2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / m68k / m68k.c
blob52a60da06640d208739c7aa22c6004e2a15c81bc
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "recog.h"
37 #include "toplev.h"
38 #include "expr.h"
39 #include "reload.h"
40 #include "tm_p.h"
41 #include "target.h"
42 #include "target-def.h"
43 #include "debug.h"
44 #include "flags.h"
45 #include "df.h"
46 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
47 #include "sched-int.h"
48 #include "insn-codes.h"
50 enum reg_class regno_reg_class[] =
52 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
53 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
54 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
55 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
56 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
57 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
58 ADDR_REGS
62 /* The minimum number of integer registers that we want to save with the
63 movem instruction. Using two movel instructions instead of a single
64 moveml is about 15% faster for the 68020 and 68030 at no expense in
65 code size. */
66 #define MIN_MOVEM_REGS 3
68 /* The minimum number of floating point registers that we want to save
69 with the fmovem instruction. */
70 #define MIN_FMOVEM_REGS 1
72 /* Structure describing stack frame layout. */
73 struct m68k_frame
75 /* Stack pointer to frame pointer offset. */
76 HOST_WIDE_INT offset;
78 /* Offset of FPU registers. */
79 HOST_WIDE_INT foffset;
81 /* Frame size in bytes (rounded up). */
82 HOST_WIDE_INT size;
84 /* Data and address register. */
85 int reg_no;
86 unsigned int reg_mask;
88 /* FPU registers. */
89 int fpu_no;
90 unsigned int fpu_mask;
92 /* Offsets relative to ARG_POINTER. */
93 HOST_WIDE_INT frame_pointer_offset;
94 HOST_WIDE_INT stack_pointer_offset;
96 /* Function which the above information refers to. */
97 int funcdef_no;
100 /* Current frame information calculated by m68k_compute_frame_layout(). */
101 static struct m68k_frame current_frame;
103 /* Structure describing an m68k address.
105 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
106 with null fields evaluating to 0. Here:
108 - BASE satisfies m68k_legitimate_base_reg_p
109 - INDEX satisfies m68k_legitimate_index_reg_p
110 - OFFSET satisfies m68k_legitimate_constant_address_p
112 INDEX is either HImode or SImode. The other fields are SImode.
114 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
115 the address is (BASE)+. */
116 struct m68k_address {
117 enum rtx_code code;
118 rtx base;
119 rtx index;
120 rtx offset;
121 int scale;
124 static int m68k_sched_adjust_cost (rtx, rtx, rtx, int);
125 static int m68k_sched_issue_rate (void);
126 static int m68k_sched_variable_issue (FILE *, int, rtx, int);
127 static void m68k_sched_md_init_global (FILE *, int, int);
128 static void m68k_sched_md_finish_global (FILE *, int);
129 static void m68k_sched_md_init (FILE *, int, int);
130 static void m68k_sched_dfa_pre_advance_cycle (void);
131 static void m68k_sched_dfa_post_advance_cycle (void);
132 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
134 static bool m68k_handle_option (size_t, const char *, int);
135 static rtx find_addr_reg (rtx);
136 static const char *singlemove_string (rtx *);
137 #ifdef M68K_TARGET_COFF
138 static void m68k_coff_asm_named_section (const char *, unsigned int, tree);
139 #endif /* M68K_TARGET_COFF */
140 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
141 HOST_WIDE_INT, tree);
142 static rtx m68k_struct_value_rtx (tree, int);
143 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
144 tree args, int flags,
145 bool *no_add_attrs);
146 static void m68k_compute_frame_layout (void);
147 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
148 static bool m68k_ok_for_sibcall_p (tree, tree);
149 static bool m68k_rtx_costs (rtx, int, int, int *);
150 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
151 static bool m68k_return_in_memory (tree, tree);
152 #endif
155 /* Specify the identification number of the library being built */
156 const char *m68k_library_id_string = "_current_shared_library_a5_offset_";
158 /* Nonzero if the last compare/test insn had FP operands. The
159 sCC expanders peek at this to determine what to do for the
160 68060, which has no fsCC instructions. */
161 int m68k_last_compare_had_fp_operands;
163 /* Initialize the GCC target structure. */
165 #if INT_OP_GROUP == INT_OP_DOT_WORD
166 #undef TARGET_ASM_ALIGNED_HI_OP
167 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
168 #endif
170 #if INT_OP_GROUP == INT_OP_NO_DOT
171 #undef TARGET_ASM_BYTE_OP
172 #define TARGET_ASM_BYTE_OP "\tbyte\t"
173 #undef TARGET_ASM_ALIGNED_HI_OP
174 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
175 #undef TARGET_ASM_ALIGNED_SI_OP
176 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
177 #endif
179 #if INT_OP_GROUP == INT_OP_DC
180 #undef TARGET_ASM_BYTE_OP
181 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
182 #undef TARGET_ASM_ALIGNED_HI_OP
183 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
184 #undef TARGET_ASM_ALIGNED_SI_OP
185 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
186 #endif
188 #undef TARGET_ASM_UNALIGNED_HI_OP
189 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
190 #undef TARGET_ASM_UNALIGNED_SI_OP
191 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
193 #undef TARGET_ASM_OUTPUT_MI_THUNK
194 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
195 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
196 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
198 #undef TARGET_ASM_FILE_START_APP_OFF
199 #define TARGET_ASM_FILE_START_APP_OFF true
201 #undef TARGET_SCHED_ADJUST_COST
202 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
204 #undef TARGET_SCHED_ISSUE_RATE
205 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
207 #undef TARGET_SCHED_VARIABLE_ISSUE
208 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
210 #undef TARGET_SCHED_INIT_GLOBAL
211 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
213 #undef TARGET_SCHED_FINISH_GLOBAL
214 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
216 #undef TARGET_SCHED_INIT
217 #define TARGET_SCHED_INIT m68k_sched_md_init
219 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
220 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
222 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
223 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
225 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
226 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
227 m68k_sched_first_cycle_multipass_dfa_lookahead
229 #undef TARGET_HANDLE_OPTION
230 #define TARGET_HANDLE_OPTION m68k_handle_option
232 #undef TARGET_RTX_COSTS
233 #define TARGET_RTX_COSTS m68k_rtx_costs
235 #undef TARGET_ATTRIBUTE_TABLE
236 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
238 #undef TARGET_PROMOTE_PROTOTYPES
239 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
241 #undef TARGET_STRUCT_VALUE_RTX
242 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
244 #undef TARGET_CANNOT_FORCE_CONST_MEM
245 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_illegitimate_symbolic_constant_p
247 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
248 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
250 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
251 #undef TARGET_RETURN_IN_MEMORY
252 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
253 #endif
255 static const struct attribute_spec m68k_attribute_table[] =
257 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
258 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
259 { "interrupt_handler", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
260 { "interrupt_thread", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
261 { NULL, 0, 0, false, false, false, NULL }
264 struct gcc_target targetm = TARGET_INITIALIZER;
266 /* Base flags for 68k ISAs. */
267 #define FL_FOR_isa_00 FL_ISA_68000
268 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
269 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
270 generated 68881 code for 68020 and 68030 targets unless explicitly told
271 not to. */
272 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
273 | FL_BITFIELD | FL_68881)
274 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
275 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
277 /* Base flags for ColdFire ISAs. */
278 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
279 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
280 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
281 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
282 /* ISA_C is not upwardly compatible with ISA_B. */
283 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
285 enum m68k_isa
287 /* Traditional 68000 instruction sets. */
288 isa_00,
289 isa_10,
290 isa_20,
291 isa_40,
292 isa_cpu32,
293 /* ColdFire instruction set variants. */
294 isa_a,
295 isa_aplus,
296 isa_b,
297 isa_c,
298 isa_max
301 /* Information about one of the -march, -mcpu or -mtune arguments. */
302 struct m68k_target_selection
304 /* The argument being described. */
305 const char *name;
307 /* For -mcpu, this is the device selected by the option.
308 For -mtune and -march, it is a representative device
309 for the microarchitecture or ISA respectively. */
310 enum target_device device;
312 /* The M68K_DEVICE fields associated with DEVICE. See the comment
313 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
314 const char *family;
315 enum uarch_type microarch;
316 enum m68k_isa isa;
317 unsigned long flags;
320 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
321 static const struct m68k_target_selection all_devices[] =
323 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
324 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
325 #include "m68k-devices.def"
326 #undef M68K_DEVICE
327 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
330 /* A list of all ISAs, mapping each one to a representative device.
331 Used for -march selection. */
332 static const struct m68k_target_selection all_isas[] =
334 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
335 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
336 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
337 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
338 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
339 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
340 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
341 { "isaa", mcf5206e, NULL, ucfv2, isa_a, (FL_FOR_isa_a
342 | FL_CF_HWDIV) },
343 { "isaaplus", mcf5271, NULL, ucfv2, isa_aplus, (FL_FOR_isa_aplus
344 | FL_CF_HWDIV) },
345 { "isab", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
346 { "isac", unk_device, NULL, ucfv4, isa_c, (FL_FOR_isa_c
347 | FL_CF_HWDIV) },
348 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
351 /* A list of all microarchitectures, mapping each one to a representative
352 device. Used for -mtune selection. */
353 static const struct m68k_target_selection all_microarchs[] =
355 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
356 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
357 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
358 { "68020-40", m68020, NULL, u68020_40, isa_20, FL_FOR_isa_20 },
359 { "68020-60", m68020, NULL, u68020_60, isa_20, FL_FOR_isa_20 },
360 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
361 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
362 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
363 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
364 { "cfv1", mcf51qe, NULL, ucfv1, isa_c, FL_FOR_isa_c },
365 { "cfv2", mcf5206, NULL, ucfv2, isa_a, FL_FOR_isa_a },
366 { "cfv3", mcf5307, NULL, ucfv3, isa_a, (FL_FOR_isa_a
367 | FL_CF_HWDIV) },
368 { "cfv4", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
369 { "cfv4e", mcf547x, NULL, ucfv4e, isa_b, (FL_FOR_isa_b
370 | FL_CF_USP
371 | FL_CF_EMAC
372 | FL_CF_FPU) },
373 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
376 /* The entries associated with the -mcpu, -march and -mtune settings,
377 or null for options that have not been used. */
378 const struct m68k_target_selection *m68k_cpu_entry;
379 const struct m68k_target_selection *m68k_arch_entry;
380 const struct m68k_target_selection *m68k_tune_entry;
382 /* Which CPU we are generating code for. */
383 enum target_device m68k_cpu;
385 /* Which microarchitecture to tune for. */
386 enum uarch_type m68k_tune;
388 /* Which FPU to use. */
389 enum fpu_type m68k_fpu;
391 /* The set of FL_* flags that apply to the target processor. */
392 unsigned int m68k_cpu_flags;
394 /* Asm templates for calling or jumping to an arbitrary symbolic address,
395 or NULL if such calls or jumps are not supported. The address is held
396 in operand 0. */
397 const char *m68k_symbolic_call;
398 const char *m68k_symbolic_jump;
400 /* Enum variable that corresponds to m68k_symbolic_call values. */
401 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
404 /* See whether TABLE has an entry with name NAME. Return true and
405 store the entry in *ENTRY if so, otherwise return false and
406 leave *ENTRY alone. */
408 static bool
409 m68k_find_selection (const struct m68k_target_selection **entry,
410 const struct m68k_target_selection *table,
411 const char *name)
413 size_t i;
415 for (i = 0; table[i].name; i++)
416 if (strcmp (table[i].name, name) == 0)
418 *entry = table + i;
419 return true;
421 return false;
424 /* Implement TARGET_HANDLE_OPTION. */
426 static bool
427 m68k_handle_option (size_t code, const char *arg, int value)
429 switch (code)
431 case OPT_march_:
432 return m68k_find_selection (&m68k_arch_entry, all_isas, arg);
434 case OPT_mcpu_:
435 return m68k_find_selection (&m68k_cpu_entry, all_devices, arg);
437 case OPT_mtune_:
438 return m68k_find_selection (&m68k_tune_entry, all_microarchs, arg);
440 case OPT_m5200:
441 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206");
443 case OPT_m5206e:
444 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206e");
446 case OPT_m528x:
447 return m68k_find_selection (&m68k_cpu_entry, all_devices, "528x");
449 case OPT_m5307:
450 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5307");
452 case OPT_m5407:
453 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5407");
455 case OPT_mcfv4e:
456 return m68k_find_selection (&m68k_cpu_entry, all_devices, "547x");
458 case OPT_m68000:
459 case OPT_mc68000:
460 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68000");
462 case OPT_m68010:
463 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68010");
465 case OPT_m68020:
466 case OPT_mc68020:
467 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68020");
469 case OPT_m68020_40:
470 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
471 "68020-40")
472 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
474 case OPT_m68020_60:
475 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
476 "68020-60")
477 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
479 case OPT_m68030:
480 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68030");
482 case OPT_m68040:
483 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68040");
485 case OPT_m68060:
486 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68060");
488 case OPT_m68302:
489 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68302");
491 case OPT_m68332:
492 case OPT_mcpu32:
493 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68332");
495 case OPT_mshared_library_id_:
496 if (value > MAX_LIBRARY_ID)
497 error ("-mshared-library-id=%s is not between 0 and %d",
498 arg, MAX_LIBRARY_ID);
499 else
500 asprintf ((char **) &m68k_library_id_string, "%d", (value * -4) - 4);
501 return true;
503 default:
504 return true;
508 /* Sometimes certain combinations of command options do not make
509 sense on a particular target machine. You can define a macro
510 `OVERRIDE_OPTIONS' to take account of this. This macro, if
511 defined, is executed once just after all the command options have
512 been parsed.
514 Don't use this macro to turn on various extra optimizations for
515 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
517 void
518 override_options (void)
520 const struct m68k_target_selection *entry;
521 unsigned long target_mask;
523 /* User can choose:
525 -mcpu=
526 -march=
527 -mtune=
529 -march=ARCH should generate code that runs any processor
530 implementing architecture ARCH. -mcpu=CPU should override -march
531 and should generate code that runs on processor CPU, making free
532 use of any instructions that CPU understands. -mtune=UARCH applies
533 on top of -mcpu or -march and optimizes the code for UARCH. It does
534 not change the target architecture. */
535 if (m68k_cpu_entry)
537 /* Complain if the -march setting is for a different microarchitecture,
538 or includes flags that the -mcpu setting doesn't. */
539 if (m68k_arch_entry
540 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
541 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
542 warning (0, "-mcpu=%s conflicts with -march=%s",
543 m68k_cpu_entry->name, m68k_arch_entry->name);
545 entry = m68k_cpu_entry;
547 else
548 entry = m68k_arch_entry;
550 if (!entry)
551 entry = all_devices + TARGET_CPU_DEFAULT;
553 m68k_cpu_flags = entry->flags;
555 /* Use the architecture setting to derive default values for
556 certain flags. */
557 target_mask = 0;
559 /* ColdFire is lenient about alignment. */
560 if (!TARGET_COLDFIRE)
561 target_mask |= MASK_STRICT_ALIGNMENT;
563 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
564 target_mask |= MASK_BITFIELD;
565 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
566 target_mask |= MASK_CF_HWDIV;
567 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
568 target_mask |= MASK_HARD_FLOAT;
569 target_flags |= target_mask & ~target_flags_explicit;
571 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
572 m68k_cpu = entry->device;
573 if (m68k_tune_entry)
574 m68k_tune = m68k_tune_entry->microarch;
575 #ifdef M68K_DEFAULT_TUNE
576 else if (!m68k_cpu_entry && !m68k_arch_entry)
577 m68k_tune = M68K_DEFAULT_TUNE;
578 #endif
579 else
580 m68k_tune = entry->microarch;
582 /* Set the type of FPU. */
583 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
584 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
585 : FPUTYPE_68881);
587 /* Sanity check to ensure that msep-data and mid-sahred-library are not
588 * both specified together. Doing so simply doesn't make sense.
590 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
591 error ("cannot specify both -msep-data and -mid-shared-library");
593 /* If we're generating code for a separate A5 relative data segment,
594 * we've got to enable -fPIC as well. This might be relaxable to
595 * -fpic but it hasn't been tested properly.
597 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
598 flag_pic = 2;
600 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
601 error if the target does not support them. */
602 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
603 error ("-mpcrel -fPIC is not currently supported on selected cpu");
605 /* ??? A historic way of turning on pic, or is this intended to
606 be an embedded thing that doesn't have the same name binding
607 significance that it does on hosted ELF systems? */
608 if (TARGET_PCREL && flag_pic == 0)
609 flag_pic = 1;
611 if (!flag_pic)
613 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
615 m68k_symbolic_jump = "jra %a0";
617 else if (TARGET_ID_SHARED_LIBRARY)
618 /* All addresses must be loaded from the GOT. */
620 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
622 if (TARGET_PCREL)
623 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
624 else
625 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
627 if (TARGET_ISAC)
628 /* No unconditional long branch */;
629 else if (TARGET_PCREL)
630 m68k_symbolic_jump = "bra%.l %c0";
631 else
632 m68k_symbolic_jump = "bra%.l %p0";
633 /* Turn off function cse if we are doing PIC. We always want
634 function call to be done as `bsr foo@PLTPC'. */
635 /* ??? It's traditional to do this for -mpcrel too, but it isn't
636 clear how intentional that is. */
637 flag_no_function_cse = 1;
640 switch (m68k_symbolic_call_var)
642 case M68K_SYMBOLIC_CALL_JSR:
643 m68k_symbolic_call = "jsr %a0";
644 break;
646 case M68K_SYMBOLIC_CALL_BSR_C:
647 m68k_symbolic_call = "bsr%.l %c0";
648 break;
650 case M68K_SYMBOLIC_CALL_BSR_P:
651 m68k_symbolic_call = "bsr%.l %p0";
652 break;
654 case M68K_SYMBOLIC_CALL_NONE:
655 gcc_assert (m68k_symbolic_call == NULL);
656 break;
658 default:
659 gcc_unreachable ();
662 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
663 if (align_labels > 2)
665 warning (0, "-falign-labels=%d is not supported", align_labels);
666 align_labels = 0;
668 if (align_loops > 2)
670 warning (0, "-falign-loops=%d is not supported", align_loops);
671 align_loops = 0;
673 #endif
675 SUBTARGET_OVERRIDE_OPTIONS;
677 /* Setup scheduling options. */
678 if (TUNE_CFV1)
679 m68k_sched_cpu = CPU_CFV1;
680 else if (TUNE_CFV2)
681 m68k_sched_cpu = CPU_CFV2;
682 else if (TUNE_CFV3)
683 m68k_sched_cpu = CPU_CFV3;
684 else if (TUNE_CFV4)
685 m68k_sched_cpu = CPU_CFV4;
686 else
688 m68k_sched_cpu = CPU_UNKNOWN;
689 flag_schedule_insns = 0;
690 flag_schedule_insns_after_reload = 0;
691 flag_modulo_sched = 0;
694 if (m68k_sched_cpu != CPU_UNKNOWN)
696 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
697 m68k_sched_mac = MAC_CF_EMAC;
698 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
699 m68k_sched_mac = MAC_CF_MAC;
700 else
701 m68k_sched_mac = MAC_NO;
705 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
706 given argument and NAME is the argument passed to -mcpu. Return NULL
707 if -mcpu was not passed. */
709 const char *
710 m68k_cpp_cpu_ident (const char *prefix)
712 if (!m68k_cpu_entry)
713 return NULL;
714 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
717 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
718 given argument and NAME is the name of the representative device for
719 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
721 const char *
722 m68k_cpp_cpu_family (const char *prefix)
724 if (!m68k_cpu_entry)
725 return NULL;
726 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
729 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
730 "interrupt_handler" attribute and interrupt_thread if FUNC has an
731 "interrupt_thread" attribute. Otherwise, return
732 m68k_fk_normal_function. */
734 enum m68k_function_kind
735 m68k_get_function_kind (tree func)
737 tree a;
739 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
741 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
742 if (a != NULL_TREE)
743 return m68k_fk_interrupt_handler;
745 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
746 if (a != NULL_TREE)
747 return m68k_fk_interrupt_handler;
749 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
750 if (a != NULL_TREE)
751 return m68k_fk_interrupt_thread;
753 return m68k_fk_normal_function;
756 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
757 struct attribute_spec.handler. */
758 static tree
759 m68k_handle_fndecl_attribute (tree *node, tree name,
760 tree args ATTRIBUTE_UNUSED,
761 int flags ATTRIBUTE_UNUSED,
762 bool *no_add_attrs)
764 if (TREE_CODE (*node) != FUNCTION_DECL)
766 warning (OPT_Wattributes, "%qs attribute only applies to functions",
767 IDENTIFIER_POINTER (name));
768 *no_add_attrs = true;
771 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
773 error ("multiple interrupt attributes not allowed");
774 *no_add_attrs = true;
777 if (!TARGET_FIDOA
778 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
780 error ("interrupt_thread is available only on fido");
781 *no_add_attrs = true;
784 return NULL_TREE;
787 static void
788 m68k_compute_frame_layout (void)
790 int regno, saved;
791 unsigned int mask;
792 enum m68k_function_kind func_kind =
793 m68k_get_function_kind (current_function_decl);
794 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
795 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
797 /* Only compute the frame once per function.
