2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / iq2000 / iq2000.h
blobf5574e4d7573d5518f72ac4cd30d89666f827473
1 /* Definitions of target machine for GNU compiler.
2 Vitesse IQ2000 processors
3 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Driver configuration. */
23 #undef SWITCH_TAKES_ARG
24 #define SWITCH_TAKES_ARG(CHAR) \
25 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
27 /* The svr4.h LIB_SPEC with -leval and --*group tacked on */
28 #undef LIB_SPEC
29 #define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}"
31 #undef STARTFILE_SPEC
32 #undef ENDFILE_SPEC
35 /* Run-time target specifications. */
37 #define TARGET_CPU_CPP_BUILTINS() \
38 do \
39 { \
40 builtin_define ("__iq2000__"); \
41 builtin_assert ("cpu=iq2000"); \
42 builtin_assert ("machine=iq2000"); \
43 } \
44 while (0)
46 /* Macros used in the machine description to test the flags. */
48 #define TARGET_STATS 0
50 #define TARGET_DEBUG_MODE 0
51 #define TARGET_DEBUG_A_MODE 0
52 #define TARGET_DEBUG_B_MODE 0
53 #define TARGET_DEBUG_C_MODE 0
54 #define TARGET_DEBUG_D_MODE 0
56 #ifndef IQ2000_ISA_DEFAULT
57 #define IQ2000_ISA_DEFAULT 1
58 #endif
60 #define IQ2000_VERSION "[1.0]"
62 #ifndef MACHINE_TYPE
63 #define MACHINE_TYPE "IQ2000"
64 #endif
66 #ifndef TARGET_VERSION_INTERNAL
67 #define TARGET_VERSION_INTERNAL(STREAM) \
68 fprintf (STREAM, " %s %s", IQ2000_VERSION, MACHINE_TYPE)
69 #endif
71 #ifndef TARGET_VERSION
72 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
73 #endif
75 #define OVERRIDE_OPTIONS override_options ()
77 #define CAN_DEBUG_WITHOUT_FP
79 /* Storage Layout. */
81 #define BITS_BIG_ENDIAN 0
82 #define BYTES_BIG_ENDIAN 1
83 #define WORDS_BIG_ENDIAN 1
84 #define LIBGCC2_WORDS_BIG_ENDIAN 1
85 #define BITS_PER_WORD 32
86 #define MAX_BITS_PER_WORD 64
87 #define UNITS_PER_WORD 4
88 #define MIN_UNITS_PER_WORD 4
89 #define POINTER_SIZE 32
91 /* Define this macro if it is advisable to hold scalars in registers
92 in a wider mode than that declared by the program. In such cases,
93 the value is constrained to be within the bounds of the declared
94 type, but kept valid in the wider mode. The signedness of the
95 extension may differ from that of the type.
97 We promote any value smaller than SImode up to SImode. */
99 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
100 if (GET_MODE_CLASS (MODE) == MODE_INT \
101 && GET_MODE_SIZE (MODE) < 4) \
102 (MODE) = SImode;
104 #define PARM_BOUNDARY 32
106 #define STACK_BOUNDARY 64
108 #define FUNCTION_BOUNDARY 32
110 #define BIGGEST_ALIGNMENT 64
112 #undef DATA_ALIGNMENT
113 #define DATA_ALIGNMENT(TYPE, ALIGN) \
114 ((((ALIGN) < BITS_PER_WORD) \
115 && (TREE_CODE (TYPE) == ARRAY_TYPE \
116 || TREE_CODE (TYPE) == UNION_TYPE \
117 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
119 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
120 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
121 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
123 #define EMPTY_FIELD_BOUNDARY 32
125 #define STRUCTURE_SIZE_BOUNDARY 8
127 #define STRICT_ALIGNMENT 1
129 #define PCC_BITFIELD_TYPE_MATTERS 1
131 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
134 /* Layout of Source Language Data Types. */
136 #define INT_TYPE_SIZE 32
137 #define SHORT_TYPE_SIZE 16
138 #define LONG_TYPE_SIZE 32
139 #define LONG_LONG_TYPE_SIZE 64
140 #define CHAR_TYPE_SIZE BITS_PER_UNIT
