2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / config / alpha / alpha.c
blobf878e866f5fda0f20d0f7603860d2fa4870088e7
1 /* Subroutines used for code generation on the DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "flags.h"
37 #include "recog.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "reload.h"
41 #include "obstack.h"
42 #include "except.h"
43 #include "function.h"
44 #include "toplev.h"
45 #include "ggc.h"
46 #include "integrate.h"
47 #include "tm_p.h"
48 #include "target.h"
49 #include "target-def.h"
50 #include "debug.h"
51 #include "langhooks.h"
52 #include <splay-tree.h>
53 #include "cfglayout.h"
54 #include "tree-gimple.h"
55 #include "tree-flow.h"
56 #include "tree-stdarg.h"
57 #include "tm-constrs.h"
58 #include "df.h"
60 /* Specify which cpu to schedule for. */
61 enum processor_type alpha_tune;
63 /* Which cpu we're generating code for. */
64 enum processor_type alpha_cpu;
66 static const char * const alpha_cpu_name[] =
68 "ev4", "ev5", "ev6"
71 /* Specify how accurate floating-point traps need to be. */
73 enum alpha_trap_precision alpha_tp;
75 /* Specify the floating-point rounding mode. */
77 enum alpha_fp_rounding_mode alpha_fprm;
79 /* Specify which things cause traps. */
81 enum alpha_fp_trap_mode alpha_fptm;
83 /* Save information from a "cmpxx" operation until the branch or scc is
84 emitted. */
86 struct alpha_compare alpha_compare;
88 /* Nonzero if inside of a function, because the Alpha asm can't
89 handle .files inside of functions. */
91 static int inside_function = FALSE;
93 /* The number of cycles of latency we should assume on memory reads. */
95 int alpha_memory_latency = 3;
97 /* Whether the function needs the GP. */
99 static int alpha_function_needs_gp;
101 /* The alias set for prologue/epilogue register save/restore. */
103 static GTY(()) alias_set_type alpha_sr_alias_set;
105 /* The assembler name of the current function. */
107 static const char *alpha_fnname;
109 /* The next explicit relocation sequence number. */
110 extern GTY(()) int alpha_next_sequence_number;
111 int alpha_next_sequence_number = 1;
113 /* The literal and gpdisp sequence numbers for this insn, as printed
114 by %# and %* respectively. */
115 extern GTY(()) int alpha_this_literal_sequence_number;
116 extern GTY(()) int alpha_this_gpdisp_sequence_number;
117 int alpha_this_literal_sequence_number;
118 int alpha_this_gpdisp_sequence_number;
120 /* Costs of various operations on the different architectures. */
122 struct alpha_rtx_cost_data
124 unsigned char fp_add;
125 unsigned char fp_mult;
126 unsigned char fp_div_sf;
127 unsigned char fp_div_df;
128 unsigned char int_mult_si;
129 unsigned char int_mult_di;
130 unsigned char int_shift;
131 unsigned char int_cmov;
132 unsigned short int_div;
135 static struct alpha_rtx_cost_data const alpha_rtx_cost_data[PROCESSOR_MAX] =
137 { /* EV4 */
138 COSTS_N_INSNS (6), /* fp_add */
139 COSTS_N_INSNS (6), /* fp_mult */
140 COSTS_N_INSNS (34), /* fp_div_sf */
141 COSTS_N_INSNS (63), /* fp_div_df */
142 COSTS_N_INSNS (23), /* int_mult_si */
143 COSTS_N_INSNS (23), /* int_mult_di */
144 COSTS_N_INSNS (2), /* int_shift */
145 COSTS_N_INSNS (2), /* int_cmov */
146 COSTS_N_INSNS (97), /* int_div */
148 { /* EV5 */
149 COSTS_N_INSNS (4), /* fp_add */
150 COSTS_N_INSNS (4), /* fp_mult */
151 COSTS_N_INSNS (15), /* fp_div_sf */
152 COSTS_N_INSNS (22), /* fp_div_df */
153 COSTS_N_INSNS (8), /* int_mult_si */
154 COSTS_N_INSNS (12), /* int_mult_di */
155 COSTS_N_INSNS (1) + 1, /* int_shift */
156 COSTS_N_INSNS (1), /* int_cmov */
157 COSTS_N_INSNS (83), /* int_div */
159 { /* EV6 */
160 COSTS_N_INSNS (4), /* fp_add */
161 COSTS_N_INSNS (4), /* fp_mult */
162 COSTS_N_INSNS (12), /* fp_div_sf */
163 COSTS_N_INSNS (15), /* fp_div_df */
164 COSTS_N_INSNS (7), /* int_mult_si */
165 COSTS_N_INSNS (7), /* int_mult_di */
166 COSTS_N_INSNS (1), /* int_shift */
167 COSTS_N_INSNS (2), /* int_cmov */
168 COSTS_N_INSNS (86), /* int_div */
172 /* Similar but tuned for code size instead of execution latency. The
173 extra +N is fractional cost tuning based on latency. It's used to
174 encourage use of cheaper insns like shift, but only if there's just
175 one of them. */
177 static struct alpha_rtx_cost_data const alpha_rtx_cost_size =
179 COSTS_N_INSNS (1), /* fp_add */
180 COSTS_N_INSNS (1), /* fp_mult */
181 COSTS_N_INSNS (1), /* fp_div_sf */
182 COSTS_N_INSNS (1) + 1, /* fp_div_df */
183 COSTS_N_INSNS (1) + 1, /* int_mult_si */
184 COSTS_N_INSNS (1) + 2, /* int_mult_di */
185 COSTS_N_INSNS (1), /* int_shift */
186 COSTS_N_INSNS (1), /* int_cmov */
187 COSTS_N_INSNS (6), /* int_div */
190 /* Get the number of args of a function in one of two ways. */
191 #if TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK
192 #define NUM_ARGS crtl->args.info.num_args
193 #else
194 #define NUM_ARGS crtl->args.info
195 #endif
197 #define REG_PV 27
198 #define REG_RA 26
200 /* Declarations of static functions. */
201 static struct machine_function *alpha_init_machine_status (void);
202 static rtx alpha_emit_xfloating_compare (enum rtx_code *, rtx, rtx);
204 #if TARGET_ABI_OPEN_VMS
205 static void alpha_write_linkage (FILE *, const char *, tree);
206 #endif
208 static void unicosmk_output_deferred_case_vectors (FILE *);
209 static void unicosmk_gen_dsib (unsigned long *);
210 static void unicosmk_output_ssib (FILE *, const char *);
211 static int unicosmk_need_dex (rtx);
213 /* Implement TARGET_HANDLE_OPTION. */
215 static bool
216 alpha_handle_option (size_t code, const char *arg, int value)
218 switch (code)
220 case OPT_mfp_regs:
221 if (value == 0)
222 target_flags |= MASK_SOFT_FP;
223 break;
225 case OPT_mieee:
226 case OPT_mieee_with_inexact:
227 target_flags |= MASK_IEEE_CONFORMANT;
228 break;
230 case OPT_mtls_size_:
231 if (value != 16 && value != 32 && value != 64)
232 error ("bad value %qs for -mtls-size switch", arg);
233 break;
236 return true;
239 #ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
240 /* Implement TARGET_MANGLE_TYPE. */
242 static const char *
243 alpha_mangle_type (const_tree type)
245 if (TYPE_MAIN_VARIANT (type) == long_double_type_node
246 && TARGET_LONG_DOUBLE_128)
247 return "g";
249 /* For all other types, use normal C++ mangling. */
250 return NULL;
252 #endif
254 /* Parse target option strings. */
256 void
257 override_options (void)
259 static const struct cpu_table {
260 const char *const name;
261 const enum processor_type processor;
262 const int flags;
263 } cpu_table[] = {
264 { "ev4", PROCESSOR_EV4, 0 },
265 { "ev45", PROCESSOR_EV4, 0 },
266 { "21064", PROCESSOR_EV4, 0 },
267 { "ev5", PROCESSOR_EV5, 0 },
268 { "21164", PROCESSOR_EV5, 0 },
269 { "ev56", PROCESSOR_EV5, MASK_BWX },
270 { "21164a", PROCESSOR_EV5, MASK_BWX },
271 { "pca56", PROCESSOR_EV5, MASK_BWX|MASK_MAX },
272 { "21164PC",PROCESSOR_EV5, MASK_BWX|MASK_MAX },
273 { "21164pc",PROCESSOR_EV5, MASK_BWX|MASK_MAX },
274 { "ev6", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX },
275 { "21264", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX },
276 { "ev67", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX },
277 { "21264a", PROCESSOR_EV6, MASK_BWX|MASK_MAX|MASK_FIX|MASK_CIX },
278 { 0, 0, 0 }
281 int i;
283 /* Unicos/Mk doesn't have shared libraries. */
284 if (TARGET_ABI_UNICOSMK && flag_pic)
286 warning (0, "-f%s ignored for Unicos/Mk (not supported)",
287 (flag_pic > 1) ? "PIC" : "pic");
288 flag_pic = 0;
291 /* On Unicos/Mk, the native compiler consistently generates /d suffices for
292 floating-point instructions. Make that the default for this target. */
293 if (TARGET_ABI_UNICOSMK)
294 alpha_fprm = ALPHA_FPRM_DYN;
295 else
296 alpha_fprm = ALPHA_FPRM_NORM;
298 alpha_tp = ALPHA_TP_PROG;
299 alpha_fptm = ALPHA_FPTM_N;
301 /* We cannot use su and sui qualifiers for conversion instructions on
302 Unicos/Mk. I'm not sure if this is due to assembler or hardware
303 limitations. Right now, we issue a warning if -mieee is specified
304 and then ignore it; eventually, we should either get it right or
305 disable the option altogether. */
307 if (TARGET_IEEE)
309 if (TARGET_ABI_UNICOSMK)
310 warning (0, "-mieee not supported on Unicos/Mk");
311 else
313 alpha_tp = ALPHA_TP_INSN;
314 alpha_fptm = ALPHA_FPTM_SU;
318 if (TARGET_IEEE_WITH_INEXACT)
320 if (TARGET_ABI_UNICOSMK)
321 warning (0, "-mieee-with-inexact not supported on Unicos/Mk");
322 else
324 alpha_tp = ALPHA_TP_INSN;
325 alpha_fptm = ALPHA_FPTM_SUI;
329 if (alpha_tp_string)
331 if (! strcmp (alpha_tp_string, "p"))
332 alpha_tp = ALPHA_TP_PROG;
333 else if (! strcmp (alpha_tp_string, "f"))
334 alpha_tp = ALPHA_TP_FUNC;
335 else if (! strcmp (alpha_tp_string, "i"))
336 alpha_tp = ALPHA_TP_INSN;
337 else
338 error ("bad value %qs for -mtrap-precision switch", alpha_tp_string);
341 if (alpha_fprm_string)
343 if (! strcmp (alpha_fprm_string, "n"))
344 alpha_fprm = ALPHA_FPRM_NORM;
345 else if (! strcmp (alpha_fprm_string, "m"))
346 alpha_fprm = ALPHA_FPRM_MINF;
347 else if (! strcmp (alpha_fprm_string, "c"))
348 alpha_fprm = ALPHA_FPRM_CHOP;
349 else if (! strcmp (alpha_fprm_string,"d"))
350 alpha_fprm = ALPHA_FPRM_DYN;
351 else
352 error ("bad value %qs for -mfp-rounding-mode switch",
353 alpha_fprm_string);
356 if (alpha_fptm_string)
358 if (strcmp (alpha_fptm_string, "n") == 0)
359 alpha_fptm = ALPHA_FPTM_N;
360 else if (strcmp (alpha_fptm_string, "u") == 0)
361 alpha_fptm = ALPHA_FPTM_U;
362 else if (strcmp (alpha_fptm_string, "su") == 0)
363 alpha_fptm = ALPHA_FPTM_SU;
364 else if (strcmp (alpha_fptm_string, "sui") == 0)
365 alpha_fptm = ALPHA_FPTM_SUI;
366 else
367 error ("bad value %qs for -mfp-trap-mode switch", alpha_fptm_string);
370 if (alpha_cpu_string)
372 for (i = 0; cpu_table [i].name; i++)
373 if (! strcmp (alpha_cpu_string, cpu_table [i].name))
375 alpha_tune = alpha_cpu = cpu_table [i].processor;
376 target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX);
377 target_flags |= cpu_table [i].flags;
378 break;
380 if (! cpu_table [i].name)
381 error ("bad value %qs for -mcpu switch", alpha_cpu_string);
384 if (alpha_tune_string)
386 for (i = 0; cpu_table [i].name; i++)
387 if (! strcmp (alpha_tune_string, cpu_table [i].name))
389 alpha_tune = cpu_table [i].processor;
390 break;
392 if (! cpu_table [i].name)
393 error ("bad value %qs for -mcpu switch", alpha_tune_string);
396 /* Do some sanity checks on the above options. */
398 if (TARGET_ABI_UNICOSMK && alpha_fptm != ALPHA_FPTM_N)
400 warning (0, "trap mode not supported on Unicos/Mk");
401 alpha_fptm = ALPHA_FPTM_N;
404 if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI)
405 && alpha_tp != ALPHA_TP_INSN && alpha_cpu != PROCESSOR_EV6)
407 warning (0, "fp software completion requires -mtrap-precision=i");
408 alpha_tp = ALPHA_TP_INSN;
411 if (alpha_cpu == PROCESSOR_EV6)
413 /* Except for EV6 pass 1 (not released), we always have precise
414 arithmetic traps. Which means we can do software completion
415 without minding trap shadows. */
416 alpha_tp = ALPHA_TP_PROG;
419 if (TARGET_FLOAT_VAX)
421 if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN)
423 warning (0, "rounding mode not supported for VAX floats");
424 alpha_fprm = ALPHA_FPRM_NORM;
426 if (alpha_fptm == ALPHA_FPTM_SUI)
428 warning (0, "trap mode not supported for VAX floats");
429 alpha_fptm = ALPHA_FPTM_SU;
431 if (target_flags_explicit & MASK_LONG_DOUBLE_128)
432 warning (0, "128-bit long double not supported for VAX floats");
433 target_flags &= ~MASK_LONG_DOUBLE_128;
437 char *end;
438 int lat;
440 if (!alpha_mlat_string)
441 alpha_mlat_string = "L1";
443 if (ISDIGIT ((unsigned char)alpha_mlat_string[0])
444 && (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0'))
446 else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l')
447 && ISDIGIT ((unsigned char)alpha_mlat_string[1])
448 && alpha_mlat_string[2] == '\0')
450 static int const cache_latency[][4] =
452 { 3, 30, -1 }, /* ev4 -- Bcache is a guess */
453 { 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
454 { 3, 12, 30 }, /* ev6 -- Bcache from DS20 LMbench. */
457 lat = alpha_mlat_string[1] - '0';
458 if (lat <= 0 || lat > 3 || cache_latency[alpha_tune][lat-1] == -1)
460 warning (0, "L%d cache latency unknown for %s",
461 lat, alpha_cpu_name[alpha_tune]);
462 lat = 3;
464 else
465 lat = cache_latency[alpha_tune][lat-1];
467 else if (! strcmp (alpha_mlat_string, "main"))
469 /* Most current memories have about 370ns latency. This is
470 a reasonable guess for a fast cpu. */
471 lat = 150;
473 else
475 warning (0, "bad value %qs for -mmemory-latency", alpha_mlat_string);
476 lat = 3;
479 alpha_memory_latency = lat;
482 /* Default the definition of "small data" to 8 bytes. */
483 if (!g_switch_set)
484 g_switch_value = 8;
486 /* Infer TARGET_SMALL_DATA from -fpic/-fPIC. */
487 if (flag_pic == 1)
488 target_flags |= MASK_SMALL_DATA;
489 else if (flag_pic == 2)
490 target_flags &= ~MASK_SMALL_DATA;
492 /* Align labels and loops for optimal branching. */
493 /* ??? Kludge these by not doing anything if we don't optimize and also if
494 we are writing ECOFF symbols to work around a bug in DEC's assembler. */
495 if (optimize > 0 && write_symbols != SDB_DEBUG)
497 if (align_loops <= 0)
498 align_loops = 16;
499 if (align_jumps <= 0)
500 align_jumps = 16;
502 if (align_functions <= 0)
503 align_functions = 16;
505 /* Acquire a unique set number for our register saves and restores. */
506 alpha_sr_alias_set = new_alias_set ();
508 /* Register variables and functions with the garbage collector. */
510 /* Set up function hooks. */
511 init_machine_status = alpha_init_machine_status;
513 /* Tell the compiler when we're using VAX floating point. */
514 if (TARGET_FLOAT_VAX)
516 REAL_MODE_FORMAT (SFmode) = &vax_f_format;
517 REAL_MODE_FORMAT (DFmode) = &vax_g_format;
518 REAL_MODE_FORMAT (TFmode) = NULL;
521 #ifdef TARGET_DEFAULT_LONG_DOUBLE_128
522 if (!(target_flags_explicit & MASK_LONG_DOUBLE_128))
523 target_flags |= MASK_LONG_DOUBLE_128;
524 #endif
526 /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0)
527 can be optimized to ap = __builtin_next_arg (0). */
528 if (TARGET_ABI_UNICOSMK)
529 targetm.expand_builtin_va_start = NULL;
532 /* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
535 zap_mask (HOST_WIDE_INT value)
537 int i;
539 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
540 i++, value >>= 8)
541 if ((value & 0xff) != 0 && (value & 0xff) != 0xff)
542 return 0;
544 return 1;
547 /* Return true if OP is valid for a particular TLS relocation.
548 We are already guaranteed that OP is a CONST. */
551 tls_symbolic_operand_1 (rtx op, int size, int unspec)
553 op = XEXP (op, 0);
555 if (GET_CODE (op) != UNSPEC || XINT (op, 1) != unspec)
556 return 0;
557 op = XVECEXP (op, 0, 0);
559 if (GET_CODE (op) != SYMBOL_REF)
560 return 0;
562 switch (SYMBOL_REF_TLS_MODEL (op))
564 case TLS_MODEL_LOCAL_DYNAMIC:
565 return unspec == UNSPEC_DTPREL && size == alpha_tls_size;
566 case TLS_MODEL_INITIAL_EXEC:
567 return unspec == UNSPEC_TPREL && size == 64;
568 case TLS_MODEL_LOCAL_EXEC:
569 return unspec == UNSPEC_TPREL && size == alpha_tls_size;
570 default:
571 gcc_unreachable ();
575 /* Used by aligned_memory_operand and unaligned_memory_operand to
576 resolve what reload is going to do with OP if it's a register. */
579 resolve_reload_operand (rtx op)
581 if (reload_in_progress)
583 rtx tmp = op;
584 if (GET_CODE (tmp) == SUBREG)
585 tmp = SUBREG_REG (tmp);
586 if (GET_CODE (tmp) == REG
587 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
589 op = reg_equiv_memory_loc[REGNO (tmp)];
590 if (op == 0)
591 return 0;
594 return op;
597 /* The scalar modes supported differs from the default check-what-c-supports
598 version in that sometimes TFmode is available even when long double
599 indicates only DFmode. On unicosmk, we have the situation that HImode
600 doesn't map to any C type, but of course we still support that. */
602 static bool
603 alpha_scalar_mode_supported_p (enum machine_mode mode)
605 switch (mode)
607 case QImode:
608 case HImode:
609 case SImode:
610 case DImode:
611 case TImode: /* via optabs.c */
612 return true;
614 case SFmode:
615 case DFmode:
616 return true;
618 case TFmode:
619 return TARGET_HAS_XFLOATING_LIBS;
621 default:
622 return false;
626 /* Alpha implements a couple of integer vector mode operations when
627 TARGET_MAX is enabled. We do not check TARGET_MAX here, however,
628 which allows the vectorizer to operate on e.g. move instructions,
629 or when expand_vector_operations can do something useful. */
631 static bool
632 alpha_vector_mode_supported_p (enum machine_mode mode)
634 return mode == V8QImode || mode == V4HImode || mode == V2SImode;
637 /* Return 1 if this function can directly return via $26. */
640 direct_return (void)
642 return (! TARGET_ABI_OPEN_VMS && ! TARGET_ABI_UNICOSMK
643 && reload_completed
644 && alpha_sa_size () == 0
645 && get_frame_size () == 0
646 && crtl->outgoing_args_size == 0
647 && crtl->args.pretend_args_size == 0);
650 /* Return the ADDR_VEC associated with a tablejump insn. */
653 alpha_tablejump_addr_vec (rtx insn)
655 rtx tmp;
657 tmp = JUMP_LABEL (insn);
658 if (!tmp)
659 return NULL_RTX;
660 tmp = NEXT_INSN (tmp);
661 if (!tmp)
662 return NULL_RTX;
663 if (GET_CODE (tmp) == JUMP_INSN
664 && GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC)
665 return PATTERN (tmp);
666 return NULL_RTX;
669 /* Return the label of the predicted edge, or CONST0_RTX if we don't know. */
672 alpha_tablejump_best_label (rtx insn)
674 rtx jump_table = alpha_tablejump_addr_vec (insn);
675 rtx best_label = NULL_RTX;
677 /* ??? Once the CFG doesn't keep getting completely rebuilt, look
678 there for edge frequency counts from profile data. */
680 if (jump_table)
682 int n_labels = XVECLEN (jump_table, 1);
683 int best_count = -1;
684 int i, j;
686 for (i = 0; i < n_labels; i++)
688 int count = 1;
690 for (j = i + 1; j < n_labels; j++)
691 if (XEXP (XVECEXP (jump_table, 1, i), 0)
692 == XEXP (XVECEXP (jump_table, 1, j), 0))
693 count++;
695 if (count > best_count)
696 best_count = count, best_label = XVECEXP (jump_table, 1, i);
700 return best_label ? best_label : const0_rtx;
703 /* Return the TLS model to use for SYMBOL. */
705 static enum tls_model
706 tls_symbolic_operand_type (rtx symbol)
708 enum tls_model model;
710 if (GET_CODE (symbol) != SYMBOL_REF)
711 return 0;
712 model = SYMBOL_REF_TLS_MODEL (symbol);
714 /* Local-exec with a 64-bit size is the same code as initial-exec. */
715 if (model == TLS_MODEL_LOCAL_EXEC && alpha_tls_size == 64)
716 model = TLS_MODEL_INITIAL_EXEC;
718 return model;
721 /* Return true if the function DECL will share the same GP as any
722 function in the current unit of translation. */
724 static bool
725 decl_has_samegp (const_tree decl)
727 /* Functions that are not local can be overridden, and thus may
728 not share the same gp. */
729 if (!(*targetm.binds_local_p) (decl))
730 return false;
732 /* If -msmall-data is in effect, assume that there is only one GP
733 for the module, and so any local symbol has this property. We
734 need explicit relocations to be able to enforce this for symbols
735 not defined in this unit of translation, however. */
736 if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA)
737 return true;
739 /* Functions that are not external are defined in this UoT. */
740 /* ??? Irritatingly, static functions not yet emitted are still
741 marked "external". Apply this to non-static functions only. */
742 return !TREE_PUBLIC (decl) || !DECL_EXTERNAL (decl);
745 /* Return true if EXP should be placed in the small data section. */
747 static bool
748 alpha_in_small_data_p (const_tree exp)
750 /* We want to merge strings, so we never consider them small data. */
751 if (TREE_CODE (exp) == STRING_CST)
752 return false;
754 /* Functions are never in the small data area. Duh. */
755 if (TREE_CODE (exp) == FUNCTION_DECL)
756 return false;
758 if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
760 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
761 if (strcmp (section, ".sdata") == 0
762 || strcmp (section, ".sbss") == 0)
763 return true;
765 else
767 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
769 /* If this is an incomplete type with size 0, then we can't put it
770 in sdata because it might be too big when completed. */
771 if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
772 return true;
775 return false;
778 #if TARGET_ABI_OPEN_VMS
779 static bool
780 alpha_linkage_symbol_p (const char *symname)
782 int symlen = strlen (symname);
784 if (symlen > 4)
785 return strcmp (&symname [symlen - 4], "..lk") == 0;
787 return false;
790 #define LINKAGE_SYMBOL_REF_P(X) \
791 ((GET_CODE (X) == SYMBOL_REF \
792 && alpha_linkage_symbol_p (XSTR (X, 0))) \
793 || (GET_CODE (X) == CONST \
794 && GET_CODE (XEXP (X, 0)) == PLUS \
795 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
796 && alpha_linkage_symbol_p (XSTR (XEXP (XEXP (X, 0), 0), 0))))
797 #endif
799 /* legitimate_address_p recognizes an RTL expression that is a valid
800 memory address for an instruction. The MODE argument is the
801 machine mode for the MEM expression that wants to use this address.
803 For Alpha, we have either a constant address or the sum of a
804 register and a constant address, or just a register. For DImode,
805 any of those forms can be surrounded with an AND that clear the
806 low-order three bits; this is an "unaligned" access. */
808 bool
809 alpha_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
811 /* If this is an ldq_u type address, discard the outer AND. */
812 if (mode == DImode
813 && GET_CODE (x) == AND
814 && GET_CODE (XEXP (x, 1)) == CONST_INT
815 && INTVAL (XEXP (x, 1)) == -8)
816 x = XEXP (x, 0);
818 /* Discard non-paradoxical subregs. */
819 if (GET_CODE (x) == SUBREG
820 && (GET_MODE_SIZE (GET_MODE (x))
821 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
822 x = SUBREG_REG (x);
824 /* Unadorned general registers are valid. */
825 if (REG_P (x)
826 && (strict
827 ? STRICT_REG_OK_FOR_BASE_P (x)
828 : NONSTRICT_REG_OK_FOR_BASE_P (x)))
829 return true;
831 /* Constant addresses (i.e. +/- 32k) are valid. */
832 if (CONSTANT_ADDRESS_P (x))
833 return true;
835 #if TARGET_ABI_OPEN_VMS
836 if (LINKAGE_SYMBOL_REF_P (x))
837 return true;
838 #endif
840 /* Register plus a small constant offset is valid. */
841 if (GET_CODE (x) == PLUS)
843 rtx ofs = XEXP (x, 1);
844 x = XEXP (x, 0);
846 /* Discard non-paradoxical subregs. */
847 if (GET_CODE (x) == SUBREG
848 && (GET_MODE_SIZE (GET_MODE (x))
849 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
850 x = SUBREG_REG (x);
852 if (REG_P (x))
854 if (! strict
855 && NONSTRICT_REG_OK_FP_BASE_P (x)
856 && GET_CODE (ofs) == CONST_INT)
857 return true;
858 if ((strict
859 ? STRICT_REG_OK_FOR_BASE_P (x)
860 : NONSTRICT_REG_OK_FOR_BASE_P (x))
861 && CONSTANT_ADDRESS_P (ofs))
862 return true;
866 /* If we're managing explicit relocations, LO_SUM is valid, as
867 are small data symbols. */
868 else if (TARGET_EXPLICIT_RELOCS)
870 if (small_symbolic_operand (x, Pmode))
871 return true;
873 if (GET_CODE (x) == LO_SUM)
875 rtx ofs = XEXP (x, 1);
876 x = XEXP (x, 0);
878 /* Discard non-paradoxical subregs. */
879 if (GET_CODE (x) == SUBREG
880 && (GET_MODE_SIZE (GET_MODE (x))
881 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
882 x = SUBREG_REG (x);
884 /* Must have a valid base register. */
885 if (! (REG_P (x)
886 && (strict
887 ? STRICT_REG_OK_FOR_BASE_P (x)
888 : NONSTRICT_REG_OK_FOR_BASE_P (x))))
889 return false;
891 /* The symbol must be local. */
892 if (local_symbolic_operand (ofs, Pmode)
893 || dtp32_symbolic_operand (ofs, Pmode)
894 || tp32_symbolic_operand (ofs, Pmode))
895 return true;
899 return false;
902 /* Build the SYMBOL_REF for __tls_get_addr. */
904 static GTY(()) rtx tls_get_addr_libfunc;
906 static rtx
907 get_tls_get_addr (void)
909 if (!tls_get_addr_libfunc)
910 tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
911 return tls_get_addr_libfunc;
914 /* Try machine-dependent ways of modifying an illegitimate address
915 to be legitimate. If we find one, return the new, valid address. */
918 alpha_legitimize_address (rtx x, rtx scratch,
919 enum machine_mode mode ATTRIBUTE_UNUSED)
921 HOST_WIDE_INT addend;
923 /* If the address is (plus reg const_int) and the CONST_INT is not a
924 valid offset, compute the high part of the constant and add it to
925 the register. Then our address is (plus temp low-part-const). */
926 if (GET_CODE (x) == PLUS
927 && GET_CODE (XEXP (x, 0)) == REG
928 && GET_CODE (XEXP (x, 1)) == CONST_INT
929 && ! CONSTANT_ADDRESS_P (XEXP (x, 1)))
931 addend = INTVAL (XEXP (x, 1));
932 x = XEXP (x, 0);
933 goto split_addend;
936 /* If the address is (const (plus FOO const_int)), find the low-order
937 part of the CONST_INT. Then load FOO plus any high-order part of the
938 CONST_INT into a register. Our address is (plus reg low-part-const).
939 This is done to reduce the number of GOT entries. */
940 if (can_create_pseudo_p ()
941 && GET_CODE (x) == CONST
942 && GET_CODE (XEXP (x, 0)) == PLUS
943 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
945 addend = INTVAL (XEXP (XEXP (x, 0), 1));
946 x = force_reg (Pmode, XEXP (XEXP (x, 0), 0));
947 goto split_addend;
950 /* If we have a (plus reg const), emit the load as in (2), then add
951 the two registers, and finally generate (plus reg low-part-const) as
952 our address. */
953 if (can_create_pseudo_p ()
954 && GET_CODE (x) == PLUS
955 && GET_CODE (XEXP (x, 0)) == REG
956 && GET_CODE (XEXP (x, 1)) == CONST
957 && GET_CODE (XEXP (XEXP (x, 1), 0)) == PLUS
958 && GET_CODE (XEXP (XEXP (XEXP (x, 1), 0), 1)) == CONST_INT)
960 addend = INTVAL (XEXP (XEXP (XEXP (x, 1), 0), 1));
961 x = expand_simple_binop (Pmode, PLUS, XEXP (x, 0),
962 XEXP (XEXP (XEXP (x, 1), 0), 0),
963 NULL_RTX, 1, OPTAB_LIB_WIDEN);
964 goto split_addend;
967 /* If this is a local symbol, split the address into HIGH/LO_SUM parts. */
968 if (TARGET_EXPLICIT_RELOCS && symbolic_operand (x, Pmode))
970 rtx r0, r16, eqv, tga, tp, insn, dest, seq;
972 switch (tls_symbolic_operand_type (x))
974 case TLS_MODEL_NONE:
975 break;
977 case TLS_MODEL_GLOBAL_DYNAMIC:
978 start_sequence ();
980 r0 = gen_rtx_REG (Pmode, 0);
981 r16 = gen_rtx_REG (Pmode, 16);
982 tga = get_tls_get_addr ();
983 dest = gen_reg_rtx (Pmode);
984 seq = GEN_INT (alpha_next_sequence_number++);
986 emit_insn (gen_movdi_er_tlsgd (r16, pic_offset_table_rtx, x, seq));
987 insn = gen_call_value_osf_tlsgd (r0, tga, seq);
988 insn = emit_call_insn (insn);
989 RTL_CONST_CALL_P (insn) = 1;
990 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
992 insn = get_insns ();
993 end_sequence ();
995 emit_libcall_block (insn, dest, r0, x);
996 return dest;
998 case TLS_MODEL_LOCAL_DYNAMIC:
999 start_sequence ();
1001 r0 = gen_rtx_REG (Pmode, 0);
1002 r16 = gen_rtx_REG (Pmode, 16);
1003 tga = get_tls_get_addr ();
1004 scratch = gen_reg_rtx (Pmode);
1005 seq = GEN_INT (alpha_next_sequence_number++);
1007 emit_insn (gen_movdi_er_tlsldm (r16, pic_offset_table_rtx, seq));
1008 insn = gen_call_value_osf_tlsldm (r0, tga, seq);
1009 insn = emit_call_insn (insn);
1010 RTL_CONST_CALL_P (insn) = 1;
1011 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
1013 insn = get_insns ();
1014 end_sequence ();
1016 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
1017 UNSPEC_TLSLDM_CALL);
1018 emit_libcall_block (insn, scratch, r0, eqv);
1020 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPREL);
1021 eqv = gen_rtx_CONST (Pmode, eqv);
1023 if (alpha_tls_size == 64)
1025 dest = gen_reg_rtx (Pmode);
1026 emit_insn (gen_rtx_SET (VOIDmode, dest, eqv));
1027 emit_insn (gen_adddi3 (dest, dest, scratch));
1028 return dest;
1030 if (alpha_tls_size == 32)
1032 insn = gen_rtx_HIGH (Pmode, eqv);
1033 insn = gen_rtx_PLUS (Pmode, scratch, insn);
1034 scratch = gen_reg_rtx (Pmode);
1035 emit_insn (gen_rtx_SET (VOIDmode, scratch, insn));
1037 return gen_rtx_LO_SUM (Pmode, scratch, eqv);
1039 case TLS_MODEL_INITIAL_EXEC:
1040 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
1041 eqv = gen_rtx_CONST (Pmode, eqv);
1042 tp = gen_reg_rtx (Pmode);
1043 scratch = gen_reg_rtx (Pmode);
1044 dest = gen_reg_rtx (Pmode);
1046 emit_insn (gen_load_tp (tp));
1047 emit_insn (gen_rtx_SET (VOIDmode, scratch, eqv));
1048 emit_insn (gen_adddi3 (dest, tp, scratch));
1049 return dest;
1051 case TLS_MODEL_LOCAL_EXEC:
1052 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
1053 eqv = gen_rtx_CONST (Pmode, eqv);
1054 tp = gen_reg_rtx (Pmode);
1056 emit_insn (gen_load_tp (tp));
1057 if (alpha_tls_size == 32)
1059 insn = gen_rtx_HIGH (Pmode, eqv);
1060 insn = gen_rtx_PLUS (Pmode, tp, insn);
1061 tp = gen_reg_rtx (Pmode);
1062 emit_insn (gen_rtx_SET (VOIDmode, tp, insn));
1064 return gen_rtx_LO_SUM (Pmode, tp, eqv);
1066 default:
1067 gcc_unreachable ();
1070 if (local_symbolic_operand (x, Pmode))
1072 if (small_symbolic_operand (x, Pmode))
1073 return x;
1074 else
1076 if (can_create_pseudo_p ())
1077 scratch = gen_reg_rtx (Pmode);
1078 emit_insn (gen_rtx_SET (VOIDmode, scratch,
1079 gen_rtx_HIGH (Pmode, x)));
1080 return gen_rtx_LO_SUM (Pmode, scratch, x);
1085 return NULL;
1087 split_addend:
1089 HOST_WIDE_INT low, high;
1091 low = ((addend & 0xffff) ^ 0x8000) - 0x8000;
1092 addend -= low;
1093 high = ((addend & 0xffffffff) ^ 0x80000000) - 0x80000000;
1094 addend -= high;
1096 if (addend)
1097 x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (addend),
1098 (!can_create_pseudo_p () ? scratch : NULL_RTX),
1099 1, OPTAB_LIB_WIDEN);
1100 if (high)
1101 x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (high),
1102 (!can_create_pseudo_p () ? scratch : NULL_RTX),
1103 1, OPTAB_LIB_WIDEN);
1105 return plus_constant (x, low);
1109 /* Primarily this is required for TLS symbols, but given that our move
1110 patterns *ought* to be able to handle any symbol at any time, we
1111 should never be spilling symbolic operands to the constant pool, ever. */
1113 static bool
1114 alpha_cannot_force_const_mem (rtx x)
1116 enum rtx_code code = GET_CODE (x);
1117 return code == SYMBOL_REF || code == LABEL_REF || code == CONST;
1120 /* We do not allow indirect calls to be optimized into sibling calls, nor
1121 can we allow a call to a function with a different GP to be optimized
1122 into a sibcall. */
1124 static bool
1125 alpha_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
1127 /* Can't do indirect tail calls, since we don't know if the target
1128 uses the same GP. */
1129 if (!decl)
1130 return false;
1132 /* Otherwise, we can make a tail call if the target function shares
1133 the same GP. */
1134 return decl_has_samegp (decl);
1138 some_small_symbolic_operand_int (rtx *px, void *data ATTRIBUTE_UNUSED)
1140 rtx x = *px;
1142 /* Don't re-split. */
1143 if (GET_CODE (x) == LO_SUM)
1144 return -1;
1146 return small_symbolic_operand (x, Pmode) != 0;
1149 static int
1150 split_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
1152 rtx x = *px;
1154 /* Don't re-split. */
1155 if (GET_CODE (x) == LO_SUM)
1156 return -1;
1158 if (small_symbolic_operand (x, Pmode))
1160 x = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, x);
1161 *px = x;
1162 return -1;
1165 return 0;
1169 split_small_symbolic_operand (rtx x)
1171 x = copy_insn (x);
1172 for_each_rtx (&x, split_small_symbolic_operand_1, NULL);
1173 return x;
1176 /* Indicate that INSN cannot be duplicated. This is true for any insn
1177 that we've marked with gpdisp relocs, since those have to stay in
1178 1-1 correspondence with one another.
1180 Technically we could copy them if we could set up a mapping from one
1181 sequence number to another, across the set of insns to be duplicated.
1182 This seems overly complicated and error-prone since interblock motion
1183 from sched-ebb could move one of the pair of insns to a different block.
1185 Also cannot allow jsr insns to be duplicated. If they throw exceptions,
1186 then they'll be in a different block from their ldgp. Which could lead
1187 the bb reorder code to think that it would be ok to copy just the block
1188 containing the call and branch to the block containing the ldgp. */
1190 static bool
1191 alpha_cannot_copy_insn_p (rtx insn)
1193 if (!reload_completed || !TARGET_EXPLICIT_RELOCS)
1194 return false;
1195 if (recog_memoized (insn) >= 0)
1196 return get_attr_cannot_copy (insn);
1197 else
1198 return false;
1202 /* Try a machine-dependent way of reloading an illegitimate address
1203 operand. If we find one, push the reload and return the new rtx. */
1206 alpha_legitimize_reload_address (rtx x,
1207 enum machine_mode mode ATTRIBUTE_UNUSED,
1208 int opnum, int type,
1209 int ind_levels ATTRIBUTE_UNUSED)
1211 /* We must recognize output that we have already generated ourselves. */
1212 if (GET_CODE (x) == PLUS
1213 && GET_CODE (XEXP (x, 0)) == PLUS
1214 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1215 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1216 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1218 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
1219 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
1220 opnum, type);
1221 return x;
1224 /* We wish to handle large displacements off a base register by
1225 splitting the addend across an ldah and the mem insn. This
1226 cuts number of extra insns needed from 3 to 1. */
1227 if (GET_CODE (x) == PLUS
1228 && GET_CODE (XEXP (x, 0)) == REG
1229 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
1230 && REGNO_OK_FOR_BASE_P (REGNO (XEXP (x, 0)))
1231 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1233 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
1234 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
1235 HOST_WIDE_INT high
1236 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
1238 /* Check for 32-bit overflow. */
1239 if (high + low != val)
1240 return NULL_RTX;
1242 /* Reload the high part into a base reg; leave the low part
1243 in the mem directly. */
1244 x = gen_rtx_PLUS (GET_MODE (x),
1245 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
1246 GEN_INT (high)),
1247 GEN_INT (low));
1249 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
1250 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
1251 opnum, type);
1252 return x;
1255 return NULL_RTX;
1258 /* Compute a (partial) cost for rtx X. Return true if the complete
1259 cost has been computed, and false if subexpressions should be
1260 scanned. In either case, *TOTAL contains the cost result. */
1262 static bool
1263 alpha_rtx_costs (rtx x, int code, int outer_code, int *total)
1265 enum machine_mode mode = GET_MODE (x);
1266 bool float_mode_p = FLOAT_MODE_P (mode);
1267 const struct alpha_rtx_cost_data *cost_data;
1269 if (optimize_size)
1270 cost_data = &alpha_rtx_cost_size;
1271 else
1272 cost_data = &alpha_rtx_cost_data[alpha_tune];
1274 switch (code)
1276 case CONST_INT:
1277 /* If this is an 8-bit constant, return zero since it can be used
1278 nearly anywhere with no cost. If it is a valid operand for an
1279 ADD or AND, likewise return 0 if we know it will be used in that
1280 context. Otherwise, return 2 since it might be used there later.
1281 All other constants take at least two insns. */
1282 if (INTVAL (x) >= 0 && INTVAL (x) < 256)
1284 *total = 0;
1285 return true;
1287 /* FALLTHRU */
1289 case CONST_DOUBLE:
1290 if (x == CONST0_RTX (mode))
1291 *total = 0;
1292 else if ((outer_code == PLUS && add_operand (x, VOIDmode))
1293 || (outer_code == AND && and_operand (x, VOIDmode)))
1294 *total = 0;
1295 else if (add_operand (x, VOIDmode) || and_operand (x, VOIDmode))
1296 *total = 2;
1297 else
1298 *total = COSTS_N_INSNS (2);
1299 return true;
1301 case CONST:
1302 case SYMBOL_REF:
1303 case LABEL_REF:
1304 if (TARGET_EXPLICIT_RELOCS && small_symbolic_operand (x, VOIDmode))
1305 *total = COSTS_N_INSNS (outer_code != MEM);
1306 else if (TARGET_EXPLICIT_RELOCS && local_symbolic_operand (x, VOIDmode))
1307 *total = COSTS_N_INSNS (1 + (outer_code != MEM));
1308 else if (tls_symbolic_operand_type (x))
1309 /* Estimate of cost for call_pal rduniq. */
1310 /* ??? How many insns do we emit here? More than one... */
1311 *total = COSTS_N_INSNS (15);
1312 else
1313 /* Otherwise we do a load from the GOT. */
1314 *total = COSTS_N_INSNS (optimize_size ? 1 : alpha_memory_latency);
1315 return true;
1317 case HIGH:
1318 /* This is effectively an add_operand. */
1319 *total = 2;
1320 return true;
1322 case PLUS:
1323 case MINUS:
1324 if (float_mode_p)
1325 *total = cost_data->fp_add;
1326 else if (GET_CODE (XEXP (x, 0)) == MULT
1327 && const48_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
1329 *total = (rtx_cost (XEXP (XEXP (x, 0), 0), outer_code)
1330 + rtx_cost (XEXP (x, 1), outer_code) + COSTS_N_INSNS (1));
1331 return true;
1333 return false;
1335 case MULT:
1336 if (float_mode_p)
1337 *total = cost_data->fp_mult;
1338 else if (mode == DImode)
1339 *total = cost_data->int_mult_di;
1340 else
1341 *total = cost_data->int_mult_si;
1342 return false;
1344 case ASHIFT:
1345 if (GET_CODE (XEXP (x, 1)) == CONST_INT
1346 && INTVAL (XEXP (x, 1)) <= 3)
1348 *total = COSTS_N_INSNS (1);
1349 return false;
1351 /* FALLTHRU */
1353 case ASHIFTRT:
1354 case LSHIFTRT:
1355 *total = cost_data->int_shift;
1356 return false;
1358 case IF_THEN_ELSE:
1359 if (float_mode_p)
1360 *total = cost_data->fp_add;
1361 else
1362 *total = cost_data->int_cmov;
1363 return false;
1365 case DIV:
1366 case UDIV:
1367 case MOD:
1368 case UMOD:
1369 if (!float_mode_p)
1370 *total = cost_data->int_div;
1371 else if (mode == SFmode)
1372 *total = cost_data->fp_div_sf;
1373 else
1374 *total = cost_data->fp_div_df;
1375 return false;
1377 case MEM:
1378 *total = COSTS_N_INSNS (optimize_size ? 1 : alpha_memory_latency);
1379 return true;
1381 case NEG:
1382 if (! float_mode_p)
1384 *total = COSTS_N_INSNS (1);
1385 return false;
1387 /* FALLTHRU */
1389 case ABS:
1390 if (! float_mode_p)
1392 *total = COSTS_N_INSNS (1) + cost_data->int_cmov;
1393 return false;
1395 /* FALLTHRU */
1397 case FLOAT:
1398 case UNSIGNED_FLOAT:
1399 case FIX:
1400 case UNSIGNED_FIX:
1401 case FLOAT_TRUNCATE:
1402 *total = cost_data->fp_add;
1403 return false;
1405 case FLOAT_EXTEND:
1406 if (GET_CODE (XEXP (x, 0)) == MEM)
1407 *total = 0;
1408 else
1409 *total = cost_data->fp_add;
1410 return false;
1412 default:
1413 return false;
1417 /* REF is an alignable memory location. Place an aligned SImode
1418 reference into *PALIGNED_MEM and the number of bits to shift into
1419 *PBITNUM. SCRATCH is a free register for use in reloading out
1420 of range stack slots. */
1422 void
1423 get_aligned_mem (rtx ref, rtx *paligned_mem, rtx *pbitnum)
1425 rtx base;
1426 HOST_WIDE_INT disp, offset;
1428 gcc_assert (GET_CODE (ref) == MEM);
1430 if (reload_in_progress
1431 && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
1433 base = find_replacement (&XEXP (ref, 0));
1434 gcc_assert (memory_address_p (GET_MODE (ref), base));
1436 else
1437 base = XEXP (ref, 0);
1439 if (GET_CODE (base) == PLUS)
1440 disp = INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
1441 else
1442 disp = 0;
1444 /* Find the byte offset within an aligned word. If the memory itself is
1445 claimed to be aligned, believe it. Otherwise, aligned_memory_operand
1446 will have examined the base register and determined it is aligned, and
1447 thus displacements from it are naturally alignable. */
1448 if (MEM_ALIGN (ref) >= 32)
1449 offset = 0;
1450 else
1451 offset = disp & 3;
1453 /* Access the entire aligned word. */
1454 *paligned_mem = widen_memory_access (ref, SImode, -offset);
1456 /* Convert the byte offset within the word to a bit offset. */
1457 if (WORDS_BIG_ENDIAN)
1458 offset = 32 - (GET_MODE_BITSIZE (GET_MODE (ref)) + offset * 8);
1459 else
1460 offset *= 8;
1461 *pbitnum = GEN_INT (offset);
1464 /* Similar, but just get the address. Handle the two reload cases.
