2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / cp / init.c
blobdab7dc8a68fae37ce97311f04593d6cb20e9ff8f
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
67 static bool
68 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 bool is_global = !building_stmt_tree ();
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75 return is_global;
78 /* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
81 static tree
82 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 finish_compound_stmt (compound_stmt);
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
88 gcc_assert (!building_stmt_tree () == is_global);
90 return stmt_expr;
93 /* Constructors */
95 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99 static tree
100 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 tree base_ptr = TREE_VALUE ((tree) data);
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111 expand_virtual_init (binfo, base_ptr);
114 return NULL_TREE;
117 /* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
120 void
121 initialize_vtbl_ptrs (tree addr)
123 tree list;
124 tree type;
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
136 /* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate), or NULL (in the case that T does not require
140 initialization). In either case, the value can be used as
141 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
142 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
143 is the number of elements in the array. If STATIC_STORAGE_P is
144 TRUE, initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 tree init = NULL_TREE;
153 /* [dcl.init]
155 To zero-initialize an object of type T means:
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
169 -- if T is a reference type, no initialization is performed. */
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173 if (type == error_mark_node)
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
194 /* Note that for class types there will be FIELD_DECLs
195 corresponding to base classes as well. Thus, iterating
196 over TYPE_FIELDs will result in correct initialization of
197 all of the subobjects. */
198 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
200 tree value = build_zero_init (TREE_TYPE (field),
201 /*nelts=*/NULL_TREE,
202 static_storage_p);
203 if (value)
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
227 /* If we have an error_mark here, we should just return error mark
228 as we don't know the size of the array yet. */
229 if (max_index == error_mark_node)
230 return error_mark_node;
231 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
233 /* A zero-sized array, which is accepted as an extension, will
234 have an upper bound of -1. */
235 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
237 constructor_elt *ce;
239 v = VEC_alloc (constructor_elt, gc, 1);
240 ce = VEC_quick_push (constructor_elt, v, NULL);
242 /* If this is a one element array, we just use a regular init. */
243 if (tree_int_cst_equal (size_zero_node, max_index))
244 ce->index = size_zero_node;
245 else
246 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
247 max_index);
249 ce->value = build_zero_init (TREE_TYPE (type),
250 /*nelts=*/NULL_TREE,
251 static_storage_p);
254 /* Build a constructor to contain the initializations. */
255 init = build_constructor (type, v);
257 else if (TREE_CODE (type) == VECTOR_TYPE)
258 init = fold_convert (type, integer_zero_node);
259 else
260 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
262 /* In all cases, the initializer is a constant. */
263 if (init)
264 TREE_CONSTANT (init) = 1;
266 return init;
269 /* Build an expression for the default-initialization of an object of
270 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
271 ARRAY_TYPE, NELTS is the number of elements in the array. If
272 initialization of TYPE requires calling constructors, this function
273 returns NULL_TREE; the caller is responsible for arranging for the
274 constructors to be called. */
276 tree
277 build_default_init (tree type, tree nelts)
279 /* [dcl.init]:
281 To default-initialize an object of type T means:
283 --if T is a non-POD class type (clause _class_), the default construc-
284 tor for T is called (and the initialization is ill-formed if T has
285 no accessible default constructor);
287 --if T is an array type, each element is default-initialized;
289 --otherwise, the storage for the object is zero-initialized.
291 A program that calls for default-initialization of an entity of refer-
292 ence type is ill-formed. */
294 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
295 performing the initialization. This is confusing in that some
296 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
297 a class with a pointer-to-data member as a non-static data member
298 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
299 passing non-PODs to build_zero_init below, which is contrary to
300 the semantics quoted above from [dcl.init].
302 It happens, however, that the behavior of the constructor the
303 standard says we should have generated would be precisely the
304 same as that obtained by calling build_zero_init below, so things
305 work out OK. */
306 if (TYPE_NEEDS_CONSTRUCTING (type)
307 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
308 return NULL_TREE;
310 /* At this point, TYPE is either a POD class type, an array of POD
311 classes, or something even more innocuous. */
312 return build_zero_init (type, nelts, /*static_storage_p=*/false);
315 /* Return a suitable initializer for value-initializing an object of type
316 TYPE, as described in [dcl.init]. If HAVE_CTOR is true, the initializer
317 for an enclosing object is already calling the constructor for this
318 object. */
320 static tree
321 build_value_init_1 (tree type, bool have_ctor)
323 /* [dcl.init]
325 To value-initialize an object of type T means:
327 - if T is a class type (clause 9) with a user-provided constructor
328 (12.1), then the default constructor for T is called (and the
329 initialization is ill-formed if T has no accessible default
330 constructor);
332 - if T is a non-union class type without a user-provided constructor,
333 then every non-static data member and base-class component of T is
334 value-initialized;92)
336 - if T is an array type, then each element is value-initialized;
338 - otherwise, the object is zero-initialized.
340 A program that calls for default-initialization or
341 value-initialization of an entity of reference type is ill-formed.
343 92) Value-initialization for such a class object may be implemented by
344 zero-initializing the object and then calling the default
345 constructor. */
347 if (CLASS_TYPE_P (type))
349 if (TYPE_HAS_USER_CONSTRUCTOR (type) && !have_ctor)
350 return build_cplus_new
351 (type,
352 build_special_member_call (NULL_TREE, complete_ctor_identifier,
353 NULL_TREE, type, LOOKUP_NORMAL,
354 tf_warning_or_error));
355 else if (TREE_CODE (type) != UNION_TYPE)
357 tree field, init;
358 VEC(constructor_elt,gc) *v = NULL;
359 bool call_ctor = !have_ctor && TYPE_NEEDS_CONSTRUCTING (type);
361 /* Iterate over the fields, building initializations. */
362 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
364 tree ftype, value;
366 if (TREE_CODE (field) != FIELD_DECL)
367 continue;
369 ftype = TREE_TYPE (field);
371 if (TREE_CODE (ftype) == REFERENCE_TYPE)
372 error ("value-initialization of reference");
374 /* We could skip vfields and fields of types with
375 user-defined constructors, but I think that won't improve
376 performance at all; it should be simpler in general just
377 to zero out the entire object than try to only zero the
378 bits that actually need it. */
380 /* Note that for class types there will be FIELD_DECLs
381 corresponding to base classes as well. Thus, iterating
382 over TYPE_FIELDs will result in correct initialization of
383 all of the subobjects. */
384 value = build_value_init_1 (ftype, have_ctor || call_ctor);
386 if (value)
387 CONSTRUCTOR_APPEND_ELT(v, field, value);
390 /* Build a constructor to contain the zero- initializations. */
391 init = build_constructor (type, v);
392 if (call_ctor)
394 /* This is a class that needs constructing, but doesn't have
395 a user-defined constructor. So we need to zero-initialize
396 the object and then call the implicitly defined ctor.
397 Implement this by sticking the zero-initialization inside
398 the TARGET_EXPR for the constructor call;
399 cp_gimplify_init_expr will know how to handle it. */
400 tree ctor = build_special_member_call
401 (NULL_TREE, complete_ctor_identifier,
402 NULL_TREE, type, LOOKUP_NORMAL, tf_warning_or_error);
404 ctor = build_cplus_new (type, ctor);
405 init = build2 (INIT_EXPR, void_type_node,
406 TARGET_EXPR_SLOT (ctor), init);
407 init = build2 (COMPOUND_EXPR, void_type_node, init,
408 TARGET_EXPR_INITIAL (ctor));
409 TARGET_EXPR_INITIAL (ctor) = init;
410 return ctor;
412 return init;
415 else if (TREE_CODE (type) == ARRAY_TYPE)
417 VEC(constructor_elt,gc) *v = NULL;
419 /* Iterate over the array elements, building initializations. */
420 tree max_index = array_type_nelts (type);
422 /* If we have an error_mark here, we should just return error mark
423 as we don't know the size of the array yet. */
424 if (max_index == error_mark_node)
425 return error_mark_node;
426 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
428 /* A zero-sized array, which is accepted as an extension, will
429 have an upper bound of -1. */
430 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
432 constructor_elt *ce;
434 v = VEC_alloc (constructor_elt, gc, 1);
435 ce = VEC_quick_push (constructor_elt, v, NULL);
437 /* If this is a one element array, we just use a regular init. */
438 if (tree_int_cst_equal (size_zero_node, max_index))
439 ce->index = size_zero_node;
440 else
441 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
442 max_index);
444 ce->value = build_value_init_1 (TREE_TYPE (type), have_ctor);
447 /* Build a constructor to contain the initializations. */
448 return build_constructor (type, v);
451 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
454 /* Return a suitable initializer for value-initializing an object of type
455 TYPE, as described in [dcl.init]. */
457 tree
458 build_value_init (tree type)
460 return build_value_init_1 (type, false);
463 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
464 arguments. If TREE_LIST is void_type_node, an empty initializer
465 list was given; if NULL_TREE no initializer was given. */
467 static void
468 perform_member_init (tree member, tree init)
470 tree decl;
471 tree type = TREE_TYPE (member);
472 bool explicit;
474 explicit = (init != NULL_TREE);
476 /* Effective C++ rule 12 requires that all data members be
477 initialized. */
478 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
479 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
480 "list", current_function_decl, member);
482 if (init == void_type_node)
483 init = NULL_TREE;
485 /* Get an lvalue for the data member. */
486 decl = build_class_member_access_expr (current_class_ref, member,
487 /*access_path=*/NULL_TREE,
488 /*preserve_reference=*/true,
489 tf_warning_or_error);
490 if (decl == error_mark_node)
491 return;
493 /* Deal with this here, as we will get confused if we try to call the
494 assignment op for an anonymous union. This can happen in a
495 synthesized copy constructor. */
496 if (ANON_AGGR_TYPE_P (type))
498 if (init)
500 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
501 finish_expr_stmt (init);
504 else if (TYPE_NEEDS_CONSTRUCTING (type))
506 if (explicit
507 && TREE_CODE (type) == ARRAY_TYPE
508 && init != NULL_TREE
509 && TREE_CHAIN (init) == NULL_TREE
510 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
512 /* Initialization of one array from another. */
513 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
514 /*explicit_default_init_p=*/false,
515 /* from_array=*/1,
516 tf_warning_or_error));
518 else
519 finish_expr_stmt (build_aggr_init (decl, init, 0,
520 tf_warning_or_error));
522 else
524 if (init == NULL_TREE)
526 if (explicit)
528 init = build_default_init (type, /*nelts=*/NULL_TREE);
529 if (TREE_CODE (type) == REFERENCE_TYPE)
530 warning (0, "%Jdefault-initialization of %q#D, "
531 "which has reference type",
532 current_function_decl, member);
534 /* member traversal: note it leaves init NULL */
535 else if (TREE_CODE (type) == REFERENCE_TYPE)
536 pedwarn ("%Juninitialized reference member %qD",
537 current_function_decl, member);
538 else if (CP_TYPE_CONST_P (type))
539 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
540 current_function_decl, member, type);
542 else if (TREE_CODE (init) == TREE_LIST)
543 /* There was an explicit member initialization. Do some work
544 in that case. */
545 init = build_x_compound_expr_from_list (init, "member initializer");
547 if (init)
548 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
549 tf_warning_or_error));
552 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
554 tree expr;
556 expr = build_class_member_access_expr (current_class_ref, member,
557 /*access_path=*/NULL_TREE,
558 /*preserve_reference=*/false,
559 tf_warning_or_error);
560 expr = build_delete (type, expr, sfk_complete_destructor,
561 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
563 if (expr != error_mark_node)
564 finish_eh_cleanup (expr);
568 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
569 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
571 static tree
572 build_field_list (tree t, tree list, int *uses_unions_p)
574 tree fields;
576 *uses_unions_p = 0;
578 /* Note whether or not T is a union. */
579 if (TREE_CODE (t) == UNION_TYPE)
580 *uses_unions_p = 1;
582 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
584 /* Skip CONST_DECLs for enumeration constants and so forth. */
585 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
586 continue;
588 /* Keep track of whether or not any fields are unions. */
589 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
590 *uses_unions_p = 1;
592 /* For an anonymous struct or union, we must recursively
593 consider the fields of the anonymous type. They can be
594 directly initialized from the constructor. */
595 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
597 /* Add this field itself. Synthesized copy constructors
598 initialize the entire aggregate. */
599 list = tree_cons (fields, NULL_TREE, list);
600 /* And now add the fields in the anonymous aggregate. */
601 list = build_field_list (TREE_TYPE (fields), list,
602 uses_unions_p);
604 /* Add this field. */
605 else if (DECL_NAME (fields))
606 list = tree_cons (fields, NULL_TREE, list);
609 return list;
