Fix typo in t-dimode
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob3eac9b1ce465b5ead8e31fba87ec614775edb603
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "tree-ssa.h"
32 #include "optabs-tree.h"
33 #include "insn-config.h"
34 #include "gimple-pretty-print.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-cfg.h"
42 #include "tree-dfa.h"
43 #include "domwalk.h"
44 #include "cfgloop.h"
45 #include "tree-data-ref.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-inline.h"
48 #include "case-cfn-macros.h"
49 #include "tree-eh.h"
50 #include "gimple-fold.h"
51 #include "internal-fn.h"
52 #include "gimple-range.h"
53 #include "gimple-match.h"
54 #include "dbgcnt.h"
56 static unsigned int tree_ssa_phiopt_worker (bool, bool, bool);
57 static bool two_value_replacement (basic_block, basic_block, edge, gphi *,
58 tree, tree);
59 static bool match_simplify_replacement (basic_block, basic_block,
60 edge, edge, gphi *, tree, tree, bool);
61 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
62 gimple *);
63 static int value_replacement (basic_block, basic_block,
64 edge, edge, gphi *, tree, tree);
65 static bool minmax_replacement (basic_block, basic_block,
66 edge, edge, gphi *, tree, tree);
67 static bool spaceship_replacement (basic_block, basic_block,
68 edge, edge, gphi *, tree, tree);
69 static bool cond_removal_in_builtin_zero_pattern (basic_block, basic_block,
70 edge, edge, gphi *,
71 tree, tree);
72 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
73 hash_set<tree> *);
74 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
75 static hash_set<tree> * get_non_trapping ();
76 static void replace_phi_edge_with_variable (basic_block, edge, gphi *, tree);
77 static void hoist_adjacent_loads (basic_block, basic_block,
78 basic_block, basic_block);
79 static bool gate_hoist_loads (void);
81 /* This pass tries to transform conditional stores into unconditional
82 ones, enabling further simplifications with the simpler then and else
83 blocks. In particular it replaces this:
85 bb0:
86 if (cond) goto bb2; else goto bb1;
87 bb1:
88 *p = RHS;
89 bb2:
91 with
93 bb0:
94 if (cond) goto bb1; else goto bb2;
95 bb1:
96 condtmp' = *p;
97 bb2:
98 condtmp = PHI <RHS, condtmp'>
99 *p = condtmp;
101 This transformation can only be done under several constraints,
102 documented below. It also replaces:
104 bb0:
105 if (cond) goto bb2; else goto bb1;
106 bb1:
107 *p = RHS1;
108 goto bb3;
109 bb2:
110 *p = RHS2;
111 bb3:
113 with
115 bb0:
116 if (cond) goto bb3; else goto bb1;
117 bb1:
118 bb3:
119 condtmp = PHI <RHS1, RHS2>
120 *p = condtmp; */
122 static unsigned int
123 tree_ssa_cs_elim (void)
125 unsigned todo;
126 /* ??? We are not interested in loop related info, but the following
127 will create it, ICEing as we didn't init loops with pre-headers.
128 An interfacing issue of find_data_references_in_bb. */
129 loop_optimizer_init (LOOPS_NORMAL);
130 scev_initialize ();
131 todo = tree_ssa_phiopt_worker (true, false, false);
132 scev_finalize ();
133 loop_optimizer_finalize ();
134 return todo;
137 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
139 static gphi *
140 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
142 gimple_stmt_iterator i;
143 gphi *phi = NULL;
144 if (gimple_seq_singleton_p (seq))
145 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
146 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
148 gphi *p = as_a <gphi *> (gsi_stmt (i));
149 /* If the PHI arguments are equal then we can skip this PHI. */
150 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
151 gimple_phi_arg_def (p, e1->dest_idx)))
152 continue;
154 /* If we already have a PHI that has the two edge arguments are
155 different, then return it is not a singleton for these PHIs. */
156 if (phi)
157 return NULL;
159 phi = p;
161 return phi;
164 /* The core routine of conditional store replacement and normal
165 phi optimizations. Both share much of the infrastructure in how
166 to match applicable basic block patterns. DO_STORE_ELIM is true
167 when we want to do conditional store replacement, false otherwise.
168 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
169 of diamond control flow patterns, false otherwise. */
170 static unsigned int
171 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads, bool early_p)
173 basic_block bb;
174 basic_block *bb_order;
175 unsigned n, i;
176 bool cfgchanged = false;
177 hash_set<tree> *nontrap = 0;
179 calculate_dominance_info (CDI_DOMINATORS);
181 if (do_store_elim)
182 /* Calculate the set of non-trapping memory accesses. */
183 nontrap = get_non_trapping ();
185 /* Search every basic block for COND_EXPR we may be able to optimize.
187 We walk the blocks in order that guarantees that a block with
188 a single predecessor is processed before the predecessor.
189 This ensures that we collapse inner ifs before visiting the
190 outer ones, and also that we do not try to visit a removed
191 block. */
192 bb_order = single_pred_before_succ_order ();
193 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
195 for (i = 0; i < n; i++)
197 gimple *cond_stmt;
198 gphi *phi;
199 basic_block bb1, bb2;
200 edge e1, e2;
201 tree arg0, arg1;
203 bb = bb_order[i];
205 cond_stmt = last_stmt (bb);
206 /* Check to see if the last statement is a GIMPLE_COND. */
207 if (!cond_stmt
208 || gimple_code (cond_stmt) != GIMPLE_COND)
209 continue;
211 e1 = EDGE_SUCC (bb, 0);
212 bb1 = e1->dest;
213 e2 = EDGE_SUCC (bb, 1);
214 bb2 = e2->dest;
216 /* We cannot do the optimization on abnormal edges. */
217 if ((e1->flags & EDGE_ABNORMAL) != 0
218 || (e2->flags & EDGE_ABNORMAL) != 0)
219 continue;
221 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
222 if (EDGE_COUNT (bb1->succs) == 0
223 || EDGE_COUNT (bb2->succs) == 0)
224 continue;
226 /* Find the bb which is the fall through to the other. */
227 if (EDGE_SUCC (bb1, 0)->dest == bb2)
229 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
231 std::swap (bb1, bb2);
232 std::swap (e1, e2);
234 else if (do_store_elim
235 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
237 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
239 if (!single_succ_p (bb1)
240 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
241 || !single_succ_p (bb2)
242 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
243 || EDGE_COUNT (bb3->preds) != 2)
244 continue;
245 if (cond_if_else_store_replacement (bb1, bb2, bb3))
246 cfgchanged = true;
247 continue;
249 else if (do_hoist_loads
250 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
252 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
254 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
255 && single_succ_p (bb1)
256 && single_succ_p (bb2)
257 && single_pred_p (bb1)
258 && single_pred_p (bb2)
259 && EDGE_COUNT (bb->succs) == 2
260 && EDGE_COUNT (bb3->preds) == 2
261 /* If one edge or the other is dominant, a conditional move
262 is likely to perform worse than the well-predicted branch. */
263 && !predictable_edge_p (EDGE_SUCC (bb, 0))
264 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
265 hoist_adjacent_loads (bb, bb1, bb2, bb3);
266 continue;
268 else
269 continue;
271 e1 = EDGE_SUCC (bb1, 0);
273 /* Make sure that bb1 is just a fall through. */
274 if (!single_succ_p (bb1)
275 || (e1->flags & EDGE_FALLTHRU) == 0)
276 continue;
278 if (do_store_elim)
280 /* Also make sure that bb1 only have one predecessor and that it
281 is bb. */
282 if (!single_pred_p (bb1)
283 || single_pred (bb1) != bb)
284 continue;
286 /* bb1 is the middle block, bb2 the join block, bb the split block,
287 e1 the fallthrough edge from bb1 to bb2. We can't do the
288 optimization if the join block has more than two predecessors. */
289 if (EDGE_COUNT (bb2->preds) > 2)
290 continue;
291 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
292 cfgchanged = true;
294 else
296 gimple_seq phis = phi_nodes (bb2);
297 gimple_stmt_iterator gsi;
298 bool candorest = true;
300 /* Value replacement can work with more than one PHI
301 so try that first. */
302 if (!early_p)
303 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
305 phi = as_a <gphi *> (gsi_stmt (gsi));
306 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
307 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
308 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
310 candorest = false;
311 cfgchanged = true;
312 break;
316 if (!candorest)
317 continue;
319 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
320 if (!phi)
321 continue;
323 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
324 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
326 /* Something is wrong if we cannot find the arguments in the PHI
327 node. */
328 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
330 gphi *newphi;
331 if (single_pred_p (bb1)
332 && (newphi = factor_out_conditional_conversion (e1, e2, phi,
333 arg0, arg1,
334 cond_stmt)))
336 phi = newphi;
337 /* factor_out_conditional_conversion may create a new PHI in
338 BB2 and eliminate an existing PHI in BB2. Recompute values
339 that may be affected by that change. */
340 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
341 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
342 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
345 /* Do the replacement of conditional if it can be done. */
346 if (!early_p && two_value_replacement (bb, bb1, e2, phi, arg0, arg1))
347 cfgchanged = true;
348 else if (match_simplify_replacement (bb, bb1, e1, e2, phi,
349 arg0, arg1,
350 early_p))
351 cfgchanged = true;
352 else if (!early_p
353 && single_pred_p (bb1)
354 && cond_removal_in_builtin_zero_pattern (bb, bb1, e1, e2,
355 phi, arg0, arg1))
356 cfgchanged = true;
357 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
358 cfgchanged = true;
359 else if (single_pred_p (bb1)
360 && spaceship_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
361 cfgchanged = true;
365 free (bb_order);
367 if (do_store_elim)
368 delete nontrap;
369 /* If the CFG has changed, we should cleanup the CFG. */
370 if (cfgchanged && do_store_elim)
372 /* In cond-store replacement we have added some loads on edges
373 and new VOPS (as we moved the store, and created a load). */
374 gsi_commit_edge_inserts ();
375 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
377 else if (cfgchanged)
378 return TODO_cleanup_cfg;
379 return 0;
382 /* Replace PHI node element whose edge is E in block BB with variable NEW.
383 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
384 is known to have two edges, one of which must reach BB). */
386 static void
387 replace_phi_edge_with_variable (basic_block cond_block,
388 edge e, gphi *phi, tree new_tree)
390 basic_block bb = gimple_bb (phi);
391 gimple_stmt_iterator gsi;
392 tree phi_result = PHI_RESULT (phi);
394 /* Duplicate range info if they are the only things setting the target PHI.
395 This is needed as later on, the new_tree will be replacing
396 The assignement of the PHI.
397 For an example:
398 bb1:
399 _4 = min<a_1, 255>
400 goto bb2
402 # RANGE [-INF, 255]
403 a_3 = PHI<_4(1)>
404 bb3:
406 use(a_3)
407 And _4 gets propagated into the use of a_3 and losing the range info.
408 This can't be done for more than 2 incoming edges as the propagation
409 won't happen.
410 The new_tree needs to be defined in the same basic block as the conditional. */
411 if (TREE_CODE (new_tree) == SSA_NAME
412 && EDGE_COUNT (gimple_bb (phi)->preds) == 2
413 && INTEGRAL_TYPE_P (TREE_TYPE (phi_result))
414 && !SSA_NAME_RANGE_INFO (new_tree)
415 && SSA_NAME_RANGE_INFO (phi_result)
416 && gimple_bb (SSA_NAME_DEF_STMT (new_tree)) == cond_block
417 && dbg_cnt (phiopt_edge_range))
418 duplicate_ssa_name_range_info (new_tree,
419 SSA_NAME_RANGE_TYPE (phi_result),
420 SSA_NAME_RANGE_INFO (phi_result));
422 /* Change the PHI argument to new. */
423 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
425 /* Remove the empty basic block. */
426 edge edge_to_remove;
427 if (EDGE_SUCC (cond_block, 0)->dest == bb)
428 edge_to_remove = EDGE_SUCC (cond_block, 1);
429 else
430 edge_to_remove = EDGE_SUCC (cond_block, 0);
431 if (EDGE_COUNT (edge_to_remove->dest->preds) == 1)
433 e->flags |= EDGE_FALLTHRU;
434 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
435 e->probability = profile_probability::always ();
436 delete_basic_block (edge_to_remove->dest);
438 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
439 gsi = gsi_last_bb (cond_block);
440 gsi_remove (&gsi, true);
442 else
444 /* If there are other edges into the middle block make
445 CFG cleanup deal with the edge removal to avoid
446 updating dominators here in a non-trivial way. */
447 gcond *cond = as_a <gcond *> (last_stmt (cond_block));
448 if (edge_to_remove->flags & EDGE_TRUE_VALUE)
449 gimple_cond_make_false (cond);
450 else
451 gimple_cond_make_true (cond);
454 statistics_counter_event (cfun, "Replace PHI with variable", 1);
456 if (dump_file && (dump_flags & TDF_DETAILS))
457 fprintf (dump_file,
458 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
459 cond_block->index,
460 bb->index);
463 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
464 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
465 to the result of PHI stmt. COND_STMT is the controlling predicate.
