2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / cp / class.c
blob4d786a288c12da68d06f0f1b09e46b91d2c02a31
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
44 int current_class_depth;
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
54 /* The _TYPE node for the class. */
55 tree type;
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
69 typedef struct vtbl_init_data_s
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void fixup_pending_inline (tree);
155 static void fixup_inline_methods (tree);
156 static void propagate_binfo_offsets (tree, tree);
157 static void layout_virtual_bases (record_layout_info, splay_tree);
158 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
161 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset (tree, tree, vtbl_init_data *);
163 static void layout_vtable_decl (tree, int);
164 static tree dfs_find_final_overrider_pre (tree, void *);
165 static tree dfs_find_final_overrider_post (tree, void *);
166 static tree find_final_overrider (tree, tree, tree);
167 static int make_new_vtable (tree, tree);
168 static tree get_primary_binfo (tree);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
171 static void dump_class_hierarchy (tree);
172 static void dump_class_hierarchy_1 (FILE *, int, tree);
173 static void dump_array (FILE *, tree);
174 static void dump_vtable (tree, tree, tree);
175 static void dump_vtt (tree, tree);
176 static void dump_thunk (FILE *, int, tree);
177 static tree build_vtable (tree, tree, tree);
178 static void initialize_vtable (tree, tree);
179 static void layout_nonempty_base_or_field (record_layout_info,
180 tree, tree, splay_tree);
181 static tree end_of_class (tree, int);
182 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
183 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
184 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
185 tree);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
213 /* Variables shared between class.c and call.c. */
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull)
241 tree v_binfo = NULL_TREE;
242 tree d_binfo = NULL_TREE;
243 tree probe;
244 tree offset;
245 tree target_type;
246 tree null_test = NULL;
247 tree ptr_target_type;
248 int fixed_type_p;
249 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
250 bool has_empty = false;
251 bool virtual_access;
253 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
254 return error_mark_node;
256 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
258 d_binfo = probe;
259 if (is_empty_class (BINFO_TYPE (probe)))
260 has_empty = true;
261 if (!v_binfo && BINFO_VIRTUAL_P (probe))
262 v_binfo = probe;
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
266 if (want_pointer)
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
269 gcc_assert ((code == MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
271 || (code == PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
274 if (binfo == d_binfo)
275 /* Nothing to do. */
276 return expr;
278 if (code == MINUS_EXPR && v_binfo)
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
282 return error_mark_node;
285 if (!want_pointer)
286 /* This must happen before the call to save_expr. */
287 expr = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error);
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (skip_evaluation)
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (expr, NULL);
303 return expr;
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
327 null_test = error_mark_node;
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2 (NE_EXPR, boolean_type_node,
339 expr, zero);
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
348 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
356 if (virtual_access)
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
363 if (fixed_type_p < 0 && in_base_initializer)
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = cp_build_indirect_ref (v_offset, NULL,
374 tf_warning_or_error);
376 else
377 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, NULL,
378 tf_warning_or_error),
379 TREE_TYPE (TREE_TYPE (expr)));
381 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
382 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
383 v_offset = build1 (NOP_EXPR,
384 build_pointer_type (ptrdiff_type_node),
385 v_offset);
386 v_offset = cp_build_indirect_ref (v_offset, NULL, tf_warning_or_error);
387 TREE_CONSTANT (v_offset) = 1;
389 offset = convert_to_integer (ptrdiff_type_node,
390 size_diffop (offset,
391 BINFO_OFFSET (v_binfo)));
393 if (!integer_zerop (offset))
394 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
396 if (fixed_type_p < 0)
397 /* Negative fixed_type_p means this is a constructor or destructor;
398 virtual base layout is fixed in in-charge [cd]tors, but not in
399 base [cd]tors. */
400 offset = build3 (COND_EXPR, ptrdiff_type_node,
401 build2 (EQ_EXPR, boolean_type_node,
402 current_in_charge_parm, integer_zero_node),
403 v_offset,
404 convert_to_integer (ptrdiff_type_node,
405 BINFO_OFFSET (binfo)));
406 else
407 offset = v_offset;
410 target_type = cp_build_qualified_type
411 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
412 ptr_target_type = build_pointer_type (target_type);
413 if (want_pointer)
414 target_type = ptr_target_type;
416 expr = build1 (NOP_EXPR, ptr_target_type, expr);
418 if (!integer_zerop (offset))
420 offset = fold_convert (sizetype, offset);
421 if (code == MINUS_EXPR)
422 offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
423 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
425 else
426 null_test = NULL;
428 if (!want_pointer)
429 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
431 out:
432 if (null_test)
433 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
434 fold_build1 (NOP_EXPR, target_type,
435 integer_zero_node));
437 return expr;
440 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
441 Perform a derived-to-base conversion by recursively building up a
442 sequence of COMPONENT_REFs to the appropriate base fields. */
444 static tree
445 build_simple_base_path (tree expr, tree binfo)
447 tree type = BINFO_TYPE (binfo);
448 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
449 tree field;
451 if (d_binfo == NULL_TREE)
453 tree temp;
455 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
457 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
458 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
459 an lvalue in the front end; only _DECLs and _REFs are lvalues
460 in the back end. */
461 temp = unary_complex_lvalue (ADDR_EXPR, expr);
462 if (temp)
463 expr = cp_build_indirect_ref (temp, NULL, tf_warning_or_error);
465 return expr;
468 /* Recurse. */
469 expr = build_simple_base_path (expr, d_binfo);
471 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
472 field; field = TREE_CHAIN (field))
473 /* Is this the base field created by build_base_field? */
474 if (TREE_CODE (field) == FIELD_DECL
475 && DECL_FIELD_IS_BASE (field)
476 && TREE_TYPE (field) == type)
478 /* We don't use build_class_member_access_expr here, as that
479 has unnecessary checks, and more importantly results in
480 recursive calls to dfs_walk_once. */
481 int type_quals = cp_type_quals (TREE_TYPE (expr));
483 expr = build3 (COMPONENT_REF,
484 cp_build_qualified_type (type, type_quals),
485 expr, field, NULL_TREE);
486 expr = fold_if_not_in_template (expr);
488 /* Mark the expression const or volatile, as appropriate.
489 Even though we've dealt with the type above, we still have
490 to mark the expression itself. */
491 if (type_quals & TYPE_QUAL_CONST)
492 TREE_READONLY (expr) = 1;
493 if (type_quals & TYPE_QUAL_VOLATILE)
494 TREE_THIS_VOLATILE (expr) = 1;
496 return expr;
499 /* Didn't find the base field?!? */
500 gcc_unreachable ();
503 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
504 type is a class type or a pointer to a class type. In the former
505 case, TYPE is also a class type; in the latter it is another
506 pointer type. If CHECK_ACCESS is true, an error message is emitted
507 if TYPE is inaccessible. If OBJECT has pointer type, the value is
508 assumed to be non-NULL. */
510 tree
511 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
513 tree binfo;
514 tree object_type;
516 if (TYPE_PTR_P (TREE_TYPE (object)))
518 object_type = TREE_TYPE (TREE_TYPE (object));
519 type = TREE_TYPE (type);
521 else
522 object_type = TREE_TYPE (object);
524 binfo = lookup_base (object_type, type,
525 check_access ? ba_check : ba_unique,
526 NULL);
527 if (!binfo || binfo == error_mark_node)
528 return error_mark_node;
530 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
533 /* EXPR is an expression with unqualified class type. BASE is a base
534 binfo of that class type. Returns EXPR, converted to the BASE
535 type. This function assumes that EXPR is the most derived class;
536 therefore virtual bases can be found at their static offsets. */
538 tree
539 convert_to_base_statically (tree expr, tree base)
541 tree expr_type;
543 expr_type = TREE_TYPE (expr);
544 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
546 tree pointer_type;
548 pointer_type = build_pointer_type (expr_type);
550 /* We use fold_build2 and fold_convert below to simplify the trees
551 provided to the optimizers. It is not safe to call these functions
552 when processing a template because they do not handle C++-specific
553 trees. */
554 gcc_assert (!processing_template_decl);
555 expr = cp_build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1,
556 tf_warning_or_error);
557 if (!integer_zerop (BINFO_OFFSET (base)))
558 expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
559 fold_convert (sizetype, BINFO_OFFSET (base)));
560 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
561 expr = build_fold_indirect_ref (expr);
564 return expr;
568 tree
569 build_vfield_ref (tree datum, tree type)
571 tree vfield, vcontext;
573 if (datum == error_mark_node)
574 return error_mark_node;
576 /* First, convert to the requested type. */
577 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
578 datum = convert_to_base (datum, type, /*check_access=*/false,
579 /*nonnull=*/true);
581 /* Second, the requested type may not be the owner of its own vptr.
582 If not, convert to the base class that owns it. We cannot use
583 convert_to_base here, because VCONTEXT may appear more than once
584 in the inheritance hierarchy of TYPE, and thus direct conversion
585 between the types may be ambiguous. Following the path back up
586 one step at a time via primary bases avoids the problem. */
587 vfield = TYPE_VFIELD (type);
588 vcontext = DECL_CONTEXT (vfield);
589 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
591 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
592 type = TREE_TYPE (datum);
595 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
598 /* Given an object INSTANCE, return an expression which yields the
599 vtable element corresponding to INDEX. There are many special
600 cases for INSTANCE which we take care of here, mainly to avoid
601 creating extra tree nodes when we don't have to. */
603 static tree
604 build_vtbl_ref_1 (tree instance, tree idx)
606 tree aref;
607 tree vtbl = NULL_TREE;
609 /* Try to figure out what a reference refers to, and
610 access its virtual function table directly. */
612 int cdtorp = 0;
613 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
615 tree basetype = non_reference (TREE_TYPE (instance));
617 if (fixed_type && !cdtorp)
619 tree binfo = lookup_base (fixed_type, basetype,
620 ba_unique | ba_quiet, NULL);
621 if (binfo)
622 vtbl = unshare_expr (BINFO_VTABLE (binfo));
625 if (!vtbl)
626 vtbl = build_vfield_ref (instance, basetype);
628 assemble_external (vtbl);
630 aref = build_array_ref (vtbl, idx);
631 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
633 return aref;
636 tree
637 build_vtbl_ref (tree instance, tree idx)
639 tree aref = build_vtbl_ref_1 (instance, idx);
641 return aref;
644 /* Given a stable object pointer INSTANCE_PTR, return an expression which
645 yields a function pointer corresponding to vtable element INDEX. */
647 tree
648 build_vfn_ref (tree instance_ptr, tree idx)
650 tree aref;
652 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, 0,
653 tf_warning_or_error),
654 idx);
656 /* When using function descriptors, the address of the
657 vtable entry is treated as a function pointer. */
658 if (TARGET_VTABLE_USES_DESCRIPTORS)
659 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
660 cp_build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1,
661 tf_warning_or_error));
663 /* Remember this as a method reference, for later devirtualization. */
664 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
666 return aref;
669 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
670 for the given TYPE. */
672 static tree
673 get_vtable_name (tree type)
675 return mangle_vtbl_for_type (type);
678 /* DECL is an entity associated with TYPE, like a virtual table or an
679 implicitly generated constructor. Determine whether or not DECL
680 should have external or internal linkage at the object file
681 level. This routine does not deal with COMDAT linkage and other
682 similar complexities; it simply sets TREE_PUBLIC if it possible for
683 entities in other translation units to contain copies of DECL, in
684 the abstract. */
686 void
687 set_linkage_according_to_type (tree type, tree decl)
689 /* If TYPE involves a local class in a function with internal
690 linkage, then DECL should have internal linkage too. Other local
691 classes have no linkage -- but if their containing functions
692 have external linkage, it makes sense for DECL to have external
693 linkage too. That will allow template definitions to be merged,
694 for example. */
695 if (no_linkage_check (type, /*relaxed_p=*/true))
697 TREE_PUBLIC (decl) = 0;
698 DECL_INTERFACE_KNOWN (decl) = 1;
700 else
701 TREE_PUBLIC (decl) = 1;
704 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
705 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
706 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
708 static tree
709 build_vtable (tree class_type, tree name, tree vtable_type)
711 tree decl;
713 decl = build_lang_decl (VAR_DECL, name, vtable_type);
714 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
715 now to avoid confusion in mangle_decl. */
716 SET_DECL_ASSEMBLER_NAME (decl, name);
717 DECL_CONTEXT (decl) = class_type;
718 DECL_ARTIFICIAL (decl) = 1;
719 TREE_STATIC (decl) = 1;
720 TREE_READONLY (decl) = 1;
721 DECL_VIRTUAL_P (decl) = 1;
722 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
723 DECL_VTABLE_OR_VTT_P (decl) = 1;
724 /* At one time the vtable info was grabbed 2 words at a time. This
725 fails on sparc unless you have 8-byte alignment. (tiemann) */
726 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
727 DECL_ALIGN (decl));
728 set_linkage_according_to_type (class_type, decl);
729 /* The vtable has not been defined -- yet. */
730 DECL_EXTERNAL (decl) = 1;
731 DECL_NOT_REALLY_EXTERN (decl) = 1;
733 /* Mark the VAR_DECL node representing the vtable itself as a
734 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
735 is rather important that such things be ignored because any
736 effort to actually generate DWARF for them will run into
737 trouble when/if we encounter code like:
739 #pragma interface
740 struct S { virtual void member (); };
742 because the artificial declaration of the vtable itself (as
743 manufactured by the g++ front end) will say that the vtable is
744 a static member of `S' but only *after* the debug output for
745 the definition of `S' has already been output. This causes
746 grief because the DWARF entry for the definition of the vtable
747 will try to refer back to an earlier *declaration* of the
748 vtable as a static member of `S' and there won't be one. We
749 might be able to arrange to have the "vtable static member"
750 attached to the member list for `S' before the debug info for
751 `S' get written (which would solve the problem) but that would
752 require more intrusive changes to the g++ front end. */
753 DECL_IGNORED_P (decl) = 1;
755 return decl;
758 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
759 or even complete. If this does not exist, create it. If COMPLETE is
760 nonzero, then complete the definition of it -- that will render it
761 impossible to actually build the vtable, but is useful to get at those
762 which are known to exist in the runtime. */
764 tree
765 get_vtable_decl (tree type, int complete)
767 tree decl;
769 if (CLASSTYPE_VTABLES (type))
770 return CLASSTYPE_VTABLES (type);
772 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
773 CLASSTYPE_VTABLES (type) = decl;
775 if (complete)
777 DECL_EXTERNAL (decl) = 1;
778 finish_decl (decl, NULL_TREE, NULL_TREE);
781 return decl;
784 /* Build the primary virtual function table for TYPE. If BINFO is
785 non-NULL, build the vtable starting with the initial approximation
786 that it is the same as the one which is the head of the association
787 list. Returns a nonzero value if a new vtable is actually
788 created. */
790 static int
791 build_primary_vtable (tree binfo, tree type)
793 tree decl;
794 tree virtuals;
796 decl = get_vtable_decl (type, /*complete=*/0);
798 if (binfo)
800 if (BINFO_NEW_VTABLE_MARKED (binfo))
801 /* We have already created a vtable for this base, so there's
802 no need to do it again. */
803 return 0;
805 virtuals = copy_list (BINFO_VIRTUALS (binfo));
806 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
807 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
808 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
810 else
812 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
813 virtuals = NULL_TREE;
816 #ifdef GATHER_STATISTICS
817 n_vtables += 1;
818 n_vtable_elems += list_length (virtuals);
819 #endif
821 /* Initialize the association list for this type, based
822 on our first approximation. */
823 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
824 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
825 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
826 return 1;
829 /* Give BINFO a new virtual function table which is initialized
830 with a skeleton-copy of its original initialization. The only
831 entry that changes is the `delta' entry, so we can really
832 share a lot of structure.
834 FOR_TYPE is the most derived type which caused this table to
835 be needed.
837 Returns nonzero if we haven't met BINFO before.
839 The order in which vtables are built (by calling this function) for
840 an object must remain the same, otherwise a binary incompatibility
841 can result. */
843 static int
844 build_secondary_vtable (tree binfo)
846 if (BINFO_NEW_VTABLE_MARKED (binfo))
847 /* We already created a vtable for this base. There's no need to
848 do it again. */
849 return 0;
851 /* Remember that we've created a vtable for this BINFO, so that we
852 don't try to do so again. */
853 SET_BINFO_NEW_VTABLE_MARKED (binfo);
855 /* Make fresh virtual list, so we can smash it later. */
856 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
858 /* Secondary vtables are laid out as part of the same structure as
859 the primary vtable. */
860 BINFO_VTABLE (binfo) = NULL_TREE;
861 return 1;
864 /* Create a new vtable for BINFO which is the hierarchy dominated by
865 T. Return nonzero if we actually created a new vtable. */
867 static int
868 make_new_vtable (tree t, tree binfo)
870 if (binfo == TYPE_BINFO (t))
871 /* In this case, it is *type*'s vtable we are modifying. We start
872 with the approximation that its vtable is that of the
873 immediate base class. */
874 return build_primary_vtable (binfo, t);
875 else
876 /* This is our very own copy of `basetype' to play with. Later,
877 we will fill in all the virtual functions that override the
878 virtual functions in these base classes which are not defined
879 by the current type. */
880 return build_secondary_vtable (binfo);
883 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
884 (which is in the hierarchy dominated by T) list FNDECL as its
885 BV_FN. DELTA is the required constant adjustment from the `this'
886 pointer where the vtable entry appears to the `this' required when
887 the function is actually called. */
889 static void
890 modify_vtable_entry (tree t,
891 tree binfo,
892 tree fndecl,
893 tree delta,
894 tree *virtuals)
896 tree v;
898 v = *virtuals;
900 if (fndecl != BV_FN (v)
901 || !tree_int_cst_equal (delta, BV_DELTA (v)))
903 /* We need a new vtable for BINFO. */
904 if (make_new_vtable (t, binfo))
906 /* If we really did make a new vtable, we also made a copy
907 of the BINFO_VIRTUALS list. Now, we have to find the
908 corresponding entry in that list. */
909 *virtuals = BINFO_VIRTUALS (binfo);
910 while (BV_FN (*virtuals) != BV_FN (v))
911 *virtuals = TREE_CHAIN (*virtuals);
912 v = *virtuals;
915 BV_DELTA (v) = delta;
916 BV_VCALL_INDEX (v) = NULL_TREE;
917 BV_FN (v) = fndecl;
922 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
923 the USING_DECL naming METHOD. Returns true if the method could be
924 added to the method vec. */
926 bool
927 add_method (tree type, tree method, tree using_decl)
929 unsigned slot;
930 tree overload;
931 bool template_conv_p = false;
932 bool conv_p;
933 VEC(tree,gc) *method_vec;
934 bool complete_p;
935 bool insert_p = false;
936 tree current_fns;
937 tree fns;
939 if (method == error_mark_node)
940 return false;
942 complete_p = COMPLETE_TYPE_P (type);
943 conv_p = DECL_CONV_FN_P (method);
944 if (conv_p)
945 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
946 && DECL_TEMPLATE_CONV_FN_P (method));
948 method_vec = CLASSTYPE_METHOD_VEC (type);
949 if (!method_vec)
951 /* Make a new method vector. We start with 8 entries. We must
952 allocate at least two (for constructors and destructors), and
953 we're going to end up with an assignment operator at some
954 point as well. */
955 method_vec = VEC_alloc (tree, gc, 8);
956 /* Create slots for constructors and destructors. */
957 VEC_quick_push (tree, method_vec, NULL_TREE);
958 VEC_quick_push (tree, method_vec, NULL_TREE);
959 CLASSTYPE_METHOD_VEC (type) = method_vec;
962 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
963 grok_special_member_properties (method);
965 /* Constructors and destructors go in special slots. */
966 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
967 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
968 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
970 slot = CLASSTYPE_DESTRUCTOR_SLOT;
972 if (TYPE_FOR_JAVA (type))
974 if (!DECL_ARTIFICIAL (method))
975 error ("Java class %qT cannot have a destructor", type);
976 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
977 error ("Java class %qT cannot have an implicit non-trivial "
978 "destructor",
979 type);
982 else
984 tree m;
986 insert_p = true;
987 /* See if we already have an entry with this name. */
988 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
989 VEC_iterate (tree, method_vec, slot, m);
990 ++slot)
992 m = OVL_CURRENT (m);
993 if (template_conv_p)
995 if (TREE_CODE (m) == TEMPLATE_DECL
996 && DECL_TEMPLATE_CONV_FN_P (m))
997 insert_p = false;
998 break;
1000 if (conv_p && !DECL_CONV_FN_P (m))
1001 break;
1002 if (DECL_NAME (m) == DECL_NAME (method))
1004 insert_p = false;
1005 break;
1007 if (complete_p
1008 && !DECL_CONV_FN_P (m)
1009 && DECL_NAME (m) > DECL_NAME (method))
1010 break;
1013 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1015 /* Check to see if we've already got this method. */
1016 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1018 tree fn = OVL_CURRENT (fns);
1019 tree fn_type;
1020 tree method_type;
1021 tree parms1;
1022 tree parms2;
1024 if (TREE_CODE (fn) != TREE_CODE (method))
1025 continue;
1027 /* [over.load] Member function declarations with the
1028 same name and the same parameter types cannot be
1029 overloaded if any of them is a static member
1030 function declaration.
1032 [namespace.udecl] When a using-declaration brings names
1033 from a base class into a derived class scope, member
1034 functions in the derived class override and/or hide member
1035 functions with the same name and parameter types in a base
1036 class (rather than conflicting). */
1037 fn_type = TREE_TYPE (fn);
1038 method_type = TREE_TYPE (method);
1039 parms1 = TYPE_ARG_TYPES (fn_type);
1040 parms2 = TYPE_ARG_TYPES (method_type);
1042 /* Compare the quals on the 'this' parm. Don't compare
1043 the whole types, as used functions are treated as
1044 coming from the using class in overload resolution. */
1045 if (! DECL_STATIC_FUNCTION_P (fn)
1046 && ! DECL_STATIC_FUNCTION_P (method)
1047 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1048 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1049 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1050 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1051 continue;
1053 /* For templates, the return type and template parameters
1054 must be identical. */
1055 if (TREE_CODE (fn) == TEMPLATE_DECL
1056 && (!same_type_p (TREE_TYPE (fn_type),
1057 TREE_TYPE (method_type))
1058 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1059 DECL_TEMPLATE_PARMS (method))))
1060 continue;
1062 if (! DECL_STATIC_FUNCTION_P (fn))
1063 parms1 = TREE_CHAIN (parms1);
1064 if (! DECL_STATIC_FUNCTION_P (method))
1065 parms2 = TREE_CHAIN (parms2);
1067 if (compparms (parms1, parms2)
1068 && (!DECL_CONV_FN_P (fn)
1069 || same_type_p (TREE_TYPE (fn_type),
1070 TREE_TYPE (method_type))))
1072 if (using_decl)
1074 if (DECL_CONTEXT (fn) == type)
1075 /* Defer to the local function. */
1076 return false;
1077 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1078 error ("repeated using declaration %q+D", using_decl);
1079 else
1080 error ("using declaration %q+D conflicts with a previous using declaration",
1081 using_decl);
1083 else
1085 error ("%q+#D cannot be overloaded", method);
1086 error ("with %q+#D", fn);
1089 /* We don't call duplicate_decls here to merge the
1090 declarations because that will confuse things if the
1091 methods have inline definitions. In particular, we
1092 will crash while processing the definitions. */
1093 return false;
1097 /* A class should never have more than one destructor. */
1098 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1099 return false;
1101 /* Add the new binding. */
1102 overload = build_overload (method, current_fns);
1104 if (conv_p)
1105 TYPE_HAS_CONVERSION (type) = 1;
1106 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1107 push_class_level_binding (DECL_NAME (method), overload);
1109 if (insert_p)
1111 bool reallocated;
1113 /* We only expect to add few methods in the COMPLETE_P case, so
1114 just make room for one more method in that case. */
1115 if (complete_p)
1116 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1117 else
1118 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1119 if (reallocated)
1120 CLASSTYPE_METHOD_VEC (type) = method_vec;
1121 if (slot == VEC_length (tree, method_vec))
1122 VEC_quick_push (tree, method_vec, overload);
1123 else
1124 VEC_quick_insert (tree, method_vec, slot, overload);
1126 else
1127 /* Replace the current slot. */
1128 VEC_replace (tree, method_vec, slot, overload);
1129 return true;
1132 /* Subroutines of finish_struct. */
1134 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1135 legit, otherwise return 0. */
1137 static int
1138 alter_access (tree t, tree fdecl, tree access)
1140 tree elem;
1142 if (!DECL_LANG_SPECIFIC (fdecl))
1143 retrofit_lang_decl (fdecl);
1145 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1147 elem = purpose_member (t, DECL_ACCESS (fdecl));
1148 if (elem)
1150 if (TREE_VALUE (elem) != access)
1152 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1153 error ("conflicting access specifications for method"
1154 " %q+D, ignored", TREE_TYPE (fdecl));
1155 else
1156 error ("conflicting access specifications for field %qE, ignored",
1157 DECL_NAME (fdecl));
1159 else
1161 /* They're changing the access to the same thing they changed
1162 it to before. That's OK. */
1166 else
1168 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1169 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1170 return 1;
1172 return 0;
1175 /* Process the USING_DECL, which is a member of T. */
1177 static void
1178 handle_using_decl (tree using_decl, tree t)
1180 tree decl = USING_DECL_DECLS (using_decl);
1181 tree name = DECL_NAME (using_decl);
1182 tree access
1183 = TREE_PRIVATE (using_decl) ? access_private_node
1184 : TREE_PROTECTED (using_decl) ? access_protected_node
1185 : access_public_node;
1186 tree flist = NULL_TREE;
1187 tree old_value;
1189 gcc_assert (!processing_template_decl && decl);
1191 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1192 if (old_value)
1194 if (is_overloaded_fn (old_value))
1195 old_value = OVL_CURRENT (old_value);
1197 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1198 /* OK */;
1199 else
1200 old_value = NULL_TREE;
1203 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1205 if (is_overloaded_fn (decl))
1206 flist = decl;
1208 if (! old_value)
1210 else if (is_overloaded_fn (old_value))
1212 if (flist)
1213 /* It's OK to use functions from a base when there are functions with
1214 the same name already present in the current class. */;
1215 else
1217 error ("%q+D invalid in %q#T", using_decl, t);
1218 error (" because of local method %q+#D with same name",
1219 OVL_CURRENT (old_value));
1220 return;
1223 else if (!DECL_ARTIFICIAL (old_value))
1225 error ("%q+D invalid in %q#T", using_decl, t);
1226 error (" because of local member %q+#D with same name", old_value);
1227 return;
1230 /* Make type T see field decl FDECL with access ACCESS. */
1231 if (flist)
1232 for (; flist; flist = OVL_NEXT (flist))
1234 add_method (t, OVL_CURRENT (flist), using_decl);
1235 alter_access (t, OVL_CURRENT (flist), access);
1237 else
1238 alter_access (t, decl, access);
1241 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1242 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1243 properties of the bases. */
1245 static void
1246 check_bases (tree t,
1247 int* cant_have_const_ctor_p,
1248 int* no_const_asn_ref_p)
1250 int i;
1251 int seen_non_virtual_nearly_empty_base_p;
1252 tree base_binfo;
1253 tree binfo;
1255 seen_non_virtual_nearly_empty_base_p = 0;
1257 for (binfo = TYPE_BINFO (t), i = 0;
1258 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1260 tree basetype = TREE_TYPE (base_binfo);
1262 gcc_assert (COMPLETE_TYPE_P (basetype));
1264 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1265 here because the case of virtual functions but non-virtual
1266 dtor is handled in finish_struct_1. */
1267 if (!TYPE_POLYMORPHIC_P (basetype))
1268 warning (OPT_Weffc__,
1269 "base class %q#T has a non-virtual destructor", basetype);
1271 /* If the base class doesn't have copy constructors or
1272 assignment operators that take const references, then the
1273 derived class cannot have such a member automatically
1274 generated. */
1275 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1276 *cant_have_const_ctor_p = 1;
1277 if (TYPE_HAS_ASSIGN_REF (basetype)
1278 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1279 *no_const_asn_ref_p = 1;
1281 if (BINFO_VIRTUAL_P (base_binfo))
1282 /* A virtual base does not effect nearly emptiness. */
1284 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1286 if (seen_non_virtual_nearly_empty_base_p)
1287 /* And if there is more than one nearly empty base, then the
1288 derived class is not nearly empty either. */
1289 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1290 else
1291 /* Remember we've seen one. */
1292 seen_non_virtual_nearly_empty_base_p = 1;
1294 else if (!is_empty_class (basetype))
1295 /* If the base class is not empty or nearly empty, then this
1296 class cannot be nearly empty. */
1297 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1299 /* A lot of properties from the bases also apply to the derived
1300 class. */
1301 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1302 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1303 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1304 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1305 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1306 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1307 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1308 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1309 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1310 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1314 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1315 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1316 that have had a nearly-empty virtual primary base stolen by some
1317 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1318 T. */
1320 static void
1321 determine_primary_bases (tree t)
1323 unsigned i;
1324 tree primary = NULL_TREE;
1325 tree type_binfo = TYPE_BINFO (t);
1326 tree base_binfo;
1328 /* Determine the primary bases of our bases. */
1329 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1330 base_binfo = TREE_CHAIN (base_binfo))
1332 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1334 /* See if we're the non-virtual primary of our inheritance
1335 chain. */
1336 if (!BINFO_VIRTUAL_P (base_binfo))
1338 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1339 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1341 if (parent_primary
1342 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1343 BINFO_TYPE (parent_primary)))
1344 /* We are the primary binfo. */
1345 BINFO_PRIMARY_P (base_binfo) = 1;
1347 /* Determine if we have a virtual primary base, and mark it so.