612 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
613 a FIELD_DECL or BINFO in T that needs initialization. The
614 TREE_VALUE gives the initializer, or list of initializer arguments.
616 Return a TREE_LIST containing all of the initializations required
617 for T, in the order in which they should be performed. The output
618 list has the same format as the input. */
620 static tree
621 sort_mem_initializers (tree t, tree mem_inits)
623 tree init;
624 tree base, binfo, base_binfo;
625 tree sorted_inits;
626 tree next_subobject;
627 VEC(tree,gc) *vbases;
628 int i;
629 int uses_unions_p;
631 /* Build up a list of initializations. The TREE_PURPOSE of entry
632 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
633 TREE_VALUE will be the constructor arguments, or NULL if no
634 explicit initialization was provided. */
635 sorted_inits = NULL_TREE;
637 /* Process the virtual bases. */
638 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
639 VEC_iterate (tree, vbases, i, base); i++)
640 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
642 /* Process the direct bases. */
643 for (binfo = TYPE_BINFO (t), i = 0;
644 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
645 if (!BINFO_VIRTUAL_P (base_binfo))
646 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
648 /* Process the non-static data members. */
649 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
650 /* Reverse the entire list of initializations, so that they are in
651 the order that they will actually be performed. */
652 sorted_inits = nreverse (sorted_inits);
654 /* If the user presented the initializers in an order different from
655 that in which they will actually occur, we issue a warning. Keep
656 track of the next subobject which can be explicitly initialized
657 without issuing a warning. */
658 next_subobject = sorted_inits;
660 /* Go through the explicit initializers, filling in TREE_PURPOSE in
661 the SORTED_INITS. */
662 for (init = mem_inits; init; init = TREE_CHAIN (init))
664 tree subobject;
665 tree subobject_init;
667 subobject = TREE_PURPOSE (init);
669 /* If the explicit initializers are in sorted order, then
670 SUBOBJECT will be NEXT_SUBOBJECT, or something following
671 it. */
672 for (subobject_init = next_subobject;
673 subobject_init;
674 subobject_init = TREE_CHAIN (subobject_init))
675 if (TREE_PURPOSE (subobject_init) == subobject)
676 break;
678 /* Issue a warning if the explicit initializer order does not
679 match that which will actually occur.
680 ??? Are all these on the correct lines? */
681 if (warn_reorder && !subobject_init)
683 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
684 warning (OPT_Wreorder, "%q+D will be initialized after",
685 TREE_PURPOSE (next_subobject));
686 else
687 warning (OPT_Wreorder, "base %qT will be initialized after",
688 TREE_PURPOSE (next_subobject));
689 if (TREE_CODE (subobject) == FIELD_DECL)
690 warning (OPT_Wreorder, " %q+#D", subobject);
691 else
692 warning (OPT_Wreorder, " base %qT", subobject);
693 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
696 /* Look again, from the beginning of the list. */
697 if (!subobject_init)
699 subobject_init = sorted_inits;
700 while (TREE_PURPOSE (subobject_init) != subobject)
701 subobject_init = TREE_CHAIN (subobject_init);
704 /* It is invalid to initialize the same subobject more than
705 once. */
706 if (TREE_VALUE (subobject_init))
708 if (TREE_CODE (subobject) == FIELD_DECL)
709 error ("%Jmultiple initializations given for %qD",
710 current_function_decl, subobject);
711 else
712 error ("%Jmultiple initializations given for base %qT",
713 current_function_decl, subobject);
716 /* Record the initialization. */
717 TREE_VALUE (subobject_init) = TREE_VALUE (init);
718 next_subobject = subobject_init;
721 /* [class.base.init]
723 If a ctor-initializer specifies more than one mem-initializer for
724 multiple members of the same union (including members of
725 anonymous unions), the ctor-initializer is ill-formed. */
726 if (uses_unions_p)
728 tree last_field = NULL_TREE;
729 for (init = sorted_inits; init; init = TREE_CHAIN (init))
731 tree field;
732 tree field_type;
733 int done;
735 /* Skip uninitialized members and base classes. */
736 if (!TREE_VALUE (init)
737 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
738 continue;
739 /* See if this field is a member of a union, or a member of a
740 structure contained in a union, etc. */
741 field = TREE_PURPOSE (init);
742 for (field_type = DECL_CONTEXT (field);
743 !same_type_p (field_type, t);
744 field_type = TYPE_CONTEXT (field_type))
745 if (TREE_CODE (field_type) == UNION_TYPE)
746 break;
747 /* If this field is not a member of a union, skip it. */
748 if (TREE_CODE (field_type) != UNION_TYPE)
749 continue;
751 /* It's only an error if we have two initializers for the same
752 union type. */
753 if (!last_field)
755 last_field = field;
756 continue;
759 /* See if LAST_FIELD and the field initialized by INIT are
760 members of the same union. If so, there's a problem,
761 unless they're actually members of the same structure
762 which is itself a member of a union. For example, given:
764 union { struct { int i; int j; }; };
766 initializing both `i' and `j' makes sense. */
767 field_type = DECL_CONTEXT (field);
768 done = 0;
771 tree last_field_type;
773 last_field_type = DECL_CONTEXT (last_field);
774 while (1)
776 if (same_type_p (last_field_type, field_type))
778 if (TREE_CODE (field_type) == UNION_TYPE)
779 error ("%Jinitializations for multiple members of %qT",
780 current_function_decl, last_field_type);
781 done = 1;
782 break;
785 if (same_type_p (last_field_type, t))
786 break;
788 last_field_type = TYPE_CONTEXT (last_field_type);
791 /* If we've reached the outermost class, then we're
792 done. */
793 if (same_type_p (field_type, t))
794 break;
796 field_type = TYPE_CONTEXT (field_type);
798 while (!done);
800 last_field = field;
804 return sorted_inits;
807 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
808 is a TREE_LIST giving the explicit mem-initializer-list for the
809 constructor. The TREE_PURPOSE of each entry is a subobject (a
810 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
811 is a TREE_LIST giving the arguments to the constructor or
812 void_type_node for an empty list of arguments. */
814 void
815 emit_mem_initializers (tree mem_inits)
817 /* We will already have issued an error message about the fact that
818 the type is incomplete. */
819 if (!COMPLETE_TYPE_P (current_class_type))
820 return;
822 /* Sort the mem-initializers into the order in which the
823 initializations should be performed. */
824 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
826 in_base_initializer = 1;
828 /* Initialize base classes. */
829 while (mem_inits
830 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
832 tree subobject = TREE_PURPOSE (mem_inits);
833 tree arguments = TREE_VALUE (mem_inits);
835 /* If these initializations are taking place in a copy constructor,
836 the base class should probably be explicitly initialized if there
837 is a user-defined constructor in the base class (other than the
838 default constructor, which will be called anyway). */
839 if (extra_warnings && !arguments
840 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
841 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
842 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
843 "copy constructor",
844 current_function_decl, BINFO_TYPE (subobject));
846 /* If an explicit -- but empty -- initializer list was present,
847 treat it just like default initialization at this point. */
848 if (arguments == void_type_node)
849 arguments = NULL_TREE;
851 /* Initialize the base. */
852 if (BINFO_VIRTUAL_P (subobject))
853 construct_virtual_base (subobject, arguments);
854 else
856 tree base_addr;
858 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
859 subobject, 1);
860 expand_aggr_init_1 (subobject, NULL_TREE,
861 cp_build_indirect_ref (base_addr, NULL,
862 tf_warning_or_error),
863 arguments,
864 LOOKUP_NORMAL,
865 tf_warning_or_error);
866 expand_cleanup_for_base (subobject, NULL_TREE);
869 mem_inits = TREE_CHAIN (mem_inits);
871 in_base_initializer = 0;
873 /* Initialize the vptrs. */
874 initialize_vtbl_ptrs (current_class_ptr);
876 /* Initialize the data members. */
877 while (mem_inits)
879 perform_member_init (TREE_PURPOSE (mem_inits),
880 TREE_VALUE (mem_inits));
881 mem_inits = TREE_CHAIN (mem_inits);
885 /* Returns the address of the vtable (i.e., the value that should be
886 assigned to the vptr) for BINFO. */
888 static tree
889 build_vtbl_address (tree binfo)
891 tree binfo_for = binfo;
892 tree vtbl;
894 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
895 /* If this is a virtual primary base, then the vtable we want to store
896 is that for the base this is being used as the primary base of. We
897 can't simply skip the initialization, because we may be expanding the
898 inits of a subobject constructor where the virtual base layout
899 can be different. */
900 while (BINFO_PRIMARY_P (binfo_for))
901 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
903 /* Figure out what vtable BINFO's vtable is based on, and mark it as
904 used. */
905 vtbl = get_vtbl_decl_for_binfo (binfo_for);
906 assemble_external (vtbl);
907 TREE_USED (vtbl) = 1;
909 /* Now compute the address to use when initializing the vptr. */
910 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
911 if (TREE_CODE (vtbl) == VAR_DECL)
912 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
914 return vtbl;
917 /* This code sets up the virtual function tables appropriate for
918 the pointer DECL. It is a one-ply initialization.
