Fix typo in t-dimode
[official-gcc.git] / gcc / predict.c
blob3cb4e3c0eb57dac094001eb917e0d85e3035f987
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
57 #include "ipa-utils.h"
58 #include "gimple-pretty-print.h"
59 #include "selftest.h"
60 #include "cfgrtl.h"
61 #include "stringpool.h"
62 #include "attribs.h"
64 /* Enum with reasons why a predictor is ignored. */
66 enum predictor_reason
68 REASON_NONE,
69 REASON_IGNORED,
70 REASON_SINGLE_EDGE_DUPLICATE,
71 REASON_EDGE_PAIR_DUPLICATE
74 /* String messages for the aforementioned enum. */
76 static const char *reason_messages[] = {"", " (ignored)",
77 " (single edge duplicate)", " (edge pair duplicate)"};
80 static void combine_predictions_for_insn (rtx_insn *, basic_block);
81 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
82 enum predictor_reason, edge);
83 static void predict_paths_leading_to (basic_block, enum br_predictor,
84 enum prediction,
85 class loop *in_loop = NULL);
86 static void predict_paths_leading_to_edge (edge, enum br_predictor,
87 enum prediction,
88 class loop *in_loop = NULL);
89 static bool can_predict_insn_p (const rtx_insn *);
90 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
91 static void determine_unlikely_bbs ();
93 /* Information we hold about each branch predictor.
94 Filled using information from predict.def. */
96 struct predictor_info
98 const char *const name; /* Name used in the debugging dumps. */
99 const int hitrate; /* Expected hitrate used by
100 predict_insn_def call. */
101 const int flags;
104 /* Use given predictor without Dempster-Shaffer theory if it matches
105 using first_match heuristics. */
106 #define PRED_FLAG_FIRST_MATCH 1
108 /* Recompute hitrate in percent to our representation. */
110 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
112 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
113 static const struct predictor_info predictor_info[]= {
114 #include "predict.def"
116 /* Upper bound on predictors. */
117 {NULL, 0, 0}
119 #undef DEF_PREDICTOR
121 static gcov_type min_count = -1;
123 /* Determine the threshold for hot BB counts. */
125 gcov_type
126 get_hot_bb_threshold ()
128 if (min_count == -1)
130 const int hot_frac = param_hot_bb_count_fraction;
131 const gcov_type min_hot_count
132 = hot_frac
133 ? profile_info->sum_max / hot_frac
134 : (gcov_type)profile_count::max_count;
135 set_hot_bb_threshold (min_hot_count);
136 if (dump_file)
137 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
138 min_hot_count);
140 return min_count;
143 /* Set the threshold for hot BB counts. */
145 void
146 set_hot_bb_threshold (gcov_type min)
148 min_count = min;
151 /* Return TRUE if COUNT is considered to be hot in function FUN. */
153 bool
154 maybe_hot_count_p (struct function *fun, profile_count count)
156 if (!count.initialized_p ())
157 return true;
158 if (count.ipa () == profile_count::zero ())
159 return false;
160 if (!count.ipa_p ())
162 struct cgraph_node *node = cgraph_node::get (fun->decl);
163 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
165 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
166 return false;
167 if (node->frequency == NODE_FREQUENCY_HOT)
168 return true;
170 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
171 return true;
172 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
173 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
174 return false;
175 if (count.apply_scale (param_hot_bb_frequency_fraction, 1)
176 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
177 return false;
178 return true;
180 /* Code executed at most once is not hot. */
181 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
182 return false;
183 return (count >= get_hot_bb_threshold ());
186 /* Return true if basic block BB of function FUN can be CPU intensive
187 and should thus be optimized for maximum performance. */
189 bool
190 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
192 gcc_checking_assert (fun);
193 return maybe_hot_count_p (fun, bb->count);
196 /* Return true if edge E can be CPU intensive and should thus be optimized
197 for maximum performance. */
199 bool
200 maybe_hot_edge_p (edge e)
202 return maybe_hot_count_p (cfun, e->count ());
205 /* Return true if COUNT is considered to be never executed in function FUN
206 or if function FUN is considered so in the static profile. */
208 static bool
209 probably_never_executed (struct function *fun, profile_count count)
211 gcc_checking_assert (fun);
212 if (count.ipa () == profile_count::zero ())
213 return true;
214 /* Do not trust adjusted counts. This will make us to drop int cold section
215 code with low execution count as a result of inlining. These low counts
216 are not safe even with read profile and may lead us to dropping
217 code which actually gets executed into cold section of binary that is not
218 desirable. */
219 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
221 const int unlikely_frac = param_unlikely_bb_count_fraction;
222 if (count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
223 return false;
224 return true;
226 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
227 && (cgraph_node::get (fun->decl)->frequency
228 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
229 return true;
230 return false;
233 /* Return true if basic block BB of function FUN is probably never executed. */
235 bool
236 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
238 return probably_never_executed (fun, bb->count);
241 /* Return true if edge E is unlikely executed for obvious reasons. */
243 static bool
244 unlikely_executed_edge_p (edge e)
246 return (e->src->count == profile_count::zero ()
247 || e->probability == profile_probability::never ())
248 || (e->flags & (EDGE_EH | EDGE_FAKE));
251 /* Return true if edge E of function FUN is probably never executed. */
253 bool
254 probably_never_executed_edge_p (struct function *fun, edge e)
256 if (unlikely_executed_edge_p (e))
257 return true;
258 return probably_never_executed (fun, e->count ());
261 /* Return true if function FUN should always be optimized for size. */
263 optimize_size_level
264 optimize_function_for_size_p (struct function *fun)
266 if (!fun || !fun->decl)
267 return optimize_size ? OPTIMIZE_SIZE_MAX : OPTIMIZE_SIZE_NO;
268 cgraph_node *n = cgraph_node::get (fun->decl);
269 if (n)
270 return n->optimize_for_size_p ();
271 return OPTIMIZE_SIZE_NO;
274 /* Return true if function FUN should always be optimized for speed. */
276 bool
277 optimize_function_for_speed_p (struct function *fun)
279 return !optimize_function_for_size_p (fun);
282 /* Return the optimization type that should be used for function FUN. */
284 optimization_type
285 function_optimization_type (struct function *fun)
287 return (optimize_function_for_speed_p (fun)
288 ? OPTIMIZE_FOR_SPEED
289 : OPTIMIZE_FOR_SIZE);
292 /* Return TRUE if basic block BB should be optimized for size. */
294 optimize_size_level
295 optimize_bb_for_size_p (const_basic_block bb)
297 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
299 if (bb && ret < OPTIMIZE_SIZE_MAX && bb->count == profile_count::zero ())
300 ret = OPTIMIZE_SIZE_MAX;
301 if (bb && ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_bb_p (cfun, bb))
302 ret = OPTIMIZE_SIZE_BALANCED;
303 return ret;
306 /* Return TRUE if basic block BB should be optimized for speed. */
308 bool
309 optimize_bb_for_speed_p (const_basic_block bb)
311 return !optimize_bb_for_size_p (bb);
314 /* Return the optimization type that should be used for basic block BB. */
316 optimization_type
317 bb_optimization_type (const_basic_block bb)
319 return (optimize_bb_for_speed_p (bb)
320 ? OPTIMIZE_FOR_SPEED
321 : OPTIMIZE_FOR_SIZE);
324 /* Return TRUE if edge E should be optimized for size. */
326 optimize_size_level
327 optimize_edge_for_size_p (edge e)
329 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
331 if (ret < OPTIMIZE_SIZE_MAX && unlikely_executed_edge_p (e))
332 ret = OPTIMIZE_SIZE_MAX;
333 if (ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_edge_p (e))
334 ret = OPTIMIZE_SIZE_BALANCED;
335 return ret;
338 /* Return TRUE if edge E should be optimized for speed. */
340 bool
341 optimize_edge_for_speed_p (edge e)
343 return !optimize_edge_for_size_p (e);
346 /* Return TRUE if the current function is optimized for size. */
348 optimize_size_level
349 optimize_insn_for_size_p (void)
351 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
352 if (ret < OPTIMIZE_SIZE_BALANCED && !crtl->maybe_hot_insn_p)
353 ret = OPTIMIZE_SIZE_BALANCED;
354 return ret;
357 /* Return TRUE if the current function is optimized for speed. */
359 bool
360 optimize_insn_for_speed_p (void)
362 return !optimize_insn_for_size_p ();
365 /* Return TRUE if LOOP should be optimized for size. */
367 optimize_size_level
368 optimize_loop_for_size_p (class loop *loop)
370 return optimize_bb_for_size_p (loop->header);
373 /* Return TRUE if LOOP should be optimized for speed. */
375 bool
376 optimize_loop_for_speed_p (class loop *loop)
378 return optimize_bb_for_speed_p (loop->header);
381 /* Return TRUE if nest rooted at LOOP should be optimized for speed. */
383 bool
384 optimize_loop_nest_for_speed_p (class loop *loop)
386 class loop *l = loop;
387 if (optimize_loop_for_speed_p (loop))
388 return true;
389 l = loop->inner;
390 while (l && l != loop)
392 if (optimize_loop_for_speed_p (l))
393 return true;
394 if (l->inner)
395 l = l->inner;
396 else if (l->next)
397 l = l->next;
398 else
400 while (l != loop && !l->next)
401 l = loop_outer (l);
402 if (l != loop)
403 l = l->next;
406 return false;
409 /* Return TRUE if nest rooted at LOOP should be optimized for size. */
411 optimize_size_level
412 optimize_loop_nest_for_size_p (class loop *loop)
414 enum optimize_size_level ret = optimize_loop_for_size_p (loop);
415 class loop *l = loop;
417 l = loop->inner;
418 while (l && l != loop)
420 if (ret == OPTIMIZE_SIZE_NO)
421 break;
422 ret = MIN (optimize_loop_for_size_p (l), ret);
423 if (l->inner)
424 l = l->inner;
425 else if (l->next)
426 l = l->next;
427 else
429 while (l != loop && !l->next)
430 l = loop_outer (l);
431 if (l != loop)
432 l = l->next;
435 return ret;
438 /* Return true if edge E is likely to be well predictable by branch
439 predictor. */
441 bool
442 predictable_edge_p (edge e)
444 if (!e->probability.initialized_p ())
445 return false;
446 if ((e->probability.to_reg_br_prob_base ()
447 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100)
448 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
449 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100))
450 return true;
451 return false;
455 /* Set RTL expansion for BB profile. */
457 void
458 rtl_profile_for_bb (basic_block bb)
460 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
463 /* Set RTL expansion for edge profile. */
465 void
466 rtl_profile_for_edge (edge e)
468 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
471 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
472 void
473 default_rtl_profile (void)
475 crtl->maybe_hot_insn_p = true;
478 /* Return true if the one of outgoing edges is already predicted by
479 PREDICTOR. */
481 bool
482 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
484 rtx note;
485 if (!INSN_P (BB_END (bb)))
486 return false;
487 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
488 if (REG_NOTE_KIND (note) == REG_BR_PRED
489 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
490 return true;
491 return false;
494 /* Structure representing predictions in tree level. */
496 struct edge_prediction {
497 struct edge_prediction *ep_next;
498 edge ep_edge;
499 enum br_predictor ep_predictor;
500 int ep_probability;
503 /* This map contains for a basic block the list of predictions for the
504 outgoing edges. */
506 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
508 /* Return true if the one of outgoing edges is already predicted by
509 PREDICTOR. */
511 bool
512 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
514 struct edge_prediction *i;
515 edge_prediction **preds = bb_predictions->get (bb);
517 if (!preds)
518 return false;
520 for (i = *preds; i; i = i->ep_next)
521 if (i->ep_predictor == predictor)
522 return true;
523 return false;
526 /* Return true if the one of outgoing edges is already predicted by
527 PREDICTOR for edge E predicted as TAKEN. */
529 bool
530 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
532 struct edge_prediction *i;
533 basic_block bb = e->src;
534 edge_prediction **preds = bb_predictions->get (bb);
535 if (!preds)
536 return false;
538 int probability = predictor_info[(int) predictor].hitrate;
540 if (taken != TAKEN)
541 probability = REG_BR_PROB_BASE - probability;
543 for (i = *preds; i; i = i->ep_next)
544 if (i->ep_predictor == predictor
545 && i->ep_edge == e
546 && i->ep_probability == probability)
547 return true;
548 return false;
551 /* Same predicate as above, working on edges. */
552 bool
553 edge_probability_reliable_p (const_edge e)
555 return e->probability.probably_reliable_p ();
558 /* Same predicate as edge_probability_reliable_p, working on notes. */
559 bool
560 br_prob_note_reliable_p (const_rtx note)
562 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
563 return profile_probability::from_reg_br_prob_note
564 (XINT (note, 0)).probably_reliable_p ();
567 static void
568 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
570 gcc_assert (any_condjump_p (insn));
571 if (!flag_guess_branch_prob)
572 return;
574 add_reg_note (insn, REG_BR_PRED,
575 gen_rtx_CONCAT (VOIDmode,
576 GEN_INT ((int) predictor),
577 GEN_INT ((int) probability)));
580 /* Predict insn by given predictor. */
582 void
583 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
584 enum prediction taken)
586 int probability = predictor_info[(int) predictor].hitrate;
587 gcc_assert (probability != PROB_UNINITIALIZED);
589 if (taken != TAKEN)
590 probability = REG_BR_PROB_BASE - probability;
592 predict_insn (insn, predictor, probability);
595 /* Predict edge E with given probability if possible. */
597 void
598 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
600 rtx_insn *last_insn;
601 last_insn = BB_END (e->src);
603 /* We can store the branch prediction information only about
604 conditional jumps. */
605 if (!any_condjump_p (last_insn))
606 return;
608 /* We always store probability of branching. */
609 if (e->flags & EDGE_FALLTHRU)
610 probability = REG_BR_PROB_BASE - probability;
612 predict_insn (last_insn, predictor, probability);
615 /* Predict edge E with the given PROBABILITY. */
616 void
617 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
619 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
620 && EDGE_COUNT (e->src->succs) > 1
621 && flag_guess_branch_prob
622 && optimize)
624 struct edge_prediction *i = XNEW (struct edge_prediction);
625 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
627 i->ep_next = preds;
628 preds = i;
629 i->ep_probability = probability;
630 i->ep_predictor = predictor;
631 i->ep_edge = e;
635 /* Filter edge predictions PREDS by a function FILTER: if FILTER return false
636 the prediction is removed.
637 DATA are passed to the filter function. */
639 static void
640 filter_predictions (edge_prediction **preds,
641 bool (*filter) (edge_prediction *, void *), void *data)
643 if (!bb_predictions)
644 return;
646 if (preds)
648 struct edge_prediction **prediction = preds;
649 struct edge_prediction *next;
651 while (*prediction)
653 if ((*filter) (*prediction, data))
654 prediction = &((*prediction)->ep_next);
655 else
657 next = (*prediction)->ep_next;
658 free (*prediction);
659 *prediction = next;
665 /* Filter function predicate that returns true for a edge predicate P
666 if its edge is equal to DATA. */
668 static bool
669 not_equal_edge_p (edge_prediction *p, void *data)
671 return p->ep_edge != (edge)data;
674 /* Remove all predictions on given basic block that are attached
675 to edge E. */
676 void
677 remove_predictions_associated_with_edge (edge e)
679 if (!bb_predictions)
680 return;
682 edge_prediction **preds = bb_predictions->get (e->src);
683 filter_predictions (preds, not_equal_edge_p, e);
686 /* Clears the list of predictions stored for BB. */
688 static void
689 clear_bb_predictions (basic_block bb)
691 edge_prediction **preds = bb_predictions->get (bb);
692 struct edge_prediction *pred, *next;
694 if (!preds)
695 return;
697 for (pred = *preds; pred; pred = next)
699 next = pred->ep_next;
700 free (pred);
702 *preds = NULL;
705 /* Return true when we can store prediction on insn INSN.
