2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / cselib.c
blob1e11e02ba124c268cd060c7a64a5739c759b280d
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "emit-rtl.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "hashtab.h"
40 #include "cselib.h"
41 #include "params.h"
42 #include "alloc-pool.h"
43 #include "target.h"
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static int discard_useless_locs (void **, void *);
54 static int discard_useless_values (void **, void *);
55 static void remove_useless_values (void);
56 static rtx wrap_constant (enum machine_mode, rtx);
57 static unsigned int cselib_hash_rtx (rtx, int);
58 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
59 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
60 static cselib_val *cselib_lookup_mem (rtx, int);
61 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
62 static void cselib_invalidate_mem (rtx);
63 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
64 static void cselib_record_sets (rtx);
66 /* There are three ways in which cselib can look up an rtx:
67 - for a REG, the reg_values table (which is indexed by regno) is used
68 - for a MEM, we recursively look up its address and then follow the
69 addr_list of that value
70 - for everything else, we compute a hash value and go through the hash
71 table. Since different rtx's can still have the same hash value,
72 this involves walking the table entries for a given value and comparing
73 the locations of the entries with the rtx we are looking up. */
75 /* A table that enables us to look up elts by their value. */
76 static htab_t cselib_hash_table;
78 /* This is a global so we don't have to pass this through every function.
79 It is used in new_elt_loc_list to set SETTING_INSN. */
80 static rtx cselib_current_insn;
81 static bool cselib_current_insn_in_libcall;
83 /* Every new unknown value gets a unique number. */
84 static unsigned int next_unknown_value;
86 /* The number of registers we had when the varrays were last resized. */
87 static unsigned int cselib_nregs;
89 /* Count values without known locations. Whenever this grows too big, we
90 remove these useless values from the table. */
91 static int n_useless_values;
93 /* Number of useless values before we remove them from the hash table. */
94 #define MAX_USELESS_VALUES 32
96 /* This table maps from register number to values. It does not
97 contain pointers to cselib_val structures, but rather elt_lists.
98 The purpose is to be able to refer to the same register in
99 different modes. The first element of the list defines the mode in
100 which the register was set; if the mode is unknown or the value is
101 no longer valid in that mode, ELT will be NULL for the first
102 element. */
103 static struct elt_list **reg_values;
104 static unsigned int reg_values_size;
105 #define REG_VALUES(i) reg_values[i]
107 /* The largest number of hard regs used by any entry added to the
108 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
109 static unsigned int max_value_regs;
111 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
112 in cselib_clear_table() for fast emptying. */
113 static unsigned int *used_regs;
114 static unsigned int n_used_regs;
116 /* We pass this to cselib_invalidate_mem to invalidate all of
117 memory for a non-const call instruction. */
118 static GTY(()) rtx callmem;
120 /* Set by discard_useless_locs if it deleted the last location of any
121 value. */
122 static int values_became_useless;
124 /* Used as stop element of the containing_mem list so we can check
125 presence in the list by checking the next pointer. */
126 static cselib_val dummy_val;
128 /* Used to list all values that contain memory reference.
129 May or may not contain the useless values - the list is compacted
130 each time memory is invalidated. */
131 static cselib_val *first_containing_mem = &dummy_val;
132 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
134 /* If nonnull, cselib will call this function before freeing useless
135 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
136 void (*cselib_discard_hook) (cselib_val *);
139 /* Allocate a struct elt_list and fill in its two elements with the
140 arguments. */
142 static inline struct elt_list *
143 new_elt_list (struct elt_list *next, cselib_val *elt)
145 struct elt_list *el;
146 el = pool_alloc (elt_list_pool);
147 el->next = next;
148 el->elt = elt;
149 return el;
152 /* Allocate a struct elt_loc_list and fill in its two elements with the
153 arguments. */
155 static inline struct elt_loc_list *
156 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
158 struct elt_loc_list *el;
159 el = pool_alloc (elt_loc_list_pool);
160 el->next = next;
161 el->loc = loc;
162 el->setting_insn = cselib_current_insn;
163 el->in_libcall = cselib_current_insn_in_libcall;
164 return el;
167 /* The elt_list at *PL is no longer needed. Unchain it and free its
168 storage. */
170 static inline void
171 unchain_one_elt_list (struct elt_list **pl)
173 struct elt_list *l = *pl;
175 *pl = l->next;
176 pool_free (elt_list_pool, l);
179 /* Likewise for elt_loc_lists. */
181 static void
182 unchain_one_elt_loc_list (struct elt_loc_list **pl)
184 struct elt_loc_list *l = *pl;
186 *pl = l->next;
187 pool_free (elt_loc_list_pool, l);
190 /* Likewise for cselib_vals. This also frees the addr_list associated with
191 V. */
193 static void
194 unchain_one_value (cselib_val *v)
196 while (v->addr_list)
197 unchain_one_elt_list (&v->addr_list);
199 pool_free (cselib_val_pool, v);
202 /* Remove all entries from the hash table. Also used during
203 initialization. If CLEAR_ALL isn't set, then only clear the entries
204 which are known to have been used. */
206 void
207 cselib_clear_table (void)
209 unsigned int i;
211 for (i = 0; i < n_used_regs; i++)
212 REG_VALUES (used_regs[i]) = 0;
214 max_value_regs = 0;
216 n_used_regs = 0;
218 htab_empty (cselib_hash_table);
220 n_useless_values = 0;
222 next_unknown_value = 0;
224 first_containing_mem = &dummy_val;
227 /* The equality test for our hash table. The first argument ENTRY is a table
228 element (i.e. a cselib_val), while the second arg X is an rtx. We know
229 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
230 CONST of an appropriate mode. */
232 static int
233 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
235 struct elt_loc_list *l;
236 const cselib_val *const v = (const cselib_val *) entry;
237 rtx x = (rtx) x_arg;
238 enum machine_mode mode = GET_MODE (x);
240 gcc_assert (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_FIXED
241 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
243 if (mode != GET_MODE (v->val_rtx))
244 return 0;
246 /* Unwrap X if necessary. */
247 if (GET_CODE (x) == CONST
248 && (GET_CODE (XEXP (x, 0)) == CONST_INT
249 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
250 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
251 x = XEXP (x, 0);
253 /* We don't guarantee that distinct rtx's have different hash values,
