Add support for SVE gather loads
[official-gcc.git] / gcc / tree-vectorizer.h
bloba9ccdfd11367ba6fe2f6725ff82aadd288604c63
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION,
72 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
73 to implement:
75 for (int i = 0; i < VF; ++i)
76 res = cond[i] ? val[i] : res; */
77 EXTRACT_LAST_REDUCTION,
79 /* Use a folding reduction within the loop to implement:
81 for (int i = 0; i < VF; ++i)
82 res = res OP val[i];
84 (with no reassocation). */
85 FOLD_LEFT_REDUCTION
88 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
89 || ((D) == vect_double_reduction_def) \
90 || ((D) == vect_nested_cycle))
92 /* Structure to encapsulate information about a group of like
93 instructions to be presented to the target cost model. */
94 struct stmt_info_for_cost {
95 int count;
96 enum vect_cost_for_stmt kind;
97 gimple *stmt;
98 int misalign;
101 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
103 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
104 known alignment for that base. */
105 typedef hash_map<tree_operand_hash,
106 innermost_loop_behavior *> vec_base_alignments;
108 /************************************************************************
110 ************************************************************************/
111 typedef struct _slp_tree *slp_tree;
113 /* A computation tree of an SLP instance. Each node corresponds to a group of
114 stmts to be packed in a SIMD stmt. */
115 struct _slp_tree {
116 /* Nodes that contain def-stmts of this node statements operands. */
117 vec<slp_tree> children;
118 /* A group of scalar stmts to be vectorized together. */
119 vec<gimple *> stmts;
120 /* Load permutation relative to the stores, NULL if there is no
121 permutation. */
122 vec<unsigned> load_permutation;
123 /* Vectorized stmt/s. */
124 vec<gimple *> vec_stmts;
125 /* Number of vector stmts that are created to replace the group of scalar
126 stmts. It is calculated during the transformation phase as the number of
127 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
128 divided by vector size. */
129 unsigned int vec_stmts_size;
130 /* Whether the scalar computations use two different operators. */
131 bool two_operators;
132 /* The DEF type of this node. */
133 enum vect_def_type def_type;
137 /* SLP instance is a sequence of stmts in a loop that can be packed into
138 SIMD stmts. */
139 typedef struct _slp_instance {
140 /* The root of SLP tree. */
141 slp_tree root;
143 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
144 unsigned int group_size;
146 /* The unrolling factor required to vectorized this SLP instance. */
147 poly_uint64 unrolling_factor;
149 /* The group of nodes that contain loads of this SLP instance. */
150 vec<slp_tree> loads;
152 /* The SLP node containing the reduction PHIs. */
153 slp_tree reduc_phis;
154 } *slp_instance;
157 /* Access Functions. */
158 #define SLP_INSTANCE_TREE(S) (S)->root
159 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
160 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
161 #define SLP_INSTANCE_LOADS(S) (S)->loads
163 #define SLP_TREE_CHILDREN(S) (S)->children
164 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
165 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
166 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
167 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
168 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
169 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
173 /* Describes two objects whose addresses must be unequal for the vectorized
174 loop to be valid. */
175 typedef std::pair<tree, tree> vec_object_pair;
177 /* Vectorizer state common between loop and basic-block vectorization. */
178 struct vec_info {
179 enum vec_kind { bb, loop };
181 vec_info (vec_kind, void *);
182 ~vec_info ();
184 /* The type of vectorization. */
185 vec_kind kind;
187 /* All SLP instances. */
188 auto_vec<slp_instance> slp_instances;
190 /* All data references. Freed by free_data_refs, so not an auto_vec. */
191 vec<data_reference_p> datarefs;
193 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
194 known alignment for that base. */
195 vec_base_alignments base_alignments;
197 /* All data dependences. Freed by free_dependence_relations, so not
198 an auto_vec. */
199 vec<ddr_p> ddrs;
201 /* All interleaving chains of stores, represented by the first
202 stmt in the chain. */
203 auto_vec<gimple *> grouped_stores;
205 /* Cost data used by the target cost model. */
206 void *target_cost_data;
209 struct _loop_vec_info;
210 struct _bb_vec_info;
212 template<>
213 template<>
214 inline bool
215 is_a_helper <_loop_vec_info *>::test (vec_info *i)
217 return i->kind == vec_info::loop;
220 template<>
221 template<>
222 inline bool
223 is_a_helper <_bb_vec_info *>::test (vec_info *i)
225 return i->kind == vec_info::bb;
229 /* In general, we can divide the vector statements in a vectorized loop
230 into related groups ("rgroups") and say that for each rgroup there is
231 some nS such that the rgroup operates on nS values from one scalar
232 iteration followed by nS values from the next. That is, if VF is the
233 vectorization factor of the loop, the rgroup operates on a sequence:
235 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
237 where (i,j) represents a scalar value with index j in a scalar
238 iteration with index i.
240 [ We use the term "rgroup" to emphasise that this grouping isn't
241 necessarily the same as the grouping of statements used elsewhere.
242 For example, if we implement a group of scalar loads using gather
243 loads, we'll use a separate gather load for each scalar load, and
244 thus each gather load will belong to its own rgroup. ]
246 In general this sequence will occupy nV vectors concatenated
247 together. If these vectors have nL lanes each, the total number
248 of scalar values N is given by:
250 N = nS * VF = nV * nL
252 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
253 are compile-time constants but VF and nL can be variable (if the target
254 supports variable-length vectors).
