type == void_type_node)
12239 break;
12241 /* Output a (nameless) DIE to represent the formal parameter itself. */
12242 parm_die = gen_formal_parameter_die (formal_type, context_die);
12243 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
12244 && link == first_parm_type)
12245 || (arg && DECL_ARTIFICIAL (arg)))
12246 add_AT_flag (parm_die, DW_AT_artificial, 1);
12248 link = TREE_CHAIN (link);
12249 if (arg)
12250 arg = TREE_CHAIN (arg);
12253 /* If this function type has an ellipsis, add a
12254 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
12255 if (formal_type != void_type_node)
12256 gen_unspecified_parameters_die (function_or_method_type, context_die);
12258 /* Make our second (and final) pass over the list of formal parameter types
12259 and output DIEs to represent those types (as necessary). */
12260 for (link = TYPE_ARG_TYPES (function_or_method_type);
12261 link && TREE_VALUE (link);
12262 link = TREE_CHAIN (link))
12263 gen_type_die (TREE_VALUE (link), context_die);
12266 /* We want to generate the DIE for TYPE so that we can generate the
12267 die for MEMBER, which has been defined; we will need to refer back
12268 to the member declaration nested within TYPE. If we're trying to
12269 generate minimal debug info for TYPE, processing TYPE won't do the
12270 trick; we need to attach the member declaration by hand. */
12272 static void
12273 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
12275 gen_type_die (type, context_die);
12277 /* If we're trying to avoid duplicate debug info, we may not have
12278 emitted the member decl for this function. Emit it now. */
12279 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
12280 && ! lookup_decl_die (member))
12282 dw_die_ref type_die;
12283 gcc_assert (!decl_ultimate_origin (member));
12285 push_decl_scope (type);
12286 type_die = lookup_type_die (type);
12287 if (TREE_CODE (member) == FUNCTION_DECL)
12288 gen_subprogram_die (member, type_die);
12289 else if (TREE_CODE (member) == FIELD_DECL)
12291 /* Ignore the nameless fields that are used to skip bits but handle
12292 C++ anonymous unions and structs. */
12293 if (DECL_NAME (member) != NULL_TREE
12294 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
12295 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
12297 gen_type_die (member_declared_type (member), type_die);
12298 gen_field_die (member, type_die);
12301 else
12302 gen_variable_die (member, type_die);
12304 pop_decl_scope ();
12308 /* Generate the DWARF2 info for the "abstract" instance of a function which we
12309 may later generate inlined and/or out-of-line instances of. */
12311 static void
12312 dwarf2out_abstract_function (tree decl)
12314 dw_die_ref old_die;
12315 tree save_fn;
12316 tree context;
12317 int was_abstract = DECL_ABSTRACT (decl);
12319 /* Make sure we have the actual abstract inline, not a clone. */
12320 decl = DECL_ORIGIN (decl);
12322 old_die = lookup_decl_die (decl);
12323 if (old_die && get_AT (old_die, DW_AT_inline))
12324 /* We've already generated the abstract instance. */
12325 return;
12327 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
12328 we don't get confused by DECL_ABSTRACT. */
12329 if (debug_info_level > DINFO_LEVEL_TERSE)
12331 context = decl_class_context (decl);
12332 if (context)
12333 gen_type_die_for_member
12334 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
12337 /* Pretend we've just finished compiling this function. */
12338 save_fn = current_function_decl;
12339 current_function_decl = decl;
12340 push_cfun (DECL_STRUCT_FUNCTION (decl));
12342 set_decl_abstract_flags (decl, 1);
12343 dwarf2out_decl (decl);
12344 if (! was_abstract)
12345 set_decl_abstract_flags (decl, 0);
12347 current_function_decl = save_fn;
12348 pop_cfun ();
12351 /* Helper function of premark_used_types() which gets called through
12352 htab_traverse_resize().
12354 Marks the DIE of a given type in *SLOT as perennial, so it never gets
12355 marked as unused by prune_unused_types. */
12356 static int
12357 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
12359 tree type;
12360 dw_die_ref die;
12362 type = *slot;
12363 die = lookup_type_die (type);
12364 if (die != NULL)
12365 die->die_perennial_p = 1;
12366 return 1;
12369 /* Mark all members of used_types_hash as perennial. */
12370 static void
12371 premark_used_types (void)
12373 if (cfun && cfun->used_types_hash)
12374 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
12377 /* Generate a DIE to represent a declared function (either file-scope or
12378 block-local). */
12380 static void
12381 gen_subprogram_die (tree decl, dw_die_ref context_die)
12383 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
12384 tree origin = decl_ultimate_origin (decl);
12385 dw_die_ref subr_die;
12386 tree fn_arg_types;
12387 tree outer_scope;
12388 dw_die_ref old_die = lookup_decl_die (decl);
12389 int declaration = (current_function_decl != decl
12390 || class_or_namespace_scope_p (context_die));
12392 premark_used_types ();
12394 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
12395 started to generate the abstract instance of an inline, decided to output
12396 its containing class, and proceeded to emit the declaration of the inline
12397 from the member list for the class. If so, DECLARATION takes priority;
12398 we'll get back to the abstract instance when done with the class. */
12400 /* The class-scope declaration DIE must be the primary DIE. */
12401 if (origin && declaration && class_or_namespace_scope_p (context_die))
12403 origin = NULL;
12404 gcc_assert (!old_die);
12407 /* Now that the C++ front end lazily declares artificial member fns, we
12408 might need to retrofit the declaration into its class. */
12409 if (!declaration && !origin && !old_die
12410 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
12411 && !class_or_namespace_scope_p (context_die)
12412 && debug_info_level > DINFO_LEVEL_TERSE)
12413 old_die = force_decl_die (decl);
12415 if (origin != NULL)
12417 gcc_assert (!declaration || local_scope_p (context_die));
12419 /* Fixup die_parent for the abstract instance of a nested
12420 inline function. */
12421 if (old_die && old_die->die_parent == NULL)
12422 add_child_die (context_die, old_die);
12424 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12425 add_abstract_origin_attribute (subr_die, origin);
12427 else if (old_die)
12429 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12430 struct dwarf_file_data * file_index = lookup_filename (s.file);
12432 if (!get_AT_flag (old_die, DW_AT_declaration)
12433 /* We can have a normal definition following an inline one in the
12434 case of redefinition of GNU C extern inlines.
12435 It seems reasonable to use AT_specification in this case. */
12436 && !get_AT (old_die, DW_AT_inline))
12438 /* Detect and ignore this case, where we are trying to output
12439 something we have already output. */
12440 return;
12443 /* If the definition comes from the same place as the declaration,
12444 maybe use the old DIE. We always want the DIE for this function
12445 that has the *_pc attributes to be under comp_unit_die so the
12446 debugger can find it. We also need to do this for abstract
12447 instances of inlines, since the spec requires the out-of-line copy
12448 to have the same parent. For local class methods, this doesn't
12449 apply; we just use the old DIE. */
12450 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
12451 && (DECL_ARTIFICIAL (decl)
12452 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
12453 && (get_AT_unsigned (old_die, DW_AT_decl_line)
12454 == (unsigned) s.line))))
12456 subr_die = old_die;
12458 /* Clear out the declaration attribute and the formal parameters.
12459 Do not remove all children, because it is possible that this
12460 declaration die was forced using force_decl_die(). In such
12461 cases die that forced declaration die (e.g. TAG_imported_module)
12462 is one of the children that we do not want to remove. */
12463 remove_AT (subr_die, DW_AT_declaration);
12464 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
12466 else
12468 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12469 add_AT_specification (subr_die, old_die);
12470 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12471 add_AT_file (subr_die, DW_AT_decl_file, file_index);
12472 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12473 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
12476 else
12478 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
12480 if (TREE_PUBLIC (decl))
12481 add_AT_flag (subr_die, DW_AT_external, 1);
12483 add_name_and_src_coords_attributes (subr_die, decl);
12484 if (debug_info_level > DINFO_LEVEL_TERSE)
12486 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
12487 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
12488 0, 0, context_die);
12491 add_pure_or_virtual_attribute (subr_die, decl);
12492 if (DECL_ARTIFICIAL (decl))
12493 add_AT_flag (subr_die, DW_AT_artificial, 1);
12495 if (TREE_PROTECTED (decl))
12496 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
12497 else if (TREE_PRIVATE (decl))
12498 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
12501 if (declaration)
12503 if (!old_die || !get_AT (old_die, DW_AT_inline))
12505 add_AT_flag (subr_die, DW_AT_declaration, 1);
12507 /* The first time we see a member function, it is in the context of
12508 the class to which it belongs. We make sure of this by emitting
12509 the class first. The next time is the definition, which is
12510 handled above. The two may come from the same source text.
12512 Note that force_decl_die() forces function declaration die. It is
12513 later reused to represent definition. */
12514 equate_decl_number_to_die (decl, subr_die);
12517 else if (DECL_ABSTRACT (decl))
12519 if (DECL_DECLARED_INLINE_P (decl))
12521 if (cgraph_function_possibly_inlined_p (decl))
12522 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
12523 else
12524 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
12526 else
12528 if (cgraph_function_possibly_inlined_p (decl))
12529 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
12530 else
12531 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
12534 if (DECL_DECLARED_INLINE_P (decl)
12535 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
12536 add_AT_flag (subr_die, DW_AT_artificial, 1);
12538 equate_decl_number_to_die (decl, subr_die);
12540 else if (!DECL_EXTERNAL (decl))
12542 HOST_WIDE_INT cfa_fb_offset;
12544 if (!old_die || !get_AT (old_die, DW_AT_inline))
12545 equate_decl_number_to_die (decl, subr_die);
12547 if (!flag_reorder_blocks_and_partition)
12549 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
12550 current_function_funcdef_no);
12551 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
12552 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
12553 current_function_funcdef_no);
12554 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
12556 add_pubname (decl, subr_die);
12557 add_arange (decl, subr_die);
12559 else
12560 { /* Do nothing for now; maybe need to duplicate die, one for
12561 hot section and ond for cold section, then use the hot/cold
12562 section begin/end labels to generate the aranges... */
12564 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
12565 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
12566 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
12567 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
12569 add_pubname (decl, subr_die);
12570 add_arange (decl, subr_die);
12571 add_arange (decl, subr_die);
12575 #ifdef MIPS_DEBUGGING_INFO
12576 /* Add a reference to the FDE for this routine. */
12577 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
12578 #endif
12580 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
12582 /* We define the "frame base" as the function's CFA. This is more
12583 convenient for several reasons: (1) It's stable across the prologue
12584 and epilogue, which makes it better than just a frame pointer,
12585 (2) With dwarf3, there exists a one-byte encoding that allows us
12586 to reference the .debug_frame data by proxy, but failing that,
12587 (3) We can at least reuse the code inspection and interpretation
12588 code that determines the CFA position at various points in the
12589 function. */
12590 /* ??? Use some command-line or configury switch to enable the use
12591 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
12592 consumers that understand it; fall back to "pure" dwarf2 and
12593 convert the CFA data into a location list. */
12595 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
12596 if (list->dw_loc_next)
12597 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
12598 else
12599 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
12602 /* Compute a displacement from the "steady-state frame pointer" to
12603 the CFA. The former is what all stack slots and argument slots
12604 will reference in the rtl; the later is what we've told the
12605 debugger about. We'll need to adjust all frame_base references
12606 by this displacement. */
12607 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
12609 if (cfun->static_chain_decl)
12610 add_AT_location_description (subr_die, DW_AT_static_link,
12611 loc_descriptor_from_tree (cfun->static_chain_decl));
12614 /* Now output descriptions of the arguments for this function. This gets
12615 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
12616 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
12617 `...' at the end of the formal parameter list. In order to find out if
12618 there was a trailing ellipsis or not, we must instead look at the type
12619 associated with the FUNCTION_DECL. This will be a node of type
12620 FUNCTION_TYPE. If the chain of type nodes hanging off of this
12621 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
12622 an ellipsis at the end. */
12624 /* In the case where we are describing a mere function declaration, all we
12625 need to do here (and all we *can* do here) is to describe the *types* of
12626 its formal parameters. */
12627 if (debug_info_level <= DINFO_LEVEL_TERSE)
12629 else if (declaration)
12630 gen_formal_types_die (decl, subr_die);
12631 else
12633 /* Generate DIEs to represent all known formal parameters. */
12634 tree arg_decls = DECL_ARGUMENTS (decl);
12635 tree parm;
12637 /* When generating DIEs, generate the unspecified_parameters DIE
12638 instead if we come across the arg "__builtin_va_alist" */
12639 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
12640 if (TREE_CODE (parm) == PARM_DECL)
12642 if (DECL_NAME (parm)
12643 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
12644 "__builtin_va_alist"))
12645 gen_unspecified_parameters_die (parm, subr_die);
12646 else
12647 gen_decl_die (parm, subr_die);
12650 /* Decide whether we need an unspecified_parameters DIE at the end.