141 #define FLOAT_TYPE_SIZE 32
142 #define DOUBLE_TYPE_SIZE 64
143 #define LONG_DOUBLE_TYPE_SIZE 64
144 #define DEFAULT_SIGNED_CHAR 1
147 /* Register Basics. */
149 /* On the IQ2000, we have 32 integer registers. */
150 #define FIRST_PSEUDO_REGISTER 33
152 #define FIXED_REGISTERS \
154 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
155 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1 \
158 #define CALL_USED_REGISTERS \
160 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
161 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 \
165 /* Order of allocation of registers. */
167 #define REG_ALLOC_ORDER \
168 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
169 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 \
173 /* How Values Fit in Registers. */
175 #define HARD_REGNO_NREGS(REGNO, MODE) \
176 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
178 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
179 ((REGNO_REG_CLASS (REGNO) == GR_REGS) \
180 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
181 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
183 #define MODES_TIEABLE_P(MODE1, MODE2) \
184 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
185 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
186 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
187 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
189 #define AVOID_CCMODE_COPIES
192 /* Register Classes. */
194 enum reg_class
196 NO_REGS, /* No registers in set. */
197 GR_REGS, /* Integer registers. */
198 ALL_REGS, /* All registers. */
199 LIM_REG_CLASSES /* Max value + 1. */
202 #define GENERAL_REGS GR_REGS
204 #define N_REG_CLASSES (int) LIM_REG_CLASSES
206 #define REG_CLASS_NAMES \
208 "NO_REGS", \
209 "GR_REGS", \
210 "ALL_REGS" \
213 #define REG_CLASS_CONTENTS \
215 { 0x00000000, 0x00000000 }, /* No registers, */ \
216 { 0xffffffff, 0x00000000 }, /* Integer registers. */ \
217 { 0xffffffff, 0x00000001 } /* All registers. */ \
220 #define REGNO_REG_CLASS(REGNO) \
221 ((REGNO) <= GP_REG_LAST + 1 ? GR_REGS : NO_REGS)
223 #define BASE_REG_CLASS (GR_REGS)
225 #define INDEX_REG_CLASS NO_REGS
227 #define REG_CLASS_FROM_LETTER(C) \
228 ((C) == 'd' ? GR_REGS : \
229 (C) == 'b' ? ALL_REGS : \
230 (C) == 'y' ? GR_REGS : \
231 NO_REGS)
233 #define REGNO_OK_FOR_INDEX_P(regno) 0
235 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
236 ((CLASS) != ALL_REGS \
237 ? (CLASS) \
238 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
239 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
240 ? (GR_REGS) \
241 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
242 || GET_MODE (X) == VOIDmode) \
243 ? (GR_REGS) \
244 : (CLASS))))
246 #define SMALL_REGISTER_CLASSES 0
248 #define CLASS_MAX_NREGS(CLASS, MODE) \
249 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
251 /* For IQ2000:
253 `I' is used for the range of constants an arithmetic insn can
254 actually contain (16-bits signed integers).
256 `J' is used for the range which is just zero (i.e., $r0).
258 `K' is used for the range of constants a logical insn can actually
259 contain (16-bit zero-extended integers).
261 `L' is used for the range of constants that be loaded with lui
262 (i.e., the bottom 16 bits are zero).
264 `M' is used for the range of constants that take two words to load
265 (i.e., not matched by `I', `K', and `L').
