2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / basic-block.h
blob53e8a8b5685d92b77f1ae641743d5214f0e8d124
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, const_bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
90 typedef bitmap_iterator reg_set_iterator;
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109 /* Type we use to hold basic block counters. Should be at least
110 64bit. Although a counter cannot be negative, we use a signed
111 type, because erroneous negative counts can be generated when the
112 flow graph is manipulated by various optimizations. A signed type
113 makes those easy to detect. */
114 typedef HOST_WIDEST_INT gcov_type;
116 /* Control flow edge information. */
117 struct edge_def GTY(())
119 /* The two blocks at the ends of the edge. */
120 struct basic_block_def *src;
121 struct basic_block_def *dest;
123 /* Instructions queued on the edge. */
124 union edge_def_insns {
125 tree GTY ((tag ("true"))) t;
126 rtx GTY ((tag ("false"))) r;
127 } GTY ((desc ("current_ir_type () == IR_GIMPLE"))) insns;
129 /* Auxiliary info specific to a pass. */
130 PTR GTY ((skip (""))) aux;
132 /* Location of any goto implicit in the edge, during tree-ssa. */
133 location_t goto_locus;
135 /* The index number corresponding to this edge in the edge vector
136 dest->preds. */
137 unsigned int dest_idx;
139 int flags; /* see EDGE_* below */
140 int probability; /* biased by REG_BR_PROB_BASE */
141 gcov_type count; /* Expected number of executions calculated
142 in profile.c */
145 typedef struct edge_def *edge;
146 typedef const struct edge_def *const_edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
149 DEF_VEC_ALLOC_P(edge,heap);
151 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
152 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
153 label, or eh */
154 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
155 like an exception, or sibcall */
156 #define EDGE_EH 8 /* Exception throw */
157 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
158 #define EDGE_DFS_BACK 32 /* A backwards edge */
159 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
160 flow. */
161 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
162 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
163 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
164 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
165 predicate is nonzero. */
166 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
167 predicate is zero. */
168 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
169 valid during SSA-CCP. */
170 #define EDGE_CROSSING 8192 /* Edge crosses between hot
171 and cold sections, when we
172 do partitioning. */
173 #define EDGE_ALL_FLAGS 16383
175 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
177 /* Counter summary from the last set of coverage counts read by
178 profile.c. */
179 extern const struct gcov_ctr_summary *profile_info;
181 /* Declared in cfgloop.h. */
182 struct loop;
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
186 struct rtl_bb_info;
188 /* A basic block is a sequence of instructions with only entry and
189 only one exit. If any one of the instructions are executed, they
190 will all be executed, and in sequence from first to last.
192 There may be COND_EXEC instructions in the basic block. The
193 COND_EXEC *instructions* will be executed -- but if the condition
194 is false the conditionally executed *expressions* will of course
195 not be executed. We don't consider the conditionally executed
196 expression (which might have side-effects) to be in a separate
197 basic block because the program counter will always be at the same
198 location after the COND_EXEC instruction, regardless of whether the
199 condition is true or not.
201 Basic blocks need not start with a label nor end with a jump insn.
202 For example, a previous basic block may just "conditionally fall"
203 into the succeeding basic block, and the last basic block need not
204 end with a jump insn. Block 0 is a descendant of the entry block.
206 A basic block beginning with two labels cannot have notes between
207 the labels.
209 Data for jump tables are stored in jump_insns that occur in no
210 basic block even though these insns can follow or precede insns in
211 basic blocks. */
213 /* Basic block information indexed by block number. */
214 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
216 /* The edges into and out of the block. */
217 VEC(edge,gc) *preds;
218 VEC(edge,gc) *succs;
220 /* Auxiliary info specific to a pass. */
221 PTR GTY ((skip (""))) aux;
223 /* Innermost loop containing the block. */
224 struct loop *loop_father;
226 /* The dominance and postdominance information node. */
227 struct et_node * GTY ((skip (""))) dom[2];
229 /* Previous and next blocks in the chain. */
230 struct basic_block_def *prev_bb;
231 struct basic_block_def *next_bb;
233 union basic_block_il_dependent {
234 struct tree_bb_info * GTY ((tag ("0"))) tree;
235 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
236 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
238 /* Expected number of executions: calculated in profile.c. */
239 gcov_type count;
241 /* The index of this block. */
242 int index;
244 /* The loop depth of this block. */
245 int loop_depth;
247 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
248 int frequency;
250 /* Various flags. See BB_* below. */
251 int flags;
254 struct rtl_bb_info GTY(())
256 /* The first and last insns of the block. */
257 rtx head_;
258 rtx end_;
260 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
261 and after the block. */
262 rtx header;
263 rtx footer;
265 /* This field is used by the bb-reorder and tracer passes. */
266 int visited;
269 struct tree_bb_info GTY(())
271 /* Pointers to the first and last trees of the block. */
272 tree stmt_list;
274 /* Chain of PHI nodes for this block. */
275 tree phi_nodes;
278 typedef struct basic_block_def *basic_block;
279 typedef const struct basic_block_def *const_basic_block;
281 DEF_VEC_P(basic_block);
282 DEF_VEC_ALLOC_P(basic_block,gc);
283 DEF_VEC_ALLOC_P(basic_block,heap);
285 #define BB_FREQ_MAX 10000
287 /* Masks for basic_block.flags.