254 so we need to do a comparison. */
255 for (l = v->locs; l; l = l->next)
256 if (rtx_equal_for_cselib_p (l->loc, x))
257 return 1;
259 return 0;
262 /* The hash function for our hash table. The value is always computed with
263 cselib_hash_rtx when adding an element; this function just extracts the
264 hash value from a cselib_val structure. */
266 static hashval_t
267 get_value_hash (const void *entry)
269 const cselib_val *const v = (const cselib_val *) entry;
270 return v->value;
273 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
274 only return true for values which point to a cselib_val whose value
275 element has been set to zero, which implies the cselib_val will be
276 removed. */
279 references_value_p (const_rtx x, int only_useless)
281 const enum rtx_code code = GET_CODE (x);
282 const char *fmt = GET_RTX_FORMAT (code);
283 int i, j;
285 if (GET_CODE (x) == VALUE
286 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
287 return 1;
289 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
291 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
292 return 1;
293 else if (fmt[i] == 'E')
294 for (j = 0; j < XVECLEN (x, i); j++)
295 if (references_value_p (XVECEXP (x, i, j), only_useless))
296 return 1;
299 return 0;
302 /* For all locations found in X, delete locations that reference useless
303 values (i.e. values without any location). Called through
304 htab_traverse. */
306 static int
307 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
309 cselib_val *v = (cselib_val *)*x;
310 struct elt_loc_list **p = &v->locs;
311 int had_locs = v->locs != 0;
313 while (*p)
315 if (references_value_p ((*p)->loc, 1))
316 unchain_one_elt_loc_list (p);
317 else
318 p = &(*p)->next;
321 if (had_locs && v->locs == 0)
323 n_useless_values++;
324 values_became_useless = 1;
326 return 1;
329 /* If X is a value with no locations, remove it from the hashtable. */
331 static int
332 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
334 cselib_val *v = (cselib_val *)*x;
336 if (v->locs == 0)
338 if (cselib_discard_hook)
339 cselib_discard_hook (v);
341 CSELIB_VAL_PTR (v->val_rtx) = NULL;
342 htab_clear_slot (cselib_hash_table, x);
343 unchain_one_value (v);
344 n_useless_values--;
347 return 1;
350 /* Clean out useless values (i.e. those which no longer have locations
351 associated with them) from the hash table. */
353 static void
354 remove_useless_values (void)
356 cselib_val **p, *v;
357 /* First pass: eliminate locations that reference the value. That in
358 turn can make more values useless. */
361 values_became_useless = 0;
362 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
364 while (values_became_useless);
366 /* Second pass: actually remove the values. */
368 p = &first_containing_mem;
369 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
370 if (v->locs)
372 *p = v;
373 p = &(*p)->next_containing_mem;
375 *p = &dummy_val;
377 htab_traverse (cselib_hash_table, discard_useless_values, 0);
379 gcc_assert (!n_useless_values);
382 /* Return the mode in which a register was last set. If X is not a
383 register, return its mode. If the mode in which the register was
384 set is not known, or the value was already clobbered, return
385 VOIDmode. */
387 enum machine_mode
388 cselib_reg_set_mode (const_rtx x)
390 if (!REG_P (x))
391 return GET_MODE (x);
393 if (REG_VALUES (REGNO (x)) == NULL
394 || REG_VALUES (REGNO (x))->elt == NULL)
395 return VOIDmode;
397 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
400 /* Return nonzero if we can prove that X and Y contain the same value, taking
401 our gathered information into account. */
404 rtx_equal_for_cselib_p (rtx x, rtx y)
406 enum rtx_code code;
407 const char *fmt;
408 int i;
410 if (REG_P (x) || MEM_P (x))
412 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
414 if (e)
415 x = e->val_rtx;
418 if (REG_P (y) || MEM_P (y))
420 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
422 if (e)
423 y = e->val_rtx;
426 if (x == y)
427 return 1;
429 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
430 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
432 if (GET_CODE (x) == VALUE)
434 cselib_val *e = CSELIB_VAL_PTR (x);
435 struct elt_loc_list *l;
437 for (l = e->locs; l; l = l->next)
439 rtx t = l->loc;
441 /* Avoid infinite recursion. */
442 if (REG_P (t) || MEM_P (t))
443 continue;
444 else if (rtx_equal_for_cselib_p (t, y))
445 return 1;
448 return 0;
451 if (GET_CODE (y) == VALUE)
453 cselib_val *e = CSELIB_VAL_PTR (y);
454 struct elt_loc_list *l;
456 for (l = e->locs; l; l = l->next)
458 rtx t = l->loc;
460 if (REG_P (t) || MEM_P (t))
461 continue;
462 else if (rtx_equal_for_cselib_p (x, t))
463 return 1;
466 return 0;
469 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
470 return 0;
472 /* These won't be handled correctly by the code below. */
473 switch (GET_CODE (x))
475 case CONST_DOUBLE:
476 case CONST_FIXED:
477 return 0;
479 case LABEL_REF:
480 return XEXP (x, 0) == XEXP (y, 0);
482 default:
483 break;
486 code = GET_CODE (x);
487 fmt = GET_RTX_FORMAT (code);
489 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
491 int j;
493 switch (fmt[i])
495 case 'w':
496 if (XWINT (x, i) != XWINT (y, i))
497 return 0;
498 break;
500 case 'n':
501 case 'i':
502 if (XINT (x, i) != XINT (y, i))
503 return 0;
504 break;
506 case 'V':
507 case 'E':
508 /* Two vectors must have the same length. */
509 if (XVECLEN (x, i) != XVECLEN (y, i))
510 return 0;
512 /* And the corresponding elements must match. */
513 for (j = 0; j < XVECLEN (x, i); j++)
514 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
515 XVECEXP (y, i, j)))
516 return 0;
517 break;
519 case 'e':
520 if (i == 1
521 && targetm.commutative_p (x, UNKNOWN)
522 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
523 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
524 return 1;
525 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
526 return 0;
527 break;
529 case 'S':
530 case 's':
531 if (strcmp (XSTR (x, i), XSTR (y, i)))
532 return 0;
533 break;
535 case 'u':
536 /* These are just backpointers, so they don't matter. */
537 break;
539 case '0':
540 case 't':
541 break;
543 /* It is believed that rtx's at this level will never
544 contain anything but integers and other rtx's,
545 except for within LABEL_REFs and SYMBOL_REFs. */
546 default:
547 gcc_unreachable ();
550 return 1;
553 /* We need to pass down the mode of constants through the hash table
554 functions. For that purpose, wrap them in a CONST of the appropriate
555 mode. */
556 static rtx
557 wrap_constant (enum machine_mode mode, rtx x)
559 if (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_FIXED
560 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
561 return x;
562 gcc_assert (mode != VOIDmode);
563 return gen_rtx_CONST (mode, x);
566 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
567 For registers and memory locations, we look up their cselib_val structure
568 and return its VALUE element.