1349 if (primary && BINFO_VIRTUAL_P (primary))
1351 tree this_primary = copied_binfo (primary, base_binfo);
1353 if (BINFO_PRIMARY_P (this_primary))
1354 /* Someone already claimed this base. */
1355 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1356 else
1358 tree delta;
1360 BINFO_PRIMARY_P (this_primary) = 1;
1361 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1363 /* A virtual binfo might have been copied from within
1364 another hierarchy. As we're about to use it as a
1365 primary base, make sure the offsets match. */
1366 delta = size_diffop (convert (ssizetype,
1367 BINFO_OFFSET (base_binfo)),
1368 convert (ssizetype,
1369 BINFO_OFFSET (this_primary)));
1371 propagate_binfo_offsets (this_primary, delta);
1376 /* First look for a dynamic direct non-virtual base. */
1377 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1379 tree basetype = BINFO_TYPE (base_binfo);
1381 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1383 primary = base_binfo;
1384 goto found;
1388 /* A "nearly-empty" virtual base class can be the primary base
1389 class, if no non-virtual polymorphic base can be found. Look for
1390 a nearly-empty virtual dynamic base that is not already a primary
1391 base of something in the hierarchy. If there is no such base,
1392 just pick the first nearly-empty virtual base. */
1394 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1395 base_binfo = TREE_CHAIN (base_binfo))
1396 if (BINFO_VIRTUAL_P (base_binfo)
1397 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1399 if (!BINFO_PRIMARY_P (base_binfo))
1401 /* Found one that is not primary. */
1402 primary = base_binfo;
1403 goto found;
1405 else if (!primary)
1406 /* Remember the first candidate. */
1407 primary = base_binfo;
1410 found:
1411 /* If we've got a primary base, use it. */
1412 if (primary)
1414 tree basetype = BINFO_TYPE (primary);
1416 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1417 if (BINFO_PRIMARY_P (primary))
1418 /* We are stealing a primary base. */
1419 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1420 BINFO_PRIMARY_P (primary) = 1;
1421 if (BINFO_VIRTUAL_P (primary))
1423 tree delta;
1425 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1426 /* A virtual binfo might have been copied from within
1427 another hierarchy. As we're about to use it as a primary
1428 base, make sure the offsets match. */
1429 delta = size_diffop (ssize_int (0),
1430 convert (ssizetype, BINFO_OFFSET (primary)));
1432 propagate_binfo_offsets (primary, delta);
1435 primary = TYPE_BINFO (basetype);
1437 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1438 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1439 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1443 /* Set memoizing fields and bits of T (and its variants) for later
1444 use. */
1446 static void
1447 finish_struct_bits (tree t)
1449 tree variants;
1451 /* Fix up variants (if any). */
1452 for (variants = TYPE_NEXT_VARIANT (t);
1453 variants;
1454 variants = TYPE_NEXT_VARIANT (variants))
1456 /* These fields are in the _TYPE part of the node, not in
1457 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1458 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1459 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1460 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1461 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1463 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1465 TYPE_BINFO (variants) = TYPE_BINFO (t);
1467 /* Copy whatever these are holding today. */
1468 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1469 TYPE_METHODS (variants) = TYPE_METHODS (t);
1470 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1472 /* All variants of a class have the same attributes. */
1473 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1476 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1477 /* For a class w/o baseclasses, 'finish_struct' has set
1478 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1479 Similarly for a class whose base classes do not have vtables.
1480 When neither of these is true, we might have removed abstract
1481 virtuals (by providing a definition), added some (by declaring
1482 new ones), or redeclared ones from a base class. We need to
1483 recalculate what's really an abstract virtual at this point (by
1484 looking in the vtables). */
1485 get_pure_virtuals (t);
1487 /* If this type has a copy constructor or a destructor, force its
1488 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1489 nonzero. This will cause it to be passed by invisible reference
1490 and prevent it from being returned in a register. */
1491 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1493 tree variants;
1494 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1495 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1497 TYPE_MODE (variants) = BLKmode;
1498 TREE_ADDRESSABLE (variants) = 1;
1503 /* Issue warnings about T having private constructors, but no friends,
1504 and so forth.
1506 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1507 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1508 non-private static member functions. */
1510 static void
1511 maybe_warn_about_overly_private_class (tree t)
1513 int has_member_fn = 0;
1514 int has_nonprivate_method = 0;
1515 tree fn;
1517 if (!warn_ctor_dtor_privacy
1518 /* If the class has friends, those entities might create and
1519 access instances, so we should not warn. */
1520 || (CLASSTYPE_FRIEND_CLASSES (t)
1521 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1522 /* We will have warned when the template was declared; there's
1523 no need to warn on every instantiation. */
1524 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1525 /* There's no reason to even consider warning about this
1526 class. */
1527 return;
1529 /* We only issue one warning, if more than one applies, because
1530 otherwise, on code like:
1532 class A {
1533 // Oops - forgot `public:'
1534 A();
1535 A(const A&);
1536 ~A();
1539 we warn several times about essentially the same problem. */
1541 /* Check to see if all (non-constructor, non-destructor) member
1542 functions are private. (Since there are no friends or
1543 non-private statics, we can't ever call any of the private member
1544 functions.) */
1545 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1546 /* We're not interested in compiler-generated methods; they don't
1547 provide any way to call private members. */
1548 if (!DECL_ARTIFICIAL (fn))
1550 if (!TREE_PRIVATE (fn))
1552 if (DECL_STATIC_FUNCTION_P (fn))
1553 /* A non-private static member function is just like a
1554 friend; it can create and invoke private member
1555 functions, and be accessed without a class
1556 instance. */
1557 return;
1559 has_nonprivate_method = 1;
1560 /* Keep searching for a static member function. */
1562 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1563 has_member_fn = 1;
1566 if (!has_nonprivate_method && has_member_fn)
1568 /* There are no non-private methods, and there's at least one
1569 private member function that isn't a constructor or
1570 destructor. (If all the private members are
1571 constructors/destructors we want to use the code below that
1572 issues error messages specifically referring to
1573 constructors/destructors.) */
1574 unsigned i;
1575 tree binfo = TYPE_BINFO (t);
1577 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1578 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1580 has_nonprivate_method = 1;
1581 break;
1583 if (!has_nonprivate_method)
1585 warning (OPT_Wctor_dtor_privacy,
1586 "all member functions in class %qT are private", t);
1587 return;
1591 /* Even if some of the member functions are non-private, the class
1592 won't be useful for much if all the constructors or destructors
1593 are private: such an object can never be created or destroyed. */
1594 fn = CLASSTYPE_DESTRUCTORS (t);
1595 if (fn && TREE_PRIVATE (fn))
1597 warning (OPT_Wctor_dtor_privacy,
1598 "%q#T only defines a private destructor and has no friends",
1600 return;
1603 /* Warn about classes that have private constructors and no friends. */
1604 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1605 /* Implicitly generated constructors are always public. */
1606 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1607 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1609 int nonprivate_ctor = 0;
1611 /* If a non-template class does not define a copy
1612 constructor, one is defined for it, enabling it to avoid
1613 this warning. For a template class, this does not
1614 happen, and so we would normally get a warning on:
1616 template <class T> class C { private: C(); };
1618 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1619 complete non-template or fully instantiated classes have this
1620 flag set. */
1621 if (!TYPE_HAS_INIT_REF (t))
1622 nonprivate_ctor = 1;
1623 else
1624 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1626 tree ctor = OVL_CURRENT (fn);
1627 /* Ideally, we wouldn't count copy constructors (or, in
1628 fact, any constructor that takes an argument of the
1629 class type as a parameter) because such things cannot
1630 be used to construct an instance of the class unless
1631 you already have one. But, for now at least, we're
1632 more generous. */
1633 if (! TREE_PRIVATE (ctor))
1635 nonprivate_ctor = 1;
1636 break;
1640 if (nonprivate_ctor == 0)
1642 warning (OPT_Wctor_dtor_privacy,
1643 "%q#T only defines private constructors and has no friends",
1645 return;
1650 static struct {
1651 gt_pointer_operator new_value;
1652 void *cookie;
1653 } resort_data;
1655 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1657 static int
1658 method_name_cmp (const void* m1_p, const void* m2_p)
1660 const tree *const m1 = (const tree *) m1_p;
1661 const tree *const m2 = (const tree *) m2_p;
1663 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1664 return 0;
1665 if (*m1 == NULL_TREE)
1666 return -1;
1667 if (*m2 == NULL_TREE)
1668 return 1;
1669 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1670 return -1;
1671 return 1;
1674 /* This routine compares two fields like method_name_cmp but using the
1675 pointer operator in resort_field_decl_data. */
1677 static int
1678 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1680 const tree *const m1 = (const tree *) m1_p;
1681 const tree *const m2 = (const tree *) m2_p;
1682 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1683 return 0;
1684 if (*m1 == NULL_TREE)
1685 return -1;
1686 if (*m2 == NULL_TREE)
1687 return 1;
1689 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1690 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1691 resort_data.new_value (&d1, resort_data.cookie);
1692 resort_data.new_value (&d2, resort_data.cookie);
1693 if (d1 < d2)
1694 return -1;
1696 return 1;
1699 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1701 void
1702 resort_type_method_vec (void* obj,
1703 void* orig_obj ATTRIBUTE_UNUSED ,
1704 gt_pointer_operator new_value,
1705 void* cookie)
1707 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1708 int len = VEC_length (tree, method_vec);
1709 size_t slot;
1710 tree fn;
1712 /* The type conversion ops have to live at the front of the vec, so we
1713 can't sort them. */
1714 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1715 VEC_iterate (tree, method_vec, slot, fn);
1716 ++slot)
1717 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1718 break;
1720 if (len - slot > 1)
1722 resort_data.new_value = new_value;
1723 resort_data.cookie = cookie;
1724 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1725 resort_method_name_cmp);
1729 /* Warn about duplicate methods in fn_fields.
1731 Sort methods that are not special (i.e., constructors, destructors,
1732 and type conversion operators) so that we can find them faster in
1733 search. */
1735 static void
1736 finish_struct_methods (tree t)
1738 tree fn_fields;
1739 VEC(tree,gc) *method_vec;
1740 int slot, len;
1742 method_vec = CLASSTYPE_METHOD_VEC (t);
1743 if (!method_vec)
1744 return;
1746 len = VEC_length (tree, method_vec);
1748 /* Clear DECL_IN_AGGR_P for all functions. */
1749 for (fn_fields = TYPE_METHODS (t); fn_fields;
1750 fn_fields = TREE_CHAIN (fn_fields))
1751 DECL_IN_AGGR_P (fn_fields) = 0;
1753 /* Issue warnings about private constructors and such. If there are
1754 no methods, then some public defaults are generated. */
1755 maybe_warn_about_overly_private_class (t);
1757 /* The type conversion ops have to live at the front of the vec, so we
1758 can't sort them. */
1759 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1760 VEC_iterate (tree, method_vec, slot, fn_fields);
1761 ++slot)
1762 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1763 break;
1764 if (len - slot > 1)
1765 qsort (VEC_address (tree, method_vec) + slot,
1766 len-slot, sizeof (tree), method_name_cmp);
1769 /* Make BINFO's vtable have N entries, including RTTI entries,
1770 vbase and vcall offsets, etc. Set its type and call the back end
1771 to lay it out. */
1773 static void
1774 layout_vtable_decl (tree binfo, int n)
1776 tree atype;
1777 tree vtable;
1779 atype = build_cplus_array_type (vtable_entry_type,
1780 build_index_type (size_int (n - 1)));
1781 layout_type (atype);
1783 /* We may have to grow the vtable. */
1784 vtable = get_vtbl_decl_for_binfo (binfo);
1785 if (!same_type_p (TREE_TYPE (vtable), atype))
1787 TREE_TYPE (vtable) = atype;
1788 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1789 layout_decl (vtable, 0);
1793 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1794 have the same signature. */
1797 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1799 /* One destructor overrides another if they are the same kind of
1800 destructor. */
1801 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1802 && special_function_p (base_fndecl) == special_function_p (fndecl))
1803 return 1;
1804 /* But a non-destructor never overrides a destructor, nor vice
1805 versa, nor do different kinds of destructors override
1806 one-another. For example, a complete object destructor does not
1807 override a deleting destructor. */
1808 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1809 return 0;
1811 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1812 || (DECL_CONV_FN_P (fndecl)
1813 && DECL_CONV_FN_P (base_fndecl)
1814 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1815 DECL_CONV_FN_TYPE (base_fndecl))))
1817 tree types, base_types;
1818 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1819 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1820 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1821 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1822 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1823 return 1;
1825 return 0;
1828 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1829 subobject. */
1831 static bool
1832 base_derived_from (tree derived, tree base)
1834 tree probe;
1836 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1838 if (probe == derived)
1839 return true;
1840 else if (BINFO_VIRTUAL_P (probe))
1841 /* If we meet a virtual base, we can't follow the inheritance
1842 any more. See if the complete type of DERIVED contains
1843 such a virtual base. */
1844 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1845 != NULL_TREE);
1847 return false;
1850 typedef struct find_final_overrider_data_s {
1851 /* The function for which we are trying to find a final overrider. */
1852 tree fn;
1853 /* The base class in which the function was declared. */
1854 tree declaring_base;
1855 /* The candidate overriders. */
1856 tree candidates;
1857 /* Path to most derived. */
1858 VEC(tree,heap) *path;
1859 } find_final_overrider_data;
1861 /* Add the overrider along the current path to FFOD->CANDIDATES.
1862 Returns true if an overrider was found; false otherwise. */
1864 static bool
1865 dfs_find_final_overrider_1 (tree binfo,
1866 find_final_overrider_data *ffod,
1867 unsigned depth)
1869 tree method;
1871 /* If BINFO is not the most derived type, try a more derived class.
1872 A definition there will overrider a definition here. */
1873 if (depth)
1875 depth--;
1876 if (dfs_find_final_overrider_1
1877 (VEC_index (tree, ffod->path, depth), ffod, depth))
1878 return true;
1881 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1882 if (method)
1884 tree *candidate = &ffod->candidates;
1886 /* Remove any candidates overridden by this new function. */
1887 while (*candidate)
1889 /* If *CANDIDATE overrides METHOD, then METHOD
1890 cannot override anything else on the list. */
1891 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1892 return true;
1893 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1894 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1895 *candidate = TREE_CHAIN (*candidate);
1896 else
1897 candidate = &TREE_CHAIN (*candidate);
1900 /* Add the new function. */
1901 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1902 return true;
1905 return false;
1908 /* Called from find_final_overrider via dfs_walk. */
1910 static tree
1911 dfs_find_final_overrider_pre (tree binfo, void *data)
1913 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1915 if (binfo == ffod->declaring_base)
1916 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1917 VEC_safe_push (tree, heap, ffod->path, binfo);
1919 return NULL_TREE;
1922 static tree
1923 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1925 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1926 VEC_pop (tree, ffod->path);
1928 return NULL_TREE;
1931 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1932 FN and whose TREE_VALUE is the binfo for the base where the
1933 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1934 DERIVED) is the base object in which FN is declared. */
1936 static tree
1937 find_final_overrider (tree derived, tree binfo, tree fn)
1939 find_final_overrider_data ffod;
1941 /* Getting this right is a little tricky. This is valid:
1943 struct S { virtual void f (); };
1944 struct T { virtual void f (); };
1945 struct U : public S, public T { };
1947 even though calling `f' in `U' is ambiguous. But,
1949 struct R { virtual void f(); };
1950 struct S : virtual public R { virtual void f (); };
1951 struct T : virtual public R { virtual void f (); };
1952 struct U : public S, public T { };
1954 is not -- there's no way to decide whether to put `S::f' or
1955 `T::f' in the vtable for `R'.
1957 The solution is to look at all paths to BINFO. If we find
1958 different overriders along any two, then there is a problem. */
1959 if (DECL_THUNK_P (fn))
1960 fn = THUNK_TARGET (fn);
1962 /* Determine the depth of the hierarchy. */
1963 ffod.fn = fn;
1964 ffod.declaring_base = binfo;
1965 ffod.candidates = NULL_TREE;
1966 ffod.path = VEC_alloc (tree, heap, 30);
1968 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1969 dfs_find_final_overrider_post, &ffod);
1971 VEC_free (tree, heap, ffod.path);
1973 /* If there was no winner, issue an error message. */
1974 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1975 return error_mark_node;
1977 return ffod.candidates;
1980 /* Return the index of the vcall offset for FN when TYPE is used as a
1981 virtual base. */
1983 static tree
1984 get_vcall_index (tree fn, tree type)
1986 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1987 tree_pair_p p;
1988 unsigned ix;
1990 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1991 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1992 || same_signature_p (fn, p->purpose))
1993 return p->value;
1995 /* There should always be an appropriate index. */
1996 gcc_unreachable ();
1999 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2000 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2001 corresponding position in the BINFO_VIRTUALS list. */
2003 static void
2004 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2005 unsigned ix)
2007 tree b;
2008 tree overrider;
2009 tree delta;
2010 tree virtual_base;
2011 tree first_defn;
2012 tree overrider_fn, overrider_target;
2013 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2014 tree over_return, base_return;
2015 bool lost = false;
2017 /* Find the nearest primary base (possibly binfo itself) which defines
2018 this function; this is the class the caller will convert to when
2019 calling FN through BINFO. */
2020 for (b = binfo; ; b = get_primary_binfo (b))
2022 gcc_assert (b);
2023 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2024 break;
2026 /* The nearest definition is from a lost primary. */
2027 if (BINFO_LOST_PRIMARY_P (b))
2028 lost = true;
2030 first_defn = b;
2032 /* Find the final overrider. */
2033 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2034 if (overrider == error_mark_node)
2036 error ("no unique final overrider for %qD in %qT", target_fn, t);
2037 return;
2039 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2041 /* Check for adjusting covariant return types. */
2042 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2043 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2045 if (POINTER_TYPE_P (over_return)
2046 && TREE_CODE (over_return) == TREE_CODE (base_return)
2047 && CLASS_TYPE_P (TREE_TYPE (over_return))
2048 && CLASS_TYPE_P (TREE_TYPE (base_return))
2049 /* If the overrider is invalid, don't even try. */
2050 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2052 /* If FN is a covariant thunk, we must figure out the adjustment
2053 to the final base FN was converting to. As OVERRIDER_TARGET might
2054 also be converting to the return type of FN, we have to
2055 combine the two conversions here. */
2056 tree fixed_offset, virtual_offset;
2058 over_return = TREE_TYPE (over_return);
2059 base_return = TREE_TYPE (base_return);
2061 if (DECL_THUNK_P (fn))
2063 gcc_assert (DECL_RESULT_THUNK_P (fn));
2064 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2065 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2067 else
2068 fixed_offset = virtual_offset = NULL_TREE;
2070 if (virtual_offset)
2071 /* Find the equivalent binfo within the return type of the
2072 overriding function. We will want the vbase offset from
2073 there. */
2074 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2075 over_return);
2076 else if (!same_type_ignoring_top_level_qualifiers_p
2077 (over_return, base_return))
2079 /* There was no existing virtual thunk (which takes
2080 precedence). So find the binfo of the base function's
2081 return type within the overriding function's return type.
2082 We cannot call lookup base here, because we're inside a
2083 dfs_walk, and will therefore clobber the BINFO_MARKED
2084 flags. Fortunately we know the covariancy is valid (it
2085 has already been checked), so we can just iterate along
2086 the binfos, which have been chained in inheritance graph
2087 order. Of course it is lame that we have to repeat the
2088 search here anyway -- we should really be caching pieces
2089 of the vtable and avoiding this repeated work. */
2090 tree thunk_binfo, base_binfo;
2092 /* Find the base binfo within the overriding function's
2093 return type. We will always find a thunk_binfo, except
2094 when the covariancy is invalid (which we will have
2095 already diagnosed). */
2096 for (base_binfo = TYPE_BINFO (base_return),
2097 thunk_binfo = TYPE_BINFO (over_return);
2098 thunk_binfo;
2099 thunk_binfo = TREE_CHAIN (thunk_binfo))
2100 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2101 BINFO_TYPE (base_binfo)))
2102 break;
2104 /* See if virtual inheritance is involved. */
2105 for (virtual_offset = thunk_binfo;
2106 virtual_offset;
2107 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2108 if (BINFO_VIRTUAL_P (virtual_offset))
2109 break;
2111 if (virtual_offset
2112 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2114 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2116 if (virtual_offset)
2118 /* We convert via virtual base. Adjust the fixed
2119 offset to be from there. */
2120 offset = size_diffop
2121 (offset, convert
2122 (ssizetype, BINFO_OFFSET (virtual_offset)));
2124 if (fixed_offset)
2125 /* There was an existing fixed offset, this must be
2126 from the base just converted to, and the base the
2127 FN was thunking to. */
2128 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2129 else
2130 fixed_offset = offset;
2134 if (fixed_offset || virtual_offset)
2135 /* Replace the overriding function with a covariant thunk. We
2136 will emit the overriding function in its own slot as
2137 well. */
2138 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2139 fixed_offset, virtual_offset);
2141 else
2142 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2143 !DECL_THUNK_P (fn));
2145 /* Assume that we will produce a thunk that convert all the way to
2146 the final overrider, and not to an intermediate virtual base. */
2147 virtual_base = NULL_TREE;
2149 /* See if we can convert to an intermediate virtual base first, and then
2150 use the vcall offset located there to finish the conversion. */
2151 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2153 /* If we find the final overrider, then we can stop
2154 walking. */
2155 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2156 BINFO_TYPE (TREE_VALUE (overrider))))
2157 break;
2159 /* If we find a virtual base, and we haven't yet found the
2160 overrider, then there is a virtual base between the
2161 declaring base (first_defn) and the final overrider. */
2162 if (BINFO_VIRTUAL_P (b))
2164 virtual_base = b;
2165 break;
2169 if (overrider_fn != overrider_target && !virtual_base)
2171 /* The ABI specifies that a covariant thunk includes a mangling
2172 for a this pointer adjustment. This-adjusting thunks that
2173 override a function from a virtual base have a vcall
2174 adjustment. When the virtual base in question is a primary
2175 virtual base, we know the adjustments are zero, (and in the
2176 non-covariant case, we would not use the thunk).
