2008-05-30 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ada / exp_pakd.adb
blobe04d723e79f65c48a20b049cdd8cc8df772b0465
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ P A K D --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Dbug; use Exp_Dbug;
31 with Exp_Util; use Exp_Util;
32 with Layout; use Layout;
33 with Namet; use Namet;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Rtsfind; use Rtsfind;
38 with Sem; use Sem;
39 with Sem_Ch3; use Sem_Ch3;
40 with Sem_Ch8; use Sem_Ch8;
41 with Sem_Ch13; use Sem_Ch13;
42 with Sem_Eval; use Sem_Eval;
43 with Sem_Res; use Sem_Res;
44 with Sem_Util; use Sem_Util;
45 with Sinfo; use Sinfo;
46 with Snames; use Snames;
47 with Stand; use Stand;
48 with Targparm; use Targparm;
49 with Tbuild; use Tbuild;
50 with Ttypes; use Ttypes;
51 with Uintp; use Uintp;
53 package body Exp_Pakd is
55 ---------------------------
56 -- Endian Considerations --
57 ---------------------------
59 -- As described in the specification, bit numbering in a packed array
60 -- is consistent with bit numbering in a record representation clause,
61 -- and hence dependent on the endianness of the machine:
63 -- For little-endian machines, element zero is at the right hand end
64 -- (low order end) of a bit field.
66 -- For big-endian machines, element zero is at the left hand end
67 -- (high order end) of a bit field.
69 -- The shifts that are used to right justify a field therefore differ
70 -- in the two cases. For the little-endian case, we can simply use the
71 -- bit number (i.e. the element number * element size) as the count for
72 -- a right shift. For the big-endian case, we have to subtract the shift
73 -- count from an appropriate constant to use in the right shift. We use
74 -- rotates instead of shifts (which is necessary in the store case to
75 -- preserve other fields), and we expect that the backend will be able
76 -- to change the right rotate into a left rotate, avoiding the subtract,
77 -- if the architecture provides such an instruction.
79 ----------------------------------------------
80 -- Entity Tables for Packed Access Routines --
81 ----------------------------------------------
83 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call
84 -- library routines. This table is used to obtain the entity for the
85 -- proper routine.
87 type E_Array is array (Int range 01 .. 63) of RE_Id;
89 -- Array of Bits_nn entities. Note that we do not use library routines
90 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
91 -- entries from System.Unsigned, because we also use this table for
92 -- certain special unchecked conversions in the big-endian case.
94 Bits_Id : constant E_Array :=
95 (01 => RE_Bits_1,
96 02 => RE_Bits_2,
97 03 => RE_Bits_03,
98 04 => RE_Bits_4,
99 05 => RE_Bits_05,
100 06 => RE_Bits_06,
101 07 => RE_Bits_07,
102 08 => RE_Unsigned_8,
103 09 => RE_Bits_09,
104 10 => RE_Bits_10,
105 11 => RE_Bits_11,
106 12 => RE_Bits_12,
107 13 => RE_Bits_13,
108 14 => RE_Bits_14,
109 15 => RE_Bits_15,
110 16 => RE_Unsigned_16,
111 17 => RE_Bits_17,
112 18 => RE_Bits_18,
113 19 => RE_Bits_19,
114 20 => RE_Bits_20,
115 21 => RE_Bits_21,
116 22 => RE_Bits_22,
117 23 => RE_Bits_23,
118 24 => RE_Bits_24,
119 25 => RE_Bits_25,
120 26 => RE_Bits_26,
121 27 => RE_Bits_27,
122 28 => RE_Bits_28,
123 29 => RE_Bits_29,
124 30 => RE_Bits_30,
125 31 => RE_Bits_31,
126 32 => RE_Unsigned_32,
127 33 => RE_Bits_33,
128 34 => RE_Bits_34,
129 35 => RE_Bits_35,
130 36 => RE_Bits_36,
131 37 => RE_Bits_37,
132 38 => RE_Bits_38,
133 39 => RE_Bits_39,
134 40 => RE_Bits_40,
135 41 => RE_Bits_41,
136 42 => RE_Bits_42,
137 43 => RE_Bits_43,
138 44 => RE_Bits_44,
139 45 => RE_Bits_45,
140 46 => RE_Bits_46,
141 47 => RE_Bits_47,
142 48 => RE_Bits_48,
143 49 => RE_Bits_49,
144 50 => RE_Bits_50,
145 51 => RE_Bits_51,
146 52 => RE_Bits_52,
147 53 => RE_Bits_53,
148 54 => RE_Bits_54,
149 55 => RE_Bits_55,
150 56 => RE_Bits_56,
151 57 => RE_Bits_57,
152 58 => RE_Bits_58,
153 59 => RE_Bits_59,
154 60 => RE_Bits_60,
155 61 => RE_Bits_61,
156 62 => RE_Bits_62,
157 63 => RE_Bits_63);
159 -- Array of Get routine entities. These are used to obtain an element
160 -- from a packed array. The N'th entry is used to obtain elements from
161 -- a packed array whose component size is N. RE_Null is used as a null
162 -- entry, for the cases where a library routine is not used.
164 Get_Id : constant E_Array :=
165 (01 => RE_Null,
166 02 => RE_Null,
167 03 => RE_Get_03,
168 04 => RE_Null,
169 05 => RE_Get_05,
170 06 => RE_Get_06,
171 07 => RE_Get_07,
172 08 => RE_Null,
173 09 => RE_Get_09,
174 10 => RE_Get_10,
175 11 => RE_Get_11,
176 12 => RE_Get_12,
177 13 => RE_Get_13,
178 14 => RE_Get_14,
179 15 => RE_Get_15,
180 16 => RE_Null,
181 17 => RE_Get_17,
182 18 => RE_Get_18,
183 19 => RE_Get_19,
184 20 => RE_Get_20,
185 21 => RE_Get_21,
186 22 => RE_Get_22,
187 23 => RE_Get_23,
188 24 => RE_Get_24,
189 25 => RE_Get_25,
190 26 => RE_Get_26,
191 27 => RE_Get_27,
192 28 => RE_Get_28,
193 29 => RE_Get_29,
194 30 => RE_Get_30,
195 31 => RE_Get_31,
196 32 => RE_Null,
197 33 => RE_Get_33,
198 34 => RE_Get_34,
199 35 => RE_Get_35,
200 36 => RE_Get_36,
201 37 => RE_Get_37,
202 38 => RE_Get_38,
203 39 => RE_Get_39,
204 40 => RE_Get_40,
205 41 => RE_Get_41,
206 42 => RE_Get_42,
207 43 => RE_Get_43,
208 44 => RE_Get_44,
209 45 => RE_Get_45,
210 46 => RE_Get_46,
211 47 => RE_Get_47,
212 48 => RE_Get_48,
213 49 => RE_Get_49,
214 50 => RE_Get_50,
215 51 => RE_Get_51,
216 52 => RE_Get_52,
217 53 => RE_Get_53,
218 54 => RE_Get_54,
219 55 => RE_Get_55,
220 56 => RE_Get_56,
221 57 => RE_Get_57,
222 58 => RE_Get_58,
223 59 => RE_Get_59,
224 60 => RE_Get_60,
225 61 => RE_Get_61,
226 62 => RE_Get_62,
227 63 => RE_Get_63);
229 -- Array of Get routine entities to be used in the case where the packed
230 -- array is itself a component of a packed structure, and therefore may
231 -- not be fully aligned. This only affects the even sizes, since for the
232 -- odd sizes, we do not get any fixed alignment in any case.
234 GetU_Id : constant E_Array :=
235 (01 => RE_Null,
236 02 => RE_Null,
237 03 => RE_Get_03,
238 04 => RE_Null,
239 05 => RE_Get_05,
240 06 => RE_GetU_06,
241 07 => RE_Get_07,
242 08 => RE_Null,
243 09 => RE_Get_09,
244 10 => RE_GetU_10,
245 11 => RE_Get_11,
246 12 => RE_GetU_12,
247 13 => RE_Get_13,
248 14 => RE_GetU_14,
249 15 => RE_Get_15,
250 16 => RE_Null,
251 17 => RE_Get_17,
252 18 => RE_GetU_18,
253 19 => RE_Get_19,
254 20 => RE_GetU_20,
255 21 => RE_Get_21,
256 22 => RE_GetU_22,
257 23 => RE_Get_23,
258 24 => RE_GetU_24,
259 25 => RE_Get_25,
260 26 => RE_GetU_26,
261 27 => RE_Get_27,
262 28 => RE_GetU_28,
263 29 => RE_Get_29,
264 30 => RE_GetU_30,
265 31 => RE_Get_31,
266 32 => RE_Null,
267 33 => RE_Get_33,
268 34 => RE_GetU_34,
269 35 => RE_Get_35,
270 36 => RE_GetU_36,
271 37 => RE_Get_37,
272 38 => RE_GetU_38,
273 39 => RE_Get_39,
274 40 => RE_GetU_40,
275 41 => RE_Get_41,
276 42 => RE_GetU_42,
277 43 => RE_Get_43,
278 44 => RE_GetU_44,
279 45 => RE_Get_45,
280 46 => RE_GetU_46,
281 47 => RE_Get_47,
282 48 => RE_GetU_48,
283 49 => RE_Get_49,
284 50 => RE_GetU_50,
285 51 => RE_Get_51,
286 52 => RE_GetU_52,
287 53 => RE_Get_53,
288 54 => RE_GetU_54,
289 55 => RE_Get_55,
290 56 => RE_GetU_56,
291 57 => RE_Get_57,
292 58 => RE_GetU_58,
293 59 => RE_Get_59,
294 60 => RE_GetU_60,
295 61 => RE_Get_61,
296 62 => RE_GetU_62,
297 63 => RE_Get_63);
299 -- Array of Set routine entities. These are used to assign an element
300 -- of a packed array. The N'th entry is used to assign elements for
301 -- a packed array whose component size is N. RE_Null is used as a null
302 -- entry, for the cases where a library routine is not used.
