2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / mips / mips.h
blob402cd579c5cfe755dd3edaa29ca62ddc49491b94
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky (lich@inria.inria.fr).
6 Changed by Michael Meissner (meissner@osf.org).
7 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8 Brendan Eich (brendan@microunity.com).
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
27 #include "config/vxworks-dummy.h"
29 /* MIPS external variables defined in mips.c. */
31 /* Which processor to schedule for. Since there is no difference between
32 a R2000 and R3000 in terms of the scheduler, we collapse them into
33 just an R3000. The elements of the enumeration must match exactly
34 the cpu attribute in the mips.md machine description. */
36 enum processor_type {
37 PROCESSOR_R3000,
38 PROCESSOR_4KC,
39 PROCESSOR_4KP,
40 PROCESSOR_5KC,
41 PROCESSOR_5KF,
42 PROCESSOR_20KC,
43 PROCESSOR_24KC,
44 PROCESSOR_24KF2_1,
45 PROCESSOR_24KF1_1,
46 PROCESSOR_74KC,
47 PROCESSOR_74KF2_1,
48 PROCESSOR_74KF1_1,
49 PROCESSOR_74KF3_2,
50 PROCESSOR_LOONGSON_2E,
51 PROCESSOR_LOONGSON_2F,
52 PROCESSOR_M4K,
53 PROCESSOR_R3900,
54 PROCESSOR_R6000,
55 PROCESSOR_R4000,
56 PROCESSOR_R4100,
57 PROCESSOR_R4111,
58 PROCESSOR_R4120,
59 PROCESSOR_R4130,
60 PROCESSOR_R4300,
61 PROCESSOR_R4600,
62 PROCESSOR_R4650,
63 PROCESSOR_R5000,
64 PROCESSOR_R5400,
65 PROCESSOR_R5500,
66 PROCESSOR_R7000,
67 PROCESSOR_R8000,
68 PROCESSOR_R9000,
69 PROCESSOR_SB1,
70 PROCESSOR_SB1A,
71 PROCESSOR_SR71000,
72 PROCESSOR_MAX
75 /* Costs of various operations on the different architectures. */
77 struct mips_rtx_cost_data
79 unsigned short fp_add;
80 unsigned short fp_mult_sf;
81 unsigned short fp_mult_df;
82 unsigned short fp_div_sf;
83 unsigned short fp_div_df;
84 unsigned short int_mult_si;
85 unsigned short int_mult_di;
86 unsigned short int_div_si;
87 unsigned short int_div_di;
88 unsigned short branch_cost;
89 unsigned short memory_latency;
92 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
93 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
94 to work on a 64-bit machine. */
96 #define ABI_32 0
97 #define ABI_N32 1
98 #define ABI_64 2
99 #define ABI_EABI 3
100 #define ABI_O64 4
102 /* Masks that affect tuning.
104 PTF_AVOID_BRANCHLIKELY
105 Set if it is usually not profitable to use branch-likely instructions
106 for this target, typically because the branches are always predicted
107 taken and so incur a large overhead when not taken. */
108 #define PTF_AVOID_BRANCHLIKELY 0x1
110 /* Information about one recognized processor. Defined here for the
111 benefit of TARGET_CPU_CPP_BUILTINS. */
112 struct mips_cpu_info {
113 /* The 'canonical' name of the processor as far as GCC is concerned.
114 It's typically a manufacturer's prefix followed by a numerical
115 designation. It should be lowercase. */
116 const char *name;
118 /* The internal processor number that most closely matches this
119 entry. Several processors can have the same value, if there's no
120 difference between them from GCC's point of view. */
121 enum processor_type cpu;
123 /* The ISA level that the processor implements. */
124 int isa;
126 /* A mask of PTF_* values. */
127 unsigned int tune_flags;
130 /* Enumerates the setting of the -mcode-readable option. */
131 enum mips_code_readable_setting {
132 CODE_READABLE_NO,
133 CODE_READABLE_PCREL,
134 CODE_READABLE_YES
137 /* Macros to silence warnings about numbers being signed in traditional
138 C and unsigned in ISO C when compiled on 32-bit hosts. */
140 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
141 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
142 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
145 /* Run-time compilation parameters selecting different hardware subsets. */
147 /* True if we are generating position-independent VxWorks RTP code. */
148 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
150 /* True if the call patterns should be split into a jalr followed by
151 an instruction to restore $gp. It is only safe to split the load
152 from the call when every use of $gp is explicit. */
154 #define TARGET_SPLIT_CALLS \
155 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP)
157 /* True if we're generating a form of -mabicalls in which we can use
158 operators like %hi and %lo to refer to locally-binding symbols.
159 We can only do this for -mno-shared, and only then if we can use
160 relocation operations instead of assembly macros. It isn't really
161 worth using absolute sequences for 64-bit symbols because GOT
162 accesses are so much shorter. */
164 #define TARGET_ABSOLUTE_ABICALLS \
165 (TARGET_ABICALLS \
166 && !TARGET_SHARED \
167 && TARGET_EXPLICIT_RELOCS \
168 && !ABI_HAS_64BIT_SYMBOLS)
170 /* True if we can optimize sibling calls. For simplicity, we only
171 handle cases in which call_insn_operand will reject invalid
172 sibcall addresses. There are two cases in which this isn't true:
174 - TARGET_MIPS16. call_insn_operand accepts constant addresses
175 but there is no direct jump instruction. It isn't worth
176 using sibling calls in this case anyway; they would usually
177 be longer than normal calls.
179 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
180 accepts global constants, but all sibcalls must be indirect. */
181 #define TARGET_SIBCALLS \
182 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
184 /* True if we need to use a global offset table to access some symbols. */
185 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
187 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
188 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
190 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
191 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
193 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
194 This is true for both the PIC and non-PIC VxWorks RTP modes. */
195 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
197 /* True if .gpword or .gpdword should be used for switch tables.
199 Although GAS does understand .gpdword, the SGI linker mishandles
200 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
201 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
202 #define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
204 /* Generate mips16 code */
205 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
206 /* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
207 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
208 /* Generate mips16e register save/restore sequences. */
209 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
211 /* True if we're generating a form of MIPS16 code in which general
212 text loads are allowed. */
213 #define TARGET_MIPS16_TEXT_LOADS \
214 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
216 /* True if we're generating a form of MIPS16 code in which PC-relative
217 loads are allowed. */
218 #define TARGET_MIPS16_PCREL_LOADS \
219 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
221 /* Generic ISA defines. */
222 #define ISA_MIPS1 (mips_isa == 1)
223 #define ISA_MIPS2 (mips_isa == 2)
224 #define ISA_MIPS3 (mips_isa == 3)
225 #define ISA_MIPS4 (mips_isa == 4)
226 #define ISA_MIPS32 (mips_isa == 32)
227 #define ISA_MIPS32R2 (mips_isa == 33)
228 #define ISA_MIPS64 (mips_isa == 64)
230 /* Architecture target defines. */
231 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
232 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
233 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
234 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
235 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
236 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
237 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
238 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
239 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
240 || mips_arch == PROCESSOR_SB1A)
241 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
242 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
243 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
244 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
246 /* Scheduling target defines. */
247 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
248 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
249 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
250 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
251 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
252 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
253 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
254 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
255 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
256 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
257 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
258 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
259 || mips_tune == PROCESSOR_SB1A)
260 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
261 || mips_tune == PROCESSOR_24KF2_1 \
262 || mips_tune == PROCESSOR_24KF1_1)
263 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
264 || mips_tune == PROCESSOR_74KF2_1 \
265 || mips_tune == PROCESSOR_74KF1_1 \
266 || mips_tune == PROCESSOR_74KF3_2)
267 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
269 /* True if the pre-reload scheduler should try to create chains of
270 multiply-add or multiply-subtract instructions. For example,
271 suppose we have:
273 t1 = a * b
274 t2 = t1 + c * d
275 t3 = e * f
276 t4 = t3 - g * h
278 t1 will have a higher priority than t2 and t3 will have a higher
279 priority than t4. However, before reload, there is no dependence
280 between t1 and t3, and they can often have similar priorities.
281 The scheduler will then tend to prefer:
283 t1 = a * b
284 t3 = e * f
285 t2 = t1 + c * d
286 t4 = t3 - g * h
288 which stops us from making full use of macc/madd-style instructions.
289 This sort of situation occurs frequently in Fourier transforms and
290 in unrolled loops.
292 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
293 queue so that chained multiply-add and multiply-subtract instructions
294 appear ahead of any other instruction that is likely to clobber lo.
295 In the example above, if t2 and t3 become ready at the same time,
296 the code ensures that t2 is scheduled first.
298 Multiply-accumulate instructions are a bigger win for some targets
299 than others, so this macro is defined on an opt-in basis. */
300 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
301 || TUNE_MIPS4120 \
302 || TUNE_MIPS4130 \
303 || TUNE_24K)
305 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
306 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
308 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
309 directly accessible, while the command-line options select
310 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
311 in use. */
312 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
313 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
315 /* IRIX specific stuff. */
316 #define TARGET_IRIX 0
317 #define TARGET_IRIX6 0
319 /* Define preprocessor macros for the -march and -mtune options.