466 Return the newly-created PHI, if any. */
468 static gphi *
469 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
470 tree arg0, tree arg1, gimple *cond_stmt)
472 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
473 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
474 tree temp, result;
475 gphi *newphi;
476 gimple_stmt_iterator gsi, gsi_for_def;
477 location_t locus = gimple_location (phi);
478 enum tree_code convert_code;
480 /* Handle only PHI statements with two arguments. TODO: If all
481 other arguments to PHI are INTEGER_CST or if their defining
482 statement have the same unary operation, we can handle more
483 than two arguments too. */
484 if (gimple_phi_num_args (phi) != 2)
485 return NULL;
487 /* First canonicalize to simplify tests. */
488 if (TREE_CODE (arg0) != SSA_NAME)
490 std::swap (arg0, arg1);
491 std::swap (e0, e1);
494 if (TREE_CODE (arg0) != SSA_NAME
495 || (TREE_CODE (arg1) != SSA_NAME
496 && TREE_CODE (arg1) != INTEGER_CST))
497 return NULL;
499 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
500 a conversion. */
501 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
502 if (!gimple_assign_cast_p (arg0_def_stmt))
503 return NULL;
505 /* Use the RHS as new_arg0. */
506 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
507 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
508 if (convert_code == VIEW_CONVERT_EXPR)
510 new_arg0 = TREE_OPERAND (new_arg0, 0);
511 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
512 return NULL;
514 if (TREE_CODE (new_arg0) == SSA_NAME
515 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_arg0))
516 return NULL;
518 if (TREE_CODE (arg1) == SSA_NAME)
520 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
521 is a conversion. */
522 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
523 if (!is_gimple_assign (arg1_def_stmt)
524 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
525 return NULL;
527 /* Either arg1_def_stmt or arg0_def_stmt should be conditional. */
528 if (dominated_by_p (CDI_DOMINATORS, gimple_bb (phi), gimple_bb (arg0_def_stmt))
529 && dominated_by_p (CDI_DOMINATORS,
530 gimple_bb (phi), gimple_bb (arg1_def_stmt)))
531 return NULL;
533 /* Use the RHS as new_arg1. */
534 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
535 if (convert_code == VIEW_CONVERT_EXPR)
536 new_arg1 = TREE_OPERAND (new_arg1, 0);
537 if (TREE_CODE (new_arg1) == SSA_NAME
538 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_arg1))
539 return NULL;
541 else
543 /* arg0_def_stmt should be conditional. */
544 if (dominated_by_p (CDI_DOMINATORS, gimple_bb (phi), gimple_bb (arg0_def_stmt)))
545 return NULL;
546 /* If arg1 is an INTEGER_CST, fold it to new type. */
547 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
548 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
550 if (gimple_assign_cast_p (arg0_def_stmt))
552 /* For the INTEGER_CST case, we are just moving the
553 conversion from one place to another, which can often
554 hurt as the conversion moves further away from the
555 statement that computes the value. So, perform this
556 only if new_arg0 is an operand of COND_STMT, or
557 if arg0_def_stmt is the only non-debug stmt in
558 its basic block, because then it is possible this
559 could enable further optimizations (minmax replacement
560 etc.). See PR71016. */
561 if (new_arg0 != gimple_cond_lhs (cond_stmt)
562 && new_arg0 != gimple_cond_rhs (cond_stmt)
563 && gimple_bb (arg0_def_stmt) == e0->src)
565 gsi = gsi_for_stmt (arg0_def_stmt);
566 gsi_prev_nondebug (&gsi);
567 if (!gsi_end_p (gsi))
569 if (gassign *assign
570 = dyn_cast <gassign *> (gsi_stmt (gsi)))
572 tree lhs = gimple_assign_lhs (assign);
573 enum tree_code ass_code
574 = gimple_assign_rhs_code (assign);
575 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
576 return NULL;
577 if (lhs != gimple_assign_rhs1 (arg0_def_stmt))
578 return NULL;
579 gsi_prev_nondebug (&gsi);
580 if (!gsi_end_p (gsi))
581 return NULL;
583 else
584 return NULL;
586 gsi = gsi_for_stmt (arg0_def_stmt);
587 gsi_next_nondebug (&gsi);
588 if (!gsi_end_p (gsi))
589 return NULL;
591 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
593 else
594 return NULL;
596 else
597 return NULL;
600 /* If arg0/arg1 have > 1 use, then this transformation actually increases
601 the number of expressions evaluated at runtime. */
602 if (!has_single_use (arg0)
603 || (arg1_def_stmt && !has_single_use (arg1)))
604 return NULL;
606 /* If types of new_arg0 and new_arg1 are different bailout. */
607 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
608 return NULL;
610 /* Create a new PHI stmt. */
611 result = PHI_RESULT (phi);
612 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
613 newphi = create_phi_node (temp, gimple_bb (phi));
615 if (dump_file && (dump_flags & TDF_DETAILS))
617 fprintf (dump_file, "PHI ");
618 print_generic_expr (dump_file, gimple_phi_result (phi));
619 fprintf (dump_file,
620 " changed to factor conversion out from COND_EXPR.\n");
621 fprintf (dump_file, "New stmt with CAST that defines ");
622 print_generic_expr (dump_file, result);
623 fprintf (dump_file, ".\n");
626 /* Remove the old cast(s) that has single use. */
627 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
628 gsi_remove (&gsi_for_def, true);
629 release_defs (arg0_def_stmt);
631 if (arg1_def_stmt)
633 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
634 gsi_remove (&gsi_for_def, true);
635 release_defs (arg1_def_stmt);
638 add_phi_arg (newphi, new_arg0, e0, locus);
639 add_phi_arg (newphi, new_arg1, e1, locus);
641 /* Create the conversion stmt and insert it. */
642 if (convert_code == VIEW_CONVERT_EXPR)
644 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
645 new_stmt = gimple_build_assign (result, temp);
647 else
648 new_stmt = gimple_build_assign (result, convert_code, temp);
649 gsi = gsi_after_labels (gimple_bb (phi));
650 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
652 /* Remove the original PHI stmt. */
653 gsi = gsi_for_stmt (phi);
654 gsi_remove (&gsi, true);
656 statistics_counter_event (cfun, "factored out cast", 1);
658 return newphi;
661 /* Optimize
662 # x_5 in range [cst1, cst2] where cst2 = cst1 + 1
663 if (x_5 op cstN) # where op is == or != and N is 1 or 2
664 goto bb3;
665 else
666 goto bb4;
667 bb3:
668 bb4:
669 # r_6 = PHI<cst3(2), cst4(3)> # where cst3 == cst4 + 1 or cst4 == cst3 + 1
671 to r_6 = x_5 + (min (cst3, cst4) - cst1) or
672 r_6 = (min (cst3, cst4) + cst1) - x_5 depending on op, N and which
673 of cst3 and cst4 is smaller. */
675 static bool
676 two_value_replacement (basic_block cond_bb, basic_block middle_bb,
677 edge e1, gphi *phi, tree arg0, tree arg1)
679 /* Only look for adjacent integer constants. */
680 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
681 || !INTEGRAL_TYPE_P (TREE_TYPE (arg1))
682 || TREE_CODE (arg0) != INTEGER_CST
683 || TREE_CODE (arg1) != INTEGER_CST
684 || (tree_int_cst_lt (arg0, arg1)
685 ? wi::to_widest (arg0) + 1 != wi::to_widest (arg1)
686 : wi::to_widest (arg1) + 1 != wi::to_widest (arg0)))
687 return false;
689 if (!empty_block_p (middle_bb))
690 return false;
692 gimple *stmt = last_stmt (cond_bb);
693 tree lhs = gimple_cond_lhs (stmt);
694 tree rhs = gimple_cond_rhs (stmt);
696 if (TREE_CODE (lhs) != SSA_NAME
697 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
698 || TREE_CODE (rhs) != INTEGER_CST)
699 return false;
701 switch (gimple_cond_code (stmt))
703 case EQ_EXPR:
704 case NE_EXPR:
705 break;
706 default:
707 return false;
710 /* Defer boolean x ? 0 : {1,-1} or x ? {1,-1} : 0 to
711 match_simplify_replacement. */
712 if (TREE_CODE (TREE_TYPE (lhs)) == BOOLEAN_TYPE
713 && (integer_zerop (arg0)
714 || integer_zerop (arg1)
715 || TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE
716 || (TYPE_PRECISION (TREE_TYPE (arg0))
717 <= TYPE_PRECISION (TREE_TYPE (lhs)))))
718 return false;
720 wide_int min, max;
721 value_range r;
722 get_range_query (cfun)->range_of_expr (r, lhs);
724 if (r.kind () == VR_RANGE)
726 min = r.lower_bound ();
727 max = r.upper_bound ();
729 else
731 int prec = TYPE_PRECISION (TREE_TYPE (lhs));
732 signop sgn = TYPE_SIGN (TREE_TYPE (lhs));
733 min = wi::min_value (prec, sgn);
734 max = wi::max_value (prec, sgn);
736 if (min + 1 != max
737 || (wi::to_wide (rhs) != min
738 && wi::to_wide (rhs) != max))
739 return false;
741 /* We need to know which is the true edge and which is the false
742 edge so that we know when to invert the condition below. */
743 edge true_edge, false_edge;
744 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
745 if ((gimple_cond_code (stmt) == EQ_EXPR)
746 ^ (wi::to_wide (rhs) == max)
747 ^ (e1 == false_edge))
748 std::swap (arg0, arg1);
750 tree type;
751 if (TYPE_PRECISION (TREE_TYPE (lhs)) == TYPE_PRECISION (TREE_TYPE (arg0)))
753 /* Avoid performing the arithmetics in bool type which has different
754 semantics, otherwise prefer unsigned types from the two with
755 the same precision. */
756 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE
757 || !TYPE_UNSIGNED (TREE_TYPE (arg0)))
758 type = TREE_TYPE (lhs);
759 else
760 type = TREE_TYPE (arg0);
762 else if (TYPE_PRECISION (TREE_TYPE (lhs)) > TYPE_PRECISION (TREE_TYPE (arg0)))
763 type = TREE_TYPE (lhs);
764 else
765 type = TREE_TYPE (arg0);
767 min = wide_int::from (min, TYPE_PRECISION (type),
768 TYPE_SIGN (TREE_TYPE (lhs)));
769 wide_int a = wide_int::from (wi::to_wide (arg0), TYPE_PRECISION (type),
770 TYPE_SIGN (TREE_TYPE (arg0)));
771 enum tree_code code;
772 wi::overflow_type ovf;
773 if (tree_int_cst_lt (arg0, arg1))
775 code = PLUS_EXPR;
776 a -= min;
777 if (!TYPE_UNSIGNED (type))
779 /* lhs is known to be in range [min, min+1] and we want to add a
780 to it. Check if that operation can overflow for those 2 values
781 and if yes, force unsigned type. */
782 wi::add (min + (wi::neg_p (a) ? 0 : 1), a, SIGNED, &ovf);
783 if (ovf)
784 type = unsigned_type_for (type);
787 else
789 code = MINUS_EXPR;
790 a += min;
791 if (!TYPE_UNSIGNED (type))
793 /* lhs is known to be in range [min, min+1] and we want to subtract
794 it from a. Check if that operation can overflow for those 2
795 values and if yes, force unsigned type. */
796 wi::sub (a, min + (wi::neg_p (min) ? 0 : 1), SIGNED, &ovf);
797 if (ovf)
798 type = unsigned_type_for (type);
802 tree arg = wide_int_to_tree (type, a);
803 gimple_seq stmts = NULL;
804 lhs = gimple_convert (&stmts, type, lhs);
805 tree new_rhs;
806 if (code == PLUS_EXPR)
807 new_rhs = gimple_build (&stmts, PLUS_EXPR, type, lhs, arg);
808 else
809 new_rhs = gimple_build (&stmts, MINUS_EXPR, type, arg, lhs);
810 new_rhs = gimple_convert (&stmts, TREE_TYPE (arg0), new_rhs);
811 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
812 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
814 replace_phi_edge_with_variable (cond_bb, e1, phi, new_rhs);
816 /* Note that we optimized this PHI. */
817 return true;
820 /* Return TRUE if SEQ/OP pair should be allowed during early phiopt.
821 Currently this is to allow MIN/MAX and ABS/NEGATE and constants. */
822 static bool
823 phiopt_early_allow (gimple_seq &seq, gimple_match_op &op)
825 /* Don't allow functions. */
826 if (!op.code.is_tree_code ())
827 return false;
828 tree_code code = (tree_code)op.code;
830 /* For non-empty sequence, only allow one statement. */
831 if (!gimple_seq_empty_p (seq))
833 /* Check to make sure op was already a SSA_NAME. */
834 if (code != SSA_NAME)
835 return false;
836 if (!gimple_seq_singleton_p (seq))
837 return false;
838 gimple *stmt = gimple_seq_first_stmt (seq);
839 /* Only allow assignments. */
840 if (!is_gimple_assign (stmt))
841 return false;
842 if (gimple_assign_lhs (stmt) != op.ops[0])
843 return false;
844 code = gimple_assign_rhs_code (stmt);
847 switch (code)
849 case MIN_EXPR:
850 case MAX_EXPR:
851 case ABS_EXPR:
852 case ABSU_EXPR:
853 case NEGATE_EXPR:
854 case SSA_NAME:
855 return true;
856 case INTEGER_CST:
857 case REAL_CST:
858 case VECTOR_CST:
859 case FIXED_CST:
860 return true;
861 default:
862 return false;
866 /* gimple_simplify_phiopt is like gimple_simplify but designed for PHIOPT.
867 Return NULL if nothing can be simplified or the resulting simplified value
868 with parts pushed if EARLY_P was true. Also rejects non allowed tree code
869 if EARLY_P is set.
870 Takes the comparison from COMP_STMT and two args, ARG0 and ARG1 and tries
871 to simplify CMP ? ARG0 : ARG1.
872 Also try to simplify (!CMP) ? ARG1 : ARG0 if the non-inverse failed. */
873 static tree
874 gimple_simplify_phiopt (bool early_p, tree type, gimple *comp_stmt,
875 tree arg0, tree arg1,
876 gimple_seq *seq)
878 tree result;
879 gimple_seq seq1 = NULL;
880 enum tree_code comp_code = gimple_cond_code (comp_stmt);
881 location_t loc = gimple_location (comp_stmt);
882 tree cmp0 = gimple_cond_lhs (comp_stmt);
883 tree cmp1 = gimple_cond_rhs (comp_stmt);
884 /* To handle special cases like floating point comparison, it is easier and
885 less error-prone to build a tree and gimplify it on the fly though it is
886 less efficient.
887 Don't use fold_build2 here as that might create (bool)a instead of just
888 "a != 0". */
889 tree cond = build2_loc (loc, comp_code, boolean_type_node,
890 cmp0, cmp1);
891 gimple_match_op op (gimple_match_cond::UNCOND,
892 COND_EXPR, type, cond, arg0, arg1);
894 if (op.resimplify (&seq1, follow_all_ssa_edges))
896 /* Early we want only to allow some generated tree codes. */
897 if (!early_p
898 || phiopt_early_allow (seq1, op))
900 result = maybe_push_res_to_seq (&op, &seq1);
901 if (result)
903 gimple_seq_add_seq_without_update (seq, seq1);
904 return result;
908 gimple_seq_discard (seq1);
909 seq1 = NULL;
911 /* Try the inverted comparison, that is !COMP ? ARG1 : ARG0. */
912 comp_code = invert_tree_comparison (comp_code, HONOR_NANS (cmp0));
914 if (comp_code == ERROR_MARK)
915 return NULL;
917 cond = build2_loc (loc,
918 comp_code, boolean_type_node,
919 cmp0, cmp1);
920 gimple_match_op op1 (gimple_match_cond::UNCOND,
921 COND_EXPR, type, cond, arg1, arg0);
923 if (op1.resimplify (&seq1, follow_all_ssa_edges))
925 /* Early we want only to allow some generated tree codes. */
926 if (!early_p
927 || phiopt_early_allow (seq1, op1))
929 result = maybe_push_res_to_seq (&op1, &seq1);
930 if (result)
932 gimple_seq_add_seq_without_update (seq, seq1);
933 return result;
937 gimple_seq_discard (seq1);
939 return NULL;
942 /* The function match_simplify_replacement does the main work of doing the
943 replacement using match and simplify. Return true if the replacement is done.
944 Otherwise return false.
945 BB is the basic block where the replacement is going to be done on. ARG0
946 is argument 0 from PHI. Likewise for ARG1. */
948 static bool
949 match_simplify_replacement (basic_block cond_bb, basic_block middle_bb,
950 edge e0, edge e1, gphi *phi,
951 tree arg0, tree arg1, bool early_p)
953 gimple *stmt;
954 gimple_stmt_iterator gsi;
955 edge true_edge, false_edge;
956 gimple_seq seq = NULL;
957 tree result;
958 gimple *stmt_to_move = NULL;
960 /* Special case A ? B : B as this will always simplify to B. */
961 if (operand_equal_for_phi_arg_p (arg0, arg1))
962 return false;
964 /* If the basic block only has a cheap preparation statement,
965 allow it and move it once the transformation is done. */
966 if (!empty_block_p (middle_bb))
968 if (!single_pred_p (middle_bb))
969 return false;
971 stmt_to_move = last_and_only_stmt (middle_bb);
972 if (!stmt_to_move)
973 return false;
975 if (gimple_vuse (stmt_to_move))
976 return false;
978 if (gimple_could_trap_p (stmt_to_move)
979 || gimple_has_side_effects (stmt_to_move))
980 return false;
982 if (gimple_uses_undefined_value_p (stmt_to_move))
983 return false;
985 /* Allow assignments and not no calls.
986 As const calls don't match any of the above, yet they could
987 still have some side-effects - they could contain
988 gimple_could_trap_p statements, like floating point
989 exceptions or integer division by zero. See PR70586.
990 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
991 should handle this. */
992 if (!is_gimple_assign (stmt_to_move))
993 return false;
995 tree lhs = gimple_assign_lhs (stmt_to_move);
996 gimple *use_stmt;
997 use_operand_p use_p;
999 /* Allow only a statement which feeds into the phi. */
1000 if (!lhs || TREE_CODE (lhs) != SSA_NAME
1001 || !single_imm_use (lhs, &use_p, &use_stmt)
1002 || use_stmt != phi)
1003 return false;
1006 /* At this point we know we have a GIMPLE_COND with two successors.
1007 One successor is BB, the other successor is an empty block which
1008 falls through into BB.
