2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / stormy16 / stormy16.c
blob6cbe52d5048de44a525e2a215f88015124f91183
1 /* Xstormy16 target functions.
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Red Hat, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "real.h"
30 #include "insn-config.h"
31 #include "conditions.h"
32 #include "insn-flags.h"
33 #include "output.h"
34 #include "insn-attr.h"
35 #include "flags.h"
36 #include "recog.h"
37 #include "toplev.h"
38 #include "obstack.h"
39 #include "tree.h"
40 #include "expr.h"
41 #include "optabs.h"
42 #include "except.h"
43 #include "function.h"
44 #include "target.h"
45 #include "target-def.h"
46 #include "tm_p.h"
47 #include "langhooks.h"
48 #include "tree-gimple.h"
49 #include "df.h"
50 #include "ggc.h"
52 static rtx emit_addhi3_postreload (rtx, rtx, rtx);
53 static void xstormy16_asm_out_constructor (rtx, int);
54 static void xstormy16_asm_out_destructor (rtx, int);
55 static void xstormy16_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
56 HOST_WIDE_INT, tree);
58 static void xstormy16_init_builtins (void);
59 static rtx xstormy16_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
60 static bool xstormy16_rtx_costs (rtx, int, int, int *);
61 static int xstormy16_address_cost (rtx);
62 static bool xstormy16_return_in_memory (const_tree, const_tree);
64 /* Define the information needed to generate branch and scc insns. This is
65 stored from the compare operation. */
66 struct rtx_def * xstormy16_compare_op0;
67 struct rtx_def * xstormy16_compare_op1;
69 static GTY(()) section *bss100_section;
71 /* Compute a (partial) cost for rtx X. Return true if the complete
72 cost has been computed, and false if subexpressions should be
73 scanned. In either case, *TOTAL contains the cost result. */
75 static bool
76 xstormy16_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
77 int *total)
79 switch (code)
81 case CONST_INT:
82 if (INTVAL (x) < 16 && INTVAL (x) >= 0)
83 *total = COSTS_N_INSNS (1) / 2;
84 else if (INTVAL (x) < 256 && INTVAL (x) >= 0)
85 *total = COSTS_N_INSNS (1);
86 else
87 *total = COSTS_N_INSNS (2);
88 return true;
90 case CONST_DOUBLE:
91 case CONST:
92 case SYMBOL_REF:
93 case LABEL_REF:
94 *total = COSTS_N_INSNS(2);
95 return true;
97 case MULT:
98 *total = COSTS_N_INSNS (35 + 6);
99 return true;
100 case DIV:
101 *total = COSTS_N_INSNS (51 - 6);
102 return true;
104 default:
105 return false;
109 static int
110 xstormy16_address_cost (rtx x)
112 return (GET_CODE (x) == CONST_INT ? 2
113 : GET_CODE (x) == PLUS ? 7
114 : 5);
117 /* Branches are handled as follows:
119 1. HImode compare-and-branches. The machine supports these
120 natively, so the appropriate pattern is emitted directly.
122 2. SImode EQ and NE. These are emitted as pairs of HImode
123 compare-and-branches.
125 3. SImode LT, GE, LTU and GEU. These are emitted as a sequence
126 of a SImode subtract followed by a branch (not a compare-and-branch),
127 like this:
132 4. SImode GT, LE, GTU, LEU. These are emitted as a sequence like:
140 /* Emit a branch of kind CODE to location LOC. */
142 void
143 xstormy16_emit_cbranch (enum rtx_code code, rtx loc)
145 rtx op0 = xstormy16_compare_op0;
146 rtx op1 = xstormy16_compare_op1;
147 rtx condition_rtx, loc_ref, branch, cy_clobber;
148 rtvec vec;
149 enum machine_mode mode;
151 mode = GET_MODE (op0);
152 gcc_assert (mode == HImode || mode == SImode);
154 if (mode == SImode
155 && (code == GT || code == LE || code == GTU || code == LEU))
157 int unsigned_p = (code == GTU || code == LEU);
158 int gt_p = (code == GT || code == GTU);
159 rtx lab = NULL_RTX;
161 if (gt_p)
162 lab = gen_label_rtx ();
163 xstormy16_emit_cbranch (unsigned_p ? LTU : LT, gt_p ? lab : loc);
164 /* This should be generated as a comparison against the temporary
165 created by the previous insn, but reload can't handle that. */
166 xstormy16_emit_cbranch (gt_p ? NE : EQ, loc);
167 if (gt_p)
168 emit_label (lab);
169 return;
171 else if (mode == SImode
172 && (code == NE || code == EQ)
173 && op1 != const0_rtx)
175 rtx lab = NULL_RTX;
176 int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
177 int i;
179 if (code == EQ)
180 lab = gen_label_rtx ();
182 for (i = 0; i < num_words - 1; i++)
184 xstormy16_compare_op0 = simplify_gen_subreg (word_mode, op0, mode,
185 i * UNITS_PER_WORD);
186 xstormy16_compare_op1 = simplify_gen_subreg (word_mode, op1, mode,
187 i * UNITS_PER_WORD);
188 xstormy16_emit_cbranch (NE, code == EQ ? lab : loc);
190 xstormy16_compare_op0 = simplify_gen_subreg (word_mode, op0, mode,
191 i * UNITS_PER_WORD);
192 xstormy16_compare_op1 = simplify_gen_subreg (word_mode, op1, mode,
193 i * UNITS_PER_WORD);
194 xstormy16_emit_cbranch (code, loc);
196 if (code == EQ)
197 emit_label (lab);
198 return;
201 /* We can't allow reload to try to generate any reload after a branch,
202 so when some register must match we must make the temporary ourselves. */
203 if (mode != HImode)
205 rtx tmp;
206 tmp = gen_reg_rtx (mode);
207 emit_move_insn (tmp, op0);
208 op0 = tmp;
211 condition_rtx = gen_rtx_fmt_ee (code, mode, op0, op1);
212 loc_ref = gen_rtx_LABEL_REF (VOIDmode, loc);
213 branch = gen_rtx_SET (VOIDmode, pc_rtx,
214 gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
215 loc_ref, pc_rtx));
217 cy_clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (BImode));
219 if (mode == HImode)
220 vec = gen_rtvec (2, branch, cy_clobber);
221 else if (code == NE || code == EQ)
222 vec = gen_rtvec (2, branch, gen_rtx_CLOBBER (VOIDmode, op0));
223 else
225 rtx sub;
226 #if 0
227 sub = gen_rtx_SET (VOIDmode, op0, gen_rtx_MINUS (SImode, op0, op1));
228 #else
229 sub = gen_rtx_CLOBBER (SImode, op0);
230 #endif
231 vec = gen_rtvec (3, branch, sub, cy_clobber);
234 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, vec));
237 /* Take a SImode conditional branch, one of GT/LE/GTU/LEU, and split
238 the arithmetic operation. Most of the work is done by
239 xstormy16_expand_arith. */
241 void
242 xstormy16_split_cbranch (enum machine_mode mode, rtx label, rtx comparison,
243 rtx dest, rtx carry)
245 rtx op0 = XEXP (comparison, 0);
246 rtx op1 = XEXP (comparison, 1);
247 rtx seq, last_insn;
248 rtx compare;
250 start_sequence ();
251 xstormy16_expand_arith (mode, COMPARE, dest, op0, op1, carry);
252 seq = get_insns ();
253 end_sequence ();
255 gcc_assert (INSN_P (seq));
257 last_insn = seq;
258 while (NEXT_INSN (last_insn) != NULL_RTX)
259 last_insn = NEXT_INSN (last_insn);
261 compare = SET_SRC (XVECEXP (PATTERN (last_insn), 0, 0));
262 PUT_CODE (XEXP (compare, 0), GET_CODE (comparison));
263 XEXP (compare, 1) = gen_rtx_LABEL_REF (VOIDmode, label);
264 emit_insn (seq);
268 /* Return the string to output a conditional branch to LABEL, which is
269 the operand number of the label.
271 OP is the conditional expression, or NULL for branch-always.
273 REVERSED is nonzero if we should reverse the sense of the comparison.
275 INSN is the insn. */
277 char *
278 xstormy16_output_cbranch_hi (rtx op, const char *label, int reversed, rtx insn)
280 static char string[64];
281 int need_longbranch = (op != NULL_RTX
282 ? get_attr_length (insn) == 8
283 : get_attr_length (insn) == 4);
284 int really_reversed = reversed ^ need_longbranch;
285 const char *ccode;
286 const char *template;
287 const char *operands;
288 enum rtx_code code;
290 if (! op)
292 if (need_longbranch)
293 ccode = "jmpf";
294 else
295 ccode = "br";
296 sprintf (string, "%s %s", ccode, label);
297 return string;
300 code = GET_CODE (op);
302 if (GET_CODE (XEXP (op, 0)) != REG)
304 code = swap_condition (code);
305 operands = "%3,%2";
307 else
308 operands = "%2,%3";
310 /* Work out which way this really branches. */
311 if (really_reversed)
312 code = reverse_condition (code);
314 switch (code)
316 case EQ: ccode = "z"; break;
317 case NE: ccode = "nz"; break;
318 case GE: ccode = "ge"; break;
319 case LT: ccode = "lt"; break;
320 case GT: ccode = "gt"; break;
321 case LE: ccode = "le"; break;
322 case GEU: ccode = "nc"; break;
323 case LTU: ccode = "c"; break;
324 case GTU: ccode = "hi"; break;
325 case LEU: ccode = "ls"; break;
327 default:
328 gcc_unreachable ();
331 if (need_longbranch)
332 template = "b%s %s,.+8 | jmpf %s";
333 else
334 template = "b%s %s,%s";
335 sprintf (string, template, ccode, operands, label);
337 return string;
340 /* Return the string to output a conditional branch to LABEL, which is
341 the operand number of the label, but suitable for the tail of a
342 SImode branch.
344 OP is the conditional expression (OP is never NULL_RTX).
346 REVERSED is nonzero if we should reverse the sense of the comparison.
348 INSN is the insn. */
350 char *
351 xstormy16_output_cbranch_si (rtx op, const char *label, int reversed, rtx insn)
353 static char string[64];
354 int need_longbranch = get_attr_length (insn) >= 8;
355 int really_reversed = reversed ^ need_longbranch;
356 const char *ccode;
357 const char *template;
358 char prevop[16];
359 enum rtx_code code;
361 code = GET_CODE (op);
363 /* Work out which way this really branches. */
364 if (really_reversed)
365 code = reverse_condition (code);
367 switch (code)
369 case EQ: ccode = "z"; break;
370 case NE: ccode = "nz"; break;
371 case GE: ccode = "ge"; break;
372 case LT: ccode = "lt"; break;
373 case GEU: ccode = "nc"; break;
374 case LTU: ccode = "c"; break;
376 /* The missing codes above should never be generated. */
377 default:
378 gcc_unreachable ();
381 switch (code)
383 case EQ: case NE:
385 int regnum;
387 gcc_assert (GET_CODE (XEXP (op, 0)) == REG);
389 regnum = REGNO (XEXP (op, 0));
390 sprintf (prevop, "or %s,%s", reg_names[regnum], reg_names[regnum+1]);
392 break;
394 case GE: case LT: case GEU: case LTU:
395 strcpy (prevop, "sbc %2,%3");
396 break;
398 default:
399 gcc_unreachable ();
402 if (need_longbranch)
403 template = "%s | b%s .+6 | jmpf %s";
404 else
405 template = "%s | b%s %s";
406 sprintf (string, template, prevop, ccode, label);
408 return string;
411 /* Many machines have some registers that cannot be copied directly to or from
412 memory or even from other types of registers. An example is the `MQ'
413 register, which on most machines, can only be copied to or from general
414 registers, but not memory. Some machines allow copying all registers to and
415 from memory, but require a scratch register for stores to some memory
416 locations (e.g., those with symbolic address on the RT, and those with
417 certain symbolic address on the SPARC when compiling PIC). In some cases,
418 both an intermediate and a scratch register are required.