320 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
321 processor. If INFO's canonical name is "foo", define PREFIX to
322 be "foo", and define an additional macro PREFIX_FOO. */
323 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
324 do \
326 char *macro, *p; \
328 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
329 for (p = macro; *p != 0; p++) \
330 *p = TOUPPER (*p); \
332 builtin_define (macro); \
333 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
334 free (macro); \
336 while (0)
338 /* Target CPU builtins. */
339 #define TARGET_CPU_CPP_BUILTINS() \
340 do \
342 /* Everyone but IRIX defines this to mips. */ \
343 if (!TARGET_IRIX) \
344 builtin_assert ("machine=mips"); \
346 builtin_assert ("cpu=mips"); \
347 builtin_define ("__mips__"); \
348 builtin_define ("_mips"); \
350 /* We do this here because __mips is defined below and so we \
351 can't use builtin_define_std. We don't ever want to define \
352 "mips" for VxWorks because some of the VxWorks headers \
353 construct include filenames from a root directory macro, \
354 an architecture macro and a filename, where the architecture \
355 macro expands to 'mips'. If we define 'mips' to 1, the \
356 architecture macro expands to 1 as well. */ \
357 if (!flag_iso && !TARGET_VXWORKS) \
358 builtin_define ("mips"); \
360 if (TARGET_64BIT) \
361 builtin_define ("__mips64"); \
363 if (!TARGET_IRIX) \
365 /* Treat _R3000 and _R4000 like register-size \
366 defines, which is how they've historically \
367 been used. */ \
368 if (TARGET_64BIT) \
370 builtin_define_std ("R4000"); \
371 builtin_define ("_R4000"); \
373 else \
375 builtin_define_std ("R3000"); \
376 builtin_define ("_R3000"); \
379 if (TARGET_FLOAT64) \
380 builtin_define ("__mips_fpr=64"); \
381 else \
382 builtin_define ("__mips_fpr=32"); \
384 if (TARGET_MIPS16) \
385 builtin_define ("__mips16"); \
387 if (TARGET_MIPS3D) \
388 builtin_define ("__mips3d"); \
390 if (TARGET_SMARTMIPS) \
391 builtin_define ("__mips_smartmips"); \
393 if (TARGET_DSP) \
395 builtin_define ("__mips_dsp"); \
396 if (TARGET_DSPR2) \
398 builtin_define ("__mips_dspr2"); \
399 builtin_define ("__mips_dsp_rev=2"); \
401 else \
402 builtin_define ("__mips_dsp_rev=1"); \
405 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
406 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
408 if (ISA_MIPS1) \
410 builtin_define ("__mips=1"); \
411 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
413 else if (ISA_MIPS2) \
415 builtin_define ("__mips=2"); \
416 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
418 else if (ISA_MIPS3) \
420 builtin_define ("__mips=3"); \
421 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
423 else if (ISA_MIPS4) \
425 builtin_define ("__mips=4"); \
426 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
428 else if (ISA_MIPS32) \
430 builtin_define ("__mips=32"); \
431 builtin_define ("__mips_isa_rev=1"); \
432 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
434 else if (ISA_MIPS32R2) \
436 builtin_define ("__mips=32"); \
437 builtin_define ("__mips_isa_rev=2"); \
438 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
440 else if (ISA_MIPS64) \
442 builtin_define ("__mips=64"); \
443 builtin_define ("__mips_isa_rev=1"); \
444 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
447 switch (mips_abi) \
449 case ABI_32: \
450 builtin_define ("_ABIO32=1"); \
451 builtin_define ("_MIPS_SIM=_ABIO32"); \
452 break; \
454 case ABI_N32: \
455 builtin_define ("_ABIN32=2"); \
456 builtin_define ("_MIPS_SIM=_ABIN32"); \
457 break; \
459 case ABI_64: \
460 builtin_define ("_ABI64=3"); \
461 builtin_define ("_MIPS_SIM=_ABI64"); \
462 break; \
464 case ABI_O64: \
465 builtin_define ("_ABIO64=4"); \
466 builtin_define ("_MIPS_SIM=_ABIO64"); \
467 break; \
470 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
471 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
472 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
473 builtin_define_with_int_value ("_MIPS_FPSET", \
474 32 / MAX_FPRS_PER_FMT); \
476 /* These defines reflect the ABI in use, not whether the \
477 FPU is directly accessible. */ \
478 if (TARGET_HARD_FLOAT_ABI) \
479 builtin_define ("__mips_hard_float"); \
480 else \
481 builtin_define ("__mips_soft_float"); \
483 if (TARGET_SINGLE_FLOAT) \
484 builtin_define ("__mips_single_float"); \
486 if (TARGET_PAIRED_SINGLE_FLOAT) \
487 builtin_define ("__mips_paired_single_float"); \
489 if (TARGET_BIG_ENDIAN) \
491 builtin_define_std ("MIPSEB"); \
492 builtin_define ("_MIPSEB"); \
494 else \
496 builtin_define_std ("MIPSEL"); \
497 builtin_define ("_MIPSEL"); \
500 /* Macros dependent on the C dialect. */ \
501 if (preprocessing_asm_p ()) \
503 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
504 builtin_define ("_LANGUAGE_ASSEMBLY"); \
506 else if (c_dialect_cxx ()) \
508 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
509 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
510 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
512 else \
514 builtin_define_std ("LANGUAGE_C"); \
515 builtin_define ("_LANGUAGE_C"); \
517 if (c_dialect_objc ()) \
519 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
520 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
521 /* Bizarre, but needed at least for Irix. */ \
522 builtin_define_std ("LANGUAGE_C"); \
523 builtin_define ("_LANGUAGE_C"); \
526 if (mips_abi == ABI_EABI) \
527 builtin_define ("__mips_eabi"); \
529 while (0)
531 /* Default target_flags if no switches are specified */
533 #ifndef TARGET_DEFAULT
534 #define TARGET_DEFAULT 0
535 #endif
537 #ifndef TARGET_CPU_DEFAULT
538 #define TARGET_CPU_DEFAULT 0
539 #endif
541 #ifndef TARGET_ENDIAN_DEFAULT
542 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
543 #endif
545 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
546 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
547 #endif
549 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
550 #ifndef MIPS_ISA_DEFAULT
551 #ifndef MIPS_CPU_STRING_DEFAULT
552 #define MIPS_CPU_STRING_DEFAULT "from-abi"
553 #endif
554 #endif
556 #ifdef IN_LIBGCC2
557 #undef TARGET_64BIT
558 /* Make this compile time constant for libgcc2 */
559 #ifdef __mips64
560 #define TARGET_64BIT 1
561 #else
562 #define TARGET_64BIT 0
563 #endif
564 #endif /* IN_LIBGCC2 */
566 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
567 when compiled with hardware floating point. This is because MIPS16
568 code cannot save and restore the floating-point registers, which is
569 important if in a mixed MIPS16/non-MIPS16 environment. */
571 #ifdef IN_LIBGCC2
572 #if __mips_hard_float
573 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
574 #endif
575 #endif /* IN_LIBGCC2 */
577 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
579 #ifndef MULTILIB_ENDIAN_DEFAULT
580 #if TARGET_ENDIAN_DEFAULT == 0
581 #define MULTILIB_ENDIAN_DEFAULT "EL"
582 #else
583 #define MULTILIB_ENDIAN_DEFAULT "EB"
584 #endif
585 #endif
587 #ifndef MULTILIB_ISA_DEFAULT
588 # if MIPS_ISA_DEFAULT == 1
589 # define MULTILIB_ISA_DEFAULT "mips1"
590 # else
591 # if MIPS_ISA_DEFAULT == 2
592 # define MULTILIB_ISA_DEFAULT "mips2"
593 # else
594 # if MIPS_ISA_DEFAULT == 3
595 # define MULTILIB_ISA_DEFAULT "mips3"
596 # else
597 # if MIPS_ISA_DEFAULT == 4
598 # define MULTILIB_ISA_DEFAULT "mips4"
599 # else
600 # if MIPS_ISA_DEFAULT == 32
601 # define MULTILIB_ISA_DEFAULT "mips32"
602 # else
603 # if MIPS_ISA_DEFAULT == 33
604 # define MULTILIB_ISA_DEFAULT "mips32r2"
605 # else
606 # if MIPS_ISA_DEFAULT == 64
607 # define MULTILIB_ISA_DEFAULT "mips64"
608 # else
609 # define MULTILIB_ISA_DEFAULT "mips1"
610 # endif
611 # endif
612 # endif
613 # endif
614 # endif
615 # endif
616 # endif
617 #endif
619 #ifndef MULTILIB_DEFAULTS
620 #define MULTILIB_DEFAULTS \
621 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
622 #endif
624 /* We must pass -EL to the linker by default for little endian embedded
625 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
626 linker will default to using big-endian output files. The OUTPUT_FORMAT
627 line must be in the linker script, otherwise -EB/-EL will not work. */
629 #ifndef ENDIAN_SPEC
630 #if TARGET_ENDIAN_DEFAULT == 0
631 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
632 #else
633 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
634 #endif
635 #endif
637 /* A spec condition that matches all non-mips16 -mips arguments. */
639 #define MIPS_ISA_LEVEL_OPTION_SPEC \
640 "mips1|mips2|mips3|mips4|mips32*|mips64*"
642 /* A spec condition that matches all non-mips16 architecture arguments. */
644 #define MIPS_ARCH_OPTION_SPEC \
645 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
647 /* A spec that infers a -mips argument from an -march argument,
648 or injects the default if no architecture is specified. */
650 #define MIPS_ISA_LEVEL_SPEC \
651 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
652 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
653 %{march=mips2|march=r6000:-mips2} \
654 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
655 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000:-mips4} \
656 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
657 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
658 |march=34k*|march=74k*: -mips32r2} \
659 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000: -mips64} \
660 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
662 /* A spec that infers a -mhard-float or -msoft-float setting from an
663 -march argument. Note that soft-float and hard-float code are not
664 link-compatible. */
666 #define MIPS_ARCH_FLOAT_SPEC \
667 "%{mhard-float|msoft-float|march=mips*:; \
668 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
669 |march=34kc|march=74kc|march=5kc: -msoft-float; \
670 march=*: -mhard-float}"
672 /* A spec condition that matches 32-bit options. It only works if
673 MIPS_ISA_LEVEL_SPEC has been applied. */
675 #define MIPS_32BIT_OPTION_SPEC \
676 "mips1|mips2|mips32*|mgp32"
678 /* Support for a compile-time default CPU, et cetera. The rules are:
679 --with-arch is ignored if -march is specified or a -mips is specified
680 (other than -mips16).
681 --with-tune is ignored if -mtune is specified.
682 --with-abi is ignored if -mabi is specified.
683 --with-float is ignored if -mhard-float or -msoft-float are
684 specified.
685 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
686 specified. */
687 #define OPTION_DEFAULT_SPECS \
688 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
689 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
690 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
691 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
692 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
693 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }
696 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
697 && ISA_HAS_COND_TRAP)
699 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
701 /* True if the ABI can only work with 64-bit integer registers. We
702 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
703 otherwise floating-point registers must also be 64-bit. */
704 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
706 /* Likewise for 32-bit regs. */
707 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
709 /* True if symbols are 64 bits wide. At present, n64 is the only
710 ABI for which this is true. */
711 #define ABI_HAS_64BIT_SYMBOLS (mips_abi == ABI_64 && !TARGET_SYM32)
713 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
714 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
715 || ISA_MIPS4 \
716 || ISA_MIPS64)
718 /* ISA has branch likely instructions (e.g. mips2). */
719 /* Disable branchlikely for tx39 until compare rewrite. They haven't
720 been generated up to this point. */
721 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
723 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
724 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
725 || TARGET_MIPS5400 \
726 || TARGET_MIPS5500 \
727 || TARGET_MIPS7000 \
728 || TARGET_MIPS9000 \
729 || TARGET_MAD \
730 || ISA_MIPS32 \
731 || ISA_MIPS32R2 \
732 || ISA_MIPS64) \
733 && !TARGET_MIPS16)
735 /* ISA has the conditional move instructions introduced in mips4. */
736 #define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
737 || ISA_MIPS32 \
738 || ISA_MIPS32R2 \
739 || ISA_MIPS64) \
740 && !TARGET_MIPS5500 \
741 && !TARGET_MIPS16)
743 /* ISA has LDC1 and SDC1. */
744 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
746 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
747 branch on CC, and move (both FP and non-FP) on CC. */
748 #define ISA_HAS_8CC (ISA_MIPS4 \
749 || ISA_MIPS32 \
750 || ISA_MIPS32R2 \
751 || ISA_MIPS64)
753 /* This is a catch all for other mips4 instructions: indexed load, the
754 FP madd and msub instructions, and the FP recip and recip sqrt
755 instructions. */
756 #define ISA_HAS_FP4 ((ISA_MIPS4 \
757 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
758 || ISA_MIPS64) \
759 && !TARGET_MIPS16)
761 /* ISA has paired-single instructions. */
762 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64)
764 /* ISA has conditional trap instructions. */
765 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
766 && !TARGET_MIPS16)
768 /* ISA has integer multiply-accumulate instructions, madd and msub. */
769 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
770 || ISA_MIPS32R2 \
771 || ISA_MIPS64) \
772 && !TARGET_MIPS16)
774 /* Integer multiply-accumulate instructions should be generated. */
775 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
777 /* ISA has floating-point nmadd and nmsub instructions for mode MODE. */
778 #define ISA_HAS_NMADD_NMSUB(MODE) \
779 ((ISA_MIPS4 \
780 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
781 || ISA_MIPS64) \
782 && (!TARGET_MIPS5400 || TARGET_MAD) \
783 && !TARGET_MIPS16)
785 /* ISA has count leading zeroes/ones instruction (not implemented). */
786 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
787 || ISA_MIPS32R2 \
788 || ISA_MIPS64) \
789 && !TARGET_MIPS16)
791 /* ISA has three operand multiply instructions that put
792 the high part in an accumulator: mulhi or mulhiu. */
793 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
794 || TARGET_MIPS5500 \
795 || TARGET_SR71K) \
796 && !TARGET_MIPS16)
798 /* ISA has three operand multiply instructions that
799 negates the result and puts the result in an accumulator. */
800 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
801 || TARGET_MIPS5500 \
802 || TARGET_SR71K) \
803 && !TARGET_MIPS16)
805 /* ISA has three operand multiply instructions that subtracts the
806 result from a 4th operand and puts the result in an accumulator. */
807 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
808 || TARGET_MIPS5500 \
809 || TARGET_SR71K) \
810 && !TARGET_MIPS16)
812 /* ISA has three operand multiply instructions that the result
813 from a 4th operand and puts the result in an accumulator. */
814 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
815 || TARGET_MIPS4130 \
816 || TARGET_MIPS5400 \
817 || TARGET_MIPS5500 \
818 || TARGET_SR71K) \
819 && !TARGET_MIPS16)
821 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
822 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
823 || TARGET_MIPS4130) \
824 && !TARGET_MIPS16)
826 /* ISA has the "ror" (rotate right) instructions. */
827 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
828 || TARGET_MIPS5400 \
829 || TARGET_MIPS5500 \
830 || TARGET_SR71K \
831 || TARGET_SMARTMIPS) \
832 && !TARGET_MIPS16)
834 /* ISA has data prefetch instructions. This controls use of 'pref'. */
835 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
836 || ISA_MIPS32 \
837 || ISA_MIPS32R2 \
838 || ISA_MIPS64) \
839 && !TARGET_MIPS16)
841 /* ISA has data indexed prefetch instructions. This controls use of
842 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
843 (prefx is a cop1x instruction, so can only be used if FP is
844 enabled.) */
845 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
846 || ISA_MIPS32R2 \
847 || ISA_MIPS64) \
848 && !TARGET_MIPS16)
850 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
851 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
852 also requires TARGET_DOUBLE_FLOAT. */
853 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
855 /* ISA includes the MIPS32r2 seb and seh instructions. */
856 #define ISA_HAS_SEB_SEH (ISA_MIPS32R2 \
857 && !TARGET_MIPS16)
859 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
860 #define ISA_HAS_EXT_INS (ISA_MIPS32R2 \
861 && !TARGET_MIPS16)
863 /* ISA has instructions for accessing top part of 64-bit fp regs. */
864 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 && ISA_MIPS32R2)
866 /* ISA has lwxs instruction (load w/scaled index address. */
867 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
869 /* The DSP ASE is available. */
870 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
872 /* Revision 2 of the DSP ASE is available. */
873 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
875 /* True if the result of a load is not available to the next instruction.
