2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ada / s-tassta.adb
blobd28cb7e42d23bfa3c464fc856fedd6b520ac0853
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 pragma Polling (Off);
35 -- Turn off polling, we do not want ATC polling to take place during tasking
36 -- operations. It causes infinite loops and other problems.
38 with Ada.Exceptions;
39 with Ada.Unchecked_Deallocation;
41 with System.Tasking.Debug;
42 with System.Address_Image;
43 with System.Task_Primitives;
44 with System.Task_Primitives.Operations;
45 with System.Tasking.Utilities;
46 with System.Tasking.Queuing;
47 with System.Tasking.Rendezvous;
48 with System.OS_Primitives;
49 with System.Secondary_Stack;
50 with System.Storage_Elements;
51 with System.Restrictions;
52 with System.Standard_Library;
53 with System.Traces.Tasking;
54 with System.Stack_Usage;
56 with System.Soft_Links;
57 -- These are procedure pointers to non-tasking routines that use task
58 -- specific data. In the absence of tasking, these routines refer to global
59 -- data. In the presence of tasking, they must be replaced with pointers to
60 -- task-specific versions. Also used for Create_TSD, Destroy_TSD,
61 -- Get_Current_Excep, Finalize_Global_List, Task_Termination, Handler.
63 with System.Tasking.Initialization;
64 pragma Elaborate_All (System.Tasking.Initialization);
65 -- This insures that tasking is initialized if any tasks are created
67 package body System.Tasking.Stages is
69 package STPO renames System.Task_Primitives.Operations;
70 package SSL renames System.Soft_Links;
71 package SSE renames System.Storage_Elements;
72 package SST renames System.Secondary_Stack;
74 use Ada.Exceptions;
76 use Parameters;
77 use Task_Primitives;
78 use Task_Primitives.Operations;
79 use Task_Info;
81 use System.Traces;
82 use System.Traces.Tasking;
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Free is new
89 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
91 procedure Free_Entry_Names (T : Task_Id);
92 -- Deallocate all string names associated with task entries
94 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
95 -- This procedure outputs the task specific message for exception
96 -- tracing purposes.
98 procedure Task_Wrapper (Self_ID : Task_Id);
99 pragma Convention (C, Task_Wrapper);
100 -- This is the procedure that is called by the GNULL from the new context
101 -- when a task is created. It waits for activation and then calls the task
102 -- body procedure. When the task body procedure completes, it terminates
103 -- the task.
105 -- The Task_Wrapper's address will be provided to the underlying threads
106 -- library as the task entry point. Convention C is what makes most sense
107 -- for that purpose (Export C would make the function globally visible,
108 -- and affect the link name on which GDB depends). This will in addition
109 -- trigger an automatic stack alignment suitable for GCC's assumptions if
110 -- need be.
112 -- "Vulnerable_..." in the procedure names below means they must be called
113 -- with abort deferred.
115 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
116 -- Complete the calling task. This procedure must be called with
117 -- abort deferred. It should only be called by Complete_Task and
118 -- Finalize_Global_Tasks (for the environment task).
120 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
121 -- Complete the current master of the calling task. This procedure
122 -- must be called with abort deferred. It should only be called by
123 -- Vulnerable_Complete_Task and Complete_Master.
125 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
126 -- Signal to Self_ID's activator that Self_ID has completed activation.
127 -- This procedure must be called with abort deferred.
129 procedure Abort_Dependents (Self_ID : Task_Id);
130 -- Abort all the direct dependents of Self at its current master nesting
131 -- level, plus all of their dependents, transitively. RTS_Lock should be
132 -- locked by the caller.
134 procedure Vulnerable_Free_Task (T : Task_Id);
135 -- Recover all runtime system storage associated with the task T. This
136 -- should only be called after T has terminated and will no longer be
137 -- referenced.
139 -- For tasks created by an allocator that fails, due to an exception, it is
140 -- called from Expunge_Unactivated_Tasks.
142 -- Different code is used at master completion, in Terminate_Dependents,
143 -- due to a need for tighter synchronization with the master.
145 ----------------------
146 -- Abort_Dependents --
147 ----------------------
149 procedure Abort_Dependents (Self_ID : Task_Id) is
150 C : Task_Id;
151 P : Task_Id;
153 begin
154 C := All_Tasks_List;
155 while C /= null loop
156 P := C.Common.Parent;
157 while P /= null loop
158 if P = Self_ID then
160 -- ??? C is supposed to take care of its own dependents, so
161 -- there should be no need to worry about them. Need to double
162 -- check this.
164 if C.Master_of_Task = Self_ID.Master_Within then
165 Utilities.Abort_One_Task (Self_ID, C);
166 C.Dependents_Aborted := True;
167 end if;
169 exit;
170 end if;
172 P := P.Common.Parent;
173 end loop;
175 C := C.Common.All_Tasks_Link;
176 end loop;
178 Self_ID.Dependents_Aborted := True;
179 end Abort_Dependents;
181 -----------------
182 -- Abort_Tasks --
183 -----------------
185 procedure Abort_Tasks (Tasks : Task_List) is
186 begin
187 Utilities.Abort_Tasks (Tasks);
188 end Abort_Tasks;
190 --------------------
191 -- Activate_Tasks --
192 --------------------
194 -- Note that locks of activator and activated task are both locked here.
195 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
196 -- to be synchronized. This is safe from deadlock because the activator is
197 -- always created before the activated task. That satisfies our
198 -- in-order-of-creation ATCB locking policy.
200 -- At one point, we may also lock the parent, if the parent is different
201 -- from the activator. That is also consistent with the lock ordering
202 -- policy, since the activator cannot be created before the parent.
204 -- Since we are holding both the activator's lock, and Task_Wrapper locks
205 -- that before it does anything more than initialize the low-level ATCB
206 -- components, it should be safe to wait to update the counts until we see
207 -- that the thread creation is successful.
209 -- If the thread creation fails, we do need to close the entries of the
210 -- task. The first phase, of dequeuing calls, only requires locking the
211 -- acceptor's ATCB, but the waking up of the callers requires locking the
212 -- caller's ATCB. We cannot safely do this while we are holding other
213 -- locks. Therefore, the queue-clearing operation is done in a separate
214 -- pass over the activation chain.
216 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
217 Self_ID : constant Task_Id := STPO.Self;
218 P : Task_Id;
219 C : Task_Id;
220 Next_C, Last_C : Task_Id;
221 Activate_Prio : System.Any_Priority;
222 Success : Boolean;
223 All_Elaborated : Boolean := True;
225 begin
226 -- If pragma Detect_Blocking is active, then we must check whether this
227 -- potentially blocking operation is called from a protected action.
229 if System.Tasking.Detect_Blocking
230 and then Self_ID.Common.Protected_Action_Nesting > 0
231 then
232 raise Program_Error with "potentially blocking operation";
233 end if;
235 pragma Debug
236 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
238 Initialization.Defer_Abort_Nestable (Self_ID);
240 pragma Assert (Self_ID.Common.Wait_Count = 0);
242 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
243 -- we finish activating the chain.
245 Lock_RTS;
247 -- Check that all task bodies have been elaborated
249 C := Chain_Access.T_ID;
250 Last_C := null;
251 while C /= null loop
252 if C.Common.Elaborated /= null
253 and then not C.Common.Elaborated.all
254 then
255 All_Elaborated := False;
256 end if;
258 -- Reverse the activation chain so that tasks are activated in the
259 -- same order they're declared.