1465 Add EXTRA_OFFSET to the address we return. */
1468 get_unaligned_address (rtx ref)
1470 rtx base;
1471 HOST_WIDE_INT offset = 0;
1473 gcc_assert (GET_CODE (ref) == MEM);
1475 if (reload_in_progress
1476 && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
1478 base = find_replacement (&XEXP (ref, 0));
1480 gcc_assert (memory_address_p (GET_MODE (ref), base));
1482 else
1483 base = XEXP (ref, 0);
1485 if (GET_CODE (base) == PLUS)
1486 offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
1488 return plus_constant (base, offset);
1491 /* Compute a value X, such that X & 7 == (ADDR + OFS) & 7.
1492 X is always returned in a register. */
1495 get_unaligned_offset (rtx addr, HOST_WIDE_INT ofs)
1497 if (GET_CODE (addr) == PLUS)
1499 ofs += INTVAL (XEXP (addr, 1));
1500 addr = XEXP (addr, 0);
1503 return expand_simple_binop (Pmode, PLUS, addr, GEN_INT (ofs & 7),
1504 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1507 /* On the Alpha, all (non-symbolic) constants except zero go into
1508 a floating-point register via memory. Note that we cannot
1509 return anything that is not a subset of CLASS, and that some
1510 symbolic constants cannot be dropped to memory. */
1512 enum reg_class
1513 alpha_preferred_reload_class(rtx x, enum reg_class class)
1515 /* Zero is present in any register class. */
1516 if (x == CONST0_RTX (GET_MODE (x)))
1517 return class;
1519 /* These sorts of constants we can easily drop to memory. */
1520 if (GET_CODE (x) == CONST_INT
1521 || GET_CODE (x) == CONST_DOUBLE
1522 || GET_CODE (x) == CONST_VECTOR)
1524 if (class == FLOAT_REGS)
1525 return NO_REGS;
1526 if (class == ALL_REGS)
1527 return GENERAL_REGS;
1528 return class;
1531 /* All other kinds of constants should not (and in the case of HIGH
1532 cannot) be dropped to memory -- instead we use a GENERAL_REGS
1533 secondary reload. */
1534 if (CONSTANT_P (x))
1535 return (class == ALL_REGS ? GENERAL_REGS : class);
1537 return class;
1540 /* Inform reload about cases where moving X with a mode MODE to a register in
1541 CLASS requires an extra scratch or immediate register. Return the class
1542 needed for the immediate register. */
1544 static enum reg_class
1545 alpha_secondary_reload (bool in_p, rtx x, enum reg_class class,
1546 enum machine_mode mode, secondary_reload_info *sri)
1548 /* Loading and storing HImode or QImode values to and from memory
1549 usually requires a scratch register. */
1550 if (!TARGET_BWX && (mode == QImode || mode == HImode || mode == CQImode))
1552 if (any_memory_operand (x, mode))
1554 if (in_p)
1556 if (!aligned_memory_operand (x, mode))
1557 sri->icode = reload_in_optab[mode];
1559 else
1560 sri->icode = reload_out_optab[mode];
1561 return NO_REGS;
1565 /* We also cannot do integral arithmetic into FP regs, as might result
1566 from register elimination into a DImode fp register. */
1567 if (class == FLOAT_REGS)
1569 if (MEM_P (x) && GET_CODE (XEXP (x, 0)) == AND)
1570 return GENERAL_REGS;
1571 if (in_p && INTEGRAL_MODE_P (mode)
1572 && !MEM_P (x) && !REG_P (x) && !CONST_INT_P (x))
1573 return GENERAL_REGS;
1576 return NO_REGS;
1579 /* Subfunction of the following function. Update the flags of any MEM
1580 found in part of X. */
1582 static int
1583 alpha_set_memflags_1 (rtx *xp, void *data)
1585 rtx x = *xp, orig = (rtx) data;
1587 if (GET_CODE (x) != MEM)
1588 return 0;
1590 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (orig);
1591 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (orig);
1592 MEM_SCALAR_P (x) = MEM_SCALAR_P (orig);
1593 MEM_NOTRAP_P (x) = MEM_NOTRAP_P (orig);
1594 MEM_READONLY_P (x) = MEM_READONLY_P (orig);
1596 /* Sadly, we cannot use alias sets because the extra aliasing
1597 produced by the AND interferes. Given that two-byte quantities
1598 are the only thing we would be able to differentiate anyway,
1599 there does not seem to be any point in convoluting the early
1600 out of the alias check. */
1602 return -1;
1605 /* Given INSN, which is an INSN list or the PATTERN of a single insn
1606 generated to perform a memory operation, look for any MEMs in either
1607 a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and
1608 volatile flags from REF into each of the MEMs found. If REF is not
1609 a MEM, don't do anything. */
1611 void
1612 alpha_set_memflags (rtx insn, rtx ref)
1614 rtx *base_ptr;
1616 if (GET_CODE (ref) != MEM)
1617 return;
1619 /* This is only called from alpha.md, after having had something
1620 generated from one of the insn patterns. So if everything is
1621 zero, the pattern is already up-to-date. */
1622 if (!MEM_VOLATILE_P (ref)
1623 && !MEM_IN_STRUCT_P (ref)
1624 && !MEM_SCALAR_P (ref)
1625 && !MEM_NOTRAP_P (ref)
1626 && !MEM_READONLY_P (ref))
1627 return;
1629 if (INSN_P (insn))
1630 base_ptr = &PATTERN (insn);
1631 else
1632 base_ptr = &insn;
1633 for_each_rtx (base_ptr, alpha_set_memflags_1, (void *) ref);
1636 static rtx alpha_emit_set_const (rtx, enum machine_mode, HOST_WIDE_INT,
1637 int, bool);
1639 /* Internal routine for alpha_emit_set_const to check for N or below insns.
1640 If NO_OUTPUT is true, then we only check to see if N insns are possible,
1641 and return pc_rtx if successful. */
1643 static rtx
1644 alpha_emit_set_const_1 (rtx target, enum machine_mode mode,
1645 HOST_WIDE_INT c, int n, bool no_output)
1647 HOST_WIDE_INT new;
1648 int i, bits;
1649 /* Use a pseudo if highly optimizing and still generating RTL. */
1650 rtx subtarget
1651 = (flag_expensive_optimizations && can_create_pseudo_p () ? 0 : target);
1652 rtx temp, insn;
1654 /* If this is a sign-extended 32-bit constant, we can do this in at most
1655 three insns, so do it if we have enough insns left. We always have
1656 a sign-extended 32-bit constant when compiling on a narrow machine. */
1658 if (HOST_BITS_PER_WIDE_INT != 64
1659 || c >> 31 == -1 || c >> 31 == 0)
1661 HOST_WIDE_INT low = ((c & 0xffff) ^ 0x8000) - 0x8000;
1662 HOST_WIDE_INT tmp1 = c - low;
1663 HOST_WIDE_INT high = (((tmp1 >> 16) & 0xffff) ^ 0x8000) - 0x8000;
1664 HOST_WIDE_INT extra = 0;
1666 /* If HIGH will be interpreted as negative but the constant is
1667 positive, we must adjust it to do two ldha insns. */
1669 if ((high & 0x8000) != 0 && c >= 0)
1671 extra = 0x4000;
1672 tmp1 -= 0x40000000;
1673 high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
1676 if (c == low || (low == 0 && extra == 0))
1678 /* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
1679 but that meant that we can't handle INT_MIN on 32-bit machines
1680 (like NT/Alpha), because we recurse indefinitely through
1681 emit_move_insn to gen_movdi. So instead, since we know exactly
1682 what we want, create it explicitly. */
1684 if (no_output)
1685 return pc_rtx;
1686 if (target == NULL)
1687 target = gen_reg_rtx (mode);
1688 emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c)));
1689 return target;
1691 else if (n >= 2 + (extra != 0))
1693 if (no_output)
1694 return pc_rtx;
1695 if (!can_create_pseudo_p ())
1697 emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (high << 16)));
1698 temp = target;
1700 else
1701 temp = copy_to_suggested_reg (GEN_INT (high << 16),
1702 subtarget, mode);
1704 /* As of 2002-02-23, addsi3 is only available when not optimizing.
1705 This means that if we go through expand_binop, we'll try to
1706 generate extensions, etc, which will require new pseudos, which
1707 will fail during some split phases. The SImode add patterns
1708 still exist, but are not named. So build the insns by hand. */
1710 if (extra != 0)
1712 if (! subtarget)
1713 subtarget = gen_reg_rtx (mode);
1714 insn = gen_rtx_PLUS (mode, temp, GEN_INT (extra << 16));
1715 insn = gen_rtx_SET (VOIDmode, subtarget, insn);
1716 emit_insn (insn);
1717 temp = subtarget;
1720 if (target == NULL)
1721 target = gen_reg_rtx (mode);
1722 insn = gen_rtx_PLUS (mode, temp, GEN_INT (low));
1723 insn = gen_rtx_SET (VOIDmode, target, insn);
1724 emit_insn (insn);
1725 return target;
1729 /* If we couldn't do it that way, try some other methods. But if we have
1730 no instructions left, don't bother. Likewise, if this is SImode and
1731 we can't make pseudos, we can't do anything since the expand_binop
1732 and expand_unop calls will widen and try to make pseudos. */
1734 if (n == 1 || (mode == SImode && !can_create_pseudo_p ()))
1735 return 0;
1737 /* Next, see if we can load a related constant and then shift and possibly
1738 negate it to get the constant we want. Try this once each increasing
1739 numbers of insns. */
1741 for (i = 1; i < n; i++)
1743 /* First, see if minus some low bits, we've an easy load of
1744 high bits. */
1746 new = ((c & 0xffff) ^ 0x8000) - 0x8000;
1747 if (new != 0)
1749 temp = alpha_emit_set_const (subtarget, mode, c - new, i, no_output);
1750 if (temp)
1752 if (no_output)
1753 return temp;
1754 return expand_binop (mode, add_optab, temp, GEN_INT (new),
1755 target, 0, OPTAB_WIDEN);
1759 /* Next try complementing. */
1760 temp = alpha_emit_set_const (subtarget, mode, ~c, i, no_output);
1761 if (temp)
1763 if (no_output)
1764 return temp;
1765 return expand_unop (mode, one_cmpl_optab, temp, target, 0);
1768 /* Next try to form a constant and do a left shift. We can do this
1769 if some low-order bits are zero; the exact_log2 call below tells
1770 us that information. The bits we are shifting out could be any
1771 value, but here we'll just try the 0- and sign-extended forms of
1772 the constant. To try to increase the chance of having the same
1773 constant in more than one insn, start at the highest number of
1774 bits to shift, but try all possibilities in case a ZAPNOT will
1775 be useful. */
1777 bits = exact_log2 (c & -c);
1778 if (bits > 0)
1779 for (; bits > 0; bits--)
1781 new = c >> bits;
1782 temp = alpha_emit_set_const (subtarget, mode, new, i, no_output);
1783 if (!temp && c < 0)
1785 new = (unsigned HOST_WIDE_INT)c >> bits;
1786 temp = alpha_emit_set_const (subtarget, mode, new,
1787 i, no_output);
1789 if (temp)
1791 if (no_output)
1792 return temp;
1793 return expand_binop (mode, ashl_optab, temp, GEN_INT (bits),
1794 target, 0, OPTAB_WIDEN);
1798 /* Now try high-order zero bits. Here we try the shifted-in bits as
1799 all zero and all ones. Be careful to avoid shifting outside the
1800 mode and to avoid shifting outside the host wide int size. */
1801 /* On narrow hosts, don't shift a 1 into the high bit, since we'll
1802 confuse the recursive call and set all of the high 32 bits. */
1804 bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
1805 - floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64));
1806 if (bits > 0)
1807 for (; bits > 0; bits--)
1809 new = c << bits;
1810 temp = alpha_emit_set_const (subtarget, mode, new, i, no_output);
1811 if (!temp)
1813 new = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1);
1814 temp = alpha_emit_set_const (subtarget, mode, new,
1815 i, no_output);
1817 if (temp)
1819 if (no_output)
1820 return temp;
1821 return expand_binop (mode, lshr_optab, temp, GEN_INT (bits),
1822 target, 1, OPTAB_WIDEN);
1826 /* Now try high-order 1 bits. We get that with a sign-extension.
1827 But one bit isn't enough here. Be careful to avoid shifting outside
1828 the mode and to avoid shifting outside the host wide int size. */
1830 bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
1831 - floor_log2 (~ c) - 2);
1832 if (bits > 0)
1833 for (; bits > 0; bits--)
1835 new = c << bits;
1836 temp = alpha_emit_set_const (subtarget, mode, new, i, no_output);
1837 if (!temp)
1839 new = (c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1);
1840 temp = alpha_emit_set_const (subtarget, mode, new,
1841 i, no_output);
1843 if (temp)
1845 if (no_output)
1846 return temp;
1847 return expand_binop (mode, ashr_optab, temp, GEN_INT (bits),
1848 target, 0, OPTAB_WIDEN);
1853 #if HOST_BITS_PER_WIDE_INT == 64
1854 /* Finally, see if can load a value into the target that is the same as the
1855 constant except that all bytes that are 0 are changed to be 0xff. If we
1856 can, then we can do a ZAPNOT to obtain the desired constant. */
1858 new = c;
1859 for (i = 0; i < 64; i += 8)
1860 if ((new & ((HOST_WIDE_INT) 0xff << i)) == 0)
1861 new |= (HOST_WIDE_INT) 0xff << i;
1863 /* We are only called for SImode and DImode. If this is SImode, ensure that
1864 we are sign extended to a full word. */
1866 if (mode == SImode)
1867 new = ((new & 0xffffffff) ^ 0x80000000) - 0x80000000;
1869 if (new != c)
1871 temp = alpha_emit_set_const (subtarget, mode, new, n - 1, no_output);
1872 if (temp)
1874 if (no_output)
1875 return temp;
1876 return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new),
1877 target, 0, OPTAB_WIDEN);
1880 #endif
1882 return 0;
1885 /* Try to output insns to set TARGET equal to the constant C if it can be
1886 done in less than N insns. Do all computations in MODE. Returns the place
1887 where the output has been placed if it can be done and the insns have been
1888 emitted. If it would take more than N insns, zero is returned and no
1889 insns and emitted. */
1891 static rtx
1892 alpha_emit_set_const (rtx target, enum machine_mode mode,
1893 HOST_WIDE_INT c, int n, bool no_output)
1895 enum machine_mode orig_mode = mode;
1896 rtx orig_target = target;
1897 rtx result = 0;
1898 int i;
1900 /* If we can't make any pseudos, TARGET is an SImode hard register, we
1901 can't load this constant in one insn, do this in DImode. */
1902 if (!can_create_pseudo_p () && mode == SImode
1903 && GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)
1905 result = alpha_emit_set_const_1 (target, mode, c, 1, no_output);
1906 if (result)
1907 return result;
1909 target = no_output ? NULL : gen_lowpart (DImode, target);
1910 mode = DImode;
1912 else if (mode == V8QImode || mode == V4HImode || mode == V2SImode)
1914 target = no_output ? NULL : gen_lowpart (DImode, target);
1915 mode = DImode;
1918 /* Try 1 insn, then 2, then up to N. */
1919 for (i = 1; i <= n; i++)
1921 result = alpha_emit_set_const_1 (target, mode, c, i, no_output);
1922 if (result)
1924 rtx insn, set;
1926 if (no_output)
1927 return result;
1929 insn = get_last_insn ();
1930 set = single_set (insn);
1931 if (! CONSTANT_P (SET_SRC (set)))
1932 set_unique_reg_note (get_last_insn (), REG_EQUAL, GEN_INT (c));
1933 break;
1937 /* Allow for the case where we changed the mode of TARGET. */
1938 if (result)
1940 if (result == target)
1941 result = orig_target;
1942 else if (mode != orig_mode)
1943 result = gen_lowpart (orig_mode, result);
1946 return result;
1949 /* Having failed to find a 3 insn sequence in alpha_emit_set_const,
1950 fall back to a straight forward decomposition. We do this to avoid
1951 exponential run times encountered when looking for longer sequences
1952 with alpha_emit_set_const. */
1954 static rtx
1955 alpha_emit_set_long_const (rtx target, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
1957 HOST_WIDE_INT d1, d2, d3, d4;
1959 /* Decompose the entire word */
1960 #if HOST_BITS_PER_WIDE_INT >= 64
1961 gcc_assert (c2 == -(c1 < 0));
1962 d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
1963 c1 -= d1;
1964 d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
1965 c1 = (c1 - d2) >> 32;
1966 d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
1967 c1 -= d3;
1968 d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
1969 gcc_assert (c1 == d4);
1970 #else
1971 d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
1972 c1 -= d1;
1973 d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
1974 gcc_assert (c1 == d2);
1975 c2 += (d2 < 0);
1976 d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000;
1977 c2 -= d3;
1978 d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000;
1979 gcc_assert (c2 == d4);
1980 #endif
1982 /* Construct the high word */
1983 if (d4)
1985 emit_move_insn (target, GEN_INT (d4));
1986 if (d3)
1987 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3)));
1989 else
1990 emit_move_insn (target, GEN_INT (d3));
1992 /* Shift it into place */
1993 emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32)));
1995 /* Add in the low bits. */
1996 if (d2)
1997 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2)));
1998 if (d1)
1999 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1)));
2001 return target;
2004 /* Given an integral CONST_INT, CONST_DOUBLE, or CONST_VECTOR, return
2005 the low 64 bits. */
2007 static void
2008 alpha_extract_integer (rtx x, HOST_WIDE_INT *p0, HOST_WIDE_INT *p1)
2010 HOST_WIDE_INT i0, i1;
2012 if (GET_CODE (x) == CONST_VECTOR)
2013 x = simplify_subreg (DImode, x, GET_MODE (x), 0);
2016 if (GET_CODE (x) == CONST_INT)
2018 i0 = INTVAL (x);
2019 i1 = -(i0 < 0);
2021 else if (HOST_BITS_PER_WIDE_INT >= 64)
2023 i0 = CONST_DOUBLE_LOW (x);
2024 i1 = -(i0 < 0);
2026 else
2028 i0 = CONST_DOUBLE_LOW (x);
2029 i1 = CONST_DOUBLE_HIGH (x);
2032 *p0 = i0;
2033 *p1 = i1;
2036 /* Implement LEGITIMATE_CONSTANT_P. This is all constants for which we
2037 are willing to load the value into a register via a move pattern.
2038 Normally this is all symbolic constants, integral constants that
2039 take three or fewer instructions, and floating-point zero. */
2041 bool
2042 alpha_legitimate_constant_p (rtx x)
2044 enum machine_mode mode = GET_MODE (x);
2045 HOST_WIDE_INT i0, i1;
2047 switch (GET_CODE (x))
2049 case CONST:
2050 case LABEL_REF:
2051 case HIGH:
2052 return true;
2054 case SYMBOL_REF:
2055 /* TLS symbols are never valid. */
2056 return SYMBOL_REF_TLS_MODEL (x) == 0;
2058 case CONST_DOUBLE:
2059 if (x == CONST0_RTX (mode))
2060 return true;
2061 if (FLOAT_MODE_P (mode))
2062 return false;
2063 goto do_integer;
2065 case CONST_VECTOR:
2066 if (x == CONST0_RTX (mode))
2067 return true;
2068 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
2069 return false;
2070 if (GET_MODE_SIZE (mode) != 8)
2071 return false;
2072 goto do_integer;
2074 case CONST_INT:
2075 do_integer:
2076 if (TARGET_BUILD_CONSTANTS)
2077 return true;
2078 alpha_extract_integer (x, &i0, &i1);
2079 if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == (-i0 < 0))
2080 return alpha_emit_set_const_1 (x, mode, i0, 3, true) != NULL;
2081 return false;
2083 default:
2084 return false;
2088 /* Operand 1 is known to be a constant, and should require more than one
2089 instruction to load. Emit that multi-part load. */
2091 bool
2092 alpha_split_const_mov (enum machine_mode mode, rtx *operands)
2094 HOST_WIDE_INT i0, i1;
2095 rtx temp = NULL_RTX;
2097 alpha_extract_integer (operands[1], &i0, &i1);
2099 if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == -(i0 < 0))
2100 temp = alpha_emit_set_const (operands[0], mode, i0, 3, false);
2102 if (!temp && TARGET_BUILD_CONSTANTS)
2103 temp = alpha_emit_set_long_const (operands[0], i0, i1);
2105 if (temp)
2107 if (!rtx_equal_p (operands[0], temp))
2108 emit_move_insn (operands[0], temp);
2109 return true;
2112 return false;
2115 /* Expand a move instruction; return true if all work is done.
2116 We don't handle non-bwx subword loads here. */
2118 bool
2119 alpha_expand_mov (enum machine_mode mode, rtx *operands)
2121 /* If the output is not a register, the input must be. */
2122 if (GET_CODE (operands[0]) == MEM
2123 && ! reg_or_0_operand (operands[1], mode))
2124 operands[1] = force_reg (mode, operands[1]);
2126 /* Allow legitimize_address to perform some simplifications. */
2127 if (mode == Pmode && symbolic_operand (operands[1], mode))
2129 rtx tmp;
2131 tmp = alpha_legitimize_address (operands[1], operands[0], mode);
2132 if (tmp)
2134 if (tmp == operands[0])
2135 return true;
2136 operands[1] = tmp;
2137 return false;
2141 /* Early out for non-constants and valid constants. */
2142 if (! CONSTANT_P (operands[1]) || input_operand (operands[1], mode))
2143 return false;
2145 /* Split large integers. */
2146 if (GET_CODE (operands[1]) == CONST_INT
2147 || GET_CODE (operands[1]) == CONST_DOUBLE
2148 || GET_CODE (operands[1]) == CONST_VECTOR)
2150 if (alpha_split_const_mov (mode, operands))
2151 return true;
2154 /* Otherwise we've nothing left but to drop the thing to memory. */
2155 operands[1] = force_const_mem (mode, operands[1]);
2156 if (reload_in_progress)
2158 emit_move_insn (operands[0], XEXP (operands[1], 0));
2159 operands[1] = replace_equiv_address (operands[1], operands[0]);
2161 else
2162 operands[1] = validize_mem (operands[1]);
2163 return false;
2166 /* Expand a non-bwx QImode or HImode move instruction;
2167 return true if all work is done. */
2169 bool
2170 alpha_expand_mov_nobwx (enum machine_mode mode, rtx *operands)
2172 rtx seq;
2174 /* If the output is not a register, the input must be. */
2175 if (MEM_P (operands[0]))
2176 operands[1] = force_reg (mode, operands[1]);
2178 /* Handle four memory cases, unaligned and aligned for either the input
2179 or the output. The only case where we can be called during reload is
2180 for aligned loads; all other cases require temporaries. */
2182 if (any_memory_operand (operands[1], mode))
2184 if (aligned_memory_operand (operands[1], mode))
2186 if (reload_in_progress)
2188 if (mode == QImode)
2189 seq = gen_reload_inqi_aligned (operands[0], operands[1]);
2190 else
2191 seq = gen_reload_inhi_aligned (operands[0], operands[1]);
2192 emit_insn (seq);
2194 else
2196 rtx aligned_mem, bitnum;
2197 rtx scratch = gen_reg_rtx (SImode);
2198 rtx subtarget;
2199 bool copyout;
2201 get_aligned_mem (operands[1], &aligned_mem, &bitnum);
2203 subtarget = operands[0];
2204 if (GET_CODE (subtarget) == REG)
2205 subtarget = gen_lowpart (DImode, subtarget), copyout = false;
2206 else
2207 subtarget = gen_reg_rtx (DImode), copyout = true;
2209 if (mode == QImode)
2210 seq = gen_aligned_loadqi (subtarget, aligned_mem,
2211 bitnum, scratch);
2212 else
2213 seq = gen_aligned_loadhi (subtarget, aligned_mem,
2214 bitnum, scratch);
2215 emit_insn (seq);
2217 if (copyout)
2218 emit_move_insn (operands[0], gen_lowpart (mode, subtarget));
2221 else
2223 /* Don't pass these as parameters since that makes the generated
2224 code depend on parameter evaluation order which will cause
2225 bootstrap failures. */
2227 rtx temp1, temp2, subtarget, ua;
2228 bool copyout;
2230 temp1 = gen_reg_rtx (DImode);
2231 temp2 = gen_reg_rtx (DImode);
2233 subtarget = operands[0];
2234 if (GET_CODE (subtarget) == REG)
2235 subtarget = gen_lowpart (DImode, subtarget), copyout = false;
2236 else
2237 subtarget = gen_reg_rtx (DImode), copyout = true;
2239 ua = get_unaligned_address (operands[1]);
2240 if (mode == QImode)
2241 seq = gen_unaligned_loadqi (subtarget, ua, temp1, temp2);
2242 else
2243 seq = gen_unaligned_loadhi (subtarget, ua, temp1, temp2);
2245 alpha_set_memflags (seq, operands[1]);
2246 emit_insn (seq);
2248 if (copyout)
2249 emit_move_insn (operands[0], gen_lowpart (mode, subtarget));
2251 return true;
2254 if (any_memory_operand (operands[0], mode))
2256 if (aligned_memory_operand (operands[0], mode))
2258 rtx aligned_mem, bitnum;
2259 rtx temp1 = gen_reg_rtx (SImode);
2260 rtx temp2 = gen_reg_rtx (SImode);
2262 get_aligned_mem (operands[0], &aligned_mem, &bitnum);
2264 emit_insn (gen_aligned_store (aligned_mem, operands[1], bitnum,
2265 temp1, temp2));
2267 else
2269 rtx temp1 = gen_reg_rtx (DImode);
2270 rtx temp2 = gen_reg_rtx (DImode);
2271 rtx temp3 = gen_reg_rtx (DImode);
2272 rtx ua = get_unaligned_address (operands[0]);
2274 if (mode == QImode)
2275 seq = gen_unaligned_storeqi (ua, operands[1], temp1, temp2, temp3);
2276 else
2277 seq = gen_unaligned_storehi (ua, operands[1], temp1, temp2, temp3);
2279 alpha_set_memflags (seq, operands[0]);
2280 emit_insn (seq);
2282 return true;
2285 return false;
2288 /* Implement the movmisalign patterns. One of the operands is a memory
2289 that is not naturally aligned. Emit instructions to load it. */
2291 void
2292 alpha_expand_movmisalign (enum machine_mode mode, rtx *operands)
2294 /* Honor misaligned loads, for those we promised to do so. */
2295 if (MEM_P (operands[1]))
2297 rtx tmp;
2299 if (register_operand (operands[0], mode))
2300 tmp = operands[0];
2301 else
2302 tmp = gen_reg_rtx (mode);
2304 alpha_expand_unaligned_load (tmp, operands[1], 8, 0, 0);
2305 if (tmp != operands[0])
2306 emit_move_insn (operands[0], tmp);
2308 else if (MEM_P (operands[0]))
2310 if (!reg_or_0_operand (operands[1], mode))
2311 operands[1] = force_reg (mode, operands[1]);
2312 alpha_expand_unaligned_store (operands[0], operands[1], 8, 0);
2314 else
2315 gcc_unreachable ();
2318 /* Generate an unsigned DImode to FP conversion. This is the same code
2319 optabs would emit if we didn't have TFmode patterns.
2321 For SFmode, this is the only construction I've found that can pass
2322 gcc.c-torture/execute/ieee/rbug.c. No scenario that uses DFmode
2323 intermediates will work, because you'll get intermediate rounding
2324 that ruins the end result. Some of this could be fixed by turning
2325 on round-to-positive-infinity, but that requires diddling the fpsr,
2326 which kills performance. I tried turning this around and converting
2327 to a negative number, so that I could turn on /m, but either I did
2328 it wrong or there's something else cause I wound up with the exact
2329 same single-bit error. There is a branch-less form of this same code:
2331 srl $16,1,$1
2332 and $16,1,$2
2333 cmplt $16,0,$3
2334 or $1,$2,$2
2335 cmovge $16,$16,$2
2336 itoft $3,$f10
2337 itoft $2,$f11
2338 cvtqs $f11,$f11
2339 adds $f11,$f11,$f0
2340 fcmoveq $f10,$f11,$f0
2342 I'm not using it because it's the same number of instructions as
2343 this branch-full form, and it has more serialized long latency
2344 instructions on the critical path.
2346 For DFmode, we can avoid rounding errors by breaking up the word
2347 into two pieces, converting them separately, and adding them back:
2349 LC0: .long 0,0x5f800000
2351 itoft $16,$f11
2352 lda $2,LC0
2353 cmplt $16,0,$1
2354 cpyse $f11,$f31,$f10
2355 cpyse $f31,$f11,$f11
2356 s4addq $1,$2,$1
2357 lds $f12,0($1)
2358 cvtqt $f10,$f10
2359 cvtqt $f11,$f11
2360 addt $f12,$f10,$f0
2361 addt $f0,$f11,$f0
2363 This doesn't seem to be a clear-cut win over the optabs form.
2364 It probably all depends on the distribution of numbers being
2365 converted -- in the optabs form, all but high-bit-set has a
2366 much lower minimum execution time. */
2368 void
2369 alpha_emit_floatuns (rtx operands[2])
2371 rtx neglab, donelab, i0, i1, f0, in, out;
2372 enum machine_mode mode;
2374 out = operands[0];
2375 in = force_reg (DImode, operands[1]);
2376 mode = GET_MODE (out);
2377 neglab = gen_label_rtx ();
2378 donelab = gen_label_rtx ();
2379 i0 = gen_reg_rtx (DImode);
2380 i1 = gen_reg_rtx (DImode);
2381 f0 = gen_reg_rtx (mode);
2383 emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);
2385 emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in)));
2386 emit_jump_insn (gen_jump (donelab));
2387 emit_barrier ();
2389 emit_label (neglab);
2391 emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
2392 emit_insn (gen_anddi3 (i1, in, const1_rtx));
2393 emit_insn (gen_iordi3 (i0, i0, i1));
2394 emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0)));
2395 emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0)));
2397 emit_label (donelab);
2400 /* Generate the comparison for a conditional branch. */
2403 alpha_emit_conditional_branch (enum rtx_code code)
2405 enum rtx_code cmp_code, branch_code;
2406 enum machine_mode cmp_mode, branch_mode = VOIDmode;
2407 rtx op0 = alpha_compare.op0, op1 = alpha_compare.op1;
2408 rtx tem;
2410 if (alpha_compare.fp_p && GET_MODE (op0) == TFmode)
2412 op0 = alpha_emit_xfloating_compare (&code, op0, op1);
2413 op1 = const0_rtx;
2414 alpha_compare.fp_p = 0;
2417 /* The general case: fold the comparison code to the types of compares
2418 that we have, choosing the branch as necessary. */
2419 switch (code)
2421 case EQ: case LE: case LT: case LEU: case LTU:
2422 case UNORDERED:
2423 /* We have these compares: */
2424 cmp_code = code, branch_code = NE;
2425 break;
2427 case NE:
2428 case ORDERED:
2429 /* These must be reversed. */
2430 cmp_code = reverse_condition (code), branch_code = EQ;
2431 break;
2433 case GE: case GT: case GEU: case GTU:
2434 /* For FP, we swap them, for INT, we reverse them. */
2435 if (alpha_compare.fp_p)
2437 cmp_code = swap_condition (code);
2438 branch_code = NE;
2439 tem = op0, op0 = op1, op1 = tem;
2441 else
2443 cmp_code = reverse_condition (code);
2444 branch_code = EQ;
2446 break;
2448 default:
2449 gcc_unreachable ();
2452 if (alpha_compare.fp_p)
2454 cmp_mode = DFmode;
2455 if (flag_unsafe_math_optimizations)
2457 /* When we are not as concerned about non-finite values, and we
2458 are comparing against zero, we can branch directly. */
2459 if (op1 == CONST0_RTX (DFmode))
2460 cmp_code = UNKNOWN, branch_code = code;
2461 else if (op0 == CONST0_RTX (DFmode))
2463 /* Undo the swap we probably did just above. */
2464 tem = op0, op0 = op1, op1 = tem;
2465 branch_code = swap_condition (cmp_code);
2466 cmp_code = UNKNOWN;
2469 else
2471 /* ??? We mark the branch mode to be CCmode to prevent the
2472 compare and branch from being combined, since the compare
2473 insn follows IEEE rules that the branch does not. */
2474 branch_mode = CCmode;
2477 else
2479 cmp_mode = DImode;
2481 /* The following optimizations are only for signed compares. */
2482 if (code != LEU && code != LTU && code != GEU && code != GTU)
2484 /* Whee. Compare and branch against 0 directly. */
2485 if (op1 == const0_rtx)
2486 cmp_code = UNKNOWN, branch_code = code;
2488 /* If the constants doesn't fit into an immediate, but can
2489 be generated by lda/ldah, we adjust the argument and
2490 compare against zero, so we can use beq/bne directly. */
2491 /* ??? Don't do this when comparing against symbols, otherwise
2492 we'll reduce (&x == 0x1234) to (&x-0x1234 == 0), which will
2493 be declared false out of hand (at least for non-weak). */
2494 else if (GET_CODE (op1) == CONST_INT
2495 && (code == EQ || code == NE)
2496 && !(symbolic_operand (op0, VOIDmode)
2497 || (GET_CODE (op0) == REG && REG_POINTER (op0))))
2499 rtx n_op1 = GEN_INT (-INTVAL (op1));
2501 if (! satisfies_constraint_I (op1)
2502 && (satisfies_constraint_K (n_op1)
2503 || satisfies_constraint_L (n_op1)))
2504 cmp_code = PLUS, branch_code = code, op1 = n_op1;
2508 if (!reg_or_0_operand (op0, DImode))
2509 op0 = force_reg (DImode, op0);
2510 if (cmp_code != PLUS && !reg_or_8bit_operand (op1, DImode))
2511 op1 = force_reg (DImode, op1);
2514 /* Emit an initial compare instruction, if necessary. */
2515 tem = op0;
2516 if (cmp_code != UNKNOWN)
2518 tem = gen_reg_rtx (cmp_mode);
2519 emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1));
2522 /* Zero the operands. */
2523 memset (&alpha_compare, 0, sizeof (alpha_compare));
2525 /* Return the branch comparison. */
2526 return gen_rtx_fmt_ee (branch_code, branch_mode, tem, CONST0_RTX (cmp_mode));
2529 /* Certain simplifications can be done to make invalid setcc operations
2530 valid. Return the final comparison, or NULL if we can't work. */
2533 alpha_emit_setcc (enum rtx_code code)
2535 enum rtx_code cmp_code;
2536 rtx op0 = alpha_compare.op0, op1 = alpha_compare.op1;
2537 int fp_p = alpha_compare.fp_p;
2538 rtx tmp;
2540 /* Zero the operands. */
2541 memset (&alpha_compare, 0, sizeof (alpha_compare));
2543 if (fp_p && GET_MODE (op0) == TFmode)
2545 op0 = alpha_emit_xfloating_compare (&code, op0, op1);
2546 op1 = const0_rtx;
2547 fp_p = 0;
2550 if (fp_p && !TARGET_FIX)
2551 return NULL_RTX;
2553 /* The general case: fold the comparison code to the types of compares
2554 that we have, choosing the branch as necessary. */
2556 cmp_code = UNKNOWN;
2557 switch (code)
2559 case EQ: case LE: case LT: case LEU: case LTU:
2560 case UNORDERED:
2561 /* We have these compares. */
2562 if (fp_p)
2563 cmp_code = code, code = NE;
2564 break;
2566 case NE:
2567 if (!fp_p && op1 == const0_rtx)
2568 break;
2569 /* FALLTHRU */
2571 case ORDERED:
2572 cmp_code = reverse_condition (code);
2573 code = EQ;
2574 break;
2576 case GE: case GT: case GEU: case GTU:
2577 /* These normally need swapping, but for integer zero we have
2578 special patterns that recognize swapped operands. */
2579 if (!fp_p && op1 == const0_rtx)
2580 break;
2581 code = swap_condition (code);
2582 if (fp_p)
2583 cmp_code = code, code = NE;
2584 tmp = op0, op0 = op1, op1 = tmp;
2585 break;
2587 default:
2588 gcc_unreachable ();
2591 if (!fp_p)
2593 if (!register_operand (op0, DImode))
2594 op0 = force_reg (DImode, op0);
2595 if (!reg_or_8bit_operand (op1, DImode))
2596 op1 = force_reg (DImode, op1);
2599 /* Emit an initial compare instruction, if necessary. */
2600 if (cmp_code != UNKNOWN)
2602 enum machine_mode mode = fp_p ? DFmode : DImode;
2604 tmp = gen_reg_rtx (mode);
2605 emit_insn (gen_rtx_SET (VOIDmode, tmp,
2606 gen_rtx_fmt_ee (cmp_code, mode, op0, op1)));
2608 op0 = fp_p ? gen_lowpart (DImode, tmp) : tmp;
2609 op1 = const0_rtx;
2612 /* Return the setcc comparison. */
2613 return gen_rtx_fmt_ee (code, DImode, op0, op1);
2617 /* Rewrite a comparison against zero CMP of the form
2618 (CODE (cc0) (const_int 0)) so it can be written validly in
2619 a conditional move (if_then_else CMP ...).
2620 If both of the operands that set cc0 are nonzero we must emit
2621 an insn to perform the compare (it can't be done within
2622 the conditional move). */
2625 alpha_emit_conditional_move (rtx cmp, enum machine_mode mode)
2627 enum rtx_code code = GET_CODE (cmp);
2628 enum rtx_code cmov_code = NE;
2629 rtx op0 = alpha_compare.op0;
2630 rtx op1 = alpha_compare.op1;
2631 int fp_p = alpha_compare.fp_p;
2632 enum machine_mode cmp_mode
2633 = (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0));
2634 enum machine_mode cmp_op_mode = fp_p ? DFmode : DImode;
2635 enum machine_mode cmov_mode = VOIDmode;
2636 int local_fast_math = flag_unsafe_math_optimizations;
2637 rtx tem;
2639 /* Zero the operands. */
2640 memset (&alpha_compare, 0, sizeof (alpha_compare));
2642 if (fp_p != FLOAT_MODE_P (mode))
2644 enum rtx_code cmp_code;
2646 if (! TARGET_FIX)
2647 return 0;
2649 /* If we have fp<->int register move instructions, do a cmov by
2650 performing the comparison in fp registers, and move the
2651 zero/nonzero value to integer registers, where we can then
2652 use a normal cmov, or vice-versa. */
2654 switch (code)
2656 case EQ: case LE: case LT: case LEU: case LTU:
2657 /* We have these compares. */
2658 cmp_code = code, code = NE;
2659 break;
2661 case NE:
2662 /* This must be reversed. */
2663 cmp_code = EQ, code = EQ;
2664 break;
2666 case GE: case GT: case GEU: case GTU:
2667 /* These normally need swapping, but for integer zero we have
2668 special patterns that recognize swapped operands. */
2669 if (!fp_p && op1 == const0_rtx)
2670 cmp_code = code, code = NE;
2671 else
2673 cmp_code = swap_condition (code);
2674 code = NE;
2675 tem = op0, op0 = op1, op1 = tem;
2677 break;
2679 default:
2680 gcc_unreachable ();
2683 tem = gen_reg_rtx (cmp_op_mode);
2684 emit_insn (gen_rtx_SET (VOIDmode, tem,
2685 gen_rtx_fmt_ee (cmp_code, cmp_op_mode,
2686 op0, op1)));
2688 cmp_mode = cmp_op_mode = fp_p ? DImode : DFmode;
2689 op0 = gen_lowpart (cmp_op_mode, tem);
2690 op1 = CONST0_RTX (cmp_op_mode);
2691 fp_p = !fp_p;
2692 local_fast_math = 1;
2695 /* We may be able to use a conditional move directly.