12651 There are 2 more cases to do this for: 1) the ansi ... declaration -
12652 this is detectable when the end of the arg list is not a
12653 void_type_node 2) an unprototyped function declaration (not a
12654 definition). This just means that we have no info about the
12655 parameters at all. */
12656 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
12657 if (fn_arg_types != NULL)
12659 /* This is the prototyped case, check for.... */
12660 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
12661 gen_unspecified_parameters_die (decl, subr_die);
12663 else if (DECL_INITIAL (decl) == NULL_TREE)
12664 gen_unspecified_parameters_die (decl, subr_die);
12667 /* Output Dwarf info for all of the stuff within the body of the function
12668 (if it has one - it may be just a declaration). */
12669 outer_scope = DECL_INITIAL (decl);
12671 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
12672 a function. This BLOCK actually represents the outermost binding contour
12673 for the function, i.e. the contour in which the function's formal
12674 parameters and labels get declared. Curiously, it appears that the front
12675 end doesn't actually put the PARM_DECL nodes for the current function onto
12676 the BLOCK_VARS list for this outer scope, but are strung off of the
12677 DECL_ARGUMENTS list for the function instead.
12679 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
12680 the LABEL_DECL nodes for the function however, and we output DWARF info
12681 for those in decls_for_scope. Just within the `outer_scope' there will be
12682 a BLOCK node representing the function's outermost pair of curly braces,
12683 and any blocks used for the base and member initializers of a C++
12684 constructor function. */
12685 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
12687 /* Emit a DW_TAG_variable DIE for a named return value. */
12688 if (DECL_NAME (DECL_RESULT (decl)))
12689 gen_decl_die (DECL_RESULT (decl), subr_die);
12691 current_function_has_inlines = 0;
12692 decls_for_scope (outer_scope, subr_die, 0);
12694 #if 0 && defined (MIPS_DEBUGGING_INFO)
12695 if (current_function_has_inlines)
12697 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
12698 if (! comp_unit_has_inlines)
12700 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
12701 comp_unit_has_inlines = 1;
12704 #endif
12706 /* Add the calling convention attribute if requested. */
12707 add_calling_convention_attribute (subr_die, decl);
12711 /* Generate a DIE to represent a declared data object. */
12713 static void
12714 gen_variable_die (tree decl, dw_die_ref context_die)
12716 HOST_WIDE_INT off;
12717 tree com_decl;
12718 dw_die_ref var_die;
12719 tree origin = decl_ultimate_origin (decl);
12720 dw_die_ref old_die = lookup_decl_die (decl);
12721 int declaration = (DECL_EXTERNAL (decl)
12722 /* If DECL is COMDAT and has not actually been
12723 emitted, we cannot take its address; there
12724 might end up being no definition anywhere in
12725 the program. For example, consider the C++
12726 test case:
12728 template <class T>
12729 struct S { static const int i = 7; };
12731 template <class T>
12732 const int S<T>::i;
12734 int f() { return S<int>::i; }
12736 Here, S<int>::i is not DECL_EXTERNAL, but no
12737 definition is required, so the compiler will
12738 not emit a definition. */
12739 || (TREE_CODE (decl) == VAR_DECL
12740 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12741 || class_or_namespace_scope_p (context_die));
12743 com_decl = fortran_common (decl, &off);
12745 /* Symbol in common gets emitted as a child of the common block, in the form
12746 of a data member.
12748 ??? This creates a new common block die for every common block symbol.
12749 Better to share same common block die for all symbols in that block. */
12750 if (com_decl)
12752 tree field;
12753 dw_die_ref com_die;
12754 const char *cnam = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
12755 dw_loc_descr_ref loc = loc_descriptor_from_tree (com_decl);
12757 field = TREE_OPERAND (DECL_VALUE_EXPR (decl), 0);
12758 var_die = new_die (DW_TAG_common_block, context_die, decl);
12759 add_name_and_src_coords_attributes (var_die, field);
12760 add_AT_flag (var_die, DW_AT_external, 1);
12761 add_AT_loc (var_die, DW_AT_location, loc);
12762 com_die = new_die (DW_TAG_member, var_die, decl);
12763 add_name_and_src_coords_attributes (com_die, decl);
12764 add_type_attribute (com_die, TREE_TYPE (decl), TREE_READONLY (decl),
12765 TREE_THIS_VOLATILE (decl), context_die);
12766 add_AT_loc (com_die, DW_AT_data_member_location,
12767 int_loc_descriptor (off));
12768 add_pubname_string (cnam, var_die); /* ??? needed? */
12769 return;
12772 var_die = new_die (DW_TAG_variable, context_die, decl);
12774 if (origin != NULL)
12775 add_abstract_origin_attribute (var_die, origin);
12777 /* Loop unrolling can create multiple blocks that refer to the same
12778 static variable, so we must test for the DW_AT_declaration flag.
12780 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12781 copy decls and set the DECL_ABSTRACT flag on them instead of
12782 sharing them.
12784 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12786 ??? The declare_in_namespace support causes us to get two DIEs for one
12787 variable, both of which are declarations. We want to avoid considering
12788 one to be a specification, so we must test that this DIE is not a
12789 declaration. */
12790 else if (old_die && TREE_STATIC (decl) && ! declaration
12791 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12793 /* This is a definition of a C++ class level static. */
12794 add_AT_specification (var_die, old_die);
12795 if (DECL_NAME (decl))
12797 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12798 struct dwarf_file_data * file_index = lookup_filename (s.file);
12800 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12801 add_AT_file (var_die, DW_AT_decl_file, file_index);
12803 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12804 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12807 else
12809 tree type = TREE_TYPE (decl);
12810 if ((TREE_CODE (decl) == PARM_DECL
12811 || TREE_CODE (decl) == RESULT_DECL)
12812 && DECL_BY_REFERENCE (decl))
12813 type = TREE_TYPE (type);
12815 add_name_and_src_coords_attributes (var_die, decl);
12816 add_type_attribute (var_die, type, TREE_READONLY (decl),
12817 TREE_THIS_VOLATILE (decl), context_die);
12819 if (TREE_PUBLIC (decl))
12820 add_AT_flag (var_die, DW_AT_external, 1);
12822 if (DECL_ARTIFICIAL (decl))
12823 add_AT_flag (var_die, DW_AT_artificial, 1);
12825 if (TREE_PROTECTED (decl))
12826 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12827 else if (TREE_PRIVATE (decl))
12828 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12831 if (declaration)
12832 add_AT_flag (var_die, DW_AT_declaration, 1);
12834 if (DECL_ABSTRACT (decl) || declaration)
12835 equate_decl_number_to_die (decl, var_die);
12837 if (! declaration && ! DECL_ABSTRACT (decl))
12839 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12840 add_pubname (decl, var_die);
12842 else
12843 tree_add_const_value_attribute (var_die, decl);
12846 /* Generate a DIE to represent a label identifier. */
12848 static void
12849 gen_label_die (tree decl, dw_die_ref context_die)
12851 tree origin = decl_ultimate_origin (decl);
12852 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12853 rtx insn;
12854 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12856 if (origin != NULL)
12857 add_abstract_origin_attribute (lbl_die, origin);
12858 else
12859 add_name_and_src_coords_attributes (lbl_die, decl);
12861 if (DECL_ABSTRACT (decl))
12862 equate_decl_number_to_die (decl, lbl_die);
12863 else
12865 insn = DECL_RTL_IF_SET (decl);
12867 /* Deleted labels are programmer specified labels which have been
12868 eliminated because of various optimizations. We still emit them
12869 here so that it is possible to put breakpoints on them. */
12870 if (insn
12871 && (LABEL_P (insn)
12872 || ((NOTE_P (insn)
12873 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
12875 /* When optimization is enabled (via -O) some parts of the compiler
12876 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12877 represent source-level labels which were explicitly declared by
12878 the user. This really shouldn't be happening though, so catch
12879 it if it ever does happen. */
12880 gcc_assert (!INSN_DELETED_P (insn));
12882 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12883 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12888 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12889 attributes to the DIE for a block STMT, to describe where the inlined
12890 function was called from. This is similar to add_src_coords_attributes. */
12892 static inline void
12893 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12895 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12897 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12898 add_AT_unsigned (die, DW_AT_call_line, s.line);
12902 /* If STMT's abstract origin is a function declaration and STMT's
12903 first subblock's abstract origin is the function's outermost block,
12904 then we're looking at the main entry point. */
12905 static bool
12906 is_inlined_entry_point (const_tree stmt)
12908 tree decl, block;
12910 if (!stmt || TREE_CODE (stmt) != BLOCK)
12911 return false;
12913 decl = block_ultimate_origin (stmt);
12915 if (!decl || TREE_CODE (decl) != FUNCTION_DECL)
12916 return false;
12918 block = BLOCK_SUBBLOCKS (stmt);
12920 if (block)
12922 if (TREE_CODE (block) != BLOCK)
12923 return false;
12925 block = block_ultimate_origin (block);
12928 return block == DECL_INITIAL (decl);
12931 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12932 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12934 static inline void
12935 add_high_low_attributes (tree stmt, dw_die_ref die)
12937 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12939 if (BLOCK_FRAGMENT_CHAIN (stmt))
12941 tree chain;
12943 if (is_inlined_entry_point (stmt))
12945 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12946 BLOCK_NUMBER (stmt));
12947 add_AT_lbl_id (die, DW_AT_entry_pc, label);
12950 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12952 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12955 add_ranges (chain);
12956 chain = BLOCK_FRAGMENT_CHAIN (chain);
12958 while (chain);
12959 add_ranges (NULL);
12961 else
12963 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12964 BLOCK_NUMBER (stmt));
12965 add_AT_lbl_id (die, DW_AT_low_pc, label);
12966 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12967 BLOCK_NUMBER (stmt));
12968 add_AT_lbl_id (die, DW_AT_high_pc, label);
12972 /* Generate a DIE for a lexical block. */
12974 static void
12975 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12977 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12979 if (! BLOCK_ABSTRACT (stmt))
12980 add_high_low_attributes (stmt, stmt_die);
12982 decls_for_scope (stmt, stmt_die, depth);
12985 /* Generate a DIE for an inlined subprogram. */
12987 static void
12988 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12990 tree decl = block_ultimate_origin (stmt);
12992 /* Emit info for the abstract instance first, if we haven't yet. We
12993 must emit this even if the block is abstract, otherwise when we
12994 emit the block below (or elsewhere), we may end up trying to emit
12995 a die whose origin die hasn't been emitted, and crashing. */
12996 dwarf2out_abstract_function (decl);
12998 if (! BLOCK_ABSTRACT (stmt))
13000 dw_die_ref subr_die
13001 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
13003 add_abstract_origin_attribute (subr_die, decl);
13004 add_high_low_attributes (stmt, subr_die);
13005 add_call_src_coords_attributes (stmt, subr_die);
13007 decls_for_scope (stmt, subr_die, depth);
13008 current_function_has_inlines = 1;
13010 else
13011 /* We may get here if we're the outer block of function A that was
13012 inlined into function B that was inlined into function C. When
13013 generating debugging info for C, dwarf2out_abstract_function(B)
13014 would mark all inlined blocks as abstract, including this one.
