Daily bump.
[official-gcc.git] / gcc / combine.c
blobff672ad2adbebb37b9566c99b696bb66fcaa1639
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* And similarly, for notes. */
307 static rtx_insn *added_notes_insn;
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int max_uid_known;
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
321 static int *uid_insn_cost;
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
332 static struct insn_link **uid_log_links;
334 static inline int
335 insn_uid_check (const_rtx insn)
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348 /* Links for LOG_LINKS are allocated from this obstack. */
350 static struct obstack insn_link_obstack;
352 /* Allocate a link. */
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
366 /* Incremented for each basic block. */
368 static int label_tick;
370 /* Reset to label_tick for each extended basic block in scanning order. */
372 static int label_tick_ebb_start;
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377 static scalar_int_mode nonzero_bits_mode;
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
385 static int nonzero_sign_valid;
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393 struct undo
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
407 struct undobuf
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
414 static struct undobuf undobuf;
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
419 static int n_occurrences;
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
486 static int reg_dead_at_p (rtx, rtx_insn *);
487 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
488 static int reg_bitfield_target_p (rtx, rtx);
489 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
490 static void distribute_links (struct insn_link *);
491 static void mark_used_regs_combine (rtx);
492 static void record_promoted_value (rtx_insn *, rtx);
493 static bool unmentioned_reg_p (rtx, rtx);
494 static void record_truncated_values (rtx *, void *);
495 static bool reg_truncated_to_mode (machine_mode, const_rtx);
496 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
499 /* It is not safe to use ordinary gen_lowpart in combine.
500 See comments in gen_lowpart_for_combine. */
501 #undef RTL_HOOKS_GEN_LOWPART
502 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
504 /* Our implementation of gen_lowpart never emits a new pseudo. */
505 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
506 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
508 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
509 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
511 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
512 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
514 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
515 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
517 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
520 /* Convenience wrapper for the canonicalize_comparison target hook.
521 Target hooks cannot use enum rtx_code. */
522 static inline void
523 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
524 bool op0_preserve_value)
526 int code_int = (int)*code;
527 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
528 *code = (enum rtx_code)code_int;
531 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
532 PATTERN can not be split. Otherwise, it returns an insn sequence.
533 This is a wrapper around split_insns which ensures that the
534 reg_stat vector is made larger if the splitter creates a new
535 register. */
537 static rtx_insn *
538 combine_split_insns (rtx pattern, rtx_insn *insn)
540 rtx_insn *ret;
541 unsigned int nregs;
543 ret = split_insns (pattern, insn);
544 nregs = max_reg_num ();
545 if (nregs > reg_stat.length ())
546 reg_stat.safe_grow_cleared (nregs);
547 return ret;
550 /* This is used by find_single_use to locate an rtx in LOC that
551 contains exactly one use of DEST, which is typically either a REG
552 or CC0. It returns a pointer to the innermost rtx expression
553 containing DEST. Appearances of DEST that are being used to
554 totally replace it are not counted. */
556 static rtx *
557 find_single_use_1 (rtx dest, rtx *loc)
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx *result = NULL;
562 rtx *this_result;
563 int i;
564 const char *fmt;
566 switch (code)
568 case CONST:
569 case LABEL_REF:
570 case SYMBOL_REF:
571 CASE_CONST_ANY:
572 case CLOBBER:
573 return 0;
575 case SET:
576 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
577 of a REG that occupies all of the REG, the insn uses DEST if
578 it is mentioned in the destination or the source. Otherwise, we
579 need just check the source. */
580 if (GET_CODE (SET_DEST (x)) != CC0
581 && GET_CODE (SET_DEST (x)) != PC
582 && !REG_P (SET_DEST (x))
583 && ! (GET_CODE (SET_DEST (x)) == SUBREG
584 && REG_P (SUBREG_REG (SET_DEST (x)))
585 && !read_modify_subreg_p (SET_DEST (x))))
586 break;
588 return find_single_use_1 (dest, &SET_SRC (x));
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
594 default:
595 break;
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 if (fmt[i] == 'e')
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
619 else if (fmt[i] == 'E')
621 int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
641 return result;
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
667 if (dest == cc0_rtx)
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
680 if (!REG_P (dest))
681 return 0;
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
693 if (link)
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
702 return 0;
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
711 static void
712 do_SUBST (rtx *into, rtx newval)
714 struct undo *buf;
715 rtx oldval = *into;
717 if (oldval == newval)
718 return;
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
755 buf->next = undobuf.undos, undobuf.undos = buf;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
764 static void
765 do_SUBST_INT (int *into, int newval)
767 struct undo *buf;
768 int oldval = *into;
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
799 if (oldval == newval)
800 return;
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
812 buf->next = undobuf.undos, undobuf.undos = buf;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 struct undo *buf;
823 struct insn_link * oldval = *into;
825 if (oldval == newval)
826 return;
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
838 buf->next = undobuf.undos, undobuf.undos = buf;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
859 /* Lookup the original insn_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
863 if (i1)
865 i1_cost = INSN_COST (i1);
866 if (i0)
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 else
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
879 else
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
891 /* Calculate the replacement insn_costs. */
892 rtx tmp = PATTERN (i3);
893 PATTERN (i3) = newpat;
894 int tmpi = INSN_CODE (i3);
895 INSN_CODE (i3) = -1;
896 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
897 PATTERN (i3) = tmp;
898 INSN_CODE (i3) = tmpi;
899 if (newi2pat)
901 tmp = PATTERN (i2);
902 PATTERN (i2) = newi2pat;
903 tmpi = INSN_CODE (i2);
904 INSN_CODE (i2) = -1;
905 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
906 PATTERN (i2) = tmp;
907 INSN_CODE (i2) = tmpi;
908 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
909 ? new_i2_cost + new_i3_cost : 0;
911 else
913 new_cost = new_i3_cost;
914 new_i2_cost = 0;
917 if (undobuf.other_insn)
919 int old_other_cost, new_other_cost;
921 old_other_cost = INSN_COST (undobuf.other_insn);