2696 This avoids emitting spurious compares. */
2697 if (signed_comparison_operator (cmp, VOIDmode)
2698 && (!fp_p || local_fast_math)
2699 && (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode)))
2700 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
2702 /* We can't put the comparison inside the conditional move;
2703 emit a compare instruction and put that inside the
2704 conditional move. Make sure we emit only comparisons we have;
2705 swap or reverse as necessary. */
2707 if (!can_create_pseudo_p ())
2708 return NULL_RTX;
2710 switch (code)
2712 case EQ: case LE: case LT: case LEU: case LTU:
2713 /* We have these compares: */
2714 break;
2716 case NE:
2717 /* This must be reversed. */
2718 code = reverse_condition (code);
2719 cmov_code = EQ;
2720 break;
2722 case GE: case GT: case GEU: case GTU:
2723 /* These must be swapped. */
2724 if (op1 != CONST0_RTX (cmp_mode))
2726 code = swap_condition (code);
2727 tem = op0, op0 = op1, op1 = tem;
2729 break;
2731 default:
2732 gcc_unreachable ();
2735 if (!fp_p)
2737 if (!reg_or_0_operand (op0, DImode))
2738 op0 = force_reg (DImode, op0);
2739 if (!reg_or_8bit_operand (op1, DImode))
2740 op1 = force_reg (DImode, op1);
2743 /* ??? We mark the branch mode to be CCmode to prevent the compare
2744 and cmov from being combined, since the compare insn follows IEEE
2745 rules that the cmov does not. */
2746 if (fp_p && !local_fast_math)
2747 cmov_mode = CCmode;
2749 tem = gen_reg_rtx (cmp_op_mode);
2750 emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_op_mode, op0, op1));
2751 return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_op_mode));
2754 /* Simplify a conditional move of two constants into a setcc with
2755 arithmetic. This is done with a splitter since combine would
2756 just undo the work if done during code generation. It also catches
2757 cases we wouldn't have before cse. */
2760 alpha_split_conditional_move (enum rtx_code code, rtx dest, rtx cond,
2761 rtx t_rtx, rtx f_rtx)
2763 HOST_WIDE_INT t, f, diff;
2764 enum machine_mode mode;
2765 rtx target, subtarget, tmp;
2767 mode = GET_MODE (dest);
2768 t = INTVAL (t_rtx);
2769 f = INTVAL (f_rtx);
2770 diff = t - f;
2772 if (((code == NE || code == EQ) && diff < 0)
2773 || (code == GE || code == GT))
2775 code = reverse_condition (code);
2776 diff = t, t = f, f = diff;
2777 diff = t - f;
2780 subtarget = target = dest;
2781 if (mode != DImode)
2783 target = gen_lowpart (DImode, dest);
2784 if (can_create_pseudo_p ())
2785 subtarget = gen_reg_rtx (DImode);
2786 else
2787 subtarget = target;
2789 /* Below, we must be careful to use copy_rtx on target and subtarget
2790 in intermediate insns, as they may be a subreg rtx, which may not
2791 be shared. */
2793 if (f == 0 && exact_log2 (diff) > 0
2794 /* On EV6, we've got enough shifters to make non-arithmetic shifts
2795 viable over a longer latency cmove. On EV5, the E0 slot is a
2796 scarce resource, and on EV4 shift has the same latency as a cmove. */
2797 && (diff <= 8 || alpha_tune == PROCESSOR_EV6))
2799 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
2800 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
2802 tmp = gen_rtx_ASHIFT (DImode, copy_rtx (subtarget),
2803 GEN_INT (exact_log2 (t)));
2804 emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
2806 else if (f == 0 && t == -1)
2808 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
2809 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
2811 emit_insn (gen_negdi2 (target, copy_rtx (subtarget)));
2813 else if (diff == 1 || diff == 4 || diff == 8)
2815 rtx add_op;
2817 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
2818 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
2820 if (diff == 1)
2821 emit_insn (gen_adddi3 (target, copy_rtx (subtarget), GEN_INT (f)));
2822 else
2824 add_op = GEN_INT (f);
2825 if (sext_add_operand (add_op, mode))
2827 tmp = gen_rtx_MULT (DImode, copy_rtx (subtarget),
2828 GEN_INT (diff));
2829 tmp = gen_rtx_PLUS (DImode, tmp, add_op);
2830 emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
2832 else
2833 return 0;
2836 else
2837 return 0;
2839 return 1;
2842 /* Look up the function X_floating library function name for the
2843 given operation. */
2845 struct xfloating_op GTY(())
2847 const enum rtx_code code;
2848 const char *const GTY((skip)) osf_func;
2849 const char *const GTY((skip)) vms_func;
2850 rtx libcall;
2853 static GTY(()) struct xfloating_op xfloating_ops[] =
2855 { PLUS, "_OtsAddX", "OTS$ADD_X", 0 },
2856 { MINUS, "_OtsSubX", "OTS$SUB_X", 0 },
2857 { MULT, "_OtsMulX", "OTS$MUL_X", 0 },
2858 { DIV, "_OtsDivX", "OTS$DIV_X", 0 },
2859 { EQ, "_OtsEqlX", "OTS$EQL_X", 0 },
2860 { NE, "_OtsNeqX", "OTS$NEQ_X", 0 },
2861 { LT, "_OtsLssX", "OTS$LSS_X", 0 },
2862 { LE, "_OtsLeqX", "OTS$LEQ_X", 0 },
2863 { GT, "_OtsGtrX", "OTS$GTR_X", 0 },
2864 { GE, "_OtsGeqX", "OTS$GEQ_X", 0 },
2865 { FIX, "_OtsCvtXQ", "OTS$CVTXQ", 0 },
2866 { FLOAT, "_OtsCvtQX", "OTS$CVTQX", 0 },
2867 { UNSIGNED_FLOAT, "_OtsCvtQUX", "OTS$CVTQUX", 0 },
2868 { FLOAT_EXTEND, "_OtsConvertFloatTX", "OTS$CVT_FLOAT_T_X", 0 },
2869 { FLOAT_TRUNCATE, "_OtsConvertFloatXT", "OTS$CVT_FLOAT_X_T", 0 }
2872 static GTY(()) struct xfloating_op vax_cvt_ops[] =
2874 { FLOAT_EXTEND, "_OtsConvertFloatGX", "OTS$CVT_FLOAT_G_X", 0 },
2875 { FLOAT_TRUNCATE, "_OtsConvertFloatXG", "OTS$CVT_FLOAT_X_G", 0 }
2878 static rtx
2879 alpha_lookup_xfloating_lib_func (enum rtx_code code)
2881 struct xfloating_op *ops = xfloating_ops;
2882 long n = ARRAY_SIZE (xfloating_ops);
2883 long i;
2885 gcc_assert (TARGET_HAS_XFLOATING_LIBS);
2887 /* How irritating. Nothing to key off for the main table. */
2888 if (TARGET_FLOAT_VAX && (code == FLOAT_EXTEND || code == FLOAT_TRUNCATE))
2890 ops = vax_cvt_ops;
2891 n = ARRAY_SIZE (vax_cvt_ops);
2894 for (i = 0; i < n; ++i, ++ops)
2895 if (ops->code == code)
2897 rtx func = ops->libcall;
2898 if (!func)
2900 func = init_one_libfunc (TARGET_ABI_OPEN_VMS
2901 ? ops->vms_func : ops->osf_func);
2902 ops->libcall = func;
2904 return func;
2907 gcc_unreachable ();
2910 /* Most X_floating operations take the rounding mode as an argument.
2911 Compute that here. */
2913 static int
2914 alpha_compute_xfloating_mode_arg (enum rtx_code code,
2915 enum alpha_fp_rounding_mode round)
2917 int mode;
2919 switch (round)
2921 case ALPHA_FPRM_NORM:
2922 mode = 2;
2923 break;
2924 case ALPHA_FPRM_MINF:
2925 mode = 1;
2926 break;
2927 case ALPHA_FPRM_CHOP:
2928 mode = 0;
2929 break;
2930 case ALPHA_FPRM_DYN:
2931 mode = 4;
2932 break;
2933 default:
2934 gcc_unreachable ();
2936 /* XXX For reference, round to +inf is mode = 3. */
2939 if (code == FLOAT_TRUNCATE && alpha_fptm == ALPHA_FPTM_N)
2940 mode |= 0x10000;
2942 return mode;
2945 /* Emit an X_floating library function call.
2947 Note that these functions do not follow normal calling conventions:
2948 TFmode arguments are passed in two integer registers (as opposed to
2949 indirect); TFmode return values appear in R16+R17.
2951 FUNC is the function to call.
2952 TARGET is where the output belongs.
2953 OPERANDS are the inputs.
2954 NOPERANDS is the count of inputs.
2955 EQUIV is the expression equivalent for the function.
2958 static void
2959 alpha_emit_xfloating_libcall (rtx func, rtx target, rtx operands[],
2960 int noperands, rtx equiv)
2962 rtx usage = NULL_RTX, tmp, reg;
2963 int regno = 16, i;
2965 start_sequence ();
2967 for (i = 0; i < noperands; ++i)
2969 switch (GET_MODE (operands[i]))
2971 case TFmode:
2972 reg = gen_rtx_REG (TFmode, regno);
2973 regno += 2;
2974 break;
2976 case DFmode:
2977 reg = gen_rtx_REG (DFmode, regno + 32);
2978 regno += 1;
2979 break;
2981 case VOIDmode:
2982 gcc_assert (GET_CODE (operands[i]) == CONST_INT);
2983 /* FALLTHRU */
2984 case DImode:
2985 reg = gen_rtx_REG (DImode, regno);
2986 regno += 1;
2987 break;
2989 default:
2990 gcc_unreachable ();
2993 emit_move_insn (reg, operands[i]);
2994 usage = alloc_EXPR_LIST (0, gen_rtx_USE (VOIDmode, reg), usage);
2997 switch (GET_MODE (target))
2999 case TFmode:
3000 reg = gen_rtx_REG (TFmode, 16);
3001 break;
3002 case DFmode:
3003 reg = gen_rtx_REG (DFmode, 32);
3004 break;
3005 case DImode:
3006 reg = gen_rtx_REG (DImode, 0);
3007 break;
3008 default:
3009 gcc_unreachable ();
3012 tmp = gen_rtx_MEM (QImode, func);
3013 tmp = emit_call_insn (GEN_CALL_VALUE (reg, tmp, const0_rtx,
3014 const0_rtx, const0_rtx));
3015 CALL_INSN_FUNCTION_USAGE (tmp) = usage;
3016 RTL_CONST_CALL_P (tmp) = 1;
3018 tmp = get_insns ();
3019 end_sequence ();
3021 emit_libcall_block (tmp, target, reg, equiv);
3024 /* Emit an X_floating library function call for arithmetic (+,-,*,/). */
3026 void
3027 alpha_emit_xfloating_arith (enum rtx_code code, rtx operands[])
3029 rtx func;
3030 int mode;
3031 rtx out_operands[3];
3033 func = alpha_lookup_xfloating_lib_func (code);
3034 mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
3036 out_operands[0] = operands[1];
3037 out_operands[1] = operands[2];
3038 out_operands[2] = GEN_INT (mode);
3039 alpha_emit_xfloating_libcall (func, operands[0], out_operands, 3,
3040 gen_rtx_fmt_ee (code, TFmode, operands[1],
3041 operands[2]));
3044 /* Emit an X_floating library function call for a comparison. */
3046 static rtx
3047 alpha_emit_xfloating_compare (enum rtx_code *pcode, rtx op0, rtx op1)
3049 enum rtx_code cmp_code, res_code;
3050 rtx func, out, operands[2], note;
3052 /* X_floating library comparison functions return
3053 -1 unordered
3054 0 false
3055 1 true
3056 Convert the compare against the raw return value. */
3058 cmp_code = *pcode;
3059 switch (cmp_code)
3061 case UNORDERED:
3062 cmp_code = EQ;
3063 res_code = LT;
3064 break;
3065 case ORDERED:
3066 cmp_code = EQ;
3067 res_code = GE;
3068 break;
3069 case NE:
3070 res_code = NE;
3071 break;
3072 case EQ:
3073 case LT:
3074 case GT:
3075 case LE:
3076 case GE:
3077 res_code = GT;
3078 break;
3079 default:
3080 gcc_unreachable ();
3082 *pcode = res_code;
3084 func = alpha_lookup_xfloating_lib_func (cmp_code);
3086 operands[0] = op0;
3087 operands[1] = op1;
3088 out = gen_reg_rtx (DImode);
3090 /* What's actually returned is -1,0,1, not a proper boolean value,
3091 so use an EXPR_LIST as with a generic libcall instead of a
3092 comparison type expression. */
3093 note = gen_rtx_EXPR_LIST (VOIDmode, op1, NULL_RTX);
3094 note = gen_rtx_EXPR_LIST (VOIDmode, op0, note);
3095 note = gen_rtx_EXPR_LIST (VOIDmode, func, note);
3096 alpha_emit_xfloating_libcall (func, out, operands, 2, note);
3098 return out;
3101 /* Emit an X_floating library function call for a conversion. */
3103 void
3104 alpha_emit_xfloating_cvt (enum rtx_code orig_code, rtx operands[])
3106 int noperands = 1, mode;
3107 rtx out_operands[2];
3108 rtx func;
3109 enum rtx_code code = orig_code;
3111 if (code == UNSIGNED_FIX)
3112 code = FIX;
3114 func = alpha_lookup_xfloating_lib_func (code);
3116 out_operands[0] = operands[1];
3118 switch (code)
3120 case FIX:
3121 mode = alpha_compute_xfloating_mode_arg (code, ALPHA_FPRM_CHOP);
3122 out_operands[1] = GEN_INT (mode);
3123 noperands = 2;
3124 break;
3125 case FLOAT_TRUNCATE:
3126 mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
3127 out_operands[1] = GEN_INT (mode);
3128 noperands = 2;
3129 break;
3130 default:
3131 break;
3134 alpha_emit_xfloating_libcall (func, operands[0], out_operands, noperands,
3135 gen_rtx_fmt_e (orig_code,
3136 GET_MODE (operands[0]),
3137 operands[1]));
3140 /* Split a TImode or TFmode move from OP[1] to OP[0] into a pair of
3141 DImode moves from OP[2,3] to OP[0,1]. If FIXUP_OVERLAP is true,
3142 guarantee that the sequence
3143 set (OP[0] OP[2])
3144 set (OP[1] OP[3])
3145 is valid. Naturally, output operand ordering is little-endian.
3146 This is used by *movtf_internal and *movti_internal. */
3148 void
3149 alpha_split_tmode_pair (rtx operands[4], enum machine_mode mode,
3150 bool fixup_overlap)
3152 switch (GET_CODE (operands[1]))
3154 case REG:
3155 operands[3] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
3156 operands[2] = gen_rtx_REG (DImode, REGNO (operands[1]));
3157 break;
3159 case MEM:
3160 operands[3] = adjust_address (operands[1], DImode, 8);
3161 operands[2] = adjust_address (operands[1], DImode, 0);
3162 break;
3164 case CONST_INT:
3165 case CONST_DOUBLE:
3166 gcc_assert (operands[1] == CONST0_RTX (mode));
3167 operands[2] = operands[3] = const0_rtx;
3168 break;
3170 default:
3171 gcc_unreachable ();
3174 switch (GET_CODE (operands[0]))
3176 case REG:
3177 operands[1] = gen_rtx_REG (DImode, REGNO (operands[0]) + 1);
3178 operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));
3179 break;
3181 case MEM:
3182 operands[1] = adjust_address (operands[0], DImode, 8);
3183 operands[0] = adjust_address (operands[0], DImode, 0);
3184 break;
3186 default:
3187 gcc_unreachable ();
3190 if (fixup_overlap && reg_overlap_mentioned_p (operands[0], operands[3]))
3192 rtx tmp;
3193 tmp = operands[0], operands[0] = operands[1], operands[1] = tmp;
3194 tmp = operands[2], operands[2] = operands[3], operands[3] = tmp;
3198 /* Implement negtf2 or abstf2. Op0 is destination, op1 is source,
3199 op2 is a register containing the sign bit, operation is the
3200 logical operation to be performed. */
3202 void
3203 alpha_split_tfmode_frobsign (rtx operands[3], rtx (*operation) (rtx, rtx, rtx))
3205 rtx high_bit = operands[2];
3206 rtx scratch;
3207 int move;
3209 alpha_split_tmode_pair (operands, TFmode, false);
3211 /* Detect three flavors of operand overlap. */
3212 move = 1;
3213 if (rtx_equal_p (operands[0], operands[2]))
3214 move = 0;
3215 else if (rtx_equal_p (operands[1], operands[2]))
3217 if (rtx_equal_p (operands[0], high_bit))
3218 move = 2;
3219 else
3220 move = -1;
3223 if (move < 0)
3224 emit_move_insn (operands[0], operands[2]);
3226 /* ??? If the destination overlaps both source tf and high_bit, then
3227 assume source tf is dead in its entirety and use the other half
3228 for a scratch register. Otherwise "scratch" is just the proper
3229 destination register. */
3230 scratch = operands[move < 2 ? 1 : 3];
3232 emit_insn ((*operation) (scratch, high_bit, operands[3]));
3234 if (move > 0)
3236 emit_move_insn (operands[0], operands[2]);
3237 if (move > 1)
3238 emit_move_insn (operands[1], scratch);
3242 /* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
3243 unaligned data:
3245 unsigned: signed:
3246 word: ldq_u r1,X(r11) ldq_u r1,X(r11)
3247 ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
3248 lda r3,X(r11) lda r3,X+2(r11)
3249 extwl r1,r3,r1 extql r1,r3,r1
3250 extwh r2,r3,r2 extqh r2,r3,r2
3251 or r1.r2.r1 or r1,r2,r1
3252 sra r1,48,r1
3254 long: ldq_u r1,X(r11) ldq_u r1,X(r11)
3255 ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
3256 lda r3,X(r11) lda r3,X(r11)
3257 extll r1,r3,r1 extll r1,r3,r1
3258 extlh r2,r3,r2 extlh r2,r3,r2
3259 or r1.r2.r1 addl r1,r2,r1
3261 quad: ldq_u r1,X(r11)
3262 ldq_u r2,X+7(r11)
3263 lda r3,X(r11)
3264 extql r1,r3,r1
3265 extqh r2,r3,r2
3266 or r1.r2.r1
3269 void
3270 alpha_expand_unaligned_load (rtx tgt, rtx mem, HOST_WIDE_INT size,
3271 HOST_WIDE_INT ofs, int sign)
3273 rtx meml, memh, addr, extl, exth, tmp, mema;
3274 enum machine_mode mode;
3276 if (TARGET_BWX && size == 2)
3278 meml = adjust_address (mem, QImode, ofs);
3279 memh = adjust_address (mem, QImode, ofs+1);
3280 if (BYTES_BIG_ENDIAN)
3281 tmp = meml, meml = memh, memh = tmp;
3282 extl = gen_reg_rtx (DImode);
3283 exth = gen_reg_rtx (DImode);
3284 emit_insn (gen_zero_extendqidi2 (extl, meml));
3285 emit_insn (gen_zero_extendqidi2 (exth, memh));
3286 exth = expand_simple_binop (DImode, ASHIFT, exth, GEN_INT (8),
3287 NULL, 1, OPTAB_LIB_WIDEN);
3288 addr = expand_simple_binop (DImode, IOR, extl, exth,
3289 NULL, 1, OPTAB_LIB_WIDEN);
3291 if (sign && GET_MODE (tgt) != HImode)
3293 addr = gen_lowpart (HImode, addr);
3294 emit_insn (gen_extend_insn (tgt, addr, GET_MODE (tgt), HImode, 0));
3296 else
3298 if (GET_MODE (tgt) != DImode)
3299 addr = gen_lowpart (GET_MODE (tgt), addr);
3300 emit_move_insn (tgt, addr);
3302 return;
3305 meml = gen_reg_rtx (DImode);
3306 memh = gen_reg_rtx (DImode);
3307 addr = gen_reg_rtx (DImode);
3308 extl = gen_reg_rtx (DImode);
3309 exth = gen_reg_rtx (DImode);
3311 mema = XEXP (mem, 0);
3312 if (GET_CODE (mema) == LO_SUM)
3313 mema = force_reg (Pmode, mema);
3315 /* AND addresses cannot be in any alias set, since they may implicitly
3316 alias surrounding code. Ideally we'd have some alias set that
3317 covered all types except those with alignment 8 or higher. */
3319 tmp = change_address (mem, DImode,
3320 gen_rtx_AND (DImode,
3321 plus_constant (mema, ofs),
3322 GEN_INT (-8)));
3323 set_mem_alias_set (tmp, 0);
3324 emit_move_insn (meml, tmp);
3326 tmp = change_address (mem, DImode,
3327 gen_rtx_AND (DImode,
3328 plus_constant (mema, ofs + size - 1),
3329 GEN_INT (-8)));
3330 set_mem_alias_set (tmp, 0);
3331 emit_move_insn (memh, tmp);
3333 if (WORDS_BIG_ENDIAN && sign && (size == 2 || size == 4))
3335 emit_move_insn (addr, plus_constant (mema, -1));
3337 emit_insn (gen_extqh_be (extl, meml, addr));
3338 emit_insn (gen_extxl_be (exth, memh, GEN_INT (64), addr));
3340 addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
3341 addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (64 - size*8),
3342 addr, 1, OPTAB_WIDEN);
3344 else if (sign && size == 2)
3346 emit_move_insn (addr, plus_constant (mema, ofs+2));
3348 emit_insn (gen_extxl_le (extl, meml, GEN_INT (64), addr));
3349 emit_insn (gen_extqh_le (exth, memh, addr));
3351 /* We must use tgt here for the target. Alpha-vms port fails if we use
3352 addr for the target, because addr is marked as a pointer and combine
3353 knows that pointers are always sign-extended 32-bit values. */
3354 addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
3355 addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48),
3356 addr, 1, OPTAB_WIDEN);
3358 else
3360 if (WORDS_BIG_ENDIAN)
3362 emit_move_insn (addr, plus_constant (mema, ofs+size-1));
3363 switch ((int) size)
3365 case 2:
3366 emit_insn (gen_extwh_be (extl, meml, addr));
3367 mode = HImode;
3368 break;
3370 case 4:
3371 emit_insn (gen_extlh_be (extl, meml, addr));
3372 mode = SImode;
3373 break;
3375 case 8:
3376 emit_insn (gen_extqh_be (extl, meml, addr));
3377 mode = DImode;
3378 break;
3380 default:
3381 gcc_unreachable ();
3383 emit_insn (gen_extxl_be (exth, memh, GEN_INT (size*8), addr));
3385 else
3387 emit_move_insn (addr, plus_constant (mema, ofs));
3388 emit_insn (gen_extxl_le (extl, meml, GEN_INT (size*8), addr));
3389 switch ((int) size)
3391 case 2:
3392 emit_insn (gen_extwh_le (exth, memh, addr));
3393 mode = HImode;
3394 break;
3396 case 4:
3397 emit_insn (gen_extlh_le (exth, memh, addr));
3398 mode = SImode;
3399 break;
3401 case 8:
3402 emit_insn (gen_extqh_le (exth, memh, addr));
3403 mode = DImode;
3404 break;
3406 default:
3407 gcc_unreachable ();
3411 addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl),
3412 gen_lowpart (mode, exth), gen_lowpart (mode, tgt),
3413 sign, OPTAB_WIDEN);
3416 if (addr != tgt)
3417 emit_move_insn (tgt, gen_lowpart (GET_MODE (tgt), addr));
3420 /* Similarly, use ins and msk instructions to perform unaligned stores. */
3422 void
3423 alpha_expand_unaligned_store (rtx dst, rtx src,
3424 HOST_WIDE_INT size, HOST_WIDE_INT ofs)
3426 rtx dstl, dsth, addr, insl, insh, meml, memh, dsta;
3428 if (TARGET_BWX && size == 2)
3430 if (src != const0_rtx)
3432 dstl = gen_lowpart (QImode, src);
3433 dsth = expand_simple_binop (DImode, LSHIFTRT, src, GEN_INT (8),
3434 NULL, 1, OPTAB_LIB_WIDEN);
3435 dsth = gen_lowpart (QImode, dsth);
3437 else
3438 dstl = dsth = const0_rtx;
3440 meml = adjust_address (dst, QImode, ofs);
3441 memh = adjust_address (dst, QImode, ofs+1);
3442 if (BYTES_BIG_ENDIAN)
3443 addr = meml, meml = memh, memh = addr;
3445 emit_move_insn (meml, dstl);
3446 emit_move_insn (memh, dsth);
3447 return;
3450 dstl = gen_reg_rtx (DImode);
3451 dsth = gen_reg_rtx (DImode);
3452 insl = gen_reg_rtx (DImode);
3453 insh = gen_reg_rtx (DImode);
3455 dsta = XEXP (dst, 0);
3456 if (GET_CODE (dsta) == LO_SUM)
3457 dsta = force_reg (Pmode, dsta);
3459 /* AND addresses cannot be in any alias set, since they may implicitly
3460 alias surrounding code. Ideally we'd have some alias set that
3461 covered all types except those with alignment 8 or higher. */
3463 meml = change_address (dst, DImode,
3464 gen_rtx_AND (DImode,
3465 plus_constant (dsta, ofs),
3466 GEN_INT (-8)));
3467 set_mem_alias_set (meml, 0);
3469 memh = change_address (dst, DImode,
3470 gen_rtx_AND (DImode,
3471 plus_constant (dsta, ofs + size - 1),
3472 GEN_INT (-8)));
3473 set_mem_alias_set (memh, 0);
3475 emit_move_insn (dsth, memh);
3476 emit_move_insn (dstl, meml);
3477 if (WORDS_BIG_ENDIAN)
3479 addr = copy_addr_to_reg (plus_constant (dsta, ofs+size-1));
3481 if (src != const0_rtx)
3483 switch ((int) size)
3485 case 2:
3486 emit_insn (gen_inswl_be (insh, gen_lowpart (HImode,src), addr));
3487 break;
3488 case 4:
3489 emit_insn (gen_insll_be (insh, gen_lowpart (SImode,src), addr));
3490 break;
3491 case 8:
3492 emit_insn (gen_insql_be (insh, gen_lowpart (DImode,src), addr));
3493 break;
3495 emit_insn (gen_insxh (insl, gen_lowpart (DImode, src),
3496 GEN_INT (size*8), addr));
3499 switch ((int) size)
3501 case 2:
3502 emit_insn (gen_mskxl_be (dsth, dsth, GEN_INT (0xffff), addr));
3503 break;
3504 case 4:
3506 rtx msk = immed_double_const (0xffffffff, 0, DImode);
3507 emit_insn (gen_mskxl_be (dsth, dsth, msk, addr));
3508 break;
3510 case 8:
3511 emit_insn (gen_mskxl_be (dsth, dsth, constm1_rtx, addr));
3512 break;
3515 emit_insn (gen_mskxh (dstl, dstl, GEN_INT (size*8), addr));
3517 else
3519 addr = copy_addr_to_reg (plus_constant (dsta, ofs));
3521 if (src != CONST0_RTX (GET_MODE (src)))
3523 emit_insn (gen_insxh (insh, gen_lowpart (DImode, src),
3524 GEN_INT (size*8), addr));
3526 switch ((int) size)
3528 case 2:
3529 emit_insn (gen_inswl_le (insl, gen_lowpart (HImode, src), addr));
3530 break;
3531 case 4:
3532 emit_insn (gen_insll_le (insl, gen_lowpart (SImode, src), addr));
3533 break;
3534 case 8:
3535 emit_insn (gen_insql_le (insl, src, addr));
3536 break;
3540 emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr));
3542 switch ((int) size)
3544 case 2:
3545 emit_insn (gen_mskxl_le (dstl, dstl, GEN_INT (0xffff), addr));
3546 break;
3547 case 4:
3549 rtx msk = immed_double_const (0xffffffff, 0, DImode);
3550 emit_insn (gen_mskxl_le (dstl, dstl, msk, addr));
3551 break;
3553 case 8:
3554 emit_insn (gen_mskxl_le (dstl, dstl, constm1_rtx, addr));
3555 break;
3559 if (src != CONST0_RTX (GET_MODE (src)))
3561 dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN);
3562 dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN);
3565 if (WORDS_BIG_ENDIAN)
3567 emit_move_insn (meml, dstl);
3568 emit_move_insn (memh, dsth);
3570 else
3572 /* Must store high before low for degenerate case of aligned. */
3573 emit_move_insn (memh, dsth);
3574 emit_move_insn (meml, dstl);
3578 /* The block move code tries to maximize speed by separating loads and
3579 stores at the expense of register pressure: we load all of the data
3580 before we store it back out. There are two secondary effects worth
3581 mentioning, that this speeds copying to/from aligned and unaligned
3582 buffers, and that it makes the code significantly easier to write. */
3584 #define MAX_MOVE_WORDS 8
3586 /* Load an integral number of consecutive unaligned quadwords. */
3588 static void
3589 alpha_expand_unaligned_load_words (rtx *out_regs, rtx smem,
3590 HOST_WIDE_INT words, HOST_WIDE_INT ofs)
3592 rtx const im8 = GEN_INT (-8);
3593 rtx const i64 = GEN_INT (64);
3594 rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1];
3595 rtx sreg, areg, tmp, smema;
3596 HOST_WIDE_INT i;
3598 smema = XEXP (smem, 0);
3599 if (GET_CODE (smema) == LO_SUM)
3600 smema = force_reg (Pmode, smema);
3602 /* Generate all the tmp registers we need. */
3603 for (i = 0; i < words; ++i)
3605 data_regs[i] = out_regs[i];
3606 ext_tmps[i] = gen_reg_rtx (DImode);
3608 data_regs[words] = gen_reg_rtx (DImode);
3610 if (ofs != 0)
3611 smem = adjust_address (smem, GET_MODE (smem), ofs);
3613 /* Load up all of the source data. */
3614 for (i = 0; i < words; ++i)
3616 tmp = change_address (smem, DImode,
3617 gen_rtx_AND (DImode,
3618 plus_constant (smema, 8*i),
3619 im8));
3620 set_mem_alias_set (tmp, 0);
3621 emit_move_insn (data_regs[i], tmp);
3624 tmp = change_address (smem, DImode,
3625 gen_rtx_AND (DImode,
3626 plus_constant (smema, 8*words - 1),
3627 im8));
3628 set_mem_alias_set (tmp, 0);
3629 emit_move_insn (data_regs[words], tmp);
3631 /* Extract the half-word fragments. Unfortunately DEC decided to make
3632 extxh with offset zero a noop instead of zeroing the register, so
3633 we must take care of that edge condition ourselves with cmov. */
3635 sreg = copy_addr_to_reg (smema);
3636 areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL,
3637 1, OPTAB_WIDEN);
3638 if (WORDS_BIG_ENDIAN)
3639 emit_move_insn (sreg, plus_constant (sreg, 7));
3640 for (i = 0; i < words; ++i)
3642 if (WORDS_BIG_ENDIAN)
3644 emit_insn (gen_extqh_be (data_regs[i], data_regs[i], sreg));
3645 emit_insn (gen_extxl_be (ext_tmps[i], data_regs[i+1], i64, sreg));
3647 else
3649 emit_insn (gen_extxl_le (data_regs[i], data_regs[i], i64, sreg));
3650 emit_insn (gen_extqh_le (ext_tmps[i], data_regs[i+1], sreg));
3652 emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i],
3653 gen_rtx_IF_THEN_ELSE (DImode,
3654 gen_rtx_EQ (DImode, areg,
3655 const0_rtx),
3656 const0_rtx, ext_tmps[i])));
3659 /* Merge the half-words into whole words. */
3660 for (i = 0; i < words; ++i)
3662 out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i],
3663 ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN);
3667 /* Store an integral number of consecutive unaligned quadwords. DATA_REGS
3668 may be NULL to store zeros. */
3670 static void
3671 alpha_expand_unaligned_store_words (rtx *data_regs, rtx dmem,
3672 HOST_WIDE_INT words, HOST_WIDE_INT ofs)
3674 rtx const im8 = GEN_INT (-8);
3675 rtx const i64 = GEN_INT (64);
3676 rtx ins_tmps[MAX_MOVE_WORDS];
3677 rtx st_tmp_1, st_tmp_2, dreg;
3678 rtx st_addr_1, st_addr_2, dmema;
3679 HOST_WIDE_INT i;
3681 dmema = XEXP (dmem, 0);
3682 if (GET_CODE (dmema) == LO_SUM)
3683 dmema = force_reg (Pmode, dmema);
3685 /* Generate all the tmp registers we need. */
3686 if (data_regs != NULL)
3687 for (i = 0; i < words; ++i)
3688 ins_tmps[i] = gen_reg_rtx(DImode);
3689 st_tmp_1 = gen_reg_rtx(DImode);
3690 st_tmp_2 = gen_reg_rtx(DImode);
3692 if (ofs != 0)
3693 dmem = adjust_address (dmem, GET_MODE (dmem), ofs);
3695 st_addr_2 = change_address (dmem, DImode,
3696 gen_rtx_AND (DImode,
3697 plus_constant (dmema, words*8 - 1),
3698 im8));
3699 set_mem_alias_set (st_addr_2, 0);
3701 st_addr_1 = change_address (dmem, DImode,
3702 gen_rtx_AND (DImode, dmema, im8));
3703 set_mem_alias_set (st_addr_1, 0);
3705 /* Load up the destination end bits. */
3706 emit_move_insn (st_tmp_2, st_addr_2);
3707 emit_move_insn (st_tmp_1, st_addr_1);
3709 /* Shift the input data into place. */
3710 dreg = copy_addr_to_reg (dmema);
3711 if (WORDS_BIG_ENDIAN)
3712 emit_move_insn (dreg, plus_constant (dreg, 7));
3713 if (data_regs != NULL)
3715 for (i = words-1; i >= 0; --i)
3717 if (WORDS_BIG_ENDIAN)
3719 emit_insn (gen_insql_be (ins_tmps[i], data_regs[i], dreg));
3720 emit_insn (gen_insxh (data_regs[i], data_regs[i], i64, dreg));
3722 else
3724 emit_insn (gen_insxh (ins_tmps[i], data_regs[i], i64, dreg));
3725 emit_insn (gen_insql_le (data_regs[i], data_regs[i], dreg));
3728 for (i = words-1; i > 0; --i)
3730 ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i],
3731 ins_tmps[i-1], ins_tmps[i-1], 1,
3732 OPTAB_WIDEN);
3736 /* Split and merge the ends with the destination data. */
3737 if (WORDS_BIG_ENDIAN)
3739 emit_insn (gen_mskxl_be (st_tmp_2, st_tmp_2, constm1_rtx, dreg));
3740 emit_insn (gen_mskxh (st_tmp_1, st_tmp_1, i64, dreg));
3742 else
3744 emit_insn (gen_mskxh (st_tmp_2, st_tmp_2, i64, dreg));
3745 emit_insn (gen_mskxl_le (st_tmp_1, st_tmp_1, constm1_rtx, dreg));
3748 if (data_regs != NULL)
3750 st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1],
3751 st_tmp_2, 1, OPTAB_WIDEN);
3752 st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0],
3753 st_tmp_1, 1, OPTAB_WIDEN);
3756 /* Store it all. */
3757 if (WORDS_BIG_ENDIAN)
3758 emit_move_insn (st_addr_1, st_tmp_1);
3759 else
3760 emit_move_insn (st_addr_2, st_tmp_2);
3761 for (i = words-1; i > 0; --i)
3763 rtx tmp = change_address (dmem, DImode,
3764 gen_rtx_AND (DImode,
3765 plus_constant(dmema,
3766 WORDS_BIG_ENDIAN ? i*8-1 : i*8),
3767 im8));
3768 set_mem_alias_set (tmp, 0);
3769 emit_move_insn (tmp, data_regs ? ins_tmps[i-1] : const0_rtx);
3771 if (WORDS_BIG_ENDIAN)
3772 emit_move_insn (st_addr_2, st_tmp_2);
3773 else
3774 emit_move_insn (st_addr_1, st_tmp_1);
3778 /* Expand string/block move operations.
3780 operands[0] is the pointer to the destination.
3781 operands[1] is the pointer to the source.
3782 operands[2] is the number of bytes to move.