304 Set_Id : constant E_Array :=
305 (01 => RE_Null,
306 02 => RE_Null,
307 03 => RE_Set_03,
308 04 => RE_Null,
309 05 => RE_Set_05,
310 06 => RE_Set_06,
311 07 => RE_Set_07,
312 08 => RE_Null,
313 09 => RE_Set_09,
314 10 => RE_Set_10,
315 11 => RE_Set_11,
316 12 => RE_Set_12,
317 13 => RE_Set_13,
318 14 => RE_Set_14,
319 15 => RE_Set_15,
320 16 => RE_Null,
321 17 => RE_Set_17,
322 18 => RE_Set_18,
323 19 => RE_Set_19,
324 20 => RE_Set_20,
325 21 => RE_Set_21,
326 22 => RE_Set_22,
327 23 => RE_Set_23,
328 24 => RE_Set_24,
329 25 => RE_Set_25,
330 26 => RE_Set_26,
331 27 => RE_Set_27,
332 28 => RE_Set_28,
333 29 => RE_Set_29,
334 30 => RE_Set_30,
335 31 => RE_Set_31,
336 32 => RE_Null,
337 33 => RE_Set_33,
338 34 => RE_Set_34,
339 35 => RE_Set_35,
340 36 => RE_Set_36,
341 37 => RE_Set_37,
342 38 => RE_Set_38,
343 39 => RE_Set_39,
344 40 => RE_Set_40,
345 41 => RE_Set_41,
346 42 => RE_Set_42,
347 43 => RE_Set_43,
348 44 => RE_Set_44,
349 45 => RE_Set_45,
350 46 => RE_Set_46,
351 47 => RE_Set_47,
352 48 => RE_Set_48,
353 49 => RE_Set_49,
354 50 => RE_Set_50,
355 51 => RE_Set_51,
356 52 => RE_Set_52,
357 53 => RE_Set_53,
358 54 => RE_Set_54,
359 55 => RE_Set_55,
360 56 => RE_Set_56,
361 57 => RE_Set_57,
362 58 => RE_Set_58,
363 59 => RE_Set_59,
364 60 => RE_Set_60,
365 61 => RE_Set_61,
366 62 => RE_Set_62,
367 63 => RE_Set_63);
369 -- Array of Set routine entities to be used in the case where the packed
370 -- array is itself a component of a packed structure, and therefore may
371 -- not be fully aligned. This only affects the even sizes, since for the
372 -- odd sizes, we do not get any fixed alignment in any case.
374 SetU_Id : constant E_Array :=
375 (01 => RE_Null,
376 02 => RE_Null,
377 03 => RE_Set_03,
378 04 => RE_Null,
379 05 => RE_Set_05,
380 06 => RE_SetU_06,
381 07 => RE_Set_07,
382 08 => RE_Null,
383 09 => RE_Set_09,
384 10 => RE_SetU_10,
385 11 => RE_Set_11,
386 12 => RE_SetU_12,
387 13 => RE_Set_13,
388 14 => RE_SetU_14,
389 15 => RE_Set_15,
390 16 => RE_Null,
391 17 => RE_Set_17,
392 18 => RE_SetU_18,
393 19 => RE_Set_19,
394 20 => RE_SetU_20,
395 21 => RE_Set_21,
396 22 => RE_SetU_22,
397 23 => RE_Set_23,
398 24 => RE_SetU_24,
399 25 => RE_Set_25,
400 26 => RE_SetU_26,
401 27 => RE_Set_27,
402 28 => RE_SetU_28,
403 29 => RE_Set_29,
404 30 => RE_SetU_30,
405 31 => RE_Set_31,
406 32 => RE_Null,
407 33 => RE_Set_33,
408 34 => RE_SetU_34,
409 35 => RE_Set_35,
410 36 => RE_SetU_36,
411 37 => RE_Set_37,
412 38 => RE_SetU_38,
413 39 => RE_Set_39,
414 40 => RE_SetU_40,
415 41 => RE_Set_41,
416 42 => RE_SetU_42,
417 43 => RE_Set_43,
418 44 => RE_SetU_44,
419 45 => RE_Set_45,
420 46 => RE_SetU_46,
421 47 => RE_Set_47,
422 48 => RE_SetU_48,
423 49 => RE_Set_49,
424 50 => RE_SetU_50,
425 51 => RE_Set_51,
426 52 => RE_SetU_52,
427 53 => RE_Set_53,
428 54 => RE_SetU_54,
429 55 => RE_Set_55,
430 56 => RE_SetU_56,
431 57 => RE_Set_57,
432 58 => RE_SetU_58,
433 59 => RE_Set_59,
434 60 => RE_SetU_60,
435 61 => RE_Set_61,
436 62 => RE_SetU_62,
437 63 => RE_Set_63);
439 -----------------------
440 -- Local Subprograms --
441 -----------------------
443 procedure Compute_Linear_Subscript
444 (Atyp : Entity_Id;
445 N : Node_Id;
446 Subscr : out Node_Id);
447 -- Given a constrained array type Atyp, and an indexed component node
448 -- N referencing an array object of this type, build an expression of
449 -- type Standard.Integer representing the zero-based linear subscript
450 -- value. This expression includes any required range checks.
452 procedure Convert_To_PAT_Type (Aexp : Node_Id);
453 -- Given an expression of a packed array type, builds a corresponding
454 -- expression whose type is the implementation type used to represent
455 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
457 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
458 -- There are two versions of the Set routines, the ones used when the
459 -- object is known to be sufficiently well aligned given the number of
460 -- bits, and the ones used when the object is not known to be aligned.
461 -- This routine is used to determine which set to use. Obj is a reference
462 -- to the object, and Csiz is the component size of the packed array.
463 -- True is returned if the alignment of object is known to be sufficient,
464 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
465 -- 2 otherwise.
467 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
468 -- Build a left shift node, checking for the case of a shift count of zero
470 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
471 -- Build a right shift node, checking for the case of a shift count of zero
473 function RJ_Unchecked_Convert_To
474 (Typ : Entity_Id;
475 Expr : Node_Id) return Node_Id;
476 -- The packed array code does unchecked conversions which in some cases
477 -- may involve non-discrete types with differing sizes. The semantics of
478 -- such conversions is potentially endian dependent, and the effect we
479 -- want here for such a conversion is to do the conversion in size as
480 -- though numeric items are involved, and we extend or truncate on the
481 -- left side. This happens naturally in the little-endian case, but in
482 -- the big endian case we can get left justification, when what we want
483 -- is right justification. This routine does the unchecked conversion in
484 -- a stepwise manner to ensure that it gives the expected result. Hence
485 -- the name (RJ = Right justified). The parameters Typ and Expr are as
486 -- for the case of a normal Unchecked_Convert_To call.
488 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
489 -- This routine is called in the Get and Set case for arrays that are
490 -- packed but not bit-packed, meaning that they have at least one
491 -- subscript that is of an enumeration type with a non-standard
492 -- representation. This routine modifies the given node to properly
493 -- reference the corresponding packed array type.
495 procedure Setup_Inline_Packed_Array_Reference
496 (N : Node_Id;
497 Atyp : Entity_Id;
498 Obj : in out Node_Id;
499 Cmask : out Uint;
500 Shift : out Node_Id);
501 -- This procedure performs common processing on the N_Indexed_Component
502 -- parameter given as N, whose prefix is a reference to a packed array.
503 -- This is used for the get and set when the component size is 1,2,4
504 -- or for other component sizes when the packed array type is a modular
505 -- type (i.e. the cases that are handled with inline code).
507 -- On entry:
509 -- N is the N_Indexed_Component node for the packed array reference
511 -- Atyp is the constrained array type (the actual subtype has been
512 -- computed if necessary to obtain the constraints, but this is still
513 -- the original array type, not the Packed_Array_Type value).
515 -- Obj is the object which is to be indexed. It is always of type Atyp.
517 -- On return:
519 -- Obj is the object containing the desired bit field. It is of type
520 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
521 -- entire value, for the small static case, or the proper selected byte
522 -- from the array in the large or dynamic case. This node is analyzed
523 -- and resolved on return.
525 -- Shift is a node representing the shift count to be used in the
526 -- rotate right instruction that positions the field for access.
527 -- This node is analyzed and resolved on return.
529 -- Cmask is a mask corresponding to the width of the component field.
530 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
532 -- Note: in some cases the call to this routine may generate actions
533 -- (for handling multi-use references and the generation of the packed
534 -- array type on the fly). Such actions are inserted into the tree
535 -- directly using Insert_Action.
537 ------------------------------
538 -- Compute_Linear_Subscript --
539 ------------------------------
541 procedure Compute_Linear_Subscript
542 (Atyp : Entity_Id;
543 N : Node_Id;
544 Subscr : out Node_Id)
546 Loc : constant Source_Ptr := Sloc (N);
547 Oldsub : Node_Id;
548 Newsub : Node_Id;
549 Indx : Node_Id;
550 Styp : Entity_Id;
552 begin
553 Subscr := Empty;
555 -- Loop through dimensions
557 Indx := First_Index (Atyp);
558 Oldsub := First (Expressions (N));
560 while Present (Indx) loop
561 Styp := Etype (Indx);
562 Newsub := Relocate_Node (Oldsub);
564 -- Get expression for the subscript value. First, if Do_Range_Check
565 -- is set on a subscript, then we must do a range check against the
566 -- original bounds (not the bounds of the packed array type). We do
567 -- this by introducing a subtype conversion.
569 if Do_Range_Check (Newsub)
570 and then Etype (Newsub) /= Styp
571 then
572 Newsub := Convert_To (Styp, Newsub);
573 end if;
575 -- Now evolve the expression for the subscript. First convert
576 -- the subscript to be zero based and of an integer type.
578 -- Case of integer type, where we just subtract to get lower bound
580 if Is_Integer_Type (Styp) then
582 -- If length of integer type is smaller than standard integer,
583 -- then we convert to integer first, then do the subtract
585 -- Integer (subscript) - Integer (Styp'First)
587 if Esize (Styp) < Esize (Standard_Integer) then
588 Newsub :=
589 Make_Op_Subtract (Loc,
590 Left_Opnd => Convert_To (Standard_Integer, Newsub),
591 Right_Opnd =>
592 Convert_To (Standard_Integer,
593 Make_Attribute_Reference (Loc,
594 Prefix => New_Occurrence_Of (Styp, Loc),
595 Attribute_Name => Name_First)));
597 -- For larger integer types, subtract first, then convert to
598 -- integer, this deals with strange long long integer bounds.
600 -- Integer (subscript - Styp'First)
602 else
603 Newsub :=
604 Convert_To (Standard_Integer,
605 Make_Op_Subtract (Loc,
606 Left_Opnd => Newsub,
607 Right_Opnd =>
608 Make_Attribute_Reference (Loc,
609 Prefix => New_Occurrence_Of (Styp, Loc),
610 Attribute_Name => Name_First)));
611 end if;
613 -- For the enumeration case, we have to use 'Pos to get the value
614 -- to work with before subtracting the lower bound.
616 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
618 -- This is not quite right for bizarre cases where the size of the
619 -- enumeration type is > Integer'Size bits due to rep clause ???