798 Don't cache information until reload has been completed. */
799 if (current_frame.funcdef_no == current_function_funcdef_no
800 && reload_completed)
801 return;
803 current_frame.size = (get_frame_size () + 3) & -4;
805 mask = saved = 0;
807 /* Interrupt thread does not need to save any register. */
808 if (!interrupt_thread)
809 for (regno = 0; regno < 16; regno++)
810 if (m68k_save_reg (regno, interrupt_handler))
812 mask |= 1 << (regno - D0_REG);
813 saved++;
815 current_frame.offset = saved * 4;
816 current_frame.reg_no = saved;
817 current_frame.reg_mask = mask;
819 current_frame.foffset = 0;
820 mask = saved = 0;
821 if (TARGET_HARD_FLOAT)
823 /* Interrupt thread does not need to save any register. */
824 if (!interrupt_thread)
825 for (regno = 16; regno < 24; regno++)
826 if (m68k_save_reg (regno, interrupt_handler))
828 mask |= 1 << (regno - FP0_REG);
829 saved++;
831 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
832 current_frame.offset += current_frame.foffset;
834 current_frame.fpu_no = saved;
835 current_frame.fpu_mask = mask;
837 /* Remember what function this frame refers to. */
838 current_frame.funcdef_no = current_function_funcdef_no;
841 HOST_WIDE_INT
842 m68k_initial_elimination_offset (int from, int to)
844 int argptr_offset;
845 /* The arg pointer points 8 bytes before the start of the arguments,
846 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
847 frame pointer in most frames. */
848 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
849 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
850 return argptr_offset;
852 m68k_compute_frame_layout ();
854 gcc_assert (to == STACK_POINTER_REGNUM);
855 switch (from)
857 case ARG_POINTER_REGNUM:
858 return current_frame.offset + current_frame.size - argptr_offset;
859 case FRAME_POINTER_REGNUM:
860 return current_frame.offset + current_frame.size;
861 default:
862 gcc_unreachable ();
866 /* Refer to the array `regs_ever_live' to determine which registers
867 to save; `regs_ever_live[I]' is nonzero if register number I
868 is ever used in the function. This function is responsible for
869 knowing which registers should not be saved even if used.
870 Return true if we need to save REGNO. */
872 static bool
873 m68k_save_reg (unsigned int regno, bool interrupt_handler)
875 if (flag_pic && regno == PIC_REG)
877 if (crtl->saves_all_registers)
878 return true;
879 if (crtl->uses_pic_offset_table)
880 return true;
881 /* Reload may introduce constant pool references into a function
882 that thitherto didn't need a PIC register. Note that the test
883 above will not catch that case because we will only set
884 crtl->uses_pic_offset_table when emitting
885 the address reloads. */
886 if (crtl->uses_const_pool)
887 return true;
890 if (crtl->calls_eh_return)
892 unsigned int i;
893 for (i = 0; ; i++)
895 unsigned int test = EH_RETURN_DATA_REGNO (i);
896 if (test == INVALID_REGNUM)
897 break;
898 if (test == regno)
899 return true;
903 /* Fixed regs we never touch. */
904 if (fixed_regs[regno])
905 return false;
907 /* The frame pointer (if it is such) is handled specially. */
908 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
909 return false;
911 /* Interrupt handlers must also save call_used_regs
912 if they are live or when calling nested functions. */
913 if (interrupt_handler)
915 if (df_regs_ever_live_p (regno))
916 return true;
918 if (!current_function_is_leaf && call_used_regs[regno])
919 return true;
922 /* Never need to save registers that aren't touched. */
923 if (!df_regs_ever_live_p (regno))
924 return false;
926 /* Otherwise save everything that isn't call-clobbered. */
927 return !call_used_regs[regno];
930 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
931 the lowest memory address. COUNT is the number of registers to be
932 moved, with register REGNO + I being moved if bit I of MASK is set.
933 STORE_P specifies the direction of the move and ADJUST_STACK_P says
934 whether or not this is pre-decrement (if STORE_P) or post-increment
935 (if !STORE_P) operation. */
937 static rtx
938 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
939 unsigned int count, unsigned int regno,
940 unsigned int mask, bool store_p, bool adjust_stack_p)
942 int i;
943 rtx body, addr, src, operands[2];
944 enum machine_mode mode;
946 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
947 mode = reg_raw_mode[regno];
948 i = 0;
950 if (adjust_stack_p)
952 src = plus_constant (base, (count
953 * GET_MODE_SIZE (mode)
954 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
955 XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
958 for (; mask != 0; mask >>= 1, regno++)
959 if (mask & 1)
961 addr = plus_constant (base, offset);
962 operands[!store_p] = gen_frame_mem (mode, addr);
963 operands[store_p] = gen_rtx_REG (mode, regno);
964 XVECEXP (body, 0, i++)
965 = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
966 offset += GET_MODE_SIZE (mode);
968 gcc_assert (i == XVECLEN (body, 0));
970 return emit_insn (body);
973 /* Make INSN a frame-related instruction. */
975 static void
976 m68k_set_frame_related (rtx insn)
978 rtx body;
979 int i;
981 RTX_FRAME_RELATED_P (insn) = 1;
982 body = PATTERN (insn);
983 if (GET_CODE (body) == PARALLEL)
984 for (i = 0; i < XVECLEN (body, 0); i++)
985 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
988 /* Emit RTL for the "prologue" define_expand. */
990 void
991 m68k_expand_prologue (void)
993 HOST_WIDE_INT fsize_with_regs;
994 rtx limit, src, dest, insn;
996 m68k_compute_frame_layout ();
998 /* If the stack limit is a symbol, we can check it here,
999 before actually allocating the space. */
1000 if (crtl->limit_stack
1001 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1003 limit = plus_constant (stack_limit_rtx, current_frame.size + 4);
1004 if (!LEGITIMATE_CONSTANT_P (limit))
1006 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1007 limit = gen_rtx_REG (Pmode, D0_REG);
1009 emit_insn (gen_cmpsi (stack_pointer_rtx, limit));
1010 emit_insn (gen_conditional_trap (gen_rtx_LTU (VOIDmode,
1011 cc0_rtx, const0_rtx),
1012 const1_rtx));
1015 fsize_with_regs = current_frame.size;
1016 if (TARGET_COLDFIRE)
1018 /* ColdFire's move multiple instructions do not allow pre-decrement
1019 addressing. Add the size of movem saves to the initial stack
1020 allocation instead. */
1021 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1022 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1023 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1024 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1027 if (frame_pointer_needed)
1029 if (fsize_with_regs == 0 && TUNE_68040)
1031 /* On the 68040, two separate moves are faster than link.w 0. */
1032 dest = gen_frame_mem (Pmode,
1033 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1034 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1035 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1036 stack_pointer_rtx));
1038 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1039 m68k_set_frame_related
1040 (emit_insn (gen_link (frame_pointer_rtx,
1041 GEN_INT (-4 - fsize_with_regs))));
1042 else
1044 m68k_set_frame_related
1045 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1046 m68k_set_frame_related
1047 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1048 stack_pointer_rtx,
1049 GEN_INT (-fsize_with_regs))));
1052 /* If the frame pointer is needed, emit a special barrier that
1053 will prevent the scheduler from moving stores to the frame
1054 before the stack adjustment. */
1055 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1057 else if (fsize_with_regs != 0)
1058 m68k_set_frame_related
1059 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1060 stack_pointer_rtx,
1061 GEN_INT (-fsize_with_regs))));
1063 if (current_frame.fpu_mask)
1065 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1066 if (TARGET_68881)
1067 m68k_set_frame_related
1068 (m68k_emit_movem (stack_pointer_rtx,
1069 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1070 current_frame.fpu_no, FP0_REG,
1071 current_frame.fpu_mask, true, true));
1072 else
1074 int offset;
1076 /* If we're using moveml to save the integer registers,
1077 the stack pointer will point to the bottom of the moveml
1078 save area. Find the stack offset of the first FP register. */
1079 if (current_frame.reg_no < MIN_MOVEM_REGS)
1080 offset = 0;
1081 else
1082 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1083 m68k_set_frame_related
1084 (m68k_emit_movem (stack_pointer_rtx, offset,
1085 current_frame.fpu_no, FP0_REG,
1086 current_frame.fpu_mask, true, false));
1090 /* If the stack limit is not a symbol, check it here.
1091 This has the disadvantage that it may be too late... */
1092 if (crtl->limit_stack)
1094 if (REG_P (stack_limit_rtx))
1096 emit_insn (gen_cmpsi (stack_pointer_rtx, stack_limit_rtx));
1097 emit_insn (gen_conditional_trap (gen_rtx_LTU (VOIDmode,
1098 cc0_rtx, const0_rtx),
1099 const1_rtx));
1101 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1102 warning (0, "stack limit expression is not supported");
1105 if (current_frame.reg_no < MIN_MOVEM_REGS)
1107 /* Store each register separately in the same order moveml does. */
1108 int i;
1110 for (i = 16; i-- > 0; )
1111 if (current_frame.reg_mask & (1 << i))
1113 src = gen_rtx_REG (SImode, D0_REG + i);
1114 dest = gen_frame_mem (SImode,
1115 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1116 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1119 else
1121 if (TARGET_COLDFIRE)
1122 /* The required register save space has already been allocated.
1123 The first register should be stored at (%sp). */
1124 m68k_set_frame_related
1125 (m68k_emit_movem (stack_pointer_rtx, 0,
1126 current_frame.reg_no, D0_REG,
1127 current_frame.reg_mask, true, false));
1128 else
1129 m68k_set_frame_related
1130 (m68k_emit_movem (stack_pointer_rtx,
1131 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1132 current_frame.reg_no, D0_REG,
1133 current_frame.reg_mask, true, true));
1136 if (flag_pic
1137 && !TARGET_SEP_DATA
1138 && crtl->uses_pic_offset_table)
1139 insn = emit_insn (gen_load_got (pic_offset_table_rtx));
1142 /* Return true if a simple (return) instruction is sufficient for this
1143 instruction (i.e. if no epilogue is needed). */
1145 bool
1146 m68k_use_return_insn (void)
1148 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1149 return false;
1151 m68k_compute_frame_layout ();
1152 return current_frame.offset == 0;
1155 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1156 SIBCALL_P says which.
1158 The function epilogue should not depend on the current stack pointer!
1159 It should use the frame pointer only, if there is a frame pointer.
1160 This is mandatory because of alloca; we also take advantage of it to
1161 omit stack adjustments before returning. */
1163 void
1164 m68k_expand_epilogue (bool sibcall_p)
1166 HOST_WIDE_INT fsize, fsize_with_regs;
1167 bool big, restore_from_sp;
1169 m68k_compute_frame_layout ();
1171 fsize = current_frame.size;
1172 big = false;
1173 restore_from_sp = false;
1175 /* FIXME : current_function_is_leaf below is too strong.
1176 What we really need to know there is if there could be pending
1177 stack adjustment needed at that point. */
1178 restore_from_sp = (!frame_pointer_needed
1179 || (!cfun->calls_alloca
1180 && current_function_is_leaf));
1182 /* fsize_with_regs is the size we need to adjust the sp when
1183 popping the frame. */
1184 fsize_with_regs = fsize;
1185 if (TARGET_COLDFIRE && restore_from_sp)
1187 /* ColdFire's move multiple instructions do not allow post-increment
1188 addressing. Add the size of movem loads to the final deallocation
1189 instead. */
1190 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1191 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1192 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1193 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1196 if (current_frame.offset + fsize >= 0x8000
1197 && !restore_from_sp
1198 && (current_frame.reg_mask || current_frame.fpu_mask))
1200 if (TARGET_COLDFIRE
1201 && (current_frame.reg_no >= MIN_MOVEM_REGS
1202 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1204 /* ColdFire's move multiple instructions do not support the
1205 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1206 stack-based restore. */
1207 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1208 GEN_INT (-(current_frame.offset + fsize)));
1209 emit_insn (gen_addsi3 (stack_pointer_rtx,
1210 gen_rtx_REG (Pmode, A1_REG),
1211 frame_pointer_rtx));
1212 restore_from_sp = true;
1214 else
1216 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1217 fsize = 0;
1218 big = true;
1222 if (current_frame.reg_no < MIN_MOVEM_REGS)
1224 /* Restore each register separately in the same order moveml does. */
1225 int i;
1226 HOST_WIDE_INT offset;
1228 offset = current_frame.offset + fsize;
1229 for (i = 0; i < 16; i++)
1230 if (current_frame.reg_mask & (1 << i))
1232 rtx addr;
1234 if (big)
1236 /* Generate the address -OFFSET(%fp,%a1.l). */
1237 addr = gen_rtx_REG (Pmode, A1_REG);
1238 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1239 addr = plus_constant (addr, -offset);
1241 else if (restore_from_sp)
1242 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1243 else
1244 addr = plus_constant (frame_pointer_rtx, -offset);
1245 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1246 gen_frame_mem (SImode, addr));
1247 offset -= GET_MODE_SIZE (SImode);
1250 else if (current_frame.reg_mask)
1252 if (big)
1253 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1254 gen_rtx_REG (Pmode, A1_REG),
1255 frame_pointer_rtx),
1256 -(current_frame.offset + fsize),
1257 current_frame.reg_no, D0_REG,
1258 current_frame.reg_mask, false, false);
1259 else if (restore_from_sp)
1260 m68k_emit_movem (stack_pointer_rtx, 0,
1261 current_frame.reg_no, D0_REG,
1262 current_frame.reg_mask, false,
1263 !TARGET_COLDFIRE);
1264 else
1265 m68k_emit_movem (frame_pointer_rtx,
1266 -(current_frame.offset + fsize),
1267 current_frame.reg_no, D0_REG,
1268 current_frame.reg_mask, false, false);
1271 if (current_frame.fpu_no > 0)
1273 if (big)
1274 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1275 gen_rtx_REG (Pmode, A1_REG),
1276 frame_pointer_rtx),
1277 -(current_frame.foffset + fsize),
1278 current_frame.fpu_no, FP0_REG,
1279 current_frame.fpu_mask, false, false);
1280 else if (restore_from_sp)
1282 if (TARGET_COLDFIRE)
1284 int offset;
1286 /* If we used moveml to restore the integer registers, the
1287 stack pointer will still point to the bottom of the moveml
1288 save area. Find the stack offset of the first FP
1289 register. */
1290 if (current_frame.reg_no < MIN_MOVEM_REGS)
1291 offset = 0;
1292 else
1293 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1294 m68k_emit_movem (stack_pointer_rtx, offset,
1295 current_frame.fpu_no, FP0_REG,
1296 current_frame.fpu_mask, false, false);
1298 else
1299 m68k_emit_movem (stack_pointer_rtx, 0,
1300 current_frame.fpu_no, FP0_REG,
1301 current_frame.fpu_mask, false, true);
1303 else
1304 m68k_emit_movem (frame_pointer_rtx,
1305 -(current_frame.foffset + fsize),
1306 current_frame.fpu_no, FP0_REG,
1307 current_frame.fpu_mask, false, false);
1310 if (frame_pointer_needed)
1311 emit_insn (gen_unlink (frame_pointer_rtx));
1312 else if (fsize_with_regs)
1313 emit_insn (gen_addsi3 (stack_pointer_rtx,
1314 stack_pointer_rtx,
1315 GEN_INT (fsize_with_regs)));
1317 if (crtl->calls_eh_return)
1318 emit_insn (gen_addsi3 (stack_pointer_rtx,
1319 stack_pointer_rtx,
1320 EH_RETURN_STACKADJ_RTX));
1322 if (!sibcall_p)
1323 emit_jump_insn (gen_rtx_RETURN (VOIDmode));
1326 /* Return true if X is a valid comparison operator for the dbcc
1327 instruction.
1329 Note it rejects floating point comparison operators.
1330 (In the future we could use Fdbcc).