3783 operands[3] is the alignment. */
3786 alpha_expand_block_move (rtx operands[])
3788 rtx bytes_rtx = operands[2];
3789 rtx align_rtx = operands[3];
3790 HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
3791 HOST_WIDE_INT bytes = orig_bytes;
3792 HOST_WIDE_INT src_align = INTVAL (align_rtx) * BITS_PER_UNIT;
3793 HOST_WIDE_INT dst_align = src_align;
3794 rtx orig_src = operands[1];
3795 rtx orig_dst = operands[0];
3796 rtx data_regs[2 * MAX_MOVE_WORDS + 16];
3797 rtx tmp;
3798 unsigned int i, words, ofs, nregs = 0;
3800 if (orig_bytes <= 0)
3801 return 1;
3802 else if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
3803 return 0;
3805 /* Look for additional alignment information from recorded register info. */
3807 tmp = XEXP (orig_src, 0);
3808 if (GET_CODE (tmp) == REG)
3809 src_align = MAX (src_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
3810 else if (GET_CODE (tmp) == PLUS
3811 && GET_CODE (XEXP (tmp, 0)) == REG
3812 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
3814 unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
3815 unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
3817 if (a > src_align)
3819 if (a >= 64 && c % 8 == 0)
3820 src_align = 64;
3821 else if (a >= 32 && c % 4 == 0)
3822 src_align = 32;
3823 else if (a >= 16 && c % 2 == 0)
3824 src_align = 16;
3828 tmp = XEXP (orig_dst, 0);
3829 if (GET_CODE (tmp) == REG)
3830 dst_align = MAX (dst_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
3831 else if (GET_CODE (tmp) == PLUS
3832 && GET_CODE (XEXP (tmp, 0)) == REG
3833 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
3835 unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
3836 unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
3838 if (a > dst_align)
3840 if (a >= 64 && c % 8 == 0)
3841 dst_align = 64;
3842 else if (a >= 32 && c % 4 == 0)
3843 dst_align = 32;
3844 else if (a >= 16 && c % 2 == 0)
3845 dst_align = 16;
3849 ofs = 0;
3850 if (src_align >= 64 && bytes >= 8)
3852 words = bytes / 8;
3854 for (i = 0; i < words; ++i)
3855 data_regs[nregs + i] = gen_reg_rtx (DImode);
3857 for (i = 0; i < words; ++i)
3858 emit_move_insn (data_regs[nregs + i],
3859 adjust_address (orig_src, DImode, ofs + i * 8));
3861 nregs += words;
3862 bytes -= words * 8;
3863 ofs += words * 8;
3866 if (src_align >= 32 && bytes >= 4)
3868 words = bytes / 4;
3870 for (i = 0; i < words; ++i)
3871 data_regs[nregs + i] = gen_reg_rtx (SImode);
3873 for (i = 0; i < words; ++i)
3874 emit_move_insn (data_regs[nregs + i],
3875 adjust_address (orig_src, SImode, ofs + i * 4));
3877 nregs += words;
3878 bytes -= words * 4;
3879 ofs += words * 4;
3882 if (bytes >= 8)
3884 words = bytes / 8;
3886 for (i = 0; i < words+1; ++i)
3887 data_regs[nregs + i] = gen_reg_rtx (DImode);
3889 alpha_expand_unaligned_load_words (data_regs + nregs, orig_src,
3890 words, ofs);
3892 nregs += words;
3893 bytes -= words * 8;
3894 ofs += words * 8;
3897 if (! TARGET_BWX && bytes >= 4)
3899 data_regs[nregs++] = tmp = gen_reg_rtx (SImode);
3900 alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0);
3901 bytes -= 4;
3902 ofs += 4;
3905 if (bytes >= 2)
3907 if (src_align >= 16)
3909 do {
3910 data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
3911 emit_move_insn (tmp, adjust_address (orig_src, HImode, ofs));
3912 bytes -= 2;
3913 ofs += 2;
3914 } while (bytes >= 2);
3916 else if (! TARGET_BWX)
3918 data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
3919 alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0);
3920 bytes -= 2;
3921 ofs += 2;
3925 while (bytes > 0)
3927 data_regs[nregs++] = tmp = gen_reg_rtx (QImode);
3928 emit_move_insn (tmp, adjust_address (orig_src, QImode, ofs));
3929 bytes -= 1;
3930 ofs += 1;
3933 gcc_assert (nregs <= ARRAY_SIZE (data_regs));
3935 /* Now save it back out again. */
3937 i = 0, ofs = 0;
3939 /* Write out the data in whatever chunks reading the source allowed. */
3940 if (dst_align >= 64)
3942 while (i < nregs && GET_MODE (data_regs[i]) == DImode)
3944 emit_move_insn (adjust_address (orig_dst, DImode, ofs),
3945 data_regs[i]);
3946 ofs += 8;
3947 i++;
3951 if (dst_align >= 32)
3953 /* If the source has remaining DImode regs, write them out in
3954 two pieces. */
3955 while (i < nregs && GET_MODE (data_regs[i]) == DImode)
3957 tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32),
3958 NULL_RTX, 1, OPTAB_WIDEN);
3960 emit_move_insn (adjust_address (orig_dst, SImode, ofs),
3961 gen_lowpart (SImode, data_regs[i]));
3962 emit_move_insn (adjust_address (orig_dst, SImode, ofs + 4),
3963 gen_lowpart (SImode, tmp));
3964 ofs += 8;
3965 i++;
3968 while (i < nregs && GET_MODE (data_regs[i]) == SImode)
3970 emit_move_insn (adjust_address (orig_dst, SImode, ofs),
3971 data_regs[i]);
3972 ofs += 4;
3973 i++;
3977 if (i < nregs && GET_MODE (data_regs[i]) == DImode)
3979 /* Write out a remaining block of words using unaligned methods. */
3981 for (words = 1; i + words < nregs; words++)
3982 if (GET_MODE (data_regs[i + words]) != DImode)
3983 break;
3985 if (words == 1)
3986 alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs);
3987 else
3988 alpha_expand_unaligned_store_words (data_regs + i, orig_dst,
3989 words, ofs);
3991 i += words;
3992 ofs += words * 8;
3995 /* Due to the above, this won't be aligned. */
3996 /* ??? If we have more than one of these, consider constructing full
3997 words in registers and using alpha_expand_unaligned_store_words. */
3998 while (i < nregs && GET_MODE (data_regs[i]) == SImode)
4000 alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs);
4001 ofs += 4;
4002 i++;
4005 if (dst_align >= 16)
4006 while (i < nregs && GET_MODE (data_regs[i]) == HImode)
4008 emit_move_insn (adjust_address (orig_dst, HImode, ofs), data_regs[i]);
4009 i++;
4010 ofs += 2;
4012 else
4013 while (i < nregs && GET_MODE (data_regs[i]) == HImode)
4015 alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs);
4016 i++;
4017 ofs += 2;
4020 /* The remainder must be byte copies. */
4021 while (i < nregs)
4023 gcc_assert (GET_MODE (data_regs[i]) == QImode);
4024 emit_move_insn (adjust_address (orig_dst, QImode, ofs), data_regs[i]);
4025 i++;
4026 ofs += 1;
4029 return 1;
4033 alpha_expand_block_clear (rtx operands[])
4035 rtx bytes_rtx = operands[1];
4036 rtx align_rtx = operands[3];
4037 HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
4038 HOST_WIDE_INT bytes = orig_bytes;
4039 HOST_WIDE_INT align = INTVAL (align_rtx) * BITS_PER_UNIT;
4040 HOST_WIDE_INT alignofs = 0;
4041 rtx orig_dst = operands[0];
4042 rtx tmp;
4043 int i, words, ofs = 0;
4045 if (orig_bytes <= 0)
4046 return 1;
4047 if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
4048 return 0;
4050 /* Look for stricter alignment. */
4051 tmp = XEXP (orig_dst, 0);
4052 if (GET_CODE (tmp) == REG)
4053 align = MAX (align, REGNO_POINTER_ALIGN (REGNO (tmp)));
4054 else if (GET_CODE (tmp) == PLUS
4055 && GET_CODE (XEXP (tmp, 0)) == REG
4056 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
4058 HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
4059 int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
4061 if (a > align)
4063 if (a >= 64)
4064 align = a, alignofs = 8 - c % 8;
4065 else if (a >= 32)
4066 align = a, alignofs = 4 - c % 4;
4067 else if (a >= 16)
4068 align = a, alignofs = 2 - c % 2;
4072 /* Handle an unaligned prefix first. */
4074 if (alignofs > 0)
4076 #if HOST_BITS_PER_WIDE_INT >= 64
4077 /* Given that alignofs is bounded by align, the only time BWX could
4078 generate three stores is for a 7 byte fill. Prefer two individual
4079 stores over a load/mask/store sequence. */
4080 if ((!TARGET_BWX || alignofs == 7)
4081 && align >= 32
4082 && !(alignofs == 4 && bytes >= 4))
4084 enum machine_mode mode = (align >= 64 ? DImode : SImode);
4085 int inv_alignofs = (align >= 64 ? 8 : 4) - alignofs;
4086 rtx mem, tmp;
4087 HOST_WIDE_INT mask;
4089 mem = adjust_address (orig_dst, mode, ofs - inv_alignofs);
4090 set_mem_alias_set (mem, 0);
4092 mask = ~(~(HOST_WIDE_INT)0 << (inv_alignofs * 8));
4093 if (bytes < alignofs)
4095 mask |= ~(HOST_WIDE_INT)0 << ((inv_alignofs + bytes) * 8);
4096 ofs += bytes;
4097 bytes = 0;
4099 else
4101 bytes -= alignofs;
4102 ofs += alignofs;
4104 alignofs = 0;
4106 tmp = expand_binop (mode, and_optab, mem, GEN_INT (mask),
4107 NULL_RTX, 1, OPTAB_WIDEN);
4109 emit_move_insn (mem, tmp);
4111 #endif
4113 if (TARGET_BWX && (alignofs & 1) && bytes >= 1)
4115 emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
4116 bytes -= 1;
4117 ofs += 1;
4118 alignofs -= 1;
4120 if (TARGET_BWX && align >= 16 && (alignofs & 3) == 2 && bytes >= 2)
4122 emit_move_insn (adjust_address (orig_dst, HImode, ofs), const0_rtx);
4123 bytes -= 2;
4124 ofs += 2;
4125 alignofs -= 2;
4127 if (alignofs == 4 && bytes >= 4)
4129 emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
4130 bytes -= 4;
4131 ofs += 4;
4132 alignofs = 0;
4135 /* If we've not used the extra lead alignment information by now,
4136 we won't be able to. Downgrade align to match what's left over. */
4137 if (alignofs > 0)
4139 alignofs = alignofs & -alignofs;
4140 align = MIN (align, alignofs * BITS_PER_UNIT);
4144 /* Handle a block of contiguous long-words. */
4146 if (align >= 64 && bytes >= 8)
4148 words = bytes / 8;
4150 for (i = 0; i < words; ++i)
4151 emit_move_insn (adjust_address (orig_dst, DImode, ofs + i * 8),
4152 const0_rtx);
4154 bytes -= words * 8;
4155 ofs += words * 8;
4158 /* If the block is large and appropriately aligned, emit a single
4159 store followed by a sequence of stq_u insns. */
4161 if (align >= 32 && bytes > 16)
4163 rtx orig_dsta;
4165 emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
4166 bytes -= 4;
4167 ofs += 4;
4169 orig_dsta = XEXP (orig_dst, 0);
4170 if (GET_CODE (orig_dsta) == LO_SUM)
4171 orig_dsta = force_reg (Pmode, orig_dsta);
4173 words = bytes / 8;
4174 for (i = 0; i < words; ++i)
4176 rtx mem
4177 = change_address (orig_dst, DImode,
4178 gen_rtx_AND (DImode,
4179 plus_constant (orig_dsta, ofs + i*8),
4180 GEN_INT (-8)));
4181 set_mem_alias_set (mem, 0);
4182 emit_move_insn (mem, const0_rtx);
4185 /* Depending on the alignment, the first stq_u may have overlapped
4186 with the initial stl, which means that the last stq_u didn't
4187 write as much as it would appear. Leave those questionable bytes
4188 unaccounted for. */
4189 bytes -= words * 8 - 4;
4190 ofs += words * 8 - 4;
4193 /* Handle a smaller block of aligned words. */
4195 if ((align >= 64 && bytes == 4)
4196 || (align == 32 && bytes >= 4))
4198 words = bytes / 4;
4200 for (i = 0; i < words; ++i)
4201 emit_move_insn (adjust_address (orig_dst, SImode, ofs + i * 4),
4202 const0_rtx);
4204 bytes -= words * 4;
4205 ofs += words * 4;
4208 /* An unaligned block uses stq_u stores for as many as possible. */
4210 if (bytes >= 8)
4212 words = bytes / 8;
4214 alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs);
4216 bytes -= words * 8;
4217 ofs += words * 8;
4220 /* Next clean up any trailing pieces. */
4222 #if HOST_BITS_PER_WIDE_INT >= 64
4223 /* Count the number of bits in BYTES for which aligned stores could
4224 be emitted. */
4225 words = 0;
4226 for (i = (TARGET_BWX ? 1 : 4); i * BITS_PER_UNIT <= align ; i <<= 1)
4227 if (bytes & i)
4228 words += 1;
4230 /* If we have appropriate alignment (and it wouldn't take too many
4231 instructions otherwise), mask out the bytes we need. */
4232 if (TARGET_BWX ? words > 2 : bytes > 0)
4234 if (align >= 64)
4236 rtx mem, tmp;
4237 HOST_WIDE_INT mask;
4239 mem = adjust_address (orig_dst, DImode, ofs);
4240 set_mem_alias_set (mem, 0);
4242 mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
4244 tmp = expand_binop (DImode, and_optab, mem, GEN_INT (mask),
4245 NULL_RTX, 1, OPTAB_WIDEN);
4247 emit_move_insn (mem, tmp);
4248 return 1;
4250 else if (align >= 32 && bytes < 4)
4252 rtx mem, tmp;
4253 HOST_WIDE_INT mask;
4255 mem = adjust_address (orig_dst, SImode, ofs);
4256 set_mem_alias_set (mem, 0);
4258 mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
4260 tmp = expand_binop (SImode, and_optab, mem, GEN_INT (mask),
4261 NULL_RTX, 1, OPTAB_WIDEN);
4263 emit_move_insn (mem, tmp);
4264 return 1;
4267 #endif
4269 if (!TARGET_BWX && bytes >= 4)
4271 alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs);
4272 bytes -= 4;
4273 ofs += 4;
4276 if (bytes >= 2)
4278 if (align >= 16)
4280 do {
4281 emit_move_insn (adjust_address (orig_dst, HImode, ofs),
4282 const0_rtx);
4283 bytes -= 2;
4284 ofs += 2;
4285 } while (bytes >= 2);
4287 else if (! TARGET_BWX)
4289 alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs);
4290 bytes -= 2;
4291 ofs += 2;
4295 while (bytes > 0)
4297 emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
4298 bytes -= 1;
4299 ofs += 1;
4302 return 1;
4305 /* Returns a mask so that zap(x, value) == x & mask. */
4308 alpha_expand_zap_mask (HOST_WIDE_INT value)
4310 rtx result;
4311 int i;
4313 if (HOST_BITS_PER_WIDE_INT >= 64)
4315 HOST_WIDE_INT mask = 0;
4317 for (i = 7; i >= 0; --i)
4319 mask <<= 8;
4320 if (!((value >> i) & 1))
4321 mask |= 0xff;
4324 result = gen_int_mode (mask, DImode);
4326 else
4328 HOST_WIDE_INT mask_lo = 0, mask_hi = 0;
4330 gcc_assert (HOST_BITS_PER_WIDE_INT == 32);
4332 for (i = 7; i >= 4; --i)
4334 mask_hi <<= 8;
4335 if (!((value >> i) & 1))
4336 mask_hi |= 0xff;
4339 for (i = 3; i >= 0; --i)
4341 mask_lo <<= 8;
4342 if (!((value >> i) & 1))
4343 mask_lo |= 0xff;
4346 result = immed_double_const (mask_lo, mask_hi, DImode);
4349 return result;
4352 void
4353 alpha_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx),
4354 enum machine_mode mode,
4355 rtx op0, rtx op1, rtx op2)
4357 op0 = gen_lowpart (mode, op0);
4359 if (op1 == const0_rtx)
4360 op1 = CONST0_RTX (mode);
4361 else
4362 op1 = gen_lowpart (mode, op1);
4364 if (op2 == const0_rtx)
4365 op2 = CONST0_RTX (mode);
4366 else
4367 op2 = gen_lowpart (mode, op2);
4369 emit_insn ((*gen) (op0, op1, op2));
4372 /* A subroutine of the atomic operation splitters. Jump to LABEL if
4373 COND is true. Mark the jump as unlikely to be taken. */
4375 static void
4376 emit_unlikely_jump (rtx cond, rtx label)
4378 rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1);
4379 rtx x;
4381 x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
4382 x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x));
4383 REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_BR_PROB, very_unlikely, NULL_RTX);
4386 /* A subroutine of the atomic operation splitters. Emit a load-locked
4387 instruction in MODE. */
4389 static void
4390 emit_load_locked (enum machine_mode mode, rtx reg, rtx mem)
4392 rtx (*fn) (rtx, rtx) = NULL;
4393 if (mode == SImode)
4394 fn = gen_load_locked_si;
4395 else if (mode == DImode)
4396 fn = gen_load_locked_di;
4397 emit_insn (fn (reg, mem));
4400 /* A subroutine of the atomic operation splitters. Emit a store-conditional
4401 instruction in MODE. */
4403 static void
4404 emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val)
4406 rtx (*fn) (rtx, rtx, rtx) = NULL;
4407 if (mode == SImode)
4408 fn = gen_store_conditional_si;
4409 else if (mode == DImode)
4410 fn = gen_store_conditional_di;
4411 emit_insn (fn (res, mem, val));
4414 /* A subroutine of the atomic operation splitters. Emit an insxl
4415 instruction in MODE. */
4417 static rtx
4418 emit_insxl (enum machine_mode mode, rtx op1, rtx op2)
4420 rtx ret = gen_reg_rtx (DImode);
4421 rtx (*fn) (rtx, rtx, rtx);
4423 if (WORDS_BIG_ENDIAN)
4425 if (mode == QImode)
4426 fn = gen_insbl_be;
4427 else
4428 fn = gen_inswl_be;
4430 else
4432 if (mode == QImode)
4433 fn = gen_insbl_le;
4434 else
4435 fn = gen_inswl_le;
4437 /* The insbl and inswl patterns require a register operand. */
4438 op1 = force_reg (mode, op1);
4439 emit_insn (fn (ret, op1, op2));
4441 return ret;
4444 /* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
4445 to perform. MEM is the memory on which to operate. VAL is the second
4446 operand of the binary operator. BEFORE and AFTER are optional locations to
4447 return the value of MEM either before of after the operation. SCRATCH is
4448 a scratch register. */
4450 void
4451 alpha_split_atomic_op (enum rtx_code code, rtx mem, rtx val,
4452 rtx before, rtx after, rtx scratch)
4454 enum machine_mode mode = GET_MODE (mem);
4455 rtx label, x, cond = gen_rtx_REG (DImode, REGNO (scratch));
4457 emit_insn (gen_memory_barrier ());
4459 label = gen_label_rtx ();
4460 emit_label (label);
4461 label = gen_rtx_LABEL_REF (DImode, label);
4463 if (before == NULL)
4464 before = scratch;
4465 emit_load_locked (mode, before, mem);
4467 if (code == NOT)
4468 x = gen_rtx_AND (mode, gen_rtx_NOT (mode, before), val);
4469 else
4470 x = gen_rtx_fmt_ee (code, mode, before, val);
4471 if (after)
4472 emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x)));
4473 emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
4475 emit_store_conditional (mode, cond, mem, scratch);
4477 x = gen_rtx_EQ (DImode, cond, const0_rtx);
4478 emit_unlikely_jump (x, label);
4480 emit_insn (gen_memory_barrier ());
4483 /* Expand a compare and swap operation. */
4485 void
4486 alpha_split_compare_and_swap (rtx retval, rtx mem, rtx oldval, rtx newval,
4487 rtx scratch)
4489 enum machine_mode mode = GET_MODE (mem);
4490 rtx label1, label2, x, cond = gen_lowpart (DImode, scratch);
4492 emit_insn (gen_memory_barrier ());
4494 label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
4495 label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
4496 emit_label (XEXP (label1, 0));
4498 emit_load_locked (mode, retval, mem);
4500 x = gen_lowpart (DImode, retval);
4501 if (oldval == const0_rtx)
4502 x = gen_rtx_NE (DImode, x, const0_rtx);
4503 else
4505 x = gen_rtx_EQ (DImode, x, oldval);
4506 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
4507 x = gen_rtx_EQ (DImode, cond, const0_rtx);
4509 emit_unlikely_jump (x, label2);
4511 emit_move_insn (scratch, newval);
4512 emit_store_conditional (mode, cond, mem, scratch);
4514 x = gen_rtx_EQ (DImode, cond, const0_rtx);
4515 emit_unlikely_jump (x, label1);
4517 emit_insn (gen_memory_barrier ());
4518 emit_label (XEXP (label2, 0));
4521 void
4522 alpha_expand_compare_and_swap_12 (rtx dst, rtx mem, rtx oldval, rtx newval)
4524 enum machine_mode mode = GET_MODE (mem);
4525 rtx addr, align, wdst;
4526 rtx (*fn5) (rtx, rtx, rtx, rtx, rtx);
4528 addr = force_reg (DImode, XEXP (mem, 0));
4529 align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8),
4530 NULL_RTX, 1, OPTAB_DIRECT);
4532 oldval = convert_modes (DImode, mode, oldval, 1);
4533 newval = emit_insxl (mode, newval, addr);
4535 wdst = gen_reg_rtx (DImode);
4536 if (mode == QImode)
4537 fn5 = gen_sync_compare_and_swapqi_1;
4538 else
4539 fn5 = gen_sync_compare_and_swaphi_1;
4540 emit_insn (fn5 (wdst, addr, oldval, newval, align));
4542 emit_move_insn (dst, gen_lowpart (mode, wdst));
4545 void
4546 alpha_split_compare_and_swap_12 (enum machine_mode mode, rtx dest, rtx addr,
4547 rtx oldval, rtx newval, rtx align,
4548 rtx scratch, rtx cond)
4550 rtx label1, label2, mem, width, mask, x;
4552 mem = gen_rtx_MEM (DImode, align);
4553 MEM_VOLATILE_P (mem) = 1;
4555 emit_insn (gen_memory_barrier ());
4556 label1 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
4557 label2 = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
4558 emit_label (XEXP (label1, 0));
4560 emit_load_locked (DImode, scratch, mem);
4562 width = GEN_INT (GET_MODE_BITSIZE (mode));
4563 mask = GEN_INT (mode == QImode ? 0xff : 0xffff);
4564 if (WORDS_BIG_ENDIAN)
4565 emit_insn (gen_extxl_be (dest, scratch, width, addr));
4566 else
4567 emit_insn (gen_extxl_le (dest, scratch, width, addr));
4569 if (oldval == const0_rtx)
4570 x = gen_rtx_NE (DImode, dest, const0_rtx);
4571 else
4573 x = gen_rtx_EQ (DImode, dest, oldval);
4574 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
4575 x = gen_rtx_EQ (DImode, cond, const0_rtx);
4577 emit_unlikely_jump (x, label2);
4579 if (WORDS_BIG_ENDIAN)
4580 emit_insn (gen_mskxl_be (scratch, scratch, mask, addr));
4581 else
4582 emit_insn (gen_mskxl_le (scratch, scratch, mask, addr));
4583 emit_insn (gen_iordi3 (scratch, scratch, newval));
4585 emit_store_conditional (DImode, scratch, mem, scratch);
4587 x = gen_rtx_EQ (DImode, scratch, const0_rtx);
4588 emit_unlikely_jump (x, label1);
4590 emit_insn (gen_memory_barrier ());
4591 emit_label (XEXP (label2, 0));
4594 /* Expand an atomic exchange operation. */
4596 void
4597 alpha_split_lock_test_and_set (rtx retval, rtx mem, rtx val, rtx scratch)
4599 enum machine_mode mode = GET_MODE (mem);
4600 rtx label, x, cond = gen_lowpart (DImode, scratch);
4602 emit_insn (gen_memory_barrier ());
4604 label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
4605 emit_label (XEXP (label, 0));
4607 emit_load_locked (mode, retval, mem);
4608 emit_move_insn (scratch, val);
4609 emit_store_conditional (mode, cond, mem, scratch);
4611 x = gen_rtx_EQ (DImode, cond, const0_rtx);
4612 emit_unlikely_jump (x, label);
4615 void
4616 alpha_expand_lock_test_and_set_12 (rtx dst, rtx mem, rtx val)
4618 enum machine_mode mode = GET_MODE (mem);
4619 rtx addr, align, wdst;
4620 rtx (*fn4) (rtx, rtx, rtx, rtx);
4622 /* Force the address into a register. */
4623 addr = force_reg (DImode, XEXP (mem, 0));
4625 /* Align it to a multiple of 8. */
4626 align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-8),
4627 NULL_RTX, 1, OPTAB_DIRECT);
4629 /* Insert val into the correct byte location within the word. */
4630 val = emit_insxl (mode, val, addr);
4632 wdst = gen_reg_rtx (DImode);
4633 if (mode == QImode)
4634 fn4 = gen_sync_lock_test_and_setqi_1;
4635 else
4636 fn4 = gen_sync_lock_test_and_sethi_1;
4637 emit_insn (fn4 (wdst, addr, val, align));
4639 emit_move_insn (dst, gen_lowpart (mode, wdst));
4642 void
4643 alpha_split_lock_test_and_set_12 (enum machine_mode mode, rtx dest, rtx addr,
4644 rtx val, rtx align, rtx scratch)
4646 rtx label, mem, width, mask, x;
4648 mem = gen_rtx_MEM (DImode, align);
4649 MEM_VOLATILE_P (mem) = 1;
4651 emit_insn (gen_memory_barrier ());
4652 label = gen_rtx_LABEL_REF (DImode, gen_label_rtx ());
4653 emit_label (XEXP (label, 0));
4655 emit_load_locked (DImode, scratch, mem);
4657 width = GEN_INT (GET_MODE_BITSIZE (mode));
4658 mask = GEN_INT (mode == QImode ? 0xff : 0xffff);
4659 if (WORDS_BIG_ENDIAN)
4661 emit_insn (gen_extxl_be (dest, scratch, width, addr));
4662 emit_insn (gen_mskxl_be (scratch, scratch, mask, addr));
4664 else
4666 emit_insn (gen_extxl_le (dest, scratch, width, addr));
4667 emit_insn (gen_mskxl_le (scratch, scratch, mask, addr));
4669 emit_insn (gen_iordi3 (scratch, scratch, val));
4671 emit_store_conditional (DImode, scratch, mem, scratch);
4673 x = gen_rtx_EQ (DImode, scratch, const0_rtx);
4674 emit_unlikely_jump (x, label);
4677 /* Adjust the cost of a scheduling dependency. Return the new cost of
4678 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
4680 static int
4681 alpha_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
4683 enum attr_type insn_type, dep_insn_type;
4685 /* If the dependence is an anti-dependence, there is no cost. For an
4686 output dependence, there is sometimes a cost, but it doesn't seem
4687 worth handling those few cases. */
4688 if (REG_NOTE_KIND (link) != 0)
4689 return cost;
4691 /* If we can't recognize the insns, we can't really do anything. */
4692 if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
4693 return cost;
4695 insn_type = get_attr_type (insn);
4696 dep_insn_type = get_attr_type (dep_insn);
4698 /* Bring in the user-defined memory latency. */
4699 if (dep_insn_type == TYPE_ILD
4700 || dep_insn_type == TYPE_FLD
4701 || dep_insn_type == TYPE_LDSYM)
4702 cost += alpha_memory_latency-1;
4704 /* Everything else handled in DFA bypasses now. */
4706 return cost;
4709 /* The number of instructions that can be issued per cycle. */
4711 static int
4712 alpha_issue_rate (void)
4714 return (alpha_tune == PROCESSOR_EV4 ? 2 : 4);
4717 /* How many alternative schedules to try. This should be as wide as the
4718 scheduling freedom in the DFA, but no wider. Making this value too
4719 large results extra work for the scheduler.
4721 For EV4, loads can be issued to either IB0 or IB1, thus we have 2
4722 alternative schedules. For EV5, we can choose between E0/E1 and
4723 FA/FM. For EV6, an arithmetic insn can be issued to U0/U1/L0/L1. */
4725 static int
4726 alpha_multipass_dfa_lookahead (void)
4728 return (alpha_tune == PROCESSOR_EV6 ? 4 : 2);
4731 /* Machine-specific function data. */
4733 struct machine_function GTY(())
4735 /* For unicosmk. */
4736 /* List of call information words for calls from this function. */
4737 struct rtx_def *first_ciw;
4738 struct rtx_def *last_ciw;
4739 int ciw_count;
4741 /* List of deferred case vectors. */
4742 struct rtx_def *addr_list;
4744 /* For OSF. */
4745 const char *some_ld_name;
4747 /* For TARGET_LD_BUGGY_LDGP. */
4748 struct rtx_def *gp_save_rtx;
4751 /* How to allocate a 'struct machine_function'. */
4753 static struct machine_function *
4754 alpha_init_machine_status (void)
4756 return ((struct machine_function *)
4757 ggc_alloc_cleared (sizeof (struct machine_function)));
4760 /* Functions to save and restore alpha_return_addr_rtx. */
4762 /* Start the ball rolling with RETURN_ADDR_RTX. */
4765 alpha_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
4767 if (count != 0)
4768 return const0_rtx;
4770 return get_hard_reg_initial_val (Pmode, REG_RA);
4773 /* Return or create a memory slot containing the gp value for the current
4774 function. Needed only if TARGET_LD_BUGGY_LDGP. */
4777 alpha_gp_save_rtx (void)
4779 rtx seq, m = cfun->machine->gp_save_rtx;
4781 if (m == NULL)
4783 start_sequence ();
4785 m = assign_stack_local (DImode, UNITS_PER_WORD, BITS_PER_WORD);
4786 m = validize_mem (m);
4787 emit_move_insn (m, pic_offset_table_rtx);
4789 seq = get_insns ();
4790 end_sequence ();
4792 /* We used to simply emit the sequence after entry_of_function.
4793 However this breaks the CFG if the first instruction in the
4794 first block is not the NOTE_INSN_BASIC_BLOCK, for example a
4795 label. Emit the sequence properly on the edge. We are only
4796 invoked from dw2_build_landing_pads and finish_eh_generation
4797 will call commit_edge_insertions thanks to a kludge. */
4798 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4800 cfun->machine->gp_save_rtx = m;
4803 return m;
4806 static int
4807 alpha_ra_ever_killed (void)
4809 rtx top;
4811 if (!has_hard_reg_initial_val (Pmode, REG_RA))
4812 return (int)df_regs_ever_live_p (REG_RA);
4814 push_topmost_sequence ();
4815 top = get_insns ();
4816 pop_topmost_sequence ();
4818 return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX);
4822 /* Return the trap mode suffix applicable to the current
4823 instruction, or NULL. */
4825 static const char *
4826 get_trap_mode_suffix (void)
4828 enum attr_trap_suffix s = get_attr_trap_suffix (current_output_insn);
4830 switch (s)
4832 case TRAP_SUFFIX_NONE:
4833 return NULL;
4835 case TRAP_SUFFIX_SU:
4836 if (alpha_fptm >= ALPHA_FPTM_SU)
4837 return "su";
4838 return NULL;
4840 case TRAP_SUFFIX_SUI:
4841 if (alpha_fptm >= ALPHA_FPTM_SUI)
4842 return "sui";
4843 return NULL;
4845 case TRAP_SUFFIX_V_SV:
4846 switch (alpha_fptm)
4848 case ALPHA_FPTM_N:
4849 return NULL;
4850 case ALPHA_FPTM_U:
4851 return "v";
4852 case ALPHA_FPTM_SU:
4853 case ALPHA_FPTM_SUI:
4854 return "sv";
4855 default:
4856 gcc_unreachable ();
4859 case TRAP_SUFFIX_V_SV_SVI:
4860 switch (alpha_fptm)
4862 case ALPHA_FPTM_N:
4863 return NULL;
4864 case ALPHA_FPTM_U:
4865 return "v";
4866 case ALPHA_FPTM_SU:
4867 return "sv";
4868 case ALPHA_FPTM_SUI:
4869 return "svi";
4870 default:
4871 gcc_unreachable ();
4873 break;
4875 case TRAP_SUFFIX_U_SU_SUI:
4876 switch (alpha_fptm)
4878 case ALPHA_FPTM_N:
4879 return NULL;
4880 case ALPHA_FPTM_U:
4881 return "u";
4882 case ALPHA_FPTM_SU:
4883 return "su";
4884 case ALPHA_FPTM_SUI:
4885 return "sui";
4886 default:
4887 gcc_unreachable ();
4889 break;
4891 default:
4892 gcc_unreachable ();
4894 gcc_unreachable ();
4897 /* Return the rounding mode suffix applicable to the current
4898 instruction, or NULL. */
4900 static const char *
4901 get_round_mode_suffix (void)
4903 enum attr_round_suffix s = get_attr_round_suffix (current_output_insn);
4905 switch (s)
4907 case ROUND_SUFFIX_NONE:
4908 return NULL;
4909 case ROUND_SUFFIX_NORMAL:
4910 switch (alpha_fprm)
4912 case ALPHA_FPRM_NORM:
4913 return NULL;
4914 case ALPHA_FPRM_MINF:
4915 return "m";
4916 case ALPHA_FPRM_CHOP:
4917 return "c";
4918 case ALPHA_FPRM_DYN:
4919 return "d";
4920 default:
4921 gcc_unreachable ();
4923 break;
4925 case ROUND_SUFFIX_C:
4926 return "c";
4928 default:
4929 gcc_unreachable ();
4931 gcc_unreachable ();
4934 /* Locate some local-dynamic symbol still in use by this function
4935 so that we can print its name in some movdi_er_tlsldm pattern. */
4937 static int
4938 get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
4940 rtx x = *px;
4942 if (GET_CODE (x) == SYMBOL_REF
4943 && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
4945 cfun->machine->some_ld_name = XSTR (x, 0);
4946 return 1;
4949 return 0;
4952 static const char *
4953 get_some_local_dynamic_name (void)
4955 rtx insn;
4957 if (cfun->machine->some_ld_name)
4958 return cfun->machine->some_ld_name;
4960 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
4961 if (INSN_P (insn)
4962 && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
4963 return cfun->machine->some_ld_name;
4965 gcc_unreachable ();
4968 /* Print an operand. Recognize special options, documented below. */
4970 void
4971 print_operand (FILE *file, rtx x, int code)
4973 int i;
4975 switch (code)
4977 case '~':
4978 /* Print the assembler name of the current function. */
4979 assemble_name (file, alpha_fnname);
4980 break;
4982 case '&':
4983 assemble_name (file, get_some_local_dynamic_name ());
4984 break;
4986 case '/':
4988 const char *trap = get_trap_mode_suffix ();
4989 const char *round = get_round_mode_suffix ();
4991 if (trap || round)
4992 fprintf (file, (TARGET_AS_SLASH_BEFORE_SUFFIX ? "/%s%s" : "%s%s"),
4993 (trap ? trap : ""), (round ? round : ""));
4994 break;
4997 case ',':
4998 /* Generates single precision instruction suffix. */
4999 fputc ((TARGET_FLOAT_VAX ? 'f' : 's'), file);
5000 break;
5002 case '-':
5003 /* Generates double precision instruction suffix. */
5004 fputc ((TARGET_FLOAT_VAX ? 'g' : 't'), file);
5005 break;
5007 case '#':
5008 if (alpha_this_literal_sequence_number == 0)
5009 alpha_this_literal_sequence_number = alpha_next_sequence_number++;
5010 fprintf (file, "%d", alpha_this_literal_sequence_number);
5011 break;
5013 case '*':
5014 if (alpha_this_gpdisp_sequence_number == 0)
5015 alpha_this_gpdisp_sequence_number = alpha_next_sequence_number++;
5016 fprintf (file, "%d", alpha_this_gpdisp_sequence_number);
5017 break;
5019 case 'H':
5020 if (GET_CODE (x) == HIGH)
5021 output_addr_const (file, XEXP (x, 0));
5022 else
5023 output_operand_lossage ("invalid %%H value");
5024 break;
5026 case 'J':
5028 const char *lituse;
5030 if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD_CALL)
5032 x = XVECEXP (x, 0, 0);
5033 lituse = "lituse_tlsgd";
5035 else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM_CALL)
5037 x = XVECEXP (x, 0, 0);
5038 lituse = "lituse_tlsldm";
5040 else if (GET_CODE (x) == CONST_INT)
5041 lituse = "lituse_jsr";
5042 else
5044 output_operand_lossage ("invalid %%J value");
5045 break;
5048 if (x != const0_rtx)
5049 fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
5051 break;
5053 case 'j':
5055 const char *lituse;
5057 #ifdef HAVE_AS_JSRDIRECT_RELOCS
5058 lituse = "lituse_jsrdirect";
5059 #else
5060 lituse = "lituse_jsr";
5061 #endif
5063 gcc_assert (INTVAL (x) != 0);
5064 fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
5066 break;
5067 case 'r':
5068 /* If this operand is the constant zero, write it as "$31". */
5069 if (GET_CODE (x) == REG)
5070 fprintf (file, "%s", reg_names[REGNO (x)]);
5071 else if (x == CONST0_RTX (GET_MODE (x)))
5072 fprintf (file, "$31");
5073 else
5074 output_operand_lossage ("invalid %%r value");
5075 break;
5077 case 'R':
5078 /* Similar, but for floating-point. */
5079 if (GET_CODE (x) == REG)
5080 fprintf (file, "%s", reg_names[REGNO (x)]);
5081 else if (x == CONST0_RTX (GET_MODE (x)))
5082 fprintf (file, "$f31");
5083 else
5084 output_operand_lossage ("invalid %%R value");
5085 break;
5087 case 'N':
5088 /* Write the 1's complement of a constant. */
5089 if (GET_CODE (x) != CONST_INT)
5090 output_operand_lossage ("invalid %%N value");
5092 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
5093 break;
5095 case 'P':
5096 /* Write 1 << C, for a constant C. */
5097 if (GET_CODE (x) != CONST_INT)
5098 output_operand_lossage ("invalid %%P value");
5100 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x));
5101 break;
5103 case 'h':
5104 /* Write the high-order 16 bits of a constant, sign-extended. */
5105 if (GET_CODE (x) != CONST_INT)
5106 output_operand_lossage ("invalid %%h value");
5108 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16);
5109 break;
5111 case 'L':
5112 /* Write the low-order 16 bits of a constant, sign-extended. */
5113 if (GET_CODE (x) != CONST_INT)
5114 output_operand_lossage ("invalid %%L value");
5116 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
5117 (INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000));
5118 break;
5120 case 'm':
5121 /* Write mask for ZAP insn. */
5122 if (GET_CODE (x) == CONST_DOUBLE)
5124 HOST_WIDE_INT mask = 0;
5125 HOST_WIDE_INT value;
5127 value = CONST_DOUBLE_LOW (x);
5128 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
5129 i++, value >>= 8)
5130 if (value & 0xff)
5131 mask |= (1 << i);
5133 value = CONST_DOUBLE_HIGH (x);
5134 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
5135 i++, value >>= 8)
5136 if (value & 0xff)
5137 mask |= (1 << (i + sizeof (int)));
5139 fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff);
5142 else if (GET_CODE (x) == CONST_INT)
5144 HOST_WIDE_INT mask = 0, value = INTVAL (x);
5146 for (i = 0; i < 8; i++, value >>= 8)
5147 if (value & 0xff)
5148 mask |= (1 << i);
5150 fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask);
5152 else
5153 output_operand_lossage ("invalid %%m value");
5154 break;
5156 case 'M':
5157 /* 'b', 'w', 'l', or 'q' as the value of the constant. */
5158 if (GET_CODE (x) != CONST_INT
5159 || (INTVAL (x) != 8 && INTVAL (x) != 16
5160 && INTVAL (x) != 32 && INTVAL (x) != 64))
5161 output_operand_lossage ("invalid %%M value");
5163 fprintf (file, "%s",
5164 (INTVAL (x) == 8 ? "b"
5165 : INTVAL (x) == 16 ? "w"
5166 : INTVAL (x) == 32 ? "l"
5167 : "q"));
5168 break;
5170 case 'U':
5171 /* Similar, except do it from the mask. */
5172 if (GET_CODE (x) == CONST_INT)
5174 HOST_WIDE_INT value = INTVAL (x);
5176 if (value == 0xff)
5178 fputc ('b', file);
5179 break;
5181 if (value == 0xffff)
5183 fputc ('w', file);
5184 break;
5186 if (value == 0xffffffff)
5188 fputc ('l', file);
5189 break;
5191 if (value == -1)
5193 fputc ('q', file);
5194 break;
5197 else if (HOST_BITS_PER_WIDE_INT == 32
5198 && GET_CODE (x) == CONST_DOUBLE
5199 && CONST_DOUBLE_LOW (x) == 0xffffffff
5200 && CONST_DOUBLE_HIGH (x) == 0)
5202 fputc ('l', file);
5203 break;
5205 output_operand_lossage ("invalid %%U value");
5206 break;
5208 case 's':
5209 /* Write the constant value divided by 8 for little-endian mode or
5210 (56 - value) / 8 for big-endian mode. */
5212 if (GET_CODE (x) != CONST_INT
5213 || (unsigned HOST_WIDE_INT) INTVAL (x) >= (WORDS_BIG_ENDIAN
5214 ? 56
5215 : 64)
5216 || (INTVAL (x) & 7) != 0)
5217 output_operand_lossage ("invalid %%s value");
5219 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
5220 WORDS_BIG_ENDIAN
5221 ? (56 - INTVAL (x)) / 8
5222 : INTVAL (x) / 8);
5223 break;
5225 case 'S':
5226 /* Same, except compute (64 - c) / 8 */
5228 if (GET_CODE (x) != CONST_INT
5229 && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
5230 && (INTVAL (x) & 7) != 8)
5231 output_operand_lossage ("invalid %%s value");
5233 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8);
5234 break;
5236 case 't':
5238 /* On Unicos/Mk systems: use a DEX expression if the symbol
5239 clashes with a register name. */
5240 int dex = unicosmk_need_dex (x);
5241 if (dex)
5242 fprintf (file, "DEX(%d)", dex);
5243 else
5244 output_addr_const (file, x);
5246 break;
5248 case 'C': case 'D': case 'c': case 'd':
5249 /* Write out comparison name. */
5251 enum rtx_code c = GET_CODE (x);
5253 if (!COMPARISON_P (x))
5254 output_operand_lossage ("invalid %%C value");
5256 else if (code == 'D')
5257 c = reverse_condition (c);
5258 else if (code == 'c')
5259 c = swap_condition (c);
5260 else if (code == 'd')
5261 c = swap_condition (reverse_condition (c));
5263 if (c == LEU)
5264 fprintf (file, "ule");
5265 else if (c == LTU)
5266 fprintf (file, "ult");
5267 else if (c == UNORDERED)
5268 fprintf (file, "un");
5269 else
5270 fprintf (file, "%s", GET_RTX_NAME (c));
5272 break;
5274 case 'E':
5275 /* Write the divide or modulus operator. */
5276 switch (GET_CODE (x))
5278 case DIV:
5279 fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q");
5280 break;
5281 case UDIV:
5282 fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q");
5283 break;
5284 case MOD:
5285 fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q");
5286 break;
5287 case UMOD:
5288 fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q");
5289 break;
5290 default:
5291 output_operand_lossage ("invalid %%E value");
5292 break;
5294 break;
5296 case 'A':
5297 /* Write "_u" for unaligned access. */
5298 if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND)
5299 fprintf (file, "_u");
5300 break;
5302 case 0:
5303 if (GET_CODE (x) == REG)
5304 fprintf (file, "%s", reg_names[REGNO (x)]);
5305 else if (GET_CODE (x) == MEM)
5306 output_address (XEXP (x, 0));
5307 else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC)
5309 switch (XINT (XEXP (x, 0), 1))
5311 case UNSPEC_DTPREL:
5312 case UNSPEC_TPREL:
5313 output_addr_const (file, XVECEXP (XEXP (x, 0), 0, 0));
5314 break;
5315 default:
5316 output_operand_lossage ("unknown relocation unspec");
5317 break;
5320 else
5321 output_addr_const (file, x);
5322 break;
5324 default:
5325 output_operand_lossage ("invalid %%xn code");
5329 void
5330 print_operand_address (FILE *file, rtx addr)
5332 int basereg = 31;
5333 HOST_WIDE_INT offset = 0;
5335 if (GET_CODE (addr) == AND)
5336 addr = XEXP (addr, 0);
5338 if (GET_CODE (addr) == PLUS
5339 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5341 offset = INTVAL (XEXP (addr, 1));
5342 addr = XEXP (addr, 0);
5345 if (GET_CODE (addr) == LO_SUM)
5347 const char *reloc16, *reloclo;
5348 rtx op1 = XEXP (addr, 1);
5350 if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == UNSPEC)
5352 op1 = XEXP (op1, 0);
5353 switch (XINT (op1, 1))
5355 case UNSPEC_DTPREL:
5356 reloc16 = NULL;
5357 reloclo = (alpha_tls_size == 16 ? "dtprel" : "dtprello");
5358 break;
5359 case UNSPEC_TPREL:
5360 reloc16 = NULL;
5361 reloclo = (alpha_tls_size == 16 ? "tprel" : "tprello");
5362 break;
5363 default:
5364 output_operand_lossage ("unknown relocation unspec");
5365 return;
5368 output_addr_const (file, XVECEXP (op1, 0, 0));
5370 else
5372 reloc16 = "gprel";
5373 reloclo = "gprellow";
5374 output_addr_const (file, op1);
5377 if (offset)
5378 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
5380 addr = XEXP (addr, 0);
5381 switch (GET_CODE (addr))
5383 case REG:
5384 basereg = REGNO (addr);
5385 break;
5387 case SUBREG:
5388 basereg = subreg_regno (addr);
5389 break;
5391 default:
5392 gcc_unreachable ();
5395 fprintf (file, "($%d)\t\t!%s", basereg,
5396 (basereg == 29 ? reloc16 : reloclo));
5397 return;
5400 switch (GET_CODE (addr))
5402 case REG:
5403 basereg = REGNO (addr);
5404 break;
5406 case SUBREG:
5407 basereg = subreg_regno (addr);
5408 break;
5410 case CONST_INT:
5411 offset = INTVAL (addr);
5412 break;
5414 #if TARGET_ABI_OPEN_VMS
5415 case SYMBOL_REF:
5416 fprintf (file, "%s", XSTR (addr, 0));
5417 return;
5419 case CONST:
5420 gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS
5421 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF);
5422 fprintf (file, "%s+" HOST_WIDE_INT_PRINT_DEC,
5423 XSTR (XEXP (XEXP (addr, 0), 0), 0),
5424 INTVAL (XEXP (XEXP (addr, 0), 1)));
5425 return;
5427 #endif
5428 default:
5429 gcc_unreachable ();
5432 fprintf (file, HOST_WIDE_INT_PRINT_DEC "($%d)", offset, basereg);
5435 /* Emit RTL insns to initialize the variable parts of a trampoline at
5436 TRAMP. FNADDR is an RTX for the address of the function's pure
5437 code. CXT is an RTX for the static chain value for the function.
5439 The three offset parameters are for the individual template's
5440 layout. A JMPOFS < 0 indicates that the trampoline does not
5441 contain instructions at all.
5443 We assume here that a function will be called many more times than
5444 its address is taken (e.g., it might be passed to qsort), so we
5445 take the trouble to initialize the "hint" field in the JMP insn.
5446 Note that the hint field is PC (new) + 4 * bits 13:0. */
5448 void
5449 alpha_initialize_trampoline (rtx tramp, rtx fnaddr, rtx cxt,
5450 int fnofs, int cxtofs, int jmpofs)
5452 rtx addr;
5453 /* VMS really uses DImode pointers in memory at this point. */
5454 enum machine_mode mode = TARGET_ABI_OPEN_VMS ? Pmode : ptr_mode;
5456 #ifdef POINTERS_EXTEND_UNSIGNED
5457 fnaddr = convert_memory_address (mode, fnaddr);
5458 cxt = convert_memory_address (mode, cxt);
5459 #endif
5461 /* Store function address and CXT. */
5462 addr = memory_address (mode, plus_constant (tramp, fnofs));
5463 emit_move_insn (gen_rtx_MEM (mode, addr), fnaddr);
5464 addr = memory_address (mode, plus_constant (tramp, cxtofs));
5465 emit_move_insn (gen_rtx_MEM (mode, addr), cxt);
5467 #ifdef ENABLE_EXECUTE_STACK
5468 emit_library_call (init_one_libfunc ("__enable_execute_stack"),
5469 0, VOIDmode, 1, tramp, Pmode);
5470 #endif
5472 if (jmpofs >= 0)
5473 emit_insn (gen_imb ());
5476 /* Determine where to put an argument to a function.
5477 Value is zero to push the argument on the stack,
5478 or a hard register in which to store the argument.
5480 MODE is the argument's machine mode.
5481 TYPE is the data type of the argument (as a tree).
5482 This is null for libcalls where that information may
5483 not be available.
5484 CUM is a variable of type CUMULATIVE_ARGS which gives info about
5485 the preceding args and about the function being called.
5486 NAMED is nonzero if this argument is a named parameter
5487 (otherwise it is an extra parameter matching an ellipsis).