267 `N' is used for constants 0xffffnnnn or 0xnnnnffff
269 `O' is a 5-bit zero-extended integer. */
271 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
272 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
273 : (C) == 'J' ? ((VALUE) == 0) \
274 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
275 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
276 && (((VALUE) & ~2147483647) == 0 \
277 || ((VALUE) & ~2147483647) == ~2147483647)) \
278 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
279 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
280 && (((VALUE) & 0x0000ffff) != 0 \
281 || (((VALUE) & ~2147483647) != 0 \
282 && ((VALUE) & ~2147483647) != ~2147483647))) \
283 : (C) == 'N' ? ((((VALUE) & 0xffff) == 0xffff) \
284 || (((VALUE) & 0xffff0000) == 0xffff0000)) \
285 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x20) < 0x40) \
286 : 0)
288 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
289 ((C) == 'G' \
290 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
292 /* `R' is for memory references which take 1 word for the instruction. */
294 #define EXTRA_CONSTRAINT(OP,CODE) \
295 (((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
296 : FALSE)
299 /* Basic Stack Layout. */
301 #define STACK_GROWS_DOWNWARD
303 #define FRAME_GROWS_DOWNWARD 0
305 #define STARTING_FRAME_OFFSET \
306 (crtl->outgoing_args_size)
308 /* Use the default value zero. */
309 /* #define STACK_POINTER_OFFSET 0 */
311 #define FIRST_PARM_OFFSET(FNDECL) 0
313 /* The return address for the current frame is in r31 if this is a leaf
314 function. Otherwise, it is on the stack. It is at a variable offset
315 from sp/fp/ap, so we define a fake hard register rap which is a
316 pointer to the return address on the stack. This always gets eliminated
317 during reload to be either the frame pointer or the stack pointer plus
318 an offset. */
320 #define RETURN_ADDR_RTX(count, frame) \
321 (((count) == 0) \
322 ? (leaf_function_p () \
323 ? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
324 : gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
325 RETURN_ADDRESS_POINTER_REGNUM))) \
326 : (rtx) 0)
328 /* Before the prologue, RA lives in r31. */
329 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
332 /* Register That Address the Stack Frame. */
334 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
335 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
336 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 27)
337 #define ARG_POINTER_REGNUM GP_REG_FIRST
338 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
339 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
342 /* Eliminating the Frame Pointer and the Arg Pointer. */
344 #define FRAME_POINTER_REQUIRED 0
346 #define ELIMINABLE_REGS \
347 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
348 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
349 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
350 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
351 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 31}, \
352 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
353 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
356 /* We can always eliminate to the frame pointer. We can eliminate to the
357 stack pointer unless a frame pointer is needed. */
359 #define CAN_ELIMINATE(FROM, TO) \
360 (((FROM) == RETURN_ADDRESS_POINTER_REGNUM && (! leaf_function_p () \
361 || (TO == GP_REG_FIRST + 31 && leaf_function_p))) \
362 || ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
363 && ((TO) == HARD_FRAME_POINTER_REGNUM \
364 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed))))
366 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
367 (OFFSET) = iq2000_initial_elimination_offset ((FROM), (TO))
369 /* Passing Function Arguments on the Stack. */
371 /* #define PUSH_ROUNDING(BYTES) 0 */
373 #define ACCUMULATE_OUTGOING_ARGS 1
375 #define REG_PARM_STACK_SPACE(FNDECL) 0
377 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
379 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
382 /* Function Arguments in Registers. */
384 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
385 function_arg (& CUM, MODE, TYPE, NAMED)
387 #define MAX_ARGS_IN_REGISTERS 8
389 typedef struct iq2000_args
391 int gp_reg_found; /* Whether a gp register was found yet. */
392 unsigned int arg_number; /* Argument number. */
393 unsigned int arg_words; /* # total words the arguments take. */
394 unsigned int fp_arg_words; /* # words for FP args (IQ2000_EABI only). */
395 int last_arg_fp; /* Nonzero if last arg was FP (EABI only). */
396 int fp_code; /* Mode of FP arguments. */
397 unsigned int num_adjusts; /* Number of adjustments made. */
398 /* Adjustments made to args pass in regs. */
399 struct rtx_def * adjust[MAX_ARGS_IN_REGISTERS * 2];
400 } CUMULATIVE_ARGS;
402 /* Initialize a variable CUM of type CUMULATIVE_ARGS
403 for a call to a function whose data type is FNTYPE.