876 A nop will then be needed between instructions like "lw $4,..."
877 and "addiu $4,$4,1". */
878 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
879 && !TARGET_MIPS3900 \
880 && !TARGET_MIPS16)
882 /* Likewise mtc1 and mfc1. */
883 #define ISA_HAS_XFER_DELAY (mips_isa <= 3)
885 /* Likewise floating-point comparisons. */
886 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3)
888 /* True if mflo and mfhi can be immediately followed by instructions
889 which write to the HI and LO registers.
891 According to MIPS specifications, MIPS ISAs I, II, and III need
892 (at least) two instructions between the reads of HI/LO and
893 instructions which write them, and later ISAs do not. Contradicting
894 the MIPS specifications, some MIPS IV processor user manuals (e.g.
895 the UM for the NEC Vr5000) document needing the instructions between
896 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
897 MIPS64 and later ISAs to have the interlocks, plus any specific
898 earlier-ISA CPUs for which CPU documentation declares that the
899 instructions are really interlocked. */
900 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
901 || ISA_MIPS32R2 \
902 || ISA_MIPS64 \
903 || TARGET_MIPS5500)
905 /* ISA includes synci, jr.hb and jalr.hb. */
906 #define ISA_HAS_SYNCI (ISA_MIPS32R2 && !TARGET_MIPS16)
908 /* ISA includes sync. */
909 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
910 #define GENERATE_SYNC \
911 (target_flags_explicit & MASK_LLSC \
912 ? TARGET_LLSC && !TARGET_MIPS16 \
913 : ISA_HAS_SYNC)
915 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
916 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
917 instructions. */
918 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
919 #define GENERATE_LL_SC \
920 (target_flags_explicit & MASK_LLSC \
921 ? TARGET_LLSC && !TARGET_MIPS16 \
922 : ISA_HAS_LL_SC)
924 /* Add -G xx support. */
926 #undef SWITCH_TAKES_ARG
927 #define SWITCH_TAKES_ARG(CHAR) \
928 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
930 #define OVERRIDE_OPTIONS mips_override_options ()
932 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
934 /* Show we can debug even without a frame pointer. */
935 #define CAN_DEBUG_WITHOUT_FP
937 /* Tell collect what flags to pass to nm. */
938 #ifndef NM_FLAGS
939 #define NM_FLAGS "-Bn"
940 #endif
943 #ifndef MIPS_ABI_DEFAULT
944 #define MIPS_ABI_DEFAULT ABI_32
945 #endif
947 /* Use the most portable ABI flag for the ASM specs. */
949 #if MIPS_ABI_DEFAULT == ABI_32
950 #define MULTILIB_ABI_DEFAULT "mabi=32"
951 #endif
953 #if MIPS_ABI_DEFAULT == ABI_O64
954 #define MULTILIB_ABI_DEFAULT "mabi=o64"
955 #endif
957 #if MIPS_ABI_DEFAULT == ABI_N32
958 #define MULTILIB_ABI_DEFAULT "mabi=n32"
959 #endif
961 #if MIPS_ABI_DEFAULT == ABI_64
962 #define MULTILIB_ABI_DEFAULT "mabi=64"
963 #endif
965 #if MIPS_ABI_DEFAULT == ABI_EABI
966 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
967 #endif
969 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
970 to the assembler. It may be overridden by subtargets. */
971 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
972 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
973 %{noasmopt:-O0} \
974 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
975 #endif
977 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
978 the assembler. It may be overridden by subtargets.
980 Beginning with gas 2.13, -mdebug must be passed to correctly handle
981 COFF debugging info. */
983 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
984 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
985 %{g} %{g0} %{g1} %{g2} %{g3} \
986 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
987 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
988 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
989 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
990 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
991 #endif
993 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
994 overridden by subtargets. */
996 #ifndef SUBTARGET_ASM_SPEC
997 #define SUBTARGET_ASM_SPEC ""
998 #endif
1000 #undef ASM_SPEC
1001 #define ASM_SPEC "\
1002 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1003 %{mips32} %{mips32r2} %{mips64} \
1004 %{mips16} %{mno-mips16:-no-mips16} \
1005 %{mips3d} %{mno-mips3d:-no-mips3d} \
1006 %{mdmx} %{mno-mdmx:-no-mdmx} \
1007 %{mdsp} %{mno-dsp} \
1008 %{mdspr2} %{mno-dspr2} \
1009 %{msmartmips} %{mno-smartmips} \
1010 %{mmt} %{mno-mt} \
1011 %{mfix-vr4120} %{mfix-vr4130} \
1012 %(subtarget_asm_optimizing_spec) \
1013 %(subtarget_asm_debugging_spec) \
1014 %{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
1015 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1016 %{mfp32} %{mfp64} \
1017 %{mshared} %{mno-shared} \
1018 %{msym32} %{mno-sym32} \
1019 %{mtune=*} %{v} \
1020 %(subtarget_asm_spec)"
1022 /* Extra switches sometimes passed to the linker. */
1023 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1024 will interpret it as a -b option. */
1026 #ifndef LINK_SPEC
1027 #define LINK_SPEC "\
1028 %(endian_spec) \
1029 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
1030 %{bestGnum} %{shared} %{non_shared}"
1031 #endif /* LINK_SPEC defined */
1034 /* Specs for the compiler proper */
1036 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1037 overridden by subtargets. */
1038 #ifndef SUBTARGET_CC1_SPEC
1039 #define SUBTARGET_CC1_SPEC ""
1040 #endif
1042 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1044 #undef CC1_SPEC
1045 #define CC1_SPEC "\
1046 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1047 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1048 %{save-temps: } \
1049 %(subtarget_cc1_spec)"
1051 /* Preprocessor specs. */
1053 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1054 overridden by subtargets. */
1055 #ifndef SUBTARGET_CPP_SPEC
1056 #define SUBTARGET_CPP_SPEC ""
1057 #endif
1059 #define CPP_SPEC "%(subtarget_cpp_spec)"
1061 /* This macro defines names of additional specifications to put in the specs
1062 that can be used in various specifications like CC1_SPEC. Its definition
1063 is an initializer with a subgrouping for each command option.
1065 Each subgrouping contains a string constant, that defines the
1066 specification name, and a string constant that used by the GCC driver
1067 program.
1069 Do not define this macro if it does not need to do anything. */
1071 #define EXTRA_SPECS \
1072 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1073 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1074 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1075 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1076 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1077 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1078 { "endian_spec", ENDIAN_SPEC }, \
1079 SUBTARGET_EXTRA_SPECS
1081 #ifndef SUBTARGET_EXTRA_SPECS
1082 #define SUBTARGET_EXTRA_SPECS
1083 #endif
1085 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1086 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1088 #ifndef PREFERRED_DEBUGGING_TYPE
1089 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1090 #endif
1092 #define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
1094 /* By default, turn on GDB extensions. */
1095 #define DEFAULT_GDB_EXTENSIONS 1
1097 /* Local compiler-generated symbols must have a prefix that the assembler
1098 understands. By default, this is $, although some targets (e.g.,
1099 NetBSD-ELF) need to override this. */
1101 #ifndef LOCAL_LABEL_PREFIX
1102 #define LOCAL_LABEL_PREFIX "$"
1103 #endif
1105 /* By default on the mips, external symbols do not have an underscore
1106 prepended, but some targets (e.g., NetBSD) require this. */
1108 #ifndef USER_LABEL_PREFIX
1109 #define USER_LABEL_PREFIX ""
1110 #endif
1112 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1113 since the length can run past this up to a continuation point. */
1114 #undef DBX_CONTIN_LENGTH
1115 #define DBX_CONTIN_LENGTH 1500
1117 /* How to renumber registers for dbx and gdb. */
1118 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1120 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1121 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1123 /* The DWARF 2 CFA column which tracks the return address. */
1124 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
1126 /* Before the prologue, RA lives in r31. */
1127 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
1129 /* Describe how we implement __builtin_eh_return. */
1130 #define EH_RETURN_DATA_REGNO(N) \
1131 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1133 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1135 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1136 The default for this in 64-bit mode is 8, which causes problems with
1137 SFmode register saves. */
1138 #define DWARF_CIE_DATA_ALIGNMENT -4
1140 /* Correct the offset of automatic variables and arguments. Note that
1141 the MIPS debug format wants all automatic variables and arguments
1142 to be in terms of the virtual frame pointer (stack pointer before
1143 any adjustment in the function), while the MIPS 3.0 linker wants
1144 the frame pointer to be the stack pointer after the initial
1145 adjustment. */
1147 #define DEBUGGER_AUTO_OFFSET(X) \
1148 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1149 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1150 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1152 /* Target machine storage layout */
1154 #define BITS_BIG_ENDIAN 0
1155 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1156 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1158 /* Define this to set the endianness to use in libgcc2.c, which can
1159 not depend on target_flags. */
1160 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1161 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1162 #else
1163 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1164 #endif
1166 #define MAX_BITS_PER_WORD 64
1168 /* Width of a word, in units (bytes). */
1169 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1170 #ifndef IN_LIBGCC2
1171 #define MIN_UNITS_PER_WORD 4
1172 #endif
1174 /* For MIPS, width of a floating point register. */
1175 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1177 /* The number of consecutive floating-point registers needed to store the
1178 largest format supported by the FPU. */
1179 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1181 /* The number of consecutive floating-point registers needed to store the
1182 smallest format supported by the FPU. */
1183 #define MIN_FPRS_PER_FMT \
1184 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 ? 1 : MAX_FPRS_PER_FMT)
1186 /* The largest size of value that can be held in floating-point
1187 registers and moved with a single instruction. */
1188 #define UNITS_PER_HWFPVALUE \
1189 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1191 /* The largest size of value that can be held in floating-point
1192 registers. */
1193 #define UNITS_PER_FPVALUE \
1194 (TARGET_SOFT_FLOAT_ABI ? 0 \
1195 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1196 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1198 /* The number of bytes in a double. */
1199 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1201 #define UNITS_PER_SIMD_WORD(MODE) \
1202 (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1204 /* Set the sizes of the core types. */
1205 #define SHORT_TYPE_SIZE 16
1206 #define INT_TYPE_SIZE 32
1207 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1208 #define LONG_LONG_TYPE_SIZE 64
1210 #define FLOAT_TYPE_SIZE 32
1211 #define DOUBLE_TYPE_SIZE 64
1212 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1214 /* Define the sizes of fixed-point types. */
1215 #define SHORT_FRACT_TYPE_SIZE 8
1216 #define FRACT_TYPE_SIZE 16
1217 #define LONG_FRACT_TYPE_SIZE 32
1218 #define LONG_LONG_FRACT_TYPE_SIZE 64
1220 #define SHORT_ACCUM_TYPE_SIZE 16
1221 #define ACCUM_TYPE_SIZE 32
1222 #define LONG_ACCUM_TYPE_SIZE 64
1223 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1224 doesn't support 128-bit integers for MIPS32 currently. */
1225 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1227 /* long double is not a fixed mode, but the idea is that, if we
1228 support long double, we also want a 128-bit integer type. */
1229 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1231 #ifdef IN_LIBGCC2
1232 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1233 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1234 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1235 # else
1236 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1237 # endif
1238 #endif
1240 /* Width in bits of a pointer. */
1241 #ifndef POINTER_SIZE
1242 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1243 #endif
1245 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1246 #define PARM_BOUNDARY BITS_PER_WORD
1248 /* Allocation boundary (in *bits*) for the code of a function. */
1249 #define FUNCTION_BOUNDARY 32
1251 /* Alignment of field after `int : 0' in a structure. */
1252 #define EMPTY_FIELD_BOUNDARY 32
1254 /* Every structure's size must be a multiple of this. */
1255 /* 8 is observed right on a DECstation and on riscos 4.02. */
1256 #define STRUCTURE_SIZE_BOUNDARY 8
1258 /* There is no point aligning anything to a rounder boundary than this. */
1259 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1261 /* All accesses must be aligned. */
1262 #define STRICT_ALIGNMENT 1
1264 /* Define this if you wish to imitate the way many other C compilers
1265 handle alignment of bitfields and the structures that contain
1266 them.
1268 The behavior is that the type written for a bit-field (`int',
1269 `short', or other integer type) imposes an alignment for the
1270 entire structure, as if the structure really did contain an
1271 ordinary field of that type. In addition, the bit-field is placed
1272 within the structure so that it would fit within such a field,
1273 not crossing a boundary for it.
1275 Thus, on most machines, a bit-field whose type is written as `int'
1276 would not cross a four-byte boundary, and would force four-byte
1277 alignment for the whole structure. (The alignment used may not
1278 be four bytes; it is controlled by the other alignment
1279 parameters.)