922 tmp = PATTERN (undobuf.other_insn);
923 PATTERN (undobuf.other_insn) = newotherpat;
924 tmpi = INSN_CODE (undobuf.other_insn);
925 INSN_CODE (undobuf.other_insn) = -1;
926 new_other_cost = insn_cost (undobuf.other_insn,
927 optimize_this_for_speed_p);
928 PATTERN (undobuf.other_insn) = tmp;
929 INSN_CODE (undobuf.other_insn) = tmpi;
930 if (old_other_cost > 0 && new_other_cost > 0)
932 old_cost += old_other_cost;
933 new_cost += new_other_cost;
935 else
936 old_cost = 0;
939 /* Disallow this combination if both new_cost and old_cost are greater than
940 zero, and new_cost is greater than old cost. */
941 int reject = old_cost > 0 && new_cost > old_cost;
943 if (dump_file)
945 fprintf (dump_file, "%s combination of insns ",
946 reject ? "rejecting" : "allowing");
947 if (i0)
948 fprintf (dump_file, "%d, ", INSN_UID (i0));
949 if (i1 && INSN_UID (i1) != INSN_UID (i2))
950 fprintf (dump_file, "%d, ", INSN_UID (i1));
951 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
953 fprintf (dump_file, "original costs ");
954 if (i0)
955 fprintf (dump_file, "%d + ", i0_cost);
956 if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 fprintf (dump_file, "%d + ", i1_cost);
958 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
960 if (newi2pat)
961 fprintf (dump_file, "replacement costs %d + %d = %d\n",
962 new_i2_cost, new_i3_cost, new_cost);
963 else
964 fprintf (dump_file, "replacement cost %d\n", new_cost);
967 if (reject)
968 return false;
970 /* Update the uid_insn_cost array with the replacement costs. */
971 INSN_COST (i2) = new_i2_cost;
972 INSN_COST (i3) = new_i3_cost;
973 if (i1)
975 INSN_COST (i1) = 0;
976 if (i0)
977 INSN_COST (i0) = 0;
980 return true;
984 /* Delete any insns that copy a register to itself. */
986 static void
987 delete_noop_moves (void)
989 rtx_insn *insn, *next;
990 basic_block bb;
992 FOR_EACH_BB_FN (bb, cfun)
994 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
996 next = NEXT_INSN (insn);
997 if (INSN_P (insn) && noop_move_p (insn))
999 if (dump_file)
1000 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1002 delete_insn_and_edges (insn);
1009 /* Return false if we do not want to (or cannot) combine DEF. */
1010 static bool
1011 can_combine_def_p (df_ref def)
1013 /* Do not consider if it is pre/post modification in MEM. */
1014 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1015 return false;
1017 unsigned int regno = DF_REF_REGNO (def);
1019 /* Do not combine frame pointer adjustments. */
1020 if ((regno == FRAME_POINTER_REGNUM
1021 && (!reload_completed || frame_pointer_needed))
1022 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1023 && regno == HARD_FRAME_POINTER_REGNUM
1024 && (!reload_completed || frame_pointer_needed))
1025 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1026 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1027 return false;
1029 return true;
1032 /* Return false if we do not want to (or cannot) combine USE. */
1033 static bool
1034 can_combine_use_p (df_ref use)
1036 /* Do not consider the usage of the stack pointer by function call. */
1037 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1038 return false;
1040 return true;
1043 /* Fill in log links field for all insns. */
1045 static void
1046 create_log_links (void)
1048 basic_block bb;
1049 rtx_insn **next_use;
1050 rtx_insn *insn;
1051 df_ref def, use;
1053 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1055 /* Pass through each block from the end, recording the uses of each
1056 register and establishing log links when def is encountered.
1057 Note that we do not clear next_use array in order to save time,
1058 so we have to test whether the use is in the same basic block as def.
1060 There are a few cases below when we do not consider the definition or
1061 usage -- these are taken from original flow.c did. Don't ask me why it is
1062 done this way; I don't know and if it works, I don't want to know. */
1064 FOR_EACH_BB_FN (bb, cfun)
1066 FOR_BB_INSNS_REVERSE (bb, insn)
1068 if (!NONDEBUG_INSN_P (insn))
1069 continue;
1071 /* Log links are created only once. */
1072 gcc_assert (!LOG_LINKS (insn));
1074 FOR_EACH_INSN_DEF (def, insn)
1076 unsigned int regno = DF_REF_REGNO (def);
1077 rtx_insn *use_insn;
1079 if (!next_use[regno])
1080 continue;
1082 if (!can_combine_def_p (def))
1083 continue;
1085 use_insn = next_use[regno];
1086 next_use[regno] = NULL;
1088 if (BLOCK_FOR_INSN (use_insn) != bb)
1089 continue;
1091 /* flow.c claimed:
1093 We don't build a LOG_LINK for hard registers contained
1094 in ASM_OPERANDs. If these registers get replaced,
1095 we might wind up changing the semantics of the insn,
1096 even if reload can make what appear to be valid
1097 assignments later. */
1098 if (regno < FIRST_PSEUDO_REGISTER
1099 && asm_noperands (PATTERN (use_insn)) >= 0)
1100 continue;
1102 /* Don't add duplicate links between instructions. */
1103 struct insn_link *links;
1104 FOR_EACH_LOG_LINK (links, use_insn)
1105 if (insn == links->insn && regno == links->regno)
1106 break;
1108 if (!links)
1109 LOG_LINKS (use_insn)
1110 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1113 FOR_EACH_INSN_USE (use, insn)
1114 if (can_combine_use_p (use))
1115 next_use[DF_REF_REGNO (use)] = insn;
1119 free (next_use);
1122 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1123 true if we found a LOG_LINK that proves that A feeds B. This only works
1124 if there are no instructions between A and B which could have a link
1125 depending on A, since in that case we would not record a link for B.
1126 We also check the implicit dependency created by a cc0 setter/user
1127 pair. */
1129 static bool
1130 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1132 struct insn_link *links;
1133 FOR_EACH_LOG_LINK (links, b)
1134 if (links->insn == a)
1135 return true;
1136 if (HAVE_cc0 && sets_cc0_p (a))
1137 return true;
1138 return false;
1141 /* Main entry point for combiner. F is the first insn of the function.
1142 NREGS is the first unused pseudo-reg number.
1144 Return nonzero if the combiner has turned an indirect jump
1145 instruction into a direct jump. */
1146 static int
1147 combine_instructions (rtx_insn *f, unsigned int nregs)
1149 rtx_insn *insn, *next;
1150 rtx_insn *prev;
1151 struct insn_link *links, *nextlinks;
1152 rtx_insn *first;
1153 basic_block last_bb;
1155 int new_direct_jump_p = 0;
1157 for (first = f; first && !NONDEBUG_INSN_P (first); )
1158 first = NEXT_INSN (first);
1159 if (!first)
1160 return 0;
1162 combine_attempts = 0;
1163 combine_merges = 0;
1164 combine_extras = 0;
1165 combine_successes = 0;
1167 rtl_hooks = combine_rtl_hooks;
1169 reg_stat.safe_grow_cleared (nregs);
1171 init_recog_no_volatile ();
1173 /* Allocate array for insn info. */
1174 max_uid_known = get_max_uid ();
1175 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1176 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1177 gcc_obstack_init (&insn_link_obstack);
1179 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1181 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1182 problems when, for example, we have j <<= 1 in a loop. */
1184 nonzero_sign_valid = 0;
1185 label_tick = label_tick_ebb_start = 1;
1187 /* Scan all SETs and see if we can deduce anything about what
1188 bits are known to be zero for some registers and how many copies
1189 of the sign bit are known to exist for those registers.
1191 Also set any known values so that we can use it while searching
1192 for what bits are known to be set. */
1194 setup_incoming_promotions (first);
1195 /* Allow the entry block and the first block to fall into the same EBB.