1332 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1335 valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1337 switch (GET_CODE (x))
1339 case EQ: case NE: case GTU: case LTU:
1340 case GEU: case LEU:
1341 return 1;
1343 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1344 conservative */
1345 case GT: case LT: case GE: case LE:
1346 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1347 default:
1348 return 0;
1352 /* Return nonzero if flags are currently in the 68881 flag register. */
1354 flags_in_68881 (void)
1356 /* We could add support for these in the future */
1357 return cc_status.flags & CC_IN_68881;
1360 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1362 static bool
1363 m68k_ok_for_sibcall_p (tree decl, tree exp)
1365 enum m68k_function_kind kind;
1367 /* We cannot use sibcalls for nested functions because we use the
1368 static chain register for indirect calls. */
1369 if (CALL_EXPR_STATIC_CHAIN (exp))
1370 return false;
1372 kind = m68k_get_function_kind (current_function_decl);
1373 if (kind == m68k_fk_normal_function)
1374 /* We can always sibcall from a normal function, because it's
1375 undefined if it is calling an interrupt function. */
1376 return true;
1378 /* Otherwise we can only sibcall if the function kind is known to be
1379 the same. */
1380 if (decl && m68k_get_function_kind (decl) == kind)
1381 return true;
1383 return false;
1386 /* Convert X to a legitimate function call memory reference and return the
1387 result. */
1390 m68k_legitimize_call_address (rtx x)
1392 gcc_assert (MEM_P (x));
1393 if (call_operand (XEXP (x, 0), VOIDmode))
1394 return x;
1395 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1398 /* Likewise for sibling calls. */
1401 m68k_legitimize_sibcall_address (rtx x)
1403 gcc_assert (MEM_P (x));
1404 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1405 return x;
1407 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1408 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1411 /* Output a dbCC; jCC sequence. Note we do not handle the
1412 floating point version of this sequence (Fdbcc). We also
1413 do not handle alternative conditions when CC_NO_OVERFLOW is
1414 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1415 kick those out before we get here. */
1417 void
1418 output_dbcc_and_branch (rtx *operands)
1420 switch (GET_CODE (operands[3]))
1422 case EQ:
1423 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1424 break;
1426 case NE:
1427 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1428 break;
1430 case GT:
1431 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1432 break;
1434 case GTU:
1435 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1436 break;
1438 case LT:
1439 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1440 break;
1442 case LTU:
1443 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1444 break;
1446 case GE:
1447 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1448 break;
1450 case GEU:
1451 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1452 break;
1454 case LE:
1455 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1456 break;
1458 case LEU:
1459 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1460 break;
1462 default:
1463 gcc_unreachable ();
1466 /* If the decrement is to be done in SImode, then we have
1467 to compensate for the fact that dbcc decrements in HImode. */
1468 switch (GET_MODE (operands[0]))
1470 case SImode:
1471 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1472 break;
1474 case HImode:
1475 break;
1477 default:
1478 gcc_unreachable ();
1482 const char *
1483 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1485 rtx loperands[7];
1486 enum rtx_code op_code = GET_CODE (op);
1488 /* This does not produce a useful cc. */
1489 CC_STATUS_INIT;
1491 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1492 below. Swap the operands and change the op if these requirements
1493 are not fulfilled. */
1494 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1496 rtx tmp = operand1;
1498 operand1 = operand2;
1499 operand2 = tmp;
1500 op_code = swap_condition (op_code);
1502 loperands[0] = operand1;
1503 if (GET_CODE (operand1) == REG)
1504 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1505 else
1506 loperands[1] = adjust_address (operand1, SImode, 4);
1507 if (operand2 != const0_rtx)
1509 loperands[2] = operand2;
1510 if (GET_CODE (operand2) == REG)
1511 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1512 else
1513 loperands[3] = adjust_address (operand2, SImode, 4);
1515 loperands[4] = gen_label_rtx ();
1516 if (operand2 != const0_rtx)
1517 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1518 else
1520 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1521 output_asm_insn ("tst%.l %0", loperands);
1522 else
1523 output_asm_insn ("cmp%.w #0,%0", loperands);
1525 output_asm_insn ("jne %l4", loperands);
1527 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1528 output_asm_insn ("tst%.l %1", loperands);
1529 else
1530 output_asm_insn ("cmp%.w #0,%1", loperands);
1533 loperands[5] = dest;
1535 switch (op_code)
1537 case EQ:
1538 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1539 CODE_LABEL_NUMBER (loperands[4]));
1540 output_asm_insn ("seq %5", loperands);
1541 break;
1543 case NE:
1544 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1545 CODE_LABEL_NUMBER (loperands[4]));
1546 output_asm_insn ("sne %5", loperands);
1547 break;
1549 case GT:
1550 loperands[6] = gen_label_rtx ();
1551 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1552 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1553 CODE_LABEL_NUMBER (loperands[4]));
1554 output_asm_insn ("sgt %5", loperands);
1555 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1556 CODE_LABEL_NUMBER (loperands[6]));
1557 break;
1559 case GTU:
1560 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1561 CODE_LABEL_NUMBER (loperands[4]));
1562 output_asm_insn ("shi %5", loperands);
1563 break;
1565 case LT:
1566 loperands[6] = gen_label_rtx ();
1567 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1568 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1569 CODE_LABEL_NUMBER (loperands[4]));
1570 output_asm_insn ("slt %5", loperands);
1571 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1572 CODE_LABEL_NUMBER (loperands[6]));
1573 break;
1575 case LTU:
1576 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1577 CODE_LABEL_NUMBER (loperands[4]));
1578 output_asm_insn ("scs %5", loperands);
1579 break;
1581 case GE:
1582 loperands[6] = gen_label_rtx ();
1583 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1584 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1585 CODE_LABEL_NUMBER (loperands[4]));
1586 output_asm_insn ("sge %5", loperands);
1587 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1588 CODE_LABEL_NUMBER (loperands[6]));
1589 break;
1591 case GEU:
1592 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1593 CODE_LABEL_NUMBER (loperands[4]));
1594 output_asm_insn ("scc %5", loperands);
1595 break;
1597 case LE:
1598 loperands[6] = gen_label_rtx ();
1599 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1600 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1601 CODE_LABEL_NUMBER (loperands[4]));
1602 output_asm_insn ("sle %5", loperands);
1603 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1604 CODE_LABEL_NUMBER (loperands[6]));
1605 break;
1607 case LEU:
1608 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1609 CODE_LABEL_NUMBER (loperands[4]));
1610 output_asm_insn ("sls %5", loperands);
1611 break;
1613 default:
1614 gcc_unreachable ();
1616 return "";
1619 const char *
1620 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1622 operands[0] = countop;
1623 operands[1] = dataop;
1625 if (GET_CODE (countop) == CONST_INT)
1627 register int count = INTVAL (countop);
1628 /* If COUNT is bigger than size of storage unit in use,
1629 advance to the containing unit of same size. */
1630 if (count > signpos)
1632 int offset = (count & ~signpos) / 8;
1633 count = count & signpos;
1634 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1636 if (count == signpos)
1637 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1638 else
1639 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1641 /* These three statements used to use next_insns_test_no...
1642 but it appears that this should do the same job. */
1643 if (count == 31
1644 && next_insn_tests_no_inequality (insn))
1645 return "tst%.l %1";
1646 if (count == 15
1647 && next_insn_tests_no_inequality (insn))
1648 return "tst%.w %1";
1649 if (count == 7
1650 && next_insn_tests_no_inequality (insn))
1651 return "tst%.b %1";
1652 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1653 On some m68k variants unfortunately that's slower than btst.
1654 On 68000 and higher, that should also work for all HImode operands. */
1655 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1657 if (count == 3 && DATA_REG_P (operands[1])
1658 && next_insn_tests_no_inequality (insn))
1660 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1661 return "move%.w %1,%%ccr";
1663 if (count == 2 && DATA_REG_P (operands[1])
1664 && next_insn_tests_no_inequality (insn))
1666 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1667 return "move%.w %1,%%ccr";
1669 /* count == 1 followed by bvc/bvs and
1670 count == 0 followed by bcc/bcs are also possible, but need
1671 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1674 cc_status.flags = CC_NOT_NEGATIVE;
1676 return "btst %0,%1";
1679 /* Return true if X is a legitimate base register. STRICT_P says
1680 whether we need strict checking. */
1682 bool
1683 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1685 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1686 if (!strict_p && GET_CODE (x) == SUBREG)
1687 x = SUBREG_REG (x);
1689 return (REG_P (x)
1690 && (strict_p
1691 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1692 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1695 /* Return true if X is a legitimate index register. STRICT_P says
1696 whether we need strict checking. */
1698 bool
1699 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1701 if (!strict_p && GET_CODE (x) == SUBREG)
1702 x = SUBREG_REG (x);
1704 return (REG_P (x)
1705 && (strict_p
1706 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1707 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1710 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1711 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1712 ADDRESS if so. STRICT_P says whether we need strict checking. */
1714 static bool
1715 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1717 int scale;
1719 /* Check for a scale factor. */
1720 scale = 1;
1721 if ((TARGET_68020 || TARGET_COLDFIRE)
1722 && GET_CODE (x) == MULT
1723 && GET_CODE (XEXP (x, 1)) == CONST_INT
1724 && (INTVAL (XEXP (x, 1)) == 2
1725 || INTVAL (XEXP (x, 1)) == 4
1726 || (INTVAL (XEXP (x, 1)) == 8
1727 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1729 scale = INTVAL (XEXP (x, 1));
1730 x = XEXP (x, 0);
1733 /* Check for a word extension. */
1734 if (!TARGET_COLDFIRE
1735 && GET_CODE (x) == SIGN_EXTEND
1736 && GET_MODE (XEXP (x, 0)) == HImode)
1737 x = XEXP (x, 0);
1739 if (m68k_legitimate_index_reg_p (x, strict_p))
1741 address->scale = scale;
1742 address->index = x;
1743 return true;
1746 return false;
1749 /* Return true if X is an illegitimate symbolic constant. */
1751 bool
1752 m68k_illegitimate_symbolic_constant_p (rtx x)
1754 rtx base, offset;
1756 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1758 split_const (x, &base, &offset);
1759 if (GET_CODE (base) == SYMBOL_REF
1760 && !offset_within_block_p (base, INTVAL (offset)))
1761 return true;
1763 return false;
1766 /* Return true if X is a legitimate constant address that can reach
1767 bytes in the range [X, X + REACH). STRICT_P says whether we need
1768 strict checking. */
1770 static bool
1771 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1773 rtx base, offset;
1775 if (!CONSTANT_ADDRESS_P (x))
1776 return false;
1778 if (flag_pic
1779 && !(strict_p && TARGET_PCREL)
1780 && symbolic_operand (x, VOIDmode))
1781 return false;
1783 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1785 split_const (x, &base, &offset);
1786 if (GET_CODE (base) == SYMBOL_REF
1787 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1788 return false;
1791 return true;
1794 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1795 labels will become jump tables. */
1797 static bool
1798 m68k_jump_table_ref_p (rtx x)
1800 if (GET_CODE (x) != LABEL_REF)
1801 return false;
1803 x = XEXP (x, 0);
1804 if (!NEXT_INSN (x) && !PREV_INSN (x))
1805 return true;
1807 x = next_nonnote_insn (x);
1808 return x && JUMP_TABLE_DATA_P (x);
1811 /* Return true if X is a legitimate address for values of mode MODE.
1812 STRICT_P says whether strict checking is needed. If the address
1813 is valid, describe its components in *ADDRESS. */
1815 static bool
1816 m68k_decompose_address (enum machine_mode mode, rtx x,
1817 bool strict_p, struct m68k_address *address)
1819 unsigned int reach;
1821 memset (address, 0, sizeof (*address));
1823 if (mode == BLKmode)
1824 reach = 1;
1825 else
1826 reach = GET_MODE_SIZE (mode);
1828 /* Check for (An) (mode 2). */
1829 if (m68k_legitimate_base_reg_p (x, strict_p))
1831 address->base = x;
1832 return true;
1835 /* Check for -(An) and (An)+ (modes 3 and 4). */
1836 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1837 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1839 address->code = GET_CODE (x);
1840 address->base = XEXP (x, 0);
1841 return true;
1844 /* Check for (d16,An) (mode 5). */
1845 if (GET_CODE (x) == PLUS
1846 && GET_CODE (XEXP (x, 1)) == CONST_INT
1847 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
1848 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1850 address->base = XEXP (x, 0);
1851 address->offset = XEXP (x, 1);
1852 return true;
1855 /* Check for GOT loads. These are (bd,An,Xn) addresses if
1856 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
1857 addresses. */
1858 if (flag_pic
1859 && GET_CODE (x) == PLUS
1860 && XEXP (x, 0) == pic_offset_table_rtx
1861 && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
1862 || GET_CODE (XEXP (x, 1)) == LABEL_REF))
1864 address->base = XEXP (x, 0);
1865 address->offset = XEXP (x, 1);
1866 return true;
1869 /* The ColdFire FPU only accepts addressing modes 2-5. */
1870 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1871 return false;
1873 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
1874 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
1875 All these modes are variations of mode 7. */
1876 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
1878 address->offset = x;
1879 return true;
1882 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
1883 tablejumps.
1885 ??? do_tablejump creates these addresses before placing the target
1886 label, so we have to assume that unplaced labels are jump table
1887 references. It seems unlikely that we would ever generate indexed
1888 accesses to unplaced labels in other cases. */
1889 if (GET_CODE (x) == PLUS
1890 && m68k_jump_table_ref_p (XEXP (x, 1))
1891 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
1893 address->offset = XEXP (x, 1);
1894 return true;
1897 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
1898 (bd,An,Xn.SIZE*SCALE) addresses. */
1900 if (TARGET_68020)
1902 /* Check for a nonzero base displacement. */
1903 if (GET_CODE (x) == PLUS
1904 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
1906 address->offset = XEXP (x, 1);
1907 x = XEXP (x, 0);
1910 /* Check for a suppressed index register. */
1911 if (m68k_legitimate_base_reg_p (x, strict_p))
1913 address->base = x;
1914 return true;
1917 /* Check for a suppressed base register. Do not allow this case
1918 for non-symbolic offsets as it effectively gives gcc freedom
1919 to treat data registers as base registers, which can generate
1920 worse code. */
1921 if (address->offset
1922 && symbolic_operand (address->offset, VOIDmode)
1923 && m68k_decompose_index (x, strict_p, address))
1924 return true;
1926 else
1928 /* Check for a nonzero base displacement. */
1929 if (GET_CODE (x) == PLUS
1930 && GET_CODE (XEXP (x, 1)) == CONST_INT
1931 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
1933 address->offset = XEXP (x, 1);
1934 x = XEXP (x, 0);
1938 /* We now expect the sum of a base and an index. */
1939 if (GET_CODE (x) == PLUS)
1941 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
1942 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
1944 address->base = XEXP (x, 0);
1945 return true;
1948 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
1949 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
1951 address->base = XEXP (x, 1);
1952 return true;
1955 return false;
1958 /* Return true if X is a legitimate address for values of mode MODE.
1959 STRICT_P says whether strict checking is needed. */
1961 bool
1962 m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
1964 struct m68k_address address;
1966 return m68k_decompose_address (mode, x, strict_p, &address);
1969 /* Return true if X is a memory, describing its address in ADDRESS if so.
1970 Apply strict checking if called during or after reload. */
1972 static bool
1973 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
1975 return (MEM_P (x)
1976 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
1977 reload_in_progress || reload_completed,
1978 address));
1981 /* Return true if X matches the 'Q' constraint. It must be a memory
1982 with a base address and no constant offset or index. */
1984 bool
1985 m68k_matches_q_p (rtx x)
1987 struct m68k_address address;
1989 return (m68k_legitimate_mem_p (x, &address)
1990 && address.code == UNKNOWN
1991 && address.base
1992 && !address.offset
1993 && !address.index);
1996 /* Return true if X matches the 'U' constraint. It must be a base address
1997 with a constant offset and no index. */
1999 bool
2000 m68k_matches_u_p (rtx x)
2002 struct m68k_address address;
2004 return (m68k_legitimate_mem_p (x, &address)
2005 && address.code == UNKNOWN
2006 && address.base
2007 && address.offset
2008 && !address.index);
2011 /* Legitimize PIC addresses. If the address is already
2012 position-independent, we return ORIG. Newly generated
2013 position-independent addresses go to REG. If we need more
2014 than one register, we lose.
2016 An address is legitimized by making an indirect reference
2017 through the Global Offset Table with the name of the symbol
2018 used as an offset.
2020 The assembler and linker are responsible for placing the
2021 address of the symbol in the GOT. The function prologue
2022 is responsible for initializing a5 to the starting address
2023 of the GOT.
2025 The assembler is also responsible for translating a symbol name
2026 into a constant displacement from the start of the GOT.