5489 On Alpha the first 6 words of args are normally in registers
5490 and the rest are pushed. */
5493 function_arg (CUMULATIVE_ARGS cum, enum machine_mode mode, tree type,
5494 int named ATTRIBUTE_UNUSED)
5496 int basereg;
5497 int num_args;
5499 /* Don't get confused and pass small structures in FP registers. */
5500 if (type && AGGREGATE_TYPE_P (type))
5501 basereg = 16;
5502 else
5504 #ifdef ENABLE_CHECKING
5505 /* With alpha_split_complex_arg, we shouldn't see any raw complex
5506 values here. */
5507 gcc_assert (!COMPLEX_MODE_P (mode));
5508 #endif
5510 /* Set up defaults for FP operands passed in FP registers, and
5511 integral operands passed in integer registers. */
5512 if (TARGET_FPREGS && GET_MODE_CLASS (mode) == MODE_FLOAT)
5513 basereg = 32 + 16;
5514 else
5515 basereg = 16;
5518 /* ??? Irritatingly, the definition of CUMULATIVE_ARGS is different for
5519 the three platforms, so we can't avoid conditional compilation. */
5520 #if TARGET_ABI_OPEN_VMS
5522 if (mode == VOIDmode)
5523 return alpha_arg_info_reg_val (cum);
5525 num_args = cum.num_args;
5526 if (num_args >= 6
5527 || targetm.calls.must_pass_in_stack (mode, type))
5528 return NULL_RTX;
5530 #elif TARGET_ABI_UNICOSMK
5532 int size;
5534 /* If this is the last argument, generate the call info word (CIW). */
5535 /* ??? We don't include the caller's line number in the CIW because
5536 I don't know how to determine it if debug infos are turned off. */
5537 if (mode == VOIDmode)
5539 int i;
5540 HOST_WIDE_INT lo;
5541 HOST_WIDE_INT hi;
5542 rtx ciw;
5544 lo = 0;
5546 for (i = 0; i < cum.num_reg_words && i < 5; i++)
5547 if (cum.reg_args_type[i])
5548 lo |= (1 << (7 - i));
5550 if (cum.num_reg_words == 6 && cum.reg_args_type[5])
5551 lo |= 7;
5552 else
5553 lo |= cum.num_reg_words;
5555 #if HOST_BITS_PER_WIDE_INT == 32
5556 hi = (cum.num_args << 20) | cum.num_arg_words;
5557 #else
5558 lo = lo | ((HOST_WIDE_INT) cum.num_args << 52)
5559 | ((HOST_WIDE_INT) cum.num_arg_words << 32);
5560 hi = 0;
5561 #endif
5562 ciw = immed_double_const (lo, hi, DImode);
5564 return gen_rtx_UNSPEC (DImode, gen_rtvec (1, ciw),
5565 UNSPEC_UMK_LOAD_CIW);
5568 size = ALPHA_ARG_SIZE (mode, type, named);
5569 num_args = cum.num_reg_words;
5570 if (cum.force_stack
5571 || cum.num_reg_words + size > 6
5572 || targetm.calls.must_pass_in_stack (mode, type))
5573 return NULL_RTX;
5574 else if (type && TYPE_MODE (type) == BLKmode)
5576 rtx reg1, reg2;
5578 reg1 = gen_rtx_REG (DImode, num_args + 16);
5579 reg1 = gen_rtx_EXPR_LIST (DImode, reg1, const0_rtx);
5581 /* The argument fits in two registers. Note that we still need to
5582 reserve a register for empty structures. */
5583 if (size == 0)
5584 return NULL_RTX;
5585 else if (size == 1)
5586 return gen_rtx_PARALLEL (mode, gen_rtvec (1, reg1));
5587 else
5589 reg2 = gen_rtx_REG (DImode, num_args + 17);
5590 reg2 = gen_rtx_EXPR_LIST (DImode, reg2, GEN_INT (8));
5591 return gen_rtx_PARALLEL (mode, gen_rtvec (2, reg1, reg2));
5595 #elif TARGET_ABI_OSF
5597 if (cum >= 6)
5598 return NULL_RTX;
5599 num_args = cum;
5601 /* VOID is passed as a special flag for "last argument". */
5602 if (type == void_type_node)
5603 basereg = 16;
5604 else if (targetm.calls.must_pass_in_stack (mode, type))
5605 return NULL_RTX;
5607 #else
5608 #error Unhandled ABI
5609 #endif
5611 return gen_rtx_REG (mode, num_args + basereg);
5614 static int
5615 alpha_arg_partial_bytes (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
5616 enum machine_mode mode ATTRIBUTE_UNUSED,
5617 tree type ATTRIBUTE_UNUSED,
5618 bool named ATTRIBUTE_UNUSED)
5620 int words = 0;
5622 #if TARGET_ABI_OPEN_VMS
5623 if (cum->num_args < 6
5624 && 6 < cum->num_args + ALPHA_ARG_SIZE (mode, type, named))
5625 words = 6 - cum->num_args;
5626 #elif TARGET_ABI_UNICOSMK
5627 /* Never any split arguments. */
5628 #elif TARGET_ABI_OSF
5629 if (*cum < 6 && 6 < *cum + ALPHA_ARG_SIZE (mode, type, named))
5630 words = 6 - *cum;
5631 #else
5632 #error Unhandled ABI
5633 #endif
5635 return words * UNITS_PER_WORD;
5639 /* Return true if TYPE must be returned in memory, instead of in registers. */
5641 static bool
5642 alpha_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
5644 enum machine_mode mode = VOIDmode;
5645 int size;
5647 if (type)
5649 mode = TYPE_MODE (type);
5651 /* All aggregates are returned in memory. */
5652 if (AGGREGATE_TYPE_P (type))
5653 return true;
5656 size = GET_MODE_SIZE (mode);
5657 switch (GET_MODE_CLASS (mode))
5659 case MODE_VECTOR_FLOAT:
5660 /* Pass all float vectors in memory, like an aggregate. */
5661 return true;
5663 case MODE_COMPLEX_FLOAT:
5664 /* We judge complex floats on the size of their element,
5665 not the size of the whole type. */
5666 size = GET_MODE_UNIT_SIZE (mode);
5667 break;
5669 case MODE_INT:
5670 case MODE_FLOAT:
5671 case MODE_COMPLEX_INT:
5672 case MODE_VECTOR_INT:
5673 break;
5675 default:
5676 /* ??? We get called on all sorts of random stuff from
5677 aggregate_value_p. We must return something, but it's not
5678 clear what's safe to return. Pretend it's a struct I
5679 guess. */
5680 return true;
5683 /* Otherwise types must fit in one register. */
5684 return size > UNITS_PER_WORD;
5687 /* Return true if TYPE should be passed by invisible reference. */
5689 static bool
5690 alpha_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
5691 enum machine_mode mode,
5692 const_tree type ATTRIBUTE_UNUSED,
5693 bool named ATTRIBUTE_UNUSED)
5695 return mode == TFmode || mode == TCmode;
5698 /* Define how to find the value returned by a function. VALTYPE is the
5699 data type of the value (as a tree). If the precise function being
5700 called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0.
5701 MODE is set instead of VALTYPE for libcalls.
5703 On Alpha the value is found in $0 for integer functions and
5704 $f0 for floating-point functions. */
5707 function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
5708 enum machine_mode mode)
5710 unsigned int regnum, dummy;
5711 enum mode_class class;
5713 gcc_assert (!valtype || !alpha_return_in_memory (valtype, func));
5715 if (valtype)
5716 mode = TYPE_MODE (valtype);
5718 class = GET_MODE_CLASS (mode);
5719 switch (class)
5721 case MODE_INT:
5722 PROMOTE_MODE (mode, dummy, valtype);
5723 /* FALLTHRU */
5725 case MODE_COMPLEX_INT:
5726 case MODE_VECTOR_INT:
5727 regnum = 0;
5728 break;
5730 case MODE_FLOAT:
5731 regnum = 32;
5732 break;
5734 case MODE_COMPLEX_FLOAT:
5736 enum machine_mode cmode = GET_MODE_INNER (mode);
5738 return gen_rtx_PARALLEL
5739 (VOIDmode,
5740 gen_rtvec (2,
5741 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 32),
5742 const0_rtx),
5743 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 33),
5744 GEN_INT (GET_MODE_SIZE (cmode)))));
5747 default:
5748 gcc_unreachable ();
5751 return gen_rtx_REG (mode, regnum);
5754 /* TCmode complex values are passed by invisible reference. We
5755 should not split these values. */
5757 static bool
5758 alpha_split_complex_arg (const_tree type)
5760 return TYPE_MODE (type) != TCmode;
5763 static tree
5764 alpha_build_builtin_va_list (void)
5766 tree base, ofs, space, record, type_decl;
5768 if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK)
5769 return ptr_type_node;
5771 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
5772 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
5773 TREE_CHAIN (record) = type_decl;
5774 TYPE_NAME (record) = type_decl;
5776 /* C++? SET_IS_AGGR_TYPE (record, 1); */
5778 /* Dummy field to prevent alignment warnings. */
5779 space = build_decl (FIELD_DECL, NULL_TREE, integer_type_node);
5780 DECL_FIELD_CONTEXT (space) = record;
5781 DECL_ARTIFICIAL (space) = 1;
5782 DECL_IGNORED_P (space) = 1;
5784 ofs = build_decl (FIELD_DECL, get_identifier ("__offset"),
5785 integer_type_node);
5786 DECL_FIELD_CONTEXT (ofs) = record;
5787 TREE_CHAIN (ofs) = space;
5789 base = build_decl (FIELD_DECL, get_identifier ("__base"),
5790 ptr_type_node);
5791 DECL_FIELD_CONTEXT (base) = record;
5792 TREE_CHAIN (base) = ofs;
5794 TYPE_FIELDS (record) = base;
5795 layout_type (record);
5797 va_list_gpr_counter_field = ofs;
5798 return record;
5801 #if TARGET_ABI_OSF
5802 /* Helper function for alpha_stdarg_optimize_hook. Skip over casts
5803 and constant additions. */
5805 static tree
5806 va_list_skip_additions (tree lhs)
5808 tree rhs, stmt;
5810 if (TREE_CODE (lhs) != SSA_NAME)
5811 return lhs;
5813 for (;;)
5815 stmt = SSA_NAME_DEF_STMT (lhs);
5817 if (TREE_CODE (stmt) == PHI_NODE)
5818 return stmt;
5820 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT
5821 || GIMPLE_STMT_OPERAND (stmt, 0) != lhs)
5822 return lhs;
5824 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5825 if (TREE_CODE (rhs) == WITH_SIZE_EXPR)
5826 rhs = TREE_OPERAND (rhs, 0);
5828 if (((!CONVERT_EXPR_P (rhs))
5829 && ((TREE_CODE (rhs) != PLUS_EXPR
5830 && TREE_CODE (rhs) != POINTER_PLUS_EXPR)
5831 || TREE_CODE (TREE_OPERAND (rhs, 1)) != INTEGER_CST
5832 || !host_integerp (TREE_OPERAND (rhs, 1), 1)))
5833 || TREE_CODE (TREE_OPERAND (rhs, 0)) != SSA_NAME)
5834 return rhs;
5836 lhs = TREE_OPERAND (rhs, 0);
5840 /* Check if LHS = RHS statement is
5841 LHS = *(ap.__base + ap.__offset + cst)
5843 LHS = *(ap.__base
5844 + ((ap.__offset + cst <= 47)
5845 ? ap.__offset + cst - 48 : ap.__offset + cst) + cst2).
5846 If the former, indicate that GPR registers are needed,
5847 if the latter, indicate that FPR registers are needed.
5849 Also look for LHS = (*ptr).field, where ptr is one of the forms
5850 listed above.
5852 On alpha, cfun->va_list_gpr_size is used as size of the needed
5853 regs and cfun->va_list_fpr_size is a bitmask, bit 0 set if GPR
5854 registers are needed and bit 1 set if FPR registers are needed.
5855 Return true if va_list references should not be scanned for the
5856 current statement. */
5858 static bool
5859 alpha_stdarg_optimize_hook (struct stdarg_info *si, const_tree lhs, const_tree rhs)
5861 tree base, offset, arg1, arg2;
5862 int offset_arg = 1;
5864 while (handled_component_p (rhs))
5865 rhs = TREE_OPERAND (rhs, 0);
5866 if (TREE_CODE (rhs) != INDIRECT_REF
5867 || TREE_CODE (TREE_OPERAND (rhs, 0)) != SSA_NAME)
5868 return false;
5870 lhs = va_list_skip_additions (TREE_OPERAND (rhs, 0));
5871 if (lhs == NULL_TREE
5872 || TREE_CODE (lhs) != POINTER_PLUS_EXPR)
5873 return false;
5875 base = TREE_OPERAND (lhs, 0);
5876 if (TREE_CODE (base) == SSA_NAME)
5877 base = va_list_skip_additions (base);
5879 if (TREE_CODE (base) != COMPONENT_REF
5880 || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node))
5882 base = TREE_OPERAND (lhs, 0);
5883 if (TREE_CODE (base) == SSA_NAME)
5884 base = va_list_skip_additions (base);
5886 if (TREE_CODE (base) != COMPONENT_REF
5887 || TREE_OPERAND (base, 1) != TYPE_FIELDS (va_list_type_node))
5888 return false;
5890 offset_arg = 0;
5893 base = get_base_address (base);
5894 if (TREE_CODE (base) != VAR_DECL
5895 || !bitmap_bit_p (si->va_list_vars, DECL_UID (base)))
5896 return false;
5898 offset = TREE_OPERAND (lhs, offset_arg);
5899 if (TREE_CODE (offset) == SSA_NAME)
5900 offset = va_list_skip_additions (offset);
5902 if (TREE_CODE (offset) == PHI_NODE)
5904 HOST_WIDE_INT sub;
5906 if (PHI_NUM_ARGS (offset) != 2)
5907 goto escapes;
5909 arg1 = va_list_skip_additions (PHI_ARG_DEF (offset, 0));
5910 arg2 = va_list_skip_additions (PHI_ARG_DEF (offset, 1));
5911 if (TREE_CODE (arg2) != MINUS_EXPR && TREE_CODE (arg2) != PLUS_EXPR)
5913 tree tem = arg1;
5914 arg1 = arg2;
5915 arg2 = tem;
5917 if (TREE_CODE (arg2) != MINUS_EXPR && TREE_CODE (arg2) != PLUS_EXPR)
5918 goto escapes;
5920 if (!host_integerp (TREE_OPERAND (arg2, 1), 0))
5921 goto escapes;
5923 sub = tree_low_cst (TREE_OPERAND (arg2, 1), 0);
5924 if (TREE_CODE (arg2) == MINUS_EXPR)
5925 sub = -sub;
5926 if (sub < -48 || sub > -32)
5927 goto escapes;
5929 arg2 = va_list_skip_additions (TREE_OPERAND (arg2, 0));
5930 if (arg1 != arg2)
5931 goto escapes;
5933 if (TREE_CODE (arg1) == SSA_NAME)
5934 arg1 = va_list_skip_additions (arg1);
5936 if (TREE_CODE (arg1) != COMPONENT_REF
5937 || TREE_OPERAND (arg1, 1) != va_list_gpr_counter_field
5938 || get_base_address (arg1) != base)
5939 goto escapes;
5941 /* Need floating point regs. */
5942 cfun->va_list_fpr_size |= 2;
5944 else if (TREE_CODE (offset) != COMPONENT_REF
5945 || TREE_OPERAND (offset, 1) != va_list_gpr_counter_field
5946 || get_base_address (offset) != base)
5947 goto escapes;
5948 else
5949 /* Need general regs. */
5950 cfun->va_list_fpr_size |= 1;
5951 return false;
5953 escapes:
5954 si->va_list_escapes = true;
5955 return false;
5957 #endif
5959 /* Perform any needed actions needed for a function that is receiving a
5960 variable number of arguments. */
5962 static void
5963 alpha_setup_incoming_varargs (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
5964 tree type, int *pretend_size, int no_rtl)
5966 CUMULATIVE_ARGS cum = *pcum;
5968 /* Skip the current argument. */
5969 FUNCTION_ARG_ADVANCE (cum, mode, type, 1);
5971 #if TARGET_ABI_UNICOSMK
5972 /* On Unicos/Mk, the standard subroutine __T3E_MISMATCH stores all register
5973 arguments on the stack. Unfortunately, it doesn't always store the first
5974 one (i.e. the one that arrives in $16 or $f16). This is not a problem
5975 with stdargs as we always have at least one named argument there. */
5976 if (cum.num_reg_words < 6)
5978 if (!no_rtl)
5980 emit_insn (gen_umk_mismatch_args (GEN_INT (cum.num_reg_words)));
5981 emit_insn (gen_arg_home_umk ());
5983 *pretend_size = 0;
5985 #elif TARGET_ABI_OPEN_VMS
5986 /* For VMS, we allocate space for all 6 arg registers plus a count.
5988 However, if NO registers need to be saved, don't allocate any space.
5989 This is not only because we won't need the space, but because AP
5990 includes the current_pretend_args_size and we don't want to mess up
5991 any ap-relative addresses already made. */
5992 if (cum.num_args < 6)
5994 if (!no_rtl)
5996 emit_move_insn (gen_rtx_REG (DImode, 1), virtual_incoming_args_rtx);
5997 emit_insn (gen_arg_home ());
5999 *pretend_size = 7 * UNITS_PER_WORD;
6001 #else
6002 /* On OSF/1 and friends, we allocate space for all 12 arg registers, but
6003 only push those that are remaining. However, if NO registers need to
6004 be saved, don't allocate any space. This is not only because we won't
6005 need the space, but because AP includes the current_pretend_args_size
6006 and we don't want to mess up any ap-relative addresses already made.
6008 If we are not to use the floating-point registers, save the integer
6009 registers where we would put the floating-point registers. This is
6010 not the most efficient way to implement varargs with just one register
6011 class, but it isn't worth doing anything more efficient in this rare
6012 case. */
6013 if (cum >= 6)
6014 return;
6016 if (!no_rtl)
6018 int count;
6019 alias_set_type set = get_varargs_alias_set ();
6020 rtx tmp;
6022 count = cfun->va_list_gpr_size / UNITS_PER_WORD;
6023 if (count > 6 - cum)
6024 count = 6 - cum;
6026 /* Detect whether integer registers or floating-point registers
6027 are needed by the detected va_arg statements. See above for
6028 how these values are computed. Note that the "escape" value
6029 is VA_LIST_MAX_FPR_SIZE, which is 255, which has both of
6030 these bits set. */
6031 gcc_assert ((VA_LIST_MAX_FPR_SIZE & 3) == 3);
6033 if (cfun->va_list_fpr_size & 1)
6035 tmp = gen_rtx_MEM (BLKmode,
6036 plus_constant (virtual_incoming_args_rtx,
6037 (cum + 6) * UNITS_PER_WORD));
6038 MEM_NOTRAP_P (tmp) = 1;
6039 set_mem_alias_set (tmp, set);
6040 move_block_from_reg (16 + cum, tmp, count);
6043 if (cfun->va_list_fpr_size & 2)
6045 tmp = gen_rtx_MEM (BLKmode,
6046 plus_constant (virtual_incoming_args_rtx,
6047 cum * UNITS_PER_WORD));
6048 MEM_NOTRAP_P (tmp) = 1;
6049 set_mem_alias_set (tmp, set);
6050 move_block_from_reg (16 + cum + TARGET_FPREGS*32, tmp, count);
6053 *pretend_size = 12 * UNITS_PER_WORD;
6054 #endif
6057 static void
6058 alpha_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
6060 HOST_WIDE_INT offset;
6061 tree t, offset_field, base_field;
6063 if (TREE_CODE (TREE_TYPE (valist)) == ERROR_MARK)
6064 return;
6066 if (TARGET_ABI_UNICOSMK)
6067 std_expand_builtin_va_start (valist, nextarg);
6069 /* For Unix, TARGET_SETUP_INCOMING_VARARGS moves the starting address base
6070 up by 48, storing fp arg registers in the first 48 bytes, and the
6071 integer arg registers in the next 48 bytes. This is only done,
6072 however, if any integer registers need to be stored.
6074 If no integer registers need be stored, then we must subtract 48
6075 in order to account for the integer arg registers which are counted
6076 in argsize above, but which are not actually stored on the stack.
6077 Must further be careful here about structures straddling the last
6078 integer argument register; that futzes with pretend_args_size,
6079 which changes the meaning of AP. */
6081 if (NUM_ARGS < 6)
6082 offset = TARGET_ABI_OPEN_VMS ? UNITS_PER_WORD : 6 * UNITS_PER_WORD;
6083 else
6084 offset = -6 * UNITS_PER_WORD + crtl->args.pretend_args_size;
6086 if (TARGET_ABI_OPEN_VMS)
6088 nextarg = plus_constant (nextarg, offset);
6089 nextarg = plus_constant (nextarg, NUM_ARGS * UNITS_PER_WORD);
6090 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (valist), valist,
6091 make_tree (ptr_type_node, nextarg));
6092 TREE_SIDE_EFFECTS (t) = 1;
6094 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6096 else
6098 base_field = TYPE_FIELDS (TREE_TYPE (valist));
6099 offset_field = TREE_CHAIN (base_field);
6101 base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field),
6102 valist, base_field, NULL_TREE);
6103 offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field),
6104 valist, offset_field, NULL_TREE);
6106 t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
6107 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t,
6108 size_int (offset));
6109 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (base_field), base_field, t);
6110 TREE_SIDE_EFFECTS (t) = 1;
6111 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6113 t = build_int_cst (NULL_TREE, NUM_ARGS * UNITS_PER_WORD);
6114 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (offset_field),
6115 offset_field, t);
6116 TREE_SIDE_EFFECTS (t) = 1;
6117 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6121 static tree
6122 alpha_gimplify_va_arg_1 (tree type, tree base, tree offset, tree *pre_p)
6124 tree type_size, ptr_type, addend, t, addr, internal_post;
6126 /* If the type could not be passed in registers, skip the block
6127 reserved for the registers. */
6128 if (targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
6130 t = build_int_cst (TREE_TYPE (offset), 6*8);
6131 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (offset), offset,
6132 build2 (MAX_EXPR, TREE_TYPE (offset), offset, t));
6133 gimplify_and_add (t, pre_p);
6136 addend = offset;
6137 ptr_type = build_pointer_type (type);
6139 if (TREE_CODE (type) == COMPLEX_TYPE)
6141 tree real_part, imag_part, real_temp;
6143 real_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base,
6144 offset, pre_p);
6146 /* Copy the value into a new temporary, lest the formal temporary
6147 be reused out from under us. */
6148 real_temp = get_initialized_tmp_var (real_part, pre_p, NULL);
6150 imag_part = alpha_gimplify_va_arg_1 (TREE_TYPE (type), base,
6151 offset, pre_p);
6153 return build2 (COMPLEX_EXPR, type, real_temp, imag_part);
6155 else if (TREE_CODE (type) == REAL_TYPE)
6157 tree fpaddend, cond, fourtyeight;
6159 fourtyeight = build_int_cst (TREE_TYPE (addend), 6*8);
6160 fpaddend = fold_build2 (MINUS_EXPR, TREE_TYPE (addend),
6161 addend, fourtyeight);
6162 cond = fold_build2 (LT_EXPR, boolean_type_node, addend, fourtyeight);
6163 addend = fold_build3 (COND_EXPR, TREE_TYPE (addend), cond,
6164 fpaddend, addend);
6167 /* Build the final address and force that value into a temporary. */
6168 addr = build2 (POINTER_PLUS_EXPR, ptr_type, fold_convert (ptr_type, base),
6169 fold_convert (sizetype, addend));
6170 internal_post = NULL;
6171 gimplify_expr (&addr, pre_p, &internal_post, is_gimple_val, fb_rvalue);
6172 append_to_statement_list (internal_post, pre_p);
6174 /* Update the offset field. */
6175 type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type));
6176 if (type_size == NULL || TREE_OVERFLOW (type_size))
6177 t = size_zero_node;
6178 else
6180 t = size_binop (PLUS_EXPR, type_size, size_int (7));
6181 t = size_binop (TRUNC_DIV_EXPR, t, size_int (8));
6182 t = size_binop (MULT_EXPR, t, size_int (8));
6184 t = fold_convert (TREE_TYPE (offset), t);
6185 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, offset,
6186 build2 (PLUS_EXPR, TREE_TYPE (offset), offset, t));
6187 gimplify_and_add (t, pre_p);
6189 return build_va_arg_indirect_ref (addr);
6192 static tree
6193 alpha_gimplify_va_arg (tree valist, tree type, tree *pre_p, tree *post_p)
6195 tree offset_field, base_field, offset, base, t, r;
6196 bool indirect;
6198 if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK)
6199 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
6201 base_field = TYPE_FIELDS (va_list_type_node);
6202 offset_field = TREE_CHAIN (base_field);
6203 base_field = build3 (COMPONENT_REF, TREE_TYPE (base_field),
6204 valist, base_field, NULL_TREE);
6205 offset_field = build3 (COMPONENT_REF, TREE_TYPE (offset_field),
6206 valist, offset_field, NULL_TREE);
6208 /* Pull the fields of the structure out into temporaries. Since we never
6209 modify the base field, we can use a formal temporary. Sign-extend the
6210 offset field so that it's the proper width for pointer arithmetic. */
6211 base = get_formal_tmp_var (base_field, pre_p);
6213 t = fold_convert (lang_hooks.types.type_for_size (64, 0), offset_field);
6214 offset = get_initialized_tmp_var (t, pre_p, NULL);
6216 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
6217 if (indirect)
6218 type = build_pointer_type (type);
6220 /* Find the value. Note that this will be a stable indirection, or
6221 a composite of stable indirections in the case of complex. */
6222 r = alpha_gimplify_va_arg_1 (type, base, offset, pre_p);
6224 /* Stuff the offset temporary back into its field. */
6225 t = build2 (GIMPLE_MODIFY_STMT, void_type_node, offset_field,
6226 fold_convert (TREE_TYPE (offset_field), offset));
6227 gimplify_and_add (t, pre_p);
6229 if (indirect)
6230 r = build_va_arg_indirect_ref (r);
6232 return r;
6235 /* Builtins. */
6237 enum alpha_builtin
6239 ALPHA_BUILTIN_CMPBGE,
6240 ALPHA_BUILTIN_EXTBL,
6241 ALPHA_BUILTIN_EXTWL,
6242 ALPHA_BUILTIN_EXTLL,
6243 ALPHA_BUILTIN_EXTQL,
6244 ALPHA_BUILTIN_EXTWH,
6245 ALPHA_BUILTIN_EXTLH,
6246 ALPHA_BUILTIN_EXTQH,
6247 ALPHA_BUILTIN_INSBL,
6248 ALPHA_BUILTIN_INSWL,
6249 ALPHA_BUILTIN_INSLL,
6250 ALPHA_BUILTIN_INSQL,
6251 ALPHA_BUILTIN_INSWH,
6252 ALPHA_BUILTIN_INSLH,
6253 ALPHA_BUILTIN_INSQH,
6254 ALPHA_BUILTIN_MSKBL,
6255 ALPHA_BUILTIN_MSKWL,
6256 ALPHA_BUILTIN_MSKLL,
6257 ALPHA_BUILTIN_MSKQL,
6258 ALPHA_BUILTIN_MSKWH,
6259 ALPHA_BUILTIN_MSKLH,
6260 ALPHA_BUILTIN_MSKQH,
6261 ALPHA_BUILTIN_UMULH,
6262 ALPHA_BUILTIN_ZAP,
6263 ALPHA_BUILTIN_ZAPNOT,
6264 ALPHA_BUILTIN_AMASK,
6265 ALPHA_BUILTIN_IMPLVER,
6266 ALPHA_BUILTIN_RPCC,
6267 ALPHA_BUILTIN_THREAD_POINTER,
6268 ALPHA_BUILTIN_SET_THREAD_POINTER,
6270 /* TARGET_MAX */
6271 ALPHA_BUILTIN_MINUB8,
6272 ALPHA_BUILTIN_MINSB8,
6273 ALPHA_BUILTIN_MINUW4,
6274 ALPHA_BUILTIN_MINSW4,
6275 ALPHA_BUILTIN_MAXUB8,
6276 ALPHA_BUILTIN_MAXSB8,
6277 ALPHA_BUILTIN_MAXUW4,
6278 ALPHA_BUILTIN_MAXSW4,
6279 ALPHA_BUILTIN_PERR,
6280 ALPHA_BUILTIN_PKLB,
6281 ALPHA_BUILTIN_PKWB,
6282 ALPHA_BUILTIN_UNPKBL,
6283 ALPHA_BUILTIN_UNPKBW,
6285 /* TARGET_CIX */
6286 ALPHA_BUILTIN_CTTZ,
6287 ALPHA_BUILTIN_CTLZ,
6288 ALPHA_BUILTIN_CTPOP,
6290 ALPHA_BUILTIN_max
6293 static unsigned int const code_for_builtin[ALPHA_BUILTIN_max] = {
6294 CODE_FOR_builtin_cmpbge,
6295 CODE_FOR_builtin_extbl,
6296 CODE_FOR_builtin_extwl,
6297 CODE_FOR_builtin_extll,
6298 CODE_FOR_builtin_extql,
6299 CODE_FOR_builtin_extwh,
6300 CODE_FOR_builtin_extlh,
6301 CODE_FOR_builtin_extqh,
6302 CODE_FOR_builtin_insbl,
6303 CODE_FOR_builtin_inswl,
6304 CODE_FOR_builtin_insll,
6305 CODE_FOR_builtin_insql,
6306 CODE_FOR_builtin_inswh,
6307 CODE_FOR_builtin_inslh,
6308 CODE_FOR_builtin_insqh,
6309 CODE_FOR_builtin_mskbl,
6310 CODE_FOR_builtin_mskwl,
6311 CODE_FOR_builtin_mskll,
6312 CODE_FOR_builtin_mskql,
6313 CODE_FOR_builtin_mskwh,
6314 CODE_FOR_builtin_msklh,
6315 CODE_FOR_builtin_mskqh,
6316 CODE_FOR_umuldi3_highpart,
6317 CODE_FOR_builtin_zap,
6318 CODE_FOR_builtin_zapnot,
6319 CODE_FOR_builtin_amask,
6320 CODE_FOR_builtin_implver,
6321 CODE_FOR_builtin_rpcc,
6322 CODE_FOR_load_tp,
6323 CODE_FOR_set_tp,
6325 /* TARGET_MAX */
6326 CODE_FOR_builtin_minub8,
6327 CODE_FOR_builtin_minsb8,
6328 CODE_FOR_builtin_minuw4,
6329 CODE_FOR_builtin_minsw4,
6330 CODE_FOR_builtin_maxub8,
6331 CODE_FOR_builtin_maxsb8,
6332 CODE_FOR_builtin_maxuw4,
6333 CODE_FOR_builtin_maxsw4,
6334 CODE_FOR_builtin_perr,
6335 CODE_FOR_builtin_pklb,
6336 CODE_FOR_builtin_pkwb,
6337 CODE_FOR_builtin_unpkbl,
6338 CODE_FOR_builtin_unpkbw,
6340 /* TARGET_CIX */
6341 CODE_FOR_ctzdi2,
6342 CODE_FOR_clzdi2,
6343 CODE_FOR_popcountdi2
6346 struct alpha_builtin_def
6348 const char *name;
6349 enum alpha_builtin code;
6350 unsigned int target_mask;
6351 bool is_const;
6354 static struct alpha_builtin_def const zero_arg_builtins[] = {
6355 { "__builtin_alpha_implver", ALPHA_BUILTIN_IMPLVER, 0, true },
6356 { "__builtin_alpha_rpcc", ALPHA_BUILTIN_RPCC, 0, false }
6359 static struct alpha_builtin_def const one_arg_builtins[] = {
6360 { "__builtin_alpha_amask", ALPHA_BUILTIN_AMASK, 0, true },
6361 { "__builtin_alpha_pklb", ALPHA_BUILTIN_PKLB, MASK_MAX, true },
6362 { "__builtin_alpha_pkwb", ALPHA_BUILTIN_PKWB, MASK_MAX, true },
6363 { "__builtin_alpha_unpkbl", ALPHA_BUILTIN_UNPKBL, MASK_MAX, true },
6364 { "__builtin_alpha_unpkbw", ALPHA_BUILTIN_UNPKBW, MASK_MAX, true },
6365 { "__builtin_alpha_cttz", ALPHA_BUILTIN_CTTZ, MASK_CIX, true },
6366 { "__builtin_alpha_ctlz", ALPHA_BUILTIN_CTLZ, MASK_CIX, true },
6367 { "__builtin_alpha_ctpop", ALPHA_BUILTIN_CTPOP, MASK_CIX, true }
6370 static struct alpha_builtin_def const two_arg_builtins[] = {
6371 { "__builtin_alpha_cmpbge", ALPHA_BUILTIN_CMPBGE, 0, true },
6372 { "__builtin_alpha_extbl", ALPHA_BUILTIN_EXTBL, 0, true },
6373 { "__builtin_alpha_extwl", ALPHA_BUILTIN_EXTWL, 0, true },
6374 { "__builtin_alpha_extll", ALPHA_BUILTIN_EXTLL, 0, true },
6375 { "__builtin_alpha_extql", ALPHA_BUILTIN_EXTQL, 0, true },
6376 { "__builtin_alpha_extwh", ALPHA_BUILTIN_EXTWH, 0, true },
6377 { "__builtin_alpha_extlh", ALPHA_BUILTIN_EXTLH, 0, true },
6378 { "__builtin_alpha_extqh", ALPHA_BUILTIN_EXTQH, 0, true },
6379 { "__builtin_alpha_insbl", ALPHA_BUILTIN_INSBL, 0, true },
6380 { "__builtin_alpha_inswl", ALPHA_BUILTIN_INSWL, 0, true },
6381 { "__builtin_alpha_insll", ALPHA_BUILTIN_INSLL, 0, true },
6382 { "__builtin_alpha_insql", ALPHA_BUILTIN_INSQL, 0, true },
6383 { "__builtin_alpha_inswh", ALPHA_BUILTIN_INSWH, 0, true },
6384 { "__builtin_alpha_inslh", ALPHA_BUILTIN_INSLH, 0, true },
6385 { "__builtin_alpha_insqh", ALPHA_BUILTIN_INSQH, 0, true },
6386 { "__builtin_alpha_mskbl", ALPHA_BUILTIN_MSKBL, 0, true },
6387 { "__builtin_alpha_mskwl", ALPHA_BUILTIN_MSKWL, 0, true },
6388 { "__builtin_alpha_mskll", ALPHA_BUILTIN_MSKLL, 0, true },
6389 { "__builtin_alpha_mskql", ALPHA_BUILTIN_MSKQL, 0, true },
6390 { "__builtin_alpha_mskwh", ALPHA_BUILTIN_MSKWH, 0, true },
6391 { "__builtin_alpha_msklh", ALPHA_BUILTIN_MSKLH, 0, true },
6392 { "__builtin_alpha_mskqh", ALPHA_BUILTIN_MSKQH, 0, true },
6393 { "__builtin_alpha_umulh", ALPHA_BUILTIN_UMULH, 0, true },
6394 { "__builtin_alpha_zap", ALPHA_BUILTIN_ZAP, 0, true },
6395 { "__builtin_alpha_zapnot", ALPHA_BUILTIN_ZAPNOT, 0, true },
6396 { "__builtin_alpha_minub8", ALPHA_BUILTIN_MINUB8, MASK_MAX, true },
6397 { "__builtin_alpha_minsb8", ALPHA_BUILTIN_MINSB8, MASK_MAX, true },
6398 { "__builtin_alpha_minuw4", ALPHA_BUILTIN_MINUW4, MASK_MAX, true },
6399 { "__builtin_alpha_minsw4", ALPHA_BUILTIN_MINSW4, MASK_MAX, true },
6400 { "__builtin_alpha_maxub8", ALPHA_BUILTIN_MAXUB8, MASK_MAX, true },
6401 { "__builtin_alpha_maxsb8", ALPHA_BUILTIN_MAXSB8, MASK_MAX, true },
6402 { "__builtin_alpha_maxuw4", ALPHA_BUILTIN_MAXUW4, MASK_MAX, true },
6403 { "__builtin_alpha_maxsw4", ALPHA_BUILTIN_MAXSW4, MASK_MAX, true },
6404 { "__builtin_alpha_perr", ALPHA_BUILTIN_PERR, MASK_MAX, true }
6407 static GTY(()) tree alpha_v8qi_u;
6408 static GTY(()) tree alpha_v8qi_s;
6409 static GTY(()) tree alpha_v4hi_u;
6410 static GTY(()) tree alpha_v4hi_s;
6412 /* Helper function of alpha_init_builtins. Add the COUNT built-in
6413 functions pointed to by P, with function type FTYPE. */
6415 static void
6416 alpha_add_builtins (const struct alpha_builtin_def *p, size_t count,
6417 tree ftype)
6419 tree decl;
6420 size_t i;
6422 for (i = 0; i < count; ++i, ++p)
6423 if ((target_flags & p->target_mask) == p->target_mask)
6425 decl = add_builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
6426 NULL, NULL);
6427 if (p->is_const)
6428 TREE_READONLY (decl) = 1;
6429 TREE_NOTHROW (decl) = 1;
6434 static void
6435 alpha_init_builtins (void)
6437 tree dimode_integer_type_node;
6438 tree ftype, decl;
6440 dimode_integer_type_node = lang_hooks.types.type_for_mode (DImode, 0);
6442 ftype = build_function_type (dimode_integer_type_node, void_list_node);
6443 alpha_add_builtins (zero_arg_builtins, ARRAY_SIZE (zero_arg_builtins),
6444 ftype);
6446 ftype = build_function_type_list (dimode_integer_type_node,
6447 dimode_integer_type_node, NULL_TREE);
6448 alpha_add_builtins (one_arg_builtins, ARRAY_SIZE (one_arg_builtins),
6449 ftype);
6451 ftype = build_function_type_list (dimode_integer_type_node,
6452 dimode_integer_type_node,
6453 dimode_integer_type_node, NULL_TREE);
6454 alpha_add_builtins (two_arg_builtins, ARRAY_SIZE (two_arg_builtins),
6455 ftype);
6457 ftype = build_function_type (ptr_type_node, void_list_node);
6458 decl = add_builtin_function ("__builtin_thread_pointer", ftype,
6459 ALPHA_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
6460 NULL, NULL);
6461 TREE_NOTHROW (decl) = 1;
6463 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
6464 decl = add_builtin_function ("__builtin_set_thread_pointer", ftype,
6465 ALPHA_BUILTIN_SET_THREAD_POINTER, BUILT_IN_MD,
6466 NULL, NULL);
6467 TREE_NOTHROW (decl) = 1;
6469 alpha_v8qi_u = build_vector_type (unsigned_intQI_type_node, 8);
6470 alpha_v8qi_s = build_vector_type (intQI_type_node, 8);
6471 alpha_v4hi_u = build_vector_type (unsigned_intHI_type_node, 4);
6472 alpha_v4hi_s = build_vector_type (intHI_type_node, 4);
6475 /* Expand an expression EXP that calls a built-in function,
6476 with result going to TARGET if that's convenient
6477 (and in mode MODE if that's convenient).
6478 SUBTARGET may be used as the target for computing one of EXP's operands.
6479 IGNORE is nonzero if the value is to be ignored. */
6481 static rtx
6482 alpha_expand_builtin (tree exp, rtx target,
6483 rtx subtarget ATTRIBUTE_UNUSED,
6484 enum machine_mode mode ATTRIBUTE_UNUSED,
6485 int ignore ATTRIBUTE_UNUSED)
6487 #define MAX_ARGS 2
6489 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
6490 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
6491 tree arg;
6492 call_expr_arg_iterator iter;
6493 enum insn_code icode;
6494 rtx op[MAX_ARGS], pat;
6495 int arity;
6496 bool nonvoid;
6498 if (fcode >= ALPHA_BUILTIN_max)
6499 internal_error ("bad builtin fcode");
6500 icode = code_for_builtin[fcode];
6501 if (icode == 0)
6502 internal_error ("bad builtin fcode");
6504 nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
6506 arity = 0;
6507 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
6509 const struct insn_operand_data *insn_op;
6511 if (arg == error_mark_node)
6512 return NULL_RTX;
6513 if (arity > MAX_ARGS)
6514 return NULL_RTX;
6516 insn_op = &insn_data[icode].operand[arity + nonvoid];
6518 op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, 0);
6520 if (!(*insn_op->predicate) (op[arity], insn_op->mode))
6521 op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]);
6522 arity++;
6525 if (nonvoid)
6527 enum machine_mode tmode = insn_data[icode].operand[0].mode;
6528 if (!target
6529 || GET_MODE (target) != tmode
6530 || !(*insn_data[icode].operand[0].predicate) (target, tmode))
6531 target = gen_reg_rtx (tmode);
6534 switch (arity)
6536 case 0:
6537 pat = GEN_FCN (icode) (target);
6538 break;
6539 case 1:
6540 if (nonvoid)
6541 pat = GEN_FCN (icode) (target, op[0]);
6542 else
6543 pat = GEN_FCN (icode) (op[0]);
6544 break;
6545 case 2:
6546 pat = GEN_FCN (icode) (target, op[0], op[1]);
6547 break;
6548 default:
6549 gcc_unreachable ();
6551 if (!pat)
6552 return NULL_RTX;
6553 emit_insn (pat);
6555 if (nonvoid)
6556 return target;
6557 else
6558 return const0_rtx;
6562 /* Several bits below assume HWI >= 64 bits. This should be enforced
6563 by config.gcc. */
6564 #if HOST_BITS_PER_WIDE_INT < 64
6565 # error "HOST_WIDE_INT too small"
6566 #endif
6568 /* Fold the builtin for the CMPBGE instruction. This is a vector comparison
6569 with an 8-bit output vector. OPINT contains the integer operands; bit N
6570 of OP_CONST is set if OPINT[N] is valid. */
6572 static tree
6573 alpha_fold_builtin_cmpbge (unsigned HOST_WIDE_INT opint[], long op_const)
6575 if (op_const == 3)
6577 int i, val;
6578 for (i = 0, val = 0; i < 8; ++i)
6580 unsigned HOST_WIDE_INT c0 = (opint[0] >> (i * 8)) & 0xff;
6581 unsigned HOST_WIDE_INT c1 = (opint[1] >> (i * 8)) & 0xff;
6582 if (c0 >= c1)
6583 val |= 1 << i;
6585 return build_int_cst (long_integer_type_node, val);
6587 else if (op_const == 2 && opint[1] == 0)
6588 return build_int_cst (long_integer_type_node, 0xff);
6589 return NULL;
6592 /* Fold the builtin for the ZAPNOT instruction. This is essentially a
6593 specialized form of an AND operation. Other byte manipulation instructions
6594 are defined in terms of this instruction, so this is also used as a
6595 subroutine for other builtins.