1196 Conceptually the incoming promotions are assigned to the entry block. */
1197 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1199 create_log_links ();
1200 FOR_EACH_BB_FN (this_basic_block, cfun)
1202 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1203 last_call_luid = 0;
1204 mem_last_set = -1;
1206 label_tick++;
1207 if (!single_pred_p (this_basic_block)
1208 || single_pred (this_basic_block) != last_bb)
1209 label_tick_ebb_start = label_tick;
1210 last_bb = this_basic_block;
1212 FOR_BB_INSNS (this_basic_block, insn)
1213 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1215 rtx links;
1217 subst_low_luid = DF_INSN_LUID (insn);
1218 subst_insn = insn;
1220 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1221 insn);
1222 record_dead_and_set_regs (insn);
1224 if (AUTO_INC_DEC)
1225 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1226 if (REG_NOTE_KIND (links) == REG_INC)
1227 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1228 insn);
1230 /* Record the current insn_cost of this instruction. */
1231 if (NONJUMP_INSN_P (insn))
1232 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1233 if (dump_file)
1235 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1236 dump_insn_slim (dump_file, insn);
1241 nonzero_sign_valid = 1;
1243 /* Now scan all the insns in forward order. */
1244 label_tick = label_tick_ebb_start = 1;
1245 init_reg_last ();
1246 setup_incoming_promotions (first);
1247 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1248 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1250 FOR_EACH_BB_FN (this_basic_block, cfun)
1252 rtx_insn *last_combined_insn = NULL;
1254 /* Ignore instruction combination in basic blocks that are going to
1255 be removed as unreachable anyway. See PR82386. */
1256 if (EDGE_COUNT (this_basic_block->preds) == 0)
1257 continue;
1259 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1260 last_call_luid = 0;
1261 mem_last_set = -1;
1263 label_tick++;
1264 if (!single_pred_p (this_basic_block)
1265 || single_pred (this_basic_block) != last_bb)
1266 label_tick_ebb_start = label_tick;
1267 last_bb = this_basic_block;
1269 rtl_profile_for_bb (this_basic_block);
1270 for (insn = BB_HEAD (this_basic_block);
1271 insn != NEXT_INSN (BB_END (this_basic_block));
1272 insn = next ? next : NEXT_INSN (insn))
1274 next = 0;
1275 if (!NONDEBUG_INSN_P (insn))
1276 continue;
1278 while (last_combined_insn
1279 && (!NONDEBUG_INSN_P (last_combined_insn)
1280 || last_combined_insn->deleted ()))
1281 last_combined_insn = PREV_INSN (last_combined_insn);
1282 if (last_combined_insn == NULL_RTX
1283 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1284 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1285 last_combined_insn = insn;
1287 /* See if we know about function return values before this
1288 insn based upon SUBREG flags. */
1289 check_promoted_subreg (insn, PATTERN (insn));
1291 /* See if we can find hardregs and subreg of pseudos in
1292 narrower modes. This could help turning TRUNCATEs
1293 into SUBREGs. */
1294 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1296 /* Try this insn with each insn it links back to. */
1298 FOR_EACH_LOG_LINK (links, insn)
1299 if ((next = try_combine (insn, links->insn, NULL,
1300 NULL, &new_direct_jump_p,
1301 last_combined_insn)) != 0)
1303 statistics_counter_event (cfun, "two-insn combine", 1);
1304 goto retry;
1307 /* Try each sequence of three linked insns ending with this one. */
1309 if (max_combine >= 3)
1310 FOR_EACH_LOG_LINK (links, insn)
1312 rtx_insn *link = links->insn;
1314 /* If the linked insn has been replaced by a note, then there
1315 is no point in pursuing this chain any further. */
1316 if (NOTE_P (link))
1317 continue;
1319 FOR_EACH_LOG_LINK (nextlinks, link)
1320 if ((next = try_combine (insn, link, nextlinks->insn,
1321 NULL, &new_direct_jump_p,
1322 last_combined_insn)) != 0)
1324 statistics_counter_event (cfun, "three-insn combine", 1);
1325 goto retry;
1329 /* Try to combine a jump insn that uses CC0
1330 with a preceding insn that sets CC0, and maybe with its
1331 logical predecessor as well.
1332 This is how we make decrement-and-branch insns.
1333 We need this special code because data flow connections
1334 via CC0 do not get entered in LOG_LINKS. */
1336 if (HAVE_cc0
1337 && JUMP_P (insn)
1338 && (prev = prev_nonnote_insn (insn)) != 0
1339 && NONJUMP_INSN_P (prev)
1340 && sets_cc0_p (PATTERN (prev)))
1342 if ((next = try_combine (insn, prev, NULL, NULL,
1343 &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1347 FOR_EACH_LOG_LINK (nextlinks, prev)
1348 if ((next = try_combine (insn, prev, nextlinks->insn,
1349 NULL, &new_direct_jump_p,
1350 last_combined_insn)) != 0)
1351 goto retry;
1354 /* Do the same for an insn that explicitly references CC0. */
1355 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1356 && (prev = prev_nonnote_insn (insn)) != 0
1357 && NONJUMP_INSN_P (prev)
1358 && sets_cc0_p (PATTERN (prev))
1359 && GET_CODE (PATTERN (insn)) == SET
1360 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1362 if ((next = try_combine (insn, prev, NULL, NULL,
1363 &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1367 FOR_EACH_LOG_LINK (nextlinks, prev)
1368 if ((next = try_combine (insn, prev, nextlinks->insn,
1369 NULL, &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1374 /* Finally, see if any of the insns that this insn links to
1375 explicitly references CC0. If so, try this insn, that insn,
1376 and its predecessor if it sets CC0. */
1377 if (HAVE_cc0)
1379 FOR_EACH_LOG_LINK (links, insn)
1380 if (NONJUMP_INSN_P (links->insn)
1381 && GET_CODE (PATTERN (links->insn)) == SET
1382 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1383 && (prev = prev_nonnote_insn (links->insn)) != 0
1384 && NONJUMP_INSN_P (prev)
1385 && sets_cc0_p (PATTERN (prev))
1386 && (next = try_combine (insn, links->insn,
1387 prev, NULL, &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1389 goto retry;
1392 /* Try combining an insn with two different insns whose results it
1393 uses. */
1394 if (max_combine >= 3)
1395 FOR_EACH_LOG_LINK (links, insn)
1396 for (nextlinks = links->next; nextlinks;
1397 nextlinks = nextlinks->next)
1398 if ((next = try_combine (insn, links->insn,
1399 nextlinks->insn, NULL,
1400 &new_direct_jump_p,
1401 last_combined_insn)) != 0)
1404 statistics_counter_event (cfun, "three-insn combine", 1);
1405 goto retry;
1408 /* Try four-instruction combinations. */
1409 if (max_combine >= 4)
1410 FOR_EACH_LOG_LINK (links, insn)
1412 struct insn_link *next1;
1413 rtx_insn *link = links->insn;