2028 A quick example may make things a little clearer:
2030 When not generating PIC code to store the value 12345 into _foo
2031 we would generate the following code:
2033 movel #12345, _foo
2035 When generating PIC two transformations are made. First, the compiler
2036 loads the address of foo into a register. So the first transformation makes:
2038 lea _foo, a0
2039 movel #12345, a0@
2041 The code in movsi will intercept the lea instruction and call this
2042 routine which will transform the instructions into:
2044 movel a5@(_foo:w), a0
2045 movel #12345, a0@
2048 That (in a nutshell) is how *all* symbol and label references are
2049 handled. */
2052 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
2053 rtx reg)
2055 rtx pic_ref = orig;
2057 /* First handle a simple SYMBOL_REF or LABEL_REF */
2058 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2060 gcc_assert (reg);
2062 pic_ref = gen_rtx_MEM (Pmode,
2063 gen_rtx_PLUS (Pmode,
2064 pic_offset_table_rtx, orig));
2065 crtl->uses_pic_offset_table = 1;
2066 MEM_READONLY_P (pic_ref) = 1;
2067 emit_move_insn (reg, pic_ref);
2068 return reg;
2070 else if (GET_CODE (orig) == CONST)
2072 rtx base;
2074 /* Make sure this has not already been legitimized. */
2075 if (GET_CODE (XEXP (orig, 0)) == PLUS
2076 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
2077 return orig;
2079 gcc_assert (reg);
2081 /* legitimize both operands of the PLUS */
2082 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2084 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2085 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2086 base == reg ? 0 : reg);
2088 if (GET_CODE (orig) == CONST_INT)
2089 return plus_constant (base, INTVAL (orig));
2090 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2091 /* Likewise, should we set special REG_NOTEs here? */
2093 return pic_ref;
2098 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2100 /* Return the type of move that should be used for integer I. */
2102 M68K_CONST_METHOD
2103 m68k_const_method (HOST_WIDE_INT i)
2105 unsigned u;
2107 if (USE_MOVQ (i))
2108 return MOVQ;
2110 /* The ColdFire doesn't have byte or word operations. */
2111 /* FIXME: This may not be useful for the m68060 either. */
2112 if (!TARGET_COLDFIRE)
2114 /* if -256 < N < 256 but N is not in range for a moveq
2115 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2116 if (USE_MOVQ (i ^ 0xff))
2117 return NOTB;
2118 /* Likewise, try with not.w */
2119 if (USE_MOVQ (i ^ 0xffff))
2120 return NOTW;
2121 /* This is the only value where neg.w is useful */
2122 if (i == -65408)
2123 return NEGW;
2126 /* Try also with swap. */
2127 u = i;
2128 if (USE_MOVQ ((u >> 16) | (u << 16)))
2129 return SWAP;
2131 if (TARGET_ISAB)
2133 /* Try using MVZ/MVS with an immediate value to load constants. */
2134 if (i >= 0 && i <= 65535)
2135 return MVZ;
2136 if (i >= -32768 && i <= 32767)
2137 return MVS;
2140 /* Otherwise, use move.l */
2141 return MOVL;
2144 /* Return the cost of moving constant I into a data register. */
2146 static int
2147 const_int_cost (HOST_WIDE_INT i)
2149 switch (m68k_const_method (i))
2151 case MOVQ:
2152 /* Constants between -128 and 127 are cheap due to moveq. */
2153 return 0;
2154 case MVZ:
2155 case MVS:
2156 case NOTB:
2157 case NOTW:
2158 case NEGW:
2159 case SWAP:
2160 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2161 return 1;
2162 case MOVL:
2163 return 2;
2164 default:
2165 gcc_unreachable ();
2169 static bool
2170 m68k_rtx_costs (rtx x, int code, int outer_code, int *total)
2172 switch (code)
2174 case CONST_INT:
2175 /* Constant zero is super cheap due to clr instruction. */
2176 if (x == const0_rtx)
2177 *total = 0;
2178 else
2179 *total = const_int_cost (INTVAL (x));
2180 return true;
2182 case CONST:
2183 case LABEL_REF:
2184 case SYMBOL_REF:
2185 *total = 3;
2186 return true;
2188 case CONST_DOUBLE:
2189 /* Make 0.0 cheaper than other floating constants to
2190 encourage creating tstsf and tstdf insns. */
2191 if (outer_code == COMPARE
2192 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2193 *total = 4;
2194 else
2195 *total = 5;
2196 return true;
2198 /* These are vaguely right for a 68020. */
2199 /* The costs for long multiply have been adjusted to work properly
2200 in synth_mult on the 68020, relative to an average of the time
2201 for add and the time for shift, taking away a little more because
2202 sometimes move insns are needed. */
2203 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2204 terms. */
2205 #define MULL_COST \
2206 (TUNE_68060 ? 2 \
2207 : TUNE_68040 ? 5 \
2208 : TUNE_CFV2 ? 10 \
2209 : TARGET_COLDFIRE ? 3 : 13)
2211 #define MULW_COST \
2212 (TUNE_68060 ? 2 \
2213 : TUNE_68040 ? 3 \
2214 : TUNE_68000_10 || TUNE_CFV2 ? 5 \
2215 : TARGET_COLDFIRE ? 2 : 8)
2217 #define DIVW_COST \
2218 (TARGET_CF_HWDIV ? 11 \
2219 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2221 case PLUS:
2222 /* An lea costs about three times as much as a simple add. */
2223 if (GET_MODE (x) == SImode
2224 && GET_CODE (XEXP (x, 1)) == REG
2225 && GET_CODE (XEXP (x, 0)) == MULT
2226 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2227 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2228 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2229 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2230 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2232 /* lea an@(dx:l:i),am */
2233 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2234 return true;
2236 return false;
2238 case ASHIFT:
2239 case ASHIFTRT:
2240 case LSHIFTRT:
2241 if (TUNE_68060)
2243 *total = COSTS_N_INSNS(1);
2244 return true;
2246 if (TUNE_68000_10)
2248 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2250 if (INTVAL (XEXP (x, 1)) < 16)
2251 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2252 else
2253 /* We're using clrw + swap for these cases. */
2254 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2256 else
2257 *total = COSTS_N_INSNS (10); /* Worst case. */
2258 return true;
2260 /* A shift by a big integer takes an extra instruction. */
2261 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2262 && (INTVAL (XEXP (x, 1)) == 16))
2264 *total = COSTS_N_INSNS (2); /* clrw;swap */
2265 return true;
2267 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2268 && !(INTVAL (XEXP (x, 1)) > 0
2269 && INTVAL (XEXP (x, 1)) <= 8))
2271 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2272 return true;
2274 return false;
2276 case MULT:
2277 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2278 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2279 && GET_MODE (x) == SImode)
2280 *total = COSTS_N_INSNS (MULW_COST);
2281 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2282 *total = COSTS_N_INSNS (MULW_COST);
2283 else
2284 *total = COSTS_N_INSNS (MULL_COST);
2285 return true;
2287 case DIV:
2288 case UDIV:
2289 case MOD:
2290 case UMOD:
2291 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2292 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2293 else if (TARGET_CF_HWDIV)
2294 *total = COSTS_N_INSNS (18);
2295 else
2296 *total = COSTS_N_INSNS (43); /* div.l */
2297 return true;
2299 default:
2300 return false;
2304 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2305 OPERANDS[0]. */
2307 static const char *
2308 output_move_const_into_data_reg (rtx *operands)
2310 HOST_WIDE_INT i;
2312 i = INTVAL (operands[1]);
2313 switch (m68k_const_method (i))
2315 case MVZ:
2316 return "mvzw %1,%0";
2317 case MVS:
2318 return "mvsw %1,%0";
2319 case MOVQ:
2320 return "moveq %1,%0";
2321 case NOTB:
2322 CC_STATUS_INIT;
2323 operands[1] = GEN_INT (i ^ 0xff);
2324 return "moveq %1,%0\n\tnot%.b %0";
2325 case NOTW:
2326 CC_STATUS_INIT;
2327 operands[1] = GEN_INT (i ^ 0xffff);
2328 return "moveq %1,%0\n\tnot%.w %0";
2329 case NEGW:
2330 CC_STATUS_INIT;
2331 return "moveq #-128,%0\n\tneg%.w %0";
2332 case SWAP:
2334 unsigned u = i;
2336 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2337 return "moveq %1,%0\n\tswap %0";
2339 case MOVL:
2340 return "move%.l %1,%0";
2341 default:
2342 gcc_unreachable ();
2346 /* Return true if I can be handled by ISA B's mov3q instruction. */
2348 bool
2349 valid_mov3q_const (HOST_WIDE_INT i)
2351 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
2354 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
2355 I is the value of OPERANDS[1]. */
2357 static const char *
2358 output_move_simode_const (rtx *operands)
2360 rtx dest;
2361 HOST_WIDE_INT src;
2363 dest = operands[0];
2364 src = INTVAL (operands[1]);
2365 if (src == 0
2366 && (DATA_REG_P (dest) || MEM_P (dest))
2367 /* clr insns on 68000 read before writing. */
2368 && ((TARGET_68010 || TARGET_COLDFIRE)
2369 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
2370 return "clr%.l %0";
2371 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
2372 return "mov3q%.l %1,%0";
2373 else if (src == 0 && ADDRESS_REG_P (dest))
2374 return "sub%.l %0,%0";
2375 else if (DATA_REG_P (dest))
2376 return output_move_const_into_data_reg (operands);
2377 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
2379 if (valid_mov3q_const (src))
2380 return "mov3q%.l %1,%0";
2381 return "move%.w %1,%0";
2383 else if (MEM_P (dest)
2384 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
2385 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
2386 && IN_RANGE (src, -0x8000, 0x7fff))
2388 if (valid_mov3q_const (src))
2389 return "mov3q%.l %1,%-";
2390 return "pea %a1";
2392 return "move%.l %1,%0";
2395 const char *
2396 output_move_simode (rtx *operands)
2398 if (GET_CODE (operands[1]) == CONST_INT)
2399 return output_move_simode_const (operands);
2400 else if ((GET_CODE (operands[1]) == SYMBOL_REF
2401 || GET_CODE (operands[1]) == CONST)
2402 && push_operand (operands[0], SImode))
2403 return "pea %a1";
2404 else if ((GET_CODE (operands[1]) == SYMBOL_REF
2405 || GET_CODE (operands[1]) == CONST)
2406 && ADDRESS_REG_P (operands[0]))
2407 return "lea %a1,%0";
2408 return "move%.l %1,%0";
2411 const char *
2412 output_move_himode (rtx *operands)
2414 if (GET_CODE (operands[1]) == CONST_INT)
2416 if (operands[1] == const0_rtx
2417 && (DATA_REG_P (operands[0])
2418 || GET_CODE (operands[0]) == MEM)
2419 /* clr insns on 68000 read before writing. */
2420 && ((TARGET_68010 || TARGET_COLDFIRE)
2421 || !(GET_CODE (operands[0]) == MEM
2422 && MEM_VOLATILE_P (operands[0]))))
2423 return "clr%.w %0";
2424 else if (operands[1] == const0_rtx
2425 && ADDRESS_REG_P (operands[0]))
2426 return "sub%.l %0,%0";
2427 else if (DATA_REG_P (operands[0])
2428 && INTVAL (operands[1]) < 128
2429 && INTVAL (operands[1]) >= -128)
2430 return "moveq %1,%0";
2431 else if (INTVAL (operands[1]) < 0x8000
2432 && INTVAL (operands[1]) >= -0x8000)
2433 return "move%.w %1,%0";
2435 else if (CONSTANT_P (operands[1]))
2436 return "move%.l %1,%0";
2437 return "move%.w %1,%0";
2440 const char *
2441 output_move_qimode (rtx *operands)
2443 /* 68k family always modifies the stack pointer by at least 2, even for
2444 byte pushes. The 5200 (ColdFire) does not do this. */
2446 /* This case is generated by pushqi1 pattern now. */
2447 gcc_assert (!(GET_CODE (operands[0]) == MEM
2448 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
2449 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
2450 && ! ADDRESS_REG_P (operands[1])
2451 && ! TARGET_COLDFIRE));
2453 /* clr and st insns on 68000 read before writing. */
2454 if (!ADDRESS_REG_P (operands[0])
2455 && ((TARGET_68010 || TARGET_COLDFIRE)
2456 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
2458 if (operands[1] == const0_rtx)
2459 return "clr%.b %0";
2460 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
2461 && GET_CODE (operands[1]) == CONST_INT
2462 && (INTVAL (operands[1]) & 255) == 255)
2464 CC_STATUS_INIT;
2465 return "st %0";
2468 if (GET_CODE (operands[1]) == CONST_INT
2469 && DATA_REG_P (operands[0])
2470 && INTVAL (operands[1]) < 128
2471 && INTVAL (operands[1]) >= -128)
2472 return "moveq %1,%0";
2473 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
2474 return "sub%.l %0,%0";
2475 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
2476 return "move%.l %1,%0";
2477 /* 68k family (including the 5200 ColdFire) does not support byte moves to
2478 from address registers. */
2479 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
2480 return "move%.w %1,%0";
2481 return "move%.b %1,%0";
2484 const char *
2485 output_move_stricthi (rtx *operands)
2487 if (operands[1] == const0_rtx
2488 /* clr insns on 68000 read before writing. */
2489 && ((TARGET_68010 || TARGET_COLDFIRE)
2490 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
2491 return "clr%.w %0";
2492 return "move%.w %1,%0";
2495 const char *
2496 output_move_strictqi (rtx *operands)
2498 if (operands[1] == const0_rtx
2499 /* clr insns on 68000 read before writing. */
2500 && ((TARGET_68010 || TARGET_COLDFIRE)
2501 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
2502 return "clr%.b %0";
2503 return "move%.b %1,%0";
2506 /* Return the best assembler insn template
2507 for moving operands[1] into operands[0] as a fullword. */
2509 static const char *
2510 singlemove_string (rtx *operands)
2512 if (GET_CODE (operands[1]) == CONST_INT)
2513 return output_move_simode_const (operands);
2514 return "move%.l %1,%0";
2518 /* Output assembler or rtl code to perform a doubleword move insn
2519 with operands OPERANDS.
2520 Pointers to 3 helper functions should be specified:
2521 HANDLE_REG_ADJUST to adjust a register by a small value,
2522 HANDLE_COMPADR to compute an address and
2523 HANDLE_MOVSI to move 4 bytes. */
2525 static void
2526 handle_move_double (rtx operands[2],
2527 void (*handle_reg_adjust) (rtx, int),
2528 void (*handle_compadr) (rtx [2]),
2529 void (*handle_movsi) (rtx [2]))
2531 enum
2533 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
2534 } optype0, optype1;
2535 rtx latehalf[2];
2536 rtx middlehalf[2];
2537 rtx xops[2];
2538 rtx addreg0 = 0, addreg1 = 0;
2539 int dest_overlapped_low = 0;
2540 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
2542 middlehalf[0] = 0;
2543 middlehalf[1] = 0;
2545 /* First classify both operands. */
2547 if (REG_P (operands[0]))
2548 optype0 = REGOP;
2549 else if (offsettable_memref_p (operands[0]))
2550 optype0 = OFFSOP;
2551 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
2552 optype0 = POPOP;
2553 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
2554 optype0 = PUSHOP;
2555 else if (GET_CODE (operands[0]) == MEM)
2556 optype0 = MEMOP;
2557 else
2558 optype0 = RNDOP;
2560 if (REG_P (operands[1]))
2561 optype1 = REGOP;
2562 else if (CONSTANT_P (operands[1]))
2563 optype1 = CNSTOP;
2564 else if (offsettable_memref_p (operands[1]))
2565 optype1 = OFFSOP;
2566 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
2567 optype1 = POPOP;
2568 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
2569 optype1 = PUSHOP;
2570 else if (GET_CODE (operands[1]) == MEM)
2571 optype1 = MEMOP;
2572 else
2573 optype1 = RNDOP;
2575 /* Check for the cases that the operand constraints are not supposed
2576 to allow to happen. Generating code for these cases is
2577 painful. */
2578 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
2580 /* If one operand is decrementing and one is incrementing
2581 decrement the former register explicitly
2582 and change that operand into ordinary indexing. */
2584 if (optype0 == PUSHOP && optype1 == POPOP)
2586 operands[0] = XEXP (XEXP (operands[0], 0), 0);
2588 handle_reg_adjust (operands[0], -size);
2590 if (GET_MODE (operands[1]) == XFmode)
2591 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
2592 else if (GET_MODE (operands[0]) == DFmode)
2593 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
2594 else
2595 operands[0] = gen_rtx_MEM (DImode, operands[0]);
2596 optype0 = OFFSOP;
2598 if (optype0 == POPOP && optype1 == PUSHOP)
2600 operands[1] = XEXP (XEXP (operands[1], 0), 0);
2602 handle_reg_adjust (operands[1], -size);
2604 if (GET_MODE (operands[1]) == XFmode)
2605 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
2606 else if (GET_MODE (operands[1]) == DFmode)
2607 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
2608 else
2609 operands[1] = gen_rtx_MEM (DImode, operands[1]);
2610 optype1 = OFFSOP;
2613 /* If an operand is an unoffsettable memory ref, find a register
2614 we can increment temporarily to make it refer to the second word. */
2616 if (optype0 == MEMOP)
2617 addreg0 = find_addr_reg (XEXP (operands[0], 0));
2619 if (optype1 == MEMOP)
2620 addreg1 = find_addr_reg (XEXP (operands[1], 0));
2622 /* Ok, we can do one word at a time.
2623 Normally we do the low-numbered word first,
2624 but if either operand is autodecrementing then we
2625 do the high-numbered word first.
2627 In either case, set up in LATEHALF the operands to use
2628 for the high-numbered word and in some cases alter the
2629 operands in OPERANDS to be suitable for the low-numbered word. */
2631 if (size == 12)
2633 if (optype0 == REGOP)
2635 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
2636 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2638 else if (optype0 == OFFSOP)
2640 middlehalf[0] = adjust_address (operands[0], SImode, 4);
2641 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2643 else
2645 middlehalf[0] = adjust_address (operands[0], SImode, 0);
2646 latehalf[0] = adjust_address (operands[0], SImode, 0);
2649 if (optype1 == REGOP)
2651 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
2652 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2654 else if (optype1 == OFFSOP)
2656 middlehalf[1] = adjust_address (operands[1], SImode, 4);
2657 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2659 else if (optype1 == CNSTOP)
2661 if (GET_CODE (operands[1]) == CONST_DOUBLE)
2663 REAL_VALUE_TYPE r;
2664 long l[3];
2666 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
2667 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
2668 operands[1] = GEN_INT (l[0]);
2669 middlehalf[1] = GEN_INT (l[1]);
2670 latehalf[1] = GEN_INT (l[2]);
2672 else
2674 /* No non-CONST_DOUBLE constant should ever appear
2675 here. */
2676 gcc_assert (!CONSTANT_P (operands[1]));
2679 else
2681 middlehalf[1] = adjust_address (operands[1], SImode, 0);
2682 latehalf[1] = adjust_address (operands[1], SImode, 0);
2685 else
2686 /* size is not 12: */
2688 if (optype0 == REGOP)
2689 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2690 else if (optype0 == OFFSOP)
2691 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2692 else
2693 latehalf[0] = adjust_address (operands[0], SImode, 0);
2695 if (optype1 == REGOP)
2696 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2697 else if (optype1 == OFFSOP)
2698 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2699 else if (optype1 == CNSTOP)
2700 split_double (operands[1], &operands[1], &latehalf[1]);
2701 else
2702 latehalf[1] = adjust_address (operands[1], SImode, 0);
2705 /* If insn is effectively movd N(sp),-(sp) then we will do the
2706 high word first. We should use the adjusted operand 1 (which is N+4(sp))
2707 for the low word as well, to compensate for the first decrement of sp. */
2708 if (optype0 == PUSHOP
2709 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
2710 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
2711 operands[1] = middlehalf[1] = latehalf[1];
2713 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
2714 if the upper part of reg N does not appear in the MEM, arrange to
2715 emit the move late-half first. Otherwise, compute the MEM address
2716 into the upper part of N and use that as a pointer to the memory
2717 operand. */
2718 if (optype0 == REGOP
2719 && (optype1 == OFFSOP || optype1 == MEMOP))
2721 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
2723 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2724 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2726 /* If both halves of dest are used in the src memory address,
2727 compute the address into latehalf of dest.
2728 Note that this can't happen if the dest is two data regs. */
2729 compadr:
2730 xops[0] = latehalf[0];
2731 xops[1] = XEXP (operands[1], 0);
2733 handle_compadr (xops);
2734 if (GET_MODE (operands[1]) == XFmode)
2736 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
2737 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
2738 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2740 else
2742 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
2743 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
2746 else if (size == 12
2747 && reg_overlap_mentioned_p (middlehalf[0],
2748 XEXP (operands[1], 0)))
2750 /* Check for two regs used by both source and dest.
2751 Note that this can't happen if the dest is all data regs.
2752 It can happen if the dest is d6, d7, a0.
2753 But in that case, latehalf is an addr reg, so
2754 the code at compadr does ok. */
2756 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
2757 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
2758 goto compadr;
2760 /* JRV says this can't happen: */
2761 gcc_assert (!addreg0 && !addreg1);
2763 /* Only the middle reg conflicts; simply put it last. */
2764 handle_movsi (operands);
2765 handle_movsi (latehalf);
2766 handle_movsi (middlehalf);
2768 return;
2770 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
2771 /* If the low half of dest is mentioned in the source memory
2772 address, the arrange to emit the move late half first. */
2773 dest_overlapped_low = 1;
2776 /* If one or both operands autodecrementing,
2777 do the two words, high-numbered first. */
2779 /* Likewise, the first move would clobber the source of the second one,
2780 do them in the other order. This happens only for registers;
2781 such overlap can't happen in memory unless the user explicitly
2782 sets it up, and that is an undefined circumstance. */
2784 if (optype0 == PUSHOP || optype1 == PUSHOP
2785 || (optype0 == REGOP && optype1 == REGOP
2786 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
2787 || REGNO (operands[0]) == REGNO (latehalf[1])))
2788 || dest_overlapped_low)
2790 /* Make any unoffsettable addresses point at high-numbered word. */
2791 if (addreg0)
2792 handle_reg_adjust (addreg0, size - 4);
2793 if (addreg1)
2794 handle_reg_adjust (addreg1, size - 4);
2796 /* Do that word. */
2797 handle_movsi (latehalf);
2799 /* Undo the adds we just did. */
2800 if (addreg0)
2801 handle_reg_adjust (addreg0, -4);
2802 if (addreg1)
2803 handle_reg_adjust (addreg1, -4);
2805 if (size == 12)
2807 handle_movsi (middlehalf);
2809 if (addreg0)
2810 handle_reg_adjust (addreg0, -4);
2811 if (addreg1)
2812 handle_reg_adjust (addreg1, -4);
2815 /* Do low-numbered word. */
2817 handle_movsi (operands);
2818 return;
2821 /* Normal case: do the two words, low-numbered first. */
2823 handle_movsi (operands);
2825 /* Do the middle one of the three words for long double */
2826 if (size == 12)
2828 if (addreg0)
2829 handle_reg_adjust (addreg0, 4);
2830 if (addreg1)
2831 handle_reg_adjust (addreg1, 4);
2833 handle_movsi (middlehalf);
2836 /* Make any unoffsettable addresses point at high-numbered word. */
2837 if (addreg0)
2838 handle_reg_adjust (addreg0, 4);
2839 if (addreg1)
2840 handle_reg_adjust (addreg1, 4);
2842 /* Do that word. */
2843 handle_movsi (latehalf);
2845 /* Undo the adds we just did. */
2846 if (addreg0)
2847 handle_reg_adjust (addreg0, -(size - 4));
2848 if (addreg1)
2849 handle_reg_adjust (addreg1, -(size - 4));
2851 return;
2854 /* Output assembler code to adjust REG by N. */
2855 static void
2856 output_reg_adjust (rtx reg, int n)
2858 const char *s;
2860 gcc_assert (GET_MODE (reg) == SImode
2861 && -12 <= n && n != 0 && n <= 12);
2863 switch (n)
2865 case 12:
2866 s = "add%.l #12,%0";
2867 break;
2869 case 8:
2870 s = "addq%.l #8,%0";
2871 break;
2873 case 4:
2874 s = "addq%.l #4,%0";
2875 break;
2877 case -12:
2878 s = "sub%.l #12,%0";
2879 break;
2881 case -8:
2882 s = "subq%.l #8,%0";
2883 break;
2885 case -4:
2886 s = "subq%.l #4,%0";
2887 break;
2889 default:
2890 gcc_unreachable ();
2891 s = NULL;
2894 output_asm_insn (s, &reg);
2897 /* Emit rtl code to adjust REG by N. */
2898 static void
2899 emit_reg_adjust (rtx reg1, int n)
2901 rtx reg2;
2903 gcc_assert (GET_MODE (reg1) == SImode
2904 && -12 <= n && n != 0 && n <= 12);
2906 reg1 = copy_rtx (reg1);
2907 reg2 = copy_rtx (reg1);
2909 if (n < 0)
2910 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
2911 else if (n > 0)
2912 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
2913 else
2914 gcc_unreachable ();
2917 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
2918 static void
2919 output_compadr (rtx operands[2])
2921 output_asm_insn ("lea %a1,%0", operands);
2924 /* Output the best assembler insn for moving operands[1] into operands[0]
2925 as a fullword. */
2926 static void
2927 output_movsi (rtx operands[2])
2929 output_asm_insn (singlemove_string (operands), operands);
2932 /* Copy OP and change its mode to MODE. */
2933 static rtx
2934 copy_operand (rtx op, enum machine_mode mode)
2936 /* ??? This looks really ugly. There must be a better way
2937 to change a mode on the operand. */
2938 if (GET_MODE (op) != VOIDmode)
2940 if (REG_P (op))
2941 op = gen_rtx_REG (mode, REGNO (op));
2942 else
2944 op = copy_rtx (op);
2945 PUT_MODE (op, mode);
2949 return op;
2952 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
2953 static void
2954 emit_movsi (rtx operands[2])
2956 operands[0] = copy_operand (operands[0], SImode);
2957 operands[1] = copy_operand (operands[1], SImode);
2959 emit_insn (gen_movsi (operands[0], operands[1]));
2962 /* Output assembler code to perform a doubleword move insn
2963 with operands OPERANDS. */
2964 const char *
2965 output_move_double (rtx *operands)
2967 handle_move_double (operands,
2968 output_reg_adjust, output_compadr, output_movsi);
2970 return "";
2973 /* Output rtl code to perform a doubleword move insn
2974 with operands OPERANDS. */
2975 void
2976 m68k_emit_move_double (rtx operands[2])
2978 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
2981 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
2982 new rtx with the correct mode. */
2984 static rtx
2985 force_mode (enum machine_mode mode, rtx orig)
2987 if (mode == GET_MODE (orig))
2988 return orig;
2990 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
2991 abort ();
2993 return gen_rtx_REG (mode, REGNO (orig));
2996 static int
2997 fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2999 return reg_renumber && FP_REG_P (op);
3002 /* Emit insns to move operands[1] into operands[0].