706 At the moment we represent predictions only on conditional
707 jumps, not at computed jump or other complicated cases. */
708 static bool
709 can_predict_insn_p (const rtx_insn *insn)
711 return (JUMP_P (insn)
712 && any_condjump_p (insn)
713 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
716 /* Predict edge E by given predictor if possible. */
718 void
719 predict_edge_def (edge e, enum br_predictor predictor,
720 enum prediction taken)
722 int probability = predictor_info[(int) predictor].hitrate;
724 if (taken != TAKEN)
725 probability = REG_BR_PROB_BASE - probability;
727 predict_edge (e, predictor, probability);
730 /* Invert all branch predictions or probability notes in the INSN. This needs
731 to be done each time we invert the condition used by the jump. */
733 void
734 invert_br_probabilities (rtx insn)
736 rtx note;
738 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
739 if (REG_NOTE_KIND (note) == REG_BR_PROB)
740 XINT (note, 0) = profile_probability::from_reg_br_prob_note
741 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
742 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
743 XEXP (XEXP (note, 0), 1)
744 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
747 /* Dump information about the branch prediction to the output file. */
749 static void
750 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
751 basic_block bb, enum predictor_reason reason = REASON_NONE,
752 edge ep_edge = NULL)
754 edge e = ep_edge;
755 edge_iterator ei;
757 if (!file)
758 return;
760 if (e == NULL)
761 FOR_EACH_EDGE (e, ei, bb->succs)
762 if (! (e->flags & EDGE_FALLTHRU))
763 break;
765 char edge_info_str[128];
766 if (ep_edge)
767 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
768 ep_edge->dest->index);
769 else
770 edge_info_str[0] = '\0';
772 fprintf (file, " %s heuristics%s%s: %.2f%%",
773 predictor_info[predictor].name,
774 edge_info_str, reason_messages[reason],
775 probability * 100.0 / REG_BR_PROB_BASE);
777 if (bb->count.initialized_p ())
779 fprintf (file, " exec ");
780 bb->count.dump (file);
781 if (e)
783 fprintf (file, " hit ");
784 e->count ().dump (file);
785 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
786 / bb->count.to_gcov_type ());
790 fprintf (file, "\n");
792 /* Print output that be easily read by analyze_brprob.py script. We are
793 interested only in counts that are read from GCDA files. */
794 if (dump_file && (dump_flags & TDF_DETAILS)
795 && bb->count.precise_p ()
796 && reason == REASON_NONE)
798 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
799 predictor_info[predictor].name,
800 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
801 probability * 100.0 / REG_BR_PROB_BASE);
805 /* Return true if STMT is known to be unlikely executed. */
807 static bool
808 unlikely_executed_stmt_p (gimple *stmt)
810 if (!is_gimple_call (stmt))
811 return false;
812 /* NORETURN attribute alone is not strong enough: exit() may be quite
813 likely executed once during program run. */
814 if (gimple_call_fntype (stmt)
815 && lookup_attribute ("cold",
816 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
817 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
818 return true;
819 tree decl = gimple_call_fndecl (stmt);
820 if (!decl)
821 return false;
822 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
823 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
824 return true;
826 cgraph_node *n = cgraph_node::get (decl);
827 if (!n)
828 return false;
830 availability avail;
831 n = n->ultimate_alias_target (&avail);
832 if (avail < AVAIL_AVAILABLE)
833 return false;
834 if (!n->analyzed
835 || n->decl == current_function_decl)
836 return false;
837 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
840 /* Return true if BB is unlikely executed. */
842 static bool
843 unlikely_executed_bb_p (basic_block bb)
845 if (bb->count == profile_count::zero ())
846 return true;
847 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
848 return false;
849 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
850 !gsi_end_p (gsi); gsi_next (&gsi))
852 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
853 return true;
854 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
855 return false;
857 return false;
860 /* We cannot predict the probabilities of outgoing edges of bb. Set them
861 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
862 even probability for all edges not mentioned in the set. These edges
863 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
864 if we have exactly one likely edge, make the other edges predicted
865 as not probable. */
867 static void
868 set_even_probabilities (basic_block bb,
869 hash_set<edge> *unlikely_edges = NULL,
870 hash_set<edge_prediction *> *likely_edges = NULL)
872 unsigned nedges = 0, unlikely_count = 0;
873 edge e = NULL;
874 edge_iterator ei;
875 profile_probability all = profile_probability::always ();
877 FOR_EACH_EDGE (e, ei, bb->succs)
878 if (e->probability.initialized_p ())
879 all -= e->probability;
880 else if (!unlikely_executed_edge_p (e))
882 nedges++;
883 if (unlikely_edges != NULL && unlikely_edges->contains (e))
885 all -= profile_probability::very_unlikely ();
886 unlikely_count++;
890 /* Make the distribution even if all edges are unlikely. */
891 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
892 if (unlikely_count == nedges)
894 unlikely_edges = NULL;
895 unlikely_count = 0;
898 /* If we have one likely edge, then use its probability and distribute
899 remaining probabilities as even. */
900 if (likely_count == 1)
902 FOR_EACH_EDGE (e, ei, bb->succs)
903 if (e->probability.initialized_p ())
905 else if (!unlikely_executed_edge_p (e))
907 edge_prediction *prediction = *likely_edges->begin ();
908 int p = prediction->ep_probability;
909 profile_probability prob
910 = profile_probability::from_reg_br_prob_base (p);
912 if (prediction->ep_edge == e)
913 e->probability = prob;
914 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
915 e->probability = profile_probability::very_unlikely ();
916 else
918 profile_probability remainder = prob.invert ();
919 remainder -= profile_probability::very_unlikely ()
920 .apply_scale (unlikely_count, 1);
921 int count = nedges - unlikely_count - 1;
922 gcc_assert (count >= 0);
924 e->probability = remainder.apply_scale (1, count);
927 else
928 e->probability = profile_probability::never ();
930 else
932 /* Make all unlikely edges unlikely and the rest will have even
933 probability. */
934 unsigned scale = nedges - unlikely_count;
935 FOR_EACH_EDGE (e, ei, bb->succs)
936 if (e->probability.initialized_p ())
938 else if (!unlikely_executed_edge_p (e))
940 if (unlikely_edges != NULL && unlikely_edges->contains (e))
941 e->probability = profile_probability::very_unlikely ();
942 else
943 e->probability = all.apply_scale (1, scale);
945 else
946 e->probability = profile_probability::never ();
950 /* Add REG_BR_PROB note to JUMP with PROB. */
952 void
953 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
955 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
956 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
959 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
960 note if not already present. Remove now useless REG_BR_PRED notes. */
962 static void
963 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
965 rtx prob_note;
966 rtx *pnote;
967 rtx note;
968 int best_probability = PROB_EVEN;
969 enum br_predictor best_predictor = END_PREDICTORS;
970 int combined_probability = REG_BR_PROB_BASE / 2;
971 int d;
972 bool first_match = false;
973 bool found = false;
975 if (!can_predict_insn_p (insn))
977 set_even_probabilities (bb);
978 return;
981 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
982 pnote = &REG_NOTES (insn);
983 if (dump_file)
984 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
985 bb->index);
987 /* We implement "first match" heuristics and use probability guessed
988 by predictor with smallest index. */
989 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
990 if (REG_NOTE_KIND (note) == REG_BR_PRED)
992 enum br_predictor predictor = ((enum br_predictor)
993 INTVAL (XEXP (XEXP (note, 0), 0)));
994 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
996 found = true;
997 if (best_predictor > predictor
998 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
999 best_probability = probability, best_predictor = predictor;
1001 d = (combined_probability * probability
1002 + (REG_BR_PROB_BASE - combined_probability)
1003 * (REG_BR_PROB_BASE - probability));
1005 /* Use FP math to avoid overflows of 32bit integers. */
1006 if (d == 0)
1007 /* If one probability is 0% and one 100%, avoid division by zero. */
1008 combined_probability = REG_BR_PROB_BASE / 2;
1009 else
1010 combined_probability = (((double) combined_probability) * probability
1011 * REG_BR_PROB_BASE / d + 0.5);
1014 /* Decide which heuristic to use. In case we didn't match anything,
1015 use no_prediction heuristic, in case we did match, use either
1016 first match or Dempster-Shaffer theory depending on the flags. */
1018 if (best_predictor != END_PREDICTORS)
1019 first_match = true;
1021 if (!found)
1022 dump_prediction (dump_file, PRED_NO_PREDICTION,
1023 combined_probability, bb);
1024 else
1026 if (!first_match)
1027 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
1028 bb, !first_match ? REASON_NONE : REASON_IGNORED);
1029 else
1030 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
1031 bb, first_match ? REASON_NONE : REASON_IGNORED);
1034 if (first_match)
1035 combined_probability = best_probability;
1036 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1038 while (*pnote)
1040 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1042 enum br_predictor predictor = ((enum br_predictor)
1043 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1044 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1046 dump_prediction (dump_file, predictor, probability, bb,
1047 (!first_match || best_predictor == predictor)
1048 ? REASON_NONE : REASON_IGNORED);
1049 *pnote = XEXP (*pnote, 1);
1051 else
1052 pnote = &XEXP (*pnote, 1);
1055 if (!prob_note)
1057 profile_probability p
1058 = profile_probability::from_reg_br_prob_base (combined_probability);
1059 add_reg_br_prob_note (insn, p);
1061 /* Save the prediction into CFG in case we are seeing non-degenerated
1062 conditional jump. */
1063 if (!single_succ_p (bb))
1065 BRANCH_EDGE (bb)->probability = p;
1066 FALLTHRU_EDGE (bb)->probability
1067 = BRANCH_EDGE (bb)->probability.invert ();
1070 else if (!single_succ_p (bb))
1072 profile_probability prob = profile_probability::from_reg_br_prob_note
1073 (XINT (prob_note, 0));
1075 BRANCH_EDGE (bb)->probability = prob;
1076 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1078 else
1079 single_succ_edge (bb)->probability = profile_probability::always ();
1082 /* Edge prediction hash traits. */
1084 struct predictor_hash: pointer_hash <edge_prediction>
1087 static inline hashval_t hash (const edge_prediction *);
1088 static inline bool equal (const edge_prediction *, const edge_prediction *);
1091 /* Calculate hash value of an edge prediction P based on predictor and
1092 normalized probability. */
1094 inline hashval_t
1095 predictor_hash::hash (const edge_prediction *p)
1097 inchash::hash hstate;
1098 hstate.add_int (p->ep_predictor);
1100 int prob = p->ep_probability;
1101 if (prob > REG_BR_PROB_BASE / 2)
1102 prob = REG_BR_PROB_BASE - prob;
1104 hstate.add_int (prob);
1106 return hstate.end ();
1109 /* Return true whether edge predictions P1 and P2 use the same predictor and
1110 have equal (or opposed probability). */
1112 inline bool
1113 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1115 return (p1->ep_predictor == p2->ep_predictor
1116 && (p1->ep_probability == p2->ep_probability
1117 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1120 struct predictor_hash_traits: predictor_hash,
1121 typed_noop_remove <edge_prediction *> {};
1123 /* Return true if edge prediction P is not in DATA hash set. */
1125 static bool
1126 not_removed_prediction_p (edge_prediction *p, void *data)
1128 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1129 return !remove->contains (p);
1132 /* Prune predictions for a basic block BB. Currently we do following
1133 clean-up steps:
1135 1) remove duplicate prediction that is guessed with the same probability
1136 (different than 1/2) to both edge
1137 2) remove duplicates for a prediction that belongs with the same probability
1138 to a single edge
1142 static void
1143 prune_predictions_for_bb (basic_block bb)
1145 edge_prediction **preds = bb_predictions->get (bb);
1147 if (preds)
1149 hash_table <predictor_hash_traits> s (13);
1150 hash_set <edge_prediction *> remove;
1152 /* Step 1: identify predictors that should be removed. */
1153 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1155 edge_prediction *existing = s.find (pred);
1156 if (existing)
1158 if (pred->ep_edge == existing->ep_edge
1159 && pred->ep_probability == existing->ep_probability)
1161 /* Remove a duplicate predictor. */
1162 dump_prediction (dump_file, pred->ep_predictor,
1163 pred->ep_probability, bb,
1164 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1166 remove.add (pred);
1168 else if (pred->ep_edge != existing->ep_edge
1169 && pred->ep_probability == existing->ep_probability
1170 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1172 /* Remove both predictors as they predict the same
1173 for both edges. */
1174 dump_prediction (dump_file, existing->ep_predictor,
1175 pred->ep_probability, bb,
1176 REASON_EDGE_PAIR_DUPLICATE,
1177 existing->ep_edge);
1178 dump_prediction (dump_file, pred->ep_predictor,
1179 pred->ep_probability, bb,
1180 REASON_EDGE_PAIR_DUPLICATE,
1181 pred->ep_edge);
1183 remove.add (existing);
1184 remove.add (pred);
1188 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1189 *slot2 = pred;
1192 /* Step 2: Remove predictors. */
1193 filter_predictions (preds, not_removed_prediction_p, &remove);
1197 /* Combine predictions into single probability and store them into CFG.
1198 Remove now useless prediction entries.
1199 If DRY_RUN is set, only produce dumps and do not modify profile. */
1201 static void
1202 combine_predictions_for_bb (basic_block bb, bool dry_run)
1204 int best_probability = PROB_EVEN;
1205 enum br_predictor best_predictor = END_PREDICTORS;
1206 int combined_probability = REG_BR_PROB_BASE / 2;
1207 int d;
1208 bool first_match = false;
1209 bool found = false;
1210 struct edge_prediction *pred;
1211 int nedges = 0;
1212 edge e, first = NULL, second = NULL;
1213 edge_iterator ei;
1214 int nzero = 0;
1215 int nunknown = 0;
1217 FOR_EACH_EDGE (e, ei, bb->succs)
1219 if (!unlikely_executed_edge_p (e))
1221 nedges ++;
1222 if (first && !second)
1223 second = e;
1224 if (!first)
1225 first = e;
1227 else if (!e->probability.initialized_p ())
1228 e->probability = profile_probability::never ();
1229 if (!e->probability.initialized_p ())
1230 nunknown++;
1231 else if (e->probability == profile_probability::never ())
1232 nzero++;
1235 /* When there is no successor or only one choice, prediction is easy.
1237 When we have a basic block with more than 2 successors, the situation
1238 is more complicated as DS theory cannot be used literally.
1239 More precisely, let's assume we predicted edge e1 with probability p1,
1240 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1241 need to find probability of e.g. m1({b2}), which we don't know.
1242 The only approximation is to equally distribute 1-p1 to all edges
1243 different from b1.
1245 According to numbers we've got from SPEC2006 benchark, there's only
1246 one interesting reliable predictor (noreturn call), which can be
1247 handled with a bit easier approach. */
1248 if (nedges != 2)
1250 hash_set<edge> unlikely_edges (4);
1251 hash_set<edge_prediction *> likely_edges (4);
1253 /* Identify all edges that have a probability close to very unlikely.