1415 /* If the linked insn has been replaced by a note, then there
1416 is no point in pursuing this chain any further. */
1417 if (NOTE_P (link))
1418 continue;
1420 FOR_EACH_LOG_LINK (next1, link)
1422 rtx_insn *link1 = next1->insn;
1423 if (NOTE_P (link1))
1424 continue;
1425 /* I0 -> I1 -> I2 -> I3. */
1426 FOR_EACH_LOG_LINK (nextlinks, link1)
1427 if ((next = try_combine (insn, link, link1,
1428 nextlinks->insn,
1429 &new_direct_jump_p,
1430 last_combined_insn)) != 0)
1432 statistics_counter_event (cfun, "four-insn combine", 1);
1433 goto retry;
1435 /* I0, I1 -> I2, I2 -> I3. */
1436 for (nextlinks = next1->next; nextlinks;
1437 nextlinks = nextlinks->next)
1438 if ((next = try_combine (insn, link, link1,
1439 nextlinks->insn,
1440 &new_direct_jump_p,
1441 last_combined_insn)) != 0)
1443 statistics_counter_event (cfun, "four-insn combine", 1);
1444 goto retry;
1448 for (next1 = links->next; next1; next1 = next1->next)
1450 rtx_insn *link1 = next1->insn;
1451 if (NOTE_P (link1))
1452 continue;
1453 /* I0 -> I2; I1, I2 -> I3. */
1454 FOR_EACH_LOG_LINK (nextlinks, link)
1455 if ((next = try_combine (insn, link, link1,
1456 nextlinks->insn,
1457 &new_direct_jump_p,
1458 last_combined_insn)) != 0)
1460 statistics_counter_event (cfun, "four-insn combine", 1);
1461 goto retry;
1463 /* I0 -> I1; I1, I2 -> I3. */
1464 FOR_EACH_LOG_LINK (nextlinks, link1)
1465 if ((next = try_combine (insn, link, link1,
1466 nextlinks->insn,
1467 &new_direct_jump_p,
1468 last_combined_insn)) != 0)
1470 statistics_counter_event (cfun, "four-insn combine", 1);
1471 goto retry;
1476 /* Try this insn with each REG_EQUAL note it links back to. */
1477 FOR_EACH_LOG_LINK (links, insn)
1479 rtx set, note;
1480 rtx_insn *temp = links->insn;
1481 if ((set = single_set (temp)) != 0
1482 && (note = find_reg_equal_equiv_note (temp)) != 0
1483 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1484 /* Avoid using a register that may already been marked
1485 dead by an earlier instruction. */
1486 && ! unmentioned_reg_p (note, SET_SRC (set))
1487 && (GET_MODE (note) == VOIDmode
1488 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1489 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1490 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1491 || (GET_MODE (XEXP (SET_DEST (set), 0))
1492 == GET_MODE (note))))))
1494 /* Temporarily replace the set's source with the
1495 contents of the REG_EQUAL note. The insn will
1496 be deleted or recognized by try_combine. */
1497 rtx orig_src = SET_SRC (set);
1498 rtx orig_dest = SET_DEST (set);
1499 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1500 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1501 SET_SRC (set) = note;
1502 i2mod = temp;
1503 i2mod_old_rhs = copy_rtx (orig_src);
1504 i2mod_new_rhs = copy_rtx (note);
1505 next = try_combine (insn, i2mod, NULL, NULL,
1506 &new_direct_jump_p,
1507 last_combined_insn);
1508 i2mod = NULL;
1509 if (next)
1511 statistics_counter_event (cfun, "insn-with-note combine", 1);
1512 goto retry;
1514 SET_SRC (set) = orig_src;
1515 SET_DEST (set) = orig_dest;
1519 if (!NOTE_P (insn))
1520 record_dead_and_set_regs (insn);
1522 retry:
1527 default_rtl_profile ();
1528 clear_bb_flags ();
1529 new_direct_jump_p |= purge_all_dead_edges ();
1530 delete_noop_moves ();
1532 /* Clean up. */
1533 obstack_free (&insn_link_obstack, NULL);
1534 free (uid_log_links);
1535 free (uid_insn_cost);
1536 reg_stat.release ();
1539 struct undo *undo, *next;
1540 for (undo = undobuf.frees; undo; undo = next)
1542 next = undo->next;
1543 free (undo);
1545 undobuf.frees = 0;
1548 total_attempts += combine_attempts;
1549 total_merges += combine_merges;
1550 total_extras += combine_extras;
1551 total_successes += combine_successes;
1553 nonzero_sign_valid = 0;
1554 rtl_hooks = general_rtl_hooks;
1556 /* Make recognizer allow volatile MEMs again. */
1557 init_recog ();
1559 return new_direct_jump_p;
1562 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1564 static void
1565 init_reg_last (void)
1567 unsigned int i;
1568 reg_stat_type *p;
1570 FOR_EACH_VEC_ELT (reg_stat, i, p)
1571 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1574 /* Set up any promoted values for incoming argument registers. */
1576 static void
1577 setup_incoming_promotions (rtx_insn *first)
1579 tree arg;
1580 bool strictly_local = false;
1582 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1583 arg = DECL_CHAIN (arg))
1585 rtx x, reg = DECL_INCOMING_RTL (arg);
1586 int uns1, uns3;
1587 machine_mode mode1, mode2, mode3, mode4;
1589 /* Only continue if the incoming argument is in a register. */
1590 if (!REG_P (reg))
1591 continue;
1593 /* Determine, if possible, whether all call sites of the current
1594 function lie within the current compilation unit. (This does
1595 take into account the exporting of a function via taking its
1596 address, and so forth.) */
1597 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1599 /* The mode and signedness of the argument before any promotions happen
1600 (equal to the mode of the pseudo holding it at that stage). */
1601 mode1 = TYPE_MODE (TREE_TYPE (arg));
1602 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1604 /* The mode and signedness of the argument after any source language and
1605 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1606 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1607 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1609 /* The mode and signedness of the argument as it is actually passed,
1610 see assign_parm_setup_reg in function.c. */
1611 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1612 TREE_TYPE (cfun->decl), 0);
1614 /* The mode of the register in which the argument is being passed. */
1615 mode4 = GET_MODE (reg);
1617 /* Eliminate sign extensions in the callee when:
1618 (a) A mode promotion has occurred; */
1619 if (mode1 == mode3)
1620 continue;
1621 /* (b) The mode of the register is the same as the mode of
1622 the argument as it is passed; */
1623 if (mode3 != mode4)
1624 continue;
1625 /* (c) There's no language level extension; */
1626 if (mode1 == mode2)
1628 /* (c.1) All callers are from the current compilation unit. If that's
1629 the case we don't have to rely on an ABI, we only have to know
1630 what we're generating right now, and we know that we will do the
1631 mode1 to mode2 promotion with the given sign. */
1632 else if (!strictly_local)
1633 continue;
1634 /* (c.2) The combination of the two promotions is useful. This is
1635 true when the signs match, or if the first promotion is unsigned.