261 Next_C := C.Common.Activation_Link;
262 C.Common.Activation_Link := Last_C;
263 Last_C := C;
264 C := Next_C;
265 end loop;
267 Chain_Access.T_ID := Last_C;
269 if not All_Elaborated then
270 Unlock_RTS;
271 Initialization.Undefer_Abort_Nestable (Self_ID);
272 raise Program_Error with "Some tasks have not been elaborated";
273 end if;
275 -- Activate all the tasks in the chain. Creation of the thread of
276 -- control was deferred until activation. So create it now.
278 C := Chain_Access.T_ID;
279 while C /= null loop
280 if C.Common.State /= Terminated then
281 pragma Assert (C.Common.State = Unactivated);
283 P := C.Common.Parent;
284 Write_Lock (P);
285 Write_Lock (C);
287 if C.Common.Base_Priority < Get_Priority (Self_ID) then
288 Activate_Prio := Get_Priority (Self_ID);
289 else
290 Activate_Prio := C.Common.Base_Priority;
291 end if;
293 System.Task_Primitives.Operations.Create_Task
294 (C, Task_Wrapper'Address,
295 Parameters.Size_Type
296 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
297 Activate_Prio, Success);
299 -- There would be a race between the created task and the creator
300 -- to do the following initialization, if we did not have a
301 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
302 -- racing ahead.
304 if Success then
305 C.Common.State := Runnable;
306 C.Awake_Count := 1;
307 C.Alive_Count := 1;
308 P.Awake_Count := P.Awake_Count + 1;
309 P.Alive_Count := P.Alive_Count + 1;
311 if P.Common.State = Master_Completion_Sleep and then
312 C.Master_of_Task = P.Master_Within
313 then
314 pragma Assert (Self_ID /= P);
315 P.Common.Wait_Count := P.Common.Wait_Count + 1;
316 end if;
318 Unlock (C);
319 Unlock (P);
321 else
322 -- No need to set Awake_Count, State, etc. here since the loop
323 -- below will do that for any Unactivated tasks.
325 Unlock (C);
326 Unlock (P);
327 Self_ID.Common.Activation_Failed := True;
328 end if;
329 end if;
331 C := C.Common.Activation_Link;
332 end loop;
334 if not Single_Lock then
335 Unlock_RTS;
336 end if;
338 -- Close the entries of any tasks that failed thread creation, and count
339 -- those that have not finished activation.
341 Write_Lock (Self_ID);
342 Self_ID.Common.State := Activator_Sleep;
344 C := Chain_Access.T_ID;
345 while C /= null loop
346 Write_Lock (C);
348 if C.Common.State = Unactivated then
349 C.Common.Activator := null;
350 C.Common.State := Terminated;
351 C.Callable := False;
352 Utilities.Cancel_Queued_Entry_Calls (C);
354 elsif C.Common.Activator /= null then
355 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
356 end if;
358 Unlock (C);
359 P := C.Common.Activation_Link;
360 C.Common.Activation_Link := null;
361 C := P;
362 end loop;
364 -- Wait for the activated tasks to complete activation. It is
365 -- unsafe to abort any of these tasks until the count goes to zero.
367 loop
368 exit when Self_ID.Common.Wait_Count = 0;
369 Sleep (Self_ID, Activator_Sleep);
370 end loop;
372 Self_ID.Common.State := Runnable;
373 Unlock (Self_ID);
375 if Single_Lock then
376 Unlock_RTS;
377 end if;
379 -- Remove the tasks from the chain
381 Chain_Access.T_ID := null;
382 Initialization.Undefer_Abort_Nestable (Self_ID);
384 if Self_ID.Common.Activation_Failed then
385 Self_ID.Common.Activation_Failed := False;
386 raise Tasking_Error with "Failure during activation";
387 end if;
388 end Activate_Tasks;
390 -------------------------
391 -- Complete_Activation --
392 -------------------------
394 procedure Complete_Activation is
395 Self_ID : constant Task_Id := STPO.Self;
397 begin
398 Initialization.Defer_Abort_Nestable (Self_ID);
400 if Single_Lock then
401 Lock_RTS;
402 end if;
404 Vulnerable_Complete_Activation (Self_ID);
406 if Single_Lock then
407 Unlock_RTS;
408 end if;
410 Initialization.Undefer_Abort_Nestable (Self_ID);
412 -- ??? Why do we need to allow for nested deferral here?
414 if Runtime_Traces then
415 Send_Trace_Info (T_Activate);
416 end if;
417 end Complete_Activation;
419 ---------------------
420 -- Complete_Master --
421 ---------------------
423 procedure Complete_Master is
424 Self_ID : constant Task_Id := STPO.Self;
425 begin
426 pragma Assert
427 (Self_ID.Deferral_Level > 0
428 or else not System.Restrictions.Abort_Allowed);
429 Vulnerable_Complete_Master (Self_ID);
430 end Complete_Master;
432 -------------------
433 -- Complete_Task --
434 -------------------
436 -- See comments on Vulnerable_Complete_Task for details
438 procedure Complete_Task is
439 Self_ID : constant Task_Id := STPO.Self;
441 begin
442 pragma Assert
443 (Self_ID.Deferral_Level > 0
444 or else not System.Restrictions.Abort_Allowed);
446 Vulnerable_Complete_Task (Self_ID);
448 -- All of our dependents have terminated. Never undefer abort again!
450 end Complete_Task;
452 -----------------
453 -- Create_Task --
454 -----------------
456 -- Compiler interface only. Do not call from within the RTS. This must be
457 -- called to create a new task.
459 procedure Create_Task
460 (Priority : Integer;
461 Size : System.Parameters.Size_Type;
462 Task_Info : System.Task_Info.Task_Info_Type;
463 Relative_Deadline : Ada.Real_Time.Time_Span;
464 Num_Entries : Task_Entry_Index;
465 Master : Master_Level;
466 State : Task_Procedure_Access;
467 Discriminants : System.Address;
468 Elaborated : Access_Boolean;
469 Chain : in out Activation_Chain;
470 Task_Image : String;
471 Created_Task : out Task_Id;
472 Build_Entry_Names : Boolean)
474 T, P : Task_Id;
475 Self_ID : constant Task_Id := STPO.Self;
476 Success : Boolean;
477 Base_Priority : System.Any_Priority;
478 Len : Natural;
480 pragma Unreferenced (Relative_Deadline);
481 -- EDF scheduling is not supported by any of the target platforms so
482 -- this parameter is not passed any further.
484 begin
485 -- If Master is greater than the current master, it means that Master
486 -- has already awaited its dependent tasks. This raises Program_Error,
487 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
489 if Self_ID.Master_of_Task /= Foreign_Task_Level
490 and then Master > Self_ID.Master_Within
491 then
492 raise Program_Error with
493 "create task after awaiting termination";
494 end if;
496 -- If pragma Detect_Blocking is active must be checked whether this
497 -- potentially blocking operation is called from a protected action.