920 BINFO is the exact type that DECL is supposed to be. In
921 multiple inheritance, this might mean "C's A" if C : A, B. */
923 static void
924 expand_virtual_init (tree binfo, tree decl)
926 tree vtbl, vtbl_ptr;
927 tree vtt_index;
929 /* Compute the initializer for vptr. */
930 vtbl = build_vtbl_address (binfo);
932 /* We may get this vptr from a VTT, if this is a subobject
933 constructor or subobject destructor. */
934 vtt_index = BINFO_VPTR_INDEX (binfo);
935 if (vtt_index)
937 tree vtbl2;
938 tree vtt_parm;
940 /* Compute the value to use, when there's a VTT. */
941 vtt_parm = current_vtt_parm;
942 vtbl2 = build2 (POINTER_PLUS_EXPR,
943 TREE_TYPE (vtt_parm),
944 vtt_parm,
945 vtt_index);
946 vtbl2 = cp_build_indirect_ref (vtbl2, NULL, tf_warning_or_error);
947 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
949 /* The actual initializer is the VTT value only in the subobject
950 constructor. In maybe_clone_body we'll substitute NULL for
951 the vtt_parm in the case of the non-subobject constructor. */
952 vtbl = build3 (COND_EXPR,
953 TREE_TYPE (vtbl),
954 build2 (EQ_EXPR, boolean_type_node,
955 current_in_charge_parm, integer_zero_node),
956 vtbl2,
957 vtbl);
960 /* Compute the location of the vtpr. */
961 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, NULL,
962 tf_warning_or_error),
963 TREE_TYPE (binfo));
964 gcc_assert (vtbl_ptr != error_mark_node);
966 /* Assign the vtable to the vptr. */
967 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
968 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
969 tf_warning_or_error));
972 /* If an exception is thrown in a constructor, those base classes already
973 constructed must be destroyed. This function creates the cleanup
974 for BINFO, which has just been constructed. If FLAG is non-NULL,
975 it is a DECL which is nonzero when this base needs to be
976 destroyed. */
978 static void
979 expand_cleanup_for_base (tree binfo, tree flag)
981 tree expr;
983 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
984 return;
986 /* Call the destructor. */
987 expr = build_special_member_call (current_class_ref,
988 base_dtor_identifier,
989 NULL_TREE,
990 binfo,
991 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
992 tf_warning_or_error);
993 if (flag)
994 expr = fold_build3 (COND_EXPR, void_type_node,
995 c_common_truthvalue_conversion (flag),
996 expr, integer_zero_node);
998 finish_eh_cleanup (expr);
1001 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1002 constructor. */
1004 static void
1005 construct_virtual_base (tree vbase, tree arguments)
1007 tree inner_if_stmt;
1008 tree exp;
1009 tree flag;
1011 /* If there are virtual base classes with destructors, we need to
1012 emit cleanups to destroy them if an exception is thrown during
1013 the construction process. These exception regions (i.e., the
1014 period during which the cleanups must occur) begin from the time
1015 the construction is complete to the end of the function. If we
1016 create a conditional block in which to initialize the
1017 base-classes, then the cleanup region for the virtual base begins
1018 inside a block, and ends outside of that block. This situation
1019 confuses the sjlj exception-handling code. Therefore, we do not
1020 create a single conditional block, but one for each
1021 initialization. (That way the cleanup regions always begin
1022 in the outer block.) We trust the back end to figure out
1023 that the FLAG will not change across initializations, and
1024 avoid doing multiple tests. */
1025 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1026 inner_if_stmt = begin_if_stmt ();
1027 finish_if_stmt_cond (flag, inner_if_stmt);
1029 /* Compute the location of the virtual base. If we're
1030 constructing virtual bases, then we must be the most derived
1031 class. Therefore, we don't have to look up the virtual base;
1032 we already know where it is. */
1033 exp = convert_to_base_statically (current_class_ref, vbase);
1035 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1036 LOOKUP_COMPLAIN, tf_warning_or_error);
1037 finish_then_clause (inner_if_stmt);
1038 finish_if_stmt (inner_if_stmt);
1040 expand_cleanup_for_base (vbase, flag);
1043 /* Find the context in which this FIELD can be initialized. */
1045 static tree
1046 initializing_context (tree field)
1048 tree t = DECL_CONTEXT (field);
1050 /* Anonymous union members can be initialized in the first enclosing
1051 non-anonymous union context. */
1052 while (t && ANON_AGGR_TYPE_P (t))
1053 t = TYPE_CONTEXT (t);
1054 return t;
1057 /* Function to give error message if member initialization specification
1058 is erroneous. FIELD is the member we decided to initialize.
1059 TYPE is the type for which the initialization is being performed.
1060 FIELD must be a member of TYPE.
1062 MEMBER_NAME is the name of the member. */
1064 static int
1065 member_init_ok_or_else (tree field, tree type, tree member_name)
1067 if (field == error_mark_node)
1068 return 0;
1069 if (!field)
1071 error ("class %qT does not have any field named %qD", type,
1072 member_name);
1073 return 0;
1075 if (TREE_CODE (field) == VAR_DECL)
1077 error ("%q#D is a static data member; it can only be "
1078 "initialized at its definition",
1079 field);
1080 return 0;
1082 if (TREE_CODE (field) != FIELD_DECL)
1084 error ("%q#D is not a non-static data member of %qT",
1085 field, type);
1086 return 0;
1088 if (initializing_context (field) != type)
1090 error ("class %qT does not have any field named %qD", type,
1091 member_name);
1092 return 0;
1095 return 1;
1098 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1099 is a _TYPE node or TYPE_DECL which names a base for that type.
1100 Check the validity of NAME, and return either the base _TYPE, base
1101 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1102 NULL_TREE and issue a diagnostic.
1104 An old style unnamed direct single base construction is permitted,
1105 where NAME is NULL. */
1107 tree
1108 expand_member_init (tree name)
1110 tree basetype;
1111 tree field;
1113 if (!current_class_ref)
1114 return NULL_TREE;
1116 if (!name)
1118 /* This is an obsolete unnamed base class initializer. The
1119 parser will already have warned about its use. */
1120 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1122 case 0:
1123 error ("unnamed initializer for %qT, which has no base classes",
1124 current_class_type);
1125 return NULL_TREE;
1126 case 1:
1127 basetype = BINFO_TYPE
1128 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1129 break;
1130 default:
1131 error ("unnamed initializer for %qT, which uses multiple inheritance",
1132 current_class_type);
1133 return NULL_TREE;
1136 else if (TYPE_P (name))
1138 basetype = TYPE_MAIN_VARIANT (name);
1139 name = TYPE_NAME (name);
1141 else if (TREE_CODE (name) == TYPE_DECL)
1142 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1143 else
1144 basetype = NULL_TREE;
1146 if (basetype)
1148 tree class_binfo;
1149 tree direct_binfo;
1150 tree virtual_binfo;
1151 int i;
1153 if (current_template_parms)
1154 return basetype;
1156 class_binfo = TYPE_BINFO (current_class_type);
1157 direct_binfo = NULL_TREE;
1158 virtual_binfo = NULL_TREE;
1160 /* Look for a direct base. */
1161 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1162 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1163 break;
1165 /* Look for a virtual base -- unless the direct base is itself
1166 virtual. */
1167 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1168 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1170 /* [class.base.init]
1172 If a mem-initializer-id is ambiguous because it designates
1173 both a direct non-virtual base class and an inherited virtual
1174 base class, the mem-initializer is ill-formed. */
1175 if (direct_binfo && virtual_binfo)
1177 error ("%qD is both a direct base and an indirect virtual base",
1178 basetype);
1179 return NULL_TREE;
1182 if (!direct_binfo && !virtual_binfo)
1184 if (CLASSTYPE_VBASECLASSES (current_class_type))
1185 error ("type %qT is not a direct or virtual base of %qT",
1186 basetype, current_class_type);
1187 else
1188 error ("type %qT is not a direct base of %qT",
1189 basetype, current_class_type);
1190 return NULL_TREE;
1193 return direct_binfo ? direct_binfo : virtual_binfo;
1195 else
1197 if (TREE_CODE (name) == IDENTIFIER_NODE)
1198 field = lookup_field (current_class_type, name, 1, false);
1199 else
1200 field = name;
1202 if (member_init_ok_or_else (field, current_class_type, name))
1203 return field;
1206 return NULL_TREE;
1209 /* This is like `expand_member_init', only it stores one aggregate
1210 value into another.
1212 INIT comes in two flavors: it is either a value which
1213 is to be stored in EXP, or it is a parameter list
1214 to go to a constructor, which will operate on EXP.
1215 If INIT is not a parameter list for a constructor, then set
1216 LOOKUP_ONLYCONVERTING.
1217 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1218 the initializer, if FLAGS is 0, then it is the (init) form.
1219 If `init' is a CONSTRUCTOR, then we emit a warning message,
1220 explaining that such initializations are invalid.
1222 If INIT resolves to a CALL_EXPR which happens to return
1223 something of the type we are looking for, then we know
1224 that we can safely use that call to perform the
1225 initialization.
1227 The virtual function table pointer cannot be set up here, because
1228 we do not really know its type.
1230 This never calls operator=().
1232 When initializing, nothing is CONST.
1234 A default copy constructor may have to be used to perform the
1235 initialization.
1237 A constructor or a conversion operator may have to be used to
1238 perform the initialization, but not both, as it would be ambiguous. */
1240 tree
1241 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1243 tree stmt_expr;
1244 tree compound_stmt;
1245 int destroy_temps;
1246 tree type = TREE_TYPE (exp);
1247 int was_const = TREE_READONLY (exp);
1248 int was_volatile = TREE_THIS_VOLATILE (exp);
1249 int is_global;
1251 if (init == error_mark_node)
1252 return error_mark_node;
1254 TREE_READONLY (exp) = 0;
1255 TREE_THIS_VOLATILE (exp) = 0;
1257 if (init && TREE_CODE (init) != TREE_LIST)
1258 flags |= LOOKUP_ONLYCONVERTING;
1260 if (TREE_CODE (type) == ARRAY_TYPE)
1262 tree itype;
1264 /* An array may not be initialized use the parenthesized
1265 initialization form -- unless the initializer is "()". */
1266 if (init && TREE_CODE (init) == TREE_LIST)
1268 if (complain & tf_error)
1269 error ("bad array initializer");
1270 return error_mark_node;
1272 /* Must arrange to initialize each element of EXP
1273 from elements of INIT. */
1274 itype = init ? TREE_TYPE (init) : NULL_TREE;
1275 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1276 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1277 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1278 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1279 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1280 /*explicit_default_init_p=*/false,
1281 itype && same_type_p (itype,
1282 TREE_TYPE (exp)),
1283 complain);
1284 TREE_READONLY (exp) = was_const;
1285 TREE_THIS_VOLATILE (exp) = was_volatile;
1286 TREE_TYPE (exp) = type;
1287 if (init)
1288 TREE_TYPE (init) = itype;
1289 return stmt_expr;
1292 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1293 /* Just know that we've seen something for this node. */
1294 TREE_USED (exp) = 1;
1296 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1297 destroy_temps = stmts_are_full_exprs_p ();
1298 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1299 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1300 init, LOOKUP_NORMAL|flags, complain);
1301 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1302 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1303 TREE_READONLY (exp) = was_const;
1304 TREE_THIS_VOLATILE (exp) = was_volatile;
1306 return stmt_expr;
1309 static void
1310 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1311 tsubst_flags_t complain)
1313 tree type = TREE_TYPE (exp);
1314 tree ctor_name;
1316 /* It fails because there may not be a constructor which takes
1317 its own type as the first (or only parameter), but which does
1318 take other types via a conversion. So, if the thing initializing
1319 the expression is a unit element of type X, first try X(X&),
1320 followed by initialization by X. If neither of these work
1321 out, then look hard. */
1322 tree rval;
1323 tree parms;
1325 if (init && TREE_CODE (init) != TREE_LIST
1326 && (flags & LOOKUP_ONLYCONVERTING))
1328 /* Base subobjects should only get direct-initialization. */
1329 gcc_assert (true_exp == exp);
1331 if (flags & DIRECT_BIND)
1332 /* Do nothing. We hit this in two cases: Reference initialization,
1333 where we aren't initializing a real variable, so we don't want
1334 to run a new constructor; and catching an exception, where we
1335 have already built up the constructor call so we could wrap it
1336 in an exception region. */;
1337 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1339 /* A brace-enclosed initializer for an aggregate. */
1340 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1341 init = digest_init (type, init);
1343 else
1344 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1346 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1347 /* We need to protect the initialization of a catch parm with a
1348 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1349 around the TARGET_EXPR for the copy constructor. See
1350 initialize_handler_parm. */
1352 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1353 TREE_OPERAND (init, 0));
1354 TREE_TYPE (init) = void_type_node;
1356 else
1357 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1358 TREE_SIDE_EFFECTS (init) = 1;
1359 finish_expr_stmt (init);
1360 return;
1363 if (init == NULL_TREE
1364 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1366 parms = init;
1367 if (parms)
1368 init = TREE_VALUE (parms);
1370 else
1371 parms = build_tree_list (NULL_TREE, init);
1373 if (true_exp == exp)
1374 ctor_name = complete_ctor_identifier;
1375 else
1376 ctor_name = base_ctor_identifier;
1378 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags,
1379 complain);
1380 if (TREE_SIDE_EFFECTS (rval))
1381 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1384 /* This function is responsible for initializing EXP with INIT
1385 (if any).