289 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
290 the compilation, so they are never cleared.
292 All other flags may be cleared by clear_bb_flags(). It is generally
293 a bad idea to rely on any flags being up-to-date. */
295 enum bb_flags
297 /* Only set on blocks that have just been created by create_bb. */
298 BB_NEW = 1 << 0,
300 /* Set by find_unreachable_blocks. Do not rely on this being set in any
301 pass. */
302 BB_REACHABLE = 1 << 1,
304 /* Set for blocks in an irreducible loop by loop analysis. */
305 BB_IRREDUCIBLE_LOOP = 1 << 2,
307 /* Set on blocks that may actually not be single-entry single-exit block. */
308 BB_SUPERBLOCK = 1 << 3,
310 /* Set on basic blocks that the scheduler should not touch. This is used
311 by SMS to prevent other schedulers from messing with the loop schedule. */
312 BB_DISABLE_SCHEDULE = 1 << 4,
314 /* Set on blocks that should be put in a hot section. */
315 BB_HOT_PARTITION = 1 << 5,
317 /* Set on blocks that should be put in a cold section. */
318 BB_COLD_PARTITION = 1 << 6,
320 /* Set on block that was duplicated. */
321 BB_DUPLICATED = 1 << 7,
323 /* Set if the label at the top of this block is the target of a non-local goto. */
324 BB_NON_LOCAL_GOTO_TARGET = 1 << 8,
326 /* Set on blocks that are in RTL format. */
327 BB_RTL = 1 << 9 ,
329 /* Set on blocks that are forwarder blocks.
330 Only used in cfgcleanup.c. */
331 BB_FORWARDER_BLOCK = 1 << 10,
333 /* Set on blocks that cannot be threaded through.
334 Only used in cfgcleanup.c. */
335 BB_NONTHREADABLE_BLOCK = 1 << 11
338 /* Dummy flag for convenience in the hot/cold partitioning code. */
339 #define BB_UNPARTITIONED 0
341 /* Partitions, to be used when partitioning hot and cold basic blocks into
342 separate sections. */
343 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344 #define BB_SET_PARTITION(bb, part) do { \
345 basic_block bb_ = (bb); \
346 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
347 | (part)); \
348 } while (0)
350 #define BB_COPY_PARTITION(dstbb, srcbb) \
351 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
353 /* State of dominance information. */
355 enum dom_state
357 DOM_NONE, /* Not computed at all. */
358 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
359 DOM_OK /* Everything is ok. */
362 /* A structure to group all the per-function control flow graph data.
363 The x_* prefixing is necessary because otherwise references to the
364 fields of this struct are interpreted as the defines for backward
365 source compatibility following the definition of this struct. */
366 struct control_flow_graph GTY(())
368 /* Block pointers for the exit and entry of a function.