569 Possible reasons for return 0 are: the object is volatile, or we couldn't
570 find a register or memory location in the table and CREATE is zero. If
571 CREATE is nonzero, table elts are created for regs and mem.
572 N.B. this hash function returns the same hash value for RTXes that
573 differ only in the order of operands, thus it is suitable for comparisons
574 that take commutativity into account.
575 If we wanted to also support associative rules, we'd have to use a different
576 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
577 We used to have a MODE argument for hashing for CONST_INTs, but that
578 didn't make sense, since it caused spurious hash differences between
579 (set (reg:SI 1) (const_int))
580 (plus:SI (reg:SI 2) (reg:SI 1))
582 (plus:SI (reg:SI 2) (const_int))
583 If the mode is important in any context, it must be checked specifically
584 in a comparison anyway, since relying on hash differences is unsafe. */
586 static unsigned int
587 cselib_hash_rtx (rtx x, int create)
589 cselib_val *e;
590 int i, j;
591 enum rtx_code code;
592 const char *fmt;
593 unsigned int hash = 0;
595 code = GET_CODE (x);
596 hash += (unsigned) code + (unsigned) GET_MODE (x);
598 switch (code)
600 case MEM:
601 case REG:
602 e = cselib_lookup (x, GET_MODE (x), create);
603 if (! e)
604 return 0;
606 return e->value;
608 case CONST_INT:
609 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
610 return hash ? hash : (unsigned int) CONST_INT;
612 case CONST_DOUBLE:
613 /* This is like the general case, except that it only counts
614 the integers representing the constant. */
615 hash += (unsigned) code + (unsigned) GET_MODE (x);
616 if (GET_MODE (x) != VOIDmode)
617 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
618 else
619 hash += ((unsigned) CONST_DOUBLE_LOW (x)
620 + (unsigned) CONST_DOUBLE_HIGH (x));
621 return hash ? hash : (unsigned int) CONST_DOUBLE;
623 case CONST_FIXED:
624 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
625 hash += fixed_hash (CONST_FIXED_VALUE (x));
626 return hash ? hash : (unsigned int) CONST_FIXED;
628 case CONST_VECTOR:
630 int units;
631 rtx elt;
633 units = CONST_VECTOR_NUNITS (x);
635 for (i = 0; i < units; ++i)
637 elt = CONST_VECTOR_ELT (x, i);
638 hash += cselib_hash_rtx (elt, 0);
641 return hash;
644 /* Assume there is only one rtx object for any given label. */
645 case LABEL_REF:
646 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
647 differences and differences between each stage's debugging dumps. */
648 hash += (((unsigned int) LABEL_REF << 7)
649 + CODE_LABEL_NUMBER (XEXP (x, 0)));
650 return hash ? hash : (unsigned int) LABEL_REF;
652 case SYMBOL_REF:
654 /* Don't hash on the symbol's address to avoid bootstrap differences.
655 Different hash values may cause expressions to be recorded in
656 different orders and thus different registers to be used in the
657 final assembler. This also avoids differences in the dump files
658 between various stages. */
659 unsigned int h = 0;
660 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
662 while (*p)
663 h += (h << 7) + *p++; /* ??? revisit */
665 hash += ((unsigned int) SYMBOL_REF << 7) + h;
666 return hash ? hash : (unsigned int) SYMBOL_REF;
669 case PRE_DEC:
670 case PRE_INC:
671 case POST_DEC:
672 case POST_INC:
673 case POST_MODIFY:
674 case PRE_MODIFY:
675 case PC:
676 case CC0:
677 case CALL:
678 case UNSPEC_VOLATILE:
679 return 0;
681 case ASM_OPERANDS:
682 if (MEM_VOLATILE_P (x))
683 return 0;
685 break;
687 default:
688 break;
691 i = GET_RTX_LENGTH (code) - 1;
692 fmt = GET_RTX_FORMAT (code);
693 for (; i >= 0; i--)
695 switch (fmt[i])
697 case 'e':
699 rtx tem = XEXP (x, i);
700 unsigned int tem_hash = cselib_hash_rtx (tem, create);
702 if (tem_hash == 0)
703 return 0;
705 hash += tem_hash;
707 break;
708 case 'E':
709 for (j = 0; j < XVECLEN (x, i); j++)
711 unsigned int tem_hash
712 = cselib_hash_rtx (XVECEXP (x, i, j), create);
714 if (tem_hash == 0)
715 return 0;
717 hash += tem_hash;
719 break;
721 case 's':
723 const unsigned char *p = (const unsigned char *) XSTR (x, i);
725 if (p)
726 while (*p)
727 hash += *p++;
728 break;
731 case 'i':
732 hash += XINT (x, i);
733 break;
735 case '0':
736 case 't':
737 /* unused */
738 break;
740 default:
741 gcc_unreachable ();
745 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
748 /* Create a new value structure for VALUE and initialize it. The mode of the
749 value is MODE. */
751 static inline cselib_val *
752 new_cselib_val (unsigned int value, enum machine_mode mode)
754 cselib_val *e = pool_alloc (cselib_val_pool);
756 gcc_assert (value);
758 e->value = value;
759 /* We use an alloc pool to allocate this RTL construct because it
760 accounts for about 8% of the overall memory usage. We know
761 precisely when we can have VALUE RTXen (when cselib is active)
762 so we don't need to put them in garbage collected memory.