1387 BINFO is the binfo of the type for who we are performing the
1388 initialization. For example, if W is a virtual base class of A and B,
1389 and C : A, B.
1390 If we are initializing B, then W must contain B's W vtable, whereas
1391 were we initializing C, W must contain C's W vtable.
1393 TRUE_EXP is nonzero if it is the true expression being initialized.
1394 In this case, it may be EXP, or may just contain EXP. The reason we
1395 need this is because if EXP is a base element of TRUE_EXP, we
1396 don't necessarily know by looking at EXP where its virtual
1397 baseclass fields should really be pointing. But we do know
1398 from TRUE_EXP. In constructors, we don't know anything about
1399 the value being initialized.
1401 FLAGS is just passed to `build_new_method_call'. See that function
1402 for its description. */
1404 static void
1405 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1406 tsubst_flags_t complain)
1408 tree type = TREE_TYPE (exp);
1410 gcc_assert (init != error_mark_node && type != error_mark_node);
1411 gcc_assert (building_stmt_tree ());
1413 /* Use a function returning the desired type to initialize EXP for us.
1414 If the function is a constructor, and its first argument is
1415 NULL_TREE, know that it was meant for us--just slide exp on
1416 in and expand the constructor. Constructors now come
1417 as TARGET_EXPRs. */
1419 if (init && TREE_CODE (exp) == VAR_DECL
1420 && COMPOUND_LITERAL_P (init))
1422 /* If store_init_value returns NULL_TREE, the INIT has been
1423 recorded as the DECL_INITIAL for EXP. That means there's
1424 nothing more we have to do. */
1425 init = store_init_value (exp, init);
1426 if (init)
1427 finish_expr_stmt (init);
1428 return;
1431 /* We know that expand_default_init can handle everything we want
1432 at this point. */
1433 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1436 /* Report an error if TYPE is not a user-defined, class type. If
1437 OR_ELSE is nonzero, give an error message. */
1440 is_class_type (tree type, int or_else)
1442 if (type == error_mark_node)
1443 return 0;
1445 if (! CLASS_TYPE_P (type))
1447 if (or_else)
1448 error ("%qT is not a class type", type);
1449 return 0;
1451 return 1;
1454 tree
1455 get_type_value (tree name)
1457 if (name == error_mark_node)
1458 return NULL_TREE;
1460 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1461 return IDENTIFIER_TYPE_VALUE (name);
1462 else
1463 return NULL_TREE;
1466 /* Build a reference to a member of an aggregate. This is not a C++
1467 `&', but really something which can have its address taken, and
1468 then act as a pointer to member, for example TYPE :: FIELD can have
1469 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1470 this expression is the operand of "&".
1472 @@ Prints out lousy diagnostics for operator <typename>
1473 @@ fields.
1475 @@ This function should be rewritten and placed in search.c. */
1477 tree
1478 build_offset_ref (tree type, tree member, bool address_p)
1480 tree decl;
1481 tree basebinfo = NULL_TREE;
1483 /* class templates can come in as TEMPLATE_DECLs here. */
1484 if (TREE_CODE (member) == TEMPLATE_DECL)
1485 return member;
1487 if (dependent_type_p (type) || type_dependent_expression_p (member))
1488 return build_qualified_name (NULL_TREE, type, member,
1489 /*template_p=*/false);
1491 gcc_assert (TYPE_P (type));
1492 if (! is_class_type (type, 1))
1493 return error_mark_node;
1495 gcc_assert (DECL_P (member) || BASELINK_P (member));
1496 /* Callers should call mark_used before this point. */
1497 gcc_assert (!DECL_P (member) || TREE_USED (member));
1499 if (!COMPLETE_TYPE_P (complete_type (type))
1500 && !TYPE_BEING_DEFINED (type))
1502 error ("incomplete type %qT does not have member %qD", type, member);
1503 return error_mark_node;
1506 /* Entities other than non-static members need no further
1507 processing. */
1508 if (TREE_CODE (member) == TYPE_DECL)
1509 return member;
1510 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1511 return convert_from_reference (member);
1513 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1515 error ("invalid pointer to bit-field %qD", member);
1516 return error_mark_node;
1519 /* Set up BASEBINFO for member lookup. */
1520 decl = maybe_dummy_object (type, &basebinfo);
1522 /* A lot of this logic is now handled in lookup_member. */
1523 if (BASELINK_P (member))
1525 /* Go from the TREE_BASELINK to the member function info. */
1526 tree t = BASELINK_FUNCTIONS (member);
1528 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1530 /* Get rid of a potential OVERLOAD around it. */
1531 t = OVL_CURRENT (t);
1533 /* Unique functions are handled easily. */
1535 /* For non-static member of base class, we need a special rule
1536 for access checking [class.protected]:
1538 If the access is to form a pointer to member, the
1539 nested-name-specifier shall name the derived class
1540 (or any class derived from that class). */
1541 if (address_p && DECL_P (t)
1542 && DECL_NONSTATIC_MEMBER_P (t))
1543 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1544 else
1545 perform_or_defer_access_check (basebinfo, t, t);
1547 if (DECL_STATIC_FUNCTION_P (t))
1548 return t;
1549 member = t;
1551 else
1552 TREE_TYPE (member) = unknown_type_node;
1554 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1555 /* We need additional test besides the one in
1556 check_accessibility_of_qualified_id in case it is
1557 a pointer to non-static member. */
1558 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1560 if (!address_p)
1562 /* If MEMBER is non-static, then the program has fallen afoul of
1563 [expr.prim]:
1565 An id-expression that denotes a nonstatic data member or
1566 nonstatic member function of a class can only be used:
1568 -- as part of a class member access (_expr.ref_) in which the
1569 object-expression refers to the member's class or a class
1570 derived from that class, or
1572 -- to form a pointer to member (_expr.unary.op_), or
1574 -- in the body of a nonstatic member function of that class or
1575 of a class derived from that class (_class.mfct.nonstatic_), or
1577 -- in a mem-initializer for a constructor for that class or for
1578 a class derived from that class (_class.base.init_). */
1579 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1581 /* Build a representation of a the qualified name suitable
1582 for use as the operand to "&" -- even though the "&" is
1583 not actually present. */
1584 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1585 /* In Microsoft mode, treat a non-static member function as if
1586 it were a pointer-to-member. */
1587 if (flag_ms_extensions)
1589 PTRMEM_OK_P (member) = 1;
1590 return cp_build_unary_op (ADDR_EXPR, member, 0,
1591 tf_warning_or_error);
1593 error ("invalid use of non-static member function %qD",
1594 TREE_OPERAND (member, 1));
1595 return error_mark_node;
1597 else if (TREE_CODE (member) == FIELD_DECL)
1599 error ("invalid use of non-static data member %qD", member);
1600 return error_mark_node;
1602 return member;
1605 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1606 PTRMEM_OK_P (member) = 1;
1607 return member;
1610 /* If DECL is a scalar enumeration constant or variable with a
1611 constant initializer, return the initializer (or, its initializers,
1612 recursively); otherwise, return DECL. If INTEGRAL_P, the
1613 initializer is only returned if DECL is an integral
1614 constant-expression. */
1616 static tree
1617 constant_value_1 (tree decl, bool integral_p)
1619 while (TREE_CODE (decl) == CONST_DECL
1620 || (integral_p
1621 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1622 : (TREE_CODE (decl) == VAR_DECL
1623 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1625 tree init;
1626 /* Static data members in template classes may have
1627 non-dependent initializers. References to such non-static
1628 data members are not value-dependent, so we must retrieve the
1629 initializer here. The DECL_INITIAL will have the right type,
1630 but will not have been folded because that would prevent us
1631 from performing all appropriate semantic checks at
1632 instantiation time. */
1633 if (DECL_CLASS_SCOPE_P (decl)
1634 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1635 && uses_template_parms (CLASSTYPE_TI_ARGS
1636 (DECL_CONTEXT (decl))))
1638 ++processing_template_decl;
1639 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1640 --processing_template_decl;
1642 else
1644 /* If DECL is a static data member in a template
1645 specialization, we must instantiate it here. The
1646 initializer for the static data member is not processed
1647 until needed; we need it now. */
1648 mark_used (decl);
1649 init = DECL_INITIAL (decl);
1651 if (init == error_mark_node)
1652 return decl;
1653 if (!init
1654 || !TREE_TYPE (init)
1655 || (integral_p
1656 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1657 : (!TREE_CONSTANT (init)
1658 /* Do not return an aggregate constant (of which
1659 string literals are a special case), as we do not
1660 want to make inadvertent copies of such entities,
1661 and we must be sure that their addresses are the
1662 same everywhere. */
1663 || TREE_CODE (init) == CONSTRUCTOR
1664 || TREE_CODE (init) == STRING_CST)))
1665 break;
1666 decl = unshare_expr (init);
1668 return decl;
1671 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1672 constant of integral or enumeration type, then return that value.
1673 These are those variables permitted in constant expressions by
1674 [5.19/1]. */
1676 tree
1677 integral_constant_value (tree decl)
1679 return constant_value_1 (decl, /*integral_p=*/true);
1682 /* A more relaxed version of integral_constant_value, used by the
1683 common C/C++ code and by the C++ front end for optimization
1684 purposes. */
1686 tree
1687 decl_constant_value (tree decl)
1689 return constant_value_1 (decl,
1690 /*integral_p=*/processing_template_decl);
1693 /* Common subroutines of build_new and build_vec_delete. */
1695 /* Call the global __builtin_delete to delete ADDR. */
1697 static tree
1698 build_builtin_delete_call (tree addr)
1700 mark_used (global_delete_fndecl);
1701 return build_call_n (global_delete_fndecl, 1, addr);
1704 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1705 the type of the object being allocated; otherwise, it's just TYPE.