1281 If the macro is defined, its definition should be a C expression;
1282 a nonzero value for the expression enables this behavior. */
1284 #define PCC_BITFIELD_TYPE_MATTERS 1
1286 /* If defined, a C expression to compute the alignment given to a
1287 constant that is being placed in memory. CONSTANT is the constant
1288 and ALIGN is the alignment that the object would ordinarily have.
1289 The value of this macro is used instead of that alignment to align
1290 the object.
1292 If this macro is not defined, then ALIGN is used.
1294 The typical use of this macro is to increase alignment for string
1295 constants to be word aligned so that `strcpy' calls that copy
1296 constants can be done inline. */
1298 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1299 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1300 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1302 /* If defined, a C expression to compute the alignment for a static
1303 variable. TYPE is the data type, and ALIGN is the alignment that
1304 the object would ordinarily have. The value of this macro is used
1305 instead of that alignment to align the object.
1307 If this macro is not defined, then ALIGN is used.
1309 One use of this macro is to increase alignment of medium-size
1310 data to make it all fit in fewer cache lines. Another is to
1311 cause character arrays to be word-aligned so that `strcpy' calls
1312 that copy constants to character arrays can be done inline. */
1314 #undef DATA_ALIGNMENT
1315 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1316 ((((ALIGN) < BITS_PER_WORD) \
1317 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1318 || TREE_CODE (TYPE) == UNION_TYPE \
1319 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1321 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1322 character arrays to be word-aligned so that `strcpy' calls that copy
1323 constants to character arrays can be done inline, and 'strcmp' can be
1324 optimised to use word loads. */
1325 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1326 DATA_ALIGNMENT (TYPE, ALIGN)
1328 #define PAD_VARARGS_DOWN \
1329 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1331 /* Define if operations between registers always perform the operation
1332 on the full register even if a narrower mode is specified. */
1333 #define WORD_REGISTER_OPERATIONS
1335 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1336 moves. All other references are zero extended. */
1337 #define LOAD_EXTEND_OP(MODE) \
1338 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1339 ? SIGN_EXTEND : ZERO_EXTEND)
1341 /* Define this macro if it is advisable to hold scalars in registers
1342 in a wider mode than that declared by the program. In such cases,
1343 the value is constrained to be within the bounds of the declared
1344 type, but kept valid in the wider mode. The signedness of the
1345 extension may differ from that of the type. */
1347 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1348 if (GET_MODE_CLASS (MODE) == MODE_INT \
1349 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1351 if ((MODE) == SImode) \
1352 (UNSIGNEDP) = 0; \
1353 (MODE) = Pmode; \
1356 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1357 Extensions of pointers to word_mode must be signed. */
1358 #define POINTERS_EXTEND_UNSIGNED false
1360 /* Define if loading short immediate values into registers sign extends. */
1361 #define SHORT_IMMEDIATES_SIGN_EXTEND
1363 /* The [d]clz instructions have the natural values at 0. */
1365 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1366 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1368 /* Standard register usage. */
1370 /* Number of hardware registers. We have:
1372 - 32 integer registers
1373 - 32 floating point registers
1374 - 8 condition code registers
1375 - 2 accumulator registers (hi and lo)
1376 - 32 registers each for coprocessors 0, 2 and 3
1377 - 3 fake registers:
1378 - ARG_POINTER_REGNUM
1379 - FRAME_POINTER_REGNUM
1380 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1381 - 3 dummy entries that were used at various times in the past.
1382 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1383 - 6 DSP control registers */
1385 #define FIRST_PSEUDO_REGISTER 188
1387 /* By default, fix the kernel registers ($26 and $27), the global
1388 pointer ($28) and the stack pointer ($29). This can change
1389 depending on the command-line options.
1391 Regarding coprocessor registers: without evidence to the contrary,
1392 it's best to assume that each coprocessor register has a unique
1393 use. This can be overridden, in, e.g., mips_override_options or
1394 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1395 for a particular target. */
1397 #define FIXED_REGISTERS \
1399 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1400 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1401 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1402 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1403 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1404 /* COP0 registers */ \
1405 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1406 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1407 /* COP2 registers */ \
1408 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1409 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1410 /* COP3 registers */ \
1411 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1412 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1413 /* 6 DSP accumulator registers & 6 control registers */ \
1414 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1418 /* Set up this array for o32 by default.
1420 Note that we don't mark $31 as a call-clobbered register. The idea is
1421 that it's really the call instructions themselves which clobber $31.
1422 We don't care what the called function does with it afterwards.
1424 This approach makes it easier to implement sibcalls. Unlike normal
1425 calls, sibcalls don't clobber $31, so the register reaches the
1426 called function in tact. EPILOGUE_USES says that $31 is useful
1427 to the called function. */
1429 #define CALL_USED_REGISTERS \
1431 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1432 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1433 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1434 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1435 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1436 /* COP0 registers */ \
1437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1438 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1439 /* COP2 registers */ \
1440 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1441 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1442 /* COP3 registers */ \
1443 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1444 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1445 /* 6 DSP accumulator registers & 6 control registers */ \
1446 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1450 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1452 #define CALL_REALLY_USED_REGISTERS \
1453 { /* General registers. */ \
1454 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1455 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1456 /* Floating-point registers. */ \
1457 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1458 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1459 /* Others. */ \
1460 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1461 /* COP0 registers */ \
1462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1464 /* COP2 registers */ \
1465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1466 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1467 /* COP3 registers */ \
1468 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1469 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1470 /* 6 DSP accumulator registers & 6 control registers */ \
1471 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1474 /* Internal macros to classify a register number as to whether it's a
1475 general purpose register, a floating point register, a
1476 multiply/divide register, or a status register. */
1478 #define GP_REG_FIRST 0
1479 #define GP_REG_LAST 31
1480 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1481 #define GP_DBX_FIRST 0
1483 #define FP_REG_FIRST 32
1484 #define FP_REG_LAST 63
1485 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1486 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1488 #define MD_REG_FIRST 64
1489 #define MD_REG_LAST 65
1490 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1491 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1493 /* The DWARF 2 CFA column which tracks the return address from a
1494 signal handler context. This means that to maintain backwards
1495 compatibility, no hard register can be assigned this column if it
1496 would need to be handled by the DWARF unwinder. */
1497 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1499 #define ST_REG_FIRST 67
1500 #define ST_REG_LAST 74
1501 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1504 /* FIXME: renumber. */
1505 #define COP0_REG_FIRST 80
1506 #define COP0_REG_LAST 111
1507 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1509 #define COP2_REG_FIRST 112
1510 #define COP2_REG_LAST 143
1511 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1513 #define COP3_REG_FIRST 144
1514 #define COP3_REG_LAST 175
1515 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1516 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1517 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1519 #define DSP_ACC_REG_FIRST 176
1520 #define DSP_ACC_REG_LAST 181
1521 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1523 #define AT_REGNUM (GP_REG_FIRST + 1)
1524 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1525 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1527 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1528 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1529 should be used instead. */
1530 #define FPSW_REGNUM ST_REG_FIRST
1532 #define GP_REG_P(REGNO) \
1533 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1534 #define M16_REG_P(REGNO) \
1535 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1536 #define FP_REG_P(REGNO) \
1537 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1538 #define MD_REG_P(REGNO) \
1539 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1540 #define ST_REG_P(REGNO) \
1541 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1542 #define COP0_REG_P(REGNO) \
1543 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1544 #define COP2_REG_P(REGNO) \
1545 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1546 #define COP3_REG_P(REGNO) \
1547 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1548 #define ALL_COP_REG_P(REGNO) \
1549 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1550 /* Test if REGNO is one of the 6 new DSP accumulators. */
1551 #define DSP_ACC_REG_P(REGNO) \
1552 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1553 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1554 #define ACC_REG_P(REGNO) \
1555 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1557 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1559 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1560 to initialize the mips16 gp pseudo register. */
1561 #define CONST_GP_P(X) \
1562 (GET_CODE (X) == CONST \
1563 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1564 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1566 /* Return coprocessor number from register number. */
1568 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1569 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1570 : COP3_REG_P (REGNO) ? '3' : '?')
1573 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1575 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1576 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1578 #define MODES_TIEABLE_P mips_modes_tieable_p
1580 /* Register to use for pushing function arguments. */
1581 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1583 /* These two registers don't really exist: they get eliminated to either
1584 the stack or hard frame pointer. */
1585 #define ARG_POINTER_REGNUM 77
1586 #define FRAME_POINTER_REGNUM 78
1588 /* $30 is not available on the mips16, so we use $17 as the frame
1589 pointer. */
1590 #define HARD_FRAME_POINTER_REGNUM \
1591 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1593 #define FRAME_POINTER_REQUIRED (mips_frame_pointer_required ())
1595 /* Register in which static-chain is passed to a function. */
1596 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1598 /* Registers used as temporaries in prologue/epilogue code. If we're
1599 generating mips16 code, these registers must come from the core set
1600 of 8. The prologue register mustn't conflict with any incoming
1601 arguments, the static chain pointer, or the frame pointer. The
1602 epilogue temporary mustn't conflict with the return registers, the
1603 frame pointer, the EH stack adjustment, or the EH data registers. */
1605 #define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1606 #define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1608 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1609 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1611 /* Define this macro if it is as good or better to call a constant
1612 function address than to call an address kept in a register. */
1613 #define NO_FUNCTION_CSE 1
1615 /* The ABI-defined global pointer. Sometimes we use a different
1616 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1617 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1619 /* We normally use $28 as the global pointer. However, when generating
1620 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1621 register instead. They can then avoid saving and restoring $28
1622 and perhaps avoid using a frame at all.
1624 When a leaf function uses something other than $28, mips_expand_prologue
1625 will modify pic_offset_table_rtx in place. Take the register number
1626 from there after reload. */
1627 #define PIC_OFFSET_TABLE_REGNUM \
1628 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1630 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1632 /* Define the classes of registers for register constraints in the
1633 machine description. Also define ranges of constants.
1635 One of the classes must always be named ALL_REGS and include all hard regs.
1636 If there is more than one class, another class must be named NO_REGS
1637 and contain no registers.
1639 The name GENERAL_REGS must be the name of a class (or an alias for
1640 another name such as ALL_REGS). This is the class of registers
1641 that is allowed by "g" or "r" in a register constraint.
1642 Also, registers outside this class are allocated only when
1643 instructions express preferences for them.
1645 The classes must be numbered in nondecreasing order; that is,
1646 a larger-numbered class must never be contained completely
1647 in a smaller-numbered class.
1649 For any two classes, it is very desirable that there be another
1650 class that represents their union. */
1652 enum reg_class
1654 NO_REGS, /* no registers in set */
1655 M16_NA_REGS, /* mips16 regs not used to pass args */
1656 M16_REGS, /* mips16 directly accessible registers */
1657 T_REG, /* mips16 T register ($24) */
1658 M16_T_REGS, /* mips16 registers plus T register */
1659 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1660 V1_REG, /* Register $v1 ($3) used for TLS access. */
1661 LEA_REGS, /* Every GPR except $25 */
1662 GR_REGS, /* integer registers */
1663 FP_REGS, /* floating point registers */
1664 MD0_REG, /* first multiply/divide register */
1665 MD1_REG, /* second multiply/divide register */
1666 MD_REGS, /* multiply/divide registers (hi/lo) */
1667 COP0_REGS, /* generic coprocessor classes */
1668 COP2_REGS,
1669 COP3_REGS,
1670 HI_AND_GR_REGS, /* union classes */
1671 LO_AND_GR_REGS,
1672 HI_AND_FP_REGS,
1673 COP0_AND_GR_REGS,
1674 COP2_AND_GR_REGS,
1675 COP3_AND_GR_REGS,
1676 ALL_COP_REGS,
1677 ALL_COP_AND_GR_REGS,
1678 ST_REGS, /* status registers (fp status) */
1679 DSP_ACC_REGS, /* DSP accumulator registers */
1680 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1681 ALL_REGS, /* all registers */
1682 LIM_REG_CLASSES /* max value + 1 */
1685 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1687 #define GENERAL_REGS GR_REGS
1689 /* An initializer containing the names of the register classes as C
1690 string constants. These names are used in writing some of the
1691 debugging dumps. */
1693 #define REG_CLASS_NAMES \
1695 "NO_REGS", \
1696 "M16_NA_REGS", \
1697 "M16_REGS", \
1698 "T_REG", \
1699 "M16_T_REGS", \
1700 "PIC_FN_ADDR_REG", \
1701 "V1_REG", \
1702 "LEA_REGS", \
1703 "GR_REGS", \
1704 "FP_REGS", \
1705 "MD0_REG", \
1706 "MD1_REG", \
1707 "MD_REGS", \
1708 /* coprocessor registers */ \
1709 "COP0_REGS", \
1710 "COP2_REGS", \
1711 "COP3_REGS", \
1712 "HI_AND_GR_REGS", \
1713 "LO_AND_GR_REGS", \
1714 "HI_AND_FP_REGS", \
1715 "COP0_AND_GR_REGS", \
1716 "COP2_AND_GR_REGS", \
1717 "COP3_AND_GR_REGS", \
1718 "ALL_COP_REGS", \
1719 "ALL_COP_AND_GR_REGS", \
1720 "ST_REGS", \
1721 "DSP_ACC_REGS", \
1722 "ACC_REGS", \
1723 "ALL_REGS" \
1726 /* An initializer containing the contents of the register classes,
1727 as integers which are bit masks. The Nth integer specifies the
1728 contents of class N. The way the integer MASK is interpreted is
1729 that register R is in the class if `MASK & (1 << R)' is 1.