404 For a library call, FNTYPE is 0. */
405 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
406 init_cumulative_args (& CUM, FNTYPE, LIBNAME) \
408 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
409 function_arg_advance (& CUM, MODE, TYPE, NAMED)
411 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
412 (! BYTES_BIG_ENDIAN \
413 ? upward \
414 : (((MODE) == BLKmode \
415 ? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
416 && int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
417 : (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
418 && (GET_MODE_CLASS (MODE) == MODE_INT))) \
419 ? downward : upward))
421 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
422 (((TYPE) != 0) \
423 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
424 ? PARM_BOUNDARY \
425 : TYPE_ALIGN(TYPE)) \
426 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
427 ? PARM_BOUNDARY \
428 : GET_MODE_ALIGNMENT(MODE)))
430 #define FUNCTION_ARG_REGNO_P(N) \
431 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST))
434 /* How Scalar Function Values are Returned. */
436 #define FUNCTION_VALUE(VALTYPE, FUNC) iq2000_function_value (VALTYPE, FUNC)
438 #define LIBCALL_VALUE(MODE) \
439 gen_rtx_REG (((GET_MODE_CLASS (MODE) != MODE_INT \
440 || GET_MODE_SIZE (MODE) >= 4) \
441 ? (MODE) \
442 : SImode), \
443 GP_RETURN)
445 /* On the IQ2000, R2 and R3 are the only register thus used. */
447 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN)
450 /* How Large Values are Returned. */
452 #define DEFAULT_PCC_STRUCT_RETURN 0
454 /* Function Entry and Exit. */
456 #define EXIT_IGNORE_STACK 1
459 /* Generating Code for Profiling. */
461 #define FUNCTION_PROFILER(FILE, LABELNO) \
463 fprintf (FILE, "\t.set\tnoreorder\n"); \
464 fprintf (FILE, "\t.set\tnoat\n"); \
465 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
466 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
467 fprintf (FILE, "\tjal\t_mcount\n"); \
468 fprintf (FILE, \
469 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
470 "subu", \
471 reg_names[STACK_POINTER_REGNUM], \
472 reg_names[STACK_POINTER_REGNUM], \
473 Pmode == DImode ? 16 : 8); \
474 fprintf (FILE, "\t.set\treorder\n"); \
475 fprintf (FILE, "\t.set\tat\n"); \
479 /* Trampolines for Nested Functions. */
481 /* A C statement to output, on the stream FILE, assembler code for a
482 block of data that contains the constant parts of a trampoline.
483 This code should not include a label--the label is taken care of
484 automatically. */
486 #define TRAMPOLINE_TEMPLATE(STREAM) \
488 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
489 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
490 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
491 if (Pmode == DImode) \
493 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
494 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
496 else \
498 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
499 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
501 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
502 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
503 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
504 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
505 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
508 #define TRAMPOLINE_SIZE (40)
510 #define TRAMPOLINE_ALIGNMENT 32
512 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
514 rtx addr = ADDR; \
515 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
516 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
520 /* Addressing Modes. */
522 #define CONSTANT_ADDRESS_P(X) \
523 ( (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
524 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
525 || (GET_CODE (X) == CONST)))
527 #define MAX_REGS_PER_ADDRESS 1
529 #ifdef REG_OK_STRICT
530 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
532 if (iq2000_legitimate_address_p (MODE, X, 1)) \
533 goto ADDR; \
535 #else
536 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
538 if (iq2000_legitimate_address_p (MODE, X, 0)) \
539 goto ADDR; \
541 #endif
543 #define REG_OK_FOR_INDEX_P(X) 0
546 /* For the IQ2000, transform:
548 memory(X + <large int>)
549 into:
550 Y = <large int> & ~0x7fff;
551 Z = X + Y
552 memory (Z + (<large int> & 0x7fff));