369 These are always the head and tail of the basic block list. */
370 basic_block x_entry_block_ptr;
371 basic_block x_exit_block_ptr;
373 /* Index by basic block number, get basic block struct info. */
374 VEC(basic_block,gc) *x_basic_block_info;
376 /* Number of basic blocks in this flow graph. */
377 int x_n_basic_blocks;
379 /* Number of edges in this flow graph. */
380 int x_n_edges;
382 /* The first free basic block number. */
383 int x_last_basic_block;
385 /* Mapping of labels to their associated blocks. At present
386 only used for the tree CFG. */
387 VEC(basic_block,gc) *x_label_to_block_map;
389 enum profile_status {
390 PROFILE_ABSENT,
391 PROFILE_GUESSED,
392 PROFILE_READ
393 } x_profile_status;
395 /* Whether the dominators and the postdominators are available. */
396 enum dom_state x_dom_computed[2];
398 /* Number of basic blocks in the dominance tree. */
399 unsigned x_n_bbs_in_dom_tree[2];
401 /* Maximal number of entities in the single jumptable. Used to estimate
402 final flowgraph size. */
403 int max_jumptable_ents;
405 /* UIDs for LABEL_DECLs. */
406 int last_label_uid;
409 /* Defines for accessing the fields of the CFG structure for function FN. */
410 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
411 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
412 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
413 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
414 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
415 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
416 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
417 #define profile_status_for_function(FN) ((FN)->cfg->x_profile_status)
419 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
420 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
421 #define SET_BASIC_BLOCK_FOR_FUNCTION(FN,N,BB) \
422 (VEC_replace (basic_block, basic_block_info_for_function(FN), (N), (BB)))
424 /* Defines for textual backward source compatibility. */
425 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
426 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
427 #define basic_block_info (cfun->cfg->x_basic_block_info)
428 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
429 #define n_edges (cfun->cfg->x_n_edges)
430 #define last_basic_block (cfun->cfg->x_last_basic_block)
431 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
432 #define profile_status (cfun->cfg->x_profile_status)
434 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
435 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
437 /* For iterating over basic blocks. */
438 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
439 for (BB = FROM; BB != TO; BB = BB->DIR)
441 #define FOR_EACH_BB_FN(BB, FN) \
442 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
444 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
446 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
447 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
449 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
451 /* For iterating over insns in basic block. */
452 #define FOR_BB_INSNS(BB, INSN) \
453 for ((INSN) = BB_HEAD (BB); \
454 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
455 (INSN) = NEXT_INSN (INSN))
457 /* For iterating over insns in basic block when we might remove the
458 current insn. */
459 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
460 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
461 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
462 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
464 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
465 for ((INSN) = BB_END (BB); \
466 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
467 (INSN) = PREV_INSN (INSN))
469 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
470 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
471 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
472 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
474 /* Cycles through _all_ basic blocks, even the fake ones (entry and
475 exit block). */
477 #define FOR_ALL_BB(BB) \
478 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
480 #define FOR_ALL_BB_FN(BB, FN) \
481 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
483 extern bitmap_obstack reg_obstack;
486 /* Stuff for recording basic block info. */
488 #define BB_HEAD(B) (B)->il.rtl->head_
489 #define BB_END(B) (B)->il.rtl->end_
491 /* Special block numbers [markers] for entry and exit. */
492 #define ENTRY_BLOCK (0)
493 #define EXIT_BLOCK (1)
495 /* The two blocks that are always in the cfg. */
496 #define NUM_FIXED_BLOCKS (2)
499 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
500 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
502 extern void compute_bb_for_insn (void);
503 extern unsigned int free_bb_for_insn (void);
504 extern void update_bb_for_insn (basic_block);
506 extern void insert_insn_on_edge (rtx, edge);
507 basic_block split_edge_and_insert (edge, rtx);
509 extern void commit_edge_insertions (void);
511 extern void remove_fake_edges (void);
512 extern void remove_fake_exit_edges (void);
513 extern void add_noreturn_fake_exit_edges (void);
514 extern void connect_infinite_loops_to_exit (void);
515 extern edge unchecked_make_edge (basic_block, basic_block, int);
516 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
517 extern edge make_edge (basic_block, basic_block, int);
518 extern edge make_single_succ_edge (basic_block, basic_block, int);
519 extern void remove_edge_raw (edge);
520 extern void redirect_edge_succ (edge, basic_block);
521 extern edge redirect_edge_succ_nodup (edge, basic_block);
522 extern void redirect_edge_pred (edge, basic_block);
523 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
524 extern void clear_bb_flags (void);
525 extern int post_order_compute (int *, bool, bool);
526 extern int inverted_post_order_compute (int *);
527 extern int pre_and_rev_post_order_compute (int *, int *, bool);
528 extern int dfs_enumerate_from (basic_block, int,
529 bool (*)(const_basic_block, const void *),
530 basic_block *, int, const void *);
531 extern void compute_dominance_frontiers (bitmap *);
532 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
533 extern void dump_edge_info (FILE *, edge, int);
534 extern void brief_dump_cfg (FILE *);
535 extern void clear_edges (void);
536 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