1731 When the machine has more than 32 registers, an integer does not
1732 suffice. Then the integers are replaced by sub-initializers,
1733 braced groupings containing several integers. Each
1734 sub-initializer must be suitable as an initializer for the type
1735 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1737 #define REG_CLASS_CONTENTS \
1739 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1740 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1741 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1742 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1743 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
1744 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SVR4 PIC function address register */ \
1745 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* only $v1 */ \
1746 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* Every other GPR except $25 */ \
1747 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
1748 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
1749 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
1750 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
1751 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
1752 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
1753 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
1754 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
1755 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
1756 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
1757 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
1758 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
1759 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
1760 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
1761 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1762 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1763 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
1764 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* dsp accumulator registers */ \
1765 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* hi/lo and dsp accumulator registers */ \
1766 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* all registers */ \
1770 /* A C expression whose value is a register class containing hard
1771 register REGNO. In general there is more that one such class;
1772 choose a class which is "minimal", meaning that no smaller class
1773 also contains the register. */
1775 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1777 /* A macro whose definition is the name of the class to which a
1778 valid base register must belong. A base register is one used in
1779 an address which is the register value plus a displacement. */
1781 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1783 /* A macro whose definition is the name of the class to which a
1784 valid index register must belong. An index register is one used
1785 in an address where its value is either multiplied by a scale
1786 factor or added to another register (as well as added to a
1787 displacement). */
1789 #define INDEX_REG_CLASS NO_REGS
1791 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1792 registers explicitly used in the rtl to be used as spill registers
1793 but prevents the compiler from extending the lifetime of these
1794 registers. */
1796 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1798 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
1799 is the default value (allocate the registers in numeric order). We
1800 define it just so that we can override it for the mips16 target in
1801 ORDER_REGS_FOR_LOCAL_ALLOC. */
1803 #define REG_ALLOC_ORDER \
1804 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1805 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1806 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1807 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1808 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1809 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1810 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1811 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1812 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1813 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1814 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1815 176,177,178,179,180,181,182,183,184,185,186,187 \
1818 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1819 to be rearranged based on a particular function. On the mips16, we
1820 want to allocate $24 (T_REG) before other registers for
1821 instructions for which it is possible. */
1823 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1825 /* True if VALUE is an unsigned 6-bit number. */
1827 #define UIMM6_OPERAND(VALUE) \
1828 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1830 /* True if VALUE is a signed 10-bit number. */
1832 #define IMM10_OPERAND(VALUE) \
1833 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1835 /* True if VALUE is a signed 16-bit number. */
1837 #define SMALL_OPERAND(VALUE) \
1838 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1840 /* True if VALUE is an unsigned 16-bit number. */
1842 #define SMALL_OPERAND_UNSIGNED(VALUE) \
1843 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1845 /* True if VALUE can be loaded into a register using LUI. */
1847 #define LUI_OPERAND(VALUE) \
1848 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
1849 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1851 /* Return a value X with the low 16 bits clear, and such that
1852 VALUE - X is a signed 16-bit value. */
1854 #define CONST_HIGH_PART(VALUE) \
1855 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1857 #define CONST_LOW_PART(VALUE) \
1858 ((VALUE) - CONST_HIGH_PART (VALUE))
1860 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1861 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1862 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1864 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1865 mips_preferred_reload_class (X, CLASS)
1867 /* The HI and LO registers can only be reloaded via the general
1868 registers. Condition code registers can only be loaded to the
1869 general registers, and from the floating point registers. */
1871 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1872 mips_secondary_reload_class (CLASS, MODE, X, true)
1873 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1874 mips_secondary_reload_class (CLASS, MODE, X, false)
1876 /* Return the maximum number of consecutive registers
1877 needed to represent mode MODE in a register of class CLASS. */
1879 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1881 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1882 mips_cannot_change_mode_class (FROM, TO, CLASS)
1884 /* Stack layout; function entry, exit and calling. */
1886 #define STACK_GROWS_DOWNWARD
1888 /* The offset of the first local variable from the beginning of the frame.
1889 See mips_compute_frame_info for details about the frame layout. */
1891 #define STARTING_FRAME_OFFSET \
1892 (crtl->outgoing_args_size \
1893 + (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1895 #define RETURN_ADDR_RTX mips_return_addr
1897 /* Since the mips16 ISA mode is encoded in the least-significant bit
1898 of the address, mask it off return addresses for purposes of
1899 finding exception handling regions. */
1901 #define MASK_RETURN_ADDR GEN_INT (-2)
1904 /* Similarly, don't use the least-significant bit to tell pointers to
1905 code from vtable index. */
1907 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1909 /* The eliminations to $17 are only used for mips16 code. See the
1910 definition of HARD_FRAME_POINTER_REGNUM. */
1912 #define ELIMINABLE_REGS \
1913 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1914 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1915 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
1916 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1917 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1918 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1920 /* Make sure that we're not trying to eliminate to the wrong hard frame
1921 pointer. */
1922 #define CAN_ELIMINATE(FROM, TO) \
1923 ((TO) == HARD_FRAME_POINTER_REGNUM || (TO) == STACK_POINTER_REGNUM)
1925 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1926 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1928 /* Allocate stack space for arguments at the beginning of each function. */
1929 #define ACCUMULATE_OUTGOING_ARGS 1
1931 /* The argument pointer always points to the first argument. */
1932 #define FIRST_PARM_OFFSET(FNDECL) 0
1934 /* o32 and o64 reserve stack space for all argument registers. */
1935 #define REG_PARM_STACK_SPACE(FNDECL) \
1936 (TARGET_OLDABI \
1937 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
1938 : 0)
1940 /* Define this if it is the responsibility of the caller to
1941 allocate the area reserved for arguments passed in registers.
1942 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1943 of this macro is to determine whether the space is included in
1944 `crtl->outgoing_args_size'. */
1945 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1947 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1949 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1951 /* Symbolic macros for the registers used to return integer and floating
1952 point values. */
1954 #define GP_RETURN (GP_REG_FIRST + 2)
1955 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1957 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1959 /* Symbolic macros for the first/last argument registers. */
1961 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
1962 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1963 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
1964 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1966 #define LIBCALL_VALUE(MODE) \
1967 mips_function_value (NULL_TREE, MODE)
1969 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1970 mips_function_value (VALTYPE, VOIDmode)
1972 /* 1 if N is a possible register number for a function value.
1973 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1974 Currently, R2 and F0 are only implemented here (C has no complex type) */
1976 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1977 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1978 && (N) == FP_RETURN + 2))
1980 /* 1 if N is a possible register number for function argument passing.
1981 We have no FP argument registers when soft-float. When FP registers
1982 are 32 bits, we can't directly reference the odd numbered ones. */
1984 #define FUNCTION_ARG_REGNO_P(N) \
1985 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
1986 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
1987 && !fixed_regs[N])
1989 /* This structure has to cope with two different argument allocation
1990 schemes. Most MIPS ABIs view the arguments as a structure, of which
1991 the first N words go in registers and the rest go on the stack. If I
1992 < N, the Ith word might go in Ith integer argument register or in a
1993 floating-point register. For these ABIs, we only need to remember
1994 the offset of the current argument into the structure.
1996 The EABI instead allocates the integer and floating-point arguments
1997 separately. The first N words of FP arguments go in FP registers,
1998 the rest go on the stack. Likewise, the first N words of the other
1999 arguments go in integer registers, and the rest go on the stack. We
2000 need to maintain three counts: the number of integer registers used,
2001 the number of floating-point registers used, and the number of words
2002 passed on the stack.
2004 We could keep separate information for the two ABIs (a word count for
2005 the standard ABIs, and three separate counts for the EABI). But it
2006 seems simpler to view the standard ABIs as forms of EABI that do not
2007 allocate floating-point registers.
2009 So for the standard ABIs, the first N words are allocated to integer
2010 registers, and mips_function_arg decides on an argument-by-argument
2011 basis whether that argument should really go in an integer register,
2012 or in a floating-point one. */
2014 typedef struct mips_args {
2015 /* Always true for varargs functions. Otherwise true if at least
2016 one argument has been passed in an integer register. */
2017 int gp_reg_found;
2019 /* The number of arguments seen so far. */
2020 unsigned int arg_number;
2022 /* The number of integer registers used so far. For all ABIs except
2023 EABI, this is the number of words that have been added to the
2024 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2025 unsigned int num_gprs;
2027 /* For EABI, the number of floating-point registers used so far. */
2028 unsigned int num_fprs;
2030 /* The number of words passed on the stack. */
2031 unsigned int stack_words;
2033 /* On the mips16, we need to keep track of which floating point
2034 arguments were passed in general registers, but would have been
2035 passed in the FP regs if this were a 32-bit function, so that we
2036 can move them to the FP regs if we wind up calling a 32-bit
2037 function. We record this information in fp_code, encoded in base
2038 four. A zero digit means no floating point argument, a one digit
2039 means an SFmode argument, and a two digit means a DFmode argument,
2040 and a three digit is not used. The low order digit is the first
2041 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2042 an SFmode argument. ??? A more sophisticated approach will be
2043 needed if MIPS_ABI != ABI_32. */
2044 int fp_code;
2046 /* True if the function has a prototype. */
2047 int prototype;
2048 } CUMULATIVE_ARGS;
2050 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2051 for a call to a function whose data type is FNTYPE.
2052 For a library call, FNTYPE is 0. */
2054 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2055 mips_init_cumulative_args (&CUM, FNTYPE)
2057 /* Update the data in CUM to advance over an argument
2058 of mode MODE and data type TYPE.
2059 (TYPE is null for libcalls where that information may not be available.) */
2061 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2062 mips_function_arg_advance (&CUM, MODE, TYPE, NAMED)
2064 /* Determine where to put an argument to a function.
2065 Value is zero to push the argument on the stack,
2066 or a hard register in which to store the argument.
2068 MODE is the argument's machine mode.
2069 TYPE is the data type of the argument (as a tree).
2070 This is null for libcalls where that information may
2071 not be available.
2072 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2073 the preceding args and about the function being called.
2074 NAMED is nonzero if this argument is a named parameter
2075 (otherwise it is an extra parameter matching an ellipsis). */
2077 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2078 mips_function_arg (&CUM, MODE, TYPE, NAMED)
2080 #define FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
2082 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2083 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2085 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2086 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2088 /* True if using EABI and varargs can be passed in floating-point
2089 registers. Under these conditions, we need a more complex form
2090 of va_list, which tracks GPR, FPR and stack arguments separately. */
2091 #define EABI_FLOAT_VARARGS_P \
2092 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2095 /* Say that the epilogue uses the return address register. Note that
2096 in the case of sibcalls, the values "used by the epilogue" are
2097 considered live at the start of the called function.
2099 If using a GOT, say that the epilogue also uses GOT_VERSION_REGNUM.
2100 See the comment above load_call<mode> for details. */
2101 #define EPILOGUE_USES(REGNO) \
2102 ((REGNO) == 31 || (TARGET_USE_GOT && (REGNO) == GOT_VERSION_REGNUM))
2104 /* Treat LOC as a byte offset from the stack pointer and round it up
2105 to the next fully-aligned offset. */
2106 #define MIPS_STACK_ALIGN(LOC) \
2107 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2110 /* Output assembler code to FILE to increment profiler label # LABELNO
2111 for profiling a function entry. */
2113 #define FUNCTION_PROFILER(FILE, LABELNO) \
2115 if (TARGET_MIPS16) \
2116 sorry ("mips16 function profiling"); \
2117 fprintf (FILE, "\t.set\tnoat\n"); \
2118 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2119 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2120 if (!TARGET_NEWABI) \
2122 fprintf (FILE, \
2123 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2124 TARGET_64BIT ? "dsubu" : "subu", \
2125 reg_names[STACK_POINTER_REGNUM], \
2126 reg_names[STACK_POINTER_REGNUM], \
2127 Pmode == DImode ? 16 : 8); \
2129 fprintf (FILE, "\tjal\t_mcount\n"); \
2130 fprintf (FILE, "\t.set\tat\n"); \
2133 /* The profiler preserves all interesting registers, including $31. */
2134 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2136 /* No mips port has ever used the profiler counter word, so don't emit it
2137 or the label for it. */
2139 #define NO_PROFILE_COUNTERS 1
2141 /* Define this macro if the code for function profiling should come
2142 before the function prologue. Normally, the profiling code comes
2143 after. */
2145 /* #define PROFILE_BEFORE_PROLOGUE */
2147 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2148 the stack pointer does not matter. The value is tested only in
2149 functions that have frame pointers.
