2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / m32r / m32r.c
blob64b7e5f63ab4c0e771106f762f38ebe3a6193220
1 /* Subroutines used for code generation on the Renesas M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "real.h"
30 #include "insn-config.h"
31 #include "conditions.h"
32 #include "output.h"
33 #include "insn-attr.h"
34 #include "flags.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "recog.h"
38 #include "toplev.h"
39 #include "ggc.h"
40 #include "integrate.h"
41 #include "tm_p.h"
42 #include "target.h"
43 #include "target-def.h"
44 #include "tm-constrs.h"
46 /* Save the operands last given to a compare for use when we
47 generate a scc or bcc insn. */
48 rtx m32r_compare_op0, m32r_compare_op1;
50 /* Array of valid operand punctuation characters. */
51 char m32r_punct_chars[256];
53 /* Selected code model. */
54 enum m32r_model m32r_model = M32R_MODEL_DEFAULT;
56 /* Selected SDA support. */
57 enum m32r_sdata m32r_sdata = M32R_SDATA_DEFAULT;
59 /* Machine-specific symbol_ref flags. */
60 #define SYMBOL_FLAG_MODEL_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
61 #define SYMBOL_REF_MODEL(X) \
62 ((enum m32r_model) ((SYMBOL_REF_FLAGS (X) >> SYMBOL_FLAG_MODEL_SHIFT) & 3))
64 /* For string literals, etc. */
65 #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')
67 /* Forward declaration. */
68 static bool m32r_handle_option (size_t, const char *, int);
69 static void init_reg_tables (void);
70 static void block_move_call (rtx, rtx, rtx);
71 static int m32r_is_insn (rtx);
72 const struct attribute_spec m32r_attribute_table[];
73 static tree m32r_handle_model_attribute (tree *, tree, tree, int, bool *);
74 static void m32r_output_function_prologue (FILE *, HOST_WIDE_INT);
75 static void m32r_output_function_epilogue (FILE *, HOST_WIDE_INT);
77 static void m32r_file_start (void);
79 static int m32r_adjust_priority (rtx, int);
80 static int m32r_issue_rate (void);
82 static void m32r_encode_section_info (tree, rtx, int);
83 static bool m32r_in_small_data_p (const_tree);
84 static bool m32r_return_in_memory (const_tree, const_tree);
85 static void m32r_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
86 tree, int *, int);
87 static void init_idents (void);
88 static bool m32r_rtx_costs (rtx, int, int, int *);
89 static bool m32r_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
90 const_tree, bool);
91 static int m32r_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
92 tree, bool);
94 /* Initialize the GCC target structure. */
95 #undef TARGET_ATTRIBUTE_TABLE
96 #define TARGET_ATTRIBUTE_TABLE m32r_attribute_table
98 #undef TARGET_ASM_ALIGNED_HI_OP
99 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
100 #undef TARGET_ASM_ALIGNED_SI_OP
101 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
103 #undef TARGET_ASM_FUNCTION_PROLOGUE
104 #define TARGET_ASM_FUNCTION_PROLOGUE m32r_output_function_prologue
105 #undef TARGET_ASM_FUNCTION_EPILOGUE
106 #define TARGET_ASM_FUNCTION_EPILOGUE m32r_output_function_epilogue
108 #undef TARGET_ASM_FILE_START
109 #define TARGET_ASM_FILE_START m32r_file_start
111 #undef TARGET_SCHED_ADJUST_PRIORITY
112 #define TARGET_SCHED_ADJUST_PRIORITY m32r_adjust_priority
113 #undef TARGET_SCHED_ISSUE_RATE
114 #define TARGET_SCHED_ISSUE_RATE m32r_issue_rate
116 #undef TARGET_DEFAULT_TARGET_FLAGS
117 #define TARGET_DEFAULT_TARGET_FLAGS TARGET_CPU_DEFAULT
118 #undef TARGET_HANDLE_OPTION
119 #define TARGET_HANDLE_OPTION m32r_handle_option
121 #undef TARGET_ENCODE_SECTION_INFO
122 #define TARGET_ENCODE_SECTION_INFO m32r_encode_section_info
123 #undef TARGET_IN_SMALL_DATA_P
124 #define TARGET_IN_SMALL_DATA_P m32r_in_small_data_p
126 #undef TARGET_RTX_COSTS
127 #define TARGET_RTX_COSTS m32r_rtx_costs
128 #undef TARGET_ADDRESS_COST
129 #define TARGET_ADDRESS_COST hook_int_rtx_0
131 #undef TARGET_PROMOTE_PROTOTYPES
132 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
133 #undef TARGET_RETURN_IN_MEMORY
134 #define TARGET_RETURN_IN_MEMORY m32r_return_in_memory
135 #undef TARGET_SETUP_INCOMING_VARARGS
136 #define TARGET_SETUP_INCOMING_VARARGS m32r_setup_incoming_varargs
137 #undef TARGET_MUST_PASS_IN_STACK
138 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
139 #undef TARGET_PASS_BY_REFERENCE
140 #define TARGET_PASS_BY_REFERENCE m32r_pass_by_reference
141 #undef TARGET_ARG_PARTIAL_BYTES
142 #define TARGET_ARG_PARTIAL_BYTES m32r_arg_partial_bytes
144 struct gcc_target targetm = TARGET_INITIALIZER;
146 /* Implement TARGET_HANDLE_OPTION. */
148 static bool
149 m32r_handle_option (size_t code, const char *arg, int value)
151 switch (code)
153 case OPT_m32r:
154 target_flags &= ~(MASK_M32R2 | MASK_M32RX);
155 return true;
157 case OPT_mmodel_:
158 if (strcmp (arg, "small") == 0)
159 m32r_model = M32R_MODEL_SMALL;
160 else if (strcmp (arg, "medium") == 0)
161 m32r_model = M32R_MODEL_MEDIUM;
162 else if (strcmp (arg, "large") == 0)
163 m32r_model = M32R_MODEL_LARGE;
164 else
165 return false;
166 return true;
168 case OPT_msdata_:
169 if (strcmp (arg, "none") == 0)
170 m32r_sdata = M32R_SDATA_NONE;
171 else if (strcmp (arg, "sdata") == 0)
172 m32r_sdata = M32R_SDATA_SDATA;
173 else if (strcmp (arg, "use") == 0)
174 m32r_sdata = M32R_SDATA_USE;
175 else
176 return false;
177 return true;
179 case OPT_mno_flush_func:
180 m32r_cache_flush_func = NULL;
181 return true;
183 case OPT_mflush_trap_:
184 return value <= 15;
186 case OPT_mno_flush_trap:
187 m32r_cache_flush_trap = -1;
188 return true;
190 default:
191 return true;
195 /* Called by OVERRIDE_OPTIONS to initialize various things. */
197 void
198 m32r_init (void)
200 init_reg_tables ();
202 /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
203 memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
204 m32r_punct_chars['#'] = 1;
205 m32r_punct_chars['@'] = 1; /* ??? no longer used */
207 /* Provide default value if not specified. */
208 if (!g_switch_set)
209 g_switch_value = SDATA_DEFAULT_SIZE;
212 /* Vectors to keep interesting information about registers where it can easily
213 be got. We use to use the actual mode value as the bit number, but there
214 is (or may be) more than 32 modes now. Instead we use two tables: one
215 indexed by hard register number, and one indexed by mode. */
217 /* The purpose of m32r_mode_class is to shrink the range of modes so that
218 they all fit (as bit numbers) in a 32-bit word (again). Each real mode is
219 mapped into one m32r_mode_class mode. */
221 enum m32r_mode_class
223 C_MODE,
224 S_MODE, D_MODE, T_MODE, O_MODE,
225 SF_MODE, DF_MODE, TF_MODE, OF_MODE, A_MODE
228 /* Modes for condition codes. */
229 #define C_MODES (1 << (int) C_MODE)
231 /* Modes for single-word and smaller quantities. */
232 #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
234 /* Modes for double-word and smaller quantities. */
235 #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
237 /* Modes for quad-word and smaller quantities. */
238 #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
240 /* Modes for accumulators. */
241 #define A_MODES (1 << (int) A_MODE)
243 /* Value is 1 if register/mode pair is acceptable on arc. */
245 const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
247 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
248 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
249 S_MODES, C_MODES, A_MODES, A_MODES
252 unsigned int m32r_mode_class [NUM_MACHINE_MODES];
254 enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
256 static void
257 init_reg_tables (void)
259 int i;
261 for (i = 0; i < NUM_MACHINE_MODES; i++)
263 switch (GET_MODE_CLASS (i))
265 case MODE_INT:
266 case MODE_PARTIAL_INT:
267 case MODE_COMPLEX_INT:
268 if (GET_MODE_SIZE (i) <= 4)
269 m32r_mode_class[i] = 1 << (int) S_MODE;
270 else if (GET_MODE_SIZE (i) == 8)
271 m32r_mode_class[i] = 1 << (int) D_MODE;
272 else if (GET_MODE_SIZE (i) == 16)
273 m32r_mode_class[i] = 1 << (int) T_MODE;
274 else if (GET_MODE_SIZE (i) == 32)
275 m32r_mode_class[i] = 1 << (int) O_MODE;
276 else
277 m32r_mode_class[i] = 0;
278 break;
279 case MODE_FLOAT:
280 case MODE_COMPLEX_FLOAT:
281 if (GET_MODE_SIZE (i) <= 4)
282 m32r_mode_class[i] = 1 << (int) SF_MODE;
283 else if (GET_MODE_SIZE (i) == 8)
284 m32r_mode_class[i] = 1 << (int) DF_MODE;
285 else if (GET_MODE_SIZE (i) == 16)
286 m32r_mode_class[i] = 1 << (int) TF_MODE;
287 else if (GET_MODE_SIZE (i) == 32)
288 m32r_mode_class[i] = 1 << (int) OF_MODE;
289 else
290 m32r_mode_class[i] = 0;
291 break;
292 case MODE_CC:
293 m32r_mode_class[i] = 1 << (int) C_MODE;
294 break;
295 default:
296 m32r_mode_class[i] = 0;
297 break;
301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
303 if (GPR_P (i))
304 m32r_regno_reg_class[i] = GENERAL_REGS;
305 else if (i == ARG_POINTER_REGNUM)
306 m32r_regno_reg_class[i] = GENERAL_REGS;
307 else
308 m32r_regno_reg_class[i] = NO_REGS;
312 /* M32R specific attribute support.