1010 There is a single PHI node at the join point (BB).
1012 So, given the condition COND, and the two PHI arguments, match and simplify
1013 can happen on (COND) ? arg0 : arg1. */
1015 stmt = last_stmt (cond_bb);
1017 /* We need to know which is the true edge and which is the false
1018 edge so that we know when to invert the condition below. */
1019 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1020 if (e1 == true_edge || e0 == false_edge)
1021 std::swap (arg0, arg1);
1023 tree type = TREE_TYPE (gimple_phi_result (phi));
1024 result = gimple_simplify_phiopt (early_p, type, stmt,
1025 arg0, arg1,
1026 &seq);
1027 if (!result)
1028 return false;
1030 gsi = gsi_last_bb (cond_bb);
1031 /* Insert the sequence generated from gimple_simplify_phiopt. */
1032 if (seq)
1033 gsi_insert_seq_before (&gsi, seq, GSI_CONTINUE_LINKING);
1035 /* If there was a statement to move and the result of the statement
1036 is going to be used, move it to right before the original
1037 conditional. */
1038 if (stmt_to_move
1039 && (gimple_assign_lhs (stmt_to_move) == result
1040 || !has_single_use (gimple_assign_lhs (stmt_to_move))))
1042 if (dump_file && (dump_flags & TDF_DETAILS))
1044 fprintf (dump_file, "statement un-sinked:\n");
1045 print_gimple_stmt (dump_file, stmt_to_move, 0,
1046 TDF_VOPS|TDF_MEMSYMS);
1048 gimple_stmt_iterator gsi1 = gsi_for_stmt (stmt_to_move);
1049 gsi_move_before (&gsi1, &gsi);
1050 reset_flow_sensitive_info (gimple_assign_lhs (stmt_to_move));
1053 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1055 /* Add Statistic here even though replace_phi_edge_with_variable already
1056 does it as we want to be able to count when match-simplify happens vs
1057 the others. */
1058 statistics_counter_event (cfun, "match-simplify PHI replacement", 1);
1060 /* Note that we optimized this PHI. */
1061 return true;
1064 /* Update *ARG which is defined in STMT so that it contains the
1065 computed value if that seems profitable. Return true if the
1066 statement is made dead by that rewriting. */
1068 static bool
1069 jump_function_from_stmt (tree *arg, gimple *stmt)
1071 enum tree_code code = gimple_assign_rhs_code (stmt);
1072 if (code == ADDR_EXPR)
1074 /* For arg = &p->i transform it to p, if possible. */
1075 tree rhs1 = gimple_assign_rhs1 (stmt);
1076 poly_int64 offset;
1077 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
1078 &offset);
1079 if (tem
1080 && TREE_CODE (tem) == MEM_REF
1081 && known_eq (mem_ref_offset (tem) + offset, 0))
1083 *arg = TREE_OPERAND (tem, 0);
1084 return true;
1087 /* TODO: Much like IPA-CP jump-functions we want to handle constant
1088 additions symbolically here, and we'd need to update the comparison
1089 code that compares the arg + cst tuples in our caller. For now the
1090 code above exactly handles the VEC_BASE pattern from vec.h. */
1091 return false;
1094 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
1095 of the form SSA_NAME NE 0.
1097 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
1098 the two input values of the EQ_EXPR match arg0 and arg1.
1100 If so update *code and return TRUE. Otherwise return FALSE. */
1102 static bool
1103 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
1104 enum tree_code *code, const_tree rhs)
1106 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
1107 statement. */
1108 if (TREE_CODE (rhs) == SSA_NAME)
1110 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
1112 /* Verify the defining statement has an EQ_EXPR on the RHS. */
1113 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
1115 /* Finally verify the source operands of the EQ_EXPR are equal
1116 to arg0 and arg1. */
1117 tree op0 = gimple_assign_rhs1 (def1);
1118 tree op1 = gimple_assign_rhs2 (def1);
1119 if ((operand_equal_for_phi_arg_p (arg0, op0)
1120 && operand_equal_for_phi_arg_p (arg1, op1))
1121 || (operand_equal_for_phi_arg_p (arg0, op1)
1122 && operand_equal_for_phi_arg_p (arg1, op0)))
1124 /* We will perform the optimization. */
1125 *code = gimple_assign_rhs_code (def1);
1126 return true;
1130 return false;
1133 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
1135 Also return TRUE if arg0/arg1 are equal to the source arguments of a
1136 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
1138 Return FALSE otherwise. */
1140 static bool
1141 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
1142 enum tree_code *code, gimple *cond)
1144 gimple *def;
1145 tree lhs = gimple_cond_lhs (cond);
1146 tree rhs = gimple_cond_rhs (cond);
1148 if ((operand_equal_for_phi_arg_p (arg0, lhs)
1149 && operand_equal_for_phi_arg_p (arg1, rhs))
1150 || (operand_equal_for_phi_arg_p (arg1, lhs)
1151 && operand_equal_for_phi_arg_p (arg0, rhs)))
1152 return true;
1154 /* Now handle more complex case where we have an EQ comparison
1155 which feeds a BIT_AND_EXPR which feeds COND.
1157 First verify that COND is of the form SSA_NAME NE 0. */
1158 if (*code != NE_EXPR || !integer_zerop (rhs)
1159 || TREE_CODE (lhs) != SSA_NAME)
1160 return false;
1162 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
1163 def = SSA_NAME_DEF_STMT (lhs);
1164 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
1165 return false;
1167 /* Now verify arg0/arg1 correspond to the source arguments of an
1168 EQ comparison feeding the BIT_AND_EXPR. */
1170 tree tmp = gimple_assign_rhs1 (def);
1171 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
1172 return true;
1174 tmp = gimple_assign_rhs2 (def);
1175 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
1176 return true;
1178 return false;
1181 /* Returns true if ARG is a neutral element for operation CODE
1182 on the RIGHT side. */
1184 static bool
1185 neutral_element_p (tree_code code, tree arg, bool right)
1187 switch (code)
1189 case PLUS_EXPR:
1190 case BIT_IOR_EXPR:
1191 case BIT_XOR_EXPR:
1192 return integer_zerop (arg);
1194 case LROTATE_EXPR:
1195 case RROTATE_EXPR:
1196 case LSHIFT_EXPR:
1197 case RSHIFT_EXPR:
1198 case MINUS_EXPR:
1199 case POINTER_PLUS_EXPR:
1200 return right && integer_zerop (arg);
1202 case MULT_EXPR:
1203 return integer_onep (arg);
1205 case TRUNC_DIV_EXPR:
1206 case CEIL_DIV_EXPR:
1207 case FLOOR_DIV_EXPR:
1208 case ROUND_DIV_EXPR:
1209 case EXACT_DIV_EXPR:
1210 return right && integer_onep (arg);
1212 case BIT_AND_EXPR:
1213 return integer_all_onesp (arg);
1215 default:
1216 return false;
1220 /* Returns true if ARG is an absorbing element for operation CODE. */
1222 static bool
1223 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
1225 switch (code)
1227 case BIT_IOR_EXPR:
1228 return integer_all_onesp (arg);
1230 case MULT_EXPR:
1231 case BIT_AND_EXPR:
1232 return integer_zerop (arg);
1234 case LSHIFT_EXPR:
1235 case RSHIFT_EXPR:
1236 case LROTATE_EXPR:
1237 case RROTATE_EXPR:
1238 return !right && integer_zerop (arg);
1240 case TRUNC_DIV_EXPR:
1241 case CEIL_DIV_EXPR:
1242 case FLOOR_DIV_EXPR:
1243 case ROUND_DIV_EXPR:
1244 case EXACT_DIV_EXPR:
1245 case TRUNC_MOD_EXPR:
1246 case CEIL_MOD_EXPR:
1247 case FLOOR_MOD_EXPR:
1248 case ROUND_MOD_EXPR:
1249 return (!right
1250 && integer_zerop (arg)
1251 && tree_single_nonzero_warnv_p (rval, NULL));
1253 default:
1254 return false;
1258 /* The function value_replacement does the main work of doing the value
1259 replacement. Return non-zero if the replacement is done. Otherwise return
1260 0. If we remove the middle basic block, return 2.
1261 BB is the basic block where the replacement is going to be done on. ARG0
1262 is argument 0 from the PHI. Likewise for ARG1. */
1264 static int
1265 value_replacement (basic_block cond_bb, basic_block middle_bb,
1266 edge e0, edge e1, gphi *phi, tree arg0, tree arg1)
1268 gimple_stmt_iterator gsi;
1269 gimple *cond;
1270 edge true_edge, false_edge;
1271 enum tree_code code;
1272 bool empty_or_with_defined_p = true;
1274 /* If the type says honor signed zeros we cannot do this
1275 optimization. */
1276 if (HONOR_SIGNED_ZEROS (arg1))
1277 return 0;
1279 /* If there is a statement in MIDDLE_BB that defines one of the PHI
1280 arguments, then adjust arg0 or arg1. */
1281 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1282 while (!gsi_end_p (gsi))
1284 gimple *stmt = gsi_stmt (gsi);
1285 tree lhs;
1286 gsi_next_nondebug (&gsi);
1287 if (!is_gimple_assign (stmt))
1289 if (gimple_code (stmt) != GIMPLE_PREDICT
1290 && gimple_code (stmt) != GIMPLE_NOP)
1291 empty_or_with_defined_p = false;
1292 continue;
1294 /* Now try to adjust arg0 or arg1 according to the computation
1295 in the statement. */
1296 lhs = gimple_assign_lhs (stmt);
1297 if (!(lhs == arg0
1298 && jump_function_from_stmt (&arg0, stmt))
1299 || (lhs == arg1
1300 && jump_function_from_stmt (&arg1, stmt)))
1301 empty_or_with_defined_p = false;
1304 cond = last_stmt (cond_bb);
1305 code = gimple_cond_code (cond);
1307 /* This transformation is only valid for equality comparisons. */
1308 if (code != NE_EXPR && code != EQ_EXPR)
1309 return 0;
1311 /* We need to know which is the true edge and which is the false
1312 edge so that we know if have abs or negative abs. */
1313 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1315 /* At this point we know we have a COND_EXPR with two successors.
1316 One successor is BB, the other successor is an empty block which
1317 falls through into BB.
1319 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
1321 There is a single PHI node at the join point (BB) with two arguments.
1323 We now need to verify that the two arguments in the PHI node match
1324 the two arguments to the equality comparison. */
1326 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
1328 edge e;
1329 tree arg;
1331 /* For NE_EXPR, we want to build an assignment result = arg where
1332 arg is the PHI argument associated with the true edge. For
1333 EQ_EXPR we want the PHI argument associated with the false edge. */
1334 e = (code == NE_EXPR ? true_edge : false_edge);
1336 /* Unfortunately, E may not reach BB (it may instead have gone to
1337 OTHER_BLOCK). If that is the case, then we want the single outgoing
1338 edge from OTHER_BLOCK which reaches BB and represents the desired
1339 path from COND_BLOCK. */
1340 if (e->dest == middle_bb)
1341 e = single_succ_edge (e->dest);
1343 /* Now we know the incoming edge to BB that has the argument for the
1344 RHS of our new assignment statement. */
1345 if (e0 == e)
1346 arg = arg0;
1347 else
1348 arg = arg1;
1350 /* If the middle basic block was empty or is defining the
1351 PHI arguments and this is a single phi where the args are different
1352 for the edges e0 and e1 then we can remove the middle basic block. */
1353 if (empty_or_with_defined_p
1354 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
1355 e0, e1) == phi)
1357 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
1358 /* Note that we optimized this PHI. */
1359 return 2;
1361 else
1363 if (!single_pred_p (middle_bb))
1364 return 0;
1365 statistics_counter_event (cfun, "Replace PHI with "
1366 "variable/value_replacement", 1);
1368 /* Replace the PHI arguments with arg. */
1369 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
1370 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
1371 if (dump_file && (dump_flags & TDF_DETAILS))
1373 fprintf (dump_file, "PHI ");
1374 print_generic_expr (dump_file, gimple_phi_result (phi));
1375 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
1376 cond_bb->index);
1377 print_generic_expr (dump_file, arg);
1378 fprintf (dump_file, ".\n");
1380 return 1;
1384 if (!single_pred_p (middle_bb))
1385 return 0;
1387 /* Now optimize (x != 0) ? x + y : y to just x + y. */
1388 gsi = gsi_last_nondebug_bb (middle_bb);
1389 if (gsi_end_p (gsi))
1390 return 0;
1392 gimple *assign = gsi_stmt (gsi);
1393 if (!is_gimple_assign (assign)
1394 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1395 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1396 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1397 return 0;
1399 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1400 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1401 return 0;
1403 /* Allow up to 2 cheap preparation statements that prepare argument
1404 for assign, e.g.:
1405 if (y_4 != 0)
1406 goto <bb 3>;
1407 else
1408 goto <bb 4>;
1409 <bb 3>:
1410 _1 = (int) y_4;
1411 iftmp.0_6 = x_5(D) r<< _1;
1412 <bb 4>:
1413 # iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
1415 if (y_3(D) == 0)
1416 goto <bb 4>;
1417 else
1418 goto <bb 3>;
1419 <bb 3>:
1420 y_4 = y_3(D) & 31;
1421 _1 = (int) y_4;
1422 _6 = x_5(D) r<< _1;
1423 <bb 4>:
1424 # _2 = PHI <x_5(D)(2), _6(3)> */
1425 gimple *prep_stmt[2] = { NULL, NULL };
1426 int prep_cnt;
1427 for (prep_cnt = 0; ; prep_cnt++)
1429 gsi_prev_nondebug (&gsi);
1430 if (gsi_end_p (gsi))
1431 break;
1433 gimple *g = gsi_stmt (gsi);
1434 if (gimple_code (g) == GIMPLE_LABEL)
1435 break;
1437 if (prep_cnt == 2 || !is_gimple_assign (g))
1438 return 0;
1440 tree lhs = gimple_assign_lhs (g);
1441 tree rhs1 = gimple_assign_rhs1 (g);
1442 use_operand_p use_p;
1443 gimple *use_stmt;
1444 if (TREE_CODE (lhs) != SSA_NAME
1445 || TREE_CODE (rhs1) != SSA_NAME
1446 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1447 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1448 || !single_imm_use (lhs, &use_p, &use_stmt)
1449 || use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
1450 return 0;
1451 switch (gimple_assign_rhs_code (g))
1453 CASE_CONVERT:
1454 break;
1455 case PLUS_EXPR:
1456 case BIT_AND_EXPR:
1457 case BIT_IOR_EXPR:
1458 case BIT_XOR_EXPR:
1459 if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
1460 return 0;
1461 break;
1462 default:
1463 return 0;
1465 prep_stmt[prep_cnt] = g;
1468 /* Only transform if it removes the condition. */
1469 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1470 return 0;
1472 /* Size-wise, this is always profitable. */
1473 if (optimize_bb_for_speed_p (cond_bb)
1474 /* The special case is useless if it has a low probability. */
1475 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1476 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1477 /* If assign is cheap, there is no point avoiding it. */
1478 && estimate_num_insns_seq (bb_seq (middle_bb), &eni_time_weights)
1479 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1480 return 0;
1482 tree lhs = gimple_assign_lhs (assign);
1483 tree rhs1 = gimple_assign_rhs1 (assign);
1484 tree rhs2 = gimple_assign_rhs2 (assign);
1485 enum tree_code code_def = gimple_assign_rhs_code (assign);
1486 tree cond_lhs = gimple_cond_lhs (cond);
1487 tree cond_rhs = gimple_cond_rhs (cond);
1489 /* Propagate the cond_rhs constant through preparation stmts,
1490 make sure UB isn't invoked while doing that. */
1491 for (int i = prep_cnt - 1; i >= 0; --i)
1493 gimple *g = prep_stmt[i];
1494 tree grhs1 = gimple_assign_rhs1 (g);
1495 if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
1496 return 0;
1497 cond_lhs = gimple_assign_lhs (g);
1498 cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
1499 if (TREE_CODE (cond_rhs) != INTEGER_CST
1500 || TREE_OVERFLOW (cond_rhs))
1501 return 0;
1502 if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
1504 cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
1505 gimple_assign_rhs2 (g));
1506 if (TREE_OVERFLOW (cond_rhs))
1507 return 0;
1509 cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
1510 if (TREE_CODE (cond_rhs) != INTEGER_CST
1511 || TREE_OVERFLOW (cond_rhs))
1512 return 0;
1515 if (((code == NE_EXPR && e1 == false_edge)
1516 || (code == EQ_EXPR && e1 == true_edge))
1517 && arg0 == lhs
1518 && ((arg1 == rhs1
1519 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1520 && neutral_element_p (code_def, cond_rhs, true))
1521 || (arg1 == rhs2
1522 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1523 && neutral_element_p (code_def, cond_rhs, false))
1524 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1525 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1526 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1527 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1528 && absorbing_element_p (code_def,
1529 cond_rhs, false, rhs2))))))
1531 gsi = gsi_for_stmt (cond);
1532 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1533 def-stmt in:
1534 if (n_5 != 0)
1535 goto <bb 3>;
1536 else
1537 goto <bb 4>;
1539 <bb 3>:
1540 # RANGE [0, 4294967294]
1541 u_6 = n_5 + 4294967295;
1543 <bb 4>:
1544 # u_3 = PHI <u_6(3), 4294967295(2)> */
1545 reset_flow_sensitive_info (lhs);
1546 gimple_stmt_iterator gsi_from;
1547 for (int i = prep_cnt - 1; i >= 0; --i)
1549 tree plhs = gimple_assign_lhs (prep_stmt[i]);
1550 reset_flow_sensitive_info (plhs);
1551 gsi_from = gsi_for_stmt (prep_stmt[i]);
1552 gsi_move_before (&gsi_from, &gsi);
1554 gsi_from = gsi_for_stmt (assign);
1555 gsi_move_before (&gsi_from, &gsi);
1556 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1557 return 2;
1560 return 0;
1563 /* The function minmax_replacement does the main work of doing the minmax
1564 replacement. Return true if the replacement is done. Otherwise return
1565 false.