555 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
557 rtx xinsn = (X); \
559 if (TARGET_DEBUG_B_MODE) \
561 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
562 GO_DEBUG_RTX (xinsn); \
565 if (iq2000_check_split (X, MODE)) \
567 X = gen_rtx_LO_SUM (Pmode, \
568 copy_to_mode_reg (Pmode, \
569 gen_rtx_HIGH (Pmode, X)), \
570 X); \
571 goto WIN; \
574 if (GET_CODE (xinsn) == PLUS) \
576 rtx xplus0 = XEXP (xinsn, 0); \
577 rtx xplus1 = XEXP (xinsn, 1); \
578 enum rtx_code code0 = GET_CODE (xplus0); \
579 enum rtx_code code1 = GET_CODE (xplus1); \
581 if (code0 != REG && code1 == REG) \
583 xplus0 = XEXP (xinsn, 1); \
584 xplus1 = XEXP (xinsn, 0); \
585 code0 = GET_CODE (xplus0); \
586 code1 = GET_CODE (xplus1); \
589 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
590 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
592 rtx int_reg = gen_reg_rtx (Pmode); \
593 rtx ptr_reg = gen_reg_rtx (Pmode); \
595 emit_move_insn (int_reg, \
596 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
598 emit_insn (gen_rtx_SET (VOIDmode, \
599 ptr_reg, \
600 gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
602 X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
603 goto WIN; \
607 if (TARGET_DEBUG_B_MODE) \
608 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
611 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
613 #define LEGITIMATE_CONSTANT_P(X) (1)
616 /* Describing Relative Costs of Operations. */
618 #define REGISTER_MOVE_COST(MODE, FROM, TO) 2
620 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
621 (TO_P ? 2 : 16)
623 #define BRANCH_COST 2
625 #define SLOW_BYTE_ACCESS 1
627 #define NO_FUNCTION_CSE 1
629 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
630 if (REG_NOTE_KIND (LINK) != 0) \
631 (COST) = 0; /* Anti or output dependence. */
634 /* Dividing the output into sections. */
636 #define TEXT_SECTION_ASM_OP "\t.text" /* Instructions. */
638 #define DATA_SECTION_ASM_OP "\t.data" /* Large data. */
641 /* The Overall Framework of an Assembler File. */
643 #define ASM_COMMENT_START " #"
645 #define ASM_APP_ON "#APP\n"
647 #define ASM_APP_OFF "#NO_APP\n"
650 /* Output and Generation of Labels. */
652 #undef ASM_GENERATE_INTERNAL_LABEL
653 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
654 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long) (NUM))
656 #define GLOBAL_ASM_OP "\t.globl\t"
659 /* Output of Assembler Instructions. */
661 #define REGISTER_NAMES \
663 "%0", "%1", "%2", "%3", "%4", "%5", "%6", "%7", \
664 "%8", "%9", "%10", "%11", "%12", "%13", "%14", "%15", \
665 "%16", "%17", "%18", "%19", "%20", "%21", "%22", "%23", \
666 "%24", "%25", "%26", "%27", "%28", "%29", "%30", "%31", "%rap" \
669 #define ADDITIONAL_REGISTER_NAMES \
671 { "%0", 0 + GP_REG_FIRST }, \
672 { "%1", 1 + GP_REG_FIRST }, \
673 { "%2", 2 + GP_REG_FIRST }, \
674 { "%3", 3 + GP_REG_FIRST }, \
675 { "%4", 4 + GP_REG_FIRST }, \
676 { "%5", 5 + GP_REG_FIRST }, \
677 { "%6", 6 + GP_REG_FIRST }, \
678 { "%7", 7 + GP_REG_FIRST }, \
679 { "%8", 8 + GP_REG_FIRST }, \
680 { "%9", 9 + GP_REG_FIRST }, \
681 { "%10", 10 + GP_REG_FIRST }, \
682 { "%11", 11 + GP_REG_FIRST }, \
683 { "%12", 12 + GP_REG_FIRST }, \
684 { "%13", 13 + GP_REG_FIRST }, \
685 { "%14", 14 + GP_REG_FIRST }, \
686 { "%15", 15 + GP_REG_FIRST }, \
687 { "%16", 16 + GP_REG_FIRST }, \
688 { "%17", 17 + GP_REG_FIRST }, \
689 { "%18", 18 + GP_REG_FIRST }, \
690 { "%19", 19 + GP_REG_FIRST }, \
691 { "%20", 20 + GP_REG_FIRST }, \
692 { "%21", 21 + GP_REG_FIRST }, \
693 { "%22", 22 + GP_REG_FIRST }, \
694 { "%23", 23 + GP_REG_FIRST }, \
695 { "%24", 24 + GP_REG_FIRST }, \
696 { "%25", 25 + GP_REG_FIRST }, \
697 { "%26", 26 + GP_REG_FIRST }, \
698 { "%27", 27 + GP_REG_FIRST }, \
699 { "%28", 28 + GP_REG_FIRST }, \
700 { "%29", 29 + GP_REG_FIRST }, \
701 { "%30", 27 + GP_REG_FIRST }, \
702 { "%31", 31 + GP_REG_FIRST }, \
703 { "%rap", 32 + GP_REG_FIRST }, \
706 /* Check if the current insn needs a nop in front of it
707 because of load delays, and also update the delay slot statistics. */
709 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
710 final_prescan_insn (INSN, OPVEC, NOPERANDS)
712 /* See iq2000.c for the IQ2000 specific codes. */
713 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