314 interrupt - for interrupt functions
316 model - select code model used to access object
318 small: addresses use 24 bits, use bl to make calls
319 medium: addresses use 32 bits, use bl to make calls
320 large: addresses use 32 bits, use seth/add3/jl to make calls
322 Grep for MODEL in m32r.h for more info. */
324 static tree small_ident1;
325 static tree small_ident2;
326 static tree medium_ident1;
327 static tree medium_ident2;
328 static tree large_ident1;
329 static tree large_ident2;
331 static void
332 init_idents (void)
334 if (small_ident1 == 0)
336 small_ident1 = get_identifier ("small");
337 small_ident2 = get_identifier ("__small__");
338 medium_ident1 = get_identifier ("medium");
339 medium_ident2 = get_identifier ("__medium__");
340 large_ident1 = get_identifier ("large");
341 large_ident2 = get_identifier ("__large__");
345 const struct attribute_spec m32r_attribute_table[] =
347 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
348 { "interrupt", 0, 0, true, false, false, NULL },
349 { "model", 1, 1, true, false, false, m32r_handle_model_attribute },
350 { NULL, 0, 0, false, false, false, NULL }
354 /* Handle an "model" attribute; arguments as in
355 struct attribute_spec.handler. */
356 static tree
357 m32r_handle_model_attribute (tree *node ATTRIBUTE_UNUSED, tree name,
358 tree args, int flags ATTRIBUTE_UNUSED,
359 bool *no_add_attrs)
361 tree arg;
363 init_idents ();
364 arg = TREE_VALUE (args);
366 if (arg != small_ident1
367 && arg != small_ident2
368 && arg != medium_ident1
369 && arg != medium_ident2
370 && arg != large_ident1
371 && arg != large_ident2)
373 warning (OPT_Wattributes, "invalid argument of %qs attribute",
374 IDENTIFIER_POINTER (name));
375 *no_add_attrs = true;
378 return NULL_TREE;
381 /* Encode section information of DECL, which is either a VAR_DECL,
382 FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
384 For the M32R we want to record:
386 - whether the object lives in .sdata/.sbss.
387 - what code model should be used to access the object
390 static void
391 m32r_encode_section_info (tree decl, rtx rtl, int first)
393 int extra_flags = 0;
394 tree model_attr;
395 enum m32r_model model;
397 default_encode_section_info (decl, rtl, first);
399 if (!DECL_P (decl))
400 return;
402 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
403 if (model_attr)
405 tree id;
407 init_idents ();
409 id = TREE_VALUE (TREE_VALUE (model_attr));
411 if (id == small_ident1 || id == small_ident2)
412 model = M32R_MODEL_SMALL;
413 else if (id == medium_ident1 || id == medium_ident2)
414 model = M32R_MODEL_MEDIUM;
415 else if (id == large_ident1 || id == large_ident2)
416 model = M32R_MODEL_LARGE;
417 else
418 gcc_unreachable (); /* shouldn't happen */
420 else
422 if (TARGET_MODEL_SMALL)
423 model = M32R_MODEL_SMALL;
424 else if (TARGET_MODEL_MEDIUM)
425 model = M32R_MODEL_MEDIUM;
426 else if (TARGET_MODEL_LARGE)
427 model = M32R_MODEL_LARGE;
428 else
429 gcc_unreachable (); /* shouldn't happen */
431 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
433 if (extra_flags)
434 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
437 /* Only mark the object as being small data area addressable if
438 it hasn't been explicitly marked with a code model.
440 The user can explicitly put an object in the small data area with the
441 section attribute. If the object is in sdata/sbss and marked with a
442 code model do both [put the object in .sdata and mark it as being
443 addressed with a specific code model - don't mark it as being addressed
444 with an SDA reloc though]. This is ok and might be useful at times. If
445 the object doesn't fit the linker will give an error. */
447 static bool
448 m32r_in_small_data_p (const_tree decl)
450 const_tree section;
452 if (TREE_CODE (decl) != VAR_DECL)
453 return false;
455 if (lookup_attribute ("model", DECL_ATTRIBUTES (decl)))
456 return false;
458 section = DECL_SECTION_NAME (decl);
459 if (section)
461 const char *const name = TREE_STRING_POINTER (section);
462 if (strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0)
463 return true;
465 else
467 if (! TREE_READONLY (decl) && ! TARGET_SDATA_NONE)
469 int size = int_size_in_bytes (TREE_TYPE (decl));
471 if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
472 return true;
476 return false;
479 /* Do anything needed before RTL is emitted for each function. */
481 void
482 m32r_init_expanders (void)
484 /* ??? At one point there was code here. The function is left in
485 to make it easy to experiment. */
489 call_operand (rtx op, enum machine_mode mode)
491 if (GET_CODE (op) != MEM)
492 return 0;
493 op = XEXP (op, 0);
494 return call_address_operand (op, mode);
497 /* Return 1 if OP is a reference to an object in .sdata/.sbss. */
500 small_data_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
502 if (! TARGET_SDATA_USE)
503 return 0;
505 if (GET_CODE (op) == SYMBOL_REF)
506 return SYMBOL_REF_SMALL_P (op);
508 if (GET_CODE (op) == CONST
509 && GET_CODE (XEXP (op, 0)) == PLUS
510 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
511 && satisfies_constraint_J (XEXP (XEXP (op, 0), 1)))
512 return SYMBOL_REF_SMALL_P (XEXP (XEXP (op, 0), 0));
514 return 0;
517 /* Return 1 if OP is a symbol that can use 24-bit addressing. */
520 addr24_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
522 rtx sym;
524 if (flag_pic)
525 return 0;
527 if (GET_CODE (op) == LABEL_REF)
528 return TARGET_ADDR24;
530 if (GET_CODE (op) == SYMBOL_REF)
531 sym = op;
532 else if (GET_CODE (op) == CONST
533 && GET_CODE (XEXP (op, 0)) == PLUS
534 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
535 && satisfies_constraint_M (XEXP (XEXP (op, 0), 1)))
536 sym = XEXP (XEXP (op, 0), 0);
537 else
538 return 0;
540 if (SYMBOL_REF_MODEL (sym) == M32R_MODEL_SMALL)
541 return 1;
543 if (TARGET_ADDR24
544 && (CONSTANT_POOL_ADDRESS_P (sym)
545 || LIT_NAME_P (XSTR (sym, 0))))
546 return 1;
548 return 0;
551 /* Return 1 if OP is a symbol that needs 32-bit addressing. */
554 addr32_operand (rtx op, enum machine_mode mode)
556 rtx sym;
558 if (GET_CODE (op) == LABEL_REF)
559 return TARGET_ADDR32;
561 if (GET_CODE (op) == SYMBOL_REF)
562 sym = op;
563 else if (GET_CODE (op) == CONST
564 && GET_CODE (XEXP (op, 0)) == PLUS
565 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
566 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
567 && ! flag_pic)
568 sym = XEXP (XEXP (op, 0), 0);
569 else
570 return 0;
572 return (! addr24_operand (sym, mode)
573 && ! small_data_operand (sym, mode));
576 /* Return 1 if OP is a function that can be called with the `bl' insn. */
579 call26_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
581 if (flag_pic)
582 return 1;
584 if (GET_CODE (op) == SYMBOL_REF)
585 return SYMBOL_REF_MODEL (op) != M32R_MODEL_LARGE;
587 return TARGET_CALL26;
590 /* Return 1 if OP is a DImode const we want to handle inline.