6597 OP contains the tree operands; OPINT contains the extracted integer values.
6598 Bit N of OP_CONST it set if OPINT[N] is valid. OP may be null if only
6599 OPINT may be considered. */
6601 static tree
6602 alpha_fold_builtin_zapnot (tree *op, unsigned HOST_WIDE_INT opint[],
6603 long op_const)
6605 if (op_const & 2)
6607 unsigned HOST_WIDE_INT mask = 0;
6608 int i;
6610 for (i = 0; i < 8; ++i)
6611 if ((opint[1] >> i) & 1)
6612 mask |= (unsigned HOST_WIDE_INT)0xff << (i * 8);
6614 if (op_const & 1)
6615 return build_int_cst (long_integer_type_node, opint[0] & mask);
6617 if (op)
6618 return fold_build2 (BIT_AND_EXPR, long_integer_type_node, op[0],
6619 build_int_cst (long_integer_type_node, mask));
6621 else if ((op_const & 1) && opint[0] == 0)
6622 return build_int_cst (long_integer_type_node, 0);
6623 return NULL;
6626 /* Fold the builtins for the EXT family of instructions. */
6628 static tree
6629 alpha_fold_builtin_extxx (tree op[], unsigned HOST_WIDE_INT opint[],
6630 long op_const, unsigned HOST_WIDE_INT bytemask,
6631 bool is_high)
6633 long zap_const = 2;
6634 tree *zap_op = NULL;
6636 if (op_const & 2)
6638 unsigned HOST_WIDE_INT loc;
6640 loc = opint[1] & 7;
6641 if (BYTES_BIG_ENDIAN)
6642 loc ^= 7;
6643 loc *= 8;
6645 if (loc != 0)
6647 if (op_const & 1)
6649 unsigned HOST_WIDE_INT temp = opint[0];
6650 if (is_high)
6651 temp <<= loc;
6652 else
6653 temp >>= loc;
6654 opint[0] = temp;
6655 zap_const = 3;
6658 else
6659 zap_op = op;
6662 opint[1] = bytemask;
6663 return alpha_fold_builtin_zapnot (zap_op, opint, zap_const);
6666 /* Fold the builtins for the INS family of instructions. */
6668 static tree
6669 alpha_fold_builtin_insxx (tree op[], unsigned HOST_WIDE_INT opint[],
6670 long op_const, unsigned HOST_WIDE_INT bytemask,
6671 bool is_high)
6673 if ((op_const & 1) && opint[0] == 0)
6674 return build_int_cst (long_integer_type_node, 0);
6676 if (op_const & 2)
6678 unsigned HOST_WIDE_INT temp, loc, byteloc;
6679 tree *zap_op = NULL;
6681 loc = opint[1] & 7;
6682 if (BYTES_BIG_ENDIAN)
6683 loc ^= 7;
6684 bytemask <<= loc;
6686 temp = opint[0];
6687 if (is_high)
6689 byteloc = (64 - (loc * 8)) & 0x3f;
6690 if (byteloc == 0)
6691 zap_op = op;
6692 else
6693 temp >>= byteloc;
6694 bytemask >>= 8;
6696 else
6698 byteloc = loc * 8;
6699 if (byteloc == 0)
6700 zap_op = op;
6701 else
6702 temp <<= byteloc;
6705 opint[0] = temp;
6706 opint[1] = bytemask;
6707 return alpha_fold_builtin_zapnot (zap_op, opint, op_const);
6710 return NULL;
6713 static tree
6714 alpha_fold_builtin_mskxx (tree op[], unsigned HOST_WIDE_INT opint[],
6715 long op_const, unsigned HOST_WIDE_INT bytemask,
6716 bool is_high)
6718 if (op_const & 2)
6720 unsigned HOST_WIDE_INT loc;
6722 loc = opint[1] & 7;
6723 if (BYTES_BIG_ENDIAN)
6724 loc ^= 7;
6725 bytemask <<= loc;
6727 if (is_high)
6728 bytemask >>= 8;
6730 opint[1] = bytemask ^ 0xff;
6733 return alpha_fold_builtin_zapnot (op, opint, op_const);
6736 static tree
6737 alpha_fold_builtin_umulh (unsigned HOST_WIDE_INT opint[], long op_const)
6739 switch (op_const)
6741 case 3:
6743 unsigned HOST_WIDE_INT l;
6744 HOST_WIDE_INT h;
6746 mul_double (opint[0], 0, opint[1], 0, &l, &h);
6748 #if HOST_BITS_PER_WIDE_INT > 64
6749 # error fixme
6750 #endif
6752 return build_int_cst (long_integer_type_node, h);
6755 case 1:
6756 opint[1] = opint[0];
6757 /* FALLTHRU */
6758 case 2:
6759 /* Note that (X*1) >> 64 == 0. */
6760 if (opint[1] == 0 || opint[1] == 1)
6761 return build_int_cst (long_integer_type_node, 0);
6762 break;
6764 return NULL;
6767 static tree
6768 alpha_fold_vector_minmax (enum tree_code code, tree op[], tree vtype)
6770 tree op0 = fold_convert (vtype, op[0]);
6771 tree op1 = fold_convert (vtype, op[1]);
6772 tree val = fold_build2 (code, vtype, op0, op1);
6773 return fold_convert (long_integer_type_node, val);
6776 static tree
6777 alpha_fold_builtin_perr (unsigned HOST_WIDE_INT opint[], long op_const)
6779 unsigned HOST_WIDE_INT temp = 0;
6780 int i;
6782 if (op_const != 3)
6783 return NULL;
6785 for (i = 0; i < 8; ++i)
6787 unsigned HOST_WIDE_INT a = (opint[0] >> (i * 8)) & 0xff;
6788 unsigned HOST_WIDE_INT b = (opint[1] >> (i * 8)) & 0xff;
6789 if (a >= b)
6790 temp += a - b;
6791 else
6792 temp += b - a;
6795 return build_int_cst (long_integer_type_node, temp);
6798 static tree
6799 alpha_fold_builtin_pklb (unsigned HOST_WIDE_INT opint[], long op_const)
6801 unsigned HOST_WIDE_INT temp;
6803 if (op_const == 0)
6804 return NULL;
6806 temp = opint[0] & 0xff;
6807 temp |= (opint[0] >> 24) & 0xff00;
6809 return build_int_cst (long_integer_type_node, temp);
6812 static tree
6813 alpha_fold_builtin_pkwb (unsigned HOST_WIDE_INT opint[], long op_const)
6815 unsigned HOST_WIDE_INT temp;
6817 if (op_const == 0)
6818 return NULL;
6820 temp = opint[0] & 0xff;
6821 temp |= (opint[0] >> 8) & 0xff00;
6822 temp |= (opint[0] >> 16) & 0xff0000;
6823 temp |= (opint[0] >> 24) & 0xff000000;
6825 return build_int_cst (long_integer_type_node, temp);
6828 static tree
6829 alpha_fold_builtin_unpkbl (unsigned HOST_WIDE_INT opint[], long op_const)
6831 unsigned HOST_WIDE_INT temp;
6833 if (op_const == 0)
6834 return NULL;
6836 temp = opint[0] & 0xff;
6837 temp |= (opint[0] & 0xff00) << 24;
6839 return build_int_cst (long_integer_type_node, temp);
6842 static tree
6843 alpha_fold_builtin_unpkbw (unsigned HOST_WIDE_INT opint[], long op_const)
6845 unsigned HOST_WIDE_INT temp;
6847 if (op_const == 0)
6848 return NULL;
6850 temp = opint[0] & 0xff;
6851 temp |= (opint[0] & 0x0000ff00) << 8;
6852 temp |= (opint[0] & 0x00ff0000) << 16;
6853 temp |= (opint[0] & 0xff000000) << 24;
6855 return build_int_cst (long_integer_type_node, temp);
6858 static tree
6859 alpha_fold_builtin_cttz (unsigned HOST_WIDE_INT opint[], long op_const)
6861 unsigned HOST_WIDE_INT temp;
6863 if (op_const == 0)
6864 return NULL;
6866 if (opint[0] == 0)
6867 temp = 64;
6868 else
6869 temp = exact_log2 (opint[0] & -opint[0]);
6871 return build_int_cst (long_integer_type_node, temp);
6874 static tree
6875 alpha_fold_builtin_ctlz (unsigned HOST_WIDE_INT opint[], long op_const)
6877 unsigned HOST_WIDE_INT temp;
6879 if (op_const == 0)
6880 return NULL;
6882 if (opint[0] == 0)
6883 temp = 64;
6884 else
6885 temp = 64 - floor_log2 (opint[0]) - 1;
6887 return build_int_cst (long_integer_type_node, temp);
6890 static tree
6891 alpha_fold_builtin_ctpop (unsigned HOST_WIDE_INT opint[], long op_const)
6893 unsigned HOST_WIDE_INT temp, op;
6895 if (op_const == 0)
6896 return NULL;
6898 op = opint[0];
6899 temp = 0;
6900 while (op)
6901 temp++, op &= op - 1;
6903 return build_int_cst (long_integer_type_node, temp);
6906 /* Fold one of our builtin functions. */
6908 static tree
6909 alpha_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED)
6911 tree op[MAX_ARGS], t;
6912 unsigned HOST_WIDE_INT opint[MAX_ARGS];
6913 long op_const = 0, arity = 0;
6915 for (t = arglist; t ; t = TREE_CHAIN (t), ++arity)
6917 tree arg = TREE_VALUE (t);
6918 if (arg == error_mark_node)
6919 return NULL;
6920 if (arity >= MAX_ARGS)
6921 return NULL;
6923 op[arity] = arg;
6924 opint[arity] = 0;
6925 if (TREE_CODE (arg) == INTEGER_CST)
6927 op_const |= 1L << arity;
6928 opint[arity] = int_cst_value (arg);
6932 switch (DECL_FUNCTION_CODE (fndecl))
6934 case ALPHA_BUILTIN_CMPBGE:
6935 return alpha_fold_builtin_cmpbge (opint, op_const);
6937 case ALPHA_BUILTIN_EXTBL:
6938 return alpha_fold_builtin_extxx (op, opint, op_const, 0x01, false);
6939 case ALPHA_BUILTIN_EXTWL:
6940 return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, false);
6941 case ALPHA_BUILTIN_EXTLL:
6942 return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, false);
6943 case ALPHA_BUILTIN_EXTQL:
6944 return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, false);
6945 case ALPHA_BUILTIN_EXTWH:
6946 return alpha_fold_builtin_extxx (op, opint, op_const, 0x03, true);
6947 case ALPHA_BUILTIN_EXTLH:
6948 return alpha_fold_builtin_extxx (op, opint, op_const, 0x0f, true);
6949 case ALPHA_BUILTIN_EXTQH:
6950 return alpha_fold_builtin_extxx (op, opint, op_const, 0xff, true);
6952 case ALPHA_BUILTIN_INSBL:
6953 return alpha_fold_builtin_insxx (op, opint, op_const, 0x01, false);
6954 case ALPHA_BUILTIN_INSWL:
6955 return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, false);
6956 case ALPHA_BUILTIN_INSLL:
6957 return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, false);
6958 case ALPHA_BUILTIN_INSQL:
6959 return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, false);
6960 case ALPHA_BUILTIN_INSWH:
6961 return alpha_fold_builtin_insxx (op, opint, op_const, 0x03, true);
6962 case ALPHA_BUILTIN_INSLH:
6963 return alpha_fold_builtin_insxx (op, opint, op_const, 0x0f, true);
6964 case ALPHA_BUILTIN_INSQH:
6965 return alpha_fold_builtin_insxx (op, opint, op_const, 0xff, true);
6967 case ALPHA_BUILTIN_MSKBL:
6968 return alpha_fold_builtin_mskxx (op, opint, op_const, 0x01, false);
6969 case ALPHA_BUILTIN_MSKWL:
6970 return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, false);
6971 case ALPHA_BUILTIN_MSKLL:
6972 return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, false);
6973 case ALPHA_BUILTIN_MSKQL:
6974 return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, false);
6975 case ALPHA_BUILTIN_MSKWH:
6976 return alpha_fold_builtin_mskxx (op, opint, op_const, 0x03, true);
6977 case ALPHA_BUILTIN_MSKLH:
6978 return alpha_fold_builtin_mskxx (op, opint, op_const, 0x0f, true);
6979 case ALPHA_BUILTIN_MSKQH:
6980 return alpha_fold_builtin_mskxx (op, opint, op_const, 0xff, true);
6982 case ALPHA_BUILTIN_UMULH:
6983 return alpha_fold_builtin_umulh (opint, op_const);
6985 case ALPHA_BUILTIN_ZAP:
6986 opint[1] ^= 0xff;
6987 /* FALLTHRU */
6988 case ALPHA_BUILTIN_ZAPNOT:
6989 return alpha_fold_builtin_zapnot (op, opint, op_const);
6991 case ALPHA_BUILTIN_MINUB8:
6992 return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_u);
6993 case ALPHA_BUILTIN_MINSB8:
6994 return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v8qi_s);
6995 case ALPHA_BUILTIN_MINUW4:
6996 return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_u);
6997 case ALPHA_BUILTIN_MINSW4:
6998 return alpha_fold_vector_minmax (MIN_EXPR, op, alpha_v4hi_s);
6999 case ALPHA_BUILTIN_MAXUB8:
7000 return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_u);
7001 case ALPHA_BUILTIN_MAXSB8:
7002 return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v8qi_s);
7003 case ALPHA_BUILTIN_MAXUW4:
7004 return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_u);
7005 case ALPHA_BUILTIN_MAXSW4:
7006 return alpha_fold_vector_minmax (MAX_EXPR, op, alpha_v4hi_s);
7008 case ALPHA_BUILTIN_PERR:
7009 return alpha_fold_builtin_perr (opint, op_const);
7010 case ALPHA_BUILTIN_PKLB:
7011 return alpha_fold_builtin_pklb (opint, op_const);
7012 case ALPHA_BUILTIN_PKWB:
7013 return alpha_fold_builtin_pkwb (opint, op_const);
7014 case ALPHA_BUILTIN_UNPKBL:
7015 return alpha_fold_builtin_unpkbl (opint, op_const);
7016 case ALPHA_BUILTIN_UNPKBW:
7017 return alpha_fold_builtin_unpkbw (opint, op_const);
7019 case ALPHA_BUILTIN_CTTZ:
7020 return alpha_fold_builtin_cttz (opint, op_const);
7021 case ALPHA_BUILTIN_CTLZ:
7022 return alpha_fold_builtin_ctlz (opint, op_const);
7023 case ALPHA_BUILTIN_CTPOP:
7024 return alpha_fold_builtin_ctpop (opint, op_const);
7026 case ALPHA_BUILTIN_AMASK:
7027 case ALPHA_BUILTIN_IMPLVER:
7028 case ALPHA_BUILTIN_RPCC:
7029 case ALPHA_BUILTIN_THREAD_POINTER:
7030 case ALPHA_BUILTIN_SET_THREAD_POINTER:
7031 /* None of these are foldable at compile-time. */
7032 default:
7033 return NULL;
7037 /* This page contains routines that are used to determine what the function
7038 prologue and epilogue code will do and write them out. */
7040 /* Compute the size of the save area in the stack. */
7042 /* These variables are used for communication between the following functions.
7043 They indicate various things about the current function being compiled
7044 that are used to tell what kind of prologue, epilogue and procedure
7045 descriptor to generate. */
7047 /* Nonzero if we need a stack procedure. */
7048 enum alpha_procedure_types {PT_NULL = 0, PT_REGISTER = 1, PT_STACK = 2};
7049 static enum alpha_procedure_types alpha_procedure_type;
7051 /* Register number (either FP or SP) that is used to unwind the frame. */
7052 static int vms_unwind_regno;
7054 /* Register number used to save FP. We need not have one for RA since
7055 we don't modify it for register procedures. This is only defined
7056 for register frame procedures. */
7057 static int vms_save_fp_regno;
7059 /* Register number used to reference objects off our PV. */
7060 static int vms_base_regno;
7062 /* Compute register masks for saved registers. */
7064 static void
7065 alpha_sa_mask (unsigned long *imaskP, unsigned long *fmaskP)
7067 unsigned long imask = 0;
7068 unsigned long fmask = 0;
7069 unsigned int i;
7071 /* When outputting a thunk, we don't have valid register life info,
7072 but assemble_start_function wants to output .frame and .mask
7073 directives. */
7074 if (crtl->is_thunk)
7076 *imaskP = 0;
7077 *fmaskP = 0;
7078 return;
7081 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
7082 imask |= (1UL << HARD_FRAME_POINTER_REGNUM);
7084 /* One for every register we have to save. */
7085 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7086 if (! fixed_regs[i] && ! call_used_regs[i]
7087 && df_regs_ever_live_p (i) && i != REG_RA
7088 && (!TARGET_ABI_UNICOSMK || i != HARD_FRAME_POINTER_REGNUM))
7090 if (i < 32)
7091 imask |= (1UL << i);
7092 else
7093 fmask |= (1UL << (i - 32));
7096 /* We need to restore these for the handler. */
7097 if (crtl->calls_eh_return)
7099 for (i = 0; ; ++i)
7101 unsigned regno = EH_RETURN_DATA_REGNO (i);
7102 if (regno == INVALID_REGNUM)
7103 break;
7104 imask |= 1UL << regno;
7108 /* If any register spilled, then spill the return address also. */
7109 /* ??? This is required by the Digital stack unwind specification
7110 and isn't needed if we're doing Dwarf2 unwinding. */
7111 if (imask || fmask || alpha_ra_ever_killed ())
7112 imask |= (1UL << REG_RA);
7114 *imaskP = imask;
7115 *fmaskP = fmask;
7119 alpha_sa_size (void)
7121 unsigned long mask[2];
7122 int sa_size = 0;
7123 int i, j;
7125 alpha_sa_mask (&mask[0], &mask[1]);
7127 if (TARGET_ABI_UNICOSMK)
7129 if (mask[0] || mask[1])
7130 sa_size = 14;
7132 else
7134 for (j = 0; j < 2; ++j)
7135 for (i = 0; i < 32; ++i)
7136 if ((mask[j] >> i) & 1)
7137 sa_size++;
7140 if (TARGET_ABI_UNICOSMK)
7142 /* We might not need to generate a frame if we don't make any calls
7143 (including calls to __T3E_MISMATCH if this is a vararg function),
7144 don't have any local variables which require stack slots, don't
7145 use alloca and have not determined that we need a frame for other
7146 reasons. */
7148 alpha_procedure_type
7149 = (sa_size || get_frame_size() != 0
7150 || crtl->outgoing_args_size
7151 || cfun->stdarg || cfun->calls_alloca
7152 || frame_pointer_needed)
7153 ? PT_STACK : PT_REGISTER;
7155 /* Always reserve space for saving callee-saved registers if we
7156 need a frame as required by the calling convention. */
7157 if (alpha_procedure_type == PT_STACK)
7158 sa_size = 14;
7160 else if (TARGET_ABI_OPEN_VMS)
7162 /* Start by assuming we can use a register procedure if we don't
7163 make any calls (REG_RA not used) or need to save any
7164 registers and a stack procedure if we do. */
7165 if ((mask[0] >> REG_RA) & 1)
7166 alpha_procedure_type = PT_STACK;
7167 else if (get_frame_size() != 0)
7168 alpha_procedure_type = PT_REGISTER;
7169 else
7170 alpha_procedure_type = PT_NULL;
7172 /* Don't reserve space for saving FP & RA yet. Do that later after we've
7173 made the final decision on stack procedure vs register procedure. */
7174 if (alpha_procedure_type == PT_STACK)
7175 sa_size -= 2;
7177 /* Decide whether to refer to objects off our PV via FP or PV.
7178 If we need FP for something else or if we receive a nonlocal
7179 goto (which expects PV to contain the value), we must use PV.
7180 Otherwise, start by assuming we can use FP. */
7182 vms_base_regno
7183 = (frame_pointer_needed
7184 || cfun->has_nonlocal_label
7185 || alpha_procedure_type == PT_STACK
7186 || crtl->outgoing_args_size)
7187 ? REG_PV : HARD_FRAME_POINTER_REGNUM;
7189 /* If we want to copy PV into FP, we need to find some register
7190 in which to save FP. */
7192 vms_save_fp_regno = -1;
7193 if (vms_base_regno == HARD_FRAME_POINTER_REGNUM)
7194 for (i = 0; i < 32; i++)
7195 if (! fixed_regs[i] && call_used_regs[i] && ! df_regs_ever_live_p (i))
7196 vms_save_fp_regno = i;
7198 if (vms_save_fp_regno == -1 && alpha_procedure_type == PT_REGISTER)
7199 vms_base_regno = REG_PV, alpha_procedure_type = PT_STACK;
7200 else if (alpha_procedure_type == PT_NULL)
7201 vms_base_regno = REG_PV;
7203 /* Stack unwinding should be done via FP unless we use it for PV. */
7204 vms_unwind_regno = (vms_base_regno == REG_PV
7205 ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
7207 /* If this is a stack procedure, allow space for saving FP and RA. */
7208 if (alpha_procedure_type == PT_STACK)
7209 sa_size += 2;
7211 else
7213 /* Our size must be even (multiple of 16 bytes). */
7214 if (sa_size & 1)
7215 sa_size++;
7218 return sa_size * 8;
7221 /* Define the offset between two registers, one to be eliminated,
7222 and the other its replacement, at the start of a routine. */
7224 HOST_WIDE_INT
7225 alpha_initial_elimination_offset (unsigned int from,
7226 unsigned int to ATTRIBUTE_UNUSED)
7228 HOST_WIDE_INT ret;
7230 ret = alpha_sa_size ();
7231 ret += ALPHA_ROUND (crtl->outgoing_args_size);
7233 switch (from)
7235 case FRAME_POINTER_REGNUM:
7236 break;
7238 case ARG_POINTER_REGNUM:
7239 ret += (ALPHA_ROUND (get_frame_size ()
7240 + crtl->args.pretend_args_size)
7241 - crtl->args.pretend_args_size);
7242 break;
7244 default:
7245 gcc_unreachable ();
7248 return ret;
7252 alpha_pv_save_size (void)
7254 alpha_sa_size ();
7255 return alpha_procedure_type == PT_STACK ? 8 : 0;
7259 alpha_using_fp (void)
7261 alpha_sa_size ();
7262 return vms_unwind_regno == HARD_FRAME_POINTER_REGNUM;
7265 #if TARGET_ABI_OPEN_VMS
7267 const struct attribute_spec vms_attribute_table[] =
7269 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
7270 { "overlaid", 0, 0, true, false, false, NULL },
7271 { "global", 0, 0, true, false, false, NULL },
7272 { "initialize", 0, 0, true, false, false, NULL },
7273 { NULL, 0, 0, false, false, false, NULL }
7276 #endif
7278 static int
7279 find_lo_sum_using_gp (rtx *px, void *data ATTRIBUTE_UNUSED)
7281 return GET_CODE (*px) == LO_SUM && XEXP (*px, 0) == pic_offset_table_rtx;
7285 alpha_find_lo_sum_using_gp (rtx insn)
7287 return for_each_rtx (&PATTERN (insn), find_lo_sum_using_gp, NULL) > 0;
7290 static int
7291 alpha_does_function_need_gp (void)
7293 rtx insn;
7295 /* The GP being variable is an OSF abi thing. */
7296 if (! TARGET_ABI_OSF)
7297 return 0;
7299 /* We need the gp to load the address of __mcount. */
7300 if (TARGET_PROFILING_NEEDS_GP && crtl->profile)
7301 return 1;
7303 /* The code emitted by alpha_output_mi_thunk_osf uses the gp. */
7304 if (crtl->is_thunk)
7305 return 1;
7307 /* The nonlocal receiver pattern assumes that the gp is valid for
7308 the nested function. Reasonable because it's almost always set
7309 correctly already. For the cases where that's wrong, make sure
7310 the nested function loads its gp on entry. */
7311 if (crtl->has_nonlocal_goto)
7312 return 1;
7314 /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
7315 Even if we are a static function, we still need to do this in case
7316 our address is taken and passed to something like qsort. */
7318 push_topmost_sequence ();
7319 insn = get_insns ();
7320 pop_topmost_sequence ();
7322 for (; insn; insn = NEXT_INSN (insn))
7323 if (INSN_P (insn)
7324 && ! JUMP_TABLE_DATA_P (insn)
7325 && GET_CODE (PATTERN (insn)) != USE
7326 && GET_CODE (PATTERN (insn)) != CLOBBER
7327 && get_attr_usegp (insn))
7328 return 1;
7330 return 0;
7334 /* Helper function to set RTX_FRAME_RELATED_P on instructions, including
7335 sequences. */
7337 static rtx
7338 set_frame_related_p (void)
7340 rtx seq = get_insns ();
7341 rtx insn;
7343 end_sequence ();
7345 if (!seq)
7346 return NULL_RTX;
7348 if (INSN_P (seq))
7350 insn = seq;
7351 while (insn != NULL_RTX)
7353 RTX_FRAME_RELATED_P (insn) = 1;
7354 insn = NEXT_INSN (insn);
7356 seq = emit_insn (seq);
7358 else
7360 seq = emit_insn (seq);
7361 RTX_FRAME_RELATED_P (seq) = 1;
7363 return seq;
7366 #define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
7368 /* Generates a store with the proper unwind info attached. VALUE is
7369 stored at BASE_REG+BASE_OFS. If FRAME_BIAS is nonzero, then BASE_REG
7370 contains SP+FRAME_BIAS, and that is the unwind info that should be
7371 generated. If FRAME_REG != VALUE, then VALUE is being stored on
7372 behalf of FRAME_REG, and FRAME_REG should be present in the unwind. */
7374 static void
7375 emit_frame_store_1 (rtx value, rtx base_reg, HOST_WIDE_INT frame_bias,
7376 HOST_WIDE_INT base_ofs, rtx frame_reg)
7378 rtx addr, mem, insn;
7380 addr = plus_constant (base_reg, base_ofs);
7381 mem = gen_rtx_MEM (DImode, addr);
7382 set_mem_alias_set (mem, alpha_sr_alias_set);
7384 insn = emit_move_insn (mem, value);
7385 RTX_FRAME_RELATED_P (insn) = 1;
7387 if (frame_bias || value != frame_reg)
7389 if (frame_bias)
7391 addr = plus_constant (stack_pointer_rtx, frame_bias + base_ofs);
7392 mem = gen_rtx_MEM (DImode, addr);
7395 REG_NOTES (insn)
7396 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
7397 gen_rtx_SET (VOIDmode, mem, frame_reg),
7398 REG_NOTES (insn));
7402 static void
7403 emit_frame_store (unsigned int regno, rtx base_reg,
7404 HOST_WIDE_INT frame_bias, HOST_WIDE_INT base_ofs)
7406 rtx reg = gen_rtx_REG (DImode, regno);
7407 emit_frame_store_1 (reg, base_reg, frame_bias, base_ofs, reg);
7410 /* Write function prologue. */
7412 /* On vms we have two kinds of functions:
7414 - stack frame (PROC_STACK)
7415 these are 'normal' functions with local vars and which are
7416 calling other functions
7417 - register frame (PROC_REGISTER)
7418 keeps all data in registers, needs no stack
7420 We must pass this to the assembler so it can generate the
7421 proper pdsc (procedure descriptor)
7422 This is done with the '.pdesc' command.
7424 On not-vms, we don't really differentiate between the two, as we can
7425 simply allocate stack without saving registers. */
7427 void
7428 alpha_expand_prologue (void)
7430 /* Registers to save. */
7431 unsigned long imask = 0;
7432 unsigned long fmask = 0;
7433 /* Stack space needed for pushing registers clobbered by us. */
7434 HOST_WIDE_INT sa_size;
7435 /* Complete stack size needed. */
7436 HOST_WIDE_INT frame_size;
7437 /* Offset from base reg to register save area. */
7438 HOST_WIDE_INT reg_offset;
7439 rtx sa_reg;
7440 int i;
7442 sa_size = alpha_sa_size ();
7444 frame_size = get_frame_size ();
7445 if (TARGET_ABI_OPEN_VMS)
7446 frame_size = ALPHA_ROUND (sa_size
7447 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7448 + frame_size
7449 + crtl->args.pretend_args_size);
7450 else if (TARGET_ABI_UNICOSMK)
7451 /* We have to allocate space for the DSIB if we generate a frame. */
7452 frame_size = ALPHA_ROUND (sa_size
7453 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7454 + ALPHA_ROUND (frame_size
7455 + crtl->outgoing_args_size);
7456 else
7457 frame_size = (ALPHA_ROUND (crtl->outgoing_args_size)
7458 + sa_size
7459 + ALPHA_ROUND (frame_size
7460 + crtl->args.pretend_args_size));
7462 if (TARGET_ABI_OPEN_VMS)
7463 reg_offset = 8;
7464 else
7465 reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
7467 alpha_sa_mask (&imask, &fmask);
7469 /* Emit an insn to reload GP, if needed. */
7470 if (TARGET_ABI_OSF)
7472 alpha_function_needs_gp = alpha_does_function_need_gp ();
7473 if (alpha_function_needs_gp)
7474 emit_insn (gen_prologue_ldgp ());
7477 /* TARGET_PROFILING_NEEDS_GP actually implies that we need to insert
7478 the call to mcount ourselves, rather than having the linker do it
7479 magically in response to -pg. Since _mcount has special linkage,
7480 don't represent the call as a call. */
7481 if (TARGET_PROFILING_NEEDS_GP && crtl->profile)
7482 emit_insn (gen_prologue_mcount ());
7484 if (TARGET_ABI_UNICOSMK)
7485 unicosmk_gen_dsib (&imask);
7487 /* Adjust the stack by the frame size. If the frame size is > 4096
7488 bytes, we need to be sure we probe somewhere in the first and last
7489 4096 bytes (we can probably get away without the latter test) and
7490 every 8192 bytes in between. If the frame size is > 32768, we
7491 do this in a loop. Otherwise, we generate the explicit probe
7492 instructions.
7494 Note that we are only allowed to adjust sp once in the prologue. */
7496 if (frame_size <= 32768)
7498 if (frame_size > 4096)
7500 int probed;
7502 for (probed = 4096; probed < frame_size; probed += 8192)
7503 emit_insn (gen_probe_stack (GEN_INT (TARGET_ABI_UNICOSMK
7504 ? -probed + 64
7505 : -probed)));
7507 /* We only have to do this probe if we aren't saving registers. */
7508 if (sa_size == 0 && frame_size > probed - 4096)
7509 emit_insn (gen_probe_stack (GEN_INT (-frame_size)));
7512 if (frame_size != 0)
7513 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
7514 GEN_INT (TARGET_ABI_UNICOSMK
7515 ? -frame_size + 64
7516 : -frame_size))));
7518 else
7520 /* Here we generate code to set R22 to SP + 4096 and set R23 to the
7521 number of 8192 byte blocks to probe. We then probe each block
7522 in the loop and then set SP to the proper location. If the
7523 amount remaining is > 4096, we have to do one more probe if we
7524 are not saving any registers. */
7526 HOST_WIDE_INT blocks = (frame_size + 4096) / 8192;
7527 HOST_WIDE_INT leftover = frame_size + 4096 - blocks * 8192;
7528 rtx ptr = gen_rtx_REG (DImode, 22);
7529 rtx count = gen_rtx_REG (DImode, 23);
7530 rtx seq;
7532 emit_move_insn (count, GEN_INT (blocks));
7533 emit_insn (gen_adddi3 (ptr, stack_pointer_rtx,
7534 GEN_INT (TARGET_ABI_UNICOSMK ? 4096 - 64 : 4096)));
7536 /* Because of the difficulty in emitting a new basic block this
7537 late in the compilation, generate the loop as a single insn. */
7538 emit_insn (gen_prologue_stack_probe_loop (count, ptr));
7540 if (leftover > 4096 && sa_size == 0)
7542 rtx last = gen_rtx_MEM (DImode, plus_constant (ptr, -leftover));
7543 MEM_VOLATILE_P (last) = 1;
7544 emit_move_insn (last, const0_rtx);
7547 if (TARGET_ABI_WINDOWS_NT)
7549 /* For NT stack unwind (done by 'reverse execution'), it's
7550 not OK to take the result of a loop, even though the value
7551 is already in ptr, so we reload it via a single operation
7552 and subtract it to sp.
7554 Yes, that's correct -- we have to reload the whole constant
7555 into a temporary via ldah+lda then subtract from sp. */
7557 HOST_WIDE_INT lo, hi;
7558 lo = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
7559 hi = frame_size - lo;
7561 emit_move_insn (ptr, GEN_INT (hi));
7562 emit_insn (gen_adddi3 (ptr, ptr, GEN_INT (lo)));
7563 seq = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
7564 ptr));
7566 else
7568 seq = emit_insn (gen_adddi3 (stack_pointer_rtx, ptr,
7569 GEN_INT (-leftover)));
7572 /* This alternative is special, because the DWARF code cannot
7573 possibly intuit through the loop above. So we invent this
7574 note it looks at instead. */
7575 RTX_FRAME_RELATED_P (seq) = 1;
7576 REG_NOTES (seq)
7577 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
7578 gen_rtx_SET (VOIDmode, stack_pointer_rtx,
7579 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
7580 GEN_INT (TARGET_ABI_UNICOSMK
7581 ? -frame_size + 64
7582 : -frame_size))),
7583 REG_NOTES (seq));
7586 if (!TARGET_ABI_UNICOSMK)
7588 HOST_WIDE_INT sa_bias = 0;
7590 /* Cope with very large offsets to the register save area. */
7591 sa_reg = stack_pointer_rtx;
7592 if (reg_offset + sa_size > 0x8000)
7594 int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
7595 rtx sa_bias_rtx;
7597 if (low + sa_size <= 0x8000)
7598 sa_bias = reg_offset - low, reg_offset = low;
7599 else
7600 sa_bias = reg_offset, reg_offset = 0;
7602 sa_reg = gen_rtx_REG (DImode, 24);
7603 sa_bias_rtx = GEN_INT (sa_bias);
7605 if (add_operand (sa_bias_rtx, DImode))
7606 emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_bias_rtx));
7607 else
7609 emit_move_insn (sa_reg, sa_bias_rtx);
7610 emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx, sa_reg));
7614 /* Save regs in stack order. Beginning with VMS PV. */
7615 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
7616 emit_frame_store (REG_PV, stack_pointer_rtx, 0, 0);
7618 /* Save register RA next. */
7619 if (imask & (1UL << REG_RA))
7621 emit_frame_store (REG_RA, sa_reg, sa_bias, reg_offset);
7622 imask &= ~(1UL << REG_RA);
7623 reg_offset += 8;
7626 /* Now save any other registers required to be saved. */
7627 for (i = 0; i < 31; i++)
7628 if (imask & (1UL << i))
7630 emit_frame_store (i, sa_reg, sa_bias, reg_offset);
7631 reg_offset += 8;
7634 for (i = 0; i < 31; i++)
7635 if (fmask & (1UL << i))
7637 emit_frame_store (i+32, sa_reg, sa_bias, reg_offset);
7638 reg_offset += 8;
7641 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK)
7643 /* The standard frame on the T3E includes space for saving registers.
7644 We just have to use it. We don't have to save the return address and
7645 the old frame pointer here - they are saved in the DSIB. */
7647 reg_offset = -56;
7648 for (i = 9; i < 15; i++)
7649 if (imask & (1UL << i))
7651 emit_frame_store (i, hard_frame_pointer_rtx, 0, reg_offset);
7652 reg_offset -= 8;
7654 for (i = 2; i < 10; i++)
7655 if (fmask & (1UL << i))
7657 emit_frame_store (i+32, hard_frame_pointer_rtx, 0, reg_offset);
7658 reg_offset -= 8;
7662 if (TARGET_ABI_OPEN_VMS)
7664 if (alpha_procedure_type == PT_REGISTER)
7665 /* Register frame procedures save the fp.
7666 ?? Ought to have a dwarf2 save for this. */
7667 emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno),
7668 hard_frame_pointer_rtx);
7670 if (alpha_procedure_type != PT_NULL && vms_base_regno != REG_PV)
7671 emit_insn (gen_force_movdi (gen_rtx_REG (DImode, vms_base_regno),
7672 gen_rtx_REG (DImode, REG_PV)));
7674 if (alpha_procedure_type != PT_NULL
7675 && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
7676 FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
7678 /* If we have to allocate space for outgoing args, do it now. */
7679 if (crtl->outgoing_args_size != 0)
7681 rtx seq
7682 = emit_move_insn (stack_pointer_rtx,
7683 plus_constant
7684 (hard_frame_pointer_rtx,
7685 - (ALPHA_ROUND
7686 (crtl->outgoing_args_size))));
7688 /* Only set FRAME_RELATED_P on the stack adjustment we just emitted
7689 if ! frame_pointer_needed. Setting the bit will change the CFA
7690 computation rule to use sp again, which would be wrong if we had
7691 frame_pointer_needed, as this means sp might move unpredictably
7692 later on.
7694 Also, note that
7695 frame_pointer_needed
7696 => vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
7698 crtl->outgoing_args_size != 0
7699 => alpha_procedure_type != PT_NULL,
7701 so when we are not setting the bit here, we are guaranteed to
7702 have emitted an FRP frame pointer update just before. */
7703 RTX_FRAME_RELATED_P (seq) = ! frame_pointer_needed;
7706 else if (!TARGET_ABI_UNICOSMK)
7708 /* If we need a frame pointer, set it from the stack pointer. */
7709 if (frame_pointer_needed)
7711 if (TARGET_CAN_FAULT_IN_PROLOGUE)
7712 FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
7713 else
7714 /* This must always be the last instruction in the
7715 prologue, thus we emit a special move + clobber. */
7716 FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx,
7717 stack_pointer_rtx, sa_reg)));
7721 /* The ABIs for VMS and OSF/1 say that while we can schedule insns into
7722 the prologue, for exception handling reasons, we cannot do this for
7723 any insn that might fault. We could prevent this for mems with a
7724 (clobber:BLK (scratch)), but this doesn't work for fp insns. So we
7725 have to prevent all such scheduling with a blockage.
7727 Linux, on the other hand, never bothered to implement OSF/1's
7728 exception handling, and so doesn't care about such things. Anyone
7729 planning to use dwarf2 frame-unwind info can also omit the blockage. */
7731 if (! TARGET_CAN_FAULT_IN_PROLOGUE)
7732 emit_insn (gen_blockage ());
7735 /* Count the number of .file directives, so that .loc is up to date. */
7736 int num_source_filenames = 0;
7738 /* Output the textual info surrounding the prologue. */
7740 void
7741 alpha_start_function (FILE *file, const char *fnname,
7742 tree decl ATTRIBUTE_UNUSED)
7744 unsigned long imask = 0;
7745 unsigned long fmask = 0;
7746 /* Stack space needed for pushing registers clobbered by us. */
7747 HOST_WIDE_INT sa_size;
7748 /* Complete stack size needed. */
7749 unsigned HOST_WIDE_INT frame_size;
7750 /* The maximum debuggable frame size (512 Kbytes using Tru64 as). */
7751 unsigned HOST_WIDE_INT max_frame_size = TARGET_ABI_OSF && !TARGET_GAS
7752 ? 524288
7753 : 1UL << 31;
7754 /* Offset from base reg to register save area. */
7755 HOST_WIDE_INT reg_offset;
7756 char *entry_label = (char *) alloca (strlen (fnname) + 6);
7757 int i;
7759 /* Don't emit an extern directive for functions defined in the same file. */
7760 if (TARGET_ABI_UNICOSMK)
7762 tree name_tree;
7763 name_tree = get_identifier (fnname);
7764 TREE_ASM_WRITTEN (name_tree) = 1;
7767 alpha_fnname = fnname;
7768 sa_size = alpha_sa_size ();
7770 frame_size = get_frame_size ();
7771 if (TARGET_ABI_OPEN_VMS)
7772 frame_size = ALPHA_ROUND (sa_size
7773 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7774 + frame_size
7775 + crtl->args.pretend_args_size);
7776 else if (TARGET_ABI_UNICOSMK)
7777 frame_size = ALPHA_ROUND (sa_size
7778 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7779 + ALPHA_ROUND (frame_size
7780 + crtl->outgoing_args_size);
7781 else
7782 frame_size = (ALPHA_ROUND (crtl->outgoing_args_size)
7783 + sa_size
7784 + ALPHA_ROUND (frame_size
7785 + crtl->args.pretend_args_size));
7787 if (TARGET_ABI_OPEN_VMS)
7788 reg_offset = 8;
7789 else
7790 reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
7792 alpha_sa_mask (&imask, &fmask);
7794 /* Ecoff can handle multiple .file directives, so put out file and lineno.
7795 We have to do that before the .ent directive as we cannot switch
7796 files within procedures with native ecoff because line numbers are
7797 linked to procedure descriptors.
7798 Outputting the lineno helps debugging of one line functions as they
7799 would otherwise get no line number at all. Please note that we would
7800 like to put out last_linenum from final.c, but it is not accessible. */
7802 if (write_symbols == SDB_DEBUG)
7804 #ifdef ASM_OUTPUT_SOURCE_FILENAME
7805 ASM_OUTPUT_SOURCE_FILENAME (file,
7806 DECL_SOURCE_FILE (current_function_decl));
7807 #endif
7808 #ifdef SDB_OUTPUT_SOURCE_LINE
7809 if (debug_info_level != DINFO_LEVEL_TERSE)
7810 SDB_OUTPUT_SOURCE_LINE (file,
7811 DECL_SOURCE_LINE (current_function_decl));
7812 #endif
7815 /* Issue function start and label. */
7816 if (TARGET_ABI_OPEN_VMS
7817 || (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive))
7819 fputs ("\t.ent ", file);
7820 assemble_name (file, fnname);
7821 putc ('\n', file);
7823 /* If the function needs GP, we'll write the "..ng" label there.