1706 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1707 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1708 the TREE_LIST of arguments to be provided as arguments to a
1709 placement new operator. This routine performs no semantic checks;
1710 it just creates and returns a NEW_EXPR. */
1712 static tree
1713 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1714 int use_global_new)
1716 tree new_expr;
1718 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1719 nelts, init);
1720 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1721 TREE_SIDE_EFFECTS (new_expr) = 1;
1723 return new_expr;
1726 /* Make sure that there are no aliasing issues with T, a placement new
1727 expression applied to PLACEMENT, by recording the change in dynamic
1728 type. If placement new is inlined, as it is with libstdc++, and if
1729 the type of the placement new differs from the type of the
1730 placement location itself, then alias analysis may think it is OK
1731 to interchange writes to the location from before the placement new
1732 and from after the placement new. We have to prevent type-based
1733 alias analysis from applying. PLACEMENT may be NULL, which means
1734 that we couldn't capture it in a temporary variable, in which case
1735 we use a memory clobber. */
1737 static tree
1738 avoid_placement_new_aliasing (tree t, tree placement)
1740 tree type_change;
1742 if (processing_template_decl)
1743 return t;
1745 /* If we are not using type based aliasing, we don't have to do
1746 anything. */
1747 if (!flag_strict_aliasing)
1748 return t;
1750 /* If we have a pointer and a location, record the change in dynamic
1751 type. Otherwise we need a general memory clobber. */
1752 if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
1753 && placement != NULL_TREE
1754 && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
1755 type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
1756 TREE_TYPE (t),
1757 placement);
1758 else
1760 /* Build a memory clobber. */
1761 type_change = build_stmt (ASM_EXPR,
1762 build_string (0, ""),
1763 NULL_TREE,
1764 NULL_TREE,
1765 tree_cons (NULL_TREE,
1766 build_string (6, "memory"),
1767 NULL_TREE));
1769 ASM_VOLATILE_P (type_change) = 1;
1772 return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
1775 /* Generate code for a new-expression, including calling the "operator
1776 new" function, initializing the object, and, if an exception occurs
1777 during construction, cleaning up. The arguments are as for
1778 build_raw_new_expr. */
1780 static tree
1781 build_new_1 (tree placement, tree type, tree nelts, tree init,
1782 bool globally_qualified_p, tsubst_flags_t complain)
1784 tree size, rval;
1785 /* True iff this is a call to "operator new[]" instead of just
1786 "operator new". */
1787 bool array_p = false;
1788 /* True iff ARRAY_P is true and the bound of the array type is
1789 not necessarily a compile time constant. For example, VLA_P is
1790 true for "new int[f()]". */
1791 bool vla_p = false;
1792 /* The type being allocated. If ARRAY_P is true, this will be an
1793 ARRAY_TYPE. */
1794 tree full_type;
1795 /* If ARRAY_P is true, the element type of the array. This is an
1796 never ARRAY_TYPE; for something like "new int[3][4]", the
1797 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1798 FULL_TYPE. */
1799 tree elt_type;
1800 /* The type of the new-expression. (This type is always a pointer
1801 type.) */
1802 tree pointer_type;
1803 /* A pointer type pointing to the FULL_TYPE. */
1804 tree full_pointer_type;
1805 tree outer_nelts = NULL_TREE;
1806 tree alloc_call, alloc_expr;
1807 /* The address returned by the call to "operator new". This node is
1808 a VAR_DECL and is therefore reusable. */
1809 tree alloc_node;
1810 tree alloc_fn;
1811 tree cookie_expr, init_expr;
1812 int nothrow, check_new;
1813 int use_java_new = 0;
1814 /* If non-NULL, the number of extra bytes to allocate at the
1815 beginning of the storage allocated for an array-new expression in
1816 order to store the number of elements. */
1817 tree cookie_size = NULL_TREE;
1818 tree placement_expr = NULL_TREE;
1819 /* True if the function we are calling is a placement allocation
1820 function. */
1821 bool placement_allocation_fn_p;
1822 tree args = NULL_TREE;
1823 /* True if the storage must be initialized, either by a constructor
1824 or due to an explicit new-initializer. */
1825 bool is_initialized;
1826 /* The address of the thing allocated, not including any cookie. In
1827 particular, if an array cookie is in use, DATA_ADDR is the
1828 address of the first array element. This node is a VAR_DECL, and
1829 is therefore reusable. */
1830 tree data_addr;
1831 tree init_preeval_expr = NULL_TREE;
1833 if (nelts)
1835 tree index;
1837 outer_nelts = nelts;
1838 array_p = true;
1840 /* ??? The middle-end will error on us for building a VLA outside a
1841 function context. Methinks that's not it's purvey. So we'll do
1842 our own VLA layout later. */
1843 vla_p = true;
1844 index = convert (sizetype, nelts);
1845 index = size_binop (MINUS_EXPR, index, size_one_node);
1846 index = build_index_type (index);
1847 full_type = build_cplus_array_type (type, NULL_TREE);
1848 /* We need a copy of the type as build_array_type will return a shared copy
1849 of the incomplete array type. */
1850 full_type = build_distinct_type_copy (full_type);
1851 TYPE_DOMAIN (full_type) = index;
1852 SET_TYPE_STRUCTURAL_EQUALITY (full_type);
1854 else
1856 full_type = type;
1857 if (TREE_CODE (type) == ARRAY_TYPE)
1859 array_p = true;
1860 nelts = array_type_nelts_top (type);
1861 outer_nelts = nelts;
1862 type = TREE_TYPE (type);
1866 /* If our base type is an array, then make sure we know how many elements
1867 it has. */
1868 for (elt_type = type;
1869 TREE_CODE (elt_type) == ARRAY_TYPE;
1870 elt_type = TREE_TYPE (elt_type))
1871 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1872 array_type_nelts_top (elt_type),
1873 complain);
1875 if (TREE_CODE (elt_type) == VOID_TYPE)
1877 if (complain & tf_error)
1878 error ("invalid type %<void%> for new");
1879 return error_mark_node;
1882 if (abstract_virtuals_error (NULL_TREE, elt_type))
1883 return error_mark_node;
1885 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1886 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1888 if (complain & tf_error)
1889 error ("uninitialized const in %<new%> of %q#T", elt_type);
1890 return error_mark_node;
1893 size = size_in_bytes (elt_type);
1894 if (array_p)
1896 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1897 if (vla_p)
1899 tree n, bitsize;
1901 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1902 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1903 ...>> to be valid. */
1904 TYPE_SIZE_UNIT (full_type) = size;
1905 n = convert (bitsizetype, nelts);
1906 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1907 TYPE_SIZE (full_type) = bitsize;
1911 alloc_fn = NULL_TREE;
1913 /* Allocate the object. */
1914 if (! placement && TYPE_FOR_JAVA (elt_type))
1916 tree class_addr;
1917 tree class_decl = build_java_class_ref (elt_type);
1918 static const char alloc_name[] = "_Jv_AllocObject";
1920 if (class_decl == error_mark_node)
1921 return error_mark_node;
1923 use_java_new = 1;
1924 if (!get_global_value_if_present (get_identifier (alloc_name),
1925 &alloc_fn))
1927 if (complain & tf_error)
1928 error ("call to Java constructor with %qs undefined", alloc_name);
1929 return error_mark_node;
1931 else if (really_overloaded_fn (alloc_fn))
1933 if (complain & tf_error)
1934 error ("%qD should never be overloaded", alloc_fn);
1935 return error_mark_node;
1937 alloc_fn = OVL_CURRENT (alloc_fn);
1938 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1939 alloc_call = (cp_build_function_call
1940 (alloc_fn,
1941 build_tree_list (NULL_TREE, class_addr),
1942 complain));
1944 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
1946 error ("Java class %q#T object allocated using placement new", elt_type);
1947 return error_mark_node;
1949 else
1951 tree fnname;
1952 tree fns;
1954 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1956 if (!globally_qualified_p
1957 && CLASS_TYPE_P (elt_type)
1958 && (array_p
1959 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1960 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1962 /* Use a class-specific operator new. */
1963 /* If a cookie is required, add some extra space. */
1964 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1966 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1967 size = size_binop (PLUS_EXPR, size, cookie_size);
1969 /* Create the argument list. */
1970 args = tree_cons (NULL_TREE, size, placement);
1971 /* Do name-lookup to find the appropriate operator. */
1972 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1973 if (fns == NULL_TREE)
1975 if (complain & tf_error)
1976 error ("no suitable %qD found in class %qT", fnname, elt_type);
1977 return error_mark_node;
1979 if (TREE_CODE (fns) == TREE_LIST)
1981 if (complain & tf_error)
1983 error ("request for member %qD is ambiguous", fnname);
1984 print_candidates (fns);
1986 return error_mark_node;
1988 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1989 fns, args,
1990 /*conversion_path=*/NULL_TREE,
1991 LOOKUP_NORMAL,
1992 &alloc_fn,
1993 complain);
1995 else
1997 /* Use a global operator new. */
1998 /* See if a cookie might be required. */
1999 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2000 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2001 else
2002 cookie_size = NULL_TREE;
2004 alloc_call = build_operator_new_call (fnname, placement,
2005 &size, &cookie_size,
2006 &alloc_fn);
2010 if (alloc_call == error_mark_node)
2011 return error_mark_node;
2013 gcc_assert (alloc_fn != NULL_TREE);
2015 /* If PLACEMENT is a simple pointer type and is not passed by reference,
2016 then copy it into PLACEMENT_EXPR. */
2017 if (!processing_template_decl
2018 && placement != NULL_TREE
2019 && TREE_CHAIN (placement) == NULL_TREE
2020 && TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) == POINTER_TYPE
2021 && TREE_CODE (alloc_call) == CALL_EXPR
2022 && call_expr_nargs (alloc_call) == 2
2023 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2024 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2026 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2028 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2029 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2031 placement_expr = get_target_expr (TREE_VALUE (placement));
2032 CALL_EXPR_ARG (alloc_call, 1)
2033 = convert (TREE_TYPE (placement_arg), placement_expr);
2037 /* In the simple case, we can stop now. */
2038 pointer_type = build_pointer_type (type);
2039 if (!cookie_size && !is_initialized)
2041 rval = build_nop (pointer_type, alloc_call);
2042 if (placement != NULL)
2043 rval = avoid_placement_new_aliasing (rval, placement_expr);
2044 return rval;
2047 /* While we're working, use a pointer to the type we've actually
2048 allocated. Store the result of the call in a variable so that we
2049 can use it more than once. */
2050 full_pointer_type = build_pointer_type (full_type);
2051 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
2052 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2054 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2055 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2056 alloc_call = TREE_OPERAND (alloc_call, 1);
2058 /* Now, check to see if this function is actually a placement
2059 allocation function. This can happen even when PLACEMENT is NULL
2060 because we might have something like:
2062 struct S { void* operator new (size_t, int i = 0); };
2064 A call to `new S' will get this allocation function, even though
2065 there is no explicit placement argument. If there is more than
2066 one argument, or there are variable arguments, then this is a
2067 placement allocation function. */
2068 placement_allocation_fn_p
2069 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2070 || varargs_function_p (alloc_fn));
2072 /* Preevaluate the placement args so that we don't reevaluate them for a
2073 placement delete. */
2074 if (placement_allocation_fn_p)
2076 tree inits;
2077 stabilize_call (alloc_call, &inits);
2078 if (inits)
2079 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2080 alloc_expr);
2083 /* unless an allocation function is declared with an empty excep-
2084 tion-specification (_except.spec_), throw(), it indicates failure to
2085 allocate storage by throwing a bad_alloc exception (clause _except_,
2086 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2087 cation function is declared with an empty exception-specification,
2088 throw(), it returns null to indicate failure to allocate storage and a
2089 non-null pointer otherwise.