420 You should define these macros to indicate to the reload phase that it may
421 need to allocate at least one register for a reload in addition to the
422 register to contain the data. Specifically, if copying X to a register
423 CLASS in MODE requires an intermediate register, you should define
424 `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
425 whose registers can be used as intermediate registers or scratch registers.
427 If copying a register CLASS in MODE to X requires an intermediate or scratch
428 register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
429 largest register class required. If the requirements for input and output
430 reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
431 instead of defining both macros identically.
433 The values returned by these macros are often `GENERAL_REGS'. Return
434 `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
435 to or from a register of CLASS in MODE without requiring a scratch register.
436 Do not define this macro if it would always return `NO_REGS'.
438 If a scratch register is required (either with or without an intermediate
439 register), you should define patterns for `reload_inM' or `reload_outM', as
440 required.. These patterns, which will normally be implemented with a
441 `define_expand', should be similar to the `movM' patterns, except that
442 operand 2 is the scratch register.
444 Define constraints for the reload register and scratch register that contain
445 a single register class. If the original reload register (whose class is
446 CLASS) can meet the constraint given in the pattern, the value returned by
447 these macros is used for the class of the scratch register. Otherwise, two
448 additional reload registers are required. Their classes are obtained from
449 the constraints in the insn pattern.
451 X might be a pseudo-register or a `subreg' of a pseudo-register, which could
452 either be in a hard register or in memory. Use `true_regnum' to find out;
453 it will return -1 if the pseudo is in memory and the hard register number if
454 it is in a register.
456 These macros should not be used in the case where a particular class of
457 registers can only be copied to memory and not to another class of
458 registers. In that case, secondary reload registers are not needed and
459 would not be helpful. Instead, a stack location must be used to perform the
460 copy and the `movM' pattern should use memory as an intermediate storage.
461 This case often occurs between floating-point and general registers. */
463 enum reg_class
464 xstormy16_secondary_reload_class (enum reg_class class,
465 enum machine_mode mode,
466 rtx x)
468 /* This chip has the interesting property that only the first eight
469 registers can be moved to/from memory. */
470 if ((GET_CODE (x) == MEM
471 || ((GET_CODE (x) == SUBREG || GET_CODE (x) == REG)
472 && (true_regnum (x) == -1
473 || true_regnum (x) >= FIRST_PSEUDO_REGISTER)))
474 && ! reg_class_subset_p (class, EIGHT_REGS))
475 return EIGHT_REGS;
477 /* When reloading a PLUS, the carry register will be required
478 unless the inc or dec instructions can be used. */
479 if (xstormy16_carry_plus_operand (x, mode))
480 return CARRY_REGS;
482 return NO_REGS;
485 enum reg_class
486 xstormy16_preferred_reload_class (rtx x, enum reg_class class)
488 if (class == GENERAL_REGS
489 && GET_CODE (x) == MEM)
490 return EIGHT_REGS;
492 return class;
495 /* Predicate for symbols and addresses that reflect special 8-bit
496 addressing. */
498 xstormy16_below100_symbol (rtx x,
499 enum machine_mode mode ATTRIBUTE_UNUSED)
501 if (GET_CODE (x) == CONST)
502 x = XEXP (x, 0);
503 if (GET_CODE (x) == PLUS
504 && GET_CODE (XEXP (x, 1)) == CONST_INT)
505 x = XEXP (x, 0);
507 if (GET_CODE (x) == SYMBOL_REF)
508 return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_XSTORMY16_BELOW100) != 0;
510 if (GET_CODE (x) == CONST_INT)
512 HOST_WIDE_INT i = INTVAL (x);
513 if ((i >= 0x0000 && i <= 0x00ff)
514 || (i >= 0x7f00 && i <= 0x7fff))
515 return 1;
517 return 0;
520 /* Likewise, but only for non-volatile MEMs, for patterns where the
521 MEM will get split into smaller sized accesses. */
523 xstormy16_splittable_below100_operand (rtx x, enum machine_mode mode)
525 if (GET_CODE (x) == MEM && MEM_VOLATILE_P (x))
526 return 0;
527 return xstormy16_below100_operand (x, mode);
530 /* Expand an 8-bit IOR. This either detects the one case we can
531 actually do, or uses a 16-bit IOR. */
532 void
533 xstormy16_expand_iorqi3 (rtx *operands)
535 rtx in, out, outsub, val;
537 out = operands[0];
538 in = operands[1];
539 val = operands[2];
541 if (xstormy16_onebit_set_operand (val, QImode))
543 if (!xstormy16_below100_or_register (in, QImode))
544 in = copy_to_mode_reg (QImode, in);
545 if (!xstormy16_below100_or_register (out, QImode))
546 out = gen_reg_rtx (QImode);
547 emit_insn (gen_iorqi3_internal (out, in, val));
548 if (out != operands[0])
549 emit_move_insn (operands[0], out);
550 return;
553 if (GET_CODE (in) != REG)
554 in = copy_to_mode_reg (QImode, in);
555 if (GET_CODE (val) != REG
556 && GET_CODE (val) != CONST_INT)
557 val = copy_to_mode_reg (QImode, val);
558 if (GET_CODE (out) != REG)
559 out = gen_reg_rtx (QImode);
561 in = simplify_gen_subreg (HImode, in, QImode, 0);
562 outsub = simplify_gen_subreg (HImode, out, QImode, 0);
563 if (GET_CODE (val) != CONST_INT)
564 val = simplify_gen_subreg (HImode, val, QImode, 0);
566 emit_insn (gen_iorhi3 (outsub, in, val));
568 if (out != operands[0])
569 emit_move_insn (operands[0], out);
572 /* Likewise, for AND. */
573 void
574 xstormy16_expand_andqi3 (rtx *operands)
576 rtx in, out, outsub, val;
578 out = operands[0];
579 in = operands[1];
580 val = operands[2];
582 if (xstormy16_onebit_clr_operand (val, QImode))
584 if (!xstormy16_below100_or_register (in, QImode))
585 in = copy_to_mode_reg (QImode, in);
586 if (!xstormy16_below100_or_register (out, QImode))
587 out = gen_reg_rtx (QImode);
588 emit_insn (gen_andqi3_internal (out, in, val));
589 if (out != operands[0])
590 emit_move_insn (operands[0], out);
591 return;
594 if (GET_CODE (in) != REG)
595 in = copy_to_mode_reg (QImode, in);
596 if (GET_CODE (val) != REG
597 && GET_CODE (val) != CONST_INT)
598 val = copy_to_mode_reg (QImode, val);
599 if (GET_CODE (out) != REG)
600 out = gen_reg_rtx (QImode);
602 in = simplify_gen_subreg (HImode, in, QImode, 0);
603 outsub = simplify_gen_subreg (HImode, out, QImode, 0);
604 if (GET_CODE (val) != CONST_INT)
605 val = simplify_gen_subreg (HImode, val, QImode, 0);
607 emit_insn (gen_andhi3 (outsub, in, val));
609 if (out != operands[0])
610 emit_move_insn (operands[0], out);
613 #define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
614 (GET_CODE (X) == CONST_INT \
615 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 2048) < 4096)
617 #define LEGITIMATE_ADDRESS_CONST_INT_P(X, OFFSET) \
618 (GET_CODE (X) == CONST_INT \
619 && INTVAL (X) + (OFFSET) >= 0 \
620 && INTVAL (X) + (OFFSET) < 0x8000 \
621 && (INTVAL (X) + (OFFSET) < 0x100 || INTVAL (X) + (OFFSET) >= 0x7F00))
624 xstormy16_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
625 rtx x, int strict)
627 if (LEGITIMATE_ADDRESS_CONST_INT_P (x, 0))
628 return 1;
630 if (GET_CODE (x) == PLUS
631 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 0))
633 x = XEXP (x, 0);
634 /* PR 31232: Do not allow INT+INT as an address. */
635 if (GET_CODE (x) == CONST_INT)
636 return 0;
639 if ((GET_CODE (x) == PRE_MODIFY
640 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
641 || GET_CODE (x) == POST_INC
642 || GET_CODE (x) == PRE_DEC)
643 x = XEXP (x, 0);
645 if (GET_CODE (x) == REG && REGNO_OK_FOR_BASE_P (REGNO (x))
646 && (! strict || REGNO (x) < FIRST_PSEUDO_REGISTER))
647 return 1;
649 if (xstormy16_below100_symbol (x, mode))
650 return 1;
652 return 0;
655 /* Return nonzero if memory address X (an RTX) can have different
656 meanings depending on the machine mode of the memory reference it
657 is used for or if the address is valid for some modes but not
658 others.
660 Autoincrement and autodecrement addresses typically have mode-dependent
661 effects because the amount of the increment or decrement is the size of the
662 operand being addressed. Some machines have other mode-dependent addresses.
663 Many RISC machines have no mode-dependent addresses.
665 You may assume that ADDR is a valid address for the machine.
667 On this chip, this is true if the address is valid with an offset
668 of 0 but not of 6, because in that case it cannot be used as an
669 address for DImode or DFmode, or if the address is a post-increment
670 or pre-decrement address. */
672 xstormy16_mode_dependent_address_p (rtx x)
674 if (LEGITIMATE_ADDRESS_CONST_INT_P (x, 0)
675 && ! LEGITIMATE_ADDRESS_CONST_INT_P (x, 6))
676 return 1;
678 if (GET_CODE (x) == PLUS
679 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 0)
680 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 6))
681 return 1;
683 if (GET_CODE (x) == PLUS)
684 x = XEXP (x, 0);
686 /* Auto-increment addresses are now treated generically in recog.c. */
688 return 0;
691 /* A C expression that defines the optional machine-dependent constraint
692 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
693 types of operands, usually memory references, for the target machine.