763 ??? Why should a VALUE be an RTX in the first place? */
764 e->val_rtx = pool_alloc (value_pool);
765 memset (e->val_rtx, 0, RTX_HDR_SIZE);
766 PUT_CODE (e->val_rtx, VALUE);
767 PUT_MODE (e->val_rtx, mode);
768 CSELIB_VAL_PTR (e->val_rtx) = e;
769 e->addr_list = 0;
770 e->locs = 0;
771 e->next_containing_mem = 0;
772 return e;
775 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
776 contains the data at this address. X is a MEM that represents the
777 value. Update the two value structures to represent this situation. */
779 static void
780 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
782 struct elt_loc_list *l;
784 /* Avoid duplicates. */
785 for (l = mem_elt->locs; l; l = l->next)
786 if (MEM_P (l->loc)
787 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
788 return;
790 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
791 mem_elt->locs
792 = new_elt_loc_list (mem_elt->locs,
793 replace_equiv_address_nv (x, addr_elt->val_rtx));
794 if (mem_elt->next_containing_mem == NULL)
796 mem_elt->next_containing_mem = first_containing_mem;
797 first_containing_mem = mem_elt;
801 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
802 If CREATE, make a new one if we haven't seen it before. */
804 static cselib_val *
805 cselib_lookup_mem (rtx x, int create)
807 enum machine_mode mode = GET_MODE (x);
808 void **slot;
809 cselib_val *addr;
810 cselib_val *mem_elt;
811 struct elt_list *l;
813 if (MEM_VOLATILE_P (x) || mode == BLKmode
814 || !cselib_record_memory
815 || (FLOAT_MODE_P (mode) && flag_float_store))
816 return 0;
818 /* Look up the value for the address. */
819 addr = cselib_lookup (XEXP (x, 0), mode, create);
820 if (! addr)
821 return 0;
823 /* Find a value that describes a value of our mode at that address. */
824 for (l = addr->addr_list; l; l = l->next)
825 if (GET_MODE (l->elt->val_rtx) == mode)
826 return l->elt;
828 if (! create)
829 return 0;
831 mem_elt = new_cselib_val (++next_unknown_value, mode);
832 add_mem_for_addr (addr, mem_elt, x);
833 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
834 mem_elt->value, INSERT);
835 *slot = mem_elt;
836 return mem_elt;
839 /* Search thru the possible substitutions in P. We prefer a non reg
840 substitution because this allows us to expand the tree further. If
841 we find, just a reg, take the lowest regno. There may be several
842 non-reg results, we just take the first one because they will all
843 expand to the same place. */
845 static rtx
846 expand_loc (struct elt_loc_list *p, bitmap regs_active, int max_depth)
848 rtx reg_result = NULL;
849 unsigned int regno = UINT_MAX;
850 struct elt_loc_list *p_in = p;
852 for (; p; p = p -> next)
854 /* Avoid infinite recursion trying to expand a reg into a
855 the same reg. */
856 if ((REG_P (p->loc))
857 && (REGNO (p->loc) < regno)
858 && !bitmap_bit_p (regs_active, REGNO (p->loc)))
860 reg_result = p->loc;
861 regno = REGNO (p->loc);
863 /* Avoid infinite recursion and do not try to expand the
864 value. */
865 else if (GET_CODE (p->loc) == VALUE
866 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
867 continue;
868 else if (!REG_P (p->loc))
870 rtx result;
871 if (dump_file)
873 print_inline_rtx (dump_file, p->loc, 0);
874 fprintf (dump_file, "\n");
876 result = cselib_expand_value_rtx (p->loc, regs_active, max_depth - 1);
877 if (result)
878 return result;
883 if (regno != UINT_MAX)
885 rtx result;
886 if (dump_file)
887 fprintf (dump_file, "r%d\n", regno);
889 result = cselib_expand_value_rtx (reg_result, regs_active, max_depth - 1);
890 if (result)
891 return result;
894 if (dump_file)
896 if (reg_result)
898 print_inline_rtx (dump_file, reg_result, 0);
899 fprintf (dump_file, "\n");
901 else
902 fprintf (dump_file, "NULL\n");
904 return reg_result;
908 /* Forward substitute and expand an expression out to its roots.
909 This is the opposite of common subexpression. Because local value
910 numbering is such a weak optimization, the expanded expression is
911 pretty much unique (not from a pointer equals point of view but
912 from a tree shape point of view.