3004 Return 1 if we have written out everything that needs to be done to
3005 do the move. Otherwise, return 0 and the caller will emit the move
3006 normally.
3008 Note SCRATCH_REG may not be in the proper mode depending on how it
3009 will be used. This routine is responsible for creating a new copy
3010 of SCRATCH_REG in the proper mode. */
3013 emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
3015 register rtx operand0 = operands[0];
3016 register rtx operand1 = operands[1];
3017 register rtx tem;
3019 if (scratch_reg
3020 && reload_in_progress && GET_CODE (operand0) == REG
3021 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3022 operand0 = reg_equiv_mem[REGNO (operand0)];
3023 else if (scratch_reg
3024 && reload_in_progress && GET_CODE (operand0) == SUBREG
3025 && GET_CODE (SUBREG_REG (operand0)) == REG
3026 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3028 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3029 the code which tracks sets/uses for delete_output_reload. */
3030 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3031 reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
3032 SUBREG_BYTE (operand0));
3033 operand0 = alter_subreg (&temp);
3036 if (scratch_reg
3037 && reload_in_progress && GET_CODE (operand1) == REG
3038 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3039 operand1 = reg_equiv_mem[REGNO (operand1)];
3040 else if (scratch_reg
3041 && reload_in_progress && GET_CODE (operand1) == SUBREG
3042 && GET_CODE (SUBREG_REG (operand1)) == REG
3043 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3045 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3046 the code which tracks sets/uses for delete_output_reload. */
3047 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3048 reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
3049 SUBREG_BYTE (operand1));
3050 operand1 = alter_subreg (&temp);
3053 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3054 && ((tem = find_replacement (&XEXP (operand0, 0)))
3055 != XEXP (operand0, 0)))
3056 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3057 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3058 && ((tem = find_replacement (&XEXP (operand1, 0)))
3059 != XEXP (operand1, 0)))
3060 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3062 /* Handle secondary reloads for loads/stores of FP registers where
3063 the address is symbolic by using the scratch register */
3064 if (fp_reg_operand (operand0, mode)
3065 && ((GET_CODE (operand1) == MEM
3066 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3067 || ((GET_CODE (operand1) == SUBREG
3068 && GET_CODE (XEXP (operand1, 0)) == MEM
3069 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3070 && scratch_reg)
3072 if (GET_CODE (operand1) == SUBREG)
3073 operand1 = XEXP (operand1, 0);
3075 /* SCRATCH_REG will hold an address. We want
3076 it in SImode regardless of what mode it was originally given
3077 to us. */
3078 scratch_reg = force_mode (SImode, scratch_reg);
3080 /* D might not fit in 14 bits either; for such cases load D into
3081 scratch reg. */
3082 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3084 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3085 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3086 Pmode,
3087 XEXP (XEXP (operand1, 0), 0),
3088 scratch_reg));
3090 else
3091 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3092 emit_insn (gen_rtx_SET (VOIDmode, operand0,
3093 gen_rtx_MEM (mode, scratch_reg)));
3094 return 1;
3096 else if (fp_reg_operand (operand1, mode)
3097 && ((GET_CODE (operand0) == MEM
3098 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3099 || ((GET_CODE (operand0) == SUBREG)
3100 && GET_CODE (XEXP (operand0, 0)) == MEM
3101 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3102 && scratch_reg)
3104 if (GET_CODE (operand0) == SUBREG)
3105 operand0 = XEXP (operand0, 0);
3107 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3108 it in SIMODE regardless of what mode it was originally given
3109 to us. */
3110 scratch_reg = force_mode (SImode, scratch_reg);
3112 /* D might not fit in 14 bits either; for such cases load D into
3113 scratch reg. */
3114 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3116 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3117 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3118 0)),
3119 Pmode,
3120 XEXP (XEXP (operand0, 0),
3122 scratch_reg));
3124 else
3125 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3126 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
3127 operand1));
3128 return 1;
3130 /* Handle secondary reloads for loads of FP registers from constant
3131 expressions by forcing the constant into memory.
3133 use scratch_reg to hold the address of the memory location.
3135 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3136 NO_REGS when presented with a const_int and an register class
3137 containing only FP registers. Doing so unfortunately creates
3138 more problems than it solves. Fix this for 2.5. */
3139 else if (fp_reg_operand (operand0, mode)
3140 && CONSTANT_P (operand1)
3141 && scratch_reg)
3143 rtx xoperands[2];
3145 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3146 it in SIMODE regardless of what mode it was originally given
3147 to us. */
3148 scratch_reg = force_mode (SImode, scratch_reg);
3150 /* Force the constant into memory and put the address of the
3151 memory location into scratch_reg. */
3152 xoperands[0] = scratch_reg;
3153 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3154 emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
3156 /* Now load the destination register. */
3157 emit_insn (gen_rtx_SET (mode, operand0,
3158 gen_rtx_MEM (mode, scratch_reg)));
3159 return 1;
3162 /* Now have insn-emit do whatever it normally does. */
3163 return 0;
3166 /* Split one or more DImode RTL references into pairs of SImode
3167 references. The RTL can be REG, offsettable MEM, integer constant, or
3168 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3169 split and "num" is its length. lo_half and hi_half are output arrays
3170 that parallel "operands". */
3172 void
3173 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3175 while (num--)
3177 rtx op = operands[num];
3179 /* simplify_subreg refuses to split volatile memory addresses,
3180 but we still have to handle it. */
3181 if (GET_CODE (op) == MEM)
3183 lo_half[num] = adjust_address (op, SImode, 4);
3184 hi_half[num] = adjust_address (op, SImode, 0);
3186 else
3188 lo_half[num] = simplify_gen_subreg (SImode, op,
3189 GET_MODE (op) == VOIDmode
3190 ? DImode : GET_MODE (op), 4);
3191 hi_half[num] = simplify_gen_subreg (SImode, op,
3192 GET_MODE (op) == VOIDmode
3193 ? DImode : GET_MODE (op), 0);
3198 /* Split X into a base and a constant offset, storing them in *BASE
3199 and *OFFSET respectively. */
3201 static void
3202 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3204 *offset = 0;
3205 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3207 *offset += INTVAL (XEXP (x, 1));
3208 x = XEXP (x, 0);
3210 *base = x;
3213 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3214 instruction. STORE_P says whether the move is a load or store.
3216 If the instruction uses post-increment or pre-decrement addressing,
3217 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3218 adjustment. This adjustment will be made by the first element of
3219 PARALLEL, with the loads or stores starting at element 1. If the
3220 instruction does not use post-increment or pre-decrement addressing,
3221 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3222 start at element 0. */
3224 bool
3225 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3226 HOST_WIDE_INT automod_offset, bool store_p)
3228 rtx base, mem_base, set, mem, reg, last_reg;
3229 HOST_WIDE_INT offset, mem_offset;
3230 int i, first, len;
3231 enum reg_class rclass;
3233 len = XVECLEN (pattern, 0);
3234 first = (automod_base != NULL);
3236 if (automod_base)
3238 /* Stores must be pre-decrement and loads must be post-increment. */
3239 if (store_p != (automod_offset < 0))
3240 return false;
3242 /* Work out the base and offset for lowest memory location. */
3243 base = automod_base;
3244 offset = (automod_offset < 0 ? automod_offset : 0);
3246 else
3248 /* Allow any valid base and offset in the first access. */
3249 base = NULL;
3250 offset = 0;
3253 last_reg = NULL;
3254 rclass = NO_REGS;
3255 for (i = first; i < len; i++)
3257 /* We need a plain SET. */
3258 set = XVECEXP (pattern, 0, i);
3259 if (GET_CODE (set) != SET)
3260 return false;
3262 /* Check that we have a memory location... */
3263 mem = XEXP (set, !store_p);
3264 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3265 return false;
3267 /* ...with the right address. */
3268 if (base == NULL)
3270 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3271 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3272 There are no mode restrictions for 680x0 besides the
3273 automodification rules enforced above. */
3274 if (TARGET_COLDFIRE
3275 && !m68k_legitimate_base_reg_p (base, reload_completed))
3276 return false;
3278 else
3280 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3281 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3282 return false;
3285 /* Check that we have a register of the required mode and class. */
3286 reg = XEXP (set, store_p);
3287 if (!REG_P (reg)
3288 || !HARD_REGISTER_P (reg)
3289 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3290 return false;
3292 if (last_reg)
3294 /* The register must belong to RCLASS and have a higher number
3295 than the register in the previous SET. */
3296 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3297 || REGNO (last_reg) >= REGNO (reg))
3298 return false;
3300 else
3302 /* Work out which register class we need. */
3303 if (INT_REGNO_P (REGNO (reg)))
3304 rclass = GENERAL_REGS;
3305 else if (FP_REGNO_P (REGNO (reg)))
3306 rclass = FP_REGS;
3307 else
3308 return false;
3311 last_reg = reg;
3312 offset += GET_MODE_SIZE (GET_MODE (reg));
3315 /* If we have an automodification, check whether the final offset is OK. */
3316 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3317 return false;
3319 /* Reject unprofitable cases. */
3320 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3321 return false;
3323 return true;
3326 /* Return the assembly code template for a movem or fmovem instruction
3327 whose pattern is given by PATTERN. Store the template's operands
3328 in OPERANDS.
3330 If the instruction uses post-increment or pre-decrement addressing,
3331 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3332 is true if this is a store instruction. */
3334 const char *
3335 m68k_output_movem (rtx *operands, rtx pattern,
3336 HOST_WIDE_INT automod_offset, bool store_p)
3338 unsigned int mask;
3339 int i, first;
3341 gcc_assert (GET_CODE (pattern) == PARALLEL);
3342 mask = 0;
3343 first = (automod_offset != 0);
3344 for (i = first; i < XVECLEN (pattern, 0); i++)
3346 /* When using movem with pre-decrement addressing, register X + D0_REG
3347 is controlled by bit 15 - X. For all other addressing modes,
3348 register X + D0_REG is controlled by bit X. Confusingly, the
3349 register mask for fmovem is in the opposite order to that for
3350 movem. */
3351 unsigned int regno;
3353 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
3354 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
3355 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
3356 if (automod_offset < 0)
3358 if (FP_REGNO_P (regno))
3359 mask |= 1 << (regno - FP0_REG);
3360 else
3361 mask |= 1 << (15 - (regno - D0_REG));
3363 else
3365 if (FP_REGNO_P (regno))
3366 mask |= 1 << (7 - (regno - FP0_REG));
3367 else
3368 mask |= 1 << (regno - D0_REG);
3371 CC_STATUS_INIT;
3373 if (automod_offset == 0)
3374 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
3375 else if (automod_offset < 0)
3376 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
3377 else
3378 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
3379 operands[1] = GEN_INT (mask);
3380 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
3382 if (store_p)
3383 return "fmovem %1,%a0";
3384 else
3385 return "fmovem %a0,%1";
3387 else
3389 if (store_p)
3390 return "movem%.l %1,%a0";
3391 else
3392 return "movem%.l %a0,%1";
3396 /* Return a REG that occurs in ADDR with coefficient 1.
3397 ADDR can be effectively incremented by incrementing REG. */
3399 static rtx
3400 find_addr_reg (rtx addr)
3402 while (GET_CODE (addr) == PLUS)
3404 if (GET_CODE (XEXP (addr, 0)) == REG)
3405 addr = XEXP (addr, 0);
3406 else if (GET_CODE (XEXP (addr, 1)) == REG)
3407 addr = XEXP (addr, 1);
3408 else if (CONSTANT_P (XEXP (addr, 0)))
3409 addr = XEXP (addr, 1);
3410 else if (CONSTANT_P (XEXP (addr, 1)))
3411 addr = XEXP (addr, 0);
3412 else
3413 gcc_unreachable ();
3415 gcc_assert (GET_CODE (addr) == REG);
3416 return addr;
3419 /* Output assembler code to perform a 32-bit 3-operand add. */
3421 const char *
3422 output_addsi3 (rtx *operands)
3424 if (! operands_match_p (operands[0], operands[1]))
3426 if (!ADDRESS_REG_P (operands[1]))
3428 rtx tmp = operands[1];
3430 operands[1] = operands[2];
3431 operands[2] = tmp;
3434 /* These insns can result from reloads to access
3435 stack slots over 64k from the frame pointer. */
3436 if (GET_CODE (operands[2]) == CONST_INT
3437 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
3438 return "move%.l %2,%0\n\tadd%.l %1,%0";
3439 if (GET_CODE (operands[2]) == REG)
3440 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
3441 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
3443 if (GET_CODE (operands[2]) == CONST_INT)
3445 if (INTVAL (operands[2]) > 0
3446 && INTVAL (operands[2]) <= 8)
3447 return "addq%.l %2,%0";
3448 if (INTVAL (operands[2]) < 0
3449 && INTVAL (operands[2]) >= -8)
3451 operands[2] = GEN_INT (- INTVAL (operands[2]));
3452 return "subq%.l %2,%0";
3454 /* On the CPU32 it is faster to use two addql instructions to
3455 add a small integer (8 < N <= 16) to a register.
3456 Likewise for subql. */
3457 if (TUNE_CPU32 && REG_P (operands[0]))
3459 if (INTVAL (operands[2]) > 8
3460 && INTVAL (operands[2]) <= 16)
3462 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
3463 return "addq%.l #8,%0\n\taddq%.l %2,%0";
3465 if (INTVAL (operands[2]) < -8
3466 && INTVAL (operands[2]) >= -16)
3468 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
3469 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
3472 if (ADDRESS_REG_P (operands[0])
3473 && INTVAL (operands[2]) >= -0x8000
3474 && INTVAL (operands[2]) < 0x8000)
3476 if (TUNE_68040)
3477 return "add%.w %2,%0";
3478 else
3479 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
3482 return "add%.l %2,%0";
3485 /* Store in cc_status the expressions that the condition codes will
3486 describe after execution of an instruction whose pattern is EXP.
3487 Do not alter them if the instruction would not alter the cc's. */
3489 /* On the 68000, all the insns to store in an address register fail to
3490 set the cc's. However, in some cases these instructions can make it
3491 possibly invalid to use the saved cc's. In those cases we clear out
3492 some or all of the saved cc's so they won't be used. */
3494 void
3495 notice_update_cc (rtx exp, rtx insn)
3497 if (GET_CODE (exp) == SET)
3499 if (GET_CODE (SET_SRC (exp)) == CALL)
3500 CC_STATUS_INIT;
3501 else if (ADDRESS_REG_P (SET_DEST (exp)))
3503 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
3504 cc_status.value1 = 0;
3505 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
3506 cc_status.value2 = 0;
3508 /* fmoves to memory or data registers do not set the condition
3509 codes. Normal moves _do_ set the condition codes, but not in
3510 a way that is appropriate for comparison with 0, because -0.0
3511 would be treated as a negative nonzero number. Note that it
3512 isn't appropriate to conditionalize this restriction on
3513 HONOR_SIGNED_ZEROS because that macro merely indicates whether
3514 we care about the difference between -0.0 and +0.0. */
3515 else if (!FP_REG_P (SET_DEST (exp))
3516 && SET_DEST (exp) != cc0_rtx
3517 && (FP_REG_P (SET_SRC (exp))
3518 || GET_CODE (SET_SRC (exp)) == FIX
3519 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
3520 CC_STATUS_INIT;
3521 /* A pair of move insns doesn't produce a useful overall cc. */
3522 else if (!FP_REG_P (SET_DEST (exp))
3523 && !FP_REG_P (SET_SRC (exp))
3524 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
3525 && (GET_CODE (SET_SRC (exp)) == REG
3526 || GET_CODE (SET_SRC (exp)) == MEM
3527 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
3528 CC_STATUS_INIT;
3529 else if (SET_DEST (exp) != pc_rtx)
3531 cc_status.flags = 0;
3532 cc_status.value1 = SET_DEST (exp);
3533 cc_status.value2 = SET_SRC (exp);
3536 else if (GET_CODE (exp) == PARALLEL
3537 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
3539 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
3540 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
3542 if (ADDRESS_REG_P (dest))
3543 CC_STATUS_INIT;
3544 else if (dest != pc_rtx)
3546 cc_status.flags = 0;
3547 cc_status.value1 = dest;
3548 cc_status.value2 = src;
3551 else
3552 CC_STATUS_INIT;
3553 if (cc_status.value2 != 0
3554 && ADDRESS_REG_P (cc_status.value2)
3555 && GET_MODE (cc_status.value2) == QImode)
3556 CC_STATUS_INIT;
3557 if (cc_status.value2 != 0)
3558 switch (GET_CODE (cc_status.value2))
3560 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
3561 case ROTATE: case ROTATERT:
3562 /* These instructions always clear the overflow bit, and set
3563 the carry to the bit shifted out. */
3564 /* ??? We don't currently have a way to signal carry not valid,
3565 nor do we check for it in the branch insns. */
3566 CC_STATUS_INIT;
3567 break;
3569 case PLUS: case MINUS: case MULT:
3570 case DIV: case UDIV: case MOD: case UMOD: case NEG:
3571 if (GET_MODE (cc_status.value2) != VOIDmode)
3572 cc_status.flags |= CC_NO_OVERFLOW;
3573 break;
3574 case ZERO_EXTEND:
3575 /* (SET r1 (ZERO_EXTEND r2)) on this machine
3576 ends with a move insn moving r2 in r2's mode.