694 Normally this macro will not be defined. If it is required for a particular
695 target machine, it should return 1 if VALUE corresponds to the operand type
696 represented by the constraint letter C. If C is not defined as an extra
697 constraint, the value returned should be 0 regardless of VALUE. */
699 xstormy16_extra_constraint_p (rtx x, int c)
701 switch (c)
703 /* 'Q' is for pushes. */
704 case 'Q':
705 return (GET_CODE (x) == MEM
706 && GET_CODE (XEXP (x, 0)) == POST_INC
707 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx);
709 /* 'R' is for pops. */
710 case 'R':
711 return (GET_CODE (x) == MEM
712 && GET_CODE (XEXP (x, 0)) == PRE_DEC
713 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx);
715 /* 'S' is for immediate memory addresses. */
716 case 'S':
717 return (GET_CODE (x) == MEM
718 && GET_CODE (XEXP (x, 0)) == CONST_INT
719 && xstormy16_legitimate_address_p (VOIDmode, XEXP (x, 0), 0));
721 /* 'T' is for Rx. */
722 case 'T':
723 /* Not implemented yet. */
724 return 0;
726 /* 'U' is for CONST_INT values not between 2 and 15 inclusive,
727 for allocating a scratch register for 32-bit shifts. */
728 case 'U':
729 return (GET_CODE (x) == CONST_INT
730 && (INTVAL (x) < 2 || INTVAL (x) > 15));
732 /* 'Z' is for CONST_INT value zero. This is for adding zero to
733 a register in addhi3, which would otherwise require a carry. */
734 case 'Z':
735 return (GET_CODE (x) == CONST_INT
736 && (INTVAL (x) == 0));
738 case 'W':
739 return xstormy16_below100_operand (x, GET_MODE (x));
741 default:
742 return 0;
747 short_memory_operand (rtx x, enum machine_mode mode)
749 if (! memory_operand (x, mode))
750 return 0;
751 return (GET_CODE (XEXP (x, 0)) != PLUS);
754 /* Splitter for the 'move' patterns, for modes not directly implemented
755 by hardware. Emit insns to copy a value of mode MODE from SRC to
756 DEST.
758 This function is only called when reload_completed.
761 void
762 xstormy16_split_move (enum machine_mode mode, rtx dest, rtx src)
764 int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
765 int direction, end, i;
766 int src_modifies = 0;
767 int dest_modifies = 0;
768 int src_volatile = 0;
769 int dest_volatile = 0;
770 rtx mem_operand;
771 rtx auto_inc_reg_rtx = NULL_RTX;
773 /* Check initial conditions. */
774 gcc_assert (reload_completed
775 && mode != QImode && mode != HImode
776 && nonimmediate_operand (dest, mode)
777 && general_operand (src, mode));
779 /* This case is not supported below, and shouldn't be generated. */
780 gcc_assert (GET_CODE (dest) != MEM || GET_CODE (src) != MEM);
782 /* This case is very very bad after reload, so trap it now. */
783 gcc_assert (GET_CODE (dest) != SUBREG && GET_CODE (src) != SUBREG);
785 /* The general idea is to copy by words, offsetting the source and
786 destination. Normally the least-significant word will be copied
787 first, but for pre-dec operations it's better to copy the
788 most-significant word first. Only one operand can be a pre-dec
789 or post-inc operand.
791 It's also possible that the copy overlaps so that the direction
792 must be reversed. */
793 direction = 1;
795 if (GET_CODE (dest) == MEM)
797 mem_operand = XEXP (dest, 0);
798 dest_modifies = side_effects_p (mem_operand);
799 if (auto_inc_p (mem_operand))
800 auto_inc_reg_rtx = XEXP (mem_operand, 0);
801 dest_volatile = MEM_VOLATILE_P (dest);
802 if (dest_volatile)
804 dest = copy_rtx (dest);
805 MEM_VOLATILE_P (dest) = 0;
808 else if (GET_CODE (src) == MEM)
810 mem_operand = XEXP (src, 0);
811 src_modifies = side_effects_p (mem_operand);
812 if (auto_inc_p (mem_operand))
813 auto_inc_reg_rtx = XEXP (mem_operand, 0);
814 src_volatile = MEM_VOLATILE_P (src);
815 if (src_volatile)
817 src = copy_rtx (src);
818 MEM_VOLATILE_P (src) = 0;
821 else
822 mem_operand = NULL_RTX;
824 if (mem_operand == NULL_RTX)
826 if (GET_CODE (src) == REG
827 && GET_CODE (dest) == REG
828 && reg_overlap_mentioned_p (dest, src)
829 && REGNO (dest) > REGNO (src))
830 direction = -1;
832 else if (GET_CODE (mem_operand) == PRE_DEC
833 || (GET_CODE (mem_operand) == PLUS
834 && GET_CODE (XEXP (mem_operand, 0)) == PRE_DEC))
835 direction = -1;
836 else if (GET_CODE (src) == MEM
837 && reg_overlap_mentioned_p (dest, src))
839 int regno;
841 gcc_assert (GET_CODE (dest) == REG);
842 regno = REGNO (dest);
844 gcc_assert (refers_to_regno_p (regno, regno + num_words,
845 mem_operand, 0));
847 if (refers_to_regno_p (regno, regno + 1, mem_operand, 0))
848 direction = -1;
849 else if (refers_to_regno_p (regno + num_words - 1, regno + num_words,
850 mem_operand, 0))
851 direction = 1;
852 else
853 /* This means something like
854 (set (reg:DI r0) (mem:DI (reg:HI r1)))
855 which we'd need to support by doing the set of the second word
856 last. */
857 gcc_unreachable ();
860 end = direction < 0 ? -1 : num_words;
861 for (i = direction < 0 ? num_words - 1 : 0; i != end; i += direction)
863 rtx w_src, w_dest, insn;
865 if (src_modifies)
866 w_src = gen_rtx_MEM (word_mode, mem_operand);
867 else
868 w_src = simplify_gen_subreg (word_mode, src, mode, i * UNITS_PER_WORD);
869 if (src_volatile)
870 MEM_VOLATILE_P (w_src) = 1;
871 if (dest_modifies)
872 w_dest = gen_rtx_MEM (word_mode, mem_operand);
873 else
874 w_dest = simplify_gen_subreg (word_mode, dest, mode,
875 i * UNITS_PER_WORD);
876 if (dest_volatile)
877 MEM_VOLATILE_P (w_dest) = 1;
879 /* The simplify_subreg calls must always be able to simplify. */
880 gcc_assert (GET_CODE (w_src) != SUBREG
881 && GET_CODE (w_dest) != SUBREG);
883 insn = emit_insn (gen_rtx_SET (VOIDmode, w_dest, w_src));
884 if (auto_inc_reg_rtx)
885 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC,
886 auto_inc_reg_rtx,
887 REG_NOTES (insn));
891 /* Expander for the 'move' patterns. Emit insns to copy a value of
892 mode MODE from SRC to DEST. */
894 void
895 xstormy16_expand_move (enum machine_mode mode, rtx dest, rtx src)
897 if ((GET_CODE (dest) == MEM) && (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY))
899 rtx pmv = XEXP (dest, 0);
900 rtx dest_reg = XEXP (pmv, 0);
901 rtx dest_mod = XEXP (pmv, 1);
902 rtx set = gen_rtx_SET (Pmode, dest_reg, dest_mod);
903 rtx clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (BImode, 16));
905 dest = gen_rtx_MEM (mode, dest_reg);
906 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
908 else if ((GET_CODE (src) == MEM) && (GET_CODE (XEXP (src, 0)) == PRE_MODIFY))
910 rtx pmv = XEXP (src, 0);
911 rtx src_reg = XEXP (pmv, 0);
912 rtx src_mod = XEXP (pmv, 1);
913 rtx set = gen_rtx_SET (Pmode, src_reg, src_mod);
914 rtx clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (BImode, 16));
916 src = gen_rtx_MEM (mode, src_reg);
917 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
920 /* There are only limited immediate-to-memory move instructions. */
921 if (! reload_in_progress
922 && ! reload_completed
923 && GET_CODE (dest) == MEM
924 && (GET_CODE (XEXP (dest, 0)) != CONST_INT
925 || ! xstormy16_legitimate_address_p (mode, XEXP (dest, 0), 0))
926 && ! xstormy16_below100_operand (dest, mode)
927 && GET_CODE (src) != REG
928 && GET_CODE (src) != SUBREG)
929 src = copy_to_mode_reg (mode, src);
931 /* Don't emit something we would immediately split. */
932 if (reload_completed
933 && mode != HImode && mode != QImode)
935 xstormy16_split_move (mode, dest, src);
936 return;
939 emit_insn (gen_rtx_SET (VOIDmode, dest, src));
943 /* Stack Layout:
945 The stack is laid out as follows:
947 SP->
948 FP-> Local variables
949 Register save area (up to 4 words)
950 Argument register save area for stdarg (NUM_ARGUMENT_REGISTERS words)
952 AP-> Return address (two words)
953 9th procedure parameter word
954 10th procedure parameter word
956 last procedure parameter word
958 The frame pointer location is tuned to make it most likely that all
959 parameters and local variables can be accessed using a load-indexed
960 instruction. */
962 /* A structure to describe the layout. */
963 struct xstormy16_stack_layout
965 /* Size of the topmost three items on the stack. */
966 int locals_size;
967 int register_save_size;
968 int stdarg_save_size;
969 /* Sum of the above items. */
970 int frame_size;
971 /* Various offsets. */
972 int first_local_minus_ap;
973 int sp_minus_fp;
974 int fp_minus_ap;
977 /* Does REGNO need to be saved? */
978 #define REG_NEEDS_SAVE(REGNUM, IFUN) \
979 ((df_regs_ever_live_p (REGNUM) && ! call_used_regs[REGNUM]) \
980 || (IFUN && ! fixed_regs[REGNUM] && call_used_regs[REGNUM] \
981 && (REGNO_REG_CLASS (REGNUM) != CARRY_REGS) \
982 && (df_regs_ever_live_p (REGNUM) || ! current_function_is_leaf)))
984 /* Compute the stack layout. */
985 struct xstormy16_stack_layout
986 xstormy16_compute_stack_layout (void)
988 struct xstormy16_stack_layout layout;
989 int regno;
990 const int ifun = xstormy16_interrupt_function_p ();
992 layout.locals_size = get_frame_size ();
994 layout.register_save_size = 0;
995 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
996 if (REG_NEEDS_SAVE (regno, ifun))
997 layout.register_save_size += UNITS_PER_WORD;
999 if (cfun->stdarg)
1000 layout.stdarg_save_size = NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD;
1001 else
1002 layout.stdarg_save_size = 0;
1004 layout.frame_size = (layout.locals_size
1005 + layout.register_save_size
1006 + layout.stdarg_save_size);
1008 if (crtl->args.size <= 2048 && crtl->args.size != -1)
1010 if (layout.frame_size + INCOMING_FRAME_SP_OFFSET
1011 + crtl->args.size <= 2048)
1012 layout.fp_minus_ap = layout.frame_size + INCOMING_FRAME_SP_OFFSET;
1013 else
1014 layout.fp_minus_ap = 2048 - crtl->args.size;
1016 else
1017 layout.fp_minus_ap = (layout.stdarg_save_size
1018 + layout.register_save_size
1019 + INCOMING_FRAME_SP_OFFSET);
1020 layout.sp_minus_fp = (layout.frame_size + INCOMING_FRAME_SP_OFFSET
1021 - layout.fp_minus_ap);
1022 layout.first_local_minus_ap = layout.sp_minus_fp - layout.locals_size;
1023 return layout;
1026 /* Determine how all the special registers get eliminated. */
1028 xstormy16_initial_elimination_offset (int from, int to)
1030 struct xstormy16_stack_layout layout;
1031 int result;
1033 layout = xstormy16_compute_stack_layout ();
1035 if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
1036 result = layout.sp_minus_fp - layout.locals_size;
1037 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1038 result = -layout.locals_size;
1039 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
1040 result = -layout.fp_minus_ap;
1041 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1042 result = -(layout.sp_minus_fp + layout.fp_minus_ap);
1043 else
1044 gcc_unreachable ();
1046 return result;
1049 static rtx
1050 emit_addhi3_postreload (rtx dest, rtx src0, rtx src1)
1052 rtx set, clobber, insn;
1054 set = gen_rtx_SET (VOIDmode, dest, gen_rtx_PLUS (HImode, src0, src1));
1055 clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (BImode, 16));
1056 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
1057 return insn;
1060 /* Called after register allocation to add any instructions needed for
1061 the prologue. Using a prologue insn is favored compared to putting
1062 all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE macro,
1063 since it allows the scheduler to intermix instructions with the
1064 saves of the caller saved registers. In some cases, it might be
1065 necessary to emit a barrier instruction as the last insn to prevent
1066 such scheduling.