1636 In the later case, (sign_extend (zero_extend x)) is the same as
1637 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1638 else if (uns1)
1639 uns3 = true;
1640 else if (uns3)
1641 continue;
1643 /* Record that the value was promoted from mode1 to mode3,
1644 so that any sign extension at the head of the current
1645 function may be eliminated. */
1646 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1647 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1648 record_value_for_reg (reg, first, x);
1652 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1653 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1654 because some machines (maybe most) will actually do the sign-extension and
1655 this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1658 kludge. */
1660 static rtx
1661 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1663 scalar_int_mode int_mode;
1664 if (CONST_INT_P (src)
1665 && is_a <scalar_int_mode> (mode, &int_mode)
1666 && GET_MODE_PRECISION (int_mode) < prec
1667 && INTVAL (src) > 0
1668 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1669 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1671 return src;
1674 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1675 and SET. */
1677 static void
1678 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1679 rtx x)
1681 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1682 unsigned HOST_WIDE_INT bits = 0;
1683 rtx reg_equal = NULL, src = SET_SRC (set);
1684 unsigned int num = 0;
1686 if (reg_equal_note)
1687 reg_equal = XEXP (reg_equal_note, 0);
1689 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1691 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1692 if (reg_equal)
1693 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1696 /* Don't call nonzero_bits if it cannot change anything. */
1697 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1699 bits = nonzero_bits (src, nonzero_bits_mode);
1700 if (reg_equal && bits)
1701 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1702 rsp->nonzero_bits |= bits;
1705 /* Don't call num_sign_bit_copies if it cannot change anything. */
1706 if (rsp->sign_bit_copies != 1)
1708 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1709 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1711 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1712 if (num == 0 || numeq > num)
1713 num = numeq;
1715 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1716 rsp->sign_bit_copies = num;
1720 /* Called via note_stores. If X is a pseudo that is narrower than
1721 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1723 If we are setting only a portion of X and we can't figure out what
1724 portion, assume all bits will be used since we don't know what will
1725 be happening.
1727 Similarly, set how many bits of X are known to be copies of the sign bit
1728 at all locations in the function. This is the smallest number implied
1729 by any set of X. */
1731 static void
1732 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1734 rtx_insn *insn = (rtx_insn *) data;
1735 scalar_int_mode mode;
1737 if (REG_P (x)
1738 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1739 /* If this register is undefined at the start of the file, we can't
1740 say what its contents were. */
1741 && ! REGNO_REG_SET_P
1742 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1743 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1744 && HWI_COMPUTABLE_MODE_P (mode))
1746 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1748 if (set == 0 || GET_CODE (set) == CLOBBER)
1750 rsp->nonzero_bits = GET_MODE_MASK (mode);
1751 rsp->sign_bit_copies = 1;
1752 return;
1755 /* If this register is being initialized using itself, and the
1756 register is uninitialized in this basic block, and there are
1757 no LOG_LINKS which set the register, then part of the
1758 register is uninitialized. In that case we can't assume
1759 anything about the number of nonzero bits.
1761 ??? We could do better if we checked this in
1762 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1763 could avoid making assumptions about the insn which initially
1764 sets the register, while still using the information in other
1765 insns. We would have to be careful to check every insn
1766 involved in the combination. */
1768 if (insn
1769 && reg_referenced_p (x, PATTERN (insn))
1770 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1771 REGNO (x)))
1773 struct insn_link *link;
1775 FOR_EACH_LOG_LINK (link, insn)
1776 if (dead_or_set_p (link->insn, x))
1777 break;
1778 if (!link)
1780 rsp->nonzero_bits = GET_MODE_MASK (mode);
1781 rsp->sign_bit_copies = 1;
1782 return;
1786 /* If this is a complex assignment, see if we can convert it into a
1787 simple assignment. */
1788 set = expand_field_assignment (set);
1790 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1791 set what we know about X. */
1793 if (SET_DEST (set) == x
1794 || (paradoxical_subreg_p (SET_DEST (set))
1795 && SUBREG_REG (SET_DEST (set)) == x))
1796 update_rsp_from_reg_equal (rsp, insn, set, x);
1797 else
1799 rsp->nonzero_bits = GET_MODE_MASK (mode);
1800 rsp->sign_bit_copies = 1;
1805 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1806 optionally insns that were previously combined into I3 or that will be
1807 combined into the merger of INSN and I3. The order is PRED, PRED2,
1808 INSN, SUCC, SUCC2, I3.
1810 Return 0 if the combination is not allowed for any reason.
1812 If the combination is allowed, *PDEST will be set to the single
1813 destination of INSN and *PSRC to the single source, and this function
1814 will return 1. */
1816 static int
1817 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1818 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1819 rtx *pdest, rtx *psrc)
1821 int i;
1822 const_rtx set = 0;
1823 rtx src, dest;
1824 rtx_insn *p;
1825 rtx link;
1826 bool all_adjacent = true;
1827 int (*is_volatile_p) (const_rtx);
1829 if (succ)
1831 if (succ2)
1833 if (next_active_insn (succ2) != i3)
1834 all_adjacent = false;
1835 if (next_active_insn (succ) != succ2)
1836 all_adjacent = false;
1838 else if (next_active_insn (succ) != i3)
1839 all_adjacent = false;
1840 if (next_active_insn (insn) != succ)
1841 all_adjacent = false;
1843 else if (next_active_insn (insn) != i3)
1844 all_adjacent = false;
1846 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1847 or a PARALLEL consisting of such a SET and CLOBBERs.
1849 If INSN has CLOBBER parallel parts, ignore them for our processing.
1850 By definition, these happen during the execution of the insn. When it
1851 is merged with another insn, all bets are off. If they are, in fact,
1852 needed and aren't also supplied in I3, they may be added by
1853 recog_for_combine. Otherwise, it won't match.
1855 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1856 note.
1858 Get the source and destination of INSN. If more than one, can't
1859 combine. */
1861 if (GET_CODE (PATTERN (insn)) == SET)
1862 set = PATTERN (insn);
1863 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1864 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1866 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1868 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1870 switch (GET_CODE (elt))
1872 /* This is important to combine floating point insns
1873 for the SH4 port. */
1874 case USE:
1875 /* Combining an isolated USE doesn't make sense.