1566 BB is the basic block where the replacement is going to be done on. ARG0
1567 is argument 0 from the PHI. Likewise for ARG1. */
1569 static bool
1570 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1571 edge e0, edge e1, gphi *phi, tree arg0, tree arg1)
1573 tree result;
1574 edge true_edge, false_edge;
1575 enum tree_code minmax, ass_code;
1576 tree smaller, larger, arg_true, arg_false;
1577 gimple_stmt_iterator gsi, gsi_from;
1579 tree type = TREE_TYPE (PHI_RESULT (phi));
1581 /* The optimization may be unsafe due to NaNs. */
1582 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1583 return false;
1585 gcond *cond = as_a <gcond *> (last_stmt (cond_bb));
1586 enum tree_code cmp = gimple_cond_code (cond);
1587 tree rhs = gimple_cond_rhs (cond);
1589 /* Turn EQ/NE of extreme values to order comparisons. */
1590 if ((cmp == NE_EXPR || cmp == EQ_EXPR)
1591 && TREE_CODE (rhs) == INTEGER_CST
1592 && INTEGRAL_TYPE_P (TREE_TYPE (rhs)))
1594 if (wi::eq_p (wi::to_wide (rhs), wi::min_value (TREE_TYPE (rhs))))
1596 cmp = (cmp == EQ_EXPR) ? LT_EXPR : GE_EXPR;
1597 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1598 wi::min_value (TREE_TYPE (rhs)) + 1);
1600 else if (wi::eq_p (wi::to_wide (rhs), wi::max_value (TREE_TYPE (rhs))))
1602 cmp = (cmp == EQ_EXPR) ? GT_EXPR : LE_EXPR;
1603 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1604 wi::max_value (TREE_TYPE (rhs)) - 1);
1608 /* This transformation is only valid for order comparisons. Record which
1609 operand is smaller/larger if the result of the comparison is true. */
1610 tree alt_smaller = NULL_TREE;
1611 tree alt_larger = NULL_TREE;
1612 if (cmp == LT_EXPR || cmp == LE_EXPR)
1614 smaller = gimple_cond_lhs (cond);
1615 larger = rhs;
1616 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1617 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1618 if (TREE_CODE (larger) == INTEGER_CST
1619 && INTEGRAL_TYPE_P (TREE_TYPE (larger)))
1621 if (cmp == LT_EXPR)
1623 wi::overflow_type overflow;
1624 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1625 TYPE_SIGN (TREE_TYPE (larger)),
1626 &overflow);
1627 if (! overflow)
1628 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1630 else
1632 wi::overflow_type overflow;
1633 wide_int alt = wi::add (wi::to_wide (larger), 1,
1634 TYPE_SIGN (TREE_TYPE (larger)),
1635 &overflow);
1636 if (! overflow)
1637 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1641 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1643 smaller = rhs;
1644 larger = gimple_cond_lhs (cond);
1645 /* If we have larger > CST it is equivalent to larger >= CST+1.
1646 Likewise larger >= CST is equivalent to larger > CST-1. */
1647 if (TREE_CODE (smaller) == INTEGER_CST
1648 && INTEGRAL_TYPE_P (TREE_TYPE (smaller)))
1650 wi::overflow_type overflow;
1651 if (cmp == GT_EXPR)
1653 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1654 TYPE_SIGN (TREE_TYPE (smaller)),
1655 &overflow);
1656 if (! overflow)
1657 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1659 else
1661 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1662 TYPE_SIGN (TREE_TYPE (smaller)),
1663 &overflow);
1664 if (! overflow)
1665 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1669 else
1670 return false;
1672 /* Handle the special case of (signed_type)x < 0 being equivalent
1673 to x > MAX_VAL(signed_type) and (signed_type)x >= 0 equivalent
1674 to x <= MAX_VAL(signed_type). */
1675 if ((cmp == GE_EXPR || cmp == LT_EXPR)
1676 && INTEGRAL_TYPE_P (type)
1677 && TYPE_UNSIGNED (type)
1678 && integer_zerop (rhs))
1680 tree op = gimple_cond_lhs (cond);
1681 if (TREE_CODE (op) == SSA_NAME
1682 && INTEGRAL_TYPE_P (TREE_TYPE (op))
1683 && !TYPE_UNSIGNED (TREE_TYPE (op)))
1685 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1686 if (gimple_assign_cast_p (def_stmt))
1688 tree op1 = gimple_assign_rhs1 (def_stmt);
1689 if (INTEGRAL_TYPE_P (TREE_TYPE (op1))
1690 && TYPE_UNSIGNED (TREE_TYPE (op1))
1691 && (TYPE_PRECISION (TREE_TYPE (op))
1692 == TYPE_PRECISION (TREE_TYPE (op1)))
1693 && useless_type_conversion_p (type, TREE_TYPE (op1)))
1695 wide_int w1 = wi::max_value (TREE_TYPE (op));
1696 wide_int w2 = wi::add (w1, 1);
1697 if (cmp == LT_EXPR)
1699 larger = op1;
1700 smaller = wide_int_to_tree (TREE_TYPE (op1), w1);
1701 alt_smaller = wide_int_to_tree (TREE_TYPE (op1), w2);
1702 alt_larger = NULL_TREE;
1704 else
1706 smaller = op1;
1707 larger = wide_int_to_tree (TREE_TYPE (op1), w1);
1708 alt_larger = wide_int_to_tree (TREE_TYPE (op1), w2);
1709 alt_smaller = NULL_TREE;
1716 /* We need to know which is the true edge and which is the false
1717 edge so that we know if have abs or negative abs. */
1718 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1720 /* Forward the edges over the middle basic block. */
1721 if (true_edge->dest == middle_bb)
1722 true_edge = EDGE_SUCC (true_edge->dest, 0);
1723 if (false_edge->dest == middle_bb)
1724 false_edge = EDGE_SUCC (false_edge->dest, 0);
1726 if (true_edge == e0)
1728 gcc_assert (false_edge == e1);
1729 arg_true = arg0;
1730 arg_false = arg1;
1732 else
1734 gcc_assert (false_edge == e0);
1735 gcc_assert (true_edge == e1);
1736 arg_true = arg1;
1737 arg_false = arg0;
1740 if (empty_block_p (middle_bb))
1742 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1743 || (alt_smaller
1744 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1745 && (operand_equal_for_phi_arg_p (arg_false, larger)
1746 || (alt_larger
1747 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1749 /* Case
1751 if (smaller < larger)
1752 rslt = smaller;
1753 else
1754 rslt = larger; */
1755 minmax = MIN_EXPR;
1757 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1758 || (alt_smaller
1759 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1760 && (operand_equal_for_phi_arg_p (arg_true, larger)
1761 || (alt_larger
1762 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1763 minmax = MAX_EXPR;
1764 else
1765 return false;
1767 else
1769 /* Recognize the following case, assuming d <= u:
1771 if (a <= u)
1772 b = MAX (a, d);
1773 x = PHI <b, u>
1775 This is equivalent to
1777 b = MAX (a, d);
1778 x = MIN (b, u); */
1780 gimple *assign = last_and_only_stmt (middle_bb);
1781 tree lhs, op0, op1, bound;
1783 if (!single_pred_p (middle_bb))
1784 return false;
1786 if (!assign
1787 || gimple_code (assign) != GIMPLE_ASSIGN)
1788 return false;
1790 lhs = gimple_assign_lhs (assign);
1791 ass_code = gimple_assign_rhs_code (assign);
1792 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1793 return false;
1794 op0 = gimple_assign_rhs1 (assign);
1795 op1 = gimple_assign_rhs2 (assign);
1797 if (true_edge->src == middle_bb)
1799 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1800 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1801 return false;
1803 if (operand_equal_for_phi_arg_p (arg_false, larger)
1804 || (alt_larger
1805 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1807 /* Case
1809 if (smaller < larger)
1811 r' = MAX_EXPR (smaller, bound)
1813 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1814 if (ass_code != MAX_EXPR)
1815 return false;
1817 minmax = MIN_EXPR;
1818 if (operand_equal_for_phi_arg_p (op0, smaller)
1819 || (alt_smaller
1820 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1821 bound = op1;
1822 else if (operand_equal_for_phi_arg_p (op1, smaller)
1823 || (alt_smaller
1824 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1825 bound = op0;
1826 else
1827 return false;
1829 /* We need BOUND <= LARGER. */
1830 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1831 bound, larger)))
1832 return false;
1834 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1835 || (alt_smaller
1836 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1838 /* Case
1840 if (smaller < larger)
1842 r' = MIN_EXPR (larger, bound)
1844 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1845 if (ass_code != MIN_EXPR)
1846 return false;
1848 minmax = MAX_EXPR;
1849 if (operand_equal_for_phi_arg_p (op0, larger)
1850 || (alt_larger
1851 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1852 bound = op1;
1853 else if (operand_equal_for_phi_arg_p (op1, larger)
1854 || (alt_larger
1855 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1856 bound = op0;
1857 else
1858 return false;
1860 /* We need BOUND >= SMALLER. */
1861 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1862 bound, smaller)))
1863 return false;
1865 else
1866 return false;
1868 else
1870 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1871 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1872 return false;
1874 if (operand_equal_for_phi_arg_p (arg_true, larger)
1875 || (alt_larger
1876 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1878 /* Case
1880 if (smaller > larger)
1882 r' = MIN_EXPR (smaller, bound)
1884 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1885 if (ass_code != MIN_EXPR)
1886 return false;
1888 minmax = MAX_EXPR;
1889 if (operand_equal_for_phi_arg_p (op0, smaller)
1890 || (alt_smaller
1891 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1892 bound = op1;
1893 else if (operand_equal_for_phi_arg_p (op1, smaller)
1894 || (alt_smaller
1895 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1896 bound = op0;
1897 else
1898 return false;
1900 /* We need BOUND >= LARGER. */
1901 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1902 bound, larger)))
1903 return false;
1905 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1906 || (alt_smaller
1907 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1909 /* Case
1911 if (smaller > larger)
1913 r' = MAX_EXPR (larger, bound)
1915 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1916 if (ass_code != MAX_EXPR)
1917 return false;
1919 minmax = MIN_EXPR;
1920 if (operand_equal_for_phi_arg_p (op0, larger))
1921 bound = op1;
1922 else if (operand_equal_for_phi_arg_p (op1, larger))
1923 bound = op0;
1924 else
1925 return false;
1927 /* We need BOUND <= SMALLER. */
1928 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1929 bound, smaller)))
1930 return false;
1932 else
1933 return false;
1936 /* Move the statement from the middle block. */
1937 gsi = gsi_last_bb (cond_bb);
1938 gsi_from = gsi_last_nondebug_bb (middle_bb);
1939 reset_flow_sensitive_info (SINGLE_SSA_TREE_OPERAND (gsi_stmt (gsi_from),
1940 SSA_OP_DEF));
1941 gsi_move_before (&gsi_from, &gsi);
1944 /* Emit the statement to compute min/max. */
1945 gimple_seq stmts = NULL;
1946 tree phi_result = PHI_RESULT (phi);
1947 result = gimple_build (&stmts, minmax, TREE_TYPE (phi_result), arg0, arg1);
1949 gsi = gsi_last_bb (cond_bb);
1950 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
1952 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1954 return true;
1957 /* Return true if the only executable statement in BB is a GIMPLE_COND. */
1959 static bool
1960 cond_only_block_p (basic_block bb)
1962 /* BB must have no executable statements. */
1963 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1964 if (phi_nodes (bb))
1965 return false;
1966 while (!gsi_end_p (gsi))
1968 gimple *stmt = gsi_stmt (gsi);
1969 if (is_gimple_debug (stmt))
1971 else if (gimple_code (stmt) == GIMPLE_NOP
1972 || gimple_code (stmt) == GIMPLE_PREDICT
1973 || gimple_code (stmt) == GIMPLE_COND)
1975 else
1976 return false;
1977 gsi_next (&gsi);
1979 return true;
1982 /* Attempt to optimize (x <=> y) cmp 0 and similar comparisons.