537 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
538 gcov_type);
540 /* Structure to group all of the information to process IF-THEN and
541 IF-THEN-ELSE blocks for the conditional execution support. This
542 needs to be in a public file in case the IFCVT macros call
543 functions passing the ce_if_block data structure. */
545 typedef struct ce_if_block
547 basic_block test_bb; /* First test block. */
548 basic_block then_bb; /* THEN block. */
549 basic_block else_bb; /* ELSE block or NULL. */
550 basic_block join_bb; /* Join THEN/ELSE blocks. */
551 basic_block last_test_bb; /* Last bb to hold && or || tests. */
552 int num_multiple_test_blocks; /* # of && and || basic blocks. */
553 int num_and_and_blocks; /* # of && blocks. */
554 int num_or_or_blocks; /* # of || blocks. */
555 int num_multiple_test_insns; /* # of insns in && and || blocks. */
556 int and_and_p; /* Complex test is &&. */
557 int num_then_insns; /* # of insns in THEN block. */
558 int num_else_insns; /* # of insns in ELSE block. */
559 int pass; /* Pass number. */
561 #ifdef IFCVT_EXTRA_FIELDS
562 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
563 #endif
565 } ce_if_block_t;
567 /* This structure maintains an edge list vector. */
568 struct edge_list
570 int num_blocks;
571 int num_edges;
572 edge *index_to_edge;
575 /* The base value for branch probability notes and edge probabilities. */
576 #define REG_BR_PROB_BASE 10000
578 /* This is the value which indicates no edge is present. */
579 #define EDGE_INDEX_NO_EDGE -1
581 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
582 if there is no edge between the 2 basic blocks. */
583 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
585 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
586 block which is either the pred or succ end of the indexed edge. */
587 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
588 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
590 /* INDEX_EDGE returns a pointer to the edge. */
591 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
593 /* Number of edges in the compressed edge list. */
594 #define NUM_EDGES(el) ((el)->num_edges)
596 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
597 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
598 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
600 /* BB is assumed to contain conditional jump. Return the branch edge. */
601 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
602 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
604 /* Return expected execution frequency of the edge E. */
605 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
606 * (e)->probability \
607 + REG_BR_PROB_BASE / 2) \
608 / REG_BR_PROB_BASE)
610 /* Return nonzero if edge is critical. */
611 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
612 && EDGE_COUNT ((e)->dest->preds) >= 2)
614 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
615 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
616 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
617 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
619 /* Returns true if BB has precisely one successor. */
621 static inline bool
622 single_succ_p (const_basic_block bb)
624 return EDGE_COUNT (bb->succs) == 1;
627 /* Returns true if BB has precisely one predecessor. */
629 static inline bool
630 single_pred_p (const_basic_block bb)
632 return EDGE_COUNT (bb->preds) == 1;
635 /* Returns the single successor edge of basic block BB. Aborts if
636 BB does not have exactly one successor. */
638 static inline edge
639 single_succ_edge (const_basic_block bb)
641 gcc_assert (single_succ_p (bb));
642 return EDGE_SUCC (bb, 0);
645 /* Returns the single predecessor edge of basic block BB. Aborts
646 if BB does not have exactly one predecessor. */
648 static inline edge
649 single_pred_edge (const_basic_block bb)
651 gcc_assert (single_pred_p (bb));
652 return EDGE_PRED (bb, 0);
655 /* Returns the single successor block of basic block BB. Aborts
656 if BB does not have exactly one successor. */
658 static inline basic_block
659 single_succ (const_basic_block bb)
661 return single_succ_edge (bb)->dest;
664 /* Returns the single predecessor block of basic block BB. Aborts
665 if BB does not have exactly one predecessor.*/
667 static inline basic_block
668 single_pred (const_basic_block bb)
670 return single_pred_edge (bb)->src;
673 /* Iterator object for edges. */
675 typedef struct {
676 unsigned index;
677 VEC(edge,gc) **container;
678 } edge_iterator;
680 static inline VEC(edge,gc) *
681 ei_container (edge_iterator i)
683 gcc_assert (i.container);
684 return *i.container;
687 #define ei_start(iter) ei_start_1 (&(iter))
688 #define ei_last(iter) ei_last_1 (&(iter))
690 /* Return an iterator pointing to the start of an edge vector. */
691 static inline edge_iterator
692 ei_start_1 (VEC(edge,gc) **ev)
694 edge_iterator i;
696 i.index = 0;
697 i.container = ev;
699 return i;
702 /* Return an iterator pointing to the last element of an edge
703 vector. */
704 static inline edge_iterator
705 ei_last_1 (VEC(edge,gc) **ev)
707 edge_iterator i;
709 i.index = EDGE_COUNT (*ev) - 1;
710 i.container = ev;
712 return i;
715 /* Is the iterator `i' at the end of the sequence? */
716 static inline bool
717 ei_end_p (edge_iterator i)
719 return (i.index == EDGE_COUNT (ei_container (i)));
722 /* Is the iterator `i' at one position before the end of the
723 sequence? */
724 static inline bool
725 ei_one_before_end_p (edge_iterator i)
727 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
730 /* Advance the iterator to the next element. */
731 static inline void
732 ei_next (edge_iterator *i)
734 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
735 i->index++;
738 /* Move the iterator to the previous element. */
739 static inline void
740 ei_prev (edge_iterator *i)
742 gcc_assert (i->index > 0);
743 i->index--;
746 /* Return the edge pointed to by the iterator `i'. */
747 static inline edge
748 ei_edge (edge_iterator i)
750 return EDGE_I (ei_container (i), i.index);
753 /* Return an edge pointed to by the iterator. Do it safely so that
754 NULL is returned when the iterator is pointing at the end of the
755 sequence. */
756 static inline edge
757 ei_safe_edge (edge_iterator i)
759 return !ei_end_p (i) ? ei_edge (i) : NULL;
762 /* Return 1 if we should continue to iterate. Return 0 otherwise.