1068 Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
1069 so that the debug info generation code can handle them properly. */
1070 void
1071 xstormy16_expand_prologue (void)
1073 struct xstormy16_stack_layout layout;
1074 int regno;
1075 rtx insn;
1076 rtx mem_push_rtx;
1077 const int ifun = xstormy16_interrupt_function_p ();
1079 mem_push_rtx = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1080 mem_push_rtx = gen_rtx_MEM (HImode, mem_push_rtx);
1082 layout = xstormy16_compute_stack_layout ();
1084 if (layout.locals_size >= 32768)
1085 error ("local variable memory requirements exceed capacity");
1087 /* Save the argument registers if necessary. */
1088 if (layout.stdarg_save_size)
1089 for (regno = FIRST_ARGUMENT_REGISTER;
1090 regno < FIRST_ARGUMENT_REGISTER + NUM_ARGUMENT_REGISTERS;
1091 regno++)
1093 rtx dwarf;
1094 rtx reg = gen_rtx_REG (HImode, regno);
1096 insn = emit_move_insn (mem_push_rtx, reg);
1097 RTX_FRAME_RELATED_P (insn) = 1;
1099 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2));
1101 XVECEXP (dwarf, 0, 0) = gen_rtx_SET (VOIDmode,
1102 gen_rtx_MEM (Pmode, stack_pointer_rtx),
1103 reg);
1104 XVECEXP (dwarf, 0, 1) = gen_rtx_SET (Pmode, stack_pointer_rtx,
1105 plus_constant (stack_pointer_rtx,
1106 GET_MODE_SIZE (Pmode)));
1107 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
1108 dwarf,
1109 REG_NOTES (insn));
1110 RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 0)) = 1;
1111 RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 1)) = 1;
1114 /* Push each of the registers to save. */
1115 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1116 if (REG_NEEDS_SAVE (regno, ifun))
1118 rtx dwarf;
1119 rtx reg = gen_rtx_REG (HImode, regno);
1121 insn = emit_move_insn (mem_push_rtx, reg);
1122 RTX_FRAME_RELATED_P (insn) = 1;
1124 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2));
1126 XVECEXP (dwarf, 0, 0) = gen_rtx_SET (VOIDmode,
1127 gen_rtx_MEM (Pmode, stack_pointer_rtx),
1128 reg);
1129 XVECEXP (dwarf, 0, 1) = gen_rtx_SET (Pmode, stack_pointer_rtx,
1130 plus_constant (stack_pointer_rtx,
1131 GET_MODE_SIZE (Pmode)));
1132 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
1133 dwarf,
1134 REG_NOTES (insn));
1135 RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 0)) = 1;
1136 RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 1)) = 1;
1139 /* It's just possible that the SP here might be what we need for
1140 the new FP... */
1141 if (frame_pointer_needed && layout.sp_minus_fp == layout.locals_size)
1142 emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
1144 /* Allocate space for local variables. */
1145 if (layout.locals_size)
1147 insn = emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
1148 GEN_INT (layout.locals_size));
1149 RTX_FRAME_RELATED_P (insn) = 1;
1152 /* Set up the frame pointer, if required. */
1153 if (frame_pointer_needed && layout.sp_minus_fp != layout.locals_size)
1155 insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
1157 if (layout.sp_minus_fp)
1158 emit_addhi3_postreload (hard_frame_pointer_rtx,
1159 hard_frame_pointer_rtx,
1160 GEN_INT (-layout.sp_minus_fp));
1164 /* Do we need an epilogue at all? */
1166 direct_return (void)
1168 return (reload_completed
1169 && xstormy16_compute_stack_layout ().frame_size == 0);
1172 /* Called after register allocation to add any instructions needed for
1173 the epilogue. Using an epilogue insn is favored compared to putting
1174 all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE macro,
1175 since it allows the scheduler to intermix instructions with the
1176 saves of the caller saved registers. In some cases, it might be
1177 necessary to emit a barrier instruction as the last insn to prevent
1178 such scheduling. */
1180 void
1181 xstormy16_expand_epilogue (void)
1183 struct xstormy16_stack_layout layout;
1184 rtx mem_pop_rtx, insn;
1185 int regno;
1186 const int ifun = xstormy16_interrupt_function_p ();
1188 mem_pop_rtx = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
1189 mem_pop_rtx = gen_rtx_MEM (HImode, mem_pop_rtx);
1191 layout = xstormy16_compute_stack_layout ();
1193 /* Pop the stack for the locals. */
1194 if (layout.locals_size)
1196 if (frame_pointer_needed && layout.sp_minus_fp == layout.locals_size)
1197 emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
1198 else
1200 insn = emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
1201 GEN_INT (- layout.locals_size));
1202 RTX_FRAME_RELATED_P (insn) = 1;
1206 /* Restore any call-saved registers. */
1207 for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
1208 if (REG_NEEDS_SAVE (regno, ifun))
1210 rtx dwarf;
1212 insn = emit_move_insn (gen_rtx_REG (HImode, regno), mem_pop_rtx);
1213 RTX_FRAME_RELATED_P (insn) = 1;
1214 dwarf = gen_rtx_SET (Pmode, stack_pointer_rtx,
1215 plus_constant (stack_pointer_rtx,
1216 -GET_MODE_SIZE (Pmode)));
1217 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
1218 dwarf,
1219 REG_NOTES (insn));
1222 /* Pop the stack for the stdarg save area. */
1223 if (layout.stdarg_save_size)
1225 insn = emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
1226 GEN_INT (- layout.stdarg_save_size));
1227 RTX_FRAME_RELATED_P (insn) = 1;
1230 /* Return. */
1231 if (ifun)
1232 emit_jump_insn (gen_return_internal_interrupt ());
1233 else
1234 emit_jump_insn (gen_return_internal ());
1238 xstormy16_epilogue_uses (int regno)
1240 if (reload_completed && call_used_regs[regno])
1242 const int ifun = xstormy16_interrupt_function_p ();
1243 return REG_NEEDS_SAVE (regno, ifun);
1245 return 0;
1248 void
1249 xstormy16_function_profiler (void)
1251 sorry ("function_profiler support");
1255 /* Return an updated summarizer variable CUM to advance past an
1256 argument in the argument list. The values MODE, TYPE and NAMED
1257 describe that argument. Once this is done, the variable CUM is
1258 suitable for analyzing the *following* argument with
1259 `FUNCTION_ARG', etc.
1261 This function need not do anything if the argument in question was
1262 passed on the stack. The compiler knows how to track the amount of
1263 stack space used for arguments without any special help. However,
1264 it makes life easier for xstormy16_build_va_list if it does update
1265 the word count. */
1266 CUMULATIVE_ARGS
1267 xstormy16_function_arg_advance (CUMULATIVE_ARGS cum, enum machine_mode mode,
1268 tree type, int named ATTRIBUTE_UNUSED)
1270 /* If an argument would otherwise be passed partially in registers,
1271 and partially on the stack, the whole of it is passed on the
1272 stack. */
1273 if (cum < NUM_ARGUMENT_REGISTERS
1274 && cum + XSTORMY16_WORD_SIZE (type, mode) > NUM_ARGUMENT_REGISTERS)
1275 cum = NUM_ARGUMENT_REGISTERS;
1277 cum += XSTORMY16_WORD_SIZE (type, mode);
1279 return cum;
1283 xstormy16_function_arg (CUMULATIVE_ARGS cum, enum machine_mode mode,
1284 tree type, int named ATTRIBUTE_UNUSED)
1286 if (mode == VOIDmode)
1287 return const0_rtx;
1288 if (targetm.calls.must_pass_in_stack (mode, type)
1289 || cum + XSTORMY16_WORD_SIZE (type, mode) > NUM_ARGUMENT_REGISTERS)
1290 return 0;
1291 return gen_rtx_REG (mode, cum + 2);
1294 /* Build the va_list type.
1296 For this chip, va_list is a record containing a counter and a pointer.
1297 The counter is of type 'int' and indicates how many bytes
1298 have been used to date. The pointer indicates the stack position
1299 for arguments that have not been passed in registers.
1300 To keep the layout nice, the pointer is first in the structure. */
1302 static tree
1303 xstormy16_build_builtin_va_list (void)
1305 tree f_1, f_2, record, type_decl;
1307 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
1308 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
1310 f_1 = build_decl (FIELD_DECL, get_identifier ("base"),
1311 ptr_type_node);
1312 f_2 = build_decl (FIELD_DECL, get_identifier ("count"),
1313 unsigned_type_node);
1315 DECL_FIELD_CONTEXT (f_1) = record;
1316 DECL_FIELD_CONTEXT (f_2) = record;
1318 TREE_CHAIN (record) = type_decl;
1319 TYPE_NAME (record) = type_decl;
1320 TYPE_FIELDS (record) = f_1;
1321 TREE_CHAIN (f_1) = f_2;
1323 layout_type (record);
1325 return record;
1328 /* Implement the stdarg/varargs va_start macro. STDARG_P is nonzero if this
1329 is stdarg.h instead of varargs.h. VALIST is the tree of the va_list
1330 variable to initialize. NEXTARG is the machine independent notion of the
1331 'next' argument after the variable arguments. */
1332 static void
1333 xstormy16_expand_builtin_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
1335 tree f_base, f_count;
1336 tree base, count;
1337 tree t,u;
1339 if (xstormy16_interrupt_function_p ())
1340 error ("cannot use va_start in interrupt function");
1342 f_base = TYPE_FIELDS (va_list_type_node);
1343 f_count = TREE_CHAIN (f_base);
1345 base = build3 (COMPONENT_REF, TREE_TYPE (f_base), valist, f_base, NULL_TREE);
1346 count = build3 (COMPONENT_REF, TREE_TYPE (f_count), valist, f_count,
1347 NULL_TREE);
1349 t = make_tree (TREE_TYPE (base), virtual_incoming_args_rtx);
1350 u = build_int_cst (NULL_TREE, INCOMING_FRAME_SP_OFFSET);
1351 u = fold_convert (TREE_TYPE (count), u);
1352 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base), t, u);
1353 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (base), base, t);
1354 TREE_SIDE_EFFECTS (t) = 1;
1355 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
1357 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (count), count,
1358 build_int_cst (NULL_TREE,
1359 crtl->args.info * UNITS_PER_WORD));
1360 TREE_SIDE_EFFECTS (t) = 1;
1361 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
1364 /* Implement the stdarg/varargs va_arg macro. VALIST is the variable
1365 of type va_list as a tree, TYPE is the type passed to va_arg.