3577 Thus, the cc's are set for r2.
3578 This can set N bit spuriously. */
3579 cc_status.flags |= CC_NOT_NEGATIVE;
3581 default:
3582 break;
3584 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
3585 && cc_status.value2
3586 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
3587 cc_status.value2 = 0;
3588 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
3589 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
3590 cc_status.flags = CC_IN_68881;
3591 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
3592 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
3594 cc_status.flags = CC_IN_68881;
3595 if (!FP_REG_P (XEXP (cc_status.value2, 0)))
3596 cc_status.flags |= CC_REVERSED;
3600 const char *
3601 output_move_const_double (rtx *operands)
3603 int code = standard_68881_constant_p (operands[1]);
3605 if (code != 0)
3607 static char buf[40];
3609 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
3610 return buf;
3612 return "fmove%.d %1,%0";
3615 const char *
3616 output_move_const_single (rtx *operands)
3618 int code = standard_68881_constant_p (operands[1]);
3620 if (code != 0)
3622 static char buf[40];
3624 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
3625 return buf;
3627 return "fmove%.s %f1,%0";
3630 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
3631 from the "fmovecr" instruction.
3632 The value, anded with 0xff, gives the code to use in fmovecr
3633 to get the desired constant. */
3635 /* This code has been fixed for cross-compilation. */
3637 static int inited_68881_table = 0;
3639 static const char *const strings_68881[7] = {
3640 "0.0",
3641 "1.0",
3642 "10.0",
3643 "100.0",
3644 "10000.0",
3645 "1e8",
3646 "1e16"
3649 static const int codes_68881[7] = {
3650 0x0f,
3651 0x32,
3652 0x33,
3653 0x34,
3654 0x35,
3655 0x36,
3656 0x37
3659 REAL_VALUE_TYPE values_68881[7];
3661 /* Set up values_68881 array by converting the decimal values
3662 strings_68881 to binary. */
3664 void
3665 init_68881_table (void)
3667 int i;
3668 REAL_VALUE_TYPE r;
3669 enum machine_mode mode;
3671 mode = SFmode;
3672 for (i = 0; i < 7; i++)
3674 if (i == 6)
3675 mode = DFmode;
3676 r = REAL_VALUE_ATOF (strings_68881[i], mode);
3677 values_68881[i] = r;
3679 inited_68881_table = 1;
3683 standard_68881_constant_p (rtx x)
3685 REAL_VALUE_TYPE r;
3686 int i;
3688 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
3689 used at all on those chips. */
3690 if (TUNE_68040_60)
3691 return 0;
3693 if (! inited_68881_table)
3694 init_68881_table ();
3696 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
3698 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
3699 is rejected. */
3700 for (i = 0; i < 6; i++)
3702 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
3703 return (codes_68881[i]);
3706 if (GET_MODE (x) == SFmode)
3707 return 0;
3709 if (REAL_VALUES_EQUAL (r, values_68881[6]))
3710 return (codes_68881[6]);
3712 /* larger powers of ten in the constants ram are not used
3713 because they are not equal to a `double' C constant. */
3714 return 0;
3717 /* If X is a floating-point constant, return the logarithm of X base 2,
3718 or 0 if X is not a power of 2. */
3721 floating_exact_log2 (rtx x)
3723 REAL_VALUE_TYPE r, r1;
3724 int exp;
3726 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
3728 if (REAL_VALUES_LESS (r, dconst1))
3729 return 0;
3731 exp = real_exponent (&r);
3732 real_2expN (&r1, exp, DFmode);
3733 if (REAL_VALUES_EQUAL (r1, r))
3734 return exp;
3736 return 0;
3739 /* A C compound statement to output to stdio stream STREAM the
3740 assembler syntax for an instruction operand X. X is an RTL
3741 expression.
3743 CODE is a value that can be used to specify one of several ways
3744 of printing the operand. It is used when identical operands
3745 must be printed differently depending on the context. CODE
3746 comes from the `%' specification that was used to request
3747 printing of the operand. If the specification was just `%DIGIT'
3748 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3749 is the ASCII code for LTR.
3751 If X is a register, this macro should print the register's name.
3752 The names can be found in an array `reg_names' whose type is
3753 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3755 When the machine description has a specification `%PUNCT' (a `%'
3756 followed by a punctuation character), this macro is called with
3757 a null pointer for X and the punctuation character for CODE.
3759 The m68k specific codes are:
3761 '.' for dot needed in Motorola-style opcode names.
3762 '-' for an operand pushing on the stack:
3763 sp@-, -(sp) or -(%sp) depending on the style of syntax.
3764 '+' for an operand pushing on the stack:
3765 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
3766 '@' for a reference to the top word on the stack:
3767 sp@, (sp) or (%sp) depending on the style of syntax.
3768 '#' for an immediate operand prefix (# in MIT and Motorola syntax
3769 but & in SGS syntax).
3770 '!' for the cc register (used in an `and to cc' insn).
3771 '$' for the letter `s' in an op code, but only on the 68040.
3772 '&' for the letter `d' in an op code, but only on the 68040.
3773 '/' for register prefix needed by longlong.h.
3774 '?' for m68k_library_id_string
3776 'b' for byte insn (no effect, on the Sun; this is for the ISI).
3777 'd' to force memory addressing to be absolute, not relative.
3778 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
3779 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
3780 or print pair of registers as rx:ry.
3781 'p' print an address with @PLTPC attached, but only if the operand
3782 is not locally-bound. */
3784 void
3785 print_operand (FILE *file, rtx op, int letter)
3787 if (letter == '.')
3789 if (MOTOROLA)
3790 fprintf (file, ".");
3792 else if (letter == '#')
3793 asm_fprintf (file, "%I");
3794 else if (letter == '-')
3795 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
3796 else if (letter == '+')
3797 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
3798 else if (letter == '@')
3799 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
3800 else if (letter == '!')
3801 asm_fprintf (file, "%Rfpcr");
3802 else if (letter == '$')
3804 if (TARGET_68040)
3805 fprintf (file, "s");
3807 else if (letter == '&')
3809 if (TARGET_68040)
3810 fprintf (file, "d");
3812 else if (letter == '/')
3813 asm_fprintf (file, "%R");
3814 else if (letter == '?')
3815 asm_fprintf (file, m68k_library_id_string);
3816 else if (letter == 'p')
3818 output_addr_const (file, op);
3819 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
3820 fprintf (file, "@PLTPC");
3822 else if (GET_CODE (op) == REG)
3824 if (letter == 'R')
3825 /* Print out the second register name of a register pair.
3826 I.e., R (6) => 7. */
3827 fputs (M68K_REGNAME(REGNO (op) + 1), file);
3828 else
3829 fputs (M68K_REGNAME(REGNO (op)), file);
3831 else if (GET_CODE (op) == MEM)
3833 output_address (XEXP (op, 0));
3834 if (letter == 'd' && ! TARGET_68020
3835 && CONSTANT_ADDRESS_P (XEXP (op, 0))
3836 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
3837 && INTVAL (XEXP (op, 0)) < 0x8000
3838 && INTVAL (XEXP (op, 0)) >= -0x8000))
3839 fprintf (file, MOTOROLA ? ".l" : ":l");
3841 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
3843 REAL_VALUE_TYPE r;
3844 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
3845 ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
3847 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
3849 REAL_VALUE_TYPE r;
3850 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
3851 ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
3853 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
3855 REAL_VALUE_TYPE r;
3856 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
3857 ASM_OUTPUT_DOUBLE_OPERAND (file, r);
3859 else
3861 /* Use `print_operand_address' instead of `output_addr_const'
3862 to ensure that we print relevant PIC stuff. */
3863 asm_fprintf (file, "%I");
3864 if (TARGET_PCREL
3865 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
3866 print_operand_address (file, op);
3867 else
3868 output_addr_const (file, op);
3873 /* A C compound statement to output to stdio stream STREAM the
3874 assembler syntax for an instruction operand that is a memory
3875 reference whose address is ADDR. ADDR is an RTL expression.
3877 Note that this contains a kludge that knows that the only reason
3878 we have an address (plus (label_ref...) (reg...)) when not generating
3879 PIC code is in the insn before a tablejump, and we know that m68k.md
3880 generates a label LInnn: on such an insn.
3882 It is possible for PIC to generate a (plus (label_ref...) (reg...))
3883 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
3885 This routine is responsible for distinguishing between -fpic and -fPIC
3886 style relocations in an address. When generating -fpic code the
3887 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
3888 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
3890 void
3891 print_operand_address (FILE *file, rtx addr)
3893 struct m68k_address address;
3895 if (!m68k_decompose_address (QImode, addr, true, &address))
3896 gcc_unreachable ();
3898 if (address.code == PRE_DEC)
3899 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
3900 M68K_REGNAME (REGNO (address.base)));
3901 else if (address.code == POST_INC)
3902 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
3903 M68K_REGNAME (REGNO (address.base)));
3904 else if (!address.base && !address.index)
3906 /* A constant address. */
3907 gcc_assert (address.offset == addr);
3908 if (GET_CODE (addr) == CONST_INT)
3910 /* (xxx).w or (xxx).l. */
3911 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
3912 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
3913 else
3914 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
3916 else if (TARGET_PCREL)
3918 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
3919 fputc ('(', file);
3920 output_addr_const (file, addr);
3921 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
3923 else
3925 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
3926 name ends in `.<letter>', as the last 2 characters can be
3927 mistaken as a size suffix. Put the name in parentheses. */
3928 if (GET_CODE (addr) == SYMBOL_REF
3929 && strlen (XSTR (addr, 0)) > 2
3930 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
3932 putc ('(', file);
3933 output_addr_const (file, addr);
3934 putc (')', file);
3936 else
3937 output_addr_const (file, addr);
3940 else
3942 int labelno;
3944 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
3945 label being accessed, otherwise it is -1. */
3946 labelno = (address.offset
3947 && !address.base
3948 && GET_CODE (address.offset) == LABEL_REF
3949 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
3950 : -1);
3951 if (MOTOROLA)
3953 /* Print the "offset(base" component. */
3954 if (labelno >= 0)
3955 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
3956 else
3958 if (address.offset)
3960 output_addr_const (file, address.offset);
3961 if (flag_pic && address.base == pic_offset_table_rtx)
3963 fprintf (file, "@GOT");
3964 if (flag_pic == 1 && TARGET_68020)
3965 fprintf (file, ".w");
3968 putc ('(', file);
3969 if (address.base)
3970 fputs (M68K_REGNAME (REGNO (address.base)), file);
3972 /* Print the ",index" component, if any. */
3973 if (address.index)
3975 if (address.base)
3976 putc (',', file);
3977 fprintf (file, "%s.%c",
3978 M68K_REGNAME (REGNO (address.index)),
3979 GET_MODE (address.index) == HImode ? 'w' : 'l');
3980 if (address.scale != 1)
3981 fprintf (file, "*%d", address.scale);
3983 putc (')', file);
3985 else /* !MOTOROLA */
3987 if (!address.offset && !address.index)
3988 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
3989 else
3991 /* Print the "base@(offset" component. */
3992 if (labelno >= 0)
3993 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
3994 else
3996 if (address.base)
3997 fputs (M68K_REGNAME (REGNO (address.base)), file);
3998 fprintf (file, "@(");
3999 if (address.offset)
4001 output_addr_const (file, address.offset);
4002 if (address.base == pic_offset_table_rtx && TARGET_68020)
4003 switch (flag_pic)
4005 case 1:
4006 fprintf (file, ":w"); break;
4007 case 2:
4008 fprintf (file, ":l"); break;
4009 default:
4010 break;
4014 /* Print the ",index" component, if any. */
4015 if (address.index)
4017 fprintf (file, ",%s:%c",
4018 M68K_REGNAME (REGNO (address.index)),
4019 GET_MODE (address.index) == HImode ? 'w' : 'l');
4020 if (address.scale != 1)
4021 fprintf (file, ":%d", address.scale);
4023 putc (')', file);
4029 /* Check for cases where a clr insns can be omitted from code using
4030 strict_low_part sets. For example, the second clrl here is not needed:
4031 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4033 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4034 insn we are checking for redundancy. TARGET is the register set by the
4035 clear insn. */
4037 bool
4038 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
4039 rtx target)
4041 rtx p = first_insn;
4043 while ((p = PREV_INSN (p)))
4045 if (NOTE_INSN_BASIC_BLOCK_P (p))
4046 return false;
4048 if (NOTE_P (p))
4049 continue;
4051 /* If it isn't an insn, then give up. */
4052 if (!INSN_P (p))
4053 return false;
4055 if (reg_set_p (target, p))
4057 rtx set = single_set (p);
4058 rtx dest;
4060 /* If it isn't an easy to recognize insn, then give up. */
4061 if (! set)
4062 return false;
4064 dest = SET_DEST (set);
4066 /* If this sets the entire target register to zero, then our
4067 first_insn is redundant. */
4068 if (rtx_equal_p (dest, target)
4069 && SET_SRC (set) == const0_rtx)
4070 return true;
4071 else if (GET_CODE (dest) == STRICT_LOW_PART
4072 && GET_CODE (XEXP (dest, 0)) == REG
4073 && REGNO (XEXP (dest, 0)) == REGNO (target)
4074 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4075 <= GET_MODE_SIZE (mode)))
4076 /* This is a strict low part set which modifies less than
4077 we are using, so it is safe. */
4079 else
4080 return false;
4084 return false;
4087 /* Operand predicates for implementing asymmetric pc-relative addressing
4088 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4089 when used as a source operand, but not as a destination operand.
4091 We model this by restricting the meaning of the basic predicates
4092 (general_operand, memory_operand, etc) to forbid the use of this
4093 addressing mode, and then define the following predicates that permit
4094 this addressing mode. These predicates can then be used for the
4095 source operands of the appropriate instructions.
4097 n.b. While it is theoretically possible to change all machine patterns
4098 to use this addressing more where permitted by the architecture,
4099 it has only been implemented for "common" cases: SImode, HImode, and
4100 QImode operands, and only for the principle operations that would
4101 require this addressing mode: data movement and simple integer operations.
4103 In parallel with these new predicates, two new constraint letters
4104 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4105 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4106 In the pcrel case 's' is only valid in combination with 'a' registers.
4107 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4108 of how these constraints are used.
4110 The use of these predicates is strictly optional, though patterns that
4111 don't will cause an extra reload register to be allocated where one
4112 was not necessary:
4114 lea (abc:w,%pc),%a0 ; need to reload address
4115 moveq &1,%d1 ; since write to pc-relative space
4116 movel %d1,%a0@ ; is not allowed
4118 lea (abc:w,%pc),%a1 ; no need to reload address here
4119 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4121 For more info, consult tiemann@cygnus.com.
4124 All of the ugliness with predicates and constraints is due to the
4125 simple fact that the m68k does not allow a pc-relative addressing
4126 mode as a destination. gcc does not distinguish between source and
4127 destination addresses. Hence, if we claim that pc-relative address
4128 modes are valid, e.g. GO_IF_LEGITIMATE_ADDRESS accepts them, then we
4129 end up with invalid code. To get around this problem, we left
4130 pc-relative modes as invalid addresses, and then added special
4131 predicates and constraints to accept them.
4133 A cleaner way to handle this is to modify gcc to distinguish
4134 between source and destination addresses. We can then say that
4135 pc-relative is a valid source address but not a valid destination
4136 address, and hopefully avoid a lot of the predicate and constraint
4137 hackery. Unfortunately, this would be a pretty big change. It would
4138 be a useful change for a number of ports, but there aren't any current
4139 plans to undertake this.