715 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) iq2000_print_operand_punct[CODE]
717 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
719 #define DBR_OUTPUT_SEQEND(STREAM) \
720 do \
722 fputs ("\n", STREAM); \
724 while (0)
726 #define LOCAL_LABEL_PREFIX "$"
728 #define USER_LABEL_PREFIX ""
731 /* Output of dispatch tables. */
733 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
734 do \
736 fprintf (STREAM, "\t%s\t%sL%d\n", \
737 Pmode == DImode ? ".dword" : ".word", \
738 LOCAL_LABEL_PREFIX, VALUE); \
740 while (0)
742 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
743 fprintf (STREAM, "\t%s\t%sL%d\n", \
744 Pmode == DImode ? ".dword" : ".word", \
745 LOCAL_LABEL_PREFIX, \
746 VALUE)
749 /* Assembler Commands for Alignment. */
751 #undef ASM_OUTPUT_SKIP
752 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
753 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n", \
754 (unsigned HOST_WIDE_INT)(SIZE))
756 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
757 if ((LOG) != 0) \
758 fprintf (STREAM, "\t.balign %d\n", 1<<(LOG))
761 /* Macros Affecting all Debug Formats. */
763 #define DEBUGGER_AUTO_OFFSET(X) \
764 iq2000_debugger_offset (X, (HOST_WIDE_INT) 0)
766 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
767 iq2000_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
769 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
771 #define DWARF2_DEBUGGING_INFO 1
774 /* Miscellaneous Parameters. */
776 #define CASE_VECTOR_MODE SImode
778 #define WORD_REGISTER_OPERATIONS
780 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
782 #define MOVE_MAX 4
784 #define MAX_MOVE_MAX 8
786 #define SHIFT_COUNT_TRUNCATED 1
788 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
790 #define STORE_FLAG_VALUE 1
792 #define Pmode SImode
794 #define FUNCTION_MODE SImode
796 /* Standard GCC variables that we reference. */
798 extern char call_used_regs[];
800 /* IQ2000 external variables defined in iq2000.c. */
802 /* Comparison type. */
803 enum cmp_type
805 CMP_SI, /* Compare four byte integers. */
806 CMP_DI, /* Compare eight byte integers. */
807 CMP_SF, /* Compare single precision floats. */
808 CMP_DF, /* Compare double precision floats. */
809 CMP_MAX /* Max comparison type. */
812 /* Types of delay slot. */
813 enum delay_type
815 DELAY_NONE, /* No delay slot. */
816 DELAY_LOAD, /* Load from memory delay. */
817 DELAY_FCMP /* Delay after doing c.<xx>.{d,s}. */
820 /* Which processor to schedule for. */
822 enum processor_type
824 PROCESSOR_DEFAULT,
825 PROCESSOR_IQ2000,
826 PROCESSOR_IQ10
829 /* Recast the cpu class to be the cpu attribute. */
830 #define iq2000_cpu_attr ((enum attr_cpu) iq2000_tune)
832 #define BITMASK_UPPER16 ((unsigned long) 0xffff << 16) /* 0xffff0000 */
833 #define BITMASK_LOWER16 ((unsigned long) 0xffff) /* 0x0000ffff */
836 #define GENERATE_BRANCHLIKELY (ISA_HAS_BRANCHLIKELY)
838 /* Macros to decide whether certain features are available or not,
839 depending on the instruction set architecture level. */
841 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
843 /* ISA has branch likely instructions. */
844 #define ISA_HAS_BRANCHLIKELY (iq2000_isa == 1)
847 #undef ASM_SPEC
850 /* The mapping from gcc register number to DWARF 2 CFA column number. */
851 #define DWARF_FRAME_REGNUM(REG) (REG)
853 /* The DWARF 2 CFA column which tracks the return address. */
854 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
856 /* Describe how we implement __builtin_eh_return. */
857 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
859 /* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the
860 location used to store the amount to adjust the stack. This is
861 usually a register that is available from end of the function's body
862 to the end of the epilogue. Thus, this cannot be a register used as a
863 temporary by the epilogue.
865 This must be an integer register. */
866 #define EH_RETURN_STACKADJ_REGNO 3
867 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
869 /* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the
870 location used to store the address the processor should jump to
871 catch exception. This is usually a registers that is available from
872 end of the function's body to the end of the epilogue. Thus, this
873 cannot be a register used as a temporary by the epilogue.