1254 Doing the approach for very unlikely doesn't worth for doing as
1255 there's no such probability in SPEC2006 benchmark. */
1256 edge_prediction **preds = bb_predictions->get (bb);
1257 if (preds)
1258 for (pred = *preds; pred; pred = pred->ep_next)
1260 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1261 || pred->ep_predictor == PRED_COLD_LABEL)
1262 unlikely_edges.add (pred->ep_edge);
1263 else if (pred->ep_probability >= PROB_VERY_LIKELY
1264 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1265 || pred->ep_predictor == PRED_HOT_LABEL)
1266 likely_edges.add (pred);
1269 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1270 Clear both sets in that situation. */
1271 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1272 it != likely_edges.end (); ++it)
1273 if (unlikely_edges.contains ((*it)->ep_edge))
1275 likely_edges.empty ();
1276 unlikely_edges.empty ();
1277 break;
1280 if (!dry_run)
1281 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1282 clear_bb_predictions (bb);
1283 if (dump_file)
1285 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1286 if (unlikely_edges.is_empty ())
1287 fprintf (dump_file,
1288 "%i edges in bb %i predicted to even probabilities\n",
1289 nedges, bb->index);
1290 else
1292 fprintf (dump_file,
1293 "%i edges in bb %i predicted with some unlikely edges\n",
1294 nedges, bb->index);
1295 FOR_EACH_EDGE (e, ei, bb->succs)
1296 if (!unlikely_executed_edge_p (e))
1297 dump_prediction (dump_file, PRED_COMBINED,
1298 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1301 return;
1304 if (dump_file)
1305 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1307 prune_predictions_for_bb (bb);
1309 edge_prediction **preds = bb_predictions->get (bb);
1311 if (preds)
1313 /* We implement "first match" heuristics and use probability guessed
1314 by predictor with smallest index. */
1315 for (pred = *preds; pred; pred = pred->ep_next)
1317 enum br_predictor predictor = pred->ep_predictor;
1318 int probability = pred->ep_probability;
1320 if (pred->ep_edge != first)
1321 probability = REG_BR_PROB_BASE - probability;
1323 found = true;
1324 /* First match heuristics would be widly confused if we predicted
1325 both directions. */
1326 if (best_predictor > predictor
1327 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1329 struct edge_prediction *pred2;
1330 int prob = probability;
1332 for (pred2 = (struct edge_prediction *) *preds;
1333 pred2; pred2 = pred2->ep_next)
1334 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1336 int probability2 = pred2->ep_probability;
1338 if (pred2->ep_edge != first)
1339 probability2 = REG_BR_PROB_BASE - probability2;
1341 if ((probability < REG_BR_PROB_BASE / 2) !=
1342 (probability2 < REG_BR_PROB_BASE / 2))
1343 break;
1345 /* If the same predictor later gave better result, go for it! */
1346 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1347 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1348 prob = probability2;
1350 if (!pred2)
1351 best_probability = prob, best_predictor = predictor;
1354 d = (combined_probability * probability
1355 + (REG_BR_PROB_BASE - combined_probability)
1356 * (REG_BR_PROB_BASE - probability));
1358 /* Use FP math to avoid overflows of 32bit integers. */
1359 if (d == 0)
1360 /* If one probability is 0% and one 100%, avoid division by zero. */
1361 combined_probability = REG_BR_PROB_BASE / 2;
1362 else
1363 combined_probability = (((double) combined_probability)
1364 * probability
1365 * REG_BR_PROB_BASE / d + 0.5);
1369 /* Decide which heuristic to use. In case we didn't match anything,
1370 use no_prediction heuristic, in case we did match, use either
1371 first match or Dempster-Shaffer theory depending on the flags. */
1373 if (best_predictor != END_PREDICTORS)
1374 first_match = true;
1376 if (!found)
1377 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1378 else
1380 if (!first_match)
1381 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1382 !first_match ? REASON_NONE : REASON_IGNORED);
1383 else
1384 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1385 first_match ? REASON_NONE : REASON_IGNORED);
1388 if (first_match)
1389 combined_probability = best_probability;
1390 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1392 if (preds)
1394 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1396 enum br_predictor predictor = pred->ep_predictor;
1397 int probability = pred->ep_probability;
1399 dump_prediction (dump_file, predictor, probability, bb,
1400 (!first_match || best_predictor == predictor)
1401 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1404 clear_bb_predictions (bb);
1407 /* If we have only one successor which is unknown, we can compute missing
1408 probability. */
1409 if (nunknown == 1)
1411 profile_probability prob = profile_probability::always ();
1412 edge missing = NULL;
1414 FOR_EACH_EDGE (e, ei, bb->succs)
1415 if (e->probability.initialized_p ())
1416 prob -= e->probability;
1417 else if (missing == NULL)
1418 missing = e;
1419 else
1420 gcc_unreachable ();
1421 missing->probability = prob;
1423 /* If nothing is unknown, we have nothing to update. */
1424 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1426 else if (!dry_run)
1428 first->probability
1429 = profile_probability::from_reg_br_prob_base (combined_probability);
1430 second->probability = first->probability.invert ();
1434 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1435 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1437 T1 and T2 should be one of the following cases:
1438 1. T1 is SSA_NAME, T2 is NULL
1439 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1440 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1442 static tree
1443 strips_small_constant (tree t1, tree t2)
1445 tree ret = NULL;
1446 int value = 0;
1448 if (!t1)
1449 return NULL;
1450 else if (TREE_CODE (t1) == SSA_NAME)
1451 ret = t1;
1452 else if (tree_fits_shwi_p (t1))
1453 value = tree_to_shwi (t1);
1454 else
1455 return NULL;
1457 if (!t2)
1458 return ret;
1459 else if (tree_fits_shwi_p (t2))
1460 value = tree_to_shwi (t2);
1461 else if (TREE_CODE (t2) == SSA_NAME)
1463 if (ret)
1464 return NULL;
1465 else
1466 ret = t2;
1469 if (value <= 4 && value >= -4)
1470 return ret;
1471 else
1472 return NULL;
1475 /* Return the SSA_NAME in T or T's operands.
1476 Return NULL if SSA_NAME cannot be found. */
1478 static tree
1479 get_base_value (tree t)
1481 if (TREE_CODE (t) == SSA_NAME)
1482 return t;
1484 if (!BINARY_CLASS_P (t))
1485 return NULL;
1487 switch (TREE_OPERAND_LENGTH (t))
1489 case 1:
1490 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1491 case 2:
1492 return strips_small_constant (TREE_OPERAND (t, 0),
1493 TREE_OPERAND (t, 1));
1494 default:
1495 return NULL;
1499 /* Check the compare STMT in LOOP. If it compares an induction
1500 variable to a loop invariant, return true, and save
1501 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1502 Otherwise return false and set LOOP_INVAIANT to NULL. */
1504 static bool
1505 is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
1506 tree *loop_invariant,
1507 enum tree_code *compare_code,
1508 tree *loop_step,
1509 tree *loop_iv_base)
1511 tree op0, op1, bound, base;
1512 affine_iv iv0, iv1;
1513 enum tree_code code;
1514 tree step;
1516 code = gimple_cond_code (stmt);
1517 *loop_invariant = NULL;
1519 switch (code)
1521 case GT_EXPR:
1522 case GE_EXPR:
1523 case NE_EXPR:
1524 case LT_EXPR:
1525 case LE_EXPR:
1526 case EQ_EXPR:
1527 break;
1529 default:
1530 return false;
1533 op0 = gimple_cond_lhs (stmt);
1534 op1 = gimple_cond_rhs (stmt);
1536 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1537 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1538 return false;
1539 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1540 return false;
1541 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1542 return false;
1543 if (TREE_CODE (iv0.step) != INTEGER_CST
1544 || TREE_CODE (iv1.step) != INTEGER_CST)
1545 return false;
1546 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1547 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1548 return false;
1550 if (integer_zerop (iv0.step))
1552 if (code != NE_EXPR && code != EQ_EXPR)
1553 code = invert_tree_comparison (code, false);
1554 bound = iv0.base;
1555 base = iv1.base;
1556 if (tree_fits_shwi_p (iv1.step))
1557 step = iv1.step;
1558 else
1559 return false;
1561 else
1563 bound = iv1.base;
1564 base = iv0.base;
1565 if (tree_fits_shwi_p (iv0.step))
1566 step = iv0.step;
1567 else
1568 return false;
1571 if (TREE_CODE (bound) != INTEGER_CST)
1572 bound = get_base_value (bound);
1573 if (!bound)
1574 return false;
1575 if (TREE_CODE (base) != INTEGER_CST)
1576 base = get_base_value (base);
1577 if (!base)
1578 return false;
1580 *loop_invariant = bound;
1581 *compare_code = code;
1582 *loop_step = step;
1583 *loop_iv_base = base;
1584 return true;
1587 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1589 static bool
1590 expr_coherent_p (tree t1, tree t2)
1592 gimple *stmt;
1593 tree ssa_name_1 = NULL;
1594 tree ssa_name_2 = NULL;
1596 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1597 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1599 if (t1 == t2)
1600 return true;
1602 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1603 return true;
1604 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1605 return false;
1607 /* Check to see if t1 is expressed/defined with t2. */
1608 stmt = SSA_NAME_DEF_STMT (t1);
1609 gcc_assert (stmt != NULL);
1610 if (is_gimple_assign (stmt))
1612 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1613 if (ssa_name_1 && ssa_name_1 == t2)
1614 return true;
1617 /* Check to see if t2 is expressed/defined with t1. */
1618 stmt = SSA_NAME_DEF_STMT (t2);
1619 gcc_assert (stmt != NULL);
1620 if (is_gimple_assign (stmt))
1622 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1623 if (ssa_name_2 && ssa_name_2 == t1)
1624 return true;
1627 /* Compare if t1 and t2's def_stmts are identical. */
1628 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1629 return true;
1630 else
1631 return false;
1634 /* Return true if E is predicted by one of loop heuristics. */
1636 static bool
1637 predicted_by_loop_heuristics_p (basic_block bb)
1639 struct edge_prediction *i;
1640 edge_prediction **preds = bb_predictions->get (bb);
1642 if (!preds)
1643 return false;
1645 for (i = *preds; i; i = i->ep_next)
1646 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1647 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1648 || i->ep_predictor == PRED_LOOP_ITERATIONS
1649 || i->ep_predictor == PRED_LOOP_EXIT
1650 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1651 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1652 return true;
1653 return false;
1656 /* Predict branch probability of BB when BB contains a branch that compares
1657 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1658 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1660 E.g.
1661 for (int i = 0; i < bound; i++) {
1662 if (i < bound - 2)
1663 computation_1();
1664 else
1665 computation_2();
1668 In this loop, we will predict the branch inside the loop to be taken. */
1670 static void
1671 predict_iv_comparison (class loop *loop, basic_block bb,
1672 tree loop_bound_var,
1673 tree loop_iv_base_var,
1674 enum tree_code loop_bound_code,
1675 int loop_bound_step)
1677 gimple *stmt;
1678 tree compare_var, compare_base;
1679 enum tree_code compare_code;
1680 tree compare_step_var;
1681 edge then_edge;
1682 edge_iterator ei;
1684 if (predicted_by_loop_heuristics_p (bb))
1685 return;
1687 stmt = last_stmt (bb);
1688 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1689 return;
1690 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1691 loop, &compare_var,
1692 &compare_code,
1693 &compare_step_var,
1694 &compare_base))
1695 return;
1697 /* Find the taken edge. */
1698 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1699 if (then_edge->flags & EDGE_TRUE_VALUE)
1700 break;
1702 /* When comparing an IV to a loop invariant, NE is more likely to be
1703 taken while EQ is more likely to be not-taken. */
1704 if (compare_code == NE_EXPR)
1706 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1707 return;
1709 else if (compare_code == EQ_EXPR)
1711 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1712 return;
1715 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1716 return;
1718 /* If loop bound, base and compare bound are all constants, we can
1719 calculate the probability directly. */
1720 if (tree_fits_shwi_p (loop_bound_var)
1721 && tree_fits_shwi_p (compare_var)
1722 && tree_fits_shwi_p (compare_base))
1724 int probability;
1725 wi::overflow_type overflow;
1726 bool overall_overflow = false;
1727 widest_int compare_count, tem;
1729 /* (loop_bound - base) / compare_step */
1730 tem = wi::sub (wi::to_widest (loop_bound_var),
1731 wi::to_widest (compare_base), SIGNED, &overflow);
1732 overall_overflow |= overflow;
1733 widest_int loop_count = wi::div_trunc (tem,
1734 wi::to_widest (compare_step_var),
1735 SIGNED, &overflow);
1736 overall_overflow |= overflow;
1738 if (!wi::neg_p (wi::to_widest (compare_step_var))
1739 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1741 /* (loop_bound - compare_bound) / compare_step */
1742 tem = wi::sub (wi::to_widest (loop_bound_var),
1743 wi::to_widest (compare_var), SIGNED, &overflow);
1744 overall_overflow |= overflow;
1745 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1746 SIGNED, &overflow);
1747 overall_overflow |= overflow;
1749 else
1751 /* (compare_bound - base) / compare_step */
1752 tem = wi::sub (wi::to_widest (compare_var),
1753 wi::to_widest (compare_base), SIGNED, &overflow);
1754 overall_overflow |= overflow;
1755 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1756 SIGNED, &overflow);
1757 overall_overflow |= overflow;
1759 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1760 ++compare_count;
1761 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1762 ++loop_count;
1763 if (wi::neg_p (compare_count))
1764 compare_count = 0;
1765 if (wi::neg_p (loop_count))
1766 loop_count = 0;
1767 if (loop_count == 0)
1768 probability = 0;
1769 else if (wi::cmps (compare_count, loop_count) == 1)
1770 probability = REG_BR_PROB_BASE;
1771 else
1773 tem = compare_count * REG_BR_PROB_BASE;
1774 tem = wi::udiv_trunc (tem, loop_count);
1775 probability = tem.to_uhwi ();
1778 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1779 if (!overall_overflow)
1780 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1782 return;
1785 if (expr_coherent_p (loop_bound_var, compare_var))
1787 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1788 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1789 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1790 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1791 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1792 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1793 else if (loop_bound_code == NE_EXPR)
1795 /* If the loop backedge condition is "(i != bound)", we do
1796 the comparison based on the step of IV:
1797 * step < 0 : backedge condition is like (i > bound)
1798 * step > 0 : backedge condition is like (i < bound) */
1799 gcc_assert (loop_bound_step != 0);
1800 if (loop_bound_step > 0
1801 && (compare_code == LT_EXPR
1802 || compare_code == LE_EXPR))
1803 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1804 else if (loop_bound_step < 0
1805 && (compare_code == GT_EXPR
1806 || compare_code == GE_EXPR))
1807 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1808 else
1809 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1811 else
1812 /* The branch is predicted not-taken if loop_bound_code is
1813 opposite with compare_code. */
1814 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1816 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1818 /* For cases like:
1819 for (i = s; i < h; i++)
1820 if (i > s + 2) ....
1821 The branch should be predicted taken. */
1822 if (loop_bound_step > 0
1823 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1824 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1825 else if (loop_bound_step < 0
1826 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1827 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1828 else
1829 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1833 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1834 exits are resulted from short-circuit conditions that will generate an
1835 if_tmp. E.g.:
1837 if (foo() || global > 10)
1838 break;
1840 This will be translated into:
1842 BB3:
1843 loop header...
1844 BB4:
1845 if foo() goto BB6 else goto BB5
1846 BB5:
1847 if global > 10 goto BB6 else goto BB7
1848 BB6:
1849 goto BB7
1850 BB7:
1851 iftmp = (PHI 0(BB5), 1(BB6))
1852 if iftmp == 1 goto BB8 else goto BB3
1853 BB8:
1854 outside of the loop...