256 In classical vectorization, each iteration of the vector loop would
257 handle exactly VF iterations of the original scalar loop. However,
258 in a fully-masked loop, a particular iteration of the vector loop
259 might handle fewer than VF iterations of the scalar loop. The vector
260 lanes that correspond to iterations of the scalar loop are said to be
261 "active" and the other lanes are said to be "inactive".
263 In a fully-masked loop, many rgroups need to be masked to ensure that
264 they have no effect for the inactive lanes. Each such rgroup needs a
265 sequence of booleans in the same order as above, but with each (i,j)
266 replaced by a boolean that indicates whether iteration i is active.
267 This sequence occupies nV vector masks that again have nL lanes each.
268 Thus the mask sequence as a whole consists of VF independent booleans
269 that are each repeated nS times.
271 We make the simplifying assumption that if a sequence of nV masks is
272 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
273 VIEW_CONVERTing it. This holds for all current targets that support
274 fully-masked loops. For example, suppose the scalar loop is:
276 float *f;
277 double *d;
278 for (int i = 0; i < n; ++i)
280 f[i * 2 + 0] += 1.0f;
281 f[i * 2 + 1] += 2.0f;
282 d[i] += 3.0;
285 and suppose that vectors have 256 bits. The vectorized f accesses
286 will belong to one rgroup and the vectorized d access to another:
288 f rgroup: nS = 2, nV = 1, nL = 8
289 d rgroup: nS = 1, nV = 1, nL = 4
290 VF = 4
292 [ In this simple example the rgroups do correspond to the normal
293 SLP grouping scheme. ]
295 If only the first three lanes are active, the masks we need are:
297 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
298 d rgroup: 1 | 1 | 1 | 0
300 Here we can use a mask calculated for f's rgroup for d's, but not
301 vice versa.
303 Thus for each value of nV, it is enough to provide nV masks, with the
304 mask being calculated based on the highest nL (or, equivalently, based
305 on the highest nS) required by any rgroup with that nV. We therefore
306 represent the entire collection of masks as a two-level table, with the
307 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
308 the second being indexed by the mask index 0 <= i < nV. */
310 /* The masks needed by rgroups with nV vectors, according to the
311 description above. */
312 struct rgroup_masks {
313 /* The largest nS for all rgroups that use these masks. */
314 unsigned int max_nscalars_per_iter;
316 /* The type of mask to use, based on the highest nS recorded above. */
317 tree mask_type;
319 /* A vector of nV masks, in iteration order. */
320 vec<tree> masks;
323 typedef auto_vec<rgroup_masks> vec_loop_masks;
325 /*-----------------------------------------------------------------*/
326 /* Info on vectorized loops. */
327 /*-----------------------------------------------------------------*/
328 typedef struct _loop_vec_info : public vec_info {
329 _loop_vec_info (struct loop *);
330 ~_loop_vec_info ();
332 /* The loop to which this info struct refers to. */
333 struct loop *loop;
335 /* The loop basic blocks. */
336 basic_block *bbs;
338 /* Number of latch executions. */
339 tree num_itersm1;
340 /* Number of iterations. */
341 tree num_iters;
342 /* Number of iterations of the original loop. */
343 tree num_iters_unchanged;
344 /* Condition under which this loop is analyzed and versioned. */
345 tree num_iters_assumptions;
347 /* Threshold of number of iterations below which vectorzation will not be
348 performed. It is calculated from MIN_PROFITABLE_ITERS and
349 PARAM_MIN_VECT_LOOP_BOUND. */
350 unsigned int th;
352 /* When applying loop versioning, the vector form should only be used
353 if the number of scalar iterations is >= this value, on top of all
354 the other requirements. Ignored when loop versioning is not being
355 used. */
356 poly_uint64 versioning_threshold;
358 /* Unrolling factor */
359 poly_uint64 vectorization_factor;
361 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
362 if there is no particular limit. */
363 unsigned HOST_WIDE_INT max_vectorization_factor;
365 /* The masks that a fully-masked loop should use to avoid operating
366 on inactive scalars. */
367 vec_loop_masks masks;
369 /* If we are using a loop mask to align memory addresses, this variable
370 contains the number of vector elements that we should skip in the
371 first iteration of the vector loop (i.e. the number of leading
372 elements that should be false in the first mask). */
373 tree mask_skip_niters;
375 /* Type of the variables to use in the WHILE_ULT call for fully-masked
376 loops. */
377 tree mask_compare_type;
379 /* Unknown DRs according to which loop was peeled. */
380 struct data_reference *unaligned_dr;
382 /* peeling_for_alignment indicates whether peeling for alignment will take
383 place, and what the peeling factor should be:
384 peeling_for_alignment = X means:
385 If X=0: Peeling for alignment will not be applied.
386 If X>0: Peel first X iterations.
387 If X=-1: Generate a runtime test to calculate the number of iterations
388 to be peeled, using the dataref recorded in the field
389 unaligned_dr. */
390 int peeling_for_alignment;
392 /* The mask used to check the alignment of pointers or arrays. */
393 int ptr_mask;
395 /* The loop nest in which the data dependences are computed. */
396 auto_vec<loop_p> loop_nest;
398 /* Data Dependence Relations defining address ranges that are candidates
399 for a run-time aliasing check. */
400 auto_vec<ddr_p> may_alias_ddrs;
402 /* Data Dependence Relations defining address ranges together with segment
403 lengths from which the run-time aliasing check is built. */
404 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
406 /* Check that the addresses of each pair of objects is unequal. */
407 auto_vec<vec_object_pair> check_unequal_addrs;
409 /* Statements in the loop that have data references that are candidates for a
410 runtime (loop versioning) misalignment check. */
411 auto_vec<gimple *> may_misalign_stmts;
413 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
414 auto_vec<gimple *> reductions;
416 /* All reduction chains in the loop, represented by the first
417 stmt in the chain. */
418 auto_vec<gimple *> reduction_chains;
420 /* Cost vector for a single scalar iteration. */
421 auto_vec<stmt_info_for_cost> scalar_cost_vec;
423 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
424 applied to the loop, i.e., no unrolling is needed, this is 1. */
425 poly_uint64 slp_unrolling_factor;
427 /* Cost of a single scalar iteration. */
428 int single_scalar_iteration_cost;
430 /* Is the loop vectorizable? */
431 bool vectorizable;
433 /* Records whether we still have the option of using a fully-masked loop. */
434 bool can_fully_mask_p;
436 /* True if have decided to use a fully-masked loop. */
437 bool fully_masked_p;
439 /* When we have grouped data accesses with gaps, we may introduce invalid
440 memory accesses. We peel the last iteration of the loop to prevent
441 this. */
442 bool peeling_for_gaps;
444 /* When the number of iterations is not a multiple of the vector size
445 we need to peel off iterations at the end to form an epilogue loop. */
446 bool peeling_for_niter;
448 /* Reductions are canonicalized so that the last operand is the reduction
449 operand. If this places a constant into RHS1, this decanonicalizes
450 GIMPLE for other phases, so we must track when this has occurred and
451 fix it up. */
452 bool operands_swapped;
454 /* True if there are no loop carried data dependencies in the loop.
455 If loop->safelen <= 1, then this is always true, either the loop
456 didn't have any loop carried data dependencies, or the loop is being
457 vectorized guarded with some runtime alias checks, or couldn't
458 be vectorized at all, but then this field shouldn't be used.
459 For loop->safelen >= 2, the user has asserted that there are no
460 backward dependencies, but there still could be loop carried forward
461 dependencies in such loops. This flag will be false if normal
462 vectorizer data dependency analysis would fail or require versioning
463 for alias, but because of loop->safelen >= 2 it has been vectorized
464 even without versioning for alias. E.g. in:
465 #pragma omp simd
466 for (int i = 0; i < m; i++)
467 a[i] = a[i + k] * c;
468 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
469 DTRT even for k > 0 && k < m, but without safelen we would not
470 vectorize this, so this field would be false. */
471 bool no_data_dependencies;
473 /* Mark loops having masked stores. */
474 bool has_mask_store;
476 /* If if-conversion versioned this loop before conversion, this is the
477 loop version without if-conversion. */
478 struct loop *scalar_loop;
480 /* For loops being epilogues of already vectorized loops
481 this points to the original vectorized loop. Otherwise NULL. */
482 _loop_vec_info *orig_loop_info;
484 } *loop_vec_info;
486 /* Access Functions. */
487 #define LOOP_VINFO_LOOP(L) (L)->loop
488 #define LOOP_VINFO_BBS(L) (L)->bbs
489 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
490 #define LOOP_VINFO_NITERS(L) (L)->num_iters
491 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
492 prologue peeling retain total unchanged scalar loop iterations for
493 cost model. */
494 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
495 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
496 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
497 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
498 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
499 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
500 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
501 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
502 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
503 #define LOOP_VINFO_MASKS(L) (L)->masks
504 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
505 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
506 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
507 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
508 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
509 #define LOOP_VINFO_DDRS(L) (L)->ddrs
510 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
511 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
512 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
513 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
514 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
515 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
516 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
517 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
518 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
519 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
520 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
521 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
522 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
523 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
524 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
525 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
526 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
527 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
528 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
529 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
530 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
531 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
533 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
534 ((L)->may_misalign_stmts.length () > 0)
535 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
536 ((L)->comp_alias_ddrs.length () > 0 \
537 || (L)->check_unequal_addrs.length () > 0)
538 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
539 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
540 #define LOOP_REQUIRES_VERSIONING(L) \
541 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
542 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
543 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
545 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
546 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
548 #define LOOP_VINFO_EPILOGUE_P(L) \
549 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
551 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
552 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
554 static inline loop_vec_info
555 loop_vec_info_for_loop (struct loop *loop)
557 return (loop_vec_info) loop->aux;
560 static inline bool
561 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
563 return (loop->inner
564 && (loop->inner == (gimple_bb (stmt))->loop_father));
567 typedef struct _bb_vec_info : public vec_info
569 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
570 ~_bb_vec_info ();
572 basic_block bb;
573 gimple_stmt_iterator region_begin;
574 gimple_stmt_iterator region_end;
575 } *bb_vec_info;
577 #define BB_VINFO_BB(B) (B)->bb
578 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
579 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
580 #define BB_VINFO_DATAREFS(B) (B)->datarefs
581 #define BB_VINFO_DDRS(B) (B)->ddrs
582 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
584 static inline bb_vec_info
585 vec_info_for_bb (basic_block bb)
587 return (bb_vec_info) bb->aux;
590 /*-----------------------------------------------------------------*/
591 /* Info on vectorized defs. */
592 /*-----------------------------------------------------------------*/
593 enum stmt_vec_info_type {
594 undef_vec_info_type = 0,
595 load_vec_info_type,
596 store_vec_info_type,
597 shift_vec_info_type,
598 op_vec_info_type,
599 call_vec_info_type,
600 call_simd_clone_vec_info_type,
601 assignment_vec_info_type,
602 condition_vec_info_type,
603 comparison_vec_info_type,
604 reduc_vec_info_type,
605 induc_vec_info_type,
606 type_promotion_vec_info_type,
607 type_demotion_vec_info_type,
608 type_conversion_vec_info_type,
609 loop_exit_ctrl_vec_info_type
612 /* Indicates whether/how a variable is used in the scope of loop/basic
613 block. */
614 enum vect_relevant {
615 vect_unused_in_scope = 0,
617 /* The def is only used outside the loop. */
618 vect_used_only_live,
619 /* The def is in the inner loop, and the use is in the outer loop, and the
620 use is a reduction stmt. */
621 vect_used_in_outer_by_reduction,
622 /* The def is in the inner loop, and the use is in the outer loop (and is
623 not part of reduction). */
624 vect_used_in_outer,
626 /* defs that feed computations that end up (only) in a reduction. These
627 defs may be used by non-reduction stmts, but eventually, any
628 computations/values that are affected by these defs are used to compute
629 a reduction (i.e. don't get stored to memory, for example). We use this
630 to identify computations that we can change the order in which they are
631 computed. */
632 vect_used_by_reduction,
634 vect_used_in_scope
637 /* The type of vectorization that can be applied to the stmt: regular loop-based
638 vectorization; pure SLP - the stmt is a part of SLP instances and does not
639 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
640 a part of SLP instance and also must be loop-based vectorized, since it has
641 uses outside SLP sequences.