1983 For strong ordering <=> try to match something like:
1984 <bb 2> : // cond3_bb (== cond2_bb)
1985 if (x_4(D) != y_5(D))
1986 goto <bb 3>; [INV]
1987 else
1988 goto <bb 6>; [INV]
1990 <bb 3> : // cond_bb
1991 if (x_4(D) < y_5(D))
1992 goto <bb 6>; [INV]
1993 else
1994 goto <bb 4>; [INV]
1996 <bb 4> : // middle_bb
1998 <bb 6> : // phi_bb
1999 # iftmp.0_2 = PHI <1(4), 0(2), -1(3)>
2000 _1 = iftmp.0_2 == 0;
2002 and for partial ordering <=> something like:
2004 <bb 2> : // cond3_bb
2005 if (a_3(D) == b_5(D))
2006 goto <bb 6>; [50.00%]
2007 else
2008 goto <bb 3>; [50.00%]
2010 <bb 3> [local count: 536870913]: // cond2_bb
2011 if (a_3(D) < b_5(D))
2012 goto <bb 6>; [50.00%]
2013 else
2014 goto <bb 4>; [50.00%]
2016 <bb 4> [local count: 268435456]: // cond_bb
2017 if (a_3(D) > b_5(D))
2018 goto <bb 6>; [50.00%]
2019 else
2020 goto <bb 5>; [50.00%]
2022 <bb 5> [local count: 134217728]: // middle_bb
2024 <bb 6> [local count: 1073741824]: // phi_bb
2025 # SR.27_4 = PHI <0(2), -1(3), 1(4), 2(5)>
2026 _2 = SR.27_4 > 0; */
2028 static bool
2029 spaceship_replacement (basic_block cond_bb, basic_block middle_bb,
2030 edge e0, edge e1, gphi *phi,
2031 tree arg0, tree arg1)
2033 tree phires = PHI_RESULT (phi);
2034 if (!INTEGRAL_TYPE_P (TREE_TYPE (phires))
2035 || TYPE_UNSIGNED (TREE_TYPE (phires))
2036 || !tree_fits_shwi_p (arg0)
2037 || !tree_fits_shwi_p (arg1)
2038 || !IN_RANGE (tree_to_shwi (arg0), -1, 2)
2039 || !IN_RANGE (tree_to_shwi (arg1), -1, 2))
2040 return false;
2042 basic_block phi_bb = gimple_bb (phi);
2043 gcc_assert (phi_bb == e0->dest && phi_bb == e1->dest);
2044 if (!IN_RANGE (EDGE_COUNT (phi_bb->preds), 3, 4))
2045 return false;
2047 use_operand_p use_p;
2048 gimple *use_stmt;
2049 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phires))
2050 return false;
2051 if (!single_imm_use (phires, &use_p, &use_stmt))
2052 return false;
2053 enum tree_code cmp;
2054 tree lhs, rhs;
2055 gimple *orig_use_stmt = use_stmt;
2056 tree orig_use_lhs = NULL_TREE;
2057 int prec = TYPE_PRECISION (TREE_TYPE (phires));
2058 bool is_cast = false;
2060 /* Deal with the case when match.pd has rewritten the (res & ~1) == 0
2061 into res <= 1 and has left a type-cast for signed types. */
2062 if (gimple_assign_cast_p (use_stmt))
2064 orig_use_lhs = gimple_assign_lhs (use_stmt);
2065 /* match.pd would have only done this for a signed type,
2066 so the conversion must be to an unsigned one. */
2067 tree ty1 = TREE_TYPE (gimple_assign_rhs1 (use_stmt));
2068 tree ty2 = TREE_TYPE (orig_use_lhs);
2070 if (!TYPE_UNSIGNED (ty2) || !INTEGRAL_TYPE_P (ty2))
2071 return false;
2072 if (TYPE_PRECISION (ty1) != TYPE_PRECISION (ty2))
2073 return false;
2074 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig_use_lhs))
2075 return false;
2076 if (EDGE_COUNT (phi_bb->preds) != 4)
2077 return false;
2078 if (!single_imm_use (orig_use_lhs, &use_p, &use_stmt))
2079 return false;
2081 is_cast = true;
2083 else if (is_gimple_assign (use_stmt)
2084 && gimple_assign_rhs_code (use_stmt) == BIT_AND_EXPR
2085 && TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST
2086 && (wi::to_wide (gimple_assign_rhs2 (use_stmt))
2087 == wi::shifted_mask (1, prec - 1, false, prec)))
2089 /* For partial_ordering result operator>= with unspec as second
2090 argument is (res & 1) == res, folded by match.pd into
2091 (res & ~1) == 0. */
2092 orig_use_lhs = gimple_assign_lhs (use_stmt);
2093 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig_use_lhs))
2094 return false;
2095 if (EDGE_COUNT (phi_bb->preds) != 4)
2096 return false;
2097 if (!single_imm_use (orig_use_lhs, &use_p, &use_stmt))
2098 return false;
2100 if (gimple_code (use_stmt) == GIMPLE_COND)
2102 cmp = gimple_cond_code (use_stmt);
2103 lhs = gimple_cond_lhs (use_stmt);
2104 rhs = gimple_cond_rhs (use_stmt);
2106 else if (is_gimple_assign (use_stmt))
2108 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
2110 cmp = gimple_assign_rhs_code (use_stmt);
2111 lhs = gimple_assign_rhs1 (use_stmt);
2112 rhs = gimple_assign_rhs2 (use_stmt);
2114 else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
2116 tree cond = gimple_assign_rhs1 (use_stmt);
2117 if (!COMPARISON_CLASS_P (cond))
2118 return false;
2119 cmp = TREE_CODE (cond);
2120 lhs = TREE_OPERAND (cond, 0);
2121 rhs = TREE_OPERAND (cond, 1);
2123 else
2124 return false;
2126 else
2127 return false;
2128 switch (cmp)
2130 case EQ_EXPR:
2131 case NE_EXPR:
2132 case LT_EXPR:
2133 case GT_EXPR:
2134 case LE_EXPR:
2135 case GE_EXPR:
2136 break;
2137 default:
2138 return false;
2140 if (lhs != (orig_use_lhs ? orig_use_lhs : phires)
2141 || !tree_fits_shwi_p (rhs)
2142 || !IN_RANGE (tree_to_shwi (rhs), -1, 1))
2143 return false;
2145 if (is_cast)
2147 if (TREE_CODE (rhs) != INTEGER_CST)
2148 return false;
2149 /* As for -ffast-math we assume the 2 return to be
2150 impossible, canonicalize (unsigned) res <= 1U or
2151 (unsigned) res < 2U into res >= 0 and (unsigned) res > 1U
2152 or (unsigned) res >= 2U as res < 0. */
2153 switch (cmp)
2155 case LE_EXPR:
2156 if (!integer_onep (rhs))
2157 return false;
2158 cmp = GE_EXPR;
2159 break;
2160 case LT_EXPR:
2161 if (wi::ne_p (wi::to_widest (rhs), 2))
2162 return false;
2163 cmp = GE_EXPR;
2164 break;
2165 case GT_EXPR:
2166 if (!integer_onep (rhs))
2167 return false;
2168 cmp = LT_EXPR;
2169 break;
2170 case GE_EXPR:
2171 if (wi::ne_p (wi::to_widest (rhs), 2))
2172 return false;
2173 cmp = LT_EXPR;
2174 break;
2175 default:
2176 return false;
2178 rhs = build_zero_cst (TREE_TYPE (phires));
2180 else if (orig_use_lhs)
2182 if ((cmp != EQ_EXPR && cmp != NE_EXPR) || !integer_zerop (rhs))
2183 return false;
2184 /* As for -ffast-math we assume the 2 return to be
2185 impossible, canonicalize (res & ~1) == 0 into
2186 res >= 0 and (res & ~1) != 0 as res < 0. */
2187 cmp = cmp == EQ_EXPR ? GE_EXPR : LT_EXPR;
2190 if (!empty_block_p (middle_bb))
2191 return false;
2193 gcond *cond1 = as_a <gcond *> (last_stmt (cond_bb));
2194 enum tree_code cmp1 = gimple_cond_code (cond1);
2195 switch (cmp1)
2197 case LT_EXPR:
2198 case LE_EXPR:
2199 case GT_EXPR:
2200 case GE_EXPR:
2201 break;
2202 default:
2203 return false;
2205 tree lhs1 = gimple_cond_lhs (cond1);
2206 tree rhs1 = gimple_cond_rhs (cond1);
2207 /* The optimization may be unsafe due to NaNs. */
2208 if (HONOR_NANS (TREE_TYPE (lhs1)))
2209 return false;
2210 if (TREE_CODE (lhs1) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs1))
2211 return false;
2212 if (TREE_CODE (rhs1) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs1))
2213 return false;
2215 if (!single_pred_p (cond_bb) || !cond_only_block_p (cond_bb))
2216 return false;
2218 basic_block cond2_bb = single_pred (cond_bb);
2219 if (EDGE_COUNT (cond2_bb->succs) != 2)
2220 return false;
2221 edge cond2_phi_edge;
2222 if (EDGE_SUCC (cond2_bb, 0)->dest == cond_bb)
2224 if (EDGE_SUCC (cond2_bb, 1)->dest != phi_bb)
2225 return false;
2226 cond2_phi_edge = EDGE_SUCC (cond2_bb, 1);
2228 else if (EDGE_SUCC (cond2_bb, 0)->dest != phi_bb)
2229 return false;
2230 else
2231 cond2_phi_edge = EDGE_SUCC (cond2_bb, 0);
2232 tree arg2 = gimple_phi_arg_def (phi, cond2_phi_edge->dest_idx);
2233 if (!tree_fits_shwi_p (arg2))
2234 return false;
2235 gimple *cond2 = last_stmt (cond2_bb);
2236 if (cond2 == NULL || gimple_code (cond2) != GIMPLE_COND)
2237 return false;
2238 enum tree_code cmp2 = gimple_cond_code (cond2);
2239 tree lhs2 = gimple_cond_lhs (cond2);
2240 tree rhs2 = gimple_cond_rhs (cond2);
2241 if (lhs2 == lhs1)
2243 if (!operand_equal_p (rhs2, rhs1, 0))
2245 if ((cmp2 == EQ_EXPR || cmp2 == NE_EXPR)
2246 && TREE_CODE (rhs1) == INTEGER_CST
2247 && TREE_CODE (rhs2) == INTEGER_CST)
2249 /* For integers, we can have cond2 x == 5
2250 and cond1 x < 5, x <= 4, x <= 5, x < 6,
2251 x > 5, x >= 6, x >= 5 or x > 4. */
2252 if (tree_int_cst_lt (rhs1, rhs2))
2254 if (wi::ne_p (wi::to_wide (rhs1) + 1, wi::to_wide (rhs2)))
2255 return false;
2256 if (cmp1 == LE_EXPR)
2257 cmp1 = LT_EXPR;
2258 else if (cmp1 == GT_EXPR)
2259 cmp1 = GE_EXPR;
2260 else
2261 return false;
2263 else
2265 gcc_checking_assert (tree_int_cst_lt (rhs2, rhs1));
2266 if (wi::ne_p (wi::to_wide (rhs2) + 1, wi::to_wide (rhs1)))
2267 return false;
2268 if (cmp1 == LT_EXPR)
2269 cmp1 = LE_EXPR;
2270 else if (cmp1 == GE_EXPR)
2271 cmp1 = GT_EXPR;
2272 else
2273 return false;
2275 rhs1 = rhs2;
2277 else
2278 return false;
2281 else if (lhs2 == rhs1)
2283 if (rhs2 != lhs1)
2284 return false;
2286 else
2287 return false;
2289 tree arg3 = arg2;
2290 basic_block cond3_bb = cond2_bb;
2291 edge cond3_phi_edge = cond2_phi_edge;
2292 gimple *cond3 = cond2;
2293 enum tree_code cmp3 = cmp2;
2294 tree lhs3 = lhs2;
2295 tree rhs3 = rhs2;
2296 if (EDGE_COUNT (phi_bb->preds) == 4)
2298 if (absu_hwi (tree_to_shwi (arg2)) != 1)
2299 return false;
2300 if (e1->flags & EDGE_TRUE_VALUE)
2302 if (tree_to_shwi (arg0) != 2
2303 || absu_hwi (tree_to_shwi (arg1)) != 1
2304 || wi::to_widest (arg1) == wi::to_widest (arg2))
2305 return false;
2307 else if (tree_to_shwi (arg1) != 2
2308 || absu_hwi (tree_to_shwi (arg0)) != 1
2309 || wi::to_widest (arg0) == wi::to_widest (arg1))
2310 return false;
2311 switch (cmp2)
2313 case LT_EXPR:
2314 case LE_EXPR:
2315 case GT_EXPR:
2316 case GE_EXPR:
2317 break;
2318 default:
2319 return false;
2321 /* if (x < y) goto phi_bb; else fallthru;
2322 if (x > y) goto phi_bb; else fallthru;
2323 bbx:;
2324 phi_bb:;
2325 is ok, but if x and y are swapped in one of the comparisons,
2326 or the comparisons are the same and operands not swapped,
2327 or the true and false edges are swapped, it is not. */
2328 if ((lhs2 == lhs1)
2329 ^ (((cond2_phi_edge->flags
2330 & ((cmp2 == LT_EXPR || cmp2 == LE_EXPR)
2331 ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE)) != 0)
2332 != ((e1->flags
2333 & ((cmp1 == LT_EXPR || cmp1 == LE_EXPR)
2334 ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE)) != 0)))
2335 return false;
2336 if (!single_pred_p (cond2_bb) || !cond_only_block_p (cond2_bb))
2337 return false;
2338 cond3_bb = single_pred (cond2_bb);
2339 if (EDGE_COUNT (cond2_bb->succs) != 2)
2340 return false;
2341 if (EDGE_SUCC (cond3_bb, 0)->dest == cond2_bb)
2343 if (EDGE_SUCC (cond3_bb, 1)->dest != phi_bb)
2344 return false;
2345 cond3_phi_edge = EDGE_SUCC (cond3_bb, 1);
2347 else if (EDGE_SUCC (cond3_bb, 0)->dest != phi_bb)
2348 return false;
2349 else
2350 cond3_phi_edge = EDGE_SUCC (cond3_bb, 0);
2351 arg3 = gimple_phi_arg_def (phi, cond3_phi_edge->dest_idx);
2352 cond3 = last_stmt (cond3_bb);
2353 if (cond3 == NULL || gimple_code (cond3) != GIMPLE_COND)
2354 return false;
2355 cmp3 = gimple_cond_code (cond3);
2356 lhs3 = gimple_cond_lhs (cond3);
2357 rhs3 = gimple_cond_rhs (cond3);
2358 if (lhs3 == lhs1)
2360 if (!operand_equal_p (rhs3, rhs1, 0))
2361 return false;
2363 else if (lhs3 == rhs1)
2365 if (rhs3 != lhs1)
2366 return false;
2368 else
2369 return false;
2371 else if (absu_hwi (tree_to_shwi (arg0)) != 1
2372 || absu_hwi (tree_to_shwi (arg1)) != 1
2373 || wi::to_widest (arg0) == wi::to_widest (arg1))
2374 return false;
2376 if (!integer_zerop (arg3) || (cmp3 != EQ_EXPR && cmp3 != NE_EXPR))
2377 return false;
2378 if ((cond3_phi_edge->flags & (cmp3 == EQ_EXPR
2379 ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE)) == 0)
2380 return false;
2382 /* lhs1 one_cmp rhs1 results in phires of 1. */
2383 enum tree_code one_cmp;
2384 if ((cmp1 == LT_EXPR || cmp1 == LE_EXPR)
2385 ^ (!integer_onep ((e1->flags & EDGE_TRUE_VALUE) ? arg1 : arg0)))
2386 one_cmp = LT_EXPR;
2387 else
2388 one_cmp = GT_EXPR;
2390 enum tree_code res_cmp;
2391 switch (cmp)
2393 case EQ_EXPR:
2394 if (integer_zerop (rhs))
2395 res_cmp = EQ_EXPR;
2396 else if (integer_minus_onep (rhs))
2397 res_cmp = one_cmp == LT_EXPR ? GT_EXPR : LT_EXPR;
2398 else if (integer_onep (rhs))
2399 res_cmp = one_cmp;
2400 else
2401 return false;
2402 break;
2403 case NE_EXPR:
2404 if (integer_zerop (rhs))
2405 res_cmp = NE_EXPR;
2406 else if (integer_minus_onep (rhs))
2407 res_cmp = one_cmp == LT_EXPR ? LE_EXPR : GE_EXPR;
2408 else if (integer_onep (rhs))
2409 res_cmp = one_cmp == LT_EXPR ? GE_EXPR : LE_EXPR;
2410 else
2411 return false;
2412 break;
2413 case LT_EXPR:
2414 if (integer_onep (rhs))
2415 res_cmp = one_cmp == LT_EXPR ? GE_EXPR : LE_EXPR;
2416 else if (integer_zerop (rhs))
2417 res_cmp = one_cmp == LT_EXPR ? GT_EXPR : LT_EXPR;
2418 else
2419 return false;
2420 break;
2421 case LE_EXPR:
2422 if (integer_zerop (rhs))
2423 res_cmp = one_cmp == LT_EXPR ? GE_EXPR : LE_EXPR;
2424 else if (integer_minus_onep (rhs))
2425 res_cmp = one_cmp == LT_EXPR ? GT_EXPR : LT_EXPR;
2426 else
2427 return false;
2428 break;
2429 case GT_EXPR:
2430 if (integer_minus_onep (rhs))
2431 res_cmp = one_cmp == LT_EXPR ? LE_EXPR : GE_EXPR;
2432 else if (integer_zerop (rhs))
2433 res_cmp = one_cmp;
2434 else
2435 return false;
2436 break;
2437 case GE_EXPR:
2438 if (integer_zerop (rhs))
2439 res_cmp = one_cmp == LT_EXPR ? LE_EXPR : GE_EXPR;
2440 else if (integer_onep (rhs))
2441 res_cmp = one_cmp;
2442 else
2443 return false;
2444 break;
2445 default:
2446 gcc_unreachable ();
2449 if (gimple_code (use_stmt) == GIMPLE_COND)
2451 gcond *use_cond = as_a <gcond *> (use_stmt);
2452 gimple_cond_set_code (use_cond, res_cmp);
2453 gimple_cond_set_lhs (use_cond, lhs1);
2454 gimple_cond_set_rhs (use_cond, rhs1);
2456 else if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
2458 gimple_assign_set_rhs_code (use_stmt, res_cmp);
2459 gimple_assign_set_rhs1 (use_stmt, lhs1);
2460 gimple_assign_set_rhs2 (use_stmt, rhs1);
2462 else
2464 tree cond = build2 (res_cmp, TREE_TYPE (gimple_assign_rhs1 (use_stmt)),
2465 lhs1, rhs1);
2466 gimple_assign_set_rhs1 (use_stmt, cond);
2468 update_stmt (use_stmt);
2470 if (MAY_HAVE_DEBUG_BIND_STMTS)
2472 use_operand_p use_p;
2473 imm_use_iterator iter;
2474 bool has_debug_uses = false;
2475 bool has_cast_debug_uses = false;
2476 FOR_EACH_IMM_USE_FAST (use_p, iter, phires)
2478 gimple *use_stmt = USE_STMT (use_p);
2479 if (orig_use_lhs && use_stmt == orig_use_stmt)
2480 continue;
2481 gcc_assert (is_gimple_debug (use_stmt));
2482 has_debug_uses = true;
2483 break;
2485 if (orig_use_lhs)
2487 if (!has_debug_uses || is_cast)
2488 FOR_EACH_IMM_USE_FAST (use_p, iter, orig_use_lhs)
2490 gimple *use_stmt = USE_STMT (use_p);
2491 gcc_assert (is_gimple_debug (use_stmt));
2492 has_debug_uses = true;
2493 if (is_cast)
2494 has_cast_debug_uses = true;
2496 gimple_stmt_iterator gsi = gsi_for_stmt (orig_use_stmt);
2497 tree zero = build_zero_cst (TREE_TYPE (orig_use_lhs));
2498 gimple_assign_set_rhs_with_ops (&gsi, INTEGER_CST, zero);
2499 update_stmt (orig_use_stmt);
2502 if (has_debug_uses)
2504 /* If there are debug uses, emit something like:
2505 # DEBUG D#1 => i_2(D) > j_3(D) ? 1 : -1
2506 # DEBUG D#2 => i_2(D) == j_3(D) ? 0 : D#1
2507 where > stands for the comparison that yielded 1
2508 and replace debug uses of phi result with that D#2.