763 *Edge P is set to the next edge if we are to continue to iterate
764 and NULL otherwise. */
766 static inline bool
767 ei_cond (edge_iterator ei, edge *p)
769 if (!ei_end_p (ei))
771 *p = ei_edge (ei);
772 return 1;
774 else
776 *p = NULL;
777 return 0;
781 /* This macro serves as a convenient way to iterate each edge in a
782 vector of predecessor or successor edges. It must not be used when
783 an element might be removed during the traversal, otherwise
784 elements will be missed. Instead, use a for-loop like that shown
785 in the following pseudo-code:
787 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
789 IF (e != taken_edge)
790 remove_edge (e);
791 ELSE
792 ei_next (&ei);
796 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
797 for ((ITER) = ei_start ((EDGE_VEC)); \
798 ei_cond ((ITER), &(EDGE)); \
799 ei_next (&(ITER)))
801 struct edge_list * create_edge_list (void);
802 void free_edge_list (struct edge_list *);
803 void print_edge_list (FILE *, struct edge_list *);
804 void verify_edge_list (FILE *, struct edge_list *);
805 int find_edge_index (struct edge_list *, basic_block, basic_block);
806 edge find_edge (basic_block, basic_block);
808 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
809 except for edge forwarding */
810 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
811 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
812 to care REG_DEAD notes. */
813 #define CLEANUP_THREADING 8 /* Do jump threading. */
814 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
815 insns. */
816 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
818 /* In lcm.c */
819 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
820 sbitmap *, sbitmap *, sbitmap **,
821 sbitmap **);
822 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
823 sbitmap *, sbitmap *,
824 sbitmap *, sbitmap **,
825 sbitmap **);
826 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
828 /* In predict.c */
829 extern bool maybe_hot_bb_p (const_basic_block);
830 extern bool probably_cold_bb_p (const_basic_block);
831 extern bool probably_never_executed_bb_p (const_basic_block);
832 extern bool tree_predicted_by_p (const_basic_block, enum br_predictor);
833 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
834 extern void tree_predict_edge (edge, enum br_predictor, int);
835 extern void rtl_predict_edge (edge, enum br_predictor, int);
836 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
837 extern void guess_outgoing_edge_probabilities (basic_block);
838 extern void remove_predictions_associated_with_edge (edge);
839 extern bool edge_probability_reliable_p (const_edge);
840 extern bool br_prob_note_reliable_p (const_rtx);
842 /* In cfg.c */
843 extern void dump_regset (regset, FILE *);
844 extern void debug_regset (regset);
845 extern void init_flow (struct function *);
846 extern void debug_bb (basic_block);
847 extern basic_block debug_bb_n (int);
848 extern void dump_regset (regset, FILE *);
849 extern void debug_regset (regset);
850 extern void expunge_block (basic_block);
851 extern void link_block (basic_block, basic_block);
852 extern void unlink_block (basic_block);
853 extern void compact_blocks (void);
854 extern basic_block alloc_block (void);
855 extern void alloc_aux_for_block (basic_block, int);
856 extern void alloc_aux_for_blocks (int);
857 extern void clear_aux_for_blocks (void);
858 extern void free_aux_for_blocks (void);
859 extern void alloc_aux_for_edge (edge, int);
860 extern void alloc_aux_for_edges (int);
861 extern void clear_aux_for_edges (void);
862 extern void free_aux_for_edges (void);
864 /* In cfganal.c */
865 extern void find_unreachable_blocks (void);
866 extern bool forwarder_block_p (const_basic_block);
867 extern bool can_fallthru (basic_block, basic_block);
868 extern bool could_fall_through (basic_block, basic_block);
869 extern void flow_nodes_print (const char *, const_sbitmap, FILE *);
870 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
872 /* In cfgrtl.c */