643 In the loop context the meanings of pure and hybrid SLP are slightly
644 different. By saying that pure SLP is applied to the loop, we mean that we
645 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
646 vectorized without doing any conceptual unrolling, cause we don't pack
647 together stmts from different iterations, only within a single iteration.
648 Loop hybrid SLP means that we exploit both intra-iteration and
649 inter-iteration parallelism (e.g., number of elements in the vector is 4
650 and the slp-group-size is 2, in which case we don't have enough parallelism
651 within an iteration, so we obtain the rest of the parallelism from subsequent
652 iterations by unrolling the loop by 2). */
653 enum slp_vect_type {
654 loop_vect = 0,
655 pure_slp,
656 hybrid
659 /* Says whether a statement is a load, a store of a vectorized statement
660 result, or a store of an invariant value. */
661 enum vec_load_store_type {
662 VLS_LOAD,
663 VLS_STORE,
664 VLS_STORE_INVARIANT
667 /* Describes how we're going to vectorize an individual load or store,
668 or a group of loads or stores. */
669 enum vect_memory_access_type {
670 /* An access to an invariant address. This is used only for loads. */
671 VMAT_INVARIANT,
673 /* A simple contiguous access. */
674 VMAT_CONTIGUOUS,
676 /* A contiguous access that goes down in memory rather than up,
677 with no additional permutation. This is used only for stores
678 of invariants. */
679 VMAT_CONTIGUOUS_DOWN,
681 /* A simple contiguous access in which the elements need to be permuted
682 after loading or before storing. Only used for loop vectorization;
683 SLP uses separate permutes. */
684 VMAT_CONTIGUOUS_PERMUTE,
686 /* A simple contiguous access in which the elements need to be reversed
687 after loading or before storing. */
688 VMAT_CONTIGUOUS_REVERSE,
690 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
691 VMAT_LOAD_STORE_LANES,
693 /* An access in which each scalar element is loaded or stored
694 individually. */
695 VMAT_ELEMENTWISE,
697 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
698 SLP accesses. Each unrolled iteration uses a contiguous load
699 or store for the whole group, but the groups from separate iterations
700 are combined in the same way as for VMAT_ELEMENTWISE. */
701 VMAT_STRIDED_SLP,
703 /* The access uses gather loads or scatter stores. */
704 VMAT_GATHER_SCATTER
707 typedef struct data_reference *dr_p;
709 typedef struct _stmt_vec_info {
711 enum stmt_vec_info_type type;
713 /* Indicates whether this stmts is part of a computation whose result is
714 used outside the loop. */
715 bool live;
717 /* Stmt is part of some pattern (computation idiom) */
718 bool in_pattern_p;
720 /* Is this statement vectorizable or should it be skipped in (partial)
721 vectorization. */
722 bool vectorizable;
724 /* The stmt to which this info struct refers to. */
725 gimple *stmt;
727 /* The vec_info with respect to which STMT is vectorized. */
728 vec_info *vinfo;
730 /* The vector type to be used for the LHS of this statement. */
731 tree vectype;
733 /* The vectorized version of the stmt. */
734 gimple *vectorized_stmt;
737 /* The following is relevant only for stmts that contain a non-scalar
738 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
739 at most one such data-ref. */
741 /* Information about the data-ref (access function, etc),
742 relative to the inner-most containing loop. */
743 struct data_reference *data_ref_info;
745 /* Information about the data-ref relative to this loop
746 nest (the loop that is being considered for vectorization). */
747 innermost_loop_behavior dr_wrt_vec_loop;
749 /* For loop PHI nodes, the base and evolution part of it. This makes sure
750 this information is still available in vect_update_ivs_after_vectorizer
751 where we may not be able to re-analyze the PHI nodes evolution as
752 peeling for the prologue loop can make it unanalyzable. The evolution
753 part is still correct after peeling, but the base may have changed from
754 the version here. */
755 tree loop_phi_evolution_base_unchanged;
756 tree loop_phi_evolution_part;
758 /* Used for various bookkeeping purposes, generally holding a pointer to
759 some other stmt S that is in some way "related" to this stmt.