591 This must match the code in the movdi pattern.
592 It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
595 easy_di_const (rtx op)
597 rtx high_rtx, low_rtx;
598 HOST_WIDE_INT high, low;
600 split_double (op, &high_rtx, &low_rtx);
601 high = INTVAL (high_rtx);
602 low = INTVAL (low_rtx);
603 /* Pick constants loadable with 2 16-bit `ldi' insns. */
604 if (high >= -128 && high <= 127
605 && low >= -128 && low <= 127)
606 return 1;
607 return 0;
610 /* Return 1 if OP is a DFmode const we want to handle inline.
611 This must match the code in the movdf pattern.
612 It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
615 easy_df_const (rtx op)
617 REAL_VALUE_TYPE r;
618 long l[2];
620 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
621 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
622 if (l[0] == 0 && l[1] == 0)
623 return 1;
624 if ((l[0] & 0xffff) == 0 && l[1] == 0)
625 return 1;
626 return 0;
629 /* Return 1 if OP is (mem (reg ...)).
630 This is used in insn length calcs. */
633 memreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
635 return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG;
638 /* Return nonzero if TYPE must be passed by indirect reference. */
640 static bool
641 m32r_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
642 enum machine_mode mode, const_tree type,
643 bool named ATTRIBUTE_UNUSED)
645 int size;
647 if (type)
648 size = int_size_in_bytes (type);
649 else
650 size = GET_MODE_SIZE (mode);
652 return (size < 0 || size > 8);
655 /* Comparisons. */
657 /* X and Y are two things to compare using CODE. Emit the compare insn and
658 return the rtx for compare [arg0 of the if_then_else].
659 If need_compare is true then the comparison insn must be generated, rather
660 than being subsumed into the following branch instruction. */
663 gen_compare (enum rtx_code code, rtx x, rtx y, int need_compare)
665 enum rtx_code compare_code;
666 enum rtx_code branch_code;
667 rtx cc_reg = gen_rtx_REG (CCmode, CARRY_REGNUM);
668 int must_swap = 0;
670 switch (code)
672 case EQ: compare_code = EQ; branch_code = NE; break;
673 case NE: compare_code = EQ; branch_code = EQ; break;
674 case LT: compare_code = LT; branch_code = NE; break;
675 case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break;
676 case GT: compare_code = LT; branch_code = NE; must_swap = 1; break;
677 case GE: compare_code = LT; branch_code = EQ; break;
678 case LTU: compare_code = LTU; branch_code = NE; break;
679 case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break;
680 case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break;
681 case GEU: compare_code = LTU; branch_code = EQ; break;
683 default:
684 gcc_unreachable ();
687 if (need_compare)
689 switch (compare_code)
691 case EQ:
692 if (satisfies_constraint_P (y) /* Reg equal to small const. */
693 && y != const0_rtx)
695 rtx tmp = gen_reg_rtx (SImode);
697 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
698 x = tmp;
699 y = const0_rtx;
701 else if (CONSTANT_P (y)) /* Reg equal to const. */
703 rtx tmp = force_reg (GET_MODE (x), y);
704 y = tmp;
707 if (register_operand (y, SImode) /* Reg equal to reg. */
708 || y == const0_rtx) /* Reg equal to zero. */
710 emit_insn (gen_cmp_eqsi_insn (x, y));
712 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
714 break;
716 case LT:
717 if (register_operand (y, SImode)
718 || satisfies_constraint_P (y))
720 rtx tmp = gen_reg_rtx (SImode); /* Reg compared to reg. */
722 switch (code)
724 case LT:
725 emit_insn (gen_cmp_ltsi_insn (x, y));
726 code = EQ;
727 break;
728 case LE:
729 if (y == const0_rtx)
730 tmp = const1_rtx;
731 else
732 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
733 emit_insn (gen_cmp_ltsi_insn (x, tmp));
734 code = EQ;
735 break;
736 case GT:
737 if (GET_CODE (y) == CONST_INT)
738 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
739 else
740 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
741 emit_insn (gen_cmp_ltsi_insn (x, tmp));
742 code = NE;
743 break;
744 case GE:
745 emit_insn (gen_cmp_ltsi_insn (x, y));
746 code = NE;
747 break;
748 default:
749 gcc_unreachable ();
752 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
754 break;
756 case LTU:
757 if (register_operand (y, SImode)
758 || satisfies_constraint_P (y))
760 rtx tmp = gen_reg_rtx (SImode); /* Reg (unsigned) compared to reg. */
762 switch (code)
764 case LTU:
765 emit_insn (gen_cmp_ltusi_insn (x, y));
766 code = EQ;
767 break;
768 case LEU:
769 if (y == const0_rtx)
770 tmp = const1_rtx;
771 else
772 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
773 emit_insn (gen_cmp_ltusi_insn (x, tmp));
774 code = EQ;
775 break;
776 case GTU:
777 if (GET_CODE (y) == CONST_INT)
778 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
779 else
780 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
781 emit_insn (gen_cmp_ltusi_insn (x, tmp));
782 code = NE;
783 break;
784 case GEU:
785 emit_insn (gen_cmp_ltusi_insn (x, y));
786 code = NE;
787 break;
788 default:
789 gcc_unreachable ();
792 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
794 break;
796 default:
797 gcc_unreachable ();
800 else
802 /* Reg/reg equal comparison. */
803 if (compare_code == EQ
804 && register_operand (y, SImode))
805 return gen_rtx_fmt_ee (code, CCmode, x, y);
807 /* Reg/zero signed comparison. */
808 if ((compare_code == EQ || compare_code == LT)
809 && y == const0_rtx)
810 return gen_rtx_fmt_ee (code, CCmode, x, y);
812 /* Reg/smallconst equal comparison. */
813 if (compare_code == EQ
814 && satisfies_constraint_P (y))
816 rtx tmp = gen_reg_rtx (SImode);
818 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
819 return gen_rtx_fmt_ee (code, CCmode, tmp, const0_rtx);
822 /* Reg/const equal comparison. */
823 if (compare_code == EQ
824 && CONSTANT_P (y))
826 rtx tmp = force_reg (GET_MODE (x), y);
828 return gen_rtx_fmt_ee (code, CCmode, x, tmp);
832 if (CONSTANT_P (y))
834 if (must_swap)
835 y = force_reg (GET_MODE (x), y);
836 else
838 int ok_const = reg_or_int16_operand (y, GET_MODE (y));
840 if (! ok_const)
841 y = force_reg (GET_MODE (x), y);
845 switch (compare_code)
847 case EQ :
848 emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y));
849 break;
850 case LT :
851 emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y));
852 break;
853 case LTU :
854 emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y));
855 break;
857 default:
858 gcc_unreachable ();
861 return gen_rtx_fmt_ee (branch_code, VOIDmode, cc_reg, CONST0_RTX (CCmode));
864 /* Split a 2 word move (DI or DF) into component parts. */
867 gen_split_move_double (rtx operands[])
869 enum machine_mode mode = GET_MODE (operands[0]);
870 rtx dest = operands[0];
871 rtx src = operands[1];
872 rtx val;
874 /* We might have (SUBREG (MEM)) here, so just get rid of the
875 subregs to make this code simpler. It is safe to call
876 alter_subreg any time after reload. */
877 if (GET_CODE (dest) == SUBREG)
878 alter_subreg (&dest);
879 if (GET_CODE (src) == SUBREG)
880 alter_subreg (&src);
882 start_sequence ();
883 if (GET_CODE (dest) == REG)
885 int dregno = REGNO (dest);
887 /* Reg = reg. */
888 if (GET_CODE (src) == REG)
890 int sregno = REGNO (src);
892 int reverse = (dregno == sregno + 1);
894 /* We normally copy the low-numbered register first. However, if
895 the first register operand 0 is the same as the second register of
896 operand 1, we must copy in the opposite order. */
897 emit_insn (gen_rtx_SET (VOIDmode,
898 operand_subword (dest, reverse, TRUE, mode),
899 operand_subword (src, reverse, TRUE, mode)));
901 emit_insn (gen_rtx_SET (VOIDmode,
902 operand_subword (dest, !reverse, TRUE, mode),
903 operand_subword (src, !reverse, TRUE, mode)));
906 /* Reg = constant. */
907 else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
909 rtx words[2];
910 split_double (src, &words[0], &words[1]);
911 emit_insn (gen_rtx_SET (VOIDmode,
912 operand_subword (dest, 0, TRUE, mode),
913 words[0]));
915 emit_insn (gen_rtx_SET (VOIDmode,
916 operand_subword (dest, 1, TRUE, mode),
917 words[1]));
920 /* Reg = mem. */
921 else if (GET_CODE (src) == MEM)
923 /* If the high-address word is used in the address, we must load it
924 last. Otherwise, load it first. */
925 int reverse
926 = (refers_to_regno_p (dregno, dregno + 1, XEXP (src, 0), 0) != 0);
928 /* We used to optimize loads from single registers as
930 ld r1,r3+; ld r2,r3
932 if r3 were not used subsequently. However, the REG_NOTES aren't
933 propagated correctly by the reload phase, and it can cause bad
934 code to be generated. We could still try:
936 ld r1,r3+; ld r2,r3; addi r3,-4
938 which saves 2 bytes and doesn't force longword alignment. */
939 emit_insn (gen_rtx_SET (VOIDmode,
940 operand_subword (dest, reverse, TRUE, mode),
941 adjust_address (src, SImode,
942 reverse * UNITS_PER_WORD)));
944 emit_insn (gen_rtx_SET (VOIDmode,
945 operand_subword (dest, !reverse, TRUE, mode),
946 adjust_address (src, SImode,
947 !reverse * UNITS_PER_WORD)));
949 else
950 gcc_unreachable ();
953 /* Mem = reg. */
954 /* We used to optimize loads from single registers as
956 st r1,r3; st r2,+r3
958 if r3 were not used subsequently. However, the REG_NOTES aren't
959 propagated correctly by the reload phase, and it can cause bad
960 code to be generated. We could still try:
962 st r1,r3; st r2,+r3; addi r3,-4
964 which saves 2 bytes and doesn't force longword alignment. */
965 else if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
967 emit_insn (gen_rtx_SET (VOIDmode,
968 adjust_address (dest, SImode, 0),
969 operand_subword (src, 0, TRUE, mode)));
971 emit_insn (gen_rtx_SET (VOIDmode,
972 adjust_address (dest, SImode, UNITS_PER_WORD),
973 operand_subword (src, 1, TRUE, mode)));
976 else
977 gcc_unreachable ();
979 val = get_insns ();
980 end_sequence ();
981 return val;
985 static int
986 m32r_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
987 tree type, bool named ATTRIBUTE_UNUSED)
989 int words;
990 unsigned int size =
991 (((mode == BLKmode && type)
992 ? (unsigned int) int_size_in_bytes (type)
993 : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1)
994 / UNITS_PER_WORD;
996 if (*cum >= M32R_MAX_PARM_REGS)
997 words = 0;
998 else if (*cum + size > M32R_MAX_PARM_REGS)
999 words = (*cum + size) - M32R_MAX_PARM_REGS;
1000 else
1001 words = 0;
1003 return words * UNITS_PER_WORD;
1006 /* Worker function for TARGET_RETURN_IN_MEMORY. */
1008 static bool
1009 m32r_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
1011 return m32r_pass_by_reference (NULL, TYPE_MODE (type), type, false);
1014 /* Do any needed setup for a variadic function. For the M32R, we must
1015 create a register parameter block, and then copy any anonymous arguments
1016 in registers to memory.