2091 So check for a null exception spec on the op new we just called. */
2093 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2094 check_new = (flag_check_new || nothrow) && ! use_java_new;
2096 if (cookie_size)
2098 tree cookie;
2099 tree cookie_ptr;
2100 tree size_ptr_type;
2102 /* Adjust so we're pointing to the start of the object. */
2103 data_addr = get_target_expr (build2 (POINTER_PLUS_EXPR, full_pointer_type,
2104 alloc_node, cookie_size));
2106 /* Store the number of bytes allocated so that we can know how
2107 many elements to destroy later. We use the last sizeof
2108 (size_t) bytes to store the number of elements. */
2109 cookie_ptr = fold_build1 (NEGATE_EXPR, sizetype, size_in_bytes (sizetype));
2110 size_ptr_type = build_pointer_type (sizetype);
2111 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type,
2112 fold_convert (size_ptr_type, data_addr), cookie_ptr);
2113 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2115 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2117 if (targetm.cxx.cookie_has_size ())
2119 /* Also store the element size. */
2120 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2121 fold_build1 (NEGATE_EXPR, sizetype,
2122 size_in_bytes (sizetype)));
2124 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2125 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2126 size_in_bytes(elt_type));
2127 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2128 cookie, cookie_expr);
2130 data_addr = TARGET_EXPR_SLOT (data_addr);
2132 else
2134 cookie_expr = NULL_TREE;
2135 data_addr = alloc_node;
2138 /* Now initialize the allocated object. Note that we preevaluate the
2139 initialization expression, apart from the actual constructor call or
2140 assignment--we do this because we want to delay the allocation as long
2141 as possible in order to minimize the size of the exception region for
2142 placement delete. */
2143 if (is_initialized)
2145 bool stable;
2147 init_expr = cp_build_indirect_ref (data_addr, NULL, complain);
2149 if (array_p)
2151 bool explicit_default_init_p = false;
2153 if (init == void_zero_node)
2155 init = NULL_TREE;
2156 explicit_default_init_p = true;
2158 else if (init)
2160 if (complain & tf_error)
2161 pedwarn ("ISO C++ forbids initialization in array new");
2162 else
2163 return error_mark_node;
2165 init_expr
2166 = build_vec_init (init_expr,
2167 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2168 integer_one_node,
2169 complain),
2170 init,
2171 explicit_default_init_p,
2172 /*from_array=*/0,
2173 complain);
2175 /* An array initialization is stable because the initialization
2176 of each element is a full-expression, so the temporaries don't
2177 leak out. */
2178 stable = true;
2180 else
2182 if (init == void_zero_node)
2183 init = build_default_init (full_type, nelts);
2185 if (TYPE_NEEDS_CONSTRUCTING (type))
2187 init_expr = build_special_member_call (init_expr,
2188 complete_ctor_identifier,
2189 init, elt_type,
2190 LOOKUP_NORMAL,
2191 complain);
2192 stable = stabilize_init (init_expr, &init_preeval_expr);
2194 else
2196 /* We are processing something like `new int (10)', which
2197 means allocate an int, and initialize it with 10. */
2199 if (TREE_CODE (init) == TREE_LIST)
2200 init = build_x_compound_expr_from_list (init,
2201 "new initializer");
2202 else
2203 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2204 || TREE_TYPE (init) != NULL_TREE);
2206 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, init,
2207 complain);
2208 stable = stabilize_init (init_expr, &init_preeval_expr);
2212 if (init_expr == error_mark_node)
2213 return error_mark_node;
2215 /* If any part of the object initialization terminates by throwing an
2216 exception and a suitable deallocation function can be found, the
2217 deallocation function is called to free the memory in which the
2218 object was being constructed, after which the exception continues
2219 to propagate in the context of the new-expression. If no
2220 unambiguous matching deallocation function can be found,
2221 propagating the exception does not cause the object's memory to be
2222 freed. */
2223 if (flag_exceptions && ! use_java_new)
2225 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2226 tree cleanup;
2228 /* The Standard is unclear here, but the right thing to do
2229 is to use the same method for finding deallocation
2230 functions that we use for finding allocation functions. */
2231 cleanup = build_op_delete_call (dcode, alloc_node, size,
2232 globally_qualified_p,
2233 (placement_allocation_fn_p
2234 ? alloc_call : NULL_TREE),
2235 alloc_fn);
2237 if (!cleanup)
2238 /* We're done. */;
2239 else if (stable)
2240 /* This is much simpler if we were able to preevaluate all of
2241 the arguments to the constructor call. */
2242 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2243 init_expr, cleanup);
2244 else
2245 /* Ack! First we allocate the memory. Then we set our sentry
2246 variable to true, and expand a cleanup that deletes the
2247 memory if sentry is true. Then we run the constructor, and
2248 finally clear the sentry.
2250 We need to do this because we allocate the space first, so
2251 if there are any temporaries with cleanups in the
2252 constructor args and we weren't able to preevaluate them, we
2253 need this EH region to extend until end of full-expression
2254 to preserve nesting. */
2256 tree end, sentry, begin;
2258 begin = get_target_expr (boolean_true_node);
2259 CLEANUP_EH_ONLY (begin) = 1;
2261 sentry = TARGET_EXPR_SLOT (begin);
2263 TARGET_EXPR_CLEANUP (begin)
2264 = build3 (COND_EXPR, void_type_node, sentry,
2265 cleanup, void_zero_node);
2267 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2268 sentry, boolean_false_node);
2270 init_expr
2271 = build2 (COMPOUND_EXPR, void_type_node, begin,
2272 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2273 end));
2278 else
2279 init_expr = NULL_TREE;
2281 /* Now build up the return value in reverse order. */
2283 rval = data_addr;
2285 if (init_expr)
2286 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2287 if (cookie_expr)
2288 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2290 if (rval == alloc_node)
2291 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2292 and return the call (which doesn't need to be adjusted). */
2293 rval = TARGET_EXPR_INITIAL (alloc_expr);
2294 else
2296 if (check_new)
2298 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2299 integer_zero_node,
2300 complain);
2301 rval = build_conditional_expr (ifexp, rval, alloc_node,
2302 complain);
2305 /* Perform the allocation before anything else, so that ALLOC_NODE
2306 has been initialized before we start using it. */
2307 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2310 if (init_preeval_expr)
2311 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2313 /* Convert to the final type. */
2314 rval = build_nop (pointer_type, rval);
2316 /* A new-expression is never an lvalue. */
2317 gcc_assert (!lvalue_p (rval));
2319 if (placement != NULL)
2320 rval = avoid_placement_new_aliasing (rval, placement_expr);
2322 return rval;
2325 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2326 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2327 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2328 NELTS is not NULL, then this is an array-new allocation; TYPE is
2329 the type of the elements in the array and NELTS is the number of
2330 elements in the array. INIT, if non-NULL, is the initializer for
2331 the new object, or void_zero_node to indicate an initializer of
2332 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2333 "::new" rather than just "new". */
2335 tree
2336 build_new (tree placement, tree type, tree nelts, tree init,
2337 int use_global_new, tsubst_flags_t complain)
2339 tree rval;
2340 tree orig_placement;
2341 tree orig_nelts;
2342 tree orig_init;
2344 if (placement == error_mark_node || type == error_mark_node
2345 || init == error_mark_node)
2346 return error_mark_node;
2348 orig_placement = placement;
2349 orig_nelts = nelts;
2350 orig_init = init;
2352 if (processing_template_decl)
2354 if (dependent_type_p (type)
2355 || any_type_dependent_arguments_p (placement)
2356 || (nelts && type_dependent_expression_p (nelts))
2357 || (init != void_zero_node
2358 && any_type_dependent_arguments_p (init)))
2359 return build_raw_new_expr (placement, type, nelts, init,
2360 use_global_new);
2361 placement = build_non_dependent_args (placement);
2362 if (nelts)
2363 nelts = build_non_dependent_expr (nelts);
2364 if (init != void_zero_node)
2365 init = build_non_dependent_args (init);
2368 if (nelts)
2370 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2372 if (complain & tf_error)
2373 pedwarn ("size in array new must have integral type");
2374 else
2375 return error_mark_node;
2377 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2380 /* ``A reference cannot be created by the new operator. A reference
2381 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2382 returned by new.'' ARM 5.3.3 */
2383 if (TREE_CODE (type) == REFERENCE_TYPE)
2385 if (complain & tf_error)
2386 error ("new cannot be applied to a reference type");
2387 else
2388 return error_mark_node;
2389 type = TREE_TYPE (type);
2392 if (TREE_CODE (type) == FUNCTION_TYPE)
2394 if (complain & tf_error)
2395 error ("new cannot be applied to a function type");
2396 return error_mark_node;
2399 /* The type allocated must be complete. If the new-type-id was
2400 "T[N]" then we are just checking that "T" is complete here, but
2401 that is equivalent, since the value of "N" doesn't matter. */
2402 if (!complete_type_or_else (type, NULL_TREE))
2403 return error_mark_node;
2405 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2406 if (rval == error_mark_node)
2407 return error_mark_node;
2409 if (processing_template_decl)
2410 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2411 use_global_new);
2413 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2414 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2415 TREE_NO_WARNING (rval) = 1;
2417 return rval;
2420 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2422 tree
2423 build_java_class_ref (tree type)
2425 tree name = NULL_TREE, class_decl;
2426 static tree CL_suffix = NULL_TREE;
2427 if (CL_suffix == NULL_TREE)
2428 CL_suffix = get_identifier("class$");
2429 if (jclass_node == NULL_TREE)
2431 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2432 if (jclass_node == NULL_TREE)
2434 error ("call to Java constructor, while %<jclass%> undefined");
2435 return error_mark_node;
2437 jclass_node = TREE_TYPE (jclass_node);
2440 /* Mangle the class$ field. */
2442 tree field;
2443 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2444 if (DECL_NAME (field) == CL_suffix)
2446 mangle_decl (field);
2447 name = DECL_ASSEMBLER_NAME (field);
2448 break;
2450 if (!field)
2452 error ("can't find %<class$%> in %qT", type);
2453 return error_mark_node;
2457 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2458 if (class_decl == NULL_TREE)
2460 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2461 TREE_STATIC (class_decl) = 1;
2462 DECL_EXTERNAL (class_decl) = 1;
2463 TREE_PUBLIC (class_decl) = 1;
2464 DECL_ARTIFICIAL (class_decl) = 1;
2465 DECL_IGNORED_P (class_decl) = 1;
2466 pushdecl_top_level (class_decl);
2467 make_decl_rtl (class_decl);
2469 return class_decl;
2472 static tree
2473 build_vec_delete_1 (tree base, tree maxindex, tree type,
2474 special_function_kind auto_delete_vec, int use_global_delete)
2476 tree virtual_size;
2477 tree ptype = build_pointer_type (type = complete_type (type));
2478 tree size_exp = size_in_bytes (type);
2480 /* Temporary variables used by the loop. */
2481 tree tbase, tbase_init;
2483 /* This is the body of the loop that implements the deletion of a
2484 single element, and moves temp variables to next elements. */
2485 tree body;
2487 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2488 tree loop = 0;
2490 /* This is the thing that governs what to do after the loop has run. */
2491 tree deallocate_expr = 0;
2493 /* This is the BIND_EXPR which holds the outermost iterator of the
2494 loop. It is convenient to set this variable up and test it before
2495 executing any other code in the loop.