760 Current use of this field is:
761 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
762 true): S is the "pattern stmt" that represents (and replaces) the
763 sequence of stmts that constitutes the pattern. Similarly, the
764 related_stmt of the "pattern stmt" points back to this stmt (which is
765 the last stmt in the original sequence of stmts that constitutes the
766 pattern). */
767 gimple *related_stmt;
769 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
770 gimple_seq pattern_def_seq;
772 /* List of datarefs that are known to have the same alignment as the dataref
773 of this stmt. */
774 vec<dr_p> same_align_refs;
776 /* Selected SIMD clone's function info. First vector element
777 is SIMD clone's function decl, followed by a pair of trees (base + step)
778 for linear arguments (pair of NULLs for other arguments). */
779 vec<tree> simd_clone_info;
781 /* Classify the def of this stmt. */
782 enum vect_def_type def_type;
784 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
785 enum slp_vect_type slp_type;
787 /* Interleaving and reduction chains info. */
788 /* First element in the group. */
789 gimple *first_element;
790 /* Pointer to the next element in the group. */
791 gimple *next_element;
792 /* For data-refs, in case that two or more stmts share data-ref, this is the
793 pointer to the previously detected stmt with the same dr. */
794 gimple *same_dr_stmt;
795 /* The size of the group. */
796 unsigned int size;
797 /* For stores, number of stores from this group seen. We vectorize the last
798 one. */
799 unsigned int store_count;
800 /* For loads only, the gap from the previous load. For consecutive loads, GAP
801 is 1. */
802 unsigned int gap;
804 /* The minimum negative dependence distance this stmt participates in
805 or zero if none. */
806 unsigned int min_neg_dist;
808 /* Not all stmts in the loop need to be vectorized. e.g, the increment
809 of the loop induction variable and computation of array indexes. relevant
810 indicates whether the stmt needs to be vectorized. */
811 enum vect_relevant relevant;
813 /* For loads if this is a gather, for stores if this is a scatter. */
814 bool gather_scatter_p;
816 /* True if this is an access with loop-invariant stride. */
817 bool strided_p;
819 /* For both loads and stores. */
820 bool simd_lane_access_p;
822 /* Classifies how the load or store is going to be implemented
823 for loop vectorization. */
824 vect_memory_access_type memory_access_type;
826 /* For reduction loops, this is the type of reduction. */
827 enum vect_reduction_type v_reduc_type;
829 /* For CONST_COND_REDUCTION, record the reduc code. */
830 enum tree_code const_cond_reduc_code;
832 /* On a reduction PHI the reduction type as detected by
833 vect_force_simple_reduction. */
834 enum vect_reduction_type reduc_type;
836 /* On a reduction PHI the def returned by vect_force_simple_reduction.
837 On the def returned by vect_force_simple_reduction the
838 corresponding PHI. */
839 gimple *reduc_def;
841 /* The number of scalar stmt references from active SLP instances. */
842 unsigned int num_slp_uses;
843 } *stmt_vec_info;
845 /* Information about a gather/scatter call. */
846 struct gather_scatter_info {
847 /* The internal function to use for the gather/scatter operation,
848 or IFN_LAST if a built-in function should be used instead. */
849 internal_fn ifn;
851 /* The FUNCTION_DECL for the built-in gather/scatter function,
852 or null if an internal function should be used instead. */
853 tree decl;
855 /* The loop-invariant base value. */
856 tree base;
858 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
859 tree offset;
861 /* Each offset element should be multiplied by this amount before
862 being added to the base. */
863 int scale;
865 /* The definition type for the vectorized offset. */
866 enum vect_def_type offset_dt;
868 /* The type of the vectorized offset. */
869 tree offset_vectype;
871 /* The type of the scalar elements after loading or before storing. */
872 tree element_type;
874 /* The type of the scalar elements being loaded or stored. */
875 tree memory_type;
878 /* Access Functions. */
879 #define STMT_VINFO_TYPE(S) (S)->type
880 #define STMT_VINFO_STMT(S) (S)->stmt
881 inline loop_vec_info
882 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
884 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
885 return loop_vinfo;
886 return NULL;
888 inline bb_vec_info
889 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
891 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
892 return bb_vinfo;
893 return NULL;
895 #define STMT_VINFO_RELEVANT(S) (S)->relevant
896 #define STMT_VINFO_LIVE_P(S) (S)->live
897 #define STMT_VINFO_VECTYPE(S) (S)->vectype
898 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
899 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
900 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
901 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
902 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
903 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
904 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
905 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
906 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
908 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
909 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
910 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
911 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
912 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
913 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
914 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
915 (S)->dr_wrt_vec_loop.base_misalignment
916 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
917 (S)->dr_wrt_vec_loop.offset_alignment
918 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
919 (S)->dr_wrt_vec_loop.step_alignment
921 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
922 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
923 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
924 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