875 This must be an address register. */
876 #define EH_RETURN_HANDLER_REGNO 26
877 #define EH_RETURN_HANDLER_RTX \
878 gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO)
880 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
881 #define DWARF_CIE_DATA_ALIGNMENT 4
883 /* For IQ2000, width of a floating point register. */
884 #define UNITS_PER_FPREG 4
886 /* Force right-alignment for small varargs in 32 bit little_endian mode */
888 #define PAD_VARARGS_DOWN !BYTES_BIG_ENDIAN
890 /* Internal macros to classify a register number as to whether it's a
891 general purpose register, a floating point register, a
892 multiply/divide register, or a status register. */
894 #define GP_REG_FIRST 0
895 #define GP_REG_LAST 31
896 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
898 #define RAP_REG_NUM 32
899 #define AT_REGNUM (GP_REG_FIRST + 1)
901 #define GP_REG_P(REGNO) \
902 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
904 /* IQ2000 registers used in prologue/epilogue code when the stack frame
905 is larger than 32K bytes. These registers must come from the
906 scratch register set, and not used for passing and returning
907 arguments and any other information used in the calling sequence. */
909 #define IQ2000_TEMP1_REGNUM (GP_REG_FIRST + 12)
910 #define IQ2000_TEMP2_REGNUM (GP_REG_FIRST + 13)
912 /* This macro is used later on in the file. */
913 #define GR_REG_CLASS_P(CLASS) \
914 ((CLASS) == GR_REGS)
916 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
917 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
919 /* Certain machines have the property that some registers cannot be
920 copied to some other registers without using memory. Define this
921 macro on those machines to be a C expression that is nonzero if
922 objects of mode MODE in registers of CLASS1 can only be copied to
923 registers of class CLASS2 by storing a register of CLASS1 into
924 memory and loading that memory location into a register of CLASS2.
926 Do not define this macro if its value would always be zero. */
928 /* Return the maximum number of consecutive registers
929 needed to represent mode MODE in a register of class CLASS. */
931 #define CLASS_UNITS(mode, size) \
932 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
934 /* If defined, gives a class of registers that cannot be used as the
935 operand of a SUBREG that changes the mode of the object illegally. */
937 #define CLASS_CANNOT_CHANGE_MODE 0
939 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
941 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
942 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
944 /* Make sure 4 words are always allocated on the stack. */
946 #ifndef STACK_ARGS_ADJUST
947 #define STACK_ARGS_ADJUST(SIZE) \
949 if (SIZE.constant < 4 * UNITS_PER_WORD) \
950 SIZE.constant = 4 * UNITS_PER_WORD; \
952 #endif
955 /* Symbolic macros for the registers used to return integer and floating
956 point values. */
958 #define GP_RETURN (GP_REG_FIRST + 2)
960 /* Symbolic macros for the first/last argument registers. */
962 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
963 #define GP_ARG_LAST (GP_REG_FIRST + 11)
965 #define MAX_ARGS_IN_REGISTERS 8
968 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
970 #define MUST_SAVE_REGISTER(regno) \
971 ((df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
972 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
973 || (regno == (GP_REG_FIRST + 31) && df_regs_ever_live_p (GP_REG_FIRST + 31)))
975 /* ALIGN FRAMES on double word boundaries */
976 #ifndef IQ2000_STACK_ALIGN
977 #define IQ2000_STACK_ALIGN(LOC) (((LOC) + 7) & ~7)
978 #endif
981 /* These assume that REGNO is a hard or pseudo reg number.
982 They give nonzero only if REGNO is a hard reg of the suitable class
983 or a pseudo reg currently allocated to a suitable hard reg.
984 These definitions are NOT overridden anywhere. */
986 #define BASE_REG_P(regno, mode) \
987 (GP_REG_P (regno))
989 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
990 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
991 (mode))
993 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
994 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
996 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
997 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
999 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1000 and check its validity for a certain class.
1001 We have two alternate definitions for each of them.
1002 The usual definition accepts all pseudo regs; the other rejects them all.
1003 The symbol REG_OK_STRICT causes the latter definition to be used.
1005 Most source files want to accept pseudo regs in the hope that
1006 they will get allocated to the class that the insn wants them to be in.