13015 So, we wouldn't (and shouldn't) expect labels to be generated
13016 for this one. Instead, just emit debugging info for
13017 declarations within the block. This is particularly important
13018 in the case of initializers of arguments passed from B to us:
13019 if they're statement expressions containing declarations, we
13020 wouldn't generate dies for their abstract variables, and then,
13021 when generating dies for the real variables, we'd die (pun
13022 intended :-) */
13023 gen_lexical_block_die (stmt, context_die, depth);
13026 /* Generate a DIE for a field in a record, or structure. */
13028 static void
13029 gen_field_die (tree decl, dw_die_ref context_die)
13031 dw_die_ref decl_die;
13033 if (TREE_TYPE (decl) == error_mark_node)
13034 return;
13036 decl_die = new_die (DW_TAG_member, context_die, decl);
13037 add_name_and_src_coords_attributes (decl_die, decl);
13038 add_type_attribute (decl_die, member_declared_type (decl),
13039 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
13040 context_die);
13042 if (DECL_BIT_FIELD_TYPE (decl))
13044 add_byte_size_attribute (decl_die, decl);
13045 add_bit_size_attribute (decl_die, decl);
13046 add_bit_offset_attribute (decl_die, decl);
13049 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
13050 add_data_member_location_attribute (decl_die, decl);
13052 if (DECL_ARTIFICIAL (decl))
13053 add_AT_flag (decl_die, DW_AT_artificial, 1);
13055 if (TREE_PROTECTED (decl))
13056 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
13057 else if (TREE_PRIVATE (decl))
13058 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
13060 /* Equate decl number to die, so that we can look up this decl later on. */
13061 equate_decl_number_to_die (decl, decl_die);
13064 #if 0
13065 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
13066 Use modified_type_die instead.
13067 We keep this code here just in case these types of DIEs may be needed to
13068 represent certain things in other languages (e.g. Pascal) someday. */
13070 static void
13071 gen_pointer_type_die (tree type, dw_die_ref context_die)
13073 dw_die_ref ptr_die
13074 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
13076 equate_type_number_to_die (type, ptr_die);
13077 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
13078 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
13081 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
13082 Use modified_type_die instead.
13083 We keep this code here just in case these types of DIEs may be needed to
13084 represent certain things in other languages (e.g. Pascal) someday. */
13086 static void
13087 gen_reference_type_die (tree type, dw_die_ref context_die)
13089 dw_die_ref ref_die
13090 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
13092 equate_type_number_to_die (type, ref_die);
13093 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
13094 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
13096 #endif
13098 /* Generate a DIE for a pointer to a member type. */
13100 static void
13101 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
13103 dw_die_ref ptr_die
13104 = new_die (DW_TAG_ptr_to_member_type,
13105 scope_die_for (type, context_die), type);
13107 equate_type_number_to_die (type, ptr_die);
13108 add_AT_die_ref (ptr_die, DW_AT_containing_type,
13109 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
13110 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
13113 /* Generate the DIE for the compilation unit. */
13115 static dw_die_ref
13116 gen_compile_unit_die (const char *filename)
13118 dw_die_ref die;
13119 char producer[250];
13120 const char *language_string = lang_hooks.name;
13121 int language;
13123 die = new_die (DW_TAG_compile_unit, NULL, NULL);
13125 if (filename)
13127 add_name_attribute (die, filename);
13128 /* Don't add cwd for <built-in>. */
13129 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
13130 add_comp_dir_attribute (die);
13133 sprintf (producer, "%s %s", language_string, version_string);
13135 #ifdef MIPS_DEBUGGING_INFO
13136 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
13137 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
13138 not appear in the producer string, the debugger reaches the conclusion
13139 that the object file is stripped and has no debugging information.
13140 To get the MIPS/SGI debugger to believe that there is debugging
13141 information in the object file, we add a -g to the producer string. */
13142 if (debug_info_level > DINFO_LEVEL_TERSE)
13143 strcat (producer, " -g");
13144 #endif
13146 add_AT_string (die, DW_AT_producer, producer);
13148 if (strcmp (language_string, "GNU C++") == 0)
13149 language = DW_LANG_C_plus_plus;
13150 else if (strcmp (language_string, "GNU Ada") == 0)
13151 language = DW_LANG_Ada95;
13152 else if (strcmp (language_string, "GNU F77") == 0)
13153 language = DW_LANG_Fortran77;
13154 else if (strcmp (language_string, "GNU Fortran") == 0)
13155 language = DW_LANG_Fortran95;
13156 else if (strcmp (language_string, "GNU Pascal") == 0)
13157 language = DW_LANG_Pascal83;
13158 else if (strcmp (language_string, "GNU Java") == 0)
13159 language = DW_LANG_Java;
13160 else if (strcmp (language_string, "GNU Objective-C") == 0)
13161 language = DW_LANG_ObjC;
13162 else if (strcmp (language_string, "GNU Objective-C++") == 0)
13163 language = DW_LANG_ObjC_plus_plus;
13164 else
13165 language = DW_LANG_C89;
13167 add_AT_unsigned (die, DW_AT_language, language);
13168 return die;
13171 /* Generate the DIE for a base class. */
13173 static void
13174 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
13176 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
13178 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
13179 add_data_member_location_attribute (die, binfo);
13181 if (BINFO_VIRTUAL_P (binfo))
13182 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
13184 if (access == access_public_node)
13185 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
13186 else if (access == access_protected_node)
13187 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
13190 /* Generate a DIE for a class member. */
13192 static void
13193 gen_member_die (tree type, dw_die_ref context_die)
13195 tree member;
13196 tree binfo = TYPE_BINFO (type);
13197 dw_die_ref child;
13199 /* If this is not an incomplete type, output descriptions of each of its
13200 members. Note that as we output the DIEs necessary to represent the
13201 members of this record or union type, we will also be trying to output
13202 DIEs to represent the *types* of those members. However the `type'
13203 function (above) will specifically avoid generating type DIEs for member
13204 types *within* the list of member DIEs for this (containing) type except
13205 for those types (of members) which are explicitly marked as also being
13206 members of this (containing) type themselves. The g++ front- end can
13207 force any given type to be treated as a member of some other (containing)
13208 type by setting the TYPE_CONTEXT of the given (member) type to point to
13209 the TREE node representing the appropriate (containing) type. */
13211 /* First output info about the base classes. */
13212 if (binfo)
13214 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
13215 int i;
13216 tree base;
13218 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
13219 gen_inheritance_die (base,
13220 (accesses ? VEC_index (tree, accesses, i)
13221 : access_public_node), context_die);
13224 /* Now output info about the data members and type members. */
13225 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
13227 /* If we thought we were generating minimal debug info for TYPE
13228 and then changed our minds, some of the member declarations
13229 may have already been defined. Don't define them again, but
13230 do put them in the right order. */
13232 child = lookup_decl_die (member);
13233 if (child)
13234 splice_child_die (context_die, child);
13235 else
13236 gen_decl_die (member, context_die);
13239 /* Now output info about the function members (if any). */
13240 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
13242 /* Don't include clones in the member list. */
13243 if (DECL_ABSTRACT_ORIGIN (member))
13244 continue;
13246 child = lookup_decl_die (member);
13247 if (child)
13248 splice_child_die (context_die, child);
13249 else
13250 gen_decl_die (member, context_die);
13254 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
13255 is set, we pretend that the type was never defined, so we only get the
13256 member DIEs needed by later specification DIEs. */
13258 static void
13259 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
13260 enum debug_info_usage usage)
13262 dw_die_ref type_die = lookup_type_die (type);
13263 dw_die_ref scope_die = 0;
13264 int nested = 0;
13265 int complete = (TYPE_SIZE (type)
13266 && (! TYPE_STUB_DECL (type)
13267 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
13268 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
13269 complete = complete && should_emit_struct_debug (type, usage);
13271 if (type_die && ! complete)
13272 return;
13274 if (TYPE_CONTEXT (type) != NULL_TREE
13275 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
13276 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
13277 nested = 1;
13279 scope_die = scope_die_for (type, context_die);
13281 if (! type_die || (nested && scope_die == comp_unit_die))
13282 /* First occurrence of type or toplevel definition of nested class. */
13284 dw_die_ref old_die = type_die;
13286 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
13287 ? record_type_tag (type) : DW_TAG_union_type,
13288 scope_die, type);
13289 equate_type_number_to_die (type, type_die);
13290 if (old_die)
13291 add_AT_specification (type_die, old_die);
13292 else
13293 add_name_attribute (type_die, type_tag (type));
13295 else
13296 remove_AT (type_die, DW_AT_declaration);
13298 /* If this type has been completed, then give it a byte_size attribute and
13299 then give a list of members. */
13300 if (complete && !ns_decl)
13302 /* Prevent infinite recursion in cases where the type of some member of
13303 this type is expressed in terms of this type itself. */
13304 TREE_ASM_WRITTEN (type) = 1;
13305 add_byte_size_attribute (type_die, type);
13306 if (TYPE_STUB_DECL (type) != NULL_TREE)
13307 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
13309 /* If the first reference to this type was as the return type of an
13310 inline function, then it may not have a parent. Fix this now. */
13311 if (type_die->die_parent == NULL)
13312 add_child_die (scope_die, type_die);
13314 push_decl_scope (type);
13315 gen_member_die (type, type_die);
13316 pop_decl_scope ();
13318 /* GNU extension: Record what type our vtable lives in. */
13319 if (TYPE_VFIELD (type))
13321 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
13323 gen_type_die (vtype, context_die);
13324 add_AT_die_ref (type_die, DW_AT_containing_type,
13325 lookup_type_die (vtype));
13328 else
13330 add_AT_flag (type_die, DW_AT_declaration, 1);
13332 /* We don't need to do this for function-local types. */
13333 if (TYPE_STUB_DECL (type)
13334 && ! decl_function_context (TYPE_STUB_DECL (type)))
13335 VEC_safe_push (tree, gc, incomplete_types, type);
13338 if (get_AT (type_die, DW_AT_name))
13339 add_pubtype (type, type_die);
13342 /* Generate a DIE for a subroutine _type_. */
13344 static void
13345 gen_subroutine_type_die (tree type, dw_die_ref context_die)
13347 tree return_type = TREE_TYPE (type);
13348 dw_die_ref subr_die
13349 = new_die (DW_TAG_subroutine_type,
13350 scope_die_for (type, context_die), type);
13352 equate_type_number_to_die (type, subr_die);
13353 add_prototyped_attribute (subr_die, type);
13354 add_type_attribute (subr_die, return_type, 0, 0, context_die);
13355 gen_formal_types_die (type, subr_die);
13357 if (get_AT (subr_die, DW_AT_name))
13358 add_pubtype (type, subr_die);
13361 /* Generate a DIE for a type definition. */
13363 static void
13364 gen_typedef_die (tree decl, dw_die_ref context_die)
13366 dw_die_ref type_die;
13367 tree origin;
13369 if (TREE_ASM_WRITTEN (decl))
13370 return;
13372 TREE_ASM_WRITTEN (decl) = 1;
13373 type_die = new_die (DW_TAG_typedef, context_die, decl);
13374 origin = decl_ultimate_origin (decl);
13375 if (origin != NULL)
13376 add_abstract_origin_attribute (type_die, origin);
13377 else
13379 tree type;
13381 add_name_and_src_coords_attributes (type_die, decl);
13382 if (DECL_ORIGINAL_TYPE (decl))
13384 type = DECL_ORIGINAL_TYPE (decl);
13386 gcc_assert (type != TREE_TYPE (decl));
13387 equate_type_number_to_die (TREE_TYPE (decl), type_die);
13389 else
13390 type = TREE_TYPE (decl);
13392 add_type_attribute (type_die, type, TREE_READONLY (decl),
13393 TREE_THIS_VOLATILE (decl), context_die);
13396 if (DECL_ABSTRACT (decl))
13397 equate_decl_number_to_die (decl, type_die);
13399 if (get_AT (type_die, DW_AT_name))
13400 add_pubtype (decl, type_die);
13403 /* Generate a type description DIE. */
13405 static void
13406 gen_type_die_with_usage (tree type, dw_die_ref context_die,
13407 enum debug_info_usage usage)
13409 int need_pop;
13410 struct array_descr_info info;
13412 if (type == NULL_TREE || type == error_mark_node)
13413 return;
13415 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
13416 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
13418 if (TREE_ASM_WRITTEN (type))
13419 return;
13421 /* Prevent broken recursion; we can't hand off to the same type. */
13422 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
13424 TREE_ASM_WRITTEN (type) = 1;
13425 gen_decl_die (TYPE_NAME (type), context_die);
13426 return;
13429 /* If this is an array type with hidden descriptor, handle it first. */
13430 if (!TREE_ASM_WRITTEN (type)
13431 && lang_hooks.types.get_array_descr_info
13432 && lang_hooks.types.get_array_descr_info (type, &info))
13434 gen_descr_array_type_die (type, &info, context_die);
13435 TREE_ASM_WRITTEN (type) = 1;
13436 return;
13439 /* We are going to output a DIE to represent the unqualified version
13440 of this type (i.e. without any const or volatile qualifiers) so
13441 get the main variant (i.e. the unqualified version) of this type
13442 now. (Vectors are special because the debugging info is in the
13443 cloned type itself). */
13444 if (TREE_CODE (type) != VECTOR_TYPE)
13445 type = type_main_variant (type);
13447 if (TREE_ASM_WRITTEN (type))
13448 return;
13450 switch (TREE_CODE (type))
13452 case ERROR_MARK:
13453 break;
13455 case POINTER_TYPE:
13456 case REFERENCE_TYPE:
13457 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
13458 ensures that the gen_type_die recursion will terminate even if the
13459 type is recursive. Recursive types are possible in Ada. */
13460 /* ??? We could perhaps do this for all types before the switch
13461 statement. */
13462 TREE_ASM_WRITTEN (type) = 1;
13464 /* For these types, all that is required is that we output a DIE (or a
13465 set of DIEs) to represent the "basis" type. */
13466 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13467 DINFO_USAGE_IND_USE);
13468 break;
13470 case OFFSET_TYPE:
13471 /* This code is used for C++ pointer-to-data-member types.