1366 Note: This algorithm is documented in stormy-abi. */
1368 static tree
1369 xstormy16_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p,
1370 tree *post_p ATTRIBUTE_UNUSED)
1372 tree f_base, f_count;
1373 tree base, count;
1374 tree count_tmp, addr, t;
1375 tree lab_gotaddr, lab_fromstack;
1376 int size, size_of_reg_args, must_stack;
1377 tree size_tree;
1379 f_base = TYPE_FIELDS (va_list_type_node);
1380 f_count = TREE_CHAIN (f_base);
1382 base = build3 (COMPONENT_REF, TREE_TYPE (f_base), valist, f_base, NULL_TREE);
1383 count = build3 (COMPONENT_REF, TREE_TYPE (f_count), valist, f_count,
1384 NULL_TREE);
1386 must_stack = targetm.calls.must_pass_in_stack (TYPE_MODE (type), type);
1387 size_tree = round_up (size_in_bytes (type), UNITS_PER_WORD);
1388 gimplify_expr (&size_tree, pre_p, NULL, is_gimple_val, fb_rvalue);
1390 size_of_reg_args = NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD;
1392 count_tmp = get_initialized_tmp_var (count, pre_p, NULL);
1393 lab_gotaddr = create_artificial_label ();
1394 lab_fromstack = create_artificial_label ();
1395 addr = create_tmp_var (ptr_type_node, NULL);
1397 if (!must_stack)
1399 tree r;
1401 t = fold_convert (TREE_TYPE (count), size_tree);
1402 t = build2 (PLUS_EXPR, TREE_TYPE (count), count_tmp, t);
1403 r = fold_convert (TREE_TYPE (count), size_int (size_of_reg_args));
1404 t = build2 (GT_EXPR, boolean_type_node, t, r);
1405 t = build3 (COND_EXPR, void_type_node, t,
1406 build1 (GOTO_EXPR, void_type_node, lab_fromstack),
1407 NULL_TREE);
1408 gimplify_and_add (t, pre_p);
1410 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, base, count_tmp);
1411 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, addr, t);
1412 gimplify_and_add (t, pre_p);
1414 t = build1 (GOTO_EXPR, void_type_node, lab_gotaddr);
1415 gimplify_and_add (t, pre_p);
1417 t = build1 (LABEL_EXPR, void_type_node, lab_fromstack);
1418 gimplify_and_add (t, pre_p);
1421 /* Arguments larger than a word might need to skip over some
1422 registers, since arguments are either passed entirely in
1423 registers or entirely on the stack. */
1424 size = PUSH_ROUNDING (int_size_in_bytes (type));
1425 if (size > 2 || size < 0 || must_stack)
1427 tree r, u;
1429 r = size_int (NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD);
1430 u = build2 (GIMPLE_MODIFY_STMT, void_type_node, count_tmp, r);
1432 t = fold_convert (TREE_TYPE (count), r);
1433 t = build2 (GE_EXPR, boolean_type_node, count_tmp, t);
1434 t = build3 (COND_EXPR, void_type_node, t, NULL_TREE, u);
1435 gimplify_and_add (t, pre_p);
1438 t = size_int (NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD
1439 - INCOMING_FRAME_SP_OFFSET);
1440 t = fold_convert (TREE_TYPE (count), t);
1441 t = build2 (MINUS_EXPR, TREE_TYPE (count), count_tmp, t);
1442 t = build2 (PLUS_EXPR, TREE_TYPE (count), t,
1443 fold_convert (TREE_TYPE (count), size_tree));
1444 t = fold_convert (TREE_TYPE (t), fold (t));
1445 t = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1446 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base), base, t);
1447 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, addr, t);
1448 gimplify_and_add (t, pre_p);
1450 t = build1 (LABEL_EXPR, void_type_node, lab_gotaddr);
1451 gimplify_and_add (t, pre_p);
1453 t = fold_convert (TREE_TYPE (count), size_tree);
1454 t = build2 (PLUS_EXPR, TREE_TYPE (count), count_tmp, t);
1455 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (count), count, t);
1456 gimplify_and_add (t, pre_p);
1458 addr = fold_convert (build_pointer_type (type), addr);
1459 return build_va_arg_indirect_ref (addr);
1462 /* Initialize the variable parts of a trampoline. ADDR is an RTX for
1463 the address of the trampoline; FNADDR is an RTX for the address of
1464 the nested function; STATIC_CHAIN is an RTX for the static chain
1465 value that should be passed to the function when it is called. */
1466 void
1467 xstormy16_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
1469 rtx reg_addr = gen_reg_rtx (Pmode);
1470 rtx temp = gen_reg_rtx (HImode);
1471 rtx reg_fnaddr = gen_reg_rtx (HImode);
1472 rtx reg_addr_mem;
1474 reg_addr_mem = gen_rtx_MEM (HImode, reg_addr);
1476 emit_move_insn (reg_addr, addr);
1477 emit_move_insn (temp, GEN_INT (0x3130 | STATIC_CHAIN_REGNUM));
1478 emit_move_insn (reg_addr_mem, temp);
1479 emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
1480 emit_move_insn (temp, static_chain);
1481 emit_move_insn (reg_addr_mem, temp);
1482 emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
1483 emit_move_insn (reg_fnaddr, fnaddr);
1484 emit_move_insn (temp, reg_fnaddr);
1485 emit_insn (gen_andhi3 (temp, temp, GEN_INT (0xFF)));
1486 emit_insn (gen_iorhi3 (temp, temp, GEN_INT (0x0200)));
1487 emit_move_insn (reg_addr_mem, temp);
1488 emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
1489 emit_insn (gen_lshrhi3 (reg_fnaddr, reg_fnaddr, GEN_INT (8)));
1490 emit_move_insn (reg_addr_mem, reg_fnaddr);
1493 /* Worker function for FUNCTION_VALUE. */
1496 xstormy16_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
1498 enum machine_mode mode;
1499 mode = TYPE_MODE (valtype);
1500 PROMOTE_MODE (mode, 0, valtype);
1501 return gen_rtx_REG (mode, RETURN_VALUE_REGNUM);
1504 /* A C compound statement that outputs the assembler code for a thunk function,
1505 used to implement C++ virtual function calls with multiple inheritance. The
1506 thunk acts as a wrapper around a virtual function, adjusting the implicit
1507 object parameter before handing control off to the real function.
1509 First, emit code to add the integer DELTA to the location that contains the
1510 incoming first argument. Assume that this argument contains a pointer, and
1511 is the one used to pass the `this' pointer in C++. This is the incoming
1512 argument *before* the function prologue, e.g. `%o0' on a sparc. The
1513 addition must preserve the values of all other incoming arguments.
1515 After the addition, emit code to jump to FUNCTION, which is a
1516 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
1517 the return address. Hence returning from FUNCTION will return to whoever
1518 called the current `thunk'.
1520 The effect must be as if @var{function} had been called directly
1521 with the adjusted first argument. This macro is responsible for
1522 emitting all of the code for a thunk function;
1523 TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE are
1524 not invoked.
1526 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
1527 extracted from it.) It might possibly be useful on some targets, but
1528 probably not. */
1530 static void
1531 xstormy16_asm_output_mi_thunk (FILE *file,
1532 tree thunk_fndecl ATTRIBUTE_UNUSED,
1533 HOST_WIDE_INT delta,
1534 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
1535 tree function)
1537 int regnum = FIRST_ARGUMENT_REGISTER;
1539 /* There might be a hidden first argument for a returned structure. */
1540 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
1541 regnum += 1;
1543 fprintf (file, "\tadd %s,#0x%x\n", reg_names[regnum], (int) delta & 0xFFFF);
1544 fputs ("\tjmpf ", file);
1545 assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
1546 putc ('\n', file);
1549 /* The purpose of this function is to override the default behavior of
1550 BSS objects. Normally, they go into .bss or .sbss via ".common"
1551 directives, but we need to override that and put them in
1552 .bss_below100. We can't just use a section override (like we do
1553 for .data_below100), because that makes them initialized rather
1554 than uninitialized. */
1555 void
1556 xstormy16_asm_output_aligned_common (FILE *stream,
1557 tree decl,
1558 const char *name,
1559 int size,
1560 int align,
1561 int global)
1563 rtx mem = DECL_RTL (decl);
1564 rtx symbol;
1566 if (mem != NULL_RTX
1567 && GET_CODE (mem) == MEM
1568 && GET_CODE (symbol = XEXP (mem, 0)) == SYMBOL_REF
1569 && SYMBOL_REF_FLAGS (symbol) & SYMBOL_FLAG_XSTORMY16_BELOW100)
1571 const char *name2;
1572 int p2align = 0;
1574 switch_to_section (bss100_section);
1576 while (align > 8)
1578 align /= 2;
1579 p2align ++;
1582 name2 = default_strip_name_encoding (name);
1583 if (global)
1584 fprintf (stream, "\t.globl\t%s\n", name2);
1585 if (p2align)
1586 fprintf (stream, "\t.p2align %d\n", p2align);
1587 fprintf (stream, "\t.type\t%s, @object\n", name2);
1588 fprintf (stream, "\t.size\t%s, %d\n", name2, size);
1589 fprintf (stream, "%s:\n\t.space\t%d\n", name2, size);
1590 return;
1593 if (!global)
1595 fprintf (stream, "\t.local\t");
1596 assemble_name (stream, name);
1597 fprintf (stream, "\n");
1599 fprintf (stream, "\t.comm\t");
1600 assemble_name (stream, name);
1601 fprintf (stream, ",%u,%u\n", size, align / BITS_PER_UNIT);
1604 /* Implement TARGET_ASM_INIT_SECTIONS. */
1606 static void
1607 xstormy16_asm_init_sections (void)
1609 bss100_section
1610 = get_unnamed_section (SECTION_WRITE | SECTION_BSS,
1611 output_section_asm_op,
1612 "\t.section \".bss_below100\",\"aw\",@nobits");
1615 /* Mark symbols with the "below100" attribute so that we can use the
1616 special addressing modes for them. */
1618 static void
1619 xstormy16_encode_section_info (tree decl, rtx r, int first)
1621 default_encode_section_info (decl, r, first);
1623 if (TREE_CODE (decl) == VAR_DECL
1624 && (lookup_attribute ("below100", DECL_ATTRIBUTES (decl))
1625 || lookup_attribute ("BELOW100", DECL_ATTRIBUTES (decl))))
1627 rtx symbol = XEXP (r, 0);
1629 gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
1630 SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_XSTORMY16_BELOW100;
1634 /* Output constructors and destructors. Just like
1635 default_named_section_asm_out_* but don't set the sections writable. */
1636 #undef TARGET_ASM_CONSTRUCTOR
1637 #define TARGET_ASM_CONSTRUCTOR xstormy16_asm_out_constructor
1638 #undef TARGET_ASM_DESTRUCTOR
1639 #define TARGET_ASM_DESTRUCTOR xstormy16_asm_out_destructor
1641 static void
1642 xstormy16_asm_out_destructor (rtx symbol, int priority)
1644 const char *section = ".dtors";
1645 char buf[16];
1647 /* ??? This only works reliably with the GNU linker. */
1648 if (priority != DEFAULT_INIT_PRIORITY)
1650 sprintf (buf, ".dtors.%.5u",
1651 /* Invert the numbering so the linker puts us in the proper
1652 order; constructors are run from right to left, and the
1653 linker sorts in increasing order. */
1654 MAX_INIT_PRIORITY - priority);
1655 section = buf;
1658 switch_to_section (get_section (section, 0, NULL));
1659 assemble_align (POINTER_SIZE);
1660 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
1663 static void
1664 xstormy16_asm_out_constructor (rtx symbol, int priority)
1666 const char *section = ".ctors";
1667 char buf[16];
1669 /* ??? This only works reliably with the GNU linker. */
1670 if (priority != DEFAULT_INIT_PRIORITY)
1672 sprintf (buf, ".ctors.%.5u",
1673 /* Invert the numbering so the linker puts us in the proper
1674 order; constructors are run from right to left, and the
1675 linker sorts in increasing order. */
1676 MAX_INIT_PRIORITY - priority);
1677 section = buf;
1680 switch_to_section (get_section (section, 0, NULL));
1681 assemble_align (POINTER_SIZE);
1682 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
1685 /* Print a memory address as an operand to reference that memory location. */
1686 void
1687 xstormy16_print_operand_address (FILE *file, rtx address)
1689 HOST_WIDE_INT offset;
1690 int pre_dec, post_inc;
1692 /* There are a few easy cases. */
1693 if (GET_CODE (address) == CONST_INT)
1695 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (address) & 0xFFFF);
1696 return;
1699 if (CONSTANT_P (address) || GET_CODE (address) == CODE_LABEL)
1701 output_addr_const (file, address);
1702 return;
1705 /* Otherwise, it's hopefully something of the form
1706 (plus:HI (pre_dec:HI (reg:HI ...)) (const_int ...))