1018 CUM has not been updated for the last named argument which has type TYPE
1019 and mode MODE, and we rely on this fact. */
1021 static void
1022 m32r_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
1023 tree type, int *pretend_size, int no_rtl)
1025 int first_anon_arg;
1027 if (no_rtl)
1028 return;
1030 /* All BLKmode values are passed by reference. */
1031 gcc_assert (mode != BLKmode);
1033 first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type)
1034 + ROUND_ADVANCE_ARG (mode, type));
1036 if (first_anon_arg < M32R_MAX_PARM_REGS)
1038 /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
1039 int first_reg_offset = first_anon_arg;
1040 /* Size in words to "pretend" allocate. */
1041 int size = M32R_MAX_PARM_REGS - first_reg_offset;
1042 rtx regblock;
1044 regblock = gen_frame_mem (BLKmode,
1045 plus_constant (arg_pointer_rtx,
1046 FIRST_PARM_OFFSET (0)));
1047 set_mem_alias_set (regblock, get_varargs_alias_set ());
1048 move_block_from_reg (first_reg_offset, regblock, size);
1050 *pretend_size = (size * UNITS_PER_WORD);
1055 /* Return true if INSN is real instruction bearing insn. */
1057 static int
1058 m32r_is_insn (rtx insn)
1060 return (INSN_P (insn)
1061 && GET_CODE (PATTERN (insn)) != USE
1062 && GET_CODE (PATTERN (insn)) != CLOBBER
1063 && GET_CODE (PATTERN (insn)) != ADDR_VEC);
1066 /* Increase the priority of long instructions so that the
1067 short instructions are scheduled ahead of the long ones. */
1069 static int
1070 m32r_adjust_priority (rtx insn, int priority)
1072 if (m32r_is_insn (insn)
1073 && get_attr_insn_size (insn) != INSN_SIZE_SHORT)
1074 priority <<= 3;
1076 return priority;
1080 /* Indicate how many instructions can be issued at the same time.
1081 This is sort of a lie. The m32r can issue only 1 long insn at
1082 once, but it can issue 2 short insns. The default therefore is
1083 set at 2, but this can be overridden by the command line option
1084 -missue-rate=1. */
1086 static int
1087 m32r_issue_rate (void)
1089 return ((TARGET_LOW_ISSUE_RATE) ? 1 : 2);
1092 /* Cost functions. */
1094 static bool
1095 m32r_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED, int *total)
1097 switch (code)
1099 /* Small integers are as cheap as registers. 4 byte values can be
1100 fetched as immediate constants - let's give that the cost of an
1101 extra insn. */
1102 case CONST_INT:
1103 if (INT16_P (INTVAL (x)))
1105 *total = 0;
1106 return true;
1108 /* FALLTHRU */
1110 case CONST:
1111 case LABEL_REF:
1112 case SYMBOL_REF:
1113 *total = COSTS_N_INSNS (1);
1114 return true;
1116 case CONST_DOUBLE:
1118 rtx high, low;
1120 split_double (x, &high, &low);
1121 *total = COSTS_N_INSNS (!INT16_P (INTVAL (high))
1122 + !INT16_P (INTVAL (low)));
1123 return true;
1126 case MULT:
1127 *total = COSTS_N_INSNS (3);
1128 return true;
1130 case DIV:
1131 case UDIV:
1132 case MOD:
1133 case UMOD:
1134 *total = COSTS_N_INSNS (10);
1135 return true;
1137 default:
1138 return false;
1142 /* Type of function DECL.
1144 The result is cached. To reset the cache at the end of a function,
1145 call with DECL = NULL_TREE. */
1147 enum m32r_function_type
1148 m32r_compute_function_type (tree decl)
1150 /* Cached value. */
1151 static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
1152 /* Last function we were called for. */
1153 static tree last_fn = NULL_TREE;
1155 /* Resetting the cached value? */
1156 if (decl == NULL_TREE)
1158 fn_type = M32R_FUNCTION_UNKNOWN;
1159 last_fn = NULL_TREE;
1160 return fn_type;
1163 if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
1164 return fn_type;
1166 /* Compute function type. */
1167 fn_type = (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE
1168 ? M32R_FUNCTION_INTERRUPT
1169 : M32R_FUNCTION_NORMAL);
1171 last_fn = decl;
1172 return fn_type;
1174 \f/* Function prologue/epilogue handlers. */
1176 /* M32R stack frames look like:
1178 Before call After call
1179 +-----------------------+ +-----------------------+
1180 | | | |
1181 high | local variables, | | local variables, |
1182 mem | reg save area, etc. | | reg save area, etc. |
1183 | | | |
1184 +-----------------------+ +-----------------------+
1185 | | | |
1186 | arguments on stack. | | arguments on stack. |
1187 | | | |
1188 SP+0->+-----------------------+ +-----------------------+
1189 | reg parm save area, |
1190 | only created for |
1191 | variable argument |
1192 | functions |
1193 +-----------------------+
1194 | previous frame ptr |
1195 +-----------------------+
1197 | register save area |
1199 +-----------------------+
1200 | return address |
1201 +-----------------------+
1203 | local variables |
1205 +-----------------------+
1207 | alloca allocations |
1209 +-----------------------+
1211 low | arguments on stack |
1212 memory | |
1213 SP+0->+-----------------------+
1215 Notes:
1216 1) The "reg parm save area" does not exist for non variable argument fns.
1217 2) The "reg parm save area" can be eliminated completely if we saved regs
1218 containing anonymous args separately but that complicates things too
1219 much (so it's not done).
1220 3) The return address is saved after the register save area so as to have as
1221 many insns as possible between the restoration of `lr' and the `jmp lr'. */
1223 /* Structure to be filled in by m32r_compute_frame_size with register
1224 save masks, and offsets for the current function. */
1225 struct m32r_frame_info
1227 unsigned int total_size; /* # bytes that the entire frame takes up. */
1228 unsigned int extra_size; /* # bytes of extra stuff. */
1229 unsigned int pretend_size; /* # bytes we push and pretend caller did. */
1230 unsigned int args_size; /* # bytes that outgoing arguments take up. */
1231 unsigned int reg_size; /* # bytes needed to store regs. */
1232 unsigned int var_size; /* # bytes that variables take up. */
1233 unsigned int gmask; /* Mask of saved gp registers. */
1234 unsigned int save_fp; /* Nonzero if fp must be saved. */
1235 unsigned int save_lr; /* Nonzero if lr (return addr) must be saved. */
1236 int initialized; /* Nonzero if frame size already calculated. */
1239 /* Current frame information calculated by m32r_compute_frame_size. */
1240 static struct m32r_frame_info current_frame_info;
1242 /* Zero structure to initialize current_frame_info. */
1243 static struct m32r_frame_info zero_frame_info;
1245 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
1246 #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
1248 /* Tell prologue and epilogue if register REGNO should be saved / restored.