873 extern basic_block force_nonfallthru (edge);
874 extern rtx block_label (basic_block);
875 extern bool purge_all_dead_edges (void);
876 extern bool purge_dead_edges (basic_block);
878 /* In cfgbuild.c. */
879 extern void find_many_sub_basic_blocks (sbitmap);
880 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
881 extern void find_basic_blocks (rtx);
883 /* In cfgcleanup.c. */
884 extern bool cleanup_cfg (int);
885 extern bool delete_unreachable_blocks (void);
887 extern bool mark_dfs_back_edges (void);
888 extern void set_edge_can_fallthru_flag (void);
889 extern void update_br_prob_note (basic_block);
890 extern void fixup_abnormal_edges (void);
891 extern bool inside_basic_block_p (const_rtx);
892 extern bool control_flow_insn_p (const_rtx);
893 extern rtx get_last_bb_insn (basic_block);
895 /* In bb-reorder.c */
896 extern void reorder_basic_blocks (void);
898 /* In dominance.c */
900 enum cdi_direction
902 CDI_DOMINATORS = 1,
903 CDI_POST_DOMINATORS = 2
906 extern enum dom_state dom_info_state (enum cdi_direction);
907 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
908 extern bool dom_info_available_p (enum cdi_direction);
909 extern void calculate_dominance_info (enum cdi_direction);
910 extern void free_dominance_info (enum cdi_direction);
911 extern basic_block nearest_common_dominator (enum cdi_direction,
912 basic_block, basic_block);
913 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
914 bitmap);
915 extern void set_immediate_dominator (enum cdi_direction, basic_block,
916 basic_block);
917 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
918 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
919 extern VEC (basic_block, heap) *get_dominated_by (enum cdi_direction, basic_block);
920 extern VEC (basic_block, heap) *get_dominated_by_region (enum cdi_direction,
921 basic_block *,
922 unsigned);
923 extern void add_to_dominance_info (enum cdi_direction, basic_block);
924 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
925 basic_block recompute_dominator (enum cdi_direction, basic_block);
926 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
927 basic_block);
928 extern void iterate_fix_dominators (enum cdi_direction,
929 VEC (basic_block, heap) *, bool);
930 extern void verify_dominators (enum cdi_direction);
931 extern basic_block first_dom_son (enum cdi_direction, basic_block);
932 extern basic_block next_dom_son (enum cdi_direction, basic_block);
933 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
934 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
936 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
937 extern void break_superblocks (void);
938 extern void relink_block_chain (bool);
939 extern void check_bb_profile (basic_block, FILE *);
940 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
941 extern void init_rtl_bb_info (basic_block);
943 extern void initialize_original_copy_tables (void);
944 extern void free_original_copy_tables (void);
945 extern void set_bb_original (basic_block, basic_block);
946 extern basic_block get_bb_original (basic_block);
947 extern void set_bb_copy (basic_block, basic_block);
948 extern basic_block get_bb_copy (basic_block);
949 void set_loop_copy (struct loop *, struct loop *);
950 struct loop *get_loop_copy (struct loop *);
953 extern rtx insert_insn_end_bb_new (rtx, basic_block);
955 #include "cfghooks.h"
957 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
958 static inline bool
959 bb_has_eh_pred (basic_block bb)
961 edge e;
962 edge_iterator ei;
964 FOR_EACH_EDGE (e, ei, bb->preds)
966 if (e->flags & EDGE_EH)
967 return true;
969 return false;
972 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
973 static inline bool
974 bb_has_abnormal_pred (basic_block bb)
976 edge e;
977 edge_iterator ei;
979 FOR_EACH_EDGE (e, ei, bb->preds)
981 if (e->flags & EDGE_ABNORMAL)
982 return true;
984 return false;
987 /* In cfgloopmanip.c. */
988 extern edge mfb_kj_edge;
989 bool mfb_keep_just (edge);
991 #endif /* GCC_BASIC_BLOCK_H */