2177 Unfortunately we didn't notice this could happen, when
2178 designing the ABI and so never mandated that such a covariant
2179 thunk should be emitted. Because we must use the ABI mandated
2180 name, we must continue searching from the binfo where we
2181 found the most recent definition of the function, towards the
2182 primary binfo which first introduced the function into the
2183 vtable. If that enters a virtual base, we must use a vcall
2184 this-adjusting thunk. Bleah! */
2185 tree probe = first_defn;
2187 while ((probe = get_primary_binfo (probe))
2188 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2189 if (BINFO_VIRTUAL_P (probe))
2190 virtual_base = probe;
2192 if (virtual_base)
2193 /* Even if we find a virtual base, the correct delta is
2194 between the overrider and the binfo we're building a vtable
2195 for. */
2196 goto virtual_covariant;
2199 /* Compute the constant adjustment to the `this' pointer. The
2200 `this' pointer, when this function is called, will point at BINFO
2201 (or one of its primary bases, which are at the same offset). */
2202 if (virtual_base)
2203 /* The `this' pointer needs to be adjusted from the declaration to
2204 the nearest virtual base. */
2205 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2206 convert (ssizetype, BINFO_OFFSET (first_defn)));
2207 else if (lost)
2208 /* If the nearest definition is in a lost primary, we don't need an
2209 entry in our vtable. Except possibly in a constructor vtable,
2210 if we happen to get our primary back. In that case, the offset
2211 will be zero, as it will be a primary base. */
2212 delta = size_zero_node;
2213 else
2214 /* The `this' pointer needs to be adjusted from pointing to
2215 BINFO to pointing at the base where the final overrider
2216 appears. */
2217 virtual_covariant:
2218 delta = size_diffop (convert (ssizetype,
2219 BINFO_OFFSET (TREE_VALUE (overrider))),
2220 convert (ssizetype, BINFO_OFFSET (binfo)));
2222 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2224 if (virtual_base)
2225 BV_VCALL_INDEX (*virtuals)
2226 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2227 else
2228 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2231 /* Called from modify_all_vtables via dfs_walk. */
2233 static tree
2234 dfs_modify_vtables (tree binfo, void* data)
2236 tree t = (tree) data;
2237 tree virtuals;
2238 tree old_virtuals;
2239 unsigned ix;
2241 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2242 /* A base without a vtable needs no modification, and its bases
2243 are uninteresting. */
2244 return dfs_skip_bases;
2246 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2247 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2248 /* Don't do the primary vtable, if it's new. */
2249 return NULL_TREE;
2251 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2252 /* There's no need to modify the vtable for a non-virtual primary
2253 base; we're not going to use that vtable anyhow. We do still
2254 need to do this for virtual primary bases, as they could become
2255 non-primary in a construction vtable. */
2256 return NULL_TREE;
2258 make_new_vtable (t, binfo);
2260 /* Now, go through each of the virtual functions in the virtual
2261 function table for BINFO. Find the final overrider, and update
2262 the BINFO_VIRTUALS list appropriately. */
2263 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2264 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2265 virtuals;
2266 ix++, virtuals = TREE_CHAIN (virtuals),
2267 old_virtuals = TREE_CHAIN (old_virtuals))
2268 update_vtable_entry_for_fn (t,
2269 binfo,
2270 BV_FN (old_virtuals),
2271 &virtuals, ix);
2273 return NULL_TREE;
2276 /* Update all of the primary and secondary vtables for T. Create new
2277 vtables as required, and initialize their RTTI information. Each
2278 of the functions in VIRTUALS is declared in T and may override a
2279 virtual function from a base class; find and modify the appropriate
2280 entries to point to the overriding functions. Returns a list, in
2281 declaration order, of the virtual functions that are declared in T,
2282 but do not appear in the primary base class vtable, and which
2283 should therefore be appended to the end of the vtable for T. */
2285 static tree
2286 modify_all_vtables (tree t, tree virtuals)
2288 tree binfo = TYPE_BINFO (t);
2289 tree *fnsp;
2291 /* Update all of the vtables. */
2292 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2294 /* Add virtual functions not already in our primary vtable. These
2295 will be both those introduced by this class, and those overridden
2296 from secondary bases. It does not include virtuals merely
2297 inherited from secondary bases. */
2298 for (fnsp = &virtuals; *fnsp; )
2300 tree fn = TREE_VALUE (*fnsp);
2302 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2303 || DECL_VINDEX (fn) == error_mark_node)
2305 /* We don't need to adjust the `this' pointer when
2306 calling this function. */
2307 BV_DELTA (*fnsp) = integer_zero_node;
2308 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2310 /* This is a function not already in our vtable. Keep it. */
2311 fnsp = &TREE_CHAIN (*fnsp);
2313 else
2314 /* We've already got an entry for this function. Skip it. */
2315 *fnsp = TREE_CHAIN (*fnsp);
2318 return virtuals;
2321 /* Get the base virtual function declarations in T that have the
2322 indicated NAME. */
2324 static tree
2325 get_basefndecls (tree name, tree t)
2327 tree methods;
2328 tree base_fndecls = NULL_TREE;
2329 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2330 int i;
2332 /* Find virtual functions in T with the indicated NAME. */
2333 i = lookup_fnfields_1 (t, name);
2334 if (i != -1)
2335 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2336 methods;
2337 methods = OVL_NEXT (methods))
2339 tree method = OVL_CURRENT (methods);
2341 if (TREE_CODE (method) == FUNCTION_DECL
2342 && DECL_VINDEX (method))
2343 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2346 if (base_fndecls)
2347 return base_fndecls;
2349 for (i = 0; i < n_baseclasses; i++)
2351 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2352 base_fndecls = chainon (get_basefndecls (name, basetype),
2353 base_fndecls);
2356 return base_fndecls;
2359 /* If this declaration supersedes the declaration of
2360 a method declared virtual in the base class, then
2361 mark this field as being virtual as well. */
2363 void
2364 check_for_override (tree decl, tree ctype)
2366 if (TREE_CODE (decl) == TEMPLATE_DECL)
2367 /* In [temp.mem] we have:
2369 A specialization of a member function template does not
2370 override a virtual function from a base class. */
2371 return;
2372 if ((DECL_DESTRUCTOR_P (decl)
2373 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2374 || DECL_CONV_FN_P (decl))
2375 && look_for_overrides (ctype, decl)
2376 && !DECL_STATIC_FUNCTION_P (decl))
2377 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2378 the error_mark_node so that we know it is an overriding
2379 function. */
2380 DECL_VINDEX (decl) = decl;
2382 if (DECL_VIRTUAL_P (decl))
2384 if (!DECL_VINDEX (decl))
2385 DECL_VINDEX (decl) = error_mark_node;
2386 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2390 /* Warn about hidden virtual functions that are not overridden in t.
2391 We know that constructors and destructors don't apply. */
2393 static void
2394 warn_hidden (tree t)
2396 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2397 tree fns;
2398 size_t i;
2400 /* We go through each separately named virtual function. */
2401 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2402 VEC_iterate (tree, method_vec, i, fns);
2403 ++i)
2405 tree fn;
2406 tree name;
2407 tree fndecl;
2408 tree base_fndecls;
2409 tree base_binfo;
2410 tree binfo;
2411 int j;
2413 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2414 have the same name. Figure out what name that is. */
2415 name = DECL_NAME (OVL_CURRENT (fns));
2416 /* There are no possibly hidden functions yet. */
2417 base_fndecls = NULL_TREE;
2418 /* Iterate through all of the base classes looking for possibly
2419 hidden functions. */
2420 for (binfo = TYPE_BINFO (t), j = 0;
2421 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2423 tree basetype = BINFO_TYPE (base_binfo);
2424 base_fndecls = chainon (get_basefndecls (name, basetype),
2425 base_fndecls);
2428 /* If there are no functions to hide, continue. */
2429 if (!base_fndecls)
2430 continue;
2432 /* Remove any overridden functions. */
2433 for (fn = fns; fn; fn = OVL_NEXT (fn))
2435 fndecl = OVL_CURRENT (fn);
2436 if (DECL_VINDEX (fndecl))
2438 tree *prev = &base_fndecls;
2440 while (*prev)
2441 /* If the method from the base class has the same
2442 signature as the method from the derived class, it
2443 has been overridden. */
2444 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2445 *prev = TREE_CHAIN (*prev);
2446 else
2447 prev = &TREE_CHAIN (*prev);
2451 /* Now give a warning for all base functions without overriders,
2452 as they are hidden. */
2453 while (base_fndecls)
2455 /* Here we know it is a hider, and no overrider exists. */
2456 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2457 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2458 base_fndecls = TREE_CHAIN (base_fndecls);
2463 /* Check for things that are invalid. There are probably plenty of other
2464 things we should check for also. */
2466 static void
2467 finish_struct_anon (tree t)
2469 tree field;
2471 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2473 if (TREE_STATIC (field))
2474 continue;
2475 if (TREE_CODE (field) != FIELD_DECL)
2476 continue;
2478 if (DECL_NAME (field) == NULL_TREE
2479 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2481 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2482 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2483 for (; elt; elt = TREE_CHAIN (elt))
2485 /* We're generally only interested in entities the user
2486 declared, but we also find nested classes by noticing
2487 the TYPE_DECL that we create implicitly. You're
2488 allowed to put one anonymous union inside another,
2489 though, so we explicitly tolerate that. We use
2490 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2491 we also allow unnamed types used for defining fields. */
2492 if (DECL_ARTIFICIAL (elt)
2493 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2494 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2495 continue;
2497 if (TREE_CODE (elt) != FIELD_DECL)
2499 if (is_union)
2500 permerror ("%q+#D invalid; an anonymous union can "
2501 "only have non-static data members", elt);
2502 else
2503 permerror ("%q+#D invalid; an anonymous struct can "
2504 "only have non-static data members", elt);
2505 continue;
2508 if (TREE_PRIVATE (elt))
2510 if (is_union)
2511 permerror ("private member %q+#D in anonymous union", elt);
2512 else
2513 permerror ("private member %q+#D in anonymous struct", elt);
2515 else if (TREE_PROTECTED (elt))
2517 if (is_union)
2518 permerror ("protected member %q+#D in anonymous union", elt);
2519 else
2520 permerror ("protected member %q+#D in anonymous struct", elt);
2523 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2524 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2530 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2531 will be used later during class template instantiation.
2532 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2533 a non-static member data (FIELD_DECL), a member function
2534 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2535 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2536 When FRIEND_P is nonzero, T is either a friend class
2537 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2538 (FUNCTION_DECL, TEMPLATE_DECL). */
2540 void
2541 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2543 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2544 if (CLASSTYPE_TEMPLATE_INFO (type))
2545 CLASSTYPE_DECL_LIST (type)
2546 = tree_cons (friend_p ? NULL_TREE : type,
2547 t, CLASSTYPE_DECL_LIST (type));
2550 /* Create default constructors, assignment operators, and so forth for
2551 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2552 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2553 the class cannot have a default constructor, copy constructor
2554 taking a const reference argument, or an assignment operator taking
2555 a const reference, respectively. */
2557 static void
2558 add_implicitly_declared_members (tree t,
2559 int cant_have_const_cctor,
2560 int cant_have_const_assignment)
2562 /* Destructor. */
2563 if (!CLASSTYPE_DESTRUCTORS (t))
2565 /* In general, we create destructors lazily. */
2566 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2567 /* However, if the implicit destructor is non-trivial
2568 destructor, we sometimes have to create it at this point. */
2569 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2571 bool lazy_p = true;
2573 if (TYPE_FOR_JAVA (t))
2574 /* If this a Java class, any non-trivial destructor is
2575 invalid, even if compiler-generated. Therefore, if the
2576 destructor is non-trivial we create it now. */
2577 lazy_p = false;
2578 else
2580 tree binfo;
2581 tree base_binfo;
2582 int ix;
2584 /* If the implicit destructor will be virtual, then we must
2585 generate it now because (unfortunately) we do not
2586 generate virtual tables lazily. */
2587 binfo = TYPE_BINFO (t);
2588 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2590 tree base_type;
2591 tree dtor;
2593 base_type = BINFO_TYPE (base_binfo);
2594 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2595 if (dtor && DECL_VIRTUAL_P (dtor))
2597 lazy_p = false;
2598 break;
2603 /* If we can't get away with being lazy, generate the destructor
2604 now. */
2605 if (!lazy_p)
2606 lazily_declare_fn (sfk_destructor, t);
2610 /* [class.ctor]
2612 If there is no user-declared constructor for a class, a default
2613 constructor is implicitly declared. */
2614 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2616 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2617 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2620 /* [class.ctor]
2622 If a class definition does not explicitly declare a copy
2623 constructor, one is declared implicitly. */
2624 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2626 TYPE_HAS_INIT_REF (t) = 1;
2627 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2628 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2631 /* If there is no assignment operator, one will be created if and
2632 when it is needed. For now, just record whether or not the type
2633 of the parameter to the assignment operator will be a const or
2634 non-const reference. */
2635 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2637 TYPE_HAS_ASSIGN_REF (t) = 1;
2638 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2639 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2643 /* Subroutine of finish_struct_1. Recursively count the number of fields
2644 in TYPE, including anonymous union members. */
2646 static int
2647 count_fields (tree fields)
2649 tree x;
2650 int n_fields = 0;
2651 for (x = fields; x; x = TREE_CHAIN (x))
2653 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2654 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2655 else
2656 n_fields += 1;
2658 return n_fields;
2661 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2662 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2664 static int
2665 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2667 tree x;
2668 for (x = fields; x; x = TREE_CHAIN (x))
2670 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2671 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2672 else
2673 field_vec->elts[idx++] = x;
2675 return idx;
2678 /* FIELD is a bit-field. We are finishing the processing for its
2679 enclosing type. Issue any appropriate messages and set appropriate
2680 flags. Returns false if an error has been diagnosed. */
2682 static bool
2683 check_bitfield_decl (tree field)
2685 tree type = TREE_TYPE (field);
2686 tree w;
2688 /* Extract the declared width of the bitfield, which has been
2689 temporarily stashed in DECL_INITIAL. */
2690 w = DECL_INITIAL (field);
2691 gcc_assert (w != NULL_TREE);
2692 /* Remove the bit-field width indicator so that the rest of the
2693 compiler does not treat that value as an initializer. */
2694 DECL_INITIAL (field) = NULL_TREE;
2696 /* Detect invalid bit-field type. */
2697 if (!INTEGRAL_TYPE_P (type))
2699 error ("bit-field %q+#D with non-integral type", field);
2700 w = error_mark_node;
2702 else
2704 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2705 STRIP_NOPS (w);
2707 /* detect invalid field size. */
2708 w = integral_constant_value (w);
2710 if (TREE_CODE (w) != INTEGER_CST)
2712 error ("bit-field %q+D width not an integer constant", field);
2713 w = error_mark_node;
2715 else if (tree_int_cst_sgn (w) < 0)
2717 error ("negative width in bit-field %q+D", field);
2718 w = error_mark_node;
2720 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2722 error ("zero width for bit-field %q+D", field);
2723 w = error_mark_node;
2725 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2726 && TREE_CODE (type) != ENUMERAL_TYPE
2727 && TREE_CODE (type) != BOOLEAN_TYPE)
2728 warning (0, "width of %q+D exceeds its type", field);
2729 else if (TREE_CODE (type) == ENUMERAL_TYPE
2730 && (0 > compare_tree_int (w,
2731 min_precision (TYPE_MIN_VALUE (type),
2732 TYPE_UNSIGNED (type)))
2733 || 0 > compare_tree_int (w,
2734 min_precision
2735 (TYPE_MAX_VALUE (type),
2736 TYPE_UNSIGNED (type)))))
2737 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2740 if (w != error_mark_node)
2742 DECL_SIZE (field) = convert (bitsizetype, w);
2743 DECL_BIT_FIELD (field) = 1;
2744 return true;
2746 else
2748 /* Non-bit-fields are aligned for their type. */
2749 DECL_BIT_FIELD (field) = 0;
2750 CLEAR_DECL_C_BIT_FIELD (field);
2751 return false;
2755 /* FIELD is a non bit-field. We are finishing the processing for its
2756 enclosing type T. Issue any appropriate messages and set appropriate
2757 flags. */
2759 static void
2760 check_field_decl (tree field,
2761 tree t,
2762 int* cant_have_const_ctor,
2763 int* no_const_asn_ref,
2764 int* any_default_members)
2766 tree type = strip_array_types (TREE_TYPE (field));
2768 /* An anonymous union cannot contain any fields which would change
2769 the settings of CANT_HAVE_CONST_CTOR and friends. */
2770 if (ANON_UNION_TYPE_P (type))
2772 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2773 structs. So, we recurse through their fields here. */
2774 else if (ANON_AGGR_TYPE_P (type))
2776 tree fields;
2778 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2779 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2780 check_field_decl (fields, t, cant_have_const_ctor,
2781 no_const_asn_ref, any_default_members);
2783 /* Check members with class type for constructors, destructors,
2784 etc. */
2785 else if (CLASS_TYPE_P (type))
2787 /* Never let anything with uninheritable virtuals
2788 make it through without complaint. */
2789 abstract_virtuals_error (field, type);
2791 if (TREE_CODE (t) == UNION_TYPE)
2793 if (TYPE_NEEDS_CONSTRUCTING (type))
2794 error ("member %q+#D with constructor not allowed in union",
2795 field);
2796 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2797 error ("member %q+#D with destructor not allowed in union", field);
2798 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2799 error ("member %q+#D with copy assignment operator not allowed in union",
2800 field);
2802 else
2804 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2805 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2806 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2807 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2808 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2809 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2812 if (!TYPE_HAS_CONST_INIT_REF (type))
2813 *cant_have_const_ctor = 1;
2815 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2816 *no_const_asn_ref = 1;
2818 if (DECL_INITIAL (field) != NULL_TREE)
2820 /* `build_class_init_list' does not recognize
2821 non-FIELD_DECLs. */
2822 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2823 error ("multiple fields in union %qT initialized", t);
2824 *any_default_members = 1;
2828 /* Check the data members (both static and non-static), class-scoped
2829 typedefs, etc., appearing in the declaration of T. Issue
2830 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2831 declaration order) of access declarations; each TREE_VALUE in this
2832 list is a USING_DECL.
2834 In addition, set the following flags:
2836 EMPTY_P
2837 The class is empty, i.e., contains no non-static data members.
2839 CANT_HAVE_CONST_CTOR_P
2840 This class cannot have an implicitly generated copy constructor
2841 taking a const reference.
2843 CANT_HAVE_CONST_ASN_REF
2844 This class cannot have an implicitly generated assignment
2845 operator taking a const reference.
2847 All of these flags should be initialized before calling this
2848 function.
2850 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2851 fields can be added by adding to this chain. */
2853 static void
2854 check_field_decls (tree t, tree *access_decls,
2855 int *cant_have_const_ctor_p,
2856 int *no_const_asn_ref_p)
2858 tree *field;
2859 tree *next;
2860 bool has_pointers;
2861 int any_default_members;
2862 int cant_pack = 0;
2864 /* Assume there are no access declarations. */
2865 *access_decls = NULL_TREE;
2866 /* Assume this class has no pointer members. */
2867 has_pointers = false;
2868 /* Assume none of the members of this class have default
2869 initializations. */
2870 any_default_members = 0;
2872 for (field = &TYPE_FIELDS (t); *field; field = next)
2874 tree x = *field;
2875 tree type = TREE_TYPE (x);
2877 next = &TREE_CHAIN (x);
2879 if (TREE_CODE (x) == USING_DECL)
2881 /* Prune the access declaration from the list of fields. */
2882 *field = TREE_CHAIN (x);
2884 /* Save the access declarations for our caller. */
2885 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2887 /* Since we've reset *FIELD there's no reason to skip to the
2888 next field. */
2889 next = field;
2890 continue;
2893 if (TREE_CODE (x) == TYPE_DECL
2894 || TREE_CODE (x) == TEMPLATE_DECL)
2895 continue;
2897 /* If we've gotten this far, it's a data member, possibly static,
2898 or an enumerator. */
2899 DECL_CONTEXT (x) = t;
2901 /* When this goes into scope, it will be a non-local reference. */
2902 DECL_NONLOCAL (x) = 1;
2904 if (TREE_CODE (t) == UNION_TYPE)
2906 /* [class.union]
2908 If a union contains a static data member, or a member of
2909 reference type, the program is ill-formed. */
2910 if (TREE_CODE (x) == VAR_DECL)
2912 error ("%q+D may not be static because it is a member of a union", x);
2913 continue;
2915 if (TREE_CODE (type) == REFERENCE_TYPE)
2917 error ("%q+D may not have reference type %qT because"
2918 " it is a member of a union",
2919 x, type);
2920 continue;
2924 /* Perform error checking that did not get done in
2925 grokdeclarator. */
2926 if (TREE_CODE (type) == FUNCTION_TYPE)
2928 error ("field %q+D invalidly declared function type", x);
2929 type = build_pointer_type (type);
2930 TREE_TYPE (x) = type;
2932 else if (TREE_CODE (type) == METHOD_TYPE)
2934 error ("field %q+D invalidly declared method type", x);
2935 type = build_pointer_type (type);
2936 TREE_TYPE (x) = type;
2939 if (type == error_mark_node)
2940 continue;
2942 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2943 continue;
2945 /* Now it can only be a FIELD_DECL. */
2947 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2948 CLASSTYPE_NON_AGGREGATE (t) = 1;
2950 /* If this is of reference type, check if it needs an init. */
2951 if (TREE_CODE (type) == REFERENCE_TYPE)
2953 CLASSTYPE_NON_POD_P (t) = 1;
2954 if (DECL_INITIAL (x) == NULL_TREE)
2955 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2957 /* ARM $12.6.2: [A member initializer list] (or, for an
2958 aggregate, initialization by a brace-enclosed list) is the
2959 only way to initialize nonstatic const and reference
2960 members. */
2961 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2964 type = strip_array_types (type);
2966 if (TYPE_PACKED (t))
2968 if (!pod_type_p (type) && !TYPE_PACKED (type))
2970 warning
2972 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2974 cant_pack = 1;
2976 else if (TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2977 DECL_PACKED (x) = 1;
2980 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2981 /* We don't treat zero-width bitfields as making a class
2982 non-empty. */
2984 else
2986 /* The class is non-empty. */
2987 CLASSTYPE_EMPTY_P (t) = 0;
2988 /* The class is not even nearly empty. */
2989 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2990 /* If one of the data members contains an empty class,
2991 so does T. */
2992 if (CLASS_TYPE_P (type)
2993 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
2994 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2997 /* This is used by -Weffc++ (see below). Warn only for pointers
2998 to members which might hold dynamic memory. So do not warn
2999 for pointers to functions or pointers to members. */
3000 if (TYPE_PTR_P (type)
3001 && !TYPE_PTRFN_P (type)
3002 && !TYPE_PTR_TO_MEMBER_P (type))
3003 has_pointers = true;
3005 if (CLASS_TYPE_P (type))
3007 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3008 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3009 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3010 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3013 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3014 CLASSTYPE_HAS_MUTABLE (t) = 1;
3016 if (! pod_type_p (type))
3017 /* DR 148 now allows pointers to members (which are POD themselves),
3018 to be allowed in POD structs. */
3019 CLASSTYPE_NON_POD_P (t) = 1;
3021 if (! zero_init_p (type))
3022 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3024 /* If any field is const, the structure type is pseudo-const. */
3025 if (CP_TYPE_CONST_P (type))
3027 C_TYPE_FIELDS_READONLY (t) = 1;
3028 if (DECL_INITIAL (x) == NULL_TREE)
3029 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3031 /* ARM $12.6.2: [A member initializer list] (or, for an
3032 aggregate, initialization by a brace-enclosed list) is the
3033 only way to initialize nonstatic const and reference
3034 members. */
3035 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3037 /* A field that is pseudo-const makes the structure likewise. */
3038 else if (CLASS_TYPE_P (type))
3040 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3041 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3042 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3043 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3046 /* Core issue 80: A nonstatic data member is required to have a
3047 different name from the class iff the class has a
3048 user-defined constructor. */
3049 if (constructor_name_p (DECL_NAME (x), t)
3050 && TYPE_HAS_USER_CONSTRUCTOR (t))
3051 permerror ("field %q+#D with same name as class", x);
3053 /* We set DECL_C_BIT_FIELD in grokbitfield.
3054 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3055 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3056 check_field_decl (x, t,
3057 cant_have_const_ctor_p,
3058 no_const_asn_ref_p,
3059 &any_default_members);
3062 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3063 it should also define a copy constructor and an assignment operator to
3064 implement the correct copy semantic (deep vs shallow, etc.). As it is
3065 not feasible to check whether the constructors do allocate dynamic memory
3066 and store it within members, we approximate the warning like this:
3068 -- Warn only if there are members which are pointers
3069 -- Warn only if there is a non-trivial constructor (otherwise,
3070 there cannot be memory allocated).
3071 -- Warn only if there is a non-trivial destructor. We assume that the
3072 user at least implemented the cleanup correctly, and a destructor
3073 is needed to free dynamic memory.
3075 This seems enough for practical purposes. */
3076 if (warn_ecpp
3077 && has_pointers
3078 && TYPE_HAS_USER_CONSTRUCTOR (t)
3079 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3080 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3082 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3084 if (! TYPE_HAS_INIT_REF (t))
3086 warning (OPT_Weffc__,
3087 " but does not override %<%T(const %T&)%>", t, t);
3088 if (!TYPE_HAS_ASSIGN_REF (t))
3089 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3091 else if (! TYPE_HAS_ASSIGN_REF (t))
3092 warning (OPT_Weffc__,
3093 " but does not override %<operator=(const %T&)%>", t);
3096 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3097 if (cant_pack)
3098 TYPE_PACKED (t) = 0;
3100 /* Check anonymous struct/anonymous union fields. */
3101 finish_struct_anon (t);
3103 /* We've built up the list of access declarations in reverse order.
3104 Fix that now. */
3105 *access_decls = nreverse (*access_decls);
3108 /* If TYPE is an empty class type, records its OFFSET in the table of
3109 OFFSETS. */
3111 static int
3112 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3114 splay_tree_node n;
3116 if (!is_empty_class (type))
3117 return 0;
3119 /* Record the location of this empty object in OFFSETS. */
3120 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3121 if (!n)
3122 n = splay_tree_insert (offsets,
3123 (splay_tree_key) offset,
3124 (splay_tree_value) NULL_TREE);
3125 n->value = ((splay_tree_value)
3126 tree_cons (NULL_TREE,
3127 type,
3128 (tree) n->value));
3130 return 0;
3133 /* Returns nonzero if TYPE is an empty class type and there is
3134 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3136 static int
3137 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3139 splay_tree_node n;
3140 tree t;
3142 if (!is_empty_class (type))
3143 return 0;
3145 /* Record the location of this empty object in OFFSETS. */
3146 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3147 if (!n)
3148 return 0;
3150 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3151 if (same_type_p (TREE_VALUE (t), type))
3152 return 1;
3154 return 0;
3157 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3158 F for every subobject, passing it the type, offset, and table of
3159 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3160 be traversed.
3162 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3163 than MAX_OFFSET will not be walked.