13472 Output a description of the relevant class type. */
13473 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
13474 DINFO_USAGE_IND_USE);
13476 /* Output a description of the type of the object pointed to. */
13477 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13478 DINFO_USAGE_IND_USE);
13480 /* Now output a DIE to represent this pointer-to-data-member type
13481 itself. */
13482 gen_ptr_to_mbr_type_die (type, context_die);
13483 break;
13485 case FUNCTION_TYPE:
13486 /* Force out return type (in case it wasn't forced out already). */
13487 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13488 DINFO_USAGE_DIR_USE);
13489 gen_subroutine_type_die (type, context_die);
13490 break;
13492 case METHOD_TYPE:
13493 /* Force out return type (in case it wasn't forced out already). */
13494 gen_type_die_with_usage (TREE_TYPE (type), context_die,
13495 DINFO_USAGE_DIR_USE);
13496 gen_subroutine_type_die (type, context_die);
13497 break;
13499 case ARRAY_TYPE:
13500 gen_array_type_die (type, context_die);
13501 break;
13503 case VECTOR_TYPE:
13504 gen_array_type_die (type, context_die);
13505 break;
13507 case ENUMERAL_TYPE:
13508 case RECORD_TYPE:
13509 case UNION_TYPE:
13510 case QUAL_UNION_TYPE:
13511 /* If this is a nested type whose containing class hasn't been written
13512 out yet, writing it out will cover this one, too. This does not apply
13513 to instantiations of member class templates; they need to be added to
13514 the containing class as they are generated. FIXME: This hurts the
13515 idea of combining type decls from multiple TUs, since we can't predict
13516 what set of template instantiations we'll get. */
13517 if (TYPE_CONTEXT (type)
13518 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
13519 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
13521 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
13523 if (TREE_ASM_WRITTEN (type))
13524 return;
13526 /* If that failed, attach ourselves to the stub. */
13527 push_decl_scope (TYPE_CONTEXT (type));
13528 context_die = lookup_type_die (TYPE_CONTEXT (type));
13529 need_pop = 1;
13531 else
13533 declare_in_namespace (type, context_die);
13534 need_pop = 0;
13537 if (TREE_CODE (type) == ENUMERAL_TYPE)
13539 /* This might have been written out by the call to
13540 declare_in_namespace. */
13541 if (!TREE_ASM_WRITTEN (type))
13542 gen_enumeration_type_die (type, context_die);
13544 else
13545 gen_struct_or_union_type_die (type, context_die, usage);
13547 if (need_pop)
13548 pop_decl_scope ();
13550 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
13551 it up if it is ever completed. gen_*_type_die will set it for us
13552 when appropriate. */
13553 return;
13555 case VOID_TYPE:
13556 case INTEGER_TYPE:
13557 case REAL_TYPE:
13558 case FIXED_POINT_TYPE:
13559 case COMPLEX_TYPE:
13560 case BOOLEAN_TYPE:
13561 /* No DIEs needed for fundamental types. */
13562 break;
13564 case LANG_TYPE:
13565 /* No Dwarf representation currently defined. */
13566 break;
13568 default:
13569 gcc_unreachable ();
13572 TREE_ASM_WRITTEN (type) = 1;
13575 static void
13576 gen_type_die (tree type, dw_die_ref context_die)
13578 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
13581 /* Generate a DIE for a tagged type instantiation. */
13583 static void
13584 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
13586 if (type == NULL_TREE || type == error_mark_node)
13587 return;
13589 /* We are going to output a DIE to represent the unqualified version of
13590 this type (i.e. without any const or volatile qualifiers) so make sure
13591 that we have the main variant (i.e. the unqualified version) of this
13592 type now. */
13593 gcc_assert (type == type_main_variant (type));
13595 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
13596 an instance of an unresolved type. */
13598 switch (TREE_CODE (type))
13600 case ERROR_MARK:
13601 break;
13603 case ENUMERAL_TYPE:
13604 gen_inlined_enumeration_type_die (type, context_die);
13605 break;
13607 case RECORD_TYPE:
13608 gen_inlined_structure_type_die (type, context_die);
13609 break;
13611 case UNION_TYPE:
13612 case QUAL_UNION_TYPE:
13613 gen_inlined_union_type_die (type, context_die);
13614 break;
13616 default:
13617 gcc_unreachable ();
13621 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
13622 things which are local to the given block. */
13624 static void
13625 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
13627 int must_output_die = 0;
13628 tree origin;
13629 tree decl;
13630 enum tree_code origin_code;
13632 /* Ignore blocks that are NULL. */
13633 if (stmt == NULL_TREE)
13634 return;
13636 /* If the block is one fragment of a non-contiguous block, do not
13637 process the variables, since they will have been done by the
13638 origin block. Do process subblocks. */
13639 if (BLOCK_FRAGMENT_ORIGIN (stmt))
13641 tree sub;
13643 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
13644 gen_block_die (sub, context_die, depth + 1);
13646 return;
13649 /* Determine the "ultimate origin" of this block. This block may be an
13650 inlined instance of an inlined instance of inline function, so we have
13651 to trace all of the way back through the origin chain to find out what
13652 sort of node actually served as the original seed for the creation of
13653 the current block. */
13654 origin = block_ultimate_origin (stmt);
13655 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
13657 /* Determine if we need to output any Dwarf DIEs at all to represent this
13658 block. */
13659 if (origin_code == FUNCTION_DECL)
13660 /* The outer scopes for inlinings *must* always be represented. We
13661 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
13662 must_output_die = 1;
13663 else
13665 /* In the case where the current block represents an inlining of the
13666 "body block" of an inline function, we must *NOT* output any DIE for
13667 this block because we have already output a DIE to represent the whole
13668 inlined function scope and the "body block" of any function doesn't
13669 really represent a different scope according to ANSI C rules. So we
13670 check here to make sure that this block does not represent a "body
13671 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
13672 if (! is_body_block (origin ? origin : stmt))
13674 /* Determine if this block directly contains any "significant"
13675 local declarations which we will need to output DIEs for. */
13676 if (debug_info_level > DINFO_LEVEL_TERSE)
13677 /* We are not in terse mode so *any* local declaration counts
13678 as being a "significant" one. */
13679 must_output_die = (BLOCK_VARS (stmt) != NULL
13680 && (TREE_USED (stmt)
13681 || TREE_ASM_WRITTEN (stmt)
13682 || BLOCK_ABSTRACT (stmt)));
13683 else
13684 /* We are in terse mode, so only local (nested) function
13685 definitions count as "significant" local declarations. */
13686 for (decl = BLOCK_VARS (stmt);
13687 decl != NULL; decl = TREE_CHAIN (decl))
13688 if (TREE_CODE (decl) == FUNCTION_DECL
13689 && DECL_INITIAL (decl))
13691 must_output_die = 1;
13692 break;
13697 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
13698 DIE for any block which contains no significant local declarations at
13699 all. Rather, in such cases we just call `decls_for_scope' so that any
13700 needed Dwarf info for any sub-blocks will get properly generated. Note
13701 that in terse mode, our definition of what constitutes a "significant"
13702 local declaration gets restricted to include only inlined function
13703 instances and local (nested) function definitions. */
13704 if (must_output_die)
13706 if (origin_code == FUNCTION_DECL)
13707 gen_inlined_subroutine_die (stmt, context_die, depth);
13708 else
13709 gen_lexical_block_die (stmt, context_die, depth);
13711 else
13712 decls_for_scope (stmt, context_die, depth);
13715 /* Generate all of the decls declared within a given scope and (recursively)
13716 all of its sub-blocks. */
13718 static void
13719 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
13721 tree decl;
13722 tree subblocks;
13724 /* Ignore NULL blocks. */
13725 if (stmt == NULL_TREE)
13726 return;
13728 if (TREE_USED (stmt))
13730 /* Output the DIEs to represent all of the data objects and typedefs
13731 declared directly within this block but not within any nested
13732 sub-blocks. Also, nested function and tag DIEs have been
13733 generated with a parent of NULL; fix that up now. */
13734 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
13736 dw_die_ref die;
13738 if (TREE_CODE (decl) == FUNCTION_DECL)
13739 die = lookup_decl_die (decl);
13740 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
13741 die = lookup_type_die (TREE_TYPE (decl));
13742 else
13743 die = NULL;
13745 if (die != NULL && die->die_parent == NULL)
13746 add_child_die (context_die, die);
13747 /* Do not produce debug information for static variables since
13748 these might be optimized out. We are called for these later
13749 in varpool_analyze_pending_decls.