1876 We depend here on combinable_i3pat to reject them. */
1877 /* The code below this loop only verifies that the inputs of
1878 the SET in INSN do not change. We call reg_set_between_p
1879 to verify that the REG in the USE does not change between
1880 I3 and INSN.
1881 If the USE in INSN was for a pseudo register, the matching
1882 insn pattern will likely match any register; combining this
1883 with any other USE would only be safe if we knew that the
1884 used registers have identical values, or if there was
1885 something to tell them apart, e.g. different modes. For
1886 now, we forgo such complicated tests and simply disallow
1887 combining of USES of pseudo registers with any other USE. */
1888 if (REG_P (XEXP (elt, 0))
1889 && GET_CODE (PATTERN (i3)) == PARALLEL)
1891 rtx i3pat = PATTERN (i3);
1892 int i = XVECLEN (i3pat, 0) - 1;
1893 unsigned int regno = REGNO (XEXP (elt, 0));
1897 rtx i3elt = XVECEXP (i3pat, 0, i);
1899 if (GET_CODE (i3elt) == USE
1900 && REG_P (XEXP (i3elt, 0))
1901 && (REGNO (XEXP (i3elt, 0)) == regno
1902 ? reg_set_between_p (XEXP (elt, 0),
1903 PREV_INSN (insn), i3)
1904 : regno >= FIRST_PSEUDO_REGISTER))
1905 return 0;
1907 while (--i >= 0);
1909 break;
1911 /* We can ignore CLOBBERs. */
1912 case CLOBBER:
1913 break;
1915 case SET:
1916 /* Ignore SETs whose result isn't used but not those that
1917 have side-effects. */
1918 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1919 && insn_nothrow_p (insn)
1920 && !side_effects_p (elt))
1921 break;
1923 /* If we have already found a SET, this is a second one and
1924 so we cannot combine with this insn. */
1925 if (set)
1926 return 0;
1928 set = elt;
1929 break;
1931 default:
1932 /* Anything else means we can't combine. */
1933 return 0;
1937 if (set == 0
1938 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1939 so don't do anything with it. */
1940 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1941 return 0;
1943 else
1944 return 0;
1946 if (set == 0)
1947 return 0;
1949 /* The simplification in expand_field_assignment may call back to
1950 get_last_value, so set safe guard here. */
1951 subst_low_luid = DF_INSN_LUID (insn);
1953 set = expand_field_assignment (set);
1954 src = SET_SRC (set), dest = SET_DEST (set);
1956 /* Do not eliminate user-specified register if it is in an
1957 asm input because we may break the register asm usage defined
1958 in GCC manual if allow to do so.
1959 Be aware that this may cover more cases than we expect but this
1960 should be harmless. */
1961 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1962 && extract_asm_operands (PATTERN (i3)))
1963 return 0;
1965 /* Don't eliminate a store in the stack pointer. */
1966 if (dest == stack_pointer_rtx
1967 /* Don't combine with an insn that sets a register to itself if it has
1968 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1969 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1970 /* Can't merge an ASM_OPERANDS. */
1971 || GET_CODE (src) == ASM_OPERANDS
1972 /* Can't merge a function call. */
1973 || GET_CODE (src) == CALL
1974 /* Don't eliminate a function call argument. */
1975 || (CALL_P (i3)
1976 && (find_reg_fusage (i3, USE, dest)
1977 || (REG_P (dest)
1978 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1979 && global_regs[REGNO (dest)])))
1980 /* Don't substitute into an incremented register. */
1981 || FIND_REG_INC_NOTE (i3, dest)
1982 || (succ && FIND_REG_INC_NOTE (succ, dest))
1983 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1984 /* Don't substitute into a non-local goto, this confuses CFG. */
1985 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1986 /* Make sure that DEST is not used after INSN but before SUCC, or
1987 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1988 || (!all_adjacent
1989 && ((succ2
1990 && (reg_used_between_p (dest, succ2, i3)
1991 || reg_used_between_p (dest, succ, succ2)))
1992 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1993 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1994 || (succ
1995 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1996 that case SUCC is not in the insn stream, so use SUCC2
1997 instead for this test. */
1998 && reg_used_between_p (dest, insn,
1999 succ2
2000 && INSN_UID (succ) == INSN_UID (succ2)
2001 ? succ2 : succ))))
2002 /* Make sure that the value that is to be substituted for the register
2003 does not use any registers whose values alter in between. However,
2004 If the insns are adjacent, a use can't cross a set even though we
2005 think it might (this can happen for a sequence of insns each setting
2006 the same destination; last_set of that register might point to
2007 a NOTE). If INSN has a REG_EQUIV note, the register is always
2008 equivalent to the memory so the substitution is valid even if there
2009 are intervening stores. Also, don't move a volatile asm or
2010 UNSPEC_VOLATILE across any other insns. */
2011 || (! all_adjacent
2012 && (((!MEM_P (src)
2013 || ! find_reg_note (insn, REG_EQUIV, src))
2014 && modified_between_p (src, insn, i3))
2015 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2016 || GET_CODE (src) == UNSPEC_VOLATILE))
2017 /* Don't combine across a CALL_INSN, because that would possibly
2018 change whether the life span of some REGs crosses calls or not,
2019 and it is a pain to update that information.
2020 Exception: if source is a constant, moving it later can't hurt.
2021 Accept that as a special case. */
2022 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2023 return 0;
2025 /* DEST must either be a REG or CC0. */
2026 if (REG_P (dest))
2028 /* If register alignment is being enforced for multi-word items in all
2029 cases except for parameters, it is possible to have a register copy
2030 insn referencing a hard register that is not allowed to contain the
2031 mode being copied and which would not be valid as an operand of most
2032 insns. Eliminate this problem by not combining with such an insn.
2034 Also, on some machines we don't want to extend the life of a hard
2035 register. */
2037 if (REG_P (src)
2038 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2039 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2040 /* Don't extend the life of a hard register unless it is
2041 user variable (if we have few registers) or it can't
2042 fit into the desired register (meaning something special
2043 is going on).
2044 Also avoid substituting a return register into I3, because
2045 reload can't handle a conflict with constraints of other
2046 inputs. */
2047 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2048 && !targetm.hard_regno_mode_ok (REGNO (src),
2049 GET_MODE (src)))))
2050 return 0;
2052 else if (GET_CODE (dest) != CC0)
2053 return 0;
2056 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2057 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2058 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2060 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2062 /* If the clobber represents an earlyclobber operand, we must not
2063 substitute an expression containing the clobbered register.
2064 As we do not analyze the constraint strings here, we have to
2065 make the conservative assumption. However, if the register is
2066 a fixed hard reg, the clobber cannot represent any operand;
2067 we leave it up to the machine description to either accept or
2068 reject use-and-clobber patterns. */
2069 if (!REG_P (reg)
2070 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2071 || !fixed_regs[REGNO (reg)])
2072 if (reg_overlap_mentioned_p (reg, src))
2073 return 0;
2076 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2077 or not), reject, unless nothing volatile comes between it and I3 */
2079 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2081 /* Make sure neither succ nor succ2 contains a volatile reference. */
2082 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2083 return 0;
2084 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2085 return 0;
2086 /* We'll check insns between INSN and I3 below. */
2089 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2090 to be an explicit register variable, and was chosen for a reason. */
2092 if (GET_CODE (src) == ASM_OPERANDS
2093 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2094 return 0;
2096 /* If INSN contains volatile references (specifically volatile MEMs),
2097 we cannot combine across any other volatile references.
2098 Even if INSN doesn't contain volatile references, any intervening
2099 volatile insn might affect machine state. */
2101 is_volatile_p = volatile_refs_p (PATTERN (insn))
2102 ? volatile_refs_p
2103 : volatile_insn_p;
2105 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2106 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2107 return 0;
2109 /* If INSN contains an autoincrement or autodecrement, make sure that
2110 register is not used between there and I3, and not already used in
2111 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2112 Also insist that I3 not be a jump; if it were one
2113 and the incremented register were spilled, we would lose. */
2115 if (AUTO_INC_DEC)
2116 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2117 if (REG_NOTE_KIND (link) == REG_INC
2118 && (JUMP_P (i3)
2119 || reg_used_between_p (XEXP (link, 0), insn, i3)
2120 || (pred != NULL_RTX
2121 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2122 || (pred2 != NULL_RTX
2123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2124 || (succ != NULL_RTX
2125 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2126 || (succ2 != NULL_RTX
2127 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2128 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2129 return 0;
2131 /* Don't combine an insn that follows a CC0-setting insn.