1249 The return address and frame pointer are treated separately.
1250 Don't consider them here. */
1251 #define MUST_SAVE_REGISTER(regno, interrupt_p) \
1252 ((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
1253 && (df_regs_ever_live_p (regno) && (!call_really_used_regs[regno] || interrupt_p)))
1255 #define MUST_SAVE_FRAME_POINTER (df_regs_ever_live_p (FRAME_POINTER_REGNUM))
1256 #define MUST_SAVE_RETURN_ADDR (df_regs_ever_live_p (RETURN_ADDR_REGNUM) || crtl->profile)
1258 #define SHORT_INSN_SIZE 2 /* Size of small instructions. */
1259 #define LONG_INSN_SIZE 4 /* Size of long instructions. */
1261 /* Return the bytes needed to compute the frame pointer from the current
1262 stack pointer.
1264 SIZE is the size needed for local variables. */
1266 unsigned int
1267 m32r_compute_frame_size (int size) /* # of var. bytes allocated. */
1269 unsigned int regno;
1270 unsigned int total_size, var_size, args_size, pretend_size, extra_size;
1271 unsigned int reg_size, frame_size;
1272 unsigned int gmask;
1273 enum m32r_function_type fn_type;
1274 int interrupt_p;
1275 int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table
1276 | crtl->profile);
1278 var_size = M32R_STACK_ALIGN (size);
1279 args_size = M32R_STACK_ALIGN (crtl->outgoing_args_size);
1280 pretend_size = crtl->args.pretend_args_size;
1281 extra_size = FIRST_PARM_OFFSET (0);
1282 total_size = extra_size + pretend_size + args_size + var_size;
1283 reg_size = 0;
1284 gmask = 0;
1286 /* See if this is an interrupt handler. Call used registers must be saved
1287 for them too. */
1288 fn_type = m32r_compute_function_type (current_function_decl);
1289 interrupt_p = M32R_INTERRUPT_P (fn_type);
1291 /* Calculate space needed for registers. */
1292 for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
1294 if (MUST_SAVE_REGISTER (regno, interrupt_p)
1295 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
1297 reg_size += UNITS_PER_WORD;
1298 gmask |= 1 << regno;
1302 current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
1303 current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR || pic_reg_used;
1305 reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
1306 * UNITS_PER_WORD);
1307 total_size += reg_size;
1309 /* ??? Not sure this is necessary, and I don't think the epilogue
1310 handler will do the right thing if this changes total_size. */
1311 total_size = M32R_STACK_ALIGN (total_size);
1313 frame_size = total_size - (pretend_size + reg_size);
1315 /* Save computed information. */
1316 current_frame_info.total_size = total_size;
1317 current_frame_info.extra_size = extra_size;
1318 current_frame_info.pretend_size = pretend_size;
1319 current_frame_info.var_size = var_size;
1320 current_frame_info.args_size = args_size;
1321 current_frame_info.reg_size = reg_size;
1322 current_frame_info.gmask = gmask;
1323 current_frame_info.initialized = reload_completed;
1325 /* Ok, we're done. */
1326 return total_size;
1329 /* The table we use to reference PIC data. */
1330 static rtx global_offset_table;
1332 static void
1333 m32r_reload_lr (rtx sp, int size)
1335 rtx lr = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
1337 if (size == 0)
1338 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, sp)));
1339 else if (size < 32768)
1340 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode,
1341 gen_rtx_PLUS (Pmode, sp,
1342 GEN_INT (size)))));
1343 else
1345 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1347 emit_insn (gen_movsi (tmp, GEN_INT (size)));
1348 emit_insn (gen_addsi3 (tmp, tmp, sp));
1349 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, tmp)));
1352 emit_insn (gen_rtx_USE (VOIDmode, lr));
1355 void
1356 m32r_load_pic_register (void)
1358 global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
1359 emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table,
1360 GEN_INT (TARGET_MODEL_SMALL)));
1362 /* Need to emit this whether or not we obey regdecls,
1363 since setjmp/longjmp can cause life info to screw up. */
1364 emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
1367 /* Expand the m32r prologue as a series of insns. */
1369 void
1370 m32r_expand_prologue (void)
1372 int regno;
1373 int frame_size;
1374 unsigned int gmask;
1375 int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table
1376 | crtl->profile);
1378 if (! current_frame_info.initialized)
1379 m32r_compute_frame_size (get_frame_size ());
1381 gmask = current_frame_info.gmask;
1383 /* These cases shouldn't happen. Catch them now. */
1384 gcc_assert (current_frame_info.total_size || !gmask);
1386 /* Allocate space for register arguments if this is a variadic function. */
1387 if (current_frame_info.pretend_size != 0)
1389 /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives
1390 the wrong result on a 64-bit host. */
1391 HOST_WIDE_INT pretend_size = current_frame_info.pretend_size;
1392 emit_insn (gen_addsi3 (stack_pointer_rtx,
1393 stack_pointer_rtx,
1394 GEN_INT (-pretend_size)));
1397 /* Save any registers we need to and set up fp. */
1398 if (current_frame_info.save_fp)
1399 emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
1401 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1403 /* Save any needed call-saved regs (and call-used if this is an
1404 interrupt handler). */
1405 for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
1407 if ((gmask & (1 << regno)) != 0)
1408 emit_insn (gen_movsi_push (stack_pointer_rtx,
1409 gen_rtx_REG (Pmode, regno)));
1412 if (current_frame_info.save_lr)
1413 emit_insn (gen_movsi_push (stack_pointer_rtx,
1414 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1416 /* Allocate the stack frame. */
1417 frame_size = (current_frame_info.total_size
1418 - (current_frame_info.pretend_size
1419 + current_frame_info.reg_size));
1421 if (frame_size == 0)
1422 ; /* Nothing to do. */
1423 else if (frame_size <= 32768)
1424 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1425 GEN_INT (-frame_size)));
1426 else
1428 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1430 emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
1431 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
1434 if (frame_pointer_needed)
1435 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
1437 if (crtl->profile)
1438 /* Push lr for mcount (form_pc, x). */
1439 emit_insn (gen_movsi_push (stack_pointer_rtx,
1440 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1442 if (pic_reg_used)
1444 m32r_load_pic_register ();
1445 m32r_reload_lr (stack_pointer_rtx,
1446 (crtl->profile ? 0 : frame_size));
1449 if (crtl->profile && !pic_reg_used)
1450 emit_insn (gen_blockage ());
1454 /* Set up the stack and frame pointer (if desired) for the function.