3165 If F returns a nonzero value, the traversal ceases, and that value
3166 is returned. Otherwise, returns zero. */
3168 static int
3169 walk_subobject_offsets (tree type,
3170 subobject_offset_fn f,
3171 tree offset,
3172 splay_tree offsets,
3173 tree max_offset,
3174 int vbases_p)
3176 int r = 0;
3177 tree type_binfo = NULL_TREE;
3179 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3180 stop. */
3181 if (max_offset && INT_CST_LT (max_offset, offset))
3182 return 0;
3184 if (type == error_mark_node)
3185 return 0;
3187 if (!TYPE_P (type))
3189 if (abi_version_at_least (2))
3190 type_binfo = type;
3191 type = BINFO_TYPE (type);
3194 if (CLASS_TYPE_P (type))
3196 tree field;
3197 tree binfo;
3198 int i;
3200 /* Avoid recursing into objects that are not interesting. */
3201 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3202 return 0;
3204 /* Record the location of TYPE. */
3205 r = (*f) (type, offset, offsets);
3206 if (r)
3207 return r;
3209 /* Iterate through the direct base classes of TYPE. */
3210 if (!type_binfo)
3211 type_binfo = TYPE_BINFO (type);
3212 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3214 tree binfo_offset;
3216 if (abi_version_at_least (2)
3217 && BINFO_VIRTUAL_P (binfo))
3218 continue;
3220 if (!vbases_p
3221 && BINFO_VIRTUAL_P (binfo)
3222 && !BINFO_PRIMARY_P (binfo))
3223 continue;
3225 if (!abi_version_at_least (2))
3226 binfo_offset = size_binop (PLUS_EXPR,
3227 offset,
3228 BINFO_OFFSET (binfo));
3229 else
3231 tree orig_binfo;
3232 /* We cannot rely on BINFO_OFFSET being set for the base
3233 class yet, but the offsets for direct non-virtual
3234 bases can be calculated by going back to the TYPE. */
3235 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3236 binfo_offset = size_binop (PLUS_EXPR,
3237 offset,
3238 BINFO_OFFSET (orig_binfo));
3241 r = walk_subobject_offsets (binfo,
3243 binfo_offset,
3244 offsets,
3245 max_offset,
3246 (abi_version_at_least (2)
3247 ? /*vbases_p=*/0 : vbases_p));
3248 if (r)
3249 return r;
3252 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3254 unsigned ix;
3255 VEC(tree,gc) *vbases;
3257 /* Iterate through the virtual base classes of TYPE. In G++
3258 3.2, we included virtual bases in the direct base class
3259 loop above, which results in incorrect results; the
3260 correct offsets for virtual bases are only known when
3261 working with the most derived type. */
3262 if (vbases_p)
3263 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3264 VEC_iterate (tree, vbases, ix, binfo); ix++)
3266 r = walk_subobject_offsets (binfo,
3268 size_binop (PLUS_EXPR,
3269 offset,
3270 BINFO_OFFSET (binfo)),
3271 offsets,
3272 max_offset,
3273 /*vbases_p=*/0);
3274 if (r)
3275 return r;
3277 else
3279 /* We still have to walk the primary base, if it is
3280 virtual. (If it is non-virtual, then it was walked
3281 above.) */
3282 tree vbase = get_primary_binfo (type_binfo);
3284 if (vbase && BINFO_VIRTUAL_P (vbase)
3285 && BINFO_PRIMARY_P (vbase)
3286 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3288 r = (walk_subobject_offsets
3289 (vbase, f, offset,
3290 offsets, max_offset, /*vbases_p=*/0));
3291 if (r)
3292 return r;
3297 /* Iterate through the fields of TYPE. */
3298 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3299 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3301 tree field_offset;
3303 if (abi_version_at_least (2))
3304 field_offset = byte_position (field);
3305 else
3306 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3307 field_offset = DECL_FIELD_OFFSET (field);
3309 r = walk_subobject_offsets (TREE_TYPE (field),
3311 size_binop (PLUS_EXPR,
3312 offset,
3313 field_offset),
3314 offsets,
3315 max_offset,
3316 /*vbases_p=*/1);
3317 if (r)
3318 return r;
3321 else if (TREE_CODE (type) == ARRAY_TYPE)
3323 tree element_type = strip_array_types (type);
3324 tree domain = TYPE_DOMAIN (type);
3325 tree index;
3327 /* Avoid recursing into objects that are not interesting. */
3328 if (!CLASS_TYPE_P (element_type)
3329 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3330 return 0;
3332 /* Step through each of the elements in the array. */
3333 for (index = size_zero_node;
3334 /* G++ 3.2 had an off-by-one error here. */
3335 (abi_version_at_least (2)
3336 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3337 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3338 index = size_binop (PLUS_EXPR, index, size_one_node))
3340 r = walk_subobject_offsets (TREE_TYPE (type),
3342 offset,
3343 offsets,
3344 max_offset,
3345 /*vbases_p=*/1);
3346 if (r)
3347 return r;
3348 offset = size_binop (PLUS_EXPR, offset,
3349 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3350 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3351 there's no point in iterating through the remaining
3352 elements of the array. */
3353 if (max_offset && INT_CST_LT (max_offset, offset))
3354 break;
3358 return 0;
3361 /* Record all of the empty subobjects of TYPE (either a type or a
3362 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3363 is being placed at OFFSET; otherwise, it is a base class that is
3364 being placed at OFFSET. */
3366 static void
3367 record_subobject_offsets (tree type,
3368 tree offset,
3369 splay_tree offsets,
3370 bool is_data_member)
3372 tree max_offset;
3373 /* If recording subobjects for a non-static data member or a
3374 non-empty base class , we do not need to record offsets beyond
3375 the size of the biggest empty class. Additional data members
3376 will go at the end of the class. Additional base classes will go
3377 either at offset zero (if empty, in which case they cannot
3378 overlap with offsets past the size of the biggest empty class) or
3379 at the end of the class.
3381 However, if we are placing an empty base class, then we must record
3382 all offsets, as either the empty class is at offset zero (where
3383 other empty classes might later be placed) or at the end of the
3384 class (where other objects might then be placed, so other empty
3385 subobjects might later overlap). */
3386 if (is_data_member
3387 || !is_empty_class (BINFO_TYPE (type)))
3388 max_offset = sizeof_biggest_empty_class;
3389 else
3390 max_offset = NULL_TREE;
3391 walk_subobject_offsets (type, record_subobject_offset, offset,
3392 offsets, max_offset, is_data_member);
3395 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3396 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3397 virtual bases of TYPE are examined. */
3399 static int
3400 layout_conflict_p (tree type,
3401 tree offset,
3402 splay_tree offsets,
3403 int vbases_p)
3405 splay_tree_node max_node;
3407 /* Get the node in OFFSETS that indicates the maximum offset where
3408 an empty subobject is located. */
3409 max_node = splay_tree_max (offsets);
3410 /* If there aren't any empty subobjects, then there's no point in
3411 performing this check. */
3412 if (!max_node)
3413 return 0;
3415 return walk_subobject_offsets (type, check_subobject_offset, offset,
3416 offsets, (tree) (max_node->key),
3417 vbases_p);
3420 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3421 non-static data member of the type indicated by RLI. BINFO is the
3422 binfo corresponding to the base subobject, OFFSETS maps offsets to
3423 types already located at those offsets. This function determines
3424 the position of the DECL. */
3426 static void
3427 layout_nonempty_base_or_field (record_layout_info rli,
3428 tree decl,
3429 tree binfo,
3430 splay_tree offsets)
3432 tree offset = NULL_TREE;
3433 bool field_p;
3434 tree type;
3436 if (binfo)
3438 /* For the purposes of determining layout conflicts, we want to
3439 use the class type of BINFO; TREE_TYPE (DECL) will be the
3440 CLASSTYPE_AS_BASE version, which does not contain entries for
3441 zero-sized bases. */
3442 type = TREE_TYPE (binfo);
3443 field_p = false;
3445 else
3447 type = TREE_TYPE (decl);
3448 field_p = true;
3451 /* Try to place the field. It may take more than one try if we have
3452 a hard time placing the field without putting two objects of the
3453 same type at the same address. */
3454 while (1)
3456 struct record_layout_info_s old_rli = *rli;
3458 /* Place this field. */
3459 place_field (rli, decl);
3460 offset = byte_position (decl);
3462 /* We have to check to see whether or not there is already
3463 something of the same type at the offset we're about to use.
3464 For example, consider:
3466 struct S {};
3467 struct T : public S { int i; };
3468 struct U : public S, public T {};
3470 Here, we put S at offset zero in U. Then, we can't put T at
3471 offset zero -- its S component would be at the same address
3472 as the S we already allocated. So, we have to skip ahead.
3473 Since all data members, including those whose type is an
3474 empty class, have nonzero size, any overlap can happen only
3475 with a direct or indirect base-class -- it can't happen with
3476 a data member. */
3477 /* In a union, overlap is permitted; all members are placed at
3478 offset zero. */
3479 if (TREE_CODE (rli->t) == UNION_TYPE)
3480 break;
3481 /* G++ 3.2 did not check for overlaps when placing a non-empty
3482 virtual base. */
3483 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3484 break;
3485 if (layout_conflict_p (field_p ? type : binfo, offset,
3486 offsets, field_p))
3488 /* Strip off the size allocated to this field. That puts us
3489 at the first place we could have put the field with
3490 proper alignment. */
3491 *rli = old_rli;
3493 /* Bump up by the alignment required for the type. */
3494 rli->bitpos
3495 = size_binop (PLUS_EXPR, rli->bitpos,
3496 bitsize_int (binfo
3497 ? CLASSTYPE_ALIGN (type)
3498 : TYPE_ALIGN (type)));
3499 normalize_rli (rli);
3501 else
3502 /* There was no conflict. We're done laying out this field. */
3503 break;
3506 /* Now that we know where it will be placed, update its
3507 BINFO_OFFSET. */
3508 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3509 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3510 this point because their BINFO_OFFSET is copied from another
3511 hierarchy. Therefore, we may not need to add the entire
3512 OFFSET. */
3513 propagate_binfo_offsets (binfo,
3514 size_diffop (convert (ssizetype, offset),
3515 convert (ssizetype,
3516 BINFO_OFFSET (binfo))));
3519 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3521 static int
3522 empty_base_at_nonzero_offset_p (tree type,
3523 tree offset,
3524 splay_tree offsets ATTRIBUTE_UNUSED)
3526 return is_empty_class (type) && !integer_zerop (offset);
3529 /* Layout the empty base BINFO. EOC indicates the byte currently just
3530 past the end of the class, and should be correctly aligned for a
3531 class of the type indicated by BINFO; OFFSETS gives the offsets of
3532 the empty bases allocated so far. T is the most derived
3533 type. Return nonzero iff we added it at the end. */
3535 static bool
3536 layout_empty_base (record_layout_info rli, tree binfo,
3537 tree eoc, splay_tree offsets)
3539 tree alignment;
3540 tree basetype = BINFO_TYPE (binfo);
3541 bool atend = false;
3543 /* This routine should only be used for empty classes. */
3544 gcc_assert (is_empty_class (basetype));
3545 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3547 if (!integer_zerop (BINFO_OFFSET (binfo)))
3549 if (abi_version_at_least (2))
3550 propagate_binfo_offsets
3551 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3552 else
3553 warning (OPT_Wabi,
3554 "offset of empty base %qT may not be ABI-compliant and may"
3555 "change in a future version of GCC",
3556 BINFO_TYPE (binfo));
3559 /* This is an empty base class. We first try to put it at offset
3560 zero. */
3561 if (layout_conflict_p (binfo,
3562 BINFO_OFFSET (binfo),
3563 offsets,
3564 /*vbases_p=*/0))
3566 /* That didn't work. Now, we move forward from the next
3567 available spot in the class. */
3568 atend = true;
3569 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3570 while (1)
3572 if (!layout_conflict_p (binfo,
3573 BINFO_OFFSET (binfo),
3574 offsets,
3575 /*vbases_p=*/0))
3576 /* We finally found a spot where there's no overlap. */
3577 break;
3579 /* There's overlap here, too. Bump along to the next spot. */
3580 propagate_binfo_offsets (binfo, alignment);
3584 if (CLASSTYPE_USER_ALIGN (basetype))
3586 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3587 if (warn_packed)
3588 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3589 TYPE_USER_ALIGN (rli->t) = 1;
3592 return atend;
3595 /* Layout the base given by BINFO in the class indicated by RLI.
3596 *BASE_ALIGN is a running maximum of the alignments of
3597 any base class. OFFSETS gives the location of empty base
3598 subobjects. T is the most derived type. Return nonzero if the new
3599 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3600 *NEXT_FIELD, unless BINFO is for an empty base class.
3602 Returns the location at which the next field should be inserted. */
3604 static tree *
3605 build_base_field (record_layout_info rli, tree binfo,
3606 splay_tree offsets, tree *next_field)
3608 tree t = rli->t;
3609 tree basetype = BINFO_TYPE (binfo);
3611 if (!COMPLETE_TYPE_P (basetype))
3612 /* This error is now reported in xref_tag, thus giving better
3613 location information. */
3614 return next_field;
3616 /* Place the base class. */
3617 if (!is_empty_class (basetype))
3619 tree decl;
3621 /* The containing class is non-empty because it has a non-empty
3622 base class. */
3623 CLASSTYPE_EMPTY_P (t) = 0;
3625 /* Create the FIELD_DECL. */
3626 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3627 DECL_ARTIFICIAL (decl) = 1;
3628 DECL_IGNORED_P (decl) = 1;
3629 DECL_FIELD_CONTEXT (decl) = t;
3630 if (CLASSTYPE_AS_BASE (basetype))
3632 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3633 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3634 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3635 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3636 DECL_MODE (decl) = TYPE_MODE (basetype);
3637 DECL_FIELD_IS_BASE (decl) = 1;
3639 /* Try to place the field. It may take more than one try if we
3640 have a hard time placing the field without putting two
3641 objects of the same type at the same address. */
3642 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3643 /* Add the new FIELD_DECL to the list of fields for T. */
3644 TREE_CHAIN (decl) = *next_field;
3645 *next_field = decl;
3646 next_field = &TREE_CHAIN (decl);
3649 else
3651 tree eoc;
3652 bool atend;
3654 /* On some platforms (ARM), even empty classes will not be
3655 byte-aligned. */
3656 eoc = round_up (rli_size_unit_so_far (rli),
3657 CLASSTYPE_ALIGN_UNIT (basetype));
3658 atend = layout_empty_base (rli, binfo, eoc, offsets);
3659 /* A nearly-empty class "has no proper base class that is empty,
3660 not morally virtual, and at an offset other than zero." */
3661 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3663 if (atend)
3664 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3665 /* The check above (used in G++ 3.2) is insufficient because
3666 an empty class placed at offset zero might itself have an
3667 empty base at a nonzero offset. */
3668 else if (walk_subobject_offsets (basetype,
3669 empty_base_at_nonzero_offset_p,
3670 size_zero_node,
3671 /*offsets=*/NULL,
3672 /*max_offset=*/NULL_TREE,
3673 /*vbases_p=*/true))
3675 if (abi_version_at_least (2))
3676 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3677 else
3678 warning (OPT_Wabi,
3679 "class %qT will be considered nearly empty in a "
3680 "future version of GCC", t);
3684 /* We do not create a FIELD_DECL for empty base classes because
3685 it might overlap some other field. We want to be able to
3686 create CONSTRUCTORs for the class by iterating over the
3687 FIELD_DECLs, and the back end does not handle overlapping
3688 FIELD_DECLs. */
3690 /* An empty virtual base causes a class to be non-empty
3691 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3692 here because that was already done when the virtual table
3693 pointer was created. */
3696 /* Record the offsets of BINFO and its base subobjects. */
3697 record_subobject_offsets (binfo,
3698 BINFO_OFFSET (binfo),
3699 offsets,
3700 /*is_data_member=*/false);
3702 return next_field;
3705 /* Layout all of the non-virtual base classes. Record empty
3706 subobjects in OFFSETS. T is the most derived type. Return nonzero
3707 if the type cannot be nearly empty. The fields created
3708 corresponding to the base classes will be inserted at
3709 *NEXT_FIELD. */
3711 static void
3712 build_base_fields (record_layout_info rli,
3713 splay_tree offsets, tree *next_field)
3715 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3716 subobjects. */
3717 tree t = rli->t;
3718 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3719 int i;
3721 /* The primary base class is always allocated first. */
3722 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3723 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3724 offsets, next_field);
3726 /* Now allocate the rest of the bases. */
3727 for (i = 0; i < n_baseclasses; ++i)
3729 tree base_binfo;
3731 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3733 /* The primary base was already allocated above, so we don't
3734 need to allocate it again here. */
3735 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3736 continue;
3738 /* Virtual bases are added at the end (a primary virtual base
3739 will have already been added). */
3740 if (BINFO_VIRTUAL_P (base_binfo))
3741 continue;
3743 next_field = build_base_field (rli, base_binfo,
3744 offsets, next_field);
3748 /* Go through the TYPE_METHODS of T issuing any appropriate
3749 diagnostics, figuring out which methods override which other
3750 methods, and so forth. */
3752 static void
3753 check_methods (tree t)
3755 tree x;
3757 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3759 check_for_override (x, t);
3760 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3761 error ("initializer specified for non-virtual method %q+D", x);
3762 /* The name of the field is the original field name
3763 Save this in auxiliary field for later overloading. */
3764 if (DECL_VINDEX (x))
3766 TYPE_POLYMORPHIC_P (t) = 1;
3767 if (DECL_PURE_VIRTUAL_P (x))
3768 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3770 /* All user-declared destructors are non-trivial. */
3771 if (DECL_DESTRUCTOR_P (x))
3772 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3776 /* FN is a constructor or destructor. Clone the declaration to create
3777 a specialized in-charge or not-in-charge version, as indicated by
3778 NAME. */
3780 static tree
3781 build_clone (tree fn, tree name)
3783 tree parms;
3784 tree clone;
3786 /* Copy the function. */
3787 clone = copy_decl (fn);
3788 /* Remember where this function came from. */
3789 DECL_CLONED_FUNCTION (clone) = fn;
3790 DECL_ABSTRACT_ORIGIN (clone) = fn;
3791 /* Reset the function name. */
3792 DECL_NAME (clone) = name;
3793 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3794 /* There's no pending inline data for this function. */
3795 DECL_PENDING_INLINE_INFO (clone) = NULL;
3796 DECL_PENDING_INLINE_P (clone) = 0;
3797 /* And it hasn't yet been deferred. */
3798 DECL_DEFERRED_FN (clone) = 0;
3800 /* The base-class destructor is not virtual. */
3801 if (name == base_dtor_identifier)
3803 DECL_VIRTUAL_P (clone) = 0;
3804 if (TREE_CODE (clone) != TEMPLATE_DECL)
3805 DECL_VINDEX (clone) = NULL_TREE;
3808 /* If there was an in-charge parameter, drop it from the function
3809 type. */
3810 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3812 tree basetype;
3813 tree parmtypes;
3814 tree exceptions;
3816 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3817 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3818 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3819 /* Skip the `this' parameter. */
3820 parmtypes = TREE_CHAIN (parmtypes);
3821 /* Skip the in-charge parameter. */
3822 parmtypes = TREE_CHAIN (parmtypes);
3823 /* And the VTT parm, in a complete [cd]tor. */
3824 if (DECL_HAS_VTT_PARM_P (fn)
3825 && ! DECL_NEEDS_VTT_PARM_P (clone))
3826 parmtypes = TREE_CHAIN (parmtypes);
3827 /* If this is subobject constructor or destructor, add the vtt
3828 parameter. */
3829 TREE_TYPE (clone)
3830 = build_method_type_directly (basetype,
3831 TREE_TYPE (TREE_TYPE (clone)),
3832 parmtypes);
3833 if (exceptions)
3834 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3835 exceptions);
3836 TREE_TYPE (clone)
3837 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3838 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3841 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3842 aren't function parameters; those are the template parameters. */
3843 if (TREE_CODE (clone) != TEMPLATE_DECL)
3845 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3846 /* Remove the in-charge parameter. */
3847 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3849 TREE_CHAIN (DECL_ARGUMENTS (clone))
3850 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3851 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3853 /* And the VTT parm, in a complete [cd]tor. */
3854 if (DECL_HAS_VTT_PARM_P (fn))
3856 if (DECL_NEEDS_VTT_PARM_P (clone))
3857 DECL_HAS_VTT_PARM_P (clone) = 1;
3858 else
3860 TREE_CHAIN (DECL_ARGUMENTS (clone))
3861 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3862 DECL_HAS_VTT_PARM_P (clone) = 0;
3866 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3868 DECL_CONTEXT (parms) = clone;
3869 cxx_dup_lang_specific_decl (parms);
3873 /* Create the RTL for this function. */
3874 SET_DECL_RTL (clone, NULL_RTX);
3875 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3877 /* Make it easy to find the CLONE given the FN. */
3878 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3879 TREE_CHAIN (fn) = clone;
3881 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3882 if (TREE_CODE (clone) == TEMPLATE_DECL)
3884 tree result;
3886 DECL_TEMPLATE_RESULT (clone)
3887 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3888 result = DECL_TEMPLATE_RESULT (clone);
3889 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3890 DECL_TI_TEMPLATE (result) = clone;
3892 else if (pch_file)
3893 note_decl_for_pch (clone);
3895 return clone;
3898 /* Produce declarations for all appropriate clones of FN. If
3899 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3900 CLASTYPE_METHOD_VEC as well. */
3902 void
3903 clone_function_decl (tree fn, int update_method_vec_p)
3905 tree clone;
3907 /* Avoid inappropriate cloning. */
3908 if (TREE_CHAIN (fn)
3909 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3910 return;
3912 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3914 /* For each constructor, we need two variants: an in-charge version
3915 and a not-in-charge version. */
3916 clone = build_clone (fn, complete_ctor_identifier);
3917 if (update_method_vec_p)
3918 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3919 clone = build_clone (fn, base_ctor_identifier);
3920 if (update_method_vec_p)
3921 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3923 else
3925 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3927 /* For each destructor, we need three variants: an in-charge
3928 version, a not-in-charge version, and an in-charge deleting
3929 version. We clone the deleting version first because that
3930 means it will go second on the TYPE_METHODS list -- and that
3931 corresponds to the correct layout order in the virtual
3932 function table.
3934 For a non-virtual destructor, we do not build a deleting
3935 destructor. */
3936 if (DECL_VIRTUAL_P (fn))
3938 clone = build_clone (fn, deleting_dtor_identifier);
3939 if (update_method_vec_p)
3940 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3942 clone = build_clone (fn, complete_dtor_identifier);
3943 if (update_method_vec_p)
3944 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3945 clone = build_clone (fn, base_dtor_identifier);
3946 if (update_method_vec_p)
3947 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3950 /* Note that this is an abstract function that is never emitted. */
3951 DECL_ABSTRACT (fn) = 1;
3954 /* DECL is an in charge constructor, which is being defined. This will
3955 have had an in class declaration, from whence clones were
3956 declared. An out-of-class definition can specify additional default
3957 arguments. As it is the clones that are involved in overload
3958 resolution, we must propagate the information from the DECL to its
3959 clones. */
3961 void
3962 adjust_clone_args (tree decl)
3964 tree clone;
3966 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3967 clone = TREE_CHAIN (clone))
3969 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3970 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3971 tree decl_parms, clone_parms;
3973 clone_parms = orig_clone_parms;
3975 /* Skip the 'this' parameter. */
3976 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3977 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3979 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3980 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3981 if (DECL_HAS_VTT_PARM_P (decl))
3982 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3984 clone_parms = orig_clone_parms;
3985 if (DECL_HAS_VTT_PARM_P (clone))
3986 clone_parms = TREE_CHAIN (clone_parms);
3988 for (decl_parms = orig_decl_parms; decl_parms;
3989 decl_parms = TREE_CHAIN (decl_parms),
3990 clone_parms = TREE_CHAIN (clone_parms))
3992 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3993 TREE_TYPE (clone_parms)));
3995 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3997 /* A default parameter has been added. Adjust the
3998 clone's parameters. */
3999 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4000 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4001 tree type;
4003 clone_parms = orig_decl_parms;
4005 if (DECL_HAS_VTT_PARM_P (clone))
4007 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4008 TREE_VALUE (orig_clone_parms),
4009 clone_parms);
4010 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4012 type = build_method_type_directly (basetype,
4013 TREE_TYPE (TREE_TYPE (clone)),
4014 clone_parms);
4015 if (exceptions)
4016 type = build_exception_variant (type, exceptions);
4017 TREE_TYPE (clone) = type;
4019 clone_parms = NULL_TREE;
4020 break;
4023 gcc_assert (!clone_parms);
4027 /* For each of the constructors and destructors in T, create an
4028 in-charge and not-in-charge variant. */
4030 static void
4031 clone_constructors_and_destructors (tree t)
4033 tree fns;
4035 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4036 out now. */
4037 if (!CLASSTYPE_METHOD_VEC (t))
4038 return;
4040 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4041 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4042 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4043 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4046 /* Returns true iff class T has a user-defined constructor other than
4047 the default constructor. */
4049 bool
4050 type_has_user_nondefault_constructor (tree t)
4052 tree fns;
4054 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4055 return false;
4057 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4059 tree fn = OVL_CURRENT (fns);
4060 if (!DECL_ARTIFICIAL (fn)
4061 && (TREE_CODE (fn) == TEMPLATE_DECL
4062 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4063 != NULL_TREE)))
4064 return true;
4067 return false;
4070 /* Remove all zero-width bit-fields from T. */
4072 static void
4073 remove_zero_width_bit_fields (tree t)
4075 tree *fieldsp;
4077 fieldsp = &TYPE_FIELDS (t);
4078 while (*fieldsp)
4080 if (TREE_CODE (*fieldsp) == FIELD_DECL
4081 && DECL_C_BIT_FIELD (*fieldsp)
4082 && DECL_INITIAL (*fieldsp))
4083 *fieldsp = TREE_CHAIN (*fieldsp);
4084 else
4085 fieldsp = &TREE_CHAIN (*fieldsp);
4089 /* Returns TRUE iff we need a cookie when dynamically allocating an
4090 array whose elements have the indicated class TYPE. */
4092 static bool
4093 type_requires_array_cookie (tree type)
4095 tree fns;
4096 bool has_two_argument_delete_p = false;
4098 gcc_assert (CLASS_TYPE_P (type));
4100 /* If there's a non-trivial destructor, we need a cookie. In order
4101 to iterate through the array calling the destructor for each
4102 element, we'll have to know how many elements there are. */
4103 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4104 return true;
4106 /* If the usual deallocation function is a two-argument whose second
4107 argument is of type `size_t', then we have to pass the size of
4108 the array to the deallocation function, so we will need to store
4109 a cookie. */
4110 fns = lookup_fnfields (TYPE_BINFO (type),
4111 ansi_opname (VEC_DELETE_EXPR),
4112 /*protect=*/0);
4113 /* If there are no `operator []' members, or the lookup is
4114 ambiguous, then we don't need a cookie. */
4115 if (!fns || fns == error_mark_node)
4116 return false;
4117 /* Loop through all of the functions. */
4118 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4120 tree fn;
4121 tree second_parm;
4123 /* Select the current function. */
4124 fn = OVL_CURRENT (fns);
4125 /* See if this function is a one-argument delete function. If
4126 it is, then it will be the usual deallocation function. */
4127 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4128 if (second_parm == void_list_node)
4129 return false;
4130 /* Otherwise, if we have a two-argument function and the second
4131 argument is `size_t', it will be the usual deallocation
4132 function -- unless there is one-argument function, too. */
4133 if (TREE_CHAIN (second_parm) == void_list_node
4134 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4135 has_two_argument_delete_p = true;
4138 return has_two_argument_delete_p;
4141 /* Check the validity of the bases and members declared in T. Add any
4142 implicitly-generated functions (like copy-constructors and
4143 assignment operators). Compute various flag bits (like
4144 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4145 level: i.e., independently of the ABI in use. */
4147 static void
4148 check_bases_and_members (tree t)
4150 /* Nonzero if the implicitly generated copy constructor should take
4151 a non-const reference argument. */
4152 int cant_have_const_ctor;
4153 /* Nonzero if the implicitly generated assignment operator
4154 should take a non-const reference argument. */
4155 int no_const_asn_ref;
4156 tree access_decls;
4158 /* By default, we use const reference arguments and generate default
4159 constructors. */
4160 cant_have_const_ctor = 0;
4161 no_const_asn_ref = 0;
4163 /* Check all the base-classes. */
4164 check_bases (t, &cant_have_const_ctor,
4165 &no_const_asn_ref);
4167 /* Check all the method declarations. */
4168 check_methods (t);
4170 /* Check all the data member declarations. We cannot call
4171 check_field_decls until we have called check_bases check_methods,
4172 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4173 being set appropriately. */
4174 check_field_decls (t, &access_decls,
4175 &cant_have_const_ctor,
4176 &no_const_asn_ref);
4178 /* A nearly-empty class has to be vptr-containing; a nearly empty
4179 class contains just a vptr. */
4180 if (!TYPE_CONTAINS_VPTR_P (t))
4181 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4183 /* Do some bookkeeping that will guide the generation of implicitly
4184 declared member functions. */
4185 TYPE_HAS_COMPLEX_INIT_REF (t)
4186 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4187 /* We need to call a constructor for this class if it has a
4188 user-declared constructor, or if the default constructor is going
4189 to initialize the vptr. (This is not an if-and-only-if;
4190 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4191 themselves need constructing.) */
4192 TYPE_NEEDS_CONSTRUCTING (t)
4193 |= (TYPE_HAS_USER_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4194 /* [dcl.init.aggr]
4196 An aggregate is an arry or a class with no user-declared
4197 constructors ... and no virtual functions.