925 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
926 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
927 #define STMT_VINFO_GROUP_FIRST_ELEMENT(S) (S)->first_element
928 #define STMT_VINFO_GROUP_NEXT_ELEMENT(S) (S)->next_element
929 #define STMT_VINFO_GROUP_SIZE(S) (S)->size
930 #define STMT_VINFO_GROUP_STORE_COUNT(S) (S)->store_count
931 #define STMT_VINFO_GROUP_GAP(S) (S)->gap
932 #define STMT_VINFO_GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
933 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->first_element != NULL && (S)->data_ref_info)
934 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
935 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
936 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
937 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
938 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
939 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
941 #define GROUP_FIRST_ELEMENT(S) (S)->first_element
942 #define GROUP_NEXT_ELEMENT(S) (S)->next_element
943 #define GROUP_SIZE(S) (S)->size
944 #define GROUP_STORE_COUNT(S) (S)->store_count
945 #define GROUP_GAP(S) (S)->gap
946 #define GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
948 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
950 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
951 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
952 #define STMT_SLP_TYPE(S) (S)->slp_type
954 struct dataref_aux {
955 /* The misalignment in bytes of the reference, or -1 if not known. */
956 int misalignment;
957 /* The byte alignment that we'd ideally like the reference to have,
958 and the value that misalignment is measured against. */
959 int target_alignment;
960 /* If true the alignment of base_decl needs to be increased. */
961 bool base_misaligned;
962 tree base_decl;
965 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
967 #define VECT_MAX_COST 1000
969 /* The maximum number of intermediate steps required in multi-step type
970 conversion. */
971 #define MAX_INTERM_CVT_STEPS 3
973 #define MAX_VECTORIZATION_FACTOR INT_MAX
975 /* Nonzero if TYPE represents a (scalar) boolean type or type
976 in the middle-end compatible with it (unsigned precision 1 integral
977 types). Used to determine which types should be vectorized as
978 VECTOR_BOOLEAN_TYPE_P. */
980 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
981 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
982 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
983 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
984 && TYPE_PRECISION (TYPE) == 1 \
985 && TYPE_UNSIGNED (TYPE)))
987 extern vec<stmt_vec_info> stmt_vec_info_vec;
989 void init_stmt_vec_info_vec (void);
990 void free_stmt_vec_info_vec (void);
992 /* Return a stmt_vec_info corresponding to STMT. */
994 static inline stmt_vec_info
995 vinfo_for_stmt (gimple *stmt)
997 int uid = gimple_uid (stmt);
998 if (uid <= 0)
999 return NULL;
1001 return stmt_vec_info_vec[uid - 1];
1004 /* Set vectorizer information INFO for STMT. */
1006 static inline void
1007 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1009 unsigned int uid = gimple_uid (stmt);
1010 if (uid == 0)
1012 gcc_checking_assert (info);
1013 uid = stmt_vec_info_vec.length () + 1;
1014 gimple_set_uid (stmt, uid);
1015 stmt_vec_info_vec.safe_push (info);
1017 else
1019 gcc_checking_assert (info == NULL);
1020 stmt_vec_info_vec[uid - 1] = info;
1024 /* Return the earlier statement between STMT1 and STMT2. */
1026 static inline gimple *
1027 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
1029 unsigned int uid1, uid2;
1031 if (stmt1 == NULL)
1032 return stmt2;
1034 if (stmt2 == NULL)
1035 return stmt1;
1037 uid1 = gimple_uid (stmt1);
1038 uid2 = gimple_uid (stmt2);
1040 if (uid1 == 0 || uid2 == 0)
1041 return NULL;
1043 gcc_checking_assert (uid1 <= stmt_vec_info_vec.length ()
1044 && uid2 <= stmt_vec_info_vec.length ());
1046 if (uid1 < uid2)
1047 return stmt1;
1048 else
1049 return stmt2;
1052 /* Return the later statement between STMT1 and STMT2. */
1054 static inline gimple *
1055 get_later_stmt (gimple *stmt1, gimple *stmt2)
1057 unsigned int uid1, uid2;
1059 if (stmt1 == NULL)
1060 return stmt2;
1062 if (stmt2 == NULL)
1063 return stmt1;
1065 uid1 = gimple_uid (stmt1);
1066 uid2 = gimple_uid (stmt2);
1068 if (uid1 == 0 || uid2 == 0)
1069 return NULL;
1071 gcc_assert (uid1 <= stmt_vec_info_vec.length ());
1072 gcc_assert (uid2 <= stmt_vec_info_vec.length ());
1074 if (uid1 > uid2)
1075 return stmt1;
1076 else
1077 return stmt2;
1080 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1081 pattern. */
1083 static inline bool
1084 is_pattern_stmt_p (stmt_vec_info stmt_info)
1086 gimple *related_stmt;
1087 stmt_vec_info related_stmt_info;
1089 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1090 if (related_stmt
1091 && (related_stmt_info = vinfo_for_stmt (related_stmt))
1092 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
1093 return true;
1095 return false;
1098 /* Return true if BB is a loop header. */
1100 static inline bool
1101 is_loop_header_bb_p (basic_block bb)
1103 if (bb == (bb->loop_father)->header)
1104 return true;
1105 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1106 return false;
1109 /* Return pow2 (X). */
1111 static inline int
1112 vect_pow2 (int x)
1114 int i, res = 1;
1116 for (i = 0; i < x; i++)
1117 res *= 2;
1119 return res;
1122 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1124 static inline int
1125 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1126 tree vectype, int misalign)
1128 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1129 vectype, misalign);
1132 /* Get cost by calling cost target builtin. */
1134 static inline
1135 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1137 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1140 /* Alias targetm.vectorize.init_cost. */
1142 static inline void *
1143 init_cost (struct loop *loop_info)
1145 return targetm.vectorize.init_cost (loop_info);
1148 /* Alias targetm.vectorize.add_stmt_cost. */
1150 static inline unsigned
1151 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1152 stmt_vec_info stmt_info, int misalign,