2150 No definition is equivalent to always zero. */
2152 #define EXIT_IGNORE_STACK 1
2155 /* A C statement to output, on the stream FILE, assembler code for a
2156 block of data that contains the constant parts of a trampoline.
2157 This code should not include a label--the label is taken care of
2158 automatically. */
2160 #define TRAMPOLINE_TEMPLATE(STREAM) \
2162 if (ptr_mode == DImode) \
2163 fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove $1,$31\n"); \
2164 else \
2165 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2166 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2167 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2168 if (ptr_mode == DImode) \
2170 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2171 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2172 fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove $25,$3\n"); \
2174 else \
2176 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2177 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2178 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3\n"); \
2180 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2181 if (ptr_mode == DImode) \
2183 fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove $31,$1\n"); \
2184 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2185 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2187 else \
2189 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2190 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2191 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2195 /* A C expression for the size in bytes of the trampoline, as an
2196 integer. */
2198 #define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2200 /* Alignment required for trampolines, in bits. */
2202 #define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2204 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2205 program and data caches. */
2207 #ifndef CACHE_FLUSH_FUNC
2208 #define CACHE_FLUSH_FUNC "_flush_cache"
2209 #endif
2211 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2212 /* Flush both caches. We need to flush the data cache in case \
2213 the system has a write-back cache. */ \
2214 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2215 0, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2216 GEN_INT (3), TYPE_MODE (integer_type_node))
2218 /* A C statement to initialize the variable parts of a trampoline.
2219 ADDR is an RTX for the address of the trampoline; FNADDR is an
2220 RTX for the address of the nested function; STATIC_CHAIN is an
2221 RTX for the static chain value that should be passed to the
2222 function when it is called. */
2224 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2226 rtx func_addr, chain_addr, end_addr; \
2228 func_addr = plus_constant (ADDR, 32); \
2229 chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
2230 mips_emit_move (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
2231 mips_emit_move (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
2232 end_addr = gen_reg_rtx (Pmode); \
2233 emit_insn (gen_add3_insn (end_addr, copy_rtx (ADDR), \
2234 GEN_INT (TRAMPOLINE_SIZE))); \
2235 emit_insn (gen_clear_cache (copy_rtx (ADDR), end_addr)); \
2238 /* Addressing modes, and classification of registers for them. */
2240 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2241 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2242 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2244 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2245 and check its validity for a certain class.
2246 We have two alternate definitions for each of them.
2247 The usual definition accepts all pseudo regs; the other rejects them all.
2248 The symbol REG_OK_STRICT causes the latter definition to be used.
2250 Most source files want to accept pseudo regs in the hope that
2251 they will get allocated to the class that the insn wants them to be in.
2252 Some source files that are used after register allocation
2253 need to be strict. */
2255 #ifndef REG_OK_STRICT
2256 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2257 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2258 #else
2259 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2260 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2261 #endif
2263 #define REG_OK_FOR_INDEX_P(X) 0
2266 /* Maximum number of registers that can appear in a valid memory address. */
2268 #define MAX_REGS_PER_ADDRESS 1
2270 #ifdef REG_OK_STRICT
2271 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2273 if (mips_legitimate_address_p (MODE, X, 1)) \
2274 goto ADDR; \
2276 #else
2277 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2279 if (mips_legitimate_address_p (MODE, X, 0)) \
2280 goto ADDR; \
2282 #endif
2284 /* Check for constness inline but use mips_legitimate_address_p
2285 to check whether a constant really is an address. */
2287 #define CONSTANT_ADDRESS_P(X) \
2288 (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2290 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2292 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2293 do { \
2294 if (mips_legitimize_address (&(X), MODE)) \
2295 goto WIN; \
2296 } while (0)
2299 /* A C statement or compound statement with a conditional `goto
2300 LABEL;' executed if memory address X (an RTX) can have different
2301 meanings depending on the machine mode of the memory reference it
2302 is used for.
2304 Autoincrement and autodecrement addresses typically have
2305 mode-dependent effects because the amount of the increment or
2306 decrement is the size of the operand being addressed. Some
2307 machines have other mode-dependent addresses. Many RISC machines
2308 have no mode-dependent addresses.
2310 You may assume that ADDR is a valid address for the machine. */
2312 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2314 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2315 'the start of the function that this code is output in'. */
2317 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2318 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2319 asm_fprintf ((FILE), "%U%s", \
2320 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2321 else \
2322 asm_fprintf ((FILE), "%U%s", (NAME))
2324 /* Flag to mark a function decl symbol that requires a long call. */
2325 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2326 #define SYMBOL_REF_LONG_CALL_P(X) \
2327 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2329 /* True if we're generating a form of MIPS16 code in which jump tables
2330 are stored in the text section and encoded as 16-bit PC-relative
2331 offsets. This is only possible when general text loads are allowed,
2332 since the table access itself will be an "lh" instruction. */
2333 /* ??? 16-bit offsets can overflow in large functions. */
2334 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2336 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2338 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2340 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2342 /* Define this as 1 if `char' should by default be signed; else as 0. */
2343 #ifndef DEFAULT_SIGNED_CHAR
2344 #define DEFAULT_SIGNED_CHAR 1
2345 #endif
2347 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2348 we generally don't want to use them for copying arbitrary data.
2349 A single N-word move is usually the same cost as N single-word moves. */
2350 #define MOVE_MAX UNITS_PER_WORD
2351 #define MAX_MOVE_MAX 8
2353 /* Define this macro as a C expression which is nonzero if
2354 accessing less than a word of memory (i.e. a `char' or a
2355 `short') is no faster than accessing a word of memory, i.e., if
2356 such access require more than one instruction or if there is no
2357 difference in cost between byte and (aligned) word loads.
2359 On RISC machines, it tends to generate better code to define
2360 this as 1, since it avoids making a QI or HI mode register.
2362 But, generating word accesses for -mips16 is generally bad as shifts
2363 (often extended) would be needed for byte accesses. */
2364 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2366 /* Define this to be nonzero if shift instructions ignore all but the low-order
2367 few bits. */
2368 #define SHIFT_COUNT_TRUNCATED 1
2370 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2371 is done just by pretending it is already truncated. */
2372 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2373 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2376 /* Specify the machine mode that pointers have.
2377 After generation of rtl, the compiler makes no further distinction
2378 between pointers and any other objects of this machine mode. */
2380 #ifndef Pmode
2381 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2382 #endif
2384 /* Give call MEMs SImode since it is the "most permissive" mode
2385 for both 32-bit and 64-bit targets. */
2387 #define FUNCTION_MODE SImode
2390 /* A C expression for the cost of moving data from a register in
2391 class FROM to one in class TO. The classes are expressed using
2392 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2393 the default; other values are interpreted relative to that.
2395 It is not required that the cost always equal 2 when FROM is the
2396 same as TO; on some machines it is expensive to move between
2397 registers if they are not general registers.
2399 If reload sees an insn consisting of a single `set' between two
2400 hard registers, and if `REGISTER_MOVE_COST' applied to their
2401 classes returns a value of 2, reload does not check to ensure
2402 that the constraints of the insn are met. Setting a cost of
2403 other than 2 will allow reload to verify that the constraints are
2404 met. You should do this if the `movM' pattern's constraints do
2405 not allow such copying. */
2407 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
2408 mips_register_move_cost (MODE, FROM, TO)
2410 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2411 (mips_cost->memory_latency \
2412 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2414 /* Define if copies to/from condition code registers should be avoided.
2416 This is needed for the MIPS because reload_outcc is not complete;
2417 it needs to handle cases where the source is a general or another
2418 condition code register. */
2419 #define AVOID_CCMODE_COPIES
2421 /* A C expression for the cost of a branch instruction. A value of
2422 1 is the default; other values are interpreted relative to that. */
2424 #define BRANCH_COST mips_branch_cost
2425 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2427 /* If defined, modifies the length assigned to instruction INSN as a
2428 function of the context in which it is used. LENGTH is an lvalue
2429 that contains the initially computed length of the insn and should
2430 be updated with the correct length of the insn. */
2431 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2432 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2434 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2435 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2436 its operands. */
2437 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2438 "%*" OPCODE "%?\t" OPERANDS "%/"
2440 /* Return the asm template for a call. INSN is the instruction's mnemonic
2441 ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2442 of the target.
2444 When generating GOT code without explicit relocation operators,
2445 all calls should use assembly macros. Otherwise, all indirect
2446 calls should use "jr" or "jalr"; we will arrange to restore $gp
2447 afterwards if necessary. Finally, we can only generate direct
2448 calls for -mabicalls by temporarily switching to non-PIC mode. */
2449 #define MIPS_CALL(INSN, OPERANDS, OPNO) \
2450 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2451 ? "%*" INSN "\t%" #OPNO "%/" \
2452 : REG_P (OPERANDS[OPNO]) \
2453 ? "%*" INSN "r\t%" #OPNO "%/" \
2454 : TARGET_ABICALLS \
2455 ? (".option\tpic0\n\t" \
2456 "%*" INSN "\t%" #OPNO "%/\n\t" \
2457 ".option\tpic2") \
2458 : "%*" INSN "\t%" #OPNO "%/")
2460 /* Control the assembler format that we output. */
2462 /* Output to assembler file text saying following lines
2463 may contain character constants, extra white space, comments, etc. */
2465 #ifndef ASM_APP_ON
2466 #define ASM_APP_ON " #APP\n"
2467 #endif
2469 /* Output to assembler file text saying following lines
2470 no longer contain unusual constructs. */
2472 #ifndef ASM_APP_OFF
2473 #define ASM_APP_OFF " #NO_APP\n"
2474 #endif
2476 #define REGISTER_NAMES \
2477 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2478 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2479 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2480 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2481 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2482 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2483 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2484 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2485 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2486 "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec", \
2487 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2488 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2489 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2490 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2491 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2492 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2493 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2494 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2495 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2496 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2497 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2498 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2499 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2500 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2502 /* List the "software" names for each register. Also list the numerical
2503 names for $fp and $sp. */
2505 #define ADDITIONAL_REGISTER_NAMES \
2507 { "$29", 29 + GP_REG_FIRST }, \
2508 { "$30", 30 + GP_REG_FIRST }, \
2509 { "at", 1 + GP_REG_FIRST }, \
2510 { "v0", 2 + GP_REG_FIRST }, \
2511 { "v1", 3 + GP_REG_FIRST }, \
2512 { "a0", 4 + GP_REG_FIRST }, \
2513 { "a1", 5 + GP_REG_FIRST }, \
2514 { "a2", 6 + GP_REG_FIRST }, \
2515 { "a3", 7 + GP_REG_FIRST }, \
2516 { "t0", 8 + GP_REG_FIRST }, \
2517 { "t1", 9 + GP_REG_FIRST }, \
2518 { "t2", 10 + GP_REG_FIRST }, \
2519 { "t3", 11 + GP_REG_FIRST }, \
2520 { "t4", 12 + GP_REG_FIRST }, \
2521 { "t5", 13 + GP_REG_FIRST }, \
2522 { "t6", 14 + GP_REG_FIRST }, \
2523 { "t7", 15 + GP_REG_FIRST }, \
2524 { "s0", 16 + GP_REG_FIRST }, \
2525 { "s1", 17 + GP_REG_FIRST }, \
2526 { "s2", 18 + GP_REG_FIRST }, \
2527 { "s3", 19 + GP_REG_FIRST }, \
2528 { "s4", 20 + GP_REG_FIRST }, \
2529 { "s5", 21 + GP_REG_FIRST }, \
2530 { "s6", 22 + GP_REG_FIRST }, \
2531 { "s7", 23 + GP_REG_FIRST }, \
2532 { "t8", 24 + GP_REG_FIRST }, \
2533 { "t9", 25 + GP_REG_FIRST }, \
2534 { "k0", 26 + GP_REG_FIRST }, \
2535 { "k1", 27 + GP_REG_FIRST }, \
2536 { "gp", 28 + GP_REG_FIRST }, \
2537 { "sp", 29 + GP_REG_FIRST }, \
2538 { "fp", 30 + GP_REG_FIRST }, \
2539 { "ra", 31 + GP_REG_FIRST }, \
2540 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2543 /* This is meant to be redefined in the host dependent files. It is a
2544 set of alternative names and regnums for mips coprocessors. */
2546 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2548 #define PRINT_OPERAND mips_print_operand
2549 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2550 #define PRINT_OPERAND_ADDRESS mips_print_operand_address
2552 /* A C statement, to be executed after all slot-filler instructions
2553 have been output. If necessary, call `dbr_sequence_length' to
2554 determine the number of slots filled in a sequence (zero if not
2555 currently outputting a sequence), to decide how many no-ops to
2556 output, or whatever.