7824 Otherwise, do it here. */
7825 if (TARGET_ABI_OSF
7826 && ! alpha_function_needs_gp
7827 && ! crtl->is_thunk)
7829 putc ('$', file);
7830 assemble_name (file, fnname);
7831 fputs ("..ng:\n", file);
7835 strcpy (entry_label, fnname);
7836 if (TARGET_ABI_OPEN_VMS)
7837 strcat (entry_label, "..en");
7839 /* For public functions, the label must be globalized by appending an
7840 additional colon. */
7841 if (TARGET_ABI_UNICOSMK && TREE_PUBLIC (decl))
7842 strcat (entry_label, ":");
7844 ASM_OUTPUT_LABEL (file, entry_label);
7845 inside_function = TRUE;
7847 if (TARGET_ABI_OPEN_VMS)
7848 fprintf (file, "\t.base $%d\n", vms_base_regno);
7850 if (!TARGET_ABI_OPEN_VMS && !TARGET_ABI_UNICOSMK && TARGET_IEEE_CONFORMANT
7851 && !flag_inhibit_size_directive)
7853 /* Set flags in procedure descriptor to request IEEE-conformant
7854 math-library routines. The value we set it to is PDSC_EXC_IEEE
7855 (/usr/include/pdsc.h). */
7856 fputs ("\t.eflag 48\n", file);
7859 /* Set up offsets to alpha virtual arg/local debugging pointer. */
7860 alpha_auto_offset = -frame_size + crtl->args.pretend_args_size;
7861 alpha_arg_offset = -frame_size + 48;
7863 /* Describe our frame. If the frame size is larger than an integer,
7864 print it as zero to avoid an assembler error. We won't be
7865 properly describing such a frame, but that's the best we can do. */
7866 if (TARGET_ABI_UNICOSMK)
7868 else if (TARGET_ABI_OPEN_VMS)
7869 fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,"
7870 HOST_WIDE_INT_PRINT_DEC "\n",
7871 vms_unwind_regno,
7872 frame_size >= (1UL << 31) ? 0 : frame_size,
7873 reg_offset);
7874 else if (!flag_inhibit_size_directive)
7875 fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,%d\n",
7876 (frame_pointer_needed
7877 ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM),
7878 frame_size >= max_frame_size ? 0 : frame_size,
7879 crtl->args.pretend_args_size);
7881 /* Describe which registers were spilled. */
7882 if (TARGET_ABI_UNICOSMK)
7884 else if (TARGET_ABI_OPEN_VMS)
7886 if (imask)
7887 /* ??? Does VMS care if mask contains ra? The old code didn't
7888 set it, so I don't here. */
7889 fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1UL << REG_RA));
7890 if (fmask)
7891 fprintf (file, "\t.fmask 0x%lx,0\n", fmask);
7892 if (alpha_procedure_type == PT_REGISTER)
7893 fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno);
7895 else if (!flag_inhibit_size_directive)
7897 if (imask)
7899 fprintf (file, "\t.mask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", imask,
7900 frame_size >= max_frame_size ? 0 : reg_offset - frame_size);
7902 for (i = 0; i < 32; ++i)
7903 if (imask & (1UL << i))
7904 reg_offset += 8;
7907 if (fmask)
7908 fprintf (file, "\t.fmask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", fmask,
7909 frame_size >= max_frame_size ? 0 : reg_offset - frame_size);
7912 #if TARGET_ABI_OPEN_VMS
7913 /* Ifdef'ed cause link_section are only available then. */
7914 switch_to_section (readonly_data_section);
7915 fprintf (file, "\t.align 3\n");
7916 assemble_name (file, fnname); fputs ("..na:\n", file);
7917 fputs ("\t.ascii \"", file);
7918 assemble_name (file, fnname);
7919 fputs ("\\0\"\n", file);
7920 alpha_need_linkage (fnname, 1);
7921 switch_to_section (text_section);
7922 #endif
7925 /* Emit the .prologue note at the scheduled end of the prologue. */
7927 static void
7928 alpha_output_function_end_prologue (FILE *file)
7930 if (TARGET_ABI_UNICOSMK)
7932 else if (TARGET_ABI_OPEN_VMS)
7933 fputs ("\t.prologue\n", file);
7934 else if (TARGET_ABI_WINDOWS_NT)
7935 fputs ("\t.prologue 0\n", file);
7936 else if (!flag_inhibit_size_directive)
7937 fprintf (file, "\t.prologue %d\n",
7938 alpha_function_needs_gp || crtl->is_thunk);
7941 /* Write function epilogue. */
7943 /* ??? At some point we will want to support full unwind, and so will
7944 need to mark the epilogue as well. At the moment, we just confuse
7945 dwarf2out. */
7946 #undef FRP
7947 #define FRP(exp) exp
7949 void
7950 alpha_expand_epilogue (void)
7952 /* Registers to save. */
7953 unsigned long imask = 0;
7954 unsigned long fmask = 0;
7955 /* Stack space needed for pushing registers clobbered by us. */
7956 HOST_WIDE_INT sa_size;
7957 /* Complete stack size needed. */
7958 HOST_WIDE_INT frame_size;
7959 /* Offset from base reg to register save area. */
7960 HOST_WIDE_INT reg_offset;
7961 int fp_is_frame_pointer, fp_offset;
7962 rtx sa_reg, sa_reg_exp = NULL;
7963 rtx sp_adj1, sp_adj2, mem;
7964 rtx eh_ofs;
7965 int i;
7967 sa_size = alpha_sa_size ();
7969 frame_size = get_frame_size ();
7970 if (TARGET_ABI_OPEN_VMS)
7971 frame_size = ALPHA_ROUND (sa_size
7972 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7973 + frame_size
7974 + crtl->args.pretend_args_size);
7975 else if (TARGET_ABI_UNICOSMK)
7976 frame_size = ALPHA_ROUND (sa_size
7977 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7978 + ALPHA_ROUND (frame_size
7979 + crtl->outgoing_args_size);
7980 else
7981 frame_size = (ALPHA_ROUND (crtl->outgoing_args_size)
7982 + sa_size
7983 + ALPHA_ROUND (frame_size
7984 + crtl->args.pretend_args_size));
7986 if (TARGET_ABI_OPEN_VMS)
7988 if (alpha_procedure_type == PT_STACK)
7989 reg_offset = 8;
7990 else
7991 reg_offset = 0;
7993 else
7994 reg_offset = ALPHA_ROUND (crtl->outgoing_args_size);
7996 alpha_sa_mask (&imask, &fmask);
7998 fp_is_frame_pointer
7999 = ((TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
8000 || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed));
8001 fp_offset = 0;
8002 sa_reg = stack_pointer_rtx;
8004 if (crtl->calls_eh_return)
8005 eh_ofs = EH_RETURN_STACKADJ_RTX;
8006 else
8007 eh_ofs = NULL_RTX;
8009 if (!TARGET_ABI_UNICOSMK && sa_size)
8011 /* If we have a frame pointer, restore SP from it. */
8012 if ((TARGET_ABI_OPEN_VMS
8013 && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
8014 || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed))
8015 FRP (emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx));
8017 /* Cope with very large offsets to the register save area. */
8018 if (reg_offset + sa_size > 0x8000)
8020 int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
8021 HOST_WIDE_INT bias;
8023 if (low + sa_size <= 0x8000)
8024 bias = reg_offset - low, reg_offset = low;
8025 else
8026 bias = reg_offset, reg_offset = 0;
8028 sa_reg = gen_rtx_REG (DImode, 22);
8029 sa_reg_exp = plus_constant (stack_pointer_rtx, bias);
8031 FRP (emit_move_insn (sa_reg, sa_reg_exp));
8034 /* Restore registers in order, excepting a true frame pointer. */
8036 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
8037 if (! eh_ofs)
8038 set_mem_alias_set (mem, alpha_sr_alias_set);
8039 FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
8041 reg_offset += 8;
8042 imask &= ~(1UL << REG_RA);
8044 for (i = 0; i < 31; ++i)
8045 if (imask & (1UL << i))
8047 if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer)
8048 fp_offset = reg_offset;
8049 else
8051 mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, reg_offset));
8052 set_mem_alias_set (mem, alpha_sr_alias_set);
8053 FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
8055 reg_offset += 8;
8058 for (i = 0; i < 31; ++i)
8059 if (fmask & (1UL << i))
8061 mem = gen_rtx_MEM (DFmode, plus_constant(sa_reg, reg_offset));
8062 set_mem_alias_set (mem, alpha_sr_alias_set);
8063 FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
8064 reg_offset += 8;
8067 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK)
8069 /* Restore callee-saved general-purpose registers. */
8071 reg_offset = -56;
8073 for (i = 9; i < 15; i++)
8074 if (imask & (1UL << i))
8076 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx,
8077 reg_offset));
8078 set_mem_alias_set (mem, alpha_sr_alias_set);
8079 FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
8080 reg_offset -= 8;
8083 for (i = 2; i < 10; i++)
8084 if (fmask & (1UL << i))
8086 mem = gen_rtx_MEM (DFmode, plus_constant(hard_frame_pointer_rtx,
8087 reg_offset));
8088 set_mem_alias_set (mem, alpha_sr_alias_set);
8089 FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
8090 reg_offset -= 8;
8093 /* Restore the return address from the DSIB. */
8095 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx, -8));
8096 set_mem_alias_set (mem, alpha_sr_alias_set);
8097 FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
8100 if (frame_size || eh_ofs)
8102 sp_adj1 = stack_pointer_rtx;
8104 if (eh_ofs)
8106 sp_adj1 = gen_rtx_REG (DImode, 23);
8107 emit_move_insn (sp_adj1,
8108 gen_rtx_PLUS (Pmode, stack_pointer_rtx, eh_ofs));
8111 /* If the stack size is large, begin computation into a temporary
8112 register so as not to interfere with a potential fp restore,
8113 which must be consecutive with an SP restore. */
8114 if (frame_size < 32768
8115 && ! (TARGET_ABI_UNICOSMK && cfun->calls_alloca))
8116 sp_adj2 = GEN_INT (frame_size);
8117 else if (TARGET_ABI_UNICOSMK)
8119 sp_adj1 = gen_rtx_REG (DImode, 23);
8120 FRP (emit_move_insn (sp_adj1, hard_frame_pointer_rtx));
8121 sp_adj2 = const0_rtx;
8123 else if (frame_size < 0x40007fffL)
8125 int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
8127 sp_adj2 = plus_constant (sp_adj1, frame_size - low);
8128 if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2))
8129 sp_adj1 = sa_reg;
8130 else
8132 sp_adj1 = gen_rtx_REG (DImode, 23);
8133 FRP (emit_move_insn (sp_adj1, sp_adj2));
8135 sp_adj2 = GEN_INT (low);
8137 else
8139 rtx tmp = gen_rtx_REG (DImode, 23);
8140 FRP (sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size,
8141 3, false));
8142 if (!sp_adj2)
8144 /* We can't drop new things to memory this late, afaik,
8145 so build it up by pieces. */
8146 FRP (sp_adj2 = alpha_emit_set_long_const (tmp, frame_size,
8147 -(frame_size < 0)));
8148 gcc_assert (sp_adj2);
8152 /* From now on, things must be in order. So emit blockages. */
8154 /* Restore the frame pointer. */
8155 if (TARGET_ABI_UNICOSMK)
8157 emit_insn (gen_blockage ());
8158 mem = gen_rtx_MEM (DImode,
8159 plus_constant (hard_frame_pointer_rtx, -16));
8160 set_mem_alias_set (mem, alpha_sr_alias_set);
8161 FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
8163 else if (fp_is_frame_pointer)
8165 emit_insn (gen_blockage ());
8166 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, fp_offset));
8167 set_mem_alias_set (mem, alpha_sr_alias_set);
8168 FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
8170 else if (TARGET_ABI_OPEN_VMS)
8172 emit_insn (gen_blockage ());
8173 FRP (emit_move_insn (hard_frame_pointer_rtx,
8174 gen_rtx_REG (DImode, vms_save_fp_regno)));
8177 /* Restore the stack pointer. */
8178 emit_insn (gen_blockage ());
8179 if (sp_adj2 == const0_rtx)
8180 FRP (emit_move_insn (stack_pointer_rtx, sp_adj1));
8181 else
8182 FRP (emit_move_insn (stack_pointer_rtx,
8183 gen_rtx_PLUS (DImode, sp_adj1, sp_adj2)));
8185 else
8187 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_REGISTER)
8189 emit_insn (gen_blockage ());
8190 FRP (emit_move_insn (hard_frame_pointer_rtx,
8191 gen_rtx_REG (DImode, vms_save_fp_regno)));
8193 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type != PT_STACK)
8195 /* Decrement the frame pointer if the function does not have a
8196 frame. */
8198 emit_insn (gen_blockage ());
8199 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
8200 hard_frame_pointer_rtx, constm1_rtx)));
8205 /* Output the rest of the textual info surrounding the epilogue. */
8207 void
8208 alpha_end_function (FILE *file, const char *fnname, tree decl ATTRIBUTE_UNUSED)
8210 rtx insn;
8212 /* We output a nop after noreturn calls at the very end of the function to
8213 ensure that the return address always remains in the caller's code range,
8214 as not doing so might confuse unwinding engines. */
8215 insn = get_last_insn ();
8216 if (!INSN_P (insn))
8217 insn = prev_active_insn (insn);
8218 if (GET_CODE (insn) == CALL_INSN)
8219 output_asm_insn (get_insn_template (CODE_FOR_nop, NULL), NULL);
8221 #if TARGET_ABI_OPEN_VMS
8222 alpha_write_linkage (file, fnname, decl);
8223 #endif
8225 /* End the function. */
8226 if (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive)
8228 fputs ("\t.end ", file);
8229 assemble_name (file, fnname);
8230 putc ('\n', file);
8232 inside_function = FALSE;
8234 /* Output jump tables and the static subroutine information block. */
8235 if (TARGET_ABI_UNICOSMK)
8237 unicosmk_output_ssib (file, fnname);
8238 unicosmk_output_deferred_case_vectors (file);
8242 #if TARGET_ABI_OSF
8243 /* Emit a tail call to FUNCTION after adjusting THIS by DELTA.
8245 In order to avoid the hordes of differences between generated code
8246 with and without TARGET_EXPLICIT_RELOCS, and to avoid duplicating
8247 lots of code loading up large constants, generate rtl and emit it
8248 instead of going straight to text.
8250 Not sure why this idea hasn't been explored before... */
8252 static void
8253 alpha_output_mi_thunk_osf (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
8254 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
8255 tree function)
8257 HOST_WIDE_INT hi, lo;
8258 rtx this, insn, funexp;
8260 /* We always require a valid GP. */
8261 emit_insn (gen_prologue_ldgp ());
8262 emit_note (NOTE_INSN_PROLOGUE_END);
8264 /* Find the "this" pointer. If the function returns a structure,
8265 the structure return pointer is in $16. */
8266 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
8267 this = gen_rtx_REG (Pmode, 17);
8268 else
8269 this = gen_rtx_REG (Pmode, 16);
8271 /* Add DELTA. When possible we use ldah+lda. Otherwise load the
8272 entire constant for the add. */
8273 lo = ((delta & 0xffff) ^ 0x8000) - 0x8000;
8274 hi = (((delta - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
8275 if (hi + lo == delta)
8277 if (hi)
8278 emit_insn (gen_adddi3 (this, this, GEN_INT (hi)));
8279 if (lo)
8280 emit_insn (gen_adddi3 (this, this, GEN_INT (lo)));
8282 else
8284 rtx tmp = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 0),
8285 delta, -(delta < 0));
8286 emit_insn (gen_adddi3 (this, this, tmp));
8289 /* Add a delta stored in the vtable at VCALL_OFFSET. */
8290 if (vcall_offset)
8292 rtx tmp, tmp2;
8294 tmp = gen_rtx_REG (Pmode, 0);
8295 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this));
8297 lo = ((vcall_offset & 0xffff) ^ 0x8000) - 0x8000;
8298 hi = (((vcall_offset - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
8299 if (hi + lo == vcall_offset)
8301 if (hi)
8302 emit_insn (gen_adddi3 (tmp, tmp, GEN_INT (hi)));
8304 else
8306 tmp2 = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 1),
8307 vcall_offset, -(vcall_offset < 0));
8308 emit_insn (gen_adddi3 (tmp, tmp, tmp2));
8309 lo = 0;
8311 if (lo)
8312 tmp2 = gen_rtx_PLUS (Pmode, tmp, GEN_INT (lo));
8313 else
8314 tmp2 = tmp;
8315 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp2));
8317 emit_insn (gen_adddi3 (this, this, tmp));
8320 /* Generate a tail call to the target function. */
8321 if (! TREE_USED (function))
8323 assemble_external (function);
8324 TREE_USED (function) = 1;
8326 funexp = XEXP (DECL_RTL (function), 0);
8327 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
8328 insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
8329 SIBLING_CALL_P (insn) = 1;
8331 /* Run just enough of rest_of_compilation to get the insns emitted.
8332 There's not really enough bulk here to make other passes such as
8333 instruction scheduling worth while. Note that use_thunk calls
8334 assemble_start_function and assemble_end_function. */
8335 insn = get_insns ();
8336 insn_locators_alloc ();
8337 shorten_branches (insn);
8338 final_start_function (insn, file, 1);
8339 final (insn, file, 1);
8340 final_end_function ();
8341 free_after_compilation (cfun);
8343 #endif /* TARGET_ABI_OSF */
8345 /* Debugging support. */
8347 #include "gstab.h"
8349 /* Count the number of sdb related labels are generated (to find block
8350 start and end boundaries). */
8352 int sdb_label_count = 0;
8354 /* Name of the file containing the current function. */
8356 static const char *current_function_file = "";
8358 /* Offsets to alpha virtual arg/local debugging pointers. */
8360 long alpha_arg_offset;
8361 long alpha_auto_offset;
8363 /* Emit a new filename to a stream. */
8365 void
8366 alpha_output_filename (FILE *stream, const char *name)
8368 static int first_time = TRUE;
8370 if (first_time)
8372 first_time = FALSE;
8373 ++num_source_filenames;
8374 current_function_file = name;
8375 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8376 output_quoted_string (stream, name);
8377 fprintf (stream, "\n");
8378 if (!TARGET_GAS && write_symbols == DBX_DEBUG)
8379 fprintf (stream, "\t#@stabs\n");
8382 else if (write_symbols == DBX_DEBUG)
8383 /* dbxout.c will emit an appropriate .stabs directive. */
8384 return;
8386 else if (name != current_function_file
8387 && strcmp (name, current_function_file) != 0)
8389 if (inside_function && ! TARGET_GAS)
8390 fprintf (stream, "\t#.file\t%d ", num_source_filenames);
8391 else
8393 ++num_source_filenames;
8394 current_function_file = name;
8395 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8398 output_quoted_string (stream, name);
8399 fprintf (stream, "\n");
8403 /* Structure to show the current status of registers and memory. */
8405 struct shadow_summary
8407 struct {
8408 unsigned int i : 31; /* Mask of int regs */
8409 unsigned int fp : 31; /* Mask of fp regs */
8410 unsigned int mem : 1; /* mem == imem | fpmem */
8411 } used, defd;
8414 /* Summary the effects of expression X on the machine. Update SUM, a pointer
8415 to the summary structure. SET is nonzero if the insn is setting the
8416 object, otherwise zero. */
8418 static void
8419 summarize_insn (rtx x, struct shadow_summary *sum, int set)
8421 const char *format_ptr;
8422 int i, j;
8424 if (x == 0)
8425 return;
8427 switch (GET_CODE (x))
8429 /* ??? Note that this case would be incorrect if the Alpha had a
8430 ZERO_EXTRACT in SET_DEST. */
8431 case SET:
8432 summarize_insn (SET_SRC (x), sum, 0);
8433 summarize_insn (SET_DEST (x), sum, 1);
8434 break;
8436 case CLOBBER:
8437 summarize_insn (XEXP (x, 0), sum, 1);
8438 break;
8440 case USE:
8441 summarize_insn (XEXP (x, 0), sum, 0);
8442 break;
8444 case ASM_OPERANDS:
8445 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
8446 summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0);
8447 break;
8449 case PARALLEL:
8450 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8451 summarize_insn (XVECEXP (x, 0, i), sum, 0);
8452 break;
8454 case SUBREG:
8455 summarize_insn (SUBREG_REG (x), sum, 0);
8456 break;
8458 case REG:
8460 int regno = REGNO (x);
8461 unsigned long mask = ((unsigned long) 1) << (regno % 32);
8463 if (regno == 31 || regno == 63)
8464 break;
8466 if (set)
8468 if (regno < 32)
8469 sum->defd.i |= mask;
8470 else
8471 sum->defd.fp |= mask;
8473 else
8475 if (regno < 32)
8476 sum->used.i |= mask;
8477 else
8478 sum->used.fp |= mask;
8481 break;
8483 case MEM:
8484 if (set)
8485 sum->defd.mem = 1;
8486 else
8487 sum->used.mem = 1;
8489 /* Find the regs used in memory address computation: */
8490 summarize_insn (XEXP (x, 0), sum, 0);
8491 break;
8493 case CONST_INT: case CONST_DOUBLE:
8494 case SYMBOL_REF: case LABEL_REF: case CONST:
8495 case SCRATCH: case ASM_INPUT:
8496 break;
8498 /* Handle common unary and binary ops for efficiency. */
8499 case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
8500 case MOD: case UDIV: case UMOD: case AND: case IOR:
8501 case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
8502 case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
8503 case NE: case EQ: case GE: case GT: case LE:
8504 case LT: case GEU: case GTU: case LEU: case LTU:
8505 summarize_insn (XEXP (x, 0), sum, 0);
8506 summarize_insn (XEXP (x, 1), sum, 0);
8507 break;
8509 case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
8510 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
8511 case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
8512 case SQRT: case FFS:
8513 summarize_insn (XEXP (x, 0), sum, 0);
8514 break;
8516 default:
8517 format_ptr = GET_RTX_FORMAT (GET_CODE (x));
8518 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8519 switch (format_ptr[i])
8521 case 'e':
8522 summarize_insn (XEXP (x, i), sum, 0);
8523 break;
8525 case 'E':
8526 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8527 summarize_insn (XVECEXP (x, i, j), sum, 0);
8528 break;
8530 case 'i':
8531 break;
8533 default:
8534 gcc_unreachable ();
8539 /* Ensure a sufficient number of `trapb' insns are in the code when
8540 the user requests code with a trap precision of functions or
8541 instructions.
8543 In naive mode, when the user requests a trap-precision of
8544 "instruction", a trapb is needed after every instruction that may
8545 generate a trap. This ensures that the code is resumption safe but
8546 it is also slow.
8548 When optimizations are turned on, we delay issuing a trapb as long
8549 as possible. In this context, a trap shadow is the sequence of
8550 instructions that starts with a (potentially) trap generating
8551 instruction and extends to the next trapb or call_pal instruction
8552 (but GCC never generates call_pal by itself). We can delay (and
8553 therefore sometimes omit) a trapb subject to the following
8554 conditions:
8556 (a) On entry to the trap shadow, if any Alpha register or memory
8557 location contains a value that is used as an operand value by some
8558 instruction in the trap shadow (live on entry), then no instruction
8559 in the trap shadow may modify the register or memory location.
8561 (b) Within the trap shadow, the computation of the base register
8562 for a memory load or store instruction may not involve using the
8563 result of an instruction that might generate an UNPREDICTABLE
8564 result.
8566 (c) Within the trap shadow, no register may be used more than once
8567 as a destination register. (This is to make life easier for the
8568 trap-handler.)
8570 (d) The trap shadow may not include any branch instructions. */
8572 static void
8573 alpha_handle_trap_shadows (void)
8575 struct shadow_summary shadow;
8576 int trap_pending, exception_nesting;
8577 rtx i, n;
8579 trap_pending = 0;
8580 exception_nesting = 0;
8581 shadow.used.i = 0;
8582 shadow.used.fp = 0;
8583 shadow.used.mem = 0;
8584 shadow.defd = shadow.used;
8586 for (i = get_insns (); i ; i = NEXT_INSN (i))
8588 if (GET_CODE (i) == NOTE)
8590 switch (NOTE_KIND (i))
8592 case NOTE_INSN_EH_REGION_BEG:
8593 exception_nesting++;
8594 if (trap_pending)
8595 goto close_shadow;
8596 break;
8598 case NOTE_INSN_EH_REGION_END:
8599 exception_nesting--;
8600 if (trap_pending)
8601 goto close_shadow;
8602 break;
8604 case NOTE_INSN_EPILOGUE_BEG:
8605 if (trap_pending && alpha_tp >= ALPHA_TP_FUNC)
8606 goto close_shadow;
8607 break;
8610 else if (trap_pending)
8612 if (alpha_tp == ALPHA_TP_FUNC)
8614 if (GET_CODE (i) == JUMP_INSN
8615 && GET_CODE (PATTERN (i)) == RETURN)
8616 goto close_shadow;
8618 else if (alpha_tp == ALPHA_TP_INSN)
8620 if (optimize > 0)
8622 struct shadow_summary sum;
8624 sum.used.i = 0;
8625 sum.used.fp = 0;
8626 sum.used.mem = 0;
8627 sum.defd = sum.used;
8629 switch (GET_CODE (i))
8631 case INSN:
8632 /* Annoyingly, get_attr_trap will die on these. */
8633 if (GET_CODE (PATTERN (i)) == USE
8634 || GET_CODE (PATTERN (i)) == CLOBBER)
8635 break;
8637 summarize_insn (PATTERN (i), &sum, 0);
8639 if ((sum.defd.i & shadow.defd.i)
8640 || (sum.defd.fp & shadow.defd.fp))
8642 /* (c) would be violated */
8643 goto close_shadow;
8646 /* Combine shadow with summary of current insn: */
8647 shadow.used.i |= sum.used.i;
8648 shadow.used.fp |= sum.used.fp;
8649 shadow.used.mem |= sum.used.mem;
8650 shadow.defd.i |= sum.defd.i;
8651 shadow.defd.fp |= sum.defd.fp;
8652 shadow.defd.mem |= sum.defd.mem;
8654 if ((sum.defd.i & shadow.used.i)
8655 || (sum.defd.fp & shadow.used.fp)
8656 || (sum.defd.mem & shadow.used.mem))
8658 /* (a) would be violated (also takes care of (b)) */
8659 gcc_assert (get_attr_trap (i) != TRAP_YES
8660 || (!(sum.defd.i & sum.used.i)
8661 && !(sum.defd.fp & sum.used.fp)));
8663 goto close_shadow;
8665 break;
8667 case JUMP_INSN:
8668 case CALL_INSN:
8669 case CODE_LABEL:
8670 goto close_shadow;
8672 default:
8673 gcc_unreachable ();
8676 else
8678 close_shadow:
8679 n = emit_insn_before (gen_trapb (), i);
8680 PUT_MODE (n, TImode);
8681 PUT_MODE (i, TImode);
8682 trap_pending = 0;
8683 shadow.used.i = 0;
8684 shadow.used.fp = 0;
8685 shadow.used.mem = 0;
8686 shadow.defd = shadow.used;
8691 if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC)
8692 && GET_CODE (i) == INSN
8693 && GET_CODE (PATTERN (i)) != USE
8694 && GET_CODE (PATTERN (i)) != CLOBBER
8695 && get_attr_trap (i) == TRAP_YES)
8697 if (optimize && !trap_pending)
8698 summarize_insn (PATTERN (i), &shadow, 0);
8699 trap_pending = 1;
8704 /* Alpha can only issue instruction groups simultaneously if they are
8705 suitably aligned. This is very processor-specific. */
8706 /* There are a number of entries in alphaev4_insn_pipe and alphaev5_insn_pipe
8707 that are marked "fake". These instructions do not exist on that target,
8708 but it is possible to see these insns with deranged combinations of
8709 command-line options, such as "-mtune=ev4 -mmax". Instead of aborting,
8710 choose a result at random. */
8712 enum alphaev4_pipe {
8713 EV4_STOP = 0,
8714 EV4_IB0 = 1,
8715 EV4_IB1 = 2,
8716 EV4_IBX = 4
8719 enum alphaev5_pipe {
8720 EV5_STOP = 0,
8721 EV5_NONE = 1,
8722 EV5_E01 = 2,
8723 EV5_E0 = 4,
8724 EV5_E1 = 8,
8725 EV5_FAM = 16,
8726 EV5_FA = 32,
8727 EV5_FM = 64
8730 static enum alphaev4_pipe
8731 alphaev4_insn_pipe (rtx insn)
8733 if (recog_memoized (insn) < 0)
8734 return EV4_STOP;
8735 if (get_attr_length (insn) != 4)
8736 return EV4_STOP;
8738 switch (get_attr_type (insn))
8740 case TYPE_ILD:
8741 case TYPE_LDSYM:
8742 case TYPE_FLD:
8743 case TYPE_LD_L:
8744 return EV4_IBX;
8746 case TYPE_IADD:
8747 case TYPE_ILOG:
8748 case TYPE_ICMOV:
8749 case TYPE_ICMP:
8750 case TYPE_FST:
8751 case TYPE_SHIFT:
8752 case TYPE_IMUL:
8753 case TYPE_FBR:
8754 case TYPE_MVI: /* fake */
8755 return EV4_IB0;
8757 case TYPE_IST:
8758 case TYPE_MISC:
8759 case TYPE_IBR:
8760 case TYPE_JSR:
8761 case TYPE_CALLPAL:
8762 case TYPE_FCPYS:
8763 case TYPE_FCMOV:
8764 case TYPE_FADD:
8765 case TYPE_FDIV:
8766 case TYPE_FMUL:
8767 case TYPE_ST_C:
8768 case TYPE_MB:
8769 case TYPE_FSQRT: /* fake */
8770 case TYPE_FTOI: /* fake */
8771 case TYPE_ITOF: /* fake */
8772 return EV4_IB1;
8774 default:
8775 gcc_unreachable ();
8779 static enum alphaev5_pipe
8780 alphaev5_insn_pipe (rtx insn)
8782 if (recog_memoized (insn) < 0)
8783 return EV5_STOP;
8784 if (get_attr_length (insn) != 4)
8785 return EV5_STOP;
8787 switch (get_attr_type (insn))
8789 case TYPE_ILD:
8790 case TYPE_FLD:
8791 case TYPE_LDSYM:
8792 case TYPE_IADD:
8793 case TYPE_ILOG:
8794 case TYPE_ICMOV:
8795 case TYPE_ICMP:
8796 return EV5_E01;
8798 case TYPE_IST:
8799 case TYPE_FST:
8800 case TYPE_SHIFT:
8801 case TYPE_IMUL:
8802 case TYPE_MISC:
8803 case TYPE_MVI:
8804 case TYPE_LD_L:
8805 case TYPE_ST_C:
8806 case TYPE_MB:
8807 case TYPE_FTOI: /* fake */
8808 case TYPE_ITOF: /* fake */
8809 return EV5_E0;
8811 case TYPE_IBR:
8812 case TYPE_JSR:
8813 case TYPE_CALLPAL:
8814 return EV5_E1;
8816 case TYPE_FCPYS:
8817 return EV5_FAM;
8819 case TYPE_FBR:
8820 case TYPE_FCMOV:
8821 case TYPE_FADD:
8822 case TYPE_FDIV:
8823 case TYPE_FSQRT: /* fake */
8824 return EV5_FA;
8826 case TYPE_FMUL:
8827 return EV5_FM;
8829 default:
8830 gcc_unreachable ();
8834 /* IN_USE is a mask of the slots currently filled within the insn group.
8835 The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
8836 the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
8838 LEN is, of course, the length of the group in bytes. */
8840 static rtx
8841 alphaev4_next_group (rtx insn, int *pin_use, int *plen)
8843 int len, in_use;
8845 len = in_use = 0;
8847 if (! INSN_P (insn)
8848 || GET_CODE (PATTERN (insn)) == CLOBBER
8849 || GET_CODE (PATTERN (insn)) == USE)
8850 goto next_and_done;
8852 while (1)
8854 enum alphaev4_pipe pipe;
8856 pipe = alphaev4_insn_pipe (insn);
8857 switch (pipe)
8859 case EV4_STOP:
8860 /* Force complex instructions to start new groups. */
8861 if (in_use)
8862 goto done;
8864 /* If this is a completely unrecognized insn, it's an asm.
8865 We don't know how long it is, so record length as -1 to
8866 signal a needed realignment. */
8867 if (recog_memoized (insn) < 0)
8868 len = -1;
8869 else
8870 len = get_attr_length (insn);
8871 goto next_and_done;
8873 case EV4_IBX:
8874 if (in_use & EV4_IB0)
8876 if (in_use & EV4_IB1)
8877 goto done;
8878 in_use |= EV4_IB1;
8880 else
8881 in_use |= EV4_IB0 | EV4_IBX;
8882 break;
8884 case EV4_IB0:
8885 if (in_use & EV4_IB0)
8887 if (!(in_use & EV4_IBX) || (in_use & EV4_IB1))
8888 goto done;
8889 in_use |= EV4_IB1;
8891 in_use |= EV4_IB0;
8892 break;
8894 case EV4_IB1:
8895 if (in_use & EV4_IB1)
8896 goto done;
8897 in_use |= EV4_IB1;
8898 break;
8900 default:
8901 gcc_unreachable ();
8903 len += 4;
8905 /* Haifa doesn't do well scheduling branches. */
8906 if (GET_CODE (insn) == JUMP_INSN)
8907 goto next_and_done;
8909 next:
8910 insn = next_nonnote_insn (insn);
8912 if (!insn || ! INSN_P (insn))
8913 goto done;
8915 /* Let Haifa tell us where it thinks insn group boundaries are. */
8916 if (GET_MODE (insn) == TImode)
8917 goto done;
8919 if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
8920 goto next;
8923 next_and_done:
8924 insn = next_nonnote_insn (insn);
8926 done:
8927 *plen = len;
8928 *pin_use = in_use;
8929 return insn;
8932 /* IN_USE is a mask of the slots currently filled within the insn group.
8933 The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
8934 the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
8936 LEN is, of course, the length of the group in bytes. */
8938 static rtx
8939 alphaev5_next_group (rtx insn, int *pin_use, int *plen)
8941 int len, in_use;
8943 len = in_use = 0;
8945 if (! INSN_P (insn)
8946 || GET_CODE (PATTERN (insn)) == CLOBBER
8947 || GET_CODE (PATTERN (insn)) == USE)
8948 goto next_and_done;
8950 while (1)
8952 enum alphaev5_pipe pipe;
8954 pipe = alphaev5_insn_pipe (insn);
8955 switch (pipe)
8957 case EV5_STOP:
8958 /* Force complex instructions to start new groups. */
8959 if (in_use)
8960 goto done;
8962 /* If this is a completely unrecognized insn, it's an asm.
8963 We don't know how long it is, so record length as -1 to
8964 signal a needed realignment. */
8965 if (recog_memoized (insn) < 0)
8966 len = -1;
8967 else
8968 len = get_attr_length (insn);
8969 goto next_and_done;
8971 /* ??? Most of the places below, we would like to assert never
8972 happen, as it would indicate an error either in Haifa, or
8973 in the scheduling description. Unfortunately, Haifa never
8974 schedules the last instruction of the BB, so we don't have
8975 an accurate TI bit to go off. */
8976 case EV5_E01:
8977 if (in_use & EV5_E0)
8979 if (in_use & EV5_E1)
8980 goto done;
8981 in_use |= EV5_E1;
8983 else
8984 in_use |= EV5_E0 | EV5_E01;
8985 break;
8987 case EV5_E0:
8988 if (in_use & EV5_E0)
8990 if (!(in_use & EV5_E01) || (in_use & EV5_E1))
8991 goto done;
8992 in_use |= EV5_E1;
8994 in_use |= EV5_E0;
8995 break;
8997 case EV5_E1:
8998 if (in_use & EV5_E1)
8999 goto done;
9000 in_use |= EV5_E1;
9001 break;
9003 case EV5_FAM:
9004 if (in_use & EV5_FA)
9006 if (in_use & EV5_FM)
9007 goto done;
9008 in_use |= EV5_FM;
9010 else
9011 in_use |= EV5_FA | EV5_FAM;
9012 break;
9014 case EV5_FA:
9015 if (in_use & EV5_FA)
9016 goto done;
9017 in_use |= EV5_FA;
9018 break;
9020 case EV5_FM:
9021 if (in_use & EV5_FM)
9022 goto done;
9023 in_use |= EV5_FM;
9024 break;
9026 case EV5_NONE:
9027 break;
9029 default:
9030 gcc_unreachable ();
9032 len += 4;
9034 /* Haifa doesn't do well scheduling branches. */
9035 /* ??? If this is predicted not-taken, slotting continues, except
9036 that no more IBR, FBR, or JSR insns may be slotted. */
9037 if (GET_CODE (insn) == JUMP_INSN)
9038 goto next_and_done;
9040 next:
9041 insn = next_nonnote_insn (insn);
9043 if (!insn || ! INSN_P (insn))
9044 goto done;
9046 /* Let Haifa tell us where it thinks insn group boundaries are. */
9047 if (GET_MODE (insn) == TImode)
9048 goto done;
9050 if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
9051 goto next;
9054 next_and_done:
9055 insn = next_nonnote_insn (insn);
9057 done:
9058 *plen = len;
9059 *pin_use = in_use;
9060 return insn;
9063 static rtx
9064 alphaev4_next_nop (int *pin_use)
9066 int in_use = *pin_use;
9067 rtx nop;
9069 if (!(in_use & EV4_IB0))
9071 in_use |= EV4_IB0;
9072 nop = gen_nop ();
9074 else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX)
9076 in_use |= EV4_IB1;
9077 nop = gen_nop ();
9079 else if (TARGET_FP && !(in_use & EV4_IB1))
9081 in_use |= EV4_IB1;
9082 nop = gen_fnop ();
9084 else
9085 nop = gen_unop ();
9087 *pin_use = in_use;
9088 return nop;
9091 static rtx
9092 alphaev5_next_nop (int *pin_use)
9094 int in_use = *pin_use;
9095 rtx nop;
9097 if (!(in_use & EV5_E1))
9099 in_use |= EV5_E1;
9100 nop = gen_nop ();
9102 else if (TARGET_FP && !(in_use & EV5_FA))
9104 in_use |= EV5_FA;
9105 nop = gen_fnop ();
9107 else if (TARGET_FP && !(in_use & EV5_FM))
9109 in_use |= EV5_FM;
9110 nop = gen_fnop ();
9112 else
9113 nop = gen_unop ();
9115 *pin_use = in_use;
9116 return nop;
9119 /* The instruction group alignment main loop. */
9121 static void
9122 alpha_align_insns (unsigned int max_align,
9123 rtx (*next_group) (rtx, int *, int *),
9124 rtx (*next_nop) (int *))
9126 /* ALIGN is the known alignment for the insn group. */
9127 unsigned int align;
9128 /* OFS is the offset of the current insn in the insn group. */
9129 int ofs;
9130 int prev_in_use, in_use, len, ldgp;
9131 rtx i, next;
9133 /* Let shorten branches care for assigning alignments to code labels. */
9134 shorten_branches (get_insns ());
9136 if (align_functions < 4)
9137 align = 4;
9138 else if ((unsigned int) align_functions < max_align)
9139 align = align_functions;
9140 else
9141 align = max_align;
9143 ofs = prev_in_use = 0;
9144 i = get_insns ();
9145 if (GET_CODE (i) == NOTE)
9146 i = next_nonnote_insn (i);
9148 ldgp = alpha_function_needs_gp ? 8 : 0;
9150 while (i)
9152 next = (*next_group) (i, &in_use, &len);
9154 /* When we see a label, resync alignment etc. */
9155 if (GET_CODE (i) == CODE_LABEL)
9157 unsigned int new_align = 1 << label_to_alignment (i);
9159 if (new_align >= align)
9161 align = new_align < max_align ? new_align : max_align;
9162 ofs = 0;
9165 else if (ofs & (new_align-1))
9166 ofs = (ofs | (new_align-1)) + 1;
9167 gcc_assert (!len);
9170 /* Handle complex instructions special. */
9171 else if (in_use == 0)
9173 /* Asms will have length < 0. This is a signal that we have
9174 lost alignment knowledge. Assume, however, that the asm
9175 will not mis-align instructions. */
9176 if (len < 0)
9178 ofs = 0;
9179 align = 4;
9180 len = 0;
9184 /* If the known alignment is smaller than the recognized insn group,
9185 realign the output. */
9186 else if ((int) align < len)
9188 unsigned int new_log_align = len > 8 ? 4 : 3;
9189 rtx prev, where;
9191 where = prev = prev_nonnote_insn (i);
9192 if (!where || GET_CODE (where) != CODE_LABEL)
9193 where = i;
9195 /* Can't realign between a call and its gp reload. */
9196 if (! (TARGET_EXPLICIT_RELOCS
9197 && prev && GET_CODE (prev) == CALL_INSN))
9199 emit_insn_before (gen_realign (GEN_INT (new_log_align)), where);
9200 align = 1 << new_log_align;
9201 ofs = 0;
9205 /* We may not insert padding inside the initial ldgp sequence. */
9206 else if (ldgp > 0)
9207 ldgp -= len;
9209 /* If the group won't fit in the same INT16 as the previous,
9210 we need to add padding to keep the group together. Rather
9211 than simply leaving the insn filling to the assembler, we
9212 can make use of the knowledge of what sorts of instructions
9213 were issued in the previous group to make sure that all of
9214 the added nops are really free. */
9215 else if (ofs + len > (int) align)
9217 int nop_count = (align - ofs) / 4;
9218 rtx where;
9220 /* Insert nops before labels, branches, and calls to truly merge
9221 the execution of the nops with the previous instruction group. */
9222 where = prev_nonnote_insn (i);
9223 if (where)
9225 if (GET_CODE (where) == CODE_LABEL)
9227 rtx where2 = prev_nonnote_insn (where);
9228 if (where2 && GET_CODE (where2) == JUMP_INSN)
9229 where = where2;
9231 else if (GET_CODE (where) == INSN)
9232 where = i;
9234 else
9235 where = i;
9238 emit_insn_before ((*next_nop)(&prev_in_use), where);
9239 while (--nop_count);
9240 ofs = 0;
9243 ofs = (ofs + len) & (align - 1);
9244 prev_in_use = in_use;
9245 i = next;
9249 /* Machine dependent reorg pass. */
9251 static void
9252 alpha_reorg (void)
9254 if (alpha_tp != ALPHA_TP_PROG || flag_exceptions)
9255 alpha_handle_trap_shadows ();
9257 /* Due to the number of extra trapb insns, don't bother fixing up
9258 alignment when trap precision is instruction. Moreover, we can
9259 only do our job when sched2 is run. */
9260 if (optimize && !optimize_size
9261 && alpha_tp != ALPHA_TP_INSN
9262 && flag_schedule_insns_after_reload)
9264 if (alpha_tune == PROCESSOR_EV4)
9265 alpha_align_insns (8, alphaev4_next_group, alphaev4_next_nop);
9266 else if (alpha_tune == PROCESSOR_EV5)
9267 alpha_align_insns (16, alphaev5_next_group, alphaev5_next_nop);
9271 #if !TARGET_ABI_UNICOSMK
9273 #ifdef HAVE_STAMP_H
9274 #include <stamp.h>
9275 #endif
9277 static void
9278 alpha_file_start (void)
9280 #ifdef OBJECT_FORMAT_ELF
9281 /* If emitting dwarf2 debug information, we cannot generate a .file
9282 directive to start the file, as it will conflict with dwarf2out
9283 file numbers. So it's only useful when emitting mdebug output. */
9284 targetm.file_start_file_directive = (write_symbols == DBX_DEBUG);
9285 #endif
9287 default_file_start ();
9288 #ifdef MS_STAMP
9289 fprintf (asm_out_file, "\t.verstamp %d %d\n", MS_STAMP, LS_STAMP);
9290 #endif
9292 fputs ("\t.set noreorder\n", asm_out_file);
9293 fputs ("\t.set volatile\n", asm_out_file);
9294 if (!TARGET_ABI_OPEN_VMS)
9295 fputs ("\t.set noat\n", asm_out_file);
9296 if (TARGET_EXPLICIT_RELOCS)
9297 fputs ("\t.set nomacro\n", asm_out_file);
9298 if (TARGET_SUPPORT_ARCH | TARGET_BWX | TARGET_MAX | TARGET_FIX | TARGET_CIX)
9300 const char *arch;
9302 if (alpha_cpu == PROCESSOR_EV6 || TARGET_FIX || TARGET_CIX)
9303 arch = "ev6";
9304 else if (TARGET_MAX)
9305 arch = "pca56";
9306 else if (TARGET_BWX)
9307 arch = "ev56";
9308 else if (alpha_cpu == PROCESSOR_EV5)
9309 arch = "ev5";
9310 else
9311 arch = "ev4";
9313 fprintf (asm_out_file, "\t.arch %s\n", arch);
9316 #endif
9318 #ifdef OBJECT_FORMAT_ELF
9319 /* Since we don't have a .dynbss section, we should not allow global
9320 relocations in the .rodata section. */
9322 static int
9323 alpha_elf_reloc_rw_mask (void)
9325 return flag_pic ? 3 : 2;
9328 /* Return a section for X. The only special thing we do here is to
9329 honor small data. */
9331 static section *
9332 alpha_elf_select_rtx_section (enum machine_mode mode, rtx x,
9333 unsigned HOST_WIDE_INT align)
9335 if (TARGET_SMALL_DATA && GET_MODE_SIZE (mode) <= g_switch_value)
9336 /* ??? Consider using mergeable sdata sections. */
9337 return sdata_section;
9338 else
9339 return default_elf_select_rtx_section (mode, x, align);
9342 static unsigned int
9343 alpha_elf_section_type_flags (tree decl, const char *name, int reloc)
9345 unsigned int flags = 0;
9347 if (strcmp (name, ".sdata") == 0
9348 || strncmp (name, ".sdata.", 7) == 0
9349 || strncmp (name, ".gnu.linkonce.s.", 16) == 0
9350 || strcmp (name, ".sbss") == 0
9351 || strncmp (name, ".sbss.", 6) == 0
9352 || strncmp (name, ".gnu.linkonce.sb.", 17) == 0)
9353 flags = SECTION_SMALL;
9355 flags |= default_section_type_flags (decl, name, reloc);
9356 return flags;
9358 #endif /* OBJECT_FORMAT_ELF */
9360 /* Structure to collect function names for final output in link section. */
9361 /* Note that items marked with GTY can't be ifdef'ed out. */
9363 enum links_kind {KIND_UNUSED, KIND_LOCAL, KIND_EXTERN};
9364 enum reloc_kind {KIND_LINKAGE, KIND_CODEADDR};
9366 struct alpha_links GTY(())
9368 int num;
9369 rtx linkage;
9370 enum links_kind lkind;
9371 enum reloc_kind rkind;
9374 struct alpha_funcs GTY(())
9376 int num;
9377 splay_tree GTY ((param1_is (char *), param2_is (struct alpha_links *)))
9378 links;
9381 static GTY ((param1_is (char *), param2_is (struct alpha_links *)))
9382 splay_tree alpha_links_tree;
9383 static GTY ((param1_is (tree), param2_is (struct alpha_funcs *)))
9384 splay_tree alpha_funcs_tree;
9386 static GTY(()) int alpha_funcs_num;
9388 #if TARGET_ABI_OPEN_VMS
9390 /* Return the VMS argument type corresponding to MODE. */
9392 enum avms_arg_type
9393 alpha_arg_type (enum machine_mode mode)
9395 switch (mode)
9397 case SFmode:
9398 return TARGET_FLOAT_VAX ? FF : FS;
9399 case DFmode:
9400 return TARGET_FLOAT_VAX ? FD : FT;
9401 default:
9402 return I64;
9406 /* Return an rtx for an integer representing the VMS Argument Information
9407 register value. */
9410 alpha_arg_info_reg_val (CUMULATIVE_ARGS cum)
9412 unsigned HOST_WIDE_INT regval = cum.num_args;
9413 int i;
9415 for (i = 0; i < 6; i++)
9416 regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
9418 return GEN_INT (regval);
9421 /* Make (or fake) .linkage entry for function call.