4199 Again, other conditions for being an aggregate are checked
4200 elsewhere. */
4201 CLASSTYPE_NON_AGGREGATE (t)
4202 |= (TYPE_HAS_USER_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4203 CLASSTYPE_NON_POD_P (t)
4204 |= (CLASSTYPE_NON_AGGREGATE (t)
4205 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4206 || TYPE_HAS_ASSIGN_REF (t));
4207 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4208 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4209 TYPE_HAS_COMPLEX_DFLT (t)
4210 |= (TYPE_HAS_DEFAULT_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4212 /* If the class has no user-declared constructor, but does have
4213 non-static const or reference data members that can never be
4214 initialized, issue a warning. */
4215 if (extra_warnings
4216 /* Classes with user-declared constructors are presumed to
4217 initialize these members. */
4218 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4219 /* Aggregates can be initialized with brace-enclosed
4220 initializers. */
4221 && CLASSTYPE_NON_AGGREGATE (t))
4223 tree field;
4225 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4227 tree type;
4229 if (TREE_CODE (field) != FIELD_DECL)
4230 continue;
4232 type = TREE_TYPE (field);
4233 if (TREE_CODE (type) == REFERENCE_TYPE)
4234 warning (OPT_Wextra, "non-static reference %q+#D in class "
4235 "without a constructor", field);
4236 else if (CP_TYPE_CONST_P (type)
4237 && (!CLASS_TYPE_P (type)
4238 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4239 warning (OPT_Wextra, "non-static const member %q+#D in class "
4240 "without a constructor", field);
4244 /* Synthesize any needed methods. */
4245 add_implicitly_declared_members (t,
4246 cant_have_const_ctor,
4247 no_const_asn_ref);
4249 /* Create the in-charge and not-in-charge variants of constructors
4250 and destructors. */
4251 clone_constructors_and_destructors (t);
4253 /* Process the using-declarations. */
4254 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4255 handle_using_decl (TREE_VALUE (access_decls), t);
4257 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4258 finish_struct_methods (t);
4260 /* Figure out whether or not we will need a cookie when dynamically
4261 allocating an array of this type. */
4262 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4263 = type_requires_array_cookie (t);
4266 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4267 accordingly. If a new vfield was created (because T doesn't have a
4268 primary base class), then the newly created field is returned. It
4269 is not added to the TYPE_FIELDS list; it is the caller's
4270 responsibility to do that. Accumulate declared virtual functions
4271 on VIRTUALS_P. */
4273 static tree
4274 create_vtable_ptr (tree t, tree* virtuals_p)
4276 tree fn;
4278 /* Collect the virtual functions declared in T. */
4279 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4280 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4281 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4283 tree new_virtual = make_node (TREE_LIST);
4285 BV_FN (new_virtual) = fn;
4286 BV_DELTA (new_virtual) = integer_zero_node;
4287 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4289 TREE_CHAIN (new_virtual) = *virtuals_p;
4290 *virtuals_p = new_virtual;
4293 /* If we couldn't find an appropriate base class, create a new field
4294 here. Even if there weren't any new virtual functions, we might need a
4295 new virtual function table if we're supposed to include vptrs in
4296 all classes that need them. */
4297 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4299 /* We build this decl with vtbl_ptr_type_node, which is a
4300 `vtable_entry_type*'. It might seem more precise to use
4301 `vtable_entry_type (*)[N]' where N is the number of virtual
4302 functions. However, that would require the vtable pointer in
4303 base classes to have a different type than the vtable pointer
4304 in derived classes. We could make that happen, but that
4305 still wouldn't solve all the problems. In particular, the
4306 type-based alias analysis code would decide that assignments
4307 to the base class vtable pointer can't alias assignments to
4308 the derived class vtable pointer, since they have different
4309 types. Thus, in a derived class destructor, where the base
4310 class constructor was inlined, we could generate bad code for
4311 setting up the vtable pointer.
4313 Therefore, we use one type for all vtable pointers. We still
4314 use a type-correct type; it's just doesn't indicate the array
4315 bounds. That's better than using `void*' or some such; it's
4316 cleaner, and it let's the alias analysis code know that these
4317 stores cannot alias stores to void*! */
4318 tree field;
4320 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4321 DECL_VIRTUAL_P (field) = 1;
4322 DECL_ARTIFICIAL (field) = 1;
4323 DECL_FIELD_CONTEXT (field) = t;
4324 DECL_FCONTEXT (field) = t;
4326 TYPE_VFIELD (t) = field;
4328 /* This class is non-empty. */
4329 CLASSTYPE_EMPTY_P (t) = 0;
4331 return field;
4334 return NULL_TREE;
4337 /* Fixup the inline function given by INFO now that the class is
4338 complete. */
4340 static void
4341 fixup_pending_inline (tree fn)
4343 if (DECL_PENDING_INLINE_INFO (fn))
4345 tree args = DECL_ARGUMENTS (fn);
4346 while (args)
4348 DECL_CONTEXT (args) = fn;
4349 args = TREE_CHAIN (args);
4354 /* Fixup the inline methods and friends in TYPE now that TYPE is
4355 complete. */
4357 static void
4358 fixup_inline_methods (tree type)
4360 tree method = TYPE_METHODS (type);
4361 VEC(tree,gc) *friends;
4362 unsigned ix;
4364 if (method && TREE_CODE (method) == TREE_VEC)
4366 if (TREE_VEC_ELT (method, 1))
4367 method = TREE_VEC_ELT (method, 1);
4368 else if (TREE_VEC_ELT (method, 0))
4369 method = TREE_VEC_ELT (method, 0);
4370 else
4371 method = TREE_VEC_ELT (method, 2);
4374 /* Do inline member functions. */
4375 for (; method; method = TREE_CHAIN (method))
4376 fixup_pending_inline (method);
4378 /* Do friends. */
4379 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4380 VEC_iterate (tree, friends, ix, method); ix++)
4381 fixup_pending_inline (method);
4382 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4385 /* Add OFFSET to all base types of BINFO which is a base in the
4386 hierarchy dominated by T.
4388 OFFSET, which is a type offset, is number of bytes. */
4390 static void
4391 propagate_binfo_offsets (tree binfo, tree offset)
4393 int i;
4394 tree primary_binfo;
4395 tree base_binfo;
4397 /* Update BINFO's offset. */
4398 BINFO_OFFSET (binfo)
4399 = convert (sizetype,
4400 size_binop (PLUS_EXPR,
4401 convert (ssizetype, BINFO_OFFSET (binfo)),
4402 offset));
4404 /* Find the primary base class. */
4405 primary_binfo = get_primary_binfo (binfo);
4407 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4408 propagate_binfo_offsets (primary_binfo, offset);
4410 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4411 downwards. */
4412 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4414 /* Don't do the primary base twice. */
4415 if (base_binfo == primary_binfo)
4416 continue;
4418 if (BINFO_VIRTUAL_P (base_binfo))
4419 continue;
4421 propagate_binfo_offsets (base_binfo, offset);
4425 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4426 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4427 empty subobjects of T. */
4429 static void
4430 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4432 tree vbase;
4433 tree t = rli->t;
4434 bool first_vbase = true;
4435 tree *next_field;
4437 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4438 return;
4440 if (!abi_version_at_least(2))
4442 /* In G++ 3.2, we incorrectly rounded the size before laying out
4443 the virtual bases. */
4444 finish_record_layout (rli, /*free_p=*/false);
4445 #ifdef STRUCTURE_SIZE_BOUNDARY
4446 /* Packed structures don't need to have minimum size. */
4447 if (! TYPE_PACKED (t))
4448 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4449 #endif
4450 rli->offset = TYPE_SIZE_UNIT (t);
4451 rli->bitpos = bitsize_zero_node;
4452 rli->record_align = TYPE_ALIGN (t);
4455 /* Find the last field. The artificial fields created for virtual
4456 bases will go after the last extant field to date. */
4457 next_field = &TYPE_FIELDS (t);
4458 while (*next_field)
4459 next_field = &TREE_CHAIN (*next_field);
4461 /* Go through the virtual bases, allocating space for each virtual
4462 base that is not already a primary base class. These are
4463 allocated in inheritance graph order. */
4464 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4466 if (!BINFO_VIRTUAL_P (vbase))
4467 continue;
4469 if (!BINFO_PRIMARY_P (vbase))
4471 tree basetype = TREE_TYPE (vbase);
4473 /* This virtual base is not a primary base of any class in the
4474 hierarchy, so we have to add space for it. */
4475 next_field = build_base_field (rli, vbase,
4476 offsets, next_field);
4478 /* If the first virtual base might have been placed at a
4479 lower address, had we started from CLASSTYPE_SIZE, rather
4480 than TYPE_SIZE, issue a warning. There can be both false
4481 positives and false negatives from this warning in rare
4482 cases; to deal with all the possibilities would probably
4483 require performing both layout algorithms and comparing
4484 the results which is not particularly tractable. */
4485 if (warn_abi
4486 && first_vbase
4487 && (tree_int_cst_lt
4488 (size_binop (CEIL_DIV_EXPR,
4489 round_up (CLASSTYPE_SIZE (t),
4490 CLASSTYPE_ALIGN (basetype)),
4491 bitsize_unit_node),
4492 BINFO_OFFSET (vbase))))
4493 warning (OPT_Wabi,
4494 "offset of virtual base %qT is not ABI-compliant and "
4495 "may change in a future version of GCC",
4496 basetype);
4498 first_vbase = false;
4503 /* Returns the offset of the byte just past the end of the base class
4504 BINFO. */
4506 static tree
4507 end_of_base (tree binfo)
4509 tree size;
4511 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4512 size = TYPE_SIZE_UNIT (char_type_node);
4513 else if (is_empty_class (BINFO_TYPE (binfo)))
4514 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4515 allocate some space for it. It cannot have virtual bases, so
4516 TYPE_SIZE_UNIT is fine. */
4517 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4518 else
4519 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4521 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4524 /* Returns the offset of the byte just past the end of the base class
4525 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4526 only non-virtual bases are included. */
4528 static tree
4529 end_of_class (tree t, int include_virtuals_p)
4531 tree result = size_zero_node;
4532 VEC(tree,gc) *vbases;
4533 tree binfo;
4534 tree base_binfo;
4535 tree offset;
4536 int i;
4538 for (binfo = TYPE_BINFO (t), i = 0;
4539 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4541 if (!include_virtuals_p
4542 && BINFO_VIRTUAL_P (base_binfo)
4543 && (!BINFO_PRIMARY_P (base_binfo)
4544 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4545 continue;
4547 offset = end_of_base (base_binfo);
4548 if (INT_CST_LT_UNSIGNED (result, offset))
4549 result = offset;
4552 /* G++ 3.2 did not check indirect virtual bases. */
4553 if (abi_version_at_least (2) && include_virtuals_p)
4554 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4555 VEC_iterate (tree, vbases, i, base_binfo); i++)
4557 offset = end_of_base (base_binfo);
4558 if (INT_CST_LT_UNSIGNED (result, offset))
4559 result = offset;
4562 return result;
4565 /* Warn about bases of T that are inaccessible because they are
4566 ambiguous. For example:
4568 struct S {};
4569 struct T : public S {};
4570 struct U : public S, public T {};
4572 Here, `(S*) new U' is not allowed because there are two `S'
4573 subobjects of U. */
4575 static void
4576 warn_about_ambiguous_bases (tree t)
4578 int i;
4579 VEC(tree,gc) *vbases;
4580 tree basetype;
4581 tree binfo;
4582 tree base_binfo;
4584 /* If there are no repeated bases, nothing can be ambiguous. */
4585 if (!CLASSTYPE_REPEATED_BASE_P (t))
4586 return;
4588 /* Check direct bases. */
4589 for (binfo = TYPE_BINFO (t), i = 0;
4590 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4592 basetype = BINFO_TYPE (base_binfo);
4594 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4595 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4596 basetype, t);
4599 /* Check for ambiguous virtual bases. */
4600 if (extra_warnings)
4601 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4602 VEC_iterate (tree, vbases, i, binfo); i++)
4604 basetype = BINFO_TYPE (binfo);
4606 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4607 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4608 basetype, t);
4612 /* Compare two INTEGER_CSTs K1 and K2. */
4614 static int
4615 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4617 return tree_int_cst_compare ((tree) k1, (tree) k2);
4620 /* Increase the size indicated in RLI to account for empty classes
4621 that are "off the end" of the class. */
4623 static void
4624 include_empty_classes (record_layout_info rli)
4626 tree eoc;
4627 tree rli_size;
4629 /* It might be the case that we grew the class to allocate a
4630 zero-sized base class. That won't be reflected in RLI, yet,
4631 because we are willing to overlay multiple bases at the same
4632 offset. However, now we need to make sure that RLI is big enough
4633 to reflect the entire class. */
4634 eoc = end_of_class (rli->t,
4635 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4636 rli_size = rli_size_unit_so_far (rli);
4637 if (TREE_CODE (rli_size) == INTEGER_CST
4638 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4640 if (!abi_version_at_least (2))
4641 /* In version 1 of the ABI, the size of a class that ends with
4642 a bitfield was not rounded up to a whole multiple of a
4643 byte. Because rli_size_unit_so_far returns only the number
4644 of fully allocated bytes, any extra bits were not included
4645 in the size. */
4646 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4647 else
4648 /* The size should have been rounded to a whole byte. */
4649 gcc_assert (tree_int_cst_equal
4650 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4651 rli->bitpos
4652 = size_binop (PLUS_EXPR,
4653 rli->bitpos,
4654 size_binop (MULT_EXPR,
4655 convert (bitsizetype,
4656 size_binop (MINUS_EXPR,
4657 eoc, rli_size)),
4658 bitsize_int (BITS_PER_UNIT)));
4659 normalize_rli (rli);
4663 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4664 BINFO_OFFSETs for all of the base-classes. Position the vtable
4665 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4667 static void
4668 layout_class_type (tree t, tree *virtuals_p)
4670 tree non_static_data_members;
4671 tree field;
4672 tree vptr;
4673 record_layout_info rli;
4674 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4675 types that appear at that offset. */
4676 splay_tree empty_base_offsets;
4677 /* True if the last field layed out was a bit-field. */
4678 bool last_field_was_bitfield = false;
4679 /* The location at which the next field should be inserted. */
4680 tree *next_field;
4681 /* T, as a base class. */
4682 tree base_t;
4684 /* Keep track of the first non-static data member. */
4685 non_static_data_members = TYPE_FIELDS (t);
4687 /* Start laying out the record. */
4688 rli = start_record_layout (t);
4690 /* Mark all the primary bases in the hierarchy. */
4691 determine_primary_bases (t);
4693 /* Create a pointer to our virtual function table. */
4694 vptr = create_vtable_ptr (t, virtuals_p);
4696 /* The vptr is always the first thing in the class. */
4697 if (vptr)
4699 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4700 TYPE_FIELDS (t) = vptr;
4701 next_field = &TREE_CHAIN (vptr);
4702 place_field (rli, vptr);
4704 else
4705 next_field = &TYPE_FIELDS (t);
4707 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4708 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4709 NULL, NULL);
4710 build_base_fields (rli, empty_base_offsets, next_field);
4712 /* Layout the non-static data members. */
4713 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4715 tree type;
4716 tree padding;
4718 /* We still pass things that aren't non-static data members to
4719 the back end, in case it wants to do something with them. */
4720 if (TREE_CODE (field) != FIELD_DECL)
4722 place_field (rli, field);
4723 /* If the static data member has incomplete type, keep track
4724 of it so that it can be completed later. (The handling
4725 of pending statics in finish_record_layout is
4726 insufficient; consider:
4728 struct S1;
4729 struct S2 { static S1 s1; };
4731 At this point, finish_record_layout will be called, but
4732 S1 is still incomplete.) */
4733 if (TREE_CODE (field) == VAR_DECL)
4735 maybe_register_incomplete_var (field);
4736 /* The visibility of static data members is determined
4737 at their point of declaration, not their point of
4738 definition. */
4739 determine_visibility (field);
4741 continue;
4744 type = TREE_TYPE (field);
4745 if (type == error_mark_node)
4746 continue;
4748 padding = NULL_TREE;
4750 /* If this field is a bit-field whose width is greater than its
4751 type, then there are some special rules for allocating
4752 it. */
4753 if (DECL_C_BIT_FIELD (field)
4754 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4756 integer_type_kind itk;
4757 tree integer_type;
4758 bool was_unnamed_p = false;
4759 /* We must allocate the bits as if suitably aligned for the
4760 longest integer type that fits in this many bits. type
4761 of the field. Then, we are supposed to use the left over
4762 bits as additional padding. */
4763 for (itk = itk_char; itk != itk_none; ++itk)
4764 if (INT_CST_LT (DECL_SIZE (field),
4765 TYPE_SIZE (integer_types[itk])))
4766 break;
4768 /* ITK now indicates a type that is too large for the
4769 field. We have to back up by one to find the largest
4770 type that fits. */
4771 integer_type = integer_types[itk - 1];
4773 /* Figure out how much additional padding is required. GCC
4774 3.2 always created a padding field, even if it had zero
4775 width. */
4776 if (!abi_version_at_least (2)
4777 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4779 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4780 /* In a union, the padding field must have the full width
4781 of the bit-field; all fields start at offset zero. */
4782 padding = DECL_SIZE (field);
4783 else
4785 if (TREE_CODE (t) == UNION_TYPE)
4786 warning (OPT_Wabi, "size assigned to %qT may not be "
4787 "ABI-compliant and may change in a future "
4788 "version of GCC",
4790 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4791 TYPE_SIZE (integer_type));
4794 #ifdef PCC_BITFIELD_TYPE_MATTERS
4795 /* An unnamed bitfield does not normally affect the
4796 alignment of the containing class on a target where
4797 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4798 make any exceptions for unnamed bitfields when the
4799 bitfields are longer than their types. Therefore, we
4800 temporarily give the field a name. */
4801 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4803 was_unnamed_p = true;
4804 DECL_NAME (field) = make_anon_name ();
4806 #endif
4807 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4808 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4809 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4810 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4811 empty_base_offsets);
4812 if (was_unnamed_p)
4813 DECL_NAME (field) = NULL_TREE;
4814 /* Now that layout has been performed, set the size of the
4815 field to the size of its declared type; the rest of the
4816 field is effectively invisible. */
4817 DECL_SIZE (field) = TYPE_SIZE (type);
4818 /* We must also reset the DECL_MODE of the field. */
4819 if (abi_version_at_least (2))
4820 DECL_MODE (field) = TYPE_MODE (type);
4821 else if (warn_abi
4822 && DECL_MODE (field) != TYPE_MODE (type))
4823 /* Versions of G++ before G++ 3.4 did not reset the
4824 DECL_MODE. */
4825 warning (OPT_Wabi,
4826 "the offset of %qD may not be ABI-compliant and may "
4827 "change in a future version of GCC", field);
4829 else
4830 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4831 empty_base_offsets);
4833 /* Remember the location of any empty classes in FIELD. */
4834 if (abi_version_at_least (2))
4835 record_subobject_offsets (TREE_TYPE (field),
4836 byte_position(field),
4837 empty_base_offsets,
4838 /*is_data_member=*/true);
4840 /* If a bit-field does not immediately follow another bit-field,
4841 and yet it starts in the middle of a byte, we have failed to
4842 comply with the ABI. */
4843 if (warn_abi
4844 && DECL_C_BIT_FIELD (field)
4845 /* The TREE_NO_WARNING flag gets set by Objective-C when
4846 laying out an Objective-C class. The ObjC ABI differs
4847 from the C++ ABI, and so we do not want a warning
4848 here. */
4849 && !TREE_NO_WARNING (field)
4850 && !last_field_was_bitfield
4851 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4852 DECL_FIELD_BIT_OFFSET (field),
4853 bitsize_unit_node)))
4854 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4855 "change in a future version of GCC", field);
4857 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4858 offset of the field. */
4859 if (warn_abi
4860 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4861 byte_position (field))
4862 && contains_empty_class_p (TREE_TYPE (field)))
4863 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4864 "classes to be placed at different locations in a "
4865 "future version of GCC", field);
4867 /* The middle end uses the type of expressions to determine the
4868 possible range of expression values. In order to optimize
4869 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4870 must be made aware of the width of "i", via its type.
4872 Because C++ does not have integer types of arbitrary width,
4873 we must (for the purposes of the front end) convert from the
4874 type assigned here to the declared type of the bitfield
4875 whenever a bitfield expression is used as an rvalue.