914 This function returns NULL if the expansion fails. The expansion
915 will fail if there is no value number for one of the operands or if
916 one of the operands has been overwritten between the current insn
917 and the beginning of the basic block. For instance x has no
918 expansion in:
920 r1 <- r1 + 3
921 x <- r1 + 8
923 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
924 It is clear on return. */
927 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
929 rtx copy, scopy;
930 int i, j;
931 RTX_CODE code;
932 const char *format_ptr;
934 code = GET_CODE (orig);
936 /* For the context of dse, if we end up expand into a huge tree, we
937 will not have a useful address, so we might as well just give up
938 quickly. */
939 if (max_depth <= 0)
940 return NULL;
942 switch (code)
944 case REG:
946 struct elt_list *l = REG_VALUES (REGNO (orig));
948 if (l && l->elt == NULL)
949 l = l->next;
950 for (; l; l = l->next)
951 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
953 rtx result;
954 int regno = REGNO (orig);
956 /* The only thing that we are not willing to do (this
957 is requirement of dse and if others potential uses
958 need this function we should add a parm to control
959 it) is that we will not substitute the
960 STACK_POINTER_REGNUM, FRAME_POINTER or the
961 HARD_FRAME_POINTER.
963 These expansions confuses the code that notices that
964 stores into the frame go dead at the end of the
965 function and that the frame is not effected by calls
966 to subroutines. If you allow the
967 STACK_POINTER_REGNUM substitution, then dse will
968 think that parameter pushing also goes dead which is
969 wrong. If you allow the FRAME_POINTER or the
970 HARD_FRAME_POINTER then you lose the opportunity to
971 make the frame assumptions. */
972 if (regno == STACK_POINTER_REGNUM
973 || regno == FRAME_POINTER_REGNUM
974 || regno == HARD_FRAME_POINTER_REGNUM)
975 return orig;
977 bitmap_set_bit (regs_active, regno);
979 if (dump_file)
980 fprintf (dump_file, "expanding: r%d into: ", regno);
982 result = expand_loc (l->elt->locs, regs_active, max_depth);
983 bitmap_clear_bit (regs_active, regno);
985 if (result)
986 return result;
987 else
988 return orig;
992 case CONST_INT:
993 case CONST_DOUBLE:
994 case CONST_VECTOR:
995 case SYMBOL_REF:
996 case CODE_LABEL:
997 case PC:
998 case CC0:
999 case SCRATCH:
1000 /* SCRATCH must be shared because they represent distinct values. */
1001 return orig;
1002 case CLOBBER:
1003 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1004 return orig;
1005 break;
1007 case CONST:
1008 if (shared_const_p (orig))
1009 return orig;
1010 break;
1013 case VALUE:
1015 rtx result;
1016 if (dump_file)
1017 fprintf (dump_file, "expanding value %s into: ", GET_MODE_NAME (GET_MODE (orig)));
1019 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, regs_active, max_depth);
1020 if (result
1021 && GET_CODE (result) == CONST_INT
1022 && GET_MODE (orig) != VOIDmode)
1024 result = gen_rtx_CONST (GET_MODE (orig), result);
1025 if (dump_file)
1026 fprintf (dump_file, " wrapping const_int result in const to preserve mode %s\n",
1027 GET_MODE_NAME (GET_MODE (orig)));
1029 return result;
1031 default:
1032 break;
1035 /* Copy the various flags, fields, and other information. We assume
1036 that all fields need copying, and then clear the fields that should
1037 not be copied. That is the sensible default behavior, and forces
1038 us to explicitly document why we are *not* copying a flag. */
1039 copy = shallow_copy_rtx (orig);
1041 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
1043 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
1044 switch (*format_ptr++)
1046 case 'e':
1047 if (XEXP (orig, i) != NULL)
1049 rtx result = cselib_expand_value_rtx (XEXP (orig, i), regs_active, max_depth - 1);
1050 if (!result)
1051 return NULL;
1052 XEXP (copy, i) = result;
1054 break;
1056 case 'E':
1057 case 'V':
1058 if (XVEC (orig, i) != NULL)
1060 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1061 for (j = 0; j < XVECLEN (copy, i); j++)
1063 rtx result = cselib_expand_value_rtx (XVECEXP (orig, i, j), regs_active, max_depth - 1);
1064 if (!result)
1065 return NULL;
1066 XVECEXP (copy, i, j) = result;
1069 break;
1071 case 't':
1072 case 'w':
1073 case 'i':
1074 case 's':
1075 case 'S':
1076 case 'T':
1077 case 'u':
1078 case 'B':
1079 case '0':
1080 /* These are left unchanged. */
1081 break;
1083 default:
1084 gcc_unreachable ();
1087 scopy = simplify_rtx (copy);
1088 if (scopy)
1089 return scopy;
1090 return copy;
1093 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1094 with VALUE expressions. This way, it becomes independent of changes
1095 to registers and memory.
1096 X isn't actually modified; if modifications are needed, new rtl is
1097 allocated. However, the return value can share rtl with X. */
1100 cselib_subst_to_values (rtx x)
1102 enum rtx_code code = GET_CODE (x);
1103 const char *fmt = GET_RTX_FORMAT (code);
1104 cselib_val *e;
1105 struct elt_list *l;
1106 rtx copy = x;
1107 int i;
1109 switch (code)
1111 case REG:
1112 l = REG_VALUES (REGNO (x));
1113 if (l && l->elt == NULL)
1114 l = l->next;
1115 for (; l; l = l->next)
1116 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1117 return l->elt->val_rtx;
1119 gcc_unreachable ();
1121 case MEM:
1122 e = cselib_lookup_mem (x, 0);
1123 if (! e)
1125 /* This happens for autoincrements. Assign a value that doesn't
1126 match any other. */
1127 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1129 return e->val_rtx;
1131 case CONST_DOUBLE:
1132 case CONST_VECTOR:
1133 case CONST_INT:
1134 case CONST_FIXED:
1135 return x;
1137 case POST_INC:
1138 case PRE_INC:
1139 case POST_DEC:
1140 case PRE_DEC:
1141 case POST_MODIFY:
1142 case PRE_MODIFY:
1143 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1144 return e->val_rtx;
1146 default:
1147 break;
1150 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1152 if (fmt[i] == 'e')
1154 rtx t = cselib_subst_to_values (XEXP (x, i));
1156 if (t != XEXP (x, i) && x == copy)
1157 copy = shallow_copy_rtx (x);
1159 XEXP (copy, i) = t;
1161 else if (fmt[i] == 'E')
1163 int j, k;
1165 for (j = 0; j < XVECLEN (x, i); j++)
1167 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
1169 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
1171 if (x == copy)
1172 copy = shallow_copy_rtx (x);
1174 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
1175 for (k = 0; k < j; k++)
1176 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
1179 XVECEXP (copy, i, j) = t;
1184 return copy;
1187 /* Look up the rtl expression X in our tables and return the value it has.