2496 This is also the containing expression returned by this function. */
2497 tree controller = NULL_TREE;
2498 tree tmp;
2500 /* We should only have 1-D arrays here. */
2501 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2503 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2504 goto no_destructor;
2506 /* The below is short by the cookie size. */
2507 virtual_size = size_binop (MULT_EXPR, size_exp,
2508 convert (sizetype, maxindex));
2510 tbase = create_temporary_var (ptype);
2511 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2512 fold_build2 (POINTER_PLUS_EXPR, ptype,
2513 fold_convert (ptype, base),
2514 virtual_size),
2515 tf_warning_or_error);
2516 DECL_REGISTER (tbase) = 1;
2517 controller = build3 (BIND_EXPR, void_type_node, tbase,
2518 NULL_TREE, NULL_TREE);
2519 TREE_SIDE_EFFECTS (controller) = 1;
2521 body = build1 (EXIT_EXPR, void_type_node,
2522 build2 (EQ_EXPR, boolean_type_node, tbase,
2523 fold_convert (ptype, base)));
2524 tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
2525 body = build_compound_expr
2526 (body, cp_build_modify_expr (tbase, NOP_EXPR,
2527 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2528 tf_warning_or_error));
2529 body = build_compound_expr
2530 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2531 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2533 loop = build1 (LOOP_EXPR, void_type_node, body);
2534 loop = build_compound_expr (tbase_init, loop);
2536 no_destructor:
2537 /* If the delete flag is one, or anything else with the low bit set,
2538 delete the storage. */
2539 if (auto_delete_vec != sfk_base_destructor)
2541 tree base_tbd;
2543 /* The below is short by the cookie size. */
2544 virtual_size = size_binop (MULT_EXPR, size_exp,
2545 convert (sizetype, maxindex));
2547 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2548 /* no header */
2549 base_tbd = base;
2550 else
2552 tree cookie_size;
2554 cookie_size = targetm.cxx.get_cookie_size (type);
2555 base_tbd
2556 = cp_convert (ptype,
2557 cp_build_binary_op (MINUS_EXPR,
2558 cp_convert (string_type_node,
2559 base),
2560 cookie_size,
2561 tf_warning_or_error));
2562 /* True size with header. */
2563 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2566 if (auto_delete_vec == sfk_deleting_destructor)
2567 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2568 base_tbd, virtual_size,
2569 use_global_delete & 1,
2570 /*placement=*/NULL_TREE,
2571 /*alloc_fn=*/NULL_TREE);
2574 body = loop;
2575 if (!deallocate_expr)
2577 else if (!body)
2578 body = deallocate_expr;
2579 else
2580 body = build_compound_expr (body, deallocate_expr);
2582 if (!body)
2583 body = integer_zero_node;
2585 /* Outermost wrapper: If pointer is null, punt. */
2586 body = fold_build3 (COND_EXPR, void_type_node,
2587 fold_build2 (NE_EXPR, boolean_type_node, base,
2588 convert (TREE_TYPE (base),
2589 integer_zero_node)),
2590 body, integer_zero_node);
2591 body = build1 (NOP_EXPR, void_type_node, body);
2593 if (controller)
2595 TREE_OPERAND (controller, 1) = body;
2596 body = controller;
2599 if (TREE_CODE (base) == SAVE_EXPR)
2600 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2601 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2603 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2606 /* Create an unnamed variable of the indicated TYPE. */
2608 tree
2609 create_temporary_var (tree type)
2611 tree decl;
2613 decl = build_decl (VAR_DECL, NULL_TREE, type);
2614 TREE_USED (decl) = 1;
2615 DECL_ARTIFICIAL (decl) = 1;
2616 DECL_IGNORED_P (decl) = 1;
2617 DECL_SOURCE_LOCATION (decl) = input_location;
2618 DECL_CONTEXT (decl) = current_function_decl;
2620 return decl;
2623 /* Create a new temporary variable of the indicated TYPE, initialized
2624 to INIT.
2626 It is not entered into current_binding_level, because that breaks
2627 things when it comes time to do final cleanups (which take place
2628 "outside" the binding contour of the function). */
2630 static tree
2631 get_temp_regvar (tree type, tree init)
2633 tree decl;
2635 decl = create_temporary_var (type);
2636 add_decl_expr (decl);
2638 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2639 tf_warning_or_error));
2641 return decl;
2644 /* `build_vec_init' returns tree structure that performs
2645 initialization of a vector of aggregate types.
2647 BASE is a reference to the vector, of ARRAY_TYPE.
2648 MAXINDEX is the maximum index of the array (one less than the
2649 number of elements). It is only used if
2650 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2652 INIT is the (possibly NULL) initializer.
2654 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2655 elements in the array are default-initialized.
2657 FROM_ARRAY is 0 if we should init everything with INIT
2658 (i.e., every element initialized from INIT).
2659 FROM_ARRAY is 1 if we should index into INIT in parallel
2660 with initialization of DECL.
2661 FROM_ARRAY is 2 if we should index into INIT in parallel,
2662 but use assignment instead of initialization. */
2664 tree
2665 build_vec_init (tree base, tree maxindex, tree init,
2666 bool explicit_default_init_p,
2667 int from_array, tsubst_flags_t complain)
2669 tree rval;
2670 tree base2 = NULL_TREE;
2671 tree size;
2672 tree itype = NULL_TREE;
2673 tree iterator;
2674 /* The type of the array. */
2675 tree atype = TREE_TYPE (base);
2676 /* The type of an element in the array. */
2677 tree type = TREE_TYPE (atype);
2678 /* The element type reached after removing all outer array
2679 types. */
2680 tree inner_elt_type;
2681 /* The type of a pointer to an element in the array. */
2682 tree ptype;
2683 tree stmt_expr;
2684 tree compound_stmt;
2685 int destroy_temps;
2686 tree try_block = NULL_TREE;
2687 int num_initialized_elts = 0;
2688 bool is_global;
2690 if (TYPE_DOMAIN (atype))
2691 maxindex = array_type_nelts (atype);
2693 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2694 return error_mark_node;
2696 if (explicit_default_init_p)
2697 gcc_assert (!init);
2699 inner_elt_type = strip_array_types (atype);
2700 if (init
2701 && (from_array == 2
2702 ? (!CLASS_TYPE_P (inner_elt_type)
2703 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2704 : !TYPE_NEEDS_CONSTRUCTING (type))
2705 && ((TREE_CODE (init) == CONSTRUCTOR
2706 /* Don't do this if the CONSTRUCTOR might contain something
2707 that might throw and require us to clean up. */
2708 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2709 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2710 || from_array))
2712 /* Do non-default initialization of POD arrays resulting from
2713 brace-enclosed initializers. In this case, digest_init and
2714 store_constructor will handle the semantics for us. */
2716 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2717 return stmt_expr;
2720 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2721 ptype = build_pointer_type (type);
2722 size = size_in_bytes (type);
2723 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2724 base = cp_convert (ptype, decay_conversion (base));
2726 /* The code we are generating looks like:
2728 T* t1 = (T*) base;
2729 T* rval = t1;
2730 ptrdiff_t iterator = maxindex;
2731 try {
2732 for (; iterator != -1; --iterator) {
2733 ... initialize *t1 ...
2734 ++t1;
2736 } catch (...) {
2737 ... destroy elements that were constructed ...
2739 rval;
2742 We can omit the try and catch blocks if we know that the
2743 initialization will never throw an exception, or if the array
2744 elements do not have destructors. We can omit the loop completely if
2745 the elements of the array do not have constructors.
2747 We actually wrap the entire body of the above in a STMT_EXPR, for
2748 tidiness.
2750 When copying from array to another, when the array elements have
2751 only trivial copy constructors, we should use __builtin_memcpy
2752 rather than generating a loop. That way, we could take advantage
2753 of whatever cleverness the back end has for dealing with copies
2754 of blocks of memory. */
2756 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2757 destroy_temps = stmts_are_full_exprs_p ();
2758 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2759 rval = get_temp_regvar (ptype, base);
2760 base = get_temp_regvar (ptype, rval);
2761 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2763 /* Protect the entire array initialization so that we can destroy
2764 the partially constructed array if an exception is thrown.
2765 But don't do this if we're assigning. */
2766 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2767 && from_array != 2)
2769 try_block = begin_try_block ();
2772 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2774 /* Do non-default initialization of non-POD arrays resulting from
2775 brace-enclosed initializers. */
2776 unsigned HOST_WIDE_INT idx;
2777 tree elt;
2778 from_array = 0;
2780 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2782 tree baseref = build1 (INDIRECT_REF, type, base);
2784 num_initialized_elts++;
2786 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2787 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2788 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2789 else
2790 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2791 elt, complain));
2792 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2794 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2795 complain));
2796 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2797 complain));
2800 /* Clear out INIT so that we don't get confused below. */
2801 init = NULL_TREE;
2803 else if (from_array)
2805 /* If initializing one array from another, initialize element by
2806 element. We rely upon the below calls the do argument
2807 checking. */
2808 if (init)
2810 base2 = decay_conversion (init);
2811 itype = TREE_TYPE (base2);
2812 base2 = get_temp_regvar (itype, base2);
2813 itype = TREE_TYPE (itype);
2815 else if (TYPE_LANG_SPECIFIC (type)
2816 && TYPE_NEEDS_CONSTRUCTING (type)
2817 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2819 if (complain & tf_error)
2820 error ("initializer ends prematurely");
2821 return error_mark_node;
2825 /* Now, default-initialize any remaining elements. We don't need to
2826 do that if a) the type does not need constructing, or b) we've
2827 already initialized all the elements.
2829 We do need to keep going if we're copying an array. */
2831 if (from_array
2832 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2833 && ! (host_integerp (maxindex, 0)
2834 && (num_initialized_elts
2835 == tree_low_cst (maxindex, 0) + 1))))
2837 /* If the ITERATOR is equal to -1, then we don't have to loop;
2838 we've already initialized all the elements. */
2839 tree for_stmt;
2840 tree elt_init;
2841 tree to;
2843 for_stmt = begin_for_stmt ();
2844 finish_for_init_stmt (for_stmt);
2845 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2846 build_int_cst (TREE_TYPE (iterator), -1)),
2847 for_stmt);
2848 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2849 complain),
2850 for_stmt);
2852 to = build1 (INDIRECT_REF, type, base);
2854 if (from_array)
2856 tree from;
2858 if (base2)
2859 from = build1 (INDIRECT_REF, itype, base2);
2860 else
2861 from = NULL_TREE;
2863 if (from_array == 2)
2864 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2865 complain);
2866 else if (TYPE_NEEDS_CONSTRUCTING (type))
2867 elt_init = build_aggr_init (to, from, 0, complain);
2868 else if (from)
2869 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2870 complain);
2871 else
2872 gcc_unreachable ();
2874 else if (TREE_CODE (type) == ARRAY_TYPE)
2876 if (init != 0)
2877 sorry
2878 ("cannot initialize multi-dimensional array with initializer");
2879 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2880 0, 0,
2881 /*explicit_default_init_p=*/false,
2882 0, complain);
2884 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2885 elt_init = (cp_build_modify_expr
2886 (to, INIT_EXPR,
2887 build_zero_init (type, size_one_node,
2888 /*static_storage_p=*/false),
2889 complain));
2890 else
2891 elt_init = build_aggr_init (to, init, 0, complain);
2893 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2894 finish_expr_stmt (elt_init);
2895 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2897 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2898 complain));
2899 if (base2)
2900 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
2901 complain));
2903 finish_for_stmt (for_stmt);
2906 /* Make sure to cleanup any partially constructed elements. */
2907 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2908 && from_array != 2)
2910 tree e;
2911 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator,
2912 complain);
2914 /* Flatten multi-dimensional array since build_vec_delete only
2915 expects one-dimensional array. */
2916 if (TREE_CODE (type) == ARRAY_TYPE)
2917 m = cp_build_binary_op (MULT_EXPR, m,
2918 array_type_nelts_total (type),
2919 complain);
2921 finish_cleanup_try_block (try_block);
2922 e = build_vec_delete_1 (rval, m,
2923 inner_elt_type, sfk_base_destructor,
2924 /*use_global_delete=*/0);
2925 finish_cleanup (e, try_block);
2928 /* The value of the array initialization is the array itself, RVAL
2929 is a pointer to the first element. */
2930 finish_stmt_expr_expr (rval, stmt_expr);
2932 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2934 /* Now convert make the result have the correct type. */
2935 atype = build_pointer_type (atype);
2936 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2937 stmt_expr = cp_build_indirect_ref (stmt_expr, NULL, complain);
2939 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2940 return stmt_expr;
2943 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2944 build_delete. */
2946 static tree
2947 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2949 tree name;
2950 tree fn;
2951 switch (dtor_kind)
2953 case sfk_complete_destructor:
2954 name = complete_dtor_identifier;
2955 break;
2957 case sfk_base_destructor:
2958 name = base_dtor_identifier;
2959 break;
2961 case sfk_deleting_destructor:
2962 name = deleting_dtor_identifier;
2963 break;
2965 default:
2966 gcc_unreachable ();
2968 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2969 return build_new_method_call (exp, fn,
2970 /*args=*/NULL_TREE,
2971 /*conversion_path=*/NULL_TREE,
2972 flags,
2973 /*fn_p=*/NULL,
2974 tf_warning_or_error);
2977 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2978 ADDR is an expression which yields the store to be destroyed.