4141 ***************************************************************************/
4144 const char *
4145 output_andsi3 (rtx *operands)
4147 int logval;
4148 if (GET_CODE (operands[2]) == CONST_INT
4149 && (INTVAL (operands[2]) | 0xffff) == -1
4150 && (DATA_REG_P (operands[0])
4151 || offsettable_memref_p (operands[0]))
4152 && !TARGET_COLDFIRE)
4154 if (GET_CODE (operands[0]) != REG)
4155 operands[0] = adjust_address (operands[0], HImode, 2);
4156 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4157 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4158 CC_STATUS_INIT;
4159 if (operands[2] == const0_rtx)
4160 return "clr%.w %0";
4161 return "and%.w %2,%0";
4163 if (GET_CODE (operands[2]) == CONST_INT
4164 && (logval = exact_log2 (~ INTVAL (operands[2]))) >= 0
4165 && (DATA_REG_P (operands[0])
4166 || offsettable_memref_p (operands[0])))
4168 if (DATA_REG_P (operands[0]))
4169 operands[1] = GEN_INT (logval);
4170 else
4172 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4173 operands[1] = GEN_INT (logval % 8);
4175 /* This does not set condition codes in a standard way. */
4176 CC_STATUS_INIT;
4177 return "bclr %1,%0";
4179 return "and%.l %2,%0";
4182 const char *
4183 output_iorsi3 (rtx *operands)
4185 register int logval;
4186 if (GET_CODE (operands[2]) == CONST_INT
4187 && INTVAL (operands[2]) >> 16 == 0
4188 && (DATA_REG_P (operands[0])
4189 || offsettable_memref_p (operands[0]))
4190 && !TARGET_COLDFIRE)
4192 if (GET_CODE (operands[0]) != REG)
4193 operands[0] = adjust_address (operands[0], HImode, 2);
4194 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4195 CC_STATUS_INIT;
4196 if (INTVAL (operands[2]) == 0xffff)
4197 return "mov%.w %2,%0";
4198 return "or%.w %2,%0";
4200 if (GET_CODE (operands[2]) == CONST_INT
4201 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
4202 && (DATA_REG_P (operands[0])
4203 || offsettable_memref_p (operands[0])))
4205 if (DATA_REG_P (operands[0]))
4206 operands[1] = GEN_INT (logval);
4207 else
4209 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4210 operands[1] = GEN_INT (logval % 8);
4212 CC_STATUS_INIT;
4213 return "bset %1,%0";
4215 return "or%.l %2,%0";
4218 const char *
4219 output_xorsi3 (rtx *operands)
4221 register int logval;
4222 if (GET_CODE (operands[2]) == CONST_INT
4223 && INTVAL (operands[2]) >> 16 == 0
4224 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
4225 && !TARGET_COLDFIRE)
4227 if (! DATA_REG_P (operands[0]))
4228 operands[0] = adjust_address (operands[0], HImode, 2);
4229 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4230 CC_STATUS_INIT;
4231 if (INTVAL (operands[2]) == 0xffff)
4232 return "not%.w %0";
4233 return "eor%.w %2,%0";
4235 if (GET_CODE (operands[2]) == CONST_INT
4236 && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
4237 && (DATA_REG_P (operands[0])
4238 || offsettable_memref_p (operands[0])))
4240 if (DATA_REG_P (operands[0]))
4241 operands[1] = GEN_INT (logval);
4242 else
4244 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4245 operands[1] = GEN_INT (logval % 8);
4247 CC_STATUS_INIT;
4248 return "bchg %1,%0";
4250 return "eor%.l %2,%0";
4253 /* Return the instruction that should be used for a call to address X,
4254 which is known to be in operand 0. */
4256 const char *
4257 output_call (rtx x)
4259 if (symbolic_operand (x, VOIDmode))
4260 return m68k_symbolic_call;
4261 else
4262 return "jsr %a0";
4265 /* Likewise sibling calls. */
4267 const char *
4268 output_sibcall (rtx x)
4270 if (symbolic_operand (x, VOIDmode))
4271 return m68k_symbolic_jump;
4272 else
4273 return "jmp %a0";
4276 #ifdef M68K_TARGET_COFF
4278 /* Output assembly to switch to section NAME with attribute FLAGS. */
4280 static void
4281 m68k_coff_asm_named_section (const char *name, unsigned int flags,
4282 tree decl ATTRIBUTE_UNUSED)
4284 char flagchar;
4286 if (flags & SECTION_WRITE)
4287 flagchar = 'd';
4288 else
4289 flagchar = 'x';
4291 fprintf (asm_out_file, "\t.section\t%s,\"%c\"\n", name, flagchar);
4294 #endif /* M68K_TARGET_COFF */
4296 static void
4297 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
4298 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
4299 tree function)
4301 rtx this_slot, offset, addr, mem, insn;
4303 /* Pretend to be a post-reload pass while generating rtl. */
4304 reload_completed = 1;
4306 /* The "this" pointer is stored at 4(%sp). */
4307 this_slot = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, 4));
4309 /* Add DELTA to THIS. */
4310 if (delta != 0)
4312 /* Make the offset a legitimate operand for memory addition. */
4313 offset = GEN_INT (delta);
4314 if ((delta < -8 || delta > 8)
4315 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
4317 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
4318 offset = gen_rtx_REG (Pmode, D0_REG);
4320 emit_insn (gen_add3_insn (copy_rtx (this_slot),
4321 copy_rtx (this_slot), offset));
4324 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
4325 if (vcall_offset != 0)
4327 /* Set the static chain register to *THIS. */
4328 emit_move_insn (static_chain_rtx, this_slot);
4329 emit_move_insn (static_chain_rtx, gen_rtx_MEM (Pmode, static_chain_rtx));
4331 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
4332 addr = plus_constant (static_chain_rtx, vcall_offset);
4333 if (!m68k_legitimate_address_p (Pmode, addr, true))
4335 emit_insn (gen_rtx_SET (VOIDmode, static_chain_rtx, addr));
4336 addr = static_chain_rtx;
4339 /* Load the offset into %d0 and add it to THIS. */
4340 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
4341 gen_rtx_MEM (Pmode, addr));
4342 emit_insn (gen_add3_insn (copy_rtx (this_slot),
4343 copy_rtx (this_slot),
4344 gen_rtx_REG (Pmode, D0_REG)));
4347 /* Jump to the target function. Use a sibcall if direct jumps are
4348 allowed, otherwise load the address into a register first. */
4349 mem = DECL_RTL (function);
4350 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
4352 gcc_assert (flag_pic);
4354 if (!TARGET_SEP_DATA)
4356 /* Use the static chain register as a temporary (call-clobbered)
4357 GOT pointer for this function. We can use the static chain
4358 register because it isn't live on entry to the thunk. */
4359 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
4360 emit_insn (gen_load_got (pic_offset_table_rtx));
4362 legitimize_pic_address (XEXP (mem, 0), Pmode, static_chain_rtx);
4363 mem = replace_equiv_address (mem, static_chain_rtx);
4365 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
4366 SIBLING_CALL_P (insn) = 1;
4368 /* Run just enough of rest_of_compilation. */
4369 insn = get_insns ();
4370 split_all_insns_noflow ();
4371 final_start_function (insn, file, 1);
4372 final (insn, file, 1);
4373 final_end_function ();
4375 /* Clean up the vars set above. */
4376 reload_completed = 0;
4378 /* Restore the original PIC register. */
4379 if (flag_pic)
4380 SET_REGNO (pic_offset_table_rtx, PIC_REG);
4381 free_after_compilation (cfun);
4384 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
4386 static rtx
4387 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
4388 int incoming ATTRIBUTE_UNUSED)
4390 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
4393 /* Return nonzero if register old_reg can be renamed to register new_reg. */
4395 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
4396 unsigned int new_reg)
4399 /* Interrupt functions can only use registers that have already been
4400 saved by the prologue, even if they would normally be
4401 call-clobbered. */
4403 if ((m68k_get_function_kind (current_function_decl)
4404 == m68k_fk_interrupt_handler)
4405 && !df_regs_ever_live_p (new_reg))
4406 return 0;
4408 return 1;
4411 /* Value is true if hard register REGNO can hold a value of machine-mode
4412 MODE. On the 68000, we let the cpu registers can hold any mode, but
4413 restrict the 68881 registers to floating-point modes. */
4415 bool
4416 m68k_regno_mode_ok (int regno, enum machine_mode mode)
4418 if (DATA_REGNO_P (regno))
4420 /* Data Registers, can hold aggregate if fits in. */
4421 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
4422 return true;
4424 else if (ADDRESS_REGNO_P (regno))
4426 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
4427 return true;
4429 else if (FP_REGNO_P (regno))
4431 /* FPU registers, hold float or complex float of long double or
4432 smaller. */
4433 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
4434 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4435 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
4436 return true;
4438 return false;
4441 /* Implement SECONDARY_RELOAD_CLASS. */
4443 enum reg_class
4444 m68k_secondary_reload_class (enum reg_class rclass,
4445 enum machine_mode mode, rtx x)
4447 int regno;
4449 regno = true_regnum (x);
4451 /* If one operand of a movqi is an address register, the other
4452 operand must be a general register or constant. Other types
4453 of operand must be reloaded through a data register. */
4454 if (GET_MODE_SIZE (mode) == 1
4455 && reg_classes_intersect_p (rclass, ADDR_REGS)
4456 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
4457 return DATA_REGS;
4459 /* PC-relative addresses must be loaded into an address register first. */
4460 if (TARGET_PCREL
4461 && !reg_class_subset_p (rclass, ADDR_REGS)
4462 && symbolic_operand (x, VOIDmode))
4463 return ADDR_REGS;
4465 return NO_REGS;
4468 /* Implement PREFERRED_RELOAD_CLASS. */
4470 enum reg_class
4471 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
4473 enum reg_class secondary_class;
4475 /* If RCLASS might need a secondary reload, try restricting it to
4476 a class that doesn't. */
4477 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
4478 if (secondary_class != NO_REGS
4479 && reg_class_subset_p (secondary_class, rclass))
4480 return secondary_class;
4482 /* Prefer to use moveq for in-range constants. */
4483 if (GET_CODE (x) == CONST_INT
4484 && reg_class_subset_p (DATA_REGS, rclass)
4485 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
4486 return DATA_REGS;
4488 /* ??? Do we really need this now? */
4489 if (GET_CODE (x) == CONST_DOUBLE
4490 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
4492 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
4493 return FP_REGS;
4495 return NO_REGS;
4498 return rclass;
4501 /* Return floating point values in a 68881 register. This makes 68881 code
4502 a little bit faster. It also makes -msoft-float code incompatible with
4503 hard-float code, so people have to be careful not to mix the two.
4504 For ColdFire it was decided the ABI incompatibility is undesirable.
4505 If there is need for a hard-float ABI it is probably worth doing it
4506 properly and also passing function arguments in FP registers. */
4508 m68k_libcall_value (enum machine_mode mode)
4510 switch (mode) {
4511 case SFmode:
4512 case DFmode:
4513 case XFmode:
4514 if (TARGET_68881)
4515 return gen_rtx_REG (mode, FP0_REG);
4516 break;
4517 default:
4518 break;
4520 return gen_rtx_REG (mode, D0_REG);
4524 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
4526 enum machine_mode mode;
4528 mode = TYPE_MODE (valtype);
4529 switch (mode) {
4530 case SFmode:
4531 case DFmode:
4532 case XFmode:
4533 if (TARGET_68881)
4534 return gen_rtx_REG (mode, FP0_REG);
4535 break;
4536 default:
4537 break;
4540 /* If the function returns a pointer, push that into %a0. */
4541 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
4542 /* For compatibility with the large body of existing code which
4543 does not always properly declare external functions returning
4544 pointer types, the m68k/SVR4 convention is to copy the value
4545 returned for pointer functions from a0 to d0 in the function
4546 epilogue, so that callers that have neglected to properly
4547 declare the callee can still find the correct return value in
4548 d0. */
4549 return gen_rtx_PARALLEL
4550 (mode,
4551 gen_rtvec (2,
4552 gen_rtx_EXPR_LIST (VOIDmode,
4553 gen_rtx_REG (mode, A0_REG),
4554 const0_rtx),
4555 gen_rtx_EXPR_LIST (VOIDmode,
4556 gen_rtx_REG (mode, D0_REG),
4557 const0_rtx)));
4558 else if (POINTER_TYPE_P (valtype))
4559 return gen_rtx_REG (mode, A0_REG);
4560 else
4561 return gen_rtx_REG (mode, D0_REG);
4564 /* Worker function for TARGET_RETURN_IN_MEMORY. */
4565 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
4566 static bool
4567 m68k_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
4569 enum machine_mode mode = TYPE_MODE (type);
4571 if (mode == BLKmode)
4572 return true;
4574 /* If TYPE's known alignment is less than the alignment of MODE that
4575 would contain the structure, then return in memory. We need to
4576 do so to maintain the compatibility between code compiled with
4577 -mstrict-align and that compiled with -mno-strict-align. */
4578 if (AGGREGATE_TYPE_P (type)
4579 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
4580 return true;
4582 return false;
4584 #endif
4586 /* CPU to schedule the program for. */
4587 enum attr_cpu m68k_sched_cpu;
4589 /* MAC to schedule the program for. */
4590 enum attr_mac m68k_sched_mac;
4592 /* Operand type. */
4593 enum attr_op_type
4595 /* No operand. */
4596 OP_TYPE_NONE,
4598 /* Integer register. */
4599 OP_TYPE_RN,
4601 /* FP register. */
4602 OP_TYPE_FPN,
4604 /* Implicit mem reference (e.g. stack). */
4605 OP_TYPE_MEM1,
4607 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
4608 OP_TYPE_MEM234,
4610 /* Memory with offset but without indexing. EA mode 5. */
4611 OP_TYPE_MEM5,
4613 /* Memory with indexing. EA mode 6. */
4614 OP_TYPE_MEM6,
4616 /* Memory referenced by absolute address. EA mode 7. */
4617 OP_TYPE_MEM7,
4619 /* Immediate operand that doesn't require extension word. */
4620 OP_TYPE_IMM_Q,
4622 /* Immediate 16 bit operand. */
4623 OP_TYPE_IMM_W,
4625 /* Immediate 32 bit operand. */
4626 OP_TYPE_IMM_L
4629 /* Return type of memory ADDR_RTX refers to. */
4630 static enum attr_op_type
4631 sched_address_type (enum machine_mode mode, rtx addr_rtx)
4633 struct m68k_address address;
4635 if (symbolic_operand (addr_rtx, VOIDmode))
4636 return OP_TYPE_MEM7;
4638 if (!m68k_decompose_address (mode, addr_rtx,
4639 reload_completed, &address))
4641 gcc_assert (!reload_completed);
4642 /* Reload will likely fix the address to be in the register. */
4643 return OP_TYPE_MEM234;
4646 if (address.scale != 0)
4647 return OP_TYPE_MEM6;
4649 if (address.base != NULL_RTX)
4651 if (address.offset == NULL_RTX)
4652 return OP_TYPE_MEM234;
4654 return OP_TYPE_MEM5;
4657 gcc_assert (address.offset != NULL_RTX);
4659 return OP_TYPE_MEM7;
4662 /* Return X or Y (depending on OPX_P) operand of INSN. */
4663 static rtx
4664 sched_get_operand (rtx insn, bool opx_p)
4666 int i;
4668 if (recog_memoized (insn) < 0)
4669 gcc_unreachable ();
4671 extract_constrain_insn_cached (insn);
4673 if (opx_p)
4674 i = get_attr_opx (insn);
4675 else
4676 i = get_attr_opy (insn);
4678 if (i >= recog_data.n_operands)
4679 return NULL;
4681 return recog_data.operand[i];
4684 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
4685 If ADDRESS_P is true, return type of memory location operand refers to. */
4686 static enum attr_op_type
4687 sched_attr_op_type (rtx insn, bool opx_p, bool address_p)
4689 rtx op;
4691 op = sched_get_operand (insn, opx_p);
4693 if (op == NULL)
4695 gcc_assert (!reload_completed);
4696 return OP_TYPE_RN;
4699 if (address_p)
4700 return sched_address_type (QImode, op);
4702 if (memory_operand (op, VOIDmode))
4703 return sched_address_type (GET_MODE (op), XEXP (op, 0));
4705 if (register_operand (op, VOIDmode))
4707 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
4708 || (reload_completed && FP_REG_P (op)))
4709 return OP_TYPE_FPN;
4711 return OP_TYPE_RN;
4714 if (GET_CODE (op) == CONST_INT)
4716 int ival;
4718 ival = INTVAL (op);
4720 /* Check for quick constants. */
4721 switch (get_attr_type (insn))
4723 case TYPE_ALUQ_L:
4724 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
4725 return OP_TYPE_IMM_Q;
4727 gcc_assert (!reload_completed);
4728 break;
4730 case TYPE_MOVEQ_L:
4731 if (USE_MOVQ (ival))
4732 return OP_TYPE_IMM_Q;
4734 gcc_assert (!reload_completed);
4735 break;
4737 case TYPE_MOV3Q_L:
4738 if (valid_mov3q_const (ival))
4739 return OP_TYPE_IMM_Q;
4741 gcc_assert (!reload_completed);
4742 break;
4744 default:
4745 break;
4748 if (IN_RANGE (ival, -0x8000, 0x7fff))
4749 return OP_TYPE_IMM_W;
4751 return OP_TYPE_IMM_L;
4754 if (GET_CODE (op) == CONST_DOUBLE)
4756 switch (GET_MODE (op))
4758 case SFmode:
4759 return OP_TYPE_IMM_W;
4761 case VOIDmode:
4762 case DFmode:
4763 return OP_TYPE_IMM_L;
4765 default:
4766 gcc_unreachable ();
4770 if (symbolic_operand (op, VOIDmode)
4771 || LABEL_P (op))
4773 switch (GET_MODE (op))
4775 case QImode:
4776 return OP_TYPE_IMM_Q;
4778 case HImode:
4779 return OP_TYPE_IMM_W;
4781 case SImode:
4782 return OP_TYPE_IMM_L;
4784 default:
4785 if (GET_CODE (op) == SYMBOL_REF)
4786 /* ??? Just a guess. Probably we can guess better using length
4787 attribute of the instructions. */
4788 return OP_TYPE_IMM_W;
4790 return OP_TYPE_IMM_L;
4794 gcc_assert (!reload_completed);
4796 if (FLOAT_MODE_P (GET_MODE (op)))
4797 return OP_TYPE_FPN;
4799 return OP_TYPE_RN;
4802 /* Implement opx_type attribute.
4803 Return type of INSN's operand X.
4804 If ADDRESS_P is true, return type of memory location operand refers to. */
4805 enum attr_opx_type
4806 m68k_sched_attr_opx_type (rtx insn, int address_p)
4808 switch (sched_attr_op_type (insn, true, address_p != 0))
4810 case OP_TYPE_RN:
4811 return OPX_TYPE_RN;
4813 case OP_TYPE_FPN:
4814 return OPX_TYPE_FPN;
4816 case OP_TYPE_MEM1:
4817 return OPX_TYPE_MEM1;
4819 case OP_TYPE_MEM234:
4820 return OPX_TYPE_MEM234;
4822 case OP_TYPE_MEM5:
4823 return OPX_TYPE_MEM5;
4825 case OP_TYPE_MEM6:
4826 return OPX_TYPE_MEM6;
4828 case OP_TYPE_MEM7:
4829 return OPX_TYPE_MEM7;
4831 case OP_TYPE_IMM_Q:
4832 return OPX_TYPE_IMM_Q;
4834 case OP_TYPE_IMM_W:
4835 return OPX_TYPE_IMM_W;
4837 case OP_TYPE_IMM_L:
4838 return OPX_TYPE_IMM_L;
4840 default:
4841 gcc_unreachable ();
4842 return 0;
4846 /* Implement opy_type attribute.