1153 enum vect_cost_model_location where)
1155 return targetm.vectorize.add_stmt_cost (data, count, kind,
1156 stmt_info, misalign, where);
1159 /* Alias targetm.vectorize.finish_cost. */
1161 static inline void
1162 finish_cost (void *data, unsigned *prologue_cost,
1163 unsigned *body_cost, unsigned *epilogue_cost)
1165 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1168 /* Alias targetm.vectorize.destroy_cost_data. */
1170 static inline void
1171 destroy_cost_data (void *data)
1173 targetm.vectorize.destroy_cost_data (data);
1176 /*-----------------------------------------------------------------*/
1177 /* Info on data references alignment. */
1178 /*-----------------------------------------------------------------*/
1179 inline void
1180 set_dr_misalignment (struct data_reference *dr, int val)
1182 dataref_aux *data_aux = DR_VECT_AUX (dr);
1184 if (!data_aux)
1186 data_aux = XCNEW (dataref_aux);
1187 dr->aux = data_aux;
1190 data_aux->misalignment = val;
1193 inline int
1194 dr_misalignment (struct data_reference *dr)
1196 return DR_VECT_AUX (dr)->misalignment;
1199 /* Reflects actual alignment of first access in the vectorized loop,
1200 taking into account peeling/versioning if applied. */
1201 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1202 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1203 #define DR_MISALIGNMENT_UNKNOWN (-1)
1205 /* Only defined once DR_MISALIGNMENT is defined. */
1206 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1208 /* Return true if data access DR is aligned to its target alignment
1209 (which may be less than a full vector). */
1211 static inline bool
1212 aligned_access_p (struct data_reference *data_ref_info)
1214 return (DR_MISALIGNMENT (data_ref_info) == 0);
1217 /* Return TRUE if the alignment of the data access is known, and FALSE
1218 otherwise. */
1220 static inline bool
1221 known_alignment_for_access_p (struct data_reference *data_ref_info)
1223 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1226 /* Return the minimum alignment in bytes that the vectorized version
1227 of DR is guaranteed to have. */
1229 static inline unsigned int
1230 vect_known_alignment_in_bytes (struct data_reference *dr)
1232 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1233 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1234 if (DR_MISALIGNMENT (dr) == 0)
1235 return DR_TARGET_ALIGNMENT (dr);
1236 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1239 /* Return the behavior of DR with respect to the vectorization context
1240 (which for outer loop vectorization might not be the behavior recorded
1241 in DR itself). */
1243 static inline innermost_loop_behavior *
1244 vect_dr_behavior (data_reference *dr)
1246 gimple *stmt = DR_STMT (dr);
1247 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1248 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1249 if (loop_vinfo == NULL
1250 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1251 return &DR_INNERMOST (dr);
1252 else
1253 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1256 /* Return true if the vect cost model is unlimited. */
1257 static inline bool
1258 unlimited_cost_model (loop_p loop)
1260 if (loop != NULL && loop->force_vectorize
1261 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1262 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1263 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1266 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1267 if the first iteration should use a partial mask in order to achieve
1268 alignment. */
1270 static inline bool
1271 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1273 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1274 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1277 /* Return the number of vectors of type VECTYPE that are needed to get
1278 NUNITS elements. NUNITS should be based on the vectorization factor,
1279 so it is always a known multiple of the number of elements in VECTYPE. */
1281 static inline unsigned int
1282 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1284 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1287 /* Return the number of copies needed for loop vectorization when
1288 a statement operates on vectors of type VECTYPE. This is the
1289 vectorization factor divided by the number of elements in
1290 VECTYPE and is always known at compile time. */
1292 static inline unsigned int
1293 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1295 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1298 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1299 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1300 if we haven't yet recorded any vector types. */
1302 static inline void
1303 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1305 /* All unit counts have the form current_vector_size * X for some
1306 rational X, so two unit sizes must have a common multiple.
1307 Everything is a multiple of the initial value of 1. */
1308 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1309 *max_nunits = force_common_multiple (*max_nunits, nunits);
1312 /* Return the vectorization factor that should be used for costing
1313 purposes while vectorizing the loop described by LOOP_VINFO.
1314 Pick a reasonable estimate if the vectorization factor isn't
1315 known at compile time. */
1317 static inline unsigned int
1318 vect_vf_for_cost (loop_vec_info loop_vinfo)
1320 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1323 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1324 Pick a reasonable estimate if the exact number isn't known at
1325 compile time. */
1327 static inline unsigned int
1328 vect_nunits_for_cost (tree vec_type)
1330 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1333 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1335 static inline unsigned HOST_WIDE_INT
1336 vect_max_vf (loop_vec_info loop_vinfo)
1338 unsigned HOST_WIDE_INT vf;
1339 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1340 return vf;
1341 return MAX_VECTORIZATION_FACTOR;
1344 /* Return the size of the value accessed by unvectorized data reference DR.