1856 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1857 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1858 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1859 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1861 static void
1862 predict_extra_loop_exits (edge exit_edge)
1864 unsigned i;
1865 bool check_value_one;
1866 gimple *lhs_def_stmt;
1867 gphi *phi_stmt;
1868 tree cmp_rhs, cmp_lhs;
1869 gimple *last;
1870 gcond *cmp_stmt;
1872 last = last_stmt (exit_edge->src);
1873 if (!last)
1874 return;
1875 cmp_stmt = dyn_cast <gcond *> (last);
1876 if (!cmp_stmt)
1877 return;
1879 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1880 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1881 if (!TREE_CONSTANT (cmp_rhs)
1882 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1883 return;
1884 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1885 return;
1887 /* If check_value_one is true, only the phi_args with value '1' will lead
1888 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1889 loop exit. */
1890 check_value_one = (((integer_onep (cmp_rhs))
1891 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1892 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1894 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1895 if (!lhs_def_stmt)
1896 return;
1898 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1899 if (!phi_stmt)
1900 return;
1902 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1904 edge e1;
1905 edge_iterator ei;
1906 tree val = gimple_phi_arg_def (phi_stmt, i);
1907 edge e = gimple_phi_arg_edge (phi_stmt, i);
1909 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1910 continue;
1911 if ((check_value_one ^ integer_onep (val)) == 1)
1912 continue;
1913 if (EDGE_COUNT (e->src->succs) != 1)
1915 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1916 continue;
1919 FOR_EACH_EDGE (e1, ei, e->src->preds)
1920 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1925 /* Predict edge probabilities by exploiting loop structure. */
1927 static void
1928 predict_loops (void)
1930 basic_block bb;
1931 hash_set <class loop *> with_recursion(10);
1933 FOR_EACH_BB_FN (bb, cfun)
1935 gimple_stmt_iterator gsi;
1936 tree decl;
1938 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1939 if (is_gimple_call (gsi_stmt (gsi))
1940 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1941 && recursive_call_p (current_function_decl, decl))
1943 class loop *loop = bb->loop_father;
1944 while (loop && !with_recursion.add (loop))
1945 loop = loop_outer (loop);
1949 /* Try to predict out blocks in a loop that are not part of a
1950 natural loop. */
1951 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1953 basic_block bb, *bbs;
1954 unsigned j, n_exits = 0;
1955 class tree_niter_desc niter_desc;
1956 edge ex;
1957 class nb_iter_bound *nb_iter;
1958 enum tree_code loop_bound_code = ERROR_MARK;
1959 tree loop_bound_step = NULL;
1960 tree loop_bound_var = NULL;
1961 tree loop_iv_base = NULL;
1962 gcond *stmt = NULL;
1963 bool recursion = with_recursion.contains (loop);
1965 auto_vec<edge> exits = get_loop_exit_edges (loop);
1966 FOR_EACH_VEC_ELT (exits, j, ex)
1967 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1968 n_exits ++;
1969 if (!n_exits)
1970 continue;
1972 if (dump_file && (dump_flags & TDF_DETAILS))
1973 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1974 loop->num, recursion ? " (with recursion)":"", n_exits);
1975 if (dump_file && (dump_flags & TDF_DETAILS)
1976 && max_loop_iterations_int (loop) >= 0)
1978 fprintf (dump_file,
1979 "Loop %d iterates at most %i times.\n", loop->num,
1980 (int)max_loop_iterations_int (loop));
1982 if (dump_file && (dump_flags & TDF_DETAILS)
1983 && likely_max_loop_iterations_int (loop) >= 0)
1985 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1986 loop->num, (int)likely_max_loop_iterations_int (loop));
1989 FOR_EACH_VEC_ELT (exits, j, ex)
1991 tree niter = NULL;
1992 HOST_WIDE_INT nitercst;
1993 int max = param_max_predicted_iterations;
1994 int probability;
1995 enum br_predictor predictor;
1996 widest_int nit;
1998 if (unlikely_executed_edge_p (ex)
1999 || (ex->flags & EDGE_ABNORMAL_CALL))
2000 continue;
2001 /* Loop heuristics do not expect exit conditional to be inside
2002 inner loop. We predict from innermost to outermost loop. */
2003 if (predicted_by_loop_heuristics_p (ex->src))
2005 if (dump_file && (dump_flags & TDF_DETAILS))
2006 fprintf (dump_file, "Skipping exit %i->%i because "
2007 "it is already predicted.\n",
2008 ex->src->index, ex->dest->index);
2009 continue;
2011 predict_extra_loop_exits (ex);
2013 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
2014 niter = niter_desc.niter;
2015 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
2016 niter = loop_niter_by_eval (loop, ex);
2017 if (dump_file && (dump_flags & TDF_DETAILS)
2018 && TREE_CODE (niter) == INTEGER_CST)
2020 fprintf (dump_file, "Exit %i->%i %d iterates ",
2021 ex->src->index, ex->dest->index,
2022 loop->num);
2023 print_generic_expr (dump_file, niter, TDF_SLIM);
2024 fprintf (dump_file, " times.\n");
2027 if (TREE_CODE (niter) == INTEGER_CST)
2029 if (tree_fits_uhwi_p (niter)
2030 && max
2031 && compare_tree_int (niter, max - 1) == -1)
2032 nitercst = tree_to_uhwi (niter) + 1;
2033 else
2034 nitercst = max;
2035 predictor = PRED_LOOP_ITERATIONS;
2037 /* If we have just one exit and we can derive some information about
2038 the number of iterations of the loop from the statements inside
2039 the loop, use it to predict this exit. */
2040 else if (n_exits == 1
2041 && estimated_stmt_executions (loop, &nit))
2043 if (wi::gtu_p (nit, max))
2044 nitercst = max;
2045 else
2046 nitercst = nit.to_shwi ();
2047 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2049 /* If we have likely upper bound, trust it for very small iteration
2050 counts. Such loops would otherwise get mispredicted by standard
2051 LOOP_EXIT heuristics. */
2052 else if (n_exits == 1
2053 && likely_max_stmt_executions (loop, &nit)
2054 && wi::ltu_p (nit,
2055 RDIV (REG_BR_PROB_BASE,
2056 REG_BR_PROB_BASE
2057 - predictor_info
2058 [recursion
2059 ? PRED_LOOP_EXIT_WITH_RECURSION
2060 : PRED_LOOP_EXIT].hitrate)))
2062 nitercst = nit.to_shwi ();
2063 predictor = PRED_LOOP_ITERATIONS_MAX;
2065 else
2067 if (dump_file && (dump_flags & TDF_DETAILS))
2068 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2069 ex->src->index, ex->dest->index);
2070 continue;
2073 if (dump_file && (dump_flags & TDF_DETAILS))
2074 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2075 (int)nitercst, predictor_info[predictor].name);
2076 /* If the prediction for number of iterations is zero, do not
2077 predict the exit edges. */
2078 if (nitercst == 0)
2079 continue;
2081 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2082 predict_edge (ex, predictor, probability);
2085 /* Find information about loop bound variables. */
2086 for (nb_iter = loop->bounds; nb_iter;
2087 nb_iter = nb_iter->next)
2088 if (nb_iter->stmt
2089 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2091 stmt = as_a <gcond *> (nb_iter->stmt);
2092 break;
2094 if (!stmt && last_stmt (loop->header)
2095 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
2096 stmt = as_a <gcond *> (last_stmt (loop->header));
2097 if (stmt)
2098 is_comparison_with_loop_invariant_p (stmt, loop,
2099 &loop_bound_var,
2100 &loop_bound_code,
2101 &loop_bound_step,
2102 &loop_iv_base);
2104 bbs = get_loop_body (loop);
2106 for (j = 0; j < loop->num_nodes; j++)
2108 edge e;
2109 edge_iterator ei;
2111 bb = bbs[j];
2113 /* Bypass loop heuristics on continue statement. These
2114 statements construct loops via "non-loop" constructs
2115 in the source language and are better to be handled
2116 separately. */
2117 if (predicted_by_p (bb, PRED_CONTINUE))
2119 if (dump_file && (dump_flags & TDF_DETAILS))
2120 fprintf (dump_file, "BB %i predicted by continue.\n",
2121 bb->index);
2122 continue;
2125 /* If we already used more reliable loop exit predictors, do not
2126 bother with PRED_LOOP_EXIT. */
2127 if (!predicted_by_loop_heuristics_p (bb))
2129 /* For loop with many exits we don't want to predict all exits
2130 with the pretty large probability, because if all exits are
2131 considered in row, the loop would be predicted to iterate
2132 almost never. The code to divide probability by number of
2133 exits is very rough. It should compute the number of exits
2134 taken in each patch through function (not the overall number
2135 of exits that might be a lot higher for loops with wide switch
2136 statements in them) and compute n-th square root.
2138 We limit the minimal probability by 2% to avoid
2139 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2140 as this was causing regression in perl benchmark containing such
2141 a wide loop. */
2143 int probability = ((REG_BR_PROB_BASE
2144 - predictor_info
2145 [recursion
2146 ? PRED_LOOP_EXIT_WITH_RECURSION
2147 : PRED_LOOP_EXIT].hitrate)
2148 / n_exits);
2149 if (probability < HITRATE (2))
2150 probability = HITRATE (2);
2151 FOR_EACH_EDGE (e, ei, bb->succs)
2152 if (e->dest->index < NUM_FIXED_BLOCKS
2153 || !flow_bb_inside_loop_p (loop, e->dest))
2155 if (dump_file && (dump_flags & TDF_DETAILS))
2156 fprintf (dump_file,
2157 "Predicting exit %i->%i with prob %i.\n",
2158 e->src->index, e->dest->index, probability);
2159 predict_edge (e,
2160 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2161 : PRED_LOOP_EXIT, probability);
2164 if (loop_bound_var)
2165 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2166 loop_bound_code,
2167 tree_to_shwi (loop_bound_step));
2170 /* In the following code
2171 for (loop1)
2172 if (cond)
2173 for (loop2)
2174 body;
2175 guess that cond is unlikely. */
2176 if (loop_outer (loop)->num)
2178 basic_block bb = NULL;
2179 edge preheader_edge = loop_preheader_edge (loop);
2181 if (single_pred_p (preheader_edge->src)
2182 && single_succ_p (preheader_edge->src))
2183 preheader_edge = single_pred_edge (preheader_edge->src);
2185 gimple *stmt = last_stmt (preheader_edge->src);
2186 /* Pattern match fortran loop preheader:
2187 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2188 _17 = (logical(kind=4)) _16;
2189 if (_17 != 0)
2190 goto <bb 11>;
2191 else
2192 goto <bb 13>;
2194 Loop guard branch prediction says nothing about duplicated loop
2195 headers produced by fortran frontend and in this case we want
2196 to predict paths leading to this preheader. */
2198 if (stmt
2199 && gimple_code (stmt) == GIMPLE_COND
2200 && gimple_cond_code (stmt) == NE_EXPR
2201 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2202 && integer_zerop (gimple_cond_rhs (stmt)))
2204 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2205 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2206 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (call_stmt))
2207 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2208 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2209 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2210 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2211 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2212 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2213 == PRED_FORTRAN_LOOP_PREHEADER)
2214 bb = preheader_edge->src;
2216 if (!bb)
2218 if (!dominated_by_p (CDI_DOMINATORS,
2219 loop_outer (loop)->latch, loop->header))
2220 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2221 recursion
2222 ? PRED_LOOP_GUARD_WITH_RECURSION
2223 : PRED_LOOP_GUARD,
2224 NOT_TAKEN,
2225 loop_outer (loop));
2227 else
2229 if (!dominated_by_p (CDI_DOMINATORS,
2230 loop_outer (loop)->latch, bb))
2231 predict_paths_leading_to (bb,
2232 recursion
2233 ? PRED_LOOP_GUARD_WITH_RECURSION
2234 : PRED_LOOP_GUARD,
2235 NOT_TAKEN,
2236 loop_outer (loop));
2240 /* Free basic blocks from get_loop_body. */
2241 free (bbs);
2245 /* Attempt to predict probabilities of BB outgoing edges using local
2246 properties. */
2247 static void
2248 bb_estimate_probability_locally (basic_block bb)
2250 rtx_insn *last_insn = BB_END (bb);
2251 rtx cond;
2253 if (! can_predict_insn_p (last_insn))
2254 return;
2255 cond = get_condition (last_insn, NULL, false, false);
2256 if (! cond)
2257 return;
2259 /* Try "pointer heuristic."
2260 A comparison ptr == 0 is predicted as false.
2261 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2262 if (COMPARISON_P (cond)
2263 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2264 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2266 if (GET_CODE (cond) == EQ)
2267 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2268 else if (GET_CODE (cond) == NE)
2269 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2271 else
2273 /* Try "opcode heuristic."