13751 But *do* produce it for Fortran COMMON variables because,
13752 even though they are static, their names can differ depending
13753 on the scope, which we need to preserve. */
13754 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl)
13755 && !(is_fortran () && TREE_PUBLIC (decl)))
13757 else
13758 gen_decl_die (decl, context_die);
13762 /* If we're at -g1, we're not interested in subblocks. */
13763 if (debug_info_level <= DINFO_LEVEL_TERSE)
13764 return;
13766 /* Output the DIEs to represent all sub-blocks (and the items declared
13767 therein) of this block. */
13768 for (subblocks = BLOCK_SUBBLOCKS (stmt);
13769 subblocks != NULL;
13770 subblocks = BLOCK_CHAIN (subblocks))
13771 gen_block_die (subblocks, context_die, depth + 1);
13774 /* Is this a typedef we can avoid emitting? */
13776 static inline int
13777 is_redundant_typedef (const_tree decl)
13779 if (TYPE_DECL_IS_STUB (decl))
13780 return 1;
13782 if (DECL_ARTIFICIAL (decl)
13783 && DECL_CONTEXT (decl)
13784 && is_tagged_type (DECL_CONTEXT (decl))
13785 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
13786 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
13787 /* Also ignore the artificial member typedef for the class name. */
13788 return 1;
13790 return 0;
13793 /* Returns the DIE for decl. A DIE will always be returned. */
13795 static dw_die_ref
13796 force_decl_die (tree decl)
13798 dw_die_ref decl_die;
13799 unsigned saved_external_flag;
13800 tree save_fn = NULL_TREE;
13801 decl_die = lookup_decl_die (decl);
13802 if (!decl_die)
13804 dw_die_ref context_die;
13805 tree decl_context = DECL_CONTEXT (decl);
13806 if (decl_context)
13808 /* Find die that represents this context. */
13809 if (TYPE_P (decl_context))
13810 context_die = force_type_die (decl_context);
13811 else
13812 context_die = force_decl_die (decl_context);
13814 else
13815 context_die = comp_unit_die;
13817 decl_die = lookup_decl_die (decl);
13818 if (decl_die)
13819 return decl_die;
13821 switch (TREE_CODE (decl))
13823 case FUNCTION_DECL:
13824 /* Clear current_function_decl, so that gen_subprogram_die thinks
13825 that this is a declaration. At this point, we just want to force
13826 declaration die. */
13827 save_fn = current_function_decl;
13828 current_function_decl = NULL_TREE;
13829 gen_subprogram_die (decl, context_die);
13830 current_function_decl = save_fn;
13831 break;
13833 case VAR_DECL:
13834 /* Set external flag to force declaration die. Restore it after
13835 gen_decl_die() call. */
13836 saved_external_flag = DECL_EXTERNAL (decl);
13837 DECL_EXTERNAL (decl) = 1;
13838 gen_decl_die (decl, context_die);
13839 DECL_EXTERNAL (decl) = saved_external_flag;
13840 break;
13842 case NAMESPACE_DECL:
13843 dwarf2out_decl (decl);
13844 break;
13846 default:
13847 gcc_unreachable ();
13850 /* We should be able to find the DIE now. */
13851 if (!decl_die)
13852 decl_die = lookup_decl_die (decl);
13853 gcc_assert (decl_die);
13856 return decl_die;
13859 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
13860 always returned. */
13862 static dw_die_ref
13863 force_type_die (tree type)
13865 dw_die_ref type_die;
13867 type_die = lookup_type_die (type);
13868 if (!type_die)
13870 dw_die_ref context_die;
13871 if (TYPE_CONTEXT (type))
13873 if (TYPE_P (TYPE_CONTEXT (type)))
13874 context_die = force_type_die (TYPE_CONTEXT (type));
13875 else
13876 context_die = force_decl_die (TYPE_CONTEXT (type));
13878 else
13879 context_die = comp_unit_die;
13881 type_die = modified_type_die (type, TYPE_READONLY (type),
13882 TYPE_VOLATILE (type), context_die);
13883 gcc_assert (type_die);
13885 return type_die;
13888 /* Force out any required namespaces to be able to output DECL,
13889 and return the new context_die for it, if it's changed. */
13891 static dw_die_ref
13892 setup_namespace_context (tree thing, dw_die_ref context_die)
13894 tree context = (DECL_P (thing)
13895 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13896 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13897 /* Force out the namespace. */
13898 context_die = force_decl_die (context);
13900 return context_die;
13903 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13904 type) within its namespace, if appropriate.
13906 For compatibility with older debuggers, namespace DIEs only contain
13907 declarations; all definitions are emitted at CU scope. */
13909 static void
13910 declare_in_namespace (tree thing, dw_die_ref context_die)
13912 dw_die_ref ns_context;
13914 if (debug_info_level <= DINFO_LEVEL_TERSE)
13915 return;
13917 /* If this decl is from an inlined function, then don't try to emit it in its
13918 namespace, as we will get confused. It would have already been emitted
13919 when the abstract instance of the inline function was emitted anyways. */
13920 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13921 return;
13923 ns_context = setup_namespace_context (thing, context_die);
13925 if (ns_context != context_die)
13927 if (DECL_P (thing))
13928 gen_decl_die (thing, ns_context);
13929 else
13930 gen_type_die (thing, ns_context);
13934 /* Generate a DIE for a namespace or namespace alias. */
13936 static void
13937 gen_namespace_die (tree decl)
13939 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13941 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13942 they are an alias of. */
13943 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13945 /* Output a real namespace. */
13946 dw_die_ref namespace_die
13947 = new_die (DW_TAG_namespace, context_die, decl);
13948 add_name_and_src_coords_attributes (namespace_die, decl);
13949 equate_decl_number_to_die (decl, namespace_die);
13951 else
13953 /* Output a namespace alias. */
13955 /* Force out the namespace we are an alias of, if necessary. */
13956 dw_die_ref origin_die
13957 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13959 /* Now create the namespace alias DIE. */
13960 dw_die_ref namespace_die
13961 = new_die (DW_TAG_imported_declaration, context_die, decl);
13962 add_name_and_src_coords_attributes (namespace_die, decl);
13963 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13964 equate_decl_number_to_die (decl, namespace_die);
13968 /* Generate Dwarf debug information for a decl described by DECL. */
13970 static void
13971 gen_decl_die (tree decl, dw_die_ref context_die)
13973 tree origin;
13975 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13976 return;
13978 switch (TREE_CODE (decl))
13980 case ERROR_MARK:
13981 break;
13983 case CONST_DECL:
13984 /* The individual enumerators of an enum type get output when we output
13985 the Dwarf representation of the relevant enum type itself. */
13986 break;
13988 case FUNCTION_DECL:
13989 /* Don't output any DIEs to represent mere function declarations,
13990 unless they are class members or explicit block externs. */
13991 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13992 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13993 break;
13995 #if 0
13996 /* FIXME */
13997 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13998 on local redeclarations of global functions. That seems broken. */
13999 if (current_function_decl != decl)
14000 /* This is only a declaration. */;
14001 #endif
14003 /* If we're emitting a clone, emit info for the abstract instance. */
14004 if (DECL_ORIGIN (decl) != decl)
14005 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
14007 /* If we're emitting an out-of-line copy of an inline function,
14008 emit info for the abstract instance and set up to refer to it. */
14009 else if (cgraph_function_possibly_inlined_p (decl)
14010 && ! DECL_ABSTRACT (decl)
14011 && ! class_or_namespace_scope_p (context_die)
14012 /* dwarf2out_abstract_function won't emit a die if this is just
14013 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
14014 that case, because that works only if we have a die. */
14015 && DECL_INITIAL (decl) != NULL_TREE)
14017 dwarf2out_abstract_function (decl);
14018 set_decl_origin_self (decl);
14021 /* Otherwise we're emitting the primary DIE for this decl. */
14022 else if (debug_info_level > DINFO_LEVEL_TERSE)
14024 /* Before we describe the FUNCTION_DECL itself, make sure that we
14025 have described its return type. */
14026 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
14028 /* And its virtual context. */
14029 if (DECL_VINDEX (decl) != NULL_TREE)
14030 gen_type_die (DECL_CONTEXT (decl), context_die);
14032 /* And its containing type. */
14033 origin = decl_class_context (decl);
14034 if (origin != NULL_TREE)
14035 gen_type_die_for_member (origin, decl, context_die);
14037 /* And its containing namespace. */
14038 declare_in_namespace (decl, context_die);
14041 /* Now output a DIE to represent the function itself. */
14042 gen_subprogram_die (decl, context_die);
14043 break;
14045 case TYPE_DECL:
14046 /* If we are in terse mode, don't generate any DIEs to represent any
14047 actual typedefs. */
14048 if (debug_info_level <= DINFO_LEVEL_TERSE)
14049 break;
14051 /* In the special case of a TYPE_DECL node representing the declaration
14052 of some type tag, if the given TYPE_DECL is marked as having been
14053 instantiated from some other (original) TYPE_DECL node (e.g. one which
14054 was generated within the original definition of an inline function) we
14055 have to generate a special (abbreviated) DW_TAG_structure_type,
14056 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
14057 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE
14058 && is_tagged_type (TREE_TYPE (decl)))
14060 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
14061 break;
14064 if (is_redundant_typedef (decl))
14065 gen_type_die (TREE_TYPE (decl), context_die);
14066 else
14067 /* Output a DIE to represent the typedef itself. */
14068 gen_typedef_die (decl, context_die);
14069 break;
14071 case LABEL_DECL:
14072 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14073 gen_label_die (decl, context_die);
14074 break;
14076 case VAR_DECL:
14077 case RESULT_DECL:
14078 /* If we are in terse mode, don't generate any DIEs to represent any
14079 variable declarations or definitions. */
14080 if (debug_info_level <= DINFO_LEVEL_TERSE)
14081 break;
14083 /* If this is the global definition of the Fortran COMMON block, we don't
14084 need to do anything. Syntactically, the block itself has no identity,
14085 just its constituent identifiers. */
14086 if (TREE_CODE (decl) == VAR_DECL
14087 && TREE_PUBLIC (decl)
14088 && TREE_STATIC (decl)
14089 && is_fortran ()
14090 && !DECL_HAS_VALUE_EXPR_P (decl))
14091 break;
14093 /* Output any DIEs that are needed to specify the type of this data
14094 object. */
14095 if (TREE_CODE (decl) == RESULT_DECL && DECL_BY_REFERENCE (decl))
14096 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
14097 else
14098 gen_type_die (TREE_TYPE (decl), context_die);
14100 /* And its containing type. */
14101 origin = decl_class_context (decl);
14102 if (origin != NULL_TREE)
14103 gen_type_die_for_member (origin, decl, context_die);
14105 /* And its containing namespace. */
14106 declare_in_namespace (decl, context_die);
14108 /* Now output the DIE to represent the data object itself. This gets
14109 complicated because of the possibility that the VAR_DECL really
14110 represents an inlined instance of a formal parameter for an inline
14111 function. */
14112 origin = decl_ultimate_origin (decl);
14113 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
14114 gen_formal_parameter_die (decl, context_die);
14115 else
14116 gen_variable_die (decl, context_die);
14117 break;
14119 case FIELD_DECL:
14120 /* Ignore the nameless fields that are used to skip bits but handle C++
14121 anonymous unions and structs. */
14122 if (DECL_NAME (decl) != NULL_TREE
14123 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
14124 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
14126 gen_type_die (member_declared_type (decl), context_die);
14127 gen_field_die (decl, context_die);
14129 break;
14131 case PARM_DECL:
14132 if (DECL_BY_REFERENCE (decl))
14133 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
14134 else
14135 gen_type_die (TREE_TYPE (decl), context_die);
14136 gen_formal_parameter_die (decl, context_die);
14137 break;
14139 case NAMESPACE_DECL:
14140 gen_namespace_die (decl);
14141 break;
14143 default:
14144 /* Probably some frontend-internal decl. Assume we don't care. */
14145 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
14146 break;
14150 /* Output debug information for global decl DECL. Called from toplev.c after
14151 compilation proper has finished. */
14153 static void
14154 dwarf2out_global_decl (tree decl)
14156 /* Output DWARF2 information for file-scope tentative data object
14157 declarations, file-scope (extern) function declarations (which had no
14158 corresponding body) and file-scope tagged type declarations and
14159 definitions which have not yet been forced out.