1709 if (GET_CODE (address) == PLUS)
1711 gcc_assert (GET_CODE (XEXP (address, 1)) == CONST_INT);
1712 offset = INTVAL (XEXP (address, 1));
1713 address = XEXP (address, 0);
1715 else
1716 offset = 0;
1718 pre_dec = (GET_CODE (address) == PRE_DEC);
1719 post_inc = (GET_CODE (address) == POST_INC);
1720 if (pre_dec || post_inc)
1721 address = XEXP (address, 0);
1723 gcc_assert (GET_CODE (address) == REG);
1725 fputc ('(', file);
1726 if (pre_dec)
1727 fputs ("--", file);
1728 fputs (reg_names [REGNO (address)], file);
1729 if (post_inc)
1730 fputs ("++", file);
1731 if (offset != 0)
1732 fprintf (file, "," HOST_WIDE_INT_PRINT_DEC, offset);
1733 fputc (')', file);
1736 /* Print an operand to an assembler instruction. */
1737 void
1738 xstormy16_print_operand (FILE *file, rtx x, int code)
1740 switch (code)
1742 case 'B':
1743 /* There is either one bit set, or one bit clear, in X.
1744 Print it preceded by '#'. */
1746 static int bits_set[8] = { 0, 1, 1, 2, 1, 2, 2, 3 };
1747 HOST_WIDE_INT xx = 1;
1748 HOST_WIDE_INT l;
1750 if (GET_CODE (x) == CONST_INT)
1751 xx = INTVAL (x);
1752 else
1753 output_operand_lossage ("'B' operand is not constant");
1755 /* GCC sign-extends masks with the MSB set, so we have to
1756 detect all the cases that differ only in sign extension
1757 beyond the bits we care about. Normally, the predicates
1758 and constraints ensure that we have the right values. This
1759 works correctly for valid masks. */
1760 if (bits_set[xx & 7] <= 1)
1762 /* Remove sign extension bits. */
1763 if ((~xx & ~(HOST_WIDE_INT)0xff) == 0)
1764 xx &= 0xff;
1765 else if ((~xx & ~(HOST_WIDE_INT)0xffff) == 0)
1766 xx &= 0xffff;
1767 l = exact_log2 (xx);
1769 else
1771 /* Add sign extension bits. */
1772 if ((xx & ~(HOST_WIDE_INT)0xff) == 0)
1773 xx |= ~(HOST_WIDE_INT)0xff;
1774 else if ((xx & ~(HOST_WIDE_INT)0xffff) == 0)
1775 xx |= ~(HOST_WIDE_INT)0xffff;
1776 l = exact_log2 (~xx);
1779 if (l == -1)
1780 output_operand_lossage ("'B' operand has multiple bits set");
1782 fprintf (file, IMMEDIATE_PREFIX HOST_WIDE_INT_PRINT_DEC, l);
1783 return;
1786 case 'C':
1787 /* Print the symbol without a surrounding @fptr(). */
1788 if (GET_CODE (x) == SYMBOL_REF)
1789 assemble_name (file, XSTR (x, 0));
1790 else if (GET_CODE (x) == LABEL_REF)
1791 output_asm_label (x);
1792 else
1793 xstormy16_print_operand_address (file, x);
1794 return;
1796 case 'o':
1797 case 'O':
1798 /* Print the immediate operand less one, preceded by '#'.
1799 For 'O', negate it first. */
1801 HOST_WIDE_INT xx = 0;
1803 if (GET_CODE (x) == CONST_INT)
1804 xx = INTVAL (x);
1805 else
1806 output_operand_lossage ("'o' operand is not constant");
1808 if (code == 'O')
1809 xx = -xx;
1811 fprintf (file, IMMEDIATE_PREFIX HOST_WIDE_INT_PRINT_DEC, xx - 1);
1812 return;
1815 case 'b':
1816 /* Print the shift mask for bp/bn. */
1818 HOST_WIDE_INT xx = 1;
1819 HOST_WIDE_INT l;
1821 if (GET_CODE (x) == CONST_INT)
1822 xx = INTVAL (x);
1823 else
1824 output_operand_lossage ("'B' operand is not constant");
1826 l = 7 - xx;
1828 fputs (IMMEDIATE_PREFIX, file);
1829 fprintf (file, HOST_WIDE_INT_PRINT_DEC, l);
1830 return;
1833 case 0:
1834 /* Handled below. */
1835 break;
1837 default:
1838 output_operand_lossage ("xstormy16_print_operand: unknown code");
1839 return;
1842 switch (GET_CODE (x))
1844 case REG:
1845 fputs (reg_names [REGNO (x)], file);
1846 break;
1848 case MEM:
1849 xstormy16_print_operand_address (file, XEXP (x, 0));
1850 break;
1852 default:
1853 /* Some kind of constant or label; an immediate operand,
1854 so prefix it with '#' for the assembler. */
1855 fputs (IMMEDIATE_PREFIX, file);
1856 output_addr_const (file, x);
1857 break;
1860 return;
1864 /* Expander for the `casesi' pattern.
1865 INDEX is the index of the switch statement.
1866 LOWER_BOUND is a CONST_INT that is the value of INDEX corresponding
1867 to the first table entry.
1868 RANGE is the number of table entries.
1869 TABLE is an ADDR_VEC that is the jump table.
1870 DEFAULT_LABEL is the address to branch to if INDEX is outside the
1871 range LOWER_BOUND to LOWER_BOUND+RANGE-1.
1874 void
1875 xstormy16_expand_casesi (rtx index, rtx lower_bound, rtx range,
1876 rtx table, rtx default_label)
1878 HOST_WIDE_INT range_i = INTVAL (range);
1879 rtx int_index;
1881 /* This code uses 'br', so it can deal only with tables of size up to
1882 8192 entries. */
1883 if (range_i >= 8192)
1884 sorry ("switch statement of size %lu entries too large",
1885 (unsigned long) range_i);
1887 index = expand_binop (SImode, sub_optab, index, lower_bound, NULL_RTX, 0,
1888 OPTAB_LIB_WIDEN);
1889 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, SImode, 1,
1890 default_label);
1891 int_index = gen_lowpart_common (HImode, index);
1892 emit_insn (gen_ashlhi3 (int_index, int_index, const2_rtx));
1893 emit_jump_insn (gen_tablejump_pcrel (int_index, table));
1896 /* Output an ADDR_VEC. It is output as a sequence of 'jmpf'
1897 instructions, without label or alignment or any other special
1898 constructs. We know that the previous instruction will be the
1899 `tablejump_pcrel' output above.
1901 TODO: it might be nice to output 'br' instructions if they could
1902 all reach. */
1904 void
1905 xstormy16_output_addr_vec (FILE *file, rtx label ATTRIBUTE_UNUSED, rtx table)
1907 int vlen, idx;
1909 switch_to_section (current_function_section ());
1911 vlen = XVECLEN (table, 0);
1912 for (idx = 0; idx < vlen; idx++)
1914 fputs ("\tjmpf ", file);
1915 output_asm_label (XEXP (XVECEXP (table, 0, idx), 0));
1916 fputc ('\n', file);
1921 /* Expander for the `call' patterns.
1922 INDEX is the index of the switch statement.
1923 LOWER_BOUND is a CONST_INT that is the value of INDEX corresponding
1924 to the first table entry.
1925 RANGE is the number of table entries.
1926 TABLE is an ADDR_VEC that is the jump table.
1927 DEFAULT_LABEL is the address to branch to if INDEX is outside the
1928 range LOWER_BOUND to LOWER_BOUND+RANGE-1.
1931 void
1932 xstormy16_expand_call (rtx retval, rtx dest, rtx counter)
1934 rtx call, temp;
1935 enum machine_mode mode;
1937 gcc_assert (GET_CODE (dest) == MEM);
1938 dest = XEXP (dest, 0);
1940 if (! CONSTANT_P (dest)
1941 && GET_CODE (dest) != REG)
1942 dest = force_reg (Pmode, dest);
1944 if (retval == NULL)
1945 mode = VOIDmode;
1946 else
1947 mode = GET_MODE (retval);
1949 call = gen_rtx_CALL (mode, gen_rtx_MEM (FUNCTION_MODE, dest),
1950 counter);
1951 if (retval)
1952 call = gen_rtx_SET (VOIDmode, retval, call);
1954 if (! CONSTANT_P (dest))
1956 temp = gen_reg_rtx (HImode);
1957 emit_move_insn (temp, const0_rtx);
1959 else
1960 temp = const0_rtx;
1962 call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, call,
1963 gen_rtx_USE (VOIDmode, temp)));
1964 emit_call_insn (call);
1967 /* Expanders for multiword computational operations. */
1969 /* Expander for arithmetic operations; emit insns to compute
1971 (set DEST (CODE:MODE SRC0 SRC1))
1973 using CARRY as a temporary. When CODE is COMPARE, a branch
1974 template is generated (this saves duplicating code in
1975 xstormy16_split_cbranch). */
1977 void
1978 xstormy16_expand_arith (enum machine_mode mode, enum rtx_code code,
1979 rtx dest, rtx src0, rtx src1, rtx carry)
1981 int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1982 int i;
1983 int firstloop = 1;
1985 if (code == NEG)
1986 emit_move_insn (src0, const0_rtx);
1988 for (i = 0; i < num_words; i++)
1990 rtx w_src0, w_src1, w_dest;
1991 rtx insn;
1993 w_src0 = simplify_gen_subreg (word_mode, src0, mode,
1994 i * UNITS_PER_WORD);
1995 w_src1 = simplify_gen_subreg (word_mode, src1, mode, i * UNITS_PER_WORD);
1996 w_dest = simplify_gen_subreg (word_mode, dest, mode, i * UNITS_PER_WORD);
1998 switch (code)
2000 case PLUS:
2001 if (firstloop
2002 && GET_CODE (w_src1) == CONST_INT && INTVAL (w_src1) == 0)
2003 continue;
2005 if (firstloop)
2006 insn = gen_addchi4 (w_dest, w_src0, w_src1, carry);
2007 else
2008 insn = gen_addchi5 (w_dest, w_src0, w_src1, carry, carry);
2009 break;
2011 case NEG:
2012 case MINUS:
2013 case COMPARE:
2014 if (code == COMPARE && i == num_words - 1)
2016 rtx branch, sub, clobber, sub_1;
2018 sub_1 = gen_rtx_MINUS (HImode, w_src0,
2019 gen_rtx_ZERO_EXTEND (HImode, carry));
2020 sub = gen_rtx_SET (VOIDmode, w_dest,
2021 gen_rtx_MINUS (HImode, sub_1, w_src1));
2022 clobber = gen_rtx_CLOBBER (VOIDmode, carry);
2023 branch = gen_rtx_SET (VOIDmode, pc_rtx,
2024 gen_rtx_IF_THEN_ELSE (VOIDmode,
2025 gen_rtx_EQ (HImode,
2026 sub_1,
2027 w_src1),
2028 pc_rtx,
2029 pc_rtx));
2030 insn = gen_rtx_PARALLEL (VOIDmode,
2031 gen_rtvec (3, branch, sub, clobber));
2033 else if (firstloop
2034 && code != COMPARE
2035 && GET_CODE (w_src1) == CONST_INT && INTVAL (w_src1) == 0)
2036 continue;
2037 else if (firstloop)
2038 insn = gen_subchi4 (w_dest, w_src0, w_src1, carry);
2039 else
2040 insn = gen_subchi5 (w_dest, w_src0, w_src1, carry, carry);
2041 break;
2043 case IOR:
2044 case XOR:
2045 case AND:
2046 if (GET_CODE (w_src1) == CONST_INT
2047 && INTVAL (w_src1) == -(code == AND))
2048 continue;
2050 insn = gen_rtx_SET (VOIDmode, w_dest, gen_rtx_fmt_ee (code, mode,
2051 w_src0, w_src1));
2052 break;
2054 case NOT:
2055 insn = gen_rtx_SET (VOIDmode, w_dest, gen_rtx_NOT (mode, w_src0));
2056 break;
2058 default:
2059 gcc_unreachable ();
2062 firstloop = 0;
2063 emit (insn);
2066 /* If we emit nothing, try_split() will think we failed. So emit
2067 something that does nothing and can be optimized away. */
2068 if (firstloop)
2069 emit (gen_nop ());
2072 /* The shift operations are split at output time for constant values;
2073 variable-width shifts get handed off to a library routine.