2274 EQ tests are usually false and NE tests are usually true. Also,
2275 most quantities are positive, so we can make the appropriate guesses
2276 about signed comparisons against zero. */
2277 switch (GET_CODE (cond))
2279 case CONST_INT:
2280 /* Unconditional branch. */
2281 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2282 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2283 break;
2285 case EQ:
2286 case UNEQ:
2287 /* Floating point comparisons appears to behave in a very
2288 unpredictable way because of special role of = tests in
2289 FP code. */
2290 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2292 /* Comparisons with 0 are often used for booleans and there is
2293 nothing useful to predict about them. */
2294 else if (XEXP (cond, 1) == const0_rtx
2295 || XEXP (cond, 0) == const0_rtx)
2297 else
2298 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2299 break;
2301 case NE:
2302 case LTGT:
2303 /* Floating point comparisons appears to behave in a very
2304 unpredictable way because of special role of = tests in
2305 FP code. */
2306 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2308 /* Comparisons with 0 are often used for booleans and there is
2309 nothing useful to predict about them. */
2310 else if (XEXP (cond, 1) == const0_rtx
2311 || XEXP (cond, 0) == const0_rtx)
2313 else
2314 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2315 break;
2317 case ORDERED:
2318 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2319 break;
2321 case UNORDERED:
2322 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2323 break;
2325 case LE:
2326 case LT:
2327 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2328 || XEXP (cond, 1) == constm1_rtx)
2329 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2330 break;
2332 case GE:
2333 case GT:
2334 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2335 || XEXP (cond, 1) == constm1_rtx)
2336 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2337 break;
2339 default:
2340 break;
2344 /* Set edge->probability for each successor edge of BB. */
2345 void
2346 guess_outgoing_edge_probabilities (basic_block bb)
2348 bb_estimate_probability_locally (bb);
2349 combine_predictions_for_insn (BB_END (bb), bb);
2352 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2353 HOST_WIDE_INT *probability);
2355 /* Helper function for expr_expected_value. */
2357 static tree
2358 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2359 tree op1, bitmap visited, enum br_predictor *predictor,
2360 HOST_WIDE_INT *probability)
2362 gimple *def;
2364 /* Reset returned probability value. */
2365 *probability = -1;
2366 *predictor = PRED_UNCONDITIONAL;
2368 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2370 if (TREE_CONSTANT (op0))
2371 return op0;
2373 if (code == IMAGPART_EXPR)
2375 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2377 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2378 if (is_gimple_call (def)
2379 && gimple_call_internal_p (def)
2380 && (gimple_call_internal_fn (def)
2381 == IFN_ATOMIC_COMPARE_EXCHANGE))
2383 /* Assume that any given atomic operation has low contention,
2384 and thus the compare-and-swap operation succeeds. */
2385 *predictor = PRED_COMPARE_AND_SWAP;
2386 return build_one_cst (TREE_TYPE (op0));
2391 if (code != SSA_NAME)
2392 return NULL_TREE;
2394 def = SSA_NAME_DEF_STMT (op0);
2396 /* If we were already here, break the infinite cycle. */
2397 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2398 return NULL;
2400 if (gimple_code (def) == GIMPLE_PHI)
2402 /* All the arguments of the PHI node must have the same constant
2403 length. */
2404 int i, n = gimple_phi_num_args (def);
2405 tree val = NULL, new_val;
2407 for (i = 0; i < n; i++)
2409 tree arg = PHI_ARG_DEF (def, i);
2410 enum br_predictor predictor2;
2412 /* If this PHI has itself as an argument, we cannot
2413 determine the string length of this argument. However,
2414 if we can find an expected constant value for the other
2415 PHI args then we can still be sure that this is
2416 likely a constant. So be optimistic and just
2417 continue with the next argument. */
2418 if (arg == PHI_RESULT (def))
2419 continue;
2421 HOST_WIDE_INT probability2;
2422 new_val = expr_expected_value (arg, visited, &predictor2,
2423 &probability2);
2425 /* It is difficult to combine value predictors. Simply assume
2426 that later predictor is weaker and take its prediction. */
2427 if (*predictor < predictor2)
2429 *predictor = predictor2;
2430 *probability = probability2;
2432 if (!new_val)
2433 return NULL;
2434 if (!val)
2435 val = new_val;
2436 else if (!operand_equal_p (val, new_val, false))
2437 return NULL;
2439 return val;
2441 if (is_gimple_assign (def))
2443 if (gimple_assign_lhs (def) != op0)
2444 return NULL;
2446 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2447 gimple_assign_rhs1 (def),
2448 gimple_assign_rhs_code (def),
2449 gimple_assign_rhs2 (def),
2450 visited, predictor, probability);
2453 if (is_gimple_call (def))
2455 tree decl = gimple_call_fndecl (def);
2456 if (!decl)
2458 if (gimple_call_internal_p (def)
2459 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2461 gcc_assert (gimple_call_num_args (def) == 3);
2462 tree val = gimple_call_arg (def, 0);
2463 if (TREE_CONSTANT (val))
2464 return val;
2465 tree val2 = gimple_call_arg (def, 2);
2466 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2467 && tree_fits_uhwi_p (val2)
2468 && tree_to_uhwi (val2) < END_PREDICTORS);
2469 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2470 if (*predictor == PRED_BUILTIN_EXPECT)
2471 *probability
2472 = HITRATE (param_builtin_expect_probability);
2473 return gimple_call_arg (def, 1);
2475 return NULL;
2478 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
2480 if (predictor)
2481 *predictor = PRED_MALLOC_NONNULL;
2482 return boolean_true_node;
2485 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2486 switch (DECL_FUNCTION_CODE (decl))
2488 case BUILT_IN_EXPECT:
2490 tree val;
2491 if (gimple_call_num_args (def) != 2)
2492 return NULL;
2493 val = gimple_call_arg (def, 0);
2494 if (TREE_CONSTANT (val))
2495 return val;
2496 *predictor = PRED_BUILTIN_EXPECT;
2497 *probability
2498 = HITRATE (param_builtin_expect_probability);
2499 return gimple_call_arg (def, 1);
2501 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2503 tree val;
2504 if (gimple_call_num_args (def) != 3)
2505 return NULL;
2506 val = gimple_call_arg (def, 0);
2507 if (TREE_CONSTANT (val))
2508 return val;
2509 /* Compute final probability as:
2510 probability * REG_BR_PROB_BASE. */
2511 tree prob = gimple_call_arg (def, 2);
2512 tree t = TREE_TYPE (prob);
2513 tree base = build_int_cst (integer_type_node,
2514 REG_BR_PROB_BASE);
2515 base = build_real_from_int_cst (t, base);
2516 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2517 MULT_EXPR, t, prob, base);
2518 if (TREE_CODE (r) != REAL_CST)
2520 error_at (gimple_location (def),
2521 "probability %qE must be "
2522 "constant floating-point expression", prob);
2523 return NULL;
2525 HOST_WIDE_INT probi
2526 = real_to_integer (TREE_REAL_CST_PTR (r));
2527 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2529 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2530 *probability = probi;
2532 else
2533 error_at (gimple_location (def),
2534 "probability %qE is outside "
2535 "the range [0.0, 1.0]", prob);
2537 return gimple_call_arg (def, 1);
2540 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2541 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2542 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2543 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2544 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2545 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2546 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2547 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2548 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2549 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2550 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2551 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2552 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2553 /* Assume that any given atomic operation has low contention,
2554 and thus the compare-and-swap operation succeeds. */
2555 *predictor = PRED_COMPARE_AND_SWAP;
2556 return boolean_true_node;
2557 case BUILT_IN_REALLOC:
2558 if (predictor)
2559 *predictor = PRED_MALLOC_NONNULL;
2560 return boolean_true_node;
2561 default:
2562 break;
2566 return NULL;
2569 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2571 tree res;
2572 enum br_predictor predictor2;
2573 HOST_WIDE_INT probability2;
2574 op0 = expr_expected_value (op0, visited, predictor, probability);
2575 if (!op0)
2576 return NULL;
2577 op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2578 if (!op1)
2579 return NULL;
2580 res = fold_build2 (code, type, op0, op1);
2581 if (TREE_CODE (res) == INTEGER_CST
2582 && TREE_CODE (op0) == INTEGER_CST
2583 && TREE_CODE (op1) == INTEGER_CST)
2585 /* Combine binary predictions. */
2586 if (*probability != -1 || probability2 != -1)
2588 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2589 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2590 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2593 if (*predictor < predictor2)
2594 *predictor = predictor2;
2596 return res;
2598 return NULL;
2600 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2602 tree res;
2603 op0 = expr_expected_value (op0, visited, predictor, probability);
2604 if (!op0)
2605 return NULL;
2606 res = fold_build1 (code, type, op0);
2607 if (TREE_CONSTANT (res))
2608 return res;
2609 return NULL;
2611 return NULL;
2614 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2615 The function is used by builtin_expect branch predictor so the evidence
2616 must come from this construct and additional possible constant folding.
2618 We may want to implement more involved value guess (such as value range
2619 propagation based prediction), but such tricks shall go to new
2620 implementation. */
2622 static tree
2623 expr_expected_value (tree expr, bitmap visited,
2624 enum br_predictor *predictor,
2625 HOST_WIDE_INT *probability)
2627 enum tree_code code;
2628 tree op0, op1;
2630 if (TREE_CONSTANT (expr))
2632 *predictor = PRED_UNCONDITIONAL;
2633 *probability = -1;
2634 return expr;
2637 extract_ops_from_tree (expr, &code, &op0, &op1);
2638 return expr_expected_value_1 (TREE_TYPE (expr),
2639 op0, code, op1, visited, predictor,
2640 probability);
2644 /* Return probability of a PREDICTOR. If the predictor has variable
2645 probability return passed PROBABILITY. */
2647 static HOST_WIDE_INT
2648 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2650 switch (predictor)
2652 case PRED_BUILTIN_EXPECT:
2653 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2654 gcc_assert (probability != -1);
2655 return probability;
2656 default:
2657 gcc_assert (probability == -1);
2658 return predictor_info[(int) predictor].hitrate;
2662 /* Predict using opcode of the last statement in basic block. */
2663 static void
2664 tree_predict_by_opcode (basic_block bb)
2666 gimple *stmt = last_stmt (bb);
2667 edge then_edge;
2668 tree op0, op1;
2669 tree type;
2670 tree val;
2671 enum tree_code cmp;
2672 edge_iterator ei;
2673 enum br_predictor predictor;
2674 HOST_WIDE_INT probability;
2676 if (!stmt)
2677 return;
2679 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2681 tree index = gimple_switch_index (sw);
2682 tree val = expr_expected_value (index, auto_bitmap (),
2683 &predictor, &probability);
2684 if (val && TREE_CODE (val) == INTEGER_CST)
2686 edge e = find_taken_edge_switch_expr (sw, val);
2687 if (predictor == PRED_BUILTIN_EXPECT)
2689 int percent = param_builtin_expect_probability;
2690 gcc_assert (percent >= 0 && percent <= 100);
2691 predict_edge (e, PRED_BUILTIN_EXPECT,
2692 HITRATE (percent));
2694 else
2695 predict_edge_def (e, predictor, TAKEN);
2699 if (gimple_code (stmt) != GIMPLE_COND)
2700 return;
2701 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2702 if (then_edge->flags & EDGE_TRUE_VALUE)
2703 break;
2704 op0 = gimple_cond_lhs (stmt);
2705 op1 = gimple_cond_rhs (stmt);
2706 cmp = gimple_cond_code (stmt);
2707 type = TREE_TYPE (op0);
2708 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2709 &predictor, &probability);
2710 if (val && TREE_CODE (val) == INTEGER_CST)
2712 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2713 if (integer_zerop (val))
2714 prob = REG_BR_PROB_BASE - prob;
2715 predict_edge (then_edge, predictor, prob);
2717 /* Try "pointer heuristic."
2718 A comparison ptr == 0 is predicted as false.
2719 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2720 if (POINTER_TYPE_P (type))
2722 if (cmp == EQ_EXPR)
2723 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2724 else if (cmp == NE_EXPR)
2725 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2727 else
2729 /* Try "opcode heuristic."
2730 EQ tests are usually false and NE tests are usually true. Also,
2731 most quantities are positive, so we can make the appropriate guesses
2732 about signed comparisons against zero. */
2733 switch (cmp)
2735 case EQ_EXPR:
2736 case UNEQ_EXPR:
2737 /* Floating point comparisons appears to behave in a very
2738 unpredictable way because of special role of = tests in
2739 FP code. */
2740 if (FLOAT_TYPE_P (type))
2742 /* Comparisons with 0 are often used for booleans and there is
2743 nothing useful to predict about them. */
2744 else if (integer_zerop (op0) || integer_zerop (op1))
2746 else
2747 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2748 break;
2750 case NE_EXPR:
2751 case LTGT_EXPR:
2752 /* Floating point comparisons appears to behave in a very
2753 unpredictable way because of special role of = tests in
2754 FP code. */
2755 if (FLOAT_TYPE_P (type))
2757 /* Comparisons with 0 are often used for booleans and there is
2758 nothing useful to predict about them. */
2759 else if (integer_zerop (op0)
2760 || integer_zerop (op1))
2762 else
2763 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2764 break;
2766 case ORDERED_EXPR:
2767 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2768 break;
2770 case UNORDERED_EXPR:
2771 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2772 break;
2774 case LE_EXPR:
2775 case LT_EXPR:
2776 if (integer_zerop (op1)
2777 || integer_onep (op1)
2778 || integer_all_onesp (op1)
2779 || real_zerop (op1)
2780 || real_onep (op1)
2781 || real_minus_onep (op1))
2782 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2783 break;
2785 case GE_EXPR:
2786 case GT_EXPR:
2787 if (integer_zerop (op1)
2788 || integer_onep (op1)
2789 || integer_all_onesp (op1)
2790 || real_zerop (op1)
2791 || real_onep (op1)
2792 || real_minus_onep (op1))
2793 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2794 break;
2796 default:
2797 break;
2801 /* Returns TRUE if the STMT is exit(0) like statement. */
2803 static bool
2804 is_exit_with_zero_arg (const gimple *stmt)
2806 /* This is not exit, _exit or _Exit. */
2807 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2808 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2809 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2810 return false;
2812 /* Argument is an interger zero. */
2813 return integer_zerop (gimple_call_arg (stmt, 0));
2816 /* Try to guess whether the value of return means error code. */
2818 static enum br_predictor
2819 return_prediction (tree val, enum prediction *prediction)
2821 /* VOID. */
2822 if (!val)
2823 return PRED_NO_PREDICTION;
2824 /* Different heuristics for pointers and scalars. */
2825 if (POINTER_TYPE_P (TREE_TYPE (val)))
2827 /* NULL is usually not returned. */
2828 if (integer_zerop (val))
2830 *prediction = NOT_TAKEN;
2831 return PRED_NULL_RETURN;
2834 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2836 /* Negative return values are often used to indicate
2837 errors. */
2838 if (TREE_CODE (val) == INTEGER_CST
2839 && tree_int_cst_sgn (val) < 0)
2841 *prediction = NOT_TAKEN;
2842 return PRED_NEGATIVE_RETURN;
2844 /* Constant return values seems to be commonly taken.
2845 Zero/one often represent booleans so exclude them from the
2846 heuristics. */
2847 if (TREE_CONSTANT (val)
2848 && (!integer_zerop (val) && !integer_onep (val)))
2850 *prediction = NOT_TAKEN;
2851 return PRED_CONST_RETURN;
2854 return PRED_NO_PREDICTION;
2857 /* Return zero if phi result could have values other than -1, 0 or 1,
2858 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2859 values are used or likely. */
2861 static int
2862 zero_one_minusone (gphi *phi, int limit)
2864 int phi_num_args = gimple_phi_num_args (phi);
2865 int ret = 0;
2866 for (int i = 0; i < phi_num_args; i++)
2868 tree t = PHI_ARG_DEF (phi, i);
2869 if (TREE_CODE (t) != INTEGER_CST)
2870 continue;
2871 wide_int w = wi::to_wide (t);
2872 if (w == -1)
2873 ret |= 1;
2874 else if (w == 0)
2875 ret |= 2;
2876 else if (w == 1)
2877 ret |= 4;
2878 else
2879 return 0;
2881 for (int i = 0; i < phi_num_args; i++)
2883 tree t = PHI_ARG_DEF (phi, i);
2884 if (TREE_CODE (t) == INTEGER_CST)
2885 continue;
2886 if (TREE_CODE (t) != SSA_NAME)
2887 return 0;
2888 gimple *g = SSA_NAME_DEF_STMT (t);
2889 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2890 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2892 ret |= r;
2893 continue;
2895 if (!is_gimple_assign (g))
2896 return 0;
2897 if (gimple_assign_cast_p (g))
2899 tree rhs1 = gimple_assign_rhs1 (g);
2900 if (TREE_CODE (rhs1) != SSA_NAME
2901 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2902 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2903 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2904 return 0;
2905 ret |= (2 | 4);
2906 continue;
2908 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2909 return 0;
2910 ret |= (2 | 4);
2912 return ret;
2915 /* Find the basic block with return expression and look up for possible
2916 return value trying to apply RETURN_PREDICTION heuristics. */
2917 static void
2918 apply_return_prediction (void)
2920 greturn *return_stmt = NULL;
2921 tree return_val;
2922 edge e;
2923 gphi *phi;
2924 int phi_num_args, i;
2925 enum br_predictor pred;
2926 enum prediction direction;
2927 edge_iterator ei;
2929 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2931 gimple *last = last_stmt (e->src);
2932 if (last
2933 && gimple_code (last) == GIMPLE_RETURN)
2935 return_stmt = as_a <greturn *> (last);
2936 break;
2939 if (!e)
2940 return;
2941 return_val = gimple_return_retval (return_stmt);
2942 if (!return_val)
2943 return;
2944 if (TREE_CODE (return_val) != SSA_NAME
2945 || !SSA_NAME_DEF_STMT (return_val)
2946 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2947 return;
2948 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2949 phi_num_args = gimple_phi_num_args (phi);
2950 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2952 /* Avoid the case where the function returns -1, 0 and 1 values and
2953 nothing else. Those could be qsort etc. comparison functions
2954 where the negative return isn't less probable than positive.