14161 Ignore the global decl of any Fortran COMMON blocks which also wind up here
14162 though they have already been described in the local scope for the
14163 procedures using them. */
14164 if (TREE_CODE (decl) == VAR_DECL
14165 && TREE_PUBLIC (decl) && TREE_STATIC (decl) && is_fortran ())
14166 return;
14168 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
14169 dwarf2out_decl (decl);
14172 /* Output debug information for type decl DECL. Called from toplev.c
14173 and from language front ends (to record built-in types). */
14174 static void
14175 dwarf2out_type_decl (tree decl, int local)
14177 if (!local)
14178 dwarf2out_decl (decl);
14181 /* Output debug information for imported module or decl. */
14183 static void
14184 dwarf2out_imported_module_or_decl (tree decl, tree context)
14186 dw_die_ref imported_die, at_import_die;
14187 dw_die_ref scope_die;
14188 expanded_location xloc;
14190 if (debug_info_level <= DINFO_LEVEL_TERSE)
14191 return;
14193 gcc_assert (decl);
14195 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
14196 We need decl DIE for reference and scope die. First, get DIE for the decl
14197 itself. */
14199 /* Get the scope die for decl context. Use comp_unit_die for global module
14200 or decl. If die is not found for non globals, force new die. */
14201 if (!context)
14202 scope_die = comp_unit_die;
14203 else if (TYPE_P (context))
14205 if (!should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
14206 return;
14207 scope_die = force_type_die (context);
14209 else
14210 scope_die = force_decl_die (context);
14212 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
14213 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
14215 if (is_base_type (TREE_TYPE (decl)))
14216 at_import_die = base_type_die (TREE_TYPE (decl));
14217 else
14218 at_import_die = force_type_die (TREE_TYPE (decl));
14220 else
14222 at_import_die = lookup_decl_die (decl);
14223 if (!at_import_die)
14225 /* If we're trying to avoid duplicate debug info, we may not have
14226 emitted the member decl for this field. Emit it now. */
14227 if (TREE_CODE (decl) == FIELD_DECL)
14229 tree type = DECL_CONTEXT (decl);
14230 dw_die_ref type_context_die;
14232 if (TYPE_CONTEXT (type))
14233 if (TYPE_P (TYPE_CONTEXT (type)))
14235 if (!should_emit_struct_debug (TYPE_CONTEXT (type),
14236 DINFO_USAGE_DIR_USE))
14237 return;
14238 type_context_die = force_type_die (TYPE_CONTEXT (type));
14240 else
14241 type_context_die = force_decl_die (TYPE_CONTEXT (type));
14242 else
14243 type_context_die = comp_unit_die;
14244 gen_type_die_for_member (type, decl, type_context_die);
14246 at_import_die = force_decl_die (decl);
14250 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
14251 if (TREE_CODE (decl) == NAMESPACE_DECL)
14252 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
14253 else
14254 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
14256 xloc = expand_location (input_location);
14257 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
14258 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
14259 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
14262 /* Write the debugging output for DECL. */
14264 void
14265 dwarf2out_decl (tree decl)
14267 dw_die_ref context_die = comp_unit_die;
14269 switch (TREE_CODE (decl))
14271 case ERROR_MARK:
14272 return;
14274 case FUNCTION_DECL:
14275 /* What we would really like to do here is to filter out all mere
14276 file-scope declarations of file-scope functions which are never
14277 referenced later within this translation unit (and keep all of ones
14278 that *are* referenced later on) but we aren't clairvoyant, so we have
14279 no idea which functions will be referenced in the future (i.e. later
14280 on within the current translation unit). So here we just ignore all
14281 file-scope function declarations which are not also definitions. If
14282 and when the debugger needs to know something about these functions,
14283 it will have to hunt around and find the DWARF information associated
14284 with the definition of the function.
14286 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
14287 nodes represent definitions and which ones represent mere
14288 declarations. We have to check DECL_INITIAL instead. That's because
14289 the C front-end supports some weird semantics for "extern inline"
14290 function definitions. These can get inlined within the current
14291 translation unit (and thus, we need to generate Dwarf info for their
14292 abstract instances so that the Dwarf info for the concrete inlined
14293 instances can have something to refer to) but the compiler never
14294 generates any out-of-lines instances of such things (despite the fact
14295 that they *are* definitions).
14297 The important point is that the C front-end marks these "extern
14298 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
14299 them anyway. Note that the C++ front-end also plays some similar games
14300 for inline function definitions appearing within include files which
14301 also contain `#pragma interface' pragmas. */
14302 if (DECL_INITIAL (decl) == NULL_TREE)
14303 return;
14305 /* If we're a nested function, initially use a parent of NULL; if we're
14306 a plain function, this will be fixed up in decls_for_scope. If
14307 we're a method, it will be ignored, since we already have a DIE. */
14308 if (decl_function_context (decl)
14309 /* But if we're in terse mode, we don't care about scope. */
14310 && debug_info_level > DINFO_LEVEL_TERSE)
14311 context_die = NULL;
14312 break;
14314 case VAR_DECL:
14315 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
14316 declaration and if the declaration was never even referenced from
14317 within this entire compilation unit. We suppress these DIEs in
14318 order to save space in the .debug section (by eliminating entries
14319 which are probably useless). Note that we must not suppress
14320 block-local extern declarations (whether used or not) because that
14321 would screw-up the debugger's name lookup mechanism and cause it to
14322 miss things which really ought to be in scope at a given point. */
14323 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
14324 return;
14326 /* For local statics lookup proper context die. */
14327 if (TREE_STATIC (decl) && decl_function_context (decl))
14328 context_die = lookup_decl_die (DECL_CONTEXT (decl));
14330 /* If we are in terse mode, don't generate any DIEs to represent any
14331 variable declarations or definitions. */
14332 if (debug_info_level <= DINFO_LEVEL_TERSE)
14333 return;
14334 break;
14336 case NAMESPACE_DECL:
14337 if (debug_info_level <= DINFO_LEVEL_TERSE)
14338 return;
14339 if (lookup_decl_die (decl) != NULL)
14340 return;
14341 break;
14343 case TYPE_DECL:
14344 /* Don't emit stubs for types unless they are needed by other DIEs. */
14345 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
14346 return;
14348 /* Don't bother trying to generate any DIEs to represent any of the
14349 normal built-in types for the language we are compiling. */
14350 if (DECL_IS_BUILTIN (decl))
14352 /* OK, we need to generate one for `bool' so GDB knows what type
14353 comparisons have. */
14354 if (is_cxx ()
14355 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
14356 && ! DECL_IGNORED_P (decl))
14357 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
14359 return;
14362 /* If we are in terse mode, don't generate any DIEs for types. */
14363 if (debug_info_level <= DINFO_LEVEL_TERSE)
14364 return;
14366 /* If we're a function-scope tag, initially use a parent of NULL;
14367 this will be fixed up in decls_for_scope. */
14368 if (decl_function_context (decl))
14369 context_die = NULL;
14371 break;
14373 default:
14374 return;
14377 gen_decl_die (decl, context_die);
14380 /* Output a marker (i.e. a label) for the beginning of the generated code for
14381 a lexical block. */
14383 static void
14384 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
14385 unsigned int blocknum)
14387 switch_to_section (current_function_section ());
14388 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
14391 /* Output a marker (i.e. a label) for the end of the generated code for a
14392 lexical block. */
14394 static void
14395 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
14397 switch_to_section (current_function_section ());
14398 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
14401 /* Returns nonzero if it is appropriate not to emit any debugging
14402 information for BLOCK, because it doesn't contain any instructions.
14404 Don't allow this for blocks with nested functions or local classes
14405 as we would end up with orphans, and in the presence of scheduling
14406 we may end up calling them anyway. */
14408 static bool
14409 dwarf2out_ignore_block (const_tree block)
14411 tree decl;
14413 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
14414 if (TREE_CODE (decl) == FUNCTION_DECL
14415 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
14416 return 0;
14418 return 1;
14421 /* Hash table routines for file_hash. */
14423 static int
14424 file_table_eq (const void *p1_p, const void *p2_p)
14426 const struct dwarf_file_data * p1 = p1_p;
14427 const char * p2 = p2_p;
14428 return strcmp (p1->filename, p2) == 0;
14431 static hashval_t
14432 file_table_hash (const void *p_p)
14434 const struct dwarf_file_data * p = p_p;
14435 return htab_hash_string (p->filename);
14438 /* Lookup FILE_NAME (in the list of filenames that we know about here in
14439 dwarf2out.c) and return its "index". The index of each (known) filename is
14440 just a unique number which is associated with only that one filename. We
14441 need such numbers for the sake of generating labels (in the .debug_sfnames
14442 section) and references to those files numbers (in the .debug_srcinfo
14443 and.debug_macinfo sections). If the filename given as an argument is not
14444 found in our current list, add it to the list and assign it the next
14445 available unique index number. In order to speed up searches, we remember
14446 the index of the filename was looked up last. This handles the majority of
14447 all searches. */
14449 static struct dwarf_file_data *
14450 lookup_filename (const char *file_name)
14452 void ** slot;
14453 struct dwarf_file_data * created;
14455 /* Check to see if the file name that was searched on the previous
14456 call matches this file name. If so, return the index. */
14457 if (file_table_last_lookup
14458 && (file_name == file_table_last_lookup->filename
14459 || strcmp (file_table_last_lookup->filename, file_name) == 0))
14460 return file_table_last_lookup;
14462 /* Didn't match the previous lookup, search the table. */
14463 slot = htab_find_slot_with_hash (file_table, file_name,
14464 htab_hash_string (file_name), INSERT);
14465 if (*slot)
14466 return *slot;
14468 created = ggc_alloc (sizeof (struct dwarf_file_data));
14469 created->filename = file_name;
14470 created->emitted_number = 0;
14471 *slot = created;
14472 return created;
14475 /* If the assembler will construct the file table, then translate the compiler
14476 internal file table number into the assembler file table number, and emit
14477 a .file directive if we haven't already emitted one yet. The file table
14478 numbers are different because we prune debug info for unused variables and
14479 types, which may include filenames. */
14481 static int
14482 maybe_emit_file (struct dwarf_file_data * fd)
14484 if (! fd->emitted_number)
14486 if (last_emitted_file)
14487 fd->emitted_number = last_emitted_file->emitted_number + 1;
14488 else
14489 fd->emitted_number = 1;
14490 last_emitted_file = fd;
14492 if (DWARF2_ASM_LINE_DEBUG_INFO)
14494 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
14495 output_quoted_string (asm_out_file,
14496 remap_debug_filename (fd->filename));
14497 fputc ('\n', asm_out_file);
14501 return fd->emitted_number;
14504 /* Called by the final INSN scan whenever we see a var location. We
14505 use it to drop labels in the right places, and throw the location in
14506 our lookup table. */
14508 static void
14509 dwarf2out_var_location (rtx loc_note)
14511 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
14512 struct var_loc_node *newloc;
14513 rtx prev_insn;
14514 static rtx last_insn;
14515 static const char *last_label;
14516 tree decl;
14518 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
14519 return;
14520 prev_insn = PREV_INSN (loc_note);
14522 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
14523 /* If the insn we processed last time is the previous insn
14524 and it is also a var location note, use the label we emitted
14525 last time. */
14526 if (last_insn != NULL_RTX
14527 && last_insn == prev_insn
14528 && NOTE_P (prev_insn)
14529 && NOTE_KIND (prev_insn) == NOTE_INSN_VAR_LOCATION)
14531 newloc->label = last_label;
14533 else
14535 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
14536 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
14537 loclabel_num++;
14538 newloc->label = ggc_strdup (loclabel);
14540 newloc->var_loc_note = loc_note;
14541 newloc->next = NULL;
14543 if (cfun && in_cold_section_p)