499 if System.Tasking.Detect_Blocking
500 and then Self_ID.Common.Protected_Action_Nesting > 0
501 then
502 raise Program_Error with "potentially blocking operation";
503 end if;
505 pragma Debug
506 (Debug.Trace (Self_ID, "Create_Task", 'C'));
508 if Priority = Unspecified_Priority then
509 Base_Priority := Self_ID.Common.Base_Priority;
510 else
511 Base_Priority := System.Any_Priority (Priority);
512 end if;
514 -- Find parent P of new Task, via master level number
516 P := Self_ID;
518 if P /= null then
519 while P.Master_of_Task >= Master loop
520 P := P.Common.Parent;
521 exit when P = null;
522 end loop;
523 end if;
525 Initialization.Defer_Abort_Nestable (Self_ID);
527 begin
528 T := New_ATCB (Num_Entries);
529 exception
530 when others =>
531 Initialization.Undefer_Abort_Nestable (Self_ID);
532 raise Storage_Error with "Cannot allocate task";
533 end;
535 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
536 -- point, it is possible that we may be part of a family of tasks that
537 -- is being aborted.
539 Lock_RTS;
540 Write_Lock (Self_ID);
542 -- Now, we must check that we have not been aborted. If so, we should
543 -- give up on creating this task, and simply return.
545 if not Self_ID.Callable then
546 pragma Assert (Self_ID.Pending_ATC_Level = 0);
547 pragma Assert (Self_ID.Pending_Action);
548 pragma Assert
549 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
551 Unlock (Self_ID);
552 Unlock_RTS;
553 Initialization.Undefer_Abort_Nestable (Self_ID);
555 -- ??? Should never get here
557 pragma Assert (False);
558 raise Standard'Abort_Signal;
559 end if;
561 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
562 Base_Priority, Task_Info, Size, T, Success);
564 if not Success then
565 Free (T);
566 Unlock (Self_ID);
567 Unlock_RTS;
568 Initialization.Undefer_Abort_Nestable (Self_ID);
569 raise Storage_Error with "Failed to initialize task";
570 end if;
572 if Master = Foreign_Task_Level + 2 then
574 -- This should not happen, except when a foreign task creates non
575 -- library-level Ada tasks. In this case, we pretend the master is
576 -- a regular library level task, otherwise the run-time will get
577 -- confused when waiting for these tasks to terminate.
579 T.Master_of_Task := Library_Task_Level;
580 else
581 T.Master_of_Task := Master;
582 end if;
584 T.Master_Within := T.Master_of_Task + 1;
586 for L in T.Entry_Calls'Range loop
587 T.Entry_Calls (L).Self := T;
588 T.Entry_Calls (L).Level := L;
589 end loop;
591 if Task_Image'Length = 0 then
592 T.Common.Task_Image_Len := 0;
593 else
594 Len := 1;
595 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
597 -- Remove unwanted blank space generated by 'Image
599 for J in Task_Image'First + 1 .. Task_Image'Last loop
600 if Task_Image (J) /= ' '
601 or else Task_Image (J - 1) /= '('
602 then
603 Len := Len + 1;
604 T.Common.Task_Image (Len) := Task_Image (J);
605 exit when Len = T.Common.Task_Image'Last;
606 end if;
607 end loop;
609 T.Common.Task_Image_Len := Len;
610 end if;
612 if Build_Entry_Names then
613 T.Entry_Names :=
614 new Entry_Names_Array (1 .. Entry_Index (Num_Entries));
615 end if;
617 Unlock (Self_ID);
618 Unlock_RTS;
620 -- Create TSD as early as possible in the creation of a task, since it
621 -- may be used by the operation of Ada code within the task.
623 SSL.Create_TSD (T.Common.Compiler_Data);
624 T.Common.Activation_Link := Chain.T_ID;
625 Chain.T_ID := T;
626 Initialization.Initialize_Attributes_Link.all (T);
627 Created_Task := T;
628 Initialization.Undefer_Abort_Nestable (Self_ID);
630 if Runtime_Traces then
631 Send_Trace_Info (T_Create, T);
632 end if;
633 end Create_Task;
635 --------------------
636 -- Current_Master --
637 --------------------
639 function Current_Master return Master_Level is
640 begin
641 return STPO.Self.Master_Within;
642 end Current_Master;
644 ------------------
645 -- Enter_Master --
646 ------------------
648 procedure Enter_Master is
649 Self_ID : constant Task_Id := STPO.Self;
650 begin
651 Self_ID.Master_Within := Self_ID.Master_Within + 1;
652 end Enter_Master;
654 -------------------------------
655 -- Expunge_Unactivated_Tasks --
656 -------------------------------
658 -- See procedure Close_Entries for the general case
660 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
661 Self_ID : constant Task_Id := STPO.Self;
662 C : Task_Id;
663 Call : Entry_Call_Link;
664 Temp : Task_Id;
666 begin
667 pragma Debug
668 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
670 Initialization.Defer_Abort_Nestable (Self_ID);
672 -- ???
673 -- Experimentation has shown that abort is sometimes (but not always)
674 -- already deferred when this is called.
676 -- That may indicate an error. Find out what is going on
678 C := Chain.T_ID;
679 while C /= null loop
680 pragma Assert (C.Common.State = Unactivated);
682 Temp := C.Common.Activation_Link;
684 if C.Common.State = Unactivated then
685 Lock_RTS;
686 Write_Lock (C);
688 for J in 1 .. C.Entry_Num loop
689 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
690 pragma Assert (Call = null);
691 end loop;
693 Unlock (C);
695 Initialization.Remove_From_All_Tasks_List (C);
696 Unlock_RTS;
698 Vulnerable_Free_Task (C);
699 C := Temp;
700 end if;
701 end loop;
703 Chain.T_ID := null;
704 Initialization.Undefer_Abort_Nestable (Self_ID);
705 end Expunge_Unactivated_Tasks;
707 ---------------------------
708 -- Finalize_Global_Tasks --
709 ---------------------------
711 -- ???
712 -- We have a potential problem here if finalization of global objects does
713 -- anything with signals or the timer server, since by that time those
714 -- servers have terminated.
716 -- It is hard to see how that would occur
718 -- However, a better solution might be to do all this finalization
719 -- using the global finalization chain.
721 procedure Finalize_Global_Tasks is
722 Self_ID : constant Task_Id := STPO.Self;
724 Ignore : Boolean;
725 pragma Unreferenced (Ignore);
727 begin
728 if Self_ID.Deferral_Level = 0 then
729 -- ???
730 -- In principle, we should be able to predict whether abort is
731 -- already deferred here (and it should not be deferred yet but in
732 -- practice it seems Finalize_Global_Tasks is being called sometimes,
733 -- from RTS code for exceptions, with abort already deferred.
735 Initialization.Defer_Abort_Nestable (Self_ID);
737 -- Never undefer again!!!
738 end if;
740 -- This code is only executed by the environment task
742 pragma Assert (Self_ID = Environment_Task);
744 -- Set Environment_Task'Callable to false to notify library-level tasks
745 -- that it is waiting for them.
747 Self_ID.Callable := False;
749 -- Exit level 2 master, for normal tasks in library-level packages
751 Complete_Master;
753 -- Force termination of "independent" library-level server tasks
755 Lock_RTS;
757 Abort_Dependents (Self_ID);
759 if not Single_Lock then
760 Unlock_RTS;
761 end if;
763 -- We need to explicitly wait for the task to be terminated here
764 -- because on true concurrent system, we may end this procedure before
765 -- the tasks are really terminated.
767 Write_Lock (Self_ID);
769 loop
770 exit when Utilities.Independent_Task_Count = 0;
772 -- We used to yield here, but this did not take into account low
773 -- priority tasks that would cause dead lock in some cases (true
774 -- FIFO scheduling).