2132 An insn that uses CC0 must not be separated from the one that sets it.
2133 We do, however, allow I2 to follow a CC0-setting insn if that insn
2134 is passed as I1; in that case it will be deleted also.
2135 We also allow combining in this case if all the insns are adjacent
2136 because that would leave the two CC0 insns adjacent as well.
2137 It would be more logical to test whether CC0 occurs inside I1 or I2,
2138 but that would be much slower, and this ought to be equivalent. */
2140 if (HAVE_cc0)
2142 p = prev_nonnote_insn (insn);
2143 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2144 && ! all_adjacent)
2145 return 0;
2148 /* If we get here, we have passed all the tests and the combination is
2149 to be allowed. */
2151 *pdest = dest;
2152 *psrc = src;
2154 return 1;
2157 /* LOC is the location within I3 that contains its pattern or the component
2158 of a PARALLEL of the pattern. We validate that it is valid for combining.
2160 One problem is if I3 modifies its output, as opposed to replacing it
2161 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2162 doing so would produce an insn that is not equivalent to the original insns.
2164 Consider:
2166 (set (reg:DI 101) (reg:DI 100))
2167 (set (subreg:SI (reg:DI 101) 0) <foo>)
2169 This is NOT equivalent to:
2171 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2172 (set (reg:DI 101) (reg:DI 100))])
2174 Not only does this modify 100 (in which case it might still be valid
2175 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2177 We can also run into a problem if I2 sets a register that I1
2178 uses and I1 gets directly substituted into I3 (not via I2). In that
2179 case, we would be getting the wrong value of I2DEST into I3, so we
2180 must reject the combination. This case occurs when I2 and I1 both
2181 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2182 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2183 of a SET must prevent combination from occurring. The same situation
2184 can occur for I0, in which case I0_NOT_IN_SRC is set.
2186 Before doing the above check, we first try to expand a field assignment
2187 into a set of logical operations.
2189 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2190 we place a register that is both set and used within I3. If more than one
2191 such register is detected, we fail.
2193 Return 1 if the combination is valid, zero otherwise. */
2195 static int
2196 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2197 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2199 rtx x = *loc;
2201 if (GET_CODE (x) == SET)
2203 rtx set = x ;
2204 rtx dest = SET_DEST (set);
2205 rtx src = SET_SRC (set);
2206 rtx inner_dest = dest;
2207 rtx subdest;
2209 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2210 || GET_CODE (inner_dest) == SUBREG
2211 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2212 inner_dest = XEXP (inner_dest, 0);
2214 /* Check for the case where I3 modifies its output, as discussed
2215 above. We don't want to prevent pseudos from being combined
2216 into the address of a MEM, so only prevent the combination if
2217 i1 or i2 set the same MEM. */
2218 if ((inner_dest != dest &&
2219 (!MEM_P (inner_dest)
2220 || rtx_equal_p (i2dest, inner_dest)
2221 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2222 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2223 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2224 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2225 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2227 /* This is the same test done in can_combine_p except we can't test
2228 all_adjacent; we don't have to, since this instruction will stay
2229 in place, thus we are not considering increasing the lifetime of
2230 INNER_DEST.
2232 Also, if this insn sets a function argument, combining it with
2233 something that might need a spill could clobber a previous
2234 function argument; the all_adjacent test in can_combine_p also
2235 checks this; here, we do a more specific test for this case. */
2237 || (REG_P (inner_dest)
2238 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2239 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2240 GET_MODE (inner_dest)))
2241 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2242 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2243 return 0;
2245 /* If DEST is used in I3, it is being killed in this insn, so
2246 record that for later. We have to consider paradoxical
2247 subregs here, since they kill the whole register, but we
2248 ignore partial subregs, STRICT_LOW_PART, etc.
2249 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2250 STACK_POINTER_REGNUM, since these are always considered to be
2251 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2252 subdest = dest;
2253 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2254 subdest = SUBREG_REG (subdest);
2255 if (pi3dest_killed
2256 && REG_P (subdest)
2257 && reg_referenced_p (subdest, PATTERN (i3))
2258 && REGNO (subdest) != FRAME_POINTER_REGNUM
2259 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2260 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2261 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2262 || (REGNO (subdest) != ARG_POINTER_REGNUM
2263 || ! fixed_regs [REGNO (subdest)]))
2264 && REGNO (subdest) != STACK_POINTER_REGNUM)
2266 if (*pi3dest_killed)
2267 return 0;
2269 *pi3dest_killed = subdest;
2273 else if (GET_CODE (x) == PARALLEL)
2275 int i;
2277 for (i = 0; i < XVECLEN (x, 0); i++)
2278 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2279 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2280 return 0;
2283 return 1;
2286 /* Return 1 if X is an arithmetic expression that contains a multiplication
2287 and division. We don't count multiplications by powers of two here. */
2289 static int
2290 contains_muldiv (rtx x)
2292 switch (GET_CODE (x))
2294 case MOD: case DIV: case UMOD: case UDIV:
2295 return 1;
2297 case MULT:
2298 return ! (CONST_INT_P (XEXP (x, 1))
2299 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2300 default:
2301 if (BINARY_P (x))
2302 return contains_muldiv (XEXP (x, 0))
2303 || contains_muldiv (XEXP (x, 1));
2305 if (UNARY_P (x))
2306 return contains_muldiv (XEXP (x, 0));
2308 return 0;
2312 /* Determine whether INSN can be used in a combination. Return nonzero if
2313 not. This is used in try_combine to detect early some cases where we
2314 can't perform combinations. */
2316 static int
2317 cant_combine_insn_p (rtx_insn *insn)
2319 rtx set;
2320 rtx src, dest;
2322 /* If this isn't really an insn, we can't do anything.
2323 This can occur when flow deletes an insn that it has merged into an
2324 auto-increment address. */
2325 if (!NONDEBUG_INSN_P (insn))
2326 return 1;
2328 /* Never combine loads and stores involving hard regs that are likely
2329 to be spilled. The register allocator can usually handle such
2330 reg-reg moves by tying. If we allow the combiner to make
2331 substitutions of likely-spilled regs, reload might die.