14544 newloc->section_label = crtl->subsections.cold_section_label;
14545 else
14546 newloc->section_label = text_section_label;
14548 last_insn = loc_note;
14549 last_label = newloc->label;
14550 decl = NOTE_VAR_LOCATION_DECL (loc_note);
14551 add_var_loc_to_decl (decl, newloc);
14554 /* We need to reset the locations at the beginning of each
14555 function. We can't do this in the end_function hook, because the
14556 declarations that use the locations won't have been output when
14557 that hook is called. Also compute have_multiple_function_sections here. */
14559 static void
14560 dwarf2out_begin_function (tree fun)
14562 htab_empty (decl_loc_table);
14564 if (function_section (fun) != text_section)
14565 have_multiple_function_sections = true;
14567 dwarf2out_note_section_used ();
14570 /* Output a label to mark the beginning of a source code line entry
14571 and record information relating to this source line, in
14572 'line_info_table' for later output of the .debug_line section. */
14574 static void
14575 dwarf2out_source_line (unsigned int line, const char *filename)
14577 if (debug_info_level >= DINFO_LEVEL_NORMAL
14578 && line != 0)
14580 int file_num = maybe_emit_file (lookup_filename (filename));
14582 switch_to_section (current_function_section ());
14584 /* If requested, emit something human-readable. */
14585 if (flag_debug_asm)
14586 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
14587 filename, line);
14589 if (DWARF2_ASM_LINE_DEBUG_INFO)
14591 /* Emit the .loc directive understood by GNU as. */
14592 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
14594 /* Indicate that line number info exists. */
14595 line_info_table_in_use++;
14597 else if (function_section (current_function_decl) != text_section)
14599 dw_separate_line_info_ref line_info;
14600 targetm.asm_out.internal_label (asm_out_file,
14601 SEPARATE_LINE_CODE_LABEL,
14602 separate_line_info_table_in_use);
14604 /* Expand the line info table if necessary. */
14605 if (separate_line_info_table_in_use
14606 == separate_line_info_table_allocated)
14608 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
14609 separate_line_info_table
14610 = ggc_realloc (separate_line_info_table,
14611 separate_line_info_table_allocated
14612 * sizeof (dw_separate_line_info_entry));
14613 memset (separate_line_info_table
14614 + separate_line_info_table_in_use,
14616 (LINE_INFO_TABLE_INCREMENT
14617 * sizeof (dw_separate_line_info_entry)));
14620 /* Add the new entry at the end of the line_info_table. */
14621 line_info
14622 = &separate_line_info_table[separate_line_info_table_in_use++];
14623 line_info->dw_file_num = file_num;
14624 line_info->dw_line_num = line;
14625 line_info->function = current_function_funcdef_no;
14627 else
14629 dw_line_info_ref line_info;
14631 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
14632 line_info_table_in_use);
14634 /* Expand the line info table if necessary. */
14635 if (line_info_table_in_use == line_info_table_allocated)
14637 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
14638 line_info_table
14639 = ggc_realloc (line_info_table,
14640 (line_info_table_allocated
14641 * sizeof (dw_line_info_entry)));
14642 memset (line_info_table + line_info_table_in_use, 0,
14643 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
14646 /* Add the new entry at the end of the line_info_table. */
14647 line_info = &line_info_table[line_info_table_in_use++];
14648 line_info->dw_file_num = file_num;
14649 line_info->dw_line_num = line;
14654 /* Record the beginning of a new source file. */
14656 static void
14657 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
14659 if (flag_eliminate_dwarf2_dups)
14661 /* Record the beginning of the file for break_out_includes. */
14662 dw_die_ref bincl_die;
14664 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
14665 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
14668 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14670 int file_num = maybe_emit_file (lookup_filename (filename));
14672 switch_to_section (debug_macinfo_section);
14673 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
14674 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
14675 lineno);
14677 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
14681 /* Record the end of a source file. */
14683 static void
14684 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
14686 if (flag_eliminate_dwarf2_dups)
14687 /* Record the end of the file for break_out_includes. */
14688 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
14690 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14692 switch_to_section (debug_macinfo_section);
14693 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
14697 /* Called from debug_define in toplev.c. The `buffer' parameter contains
14698 the tail part of the directive line, i.e. the part which is past the
14699 initial whitespace, #, whitespace, directive-name, whitespace part. */
14701 static void
14702 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
14703 const char *buffer ATTRIBUTE_UNUSED)
14705 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14707 switch_to_section (debug_macinfo_section);
14708 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
14709 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
14710 dw2_asm_output_nstring (buffer, -1, "The macro");
14714 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
14715 the tail part of the directive line, i.e. the part which is past the
14716 initial whitespace, #, whitespace, directive-name, whitespace part. */
14718 static void
14719 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
14720 const char *buffer ATTRIBUTE_UNUSED)
14722 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14724 switch_to_section (debug_macinfo_section);
14725 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
14726 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
14727 dw2_asm_output_nstring (buffer, -1, "The macro");
14731 /* Set up for Dwarf output at the start of compilation. */
14733 static void
14734 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
14736 /* Allocate the file_table. */
14737 file_table = htab_create_ggc (50, file_table_hash,
14738 file_table_eq, NULL);
14740 /* Allocate the decl_die_table. */
14741 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
14742 decl_die_table_eq, NULL);
14744 /* Allocate the decl_loc_table. */
14745 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
14746 decl_loc_table_eq, NULL);
14748 /* Allocate the initial hunk of the decl_scope_table. */
14749 decl_scope_table = VEC_alloc (tree, gc, 256);
14751 /* Allocate the initial hunk of the abbrev_die_table. */
14752 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
14753 * sizeof (dw_die_ref));
14754 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
14755 /* Zero-th entry is allocated, but unused. */
14756 abbrev_die_table_in_use = 1;
14758 /* Allocate the initial hunk of the line_info_table. */
14759 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
14760 * sizeof (dw_line_info_entry));
14761 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
14763 /* Zero-th entry is allocated, but unused. */
14764 line_info_table_in_use = 1;
14766 /* Allocate the pubtypes and pubnames vectors. */
14767 pubname_table = VEC_alloc (pubname_entry, gc, 32);
14768 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
14770 /* Generate the initial DIE for the .debug section. Note that the (string)
14771 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
14772 will (typically) be a relative pathname and that this pathname should be
14773 taken as being relative to the directory from which the compiler was
14774 invoked when the given (base) source file was compiled. We will fill
14775 in this value in dwarf2out_finish. */
14776 comp_unit_die = gen_compile_unit_die (NULL);
14778 incomplete_types = VEC_alloc (tree, gc, 64);
14780 used_rtx_array = VEC_alloc (rtx, gc, 32);
14782 debug_info_section = get_section (DEBUG_INFO_SECTION,
14783 SECTION_DEBUG, NULL);
14784 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
14785 SECTION_DEBUG, NULL);
14786 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
14787 SECTION_DEBUG, NULL);
14788 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
14789 SECTION_DEBUG, NULL);
14790 debug_line_section = get_section (DEBUG_LINE_SECTION,
14791 SECTION_DEBUG, NULL);
14792 debug_loc_section = get_section (DEBUG_LOC_SECTION,
14793 SECTION_DEBUG, NULL);
14794 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
14795 SECTION_DEBUG, NULL);
14796 #ifdef DEBUG_PUBTYPES_SECTION
14797 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
14798 SECTION_DEBUG, NULL);
14799 #endif
14800 debug_str_section = get_section (DEBUG_STR_SECTION,
14801 DEBUG_STR_SECTION_FLAGS, NULL);
14802 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
14803 SECTION_DEBUG, NULL);
14804 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
14805 SECTION_DEBUG, NULL);
14807 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
14808 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
14809 DEBUG_ABBREV_SECTION_LABEL, 0);
14810 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
14811 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
14812 COLD_TEXT_SECTION_LABEL, 0);
14813 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
14815 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
14816 DEBUG_INFO_SECTION_LABEL, 0);
14817 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
14818 DEBUG_LINE_SECTION_LABEL, 0);
14819 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
14820 DEBUG_RANGES_SECTION_LABEL, 0);
14821 switch_to_section (debug_abbrev_section);
14822 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
14823 switch_to_section (debug_info_section);
14824 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
14825 switch_to_section (debug_line_section);
14826 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
14828 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14830 switch_to_section (debug_macinfo_section);
14831 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
14832 DEBUG_MACINFO_SECTION_LABEL, 0);
14833 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
14836 switch_to_section (text_section);
14837 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
14838 if (flag_reorder_blocks_and_partition)
14840 cold_text_section = unlikely_text_section ();
14841 switch_to_section (cold_text_section);
14842 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
14846 /* A helper function for dwarf2out_finish called through
14847 ht_forall. Emit one queued .debug_str string. */
14849 static int
14850 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
14852 struct indirect_string_node *node = (struct indirect_string_node *) *h;
14854 if (node->form == DW_FORM_strp)
14856 switch_to_section (debug_str_section);
14857 ASM_OUTPUT_LABEL (asm_out_file, node->label);
14858 assemble_string (node->str, strlen (node->str) + 1);
14861 return 1;
14864 #if ENABLE_ASSERT_CHECKING
14865 /* Verify that all marks are clear. */
14867 static void
14868 verify_marks_clear (dw_die_ref die)
14870 dw_die_ref c;
14872 gcc_assert (! die->die_mark);
14873 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14875 #endif /* ENABLE_ASSERT_CHECKING */
14877 /* Clear the marks for a die and its children.
14878 Be cool if the mark isn't set. */
14880 static void
14881 prune_unmark_dies (dw_die_ref die)
14883 dw_die_ref c;
14885 if (die->die_mark)
14886 die->die_mark = 0;
14887 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14890 /* Given DIE that we're marking as used, find any other dies
14891 it references as attributes and mark them as used. */
14893 static void
14894 prune_unused_types_walk_attribs (dw_die_ref die)
14896 dw_attr_ref a;
14897 unsigned ix;
14899 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14901 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14903 /* A reference to another DIE.
14904 Make sure that it will get emitted. */
14905 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14907 /* Set the string's refcount to 0 so that prune_unused_types_mark
14908 accounts properly for it. */
14909 if (AT_class (a) == dw_val_class_str)
14910 a->dw_attr_val.v.val_str->refcount = 0;
14915 /* Mark DIE as being used. If DOKIDS is true, then walk down
14916 to DIE's children. */
14918 static void
14919 prune_unused_types_mark (dw_die_ref die, int dokids)
14921 dw_die_ref c;
14923 if (die->die_mark == 0)
14925 /* We haven't done this node yet. Mark it as used. */
14926 die->die_mark = 1;
14928 /* We also have to mark its parents as used.
14929 (But we don't want to mark our parents' kids due to this.) */
14930 if (die->die_parent)
14931 prune_unused_types_mark (die->die_parent, 0);
14933 /* Mark any referenced nodes. */
14934 prune_unused_types_walk_attribs (die);
14936 /* If this node is a specification,
14937 also mark the definition, if it exists. */
14938 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14939 prune_unused_types_mark (die->die_definition, 1);
14942 if (dokids && die->die_mark != 2)
14944 /* We need to walk the children, but haven't done so yet.