2509 Ignore the value of 2, because if NaNs aren't expected,
2510 all floating point numbers should be comparable. */
2511 gimple_stmt_iterator gsi = gsi_after_labels (gimple_bb (phi));
2512 tree type = TREE_TYPE (phires);
2513 tree temp1 = build_debug_expr_decl (type);
2514 tree t = build2 (one_cmp, boolean_type_node, lhs1, rhs2);
2515 t = build3 (COND_EXPR, type, t, build_one_cst (type),
2516 build_int_cst (type, -1));
2517 gimple *g = gimple_build_debug_bind (temp1, t, phi);
2518 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2519 tree temp2 = build_debug_expr_decl (type);
2520 t = build2 (EQ_EXPR, boolean_type_node, lhs1, rhs2);
2521 t = build3 (COND_EXPR, type, t, build_zero_cst (type), temp1);
2522 g = gimple_build_debug_bind (temp2, t, phi);
2523 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2524 replace_uses_by (phires, temp2);
2525 if (orig_use_lhs)
2527 if (has_cast_debug_uses)
2529 tree temp3 = make_node (DEBUG_EXPR_DECL);
2530 DECL_ARTIFICIAL (temp3) = 1;
2531 TREE_TYPE (temp3) = TREE_TYPE (orig_use_lhs);
2532 SET_DECL_MODE (temp3, TYPE_MODE (type));
2533 t = fold_convert (TREE_TYPE (temp3), temp2);
2534 g = gimple_build_debug_bind (temp3, t, phi);
2535 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2536 replace_uses_by (orig_use_lhs, temp3);
2538 else
2539 replace_uses_by (orig_use_lhs, temp2);
2544 if (orig_use_lhs)
2546 gimple_stmt_iterator gsi = gsi_for_stmt (orig_use_stmt);
2547 gsi_remove (&gsi, true);
2550 gimple_stmt_iterator psi = gsi_for_stmt (phi);
2551 remove_phi_node (&psi, true);
2552 statistics_counter_event (cfun, "spaceship replacement", 1);
2554 return true;
2557 /* Optimize x ? __builtin_fun (x) : C, where C is __builtin_fun (0).
2558 Convert
2560 <bb 2>
2561 if (b_4(D) != 0)
2562 goto <bb 3>
2563 else
2564 goto <bb 4>
2566 <bb 3>
2567 _2 = (unsigned long) b_4(D);
2568 _9 = __builtin_popcountl (_2);
2570 _9 = __builtin_popcountl (b_4(D));
2572 <bb 4>
2573 c_12 = PHI <0(2), _9(3)>
2575 Into
2576 <bb 2>
2577 _2 = (unsigned long) b_4(D);
2578 _9 = __builtin_popcountl (_2);
2580 _9 = __builtin_popcountl (b_4(D));
2582 <bb 4>
2583 c_12 = PHI <_9(2)>
2585 Similarly for __builtin_clz or __builtin_ctz if
2586 C?Z_DEFINED_VALUE_AT_ZERO is 2, optab is present and
2587 instead of 0 above it uses the value from that macro. */
2589 static bool
2590 cond_removal_in_builtin_zero_pattern (basic_block cond_bb,
2591 basic_block middle_bb,
2592 edge e1, edge e2, gphi *phi,
2593 tree arg0, tree arg1)
2595 gimple *cond;
2596 gimple_stmt_iterator gsi, gsi_from;
2597 gimple *call;
2598 gimple *cast = NULL;
2599 tree lhs, arg;
2601 /* Check that
2602 _2 = (unsigned long) b_4(D);
2603 _9 = __builtin_popcountl (_2);
2605 _9 = __builtin_popcountl (b_4(D));
2606 are the only stmts in the middle_bb. */
2608 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
2609 if (gsi_end_p (gsi))
2610 return false;
2611 cast = gsi_stmt (gsi);
2612 gsi_next_nondebug (&gsi);
2613 if (!gsi_end_p (gsi))
2615 call = gsi_stmt (gsi);
2616 gsi_next_nondebug (&gsi);
2617 if (!gsi_end_p (gsi))
2618 return false;
2620 else
2622 call = cast;
2623 cast = NULL;
2626 /* Check that we have a popcount/clz/ctz builtin. */
2627 if (!is_gimple_call (call) || gimple_call_num_args (call) != 1)
2628 return false;
2630 arg = gimple_call_arg (call, 0);
2631 lhs = gimple_get_lhs (call);
2633 if (lhs == NULL_TREE)
2634 return false;
2636 combined_fn cfn = gimple_call_combined_fn (call);
2637 internal_fn ifn = IFN_LAST;
2638 int val = 0;
2639 switch (cfn)
2641 case CFN_BUILT_IN_BSWAP16:
2642 case CFN_BUILT_IN_BSWAP32:
2643 case CFN_BUILT_IN_BSWAP64:
2644 case CFN_BUILT_IN_BSWAP128:
2645 CASE_CFN_FFS:
2646 CASE_CFN_PARITY:
2647 CASE_CFN_POPCOUNT:
2648 break;
2649 CASE_CFN_CLZ:
2650 if (INTEGRAL_TYPE_P (TREE_TYPE (arg)))
2652 tree type = TREE_TYPE (arg);
2653 if (direct_internal_fn_supported_p (IFN_CLZ, type, OPTIMIZE_FOR_BOTH)
2654 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (type),
2655 val) == 2)
2657 ifn = IFN_CLZ;
2658 break;
2661 return false;
2662 CASE_CFN_CTZ:
2663 if (INTEGRAL_TYPE_P (TREE_TYPE (arg)))
2665 tree type = TREE_TYPE (arg);
2666 if (direct_internal_fn_supported_p (IFN_CTZ, type, OPTIMIZE_FOR_BOTH)
2667 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (type),
2668 val) == 2)
2670 ifn = IFN_CTZ;
2671 break;
2674 return false;
2675 case CFN_BUILT_IN_CLRSB:
2676 val = TYPE_PRECISION (integer_type_node) - 1;
2677 break;
2678 case CFN_BUILT_IN_CLRSBL:
2679 val = TYPE_PRECISION (long_integer_type_node) - 1;
2680 break;
2681 case CFN_BUILT_IN_CLRSBLL:
2682 val = TYPE_PRECISION (long_long_integer_type_node) - 1;
2683 break;
2684 default:
2685 return false;
2688 if (cast)
2690 /* We have a cast stmt feeding popcount/clz/ctz builtin. */
2691 /* Check that we have a cast prior to that. */
2692 if (gimple_code (cast) != GIMPLE_ASSIGN
2693 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (cast)))
2694 return false;
2695 /* Result of the cast stmt is the argument to the builtin. */
2696 if (arg != gimple_assign_lhs (cast))
2697 return false;
2698 arg = gimple_assign_rhs1 (cast);
2701 cond = last_stmt (cond_bb);
2703 /* Cond_bb has a check for b_4 [!=|==] 0 before calling the popcount/clz/ctz
2704 builtin. */
2705 if (gimple_code (cond) != GIMPLE_COND
2706 || (gimple_cond_code (cond) != NE_EXPR
2707 && gimple_cond_code (cond) != EQ_EXPR)
2708 || !integer_zerop (gimple_cond_rhs (cond))
2709 || arg != gimple_cond_lhs (cond))
2710 return false;
2712 /* Canonicalize. */
2713 if ((e2->flags & EDGE_TRUE_VALUE
2714 && gimple_cond_code (cond) == NE_EXPR)
2715 || (e1->flags & EDGE_TRUE_VALUE
2716 && gimple_cond_code (cond) == EQ_EXPR))
2718 std::swap (arg0, arg1);
2719 std::swap (e1, e2);
2722 /* Check PHI arguments. */
2723 if (lhs != arg0
2724 || TREE_CODE (arg1) != INTEGER_CST
2725 || wi::to_wide (arg1) != val)
2726 return false;
2728 /* And insert the popcount/clz/ctz builtin and cast stmt before the
2729 cond_bb. */
2730 gsi = gsi_last_bb (cond_bb);
2731 if (cast)
2733 gsi_from = gsi_for_stmt (cast);
2734 gsi_move_before (&gsi_from, &gsi);
2735 reset_flow_sensitive_info (gimple_get_lhs (cast));
2737 gsi_from = gsi_for_stmt (call);
2738 if (ifn == IFN_LAST || gimple_call_internal_p (call))
2739 gsi_move_before (&gsi_from, &gsi);
2740 else
2742 /* For __builtin_c[lt]z* force .C[LT]Z ifn, because only
2743 the latter is well defined at zero. */
2744 call = gimple_build_call_internal (ifn, 1, gimple_call_arg (call, 0));
2745 gimple_call_set_lhs (call, lhs);
2746 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2747 gsi_remove (&gsi_from, true);
2749 reset_flow_sensitive_info (lhs);
2751 /* Now update the PHI and remove unneeded bbs. */
2752 replace_phi_edge_with_variable (cond_bb, e2, phi, lhs);
2753 return true;
2756 /* Auxiliary functions to determine the set of memory accesses which
2757 can't trap because they are preceded by accesses to the same memory
2758 portion. We do that for MEM_REFs, so we only need to track
2759 the SSA_NAME of the pointer indirectly referenced. The algorithm
2760 simply is a walk over all instructions in dominator order. When
2761 we see an MEM_REF we determine if we've already seen a same
2762 ref anywhere up to the root of the dominator tree. If we do the
2763 current access can't trap. If we don't see any dominating access
2764 the current access might trap, but might also make later accesses
2765 non-trapping, so we remember it. We need to be careful with loads
2766 or stores, for instance a load might not trap, while a store would,
2767 so if we see a dominating read access this doesn't mean that a later
2768 write access would not trap. Hence we also need to differentiate the
2769 type of access(es) seen.
2771 ??? We currently are very conservative and assume that a load might
2772 trap even if a store doesn't (write-only memory). This probably is
2773 overly conservative.
2775 We currently support a special case that for !TREE_ADDRESSABLE automatic
2776 variables, it could ignore whether something is a load or store because the
2777 local stack should be always writable. */
2779 /* A hash-table of references (MEM_REF/ARRAY_REF/COMPONENT_REF), and in which
2780 basic block an *_REF through it was seen, which would constitute a
2781 no-trap region for same accesses.
2783 Size is needed to support 2 MEM_REFs of different types, like
2784 MEM<double>(s_1) and MEM<long>(s_1), which would compare equal with
2785 OEP_ADDRESS_OF. */
2786 struct ref_to_bb
2788 tree exp;
2789 HOST_WIDE_INT size;
2790 unsigned int phase;
2791 basic_block bb;
2794 /* Hashtable helpers. */
2796 struct refs_hasher : free_ptr_hash<ref_to_bb>
2798 static inline hashval_t hash (const ref_to_bb *);
2799 static inline bool equal (const ref_to_bb *, const ref_to_bb *);
2802 /* Used for quick clearing of the hash-table when we see calls.
2803 Hash entries with phase < nt_call_phase are invalid. */
2804 static unsigned int nt_call_phase;
2806 /* The hash function. */
2808 inline hashval_t
2809 refs_hasher::hash (const ref_to_bb *n)
2811 inchash::hash hstate;
2812 inchash::add_expr (n->exp, hstate, OEP_ADDRESS_OF);
2813 hstate.add_hwi (n->size);
2814 return hstate.end ();
2817 /* The equality function of *P1 and *P2. */
2819 inline bool
2820 refs_hasher::equal (const ref_to_bb *n1, const ref_to_bb *n2)
2822 return operand_equal_p (n1->exp, n2->exp, OEP_ADDRESS_OF)
2823 && n1->size == n2->size;
2826 class nontrapping_dom_walker : public dom_walker
2828 public:
2829 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
2830 : dom_walker (direction), m_nontrapping (ps), m_seen_refs (128)
2833 virtual edge before_dom_children (basic_block);
2834 virtual void after_dom_children (basic_block);
2836 private:
2838 /* We see the expression EXP in basic block BB. If it's an interesting
2839 expression (an MEM_REF through an SSA_NAME) possibly insert the
2840 expression into the set NONTRAP or the hash table of seen expressions.