2955 For this require that the function returns at least -1 or 1
2956 or -1 and a boolean value or comparison result, so that functions
2957 returning just -1 and 0 are treated as if -1 represents error value. */
2958 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2959 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2960 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2961 if (int r = zero_one_minusone (phi, 3))
2962 if ((r & (1 | 4)) == (1 | 4))
2963 return;
2965 /* Avoid the degenerate case where all return values form the function
2966 belongs to same category (ie they are all positive constants)
2967 so we can hardly say something about them. */
2968 for (i = 1; i < phi_num_args; i++)
2969 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2970 break;
2971 if (i != phi_num_args)
2972 for (i = 0; i < phi_num_args; i++)
2974 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2975 if (pred != PRED_NO_PREDICTION)
2976 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2977 direction);
2981 /* Look for basic block that contains unlikely to happen events
2982 (such as noreturn calls) and mark all paths leading to execution
2983 of this basic blocks as unlikely. */
2985 static void
2986 tree_bb_level_predictions (void)
2988 basic_block bb;
2989 bool has_return_edges = false;
2990 edge e;
2991 edge_iterator ei;
2993 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2994 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
2996 has_return_edges = true;
2997 break;
3000 apply_return_prediction ();
3002 FOR_EACH_BB_FN (bb, cfun)
3004 gimple_stmt_iterator gsi;
3006 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3008 gimple *stmt = gsi_stmt (gsi);
3009 tree decl;
3011 if (is_gimple_call (stmt))
3013 if (gimple_call_noreturn_p (stmt)
3014 && has_return_edges
3015 && !is_exit_with_zero_arg (stmt))
3016 predict_paths_leading_to (bb, PRED_NORETURN,
3017 NOT_TAKEN);
3018 decl = gimple_call_fndecl (stmt);
3019 if (decl
3020 && lookup_attribute ("cold",
3021 DECL_ATTRIBUTES (decl)))
3022 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
3023 NOT_TAKEN);
3024 if (decl && recursive_call_p (current_function_decl, decl))
3025 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3026 NOT_TAKEN);
3028 else if (gimple_code (stmt) == GIMPLE_PREDICT)
3030 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
3031 gimple_predict_outcome (stmt));
3032 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3033 hints to callers. */
3039 /* Callback for hash_map::traverse, asserts that the pointer map is
3040 empty. */
3042 bool
3043 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3044 void *)
3046 gcc_assert (!value);
3047 return false;
3050 /* Predict branch probabilities and estimate profile for basic block BB.
3051 When LOCAL_ONLY is set do not use any global properties of CFG. */
3053 static void
3054 tree_estimate_probability_bb (basic_block bb, bool local_only)
3056 edge e;
3057 edge_iterator ei;
3059 FOR_EACH_EDGE (e, ei, bb->succs)
3061 /* Look for block we are guarding (ie we dominate it,
3062 but it doesn't postdominate us). */
3063 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3064 && !local_only
3065 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3066 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3068 gimple_stmt_iterator bi;
3070 /* The call heuristic claims that a guarded function call
3071 is improbable. This is because such calls are often used
3072 to signal exceptional situations such as printing error
3073 messages. */
3074 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3075 gsi_next (&bi))
3077 gimple *stmt = gsi_stmt (bi);
3078 if (is_gimple_call (stmt)
3079 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3080 /* Constant and pure calls are hardly used to signalize
3081 something exceptional. */
3082 && gimple_has_side_effects (stmt))
3084 if (gimple_call_fndecl (stmt))
3085 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3086 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3087 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3088 else
3089 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3090 break;
3095 tree_predict_by_opcode (bb);
3098 /* Predict branch probabilities and estimate profile of the tree CFG.
3099 This function can be called from the loop optimizers to recompute
3100 the profile information.
3101 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3103 void
3104 tree_estimate_probability (bool dry_run)
3106 basic_block bb;
3108 connect_infinite_loops_to_exit ();
3109 /* We use loop_niter_by_eval, which requires that the loops have
3110 preheaders. */
3111 create_preheaders (CP_SIMPLE_PREHEADERS);
3112 calculate_dominance_info (CDI_POST_DOMINATORS);
3113 /* Decide which edges are known to be unlikely. This improves later
3114 branch prediction. */
3115 determine_unlikely_bbs ();
3117 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3118 tree_bb_level_predictions ();
3119 record_loop_exits ();
3121 if (number_of_loops (cfun) > 1)
3122 predict_loops ();
3124 FOR_EACH_BB_FN (bb, cfun)
3125 tree_estimate_probability_bb (bb, false);
3127 FOR_EACH_BB_FN (bb, cfun)
3128 combine_predictions_for_bb (bb, dry_run);
3130 if (flag_checking)
3131 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3133 delete bb_predictions;
3134 bb_predictions = NULL;
3136 if (!dry_run)
3137 estimate_bb_frequencies (false);
3138 free_dominance_info (CDI_POST_DOMINATORS);
3139 remove_fake_exit_edges ();
3142 /* Set edge->probability for each successor edge of BB. */
3143 void
3144 tree_guess_outgoing_edge_probabilities (basic_block bb)
3146 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3147 tree_estimate_probability_bb (bb, true);
3148 combine_predictions_for_bb (bb, false);
3149 if (flag_checking)
3150 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3151 delete bb_predictions;
3152 bb_predictions = NULL;
3155 /* Filter function predicate that returns true for a edge predicate P
3156 if its edge is equal to DATA. */
3158 static bool
3159 not_loop_guard_equal_edge_p (edge_prediction *p, void *data)
3161 return p->ep_edge != (edge)data || p->ep_predictor != PRED_LOOP_GUARD;
3164 /* Predict edge E with PRED unless it is already predicted by some predictor
3165 considered equivalent. */
3167 static void
3168 maybe_predict_edge (edge e, enum br_predictor pred, enum prediction taken)
3170 if (edge_predicted_by_p (e, pred, taken))
3171 return;
3172 if (pred == PRED_LOOP_GUARD
3173 && edge_predicted_by_p (e, PRED_LOOP_GUARD_WITH_RECURSION, taken))
3174 return;
3175 /* Consider PRED_LOOP_GUARD_WITH_RECURSION superrior to LOOP_GUARD. */
3176 if (pred == PRED_LOOP_GUARD_WITH_RECURSION)
3178 edge_prediction **preds = bb_predictions->get (e->src);
3179 if (preds)
3180 filter_predictions (preds, not_loop_guard_equal_edge_p, e);
3182 predict_edge_def (e, pred, taken);
3184 /* Predict edges to successors of CUR whose sources are not postdominated by
3185 BB by PRED and recurse to all postdominators. */
3187 static void
3188 predict_paths_for_bb (basic_block cur, basic_block bb,
3189 enum br_predictor pred,
3190 enum prediction taken,
3191 bitmap visited, class loop *in_loop = NULL)
3193 edge e;
3194 edge_iterator ei;
3195 basic_block son;
3197 /* If we exited the loop or CUR is unconditional in the loop, there is
3198 nothing to do. */
3199 if (in_loop
3200 && (!flow_bb_inside_loop_p (in_loop, cur)
3201 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3202 return;
3204 /* We are looking for all edges forming edge cut induced by
3205 set of all blocks postdominated by BB. */
3206 FOR_EACH_EDGE (e, ei, cur->preds)
3207 if (e->src->index >= NUM_FIXED_BLOCKS
3208 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3210 edge e2;
3211 edge_iterator ei2;
3212 bool found = false;
3214 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3215 if (unlikely_executed_edge_p (e))
3216 continue;
3217 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3219 /* See if there is an edge from e->src that is not abnormal
3220 and does not lead to BB and does not exit the loop. */
3221 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3222 if (e2 != e
3223 && !unlikely_executed_edge_p (e2)
3224 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3225 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3227 found = true;
3228 break;
3231 /* If there is non-abnormal path leaving e->src, predict edge
3232 using predictor. Otherwise we need to look for paths
3233 leading to e->src.
3235 The second may lead to infinite loop in the case we are predicitng
3236 regions that are only reachable by abnormal edges. We simply
3237 prevent visiting given BB twice. */
3238 if (found)
3239 maybe_predict_edge (e, pred, taken);
3240 else if (bitmap_set_bit (visited, e->src->index))
3241 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3243 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3244 son;
3245 son = next_dom_son (CDI_POST_DOMINATORS, son))
3246 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3249 /* Sets branch probabilities according to PREDiction and
3250 FLAGS. */
3252 static void
3253 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3254 enum prediction taken, class loop *in_loop)
3256 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3259 /* Like predict_paths_leading_to but take edge instead of basic block. */
3261 static void
3262 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3263 enum prediction taken, class loop *in_loop)
3265 bool has_nonloop_edge = false;
3266 edge_iterator ei;
3267 edge e2;
3269 basic_block bb = e->src;
3270 FOR_EACH_EDGE (e2, ei, bb->succs)
3271 if (e2->dest != e->src && e2->dest != e->dest
3272 && !unlikely_executed_edge_p (e2)
3273 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3275 has_nonloop_edge = true;
3276 break;
3279 if (!has_nonloop_edge)
3280 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3281 else
3282 maybe_predict_edge (e, pred, taken);
3285 /* This is used to carry information about basic blocks. It is
3286 attached to the AUX field of the standard CFG block. */
3288 class block_info
3290 public:
3291 /* Estimated frequency of execution of basic_block. */
3292 sreal frequency;
3294 /* To keep queue of basic blocks to process. */
3295 basic_block next;
3297 /* Number of predecessors we need to visit first. */
3298 int npredecessors;
3301 /* Similar information for edges. */
3302 class edge_prob_info
3304 public:
3305 /* In case edge is a loopback edge, the probability edge will be reached
3306 in case header is. Estimated number of iterations of the loop can be
3307 then computed as 1 / (1 - back_edge_prob). */
3308 sreal back_edge_prob;
3309 /* True if the edge is a loopback edge in the natural loop. */
3310 unsigned int back_edge:1;
3313 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3314 #undef EDGE_INFO
3315 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3317 /* Helper function for estimate_bb_frequencies.
3318 Propagate the frequencies in blocks marked in
3319 TOVISIT, starting in HEAD. */
3321 static void
3322 propagate_freq (basic_block head, bitmap tovisit,
3323 sreal max_cyclic_prob)
3325 basic_block bb;
3326 basic_block last;
3327 unsigned i;
3328 edge e;
3329 basic_block nextbb;
3330 bitmap_iterator bi;
3332 /* For each basic block we need to visit count number of his predecessors
3333 we need to visit first. */
3334 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3336 edge_iterator ei;
3337 int count = 0;
3339 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3341 FOR_EACH_EDGE (e, ei, bb->preds)
3343 bool visit = bitmap_bit_p (tovisit, e->src->index);
3345 if (visit && !(e->flags & EDGE_DFS_BACK))
3346 count++;
3347 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3348 fprintf (dump_file,
3349 "Irreducible region hit, ignoring edge to %i->%i\n",
3350 e->src->index, bb->index);
3352 BLOCK_INFO (bb)->npredecessors = count;
3353 /* When function never returns, we will never process exit block. */
3354 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3355 bb->count = profile_count::zero ();
3358 BLOCK_INFO (head)->frequency = 1;
3359 last = head;
3360 for (bb = head; bb; bb = nextbb)
3362 edge_iterator ei;
3363 sreal cyclic_probability = 0;
3364 sreal frequency = 0;
3366 nextbb = BLOCK_INFO (bb)->next;
3367 BLOCK_INFO (bb)->next = NULL;
3369 /* Compute frequency of basic block. */
3370 if (bb != head)
3372 if (flag_checking)
3373 FOR_EACH_EDGE (e, ei, bb->preds)
3374 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3375 || (e->flags & EDGE_DFS_BACK));
3377 FOR_EACH_EDGE (e, ei, bb->preds)
3378 if (EDGE_INFO (e)->back_edge)
3379 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3380 else if (!(e->flags & EDGE_DFS_BACK))
3382 /* FIXME: Graphite is producing edges with no profile. Once
3383 this is fixed, drop this. */
3384 sreal tmp = e->probability.initialized_p () ?
3385 e->probability.to_sreal () : 0;
3386 frequency += tmp * BLOCK_INFO (e->src)->frequency;
3389 if (cyclic_probability == 0)
3391 BLOCK_INFO (bb)->frequency = frequency;
3393 else
3395 if (cyclic_probability > max_cyclic_prob)
3397 if (dump_file)
3398 fprintf (dump_file,
3399 "cyclic probability of bb %i is %f (capped to %f)"
3400 "; turning freq %f",
3401 bb->index, cyclic_probability.to_double (),
3402 max_cyclic_prob.to_double (),
3403 frequency.to_double ());
3405 cyclic_probability = max_cyclic_prob;
3407 else if (dump_file)
3408 fprintf (dump_file,
3409 "cyclic probability of bb %i is %f; turning freq %f",
3410 bb->index, cyclic_probability.to_double (),
3411 frequency.to_double ());
3413 BLOCK_INFO (bb)->frequency = frequency
3414 / (sreal (1) - cyclic_probability);
3415 if (dump_file)
3416 fprintf (dump_file, " to %f\n",
3417 BLOCK_INFO (bb)->frequency.to_double ());
3421 bitmap_clear_bit (tovisit, bb->index);
3423 e = find_edge (bb, head);
3424 if (e)
3426 /* FIXME: Graphite is producing edges with no profile. Once
3427 this is fixed, drop this. */
3428 sreal tmp = e->probability.initialized_p () ?
3429 e->probability.to_sreal () : 0;
3430 EDGE_INFO (e)->back_edge_prob = tmp * BLOCK_INFO (bb)->frequency;
3433 /* Propagate to successor blocks. */
3434 FOR_EACH_EDGE (e, ei, bb->succs)
3435 if (!(e->flags & EDGE_DFS_BACK)
3436 && BLOCK_INFO (e->dest)->npredecessors)
3438 BLOCK_INFO (e->dest)->npredecessors--;
3439 if (!BLOCK_INFO (e->dest)->npredecessors)
3441 if (!nextbb)
3442 nextbb = e->dest;
3443 else
3444 BLOCK_INFO (last)->next = e->dest;
3446 last = e->dest;
3452 /* Estimate frequencies in loops at same nest level. */
3454 static void
3455 estimate_loops_at_level (class loop *first_loop, sreal max_cyclic_prob)
3457 class loop *loop;
3459 for (loop = first_loop; loop; loop = loop->next)
3461 edge e;
3462 basic_block *bbs;
3463 unsigned i;
3464 auto_bitmap tovisit;
3466 estimate_loops_at_level (loop->inner, max_cyclic_prob);
3468 /* Find current loop back edge and mark it. */
3469 e = loop_latch_edge (loop);
3470 EDGE_INFO (e)->back_edge = 1;
3472 bbs = get_loop_body (loop);
3473 for (i = 0; i < loop->num_nodes; i++)
3474 bitmap_set_bit (tovisit, bbs[i]->index);
3475 free (bbs);
3476 propagate_freq (loop->header, tovisit, max_cyclic_prob);
3480 /* Propagates frequencies through structure of loops. */
3482 static void
3483 estimate_loops (void)
3485 auto_bitmap tovisit;
3486 basic_block bb;
3487 sreal max_cyclic_prob = (sreal)1
3488 - (sreal)1 / (param_max_predicted_iterations + 1);
3490 /* Start by estimating the frequencies in the loops. */
3491 if (number_of_loops (cfun) > 1)
3492 estimate_loops_at_level (current_loops->tree_root->inner, max_cyclic_prob);
3494 /* Now propagate the frequencies through all the blocks. */
3495 FOR_ALL_BB_FN (bb, cfun)
3497 bitmap_set_bit (tovisit, bb->index);
3499 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit, max_cyclic_prob);
3502 /* Drop the profile for NODE to guessed, and update its frequency based on
3503 whether it is expected to be hot given the CALL_COUNT. */
3505 static void
3506 drop_profile (struct cgraph_node *node, profile_count call_count)
3508 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3509 /* In the case where this was called by another function with a
3510 dropped profile, call_count will be 0. Since there are no
3511 non-zero call counts to this function, we don't know for sure
3512 whether it is hot, and therefore it will be marked normal below. */
3513 bool hot = maybe_hot_count_p (NULL, call_count);
3515 if (dump_file)
3516 fprintf (dump_file,
3517 "Dropping 0 profile for %s. %s based on calls.\n",
3518 node->dump_name (),
3519 hot ? "Function is hot" : "Function is normal");
3520 /* We only expect to miss profiles for functions that are reached
3521 via non-zero call edges in cases where the function may have
3522 been linked from another module or library (COMDATs and extern
3523 templates). See the comments below for handle_missing_profiles.