4876 Similarly, when assigning a value to a bitfield, the value
4877 must be converted to the type given the bitfield here. */
4878 if (DECL_C_BIT_FIELD (field))
4880 unsigned HOST_WIDE_INT width;
4881 tree ftype = TREE_TYPE (field);
4882 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4883 if (width != TYPE_PRECISION (ftype))
4885 TREE_TYPE (field)
4886 = c_build_bitfield_integer_type (width,
4887 TYPE_UNSIGNED (ftype));
4888 TREE_TYPE (field)
4889 = cp_build_qualified_type (TREE_TYPE (field),
4890 TYPE_QUALS (ftype));
4894 /* If we needed additional padding after this field, add it
4895 now. */
4896 if (padding)
4898 tree padding_field;
4900 padding_field = build_decl (FIELD_DECL,
4901 NULL_TREE,
4902 char_type_node);
4903 DECL_BIT_FIELD (padding_field) = 1;
4904 DECL_SIZE (padding_field) = padding;
4905 DECL_CONTEXT (padding_field) = t;
4906 DECL_ARTIFICIAL (padding_field) = 1;
4907 DECL_IGNORED_P (padding_field) = 1;
4908 layout_nonempty_base_or_field (rli, padding_field,
4909 NULL_TREE,
4910 empty_base_offsets);
4913 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4916 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4918 /* Make sure that we are on a byte boundary so that the size of
4919 the class without virtual bases will always be a round number
4920 of bytes. */
4921 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4922 normalize_rli (rli);
4925 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4926 padding. */
4927 if (!abi_version_at_least (2))
4928 include_empty_classes(rli);
4930 /* Delete all zero-width bit-fields from the list of fields. Now
4931 that the type is laid out they are no longer important. */
4932 remove_zero_width_bit_fields (t);
4934 /* Create the version of T used for virtual bases. We do not use
4935 make_class_type for this version; this is an artificial type. For
4936 a POD type, we just reuse T. */
4937 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4939 base_t = make_node (TREE_CODE (t));
4941 /* Set the size and alignment for the new type. In G++ 3.2, all
4942 empty classes were considered to have size zero when used as
4943 base classes. */
4944 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4946 TYPE_SIZE (base_t) = bitsize_zero_node;
4947 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4948 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4949 warning (OPT_Wabi,
4950 "layout of classes derived from empty class %qT "
4951 "may change in a future version of GCC",
4954 else
4956 tree eoc;
4958 /* If the ABI version is not at least two, and the last
4959 field was a bit-field, RLI may not be on a byte
4960 boundary. In particular, rli_size_unit_so_far might
4961 indicate the last complete byte, while rli_size_so_far
4962 indicates the total number of bits used. Therefore,
4963 rli_size_so_far, rather than rli_size_unit_so_far, is
4964 used to compute TYPE_SIZE_UNIT. */
4965 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4966 TYPE_SIZE_UNIT (base_t)
4967 = size_binop (MAX_EXPR,
4968 convert (sizetype,
4969 size_binop (CEIL_DIV_EXPR,
4970 rli_size_so_far (rli),
4971 bitsize_int (BITS_PER_UNIT))),
4972 eoc);
4973 TYPE_SIZE (base_t)
4974 = size_binop (MAX_EXPR,
4975 rli_size_so_far (rli),
4976 size_binop (MULT_EXPR,
4977 convert (bitsizetype, eoc),
4978 bitsize_int (BITS_PER_UNIT)));
4980 TYPE_ALIGN (base_t) = rli->record_align;
4981 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4983 /* Copy the fields from T. */
4984 next_field = &TYPE_FIELDS (base_t);
4985 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4986 if (TREE_CODE (field) == FIELD_DECL)
4988 *next_field = build_decl (FIELD_DECL,
4989 DECL_NAME (field),
4990 TREE_TYPE (field));
4991 DECL_CONTEXT (*next_field) = base_t;
4992 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4993 DECL_FIELD_BIT_OFFSET (*next_field)
4994 = DECL_FIELD_BIT_OFFSET (field);
4995 DECL_SIZE (*next_field) = DECL_SIZE (field);
4996 DECL_MODE (*next_field) = DECL_MODE (field);
4997 next_field = &TREE_CHAIN (*next_field);
5000 /* Record the base version of the type. */
5001 CLASSTYPE_AS_BASE (t) = base_t;
5002 TYPE_CONTEXT (base_t) = t;
5004 else
5005 CLASSTYPE_AS_BASE (t) = t;
5007 /* Every empty class contains an empty class. */
5008 if (CLASSTYPE_EMPTY_P (t))
5009 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5011 /* Set the TYPE_DECL for this type to contain the right
5012 value for DECL_OFFSET, so that we can use it as part
5013 of a COMPONENT_REF for multiple inheritance. */
5014 layout_decl (TYPE_MAIN_DECL (t), 0);
5016 /* Now fix up any virtual base class types that we left lying
5017 around. We must get these done before we try to lay out the
5018 virtual function table. As a side-effect, this will remove the
5019 base subobject fields. */
5020 layout_virtual_bases (rli, empty_base_offsets);
5022 /* Make sure that empty classes are reflected in RLI at this
5023 point. */
5024 include_empty_classes(rli);
5026 /* Make sure not to create any structures with zero size. */
5027 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5028 place_field (rli,
5029 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
5031 /* Let the back end lay out the type. */
5032 finish_record_layout (rli, /*free_p=*/true);
5034 /* Warn about bases that can't be talked about due to ambiguity. */
5035 warn_about_ambiguous_bases (t);
5037 /* Now that we're done with layout, give the base fields the real types. */
5038 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5039 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5040 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5042 /* Clean up. */
5043 splay_tree_delete (empty_base_offsets);
5045 if (CLASSTYPE_EMPTY_P (t)
5046 && tree_int_cst_lt (sizeof_biggest_empty_class,
5047 TYPE_SIZE_UNIT (t)))
5048 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5051 /* Determine the "key method" for the class type indicated by TYPE,
5052 and set CLASSTYPE_KEY_METHOD accordingly. */
5054 void
5055 determine_key_method (tree type)
5057 tree method;
5059 if (TYPE_FOR_JAVA (type)
5060 || processing_template_decl
5061 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5062 || CLASSTYPE_INTERFACE_KNOWN (type))
5063 return;
5065 /* The key method is the first non-pure virtual function that is not
5066 inline at the point of class definition. On some targets the
5067 key function may not be inline; those targets should not call
5068 this function until the end of the translation unit. */
5069 for (method = TYPE_METHODS (type); method != NULL_TREE;
5070 method = TREE_CHAIN (method))
5071 if (DECL_VINDEX (method) != NULL_TREE
5072 && ! DECL_DECLARED_INLINE_P (method)
5073 && ! DECL_PURE_VIRTUAL_P (method))
5075 CLASSTYPE_KEY_METHOD (type) = method;
5076 break;
5079 return;
5082 /* Perform processing required when the definition of T (a class type)
5083 is complete. */
5085 void
5086 finish_struct_1 (tree t)
5088 tree x;
5089 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5090 tree virtuals = NULL_TREE;
5091 int n_fields = 0;
5093 if (COMPLETE_TYPE_P (t))
5095 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5096 error ("redefinition of %q#T", t);
5097 popclass ();
5098 return;
5101 /* If this type was previously laid out as a forward reference,
5102 make sure we lay it out again. */
5103 TYPE_SIZE (t) = NULL_TREE;
5104 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5106 fixup_inline_methods (t);
5108 /* Make assumptions about the class; we'll reset the flags if
5109 necessary. */
5110 CLASSTYPE_EMPTY_P (t) = 1;
5111 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5112 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5114 /* Do end-of-class semantic processing: checking the validity of the
5115 bases and members and add implicitly generated methods. */
5116 check_bases_and_members (t);
5118 /* Find the key method. */
5119 if (TYPE_CONTAINS_VPTR_P (t))
5121 /* The Itanium C++ ABI permits the key method to be chosen when
5122 the class is defined -- even though the key method so
5123 selected may later turn out to be an inline function. On
5124 some systems (such as ARM Symbian OS) the key method cannot
5125 be determined until the end of the translation unit. On such
5126 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5127 will cause the class to be added to KEYED_CLASSES. Then, in
5128 finish_file we will determine the key method. */
5129 if (targetm.cxx.key_method_may_be_inline ())
5130 determine_key_method (t);
5132 /* If a polymorphic class has no key method, we may emit the vtable
5133 in every translation unit where the class definition appears. */
5134 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5135 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5138 /* Layout the class itself. */
5139 layout_class_type (t, &virtuals);
5140 if (CLASSTYPE_AS_BASE (t) != t)
5141 /* We use the base type for trivial assignments, and hence it
5142 needs a mode. */
5143 compute_record_mode (CLASSTYPE_AS_BASE (t));
5145 virtuals = modify_all_vtables (t, nreverse (virtuals));
5147 /* If necessary, create the primary vtable for this class. */
5148 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5150 /* We must enter these virtuals into the table. */
5151 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5152 build_primary_vtable (NULL_TREE, t);
5153 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5154 /* Here we know enough to change the type of our virtual
5155 function table, but we will wait until later this function. */
5156 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5159 if (TYPE_CONTAINS_VPTR_P (t))
5161 int vindex;
5162 tree fn;
5164 if (BINFO_VTABLE (TYPE_BINFO (t)))
5165 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5166 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5167 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5169 /* Add entries for virtual functions introduced by this class. */
5170 BINFO_VIRTUALS (TYPE_BINFO (t))
5171 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5173 /* Set DECL_VINDEX for all functions declared in this class. */
5174 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5176 fn = TREE_CHAIN (fn),
5177 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5178 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5180 tree fndecl = BV_FN (fn);
5182 if (DECL_THUNK_P (fndecl))
5183 /* A thunk. We should never be calling this entry directly
5184 from this vtable -- we'd use the entry for the non
5185 thunk base function. */
5186 DECL_VINDEX (fndecl) = NULL_TREE;
5187 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5188 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5192 finish_struct_bits (t);
5194 /* Complete the rtl for any static member objects of the type we're
5195 working on. */
5196 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5197 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5198 && TREE_TYPE (x) != error_mark_node
5199 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5200 DECL_MODE (x) = TYPE_MODE (t);
5202 /* Done with FIELDS...now decide whether to sort these for
5203 faster lookups later.
5205 We use a small number because most searches fail (succeeding
5206 ultimately as the search bores through the inheritance
5207 hierarchy), and we want this failure to occur quickly. */
5209 n_fields = count_fields (TYPE_FIELDS (t));
5210 if (n_fields > 7)
5212 struct sorted_fields_type *field_vec = GGC_NEWVAR
5213 (struct sorted_fields_type,
5214 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5215 field_vec->len = n_fields;
5216 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5217 qsort (field_vec->elts, n_fields, sizeof (tree),
5218 field_decl_cmp);
5219 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5220 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5221 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5224 /* Complain if one of the field types requires lower visibility. */
5225 constrain_class_visibility (t);
5227 /* Make the rtl for any new vtables we have created, and unmark
5228 the base types we marked. */
5229 finish_vtbls (t);
5231 /* Build the VTT for T. */
5232 build_vtt (t);
5234 /* This warning does not make sense for Java classes, since they
5235 cannot have destructors. */
5236 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5238 tree dtor;
5240 dtor = CLASSTYPE_DESTRUCTORS (t);
5241 if (/* An implicitly declared destructor is always public. And,
5242 if it were virtual, we would have created it by now. */
5243 !dtor
5244 || (!DECL_VINDEX (dtor)
5245 && (/* public non-virtual */
5246 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5247 || (/* non-public non-virtual with friends */
5248 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5249 && (CLASSTYPE_FRIEND_CLASSES (t)
5250 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5251 warning (OPT_Wnon_virtual_dtor,
5252 "%q#T has virtual functions and accessible"
5253 " non-virtual destructor", t);
5256 complete_vars (t);
5258 if (warn_overloaded_virtual)
5259 warn_hidden (t);
5261 /* Class layout, assignment of virtual table slots, etc., is now
5262 complete. Give the back end a chance to tweak the visibility of
5263 the class or perform any other required target modifications. */
5264 targetm.cxx.adjust_class_at_definition (t);
5266 maybe_suppress_debug_info (t);
5268 dump_class_hierarchy (t);
5270 /* Finish debugging output for this type. */
5271 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5274 /* When T was built up, the member declarations were added in reverse
5275 order. Rearrange them to declaration order. */
5277 void
5278 unreverse_member_declarations (tree t)
5280 tree next;
5281 tree prev;
5282 tree x;
5284 /* The following lists are all in reverse order. Put them in
5285 declaration order now. */
5286 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5287 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5289 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5290 reverse order, so we can't just use nreverse. */
5291 prev = NULL_TREE;
5292 for (x = TYPE_FIELDS (t);
5293 x && TREE_CODE (x) != TYPE_DECL;
5294 x = next)
5296 next = TREE_CHAIN (x);
5297 TREE_CHAIN (x) = prev;
5298 prev = x;
5300 if (prev)
5302 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5303 if (prev)
5304 TYPE_FIELDS (t) = prev;
5308 tree
5309 finish_struct (tree t, tree attributes)
5311 location_t saved_loc = input_location;
5313 /* Now that we've got all the field declarations, reverse everything
5314 as necessary. */
5315 unreverse_member_declarations (t);
5317 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5319 /* Nadger the current location so that diagnostics point to the start of
5320 the struct, not the end. */
5321 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5323 if (processing_template_decl)
5325 tree x;
5327 finish_struct_methods (t);
5328 TYPE_SIZE (t) = bitsize_zero_node;
5329 TYPE_SIZE_UNIT (t) = size_zero_node;
5331 /* We need to emit an error message if this type was used as a parameter
5332 and it is an abstract type, even if it is a template. We construct
5333 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5334 account and we call complete_vars with this type, which will check
5335 the PARM_DECLS. Note that while the type is being defined,
5336 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5337 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5338 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5339 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5340 if (DECL_PURE_VIRTUAL_P (x))
5341 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5342 complete_vars (t);
5344 else
5345 finish_struct_1 (t);
5347 input_location = saved_loc;
5349 TYPE_BEING_DEFINED (t) = 0;
5351 if (current_class_type)
5352 popclass ();
5353 else
5354 error ("trying to finish struct, but kicked out due to previous parse errors");
5356 if (processing_template_decl && at_function_scope_p ())
5357 add_stmt (build_min (TAG_DEFN, t));
5359 return t;
5362 /* Return the dynamic type of INSTANCE, if known.
5363 Used to determine whether the virtual function table is needed
5364 or not.
5366 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5367 of our knowledge of its type. *NONNULL should be initialized
5368 before this function is called. */
5370 static tree
5371 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5373 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5375 switch (TREE_CODE (instance))
5377 case INDIRECT_REF:
5378 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5379 return NULL_TREE;
5380 else
5381 return RECUR (TREE_OPERAND (instance, 0));
5383 case CALL_EXPR:
5384 /* This is a call to a constructor, hence it's never zero. */
5385 if (TREE_HAS_CONSTRUCTOR (instance))
5387 if (nonnull)
5388 *nonnull = 1;
5389 return TREE_TYPE (instance);
5391 return NULL_TREE;
5393 case SAVE_EXPR:
5394 /* This is a call to a constructor, hence it's never zero. */
5395 if (TREE_HAS_CONSTRUCTOR (instance))
5397 if (nonnull)
5398 *nonnull = 1;
5399 return TREE_TYPE (instance);
5401 return RECUR (TREE_OPERAND (instance, 0));
5403 case POINTER_PLUS_EXPR:
5404 case PLUS_EXPR:
5405 case MINUS_EXPR:
5406 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5407 return RECUR (TREE_OPERAND (instance, 0));
5408 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5409 /* Propagate nonnull. */
5410 return RECUR (TREE_OPERAND (instance, 0));
5412 return NULL_TREE;
5414 CASE_CONVERT:
5415 return RECUR (TREE_OPERAND (instance, 0));
5417 case ADDR_EXPR:
5418 instance = TREE_OPERAND (instance, 0);
5419 if (nonnull)
5421 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5422 with a real object -- given &p->f, p can still be null. */
5423 tree t = get_base_address (instance);
5424 /* ??? Probably should check DECL_WEAK here. */
5425 if (t && DECL_P (t))
5426 *nonnull = 1;
5428 return RECUR (instance);
5430 case COMPONENT_REF:
5431 /* If this component is really a base class reference, then the field
5432 itself isn't definitive. */
5433 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5434 return RECUR (TREE_OPERAND (instance, 0));
5435 return RECUR (TREE_OPERAND (instance, 1));
5437 case VAR_DECL:
5438 case FIELD_DECL:
5439 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5440 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5442 if (nonnull)
5443 *nonnull = 1;
5444 return TREE_TYPE (TREE_TYPE (instance));
5446 /* fall through... */
5447 case TARGET_EXPR:
5448 case PARM_DECL:
5449 case RESULT_DECL:
5450 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5452 if (nonnull)
5453 *nonnull = 1;
5454 return TREE_TYPE (instance);
5456 else if (instance == current_class_ptr)
5458 if (nonnull)
5459 *nonnull = 1;
5461 /* if we're in a ctor or dtor, we know our type. */
5462 if (DECL_LANG_SPECIFIC (current_function_decl)
5463 && (DECL_CONSTRUCTOR_P (current_function_decl)
5464 || DECL_DESTRUCTOR_P (current_function_decl)))
5466 if (cdtorp)
5467 *cdtorp = 1;
5468 return TREE_TYPE (TREE_TYPE (instance));
5471 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5473 /* We only need one hash table because it is always left empty. */
5474 static htab_t ht;
5475 if (!ht)
5476 ht = htab_create (37,
5477 htab_hash_pointer,
5478 htab_eq_pointer,
5479 /*htab_del=*/NULL);
5481 /* Reference variables should be references to objects. */
5482 if (nonnull)
5483 *nonnull = 1;
5485 /* Enter the INSTANCE in a table to prevent recursion; a
5486 variable's initializer may refer to the variable
5487 itself. */
5488 if (TREE_CODE (instance) == VAR_DECL
5489 && DECL_INITIAL (instance)
5490 && !htab_find (ht, instance))
5492 tree type;
5493 void **slot;
5495 slot = htab_find_slot (ht, instance, INSERT);
5496 *slot = instance;
5497 type = RECUR (DECL_INITIAL (instance));
5498 htab_remove_elt (ht, instance);
5500 return type;
5503 return NULL_TREE;
5505 default:
5506 return NULL_TREE;
5508 #undef RECUR
5511 /* Return nonzero if the dynamic type of INSTANCE is known, and
5512 equivalent to the static type. We also handle the case where
5513 INSTANCE is really a pointer. Return negative if this is a
5514 ctor/dtor. There the dynamic type is known, but this might not be
5515 the most derived base of the original object, and hence virtual
5516 bases may not be layed out according to this type.
5518 Used to determine whether the virtual function table is needed
5519 or not.
5521 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5522 of our knowledge of its type. *NONNULL should be initialized
5523 before this function is called. */
5526 resolves_to_fixed_type_p (tree instance, int* nonnull)
5528 tree t = TREE_TYPE (instance);
5529 int cdtorp = 0;
5530 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5531 if (fixed == NULL_TREE)
5532 return 0;
5533 if (POINTER_TYPE_P (t))
5534 t = TREE_TYPE (t);
5535 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5536 return 0;
5537 return cdtorp ? -1 : 1;
5541 void
5542 init_class_processing (void)
5544 current_class_depth = 0;
5545 current_class_stack_size = 10;
5546 current_class_stack
5547 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5548 local_classes = VEC_alloc (tree, gc, 8);
5549 sizeof_biggest_empty_class = size_zero_node;
5551 ridpointers[(int) RID_PUBLIC] = access_public_node;
5552 ridpointers[(int) RID_PRIVATE] = access_private_node;
5553 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5556 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5558 static void
5559 restore_class_cache (void)
5561 tree type;
5563 /* We are re-entering the same class we just left, so we don't
5564 have to search the whole inheritance matrix to find all the
5565 decls to bind again. Instead, we install the cached
5566 class_shadowed list and walk through it binding names. */
5567 push_binding_level (previous_class_level);
5568 class_binding_level = previous_class_level;
5569 /* Restore IDENTIFIER_TYPE_VALUE. */
5570 for (type = class_binding_level->type_shadowed;
5571 type;
5572 type = TREE_CHAIN (type))
5573 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5576 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5577 appropriate for TYPE.
5579 So that we may avoid calls to lookup_name, we cache the _TYPE
5580 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5582 For multiple inheritance, we perform a two-pass depth-first search
5583 of the type lattice. */
5585 void
5586 pushclass (tree type)
5588 class_stack_node_t csn;
5590 type = TYPE_MAIN_VARIANT (type);
5592 /* Make sure there is enough room for the new entry on the stack. */
5593 if (current_class_depth + 1 >= current_class_stack_size)
5595 current_class_stack_size *= 2;
5596 current_class_stack
5597 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5598 current_class_stack_size);
5601 /* Insert a new entry on the class stack. */
5602 csn = current_class_stack + current_class_depth;
5603 csn->name = current_class_name;
5604 csn->type = current_class_type;
5605 csn->access = current_access_specifier;
5606 csn->names_used = 0;
5607 csn->hidden = 0;
5608 current_class_depth++;
5610 /* Now set up the new type. */
5611 current_class_name = TYPE_NAME (type);
5612 if (TREE_CODE (current_class_name) == TYPE_DECL)
5613 current_class_name = DECL_NAME (current_class_name);
5614 current_class_type = type;
5616 /* By default, things in classes are private, while things in
5617 structures or unions are public. */
5618 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5619 ? access_private_node
5620 : access_public_node);
5622 if (previous_class_level
5623 && type != previous_class_level->this_entity
5624 && current_class_depth == 1)
5626 /* Forcibly remove any old class remnants. */
5627 invalidate_class_lookup_cache ();
5630 if (!previous_class_level
5631 || type != previous_class_level->this_entity
5632 || current_class_depth > 1)
5633 pushlevel_class ();
5634 else
5635 restore_class_cache ();
5638 /* When we exit a toplevel class scope, we save its binding level so
5639 that we can restore it quickly. Here, we've entered some other
5640 class, so we must invalidate our cache. */
5642 void
5643 invalidate_class_lookup_cache (void)
5645 previous_class_level = NULL;
5648 /* Get out of the current class scope. If we were in a class scope
5649 previously, that is the one popped to. */
5651 void
5652 popclass (void)
5654 poplevel_class ();
5656 current_class_depth--;
5657 current_class_name = current_class_stack[current_class_depth].name;
5658 current_class_type = current_class_stack[current_class_depth].type;
5659 current_access_specifier = current_class_stack[current_class_depth].access;
5660 if (current_class_stack[current_class_depth].names_used)
5661 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5664 /* Mark the top of the class stack as hidden. */
5666 void
5667 push_class_stack (void)
5669 if (current_class_depth)
5670 ++current_class_stack[current_class_depth - 1].hidden;
5673 /* Mark the top of the class stack as un-hidden. */
5675 void
5676 pop_class_stack (void)
5678 if (current_class_depth)
5679 --current_class_stack[current_class_depth - 1].hidden;
5682 /* Returns 1 if the class type currently being defined is either T or
5683 a nested type of T. */
5685 bool
5686 currently_open_class (tree t)
5688 int i;
5690 /* We start looking from 1 because entry 0 is from global scope,
5691 and has no type. */
5692 for (i = current_class_depth; i > 0; --i)
5694 tree c;
5695 if (i == current_class_depth)
5696 c = current_class_type;
5697 else
5699 if (current_class_stack[i].hidden)
5700 break;
5701 c = current_class_stack[i].type;
5703 if (!c)
5704 continue;
5705 if (same_type_p (c, t))
5706 return true;
5708 return false;
5711 /* If either current_class_type or one of its enclosing classes are derived
5712 from T, return the appropriate type. Used to determine how we found
5713 something via unqualified lookup. */
5715 tree
5716 currently_open_derived_class (tree t)
5718 int i;
5720 /* The bases of a dependent type are unknown. */
5721 if (dependent_type_p (t))
5722 return NULL_TREE;
5724 if (!current_class_type)
5725 return NULL_TREE;
5727 if (DERIVED_FROM_P (t, current_class_type))
5728 return current_class_type;
5730 for (i = current_class_depth - 1; i > 0; --i)
5732 if (current_class_stack[i].hidden)
5733 break;
5734 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5735 return current_class_stack[i].type;
5738 return NULL_TREE;
5741 /* When entering a class scope, all enclosing class scopes' names with
5742 static meaning (static variables, static functions, types and
5743 enumerators) have to be visible. This recursive function calls
5744 pushclass for all enclosing class contexts until global or a local
5745 scope is reached. TYPE is the enclosed class. */
5747 void
5748 push_nested_class (tree type)
5750 /* A namespace might be passed in error cases, like A::B:C. */
5751 if (type == NULL_TREE
5752 || !CLASS_TYPE_P (type))
5753 return;
5755 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5757 pushclass (type);
5760 /* Undoes a push_nested_class call. */
5762 void
5763 pop_nested_class (void)
5765 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5767 popclass ();
5768 if (context && CLASS_TYPE_P (context))
5769 pop_nested_class ();
5772 /* Returns the number of extern "LANG" blocks we are nested within. */
5775 current_lang_depth (void)
5777 return VEC_length (tree, current_lang_base);
5780 /* Set global variables CURRENT_LANG_NAME to appropriate value
5781 so that behavior of name-mangling machinery is correct. */
5783 void
5784 push_lang_context (tree name)
5786 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5788 if (name == lang_name_cplusplus)
5790 current_lang_name = name;
5792 else if (name == lang_name_java)
5794 current_lang_name = name;
5795 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5796 (See record_builtin_java_type in decl.c.) However, that causes
5797 incorrect debug entries if these types are actually used.
5798 So we re-enable debug output after extern "Java". */
5799 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5800 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5801 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5802 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5803 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5804 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5805 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5806 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5808 else if (name == lang_name_c)
5810 current_lang_name = name;
5812 else
5813 error ("language string %<\"%E\"%> not recognized", name);
5816 /* Get out of the current language scope. */
5818 void
5819 pop_lang_context (void)
5821 current_lang_name = VEC_pop (tree, current_lang_base);
5824 /* Type instantiation routines. */
5826 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5827 matches the TARGET_TYPE. If there is no satisfactory match, return
5828 error_mark_node, and issue an error & warning messages under
5829 control of FLAGS. Permit pointers to member function if FLAGS
5830 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5831 a template-id, and EXPLICIT_TARGS are the explicitly provided
5832 template arguments. If OVERLOAD is for one or more member
5833 functions, then ACCESS_PATH is the base path used to reference
5834 those member functions. */
5836 static tree
5837 resolve_address_of_overloaded_function (tree target_type,
5838 tree overload,
5839 tsubst_flags_t flags,
5840 bool template_only,
5841 tree explicit_targs,
5842 tree access_path)
5844 /* Here's what the standard says:
5846 [over.over]
5848 If the name is a function template, template argument deduction
5849 is done, and if the argument deduction succeeds, the deduced
5850 arguments are used to generate a single template function, which
5851 is added to the set of overloaded functions considered.
5853 Non-member functions and static member functions match targets of
5854 type "pointer-to-function" or "reference-to-function." Nonstatic
5855 member functions match targets of type "pointer-to-member
5856 function;" the function type of the pointer to member is used to
5857 select the member function from the set of overloaded member
5858 functions. If a nonstatic member function is selected, the
5859 reference to the overloaded function name is required to have the
5860 form of a pointer to member as described in 5.3.1.
5862 If more than one function is selected, any template functions in
5863 the set are eliminated if the set also contains a non-template
5864 function, and any given template function is eliminated if the
5865 set contains a second template function that is more specialized
5866 than the first according to the partial ordering rules 14.5.5.2.