2841 STORE is true if this expression is on the LHS, otherwise it's on
2842 the RHS. */
2843 void add_or_mark_expr (basic_block, tree, bool);
2845 hash_set<tree> *m_nontrapping;
2847 /* The hash table for remembering what we've seen. */
2848 hash_table<refs_hasher> m_seen_refs;
2851 /* Called by walk_dominator_tree, when entering the block BB. */
2852 edge
2853 nontrapping_dom_walker::before_dom_children (basic_block bb)
2855 edge e;
2856 edge_iterator ei;
2857 gimple_stmt_iterator gsi;
2859 /* If we haven't seen all our predecessors, clear the hash-table. */
2860 FOR_EACH_EDGE (e, ei, bb->preds)
2861 if ((((size_t)e->src->aux) & 2) == 0)
2863 nt_call_phase++;
2864 break;
2867 /* Mark this BB as being on the path to dominator root and as visited. */
2868 bb->aux = (void*)(1 | 2);
2870 /* And walk the statements in order. */
2871 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2873 gimple *stmt = gsi_stmt (gsi);
2875 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
2876 || (is_gimple_call (stmt)
2877 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
2878 nt_call_phase++;
2879 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
2881 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
2882 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
2885 return NULL;
2888 /* Called by walk_dominator_tree, when basic block BB is exited. */
2889 void
2890 nontrapping_dom_walker::after_dom_children (basic_block bb)
2892 /* This BB isn't on the path to dominator root anymore. */
2893 bb->aux = (void*)2;
2896 /* We see the expression EXP in basic block BB. If it's an interesting
2897 expression of:
2898 1) MEM_REF
2899 2) ARRAY_REF
2900 3) COMPONENT_REF
2901 possibly insert the expression into the set NONTRAP or the hash table
2902 of seen expressions. STORE is true if this expression is on the LHS,
2903 otherwise it's on the RHS. */
2904 void
2905 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
2907 HOST_WIDE_INT size;
2909 if ((TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == ARRAY_REF
2910 || TREE_CODE (exp) == COMPONENT_REF)
2911 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
2913 struct ref_to_bb map;
2914 ref_to_bb **slot;
2915 struct ref_to_bb *r2bb;
2916 basic_block found_bb = 0;
2918 if (!store)
2920 tree base = get_base_address (exp);
2921 /* Only record a LOAD of a local variable without address-taken, as
2922 the local stack is always writable. This allows cselim on a STORE
2923 with a dominating LOAD. */
2924 if (!auto_var_p (base) || TREE_ADDRESSABLE (base))
2925 return;
2928 /* Try to find the last seen *_REF, which can trap. */
2929 map.exp = exp;
2930 map.size = size;
2931 slot = m_seen_refs.find_slot (&map, INSERT);
2932 r2bb = *slot;
2933 if (r2bb && r2bb->phase >= nt_call_phase)
2934 found_bb = r2bb->bb;
2936 /* If we've found a trapping *_REF, _and_ it dominates EXP
2937 (it's in a basic block on the path from us to the dominator root)
2938 then we can't trap. */
2939 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
2941 m_nontrapping->add (exp);
2943 else
2945 /* EXP might trap, so insert it into the hash table. */
2946 if (r2bb)
2948 r2bb->phase = nt_call_phase;
2949 r2bb->bb = bb;
2951 else
2953 r2bb = XNEW (struct ref_to_bb);
2954 r2bb->phase = nt_call_phase;
2955 r2bb->bb = bb;
2956 r2bb->exp = exp;
2957 r2bb->size = size;
2958 *slot = r2bb;
2964 /* This is the entry point of gathering non trapping memory accesses.
2965 It will do a dominator walk over the whole function, and it will
2966 make use of the bb->aux pointers. It returns a set of trees
2967 (the MEM_REFs itself) which can't trap. */
2968 static hash_set<tree> *
2969 get_non_trapping (void)
2971 nt_call_phase = 0;
2972 hash_set<tree> *nontrap = new hash_set<tree>;
2974 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
2975 .walk (cfun->cfg->x_entry_block_ptr);
2977 clear_aux_for_blocks ();
2978 return nontrap;
2981 /* Do the main work of conditional store replacement. We already know
2982 that the recognized pattern looks like so:
2984 split:
2985 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
2986 MIDDLE_BB:
2987 something
2988 fallthrough (edge E0)
2989 JOIN_BB:
2990 some more
2992 We check that MIDDLE_BB contains only one store, that that store
2993 doesn't trap (not via NOTRAP, but via checking if an access to the same
2994 memory location dominates us, or the store is to a local addressable
2995 object) and that the store has a "simple" RHS. */
2997 static bool
2998 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
2999 edge e0, edge e1, hash_set<tree> *nontrap)
3001 gimple *assign = last_and_only_stmt (middle_bb);
3002 tree lhs, rhs, name, name2;
3003 gphi *newphi;
3004 gassign *new_stmt;
3005 gimple_stmt_iterator gsi;
3006 location_t locus;
3008 /* Check if middle_bb contains of only one store. */
3009 if (!assign
3010 || !gimple_assign_single_p (assign)
3011 || gimple_has_volatile_ops (assign))
3012 return false;
3014 /* And no PHI nodes so all uses in the single stmt are also
3015 available where we insert to. */
3016 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
3017 return false;
3019 locus = gimple_location (assign);
3020 lhs = gimple_assign_lhs (assign);
3021 rhs = gimple_assign_rhs1 (assign);
3022 if ((!REFERENCE_CLASS_P (lhs)
3023 && !DECL_P (lhs))
3024 || !is_gimple_reg_type (TREE_TYPE (lhs)))
3025 return false;
3027 /* Prove that we can move the store down. We could also check
3028 TREE_THIS_NOTRAP here, but in that case we also could move stores,
3029 whose value is not available readily, which we want to avoid. */
3030 if (!nontrap->contains (lhs))
3032 /* If LHS is an access to a local variable without address-taken
3033 (or when we allow data races) and known not to trap, we could
3034 always safely move down the store. */
3035 tree base = get_base_address (lhs);
3036 if (!auto_var_p (base)
3037 || (TREE_ADDRESSABLE (base) && !flag_store_data_races)
3038 || tree_could_trap_p (lhs))
3039 return false;
3042 /* Now we've checked the constraints, so do the transformation:
3043 1) Remove the single store. */
3044 gsi = gsi_for_stmt (assign);
3045 unlink_stmt_vdef (assign);
3046 gsi_remove (&gsi, true);
3047 release_defs (assign);
3049 /* Make both store and load use alias-set zero as we have to
3050 deal with the case of the store being a conditional change
3051 of the dynamic type. */
3052 lhs = unshare_expr (lhs);
3053 tree *basep = &lhs;
3054 while (handled_component_p (*basep))
3055 basep = &TREE_OPERAND (*basep, 0);
3056 if (TREE_CODE (*basep) == MEM_REF
3057 || TREE_CODE (*basep) == TARGET_MEM_REF)
3058 TREE_OPERAND (*basep, 1)
3059 = fold_convert (ptr_type_node, TREE_OPERAND (*basep, 1));
3060 else
3061 *basep = build2 (MEM_REF, TREE_TYPE (*basep),
3062 build_fold_addr_expr (*basep),
3063 build_zero_cst (ptr_type_node));
3065 /* 2) Insert a load from the memory of the store to the temporary
3066 on the edge which did not contain the store. */
3067 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
3068 new_stmt = gimple_build_assign (name, lhs);
3069 gimple_set_location (new_stmt, locus);
3070 lhs = unshare_expr (lhs);
3072 /* Set the no-warning bit on the rhs of the load to avoid uninit
3073 warnings. */
3074 tree rhs1 = gimple_assign_rhs1 (new_stmt);
3075 suppress_warning (rhs1, OPT_Wuninitialized);
3077 gsi_insert_on_edge (e1, new_stmt);
3079 /* 3) Create a PHI node at the join block, with one argument
3080 holding the old RHS, and the other holding the temporary
3081 where we stored the old memory contents. */
3082 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
3083 newphi = create_phi_node (name2, join_bb);
3084 add_phi_arg (newphi, rhs, e0, locus);
3085 add_phi_arg (newphi, name, e1, locus);
3087 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
3089 /* 4) Insert that PHI node. */
3090 gsi = gsi_after_labels (join_bb);
3091 if (gsi_end_p (gsi))
3093 gsi = gsi_last_bb (join_bb);
3094 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
3096 else
3097 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
3099 if (dump_file && (dump_flags & TDF_DETAILS))
3101 fprintf (dump_file, "\nConditional store replacement happened!");
3102 fprintf (dump_file, "\nReplaced the store with a load.");
3103 fprintf (dump_file, "\nInserted a new PHI statement in joint block:\n");
3104 print_gimple_stmt (dump_file, new_stmt, 0, TDF_VOPS|TDF_MEMSYMS);
3106 statistics_counter_event (cfun, "conditional store replacement", 1);
3108 return true;
3111 /* Do the main work of conditional store replacement. */
3113 static bool
3114 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
3115 basic_block join_bb, gimple *then_assign,
3116 gimple *else_assign)
3118 tree lhs_base, lhs, then_rhs, else_rhs, name;
3119 location_t then_locus, else_locus;
3120 gimple_stmt_iterator gsi;
3121 gphi *newphi;
3122 gassign *new_stmt;
3124 if (then_assign == NULL
3125 || !gimple_assign_single_p (then_assign)
3126 || gimple_clobber_p (then_assign)
3127 || gimple_has_volatile_ops (then_assign)
3128 || else_assign == NULL
3129 || !gimple_assign_single_p (else_assign)
3130 || gimple_clobber_p (else_assign)
3131 || gimple_has_volatile_ops (else_assign))
3132 return false;
3134 lhs = gimple_assign_lhs (then_assign);
3135 if (!is_gimple_reg_type (TREE_TYPE (lhs))
3136 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
3137 return false;
3139 lhs_base = get_base_address (lhs);
3140 if (lhs_base == NULL_TREE
3141 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
3142 return false;
3144 then_rhs = gimple_assign_rhs1 (then_assign);
3145 else_rhs = gimple_assign_rhs1 (else_assign);
3146 then_locus = gimple_location (then_assign);
3147 else_locus = gimple_location (else_assign);
3149 /* Now we've checked the constraints, so do the transformation:
3150 1) Remove the stores. */
3151 gsi = gsi_for_stmt (then_assign);
3152 unlink_stmt_vdef (then_assign);
3153 gsi_remove (&gsi, true);
3154 release_defs (then_assign);
3156 gsi = gsi_for_stmt (else_assign);
3157 unlink_stmt_vdef (else_assign);
3158 gsi_remove (&gsi, true);
3159 release_defs (else_assign);
3161 /* 2) Create a PHI node at the join block, with one argument
3162 holding the old RHS, and the other holding the temporary
3163 where we stored the old memory contents. */
3164 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
3165 newphi = create_phi_node (name, join_bb);
3166 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
3167 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
3169 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
3171 /* 3) Insert that PHI node. */
3172 gsi = gsi_after_labels (join_bb);
3173 if (gsi_end_p (gsi))
3175 gsi = gsi_last_bb (join_bb);
3176 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
3178 else
3179 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
3181 statistics_counter_event (cfun, "if-then-else store replacement", 1);
3183 return true;
3186 /* Return the single store in BB with VDEF or NULL if there are
3187 other stores in the BB or loads following the store. */
3189 static gimple *
3190 single_trailing_store_in_bb (basic_block bb, tree vdef)
3192 if (SSA_NAME_IS_DEFAULT_DEF (vdef))
3193 return NULL;
3194 gimple *store = SSA_NAME_DEF_STMT (vdef);
3195 if (gimple_bb (store) != bb
3196 || gimple_code (store) == GIMPLE_PHI)
3197 return NULL;
3199 /* Verify there is no other store in this BB. */
3200 if (!SSA_NAME_IS_DEFAULT_DEF (gimple_vuse (store))
3201 && gimple_bb (SSA_NAME_DEF_STMT (gimple_vuse (store))) == bb
3202 && gimple_code (SSA_NAME_DEF_STMT (gimple_vuse (store))) != GIMPLE_PHI)
3203 return NULL;
3205 /* Verify there is no load or store after the store. */
3206 use_operand_p use_p;
3207 imm_use_iterator imm_iter;
3208 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vdef (store))
3209 if (USE_STMT (use_p) != store
3210 && gimple_bb (USE_STMT (use_p)) == bb)
3211 return NULL;
3213 return store;
3216 /* Conditional store replacement. We already know
3217 that the recognized pattern looks like so:
3219 split:
3220 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
3221 THEN_BB:
3223 X = Y;
3225 goto JOIN_BB;
3226 ELSE_BB:
3228 X = Z;
3230 fallthrough (edge E0)
3231 JOIN_BB:
3232 some more
3234 We check that it is safe to sink the store to JOIN_BB by verifying that
3235 there are no read-after-write or write-after-write dependencies in
3236 THEN_BB and ELSE_BB. */
3238 static bool
3239 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
3240 basic_block join_bb)
3242 vec<data_reference_p> then_datarefs, else_datarefs;
3243 vec<ddr_p> then_ddrs, else_ddrs;
3244 gimple *then_store, *else_store;
3245 bool found, ok = false, res;
3246 struct data_dependence_relation *ddr;
3247 data_reference_p then_dr, else_dr;
3248 int i, j;
3249 tree then_lhs, else_lhs;
3250 basic_block blocks[3];
3252 /* Handle the case with single store in THEN_BB and ELSE_BB. That is
3253 cheap enough to always handle as it allows us to elide dependence
3254 checking. */
3255 gphi *vphi = NULL;
3256 for (gphi_iterator si = gsi_start_phis (join_bb); !gsi_end_p (si);
3257 gsi_next (&si))
3258 if (virtual_operand_p (gimple_phi_result (si.phi ())))
3260 vphi = si.phi ();
3261 break;
3263 if (!vphi)
3264 return false;
3265 tree then_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (then_bb));
3266 tree else_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (else_bb));
3267 gimple *then_assign = single_trailing_store_in_bb (then_bb, then_vdef);
3268 if (then_assign)
3270 gimple *else_assign = single_trailing_store_in_bb (else_bb, else_vdef);
3271 if (else_assign)
3272 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
3273 then_assign, else_assign);
3276 /* If either vectorization or if-conversion is disabled then do
3277 not sink any stores. */
3278 if (param_max_stores_to_sink == 0
3279 || (!flag_tree_loop_vectorize && !flag_tree_slp_vectorize)
3280 || !flag_tree_loop_if_convert)
3281 return false;
3283 /* Find data references. */
3284 then_datarefs.create (1);
3285 else_datarefs.create (1);
3286 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
3287 == chrec_dont_know)
3288 || !then_datarefs.length ()
3289 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
3290 == chrec_dont_know)
3291 || !else_datarefs.length ())
3293 free_data_refs (then_datarefs);
3294 free_data_refs (else_datarefs);
3295 return false;
3298 /* Find pairs of stores with equal LHS. */
3299 auto_vec<gimple *, 1> then_stores, else_stores;
3300 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
3302 if (DR_IS_READ (then_dr))
3303 continue;
3305 then_store = DR_STMT (then_dr);
3306 then_lhs = gimple_get_lhs (then_store);
3307 if (then_lhs == NULL_TREE)
3308 continue;
3309 found = false;
3311 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
3313 if (DR_IS_READ (else_dr))
3314 continue;
3316 else_store = DR_STMT (else_dr);
3317 else_lhs = gimple_get_lhs (else_store);
3318 if (else_lhs == NULL_TREE)
3319 continue;
3321 if (operand_equal_p (then_lhs, else_lhs, 0))
3323 found = true;
3324 break;
3328 if (!found)
3329 continue;
3331 then_stores.safe_push (then_store);
3332 else_stores.safe_push (else_store);
3335 /* No pairs of stores found. */
3336 if (!then_stores.length ()
3337 || then_stores.length () > (unsigned) param_max_stores_to_sink)
3339 free_data_refs (then_datarefs);
3340 free_data_refs (else_datarefs);
3341 return false;
3344 /* Compute and check data dependencies in both basic blocks. */
3345 then_ddrs.create (1);
3346 else_ddrs.create (1);
3347 if (!compute_all_dependences (then_datarefs, &then_ddrs,
3348 vNULL, false)
3349 || !compute_all_dependences (else_datarefs, &else_ddrs,
3350 vNULL, false))
3352 free_dependence_relations (then_ddrs);
3353 free_dependence_relations (else_ddrs);
3354 free_data_refs (then_datarefs);
3355 free_data_refs (else_datarefs);
3356 return false;
3358 blocks[0] = then_bb;
3359 blocks[1] = else_bb;
3360 blocks[2] = join_bb;
3361 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
3363 /* Check that there are no read-after-write or write-after-write dependencies
3364 in THEN_BB. */
3365 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
3367 struct data_reference *dra = DDR_A (ddr);
3368 struct data_reference *drb = DDR_B (ddr);
3370 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
3371 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
3372 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
3373 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
3374 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
3375 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
3377 free_dependence_relations (then_ddrs);
3378 free_dependence_relations (else_ddrs);
3379 free_data_refs (then_datarefs);
3380 free_data_refs (else_datarefs);
3381 return false;
3385 /* Check that there are no read-after-write or write-after-write dependencies
3386 in ELSE_BB. */
3387 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
3389 struct data_reference *dra = DDR_A (ddr);
3390 struct data_reference *drb = DDR_B (ddr);
3392 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
3393 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
3394 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
3395 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
3396 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
3397 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
3399 free_dependence_relations (then_ddrs);
3400 free_dependence_relations (else_ddrs);
3401 free_data_refs (then_datarefs);
3402 free_data_refs (else_datarefs);
3403 return false;
3407 /* Sink stores with same LHS. */
3408 FOR_EACH_VEC_ELT (then_stores, i, then_store)
3410 else_store = else_stores[i];
3411 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
3412 then_store, else_store);
3413 ok = ok || res;
3416 free_dependence_relations (then_ddrs);
3417 free_dependence_relations (else_ddrs);
3418 free_data_refs (then_datarefs);
3419 free_data_refs (else_datarefs);
3421 return ok;
3424 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
3426 static bool
3427 local_mem_dependence (gimple *stmt, basic_block bb)
3429 tree vuse = gimple_vuse (stmt);
3430 gimple *def;
3432 if (!vuse)
3433 return false;
3435 def = SSA_NAME_DEF_STMT (vuse);
3436 return (def && gimple_bb (def) == bb);
3439 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
3440 BB1 and BB2 are "then" and "else" blocks dependent on this test,
3441 and BB3 rejoins control flow following BB1 and BB2, look for
3442 opportunities to hoist loads as follows. If BB3 contains a PHI of
3443 two loads, one each occurring in BB1 and BB2, and the loads are
3444 provably of adjacent fields in the same structure, then move both
3445 loads into BB0. Of course this can only be done if there are no
3446 dependencies preventing such motion.