1188 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1189 we create a new one if possible, using mode MODE if X doesn't have a mode
1190 (i.e. because it's a constant). */
1192 cselib_val *
1193 cselib_lookup (rtx x, enum machine_mode mode, int create)
1195 void **slot;
1196 cselib_val *e;
1197 unsigned int hashval;
1199 if (GET_MODE (x) != VOIDmode)
1200 mode = GET_MODE (x);
1202 if (GET_CODE (x) == VALUE)
1203 return CSELIB_VAL_PTR (x);
1205 if (REG_P (x))
1207 struct elt_list *l;
1208 unsigned int i = REGNO (x);
1210 l = REG_VALUES (i);
1211 if (l && l->elt == NULL)
1212 l = l->next;
1213 for (; l; l = l->next)
1214 if (mode == GET_MODE (l->elt->val_rtx))
1215 return l->elt;
1217 if (! create)
1218 return 0;
1220 if (i < FIRST_PSEUDO_REGISTER)
1222 unsigned int n = hard_regno_nregs[i][mode];
1224 if (n > max_value_regs)
1225 max_value_regs = n;
1228 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1229 e->locs = new_elt_loc_list (e->locs, x);
1230 if (REG_VALUES (i) == 0)
1232 /* Maintain the invariant that the first entry of
1233 REG_VALUES, if present, must be the value used to set the
1234 register, or NULL. */
1235 used_regs[n_used_regs++] = i;
1236 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1238 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1239 slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
1240 *slot = e;
1241 return e;
1244 if (MEM_P (x))
1245 return cselib_lookup_mem (x, create);
1247 hashval = cselib_hash_rtx (x, create);
1248 /* Can't even create if hashing is not possible. */
1249 if (! hashval)
1250 return 0;
1252 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
1253 hashval, create ? INSERT : NO_INSERT);
1254 if (slot == 0)
1255 return 0;
1257 e = (cselib_val *) *slot;
1258 if (e)
1259 return e;
1261 e = new_cselib_val (hashval, mode);
1263 /* We have to fill the slot before calling cselib_subst_to_values:
1264 the hash table is inconsistent until we do so, and
1265 cselib_subst_to_values will need to do lookups. */
1266 *slot = (void *) e;
1267 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
1268 return e;
1271 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1272 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1273 is used to determine how many hard registers are being changed. If MODE
1274 is VOIDmode, then only REGNO is being changed; this is used when
1275 invalidating call clobbered registers across a call. */
1277 static void
1278 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1280 unsigned int endregno;
1281 unsigned int i;
1283 /* If we see pseudos after reload, something is _wrong_. */
1284 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1285 || reg_renumber[regno] < 0);
1287 /* Determine the range of registers that must be invalidated. For
1288 pseudos, only REGNO is affected. For hard regs, we must take MODE
1289 into account, and we must also invalidate lower register numbers
1290 if they contain values that overlap REGNO. */
1291 if (regno < FIRST_PSEUDO_REGISTER)
1293 gcc_assert (mode != VOIDmode);
1295 if (regno < max_value_regs)
1296 i = 0;
1297 else
1298 i = regno - max_value_regs;
1300 endregno = end_hard_regno (mode, regno);
1302 else
1304 i = regno;
1305 endregno = regno + 1;
1308 for (; i < endregno; i++)
1310 struct elt_list **l = &REG_VALUES (i);
1312 /* Go through all known values for this reg; if it overlaps the range
1313 we're invalidating, remove the value. */
1314 while (*l)
1316 cselib_val *v = (*l)->elt;
1317 struct elt_loc_list **p;
1318 unsigned int this_last = i;
1320 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1321 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
1323 if (this_last < regno || v == NULL)
1325 l = &(*l)->next;
1326 continue;
1329 /* We have an overlap. */
1330 if (*l == REG_VALUES (i))
1332 /* Maintain the invariant that the first entry of
1333 REG_VALUES, if present, must be the value used to set
1334 the register, or NULL. This is also nice because
1335 then we won't push the same regno onto user_regs
1336 multiple times. */
1337 (*l)->elt = NULL;
1338 l = &(*l)->next;
1340 else
1341 unchain_one_elt_list (l);
1343 /* Now, we clear the mapping from value to reg. It must exist, so
1344 this code will crash intentionally if it doesn't. */
1345 for (p = &v->locs; ; p = &(*p)->next)
1347 rtx x = (*p)->loc;
1349 if (REG_P (x) && REGNO (x) == i)
1351 unchain_one_elt_loc_list (p);
1352 break;
1355 if (v->locs == 0)
1356 n_useless_values++;
1361 /* Return 1 if X has a value that can vary even between two
1362 executions of the program. 0 means X can be compared reliably
1363 against certain constants or near-constants. */
1365 static bool
1366 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
1368 /* We actually don't need to verify very hard. This is because
1369 if X has actually changed, we invalidate the memory anyway,
1370 so assume that all common memory addresses are
1371 invariant. */
1372 return 0;
1375 /* Invalidate any locations in the table which are changed because of a
1376 store to MEM_RTX. If this is called because of a non-const call
1377 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1379 static void
1380 cselib_invalidate_mem (rtx mem_rtx)
1382 cselib_val **vp, *v, *next;
1383 int num_mems = 0;
1384 rtx mem_addr;
1386 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1387 mem_rtx = canon_rtx (mem_rtx);
1389 vp = &first_containing_mem;
1390 for (v = *vp; v != &dummy_val; v = next)
1392 bool has_mem = false;
1393 struct elt_loc_list **p = &v->locs;
1394 int had_locs = v->locs != 0;
1396 while (*p)
1398 rtx x = (*p)->loc;