9423 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.
9425 Return an SYMBOL_REF rtx for the linkage. */
9428 alpha_need_linkage (const char *name, int is_local)
9430 splay_tree_node node;
9431 struct alpha_links *al;
9433 if (name[0] == '*')
9434 name++;
9436 if (is_local)
9438 struct alpha_funcs *cfaf;
9440 if (!alpha_funcs_tree)
9441 alpha_funcs_tree = splay_tree_new_ggc ((splay_tree_compare_fn)
9442 splay_tree_compare_pointers);
9444 cfaf = (struct alpha_funcs *) ggc_alloc (sizeof (struct alpha_funcs));
9446 cfaf->links = 0;
9447 cfaf->num = ++alpha_funcs_num;
9449 splay_tree_insert (alpha_funcs_tree,
9450 (splay_tree_key) current_function_decl,
9451 (splay_tree_value) cfaf);
9454 if (alpha_links_tree)
9456 /* Is this name already defined? */
9458 node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name);
9459 if (node)
9461 al = (struct alpha_links *) node->value;
9462 if (is_local)
9464 /* Defined here but external assumed. */
9465 if (al->lkind == KIND_EXTERN)
9466 al->lkind = KIND_LOCAL;
9468 else
9470 /* Used here but unused assumed. */
9471 if (al->lkind == KIND_UNUSED)
9472 al->lkind = KIND_LOCAL;
9474 return al->linkage;
9477 else
9478 alpha_links_tree = splay_tree_new_ggc ((splay_tree_compare_fn) strcmp);
9480 al = (struct alpha_links *) ggc_alloc (sizeof (struct alpha_links));
9481 name = ggc_strdup (name);
9483 /* Assume external if no definition. */
9484 al->lkind = (is_local ? KIND_UNUSED : KIND_EXTERN);
9486 /* Ensure we have an IDENTIFIER so assemble_name can mark it used. */
9487 get_identifier (name);
9489 /* Construct a SYMBOL_REF for us to call. */
9491 size_t name_len = strlen (name);
9492 char *linksym = alloca (name_len + 6);
9493 linksym[0] = '$';
9494 memcpy (linksym + 1, name, name_len);
9495 memcpy (linksym + 1 + name_len, "..lk", 5);
9496 al->linkage = gen_rtx_SYMBOL_REF (Pmode,
9497 ggc_alloc_string (linksym, name_len + 5));
9500 splay_tree_insert (alpha_links_tree, (splay_tree_key) name,
9501 (splay_tree_value) al);
9503 return al->linkage;
9507 alpha_use_linkage (rtx linkage, tree cfundecl, int lflag, int rflag)
9509 splay_tree_node cfunnode;
9510 struct alpha_funcs *cfaf;
9511 struct alpha_links *al;
9512 const char *name = XSTR (linkage, 0);
9514 cfaf = (struct alpha_funcs *) 0;
9515 al = (struct alpha_links *) 0;
9517 cfunnode = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) cfundecl);
9518 cfaf = (struct alpha_funcs *) cfunnode->value;
9520 if (cfaf->links)
9522 splay_tree_node lnode;
9524 /* Is this name already defined? */
9526 lnode = splay_tree_lookup (cfaf->links, (splay_tree_key) name);
9527 if (lnode)
9528 al = (struct alpha_links *) lnode->value;
9530 else
9531 cfaf->links = splay_tree_new_ggc ((splay_tree_compare_fn) strcmp);
9533 if (!al)
9535 size_t name_len;
9536 size_t buflen;
9537 char buf [512];
9538 char *linksym;
9539 splay_tree_node node = 0;
9540 struct alpha_links *anl;
9542 if (name[0] == '*')
9543 name++;
9545 name_len = strlen (name);
9547 al = (struct alpha_links *) ggc_alloc (sizeof (struct alpha_links));
9548 al->num = cfaf->num;
9550 node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name);
9551 if (node)
9553 anl = (struct alpha_links *) node->value;
9554 al->lkind = anl->lkind;
9557 sprintf (buf, "$%d..%s..lk", cfaf->num, name);
9558 buflen = strlen (buf);
9559 linksym = alloca (buflen + 1);
9560 memcpy (linksym, buf, buflen + 1);
9562 al->linkage = gen_rtx_SYMBOL_REF
9563 (Pmode, ggc_alloc_string (linksym, buflen + 1));
9565 splay_tree_insert (cfaf->links, (splay_tree_key) name,
9566 (splay_tree_value) al);
9569 if (rflag)
9570 al->rkind = KIND_CODEADDR;
9571 else
9572 al->rkind = KIND_LINKAGE;
9574 if (lflag)
9575 return gen_rtx_MEM (Pmode, plus_constant (al->linkage, 8));
9576 else
9577 return al->linkage;
9580 static int
9581 alpha_write_one_linkage (splay_tree_node node, void *data)
9583 const char *const name = (const char *) node->key;
9584 struct alpha_links *link = (struct alpha_links *) node->value;
9585 FILE *stream = (FILE *) data;
9587 fprintf (stream, "$%d..%s..lk:\n", link->num, name);
9588 if (link->rkind == KIND_CODEADDR)
9590 if (link->lkind == KIND_LOCAL)
9592 /* Local and used */
9593 fprintf (stream, "\t.quad %s..en\n", name);
9595 else
9597 /* External and used, request code address. */
9598 fprintf (stream, "\t.code_address %s\n", name);
9601 else
9603 if (link->lkind == KIND_LOCAL)
9605 /* Local and used, build linkage pair. */
9606 fprintf (stream, "\t.quad %s..en\n", name);
9607 fprintf (stream, "\t.quad %s\n", name);
9609 else
9611 /* External and used, request linkage pair. */
9612 fprintf (stream, "\t.linkage %s\n", name);
9616 return 0;
9619 static void
9620 alpha_write_linkage (FILE *stream, const char *funname, tree fundecl)
9622 splay_tree_node node;
9623 struct alpha_funcs *func;
9625 fprintf (stream, "\t.link\n");
9626 fprintf (stream, "\t.align 3\n");
9627 in_section = NULL;
9629 node = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) fundecl);
9630 func = (struct alpha_funcs *) node->value;
9632 fputs ("\t.name ", stream);
9633 assemble_name (stream, funname);
9634 fputs ("..na\n", stream);
9635 ASM_OUTPUT_LABEL (stream, funname);
9636 fprintf (stream, "\t.pdesc ");
9637 assemble_name (stream, funname);
9638 fprintf (stream, "..en,%s\n",
9639 alpha_procedure_type == PT_STACK ? "stack"
9640 : alpha_procedure_type == PT_REGISTER ? "reg" : "null");
9642 if (func->links)
9644 splay_tree_foreach (func->links, alpha_write_one_linkage, stream);
9645 /* splay_tree_delete (func->links); */
9649 /* Given a decl, a section name, and whether the decl initializer
9650 has relocs, choose attributes for the section. */
9652 #define SECTION_VMS_OVERLAY SECTION_FORGET
9653 #define SECTION_VMS_GLOBAL SECTION_MACH_DEP
9654 #define SECTION_VMS_INITIALIZE (SECTION_VMS_GLOBAL << 1)
9656 static unsigned int
9657 vms_section_type_flags (tree decl, const char *name, int reloc)
9659 unsigned int flags = default_section_type_flags (decl, name, reloc);
9661 if (decl && DECL_ATTRIBUTES (decl)
9662 && lookup_attribute ("overlaid", DECL_ATTRIBUTES (decl)))
9663 flags |= SECTION_VMS_OVERLAY;
9664 if (decl && DECL_ATTRIBUTES (decl)
9665 && lookup_attribute ("global", DECL_ATTRIBUTES (decl)))
9666 flags |= SECTION_VMS_GLOBAL;
9667 if (decl && DECL_ATTRIBUTES (decl)
9668 && lookup_attribute ("initialize", DECL_ATTRIBUTES (decl)))
9669 flags |= SECTION_VMS_INITIALIZE;
9671 return flags;
9674 /* Switch to an arbitrary section NAME with attributes as specified
9675 by FLAGS. ALIGN specifies any known alignment requirements for
9676 the section; 0 if the default should be used. */
9678 static void
9679 vms_asm_named_section (const char *name, unsigned int flags,
9680 tree decl ATTRIBUTE_UNUSED)
9682 fputc ('\n', asm_out_file);
9683 fprintf (asm_out_file, ".section\t%s", name);
9685 if (flags & SECTION_VMS_OVERLAY)
9686 fprintf (asm_out_file, ",OVR");
9687 if (flags & SECTION_VMS_GLOBAL)
9688 fprintf (asm_out_file, ",GBL");
9689 if (flags & SECTION_VMS_INITIALIZE)
9690 fprintf (asm_out_file, ",NOMOD");
9691 if (flags & SECTION_DEBUG)
9692 fprintf (asm_out_file, ",NOWRT");
9694 fputc ('\n', asm_out_file);
9697 /* Record an element in the table of global constructors. SYMBOL is
9698 a SYMBOL_REF of the function to be called; PRIORITY is a number
9699 between 0 and MAX_INIT_PRIORITY.
9701 Differs from default_ctors_section_asm_out_constructor in that the
9702 width of the .ctors entry is always 64 bits, rather than the 32 bits
9703 used by a normal pointer. */
9705 static void
9706 vms_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9708 switch_to_section (ctors_section);
9709 assemble_align (BITS_PER_WORD);
9710 assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
9713 static void
9714 vms_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9716 switch_to_section (dtors_section);
9717 assemble_align (BITS_PER_WORD);
9718 assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
9720 #else
9723 alpha_need_linkage (const char *name ATTRIBUTE_UNUSED,
9724 int is_local ATTRIBUTE_UNUSED)
9726 return NULL_RTX;
9730 alpha_use_linkage (rtx linkage ATTRIBUTE_UNUSED,
9731 tree cfundecl ATTRIBUTE_UNUSED,
9732 int lflag ATTRIBUTE_UNUSED,
9733 int rflag ATTRIBUTE_UNUSED)
9735 return NULL_RTX;
9738 #endif /* TARGET_ABI_OPEN_VMS */
9740 #if TARGET_ABI_UNICOSMK
9742 /* This evaluates to true if we do not know how to pass TYPE solely in
9743 registers. This is the case for all arguments that do not fit in two
9744 registers. */
9746 static bool
9747 unicosmk_must_pass_in_stack (enum machine_mode mode, const_tree type)
9749 if (type == NULL)
9750 return false;
9752 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
9753 return true;
9754 if (TREE_ADDRESSABLE (type))
9755 return true;
9757 return ALPHA_ARG_SIZE (mode, type, 0) > 2;
9760 /* Define the offset between two registers, one to be eliminated, and the
9761 other its replacement, at the start of a routine. */
9764 unicosmk_initial_elimination_offset (int from, int to)
9766 int fixed_size;
9768 fixed_size = alpha_sa_size();
9769 if (fixed_size != 0)
9770 fixed_size += 48;
9772 if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
9773 return -fixed_size;
9774 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
9775 return 0;
9776 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
9777 return (ALPHA_ROUND (crtl->outgoing_args_size)
9778 + ALPHA_ROUND (get_frame_size()));
9779 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
9780 return (ALPHA_ROUND (fixed_size)
9781 + ALPHA_ROUND (get_frame_size()
9782 + crtl->outgoing_args_size));
9783 else
9784 gcc_unreachable ();
9787 /* Output the module name for .ident and .end directives. We have to strip
9788 directories and add make sure that the module name starts with a letter
9789 or '$'. */
9791 static void
9792 unicosmk_output_module_name (FILE *file)
9794 const char *name = lbasename (main_input_filename);
9795 unsigned len = strlen (name);
9796 char *clean_name = alloca (len + 2);
9797 char *ptr = clean_name;
9799 /* CAM only accepts module names that start with a letter or '$'. We
9800 prefix the module name with a '$' if necessary. */
9802 if (!ISALPHA (*name))
9803 *ptr++ = '$';
9804 memcpy (ptr, name, len + 1);
9805 clean_symbol_name (clean_name);
9806 fputs (clean_name, file);
9809 /* Output the definition of a common variable. */
9811 void
9812 unicosmk_output_common (FILE *file, const char *name, int size, int align)
9814 tree name_tree;
9815 printf ("T3E__: common %s\n", name);
9817 in_section = NULL;
9818 fputs("\t.endp\n\n\t.psect ", file);
9819 assemble_name(file, name);
9820 fprintf(file, ",%d,common\n", floor_log2 (align / BITS_PER_UNIT));
9821 fprintf(file, "\t.byte\t0:%d\n", size);
9823 /* Mark the symbol as defined in this module. */
9824 name_tree = get_identifier (name);
9825 TREE_ASM_WRITTEN (name_tree) = 1;
9828 #define SECTION_PUBLIC SECTION_MACH_DEP
9829 #define SECTION_MAIN (SECTION_PUBLIC << 1)
9830 static int current_section_align;
9832 /* A get_unnamed_section callback for switching to the text section. */
9834 static void
9835 unicosmk_output_text_section_asm_op (const void *data ATTRIBUTE_UNUSED)
9837 static int count = 0;
9838 fprintf (asm_out_file, "\t.endp\n\n\t.psect\tgcc@text___%d,code\n", count++);
9841 /* A get_unnamed_section callback for switching to the data section. */
9843 static void
9844 unicosmk_output_data_section_asm_op (const void *data ATTRIBUTE_UNUSED)
9846 static int count = 1;
9847 fprintf (asm_out_file, "\t.endp\n\n\t.psect\tgcc@data___%d,data\n", count++);
9850 /* Implement TARGET_ASM_INIT_SECTIONS.
9852 The Cray assembler is really weird with respect to sections. It has only
9853 named sections and you can't reopen a section once it has been closed.
9854 This means that we have to generate unique names whenever we want to
9855 reenter the text or the data section. */
9857 static void
9858 unicosmk_init_sections (void)
9860 text_section = get_unnamed_section (SECTION_CODE,
9861 unicosmk_output_text_section_asm_op,
9862 NULL);
9863 data_section = get_unnamed_section (SECTION_WRITE,
9864 unicosmk_output_data_section_asm_op,
9865 NULL);
9866 readonly_data_section = data_section;
9869 static unsigned int
9870 unicosmk_section_type_flags (tree decl, const char *name,
9871 int reloc ATTRIBUTE_UNUSED)
9873 unsigned int flags = default_section_type_flags (decl, name, reloc);
9875 if (!decl)
9876 return flags;
9878 if (TREE_CODE (decl) == FUNCTION_DECL)
9880 current_section_align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
9881 if (align_functions_log > current_section_align)
9882 current_section_align = align_functions_log;
9884 if (! strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "main"))
9885 flags |= SECTION_MAIN;
9887 else
9888 current_section_align = floor_log2 (DECL_ALIGN (decl) / BITS_PER_UNIT);
9890 if (TREE_PUBLIC (decl))
9891 flags |= SECTION_PUBLIC;
9893 return flags;
9896 /* Generate a section name for decl and associate it with the
9897 declaration. */
9899 static void
9900 unicosmk_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
9902 const char *name;
9903 int len;
9905 gcc_assert (decl);
9907 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
9908 name = default_strip_name_encoding (name);
9909 len = strlen (name);
9911 if (TREE_CODE (decl) == FUNCTION_DECL)
9913 char *string;
9915 /* It is essential that we prefix the section name here because
9916 otherwise the section names generated for constructors and
9917 destructors confuse collect2. */
9919 string = alloca (len + 6);
9920 sprintf (string, "code@%s", name);
9921 DECL_SECTION_NAME (decl) = build_string (len + 5, string);
9923 else if (TREE_PUBLIC (decl))
9924 DECL_SECTION_NAME (decl) = build_string (len, name);
9925 else
9927 char *string;
9929 string = alloca (len + 6);
9930 sprintf (string, "data@%s", name);
9931 DECL_SECTION_NAME (decl) = build_string (len + 5, string);
9935 /* Switch to an arbitrary section NAME with attributes as specified
9936 by FLAGS. ALIGN specifies any known alignment requirements for
9937 the section; 0 if the default should be used. */
9939 static void
9940 unicosmk_asm_named_section (const char *name, unsigned int flags,
9941 tree decl ATTRIBUTE_UNUSED)
9943 const char *kind;
9945 /* Close the previous section. */
9947 fputs ("\t.endp\n\n", asm_out_file);
9949 /* Find out what kind of section we are opening. */
9951 if (flags & SECTION_MAIN)
9952 fputs ("\t.start\tmain\n", asm_out_file);
9954 if (flags & SECTION_CODE)
9955 kind = "code";
9956 else if (flags & SECTION_PUBLIC)
9957 kind = "common";
9958 else
9959 kind = "data";
9961 if (current_section_align != 0)
9962 fprintf (asm_out_file, "\t.psect\t%s,%d,%s\n", name,
9963 current_section_align, kind);
9964 else
9965 fprintf (asm_out_file, "\t.psect\t%s,%s\n", name, kind);
9968 static void
9969 unicosmk_insert_attributes (tree decl, tree *attr_ptr ATTRIBUTE_UNUSED)
9971 if (DECL_P (decl)
9972 && (TREE_PUBLIC (decl) || TREE_CODE (decl) == FUNCTION_DECL))
9973 unicosmk_unique_section (decl, 0);
9976 /* Output an alignment directive. We have to use the macro 'gcc@code@align'
9977 in code sections because .align fill unused space with zeroes. */
9979 void
9980 unicosmk_output_align (FILE *file, int align)
9982 if (inside_function)
9983 fprintf (file, "\tgcc@code@align\t%d\n", align);
9984 else
9985 fprintf (file, "\t.align\t%d\n", align);
9988 /* Add a case vector to the current function's list of deferred case
9989 vectors. Case vectors have to be put into a separate section because CAM
9990 does not allow data definitions in code sections. */
9992 void
9993 unicosmk_defer_case_vector (rtx lab, rtx vec)
9995 struct machine_function *machine = cfun->machine;
9997 vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec);
9998 machine->addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec,
9999 machine->addr_list);
10002 /* Output a case vector. */
10004 static void
10005 unicosmk_output_addr_vec (FILE *file, rtx vec)
10007 rtx lab = XEXP (vec, 0);
10008 rtx body = XEXP (vec, 1);
10009 int vlen = XVECLEN (body, 0);
10010 int idx;
10012 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (lab));
10014 for (idx = 0; idx < vlen; idx++)
10016 ASM_OUTPUT_ADDR_VEC_ELT
10017 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
10021 /* Output current function's deferred case vectors. */
10023 static void
10024 unicosmk_output_deferred_case_vectors (FILE *file)
10026 struct machine_function *machine = cfun->machine;
10027 rtx t;
10029 if (machine->addr_list == NULL_RTX)
10030 return;
10032 switch_to_section (data_section);
10033 for (t = machine->addr_list; t; t = XEXP (t, 1))
10034 unicosmk_output_addr_vec (file, XEXP (t, 0));
10037 /* Generate the name of the SSIB section for the current function. */
10039 #define SSIB_PREFIX "__SSIB_"
10040 #define SSIB_PREFIX_LEN 7
10042 static const char *
10043 unicosmk_ssib_name (void)
10045 /* This is ok since CAM won't be able to deal with names longer than that
10046 anyway. */
10048 static char name[256];
10050 rtx x;
10051 const char *fnname;
10052 int len;
10054 x = DECL_RTL (cfun->decl);
10055 gcc_assert (GET_CODE (x) == MEM);
10056 x = XEXP (x, 0);
10057 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10058 fnname = XSTR (x, 0);
10060 len = strlen (fnname);
10061 if (len + SSIB_PREFIX_LEN > 255)
10062 len = 255 - SSIB_PREFIX_LEN;
10064 strcpy (name, SSIB_PREFIX);
10065 strncpy (name + SSIB_PREFIX_LEN, fnname, len);
10066 name[len + SSIB_PREFIX_LEN] = 0;
10068 return name;
10071 /* Set up the dynamic subprogram information block (DSIB) and update the
10072 frame pointer register ($15) for subroutines which have a frame. If the
10073 subroutine doesn't have a frame, simply increment $15. */
10075 static void
10076 unicosmk_gen_dsib (unsigned long *imaskP)
10078 if (alpha_procedure_type == PT_STACK)
10080 const char *ssib_name;
10081 rtx mem;
10083 /* Allocate 64 bytes for the DSIB. */
10085 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
10086 GEN_INT (-64))));
10087 emit_insn (gen_blockage ());
10089 /* Save the return address. */
10091 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 56));
10092 set_mem_alias_set (mem, alpha_sr_alias_set);
10093 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA)));
10094 (*imaskP) &= ~(1UL << REG_RA);
10096 /* Save the old frame pointer. */
10098 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 48));
10099 set_mem_alias_set (mem, alpha_sr_alias_set);
10100 FRP (emit_move_insn (mem, hard_frame_pointer_rtx));
10101 (*imaskP) &= ~(1UL << HARD_FRAME_POINTER_REGNUM);
10103 emit_insn (gen_blockage ());
10105 /* Store the SSIB pointer. */
10107 ssib_name = ggc_strdup (unicosmk_ssib_name ());
10108 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 32));
10109 set_mem_alias_set (mem, alpha_sr_alias_set);
10111 FRP (emit_move_insn (gen_rtx_REG (DImode, 5),
10112 gen_rtx_SYMBOL_REF (Pmode, ssib_name)));
10113 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 5)));
10115 /* Save the CIW index. */
10117 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 24));
10118 set_mem_alias_set (mem, alpha_sr_alias_set);
10119 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 25)));
10121 emit_insn (gen_blockage ());
10123 /* Set the new frame pointer. */
10125 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
10126 stack_pointer_rtx, GEN_INT (64))));
10129 else
10131 /* Increment the frame pointer register to indicate that we do not
10132 have a frame. */
10134 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
10135 hard_frame_pointer_rtx, const1_rtx)));
10139 /* Output the static subroutine information block for the current
10140 function. */
10142 static void
10143 unicosmk_output_ssib (FILE *file, const char *fnname)
10145 int len;
10146 int i;
10147 rtx x;
10148 rtx ciw;
10149 struct machine_function *machine = cfun->machine;
10151 in_section = NULL;
10152 fprintf (file, "\t.endp\n\n\t.psect\t%s%s,data\n", user_label_prefix,
10153 unicosmk_ssib_name ());
10155 /* Some required stuff and the function name length. */
10157 len = strlen (fnname);
10158 fprintf (file, "\t.quad\t^X20008%2.2X28\n", len);
10160 /* Saved registers
10161 ??? We don't do that yet. */
10163 fputs ("\t.quad\t0\n", file);
10165 /* Function address. */
10167 fputs ("\t.quad\t", file);
10168 assemble_name (file, fnname);
10169 putc ('\n', file);
10171 fputs ("\t.quad\t0\n", file);
10172 fputs ("\t.quad\t0\n", file);
10174 /* Function name.
10175 ??? We do it the same way Cray CC does it but this could be
10176 simplified. */
10178 for( i = 0; i < len; i++ )
10179 fprintf (file, "\t.byte\t%d\n", (int)(fnname[i]));
10180 if( (len % 8) == 0 )
10181 fputs ("\t.quad\t0\n", file);
10182 else
10183 fprintf (file, "\t.bits\t%d : 0\n", (8 - (len % 8))*8);
10185 /* All call information words used in the function. */
10187 for (x = machine->first_ciw; x; x = XEXP (x, 1))
10189 ciw = XEXP (x, 0);
10190 #if HOST_BITS_PER_WIDE_INT == 32
10191 fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_DOUBLE_HEX "\n",
10192 CONST_DOUBLE_HIGH (ciw), CONST_DOUBLE_LOW (ciw));
10193 #else
10194 fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX "\n", INTVAL (ciw));
10195 #endif
10199 /* Add a call information word (CIW) to the list of the current function's
10200 CIWs and return its index.
10202 X is a CONST_INT or CONST_DOUBLE representing the CIW. */
10205 unicosmk_add_call_info_word (rtx x)
10207 rtx node;
10208 struct machine_function *machine = cfun->machine;
10210 node = gen_rtx_EXPR_LIST (VOIDmode, x, NULL_RTX);
10211 if (machine->first_ciw == NULL_RTX)
10212 machine->first_ciw = node;
10213 else
10214 XEXP (machine->last_ciw, 1) = node;
10216 machine->last_ciw = node;
10217 ++machine->ciw_count;
10219 return GEN_INT (machine->ciw_count
10220 + strlen (current_function_name ())/8 + 5);
10223 /* The Cray assembler doesn't accept extern declarations for symbols which
10224 are defined in the same file. We have to keep track of all global
10225 symbols which are referenced and/or defined in a source file and output
10226 extern declarations for those which are referenced but not defined at
10227 the end of file. */
10229 /* List of identifiers for which an extern declaration might have to be
10230 emitted. */
10231 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
10233 struct unicosmk_extern_list
10235 struct unicosmk_extern_list *next;
10236 const char *name;
10239 static struct unicosmk_extern_list *unicosmk_extern_head = 0;
10241 /* Output extern declarations which are required for every asm file. */
10243 static void
10244 unicosmk_output_default_externs (FILE *file)
10246 static const char *const externs[] =
10247 { "__T3E_MISMATCH" };
10249 int i;
10250 int n;
10252 n = ARRAY_SIZE (externs);
10254 for (i = 0; i < n; i++)
10255 fprintf (file, "\t.extern\t%s\n", externs[i]);
10258 /* Output extern declarations for global symbols which are have been
10259 referenced but not defined. */
10261 static void
10262 unicosmk_output_externs (FILE *file)
10264 struct unicosmk_extern_list *p;
10265 const char *real_name;
10266 int len;
10267 tree name_tree;
10269 len = strlen (user_label_prefix);
10270 for (p = unicosmk_extern_head; p != 0; p = p->next)
10272 /* We have to strip the encoding and possibly remove user_label_prefix
10273 from the identifier in order to handle -fleading-underscore and
10274 explicit asm names correctly (cf. gcc.dg/asm-names-1.c). */
10275 real_name = default_strip_name_encoding (p->name);
10276 if (len && p->name[0] == '*'
10277 && !memcmp (real_name, user_label_prefix, len))
10278 real_name += len;
10280 name_tree = get_identifier (real_name);
10281 if (! TREE_ASM_WRITTEN (name_tree))
10283 TREE_ASM_WRITTEN (name_tree) = 1;
10284 fputs ("\t.extern\t", file);
10285 assemble_name (file, p->name);
10286 putc ('\n', file);
10291 /* Record an extern. */
10293 void
10294 unicosmk_add_extern (const char *name)
10296 struct unicosmk_extern_list *p;
10298 p = (struct unicosmk_extern_list *)
10299 xmalloc (sizeof (struct unicosmk_extern_list));
10300 p->next = unicosmk_extern_head;
10301 p->name = name;
10302 unicosmk_extern_head = p;
10305 /* The Cray assembler generates incorrect code if identifiers which
10306 conflict with register names are used as instruction operands. We have
10307 to replace such identifiers with DEX expressions. */
10309 /* Structure to collect identifiers which have been replaced by DEX
10310 expressions. */
10311 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
10313 struct unicosmk_dex {
10314 struct unicosmk_dex *next;
10315 const char *name;
10318 /* List of identifiers which have been replaced by DEX expressions. The DEX
10319 number is determined by the position in the list. */
10321 static struct unicosmk_dex *unicosmk_dex_list = NULL;
10323 /* The number of elements in the DEX list. */
10325 static int unicosmk_dex_count = 0;
10327 /* Check if NAME must be replaced by a DEX expression. */
10329 static int
10330 unicosmk_special_name (const char *name)
10332 if (name[0] == '*')
10333 ++name;
10335 if (name[0] == '$')
10336 ++name;
10338 if (name[0] != 'r' && name[0] != 'f' && name[0] != 'R' && name[0] != 'F')
10339 return 0;
10341 switch (name[1])
10343 case '1': case '2':
10344 return (name[2] == '\0' || (ISDIGIT (name[2]) && name[3] == '\0'));
10346 case '3':
10347 return (name[2] == '\0'
10348 || ((name[2] == '0' || name[2] == '1') && name[3] == '\0'));
10350 default:
10351 return (ISDIGIT (name[1]) && name[2] == '\0');
10355 /* Return the DEX number if X must be replaced by a DEX expression and 0
10356 otherwise. */
10358 static int
10359 unicosmk_need_dex (rtx x)
10361 struct unicosmk_dex *dex;
10362 const char *name;
10363 int i;
10365 if (GET_CODE (x) != SYMBOL_REF)
10366 return 0;
10368 name = XSTR (x,0);
10369 if (! unicosmk_special_name (name))
10370 return 0;
10372 i = unicosmk_dex_count;
10373 for (dex = unicosmk_dex_list; dex; dex = dex->next)
10375 if (! strcmp (name, dex->name))
10376 return i;
10377 --i;
10380 dex = (struct unicosmk_dex *) xmalloc (sizeof (struct unicosmk_dex));
10381 dex->name = name;
10382 dex->next = unicosmk_dex_list;
10383 unicosmk_dex_list = dex;
10385 ++unicosmk_dex_count;
10386 return unicosmk_dex_count;
10389 /* Output the DEX definitions for this file. */
10391 static void
10392 unicosmk_output_dex (FILE *file)
10394 struct unicosmk_dex *dex;
10395 int i;
10397 if (unicosmk_dex_list == NULL)
10398 return;
10400 fprintf (file, "\t.dexstart\n");
10402 i = unicosmk_dex_count;
10403 for (dex = unicosmk_dex_list; dex; dex = dex->next)
10405 fprintf (file, "\tDEX (%d) = ", i);
10406 assemble_name (file, dex->name);
10407 putc ('\n', file);
10408 --i;
10411 fprintf (file, "\t.dexend\n");
10414 /* Output text that to appear at the beginning of an assembler file. */
10416 static void
10417 unicosmk_file_start (void)
10419 int i;
10421 fputs ("\t.ident\t", asm_out_file);
10422 unicosmk_output_module_name (asm_out_file);
10423 fputs ("\n\n", asm_out_file);
10425 /* The Unicos/Mk assembler uses different register names. Instead of trying
10426 to support them, we simply use micro definitions. */
10428 /* CAM has different register names: rN for the integer register N and fN
10429 for the floating-point register N. Instead of trying to use these in
10430 alpha.md, we define the symbols $N and $fN to refer to the appropriate
10431 register. */
10433 for (i = 0; i < 32; ++i)
10434 fprintf (asm_out_file, "$%d <- r%d\n", i, i);
10436 for (i = 0; i < 32; ++i)
10437 fprintf (asm_out_file, "$f%d <- f%d\n", i, i);
10439 putc ('\n', asm_out_file);
10441 /* The .align directive fill unused space with zeroes which does not work
10442 in code sections. We define the macro 'gcc@code@align' which uses nops
10443 instead. Note that it assumes that code sections always have the
10444 biggest possible alignment since . refers to the current offset from
10445 the beginning of the section. */
10447 fputs ("\t.macro gcc@code@align n\n", asm_out_file);
10448 fputs ("gcc@n@bytes = 1 << n\n", asm_out_file);
10449 fputs ("gcc@here = . % gcc@n@bytes\n", asm_out_file);
10450 fputs ("\t.if ne, gcc@here, 0\n", asm_out_file);
10451 fputs ("\t.repeat (gcc@n@bytes - gcc@here) / 4\n", asm_out_file);
10452 fputs ("\tbis r31,r31,r31\n", asm_out_file);
10453 fputs ("\t.endr\n", asm_out_file);
10454 fputs ("\t.endif\n", asm_out_file);
10455 fputs ("\t.endm gcc@code@align\n\n", asm_out_file);
10457 /* Output extern declarations which should always be visible. */
10458 unicosmk_output_default_externs (asm_out_file);
10460 /* Open a dummy section. We always need to be inside a section for the
10461 section-switching code to work correctly.
10462 ??? This should be a module id or something like that. I still have to
10463 figure out what the rules for those are. */
10464 fputs ("\n\t.psect\t$SG00000,data\n", asm_out_file);
10467 /* Output text to appear at the end of an assembler file. This includes all
10468 pending extern declarations and DEX expressions. */
10470 static void
10471 unicosmk_file_end (void)
10473 fputs ("\t.endp\n\n", asm_out_file);
10475 /* Output all pending externs. */
10477 unicosmk_output_externs (asm_out_file);
10479 /* Output dex definitions used for functions whose names conflict with
10480 register names. */
10482 unicosmk_output_dex (asm_out_file);
10484 fputs ("\t.end\t", asm_out_file);
10485 unicosmk_output_module_name (asm_out_file);
10486 putc ('\n', asm_out_file);
10489 #else
10491 static void
10492 unicosmk_output_deferred_case_vectors (FILE *file ATTRIBUTE_UNUSED)
10495 static void
10496 unicosmk_gen_dsib (unsigned long *imaskP ATTRIBUTE_UNUSED)
10499 static void
10500 unicosmk_output_ssib (FILE * file ATTRIBUTE_UNUSED,
10501 const char * fnname ATTRIBUTE_UNUSED)
10505 unicosmk_add_call_info_word (rtx x ATTRIBUTE_UNUSED)
10507 return NULL_RTX;
10510 static int
10511 unicosmk_need_dex (rtx x ATTRIBUTE_UNUSED)
10513 return 0;
10516 #endif /* TARGET_ABI_UNICOSMK */
10518 static void
10519 alpha_init_libfuncs (void)
10521 if (TARGET_ABI_UNICOSMK)
10523 /* Prevent gcc from generating calls to __divsi3. */
10524 set_optab_libfunc (sdiv_optab, SImode, 0);
10525 set_optab_libfunc (udiv_optab, SImode, 0);
10527 /* Use the functions provided by the system library
10528 for DImode integer division. */
10529 set_optab_libfunc (sdiv_optab, DImode, "$sldiv");
10530 set_optab_libfunc (udiv_optab, DImode, "$uldiv");
10532 else if (TARGET_ABI_OPEN_VMS)
10534 /* Use the VMS runtime library functions for division and
10535 remainder. */
10536 set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
10537 set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
10538 set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
10539 set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
10540 set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
10541 set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
10542 set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
10543 set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
10548 /* Initialize the GCC target structure. */
10549 #if TARGET_ABI_OPEN_VMS
10550 # undef TARGET_ATTRIBUTE_TABLE
10551 # define TARGET_ATTRIBUTE_TABLE vms_attribute_table
10552 # undef TARGET_SECTION_TYPE_FLAGS
10553 # define TARGET_SECTION_TYPE_FLAGS vms_section_type_flags
10554 #endif
10556 #undef TARGET_IN_SMALL_DATA_P
10557 #define TARGET_IN_SMALL_DATA_P alpha_in_small_data_p
10559 #if TARGET_ABI_UNICOSMK
10560 # undef TARGET_INSERT_ATTRIBUTES
10561 # define TARGET_INSERT_ATTRIBUTES unicosmk_insert_attributes
10562 # undef TARGET_SECTION_TYPE_FLAGS
10563 # define TARGET_SECTION_TYPE_FLAGS unicosmk_section_type_flags
10564 # undef TARGET_ASM_UNIQUE_SECTION
10565 # define TARGET_ASM_UNIQUE_SECTION unicosmk_unique_section
10566 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
10567 #define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section
10568 # undef TARGET_ASM_GLOBALIZE_LABEL
10569 # define TARGET_ASM_GLOBALIZE_LABEL hook_void_FILEptr_constcharptr
10570 # undef TARGET_MUST_PASS_IN_STACK
10571 # define TARGET_MUST_PASS_IN_STACK unicosmk_must_pass_in_stack
10572 #endif
10574 #undef TARGET_ASM_ALIGNED_HI_OP
10575 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
10576 #undef TARGET_ASM_ALIGNED_DI_OP
10577 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
10579 /* Default unaligned ops are provided for ELF systems. To get unaligned
10580 data for non-ELF systems, we have to turn off auto alignment. */
10581 #ifndef OBJECT_FORMAT_ELF
10582 #undef TARGET_ASM_UNALIGNED_HI_OP
10583 #define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.word\t"
10584 #undef TARGET_ASM_UNALIGNED_SI_OP
10585 #define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.long\t"
10586 #undef TARGET_ASM_UNALIGNED_DI_OP
10587 #define TARGET_ASM_UNALIGNED_DI_OP "\t.align 0\n\t.quad\t"
10588 #endif
10590 #ifdef OBJECT_FORMAT_ELF
10591 #undef TARGET_ASM_RELOC_RW_MASK
10592 #define TARGET_ASM_RELOC_RW_MASK alpha_elf_reloc_rw_mask
10593 #undef TARGET_ASM_SELECT_RTX_SECTION
10594 #define TARGET_ASM_SELECT_RTX_SECTION alpha_elf_select_rtx_section
10595 #undef TARGET_SECTION_TYPE_FLAGS
10596 #define TARGET_SECTION_TYPE_FLAGS alpha_elf_section_type_flags
10597 #endif
10599 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
10600 #define TARGET_ASM_FUNCTION_END_PROLOGUE alpha_output_function_end_prologue
10602 #undef TARGET_INIT_LIBFUNCS
10603 #define TARGET_INIT_LIBFUNCS alpha_init_libfuncs
10605 #if TARGET_ABI_UNICOSMK
10606 #undef TARGET_ASM_FILE_START
10607 #define TARGET_ASM_FILE_START unicosmk_file_start
10608 #undef TARGET_ASM_FILE_END
10609 #define TARGET_ASM_FILE_END unicosmk_file_end
10610 #else
10611 #undef TARGET_ASM_FILE_START
10612 #define TARGET_ASM_FILE_START alpha_file_start
10613 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
10614 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
10615 #endif
10617 #undef TARGET_SCHED_ADJUST_COST
10618 #define TARGET_SCHED_ADJUST_COST alpha_adjust_cost
10619 #undef TARGET_SCHED_ISSUE_RATE
10620 #define TARGET_SCHED_ISSUE_RATE alpha_issue_rate
10621 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
10622 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
10623 alpha_multipass_dfa_lookahead
10625 #undef TARGET_HAVE_TLS
10626 #define TARGET_HAVE_TLS HAVE_AS_TLS
10628 #undef TARGET_INIT_BUILTINS
10629 #define TARGET_INIT_BUILTINS alpha_init_builtins
10630 #undef TARGET_EXPAND_BUILTIN
10631 #define TARGET_EXPAND_BUILTIN alpha_expand_builtin
10632 #undef TARGET_FOLD_BUILTIN
10633 #define TARGET_FOLD_BUILTIN alpha_fold_builtin
10635 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
10636 #define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall
10637 #undef TARGET_CANNOT_COPY_INSN_P
10638 #define TARGET_CANNOT_COPY_INSN_P alpha_cannot_copy_insn_p
10639 #undef TARGET_CANNOT_FORCE_CONST_MEM
10640 #define TARGET_CANNOT_FORCE_CONST_MEM alpha_cannot_force_const_mem
10642 #if TARGET_ABI_OSF
10643 #undef TARGET_ASM_OUTPUT_MI_THUNK
10644 #define TARGET_ASM_OUTPUT_MI_THUNK alpha_output_mi_thunk_osf
10645 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
10646 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
10647 #undef TARGET_STDARG_OPTIMIZE_HOOK
10648 #define TARGET_STDARG_OPTIMIZE_HOOK alpha_stdarg_optimize_hook
10649 #endif
10651 #undef TARGET_RTX_COSTS
10652 #define TARGET_RTX_COSTS alpha_rtx_costs
10653 #undef TARGET_ADDRESS_COST
10654 #define TARGET_ADDRESS_COST hook_int_rtx_0
10656 #undef TARGET_MACHINE_DEPENDENT_REORG
10657 #define TARGET_MACHINE_DEPENDENT_REORG alpha_reorg
10659 #undef TARGET_PROMOTE_FUNCTION_ARGS
10660 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
10661 #undef TARGET_PROMOTE_FUNCTION_RETURN
10662 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
10663 #undef TARGET_PROMOTE_PROTOTYPES
10664 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_false
10665 #undef TARGET_RETURN_IN_MEMORY
10666 #define TARGET_RETURN_IN_MEMORY alpha_return_in_memory
10667 #undef TARGET_PASS_BY_REFERENCE
10668 #define TARGET_PASS_BY_REFERENCE alpha_pass_by_reference
10669 #undef TARGET_SETUP_INCOMING_VARARGS
10670 #define TARGET_SETUP_INCOMING_VARARGS alpha_setup_incoming_varargs
10671 #undef TARGET_STRICT_ARGUMENT_NAMING
10672 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
10673 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
10674 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
10675 #undef TARGET_SPLIT_COMPLEX_ARG
10676 #define TARGET_SPLIT_COMPLEX_ARG alpha_split_complex_arg
10677 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
10678 #define TARGET_GIMPLIFY_VA_ARG_EXPR alpha_gimplify_va_arg
10679 #undef TARGET_ARG_PARTIAL_BYTES
10680 #define TARGET_ARG_PARTIAL_BYTES alpha_arg_partial_bytes
10682 #undef TARGET_SECONDARY_RELOAD
10683 #define TARGET_SECONDARY_RELOAD alpha_secondary_reload
10685 #undef TARGET_SCALAR_MODE_SUPPORTED_P
10686 #define TARGET_SCALAR_MODE_SUPPORTED_P alpha_scalar_mode_supported_p
10687 #undef TARGET_VECTOR_MODE_SUPPORTED_P
10688 #define TARGET_VECTOR_MODE_SUPPORTED_P alpha_vector_mode_supported_p
10690 #undef TARGET_BUILD_BUILTIN_VA_LIST
10691 #define TARGET_BUILD_BUILTIN_VA_LIST alpha_build_builtin_va_list
10693 #undef TARGET_EXPAND_BUILTIN_VA_START
10694 #define TARGET_EXPAND_BUILTIN_VA_START alpha_va_start
10696 /* The Alpha architecture does not require sequential consistency. See
10697 http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
10698 for an example of how it can be violated in practice. */
10699 #undef TARGET_RELAXED_ORDERING
10700 #define TARGET_RELAXED_ORDERING true
10702 #undef TARGET_DEFAULT_TARGET_FLAGS
10703 #define TARGET_DEFAULT_TARGET_FLAGS \
10704 (TARGET_DEFAULT | TARGET_CPU_DEFAULT | TARGET_DEFAULT_EXPLICIT_RELOCS)
10705 #undef TARGET_HANDLE_OPTION
10706 #define TARGET_HANDLE_OPTION alpha_handle_option
10708 #ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING
10709 #undef TARGET_MANGLE_TYPE
10710 #define TARGET_MANGLE_TYPE alpha_mangle_type
10711 #endif
10713 struct gcc_target targetm = TARGET_INITIALIZER;
10716 #include "gt-alpha.h"