776 Timed_Sleep
777 (Self_ID, 0.01, System.OS_Primitives.Relative,
778 Self_ID.Common.State, Ignore, Ignore);
779 end loop;
781 -- ??? On multi-processor environments, it seems that the above loop
782 -- isn't sufficient, so we need to add an additional delay.
784 Timed_Sleep
785 (Self_ID, 0.01, System.OS_Primitives.Relative,
786 Self_ID.Common.State, Ignore, Ignore);
788 Unlock (Self_ID);
790 if Single_Lock then
791 Unlock_RTS;
792 end if;
794 -- Complete the environment task
796 Vulnerable_Complete_Task (Self_ID);
798 -- Handle normal task termination by the environment task, but only
799 -- for the normal task termination. In the case of Abnormal and
800 -- Unhandled_Exception they must have been handled before, and the
801 -- task termination soft link must have been changed so the task
802 -- termination routine is not executed twice.
804 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
806 -- Finalize the global list for controlled objects if needed
808 SSL.Finalize_Global_List.all;
810 -- Reset the soft links to non-tasking
812 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
813 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
814 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
815 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
816 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
817 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
818 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
819 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
820 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
821 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
823 -- Don't bother trying to finalize Initialization.Global_Task_Lock
824 -- and System.Task_Primitives.RTS_Lock.
826 end Finalize_Global_Tasks;
828 ----------------------
829 -- Free_Entry_Names --
830 ----------------------
832 procedure Free_Entry_Names (T : Task_Id) is
833 Names : Entry_Names_Array_Access := T.Entry_Names;
835 procedure Free_Entry_Names_Array_Access is new
836 Ada.Unchecked_Deallocation
837 (Entry_Names_Array, Entry_Names_Array_Access);
839 begin
840 if Names = null then
841 return;
842 end if;
844 Free_Entry_Names_Array (Names.all);
845 Free_Entry_Names_Array_Access (Names);
846 end Free_Entry_Names;
848 ---------------
849 -- Free_Task --
850 ---------------
852 procedure Free_Task (T : Task_Id) is
853 Self_Id : constant Task_Id := Self;
855 begin
856 if T.Common.State = Terminated then
858 -- It is not safe to call Abort_Defer or Write_Lock at this stage
860 Initialization.Task_Lock (Self_Id);
862 Lock_RTS;
863 Initialization.Finalize_Attributes_Link.all (T);
864 Initialization.Remove_From_All_Tasks_List (T);
865 Unlock_RTS;
867 Initialization.Task_Unlock (Self_Id);
869 Free_Entry_Names (T);
870 System.Task_Primitives.Operations.Finalize_TCB (T);
872 -- If the task is not terminated, then we simply ignore the call. This
873 -- happens when a user program attempts an unchecked deallocation on
874 -- a non-terminated task.
876 else
877 null;
878 end if;
879 end Free_Task;
881 ---------------------------
882 -- Move_Activation_Chain --
883 ---------------------------
885 procedure Move_Activation_Chain
886 (From, To : Activation_Chain_Access;
887 New_Master : Master_ID)
889 Self_ID : constant Task_Id := STPO.Self;
890 C : Task_Id;
892 begin
893 pragma Debug
894 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
896 -- Nothing to do if From is empty, and we can check that without
897 -- deferring aborts.
899 C := From.all.T_ID;
901 if C = null then
902 return;
903 end if;
905 Initialization.Defer_Abort (Self_ID);
907 -- Loop through the From chain, changing their Master_of_Task
908 -- fields, and to find the end of the chain.
910 loop
911 C.Master_of_Task := New_Master;
912 exit when C.Common.Activation_Link = null;
913 C := C.Common.Activation_Link;
914 end loop;
916 -- Hook From in at the start of To
918 C.Common.Activation_Link := To.all.T_ID;
919 To.all.T_ID := From.all.T_ID;
921 -- Set From to empty
923 From.all.T_ID := null;
925 Initialization.Undefer_Abort (Self_ID);
926 end Move_Activation_Chain;
928 -- Compiler interface only. Do not call from within the RTS.
930 --------------------
931 -- Set_Entry_Name --
932 --------------------
934 procedure Set_Entry_Name
935 (T : Task_Id;
936 Pos : Task_Entry_Index;
937 Val : String_Access)
939 begin
940 pragma Assert (T.Entry_Names /= null);
942 T.Entry_Names (Entry_Index (Pos)) := Val;
943 end Set_Entry_Name;
945 ------------------
946 -- Task_Wrapper --
947 ------------------
949 -- The task wrapper is a procedure that is called first for each task body
950 -- and which in turn calls the compiler-generated task body procedure.
951 -- The wrapper's main job is to do initialization for the task. It also
952 -- has some locally declared objects that serve as per-task local data.
953 -- Task finalization is done by Complete_Task, which is called from an
954 -- at-end handler that the compiler generates.
956 procedure Task_Wrapper (Self_ID : Task_Id) is
957 use type SSE.Storage_Offset;
958 use System.Standard_Library;
959 use System.Stack_Usage;
961 Bottom_Of_Stack : aliased Integer;
963 Task_Alternate_Stack :
964 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
965 -- The alternate signal stack for this task, if any
967 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
968 -- Whether to use above alternate signal stack for stack overflows
970 Secondary_Stack_Size :
971 constant SSE.Storage_Offset :=
972 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size *
973 SSE.Storage_Offset (Parameters.Sec_Stack_Ratio) / 100;
975 Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size);
977 pragma Warnings (Off);
978 -- Why are warnings being turned off here???
980 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
981 -- Address of secondary stack. In the fixed secondary stack case, this
982 -- value is not modified, causing a warning, hence the bracketing with
983 -- Warnings (Off/On). But why is so much *more* bracketed???
985 Small_Overflow_Guard : constant := 12 * 1024;
986 -- Note: this used to be 4K, but was changed to 12K, since smaller
987 -- values resulted in segmentation faults from dynamic stack analysis.
989 Big_Overflow_Guard : constant := 16 * 1024;
990 Small_Stack_Limit : constant := 64 * 1024;
991 -- ??? These three values are experimental, and seems to work on most
992 -- platforms. They still need to be analyzed further. They also need
993 -- documentation, what are they???
995 Size : Natural :=
996 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size);
998 Overflow_Guard : Natural;
999 -- Size of the overflow guard, used by dynamic stack usage analysis
1001 pragma Warnings (On);
1003 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1004 -- Structured Exception Registration table (2 words)
1006 procedure Install_SEH_Handler (Addr : System.Address);
1007 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1008 -- Install the SEH (Structured Exception Handling) handler
1010 Cause : Cause_Of_Termination := Normal;
1011 -- Indicates the reason why this task terminates. Normal corresponds to
1012 -- a task terminating due to completing the last statement of its body,
1013 -- or as a result of waiting on a terminate alternative. If the task
1014 -- terminates because it is being aborted then Cause will be set to
1015 -- Abnormal. If the task terminates because of an exception raised by
1016 -- the execution of its task body, then Cause is set to
1017 -- Unhandled_Exception.
1019 EO : Exception_Occurrence;
1020 -- If the task terminates because of an exception raised by the
1021 -- execution of its task body, then EO will contain the associated
1022 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1024 TH : Termination_Handler := null;
1025 -- Pointer to the protected procedure to be executed upon task
1026 -- termination.