5867 After such eliminations, if any, there shall remain exactly one
5868 selected function. */
5870 int is_ptrmem = 0;
5871 int is_reference = 0;
5872 /* We store the matches in a TREE_LIST rooted here. The functions
5873 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5874 interoperability with most_specialized_instantiation. */
5875 tree matches = NULL_TREE;
5876 tree fn;
5878 /* By the time we get here, we should be seeing only real
5879 pointer-to-member types, not the internal POINTER_TYPE to
5880 METHOD_TYPE representation. */
5881 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5882 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5884 gcc_assert (is_overloaded_fn (overload));
5886 /* Check that the TARGET_TYPE is reasonable. */
5887 if (TYPE_PTRFN_P (target_type))
5888 /* This is OK. */;
5889 else if (TYPE_PTRMEMFUNC_P (target_type))
5890 /* This is OK, too. */
5891 is_ptrmem = 1;
5892 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5894 /* This is OK, too. This comes from a conversion to reference
5895 type. */
5896 target_type = build_reference_type (target_type);
5897 is_reference = 1;
5899 else
5901 if (flags & tf_error)
5902 error ("cannot resolve overloaded function %qD based on"
5903 " conversion to type %qT",
5904 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5905 return error_mark_node;
5908 /* If we can find a non-template function that matches, we can just
5909 use it. There's no point in generating template instantiations
5910 if we're just going to throw them out anyhow. But, of course, we
5911 can only do this when we don't *need* a template function. */
5912 if (!template_only)
5914 tree fns;
5916 for (fns = overload; fns; fns = OVL_NEXT (fns))
5918 tree fn = OVL_CURRENT (fns);
5919 tree fntype;
5921 if (TREE_CODE (fn) == TEMPLATE_DECL)
5922 /* We're not looking for templates just yet. */
5923 continue;
5925 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5926 != is_ptrmem)
5927 /* We're looking for a non-static member, and this isn't
5928 one, or vice versa. */
5929 continue;
5931 /* Ignore functions which haven't been explicitly
5932 declared. */
5933 if (DECL_ANTICIPATED (fn))
5934 continue;
5936 /* See if there's a match. */
5937 fntype = TREE_TYPE (fn);
5938 if (is_ptrmem)
5939 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5940 else if (!is_reference)
5941 fntype = build_pointer_type (fntype);
5943 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
5944 matches = tree_cons (fn, NULL_TREE, matches);
5948 /* Now, if we've already got a match (or matches), there's no need
5949 to proceed to the template functions. But, if we don't have a
5950 match we need to look at them, too. */
5951 if (!matches)
5953 tree target_fn_type;
5954 tree target_arg_types;
5955 tree target_ret_type;
5956 tree fns;
5958 if (is_ptrmem)
5959 target_fn_type
5960 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5961 else
5962 target_fn_type = TREE_TYPE (target_type);
5963 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5964 target_ret_type = TREE_TYPE (target_fn_type);
5966 /* Never do unification on the 'this' parameter. */
5967 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5968 target_arg_types = TREE_CHAIN (target_arg_types);
5970 for (fns = overload; fns; fns = OVL_NEXT (fns))
5972 tree fn = OVL_CURRENT (fns);
5973 tree instantiation;
5974 tree instantiation_type;
5975 tree targs;
5977 if (TREE_CODE (fn) != TEMPLATE_DECL)
5978 /* We're only looking for templates. */
5979 continue;
5981 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5982 != is_ptrmem)
5983 /* We're not looking for a non-static member, and this is
5984 one, or vice versa. */
5985 continue;
5987 /* Try to do argument deduction. */
5988 targs = make_tree_vec (DECL_NTPARMS (fn));
5989 if (fn_type_unification (fn, explicit_targs, targs,
5990 target_arg_types, target_ret_type,
5991 DEDUCE_EXACT, LOOKUP_NORMAL))
5992 /* Argument deduction failed. */
5993 continue;
5995 /* Instantiate the template. */
5996 instantiation = instantiate_template (fn, targs, flags);
5997 if (instantiation == error_mark_node)
5998 /* Instantiation failed. */
5999 continue;
6001 /* See if there's a match. */
6002 instantiation_type = TREE_TYPE (instantiation);
6003 if (is_ptrmem)
6004 instantiation_type =
6005 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
6006 else if (!is_reference)
6007 instantiation_type = build_pointer_type (instantiation_type);
6008 if (can_convert_arg (target_type, instantiation_type, instantiation,
6009 LOOKUP_NORMAL))
6010 matches = tree_cons (instantiation, fn, matches);
6013 /* Now, remove all but the most specialized of the matches. */
6014 if (matches)
6016 tree match = most_specialized_instantiation (matches);
6018 if (match != error_mark_node)
6019 matches = tree_cons (TREE_PURPOSE (match),
6020 NULL_TREE,
6021 NULL_TREE);
6025 /* Now we should have exactly one function in MATCHES. */
6026 if (matches == NULL_TREE)
6028 /* There were *no* matches. */
6029 if (flags & tf_error)
6031 error ("no matches converting function %qD to type %q#T",
6032 DECL_NAME (OVL_FUNCTION (overload)),
6033 target_type);
6035 /* print_candidates expects a chain with the functions in
6036 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6037 so why be clever?). */
6038 for (; overload; overload = OVL_NEXT (overload))
6039 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6040 matches);
6042 print_candidates (matches);
6044 return error_mark_node;
6046 else if (TREE_CHAIN (matches))
6048 /* There were too many matches. */
6050 if (flags & tf_error)
6052 tree match;
6054 error ("converting overloaded function %qD to type %q#T is ambiguous",
6055 DECL_NAME (OVL_FUNCTION (overload)),
6056 target_type);
6058 /* Since print_candidates expects the functions in the
6059 TREE_VALUE slot, we flip them here. */
6060 for (match = matches; match; match = TREE_CHAIN (match))
6061 TREE_VALUE (match) = TREE_PURPOSE (match);
6063 print_candidates (matches);
6066 return error_mark_node;
6069 /* Good, exactly one match. Now, convert it to the correct type. */
6070 fn = TREE_PURPOSE (matches);
6072 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6073 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6075 static int explained;
6077 if (!(flags & tf_error))
6078 return error_mark_node;
6080 permerror ("assuming pointer to member %qD", fn);
6081 if (!explained)
6083 inform ("(a pointer to member can only be formed with %<&%E%>)", fn);
6084 explained = 1;
6088 /* If we're doing overload resolution purely for the purpose of
6089 determining conversion sequences, we should not consider the
6090 function used. If this conversion sequence is selected, the
6091 function will be marked as used at this point. */
6092 if (!(flags & tf_conv))
6094 mark_used (fn);
6095 /* We could not check access when this expression was originally
6096 created since we did not know at that time to which function
6097 the expression referred. */
6098 if (DECL_FUNCTION_MEMBER_P (fn))
6100 gcc_assert (access_path);
6101 perform_or_defer_access_check (access_path, fn, fn);
6105 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6106 return cp_build_unary_op (ADDR_EXPR, fn, 0, flags);
6107 else
6109 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
6110 will mark the function as addressed, but here we must do it
6111 explicitly. */
6112 cxx_mark_addressable (fn);
6114 return fn;
6118 /* This function will instantiate the type of the expression given in
6119 RHS to match the type of LHSTYPE. If errors exist, then return
6120 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6121 we complain on errors. If we are not complaining, never modify rhs,
6122 as overload resolution wants to try many possible instantiations, in
6123 the hope that at least one will work.
6125 For non-recursive calls, LHSTYPE should be a function, pointer to
6126 function, or a pointer to member function. */
6128 tree
6129 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6131 tsubst_flags_t flags_in = flags;
6132 tree access_path = NULL_TREE;
6134 flags &= ~tf_ptrmem_ok;
6136 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6138 if (flags & tf_error)
6139 error ("not enough type information");
6140 return error_mark_node;
6143 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6145 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6146 return rhs;
6147 if (flag_ms_extensions
6148 && TYPE_PTRMEMFUNC_P (lhstype)
6149 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6150 /* Microsoft allows `A::f' to be resolved to a
6151 pointer-to-member. */
6153 else
6155 if (flags & tf_error)
6156 error ("argument of type %qT does not match %qT",
6157 TREE_TYPE (rhs), lhstype);
6158 return error_mark_node;
6162 if (TREE_CODE (rhs) == BASELINK)
6164 access_path = BASELINK_ACCESS_BINFO (rhs);
6165 rhs = BASELINK_FUNCTIONS (rhs);
6168 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6169 deduce any type information. */
6170 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6172 if (flags & tf_error)
6173 error ("not enough type information");
6174 return error_mark_node;
6177 /* There only a few kinds of expressions that may have a type
6178 dependent on overload resolution. */
6179 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6180 || TREE_CODE (rhs) == COMPONENT_REF
6181 || TREE_CODE (rhs) == COMPOUND_EXPR
6182 || really_overloaded_fn (rhs));
6184 /* We don't overwrite rhs if it is an overloaded function.
6185 Copying it would destroy the tree link. */
6186 if (TREE_CODE (rhs) != OVERLOAD)
6187 rhs = copy_node (rhs);
6189 /* This should really only be used when attempting to distinguish
6190 what sort of a pointer to function we have. For now, any
6191 arithmetic operation which is not supported on pointers
6192 is rejected as an error. */
6194 switch (TREE_CODE (rhs))
6196 case COMPONENT_REF:
6198 tree member = TREE_OPERAND (rhs, 1);
6200 member = instantiate_type (lhstype, member, flags);
6201 if (member != error_mark_node
6202 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6203 /* Do not lose object's side effects. */
6204 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6205 TREE_OPERAND (rhs, 0), member);
6206 return member;
6209 case OFFSET_REF:
6210 rhs = TREE_OPERAND (rhs, 1);
6211 if (BASELINK_P (rhs))
6212 return instantiate_type (lhstype, rhs, flags_in);
6214 /* This can happen if we are forming a pointer-to-member for a
6215 member template. */
6216 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6218 /* Fall through. */
6220 case TEMPLATE_ID_EXPR:
6222 tree fns = TREE_OPERAND (rhs, 0);
6223 tree args = TREE_OPERAND (rhs, 1);
6225 return
6226 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6227 /*template_only=*/true,
6228 args, access_path);
6231 case OVERLOAD:
6232 case FUNCTION_DECL:
6233 return
6234 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6235 /*template_only=*/false,
6236 /*explicit_targs=*/NULL_TREE,
6237 access_path);
6239 case COMPOUND_EXPR:
6240 TREE_OPERAND (rhs, 0)
6241 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6242 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6243 return error_mark_node;
6244 TREE_OPERAND (rhs, 1)
6245 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6246 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6247 return error_mark_node;
6249 TREE_TYPE (rhs) = lhstype;
6250 return rhs;
6252 case ADDR_EXPR:
6254 if (PTRMEM_OK_P (rhs))
6255 flags |= tf_ptrmem_ok;
6257 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6260 case ERROR_MARK:
6261 return error_mark_node;
6263 default:
6264 gcc_unreachable ();
6266 return error_mark_node;
6269 /* Return the name of the virtual function pointer field
6270 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6271 this may have to look back through base types to find the
6272 ultimate field name. (For single inheritance, these could
6273 all be the same name. Who knows for multiple inheritance). */
6275 static tree
6276 get_vfield_name (tree type)
6278 tree binfo, base_binfo;
6279 char *buf;
6281 for (binfo = TYPE_BINFO (type);
6282 BINFO_N_BASE_BINFOS (binfo);
6283 binfo = base_binfo)
6285 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6287 if (BINFO_VIRTUAL_P (base_binfo)
6288 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6289 break;
6292 type = BINFO_TYPE (binfo);
6293 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6294 + TYPE_NAME_LENGTH (type) + 2);
6295 sprintf (buf, VFIELD_NAME_FORMAT,
6296 IDENTIFIER_POINTER (constructor_name (type)));
6297 return get_identifier (buf);
6300 void
6301 print_class_statistics (void)
6303 #ifdef GATHER_STATISTICS
6304 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6305 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6306 if (n_vtables)
6308 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6309 n_vtables, n_vtable_searches);
6310 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6311 n_vtable_entries, n_vtable_elems);
6313 #endif
6316 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6317 according to [class]:
6318 The class-name is also inserted
6319 into the scope of the class itself. For purposes of access checking,
6320 the inserted class name is treated as if it were a public member name. */
6322 void
6323 build_self_reference (void)
6325 tree name = constructor_name (current_class_type);
6326 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6327 tree saved_cas;
6329 DECL_NONLOCAL (value) = 1;
6330 DECL_CONTEXT (value) = current_class_type;
6331 DECL_ARTIFICIAL (value) = 1;
6332 SET_DECL_SELF_REFERENCE_P (value);
6334 if (processing_template_decl)
6335 value = push_template_decl (value);
6337 saved_cas = current_access_specifier;
6338 current_access_specifier = access_public_node;
6339 finish_member_declaration (value);
6340 current_access_specifier = saved_cas;
6343 /* Returns 1 if TYPE contains only padding bytes. */
6346 is_empty_class (tree type)
6348 if (type == error_mark_node)
6349 return 0;
6351 if (! MAYBE_CLASS_TYPE_P (type))
6352 return 0;
6354 /* In G++ 3.2, whether or not a class was empty was determined by
6355 looking at its size. */
6356 if (abi_version_at_least (2))
6357 return CLASSTYPE_EMPTY_P (type);
6358 else
6359 return integer_zerop (CLASSTYPE_SIZE (type));
6362 /* Returns true if TYPE contains an empty class. */
6364 static bool
6365 contains_empty_class_p (tree type)
6367 if (is_empty_class (type))
6368 return true;
6369 if (CLASS_TYPE_P (type))
6371 tree field;
6372 tree binfo;
6373 tree base_binfo;
6374 int i;
6376 for (binfo = TYPE_BINFO (type), i = 0;
6377 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6378 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6379 return true;
6380 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6381 if (TREE_CODE (field) == FIELD_DECL
6382 && !DECL_ARTIFICIAL (field)
6383 && is_empty_class (TREE_TYPE (field)))
6384 return true;
6386 else if (TREE_CODE (type) == ARRAY_TYPE)
6387 return contains_empty_class_p (TREE_TYPE (type));
6388 return false;
6391 /* Note that NAME was looked up while the current class was being
6392 defined and that the result of that lookup was DECL. */
6394 void
6395 maybe_note_name_used_in_class (tree name, tree decl)
6397 splay_tree names_used;
6399 /* If we're not defining a class, there's nothing to do. */
6400 if (!(innermost_scope_kind() == sk_class
6401 && TYPE_BEING_DEFINED (current_class_type)))
6402 return;
6404 /* If there's already a binding for this NAME, then we don't have
6405 anything to worry about. */
6406 if (lookup_member (current_class_type, name,
6407 /*protect=*/0, /*want_type=*/false))
6408 return;
6410 if (!current_class_stack[current_class_depth - 1].names_used)
6411 current_class_stack[current_class_depth - 1].names_used
6412 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6413 names_used = current_class_stack[current_class_depth - 1].names_used;
6415 splay_tree_insert (names_used,
6416 (splay_tree_key) name,
6417 (splay_tree_value) decl);
6420 /* Note that NAME was declared (as DECL) in the current class. Check
6421 to see that the declaration is valid. */
6423 void
6424 note_name_declared_in_class (tree name, tree decl)
6426 splay_tree names_used;
6427 splay_tree_node n;
6429 /* Look to see if we ever used this name. */
6430 names_used
6431 = current_class_stack[current_class_depth - 1].names_used;
6432 if (!names_used)
6433 return;
6435 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6436 if (n)
6438 /* [basic.scope.class]
6440 A name N used in a class S shall refer to the same declaration
6441 in its context and when re-evaluated in the completed scope of
6442 S. */
6443 permerror ("declaration of %q#D", decl);
6444 permerror ("changes meaning of %qD from %q+#D",
6445 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6449 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6450 Secondary vtables are merged with primary vtables; this function
6451 will return the VAR_DECL for the primary vtable. */
6453 tree
6454 get_vtbl_decl_for_binfo (tree binfo)
6456 tree decl;
6458 decl = BINFO_VTABLE (binfo);
6459 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6461 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6462 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6464 if (decl)
6465 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6466 return decl;
6470 /* Returns the binfo for the primary base of BINFO. If the resulting
6471 BINFO is a virtual base, and it is inherited elsewhere in the
6472 hierarchy, then the returned binfo might not be the primary base of
6473 BINFO in the complete object. Check BINFO_PRIMARY_P or
6474 BINFO_LOST_PRIMARY_P to be sure. */
6476 static tree
6477 get_primary_binfo (tree binfo)
6479 tree primary_base;
6481 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6482 if (!primary_base)
6483 return NULL_TREE;
6485 return copied_binfo (primary_base, binfo);
6488 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6490 static int
6491 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6493 if (!indented_p)
6494 fprintf (stream, "%*s", indent, "");
6495 return 1;
6498 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6499 INDENT should be zero when called from the top level; it is
6500 incremented recursively. IGO indicates the next expected BINFO in
6501 inheritance graph ordering. */
6503 static tree
6504 dump_class_hierarchy_r (FILE *stream,
6505 int flags,
6506 tree binfo,
6507 tree igo,
6508 int indent)
6510 int indented = 0;
6511 tree base_binfo;
6512 int i;
6514 indented = maybe_indent_hierarchy (stream, indent, 0);
6515 fprintf (stream, "%s (0x%lx) ",
6516 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6517 (unsigned long) binfo);
6518 if (binfo != igo)
6520 fprintf (stream, "alternative-path\n");
6521 return igo;
6523 igo = TREE_CHAIN (binfo);
6525 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6526 tree_low_cst (BINFO_OFFSET (binfo), 0));
6527 if (is_empty_class (BINFO_TYPE (binfo)))
6528 fprintf (stream, " empty");
6529 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6530 fprintf (stream, " nearly-empty");
6531 if (BINFO_VIRTUAL_P (binfo))
6532 fprintf (stream, " virtual");
6533 fprintf (stream, "\n");
6535 indented = 0;
6536 if (BINFO_PRIMARY_P (binfo))
6538 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6539 fprintf (stream, " primary-for %s (0x%lx)",
6540 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6541 TFF_PLAIN_IDENTIFIER),
6542 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6544 if (BINFO_LOST_PRIMARY_P (binfo))
6546 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6547 fprintf (stream, " lost-primary");
6549 if (indented)
6550 fprintf (stream, "\n");
6552 if (!(flags & TDF_SLIM))
6554 int indented = 0;
6556 if (BINFO_SUBVTT_INDEX (binfo))
6558 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6559 fprintf (stream, " subvttidx=%s",
6560 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6561 TFF_PLAIN_IDENTIFIER));
6563 if (BINFO_VPTR_INDEX (binfo))
6565 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6566 fprintf (stream, " vptridx=%s",
6567 expr_as_string (BINFO_VPTR_INDEX (binfo),
6568 TFF_PLAIN_IDENTIFIER));
6570 if (BINFO_VPTR_FIELD (binfo))
6572 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6573 fprintf (stream, " vbaseoffset=%s",
6574 expr_as_string (BINFO_VPTR_FIELD (binfo),
6575 TFF_PLAIN_IDENTIFIER));
6577 if (BINFO_VTABLE (binfo))
6579 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6580 fprintf (stream, " vptr=%s",
6581 expr_as_string (BINFO_VTABLE (binfo),
6582 TFF_PLAIN_IDENTIFIER));
6585 if (indented)
6586 fprintf (stream, "\n");
6589 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6590 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6592 return igo;
6595 /* Dump the BINFO hierarchy for T. */
6597 static void
6598 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6600 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6601 fprintf (stream, " size=%lu align=%lu\n",
6602 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6603 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6604 fprintf (stream, " base size=%lu base align=%lu\n",
6605 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6606 / BITS_PER_UNIT),
6607 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6608 / BITS_PER_UNIT));
6609 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6610 fprintf (stream, "\n");
6613 /* Debug interface to hierarchy dumping. */
6615 void
6616 debug_class (tree t)
6618 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6621 static void
6622 dump_class_hierarchy (tree t)
6624 int flags;
6625 FILE *stream = dump_begin (TDI_class, &flags);
6627 if (stream)
6629 dump_class_hierarchy_1 (stream, flags, t);
6630 dump_end (TDI_class, stream);
6634 static void
6635 dump_array (FILE * stream, tree decl)
6637 tree value;
6638 unsigned HOST_WIDE_INT ix;
6639 HOST_WIDE_INT elt;
6640 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6642 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6643 / BITS_PER_UNIT);
6644 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6645 fprintf (stream, " %s entries",
6646 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6647 TFF_PLAIN_IDENTIFIER));
6648 fprintf (stream, "\n");
6650 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6651 ix, value)
6652 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6653 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6656 static void
6657 dump_vtable (tree t, tree binfo, tree vtable)
6659 int flags;
6660 FILE *stream = dump_begin (TDI_class, &flags);
6662 if (!stream)
6663 return;
6665 if (!(flags & TDF_SLIM))
6667 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6669 fprintf (stream, "%s for %s",
6670 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6671 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6672 if (ctor_vtbl_p)
6674 if (!BINFO_VIRTUAL_P (binfo))
6675 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6676 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6678 fprintf (stream, "\n");
6679 dump_array (stream, vtable);
6680 fprintf (stream, "\n");
6683 dump_end (TDI_class, stream);
6686 static void
6687 dump_vtt (tree t, tree vtt)
6689 int flags;
6690 FILE *stream = dump_begin (TDI_class, &flags);
6692 if (!stream)
6693 return;
6695 if (!(flags & TDF_SLIM))
6697 fprintf (stream, "VTT for %s\n",
6698 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6699 dump_array (stream, vtt);
6700 fprintf (stream, "\n");
6703 dump_end (TDI_class, stream);
6706 /* Dump a function or thunk and its thunkees. */
6708 static void
6709 dump_thunk (FILE *stream, int indent, tree thunk)
6711 static const char spaces[] = " ";
6712 tree name = DECL_NAME (thunk);
6713 tree thunks;
6715 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6716 (void *)thunk,
6717 !DECL_THUNK_P (thunk) ? "function"
6718 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6719 name ? IDENTIFIER_POINTER (name) : "<unset>");
6720 if (DECL_THUNK_P (thunk))
6722 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6723 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6725 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6726 if (!virtual_adjust)
6727 /*NOP*/;
6728 else if (DECL_THIS_THUNK_P (thunk))
6729 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6730 tree_low_cst (virtual_adjust, 0));
6731 else
6732 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6733 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6734 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6735 if (THUNK_ALIAS (thunk))
6736 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6738 fprintf (stream, "\n");
6739 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6740 dump_thunk (stream, indent + 2, thunks);
6743 /* Dump the thunks for FN. */
6745 void
6746 debug_thunks (tree fn)
6748 dump_thunk (stderr, 0, fn);
6751 /* Virtual function table initialization. */
6753 /* Create all the necessary vtables for T and its base classes. */
6755 static void
6756 finish_vtbls (tree t)
6758 tree list;
6759 tree vbase;
6761 /* We lay out the primary and secondary vtables in one contiguous
6762 vtable. The primary vtable is first, followed by the non-virtual
6763 secondary vtables in inheritance graph order. */
6764 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6765 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6766 TYPE_BINFO (t), t, list);
6768 /* Then come the virtual bases, also in inheritance graph order. */
6769 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6771 if (!BINFO_VIRTUAL_P (vbase))
6772 continue;
6773 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6776 if (BINFO_VTABLE (TYPE_BINFO (t)))
6777 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6780 /* Initialize the vtable for BINFO with the INITS. */
6782 static void
6783 initialize_vtable (tree binfo, tree inits)
6785 tree decl;
6787 layout_vtable_decl (binfo, list_length (inits));
6788 decl = get_vtbl_decl_for_binfo (binfo);
6789 initialize_artificial_var (decl, inits);
6790 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6793 /* Build the VTT (virtual table table) for T.
6794 A class requires a VTT if it has virtual bases.
6796 This holds
6797 1 - primary virtual pointer for complete object T
6798 2 - secondary VTTs for each direct non-virtual base of T which requires a
6800 3 - secondary virtual pointers for each direct or indirect base of T which
6801 has virtual bases or is reachable via a virtual path from T.
6802 4 - secondary VTTs for each direct or indirect virtual base of T.