621 else
622 pragma Assert (Is_Enumeration_Type (Styp));
624 Newsub :=
625 Make_Op_Subtract (Loc,
626 Left_Opnd => Convert_To (Standard_Integer,
627 Make_Attribute_Reference (Loc,
628 Prefix => New_Occurrence_Of (Styp, Loc),
629 Attribute_Name => Name_Pos,
630 Expressions => New_List (Newsub))),
632 Right_Opnd =>
633 Convert_To (Standard_Integer,
634 Make_Attribute_Reference (Loc,
635 Prefix => New_Occurrence_Of (Styp, Loc),
636 Attribute_Name => Name_Pos,
637 Expressions => New_List (
638 Make_Attribute_Reference (Loc,
639 Prefix => New_Occurrence_Of (Styp, Loc),
640 Attribute_Name => Name_First)))));
641 end if;
643 Set_Paren_Count (Newsub, 1);
645 -- For the first subscript, we just copy that subscript value
647 if No (Subscr) then
648 Subscr := Newsub;
650 -- Otherwise, we must multiply what we already have by the current
651 -- stride and then add in the new value to the evolving subscript.
653 else
654 Subscr :=
655 Make_Op_Add (Loc,
656 Left_Opnd =>
657 Make_Op_Multiply (Loc,
658 Left_Opnd => Subscr,
659 Right_Opnd =>
660 Make_Attribute_Reference (Loc,
661 Attribute_Name => Name_Range_Length,
662 Prefix => New_Occurrence_Of (Styp, Loc))),
663 Right_Opnd => Newsub);
664 end if;
666 -- Move to next subscript
668 Next_Index (Indx);
669 Next (Oldsub);
670 end loop;
671 end Compute_Linear_Subscript;
673 -------------------------
674 -- Convert_To_PAT_Type --
675 -------------------------
677 -- The PAT is always obtained from the actual subtype
679 procedure Convert_To_PAT_Type (Aexp : Node_Id) is
680 Act_ST : Entity_Id;
682 begin
683 Convert_To_Actual_Subtype (Aexp);
684 Act_ST := Underlying_Type (Etype (Aexp));
685 Create_Packed_Array_Type (Act_ST);
687 -- Just replace the etype with the packed array type. This works because
688 -- the expression will not be further analyzed, and Gigi considers the
689 -- two types equivalent in any case.
691 -- This is not strictly the case ??? If the reference is an actual in
692 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
693 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
694 -- array reference, reanalysis can produce spurious type errors when the
695 -- PAT type is replaced again with the original type of the array. Same
696 -- for the case of a dereference. The following is correct and minimal,
697 -- but the handling of more complex packed expressions in actuals is
698 -- confused. Probably the problem only remains for actuals in calls.
700 Set_Etype (Aexp, Packed_Array_Type (Act_ST));
702 if Is_Entity_Name (Aexp)
703 or else
704 (Nkind (Aexp) = N_Indexed_Component
705 and then Is_Entity_Name (Prefix (Aexp)))
706 or else Nkind (Aexp) = N_Explicit_Dereference
707 then
708 Set_Analyzed (Aexp);
709 end if;
710 end Convert_To_PAT_Type;
712 ------------------------------
713 -- Create_Packed_Array_Type --
714 ------------------------------
716 procedure Create_Packed_Array_Type (Typ : Entity_Id) is
717 Loc : constant Source_Ptr := Sloc (Typ);
718 Ctyp : constant Entity_Id := Component_Type (Typ);
719 Csize : constant Uint := Component_Size (Typ);
721 Ancest : Entity_Id;
722 PB_Type : Entity_Id;
723 PASize : Uint;
724 Decl : Node_Id;
725 PAT : Entity_Id;
726 Len_Dim : Node_Id;
727 Len_Expr : Node_Id;
728 Len_Bits : Uint;
729 Bits_U1 : Node_Id;
730 PAT_High : Node_Id;
731 Btyp : Entity_Id;
732 Lit : Node_Id;
734 procedure Install_PAT;
735 -- This procedure is called with Decl set to the declaration for the
736 -- packed array type. It creates the type and installs it as required.
738 procedure Set_PB_Type;
739 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
740 -- requirements (see documentation in the spec of this package).
742 -----------------
743 -- Install_PAT --
744 -----------------
746 procedure Install_PAT is
747 Pushed_Scope : Boolean := False;
749 begin
750 -- We do not want to put the declaration we have created in the tree
751 -- since it is often hard, and sometimes impossible to find a proper
752 -- place for it (the impossible case arises for a packed array type
753 -- with bounds depending on the discriminant, a declaration cannot
754 -- be put inside the record, and the reference to the discriminant
755 -- cannot be outside the record).
757 -- The solution is to analyze the declaration while temporarily
758 -- attached to the tree at an appropriate point, and then we install
759 -- the resulting type as an Itype in the packed array type field of
760 -- the original type, so that no explicit declaration is required.
762 -- Note: the packed type is created in the scope of its parent
763 -- type. There are at least some cases where the current scope
764 -- is deeper, and so when this is the case, we temporarily reset
765 -- the scope for the definition. This is clearly safe, since the
766 -- first use of the packed array type will be the implicit
767 -- reference from the corresponding unpacked type when it is
768 -- elaborated.
770 if Is_Itype (Typ) then
771 Set_Parent (Decl, Associated_Node_For_Itype (Typ));
772 else
773 Set_Parent (Decl, Declaration_Node (Typ));
774 end if;
776 if Scope (Typ) /= Current_Scope then
777 Push_Scope (Scope (Typ));
778 Pushed_Scope := True;
779 end if;
781 Set_Is_Itype (PAT, True);
782 Set_Packed_Array_Type (Typ, PAT);
783 Analyze (Decl, Suppress => All_Checks);
785 if Pushed_Scope then
786 Pop_Scope;
787 end if;
789 -- Set Esize and RM_Size to the actual size of the packed object
790 -- Do not reset RM_Size if already set, as happens in the case of
791 -- a modular type.
793 if Unknown_Esize (PAT) then
794 Set_Esize (PAT, PASize);
795 end if;
797 if Unknown_RM_Size (PAT) then
798 Set_RM_Size (PAT, PASize);
799 end if;
801 Adjust_Esize_Alignment (PAT);
803 -- Set remaining fields of packed array type
805 Init_Alignment (PAT);
806 Set_Parent (PAT, Empty);
807 Set_Associated_Node_For_Itype (PAT, Typ);
808 Set_Is_Packed_Array_Type (PAT, True);
809 Set_Original_Array_Type (PAT, Typ);
811 -- We definitely do not want to delay freezing for packed array
812 -- types. This is of particular importance for the itypes that
813 -- are generated for record components depending on discriminants
814 -- where there is no place to put the freeze node.
816 Set_Has_Delayed_Freeze (PAT, False);
817 Set_Has_Delayed_Freeze (Etype (PAT), False);
819 -- If we did allocate a freeze node, then clear out the reference
820 -- since it is obsolete (should we delete the freeze node???)
822 Set_Freeze_Node (PAT, Empty);
823 Set_Freeze_Node (Etype (PAT), Empty);
824 end Install_PAT;
826 -----------------
827 -- Set_PB_Type --
828 -----------------
830 procedure Set_PB_Type is
831 begin
832 -- If the user has specified an explicit alignment for the
833 -- type or component, take it into account.
835 if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
836 or else Alignment (Typ) = 1
837 or else Component_Alignment (Typ) = Calign_Storage_Unit
838 then
839 PB_Type := RTE (RE_Packed_Bytes1);
841 elsif Csize mod 4 /= 0
842 or else Alignment (Typ) = 2
843 then
844 PB_Type := RTE (RE_Packed_Bytes2);
846 else
847 PB_Type := RTE (RE_Packed_Bytes4);
848 end if;
849 end Set_PB_Type;
851 -- Start of processing for Create_Packed_Array_Type
853 begin
854 -- If we already have a packed array type, nothing to do
856 if Present (Packed_Array_Type (Typ)) then
857 return;
858 end if;
860 -- If our immediate ancestor subtype is constrained, and it already
861 -- has a packed array type, then just share the same type, since the
862 -- bounds must be the same. If the ancestor is not an array type but
863 -- a private type, as can happen with multiple instantiations, create
864 -- a new packed type, to avoid privacy issues.
866 if Ekind (Typ) = E_Array_Subtype then
867 Ancest := Ancestor_Subtype (Typ);
869 if Present (Ancest)
870 and then Is_Array_Type (Ancest)
871 and then Is_Constrained (Ancest)
872 and then Present (Packed_Array_Type (Ancest))
873 then
874 Set_Packed_Array_Type (Typ, Packed_Array_Type (Ancest));
875 return;
876 end if;
877 end if;
879 -- We preset the result type size from the size of the original array
880 -- type, since this size clearly belongs to the packed array type. The
881 -- size of the conceptual unpacked type is always set to unknown.
883 PASize := RM_Size (Typ);
885 -- Case of an array where at least one index is of an enumeration
886 -- type with a non-standard representation, but the component size
887 -- is not appropriate for bit packing. This is the case where we
888 -- have Is_Packed set (we would never be in this unit otherwise),
889 -- but Is_Bit_Packed_Array is false.
891 -- Note that if the component size is appropriate for bit packing,
892 -- then the circuit for the computation of the subscript properly
893 -- deals with the non-standard enumeration type case by taking the
894 -- Pos anyway.
896 if not Is_Bit_Packed_Array (Typ) then
898 -- Here we build a declaration:
900 -- type tttP is array (index1, index2, ...) of component_type
902 -- where index1, index2, are the index types. These are the same
903 -- as the index types of the original array, except for the non-
904 -- standard representation enumeration type case, where we have
905 -- two subcases.