2075 Generate an output string to do (set X (CODE:MODE X SIZE_R))
2076 SIZE_R will be a CONST_INT, X will be a hard register. */
2078 const char *
2079 xstormy16_output_shift (enum machine_mode mode, enum rtx_code code,
2080 rtx x, rtx size_r, rtx temp)
2082 HOST_WIDE_INT size;
2083 const char *r0, *r1, *rt;
2084 static char r[64];
2086 gcc_assert (GET_CODE (size_r) == CONST_INT
2087 && GET_CODE (x) == REG && mode == SImode);
2088 size = INTVAL (size_r) & (GET_MODE_BITSIZE (mode) - 1);
2090 if (size == 0)
2091 return "";
2093 r0 = reg_names [REGNO (x)];
2094 r1 = reg_names [REGNO (x) + 1];
2096 /* For shifts of size 1, we can use the rotate instructions. */
2097 if (size == 1)
2099 switch (code)
2101 case ASHIFT:
2102 sprintf (r, "shl %s,#1 | rlc %s,#1", r0, r1);
2103 break;
2104 case ASHIFTRT:
2105 sprintf (r, "asr %s,#1 | rrc %s,#1", r1, r0);
2106 break;
2107 case LSHIFTRT:
2108 sprintf (r, "shr %s,#1 | rrc %s,#1", r1, r0);
2109 break;
2110 default:
2111 gcc_unreachable ();
2113 return r;
2116 /* For large shifts, there are easy special cases. */
2117 if (size == 16)
2119 switch (code)
2121 case ASHIFT:
2122 sprintf (r, "mov %s,%s | mov %s,#0", r1, r0, r0);
2123 break;
2124 case ASHIFTRT:
2125 sprintf (r, "mov %s,%s | asr %s,#15", r0, r1, r1);
2126 break;
2127 case LSHIFTRT:
2128 sprintf (r, "mov %s,%s | mov %s,#0", r0, r1, r1);
2129 break;
2130 default:
2131 gcc_unreachable ();
2133 return r;
2135 if (size > 16)
2137 switch (code)
2139 case ASHIFT:
2140 sprintf (r, "mov %s,%s | mov %s,#0 | shl %s,#%d",
2141 r1, r0, r0, r1, (int) size - 16);
2142 break;
2143 case ASHIFTRT:
2144 sprintf (r, "mov %s,%s | asr %s,#15 | asr %s,#%d",
2145 r0, r1, r1, r0, (int) size - 16);
2146 break;
2147 case LSHIFTRT:
2148 sprintf (r, "mov %s,%s | mov %s,#0 | shr %s,#%d",
2149 r0, r1, r1, r0, (int) size - 16);
2150 break;
2151 default:
2152 gcc_unreachable ();
2154 return r;
2157 /* For the rest, we have to do more work. In particular, we
2158 need a temporary. */
2159 rt = reg_names [REGNO (temp)];
2160 switch (code)
2162 case ASHIFT:
2163 sprintf (r,
2164 "mov %s,%s | shl %s,#%d | shl %s,#%d | shr %s,#%d | or %s,%s",
2165 rt, r0, r0, (int) size, r1, (int) size, rt, (int) (16-size),
2166 r1, rt);
2167 break;
2168 case ASHIFTRT:
2169 sprintf (r,
2170 "mov %s,%s | asr %s,#%d | shr %s,#%d | shl %s,#%d | or %s,%s",
2171 rt, r1, r1, (int) size, r0, (int) size, rt, (int) (16-size),
2172 r0, rt);
2173 break;
2174 case LSHIFTRT:
2175 sprintf (r,
2176 "mov %s,%s | shr %s,#%d | shr %s,#%d | shl %s,#%d | or %s,%s",
2177 rt, r1, r1, (int) size, r0, (int) size, rt, (int) (16-size),
2178 r0, rt);
2179 break;
2180 default:
2181 gcc_unreachable ();
2183 return r;
2186 /* Attribute handling. */
2188 /* Return nonzero if the function is an interrupt function. */
2190 xstormy16_interrupt_function_p (void)
2192 tree attributes;
2194 /* The dwarf2 mechanism asks for INCOMING_FRAME_SP_OFFSET before
2195 any functions are declared, which is demonstrably wrong, but
2196 it is worked around here. FIXME. */
2197 if (!cfun)
2198 return 0;
2200 attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
2201 return lookup_attribute ("interrupt", attributes) != NULL_TREE;
2204 #undef TARGET_ATTRIBUTE_TABLE
2205 #define TARGET_ATTRIBUTE_TABLE xstormy16_attribute_table
2206 static tree xstormy16_handle_interrupt_attribute
2207 (tree *, tree, tree, int, bool *);
2208 static tree xstormy16_handle_below100_attribute
2209 (tree *, tree, tree, int, bool *);
2211 static const struct attribute_spec xstormy16_attribute_table[] =
2213 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
2214 { "interrupt", 0, 0, false, true, true, xstormy16_handle_interrupt_attribute },
2215 { "BELOW100", 0, 0, false, false, false, xstormy16_handle_below100_attribute },
2216 { "below100", 0, 0, false, false, false, xstormy16_handle_below100_attribute },
2217 { NULL, 0, 0, false, false, false, NULL }
2220 /* Handle an "interrupt" attribute;
2221 arguments as in struct attribute_spec.handler. */
2222 static tree
2223 xstormy16_handle_interrupt_attribute (tree *node, tree name,
2224 tree args ATTRIBUTE_UNUSED,
2225 int flags ATTRIBUTE_UNUSED,
2226 bool *no_add_attrs)
2228 if (TREE_CODE (*node) != FUNCTION_TYPE)
2230 warning (OPT_Wattributes, "%qs attribute only applies to functions",
2231 IDENTIFIER_POINTER (name));
2232 *no_add_attrs = true;
2235 return NULL_TREE;
2238 /* Handle an "below" attribute;
2239 arguments as in struct attribute_spec.handler. */
2240 static tree
2241 xstormy16_handle_below100_attribute (tree *node,
2242 tree name ATTRIBUTE_UNUSED,
2243 tree args ATTRIBUTE_UNUSED,
2244 int flags ATTRIBUTE_UNUSED,
2245 bool *no_add_attrs)
2247 if (TREE_CODE (*node) != VAR_DECL
2248 && TREE_CODE (*node) != POINTER_TYPE
2249 && TREE_CODE (*node) != TYPE_DECL)
2251 warning (OPT_Wattributes,
2252 "%<__BELOW100__%> attribute only applies to variables");
2253 *no_add_attrs = true;
2255 else if (args == NULL_TREE && TREE_CODE (*node) == VAR_DECL)
2257 if (! (TREE_PUBLIC (*node) || TREE_STATIC (*node)))
2259 warning (OPT_Wattributes, "__BELOW100__ attribute not allowed "
2260 "with auto storage class");
2261 *no_add_attrs = true;
2265 return NULL_TREE;
2268 #undef TARGET_INIT_BUILTINS
2269 #define TARGET_INIT_BUILTINS xstormy16_init_builtins
2270 #undef TARGET_EXPAND_BUILTIN
2271 #define TARGET_EXPAND_BUILTIN xstormy16_expand_builtin
2273 static struct {
2274 const char *name;
2275 int md_code;
2276 const char *arg_ops; /* 0..9, t for temp register, r for return value */
2277 const char *arg_types; /* s=short,l=long, upper case for unsigned */
2278 } s16builtins[] = {
2279 { "__sdivlh", CODE_FOR_sdivlh, "rt01", "sls" },
2280 { "__smodlh", CODE_FOR_sdivlh, "tr01", "sls" },
2281 { "__udivlh", CODE_FOR_udivlh, "rt01", "SLS" },
2282 { "__umodlh", CODE_FOR_udivlh, "tr01", "SLS" },
2283 { 0, 0, 0, 0 }
2286 static void
2287 xstormy16_init_builtins (void)
2289 tree args, ret_type, arg;
2290 int i, a;
2292 ret_type = void_type_node;
2294 for (i=0; s16builtins[i].name; i++)
2296 args = void_list_node;
2297 for (a=strlen (s16builtins[i].arg_types)-1; a>=0; a--)
2299 switch (s16builtins[i].arg_types[a])
2301 case 's': arg = short_integer_type_node; break;
2302 case 'S': arg = short_unsigned_type_node; break;
2303 case 'l': arg = long_integer_type_node; break;
2304 case 'L': arg = long_unsigned_type_node; break;
2305 default: gcc_unreachable ();
2307 if (a == 0)
2308 ret_type = arg;
2309 else
2310 args = tree_cons (NULL_TREE, arg, args);
2312 add_builtin_function (s16builtins[i].name,
2313 build_function_type (ret_type, args),
2314 i, BUILT_IN_MD, NULL, NULL);
2318 static rtx
2319 xstormy16_expand_builtin (tree exp, rtx target,
2320 rtx subtarget ATTRIBUTE_UNUSED,
2321 enum machine_mode mode ATTRIBUTE_UNUSED,
2322 int ignore ATTRIBUTE_UNUSED)
2324 rtx op[10], args[10], pat, copyto[10], retval = 0;
2325 tree fndecl, argtree;
2326 int i, a, o, code;
2328 fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
2329 argtree = TREE_OPERAND (exp, 1);
2330 i = DECL_FUNCTION_CODE (fndecl);
2331 code = s16builtins[i].md_code;
2333 for (a = 0; a < 10 && argtree; a++)
2335 args[a] = expand_expr (TREE_VALUE (argtree), NULL_RTX, VOIDmode, 0);
2336 argtree = TREE_CHAIN (argtree);
2339 for (o = 0; s16builtins[i].arg_ops[o]; o++)
2341 char ao = s16builtins[i].arg_ops[o];
2342 char c = insn_data[code].operand[o].constraint[0];
2343 int omode;
2345 copyto[o] = 0;
2347 omode = insn_data[code].operand[o].mode;
2348 if (ao == 'r')
2349 op[o] = target ? target : gen_reg_rtx (omode);
2350 else if (ao == 't')
2351 op[o] = gen_reg_rtx (omode);
2352 else
2353 op[o] = args[(int) hex_value (ao)];
2355 if (! (*insn_data[code].operand[o].predicate) (op[o], GET_MODE (op[o])))
2357 if (c == '+' || c == '=')
2359 copyto[o] = op[o];
2360 op[o] = gen_reg_rtx (omode);
2362 else