3448 One of the hoisted loads will always be speculative, so the
3449 transformation is currently conservative:
3451 - The fields must be strictly adjacent.
3452 - The two fields must occupy a single memory block that is
3453 guaranteed to not cross a page boundary.
3455 The last is difficult to prove, as such memory blocks should be
3456 aligned on the minimum of the stack alignment boundary and the
3457 alignment guaranteed by heap allocation interfaces. Thus we rely
3458 on a parameter for the alignment value.
3460 Provided a good value is used for the last case, the first
3461 restriction could possibly be relaxed. */
3463 static void
3464 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
3465 basic_block bb2, basic_block bb3)
3467 int param_align = param_l1_cache_line_size;
3468 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
3469 gphi_iterator gsi;
3471 /* Walk the phis in bb3 looking for an opportunity. We are looking
3472 for phis of two SSA names, one each of which is defined in bb1 and
3473 bb2. */
3474 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
3476 gphi *phi_stmt = gsi.phi ();
3477 gimple *def1, *def2;
3478 tree arg1, arg2, ref1, ref2, field1, field2;
3479 tree tree_offset1, tree_offset2, tree_size2, next;
3480 int offset1, offset2, size2;
3481 unsigned align1;
3482 gimple_stmt_iterator gsi2;
3483 basic_block bb_for_def1, bb_for_def2;
3485 if (gimple_phi_num_args (phi_stmt) != 2
3486 || virtual_operand_p (gimple_phi_result (phi_stmt)))
3487 continue;
3489 arg1 = gimple_phi_arg_def (phi_stmt, 0);
3490 arg2 = gimple_phi_arg_def (phi_stmt, 1);
3492 if (TREE_CODE (arg1) != SSA_NAME
3493 || TREE_CODE (arg2) != SSA_NAME
3494 || SSA_NAME_IS_DEFAULT_DEF (arg1)
3495 || SSA_NAME_IS_DEFAULT_DEF (arg2))
3496 continue;
3498 def1 = SSA_NAME_DEF_STMT (arg1);
3499 def2 = SSA_NAME_DEF_STMT (arg2);
3501 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
3502 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
3503 continue;
3505 /* Check the mode of the arguments to be sure a conditional move
3506 can be generated for it. */
3507 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
3508 == CODE_FOR_nothing)
3509 continue;
3511 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
3512 if (!gimple_assign_single_p (def1)
3513 || !gimple_assign_single_p (def2)
3514 || gimple_has_volatile_ops (def1)
3515 || gimple_has_volatile_ops (def2))
3516 continue;
3518 ref1 = gimple_assign_rhs1 (def1);
3519 ref2 = gimple_assign_rhs1 (def2);
3521 if (TREE_CODE (ref1) != COMPONENT_REF
3522 || TREE_CODE (ref2) != COMPONENT_REF)
3523 continue;
3525 /* The zeroth operand of the two component references must be
3526 identical. It is not sufficient to compare get_base_address of
3527 the two references, because this could allow for different
3528 elements of the same array in the two trees. It is not safe to
3529 assume that the existence of one array element implies the
3530 existence of a different one. */
3531 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
3532 continue;
3534 field1 = TREE_OPERAND (ref1, 1);
3535 field2 = TREE_OPERAND (ref2, 1);
3537 /* Check for field adjacency, and ensure field1 comes first. */
3538 for (next = DECL_CHAIN (field1);
3539 next && TREE_CODE (next) != FIELD_DECL;
3540 next = DECL_CHAIN (next))
3543 if (next != field2)
3545 for (next = DECL_CHAIN (field2);
3546 next && TREE_CODE (next) != FIELD_DECL;
3547 next = DECL_CHAIN (next))
3550 if (next != field1)
3551 continue;
3553 std::swap (field1, field2);
3554 std::swap (def1, def2);
3557 bb_for_def1 = gimple_bb (def1);
3558 bb_for_def2 = gimple_bb (def2);
3560 /* Check for proper alignment of the first field. */
3561 tree_offset1 = bit_position (field1);
3562 tree_offset2 = bit_position (field2);
3563 tree_size2 = DECL_SIZE (field2);
3565 if (!tree_fits_uhwi_p (tree_offset1)
3566 || !tree_fits_uhwi_p (tree_offset2)
3567 || !tree_fits_uhwi_p (tree_size2))
3568 continue;
3570 offset1 = tree_to_uhwi (tree_offset1);
3571 offset2 = tree_to_uhwi (tree_offset2);
3572 size2 = tree_to_uhwi (tree_size2);
3573 align1 = DECL_ALIGN (field1) % param_align_bits;
3575 if (offset1 % BITS_PER_UNIT != 0)
3576 continue;
3578 /* For profitability, the two field references should fit within
3579 a single cache line. */
3580 if (align1 + offset2 - offset1 + size2 > param_align_bits)
3581 continue;
3583 /* The two expressions cannot be dependent upon vdefs defined
3584 in bb1/bb2. */
3585 if (local_mem_dependence (def1, bb_for_def1)
3586 || local_mem_dependence (def2, bb_for_def2))
3587 continue;
3589 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
3590 bb0. We hoist the first one first so that a cache miss is handled
3591 efficiently regardless of hardware cache-fill policy. */
3592 gsi2 = gsi_for_stmt (def1);
3593 gsi_move_to_bb_end (&gsi2, bb0);
3594 gsi2 = gsi_for_stmt (def2);
3595 gsi_move_to_bb_end (&gsi2, bb0);
3596 statistics_counter_event (cfun, "hoisted loads", 1);
3598 if (dump_file && (dump_flags & TDF_DETAILS))
3600 fprintf (dump_file,
3601 "\nHoisting adjacent loads from %d and %d into %d: \n",
3602 bb_for_def1->index, bb_for_def2->index, bb0->index);
3603 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
3604 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
3609 /* Determine whether we should attempt to hoist adjacent loads out of
3610 diamond patterns in pass_phiopt. Always hoist loads if
3611 -fhoist-adjacent-loads is specified and the target machine has
3612 both a conditional move instruction and a defined cache line size. */
3614 static bool
3615 gate_hoist_loads (void)
3617 return (flag_hoist_adjacent_loads == 1
3618 && param_l1_cache_line_size
3619 && HAVE_conditional_move);
3622 /* This pass tries to replaces an if-then-else block with an
3623 assignment. We have four kinds of transformations. Some of these
3624 transformations are also performed by the ifcvt RTL optimizer.
3626 Conditional Replacement
3627 -----------------------
3629 This transformation, implemented in match_simplify_replacement,
3630 replaces
3632 bb0:
3633 if (cond) goto bb2; else goto bb1;
3634 bb1:
3635 bb2:
3636 x = PHI <0 (bb1), 1 (bb0), ...>;
3638 with
3640 bb0:
3641 x' = cond;
3642 goto bb2;
3643 bb2:
3644 x = PHI <x' (bb0), ...>;
3646 We remove bb1 as it becomes unreachable. This occurs often due to
3647 gimplification of conditionals.
3649 Value Replacement
3650 -----------------
3652 This transformation, implemented in value_replacement, replaces
3654 bb0:
3655 if (a != b) goto bb2; else goto bb1;
3656 bb1:
3657 bb2:
3658 x = PHI <a (bb1), b (bb0), ...>;
3660 with
3662 bb0:
3663 bb2:
3664 x = PHI <b (bb0), ...>;
3666 This opportunity can sometimes occur as a result of other
3667 optimizations.
3670 Another case caught by value replacement looks like this:
3672 bb0:
3673 t1 = a == CONST;
3674 t2 = b > c;
3675 t3 = t1 & t2;
3676 if (t3 != 0) goto bb1; else goto bb2;
3677 bb1:
3678 bb2:
3679 x = PHI (CONST, a)
3681 Gets replaced with:
3682 bb0:
3683 bb2:
3684 t1 = a == CONST;
3685 t2 = b > c;
3686 t3 = t1 & t2;
3687 x = a;
3689 ABS Replacement
3690 ---------------
3692 This transformation, implemented in match_simplify_replacement, replaces
3694 bb0:
3695 if (a >= 0) goto bb2; else goto bb1;
3696 bb1:
3697 x = -a;
3698 bb2:
3699 x = PHI <x (bb1), a (bb0), ...>;
3701 with
3703 bb0:
3704 x' = ABS_EXPR< a >;
3705 bb2:
3706 x = PHI <x' (bb0), ...>;
3708 MIN/MAX Replacement
3709 -------------------
3711 This transformation, minmax_replacement replaces
3713 bb0:
3714 if (a <= b) goto bb2; else goto bb1;
3715 bb1:
3716 bb2:
3717 x = PHI <b (bb1), a (bb0), ...>;
3719 with
3721 bb0:
3722 x' = MIN_EXPR (a, b)
3723 bb2:
3724 x = PHI <x' (bb0), ...>;
3726 A similar transformation is done for MAX_EXPR.
3729 This pass also performs a fifth transformation of a slightly different
3730 flavor.
3732 Factor conversion in COND_EXPR
3733 ------------------------------
3735 This transformation factors the conversion out of COND_EXPR with
3736 factor_out_conditional_conversion.
3738 For example:
3739 if (a <= CST) goto <bb 3>; else goto <bb 4>;
3740 <bb 3>:
3741 tmp = (int) a;
3742 <bb 4>:
3743 tmp = PHI <tmp, CST>
3745 Into:
3746 if (a <= CST) goto <bb 3>; else goto <bb 4>;
3747 <bb 3>:
3748 <bb 4>:
3749 a = PHI <a, CST>
3750 tmp = (int) a;
3752 Adjacent Load Hoisting
3753 ----------------------
3755 This transformation replaces
3757 bb0:
3758 if (...) goto bb2; else goto bb1;
3759 bb1:
3760 x1 = (<expr>).field1;
3761 goto bb3;
3762 bb2:
3763 x2 = (<expr>).field2;
3764 bb3:
3765 # x = PHI <x1, x2>;
3767 with
3769 bb0:
3770 x1 = (<expr>).field1;
3771 x2 = (<expr>).field2;
3772 if (...) goto bb2; else goto bb1;
3773 bb1:
3774 goto bb3;
3775 bb2:
3776 bb3:
3777 # x = PHI <x1, x2>;
3779 The purpose of this transformation is to enable generation of conditional
3780 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
3781 the loads is speculative, the transformation is restricted to very
3782 specific cases to avoid introducing a page fault. We are looking for
3783 the common idiom:
3785 if (...)
3786 x = y->left;
3787 else
3788 x = y->right;
3790 where left and right are typically adjacent pointers in a tree structure. */
3792 namespace {
3794 const pass_data pass_data_phiopt =
3796 GIMPLE_PASS, /* type */
3797 "phiopt", /* name */
3798 OPTGROUP_NONE, /* optinfo_flags */
3799 TV_TREE_PHIOPT, /* tv_id */
3800 ( PROP_cfg | PROP_ssa ), /* properties_required */
3801 0, /* properties_provided */
3802 0, /* properties_destroyed */
3803 0, /* todo_flags_start */
3804 0, /* todo_flags_finish */
3807 class pass_phiopt : public gimple_opt_pass
3809 public:
3810 pass_phiopt (gcc::context *ctxt)
3811 : gimple_opt_pass (pass_data_phiopt, ctxt), early_p (false)
3814 /* opt_pass methods: */
3815 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
3816 void set_pass_param (unsigned n, bool param)
3818 gcc_assert (n == 0);
3819 early_p = param;
3821 virtual bool gate (function *) { return flag_ssa_phiopt; }
3822 virtual unsigned int execute (function *)
3824 return tree_ssa_phiopt_worker (false,
3825 !early_p ? gate_hoist_loads () : false,
3826 early_p);
3829 private:
3830 bool early_p;
3831 }; // class pass_phiopt
3833 } // anon namespace
3835 gimple_opt_pass *
3836 make_pass_phiopt (gcc::context *ctxt)
3838 return new pass_phiopt (ctxt);
3841 namespace {
3843 const pass_data pass_data_cselim =
3845 GIMPLE_PASS, /* type */
3846 "cselim", /* name */
3847 OPTGROUP_NONE, /* optinfo_flags */
3848 TV_TREE_PHIOPT, /* tv_id */
3849 ( PROP_cfg | PROP_ssa ), /* properties_required */
3850 0, /* properties_provided */
3851 0, /* properties_destroyed */
3852 0, /* todo_flags_start */
3853 0, /* todo_flags_finish */
3856 class pass_cselim : public gimple_opt_pass
3858 public:
3859 pass_cselim (gcc::context *ctxt)
3860 : gimple_opt_pass (pass_data_cselim, ctxt)
3863 /* opt_pass methods: */
3864 virtual bool gate (function *) { return flag_tree_cselim; }
3865 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
3867 }; // class pass_cselim
3869 } // anon namespace
3871 gimple_opt_pass *
3872 make_pass_cselim (gcc::context *ctxt)
3874 return new pass_cselim (ctxt);