907 -- For the unconstrained array case, we use
909 -- Natural range <>
911 -- For the constrained case, we use
913 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
914 -- Enum_Type'Pos (Enum_Type'Last);
916 PAT :=
917 Make_Defining_Identifier (Loc,
918 Chars => New_External_Name (Chars (Typ), 'P'));
920 Set_Packed_Array_Type (Typ, PAT);
922 declare
923 Indexes : constant List_Id := New_List;
924 Indx : Node_Id;
925 Indx_Typ : Entity_Id;
926 Enum_Case : Boolean;
927 Typedef : Node_Id;
929 begin
930 Indx := First_Index (Typ);
932 while Present (Indx) loop
933 Indx_Typ := Etype (Indx);
935 Enum_Case := Is_Enumeration_Type (Indx_Typ)
936 and then Has_Non_Standard_Rep (Indx_Typ);
938 -- Unconstrained case
940 if not Is_Constrained (Typ) then
941 if Enum_Case then
942 Indx_Typ := Standard_Natural;
943 end if;
945 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
947 -- Constrained case
949 else
950 if not Enum_Case then
951 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
953 else
954 Append_To (Indexes,
955 Make_Subtype_Indication (Loc,
956 Subtype_Mark =>
957 New_Occurrence_Of (Standard_Natural, Loc),
958 Constraint =>
959 Make_Range_Constraint (Loc,
960 Range_Expression =>
961 Make_Range (Loc,
962 Low_Bound =>
963 Make_Attribute_Reference (Loc,
964 Prefix =>
965 New_Occurrence_Of (Indx_Typ, Loc),
966 Attribute_Name => Name_Pos,
967 Expressions => New_List (
968 Make_Attribute_Reference (Loc,
969 Prefix =>
970 New_Occurrence_Of (Indx_Typ, Loc),
971 Attribute_Name => Name_First))),
973 High_Bound =>
974 Make_Attribute_Reference (Loc,
975 Prefix =>
976 New_Occurrence_Of (Indx_Typ, Loc),
977 Attribute_Name => Name_Pos,
978 Expressions => New_List (
979 Make_Attribute_Reference (Loc,
980 Prefix =>
981 New_Occurrence_Of (Indx_Typ, Loc),
982 Attribute_Name => Name_Last)))))));
984 end if;
985 end if;
987 Next_Index (Indx);
988 end loop;
990 if not Is_Constrained (Typ) then
991 Typedef :=
992 Make_Unconstrained_Array_Definition (Loc,
993 Subtype_Marks => Indexes,
994 Component_Definition =>
995 Make_Component_Definition (Loc,
996 Aliased_Present => False,
997 Subtype_Indication =>
998 New_Occurrence_Of (Ctyp, Loc)));
1000 else
1001 Typedef :=
1002 Make_Constrained_Array_Definition (Loc,
1003 Discrete_Subtype_Definitions => Indexes,
1004 Component_Definition =>
1005 Make_Component_Definition (Loc,
1006 Aliased_Present => False,
1007 Subtype_Indication =>
1008 New_Occurrence_Of (Ctyp, Loc)));
1009 end if;
1011 Decl :=
1012 Make_Full_Type_Declaration (Loc,
1013 Defining_Identifier => PAT,
1014 Type_Definition => Typedef);
1015 end;
1017 -- Set type as packed array type and install it
1019 Set_Is_Packed_Array_Type (PAT);
1020 Install_PAT;
1021 return;
1023 -- Case of bit-packing required for unconstrained array. We create
1024 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1026 elsif not Is_Constrained (Typ) then
1027 PAT :=
1028 Make_Defining_Identifier (Loc,
1029 Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1031 Set_Packed_Array_Type (Typ, PAT);
1032 Set_PB_Type;
1034 Decl :=
1035 Make_Subtype_Declaration (Loc,
1036 Defining_Identifier => PAT,
1037 Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
1038 Install_PAT;
1039 return;
1041 -- Remaining code is for the case of bit-packing for constrained array
1043 -- The name of the packed array subtype is
1045 -- ttt___Xsss
1047 -- where sss is the component size in bits and ttt is the name of
1048 -- the parent packed type.
1050 else
1051 PAT :=
1052 Make_Defining_Identifier (Loc,
1053 Chars => Make_Packed_Array_Type_Name (Typ, Csize));
1055 Set_Packed_Array_Type (Typ, PAT);
1057 -- Build an expression for the length of the array in bits.
1058 -- This is the product of the length of each of the dimensions
1060 declare
1061 J : Nat := 1;
1063 begin
1064 Len_Expr := Empty; -- suppress junk warning
1066 loop
1067 Len_Dim :=
1068 Make_Attribute_Reference (Loc,
1069 Attribute_Name => Name_Length,
1070 Prefix => New_Occurrence_Of (Typ, Loc),
1071 Expressions => New_List (
1072 Make_Integer_Literal (Loc, J)));
1074 if J = 1 then
1075 Len_Expr := Len_Dim;
1077 else
1078 Len_Expr :=
1079 Make_Op_Multiply (Loc,
1080 Left_Opnd => Len_Expr,
1081 Right_Opnd => Len_Dim);
1082 end if;
1084 J := J + 1;
1085 exit when J > Number_Dimensions (Typ);
1086 end loop;
1087 end;
1089 -- Temporarily attach the length expression to the tree and analyze
1090 -- and resolve it, so that we can test its value. We assume that the
1091 -- total length fits in type Integer. This expression may involve
1092 -- discriminants, so we treat it as a default/per-object expression.
1094 Set_Parent (Len_Expr, Typ);
1095 Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
1097 -- Use a modular type if possible. We can do this if we have
1098 -- static bounds, and the length is small enough, and the length
1099 -- is not zero. We exclude the zero length case because the size
1100 -- of things is always at least one, and the zero length object
1101 -- would have an anomalous size.
1103 if Compile_Time_Known_Value (Len_Expr) then
1104 Len_Bits := Expr_Value (Len_Expr) * Csize;
1106 -- Check for size known to be too large
1108 if Len_Bits >
1109 Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
1110 then
1111 if System_Storage_Unit = 8 then
1112 Error_Msg_N
1113 ("packed array size cannot exceed " &
1114 "Integer''Last bytes", Typ);
1115 else
1116 Error_Msg_N
1117 ("packed array size cannot exceed " &
1118 "Integer''Last storage units", Typ);
1119 end if;
1121 -- Reset length to arbitrary not too high value to continue
1123 Len_Expr := Make_Integer_Literal (Loc, 65535);
1124 Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
1125 end if;
1127 -- We normally consider small enough to mean no larger than the
1128 -- value of System_Max_Binary_Modulus_Power, checking that in the
1129 -- case of values longer than word size, we have long shifts.
1131 if Len_Bits > 0
1132 and then
1133 (Len_Bits <= System_Word_Size
1134 or else (Len_Bits <= System_Max_Binary_Modulus_Power
1135 and then Support_Long_Shifts_On_Target))
1137 -- Also test for alignment given. If an alignment is given which
1138 -- is smaller than the natural modular alignment, force the array
1139 -- of bytes representation to accommodate the alignment.
1141 and then
1142 (No (Alignment_Clause (Typ))
1143 or else
1144 Alignment (Typ) >= ((Len_Bits + System_Storage_Unit)
1145 / System_Storage_Unit))
1146 then
1147 -- We can use the modular type, it has the form:
1149 -- subtype tttPn is btyp
1150 -- range 0 .. 2 ** ((Typ'Length (1)
1151 -- * ... * Typ'Length (n)) * Csize) - 1;
1153 -- The bounds are statically known, and btyp is one of the
1154 -- unsigned types, depending on the length.
1156 if Len_Bits <= Standard_Short_Short_Integer_Size then
1157 Btyp := RTE (RE_Short_Short_Unsigned);
1159 elsif Len_Bits <= Standard_Short_Integer_Size then
1160 Btyp := RTE (RE_Short_Unsigned);
1162 elsif Len_Bits <= Standard_Integer_Size then
1163 Btyp := RTE (RE_Unsigned);
1165 elsif Len_Bits <= Standard_Long_Integer_Size then
1166 Btyp := RTE (RE_Long_Unsigned);
1168 else
1169 Btyp := RTE (RE_Long_Long_Unsigned);
1170 end if;
1172 Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
1173 Set_Print_In_Hex (Lit);
1175 Decl :=
1176 Make_Subtype_Declaration (Loc,
1177 Defining_Identifier => PAT,
1178 Subtype_Indication =>
1179 Make_Subtype_Indication (Loc,
1180 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
1182 Constraint =>
1183 Make_Range_Constraint (Loc,
1184 Range_Expression =>
1185 Make_Range (Loc,
1186 Low_Bound =>
1187 Make_Integer_Literal (Loc, 0),
1188 High_Bound => Lit))));
1190 if PASize = Uint_0 then
1191 PASize := Len_Bits;
1192 end if;
1194 Install_PAT;
1195 return;
1196 end if;
1197 end if;
1199 -- Could not use a modular type, for all other cases, we build
1200 -- a packed array subtype:
1202 -- subtype tttPn is
1203 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1205 -- Bits is the length of the array in bits
1207 Set_PB_Type;
1209 Bits_U1 :=
1210 Make_Op_Add (Loc,
1211 Left_Opnd =>
1212 Make_Op_Multiply (Loc,
1213 Left_Opnd =>
1214 Make_Integer_Literal (Loc, Csize),
1215 Right_Opnd => Len_Expr),
1217 Right_Opnd =>
1218 Make_Integer_Literal (Loc, 7));
1220 Set_Paren_Count (Bits_U1, 1);
1222 PAT_High :=
1223 Make_Op_Subtract (Loc,
1224 Left_Opnd =>
1225 Make_Op_Divide (Loc,
1226 Left_Opnd => Bits_U1,
1227 Right_Opnd => Make_Integer_Literal (Loc, 8)),
1228 Right_Opnd => Make_Integer_Literal (Loc, 1));
1230 Decl :=
1231 Make_Subtype_Declaration (Loc,
1232 Defining_Identifier => PAT,
1233 Subtype_Indication =>
1234 Make_Subtype_Indication (Loc,
1235 Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
1236 Constraint =>
1237 Make_Index_Or_Discriminant_Constraint (Loc,
1238 Constraints => New_List (
1239 Make_Range (Loc,
1240 Low_Bound =>
1241 Make_Integer_Literal (Loc, 0),
1242 High_Bound =>
1243 Convert_To (Standard_Integer, PAT_High))))));
1245 Install_PAT;
1247 -- Currently the code in this unit requires that packed arrays
1248 -- represented by non-modular arrays of bytes be on a byte
1249 -- boundary for bit sizes handled by System.Pack_nn units.
1250 -- That's because these units assume the array being accessed
1251 -- starts on a byte boundary.
1253 if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1254 Set_Must_Be_On_Byte_Boundary (Typ);
1255 end if;
1256 end if;
1257 end Create_Packed_Array_Type;
1259 -----------------------------------
1260 -- Expand_Bit_Packed_Element_Set --
1261 -----------------------------------
1263 procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1264 Loc : constant Source_Ptr := Sloc (N);
1265 Lhs : constant Node_Id := Name (N);
1267 Ass_OK : constant Boolean := Assignment_OK (Lhs);
1268 -- Used to preserve assignment OK status when assignment is rewritten
1270 Rhs : Node_Id := Expression (N);
1271 -- Initially Rhs is the right hand side value, it will be replaced
1272 -- later by an appropriate unchecked conversion for the assignment.
1274 Obj : Node_Id;
1275 Atyp : Entity_Id;
1276 PAT : Entity_Id;
1277 Ctyp : Entity_Id;
1278 Csiz : Int;
1279 Cmask : Uint;
1281 Shift : Node_Id;
1282 -- The expression for the shift value that is required
1284 Shift_Used : Boolean := False;
1285 -- Set True if Shift has been used in the generated code at least
1286 -- once, so that it must be duplicated if used again
1288 New_Lhs : Node_Id;
1289 New_Rhs : Node_Id;
1291 Rhs_Val_Known : Boolean;
1292 Rhs_Val : Uint;
1293 -- If the value of the right hand side as an integer constant is
1294 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1295 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1296 -- the Rhs_Val is undefined.