1455 Note, if this is changed, you need to mirror the changes in
1456 m32r_compute_frame_size which calculates the prolog size. */
1458 static void
1459 m32r_output_function_prologue (FILE * file, HOST_WIDE_INT size)
1461 enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
1463 /* If this is an interrupt handler, mark it as such. */
1464 if (M32R_INTERRUPT_P (fn_type))
1465 fprintf (file, "\t%s interrupt handler\n", ASM_COMMENT_START);
1467 if (! current_frame_info.initialized)
1468 m32r_compute_frame_size (size);
1470 /* This is only for the human reader. */
1471 fprintf (file,
1472 "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
1473 ASM_COMMENT_START,
1474 current_frame_info.var_size,
1475 current_frame_info.reg_size / 4,
1476 current_frame_info.args_size,
1477 current_frame_info.extra_size);
1480 /* Output RTL to pop register REGNO from the stack. */
1482 static void
1483 pop (int regno)
1485 rtx x;
1487 x = emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, regno),
1488 stack_pointer_rtx));
1489 REG_NOTES (x)
1490 = gen_rtx_EXPR_LIST (REG_INC, stack_pointer_rtx, 0);
1493 /* Expand the m32r epilogue as a series of insns. */
1495 void
1496 m32r_expand_epilogue (void)
1498 int regno;
1499 int noepilogue = FALSE;
1500 int total_size;
1502 gcc_assert (current_frame_info.initialized);
1503 total_size = current_frame_info.total_size;
1505 if (total_size == 0)
1507 rtx insn = get_last_insn ();
1509 /* If the last insn was a BARRIER, we don't have to write any code
1510 because a jump (aka return) was put there. */
1511 if (insn && GET_CODE (insn) == NOTE)
1512 insn = prev_nonnote_insn (insn);
1513 if (insn && GET_CODE (insn) == BARRIER)
1514 noepilogue = TRUE;
1517 if (!noepilogue)
1519 unsigned int var_size = current_frame_info.var_size;
1520 unsigned int args_size = current_frame_info.args_size;
1521 unsigned int gmask = current_frame_info.gmask;
1522 int can_trust_sp_p = !cfun->calls_alloca;
1524 if (flag_exceptions)
1525 emit_insn (gen_blockage ());
1527 /* The first thing to do is point the sp at the bottom of the register
1528 save area. */
1529 if (can_trust_sp_p)
1531 unsigned int reg_offset = var_size + args_size;
1533 if (reg_offset == 0)
1534 ; /* Nothing to do. */
1535 else if (reg_offset < 32768)
1536 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1537 GEN_INT (reg_offset)));
1538 else
1540 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1542 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1543 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1544 tmp));
1547 else if (frame_pointer_needed)
1549 unsigned int reg_offset = var_size + args_size;
1551 if (reg_offset == 0)
1552 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1553 else if (reg_offset < 32768)
1554 emit_insn (gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
1555 GEN_INT (reg_offset)));
1556 else
1558 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1560 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1561 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1562 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1563 tmp));
1566 else
1567 gcc_unreachable ();
1569 if (current_frame_info.save_lr)
1570 pop (RETURN_ADDR_REGNUM);
1572 /* Restore any saved registers, in reverse order of course. */
1573 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1574 for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
1576 if ((gmask & (1L << regno)) != 0)
1577 pop (regno);
1580 if (current_frame_info.save_fp)
1581 pop (FRAME_POINTER_REGNUM);
1583 /* Remove varargs area if present. */
1584 if (current_frame_info.pretend_size != 0)
1585 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1586 GEN_INT (current_frame_info.pretend_size)));
1588 emit_insn (gen_blockage ());
1592 /* Do any necessary cleanup after a function to restore stack, frame,
1593 and regs. */
1595 static void
1596 m32r_output_function_epilogue (FILE * file ATTRIBUTE_UNUSED,
1597 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1599 /* Reset state info for each function. */
1600 current_frame_info = zero_frame_info;
1601 m32r_compute_function_type (NULL_TREE);
1604 /* Return nonzero if this function is known to have a null or 1 instruction
1605 epilogue. */
1608 direct_return (void)
1610 if (!reload_completed)
1611 return FALSE;
1613 if (M32R_INTERRUPT_P (m32r_compute_function_type (current_function_decl)))
1614 return FALSE;
1616 if (! current_frame_info.initialized)
1617 m32r_compute_frame_size (get_frame_size ());
1619 return current_frame_info.total_size == 0;
1623 /* PIC. */
1626 m32r_legitimate_pic_operand_p (rtx x)
1628 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1629 return 0;
1631 if (GET_CODE (x) == CONST
1632 && GET_CODE (XEXP (x, 0)) == PLUS
1633 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1634 || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)
1635 && (GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
1636 return 0;
1638 return 1;
1642 m32r_legitimize_pic_address (rtx orig, rtx reg)
1644 #ifdef DEBUG_PIC
1645 printf("m32r_legitimize_pic_address()\n");
1646 #endif
1648 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1650 rtx pic_ref, address;
1651 rtx insn;
1652 int subregs = 0;
1654 if (reg == 0)
1656 gcc_assert (!reload_in_progress && !reload_completed);
1657 reg = gen_reg_rtx (Pmode);
1659 subregs = 1;
1662 if (subregs)
1663 address = gen_reg_rtx (Pmode);
1664 else
1665 address = reg;
1667 crtl->uses_pic_offset_table = 1;
1669 if (GET_CODE (orig) == LABEL_REF
1670 || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
1672 emit_insn (gen_gotoff_load_addr (reg, orig));
1673 emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
1674 return reg;
1677 emit_insn (gen_pic_load_addr (address, orig));
1679 emit_insn (gen_addsi3 (address, address, pic_offset_table_rtx));
1680 pic_ref = gen_const_mem (Pmode, address);
1681 insn = emit_move_insn (reg, pic_ref);
1682 #if 0
1683 /* Put a REG_EQUAL note on this insn, so that it can be optimized
1684 by loop. */
1685 set_unique_reg_note (insn, REG_EQUAL, orig);
1686 #endif
1687 return reg;
1689 else if (GET_CODE (orig) == CONST)
1691 rtx base, offset;
1693 if (GET_CODE (XEXP (orig, 0)) == PLUS
1694 && XEXP (XEXP (orig, 0), 1) == pic_offset_table_rtx)
1695 return orig;
1697 if (reg == 0)
1699 gcc_assert (!reload_in_progress && !reload_completed);
1700 reg = gen_reg_rtx (Pmode);
1703 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1705 base = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg);
1706 if (base == reg)
1707 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), NULL_RTX);
1708 else
1709 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), reg);
1711 else
1712 return orig;
1714 if (GET_CODE (offset) == CONST_INT)
1716 if (INT16_P (INTVAL (offset)))
1717 return plus_constant (base, INTVAL (offset));
1718 else
1720 gcc_assert (! reload_in_progress && ! reload_completed);
1721 offset = force_reg (Pmode, offset);
1725 return gen_rtx_PLUS (Pmode, base, offset);
1728 return orig;
1731 /* Nested function support. */
1733 /* Emit RTL insns to initialize the variable parts of a trampoline.
1734 FNADDR is an RTX for the address of the function's pure code.
1735 CXT is an RTX for the static chain value for the function. */
1737 void
1738 m32r_initialize_trampoline (rtx tramp ATTRIBUTE_UNUSED,
1739 rtx fnaddr ATTRIBUTE_UNUSED,
1740 rtx cxt ATTRIBUTE_UNUSED)
1744 static void
1745 m32r_file_start (void)
1747 default_file_start ();
1749 if (flag_verbose_asm)
1750 fprintf (asm_out_file,
1751 "%s M32R/D special options: -G " HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1752 ASM_COMMENT_START, g_switch_value);
1754 if (TARGET_LITTLE_ENDIAN)
1755 fprintf (asm_out_file, "\t.little\n");
1758 /* Print operand X (an rtx) in assembler syntax to file FILE.
1759 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1760 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1762 void
1763 m32r_print_operand (FILE * file, rtx x, int code)
1765 rtx addr;
1767 switch (code)
1769 /* The 's' and 'p' codes are used by output_block_move() to
1770 indicate post-increment 's'tores and 'p're-increment loads. */
1771 case 's':
1772 if (GET_CODE (x) == REG)
1773 fprintf (file, "@+%s", reg_names [REGNO (x)]);
1774 else
1775 output_operand_lossage ("invalid operand to %%s code");
1776 return;
1778 case 'p':
1779 if (GET_CODE (x) == REG)
1780 fprintf (file, "@%s+", reg_names [REGNO (x)]);
1781 else
1782 output_operand_lossage ("invalid operand to %%p code");
1783 return;
1785 case 'R' :
1786 /* Write second word of DImode or DFmode reference,
1787 register or memory. */
1788 if (GET_CODE (x) == REG)
1789 fputs (reg_names[REGNO (x)+1], file);
1790 else if (GET_CODE (x) == MEM)
1792 fprintf (file, "@(");
1793 /* Handle possible auto-increment. Since it is pre-increment and
1794 we have already done it, we can just use an offset of four. */
1795 /* ??? This is taken from rs6000.c I think. I don't think it is
1796 currently necessary, but keep it around. */
1797 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1798 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1799 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
1800 else
1801 output_address (plus_constant (XEXP (x, 0), 4));
1802 fputc (')', file);
1804 else
1805 output_operand_lossage ("invalid operand to %%R code");
1806 return;
1808 case 'H' : /* High word. */
1809 case 'L' : /* Low word. */
1810 if (GET_CODE (x) == REG)
1812 /* L = least significant word, H = most significant word. */
1813 if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
1814 fputs (reg_names[REGNO (x)], file);
1815 else
1816 fputs (reg_names[REGNO (x)+1], file);
1818 else if (GET_CODE (x) == CONST_INT
1819 || GET_CODE (x) == CONST_DOUBLE)
1821 rtx first, second;
1823 split_double (x, &first, &second);
1824 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1825 code == 'L' ? INTVAL (first) : INTVAL (second));
1827 else
1828 output_operand_lossage ("invalid operand to %%H/%%L code");
1829 return;
1831 case 'A' :
1833 char str[30];
1835 if (GET_CODE (x) != CONST_DOUBLE
1836 || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
1837 fatal_insn ("bad insn for 'A'", x);
1839 real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
1840 fprintf (file, "%s", str);
1841 return;
1844 case 'B' : /* Bottom half. */
1845 case 'T' : /* Top half. */
1846 /* Output the argument to a `seth' insn (sets the Top half-word).