1028 procedure Search_Fall_Back_Handler (ID : Task_Id);
1029 -- Procedure that searches recursively a fall-back handler through the
1030 -- master relationship. If the handler is found, its pointer is stored
1031 -- in TH.
1033 ------------------------------
1034 -- Search_Fall_Back_Handler --
1035 ------------------------------
1037 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1038 begin
1039 -- If there is a fall back handler, store its pointer for later
1040 -- execution.
1042 if ID.Common.Fall_Back_Handler /= null then
1043 TH := ID.Common.Fall_Back_Handler;
1045 -- Otherwise look for a fall back handler in the parent
1047 elsif ID.Common.Parent /= null then
1048 Search_Fall_Back_Handler (ID.Common.Parent);
1050 -- Otherwise, do nothing
1052 else
1053 return;
1054 end if;
1055 end Search_Fall_Back_Handler;
1057 begin
1058 pragma Assert (Self_ID.Deferral_Level = 1);
1060 -- Assume a size of the stack taken at this stage
1062 if Size < Small_Stack_Limit then
1063 Overflow_Guard := Small_Overflow_Guard;
1064 else
1065 Overflow_Guard := Big_Overflow_Guard;
1066 end if;
1068 if not Parameters.Sec_Stack_Dynamic then
1069 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1070 Secondary_Stack'Address;
1071 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1072 Size := Size - Natural (Secondary_Stack_Size);
1073 end if;
1075 if Use_Alternate_Stack then
1076 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1077 end if;
1079 Size := Size - Overflow_Guard;
1081 if System.Stack_Usage.Is_Enabled then
1082 STPO.Lock_RTS;
1083 Initialize_Analyzer
1084 (Self_ID.Common.Analyzer,
1085 Self_ID.Common.Task_Image
1086 (1 .. Self_ID.Common.Task_Image_Len),
1087 Natural
1088 (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1089 Size,
1090 SSE.To_Integer (Bottom_Of_Stack'Address));
1091 STPO.Unlock_RTS;
1092 Fill_Stack (Self_ID.Common.Analyzer);
1093 end if;
1095 -- Set the guard page at the bottom of the stack. The call to unprotect
1096 -- the page is done in Terminate_Task
1098 Stack_Guard (Self_ID, True);
1100 -- Initialize low-level TCB components, that cannot be initialized by
1101 -- the creator. Enter_Task sets Self_ID.Known_Tasks_Index and also
1102 -- Self_ID.LL.Thread
1104 Enter_Task (Self_ID);
1106 -- We setup the SEH (Structured Exception Handling) handler if supported
1107 -- on the target.
1109 Install_SEH_Handler (SEH_Table'Address);
1111 -- Initialize exception occurrence
1113 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1115 -- We lock RTS_Lock to wait for activator to finish activating the rest
1116 -- of the chain, so that everyone in the chain comes out in priority
1117 -- order.
1119 -- This also protects the value of
1120 -- Self_ID.Common.Activator.Common.Wait_Count.
1122 Lock_RTS;
1123 Unlock_RTS;
1125 if not System.Restrictions.Abort_Allowed then
1127 -- If Abort is not allowed, reset the deferral level since it will
1128 -- not get changed by the generated code. Keeping a default value
1129 -- of one would prevent some operations (e.g. select or delay) to
1130 -- proceed successfully.
1132 Self_ID.Deferral_Level := 0;
1133 end if;
1135 begin
1136 -- We are separating the following portion of the code in order to
1137 -- place the exception handlers in a different block. In this way,
1138 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1139 -- set Self in Enter_Task
1141 -- Call the task body procedure
1143 -- The task body is called with abort still deferred. That
1144 -- eliminates a dangerous window, for which we had to patch-up in
1145 -- Terminate_Task.
1147 -- During the expansion of the task body, we insert an RTS-call
1148 -- to Abort_Undefer, at the first point where abort should be
1149 -- allowed.
1151 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1152 Initialization.Defer_Abort_Nestable (Self_ID);
1154 exception
1155 -- We can't call Terminate_Task in the exception handlers below,
1156 -- since there may be (e.g. in the case of GCC exception handling)
1157 -- clean ups associated with the exception handler that need to
1158 -- access task specific data.
1160 -- Defer abort so that this task can't be aborted while exiting
1162 when Standard'Abort_Signal =>
1163 Initialization.Defer_Abort_Nestable (Self_ID);
1165 -- Update the cause that motivated the task termination so that
1166 -- the appropriate information is passed to the task termination
1167 -- procedure. Task termination as a result of waiting on a
1168 -- terminate alternative is a normal termination, although it is
1169 -- implemented using the abort mechanisms.
1171 if Self_ID.Terminate_Alternative then
1172 Cause := Normal;
1173 else
1174 Cause := Abnormal;
1175 end if;
1176 when others =>
1177 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1179 Initialization.Defer_Abort_Nestable (Self_ID);
1181 -- Perform the task specific exception tracing duty. We handle
1182 -- these outputs here and not in the common notification routine
1183 -- because we need access to tasking related data and we don't
1184 -- want to drag dependencies against tasking related units in the
1185 -- the common notification units. Additionally, no trace is ever
1186 -- triggered from the common routine for the Unhandled_Raise case
1187 -- in tasks, since an exception never appears unhandled in this
1188 -- context because of this handler.
1190 if Exception_Trace = Unhandled_Raise then
1191 Trace_Unhandled_Exception_In_Task (Self_ID);
1192 end if;
1194 -- Update the cause that motivated the task termination so that
1195 -- the appropriate information is passed to the task termination
1196 -- procedure, as well as the associated Exception_Occurrence.
1198 Cause := Unhandled_Exception;
1199 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1200 end;
1202 -- Look for a task termination handler. This code is for all tasks but
1203 -- the environment task. The task termination code for the environment
1204 -- task is executed by SSL.Task_Termination_Handler.
1206 if Single_Lock then
1207 Lock_RTS;
1208 end if;
1210 Write_Lock (Self_ID);
1212 if Self_ID.Common.Specific_Handler /= null then
1213 TH := Self_ID.Common.Specific_Handler;
1214 else
1215 -- Look for a fall-back handler following the master relationship
1216 -- for the task.
1218 Search_Fall_Back_Handler (Self_ID);
1219 end if;
1221 Unlock (Self_ID);
1223 if Single_Lock then
1224 Unlock_RTS;
1225 end if;
1227 -- Execute the task termination handler if we found it
1229 if TH /= null then
1230 TH.all (Cause, Self_ID, EO);
1231 end if;
1233 if System.Stack_Usage.Is_Enabled then
1234 Compute_Result (Self_ID.Common.Analyzer);
1235 Report_Result (Self_ID.Common.Analyzer);
1236 end if;
1238 Terminate_Task (Self_ID);
1239 end Task_Wrapper;
1241 --------------------
1242 -- Terminate_Task --
1243 --------------------
1245 -- Before we allow the thread to exit, we must clean up. This is a
1246 -- delicate job. We must wake up the task's master, who may immediately try
1247 -- to deallocate the ATCB out from under the current task WHILE IT IS STILL
1248 -- EXECUTING.
1250 -- To avoid this, the parent task must be blocked up to the latest
1251 -- statement executed. The trouble is that we have another step that we
1252 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1253 -- We have to postpone that until the end because compiler-generated code
1254 -- is likely to try to access that data at just about any point.