1399 cselib_val *addr;
1400 struct elt_list **mem_chain;
1402 /* MEMs may occur in locations only at the top level; below
1403 that every MEM or REG is substituted by its VALUE. */
1404 if (!MEM_P (x))
1406 p = &(*p)->next;
1407 continue;
1409 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1410 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1411 x, cselib_rtx_varies_p))
1413 has_mem = true;
1414 num_mems++;
1415 p = &(*p)->next;
1416 continue;
1419 /* This one overlaps. */
1420 /* We must have a mapping from this MEM's address to the
1421 value (E). Remove that, too. */
1422 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1423 mem_chain = &addr->addr_list;
1424 for (;;)
1426 if ((*mem_chain)->elt == v)
1428 unchain_one_elt_list (mem_chain);
1429 break;
1432 mem_chain = &(*mem_chain)->next;
1435 unchain_one_elt_loc_list (p);
1438 if (had_locs && v->locs == 0)
1439 n_useless_values++;
1441 next = v->next_containing_mem;
1442 if (has_mem)
1444 *vp = v;
1445 vp = &(*vp)->next_containing_mem;
1447 else
1448 v->next_containing_mem = NULL;
1450 *vp = &dummy_val;
1453 /* Invalidate DEST, which is being assigned to or clobbered. */
1455 void
1456 cselib_invalidate_rtx (rtx dest)
1458 while (GET_CODE (dest) == SUBREG
1459 || GET_CODE (dest) == ZERO_EXTRACT
1460 || GET_CODE (dest) == STRICT_LOW_PART)
1461 dest = XEXP (dest, 0);
1463 if (REG_P (dest))
1464 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1465 else if (MEM_P (dest))
1466 cselib_invalidate_mem (dest);
1468 /* Some machines don't define AUTO_INC_DEC, but they still use push
1469 instructions. We need to catch that case here in order to
1470 invalidate the stack pointer correctly. Note that invalidating
1471 the stack pointer is different from invalidating DEST. */
1472 if (push_operand (dest, GET_MODE (dest)))
1473 cselib_invalidate_rtx (stack_pointer_rtx);
1476 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1478 static void
1479 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
1480 void *data ATTRIBUTE_UNUSED)
1482 cselib_invalidate_rtx (dest);
1485 /* Record the result of a SET instruction. DEST is being set; the source
1486 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1487 describes its address. */
1489 static void
1490 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1492 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1494 if (src_elt == 0 || side_effects_p (dest))
1495 return;
1497 if (dreg >= 0)
1499 if (dreg < FIRST_PSEUDO_REGISTER)
1501 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1503 if (n > max_value_regs)
1504 max_value_regs = n;
1507 if (REG_VALUES (dreg) == 0)
1509 used_regs[n_used_regs++] = dreg;
1510 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1512 else
1514 /* The register should have been invalidated. */
1515 gcc_assert (REG_VALUES (dreg)->elt == 0);
1516 REG_VALUES (dreg)->elt = src_elt;
1519 if (src_elt->locs == 0)
1520 n_useless_values--;
1521 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1523 else if (MEM_P (dest) && dest_addr_elt != 0
1524 && cselib_record_memory)
1526 if (src_elt->locs == 0)
1527 n_useless_values--;
1528 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1532 /* Describe a single set that is part of an insn. */
1533 struct set
1535 rtx src;
1536 rtx dest;
1537 cselib_val *src_elt;
1538 cselib_val *dest_addr_elt;
1541 /* There is no good way to determine how many elements there can be
1542 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1543 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1545 /* Record the effects of any sets in INSN. */
1546 static void
1547 cselib_record_sets (rtx insn)
1549 int n_sets = 0;
1550 int i;
1551 struct set sets[MAX_SETS];
1552 rtx body = PATTERN (insn);
1553 rtx cond = 0;
1555 body = PATTERN (insn);
1556 if (GET_CODE (body) == COND_EXEC)
1558 cond = COND_EXEC_TEST (body);
1559 body = COND_EXEC_CODE (body);
1562 /* Find all sets. */
1563 if (GET_CODE (body) == SET)
1565 sets[0].src = SET_SRC (body);
1566 sets[0].dest = SET_DEST (body);
1567 n_sets = 1;
1569 else if (GET_CODE (body) == PARALLEL)
1571 /* Look through the PARALLEL and record the values being
1572 set, if possible. Also handle any CLOBBERs. */
1573 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1575 rtx x = XVECEXP (body, 0, i);
1577 if (GET_CODE (x) == SET)
1579 sets[n_sets].src = SET_SRC (x);
1580 sets[n_sets].dest = SET_DEST (x);
1581 n_sets++;
1586 /* Look up the values that are read. Do this before invalidating the
1587 locations that are written. */
1588 for (i = 0; i < n_sets; i++)
1590 rtx dest = sets[i].dest;
1592 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1593 the low part after invalidating any knowledge about larger modes. */
1594 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1595 sets[i].dest = dest = XEXP (dest, 0);
1597 /* We don't know how to record anything but REG or MEM. */
1598 if (REG_P (dest)
1599 || (MEM_P (dest) && cselib_record_memory))
1601 rtx src = sets[i].src;
1602 if (cond)
1603 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
1604 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1605 if (MEM_P (dest))
1606 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1607 else
1608 sets[i].dest_addr_elt = 0;
1612 /* Invalidate all locations written by this insn. Note that the elts we
1613 looked up in the previous loop aren't affected, just some of their
1614 locations may go away. */
1615 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1617 /* If this is an asm, look for duplicate sets. This can happen when the
1618 user uses the same value as an output multiple times. This is valid