2979 AUTO_DELETE is the name of the destructor to call, i.e., either
2980 sfk_complete_destructor, sfk_base_destructor, or
2981 sfk_deleting_destructor.
2983 FLAGS is the logical disjunction of zero or more LOOKUP_
2984 flags. See cp-tree.h for more info. */
2986 tree
2987 build_delete (tree type, tree addr, special_function_kind auto_delete,
2988 int flags, int use_global_delete)
2990 tree expr;
2992 if (addr == error_mark_node)
2993 return error_mark_node;
2995 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2996 set to `error_mark_node' before it gets properly cleaned up. */
2997 if (type == error_mark_node)
2998 return error_mark_node;
3000 type = TYPE_MAIN_VARIANT (type);
3002 if (TREE_CODE (type) == POINTER_TYPE)
3004 bool complete_p = true;
3006 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3007 if (TREE_CODE (type) == ARRAY_TYPE)
3008 goto handle_array;
3010 /* We don't want to warn about delete of void*, only other
3011 incomplete types. Deleting other incomplete types
3012 invokes undefined behavior, but it is not ill-formed, so
3013 compile to something that would even do The Right Thing
3014 (TM) should the type have a trivial dtor and no delete
3015 operator. */
3016 if (!VOID_TYPE_P (type))
3018 complete_type (type);
3019 if (!COMPLETE_TYPE_P (type))
3021 warning (0, "possible problem detected in invocation of "
3022 "delete operator:");
3023 cxx_incomplete_type_diagnostic (addr, type, 1);
3024 inform ("neither the destructor nor the class-specific "
3025 "operator delete will be called, even if they are "
3026 "declared when the class is defined.");
3027 complete_p = false;
3030 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3031 /* Call the builtin operator delete. */
3032 return build_builtin_delete_call (addr);
3033 if (TREE_SIDE_EFFECTS (addr))
3034 addr = save_expr (addr);
3036 /* Throw away const and volatile on target type of addr. */
3037 addr = convert_force (build_pointer_type (type), addr, 0);
3039 else if (TREE_CODE (type) == ARRAY_TYPE)
3041 handle_array:
3043 if (TYPE_DOMAIN (type) == NULL_TREE)
3045 error ("unknown array size in delete");
3046 return error_mark_node;
3048 return build_vec_delete (addr, array_type_nelts (type),
3049 auto_delete, use_global_delete);
3051 else
3053 /* Don't check PROTECT here; leave that decision to the
3054 destructor. If the destructor is accessible, call it,
3055 else report error. */
3056 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3057 if (TREE_SIDE_EFFECTS (addr))
3058 addr = save_expr (addr);
3060 addr = convert_force (build_pointer_type (type), addr, 0);
3063 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3065 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3067 if (auto_delete != sfk_deleting_destructor)
3068 return void_zero_node;
3070 return build_op_delete_call (DELETE_EXPR, addr,
3071 cxx_sizeof_nowarn (type),
3072 use_global_delete,
3073 /*placement=*/NULL_TREE,
3074 /*alloc_fn=*/NULL_TREE);
3076 else
3078 tree head = NULL_TREE;
3079 tree do_delete = NULL_TREE;
3080 tree ifexp;
3082 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3083 lazily_declare_fn (sfk_destructor, type);
3085 /* For `::delete x', we must not use the deleting destructor
3086 since then we would not be sure to get the global `operator
3087 delete'. */
3088 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3090 /* We will use ADDR multiple times so we must save it. */
3091 addr = save_expr (addr);
3092 head = get_target_expr (build_headof (addr));
3093 /* Delete the object. */
3094 do_delete = build_builtin_delete_call (head);
3095 /* Otherwise, treat this like a complete object destructor
3096 call. */
3097 auto_delete = sfk_complete_destructor;
3099 /* If the destructor is non-virtual, there is no deleting
3100 variant. Instead, we must explicitly call the appropriate
3101 `operator delete' here. */
3102 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3103 && auto_delete == sfk_deleting_destructor)
3105 /* We will use ADDR multiple times so we must save it. */
3106 addr = save_expr (addr);
3107 /* Build the call. */
3108 do_delete = build_op_delete_call (DELETE_EXPR,
3109 addr,
3110 cxx_sizeof_nowarn (type),
3111 /*global_p=*/false,
3112 /*placement=*/NULL_TREE,
3113 /*alloc_fn=*/NULL_TREE);
3114 /* Call the complete object destructor. */
3115 auto_delete = sfk_complete_destructor;
3117 else if (auto_delete == sfk_deleting_destructor
3118 && TYPE_GETS_REG_DELETE (type))
3120 /* Make sure we have access to the member op delete, even though
3121 we'll actually be calling it from the destructor. */
3122 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3123 /*global_p=*/false,
3124 /*placement=*/NULL_TREE,
3125 /*alloc_fn=*/NULL_TREE);
3128 expr = build_dtor_call (cp_build_indirect_ref (addr, NULL,
3129 tf_warning_or_error),
3130 auto_delete, flags);
3131 if (do_delete)
3132 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3134 /* We need to calculate this before the dtor changes the vptr. */
3135 if (head)
3136 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3138 if (flags & LOOKUP_DESTRUCTOR)
3139 /* Explicit destructor call; don't check for null pointer. */
3140 ifexp = integer_one_node;
3141 else
3142 /* Handle deleting a null pointer. */
3143 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node,
3144 tf_warning_or_error));
3146 if (ifexp != integer_one_node)
3147 expr = build3 (COND_EXPR, void_type_node,
3148 ifexp, expr, void_zero_node);
3150 return expr;
3154 /* At the beginning of a destructor, push cleanups that will call the
3155 destructors for our base classes and members.
3157 Called from begin_destructor_body. */
3159 void
3160 push_base_cleanups (void)
3162 tree binfo, base_binfo;
3163 int i;
3164 tree member;
3165 tree expr;
3166 VEC(tree,gc) *vbases;
3168 /* Run destructors for all virtual baseclasses. */
3169 if (CLASSTYPE_VBASECLASSES (current_class_type))
3171 tree cond = (condition_conversion
3172 (build2 (BIT_AND_EXPR, integer_type_node,
3173 current_in_charge_parm,
3174 integer_two_node)));
3176 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3177 order, which is also the right order for pushing cleanups. */
3178 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3179 VEC_iterate (tree, vbases, i, base_binfo); i++)
3181 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3183 expr = build_special_member_call (current_class_ref,
3184 base_dtor_identifier,
3185 NULL_TREE,
3186 base_binfo,
3187 (LOOKUP_NORMAL
3188 | LOOKUP_NONVIRTUAL),
3189 tf_warning_or_error);
3190 expr = build3 (COND_EXPR, void_type_node, cond,
3191 expr, void_zero_node);
3192 finish_decl_cleanup (NULL_TREE, expr);
3197 /* Take care of the remaining baseclasses. */
3198 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3199 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3201 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3202 || BINFO_VIRTUAL_P (base_binfo))
3203 continue;
3205 expr = build_special_member_call (current_class_ref,
3206 base_dtor_identifier,
3207 NULL_TREE, base_binfo,
3208 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3209 tf_warning_or_error);
3210 finish_decl_cleanup (NULL_TREE, expr);
3213 for (member = TYPE_FIELDS (current_class_type); member;
3214 member = TREE_CHAIN (member))
3216 if (TREE_TYPE (member) == error_mark_node
3217 || TREE_CODE (member) != FIELD_DECL
3218 || DECL_ARTIFICIAL (member))
3219 continue;
3220 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3222 tree this_member = (build_class_member_access_expr
3223 (current_class_ref, member,
3224 /*access_path=*/NULL_TREE,
3225 /*preserve_reference=*/false,
3226 tf_warning_or_error));
3227 tree this_type = TREE_TYPE (member);
3228 expr = build_delete (this_type, this_member,
3229 sfk_complete_destructor,
3230 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3232 finish_decl_cleanup (NULL_TREE, expr);
3237 /* Build a C++ vector delete expression.
3238 MAXINDEX is the number of elements to be deleted.
3239 ELT_SIZE is the nominal size of each element in the vector.
3240 BASE is the expression that should yield the store to be deleted.
3241 This function expands (or synthesizes) these calls itself.
3242 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3244 This also calls delete for virtual baseclasses of elements of the vector.
3246 Update: MAXINDEX is no longer needed. The size can be extracted from the
3247 start of the vector for pointers, and from the type for arrays. We still
3248 use MAXINDEX for arrays because it happens to already have one of the
3249 values we'd have to extract. (We could use MAXINDEX with pointers to
3250 confirm the size, and trap if the numbers differ; not clear that it'd
3251 be worth bothering.) */
3253 tree
3254 build_vec_delete (tree base, tree maxindex,
3255 special_function_kind auto_delete_vec, int use_global_delete)
3257 tree type;
3258 tree rval;
3259 tree base_init = NULL_TREE;
3261 type = TREE_TYPE (base);
3263 if (TREE_CODE (type) == POINTER_TYPE)
3265 /* Step back one from start of vector, and read dimension. */
3266 tree cookie_addr;
3268 if (TREE_SIDE_EFFECTS (base))
3270 base_init = get_target_expr (base);
3271 base = TARGET_EXPR_SLOT (base_init);
3273 type = strip_array_types (TREE_TYPE (type));
3274 cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
3275 cookie_addr = build2 (POINTER_PLUS_EXPR,
3276 build_pointer_type (sizetype),
3277 base,
3278 cookie_addr);
3279 maxindex = cp_build_indirect_ref (cookie_addr, NULL, tf_warning_or_error);
3281 else if (TREE_CODE (type) == ARRAY_TYPE)
3283 /* Get the total number of things in the array, maxindex is a
3284 bad name. */
3285 maxindex = array_type_nelts_total (type);
3286 type = strip_array_types (type);
3287 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3288 if (TREE_SIDE_EFFECTS (base))
3290 base_init = get_target_expr (base);
3291 base = TARGET_EXPR_SLOT (base_init);
3294 else
3296 if (base != error_mark_node)
3297 error ("type to vector delete is neither pointer or array type");
3298 return error_mark_node;
3301 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3302 use_global_delete);
3303 if (base_init)
3304 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3306 return rval;