2558 Don't define this macro if it has nothing to do, but it is
2559 helpful in reading assembly output if the extent of the delay
2560 sequence is made explicit (e.g. with white space).
2562 Note that output routines for instructions with delay slots must
2563 be prepared to deal with not being output as part of a sequence
2564 (i.e. when the scheduling pass is not run, or when no slot
2565 fillers could be found.) The variable `final_sequence' is null
2566 when not processing a sequence, otherwise it contains the
2567 `sequence' rtx being output. */
2569 #define DBR_OUTPUT_SEQEND(STREAM) \
2570 do \
2572 if (set_nomacro > 0 && --set_nomacro == 0) \
2573 fputs ("\t.set\tmacro\n", STREAM); \
2575 if (set_noreorder > 0 && --set_noreorder == 0) \
2576 fputs ("\t.set\treorder\n", STREAM); \
2578 fputs ("\n", STREAM); \
2580 while (0)
2582 /* How to tell the debugger about changes of source files. */
2583 #define ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
2585 /* mips-tfile does not understand .stabd directives. */
2586 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2587 dbxout_begin_stabn_sline (LINE); \
2588 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2589 } while (0)
2591 /* Use .loc directives for SDB line numbers. */
2592 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2593 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2595 /* The MIPS implementation uses some labels for its own purpose. The
2596 following lists what labels are created, and are all formed by the
2597 pattern $L[a-z].*. The machine independent portion of GCC creates
2598 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2600 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2601 $Lb[0-9]+ Begin blocks for MIPS debug support
2602 $Lc[0-9]+ Label for use in s<xx> operation.
2603 $Le[0-9]+ End blocks for MIPS debug support */
2605 #undef ASM_DECLARE_OBJECT_NAME
2606 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2607 mips_declare_object (STREAM, NAME, "", ":\n")
2609 /* Globalizing directive for a label. */
2610 #define GLOBAL_ASM_OP "\t.globl\t"
2612 /* This says how to define a global common symbol. */
2614 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2616 /* This says how to define a local common symbol (i.e., not visible to
2617 linker). */
2619 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2620 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2621 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2622 #endif
2624 /* This says how to output an external. It would be possible not to
2625 output anything and let undefined symbol become external. However
2626 the assembler uses length information on externals to allocate in
2627 data/sdata bss/sbss, thereby saving exec time. */
2629 #undef ASM_OUTPUT_EXTERNAL
2630 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2631 mips_output_external(STREAM,DECL,NAME)
2633 /* This is how to declare a function name. The actual work of
2634 emitting the label is moved to function_prologue, so that we can
2635 get the line number correctly emitted before the .ent directive,
2636 and after any .file directives. Define as empty so that the function
2637 is not declared before the .ent directive elsewhere. */
2639 #undef ASM_DECLARE_FUNCTION_NAME
2640 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2642 #ifndef FUNCTION_NAME_ALREADY_DECLARED
2643 #define FUNCTION_NAME_ALREADY_DECLARED 0
2644 #endif
2646 /* This is how to store into the string LABEL
2647 the symbol_ref name of an internal numbered label where
2648 PREFIX is the class of label and NUM is the number within the class.
2649 This is suitable for output with `assemble_name'. */
2651 #undef ASM_GENERATE_INTERNAL_LABEL
2652 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2653 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2655 /* This is how to output an element of a case-vector that is absolute. */
2657 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2658 fprintf (STREAM, "\t%s\t%sL%d\n", \
2659 ptr_mode == DImode ? ".dword" : ".word", \
2660 LOCAL_LABEL_PREFIX, \
2661 VALUE)
2663 /* This is how to output an element of a case-vector. We can make the
2664 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2665 is supported. */
2667 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2668 do { \
2669 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2670 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2671 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2672 else if (TARGET_GPWORD) \
2673 fprintf (STREAM, "\t%s\t%sL%d\n", \
2674 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2675 LOCAL_LABEL_PREFIX, VALUE); \
2676 else if (TARGET_RTP_PIC) \
2678 /* Make the entry relative to the start of the function. */ \
2679 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2680 fprintf (STREAM, "\t%s\t%sL%d-", \
2681 Pmode == DImode ? ".dword" : ".word", \
2682 LOCAL_LABEL_PREFIX, VALUE); \
2683 assemble_name (STREAM, XSTR (fnsym, 0)); \
2684 fprintf (STREAM, "\n"); \
2686 else \
2687 fprintf (STREAM, "\t%s\t%sL%d\n", \
2688 ptr_mode == DImode ? ".dword" : ".word", \
2689 LOCAL_LABEL_PREFIX, VALUE); \
2690 } while (0)
2692 /* This is how to output an assembler line
2693 that says to advance the location counter
2694 to a multiple of 2**LOG bytes. */
2696 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2697 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2699 /* This is how to output an assembler line to advance the location
2700 counter by SIZE bytes. */
2702 #undef ASM_OUTPUT_SKIP
2703 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2704 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2706 /* This is how to output a string. */
2707 #undef ASM_OUTPUT_ASCII
2708 #define ASM_OUTPUT_ASCII mips_output_ascii
2710 /* Output #ident as a in the read-only data section. */
2711 #undef ASM_OUTPUT_IDENT
2712 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2714 const char *p = STRING; \
2715 int size = strlen (p) + 1; \
2716 switch_to_section (readonly_data_section); \
2717 assemble_string (p, size); \
2720 /* Default to -G 8 */
2721 #ifndef MIPS_DEFAULT_GVALUE
2722 #define MIPS_DEFAULT_GVALUE 8
2723 #endif
2725 /* Define the strings to put out for each section in the object file. */
2726 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2727 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2729 #undef READONLY_DATA_SECTION_ASM_OP
2730 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2732 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2733 do \
2735 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2736 TARGET_64BIT ? "daddiu" : "addiu", \
2737 reg_names[STACK_POINTER_REGNUM], \
2738 reg_names[STACK_POINTER_REGNUM], \
2739 TARGET_64BIT ? "sd" : "sw", \
2740 reg_names[REGNO], \
2741 reg_names[STACK_POINTER_REGNUM]); \
2743 while (0)
2745 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2746 do \
2748 if (! set_noreorder) \
2749 fprintf (STREAM, "\t.set\tnoreorder\n"); \
2751 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2752 TARGET_64BIT ? "ld" : "lw", \
2753 reg_names[REGNO], \
2754 reg_names[STACK_POINTER_REGNUM], \
2755 TARGET_64BIT ? "daddu" : "addu", \
2756 reg_names[STACK_POINTER_REGNUM], \
2757 reg_names[STACK_POINTER_REGNUM]); \
2759 if (! set_noreorder) \
2760 fprintf (STREAM, "\t.set\treorder\n"); \
2762 while (0)
2764 /* How to start an assembler comment.
2765 The leading space is important (the mips native assembler requires it). */
2766 #ifndef ASM_COMMENT_START
2767 #define ASM_COMMENT_START " #"
2768 #endif
2770 /* Default definitions for size_t and ptrdiff_t. We must override the
2771 definitions from ../svr4.h on mips-*-linux-gnu. */
2773 #undef SIZE_TYPE
2774 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2776 #undef PTRDIFF_TYPE
2777 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2779 /* The maximum number of bytes that can be copied by one iteration of
2780 a movmemsi loop; see mips_block_move_loop. */
2781 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2782 (UNITS_PER_WORD * 4)
2784 /* The maximum number of bytes that can be copied by a straight-line
2785 implementation of movmemsi; see mips_block_move_straight. We want
2786 to make sure that any loop-based implementation will iterate at
2787 least twice. */
2788 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2789 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2791 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2792 values were determined experimentally by benchmarking with CSiBE.
2793 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2794 for o32 where we have to restore $gp afterwards as well as make an
2795 indirect call), but in practice, bumping this up higher for
2796 TARGET_ABICALLS doesn't make much difference to code size. */
2798 #define MIPS_CALL_RATIO 8
2800 /* Any loop-based implementation of movmemsi will have at least
2801 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2802 moves, so allow individual copies of fewer elements.
2804 When movmemsi is not available, use a value approximating
2805 the length of a memcpy call sequence, so that move_by_pieces
2806 will generate inline code if it is shorter than a function call.
2807 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2808 we'll have to generate a load/store pair for each, halve the
2809 value of MIPS_CALL_RATIO to take that into account. */
2811 #define MOVE_RATIO \
2812 (HAVE_movmemsi \
2813 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2814 : MIPS_CALL_RATIO / 2)
2816 /* movmemsi is meant to generate code that is at least as good as
2817 move_by_pieces. However, movmemsi effectively uses a by-pieces
2818 implementation both for moves smaller than a word and for word-aligned
2819 moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes. We should
2820 allow the tree-level optimisers to do such moves by pieces, as it
2821 often exposes other optimization opportunities. We might as well
2822 continue to use movmemsi at the rtl level though, as it produces
2823 better code when scheduling is disabled (such as at -O). */
2825 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2826 (HAVE_movmemsi \
2827 ? (!currently_expanding_to_rtl \
2828 && ((ALIGN) < BITS_PER_WORD \
2829 ? (SIZE) < UNITS_PER_WORD \
2830 : (SIZE) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)) \
2831 : (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
2832 < (unsigned int) MOVE_RATIO))
2834 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2835 of the length of a memset call, but use the default otherwise. */
2837 #define CLEAR_RATIO \
2838 (optimize_size ? MIPS_CALL_RATIO : 15)
2840 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2841 optimizing for size adjust the ratio to account for the overhead of
2842 loading the constant and replicating it across the word. */
2844 #define SET_RATIO \
2845 (optimize_size ? MIPS_CALL_RATIO - 2 : 15)
2847 /* STORE_BY_PIECES_P can be used when copying a constant string, but
2848 in that case each word takes 3 insns (lui, ori, sw), or more in
2849 64-bit mode, instead of 2 (lw, sw). For now we always fail this
2850 and let the move_by_pieces code copy the string from read-only
2851 memory. In the future, this could be tuned further for multi-issue
2852 CPUs that can issue stores down one pipe and arithmetic instructions
2853 down another; in that case, the lui/ori/sw combination would be a
2854 win for long enough strings. */
2856 #define STORE_BY_PIECES_P(SIZE, ALIGN) 0
2858 #ifndef __mips16
2859 /* Since the bits of the _init and _fini function is spread across
2860 many object files, each potentially with its own GP, we must assume
2861 we need to load our GP. We don't preserve $gp or $ra, since each
2862 init/fini chunk is supposed to initialize $gp, and crti/crtn
2863 already take care of preserving $ra and, when appropriate, $gp. */
2864 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2865 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2866 asm (SECTION_OP "\n\
2867 .set noreorder\n\
2868 bal 1f\n\
2869 nop\n\
2870 1: .cpload $31\n\
2871 .set reorder\n\
2872 jal " USER_LABEL_PREFIX #FUNC "\n\
2873 " TEXT_SECTION_ASM_OP);
2874 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2875 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2876 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2877 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2878 asm (SECTION_OP "\n\
2879 .set noreorder\n\
2880 bal 1f\n\
2881 nop\n\
2882 1: .set reorder\n\
2883 .cpsetup $31, $2, 1b\n\
2884 jal " USER_LABEL_PREFIX #FUNC "\n\
2885 " TEXT_SECTION_ASM_OP);
2886 #endif
2887 #endif
2889 #ifndef HAVE_AS_TLS
2890 #define HAVE_AS_TLS 0
2891 #endif
2893 /* Return an asm string that atomically:
2895 - Compares memory reference %1 to register %2 and, if they are
2896 equal, changes %1 to %3.
2898 - Sets register %0 to the old value of memory reference %1.
2900 SUFFIX is the suffix that should be added to "ll" and "sc" instructions
2901 and OP is the instruction that should be used to load %3 into a
2902 register. */
2903 #define MIPS_COMPARE_AND_SWAP(SUFFIX, OP) \
2904 "%(%<%[%|sync\n" \
2905 "1:\tll" SUFFIX "\t%0,%1\n" \
2906 "\tbne\t%0,%z2,2f\n" \
2907 "\t" OP "\t%@,%3\n" \
2908 "\tsc" SUFFIX "\t%@,%1\n" \
2909 "\tbeq\t%@,%.,1b\n" \
2910 "\tnop\n" \
2911 "\tsync%-%]%>%)\n" \
2912 "2:\n"
2914 /* Return an asm string that atomically:
2916 - Given that %2 contains a bit mask and %3 the inverted mask and
2917 that %4 and %5 have already been ANDed with %2.