2363 op[o] = copy_to_mode_reg (omode, op[o]);
2366 if (ao == 'r')
2367 retval = op[o];
2370 pat = GEN_FCN (code) (op[0], op[1], op[2], op[3], op[4],
2371 op[5], op[6], op[7], op[8], op[9]);
2372 emit_insn (pat);
2374 for (o = 0; s16builtins[i].arg_ops[o]; o++)
2375 if (copyto[o])
2377 emit_move_insn (copyto[o], op[o]);
2378 if (op[o] == retval)
2379 retval = copyto[o];
2382 return retval;
2386 /* Look for combinations of insns that can be converted to BN or BP
2387 opcodes. This is, unfortunately, too complex to do with MD
2388 patterns. */
2389 static void
2390 combine_bnp (rtx insn)
2392 int insn_code, regno, need_extend;
2393 unsigned int mask;
2394 rtx cond, reg, and, load, qireg, mem;
2395 enum machine_mode load_mode = QImode;
2396 enum machine_mode and_mode = QImode;
2397 rtx shift = NULL_RTX;
2399 insn_code = recog_memoized (insn);
2400 if (insn_code != CODE_FOR_cbranchhi
2401 && insn_code != CODE_FOR_cbranchhi_neg)
2402 return;
2404 cond = XVECEXP (PATTERN (insn), 0, 0); /* set */
2405 cond = XEXP (cond, 1); /* if */
2406 cond = XEXP (cond, 0); /* cond */
2407 switch (GET_CODE (cond))
2409 case NE:
2410 case EQ:
2411 need_extend = 0;
2412 break;
2413 case LT:
2414 case GE:
2415 need_extend = 1;
2416 break;
2417 default:
2418 return;
2421 reg = XEXP (cond, 0);
2422 if (GET_CODE (reg) != REG)
2423 return;
2424 regno = REGNO (reg);
2425 if (XEXP (cond, 1) != const0_rtx)
2426 return;
2427 if (! find_regno_note (insn, REG_DEAD, regno))
2428 return;
2429 qireg = gen_rtx_REG (QImode, regno);
2431 if (need_extend)
2433 /* LT and GE conditionals should have a sign extend before
2434 them. */
2435 for (and = prev_real_insn (insn); and; and = prev_real_insn (and))
2437 int and_code = recog_memoized (and);
2439 if (and_code == CODE_FOR_extendqihi2
2440 && rtx_equal_p (SET_DEST (PATTERN (and)), reg)
2441 && rtx_equal_p (XEXP (SET_SRC (PATTERN (and)), 0), qireg))
2442 break;
2444 if (and_code == CODE_FOR_movhi_internal
2445 && rtx_equal_p (SET_DEST (PATTERN (and)), reg))
2447 /* This is for testing bit 15. */
2448 and = insn;
2449 break;
2452 if (reg_mentioned_p (reg, and))
2453 return;
2455 if (GET_CODE (and) != NOTE
2456 && GET_CODE (and) != INSN)
2457 return;
2460 else
2462 /* EQ and NE conditionals have an AND before them. */
2463 for (and = prev_real_insn (insn); and; and = prev_real_insn (and))
2465 if (recog_memoized (and) == CODE_FOR_andhi3
2466 && rtx_equal_p (SET_DEST (PATTERN (and)), reg)
2467 && rtx_equal_p (XEXP (SET_SRC (PATTERN (and)), 0), reg))
2468 break;
2470 if (reg_mentioned_p (reg, and))
2471 return;
2473 if (GET_CODE (and) != NOTE
2474 && GET_CODE (and) != INSN)
2475 return;
2478 if (and)
2480 /* Some mis-optimizations by GCC can generate a RIGHT-SHIFT
2481 followed by an AND like this:
2483 (parallel [(set (reg:HI r7) (lshiftrt:HI (reg:HI r7) (const_int 3)))
2484 (clobber (reg:BI carry))]
2486 (set (reg:HI r7) (and:HI (reg:HI r7) (const_int 1)))
2488 Attempt to detect this here. */
2489 for (shift = prev_real_insn (and); shift; shift = prev_real_insn (shift))
2491 if (recog_memoized (shift) == CODE_FOR_lshrhi3
2492 && rtx_equal_p (SET_DEST (XVECEXP (PATTERN (shift), 0, 0)), reg)
2493 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (shift), 0, 0)), 0), reg))
2494 break;
2496 if (reg_mentioned_p (reg, shift)
2497 || (GET_CODE (shift) != NOTE
2498 && GET_CODE (shift) != INSN))
2500 shift = NULL_RTX;
2501 break;
2506 if (!and)
2507 return;
2509 for (load = shift ? prev_real_insn (shift) : prev_real_insn (and);
2510 load;
2511 load = prev_real_insn (load))
2513 int load_code = recog_memoized (load);
2515 if (load_code == CODE_FOR_movhi_internal
2516 && rtx_equal_p (SET_DEST (PATTERN (load)), reg)
2517 && xstormy16_below100_operand (SET_SRC (PATTERN (load)), HImode)
2518 && ! MEM_VOLATILE_P (SET_SRC (PATTERN (load))))
2520 load_mode = HImode;
2521 break;
2524 if (load_code == CODE_FOR_movqi_internal
2525 && rtx_equal_p (SET_DEST (PATTERN (load)), qireg)
2526 && xstormy16_below100_operand (SET_SRC (PATTERN (load)), QImode))
2528 load_mode = QImode;
2529 break;
2532 if (load_code == CODE_FOR_zero_extendqihi2
2533 && rtx_equal_p (SET_DEST (PATTERN (load)), reg)
2534 && xstormy16_below100_operand (XEXP (SET_SRC (PATTERN (load)), 0), QImode))
2536 load_mode = QImode;
2537 and_mode = HImode;
2538 break;
2541 if (reg_mentioned_p (reg, load))
2542 return;
2544 if (GET_CODE (load) != NOTE
2545 && GET_CODE (load) != INSN)
2546 return;
2548 if (!load)
2549 return;
2551 mem = SET_SRC (PATTERN (load));
2553 if (need_extend)
2555 mask = (load_mode == HImode) ? 0x8000 : 0x80;
2557 /* If the mem includes a zero-extend operation and we are
2558 going to generate a sign-extend operation then move the
2559 mem inside the zero-extend. */
2560 if (GET_CODE (mem) == ZERO_EXTEND)
2561 mem = XEXP (mem, 0);
2563 else
2565 if (!xstormy16_onebit_set_operand (XEXP (SET_SRC (PATTERN (and)), 1), load_mode))
2566 return;
2568 mask = (int) INTVAL (XEXP (SET_SRC (PATTERN (and)), 1));
2570 if (shift)
2571 mask <<= INTVAL (XEXP (SET_SRC (XVECEXP (PATTERN (shift), 0, 0)), 1));
2574 if (load_mode == HImode)
2576 rtx addr = XEXP (mem, 0);
2578 if (! (mask & 0xff))
2580 addr = plus_constant (addr, 1);
2581 mask >>= 8;
2583 mem = gen_rtx_MEM (QImode, addr);
2586 if (need_extend)
2587 XEXP (cond, 0) = gen_rtx_SIGN_EXTEND (HImode, mem);
2588 else
2589 XEXP (cond, 0) = gen_rtx_AND (and_mode, mem, GEN_INT (mask));
2591 INSN_CODE (insn) = -1;
2592 delete_insn (load);
2594 if (and != insn)
2595 delete_insn (and);
2597 if (shift != NULL_RTX)
2598 delete_insn (shift);
2601 static void
2602 xstormy16_reorg (void)
2604 rtx insn;
2606 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2608 if (! JUMP_P (insn))
2609 continue;
2610 combine_bnp (insn);
2615 /* Worker function for TARGET_RETURN_IN_MEMORY. */
2617 static bool
2618 xstormy16_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
2620 const HOST_WIDE_INT size = int_size_in_bytes (type);
2621 return (size == -1 || size > UNITS_PER_WORD * NUM_ARGUMENT_REGISTERS);
2624 #undef TARGET_ASM_ALIGNED_HI_OP
2625 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
2626 #undef TARGET_ASM_ALIGNED_SI_OP
2627 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
2628 #undef TARGET_ENCODE_SECTION_INFO
2629 #define TARGET_ENCODE_SECTION_INFO xstormy16_encode_section_info
2631 /* select_section doesn't handle .bss_below100. */
2632 #undef TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
2633 #define TARGET_HAVE_SWITCHABLE_BSS_SECTIONS false
2635 #undef TARGET_ASM_OUTPUT_MI_THUNK
2636 #define TARGET_ASM_OUTPUT_MI_THUNK xstormy16_asm_output_mi_thunk
2637 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
2638 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
2640 #undef TARGET_RTX_COSTS
2641 #define TARGET_RTX_COSTS xstormy16_rtx_costs
2642 #undef TARGET_ADDRESS_COST
2643 #define TARGET_ADDRESS_COST xstormy16_address_cost
2645 #undef TARGET_BUILD_BUILTIN_VA_LIST
2646 #define TARGET_BUILD_BUILTIN_VA_LIST xstormy16_build_builtin_va_list
2647 #undef TARGET_EXPAND_BUILTIN_VA_START
2648 #define TARGET_EXPAND_BUILTIN_VA_START xstormy16_expand_builtin_va_start
2649 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
2650 #define TARGET_GIMPLIFY_VA_ARG_EXPR xstormy16_gimplify_va_arg_expr
2652 #undef TARGET_PROMOTE_FUNCTION_ARGS
2653 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
2654 #undef TARGET_PROMOTE_FUNCTION_RETURN
2655 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
2656 #undef TARGET_PROMOTE_PROTOTYPES
2657 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
2659 #undef TARGET_RETURN_IN_MEMORY
2660 #define TARGET_RETURN_IN_MEMORY xstormy16_return_in_memory
2662 #undef TARGET_MACHINE_DEPENDENT_REORG
2663 #define TARGET_MACHINE_DEPENDENT_REORG xstormy16_reorg
2665 struct gcc_target targetm = TARGET_INITIALIZER;
2667 #include "gt-stormy16.h"