1256 -- We can't call Destroy_TSD while we are holding any other locks, because
1257 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1258 -- that to be the outermost lock. Our first "solution" was to just lock
1259 -- Global_Task_Lock in addition to the other locks, and force the parent to
1260 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1261 -- Complete_Task for the parent-side of the code that has the matching
1262 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1263 -- since the operation Task_Unlock continued to access the ATCB after
1264 -- unlocking, after which the parent was observed to race ahead, deallocate
1265 -- the ATCB, and then reallocate it to another task. The call to
1266 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1267 -- the data of the new task that reused the ATCB! To solve this problem, we
1268 -- introduced the new operation Final_Task_Unlock.
1270 procedure Terminate_Task (Self_ID : Task_Id) is
1271 Environment_Task : constant Task_Id := STPO.Environment_Task;
1272 Master_of_Task : Integer;
1274 begin
1275 Debug.Task_Termination_Hook;
1277 if Runtime_Traces then
1278 Send_Trace_Info (T_Terminate);
1279 end if;
1281 -- Since GCC cannot allocate stack chunks efficiently without reordering
1282 -- some of the allocations, we have to handle this unexpected situation
1283 -- here. We should normally never have to call Vulnerable_Complete_Task
1284 -- here.
1286 if Self_ID.Common.Activator /= null then
1287 Vulnerable_Complete_Task (Self_ID);
1288 end if;
1290 Initialization.Task_Lock (Self_ID);
1292 if Single_Lock then
1293 Lock_RTS;
1294 end if;
1296 Master_of_Task := Self_ID.Master_of_Task;
1298 -- Check if the current task is an independent task If so, decrement
1299 -- the Independent_Task_Count value.
1301 if Master_of_Task = Independent_Task_Level then
1302 if Single_Lock then
1303 Utilities.Independent_Task_Count :=
1304 Utilities.Independent_Task_Count - 1;
1305 else
1306 Write_Lock (Environment_Task);
1307 Utilities.Independent_Task_Count :=
1308 Utilities.Independent_Task_Count - 1;
1309 Unlock (Environment_Task);
1310 end if;
1311 end if;
1313 -- Unprotect the guard page if needed
1315 Stack_Guard (Self_ID, False);
1317 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1319 if Single_Lock then
1320 Unlock_RTS;
1321 end if;
1323 pragma Assert (Check_Exit (Self_ID));
1325 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1326 Initialization.Final_Task_Unlock (Self_ID);
1328 -- WARNING: past this point, this thread must assume that the ATCB has
1329 -- been deallocated. It should not be accessed again.
1331 if Master_of_Task > 0 then
1332 STPO.Exit_Task;
1333 end if;
1334 end Terminate_Task;
1336 ----------------
1337 -- Terminated --
1338 ----------------
1340 function Terminated (T : Task_Id) return Boolean is
1341 Self_ID : constant Task_Id := STPO.Self;
1342 Result : Boolean;
1344 begin
1345 Initialization.Defer_Abort_Nestable (Self_ID);
1347 if Single_Lock then
1348 Lock_RTS;
1349 end if;
1351 Write_Lock (T);
1352 Result := T.Common.State = Terminated;
1353 Unlock (T);
1355 if Single_Lock then
1356 Unlock_RTS;
1357 end if;
1359 Initialization.Undefer_Abort_Nestable (Self_ID);
1360 return Result;
1361 end Terminated;
1363 ----------------------------------------
1364 -- Trace_Unhandled_Exception_In_Task --
1365 ----------------------------------------
1367 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1368 procedure To_Stderr (S : String);
1369 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1371 use System.Soft_Links;
1372 use System.Standard_Library;
1374 function To_Address is new
1375 Ada.Unchecked_Conversion
1376 (Task_Id, System.Task_Primitives.Task_Address);
1378 function Tailored_Exception_Information
1379 (E : Exception_Occurrence) return String;
1380 pragma Import
1381 (Ada, Tailored_Exception_Information,
1382 "__gnat_tailored_exception_information");
1384 Excep : constant Exception_Occurrence_Access :=
1385 SSL.Get_Current_Excep.all;
1387 begin
1388 -- This procedure is called by the task outermost handler in
1389 -- Task_Wrapper below, so only once the task stack has been fully
1390 -- unwound. The common notification routine has been called at the
1391 -- raise point already.
1393 To_Stderr ("task ");
1395 if Self_Id.Common.Task_Image_Len /= 0 then
1396 To_Stderr
1397 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1398 To_Stderr ("_");
1399 end if;
1401 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1402 To_Stderr (" terminated by unhandled exception");
1403 To_Stderr ((1 => ASCII.LF));
1404 To_Stderr (Tailored_Exception_Information (Excep.all));
1405 end Trace_Unhandled_Exception_In_Task;
1407 ------------------------------------
1408 -- Vulnerable_Complete_Activation --
1409 ------------------------------------
1411 -- As in several other places, the locks of the activator and activated
1412 -- task are both locked here. This follows our deadlock prevention lock
1413 -- ordering policy, since the activated task must be created after the
1414 -- activator.
1416 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1417 Activator : constant Task_Id := Self_ID.Common.Activator;
1419 begin
1420 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1422 Write_Lock (Activator);
1423 Write_Lock (Self_ID);
1425 pragma Assert (Self_ID.Common.Activator /= null);
1427 -- Remove dangling reference to Activator, since a task may
1428 -- outlive its activator.
1430 Self_ID.Common.Activator := null;
1432 -- Wake up the activator, if it is waiting for a chain of tasks to
1433 -- activate, and we are the last in the chain to complete activation.
1435 if Activator.Common.State = Activator_Sleep then
1436 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1438 if Activator.Common.Wait_Count = 0 then
1439 Wakeup (Activator, Activator_Sleep);
1440 end if;
1441 end if;
1443 -- The activator raises a Tasking_Error if any task it is activating
1444 -- is completed before the activation is done. However, if the reason
1445 -- for the task completion is an abort, we do not raise an exception.
1446 -- See RM 9.2(5).
1448 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1449 Activator.Common.Activation_Failed := True;
1450 end if;
1452 Unlock (Self_ID);
1453 Unlock (Activator);
1455 -- After the activation, active priority should be the same as base
1456 -- priority. We must unlock the Activator first, though, since it
1457 -- should not wait if we have lower priority.
1459 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1460 Write_Lock (Self_ID);
1461 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1462 Unlock (Self_ID);
1463 end if;
1464 end Vulnerable_Complete_Activation;
1466 --------------------------------
1467 -- Vulnerable_Complete_Master --
1468 --------------------------------
1470 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1471 C : Task_Id;
1472 P : Task_Id;
1473 CM : constant Master_Level := Self_ID.Master_Within;
1474 T : aliased Task_Id;
1476 To_Be_Freed : Task_Id;
1477 -- This is a list of ATCBs to be freed, after we have released all RTS
1478 -- locks. This is necessary because of the locking order rules, since
1479 -- the storage manager uses Global_Task_Lock.
1481 pragma Warnings (Off);
1482 function Check_Unactivated_Tasks return Boolean;
1483 pragma Warnings (On);
1484 -- Temporary error-checking code below. This is part of the checks
1485 -- added in the new run time. Call it only inside a pragma Assert.