3524 Also, only warn in cases where the missing counts exceed the
3525 number of training runs. In certain cases with an execv followed
3526 by a no-return call the profile for the no-return call is not
3527 dumped and there can be a mismatch. */
3528 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3529 && call_count > profile_info->runs)
3531 if (flag_profile_correction)
3533 if (dump_file)
3534 fprintf (dump_file,
3535 "Missing counts for called function %s\n",
3536 node->dump_name ());
3538 else
3539 warning (0, "Missing counts for called function %s",
3540 node->dump_name ());
3543 basic_block bb;
3544 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3546 bool clear_zeros
3547 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3548 FOR_ALL_BB_FN (bb, fn)
3549 if (clear_zeros || !(bb->count == profile_count::zero ()))
3550 bb->count = bb->count.guessed_local ();
3551 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3553 else
3555 FOR_ALL_BB_FN (bb, fn)
3556 bb->count = profile_count::uninitialized ();
3557 fn->cfg->count_max = profile_count::uninitialized ();
3560 struct cgraph_edge *e;
3561 for (e = node->callees; e; e = e->next_callee)
3562 e->count = gimple_bb (e->call_stmt)->count;
3563 for (e = node->indirect_calls; e; e = e->next_callee)
3564 e->count = gimple_bb (e->call_stmt)->count;
3565 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3567 profile_status_for_fn (fn)
3568 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3569 node->frequency
3570 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3573 /* In the case of COMDAT routines, multiple object files will contain the same
3574 function and the linker will select one for the binary. In that case
3575 all the other copies from the profile instrument binary will be missing
3576 profile counts. Look for cases where this happened, due to non-zero
3577 call counts going to 0-count functions, and drop the profile to guessed
3578 so that we can use the estimated probabilities and avoid optimizing only
3579 for size.
3581 The other case where the profile may be missing is when the routine
3582 is not going to be emitted to the object file, e.g. for "extern template"
3583 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3584 all other cases of non-zero calls to 0-count functions. */
3586 void
3587 handle_missing_profiles (void)
3589 const int unlikely_frac = param_unlikely_bb_count_fraction;
3590 struct cgraph_node *node;
3591 auto_vec<struct cgraph_node *, 64> worklist;
3593 /* See if 0 count function has non-0 count callers. In this case we
3594 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3595 FOR_EACH_DEFINED_FUNCTION (node)
3597 struct cgraph_edge *e;
3598 profile_count call_count = profile_count::zero ();
3599 gcov_type max_tp_first_run = 0;
3600 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3602 if (node->count.ipa ().nonzero_p ())
3603 continue;
3604 for (e = node->callers; e; e = e->next_caller)
3605 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3607 call_count = call_count + e->count.ipa ();
3609 if (e->caller->tp_first_run > max_tp_first_run)
3610 max_tp_first_run = e->caller->tp_first_run;
3613 /* If time profile is missing, let assign the maximum that comes from
3614 caller functions. */
3615 if (!node->tp_first_run && max_tp_first_run)
3616 node->tp_first_run = max_tp_first_run + 1;
3618 if (call_count > 0
3619 && fn && fn->cfg
3620 && call_count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
3622 drop_profile (node, call_count);
3623 worklist.safe_push (node);
3627 /* Propagate the profile dropping to other 0-count COMDATs that are
3628 potentially called by COMDATs we already dropped the profile on. */
3629 while (worklist.length () > 0)
3631 struct cgraph_edge *e;
3633 node = worklist.pop ();
3634 for (e = node->callees; e; e = e->next_caller)
3636 struct cgraph_node *callee = e->callee;
3637 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3639 if (!(e->count.ipa () == profile_count::zero ())
3640 && callee->count.ipa ().nonzero_p ())
3641 continue;
3642 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3643 && fn && fn->cfg
3644 && profile_status_for_fn (fn) == PROFILE_READ)
3646 drop_profile (node, profile_count::zero ());
3647 worklist.safe_push (callee);
3653 /* Convert counts measured by profile driven feedback to frequencies.
3654 Return nonzero iff there was any nonzero execution count. */
3656 bool
3657 update_max_bb_count (void)
3659 profile_count true_count_max = profile_count::uninitialized ();
3660 basic_block bb;
3662 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3663 true_count_max = true_count_max.max (bb->count);
3665 cfun->cfg->count_max = true_count_max;
3667 return true_count_max.ipa ().nonzero_p ();
3670 /* Return true if function is likely to be expensive, so there is no point to
3671 optimize performance of prologue, epilogue or do inlining at the expense
3672 of code size growth. THRESHOLD is the limit of number of instructions
3673 function can execute at average to be still considered not expensive. */
3675 bool
3676 expensive_function_p (int threshold)
3678 basic_block bb;
3680 /* If profile was scaled in a way entry block has count 0, then the function
3681 is deifnitly taking a lot of time. */
3682 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3683 return true;
3685 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN
3686 (cfun)->count.apply_scale (threshold, 1);
3687 profile_count sum = profile_count::zero ();
3688 FOR_EACH_BB_FN (bb, cfun)
3690 rtx_insn *insn;
3692 if (!bb->count.initialized_p ())
3694 if (dump_file)
3695 fprintf (dump_file, "Function is considered expensive because"
3696 " count of bb %i is not initialized\n", bb->index);
3697 return true;
3700 FOR_BB_INSNS (bb, insn)
3701 if (active_insn_p (insn))
3703 sum += bb->count;
3704 if (sum > limit)
3705 return true;
3709 return false;
3712 /* All basic blocks that are reachable only from unlikely basic blocks are
3713 unlikely. */
3715 void
3716 propagate_unlikely_bbs_forward (void)
3718 auto_vec<basic_block, 64> worklist;
3719 basic_block bb;
3720 edge_iterator ei;
3721 edge e;
3723 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3725 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3726 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3728 while (worklist.length () > 0)
3730 bb = worklist.pop ();
3731 FOR_EACH_EDGE (e, ei, bb->succs)
3732 if (!(e->count () == profile_count::zero ())
3733 && !(e->dest->count == profile_count::zero ())
3734 && !e->dest->aux)
3736 e->dest->aux = (void *)(size_t) 1;
3737 worklist.safe_push (e->dest);
3742 FOR_ALL_BB_FN (bb, cfun)
3744 if (!bb->aux)
3746 if (!(bb->count == profile_count::zero ())
3747 && (dump_file && (dump_flags & TDF_DETAILS)))
3748 fprintf (dump_file,
3749 "Basic block %i is marked unlikely by forward prop\n",
3750 bb->index);
3751 bb->count = profile_count::zero ();
3753 else
3754 bb->aux = NULL;
3758 /* Determine basic blocks/edges that are known to be unlikely executed and set
3759 their counters to zero.
3760 This is done with first identifying obviously unlikely BBs/edges and then
3761 propagating in both directions. */
3763 static void
3764 determine_unlikely_bbs ()
3766 basic_block bb;
3767 auto_vec<basic_block, 64> worklist;
3768 edge_iterator ei;
3769 edge e;
3771 FOR_EACH_BB_FN (bb, cfun)
3773 if (!(bb->count == profile_count::zero ())
3774 && unlikely_executed_bb_p (bb))
3776 if (dump_file && (dump_flags & TDF_DETAILS))
3777 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3778 bb->index);
3779 bb->count = profile_count::zero ();
3782 FOR_EACH_EDGE (e, ei, bb->succs)
3783 if (!(e->probability == profile_probability::never ())
3784 && unlikely_executed_edge_p (e))
3786 if (dump_file && (dump_flags & TDF_DETAILS))
3787 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3788 bb->index, e->dest->index);
3789 e->probability = profile_probability::never ();
3792 gcc_checking_assert (!bb->aux);
3794 propagate_unlikely_bbs_forward ();
3796 auto_vec<int, 64> nsuccs;
3797 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
3798 FOR_ALL_BB_FN (bb, cfun)
3799 if (!(bb->count == profile_count::zero ())
3800 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3802 nsuccs[bb->index] = 0;
3803 FOR_EACH_EDGE (e, ei, bb->succs)
3804 if (!(e->probability == profile_probability::never ())
3805 && !(e->dest->count == profile_count::zero ()))
3806 nsuccs[bb->index]++;
3807 if (!nsuccs[bb->index])
3808 worklist.safe_push (bb);
3810 while (worklist.length () > 0)
3812 bb = worklist.pop ();
3813 if (bb->count == profile_count::zero ())
3814 continue;
3815 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3817 bool found = false;
3818 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3819 !gsi_end_p (gsi); gsi_next (&gsi))
3820 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3821 /* stmt_can_terminate_bb_p special cases noreturns because it
3822 assumes that fake edges are created. We want to know that
3823 noreturn alone does not imply BB to be unlikely. */
3824 || (is_gimple_call (gsi_stmt (gsi))
3825 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3827 found = true;
3828 break;
3830 if (found)
3831 continue;
3833 if (dump_file && (dump_flags & TDF_DETAILS))
3834 fprintf (dump_file,
3835 "Basic block %i is marked unlikely by backward prop\n",
3836 bb->index);
3837 bb->count = profile_count::zero ();
3838 FOR_EACH_EDGE (e, ei, bb->preds)
3839 if (!(e->probability == profile_probability::never ()))
3841 if (!(e->src->count == profile_count::zero ()))
3843 gcc_checking_assert (nsuccs[e->src->index] > 0);
3844 nsuccs[e->src->index]--;
3845 if (!nsuccs[e->src->index])
3846 worklist.safe_push (e->src);
3850 /* Finally all edges from non-0 regions to 0 are unlikely. */
3851 FOR_ALL_BB_FN (bb, cfun)
3853 if (!(bb->count == profile_count::zero ()))
3854 FOR_EACH_EDGE (e, ei, bb->succs)
3855 if (!(e->probability == profile_probability::never ())
3856 && e->dest->count == profile_count::zero ())
3858 if (dump_file && (dump_flags & TDF_DETAILS))
3859 fprintf (dump_file, "Edge %i->%i is unlikely because "
3860 "it enters unlikely block\n",
3861 bb->index, e->dest->index);
3862 e->probability = profile_probability::never ();
3865 edge other = NULL;
3867 FOR_EACH_EDGE (e, ei, bb->succs)
3868 if (e->probability == profile_probability::never ())
3870 else if (other)
3872 other = NULL;
3873 break;
3875 else
3876 other = e;
3877 if (other
3878 && !(other->probability == profile_probability::always ()))
3880 if (dump_file && (dump_flags & TDF_DETAILS))
3881 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3882 bb->index, other->dest->index);
3883 other->probability = profile_probability::always ();
3886 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3887 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3890 /* Estimate and propagate basic block frequencies using the given branch
3891 probabilities. If FORCE is true, the frequencies are used to estimate
3892 the counts even when there are already non-zero profile counts. */
3894 void
3895 estimate_bb_frequencies (bool force)
3897 basic_block bb;
3898 sreal freq_max;
3900 determine_unlikely_bbs ();
3902 if (force || profile_status_for_fn (cfun) != PROFILE_READ
3903 || !update_max_bb_count ())
3906 mark_dfs_back_edges ();
3908 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3909 profile_probability::always ();
3911 /* Set up block info for each basic block. */
3912 alloc_aux_for_blocks (sizeof (block_info));
3913 alloc_aux_for_edges (sizeof (edge_prob_info));
3914 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3916 edge e;
3917 edge_iterator ei;
3919 FOR_EACH_EDGE (e, ei, bb->succs)
3921 /* FIXME: Graphite is producing edges with no profile. Once
3922 this is fixed, drop this. */
3923 if (e->probability.initialized_p ())
3924 EDGE_INFO (e)->back_edge_prob
3925 = e->probability.to_sreal ();
3926 else
3927 /* back_edge_prob = 0.5 */
3928 EDGE_INFO (e)->back_edge_prob = sreal (1, -1);
3932 /* First compute frequencies locally for each loop from innermost
3933 to outermost to examine frequencies for back edges. */
3934 estimate_loops ();
3936 freq_max = 0;
3937 FOR_EACH_BB_FN (bb, cfun)
3938 if (freq_max < BLOCK_INFO (bb)->frequency)
3939 freq_max = BLOCK_INFO (bb)->frequency;
3941 /* Scaling frequencies up to maximal profile count may result in
3942 frequent overflows especially when inlining loops.