1847 For constants output arguments to a seth/or3 pair to set Top and
1848 Bottom halves. For symbols output arguments to a seth/add3 pair to
1849 set Top and Bottom halves. The difference exists because for
1850 constants seth/or3 is more readable but for symbols we need to use
1851 the same scheme as `ld' and `st' insns (16-bit addend is signed). */
1852 switch (GET_CODE (x))
1854 case CONST_INT :
1855 case CONST_DOUBLE :
1857 rtx first, second;
1859 split_double (x, &first, &second);
1860 x = WORDS_BIG_ENDIAN ? second : first;
1861 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1862 (code == 'B'
1863 ? INTVAL (x) & 0xffff
1864 : (INTVAL (x) >> 16) & 0xffff));
1866 return;
1867 case CONST :
1868 case SYMBOL_REF :
1869 if (code == 'B'
1870 && small_data_operand (x, VOIDmode))
1872 fputs ("sda(", file);
1873 output_addr_const (file, x);
1874 fputc (')', file);
1875 return;
1877 /* fall through */
1878 case LABEL_REF :
1879 fputs (code == 'T' ? "shigh(" : "low(", file);
1880 output_addr_const (file, x);
1881 fputc (')', file);
1882 return;
1883 default :
1884 output_operand_lossage ("invalid operand to %%T/%%B code");
1885 return;
1887 break;
1889 case 'U' :
1890 /* ??? wip */
1891 /* Output a load/store with update indicator if appropriate. */
1892 if (GET_CODE (x) == MEM)
1894 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1895 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1896 fputs (".a", file);
1898 else
1899 output_operand_lossage ("invalid operand to %%U code");
1900 return;
1902 case 'N' :
1903 /* Print a constant value negated. */
1904 if (GET_CODE (x) == CONST_INT)
1905 output_addr_const (file, GEN_INT (- INTVAL (x)));
1906 else
1907 output_operand_lossage ("invalid operand to %%N code");
1908 return;
1910 case 'X' :
1911 /* Print a const_int in hex. Used in comments. */
1912 if (GET_CODE (x) == CONST_INT)
1913 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
1914 return;
1916 case '#' :
1917 fputs (IMMEDIATE_PREFIX, file);
1918 return;
1920 case 0 :
1921 /* Do nothing special. */
1922 break;
1924 default :
1925 /* Unknown flag. */
1926 output_operand_lossage ("invalid operand output code");
1929 switch (GET_CODE (x))
1931 case REG :
1932 fputs (reg_names[REGNO (x)], file);
1933 break;
1935 case MEM :
1936 addr = XEXP (x, 0);
1937 if (GET_CODE (addr) == PRE_INC)
1939 if (GET_CODE (XEXP (addr, 0)) != REG)
1940 fatal_insn ("pre-increment address is not a register", x);
1942 fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
1944 else if (GET_CODE (addr) == PRE_DEC)
1946 if (GET_CODE (XEXP (addr, 0)) != REG)
1947 fatal_insn ("pre-decrement address is not a register", x);
1949 fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
1951 else if (GET_CODE (addr) == POST_INC)
1953 if (GET_CODE (XEXP (addr, 0)) != REG)
1954 fatal_insn ("post-increment address is not a register", x);
1956 fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
1958 else
1960 fputs ("@(", file);
1961 output_address (XEXP (x, 0));
1962 fputc (')', file);
1964 break;
1966 case CONST_DOUBLE :
1967 /* We handle SFmode constants here as output_addr_const doesn't. */
1968 if (GET_MODE (x) == SFmode)
1970 REAL_VALUE_TYPE d;
1971 long l;
1973 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
1974 REAL_VALUE_TO_TARGET_SINGLE (d, l);
1975 fprintf (file, "0x%08lx", l);
1976 break;
1979 /* Fall through. Let output_addr_const deal with it. */
1981 default :
1982 output_addr_const (file, x);
1983 break;
1987 /* Print a memory address as an operand to reference that memory location. */
1989 void
1990 m32r_print_operand_address (FILE * file, rtx addr)
1992 rtx base;
1993 rtx index = 0;
1994 int offset = 0;
1996 switch (GET_CODE (addr))
1998 case REG :
1999 fputs (reg_names[REGNO (addr)], file);
2000 break;
2002 case PLUS :
2003 if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
2004 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
2005 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2006 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
2007 else
2008 base = XEXP (addr, 0), index = XEXP (addr, 1);
2009 if (GET_CODE (base) == REG)
2011 /* Print the offset first (if present) to conform to the manual. */
2012 if (index == 0)
2014 if (offset != 0)
2015 fprintf (file, "%d,", offset);
2016 fputs (reg_names[REGNO (base)], file);
2018 /* The chip doesn't support this, but left in for generality. */
2019 else if (GET_CODE (index) == REG)
2020 fprintf (file, "%s,%s",
2021 reg_names[REGNO (base)], reg_names[REGNO (index)]);
2022 /* Not sure this can happen, but leave in for now. */
2023 else if (GET_CODE (index) == SYMBOL_REF)
2025 output_addr_const (file, index);
2026 fputc (',', file);
2027 fputs (reg_names[REGNO (base)], file);
2029 else
2030 fatal_insn ("bad address", addr);
2032 else if (GET_CODE (base) == LO_SUM)
2034 gcc_assert (!index && GET_CODE (XEXP (base, 0)) == REG);
2035 if (small_data_operand (XEXP (base, 1), VOIDmode))
2036 fputs ("sda(", file);
2037 else
2038 fputs ("low(", file);
2039 output_addr_const (file, plus_constant (XEXP (base, 1), offset));
2040 fputs ("),", file);
2041 fputs (reg_names[REGNO (XEXP (base, 0))], file);
2043 else
2044 fatal_insn ("bad address", addr);
2045 break;
2047 case LO_SUM :
2048 if (GET_CODE (XEXP (addr, 0)) != REG)
2049 fatal_insn ("lo_sum not of register", addr);
2050 if (small_data_operand (XEXP (addr, 1), VOIDmode))
2051 fputs ("sda(", file);
2052 else
2053 fputs ("low(", file);
2054 output_addr_const (file, XEXP (addr, 1));
2055 fputs ("),", file);
2056 fputs (reg_names[REGNO (XEXP (addr, 0))], file);
2057 break;
2059 case PRE_INC : /* Assume SImode. */
2060 fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
2061 break;
2063 case PRE_DEC : /* Assume SImode. */
2064 fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
2065 break;
2067 case POST_INC : /* Assume SImode. */
2068 fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
2069 break;
2071 default :
2072 output_addr_const (file, addr);
2073 break;
2077 /* Return true if the operands are the constants 0 and 1. */
2080 zero_and_one (rtx operand1, rtx operand2)
2082 return
2083 GET_CODE (operand1) == CONST_INT
2084 && GET_CODE (operand2) == CONST_INT
2085 && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
2086 ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
2089 /* Generate the correct assembler code to handle the conditional loading of a
2090 value into a register. It is known that the operands satisfy the
2091 conditional_move_operand() function above. The destination is operand[0].
2092 The condition is operand [1]. The 'true' value is operand [2] and the
2093 'false' value is operand [3]. */
2095 char *
2096 emit_cond_move (rtx * operands, rtx insn ATTRIBUTE_UNUSED)
2098 static char buffer [100];
2099 const char * dest = reg_names [REGNO (operands [0])];
2101 buffer [0] = 0;
2103 /* Destination must be a register. */
2104 gcc_assert (GET_CODE (operands [0]) == REG);
2105 gcc_assert (conditional_move_operand (operands [2], SImode));
2106 gcc_assert (conditional_move_operand (operands [3], SImode));
2108 /* Check to see if the test is reversed. */
2109 if (GET_CODE (operands [1]) == NE)
2111 rtx tmp = operands [2];
2112 operands [2] = operands [3];
2113 operands [3] = tmp;
2116 sprintf (buffer, "mvfc %s, cbr", dest);
2118 /* If the true value was '0' then we need to invert the results of the move. */
2119 if (INTVAL (operands [2]) == 0)
2120 sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
2121 dest, dest);
2123 return buffer;
2126 /* Returns true if the registers contained in the two
2127 rtl expressions are different. */
2130 m32r_not_same_reg (rtx a, rtx b)
2132 int reg_a = -1;
2133 int reg_b = -2;
2135 while (GET_CODE (a) == SUBREG)
2136 a = SUBREG_REG (a);
2138 if (GET_CODE (a) == REG)
2139 reg_a = REGNO (a);
2141 while (GET_CODE (b) == SUBREG)
2142 b = SUBREG_REG (b);
2144 if (GET_CODE (b) == REG)
2145 reg_b = REGNO (b);
2147 return reg_a != reg_b;
2152 m32r_function_symbol (const char *name)
2154 int extra_flags = 0;
2155 enum m32r_model model;
2156 rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);
2158 if (TARGET_MODEL_SMALL)
2159 model = M32R_MODEL_SMALL;
2160 else if (TARGET_MODEL_MEDIUM)
2161 model = M32R_MODEL_MEDIUM;
2162 else if (TARGET_MODEL_LARGE)
2163 model = M32R_MODEL_LARGE;
2164 else
2165 gcc_unreachable (); /* Shouldn't happen. */
2166 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
2168 if (extra_flags)
2169 SYMBOL_REF_FLAGS (sym) |= extra_flags;
2171 return sym;
2174 /* Use a library function to move some bytes. */
2176 static void
2177 block_move_call (rtx dest_reg, rtx src_reg, rtx bytes_rtx)
2179 /* We want to pass the size as Pmode, which will normally be SImode
2180 but will be DImode if we are using 64-bit longs and pointers. */
2181 if (GET_MODE (bytes_rtx) != VOIDmode
2182 && GET_MODE (bytes_rtx) != Pmode)
2183 bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
2185 emit_library_call (m32r_function_symbol ("memcpy"), 0,
2186 VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
2187 convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
2188 TYPE_UNSIGNED (sizetype)),
2189 TYPE_MODE (sizetype));
2192 /* Expand string/block move operations.