1298 function Get_Shift return Node_Id;
1299 -- Function used to get the value of Shift, making sure that it
1300 -- gets duplicated if the function is called more than once.
1302 ---------------
1303 -- Get_Shift --
1304 ---------------
1306 function Get_Shift return Node_Id is
1307 begin
1308 -- If we used the shift value already, then duplicate it. We
1309 -- set a temporary parent in case actions have to be inserted.
1311 if Shift_Used then
1312 Set_Parent (Shift, N);
1313 return Duplicate_Subexpr_No_Checks (Shift);
1315 -- If first time, use Shift unchanged, and set flag for first use
1317 else
1318 Shift_Used := True;
1319 return Shift;
1320 end if;
1321 end Get_Shift;
1323 -- Start of processing for Expand_Bit_Packed_Element_Set
1325 begin
1326 pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1328 Obj := Relocate_Node (Prefix (Lhs));
1329 Convert_To_Actual_Subtype (Obj);
1330 Atyp := Etype (Obj);
1331 PAT := Packed_Array_Type (Atyp);
1332 Ctyp := Component_Type (Atyp);
1333 Csiz := UI_To_Int (Component_Size (Atyp));
1335 -- We convert the right hand side to the proper subtype to ensure
1336 -- that an appropriate range check is made (since the normal range
1337 -- check from assignment will be lost in the transformations). This
1338 -- conversion is analyzed immediately so that subsequent processing
1339 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1341 -- If the right-hand side is a string literal, create a temporary for
1342 -- it, constant-folding is not ready to wrap the bit representation
1343 -- of a string literal.
1345 if Nkind (Rhs) = N_String_Literal then
1346 declare
1347 Decl : Node_Id;
1348 begin
1349 Decl :=
1350 Make_Object_Declaration (Loc,
1351 Defining_Identifier =>
1352 Make_Defining_Identifier (Loc, New_Internal_Name ('T')),
1353 Object_Definition => New_Occurrence_Of (Ctyp, Loc),
1354 Expression => New_Copy_Tree (Rhs));
1356 Insert_Actions (N, New_List (Decl));
1357 Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1358 end;
1359 end if;
1361 Rhs := Convert_To (Ctyp, Rhs);
1362 Set_Parent (Rhs, N);
1364 -- If we are building the initialization procedure for a packed array,
1365 -- and Initialize_Scalars is enabled, each component assignment is an
1366 -- out-of-range value by design. Compile this value without checks,
1367 -- because a call to the array init_proc must not raise an exception.
1369 if Within_Init_Proc
1370 and then Initialize_Scalars
1371 then
1372 Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1373 else
1374 Analyze_And_Resolve (Rhs, Ctyp);
1375 end if;
1377 -- Case of component size 1,2,4 or any component size for the modular
1378 -- case. These are the cases for which we can inline the code.
1380 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1381 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1382 then
1383 Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1385 -- The statement to be generated is:
1387 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, shift)))
1389 -- where mask1 is obtained by shifting Cmask left Shift bits
1390 -- and then complementing the result.
1392 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1394 -- the "or ..." is omitted if rhs is constant and all 0 bits
1396 -- rhs is converted to the appropriate type
1398 -- The result is converted back to the array type, since
1399 -- otherwise we lose knowledge of the packed nature.
1401 -- Determine if right side is all 0 bits or all 1 bits
1403 if Compile_Time_Known_Value (Rhs) then
1404 Rhs_Val := Expr_Rep_Value (Rhs);
1405 Rhs_Val_Known := True;
1407 -- The following test catches the case of an unchecked conversion
1408 -- of an integer literal. This results from optimizing aggregates
1409 -- of packed types.
1411 elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1412 and then Compile_Time_Known_Value (Expression (Rhs))
1413 then
1414 Rhs_Val := Expr_Rep_Value (Expression (Rhs));
1415 Rhs_Val_Known := True;
1417 else
1418 Rhs_Val := No_Uint;
1419 Rhs_Val_Known := False;
1420 end if;
1422 -- Some special checks for the case where the right hand value
1423 -- is known at compile time. Basically we have to take care of
1424 -- the implicit conversion to the subtype of the component object.
1426 if Rhs_Val_Known then
1428 -- If we have a biased component type then we must manually do
1429 -- the biasing, since we are taking responsibility in this case
1430 -- for constructing the exact bit pattern to be used.
1432 if Has_Biased_Representation (Ctyp) then
1433 Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1434 end if;
1436 -- For a negative value, we manually convert the twos complement
1437 -- value to a corresponding unsigned value, so that the proper
1438 -- field width is maintained. If we did not do this, we would
1439 -- get too many leading sign bits later on.
1441 if Rhs_Val < 0 then
1442 Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1443 end if;
1444 end if;
1446 -- Now create copies removing side effects. Note that in some
1447 -- complex cases, this may cause the fact that we have already
1448 -- set a packed array type on Obj to get lost. So we save the
1449 -- type of Obj, and make sure it is reset properly.
1451 declare
1452 T : constant Entity_Id := Etype (Obj);
1453 begin
1454 New_Lhs := Duplicate_Subexpr (Obj, True);
1455 New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1456 Set_Etype (Obj, T);
1457 Set_Etype (New_Lhs, T);
1458 Set_Etype (New_Rhs, T);
1459 end;
1461 -- First we deal with the "and"
1463 if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1464 declare
1465 Mask1 : Node_Id;
1466 Lit : Node_Id;
1468 begin
1469 if Compile_Time_Known_Value (Shift) then
1470 Mask1 :=
1471 Make_Integer_Literal (Loc,
1472 Modulus (Etype (Obj)) - 1 -
1473 (Cmask * (2 ** Expr_Value (Get_Shift))));
1474 Set_Print_In_Hex (Mask1);
1476 else
1477 Lit := Make_Integer_Literal (Loc, Cmask);
1478 Set_Print_In_Hex (Lit);
1479 Mask1 :=
1480 Make_Op_Not (Loc,
1481 Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1482 end if;
1484 New_Rhs :=
1485 Make_Op_And (Loc,
1486 Left_Opnd => New_Rhs,
1487 Right_Opnd => Mask1);
1488 end;
1489 end if;
1491 -- Then deal with the "or"
1493 if not Rhs_Val_Known or else Rhs_Val /= 0 then
1494 declare
1495 Or_Rhs : Node_Id;
1497 procedure Fixup_Rhs;
1498 -- Adjust Rhs by bias if biased representation for components
1499 -- or remove extraneous high order sign bits if signed.
1501 procedure Fixup_Rhs is
1502 Etyp : constant Entity_Id := Etype (Rhs);
1504 begin
1505 -- For biased case, do the required biasing by simply
1506 -- converting to the biased subtype (the conversion
1507 -- will generate the required bias).
1509 if Has_Biased_Representation (Ctyp) then
1510 Rhs := Convert_To (Ctyp, Rhs);
1512 -- For a signed integer type that is not biased, generate
1513 -- a conversion to unsigned to strip high order sign bits.
1515 elsif Is_Signed_Integer_Type (Ctyp) then
1516 Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1517 end if;
1519 -- Set Etype, since it can be referenced before the
1520 -- node is completely analyzed.
1522 Set_Etype (Rhs, Etyp);
1524 -- We now need to do an unchecked conversion of the
1525 -- result to the target type, but it is important that
1526 -- this conversion be a right justified conversion and
1527 -- not a left justified conversion.
1529 Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1531 end Fixup_Rhs;
1533 begin
1534 if Rhs_Val_Known
1535 and then Compile_Time_Known_Value (Get_Shift)
1536 then
1537 Or_Rhs :=
1538 Make_Integer_Literal (Loc,
1539 Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1540 Set_Print_In_Hex (Or_Rhs);
1542 else
1543 -- We have to convert the right hand side to Etype (Obj).
1544 -- A special case case arises if what we have now is a Val
1545 -- attribute reference whose expression type is Etype (Obj).
1546 -- This happens for assignments of fields from the same
1547 -- array. In this case we get the required right hand side
1548 -- by simply removing the inner attribute reference.
1550 if Nkind (Rhs) = N_Attribute_Reference
1551 and then Attribute_Name (Rhs) = Name_Val
1552 and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1553 then
1554 Rhs := Relocate_Node (First (Expressions (Rhs)));
1555 Fixup_Rhs;
1557 -- If the value of the right hand side is a known integer
1558 -- value, then just replace it by an untyped constant,
1559 -- which will be properly retyped when we analyze and
1560 -- resolve the expression.
1562 elsif Rhs_Val_Known then
1564 -- Note that Rhs_Val has already been normalized to
1565 -- be an unsigned value with the proper number of bits.
1567 Rhs :=
1568 Make_Integer_Literal (Loc, Rhs_Val);
1570 -- Otherwise we need an unchecked conversion
1572 else
1573 Fixup_Rhs;
1574 end if;
1576 Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1577 end if;
1579 if Nkind (New_Rhs) = N_Op_And then
1580 Set_Paren_Count (New_Rhs, 1);
1581 end if;
1583 New_Rhs :=
1584 Make_Op_Or (Loc,
1585 Left_Opnd => New_Rhs,
1586 Right_Opnd => Or_Rhs);
1587 end;
1588 end if;
1590 -- Now do the rewrite
1592 Rewrite (N,
1593 Make_Assignment_Statement (Loc,
1594 Name => New_Lhs,
1595 Expression =>
1596 Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1597 Set_Assignment_OK (Name (N), Ass_OK);
1599 -- All other component sizes for non-modular case
1601 else
1602 -- We generate
1604 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1606 -- where Subscr is the computed linear subscript
1608 declare
1609 Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1610 Set_nn : Entity_Id;
1611 Subscr : Node_Id;
1612 Atyp : Entity_Id;
1614 begin
1615 if No (Bits_nn) then
1617 -- Error, most likely High_Integrity_Mode restriction
1619 return;
1620 end if;
1622 -- Acquire proper Set entity. We use the aligned or unaligned
1623 -- case as appropriate.
1625 if Known_Aligned_Enough (Obj, Csiz) then
1626 Set_nn := RTE (Set_Id (Csiz));
1627 else
1628 Set_nn := RTE (SetU_Id (Csiz));
1629 end if;
1631 -- Now generate the set reference
1633 Obj := Relocate_Node (Prefix (Lhs));
1634 Convert_To_Actual_Subtype (Obj);
1635 Atyp := Etype (Obj);
1636 Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1638 -- Below we must make the assumption that Obj is
1639 -- at least byte aligned, since otherwise its address
1640 -- cannot be taken. The assumption holds since the
1641 -- only arrays that can be misaligned are small packed
1642 -- arrays which are implemented as a modular type, and
1643 -- that is not the case here.