1487 -----------------------------
1488 -- Check_Unactivated_Tasks --
1489 -----------------------------
1491 function Check_Unactivated_Tasks return Boolean is
1492 begin
1493 if not Single_Lock then
1494 Lock_RTS;
1495 end if;
1497 Write_Lock (Self_ID);
1499 C := All_Tasks_List;
1500 while C /= null loop
1501 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1502 return False;
1503 end if;
1505 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1506 Write_Lock (C);
1508 if C.Common.State = Unactivated then
1509 return False;
1510 end if;
1512 Unlock (C);
1513 end if;
1515 C := C.Common.All_Tasks_Link;
1516 end loop;
1518 Unlock (Self_ID);
1520 if not Single_Lock then
1521 Unlock_RTS;
1522 end if;
1524 return True;
1525 end Check_Unactivated_Tasks;
1527 -- Start of processing for Vulnerable_Complete_Master
1529 begin
1530 pragma Debug
1531 (Debug.Trace (Self_ID, "V_Complete_Master", 'C'));
1533 pragma Assert (Self_ID.Common.Wait_Count = 0);
1534 pragma Assert
1535 (Self_ID.Deferral_Level > 0
1536 or else not System.Restrictions.Abort_Allowed);
1538 -- Count how many active dependent tasks this master currently has, and
1539 -- record this in Wait_Count.
1541 -- This count should start at zero, since it is initialized to zero for
1542 -- new tasks, and the task should not exit the sleep-loops that use this
1543 -- count until the count reaches zero.
1545 -- While we're counting, if we run across any unactivated tasks that
1546 -- belong to this master, we summarily terminate them as required by
1547 -- RM-9.2(6).
1549 Lock_RTS;
1550 Write_Lock (Self_ID);
1552 C := All_Tasks_List;
1553 while C /= null loop
1555 -- Terminate unactivated (never-to-be activated) tasks
1557 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1559 pragma Assert (C.Common.State = Unactivated);
1560 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1561 -- = CM. The only case where C is pending activation by this
1562 -- task, but the master of C is not CM is in Ada 2005, when C is
1563 -- part of a return object of a build-in-place function.
1565 Write_Lock (C);
1566 C.Common.Activator := null;
1567 C.Common.State := Terminated;
1568 C.Callable := False;
1569 Utilities.Cancel_Queued_Entry_Calls (C);
1570 Unlock (C);
1571 end if;
1573 -- Count it if dependent on this master
1575 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1576 Write_Lock (C);
1578 if C.Awake_Count /= 0 then
1579 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1580 end if;
1582 Unlock (C);
1583 end if;
1585 C := C.Common.All_Tasks_Link;
1586 end loop;
1588 Self_ID.Common.State := Master_Completion_Sleep;
1589 Unlock (Self_ID);
1591 if not Single_Lock then
1592 Unlock_RTS;
1593 end if;
1595 -- Wait until dependent tasks are all terminated or ready to terminate.
1596 -- While waiting, the task may be awakened if the task's priority needs
1597 -- changing, or this master is aborted. In the latter case, we abort the
1598 -- dependents, and resume waiting until Wait_Count goes to zero.
1600 Write_Lock (Self_ID);
1602 loop
1603 exit when Self_ID.Common.Wait_Count = 0;
1605 -- Here is a difference as compared to Complete_Master
1607 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1608 and then not Self_ID.Dependents_Aborted
1609 then
1610 if Single_Lock then
1611 Abort_Dependents (Self_ID);
1612 else
1613 Unlock (Self_ID);
1614 Lock_RTS;
1615 Abort_Dependents (Self_ID);
1616 Unlock_RTS;
1617 Write_Lock (Self_ID);
1618 end if;
1619 else
1620 Sleep (Self_ID, Master_Completion_Sleep);
1621 end if;
1622 end loop;
1624 Self_ID.Common.State := Runnable;
1625 Unlock (Self_ID);
1627 -- Dependents are all terminated or on terminate alternatives. Now,
1628 -- force those on terminate alternatives to terminate, by aborting them.
1630 pragma Assert (Check_Unactivated_Tasks);
1632 if Self_ID.Alive_Count > 1 then
1633 -- ???
1634 -- Consider finding a way to skip the following extra steps if there
1635 -- are no dependents with terminate alternatives. This could be done
1636 -- by adding another count to the ATCB, similar to Awake_Count, but
1637 -- keeping track of tasks that are on terminate alternatives.
1639 pragma Assert (Self_ID.Common.Wait_Count = 0);
1641 -- Force any remaining dependents to terminate by aborting them
1643 if not Single_Lock then
1644 Lock_RTS;
1645 end if;
1647 Abort_Dependents (Self_ID);
1649 -- Above, when we "abort" the dependents we are simply using this
1650 -- operation for convenience. We are not required to support the full
1651 -- abort-statement semantics; in particular, we are not required to
1652 -- immediately cancel any queued or in-service entry calls. That is
1653 -- good, because if we tried to cancel a call we would need to lock
1654 -- the caller, in order to wake the caller up. Our anti-deadlock
1655 -- rules prevent us from doing that without releasing the locks on C
1656 -- and Self_ID. Releasing and retaking those locks would be wasteful
1657 -- at best, and should not be considered further without more
1658 -- detailed analysis of potential concurrent accesses to the ATCBs
1659 -- of C and Self_ID.
1661 -- Count how many "alive" dependent tasks this master currently has,
1662 -- and record this in Wait_Count. This count should start at zero,
1663 -- since it is initialized to zero for new tasks, and the task should
1664 -- not exit the sleep-loops that use this count until the count
1665 -- reaches zero.
1667 pragma Assert (Self_ID.Common.Wait_Count = 0);
1669 Write_Lock (Self_ID);
1671 C := All_Tasks_List;
1672 while C /= null loop
1673 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1674 Write_Lock (C);
1676 pragma Assert (C.Awake_Count = 0);
1678 if C.Alive_Count > 0 then
1679 pragma Assert (C.Terminate_Alternative);
1680 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1681 end if;
1683 Unlock (C);
1684 end if;
1686 C := C.Common.All_Tasks_Link;
1687 end loop;
1689 Self_ID.Common.State := Master_Phase_2_Sleep;
1690 Unlock (Self_ID);
1692 if not Single_Lock then
1693 Unlock_RTS;
1694 end if;
1696 -- Wait for all counted tasks to finish terminating themselves
1698 Write_Lock (Self_ID);
1700 loop
1701 exit when Self_ID.Common.Wait_Count = 0;
1702 Sleep (Self_ID, Master_Phase_2_Sleep);
1703 end loop;
1705 Self_ID.Common.State := Runnable;
1706 Unlock (Self_ID);
1707 end if;
1709 -- We don't wake up for abort here. We are already terminating just as
1710 -- fast as we can, so there is no point.
1712 -- Remove terminated tasks from the list of Self_ID's dependents, but
1713 -- don't free their ATCBs yet, because of lock order restrictions, which
1714 -- don't allow us to call "free" or "malloc" while holding any other
1715 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1716 -- called To_Be_Freed.