1619 if the outputs are not actually used thereafter. Treat this case as
1620 if the value isn't actually set. We do this by smashing the destination
1621 to pc_rtx, so that we won't record the value later. */
1622 if (n_sets >= 2 && asm_noperands (body) >= 0)
1624 for (i = 0; i < n_sets; i++)
1626 rtx dest = sets[i].dest;
1627 if (REG_P (dest) || MEM_P (dest))
1629 int j;
1630 for (j = i + 1; j < n_sets; j++)
1631 if (rtx_equal_p (dest, sets[j].dest))
1633 sets[i].dest = pc_rtx;
1634 sets[j].dest = pc_rtx;
1640 /* Now enter the equivalences in our tables. */
1641 for (i = 0; i < n_sets; i++)
1643 rtx dest = sets[i].dest;
1644 if (REG_P (dest)
1645 || (MEM_P (dest) && cselib_record_memory))
1646 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1650 /* Record the effects of INSN. */
1652 void
1653 cselib_process_insn (rtx insn)
1655 int i;
1656 rtx x;
1658 if (find_reg_note (insn, REG_LIBCALL, NULL))
1659 cselib_current_insn_in_libcall = true;
1660 cselib_current_insn = insn;
1662 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1663 if (LABEL_P (insn)
1664 || (CALL_P (insn)
1665 && find_reg_note (insn, REG_SETJMP, NULL))
1666 || (NONJUMP_INSN_P (insn)
1667 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1668 && MEM_VOLATILE_P (PATTERN (insn))))
1670 if (find_reg_note (insn, REG_RETVAL, NULL))
1671 cselib_current_insn_in_libcall = false;
1672 cselib_clear_table ();
1673 return;
1676 if (! INSN_P (insn))
1678 if (find_reg_note (insn, REG_RETVAL, NULL))
1679 cselib_current_insn_in_libcall = false;
1680 cselib_current_insn = 0;
1681 return;
1684 /* If this is a call instruction, forget anything stored in a
1685 call clobbered register, or, if this is not a const call, in
1686 memory. */
1687 if (CALL_P (insn))
1689 HARD_REG_SET used_regs;
1691 get_call_invalidated_used_regs (insn, &used_regs, false);
1692 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1693 if (TEST_HARD_REG_BIT (used_regs, i)
1694 || (REG_VALUES (i) && REG_VALUES (i)->elt
1695 && HARD_REGNO_CALL_PART_CLOBBERED (i,
1696 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
1697 cselib_invalidate_regno (i, reg_raw_mode[i]);
1699 /* Since it is not clear how cselib is going to be used, be
1700 conservative here and treat looping pure or const functions
1701 as if they were regular functions. */
1702 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1703 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
1704 cselib_invalidate_mem (callmem);
1707 cselib_record_sets (insn);
1709 #ifdef AUTO_INC_DEC
1710 /* Clobber any registers which appear in REG_INC notes. We
1711 could keep track of the changes to their values, but it is
1712 unlikely to help. */
1713 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1714 if (REG_NOTE_KIND (x) == REG_INC)
1715 cselib_invalidate_rtx (XEXP (x, 0));
1716 #endif
1718 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1719 after we have processed the insn. */
1720 if (CALL_P (insn))
1721 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1722 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1723 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1725 if (find_reg_note (insn, REG_RETVAL, NULL))
1726 cselib_current_insn_in_libcall = false;
1727 cselib_current_insn = 0;
1729 if (n_useless_values > MAX_USELESS_VALUES
1730 /* remove_useless_values is linear in the hash table size. Avoid
1731 quadratic behavior for very large hashtables with very few
1732 useless elements. */
1733 && (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
1734 remove_useless_values ();
1737 /* Initialize cselib for one pass. The caller must also call
1738 init_alias_analysis. */
1740 void
1741 cselib_init (bool record_memory)
1743 elt_list_pool = create_alloc_pool ("elt_list",
1744 sizeof (struct elt_list), 10);
1745 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1746 sizeof (struct elt_loc_list), 10);
1747 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1748 sizeof (cselib_val), 10);
1749 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
1750 cselib_record_memory = record_memory;
1752 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
1753 see canon_true_dependence. This is only created once. */
1754 if (! callmem)
1755 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
1757 cselib_nregs = max_reg_num ();
1759 /* We preserve reg_values to allow expensive clearing of the whole thing.
1760 Reallocate it however if it happens to be too large. */
1761 if (!reg_values || reg_values_size < cselib_nregs
1762 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1764 if (reg_values)
1765 free (reg_values);
1766 /* Some space for newly emit instructions so we don't end up
1767 reallocating in between passes. */
1768 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1769 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
1771 used_regs = XNEWVEC (unsigned int, cselib_nregs);
1772 n_used_regs = 0;
1773 cselib_hash_table = htab_create (31, get_value_hash,
1774 entry_and_rtx_equal_p, NULL);
1775 cselib_current_insn_in_libcall = false;
1778 /* Called when the current user is done with cselib. */
1780 void
1781 cselib_finish (void)
1783 cselib_discard_hook = NULL;
1784 free_alloc_pool (elt_list_pool);
1785 free_alloc_pool (elt_loc_list_pool);
1786 free_alloc_pool (cselib_val_pool);
1787 free_alloc_pool (value_pool);
1788 cselib_clear_table ();
1789 htab_delete (cselib_hash_table);
1790 free (used_regs);
1791 used_regs = 0;
1792 cselib_hash_table = 0;
1793 n_useless_values = 0;
1794 next_unknown_value = 0;
1797 #include "gt-cselib.h"