1645 Rewrite (N,
1646 Make_Procedure_Call_Statement (Loc,
1647 Name => New_Occurrence_Of (Set_nn, Loc),
1648 Parameter_Associations => New_List (
1649 Make_Attribute_Reference (Loc,
1650 Prefix => Obj,
1651 Attribute_Name => Name_Address),
1652 Subscr,
1653 Unchecked_Convert_To (Bits_nn,
1654 Convert_To (Ctyp, Rhs)))));
1656 end;
1657 end if;
1659 Analyze (N, Suppress => All_Checks);
1660 end Expand_Bit_Packed_Element_Set;
1662 -------------------------------------
1663 -- Expand_Packed_Address_Reference --
1664 -------------------------------------
1666 procedure Expand_Packed_Address_Reference (N : Node_Id) is
1667 Loc : constant Source_Ptr := Sloc (N);
1668 Ploc : Source_Ptr;
1669 Pref : Node_Id;
1670 Expr : Node_Id;
1671 Term : Node_Id;
1672 Atyp : Entity_Id;
1673 Subscr : Node_Id;
1675 begin
1676 Pref := Prefix (N);
1677 Expr := Empty;
1679 -- We build up an expression serially that has the form
1681 -- outer_object'Address
1682 -- + (linear-subscript * component_size for each array reference
1683 -- + field'Bit_Position for each record field
1684 -- + ...
1685 -- + ...) / Storage_Unit;
1687 -- Some additional conversions are required to deal with the addition
1688 -- operation, which is not normally visible to generated code.
1690 loop
1691 Ploc := Sloc (Pref);
1693 if Nkind (Pref) = N_Indexed_Component then
1694 Convert_To_Actual_Subtype (Prefix (Pref));
1695 Atyp := Etype (Prefix (Pref));
1696 Compute_Linear_Subscript (Atyp, Pref, Subscr);
1698 Term :=
1699 Make_Op_Multiply (Ploc,
1700 Left_Opnd => Subscr,
1701 Right_Opnd =>
1702 Make_Attribute_Reference (Ploc,
1703 Prefix => New_Occurrence_Of (Atyp, Ploc),
1704 Attribute_Name => Name_Component_Size));
1706 elsif Nkind (Pref) = N_Selected_Component then
1707 Term :=
1708 Make_Attribute_Reference (Ploc,
1709 Prefix => Selector_Name (Pref),
1710 Attribute_Name => Name_Bit_Position);
1712 else
1713 exit;
1714 end if;
1716 Term := Convert_To (RTE (RE_Integer_Address), Term);
1718 if No (Expr) then
1719 Expr := Term;
1721 else
1722 Expr :=
1723 Make_Op_Add (Ploc,
1724 Left_Opnd => Expr,
1725 Right_Opnd => Term);
1726 end if;
1728 Pref := Prefix (Pref);
1729 end loop;
1731 Rewrite (N,
1732 Unchecked_Convert_To (RTE (RE_Address),
1733 Make_Op_Add (Loc,
1734 Left_Opnd =>
1735 Unchecked_Convert_To (RTE (RE_Integer_Address),
1736 Make_Attribute_Reference (Loc,
1737 Prefix => Pref,
1738 Attribute_Name => Name_Address)),
1740 Right_Opnd =>
1741 Make_Op_Divide (Loc,
1742 Left_Opnd => Expr,
1743 Right_Opnd =>
1744 Make_Integer_Literal (Loc, System_Storage_Unit)))));
1746 Analyze_And_Resolve (N, RTE (RE_Address));
1747 end Expand_Packed_Address_Reference;
1749 ------------------------------------
1750 -- Expand_Packed_Boolean_Operator --
1751 ------------------------------------
1753 -- This routine expands "a op b" for the packed cases
1755 procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1756 Loc : constant Source_Ptr := Sloc (N);
1757 Typ : constant Entity_Id := Etype (N);
1758 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1759 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1761 Ltyp : Entity_Id;
1762 Rtyp : Entity_Id;
1763 PAT : Entity_Id;
1765 begin
1766 Convert_To_Actual_Subtype (L);
1767 Convert_To_Actual_Subtype (R);
1769 Ensure_Defined (Etype (L), N);
1770 Ensure_Defined (Etype (R), N);
1772 Apply_Length_Check (R, Etype (L));
1774 Ltyp := Etype (L);
1775 Rtyp := Etype (R);
1777 -- Deal with silly case of XOR where the subcomponent has a range
1778 -- True .. True where an exception must be raised.
1780 if Nkind (N) = N_Op_Xor then
1781 Silly_Boolean_Array_Xor_Test (N, Rtyp);
1782 end if;
1784 -- Now that that silliness is taken care of, get packed array type
1786 Convert_To_PAT_Type (L);
1787 Convert_To_PAT_Type (R);
1789 PAT := Etype (L);
1791 -- For the modular case, we expand a op b into
1793 -- rtyp!(pat!(a) op pat!(b))
1795 -- where rtyp is the Etype of the left operand. Note that we do not
1796 -- convert to the base type, since this would be unconstrained, and
1797 -- hence not have a corresponding packed array type set.
1799 -- Note that both operands must be modular for this code to be used
1801 if Is_Modular_Integer_Type (PAT)
1802 and then
1803 Is_Modular_Integer_Type (Etype (R))
1804 then
1805 declare
1806 P : Node_Id;
1808 begin
1809 if Nkind (N) = N_Op_And then
1810 P := Make_Op_And (Loc, L, R);
1812 elsif Nkind (N) = N_Op_Or then
1813 P := Make_Op_Or (Loc, L, R);
1815 else -- Nkind (N) = N_Op_Xor
1816 P := Make_Op_Xor (Loc, L, R);
1817 end if;
1819 Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1820 end;
1822 -- For the array case, we insert the actions
1824 -- Result : Ltype;
1826 -- System.Bitops.Bit_And/Or/Xor
1827 -- (Left'Address,
1828 -- Ltype'Length * Ltype'Component_Size;
1829 -- Right'Address,
1830 -- Rtype'Length * Rtype'Component_Size
1831 -- Result'Address);
1833 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1834 -- the second argument and fourth arguments are the lengths of the
1835 -- operands in bits. Then we replace the expression by a reference
1836 -- to Result.
1838 -- Note that if we are mixing a modular and array operand, everything
1839 -- works fine, since we ensure that the modular representation has the
1840 -- same physical layout as the array representation (that's what the
1841 -- left justified modular stuff in the big-endian case is about).
1843 else
1844 declare
1845 Result_Ent : constant Entity_Id :=
1846 Make_Defining_Identifier (Loc,
1847 Chars => New_Internal_Name ('T'));
1849 E_Id : RE_Id;
1851 begin
1852 if Nkind (N) = N_Op_And then
1853 E_Id := RE_Bit_And;
1855 elsif Nkind (N) = N_Op_Or then
1856 E_Id := RE_Bit_Or;
1858 else -- Nkind (N) = N_Op_Xor
1859 E_Id := RE_Bit_Xor;
1860 end if;
1862 Insert_Actions (N, New_List (
1864 Make_Object_Declaration (Loc,
1865 Defining_Identifier => Result_Ent,
1866 Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1868 Make_Procedure_Call_Statement (Loc,
1869 Name => New_Occurrence_Of (RTE (E_Id), Loc),
1870 Parameter_Associations => New_List (
1872 Make_Byte_Aligned_Attribute_Reference (Loc,
1873 Prefix => L,
1874 Attribute_Name => Name_Address),
1876 Make_Op_Multiply (Loc,
1877 Left_Opnd =>
1878 Make_Attribute_Reference (Loc,
1879 Prefix =>
1880 New_Occurrence_Of
1881 (Etype (First_Index (Ltyp)), Loc),
1882 Attribute_Name => Name_Range_Length),
1884 Right_Opnd =>
1885 Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1887 Make_Byte_Aligned_Attribute_Reference (Loc,
1888 Prefix => R,
1889 Attribute_Name => Name_Address),
1891 Make_Op_Multiply (Loc,
1892 Left_Opnd =>
1893 Make_Attribute_Reference (Loc,
1894 Prefix =>
1895 New_Occurrence_Of
1896 (Etype (First_Index (Rtyp)), Loc),
1897 Attribute_Name => Name_Range_Length),
1899 Right_Opnd =>
1900 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1902 Make_Byte_Aligned_Attribute_Reference (Loc,
1903 Prefix => New_Occurrence_Of (Result_Ent, Loc),
1904 Attribute_Name => Name_Address)))));
1906 Rewrite (N,
1907 New_Occurrence_Of (Result_Ent, Loc));
1908 end;
1909 end if;
1911 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1912 end Expand_Packed_Boolean_Operator;
1914 -------------------------------------
1915 -- Expand_Packed_Element_Reference --
1916 -------------------------------------
1918 procedure Expand_Packed_Element_Reference (N : Node_Id) is
1919 Loc : constant Source_Ptr := Sloc (N);
1920 Obj : Node_Id;
1921 Atyp : Entity_Id;
1922 PAT : Entity_Id;
1923 Ctyp : Entity_Id;
1924 Csiz : Int;
1925 Shift : Node_Id;
1926 Cmask : Uint;
1927 Lit : Node_Id;
1928 Arg : Node_Id;
1930 begin
1931 -- If not bit packed, we have the enumeration case, which is easily
1932 -- dealt with (just adjust the subscripts of the indexed component)
1934 -- Note: this leaves the result as an indexed component, which is
1935 -- still a variable, so can be used in the assignment case, as is
1936 -- required in the enumeration case.
1938 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1939 Setup_Enumeration_Packed_Array_Reference (N);
1940 return;
1941 end if;
1943 -- Remaining processing is for the bit-packed case
1945 Obj := Relocate_Node (Prefix (N));
1946 Convert_To_Actual_Subtype (Obj);
1947 Atyp := Etype (Obj);
1948 PAT := Packed_Array_Type (Atyp);
1949 Ctyp := Component_Type (Atyp);
1950 Csiz := UI_To_Int (Component_Size (Atyp));
1952 -- Case of component size 1,2,4 or any component size for the modular
1953 -- case. These are the cases for which we can inline the code.
1955 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1956 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1957 then
1958 Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1959 Lit := Make_Integer_Literal (Loc, Cmask);
1960 Set_Print_In_Hex (Lit);
1962 -- We generate a shift right to position the field, followed by a
1963 -- masking operation to extract the bit field, and we finally do an
1964 -- unchecked conversion to convert the result to the required target.
1966 -- Note that the unchecked conversion automatically deals with the
1967 -- bias if we are dealing with a biased representation. What will
1968 -- happen is that we temporarily generate the biased representation,
1969 -- but almost immediately that will be converted to the original
1970 -- unbiased component type, and the bias will disappear.
1972 Arg :=
1973 Make_Op_And (Loc,
1974 Left_Opnd => Make_Shift_Right (Obj, Shift),
1975 Right_Opnd => Lit);
1977 -- We needed to analyze this before we do the unchecked convert
1978 -- below, but we need it temporarily attached to the tree for
1979 -- this analysis (hence the temporary Set_Parent call).