1718 if not Single_Lock then
1719 Lock_RTS;
1720 end if;
1722 C := All_Tasks_List;
1723 P := null;
1724 while C /= null loop
1725 if C.Common.Parent = Self_ID and then C.Master_of_Task >= CM then
1726 if P /= null then
1727 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1728 else
1729 All_Tasks_List := C.Common.All_Tasks_Link;
1730 end if;
1732 T := C.Common.All_Tasks_Link;
1733 C.Common.All_Tasks_Link := To_Be_Freed;
1734 To_Be_Freed := C;
1735 C := T;
1737 else
1738 P := C;
1739 C := C.Common.All_Tasks_Link;
1740 end if;
1741 end loop;
1743 Unlock_RTS;
1745 -- Free all the ATCBs on the list To_Be_Freed
1747 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1748 -- any interrupt entries are detached from them they should no longer
1749 -- be referenced.
1751 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1752 -- avoid a race between a terminating task and its parent. The parent
1753 -- might try to deallocate the ACTB out from underneath the exiting
1754 -- task. Note that Free will also lock Global_Task_Lock, but that is
1755 -- OK, since this is the *one* lock for which we have a mechanism to
1756 -- support nested locking. See Task_Wrapper and its finalizer for more
1757 -- explanation.
1759 -- ???
1760 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1761 -- references to terminated library-level tasks, which could otherwise
1762 -- occur during finalization of library-level objects. A better solution
1763 -- might be to hook task objects into the finalization chain and
1764 -- deallocate the ATCB when the task object is deallocated. However,
1765 -- this change is not likely to gain anything significant, since all
1766 -- this storage should be recovered en-masse when the process exits.
1768 while To_Be_Freed /= null loop
1769 T := To_Be_Freed;
1770 To_Be_Freed := T.Common.All_Tasks_Link;
1772 -- ??? On SGI there is currently no Interrupt_Manager, that's
1773 -- why we need to check if the Interrupt_Manager_ID is null
1775 if T.Interrupt_Entry and Interrupt_Manager_ID /= null then
1776 declare
1777 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1778 -- Corresponds to the entry index of System.Interrupts.
1779 -- Interrupt_Manager.Detach_Interrupt_Entries.
1780 -- Be sure to update this value when changing
1781 -- Interrupt_Manager specs.
1783 type Param_Type is access all Task_Id;
1785 Param : aliased Param_Type := T'Access;
1787 begin
1788 System.Tasking.Rendezvous.Call_Simple
1789 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1790 Param'Address);
1791 end;
1792 end if;
1794 if (T.Common.Parent /= null
1795 and then T.Common.Parent.Common.Parent /= null)
1796 or else T.Master_of_Task > Library_Task_Level
1797 then
1798 Initialization.Task_Lock (Self_ID);
1800 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1801 -- has not been called yet (case of an unactivated task).
1803 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1804 SSL.Destroy_TSD (T.Common.Compiler_Data);
1805 end if;
1807 Vulnerable_Free_Task (T);
1808 Initialization.Task_Unlock (Self_ID);
1809 end if;
1810 end loop;
1812 -- It might seem nice to let the terminated task deallocate its own
1813 -- ATCB. That would not cover the case of unactivated tasks. It also
1814 -- would force us to keep the underlying thread around past termination,
1815 -- since references to the ATCB are possible past termination.
1817 -- Currently, we get rid of the thread as soon as the task terminates,
1818 -- and let the parent recover the ATCB later.
1820 -- Some day, if we want to recover the ATCB earlier, at task
1821 -- termination, we could consider using "fat task IDs", that include the
1822 -- serial number with the ATCB pointer, to catch references to tasks
1823 -- that no longer have ATCBs. It is not clear how much this would gain,
1824 -- since the user-level task object would still be occupying storage.
1826 -- Make next master level up active. We don't need to lock the ATCB,
1827 -- since the value is only updated by each task for itself.
1829 Self_ID.Master_Within := CM - 1;
1830 end Vulnerable_Complete_Master;
1832 ------------------------------
1833 -- Vulnerable_Complete_Task --
1834 ------------------------------
1836 -- Complete the calling task
1838 -- This procedure must be called with abort deferred. It should only be
1839 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
1840 -- task).
1842 -- The effect is similar to that of Complete_Master. Differences include
1843 -- the closing of entries here, and computation of the number of active
1844 -- dependent tasks in Complete_Master.
1846 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
1847 -- because that does its own locking, and because we do not need the lock
1848 -- to test Self_ID.Common.Activator. That value should only be read and
1849 -- modified by Self.
1851 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
1852 begin
1853 pragma Assert
1854 (Self_ID.Deferral_Level > 0
1855 or else not System.Restrictions.Abort_Allowed);
1856 pragma Assert (Self_ID = Self);
1857 pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1
1858 or else
1859 Self_ID.Master_Within = Self_ID.Master_of_Task + 2);
1860 pragma Assert (Self_ID.Common.Wait_Count = 0);
1861 pragma Assert (Self_ID.Open_Accepts = null);
1862 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
1864 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
1866 if Single_Lock then
1867 Lock_RTS;
1868 end if;
1870 Write_Lock (Self_ID);
1871 Self_ID.Callable := False;
1873 -- In theory, Self should have no pending entry calls left on its
1874 -- call-stack. Each async. select statement should clean its own call,
1875 -- and blocking entry calls should defer abort until the calls are
1876 -- cancelled, then clean up.
1878 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
1879 Unlock (Self_ID);
1881 if Self_ID.Common.Activator /= null then
1882 Vulnerable_Complete_Activation (Self_ID);
1883 end if;
1885 if Single_Lock then
1886 Unlock_RTS;
1887 end if;
1889 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
1890 -- dependent tasks for which we need to wait. Otherwise we just exit.
1892 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
1893 Vulnerable_Complete_Master (Self_ID);
1894 end if;
1895 end Vulnerable_Complete_Task;
1897 --------------------------
1898 -- Vulnerable_Free_Task --
1899 --------------------------
1901 -- Recover all runtime system storage associated with the task T. This
1902 -- should only be called after T has terminated and will no longer be
1903 -- referenced.
1905 -- For tasks created by an allocator that fails, due to an exception, it
1906 -- is called from Expunge_Unactivated_Tasks.
1908 -- For tasks created by elaboration of task object declarations it is
1909 -- called from the finalization code of the Task_Wrapper procedure. It is
1910 -- also called from Ada.Unchecked_Deallocation, for objects that are or
1911 -- contain tasks.
1913 procedure Vulnerable_Free_Task (T : Task_Id) is
1914 begin
1915 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
1917 if Single_Lock then
1918 Lock_RTS;
1919 end if;
1921 Write_Lock (T);
1922 Initialization.Finalize_Attributes_Link.all (T);
1923 Unlock (T);
1925 if Single_Lock then
1926 Unlock_RTS;
1927 end if;
1929 Free_Entry_Names (T);
1930 System.Task_Primitives.Operations.Finalize_TCB (T);
1931 end Vulnerable_Free_Task;
1933 -- Package elaboration code
1935 begin
1936 -- Establish the Adafinal oftlink
1938 -- This is not done inside the central RTS initialization routine
1939 -- to avoid with-ing this package from System.Tasking.Initialization.
1941 SSL.Adafinal := Finalize_Global_Tasks'Access;
1943 -- Establish soft links for subprograms that manipulate master_id's.
1944 -- This cannot be done when the RTS is initialized, because of various
1945 -- elaboration constraints.
1947 SSL.Current_Master := Stages.Current_Master'Access;
1948 SSL.Enter_Master := Stages.Enter_Master'Access;
1949 SSL.Complete_Master := Stages.Complete_Master'Access;
1950 end System.Tasking.Stages;