14945 Remember that we've walked the kids. */
14946 die->die_mark = 2;
14948 /* If this is an array type, we need to make sure our
14949 kids get marked, even if they're types. */
14950 if (die->die_tag == DW_TAG_array_type)
14951 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14952 else
14953 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14958 /* Walk the tree DIE and mark types that we actually use. */
14960 static void
14961 prune_unused_types_walk (dw_die_ref die)
14963 dw_die_ref c;
14965 /* Don't do anything if this node is already marked. */
14966 if (die->die_mark)
14967 return;
14969 switch (die->die_tag)
14971 case DW_TAG_const_type:
14972 case DW_TAG_packed_type:
14973 case DW_TAG_pointer_type:
14974 case DW_TAG_reference_type:
14975 case DW_TAG_volatile_type:
14976 case DW_TAG_typedef:
14977 case DW_TAG_array_type:
14978 case DW_TAG_structure_type:
14979 case DW_TAG_union_type:
14980 case DW_TAG_class_type:
14981 case DW_TAG_interface_type:
14982 case DW_TAG_friend:
14983 case DW_TAG_variant_part:
14984 case DW_TAG_enumeration_type:
14985 case DW_TAG_subroutine_type:
14986 case DW_TAG_string_type:
14987 case DW_TAG_set_type:
14988 case DW_TAG_subrange_type:
14989 case DW_TAG_ptr_to_member_type:
14990 case DW_TAG_file_type:
14991 if (die->die_perennial_p)
14992 break;
14994 /* It's a type node --- don't mark it. */
14995 return;
14997 default:
14998 /* Mark everything else. */
14999 break;
15002 die->die_mark = 1;
15004 /* Now, mark any dies referenced from here. */
15005 prune_unused_types_walk_attribs (die);
15007 /* Mark children. */
15008 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
15011 /* Increment the string counts on strings referred to from DIE's
15012 attributes. */
15014 static void
15015 prune_unused_types_update_strings (dw_die_ref die)
15017 dw_attr_ref a;
15018 unsigned ix;
15020 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
15021 if (AT_class (a) == dw_val_class_str)
15023 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
15024 s->refcount++;
15025 /* Avoid unnecessarily putting strings that are used less than
15026 twice in the hash table. */
15027 if (s->refcount
15028 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
15030 void ** slot;
15031 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
15032 htab_hash_string (s->str),
15033 INSERT);
15034 gcc_assert (*slot == NULL);
15035 *slot = s;
15040 /* Remove from the tree DIE any dies that aren't marked. */
15042 static void
15043 prune_unused_types_prune (dw_die_ref die)
15045 dw_die_ref c;
15047 gcc_assert (die->die_mark);
15048 prune_unused_types_update_strings (die);
15050 if (! die->die_child)
15051 return;
15053 c = die->die_child;
15054 do {
15055 dw_die_ref prev = c;
15056 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
15057 if (c == die->die_child)
15059 /* No marked children between 'prev' and the end of the list. */
15060 if (prev == c)
15061 /* No marked children at all. */
15062 die->die_child = NULL;
15063 else
15065 prev->die_sib = c->die_sib;
15066 die->die_child = prev;
15068 return;
15071 if (c != prev->die_sib)
15072 prev->die_sib = c;
15073 prune_unused_types_prune (c);
15074 } while (c != die->die_child);
15078 /* Remove dies representing declarations that we never use. */
15080 static void
15081 prune_unused_types (void)
15083 unsigned int i;
15084 limbo_die_node *node;
15085 pubname_ref pub;
15087 #if ENABLE_ASSERT_CHECKING
15088 /* All the marks should already be clear. */
15089 verify_marks_clear (comp_unit_die);
15090 for (node = limbo_die_list; node; node = node->next)
15091 verify_marks_clear (node->die);
15092 #endif /* ENABLE_ASSERT_CHECKING */
15094 /* Set the mark on nodes that are actually used. */
15095 prune_unused_types_walk (comp_unit_die);
15096 for (node = limbo_die_list; node; node = node->next)
15097 prune_unused_types_walk (node->die);
15099 /* Also set the mark on nodes referenced from the
15100 pubname_table or arange_table. */
15101 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
15102 prune_unused_types_mark (pub->die, 1);
15103 for (i = 0; i < arange_table_in_use; i++)
15104 prune_unused_types_mark (arange_table[i], 1);
15106 /* Get rid of nodes that aren't marked; and update the string counts. */
15107 if (debug_str_hash)
15108 htab_empty (debug_str_hash);
15109 prune_unused_types_prune (comp_unit_die);
15110 for (node = limbo_die_list; node; node = node->next)
15111 prune_unused_types_prune (node->die);
15113 /* Leave the marks clear. */
15114 prune_unmark_dies (comp_unit_die);
15115 for (node = limbo_die_list; node; node = node->next)
15116 prune_unmark_dies (node->die);
15119 /* Set the parameter to true if there are any relative pathnames in
15120 the file table. */
15121 static int
15122 file_table_relative_p (void ** slot, void *param)
15124 bool *p = param;
15125 struct dwarf_file_data *d = *slot;
15126 if (!IS_ABSOLUTE_PATH (d->filename))
15128 *p = true;
15129 return 0;
15131 return 1;
15134 /* Output stuff that dwarf requires at the end of every file,
15135 and generate the DWARF-2 debugging info. */
15137 static void
15138 dwarf2out_finish (const char *filename)
15140 limbo_die_node *node, *next_node;
15141 dw_die_ref die = 0;
15143 /* Add the name for the main input file now. We delayed this from
15144 dwarf2out_init to avoid complications with PCH. */
15145 add_name_attribute (comp_unit_die, remap_debug_filename (filename));
15146 if (!IS_ABSOLUTE_PATH (filename))
15147 add_comp_dir_attribute (comp_unit_die);
15148 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
15150 bool p = false;
15151 htab_traverse (file_table, file_table_relative_p, &p);
15152 if (p)
15153 add_comp_dir_attribute (comp_unit_die);
15156 /* Traverse the limbo die list, and add parent/child links. The only
15157 dies without parents that should be here are concrete instances of
15158 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
15159 For concrete instances, we can get the parent die from the abstract
15160 instance. */
15161 for (node = limbo_die_list; node; node = next_node)
15163 next_node = node->next;
15164 die = node->die;
15166 if (die->die_parent == NULL)
15168 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
15170 if (origin)
15171 add_child_die (origin->die_parent, die);
15172 else if (die == comp_unit_die)
15174 else if (errorcount > 0 || sorrycount > 0)
15175 /* It's OK to be confused by errors in the input. */
15176 add_child_die (comp_unit_die, die);
15177 else
15179 /* In certain situations, the lexical block containing a
15180 nested function can be optimized away, which results
15181 in the nested function die being orphaned. Likewise
15182 with the return type of that nested function. Force
15183 this to be a child of the containing function.
15185 It may happen that even the containing function got fully
15186 inlined and optimized out. In that case we are lost and
15187 assign the empty child. This should not be big issue as
15188 the function is likely unreachable too. */
15189 tree context = NULL_TREE;
15191 gcc_assert (node->created_for);
15193 if (DECL_P (node->created_for))
15194 context = DECL_CONTEXT (node->created_for);
15195 else if (TYPE_P (node->created_for))
15196 context = TYPE_CONTEXT (node->created_for);
15198 gcc_assert (context
15199 && (TREE_CODE (context) == FUNCTION_DECL
15200 || TREE_CODE (context) == NAMESPACE_DECL));
15202 origin = lookup_decl_die (context);
15203 if (origin)
15204 add_child_die (origin, die);
15205 else
15206 add_child_die (comp_unit_die, die);
15211 limbo_die_list = NULL;
15213 /* Walk through the list of incomplete types again, trying once more to
15214 emit full debugging info for them. */
15215 retry_incomplete_types ();
15217 if (flag_eliminate_unused_debug_types)
15218 prune_unused_types ();
15220 /* Generate separate CUs for each of the include files we've seen.
15221 They will go into limbo_die_list. */
15222 if (flag_eliminate_dwarf2_dups)
15223 break_out_includes (comp_unit_die);
15225 /* Traverse the DIE's and add add sibling attributes to those DIE's
15226 that have children. */
15227 add_sibling_attributes (comp_unit_die);
15228 for (node = limbo_die_list; node; node = node->next)
15229 add_sibling_attributes (node->die);
15231 /* Output a terminator label for the .text section. */
15232 switch_to_section (text_section);
15233 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
15234 if (flag_reorder_blocks_and_partition)
15236 switch_to_section (unlikely_text_section ());
15237 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
15240 /* We can only use the low/high_pc attributes if all of the code was
15241 in .text. */
15242 if (!have_multiple_function_sections)
15244 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
15245 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
15248 else
15250 unsigned fde_idx = 0;
15252 /* We need to give .debug_loc and .debug_ranges an appropriate
15253 "base address". Use zero so that these addresses become
15254 absolute. Historically, we've emitted the unexpected
15255 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
15256 Emit both to give time for other tools to adapt. */
15257 add_AT_addr (comp_unit_die, DW_AT_low_pc, const0_rtx);
15258 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
15260 add_AT_range_list (comp_unit_die, DW_AT_ranges,
15261 add_ranges_by_labels (text_section_label,
15262 text_end_label));
15263 if (flag_reorder_blocks_and_partition)
15264 add_ranges_by_labels (cold_text_section_label,
15265 cold_end_label);
15267 for (fde_idx = 0; fde_idx < fde_table_in_use; fde_idx++)
15269 dw_fde_ref fde = &fde_table[fde_idx];
15271 if (fde->dw_fde_switched_sections)
15273 add_ranges_by_labels (fde->dw_fde_hot_section_label,
15274 fde->dw_fde_hot_section_end_label);
15275 add_ranges_by_labels (fde->dw_fde_unlikely_section_label,
15276 fde->dw_fde_unlikely_section_end_label);
15278 else
15279 add_ranges_by_labels (fde->dw_fde_begin,
15280 fde->dw_fde_end);
15283 add_ranges (NULL);
15286 /* Output location list section if necessary. */
15287 if (have_location_lists)
15289 /* Output the location lists info. */
15290 switch_to_section (debug_loc_section);
15291 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
15292 DEBUG_LOC_SECTION_LABEL, 0);
15293 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
15294 output_location_lists (die);
15297 if (debug_info_level >= DINFO_LEVEL_NORMAL)
15298 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
15299 debug_line_section_label);
15301 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
15302 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
15304 /* Output all of the compilation units. We put the main one last so that
15305 the offsets are available to output_pubnames. */
15306 for (node = limbo_die_list; node; node = node->next)
15307 output_comp_unit (node->die, 0);
15309 output_comp_unit (comp_unit_die, 0);
15311 /* Output the abbreviation table. */
15312 switch_to_section (debug_abbrev_section);
15313 output_abbrev_section ();
15315 /* Output public names table if necessary. */
15316 if (!VEC_empty (pubname_entry, pubname_table))
15318 switch_to_section (debug_pubnames_section);
15319 output_pubnames (pubname_table);
15322 #ifdef DEBUG_PUBTYPES_SECTION
15323 /* Output public types table if necessary. */
15324 if (!VEC_empty (pubname_entry, pubtype_table))
15326 switch_to_section (debug_pubtypes_section);
15327 output_pubnames (pubtype_table);
15329 #endif
15331 /* Output the address range information. We only put functions in the arange
15332 table, so don't write it out if we don't have any. */
15333 if (fde_table_in_use)
15335 switch_to_section (debug_aranges_section);
15336 output_aranges ();
15339 /* Output ranges section if necessary. */
15340 if (ranges_table_in_use)
15342 switch_to_section (debug_ranges_section);
15343 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
15344 output_ranges ();
15347 /* Output the source line correspondence table. We must do this
15348 even if there is no line information. Otherwise, on an empty
15349 translation unit, we will generate a present, but empty,
15350 .debug_info section. IRIX 6.5 `nm' will then complain when
15351 examining the file. This is done late so that any filenames
15352 used by the debug_info section are marked as 'used'. */
15353 if (! DWARF2_ASM_LINE_DEBUG_INFO)
15355 switch_to_section (debug_line_section);
15356 output_line_info ();
15359 /* Have to end the macro section. */
15360 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
15362 switch_to_section (debug_macinfo_section);
15363 dw2_asm_output_data (1, 0, "End compilation unit");
15366 /* If we emitted any DW_FORM_strp form attribute, output the string
15367 table too. */
15368 if (debug_str_hash)
15369 htab_traverse (debug_str_hash, output_indirect_string, NULL);
15371 #else
15373 /* This should never be used, but its address is needed for comparisons. */
15374 const struct gcc_debug_hooks dwarf2_debug_hooks;
15376 #endif /* DWARF2_DEBUGGING_INFO */
15378 #include "gt-dwarf2out.h"