2919 - Compares the bits in memory reference %1 selected by mask %2 to
2920 register %4 and, if they are equal, changes the selected bits
2921 in memory to %5.
2923 - Sets register %0 to the old value of memory reference %1.
2925 OPS are the instructions needed to OR %5 with %@. */
2926 #define MIPS_COMPARE_AND_SWAP_12(OPS) \
2927 "%(%<%[%|sync\n" \
2928 "1:\tll\t%0,%1\n" \
2929 "\tand\t%@,%0,%2\n" \
2930 "\tbne\t%@,%z4,2f\n" \
2931 "\tand\t%@,%0,%3\n" \
2932 OPS \
2933 "\tsc\t%@,%1\n" \
2934 "\tbeq\t%@,%.,1b\n" \
2935 "\tnop\n" \
2936 "\tsync%-%]%>%)\n" \
2937 "2:\n"
2939 #define MIPS_COMPARE_AND_SWAP_12_ZERO_OP ""
2940 #define MIPS_COMPARE_AND_SWAP_12_NONZERO_OP "\tor\t%@,%@,%5\n"
2943 /* Return an asm string that atomically:
2945 - Sets memory reference %0 to %0 INSN %1.
2947 SUFFIX is the suffix that should be added to "ll" and "sc"
2948 instructions. */
2949 #define MIPS_SYNC_OP(SUFFIX, INSN) \
2950 "%(%<%[%|sync\n" \
2951 "1:\tll" SUFFIX "\t%@,%0\n" \
2952 "\t" INSN "\t%@,%@,%1\n" \
2953 "\tsc" SUFFIX "\t%@,%0\n" \
2954 "\tbeq\t%@,%.,1b\n" \
2955 "\tnop\n" \
2956 "\tsync%-%]%>%)"
2958 /* Return an asm string that atomically:
2960 - Given that %1 contains a bit mask and %2 the inverted mask and
2961 that %3 has already been ANDed with %1.
2963 - Sets the selected bits of memory reference %0 to %0 INSN %3.
2965 - Uses scratch register %4.
2967 NOT_OP are the optional instructions to do a bit-wise not
2968 operation in conjunction with an AND INSN to generate a sync_nand
2969 operation. */
2970 #define MIPS_SYNC_OP_12(INSN, NOT_OP) \
2971 "%(%<%[%|sync\n" \
2972 "1:\tll\t%4,%0\n" \
2973 "\tand\t%@,%4,%2\n" \
2974 NOT_OP \
2975 "\t" INSN "\t%4,%4,%z3\n" \
2976 "\tand\t%4,%4,%1\n" \
2977 "\tor\t%@,%@,%4\n" \
2978 "\tsc\t%@,%0\n" \
2979 "\tbeq\t%@,%.,1b\n" \
2980 "\tnop\n" \
2981 "\tsync%-%]%>%)"
2983 #define MIPS_SYNC_OP_12_NOT_NOP ""
2984 #define MIPS_SYNC_OP_12_NOT_NOT "\tnor\t%4,%4,%.\n"
2986 /* Return an asm string that atomically:
2988 - Given that %2 contains a bit mask and %3 the inverted mask and
2989 that %4 has already been ANDed with %2.
2991 - Sets the selected bits of memory reference %1 to %1 INSN %4.
2993 - Sets %0 to the original value of %1.
2995 - Uses scratch register %5.
2997 NOT_OP are the optional instructions to do a bit-wise not
2998 operation in conjunction with an AND INSN to generate a sync_nand
2999 operation.
3001 REG is used in conjunction with NOT_OP and is used to select the
3002 register operated on by the INSN. */
3003 #define MIPS_SYNC_OLD_OP_12(INSN, NOT_OP, REG) \
3004 "%(%<%[%|sync\n" \
3005 "1:\tll\t%0,%1\n" \
3006 "\tand\t%@,%0,%3\n" \
3007 NOT_OP \
3008 "\t" INSN "\t%5," REG ",%z4\n" \
3009 "\tand\t%5,%5,%2\n" \
3010 "\tor\t%@,%@,%5\n" \
3011 "\tsc\t%@,%1\n" \
3012 "\tbeq\t%@,%.,1b\n" \
3013 "\tnop\n" \
3014 "\tsync%-%]%>%)"
3016 #define MIPS_SYNC_OLD_OP_12_NOT_NOP ""
3017 #define MIPS_SYNC_OLD_OP_12_NOT_NOP_REG "%0"
3018 #define MIPS_SYNC_OLD_OP_12_NOT_NOT "\tnor\t%5,%0,%.\n"
3019 #define MIPS_SYNC_OLD_OP_12_NOT_NOT_REG "%5"
3021 /* Return an asm string that atomically:
3023 - Given that %2 contains a bit mask and %3 the inverted mask and
3024 that %4 has already been ANDed with %2.
3026 - Sets the selected bits of memory reference %1 to %1 INSN %4.
3028 - Sets %0 to the new value of %1.
3030 NOT_OP are the optional instructions to do a bit-wise not
3031 operation in conjunction with an AND INSN to generate a sync_nand
3032 operation. */
3033 #define MIPS_SYNC_NEW_OP_12(INSN, NOT_OP) \
3034 "%(%<%[%|sync\n" \
3035 "1:\tll\t%0,%1\n" \
3036 "\tand\t%@,%0,%3\n" \
3037 NOT_OP \
3038 "\t" INSN "\t%0,%0,%z4\n" \
3039 "\tand\t%0,%0,%2\n" \
3040 "\tor\t%@,%@,%0\n" \
3041 "\tsc\t%@,%1\n" \
3042 "\tbeq\t%@,%.,1b\n" \
3043 "\tnop\n" \
3044 "\tsync%-%]%>%)"
3046 #define MIPS_SYNC_NEW_OP_12_NOT_NOP ""
3047 #define MIPS_SYNC_NEW_OP_12_NOT_NOT "\tnor\t%0,%0,%.\n"
3049 /* Return an asm string that atomically:
3051 - Sets memory reference %1 to %1 INSN %2.
3053 - Sets register %0 to the old value of memory reference %1.
3055 SUFFIX is the suffix that should be added to "ll" and "sc"
3056 instructions. */
3057 #define MIPS_SYNC_OLD_OP(SUFFIX, INSN) \
3058 "%(%<%[%|sync\n" \
3059 "1:\tll" SUFFIX "\t%0,%1\n" \
3060 "\t" INSN "\t%@,%0,%2\n" \
3061 "\tsc" SUFFIX "\t%@,%1\n" \
3062 "\tbeq\t%@,%.,1b\n" \
3063 "\tnop\n" \
3064 "\tsync%-%]%>%)"
3066 /* Return an asm string that atomically:
3068 - Sets memory reference %1 to %1 INSN %2.
3070 - Sets register %0 to the new value of memory reference %1.
3072 SUFFIX is the suffix that should be added to "ll" and "sc"
3073 instructions. */
3074 #define MIPS_SYNC_NEW_OP(SUFFIX, INSN) \
3075 "%(%<%[%|sync\n" \
3076 "1:\tll" SUFFIX "\t%0,%1\n" \
3077 "\t" INSN "\t%@,%0,%2\n" \
3078 "\tsc" SUFFIX "\t%@,%1\n" \
3079 "\tbeq\t%@,%.,1b\n" \
3080 "\t" INSN "\t%0,%0,%2\n" \
3081 "\tsync%-%]%>%)"
3083 /* Return an asm string that atomically:
3085 - Sets memory reference %0 to ~%0 AND %1.
3087 SUFFIX is the suffix that should be added to "ll" and "sc"
3088 instructions. INSN is the and instruction needed to and a register
3089 with %2. */
3090 #define MIPS_SYNC_NAND(SUFFIX, INSN) \
3091 "%(%<%[%|sync\n" \
3092 "1:\tll" SUFFIX "\t%@,%0\n" \
3093 "\tnor\t%@,%@,%.\n" \
3094 "\t" INSN "\t%@,%@,%1\n" \
3095 "\tsc" SUFFIX "\t%@,%0\n" \
3096 "\tbeq\t%@,%.,1b\n" \
3097 "\tnop\n" \
3098 "\tsync%-%]%>%)"
3100 /* Return an asm string that atomically:
3102 - Sets memory reference %1 to ~%1 AND %2.
3104 - Sets register %0 to the old value of memory reference %1.
3106 SUFFIX is the suffix that should be added to "ll" and "sc"
3107 instructions. INSN is the and instruction needed to and a register
3108 with %2. */
3109 #define MIPS_SYNC_OLD_NAND(SUFFIX, INSN) \
3110 "%(%<%[%|sync\n" \
3111 "1:\tll" SUFFIX "\t%0,%1\n" \
3112 "\tnor\t%@,%0,%.\n" \
3113 "\t" INSN "\t%@,%@,%2\n" \
3114 "\tsc" SUFFIX "\t%@,%1\n" \
3115 "\tbeq\t%@,%.,1b\n" \
3116 "\tnop\n" \
3117 "\tsync%-%]%>%)"
3119 /* Return an asm string that atomically:
3121 - Sets memory reference %1 to ~%1 AND %2.
3123 - Sets register %0 to the new value of memory reference %1.
3125 SUFFIX is the suffix that should be added to "ll" and "sc"
3126 instructions. INSN is the and instruction needed to and a register
3127 with %2. */
3128 #define MIPS_SYNC_NEW_NAND(SUFFIX, INSN) \
3129 "%(%<%[%|sync\n" \
3130 "1:\tll" SUFFIX "\t%0,%1\n" \
3131 "\tnor\t%0,%0,%.\n" \
3132 "\t" INSN "\t%@,%0,%2\n" \
3133 "\tsc" SUFFIX "\t%@,%1\n" \
3134 "\tbeq\t%@,%.,1b\n" \
3135 "\t" INSN "\t%0,%0,%2\n" \
3136 "\tsync%-%]%>%)"
3138 /* Return an asm string that atomically:
3140 - Sets memory reference %1 to %2.
3142 - Sets register %0 to the old value of memory reference %1.
3144 SUFFIX is the suffix that should be added to "ll" and "sc"
3145 instructions. OP is the and instruction that should be used to
3146 load %2 into a register. */
3147 #define MIPS_SYNC_EXCHANGE(SUFFIX, OP) \
3148 "%(%<%[%|\n" \
3149 "1:\tll" SUFFIX "\t%0,%1\n" \
3150 "\t" OP "\t%@,%2\n" \
3151 "\tsc" SUFFIX "\t%@,%1\n" \
3152 "\tbeq\t%@,%.,1b\n" \
3153 "\tnop\n" \
3154 "\tsync%-%]%>%)"
3156 /* Return an asm string that atomically:
3158 - Given that %2 contains an inclusive mask, %3 and exclusive mask
3159 and %4 has already been ANDed with the inclusive mask.
3161 - Sets bits selected by the inclusive mask of memory reference %1
3162 to %4.
3164 - Sets register %0 to the old value of memory reference %1.
3166 OPS are the instructions needed to OR %4 with %@.
3168 Operand %2 is unused, but needed as to give the test_and_set_12
3169 insn the five operands expected by the expander. */
3170 #define MIPS_SYNC_EXCHANGE_12(OPS) \
3171 "%(%<%[%|\n" \
3172 "1:\tll\t%0,%1\n" \
3173 "\tand\t%@,%0,%3\n" \
3174 OPS \
3175 "\tsc\t%@,%1\n" \
3176 "\tbeq\t%@,%.,1b\n" \
3177 "\tnop\n" \
3178 "\tsync%-%]%>%)"
3180 #define MIPS_SYNC_EXCHANGE_12_ZERO_OP ""
3181 #define MIPS_SYNC_EXCHANGE_12_NONZERO_OP "\tor\t%@,%@,%4\n"
3183 #ifndef USED_FOR_TARGET
3184 extern const enum reg_class mips_regno_to_class[];
3185 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
3186 extern bool mips_print_operand_punct[256];
3187 extern const char *current_function_file; /* filename current function is in */
3188 extern int num_source_filenames; /* current .file # */
3189 extern int set_noreorder; /* # of nested .set noreorder's */
3190 extern int set_nomacro; /* # of nested .set nomacro's */
3191 extern int mips_dbx_regno[];
3192 extern int mips_dwarf_regno[];
3193 extern bool mips_split_p[];
3194 extern GTY(()) rtx cmp_operands[2];
3195 extern enum processor_type mips_arch; /* which cpu to codegen for */
3196 extern enum processor_type mips_tune; /* which cpu to schedule for */
3197 extern int mips_isa; /* architectural level */
3198 extern int mips_abi; /* which ABI to use */
3199 extern const struct mips_cpu_info *mips_arch_info;
3200 extern const struct mips_cpu_info *mips_tune_info;
3201 extern const struct mips_rtx_cost_data *mips_cost;
3202 extern enum mips_code_readable_setting mips_code_readable;
3203 #endif