4847 Return type of INSN's operand Y.
4848 If ADDRESS_P is true, return type of memory location operand refers to. */
4849 enum attr_opy_type
4850 m68k_sched_attr_opy_type (rtx insn, int address_p)
4852 switch (sched_attr_op_type (insn, false, address_p != 0))
4854 case OP_TYPE_RN:
4855 return OPY_TYPE_RN;
4857 case OP_TYPE_FPN:
4858 return OPY_TYPE_FPN;
4860 case OP_TYPE_MEM1:
4861 return OPY_TYPE_MEM1;
4863 case OP_TYPE_MEM234:
4864 return OPY_TYPE_MEM234;
4866 case OP_TYPE_MEM5:
4867 return OPY_TYPE_MEM5;
4869 case OP_TYPE_MEM6:
4870 return OPY_TYPE_MEM6;
4872 case OP_TYPE_MEM7:
4873 return OPY_TYPE_MEM7;
4875 case OP_TYPE_IMM_Q:
4876 return OPY_TYPE_IMM_Q;
4878 case OP_TYPE_IMM_W:
4879 return OPY_TYPE_IMM_W;
4881 case OP_TYPE_IMM_L:
4882 return OPY_TYPE_IMM_L;
4884 default:
4885 gcc_unreachable ();
4886 return 0;
4890 /* Return size of INSN as int. */
4891 static int
4892 sched_get_attr_size_int (rtx insn)
4894 int size;
4896 switch (get_attr_type (insn))
4898 case TYPE_IGNORE:
4899 /* There should be no references to m68k_sched_attr_size for 'ignore'
4900 instructions. */
4901 gcc_unreachable ();
4902 return 0;
4904 case TYPE_MUL_L:
4905 size = 2;
4906 break;
4908 default:
4909 size = 1;
4910 break;
4913 switch (get_attr_opx_type (insn))
4915 case OPX_TYPE_NONE:
4916 case OPX_TYPE_RN:
4917 case OPX_TYPE_FPN:
4918 case OPX_TYPE_MEM1:
4919 case OPX_TYPE_MEM234:
4920 case OPY_TYPE_IMM_Q:
4921 break;
4923 case OPX_TYPE_MEM5:
4924 case OPX_TYPE_MEM6:
4925 /* Here we assume that most absolute references are short. */
4926 case OPX_TYPE_MEM7:
4927 case OPY_TYPE_IMM_W:
4928 ++size;
4929 break;
4931 case OPY_TYPE_IMM_L:
4932 size += 2;
4933 break;
4935 default:
4936 gcc_unreachable ();
4939 switch (get_attr_opy_type (insn))
4941 case OPY_TYPE_NONE:
4942 case OPY_TYPE_RN:
4943 case OPY_TYPE_FPN:
4944 case OPY_TYPE_MEM1:
4945 case OPY_TYPE_MEM234:
4946 case OPY_TYPE_IMM_Q:
4947 break;
4949 case OPY_TYPE_MEM5:
4950 case OPY_TYPE_MEM6:
4951 /* Here we assume that most absolute references are short. */
4952 case OPY_TYPE_MEM7:
4953 case OPY_TYPE_IMM_W:
4954 ++size;
4955 break;
4957 case OPY_TYPE_IMM_L:
4958 size += 2;
4959 break;
4961 default:
4962 gcc_unreachable ();
4965 if (size > 3)
4967 gcc_assert (!reload_completed);
4969 size = 3;
4972 return size;
4975 /* Return size of INSN as attribute enum value. */
4976 enum attr_size
4977 m68k_sched_attr_size (rtx insn)
4979 switch (sched_get_attr_size_int (insn))
4981 case 1:
4982 return SIZE_1;
4984 case 2:
4985 return SIZE_2;
4987 case 3:
4988 return SIZE_3;
4990 default:
4991 gcc_unreachable ();
4992 return 0;
4996 /* Return operand X or Y (depending on OPX_P) of INSN,
4997 if it is a MEM, or NULL overwise. */
4998 static enum attr_op_type
4999 sched_get_opxy_mem_type (rtx insn, bool opx_p)
5001 if (opx_p)
5003 switch (get_attr_opx_type (insn))
5005 case OPX_TYPE_NONE:
5006 case OPX_TYPE_RN:
5007 case OPX_TYPE_FPN:
5008 case OPX_TYPE_IMM_Q:
5009 case OPX_TYPE_IMM_W:
5010 case OPX_TYPE_IMM_L:
5011 return OP_TYPE_RN;
5013 case OPX_TYPE_MEM1:
5014 case OPX_TYPE_MEM234:
5015 case OPX_TYPE_MEM5:
5016 case OPX_TYPE_MEM7:
5017 return OP_TYPE_MEM1;
5019 case OPX_TYPE_MEM6:
5020 return OP_TYPE_MEM6;
5022 default:
5023 gcc_unreachable ();
5024 return 0;
5027 else
5029 switch (get_attr_opy_type (insn))
5031 case OPY_TYPE_NONE:
5032 case OPY_TYPE_RN:
5033 case OPY_TYPE_FPN:
5034 case OPY_TYPE_IMM_Q:
5035 case OPY_TYPE_IMM_W:
5036 case OPY_TYPE_IMM_L:
5037 return OP_TYPE_RN;
5039 case OPY_TYPE_MEM1:
5040 case OPY_TYPE_MEM234:
5041 case OPY_TYPE_MEM5:
5042 case OPY_TYPE_MEM7:
5043 return OP_TYPE_MEM1;
5045 case OPY_TYPE_MEM6:
5046 return OP_TYPE_MEM6;
5048 default:
5049 gcc_unreachable ();
5050 return 0;
5055 /* Implement op_mem attribute. */
5056 enum attr_op_mem
5057 m68k_sched_attr_op_mem (rtx insn)
5059 enum attr_op_type opx;
5060 enum attr_op_type opy;
5062 opx = sched_get_opxy_mem_type (insn, true);
5063 opy = sched_get_opxy_mem_type (insn, false);
5065 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5066 return OP_MEM_00;
5068 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5070 switch (get_attr_opx_access (insn))
5072 case OPX_ACCESS_R:
5073 return OP_MEM_10;
5075 case OPX_ACCESS_W:
5076 return OP_MEM_01;
5078 case OPX_ACCESS_RW:
5079 return OP_MEM_11;
5081 default:
5082 gcc_unreachable ();
5083 return 0;
5087 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5089 switch (get_attr_opx_access (insn))
5091 case OPX_ACCESS_R:
5092 return OP_MEM_I0;
5094 case OPX_ACCESS_W:
5095 return OP_MEM_0I;
5097 case OPX_ACCESS_RW:
5098 return OP_MEM_I1;
5100 default:
5101 gcc_unreachable ();
5102 return 0;
5106 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5107 return OP_MEM_10;
5109 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5111 switch (get_attr_opx_access (insn))
5113 case OPX_ACCESS_W:
5114 return OP_MEM_11;
5116 default:
5117 gcc_assert (!reload_completed);
5118 return OP_MEM_11;
5122 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5124 switch (get_attr_opx_access (insn))
5126 case OPX_ACCESS_W:
5127 return OP_MEM_1I;
5129 default:
5130 gcc_assert (!reload_completed);
5131 return OP_MEM_1I;
5135 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5136 return OP_MEM_I0;
5138 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5140 switch (get_attr_opx_access (insn))
5142 case OPX_ACCESS_W:
5143 return OP_MEM_I1;
5145 default:
5146 gcc_assert (!reload_completed);
5147 return OP_MEM_I1;
5151 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5152 gcc_assert (!reload_completed);
5153 return OP_MEM_I1;
5156 /* Jump instructions types. Indexed by INSN_UID.
5157 The same rtl insn can be expanded into different asm instructions
5158 depending on the cc0_status. To properly determine type of jump
5159 instructions we scan instruction stream and map jumps types to this
5160 array. */
5161 static enum attr_type *sched_branch_type;
5163 /* Return the type of the jump insn. */
5164 enum attr_type
5165 m68k_sched_branch_type (rtx insn)
5167 enum attr_type type;
5169 type = sched_branch_type[INSN_UID (insn)];
5171 gcc_assert (type != 0);
5173 return type;
5176 /* Data for ColdFire V4 index bypass.
5177 Producer modifies register that is used as index in consumer with
5178 specified scale. */
5179 static struct
5181 /* Producer instruction. */
5182 rtx pro;
5184 /* Consumer instruction. */
5185 rtx con;
5187 /* Scale of indexed memory access within consumer.
5188 Or zero if bypass should not be effective at the moment. */
5189 int scale;
5190 } sched_cfv4_bypass_data;
5192 /* An empty state that is used in m68k_sched_adjust_cost. */
5193 static state_t sched_adjust_cost_state;
5195 /* Implement adjust_cost scheduler hook.
5196 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5197 static int
5198 m68k_sched_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx def_insn,
5199 int cost)
5201 int delay;
5203 if (recog_memoized (def_insn) < 0
5204 || recog_memoized (insn) < 0)
5205 return cost;
5207 if (sched_cfv4_bypass_data.scale == 1)
5208 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5210 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5211 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5212 that the data in sched_cfv4_bypass_data is up to date. */
5213 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5214 && sched_cfv4_bypass_data.con == insn);
5216 if (cost < 3)
5217 cost = 3;
5219 sched_cfv4_bypass_data.pro = NULL;
5220 sched_cfv4_bypass_data.con = NULL;
5221 sched_cfv4_bypass_data.scale = 0;
5223 else
5224 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5225 && sched_cfv4_bypass_data.con == NULL
5226 && sched_cfv4_bypass_data.scale == 0);
5228 /* Don't try to issue INSN earlier than DFA permits.
5229 This is especially useful for instructions that write to memory,
5230 as their true dependence (default) latency is better to be set to 0
5231 to workaround alias analysis limitations.
5232 This is, in fact, a machine independent tweak, so, probably,
5233 it should be moved to haifa-sched.c: insn_cost (). */
5234 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5235 if (delay > cost)
5236 cost = delay;
5238 return cost;
5241 /* Return maximal number of insns that can be scheduled on a single cycle. */
5242 static int
5243 m68k_sched_issue_rate (void)
5245 switch (m68k_sched_cpu)
5247 case CPU_CFV1:
5248 case CPU_CFV2:
5249 case CPU_CFV3:
5250 return 1;
5252 case CPU_CFV4:
5253 return 2;
5255 default:
5256 gcc_unreachable ();
5257 return 0;
5261 /* Maximal length of instruction for current CPU.
5262 E.g. it is 3 for any ColdFire core. */
5263 static int max_insn_size;
5265 /* Data to model instruction buffer of CPU. */
5266 struct _sched_ib
5268 /* True if instruction buffer model is modeled for current CPU. */
5269 bool enabled_p;
5271 /* Size of the instruction buffer in words. */
5272 int size;
5274 /* Number of filled words in the instruction buffer. */
5275 int filled;
5277 /* Additional information about instruction buffer for CPUs that have
5278 a buffer of instruction records, rather then a plain buffer
5279 of instruction words. */
5280 struct _sched_ib_records
5282 /* Size of buffer in records. */
5283 int n_insns;
5285 /* Array to hold data on adjustements made to the size of the buffer. */
5286 int *adjust;
5288 /* Index of the above array. */
5289 int adjust_index;
5290 } records;
5292 /* An insn that reserves (marks empty) one word in the instruction buffer. */
5293 rtx insn;
5296 static struct _sched_ib sched_ib;
5298 /* ID of memory unit. */
5299 static int sched_mem_unit_code;
5301 /* Implementation of the targetm.sched.variable_issue () hook.
5302 It is called after INSN was issued. It returns the number of insns
5303 that can possibly get scheduled on the current cycle.
5304 It is used here to determine the effect of INSN on the instruction
5305 buffer. */
5306 static int
5307 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
5308 int sched_verbose ATTRIBUTE_UNUSED,
5309 rtx insn, int can_issue_more)
5311 int insn_size;
5313 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
5315 switch (m68k_sched_cpu)
5317 case CPU_CFV1:
5318 case CPU_CFV2:
5319 insn_size = sched_get_attr_size_int (insn);
5320 break;
5322 case CPU_CFV3:
5323 insn_size = sched_get_attr_size_int (insn);
5325 /* ColdFire V3 and V4 cores have instruction buffers that can
5326 accumulate up to 8 instructions regardless of instructions'
5327 sizes. So we should take care not to "prefetch" 24 one-word
5328 or 12 two-words instructions.
5329 To model this behavior we temporarily decrease size of the
5330 buffer by (max_insn_size - insn_size) for next 7 instructions. */
5332 int adjust;
5334 adjust = max_insn_size - insn_size;
5335 sched_ib.size -= adjust;
5337 if (sched_ib.filled > sched_ib.size)
5338 sched_ib.filled = sched_ib.size;
5340 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
5343 ++sched_ib.records.adjust_index;
5344 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
5345 sched_ib.records.adjust_index = 0;
5347 /* Undo adjustement we did 7 instructions ago. */
5348 sched_ib.size
5349 += sched_ib.records.adjust[sched_ib.records.adjust_index];
5351 break;
5353 case CPU_CFV4:
5354 gcc_assert (!sched_ib.enabled_p);
5355 insn_size = 0;
5356 break;
5358 default:
5359 gcc_unreachable ();
5362 gcc_assert (insn_size <= sched_ib.filled);
5363 --can_issue_more;
5365 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
5366 || asm_noperands (PATTERN (insn)) >= 0)
5367 insn_size = sched_ib.filled;
5368 else
5369 insn_size = 0;
5371 sched_ib.filled -= insn_size;
5373 return can_issue_more;
5376 /* Return how many instructions should scheduler lookahead to choose the
5377 best one. */
5378 static int
5379 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
5381 return m68k_sched_issue_rate () - 1;
5384 /* Implementation of targetm.sched.md_init_global () hook.
5385 It is invoked once per scheduling pass and is used here
5386 to initialize scheduler constants. */
5387 static void
5388 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
5389 int sched_verbose ATTRIBUTE_UNUSED,
5390 int n_insns ATTRIBUTE_UNUSED)
5392 /* Init branch types. */
5394 rtx insn;
5396 sched_branch_type = xcalloc (get_max_uid () + 1,
5397 sizeof (*sched_branch_type));
5399 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
5401 if (JUMP_P (insn))
5402 /* !!! FIXME: Implement real scan here. */
5403 sched_branch_type[INSN_UID (insn)] = TYPE_BCC;
5407 #ifdef ENABLE_CHECKING
5408 /* Check that all instructions have DFA reservations and
5409 that all instructions can be issued from a clean state. */
5411 rtx insn;
5412 state_t state;
5414 state = alloca (state_size ());
5416 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
5418 if (INSN_P (insn) && recog_memoized (insn) >= 0)
5420 gcc_assert (insn_has_dfa_reservation_p (insn));
5422 state_reset (state);
5423 if (state_transition (state, insn) >= 0)
5424 gcc_unreachable ();
5428 #endif
5430 /* Setup target cpu. */
5432 /* ColdFire V4 has a set of features to keep its instruction buffer full
5433 (e.g., a separate memory bus for instructions) and, hence, we do not model
5434 buffer for this CPU. */
5435 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
5437 switch (m68k_sched_cpu)
5439 case CPU_CFV4:
5440 sched_ib.filled = 0;
5442 /* FALLTHRU */
5444 case CPU_CFV1:
5445 case CPU_CFV2:
5446 max_insn_size = 3;
5447 sched_ib.records.n_insns = 0;
5448 sched_ib.records.adjust = NULL;
5449 break;
5451 case CPU_CFV3:
5452 max_insn_size = 3;
5453 sched_ib.records.n_insns = 8;
5454 sched_ib.records.adjust = xmalloc (sched_ib.records.n_insns
5455 * sizeof (*sched_ib.records.adjust));
5456 break;
5458 default:
5459 gcc_unreachable ();
5462 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
5464 sched_adjust_cost_state = xmalloc (state_size ());
5465 state_reset (sched_adjust_cost_state);
5467 start_sequence ();
5468 emit_insn (gen_ib ());
5469 sched_ib.insn = get_insns ();
5470 end_sequence ();
5473 /* Scheduling pass is now finished. Free/reset static variables. */
5474 static void
5475 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
5476 int verbose ATTRIBUTE_UNUSED)
5478 sched_ib.insn = NULL;
5480 free (sched_adjust_cost_state);
5481 sched_adjust_cost_state = NULL;
5483 sched_mem_unit_code = 0;
5485 free (sched_ib.records.adjust);
5486 sched_ib.records.adjust = NULL;
5487 sched_ib.records.n_insns = 0;
5488 max_insn_size = 0;
5490 free (sched_branch_type);
5491 sched_branch_type = NULL;
5494 /* Implementation of targetm.sched.md_init () hook.
5495 It is invoked each time scheduler starts on the new block (basic block or
5496 extended basic block). */
5497 static void
5498 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
5499 int sched_verbose ATTRIBUTE_UNUSED,
5500 int n_insns ATTRIBUTE_UNUSED)
5502 switch (m68k_sched_cpu)
5504 case CPU_CFV1:
5505 case CPU_CFV2:
5506 sched_ib.size = 6;
5507 break;
5509 case CPU_CFV3:
5510 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
5512 memset (sched_ib.records.adjust, 0,
5513 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
5514 sched_ib.records.adjust_index = 0;
5515 break;
5517 case CPU_CFV4:
5518 gcc_assert (!sched_ib.enabled_p);
5519 sched_ib.size = 0;
5520 break;
5522 default:
5523 gcc_unreachable ();
5526 if (sched_ib.enabled_p)
5527 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
5528 the first cycle. Workaround that. */
5529 sched_ib.filled = -2;
5532 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
5533 It is invoked just before current cycle finishes and is used here
5534 to track if instruction buffer got its two words this cycle. */
5535 static void
5536 m68k_sched_dfa_pre_advance_cycle (void)
5538 if (!sched_ib.enabled_p)
5539 return;
5541 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
5543 sched_ib.filled += 2;
5545 if (sched_ib.filled > sched_ib.size)
5546 sched_ib.filled = sched_ib.size;
5550 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
5551 It is invoked just after new cycle begins and is used here
5552 to setup number of filled words in the instruction buffer so that
5553 instructions which won't have all their words prefetched would be
5554 stalled for a cycle. */
5555 static void
5556 m68k_sched_dfa_post_advance_cycle (void)
5558 int i;
5560 if (!sched_ib.enabled_p)
5561 return;
5563 /* Setup number of prefetched instruction words in the instruction
5564 buffer. */
5565 i = max_insn_size - sched_ib.filled;
5567 while (--i >= 0)
5569 if (state_transition (curr_state, sched_ib.insn) >= 0)
5570 gcc_unreachable ();
5574 /* Return X or Y (depending on OPX_P) operand of INSN,
5575 if it is an integer register, or NULL overwise. */
5576 static rtx
5577 sched_get_reg_operand (rtx insn, bool opx_p)
5579 rtx op = NULL;
5581 if (opx_p)
5583 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
5585 op = sched_get_operand (insn, true);
5586 gcc_assert (op != NULL);
5588 if (!reload_completed && !REG_P (op))
5589 return NULL;
5592 else
5594 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
5596 op = sched_get_operand (insn, false);
5597 gcc_assert (op != NULL);
5599 if (!reload_completed && !REG_P (op))
5600 return NULL;
5604 return op;
5607 /* Return true, if X or Y (depending on OPX_P) operand of INSN
5608 is a MEM. */
5609 static bool
5610 sched_mem_operand_p (rtx insn, bool opx_p)
5612 switch (sched_get_opxy_mem_type (insn, opx_p))
5614 case OP_TYPE_MEM1:
5615 case OP_TYPE_MEM6:
5616 return true;
5618 default:
5619 return false;
5623 /* Return X or Y (depending on OPX_P) operand of INSN,
5624 if it is a MEM, or NULL overwise. */
5625 static rtx
5626 sched_get_mem_operand (rtx insn, bool must_read_p, bool must_write_p)
5628 bool opx_p;
5629 bool opy_p;
5631 opx_p = false;
5632 opy_p = false;
5634 if (must_read_p)
5636 opx_p = true;
5637 opy_p = true;
5640 if (must_write_p)
5642 opx_p = true;
5643 opy_p = false;
5646 if (opy_p && sched_mem_operand_p (insn, false))
5647 return sched_get_operand (insn, false);
5649 if (opx_p && sched_mem_operand_p (insn, true))
5650 return sched_get_operand (insn, true);
5652 gcc_unreachable ();
5653 return NULL;
5656 /* Return non-zero if PRO modifies register used as part of
5657 address in CON. */
5659 m68k_sched_address_bypass_p (rtx pro, rtx con)
5661 rtx pro_x;
5662 rtx con_mem_read;
5664 pro_x = sched_get_reg_operand (pro, true);
5665 if (pro_x == NULL)
5666 return 0;
5668 con_mem_read = sched_get_mem_operand (con, true, false);
5669 gcc_assert (con_mem_read != NULL);
5671 if (reg_mentioned_p (pro_x, con_mem_read))
5672 return 1;
5674 return 0;
5677 /* Helper function for m68k_sched_indexed_address_bypass_p.
5678 if PRO modifies register used as index in CON,
5679 return scale of indexed memory access in CON. Return zero overwise. */
5680 static int
5681 sched_get_indexed_address_scale (rtx pro, rtx con)
5683 rtx reg;
5684 rtx mem;
5685 struct m68k_address address;
5687 reg = sched_get_reg_operand (pro, true);
5688 if (reg == NULL)
5689 return 0;
5691 mem = sched_get_mem_operand (con, true, false);
5692 gcc_assert (mem != NULL && MEM_P (mem));
5694 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
5695 &address))
5696 gcc_unreachable ();
5698 if (REGNO (reg) == REGNO (address.index))
5700 gcc_assert (address.scale != 0);
5701 return address.scale;
5704 return 0;
5707 /* Return non-zero if PRO modifies register used
5708 as index with scale 2 or 4 in CON. */
5710 m68k_sched_indexed_address_bypass_p (rtx pro, rtx con)
5712 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5713 && sched_cfv4_bypass_data.con == NULL
5714 && sched_cfv4_bypass_data.scale == 0);
5716 switch (sched_get_indexed_address_scale (pro, con))
5718 case 1:
5719 /* We can't have a variable latency bypass, so
5720 remember to adjust the insn cost in adjust_cost hook. */
5721 sched_cfv4_bypass_data.pro = pro;
5722 sched_cfv4_bypass_data.con = con;
5723 sched_cfv4_bypass_data.scale = 1;
5724 return 0;
5726 case 2:
5727 case 4:
5728 return 1;
5730 default:
5731 return 0;