1981 Set_Parent (Arg, Parent (N));
1982 Analyze_And_Resolve (Arg);
1984 Rewrite (N,
1985 RJ_Unchecked_Convert_To (Ctyp, Arg));
1987 -- All other component sizes for non-modular case
1989 else
1990 -- We generate
1992 -- Component_Type!(Get_nn (Arr'address, Subscr))
1994 -- where Subscr is the computed linear subscript
1996 declare
1997 Get_nn : Entity_Id;
1998 Subscr : Node_Id;
2000 begin
2001 -- Acquire proper Get entity. We use the aligned or unaligned
2002 -- case as appropriate.
2004 if Known_Aligned_Enough (Obj, Csiz) then
2005 Get_nn := RTE (Get_Id (Csiz));
2006 else
2007 Get_nn := RTE (GetU_Id (Csiz));
2008 end if;
2010 -- Now generate the get reference
2012 Compute_Linear_Subscript (Atyp, N, Subscr);
2014 -- Below we make the assumption that Obj is at least byte
2015 -- aligned, since otherwise its address cannot be taken.
2016 -- The assumption holds since the only arrays that can be
2017 -- misaligned are small packed arrays which are implemented
2018 -- as a modular type, and that is not the case here.
2020 Rewrite (N,
2021 Unchecked_Convert_To (Ctyp,
2022 Make_Function_Call (Loc,
2023 Name => New_Occurrence_Of (Get_nn, Loc),
2024 Parameter_Associations => New_List (
2025 Make_Attribute_Reference (Loc,
2026 Prefix => Obj,
2027 Attribute_Name => Name_Address),
2028 Subscr))));
2029 end;
2030 end if;
2032 Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
2034 end Expand_Packed_Element_Reference;
2036 ----------------------
2037 -- Expand_Packed_Eq --
2038 ----------------------
2040 -- Handles expansion of "=" on packed array types
2042 procedure Expand_Packed_Eq (N : Node_Id) is
2043 Loc : constant Source_Ptr := Sloc (N);
2044 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2045 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2047 LLexpr : Node_Id;
2048 RLexpr : Node_Id;
2050 Ltyp : Entity_Id;
2051 Rtyp : Entity_Id;
2052 PAT : Entity_Id;
2054 begin
2055 Convert_To_Actual_Subtype (L);
2056 Convert_To_Actual_Subtype (R);
2057 Ltyp := Underlying_Type (Etype (L));
2058 Rtyp := Underlying_Type (Etype (R));
2060 Convert_To_PAT_Type (L);
2061 Convert_To_PAT_Type (R);
2062 PAT := Etype (L);
2064 LLexpr :=
2065 Make_Op_Multiply (Loc,
2066 Left_Opnd =>
2067 Make_Attribute_Reference (Loc,
2068 Prefix => New_Occurrence_Of (Ltyp, Loc),
2069 Attribute_Name => Name_Length),
2070 Right_Opnd =>
2071 Make_Integer_Literal (Loc, Component_Size (Ltyp)));
2073 RLexpr :=
2074 Make_Op_Multiply (Loc,
2075 Left_Opnd =>
2076 Make_Attribute_Reference (Loc,
2077 Prefix => New_Occurrence_Of (Rtyp, Loc),
2078 Attribute_Name => Name_Length),
2079 Right_Opnd =>
2080 Make_Integer_Literal (Loc, Component_Size (Rtyp)));
2082 -- For the modular case, we transform the comparison to:
2084 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2086 -- where PAT is the packed array type. This works fine, since in the
2087 -- modular case we guarantee that the unused bits are always zeroes.
2088 -- We do have to compare the lengths because we could be comparing
2089 -- two different subtypes of the same base type.
2091 if Is_Modular_Integer_Type (PAT) then
2092 Rewrite (N,
2093 Make_And_Then (Loc,
2094 Left_Opnd =>
2095 Make_Op_Eq (Loc,
2096 Left_Opnd => LLexpr,
2097 Right_Opnd => RLexpr),
2099 Right_Opnd =>
2100 Make_Op_Eq (Loc,
2101 Left_Opnd => L,
2102 Right_Opnd => R)));
2104 -- For the non-modular case, we call a runtime routine
2106 -- System.Bit_Ops.Bit_Eq
2107 -- (L'Address, L_Length, R'Address, R_Length)
2109 -- where PAT is the packed array type, and the lengths are the lengths
2110 -- in bits of the original packed arrays. This routine takes care of
2111 -- not comparing the unused bits in the last byte.
2113 else
2114 Rewrite (N,
2115 Make_Function_Call (Loc,
2116 Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
2117 Parameter_Associations => New_List (
2118 Make_Byte_Aligned_Attribute_Reference (Loc,
2119 Prefix => L,
2120 Attribute_Name => Name_Address),
2122 LLexpr,
2124 Make_Byte_Aligned_Attribute_Reference (Loc,
2125 Prefix => R,
2126 Attribute_Name => Name_Address),
2128 RLexpr)));
2129 end if;
2131 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
2132 end Expand_Packed_Eq;
2134 -----------------------
2135 -- Expand_Packed_Not --
2136 -----------------------
2138 -- Handles expansion of "not" on packed array types
2140 procedure Expand_Packed_Not (N : Node_Id) is
2141 Loc : constant Source_Ptr := Sloc (N);
2142 Typ : constant Entity_Id := Etype (N);
2143 Opnd : constant Node_Id := Relocate_Node (Right_Opnd (N));
2145 Rtyp : Entity_Id;
2146 PAT : Entity_Id;
2147 Lit : Node_Id;
2149 begin
2150 Convert_To_Actual_Subtype (Opnd);
2151 Rtyp := Etype (Opnd);
2153 -- Deal with silly False..False and True..True subtype case
2155 Silly_Boolean_Array_Not_Test (N, Rtyp);
2157 -- Now that the silliness is taken care of, get packed array type
2159 Convert_To_PAT_Type (Opnd);
2160 PAT := Etype (Opnd);
2162 -- For the case where the packed array type is a modular type,
2163 -- not A expands simply into:
2165 -- rtyp!(PAT!(A) xor mask)
2167 -- where PAT is the packed array type, and mask is a mask of all
2168 -- one bits of length equal to the size of this packed type and
2169 -- rtyp is the actual subtype of the operand
2171 Lit := Make_Integer_Literal (Loc, 2 ** RM_Size (PAT) - 1);
2172 Set_Print_In_Hex (Lit);
2174 if not Is_Array_Type (PAT) then
2175 Rewrite (N,
2176 Unchecked_Convert_To (Rtyp,
2177 Make_Op_Xor (Loc,
2178 Left_Opnd => Opnd,
2179 Right_Opnd => Lit)));
2181 -- For the array case, we insert the actions
2183 -- Result : Typ;
2185 -- System.Bitops.Bit_Not
2186 -- (Opnd'Address,
2187 -- Typ'Length * Typ'Component_Size;
2188 -- Result'Address);
2190 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second
2191 -- argument is the length of the operand in bits. Then we replace
2192 -- the expression by a reference to Result.
2194 else
2195 declare
2196 Result_Ent : constant Entity_Id :=
2197 Make_Defining_Identifier (Loc,
2198 Chars => New_Internal_Name ('T'));
2200 begin
2201 Insert_Actions (N, New_List (
2203 Make_Object_Declaration (Loc,
2204 Defining_Identifier => Result_Ent,
2205 Object_Definition => New_Occurrence_Of (Rtyp, Loc)),
2207 Make_Procedure_Call_Statement (Loc,
2208 Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2209 Parameter_Associations => New_List (
2211 Make_Byte_Aligned_Attribute_Reference (Loc,
2212 Prefix => Opnd,
2213 Attribute_Name => Name_Address),
2215 Make_Op_Multiply (Loc,
2216 Left_Opnd =>
2217 Make_Attribute_Reference (Loc,
2218 Prefix =>
2219 New_Occurrence_Of
2220 (Etype (First_Index (Rtyp)), Loc),
2221 Attribute_Name => Name_Range_Length),
2223 Right_Opnd =>
2224 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2226 Make_Byte_Aligned_Attribute_Reference (Loc,
2227 Prefix => New_Occurrence_Of (Result_Ent, Loc),
2228 Attribute_Name => Name_Address)))));
2230 Rewrite (N,
2231 New_Occurrence_Of (Result_Ent, Loc));
2232 end;
2233 end if;
2235 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2237 end Expand_Packed_Not;
2239 -------------------------------------
2240 -- Involves_Packed_Array_Reference --
2241 -------------------------------------
2243 function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2244 begin
2245 if Nkind (N) = N_Indexed_Component
2246 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2247 then
2248 return True;
2250 elsif Nkind (N) = N_Selected_Component then
2251 return Involves_Packed_Array_Reference (Prefix (N));
2253 else
2254 return False;
2255 end if;
2256 end Involves_Packed_Array_Reference;
2258 --------------------------
2259 -- Known_Aligned_Enough --
2260 --------------------------
2262 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2263 Typ : constant Entity_Id := Etype (Obj);
2265 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2266 -- If the component is in a record that contains previous packed
2267 -- components, consider it unaligned because the back-end might
2268 -- choose to pack the rest of the record. Lead to less efficient code,
2269 -- but safer vis-a-vis of back-end choices.
2271 --------------------------------
2272 -- In_Partially_Packed_Record --
2273 --------------------------------
2275 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2276 Rec_Type : constant Entity_Id := Scope (Comp);
2277 Prev_Comp : Entity_Id;
2279 begin
2280 Prev_Comp := First_Entity (Rec_Type);
2281 while Present (Prev_Comp) loop
2282 if Is_Packed (Etype (Prev_Comp)) then
2283 return True;
2285 elsif Prev_Comp = Comp then
2286 return False;
2287 end if;
2289 Next_Entity (Prev_Comp);
2290 end loop;
2292 return False;
2293 end In_Partially_Packed_Record;
2295 -- Start of processing for Known_Aligned_Enough
2297 begin
2298 -- Odd bit sizes don't need alignment anyway
2300 if Csiz mod 2 = 1 then
2301 return True;
2303 -- If we have a specified alignment, see if it is sufficient, if not
2304 -- then we can't possibly be aligned enough in any case.
2306 elsif Known_Alignment (Etype (Obj)) then
2307 -- Alignment required is 4 if size is a multiple of 4, and
2308 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2310 if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2311 return False;
2312 end if;
2313 end if;
2315 -- OK, alignment should be sufficient, if object is aligned
2317 -- If object is strictly aligned, then it is definitely aligned
2319 if Strict_Alignment (Typ) then
2320 return True;
2322 -- Case of subscripted array reference
2324 elsif Nkind (Obj) = N_Indexed_Component then
2326 -- If we have a pointer to an array, then this is definitely
2327 -- aligned, because pointers always point to aligned versions.