1007 Some source files that are used after register allocation
1008 need to be strict. */
1010 #ifndef REG_OK_STRICT
1011 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1012 iq2000_reg_mode_ok_for_base_p (X, MODE, 0)
1013 #else
1014 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1015 iq2000_reg_mode_ok_for_base_p (X, MODE, 1)
1016 #endif
1018 #if 1
1019 #define GO_PRINTF(x) fprintf (stderr, (x))
1020 #define GO_PRINTF2(x,y) fprintf (stderr, (x), (y))
1021 #define GO_DEBUG_RTX(x) debug_rtx (x)
1023 #else
1024 #define GO_PRINTF(x)
1025 #define GO_PRINTF2(x,y)
1026 #define GO_DEBUG_RTX(x)
1027 #endif
1029 /* If defined, modifies the length assigned to instruction INSN as a
1030 function of the context in which it is used. LENGTH is an lvalue
1031 that contains the initially computed length of the insn and should
1032 be updated with the correct length of the insn. */
1033 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1034 ((LENGTH) = iq2000_adjust_insn_length ((INSN), (LENGTH)))
1039 /* How to tell the debugger about changes of source files. */
1041 #ifndef SET_FILE_NUMBER
1042 #define SET_FILE_NUMBER() ++ num_source_filenames
1043 #endif
1045 /* This is how to output a note the debugger telling it the line number
1046 to which the following sequence of instructions corresponds. */
1048 #ifndef LABEL_AFTER_LOC
1049 #define LABEL_AFTER_LOC(STREAM)
1050 #endif
1053 /* Default to -G 8 */
1054 #ifndef IQ2000_DEFAULT_GVALUE
1055 #define IQ2000_DEFAULT_GVALUE 8
1056 #endif
1058 #define SDATA_SECTION_ASM_OP "\t.sdata" /* Small data. */
1061 /* List of all IQ2000 punctuation characters used by print_operand. */
1062 extern char iq2000_print_operand_punct[256];
1064 /* The target cpu for optimization and scheduling. */
1065 extern enum processor_type iq2000_tune;
1067 /* Which instruction set architecture to use. */
1068 extern int iq2000_isa;
1070 /* Cached operands, and operator to compare for use in set/branch/trap
1071 on condition codes. */
1072 extern rtx branch_cmp[2];
1074 /* What type of branch to use. */
1075 extern enum cmp_type branch_type;
1077 enum iq2000_builtins
1079 IQ2000_BUILTIN_ADO16,
1080 IQ2000_BUILTIN_CFC0,
1081 IQ2000_BUILTIN_CFC1,
1082 IQ2000_BUILTIN_CFC2,
1083 IQ2000_BUILTIN_CFC3,
1084 IQ2000_BUILTIN_CHKHDR,
1085 IQ2000_BUILTIN_CTC0,
1086 IQ2000_BUILTIN_CTC1,
1087 IQ2000_BUILTIN_CTC2,
1088 IQ2000_BUILTIN_CTC3,
1089 IQ2000_BUILTIN_LU,
1090 IQ2000_BUILTIN_LUC32L,
1091 IQ2000_BUILTIN_LUC64,
1092 IQ2000_BUILTIN_LUC64L,
1093 IQ2000_BUILTIN_LUK,
1094 IQ2000_BUILTIN_LULCK,
1095 IQ2000_BUILTIN_LUM32,
1096 IQ2000_BUILTIN_LUM32L,
1097 IQ2000_BUILTIN_LUM64,
1098 IQ2000_BUILTIN_LUM64L,
1099 IQ2000_BUILTIN_LUR,
1100 IQ2000_BUILTIN_LURL,
1101 IQ2000_BUILTIN_MFC0,
1102 IQ2000_BUILTIN_MFC1,
1103 IQ2000_BUILTIN_MFC2,
1104 IQ2000_BUILTIN_MFC3,
1105 IQ2000_BUILTIN_MRGB,
1106 IQ2000_BUILTIN_MTC0,
1107 IQ2000_BUILTIN_MTC1,
1108 IQ2000_BUILTIN_MTC2,
1109 IQ2000_BUILTIN_MTC3,
1110 IQ2000_BUILTIN_PKRL,
1111 IQ2000_BUILTIN_RAM,
1112 IQ2000_BUILTIN_RB,
1113 IQ2000_BUILTIN_RX,
1114 IQ2000_BUILTIN_SRRD,
1115 IQ2000_BUILTIN_SRRDL,
1116 IQ2000_BUILTIN_SRULC,
1117 IQ2000_BUILTIN_SRULCK,
1118 IQ2000_BUILTIN_SRWR,
1119 IQ2000_BUILTIN_SRWRU,
1120 IQ2000_BUILTIN_TRAPQF,
1121 IQ2000_BUILTIN_TRAPQFL,
1122 IQ2000_BUILTIN_TRAPQN,
1123 IQ2000_BUILTIN_TRAPQNE,
1124 IQ2000_BUILTIN_TRAPRE,
1125 IQ2000_BUILTIN_TRAPREL,
1126 IQ2000_BUILTIN_WB,
1127 IQ2000_BUILTIN_WBR,
1128 IQ2000_BUILTIN_WBU,
1129 IQ2000_BUILTIN_WX,
1130 IQ2000_BUILTIN_SYSCALL