3943 Small scalling results in unnecesary precision loss. Stay in
3944 the half of the (exponential) range. */
3945 freq_max = (sreal (1) << (profile_count::n_bits / 2)) / freq_max;
3946 if (freq_max < 16)
3947 freq_max = 16;
3948 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3949 cfun->cfg->count_max = profile_count::uninitialized ();
3950 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3952 sreal tmp = BLOCK_INFO (bb)->frequency;
3953 if (tmp >= 1)
3955 gimple_stmt_iterator gsi;
3956 tree decl;
3958 /* Self recursive calls can not have frequency greater than 1
3959 or program will never terminate. This will result in an
3960 inconsistent bb profile but it is better than greatly confusing
3961 IPA cost metrics. */
3962 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3963 if (is_gimple_call (gsi_stmt (gsi))
3964 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
3965 && recursive_call_p (current_function_decl, decl))
3967 if (dump_file)
3968 fprintf (dump_file, "Dropping frequency of recursive call"
3969 " in bb %i from %f\n", bb->index,
3970 tmp.to_double ());
3971 tmp = (sreal)9 / (sreal)10;
3972 break;
3975 tmp = tmp * freq_max + sreal (1, -1);
3976 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3978 /* If we have profile feedback in which this function was never
3979 executed, then preserve this info. */
3980 if (!(bb->count == profile_count::zero ()))
3981 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
3982 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3985 free_aux_for_blocks ();
3986 free_aux_for_edges ();
3988 compute_function_frequency ();
3991 /* Decide whether function is hot, cold or unlikely executed. */
3992 void
3993 compute_function_frequency (void)
3995 basic_block bb;
3996 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3998 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3999 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
4000 node->only_called_at_startup = true;
4001 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
4002 node->only_called_at_exit = true;
4004 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ())
4006 int flags = flags_from_decl_or_type (current_function_decl);
4007 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4008 != NULL)
4009 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4010 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
4011 != NULL)
4012 node->frequency = NODE_FREQUENCY_HOT;
4013 else if (flags & ECF_NORETURN)
4014 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4015 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
4016 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4017 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4018 || DECL_STATIC_DESTRUCTOR (current_function_decl))
4019 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4020 return;
4023 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4024 warn_function_cold (current_function_decl);
4025 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
4026 return;
4027 FOR_EACH_BB_FN (bb, cfun)
4029 if (maybe_hot_bb_p (cfun, bb))
4031 node->frequency = NODE_FREQUENCY_HOT;
4032 return;
4034 if (!probably_never_executed_bb_p (cfun, bb))
4035 node->frequency = NODE_FREQUENCY_NORMAL;
4039 /* Build PREDICT_EXPR. */
4040 tree
4041 build_predict_expr (enum br_predictor predictor, enum prediction taken)
4043 tree t = build1 (PREDICT_EXPR, void_type_node,
4044 build_int_cst (integer_type_node, predictor));
4045 SET_PREDICT_EXPR_OUTCOME (t, taken);
4046 return t;
4049 const char *
4050 predictor_name (enum br_predictor predictor)
4052 return predictor_info[predictor].name;
4055 /* Predict branch probabilities and estimate profile of the tree CFG. */
4057 namespace {
4059 const pass_data pass_data_profile =
4061 GIMPLE_PASS, /* type */
4062 "profile_estimate", /* name */
4063 OPTGROUP_NONE, /* optinfo_flags */
4064 TV_BRANCH_PROB, /* tv_id */
4065 PROP_cfg, /* properties_required */
4066 0, /* properties_provided */
4067 0, /* properties_destroyed */
4068 0, /* todo_flags_start */
4069 0, /* todo_flags_finish */
4072 class pass_profile : public gimple_opt_pass
4074 public:
4075 pass_profile (gcc::context *ctxt)
4076 : gimple_opt_pass (pass_data_profile, ctxt)
4079 /* opt_pass methods: */
4080 virtual bool gate (function *) { return flag_guess_branch_prob; }
4081 virtual unsigned int execute (function *);
4083 }; // class pass_profile
4085 unsigned int
4086 pass_profile::execute (function *fun)
4088 unsigned nb_loops;
4090 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4091 return 0;
4093 loop_optimizer_init (LOOPS_NORMAL);
4094 if (dump_file && (dump_flags & TDF_DETAILS))
4095 flow_loops_dump (dump_file, NULL, 0);
4097 nb_loops = number_of_loops (fun);
4098 if (nb_loops > 1)
4099 scev_initialize ();
4101 tree_estimate_probability (false);
4103 if (nb_loops > 1)
4104 scev_finalize ();
4106 loop_optimizer_finalize ();
4107 if (dump_file && (dump_flags & TDF_DETAILS))
4108 gimple_dump_cfg (dump_file, dump_flags);
4109 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4110 profile_status_for_fn (fun) = PROFILE_GUESSED;
4111 if (dump_file && (dump_flags & TDF_DETAILS))
4113 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
4114 if (loop->header->count.initialized_p ())
4115 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
4116 loop->num,
4117 (int)expected_loop_iterations_unbounded (loop));
4119 return 0;
4122 } // anon namespace
4124 gimple_opt_pass *
4125 make_pass_profile (gcc::context *ctxt)
4127 return new pass_profile (ctxt);
4130 /* Return true when PRED predictor should be removed after early
4131 tree passes. Most of the predictors are beneficial to survive
4132 as early inlining can also distribute then into caller's bodies. */
4134 static bool
4135 strip_predictor_early (enum br_predictor pred)
4137 switch (pred)
4139 case PRED_TREE_EARLY_RETURN:
4140 return true;
4141 default:
4142 return false;
4146 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4147 we no longer need. EARLY is set to true when called from early
4148 optimizations. */
4150 unsigned int
4151 strip_predict_hints (function *fun, bool early)
4153 basic_block bb;
4154 gimple *ass_stmt;
4155 tree var;
4156 bool changed = false;
4158 FOR_EACH_BB_FN (bb, fun)
4160 gimple_stmt_iterator bi;
4161 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4163 gimple *stmt = gsi_stmt (bi);
4165 if (gimple_code (stmt) == GIMPLE_PREDICT)
4167 if (!early
4168 || strip_predictor_early (gimple_predict_predictor (stmt)))
4170 gsi_remove (&bi, true);
4171 changed = true;
4172 continue;
4175 else if (is_gimple_call (stmt))
4177 tree fndecl = gimple_call_fndecl (stmt);
4179 if (!early
4180 && ((fndecl != NULL_TREE
4181 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4182 && gimple_call_num_args (stmt) == 2)
4183 || (fndecl != NULL_TREE
4184 && fndecl_built_in_p (fndecl,
4185 BUILT_IN_EXPECT_WITH_PROBABILITY)
4186 && gimple_call_num_args (stmt) == 3)
4187 || (gimple_call_internal_p (stmt)
4188 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4190 var = gimple_call_lhs (stmt);
4191 changed = true;
4192 if (var)
4194 ass_stmt
4195 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4196 gsi_replace (&bi, ass_stmt, true);
4198 else
4200 gsi_remove (&bi, true);
4201 continue;
4205 gsi_next (&bi);
4208 return changed ? TODO_cleanup_cfg : 0;
4211 namespace {
4213 const pass_data pass_data_strip_predict_hints =
4215 GIMPLE_PASS, /* type */
4216 "*strip_predict_hints", /* name */
4217 OPTGROUP_NONE, /* optinfo_flags */
4218 TV_BRANCH_PROB, /* tv_id */
4219 PROP_cfg, /* properties_required */
4220 0, /* properties_provided */
4221 0, /* properties_destroyed */
4222 0, /* todo_flags_start */
4223 0, /* todo_flags_finish */
4226 class pass_strip_predict_hints : public gimple_opt_pass
4228 public:
4229 pass_strip_predict_hints (gcc::context *ctxt)
4230 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4233 /* opt_pass methods: */
4234 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
4235 void set_pass_param (unsigned int n, bool param)
4237 gcc_assert (n == 0);
4238 early_p = param;
4241 virtual unsigned int execute (function *);
4243 private:
4244 bool early_p;
4246 }; // class pass_strip_predict_hints
4248 unsigned int
4249 pass_strip_predict_hints::execute (function *fun)
4251 return strip_predict_hints (fun, early_p);
4254 } // anon namespace
4256 gimple_opt_pass *
4257 make_pass_strip_predict_hints (gcc::context *ctxt)
4259 return new pass_strip_predict_hints (ctxt);
4262 /* Rebuild function frequencies. Passes are in general expected to
4263 maintain profile by hand, however in some cases this is not possible:
4264 for example when inlining several functions with loops freuqencies might run
4265 out of scale and thus needs to be recomputed. */
4267 void
4268 rebuild_frequencies (void)
4270 timevar_push (TV_REBUILD_FREQUENCIES);
4272 /* When the max bb count in the function is small, there is a higher
4273 chance that there were truncation errors in the integer scaling
4274 of counts by inlining and other optimizations. This could lead
4275 to incorrect classification of code as being cold when it isn't.
4276 In that case, force the estimation of bb counts/frequencies from the
4277 branch probabilities, rather than computing frequencies from counts,
4278 which may also lead to frequencies incorrectly reduced to 0. There
4279 is less precision in the probabilities, so we only do this for small
4280 max counts. */
4281 cfun->cfg->count_max = profile_count::uninitialized ();
4282 basic_block bb;
4283 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4284 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4286 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4288 loop_optimizer_init (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
4289 connect_infinite_loops_to_exit ();
4290 estimate_bb_frequencies (true);
4291 remove_fake_exit_edges ();
4292 loop_optimizer_finalize ();
4294 else if (profile_status_for_fn (cfun) == PROFILE_READ)
4295 update_max_bb_count ();
4296 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4297 && !flag_guess_branch_prob)
4299 else
4300 gcc_unreachable ();
4301 timevar_pop (TV_REBUILD_FREQUENCIES);
4304 /* Perform a dry run of the branch prediction pass and report comparsion of
4305 the predicted and real profile into the dump file. */
4307 void
4308 report_predictor_hitrates (void)
4310 unsigned nb_loops;
4312 loop_optimizer_init (LOOPS_NORMAL);
4313 if (dump_file && (dump_flags & TDF_DETAILS))
4314 flow_loops_dump (dump_file, NULL, 0);
4316 nb_loops = number_of_loops (cfun);
4317 if (nb_loops > 1)
4318 scev_initialize ();
4320 tree_estimate_probability (true);
4322 if (nb_loops > 1)
4323 scev_finalize ();
4325 loop_optimizer_finalize ();
4328 /* Force edge E to be cold.
4329 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4330 keep low probability to represent possible error in a guess. This is used
4331 i.e. in case we predict loop to likely iterate given number of times but
4332 we are not 100% sure.
4334 This function locally updates profile without attempt to keep global
4335 consistency which cannot be reached in full generality without full profile
4336 rebuild from probabilities alone. Doing so is not necessarily a good idea
4337 because frequencies and counts may be more realistic then probabilities.
4339 In some cases (such as for elimination of early exits during full loop
4340 unrolling) the caller can ensure that profile will get consistent
4341 afterwards. */
4343 void
4344 force_edge_cold (edge e, bool impossible)
4346 profile_count count_sum = profile_count::zero ();
4347 profile_probability prob_sum = profile_probability::never ();
4348 edge_iterator ei;
4349 edge e2;
4350 bool uninitialized_exit = false;
4352 /* When branch probability guesses are not known, then do nothing. */
4353 if (!impossible && !e->count ().initialized_p ())
4354 return;
4356 profile_probability goal = (impossible ? profile_probability::never ()
4357 : profile_probability::very_unlikely ());
4359 /* If edge is already improbably or cold, just return. */
4360 if (e->probability <= goal
4361 && (!impossible || e->count () == profile_count::zero ()))
4362 return;
4363 FOR_EACH_EDGE (e2, ei, e->src->succs)
4364 if (e2 != e)
4366 if (e->flags & EDGE_FAKE)
4367 continue;
4368 if (e2->count ().initialized_p ())
4369 count_sum += e2->count ();
4370 if (e2->probability.initialized_p ())
4371 prob_sum += e2->probability;
4372 else
4373 uninitialized_exit = true;
4376 /* If we are not guessing profiles but have some other edges out,
4377 just assume the control flow goes elsewhere. */
4378 if (uninitialized_exit)
4379 e->probability = goal;
4380 /* If there are other edges out of e->src, redistribute probabilitity
4381 there. */
4382 else if (prob_sum > profile_probability::never ())
4384 if (!(e->probability < goal))
4385 e->probability = goal;
4387 profile_probability prob_comp = prob_sum / e->probability.invert ();
4389 if (dump_file && (dump_flags & TDF_DETAILS))
4390 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4391 "probability to other edges.\n",
4392 e->src->index, e->dest->index,
4393 impossible ? "impossible" : "cold");
4394 FOR_EACH_EDGE (e2, ei, e->src->succs)
4395 if (e2 != e)
4397 e2->probability /= prob_comp;
4399 if (current_ir_type () != IR_GIMPLE
4400 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4401 update_br_prob_note (e->src);
4403 /* If all edges out of e->src are unlikely, the basic block itself
4404 is unlikely. */
4405 else
4407 if (prob_sum == profile_probability::never ())
4408 e->probability = profile_probability::always ();
4409 else
4411 if (impossible)
4412 e->probability = profile_probability::never ();
4413 /* If BB has some edges out that are not impossible, we cannot
4414 assume that BB itself is. */
4415 impossible = false;
4417 if (current_ir_type () != IR_GIMPLE
4418 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4419 update_br_prob_note (e->src);
4420 if (e->src->count == profile_count::zero ())
4421 return;
4422 if (count_sum == profile_count::zero () && impossible)
4424 bool found = false;
4425 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4427 else if (current_ir_type () == IR_GIMPLE)
4428 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4429 !gsi_end_p (gsi); gsi_next (&gsi))
4431 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4433 found = true;
4434 break;
4437 /* FIXME: Implement RTL path. */
4438 else
4439 found = true;
4440 if (!found)
4442 if (dump_file && (dump_flags & TDF_DETAILS))
4443 fprintf (dump_file,
4444 "Making bb %i impossible and dropping count to 0.\n",
4445 e->src->index);
4446 e->src->count = profile_count::zero ();
4447 FOR_EACH_EDGE (e2, ei, e->src->preds)
4448 force_edge_cold (e2, impossible);
4449 return;
4453 /* If we did not adjusting, the source basic block has no likely edeges
4454 leaving other direction. In that case force that bb cold, too.
4455 This in general is difficult task to do, but handle special case when
4456 BB has only one predecestor. This is common case when we are updating
4457 after loop transforms. */
4458 if (!(prob_sum > profile_probability::never ())
4459 && count_sum == profile_count::zero ()
4460 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4461 > (impossible ? 0 : 1))
4463 int old_frequency = e->src->count.to_frequency (cfun);
4464 if (dump_file && (dump_flags & TDF_DETAILS))
4465 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4466 impossible ? "impossible" : "cold");
4467 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4468 impossible ? 0 : 1);
4469 if (impossible)
4470 e->src->count = profile_count::zero ();
4471 else
4472 e->src->count = e->count ().apply_scale (new_frequency,
4473 old_frequency);
4474 force_edge_cold (single_pred_edge (e->src), impossible);
4476 else if (dump_file && (dump_flags & TDF_DETAILS)
4477 && maybe_hot_bb_p (cfun, e->src))
4478 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4479 impossible ? "impossible" : "cold");
4483 /* Change E's probability to NEW_E_PROB, redistributing the probabilities
4484 of other outgoing edges proportionally.
4486 Note that this function does not change the profile counts of any
4487 basic blocks. The caller must do that instead, using whatever
4488 information it has about the region that needs updating. */
4490 void
4491 change_edge_frequency (edge e, profile_probability new_e_prob)
4493 profile_probability old_e_prob = e->probability;
4494 profile_probability old_other_prob = old_e_prob.invert ();
4495 profile_probability new_other_prob = new_e_prob.invert ();
4497 e->probability = new_e_prob;
4498 profile_probability cumulative_prob = new_e_prob;
4500 unsigned int num_other = EDGE_COUNT (e->src->succs) - 1;
4501 edge other_e;
4502 edge_iterator ei;
4503 FOR_EACH_EDGE (other_e, ei, e->src->succs)
4504 if (other_e != e)
4506 num_other -= 1;
4507 if (num_other == 0)
4508 /* Ensure that the probabilities add up to 1 without
4509 rounding error. */
4510 other_e->probability = cumulative_prob.invert ();
4511 else
4513 other_e->probability /= old_other_prob;
4514 other_e->probability *= new_other_prob;
4515 cumulative_prob += other_e->probability;
4520 #if CHECKING_P
4522 namespace selftest {
4524 /* Test that value range of predictor values defined in predict.def is
4525 within range (50, 100]. */
4527 struct branch_predictor
4529 const char *name;
4530 int probability;
4533 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4535 static void
4536 test_prediction_value_range ()
4538 branch_predictor predictors[] = {
4539 #include "predict.def"
4540 { NULL, PROB_UNINITIALIZED }
4543 for (unsigned i = 0; predictors[i].name != NULL; i++)
4545 if (predictors[i].probability == PROB_UNINITIALIZED)
4546 continue;
4548 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4549 ASSERT_TRUE (p >= 50 && p <= 100);
4553 #undef DEF_PREDICTOR
4555 /* Run all of the selfests within this file. */
4557 void
4558 predict_c_tests ()
4560 test_prediction_value_range ();
4563 } // namespace selftest
4564 #endif /* CHECKING_P. */