6804 Secondary VTTs look like complete object VTTs without part 4. */
6806 static void
6807 build_vtt (tree t)
6809 tree inits;
6810 tree type;
6811 tree vtt;
6812 tree index;
6814 /* Build up the initializers for the VTT. */
6815 inits = NULL_TREE;
6816 index = size_zero_node;
6817 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6819 /* If we didn't need a VTT, we're done. */
6820 if (!inits)
6821 return;
6823 /* Figure out the type of the VTT. */
6824 type = build_index_type (size_int (list_length (inits) - 1));
6825 type = build_cplus_array_type (const_ptr_type_node, type);
6827 /* Now, build the VTT object itself. */
6828 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6829 initialize_artificial_var (vtt, inits);
6830 /* Add the VTT to the vtables list. */
6831 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6832 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6834 dump_vtt (t, vtt);
6837 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6838 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6839 and CHAIN the vtable pointer for this binfo after construction is
6840 complete. VALUE can also be another BINFO, in which case we recurse. */
6842 static tree
6843 binfo_ctor_vtable (tree binfo)
6845 tree vt;
6847 while (1)
6849 vt = BINFO_VTABLE (binfo);
6850 if (TREE_CODE (vt) == TREE_LIST)
6851 vt = TREE_VALUE (vt);
6852 if (TREE_CODE (vt) == TREE_BINFO)
6853 binfo = vt;
6854 else
6855 break;
6858 return vt;
6861 /* Data for secondary VTT initialization. */
6862 typedef struct secondary_vptr_vtt_init_data_s
6864 /* Is this the primary VTT? */
6865 bool top_level_p;
6867 /* Current index into the VTT. */
6868 tree index;
6870 /* TREE_LIST of initializers built up. */
6871 tree inits;
6873 /* The type being constructed by this secondary VTT. */
6874 tree type_being_constructed;
6875 } secondary_vptr_vtt_init_data;
6877 /* Recursively build the VTT-initializer for BINFO (which is in the
6878 hierarchy dominated by T). INITS points to the end of the initializer
6879 list to date. INDEX is the VTT index where the next element will be
6880 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6881 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6882 for virtual bases of T. When it is not so, we build the constructor
6883 vtables for the BINFO-in-T variant. */
6885 static tree *
6886 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6888 int i;
6889 tree b;
6890 tree init;
6891 tree secondary_vptrs;
6892 secondary_vptr_vtt_init_data data;
6893 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6895 /* We only need VTTs for subobjects with virtual bases. */
6896 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6897 return inits;
6899 /* We need to use a construction vtable if this is not the primary
6900 VTT. */
6901 if (!top_level_p)
6903 build_ctor_vtbl_group (binfo, t);
6905 /* Record the offset in the VTT where this sub-VTT can be found. */
6906 BINFO_SUBVTT_INDEX (binfo) = *index;
6909 /* Add the address of the primary vtable for the complete object. */
6910 init = binfo_ctor_vtable (binfo);
6911 *inits = build_tree_list (NULL_TREE, init);
6912 inits = &TREE_CHAIN (*inits);
6913 if (top_level_p)
6915 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6916 BINFO_VPTR_INDEX (binfo) = *index;
6918 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6920 /* Recursively add the secondary VTTs for non-virtual bases. */
6921 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6922 if (!BINFO_VIRTUAL_P (b))
6923 inits = build_vtt_inits (b, t, inits, index);
6925 /* Add secondary virtual pointers for all subobjects of BINFO with
6926 either virtual bases or reachable along a virtual path, except
6927 subobjects that are non-virtual primary bases. */
6928 data.top_level_p = top_level_p;
6929 data.index = *index;
6930 data.inits = NULL;
6931 data.type_being_constructed = BINFO_TYPE (binfo);
6933 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6935 *index = data.index;
6937 /* The secondary vptrs come back in reverse order. After we reverse
6938 them, and add the INITS, the last init will be the first element
6939 of the chain. */
6940 secondary_vptrs = data.inits;
6941 if (secondary_vptrs)
6943 *inits = nreverse (secondary_vptrs);
6944 inits = &TREE_CHAIN (secondary_vptrs);
6945 gcc_assert (*inits == NULL_TREE);
6948 if (top_level_p)
6949 /* Add the secondary VTTs for virtual bases in inheritance graph
6950 order. */
6951 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6953 if (!BINFO_VIRTUAL_P (b))
6954 continue;
6956 inits = build_vtt_inits (b, t, inits, index);
6958 else
6959 /* Remove the ctor vtables we created. */
6960 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6962 return inits;
6965 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6966 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6968 static tree
6969 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6971 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6973 /* We don't care about bases that don't have vtables. */
6974 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6975 return dfs_skip_bases;
6977 /* We're only interested in proper subobjects of the type being
6978 constructed. */
6979 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6980 return NULL_TREE;
6982 /* We're only interested in bases with virtual bases or reachable
6983 via a virtual path from the type being constructed. */
6984 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6985 || binfo_via_virtual (binfo, data->type_being_constructed)))
6986 return dfs_skip_bases;
6988 /* We're not interested in non-virtual primary bases. */
6989 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6990 return NULL_TREE;
6992 /* Record the index where this secondary vptr can be found. */
6993 if (data->top_level_p)
6995 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6996 BINFO_VPTR_INDEX (binfo) = data->index;
6998 if (BINFO_VIRTUAL_P (binfo))
7000 /* It's a primary virtual base, and this is not a
7001 construction vtable. Find the base this is primary of in
7002 the inheritance graph, and use that base's vtable
7003 now. */
7004 while (BINFO_PRIMARY_P (binfo))
7005 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7009 /* Add the initializer for the secondary vptr itself. */
7010 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
7012 /* Advance the vtt index. */
7013 data->index = size_binop (PLUS_EXPR, data->index,
7014 TYPE_SIZE_UNIT (ptr_type_node));
7016 return NULL_TREE;
7019 /* Called from build_vtt_inits via dfs_walk. After building
7020 constructor vtables and generating the sub-vtt from them, we need
7021 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7022 binfo of the base whose sub vtt was generated. */
7024 static tree
7025 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7027 tree vtable = BINFO_VTABLE (binfo);
7029 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7030 /* If this class has no vtable, none of its bases do. */
7031 return dfs_skip_bases;
7033 if (!vtable)
7034 /* This might be a primary base, so have no vtable in this
7035 hierarchy. */
7036 return NULL_TREE;
7038 /* If we scribbled the construction vtable vptr into BINFO, clear it
7039 out now. */
7040 if (TREE_CODE (vtable) == TREE_LIST
7041 && (TREE_PURPOSE (vtable) == (tree) data))
7042 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7044 return NULL_TREE;
7047 /* Build the construction vtable group for BINFO which is in the
7048 hierarchy dominated by T. */
7050 static void
7051 build_ctor_vtbl_group (tree binfo, tree t)
7053 tree list;
7054 tree type;
7055 tree vtbl;
7056 tree inits;
7057 tree id;
7058 tree vbase;
7060 /* See if we've already created this construction vtable group. */
7061 id = mangle_ctor_vtbl_for_type (t, binfo);
7062 if (IDENTIFIER_GLOBAL_VALUE (id))
7063 return;
7065 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7066 /* Build a version of VTBL (with the wrong type) for use in
7067 constructing the addresses of secondary vtables in the
7068 construction vtable group. */
7069 vtbl = build_vtable (t, id, ptr_type_node);
7070 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7071 list = build_tree_list (vtbl, NULL_TREE);
7072 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7073 binfo, t, list);
7075 /* Add the vtables for each of our virtual bases using the vbase in T
7076 binfo. */
7077 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7078 vbase;
7079 vbase = TREE_CHAIN (vbase))
7081 tree b;
7083 if (!BINFO_VIRTUAL_P (vbase))
7084 continue;
7085 b = copied_binfo (vbase, binfo);
7087 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7089 inits = TREE_VALUE (list);
7091 /* Figure out the type of the construction vtable. */
7092 type = build_index_type (size_int (list_length (inits) - 1));
7093 type = build_cplus_array_type (vtable_entry_type, type);
7094 layout_type (type);
7095 TREE_TYPE (vtbl) = type;
7096 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7097 layout_decl (vtbl, 0);
7099 /* Initialize the construction vtable. */
7100 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7101 initialize_artificial_var (vtbl, inits);
7102 dump_vtable (t, binfo, vtbl);
7105 /* Add the vtbl initializers for BINFO (and its bases other than
7106 non-virtual primaries) to the list of INITS. BINFO is in the
7107 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7108 the constructor the vtbl inits should be accumulated for. (If this
7109 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7110 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7111 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7112 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7113 but are not necessarily the same in terms of layout. */
7115 static void
7116 accumulate_vtbl_inits (tree binfo,
7117 tree orig_binfo,
7118 tree rtti_binfo,
7119 tree t,
7120 tree inits)
7122 int i;
7123 tree base_binfo;
7124 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7126 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7128 /* If it doesn't have a vptr, we don't do anything. */
7129 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7130 return;
7132 /* If we're building a construction vtable, we're not interested in
7133 subobjects that don't require construction vtables. */
7134 if (ctor_vtbl_p
7135 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7136 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7137 return;
7139 /* Build the initializers for the BINFO-in-T vtable. */
7140 TREE_VALUE (inits)
7141 = chainon (TREE_VALUE (inits),
7142 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7143 rtti_binfo, t, inits));
7145 /* Walk the BINFO and its bases. We walk in preorder so that as we
7146 initialize each vtable we can figure out at what offset the
7147 secondary vtable lies from the primary vtable. We can't use
7148 dfs_walk here because we need to iterate through bases of BINFO
7149 and RTTI_BINFO simultaneously. */
7150 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7152 /* Skip virtual bases. */
7153 if (BINFO_VIRTUAL_P (base_binfo))
7154 continue;
7155 accumulate_vtbl_inits (base_binfo,
7156 BINFO_BASE_BINFO (orig_binfo, i),
7157 rtti_binfo, t,
7158 inits);
7162 /* Called from accumulate_vtbl_inits. Returns the initializers for
7163 the BINFO vtable. */
7165 static tree
7166 dfs_accumulate_vtbl_inits (tree binfo,
7167 tree orig_binfo,
7168 tree rtti_binfo,
7169 tree t,
7170 tree l)
7172 tree inits = NULL_TREE;
7173 tree vtbl = NULL_TREE;
7174 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7176 if (ctor_vtbl_p
7177 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7179 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7180 primary virtual base. If it is not the same primary in
7181 the hierarchy of T, we'll need to generate a ctor vtable
7182 for it, to place at its location in T. If it is the same
7183 primary, we still need a VTT entry for the vtable, but it
7184 should point to the ctor vtable for the base it is a
7185 primary for within the sub-hierarchy of RTTI_BINFO.
7187 There are three possible cases:
7189 1) We are in the same place.
7190 2) We are a primary base within a lost primary virtual base of
7191 RTTI_BINFO.
7192 3) We are primary to something not a base of RTTI_BINFO. */
7194 tree b;
7195 tree last = NULL_TREE;
7197 /* First, look through the bases we are primary to for RTTI_BINFO
7198 or a virtual base. */
7199 b = binfo;
7200 while (BINFO_PRIMARY_P (b))
7202 b = BINFO_INHERITANCE_CHAIN (b);
7203 last = b;
7204 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7205 goto found;
7207 /* If we run out of primary links, keep looking down our
7208 inheritance chain; we might be an indirect primary. */
7209 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7210 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7211 break;
7212 found:
7214 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7215 base B and it is a base of RTTI_BINFO, this is case 2. In
7216 either case, we share our vtable with LAST, i.e. the
7217 derived-most base within B of which we are a primary. */
7218 if (b == rtti_binfo
7219 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7220 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7221 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7222 binfo_ctor_vtable after everything's been set up. */
7223 vtbl = last;
7225 /* Otherwise, this is case 3 and we get our own. */
7227 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7228 return inits;
7230 if (!vtbl)
7232 tree index;
7233 int non_fn_entries;
7235 /* Compute the initializer for this vtable. */
7236 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7237 &non_fn_entries);
7239 /* Figure out the position to which the VPTR should point. */
7240 vtbl = TREE_PURPOSE (l);
7241 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7242 index = size_binop (PLUS_EXPR,
7243 size_int (non_fn_entries),
7244 size_int (list_length (TREE_VALUE (l))));
7245 index = size_binop (MULT_EXPR,
7246 TYPE_SIZE_UNIT (vtable_entry_type),
7247 index);
7248 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7251 if (ctor_vtbl_p)
7252 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7253 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7254 straighten this out. */
7255 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7256 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7257 inits = NULL_TREE;
7258 else
7259 /* For an ordinary vtable, set BINFO_VTABLE. */
7260 BINFO_VTABLE (binfo) = vtbl;
7262 return inits;
7265 static GTY(()) tree abort_fndecl_addr;
7267 /* Construct the initializer for BINFO's virtual function table. BINFO
7268 is part of the hierarchy dominated by T. If we're building a
7269 construction vtable, the ORIG_BINFO is the binfo we should use to
7270 find the actual function pointers to put in the vtable - but they
7271 can be overridden on the path to most-derived in the graph that
7272 ORIG_BINFO belongs. Otherwise,
7273 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7274 BINFO that should be indicated by the RTTI information in the
7275 vtable; it will be a base class of T, rather than T itself, if we
7276 are building a construction vtable.
7278 The value returned is a TREE_LIST suitable for wrapping in a
7279 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7280 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7281 number of non-function entries in the vtable.
7283 It might seem that this function should never be called with a
7284 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7285 base is always subsumed by a derived class vtable. However, when
7286 we are building construction vtables, we do build vtables for
7287 primary bases; we need these while the primary base is being
7288 constructed. */
7290 static tree
7291 build_vtbl_initializer (tree binfo,
7292 tree orig_binfo,
7293 tree t,
7294 tree rtti_binfo,
7295 int* non_fn_entries_p)
7297 tree v, b;
7298 tree vfun_inits;
7299 vtbl_init_data vid;
7300 unsigned ix;
7301 tree vbinfo;
7302 VEC(tree,gc) *vbases;
7304 /* Initialize VID. */
7305 memset (&vid, 0, sizeof (vid));
7306 vid.binfo = binfo;
7307 vid.derived = t;
7308 vid.rtti_binfo = rtti_binfo;
7309 vid.last_init = &vid.inits;
7310 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7311 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7312 vid.generate_vcall_entries = true;
7313 /* The first vbase or vcall offset is at index -3 in the vtable. */
7314 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7316 /* Add entries to the vtable for RTTI. */
7317 build_rtti_vtbl_entries (binfo, &vid);
7319 /* Create an array for keeping track of the functions we've
7320 processed. When we see multiple functions with the same
7321 signature, we share the vcall offsets. */
7322 vid.fns = VEC_alloc (tree, gc, 32);
7323 /* Add the vcall and vbase offset entries. */
7324 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7326 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7327 build_vbase_offset_vtbl_entries. */
7328 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7329 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7330 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7332 /* If the target requires padding between data entries, add that now. */
7333 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7335 tree cur, *prev;
7337 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7339 tree add = cur;
7340 int i;
7342 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7343 add = tree_cons (NULL_TREE,
7344 build1 (NOP_EXPR, vtable_entry_type,
7345 null_pointer_node),
7346 add);
7347 *prev = add;
7351 if (non_fn_entries_p)
7352 *non_fn_entries_p = list_length (vid.inits);
7354 /* Go through all the ordinary virtual functions, building up
7355 initializers. */
7356 vfun_inits = NULL_TREE;
7357 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7359 tree delta;
7360 tree vcall_index;
7361 tree fn, fn_original;
7362 tree init = NULL_TREE;
7364 fn = BV_FN (v);
7365 fn_original = fn;
7366 if (DECL_THUNK_P (fn))
7368 if (!DECL_NAME (fn))
7369 finish_thunk (fn);
7370 if (THUNK_ALIAS (fn))
7372 fn = THUNK_ALIAS (fn);
7373 BV_FN (v) = fn;
7375 fn_original = THUNK_TARGET (fn);
7378 /* If the only definition of this function signature along our
7379 primary base chain is from a lost primary, this vtable slot will
7380 never be used, so just zero it out. This is important to avoid
7381 requiring extra thunks which cannot be generated with the function.
7383 We first check this in update_vtable_entry_for_fn, so we handle
7384 restored primary bases properly; we also need to do it here so we
7385 zero out unused slots in ctor vtables, rather than filling themff
7386 with erroneous values (though harmless, apart from relocation
7387 costs). */
7388 for (b = binfo; ; b = get_primary_binfo (b))
7390 /* We found a defn before a lost primary; go ahead as normal. */
7391 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7392 break;
7394 /* The nearest definition is from a lost primary; clear the
7395 slot. */
7396 if (BINFO_LOST_PRIMARY_P (b))
7398 init = size_zero_node;
7399 break;
7403 if (! init)
7405 /* Pull the offset for `this', and the function to call, out of
7406 the list. */
7407 delta = BV_DELTA (v);
7408 vcall_index = BV_VCALL_INDEX (v);
7410 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7411 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7413 /* You can't call an abstract virtual function; it's abstract.
7414 So, we replace these functions with __pure_virtual. */
7415 if (DECL_PURE_VIRTUAL_P (fn_original))
7417 fn = abort_fndecl;
7418 if (abort_fndecl_addr == NULL)
7419 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7420 init = abort_fndecl_addr;
7422 else
7424 if (!integer_zerop (delta) || vcall_index)
7426 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7427 if (!DECL_NAME (fn))
7428 finish_thunk (fn);
7430 /* Take the address of the function, considering it to be of an
7431 appropriate generic type. */
7432 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7436 /* And add it to the chain of initializers. */
7437 if (TARGET_VTABLE_USES_DESCRIPTORS)
7439 int i;
7440 if (init == size_zero_node)
7441 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7442 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7443 else
7444 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7446 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7447 TREE_OPERAND (init, 0),
7448 build_int_cst (NULL_TREE, i));
7449 TREE_CONSTANT (fdesc) = 1;
7451 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7454 else
7455 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7458 /* The initializers for virtual functions were built up in reverse
7459 order; straighten them out now. */
7460 vfun_inits = nreverse (vfun_inits);
7462 /* The negative offset initializers are also in reverse order. */
7463 vid.inits = nreverse (vid.inits);
7465 /* Chain the two together. */
7466 return chainon (vid.inits, vfun_inits);
7469 /* Adds to vid->inits the initializers for the vbase and vcall
7470 offsets in BINFO, which is in the hierarchy dominated by T. */
7472 static void
7473 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7475 tree b;
7477 /* If this is a derived class, we must first create entries
7478 corresponding to the primary base class. */
7479 b = get_primary_binfo (binfo);
7480 if (b)
7481 build_vcall_and_vbase_vtbl_entries (b, vid);
7483 /* Add the vbase entries for this base. */
7484 build_vbase_offset_vtbl_entries (binfo, vid);
7485 /* Add the vcall entries for this base. */
7486 build_vcall_offset_vtbl_entries (binfo, vid);
7489 /* Returns the initializers for the vbase offset entries in the vtable
7490 for BINFO (which is part of the class hierarchy dominated by T), in
7491 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7492 where the next vbase offset will go. */
7494 static void
7495 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7497 tree vbase;
7498 tree t;
7499 tree non_primary_binfo;
7501 /* If there are no virtual baseclasses, then there is nothing to
7502 do. */
7503 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7504 return;
7506 t = vid->derived;
7508 /* We might be a primary base class. Go up the inheritance hierarchy
7509 until we find the most derived class of which we are a primary base:
7510 it is the offset of that which we need to use. */
7511 non_primary_binfo = binfo;
7512 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7514 tree b;
7516 /* If we have reached a virtual base, then it must be a primary
7517 base (possibly multi-level) of vid->binfo, or we wouldn't
7518 have called build_vcall_and_vbase_vtbl_entries for it. But it
7519 might be a lost primary, so just skip down to vid->binfo. */
7520 if (BINFO_VIRTUAL_P (non_primary_binfo))
7522 non_primary_binfo = vid->binfo;
7523 break;
7526 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7527 if (get_primary_binfo (b) != non_primary_binfo)
7528 break;
7529 non_primary_binfo = b;
7532 /* Go through the virtual bases, adding the offsets. */
7533 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7534 vbase;
7535 vbase = TREE_CHAIN (vbase))
7537 tree b;
7538 tree delta;
7540 if (!BINFO_VIRTUAL_P (vbase))
7541 continue;
7543 /* Find the instance of this virtual base in the complete
7544 object. */
7545 b = copied_binfo (vbase, binfo);
7547 /* If we've already got an offset for this virtual base, we
7548 don't need another one. */
7549 if (BINFO_VTABLE_PATH_MARKED (b))
7550 continue;
7551 BINFO_VTABLE_PATH_MARKED (b) = 1;
7553 /* Figure out where we can find this vbase offset. */
7554 delta = size_binop (MULT_EXPR,
7555 vid->index,
7556 convert (ssizetype,
7557 TYPE_SIZE_UNIT (vtable_entry_type)));
7558 if (vid->primary_vtbl_p)
7559 BINFO_VPTR_FIELD (b) = delta;
7561 if (binfo != TYPE_BINFO (t))
7562 /* The vbase offset had better be the same. */
7563 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7565 /* The next vbase will come at a more negative offset. */
7566 vid->index = size_binop (MINUS_EXPR, vid->index,
7567 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7569 /* The initializer is the delta from BINFO to this virtual base.
7570 The vbase offsets go in reverse inheritance-graph order, and
7571 we are walking in inheritance graph order so these end up in
7572 the right order. */
7573 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7575 *vid->last_init
7576 = build_tree_list (NULL_TREE,
7577 fold_build1 (NOP_EXPR,
7578 vtable_entry_type,
7579 delta));
7580 vid->last_init = &TREE_CHAIN (*vid->last_init);
7584 /* Adds the initializers for the vcall offset entries in the vtable
7585 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7586 to VID->INITS. */
7588 static void
7589 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7591 /* We only need these entries if this base is a virtual base. We
7592 compute the indices -- but do not add to the vtable -- when
7593 building the main vtable for a class. */
7594 if (binfo == TYPE_BINFO (vid->derived)
7595 || (BINFO_VIRTUAL_P (binfo)
7596 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7597 correspond to VID->DERIVED), we are building a primary
7598 construction virtual table. Since this is a primary
7599 virtual table, we do not need the vcall offsets for
7600 BINFO. */
7601 && binfo != vid->rtti_binfo))
7603 /* We need a vcall offset for each of the virtual functions in this
7604 vtable. For example:
7606 class A { virtual void f (); };
7607 class B1 : virtual public A { virtual void f (); };
7608 class B2 : virtual public A { virtual void f (); };
7609 class C: public B1, public B2 { virtual void f (); };
7611 A C object has a primary base of B1, which has a primary base of A. A
7612 C also has a secondary base of B2, which no longer has a primary base
7613 of A. So the B2-in-C construction vtable needs a secondary vtable for
7614 A, which will adjust the A* to a B2* to call f. We have no way of
7615 knowing what (or even whether) this offset will be when we define B2,
7616 so we store this "vcall offset" in the A sub-vtable and look it up in
7617 a "virtual thunk" for B2::f.
7619 We need entries for all the functions in our primary vtable and
7620 in our non-virtual bases' secondary vtables. */
7621 vid->vbase = binfo;
7622 /* If we are just computing the vcall indices -- but do not need
7623 the actual entries -- not that. */
7624 if (!BINFO_VIRTUAL_P (binfo))
7625 vid->generate_vcall_entries = false;
7626 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7627 add_vcall_offset_vtbl_entries_r (binfo, vid);
7631 /* Build vcall offsets, starting with those for BINFO. */
7633 static void
7634 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7636 int i;
7637 tree primary_binfo;
7638 tree base_binfo;
7640 /* Don't walk into virtual bases -- except, of course, for the
7641 virtual base for which we are building vcall offsets. Any
7642 primary virtual base will have already had its offsets generated
7643 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7644 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7645 return;
7647 /* If BINFO has a primary base, process it first. */
7648 primary_binfo = get_primary_binfo (binfo);
7649 if (primary_binfo)
7650 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7652 /* Add BINFO itself to the list. */
7653 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7655 /* Scan the non-primary bases of BINFO. */
7656 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7657 if (base_binfo != primary_binfo)
7658 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7661 /* Called from build_vcall_offset_vtbl_entries_r. */
7663 static void
7664 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7666 /* Make entries for the rest of the virtuals. */
7667 if (abi_version_at_least (2))
7669 tree orig_fn;
7671 /* The ABI requires that the methods be processed in declaration
7672 order. G++ 3.2 used the order in the vtable. */
7673 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7674 orig_fn;
7675 orig_fn = TREE_CHAIN (orig_fn))
7676 if (DECL_VINDEX (orig_fn))
7677 add_vcall_offset (orig_fn, binfo, vid);
7679 else
7681 tree derived_virtuals;
7682 tree base_virtuals;
7683 tree orig_virtuals;
7684 /* If BINFO is a primary base, the most derived class which has
7685 BINFO as a primary base; otherwise, just BINFO. */
7686 tree non_primary_binfo;
7688 /* We might be a primary base class. Go up the inheritance hierarchy
7689 until we find the most derived class of which we are a primary base:
7690 it is the BINFO_VIRTUALS there that we need to consider. */
7691 non_primary_binfo = binfo;
7692 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7694 tree b;
7696 /* If we have reached a virtual base, then it must be vid->vbase,
7697 because we ignore other virtual bases in
7698 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7699 base (possibly multi-level) of vid->binfo, or we wouldn't
7700 have called build_vcall_and_vbase_vtbl_entries for it. But it
7701 might be a lost primary, so just skip down to vid->binfo. */
7702 if (BINFO_VIRTUAL_P (non_primary_binfo))
7704 gcc_assert (non_primary_binfo == vid->vbase);
7705 non_primary_binfo = vid->binfo;
7706 break;
7709 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7710 if (get_primary_binfo (b) != non_primary_binfo)
7711 break;
7712 non_primary_binfo = b;
7715 if (vid->ctor_vtbl_p)
7716 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7717 where rtti_binfo is the most derived type. */
7718 non_primary_binfo
7719 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7721 for (base_virtuals = BINFO_VIRTUALS (binfo),
7722 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7723 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7724 base_virtuals;
7725 base_virtuals = TREE_CHAIN (base_virtuals),
7726 derived_virtuals = TREE_CHAIN (derived_virtuals),
7727 orig_virtuals = TREE_CHAIN (orig_virtuals))
7729 tree orig_fn;
7731 /* Find the declaration that originally caused this function to
7732 be present in BINFO_TYPE (binfo). */
7733 orig_fn = BV_FN (orig_virtuals);
7735 /* When processing BINFO, we only want to generate vcall slots for
7736 function slots introduced in BINFO. So don't try to generate
7737 one if the function isn't even defined in BINFO. */
7738 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7739 continue;
7741 add_vcall_offset (orig_fn, binfo, vid);
7746 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7748 static void
7749 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7751 size_t i;
7752 tree vcall_offset;
7753 tree derived_entry;
7755 /* If there is already an entry for a function with the same
7756 signature as FN, then we do not need a second vcall offset.
7757 Check the list of functions already present in the derived
7758 class vtable. */
7759 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7761 if (same_signature_p (derived_entry, orig_fn)
7762 /* We only use one vcall offset for virtual destructors,
7763 even though there are two virtual table entries. */
7764 || (DECL_DESTRUCTOR_P (derived_entry)
7765 && DECL_DESTRUCTOR_P (orig_fn)))
7766 return;
7769 /* If we are building these vcall offsets as part of building
7770 the vtable for the most derived class, remember the vcall
7771 offset. */
7772 if (vid->binfo == TYPE_BINFO (vid->derived))
7774 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7775 CLASSTYPE_VCALL_INDICES (vid->derived),
7776 NULL);
7777 elt->purpose = orig_fn;
7778 elt->value = vid->index;
7781 /* The next vcall offset will be found at a more negative
7782 offset. */
7783 vid->index = size_binop (MINUS_EXPR, vid->index,
7784 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7786 /* Keep track of this function. */
7787 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7789 if (vid->generate_vcall_entries)
7791 tree base;
7792 tree fn;
7794 /* Find the overriding function. */
7795 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7796 if (fn == error_mark_node)
7797 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7798 integer_zero_node);
7799 else
7801 base = TREE_VALUE (fn);
7803 /* The vbase we're working on is a primary base of
7804 vid->binfo. But it might be a lost primary, so its
7805 BINFO_OFFSET might be wrong, so we just use the
7806 BINFO_OFFSET from vid->binfo. */
7807 vcall_offset = size_diffop (BINFO_OFFSET (base),
7808 BINFO_OFFSET (vid->binfo));
7809 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7810 vcall_offset);
7812 /* Add the initializer to the vtable. */
7813 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7814 vid->last_init = &TREE_CHAIN (*vid->last_init);
7818 /* Return vtbl initializers for the RTTI entries corresponding to the
7819 BINFO's vtable. The RTTI entries should indicate the object given
7820 by VID->rtti_binfo. */
7822 static void
7823 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7825 tree b;
7826 tree t;
7827 tree basetype;
7828 tree offset;
7829 tree decl;
7830 tree init;
7832 basetype = BINFO_TYPE (binfo);
7833 t = BINFO_TYPE (vid->rtti_binfo);
7835 /* To find the complete object, we will first convert to our most
7836 primary base, and then add the offset in the vtbl to that value. */
7837 b = binfo;
7838 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7839 && !BINFO_LOST_PRIMARY_P (b))
7841 tree primary_base;
7843 primary_base = get_primary_binfo (b);
7844 gcc_assert (BINFO_PRIMARY_P (primary_base)
7845 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7846 b = primary_base;
7848 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7850 /* The second entry is the address of the typeinfo object. */
7851 if (flag_rtti)
7852 decl = build_address (get_tinfo_decl (t));
7853 else
7854 decl = integer_zero_node;
7856 /* Convert the declaration to a type that can be stored in the
7857 vtable. */
7858 init = build_nop (vfunc_ptr_type_node, decl);
7859 *vid->last_init = build_tree_list (NULL_TREE, init);
7860 vid->last_init = &TREE_CHAIN (*vid->last_init);
7862 /* Add the offset-to-top entry. It comes earlier in the vtable than
7863 the typeinfo entry. Convert the offset to look like a
7864 function pointer, so that we can put it in the vtable. */
7865 init = build_nop (vfunc_ptr_type_node, offset);
7866 *vid->last_init = build_tree_list (NULL_TREE, init);
7867 vid->last_init = &TREE_CHAIN (*vid->last_init);
7870 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7871 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7873 tree
7874 cp_fold_obj_type_ref (tree ref, tree known_type)
7876 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7877 HOST_WIDE_INT i = 0;
7878 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7879 tree fndecl;
7881 while (i != index)
7883 i += (TARGET_VTABLE_USES_DESCRIPTORS
7884 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7885 v = TREE_CHAIN (v);
7888 fndecl = BV_FN (v);
7890 #ifdef ENABLE_CHECKING
7891 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7892 DECL_VINDEX (fndecl)));
7893 #endif
7895 cgraph_node (fndecl)->local.vtable_method = true;
7897 return build_address (fndecl);
7900 #include "gt-cp-class.h"