2329 if Is_Access_Type (Etype (Prefix (Obj))) then
2330 return True;
2332 -- Otherwise, go look at the prefix
2334 else
2335 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2336 end if;
2338 -- Case of record field
2340 elsif Nkind (Obj) = N_Selected_Component then
2342 -- What is significant here is whether the record type is packed
2344 if Is_Record_Type (Etype (Prefix (Obj)))
2345 and then Is_Packed (Etype (Prefix (Obj)))
2346 then
2347 return False;
2349 -- Or the component has a component clause which might cause
2350 -- the component to become unaligned (we can't tell if the
2351 -- backend is doing alignment computations).
2353 elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2354 return False;
2356 elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2357 return False;
2359 -- In all other cases, go look at prefix
2361 else
2362 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2363 end if;
2365 elsif Nkind (Obj) = N_Type_Conversion then
2366 return Known_Aligned_Enough (Expression (Obj), Csiz);
2368 -- For a formal parameter, it is safer to assume that it is not
2369 -- aligned, because the formal may be unconstrained while the actual
2370 -- is constrained. In this situation, a small constrained packed
2371 -- array, represented in modular form, may be unaligned.
2373 elsif Is_Entity_Name (Obj) then
2374 return not Is_Formal (Entity (Obj));
2375 else
2377 -- If none of the above, must be aligned
2378 return True;
2379 end if;
2380 end Known_Aligned_Enough;
2382 ---------------------
2383 -- Make_Shift_Left --
2384 ---------------------
2386 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2387 Nod : Node_Id;
2389 begin
2390 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2391 return N;
2392 else
2393 Nod :=
2394 Make_Op_Shift_Left (Sloc (N),
2395 Left_Opnd => N,
2396 Right_Opnd => S);
2397 Set_Shift_Count_OK (Nod, True);
2398 return Nod;
2399 end if;
2400 end Make_Shift_Left;
2402 ----------------------
2403 -- Make_Shift_Right --
2404 ----------------------
2406 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2407 Nod : Node_Id;
2409 begin
2410 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2411 return N;
2412 else
2413 Nod :=
2414 Make_Op_Shift_Right (Sloc (N),
2415 Left_Opnd => N,
2416 Right_Opnd => S);
2417 Set_Shift_Count_OK (Nod, True);
2418 return Nod;
2419 end if;
2420 end Make_Shift_Right;
2422 -----------------------------
2423 -- RJ_Unchecked_Convert_To --
2424 -----------------------------
2426 function RJ_Unchecked_Convert_To
2427 (Typ : Entity_Id;
2428 Expr : Node_Id) return Node_Id
2430 Source_Typ : constant Entity_Id := Etype (Expr);
2431 Target_Typ : constant Entity_Id := Typ;
2433 Src : Node_Id := Expr;
2435 Source_Siz : Nat;
2436 Target_Siz : Nat;
2438 begin
2439 Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2440 Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2442 -- First step, if the source type is not a discrete type, then we
2443 -- first convert to a modular type of the source length, since
2444 -- otherwise, on a big-endian machine, we get left-justification.
2445 -- We do it for little-endian machines as well, because there might
2446 -- be junk bits that are not cleared if the type is not numeric.
2448 if Source_Siz /= Target_Siz
2449 and then not Is_Discrete_Type (Source_Typ)
2450 then
2451 Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2452 end if;
2454 -- In the big endian case, if the lengths of the two types differ,
2455 -- then we must worry about possible left justification in the
2456 -- conversion, and avoiding that is what this is all about.
2458 if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2460 -- Next step. If the target is not a discrete type, then we first
2461 -- convert to a modular type of the target length, since
2462 -- otherwise, on a big-endian machine, we get left-justification.
2464 if not Is_Discrete_Type (Target_Typ) then
2465 Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2466 end if;
2467 end if;
2469 -- And now we can do the final conversion to the target type
2471 return Unchecked_Convert_To (Target_Typ, Src);
2472 end RJ_Unchecked_Convert_To;
2474 ----------------------------------------------
2475 -- Setup_Enumeration_Packed_Array_Reference --
2476 ----------------------------------------------
2478 -- All we have to do here is to find the subscripts that correspond
2479 -- to the index positions that have non-standard enumeration types
2480 -- and insert a Pos attribute to get the proper subscript value.
2482 -- Finally the prefix must be uncheck converted to the corresponding
2483 -- packed array type.
2485 -- Note that the component type is unchanged, so we do not need to
2486 -- fiddle with the types (Gigi always automatically takes the packed
2487 -- array type if it is set, as it will be in this case).
2489 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2490 Pfx : constant Node_Id := Prefix (N);
2491 Typ : constant Entity_Id := Etype (N);
2492 Exprs : constant List_Id := Expressions (N);
2493 Expr : Node_Id;
2495 begin
2496 -- If the array is unconstrained, then we replace the array
2497 -- reference with its actual subtype. This actual subtype will
2498 -- have a packed array type with appropriate bounds.
2500 if not Is_Constrained (Packed_Array_Type (Etype (Pfx))) then
2501 Convert_To_Actual_Subtype (Pfx);
2502 end if;
2504 Expr := First (Exprs);
2505 while Present (Expr) loop
2506 declare
2507 Loc : constant Source_Ptr := Sloc (Expr);
2508 Expr_Typ : constant Entity_Id := Etype (Expr);
2510 begin
2511 if Is_Enumeration_Type (Expr_Typ)
2512 and then Has_Non_Standard_Rep (Expr_Typ)
2513 then
2514 Rewrite (Expr,
2515 Make_Attribute_Reference (Loc,
2516 Prefix => New_Occurrence_Of (Expr_Typ, Loc),
2517 Attribute_Name => Name_Pos,
2518 Expressions => New_List (Relocate_Node (Expr))));
2519 Analyze_And_Resolve (Expr, Standard_Natural);
2520 end if;
2521 end;
2523 Next (Expr);
2524 end loop;
2526 Rewrite (N,
2527 Make_Indexed_Component (Sloc (N),
2528 Prefix =>
2529 Unchecked_Convert_To (Packed_Array_Type (Etype (Pfx)), Pfx),
2530 Expressions => Exprs));
2532 Analyze_And_Resolve (N, Typ);
2534 end Setup_Enumeration_Packed_Array_Reference;
2536 -----------------------------------------
2537 -- Setup_Inline_Packed_Array_Reference --
2538 -----------------------------------------
2540 procedure Setup_Inline_Packed_Array_Reference
2541 (N : Node_Id;
2542 Atyp : Entity_Id;
2543 Obj : in out Node_Id;
2544 Cmask : out Uint;
2545 Shift : out Node_Id)
2547 Loc : constant Source_Ptr := Sloc (N);
2548 PAT : Entity_Id;
2549 Otyp : Entity_Id;
2550 Csiz : Uint;
2551 Osiz : Uint;
2553 begin
2554 Csiz := Component_Size (Atyp);
2556 Convert_To_PAT_Type (Obj);
2557 PAT := Etype (Obj);
2559 Cmask := 2 ** Csiz - 1;
2561 if Is_Array_Type (PAT) then
2562 Otyp := Component_Type (PAT);
2563 Osiz := Component_Size (PAT);
2565 else
2566 Otyp := PAT;
2568 -- In the case where the PAT is a modular type, we want the actual
2569 -- size in bits of the modular value we use. This is neither the
2570 -- Object_Size nor the Value_Size, either of which may have been
2571 -- reset to strange values, but rather the minimum size. Note that
2572 -- since this is a modular type with full range, the issue of
2573 -- biased representation does not arise.
2575 Osiz := UI_From_Int (Minimum_Size (Otyp));
2576 end if;
2578 Compute_Linear_Subscript (Atyp, N, Shift);
2580 -- If the component size is not 1, then the subscript must be
2581 -- multiplied by the component size to get the shift count.
2583 if Csiz /= 1 then
2584 Shift :=
2585 Make_Op_Multiply (Loc,
2586 Left_Opnd => Make_Integer_Literal (Loc, Csiz),
2587 Right_Opnd => Shift);
2588 end if;
2590 -- If we have the array case, then this shift count must be broken
2591 -- down into a byte subscript, and a shift within the byte.
2593 if Is_Array_Type (PAT) then
2595 declare
2596 New_Shift : Node_Id;
2598 begin
2599 -- We must analyze shift, since we will duplicate it
2601 Set_Parent (Shift, N);
2602 Analyze_And_Resolve
2603 (Shift, Standard_Integer, Suppress => All_Checks);
2605 -- The shift count within the word is
2606 -- shift mod Osiz
2608 New_Shift :=
2609 Make_Op_Mod (Loc,
2610 Left_Opnd => Duplicate_Subexpr (Shift),
2611 Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2613 -- The subscript to be used on the PAT array is
2614 -- shift / Osiz
2616 Obj :=
2617 Make_Indexed_Component (Loc,
2618 Prefix => Obj,
2619 Expressions => New_List (
2620 Make_Op_Divide (Loc,
2621 Left_Opnd => Duplicate_Subexpr (Shift),
2622 Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2624 Shift := New_Shift;
2625 end;
2627 -- For the modular integer case, the object to be manipulated is
2628 -- the entire array, so Obj is unchanged. Note that we will reset
2629 -- its type to PAT before returning to the caller.
2631 else
2632 null;
2633 end if;
2635 -- The one remaining step is to modify the shift count for the
2636 -- big-endian case. Consider the following example in a byte:
2638 -- xxxxxxxx bits of byte
2639 -- vvvvvvvv bits of value
2640 -- 33221100 little-endian numbering
2641 -- 00112233 big-endian numbering
2643 -- Here we have the case of 2-bit fields
2645 -- For the little-endian case, we already have the proper shift
2646 -- count set, e.g. for element 2, the shift count is 2*2 = 4.
2648 -- For the big endian case, we have to adjust the shift count,
2649 -- computing it as (N - F) - shift, where N is the number of bits
2650 -- in an element of the array used to implement the packed array,
2651 -- F is the number of bits in a source level array element, and
2652 -- shift is the count so far computed.
2654 if Bytes_Big_Endian then
2655 Shift :=
2656 Make_Op_Subtract (Loc,
2657 Left_Opnd => Make_Integer_Literal (Loc, Osiz - Csiz),
2658 Right_Opnd => Shift);
2659 end if;
2661 Set_Parent (Shift, N);
2662 Set_Parent (Obj, N);
2663 Analyze_And_Resolve (Obj, Otyp, Suppress => All_Checks);
2664 Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2666 -- Make sure final type of object is the appropriate packed type
2668 Set_Etype (Obj, Otyp);
2670 end Setup_Inline_Packed_Array_Reference;
2672 end Exp_Pakd;