1345 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1346 associated gimple statement, since that guarantees that DR accesses
1347 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1348 includes things like V1SI, which can be vectorized in the same way
1349 as a plain SI.) */
1351 inline unsigned int
1352 vect_get_scalar_dr_size (struct data_reference *dr)
1354 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1357 /* Source location */
1358 extern source_location vect_location;
1360 /*-----------------------------------------------------------------*/
1361 /* Function prototypes. */
1362 /*-----------------------------------------------------------------*/
1364 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1365 in tree-vect-loop-manip.c. */
1366 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1367 tree, tree, tree, bool);
1368 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1369 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1370 struct loop *, edge);
1371 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1372 poly_uint64);
1373 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1374 tree *, tree *, tree *, int, bool, bool);
1375 extern void vect_prepare_for_masked_peels (loop_vec_info);
1376 extern source_location find_loop_location (struct loop *);
1377 extern bool vect_can_advance_ivs_p (loop_vec_info);
1379 /* In tree-vect-stmts.c. */
1380 extern poly_uint64 current_vector_size;
1381 extern tree get_vectype_for_scalar_type (tree);
1382 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1383 extern tree get_mask_type_for_scalar_type (tree);
1384 extern tree get_same_sized_vectype (tree, tree);
1385 extern bool vect_get_loop_mask_type (loop_vec_info);
1386 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1387 enum vect_def_type *);
1388 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1389 enum vect_def_type *, tree *);
1390 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1391 tree, enum tree_code *,
1392 enum tree_code *, int *,
1393 vec<tree> *);
1394 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1395 enum tree_code *,
1396 int *, vec<tree> *);
1397 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1398 extern void free_stmt_vec_info (gimple *stmt);
1399 extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *,
1400 int, stmt_vector_for_cost *,
1401 stmt_vector_for_cost *);
1402 extern void vect_model_store_cost (stmt_vec_info, int, vect_memory_access_type,
1403 vec_load_store_type, slp_tree,
1404 stmt_vector_for_cost *,
1405 stmt_vector_for_cost *);
1406 extern void vect_model_load_cost (stmt_vec_info, int, vect_memory_access_type,
1407 slp_tree, stmt_vector_for_cost *,
1408 stmt_vector_for_cost *);
1409 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1410 enum vect_cost_for_stmt, stmt_vec_info,
1411 int, enum vect_cost_model_location);
1412 extern void vect_finish_replace_stmt (gimple *, gimple *);
1413 extern void vect_finish_stmt_generation (gimple *, gimple *,
1414 gimple_stmt_iterator *);
1415 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1416 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1417 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1418 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1419 vec<tree> *, slp_tree);
1420 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1421 vec<tree> *, vec<tree> *);
1422 extern tree vect_init_vector (gimple *, tree, tree,
1423 gimple_stmt_iterator *);
1424 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1425 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1426 bool *, slp_tree, slp_instance);
1427 extern void vect_remove_stores (gimple *);
1428 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance);
1429 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1430 gimple **, tree, int, slp_tree);
1431 extern void vect_get_load_cost (struct data_reference *, int, bool,
1432 unsigned int *, unsigned int *,
1433 stmt_vector_for_cost *,
1434 stmt_vector_for_cost *, bool);
1435 extern void vect_get_store_cost (struct data_reference *, int,
1436 unsigned int *, stmt_vector_for_cost *);
1437 extern bool vect_supportable_shift (enum tree_code, tree);
1438 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1439 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1440 extern void optimize_mask_stores (struct loop*);
1441 extern gcall *vect_gen_while (tree, tree, tree);
1442 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1444 /* In tree-vect-data-refs.c. */
1445 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1446 extern enum dr_alignment_support vect_supportable_dr_alignment
1447 (struct data_reference *, bool);
1448 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1449 HOST_WIDE_INT *);
1450 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1451 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1452 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1453 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1454 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1455 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1456 extern bool vect_analyze_data_ref_accesses (vec_info *);
1457 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1458 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1459 gather_scatter_info *);
1460 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1461 extern void vect_record_base_alignments (vec_info *);
1462 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1463 tree *, gimple_stmt_iterator *,
1464 gimple **, bool, bool *,
1465 tree = NULL_TREE);
1466 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1467 tree);
1468 extern tree vect_create_destination_var (tree, tree);
1469 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1470 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1471 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1472 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1473 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1474 gimple_stmt_iterator *, vec<tree> *);
1475 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1476 enum dr_alignment_support, tree,
1477 struct loop **);
1478 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1479 gimple_stmt_iterator *);
1480 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1481 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1482 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1483 const char * = NULL);
1484 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1485 tree, tree = NULL_TREE);
1487 /* In tree-vect-loop.c. */
1488 /* FORNOW: Used in tree-parloops.c. */
1489 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1490 bool *, bool);
1491 /* Used in gimple-loop-interchange.c. */
1492 extern bool check_reduction_path (location_t, loop_p, gphi *, tree,
1493 enum tree_code);
1494 /* Drive for loop analysis stage. */
1495 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
1496 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1497 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1498 tree *, bool);
1499 extern tree vect_halve_mask_nunits (tree);
1500 extern tree vect_double_mask_nunits (tree);
1501 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1502 unsigned int, tree);
1503 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1504 unsigned int, tree, unsigned int);
1506 /* Drive for loop transformation stage. */
1507 extern struct loop *vect_transform_loop (loop_vec_info);
1508 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1509 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1510 slp_tree, int, gimple **);
1511 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1512 gimple **, slp_tree, slp_instance);
1513 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1514 gimple **, slp_tree);
1515 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1516 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1517 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1518 stmt_vector_for_cost *,
1519 stmt_vector_for_cost *,
1520 stmt_vector_for_cost *);
1522 /* In tree-vect-slp.c. */
1523 extern void vect_free_slp_instance (slp_instance);
1524 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1525 gimple_stmt_iterator *, poly_uint64,
1526 slp_instance, bool, unsigned *);
1527 extern bool vect_slp_analyze_operations (vec_info *);
1528 extern bool vect_schedule_slp (vec_info *);
1529 extern bool vect_analyze_slp (vec_info *, unsigned);
1530 extern bool vect_make_slp_decision (loop_vec_info);
1531 extern void vect_detect_hybrid_slp (loop_vec_info);
1532 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1533 extern bool vect_slp_bb (basic_block);
1534 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1535 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1536 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1537 unsigned int * = NULL,
1538 tree * = NULL, tree * = NULL);
1539 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1540 unsigned int, vec<tree> &);
1542 /* In tree-vect-patterns.c. */
1543 /* Pattern recognition functions.
1544 Additional pattern recognition functions can (and will) be added
1545 in the future. */
1546 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
1547 #define NUM_PATTERNS 15
1548 void vect_pattern_recog (vec_info *);
1550 /* In tree-vectorizer.c. */
1551 unsigned vectorize_loops (void);
1552 bool vect_stmt_in_region_p (vec_info *, gimple *);
1553 void vect_free_loop_info_assumptions (struct loop *);
1555 #endif /* GCC_TREE_VECTORIZER_H */