2194 operands[0] is the pointer to the destination.
2195 operands[1] is the pointer to the source.
2196 operands[2] is the number of bytes to move.
2197 operands[3] is the alignment.
2199 Returns 1 upon success, 0 otherwise. */
2202 m32r_expand_block_move (rtx operands[])
2204 rtx orig_dst = operands[0];
2205 rtx orig_src = operands[1];
2206 rtx bytes_rtx = operands[2];
2207 rtx align_rtx = operands[3];
2208 int constp = GET_CODE (bytes_rtx) == CONST_INT;
2209 HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
2210 int align = INTVAL (align_rtx);
2211 int leftover;
2212 rtx src_reg;
2213 rtx dst_reg;
2215 if (constp && bytes <= 0)
2216 return 1;
2218 /* Move the address into scratch registers. */
2219 dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0));
2220 src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
2222 if (align > UNITS_PER_WORD)
2223 align = UNITS_PER_WORD;
2225 /* If we prefer size over speed, always use a function call.
2226 If we do not know the size, use a function call.
2227 If the blocks are not word aligned, use a function call. */
2228 if (optimize_size || ! constp || align != UNITS_PER_WORD)
2230 block_move_call (dst_reg, src_reg, bytes_rtx);
2231 return 0;
2234 leftover = bytes % MAX_MOVE_BYTES;
2235 bytes -= leftover;
2237 /* If necessary, generate a loop to handle the bulk of the copy. */
2238 if (bytes)
2240 rtx label = NULL_RTX;
2241 rtx final_src = NULL_RTX;
2242 rtx at_a_time = GEN_INT (MAX_MOVE_BYTES);
2243 rtx rounded_total = GEN_INT (bytes);
2244 rtx new_dst_reg = gen_reg_rtx (SImode);
2245 rtx new_src_reg = gen_reg_rtx (SImode);
2247 /* If we are going to have to perform this loop more than
2248 once, then generate a label and compute the address the
2249 source register will contain upon completion of the final
2250 iteration. */
2251 if (bytes > MAX_MOVE_BYTES)
2253 final_src = gen_reg_rtx (Pmode);
2255 if (INT16_P(bytes))
2256 emit_insn (gen_addsi3 (final_src, src_reg, rounded_total));
2257 else
2259 emit_insn (gen_movsi (final_src, rounded_total));
2260 emit_insn (gen_addsi3 (final_src, final_src, src_reg));
2263 label = gen_label_rtx ();
2264 emit_label (label);
2267 /* It is known that output_block_move() will update src_reg to point
2268 to the word after the end of the source block, and dst_reg to point
2269 to the last word of the destination block, provided that the block
2270 is MAX_MOVE_BYTES long. */
2271 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, at_a_time,
2272 new_dst_reg, new_src_reg));
2273 emit_move_insn (dst_reg, new_dst_reg);
2274 emit_move_insn (src_reg, new_src_reg);
2275 emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4)));
2277 if (bytes > MAX_MOVE_BYTES)
2279 emit_insn (gen_cmpsi (src_reg, final_src));
2280 emit_jump_insn (gen_bne (label));
2284 if (leftover)
2285 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, GEN_INT (leftover),
2286 gen_reg_rtx (SImode),
2287 gen_reg_rtx (SImode)));
2288 return 1;
2292 /* Emit load/stores for a small constant word aligned block_move.
2294 operands[0] is the memory address of the destination.
2295 operands[1] is the memory address of the source.
2296 operands[2] is the number of bytes to move.
2297 operands[3] is a temp register.
2298 operands[4] is a temp register. */
2300 void
2301 m32r_output_block_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
2303 HOST_WIDE_INT bytes = INTVAL (operands[2]);
2304 int first_time;
2305 int got_extra = 0;
2307 gcc_assert (bytes >= 1 && bytes <= MAX_MOVE_BYTES);
2309 /* We do not have a post-increment store available, so the first set of
2310 stores are done without any increment, then the remaining ones can use
2311 the pre-increment addressing mode.
2313 Note: expand_block_move() also relies upon this behavior when building
2314 loops to copy large blocks. */
2315 first_time = 1;
2317 while (bytes > 0)
2319 if (bytes >= 8)
2321 if (first_time)
2323 output_asm_insn ("ld\t%5, %p1", operands);
2324 output_asm_insn ("ld\t%6, %p1", operands);
2325 output_asm_insn ("st\t%5, @%0", operands);
2326 output_asm_insn ("st\t%6, %s0", operands);
2328 else
2330 output_asm_insn ("ld\t%5, %p1", operands);
2331 output_asm_insn ("ld\t%6, %p1", operands);
2332 output_asm_insn ("st\t%5, %s0", operands);
2333 output_asm_insn ("st\t%6, %s0", operands);
2336 bytes -= 8;
2338 else if (bytes >= 4)
2340 if (bytes > 4)
2341 got_extra = 1;
2343 output_asm_insn ("ld\t%5, %p1", operands);
2345 if (got_extra)
2346 output_asm_insn ("ld\t%6, %p1", operands);
2348 if (first_time)
2349 output_asm_insn ("st\t%5, @%0", operands);
2350 else
2351 output_asm_insn ("st\t%5, %s0", operands);
2353 bytes -= 4;
2355 else
2357 /* Get the entire next word, even though we do not want all of it.
2358 The saves us from doing several smaller loads, and we assume that
2359 we cannot cause a page fault when at least part of the word is in
2360 valid memory [since we don't get called if things aren't properly
2361 aligned]. */
2362 int dst_offset = first_time ? 0 : 4;
2363 /* The amount of increment we have to make to the
2364 destination pointer. */
2365 int dst_inc_amount = dst_offset + bytes - 4;
2366 /* The same for the source pointer. */
2367 int src_inc_amount = bytes;
2368 int last_shift;
2369 rtx my_operands[3];
2371 /* If got_extra is true then we have already loaded
2372 the next word as part of loading and storing the previous word. */
2373 if (! got_extra)
2374 output_asm_insn ("ld\t%6, @%1", operands);
2376 if (bytes >= 2)
2378 bytes -= 2;
2380 output_asm_insn ("sra3\t%5, %6, #16", operands);
2381 my_operands[0] = operands[5];
2382 my_operands[1] = GEN_INT (dst_offset);
2383 my_operands[2] = operands[0];
2384 output_asm_insn ("sth\t%0, @(%1,%2)", my_operands);
2386 /* If there is a byte left to store then increment the
2387 destination address and shift the contents of the source
2388 register down by 8 bits. We could not do the address
2389 increment in the store half word instruction, because it does
2390 not have an auto increment mode. */
2391 if (bytes > 0) /* assert (bytes == 1) */
2393 dst_offset += 2;
2394 last_shift = 8;
2397 else
2398 last_shift = 24;
2400 if (bytes > 0)
2402 my_operands[0] = operands[6];
2403 my_operands[1] = GEN_INT (last_shift);
2404 output_asm_insn ("srai\t%0, #%1", my_operands);
2405 my_operands[0] = operands[6];
2406 my_operands[1] = GEN_INT (dst_offset);
2407 my_operands[2] = operands[0];
2408 output_asm_insn ("stb\t%0, @(%1,%2)", my_operands);
2411 /* Update the destination pointer if needed. We have to do
2412 this so that the patterns matches what we output in this
2413 function. */
2414 if (dst_inc_amount
2415 && !find_reg_note (insn, REG_UNUSED, operands[0]))
2417 my_operands[0] = operands[0];
2418 my_operands[1] = GEN_INT (dst_inc_amount);
2419 output_asm_insn ("addi\t%0, #%1", my_operands);
2422 /* Update the source pointer if needed. We have to do this
2423 so that the patterns matches what we output in this
2424 function. */
2425 if (src_inc_amount
2426 && !find_reg_note (insn, REG_UNUSED, operands[1]))
2428 my_operands[0] = operands[1];
2429 my_operands[1] = GEN_INT (src_inc_amount);
2430 output_asm_insn ("addi\t%0, #%1", my_operands);
2433 bytes = 0;
2436 first_time = 0;
2440 /* Return true if using NEW_REG in place of OLD_REG is ok. */
2443 m32r_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
2444 unsigned int new_reg)
2446 /* Interrupt routines can't clobber any register that isn't already used. */
2447 if (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl))
2448 && !df_regs_ever_live_p (new_reg))
2449 return 0;
2451 return 1;
2455 m32r_return_addr (int count)
2457 if (count != 0)
2458 return const0_rtx;
2460 return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);