2332 As an exception, we allow combinations involving fixed regs; these are
2333 not available to the register allocator so there's no risk involved. */
2335 set = single_set (insn);
2336 if (! set)
2337 return 0;
2338 src = SET_SRC (set);
2339 dest = SET_DEST (set);
2340 if (GET_CODE (src) == SUBREG)
2341 src = SUBREG_REG (src);
2342 if (GET_CODE (dest) == SUBREG)
2343 dest = SUBREG_REG (dest);
2344 if (REG_P (src) && REG_P (dest)
2345 && ((HARD_REGISTER_P (src)
2346 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2347 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2348 || (HARD_REGISTER_P (dest)
2349 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2350 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2351 return 1;
2353 return 0;
2356 struct likely_spilled_retval_info
2358 unsigned regno, nregs;
2359 unsigned mask;
2362 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2363 hard registers that are known to be written to / clobbered in full. */
2364 static void
2365 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2367 struct likely_spilled_retval_info *const info =
2368 (struct likely_spilled_retval_info *) data;
2369 unsigned regno, nregs;
2370 unsigned new_mask;
2372 if (!REG_P (XEXP (set, 0)))
2373 return;
2374 regno = REGNO (x);
2375 if (regno >= info->regno + info->nregs)
2376 return;
2377 nregs = REG_NREGS (x);
2378 if (regno + nregs <= info->regno)
2379 return;
2380 new_mask = (2U << (nregs - 1)) - 1;
2381 if (regno < info->regno)
2382 new_mask >>= info->regno - regno;
2383 else
2384 new_mask <<= regno - info->regno;
2385 info->mask &= ~new_mask;
2388 /* Return nonzero iff part of the return value is live during INSN, and
2389 it is likely spilled. This can happen when more than one insn is needed
2390 to copy the return value, e.g. when we consider to combine into the
2391 second copy insn for a complex value. */
2393 static int
2394 likely_spilled_retval_p (rtx_insn *insn)
2396 rtx_insn *use = BB_END (this_basic_block);
2397 rtx reg;
2398 rtx_insn *p;
2399 unsigned regno, nregs;
2400 /* We assume here that no machine mode needs more than
2401 32 hard registers when the value overlaps with a register
2402 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2403 unsigned mask;
2404 struct likely_spilled_retval_info info;
2406 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2407 return 0;
2408 reg = XEXP (PATTERN (use), 0);
2409 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2410 return 0;
2411 regno = REGNO (reg);
2412 nregs = REG_NREGS (reg);
2413 if (nregs == 1)
2414 return 0;
2415 mask = (2U << (nregs - 1)) - 1;
2417 /* Disregard parts of the return value that are set later. */
2418 info.regno = regno;
2419 info.nregs = nregs;
2420 info.mask = mask;
2421 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2422 if (INSN_P (p))
2423 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2424 mask = info.mask;
2426 /* Check if any of the (probably) live return value registers is
2427 likely spilled. */
2428 nregs --;
2431 if ((mask & 1 << nregs)
2432 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2433 return 1;
2434 } while (nregs--);
2435 return 0;
2438 /* Adjust INSN after we made a change to its destination.
2440 Changing the destination can invalidate notes that say something about
2441 the results of the insn and a LOG_LINK pointing to the insn. */
2443 static void
2444 adjust_for_new_dest (rtx_insn *insn)
2446 /* For notes, be conservative and simply remove them. */
2447 remove_reg_equal_equiv_notes (insn);
2449 /* The new insn will have a destination that was previously the destination
2450 of an insn just above it. Call distribute_links to make a LOG_LINK from
2451 the next use of that destination. */
2453 rtx set = single_set (insn);
2454 gcc_assert (set);
2456 rtx reg = SET_DEST (set);
2458 while (GET_CODE (reg) == ZERO_EXTRACT
2459 || GET_CODE (reg) == STRICT_LOW_PART
2460 || GET_CODE (reg) == SUBREG)
2461 reg = XEXP (reg, 0);
2462 gcc_assert (REG_P (reg));
2464 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2466 df_insn_rescan (insn);
2469 /* Return TRUE if combine can reuse reg X in mode MODE.
2470 ADDED_SETS is nonzero if the original set is still required. */
2471 static bool
2472 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2474 unsigned int regno;
2476 if (!REG_P (x))
2477 return false;
2479 /* Don't change between modes with different underlying register sizes,
2480 since this could lead to invalid subregs. */
2481 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2482 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2483 return false;
2485 regno = REGNO (x);
2486 /* Allow hard registers if the new mode is legal, and occupies no more
2487 registers than the old mode. */
2488 if (regno < FIRST_PSEUDO_REGISTER)
2489 return (targetm.hard_regno_mode_ok (regno, mode)
2490 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2492 /* Or a pseudo that is only used once. */
2493 return (regno < reg_n_sets_max
2494 && REG_N_SETS (regno) == 1
2495 && !added_sets
2496 && !REG_USERVAR_P (x));
2500 /* Check whether X, the destination of a set, refers to part of
2501 the register specified by REG. */
2503 static bool
2504 reg_subword_p (rtx x, rtx reg)
2506 /* Check that reg is an integer mode register. */
2507 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2508 return false;
2510 if (GET_CODE (x) == STRICT_LOW_PART
2511 || GET_CODE (x) == ZERO_EXTRACT)
2512 x = XEXP (x, 0);
2514 return GET_CODE (x) == SUBREG
2515 && SUBREG_REG (x) == reg
2516 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2519 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2520 Note that the INSN should be deleted *after* removing dead edges, so
2521 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2522 but not for a (set (pc) (label_ref FOO)). */
2524 static void
2525 update_cfg_for_uncondjump (rtx_insn *insn)
2527 basic_block bb = BLOCK_FOR_INSN (insn);
2528 gcc_assert (BB_END (bb) == insn);
2530 purge_dead_edges (bb);
2532 delete_insn (insn);
2533 if (EDGE_COUNT (bb->succs) == 1)
2535 rtx_insn *insn;
2537 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2539 /* Remove barriers from the footer if there are any. */
2540 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2541 if (BARRIER_P (insn))
2543 if (PREV_INSN (insn))
2544 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2545 else
2546 BB_FOOTER (bb) = NEXT_INSN (insn);
2547 if (NEXT_INSN (insn))
2548 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2550 else if (LABEL_P (insn))
2551 break;
2555 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2556 by an arbitrary number of CLOBBERs. */
2557 static bool
2558 is_parallel_of_n_reg_sets (rtx pat, int n)
2560 if (GET_CODE (pat) != PARALLEL)
2561 return false;
2563 int len = XVECLEN (pat, 0);
2564 if (len < n)
2565 return false;
2567 int i;
2568 for (i = 0; i < n; i++)
2569 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2570 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2571 return false;
2572 for ( ; i < len; i++)
2573 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2574 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2575 return false;
2577 return true;
2580 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2581 CLOBBERs), can be split into individual SETs in that order, without
2582 changing semantics. */
2583 static bool
2584 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2586 if (!insn_nothrow_p (insn))
2587 return false;
2589 rtx pat = PATTERN (insn);
2591 int i, j;
2592 for (i = 0; i < n; i++)
2594 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2595 return false;
2597 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2599 for (j = i + 1; j < n; j++)
2600 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2601 return false;
2604 return true;
2607 /* Try to combine the insns I0, I1 and I2 into I3.
2608 Here I0, I1 and I2 appear earlier than I3.
2609 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2612 If we are combining more than two insns and the resulting insn is not
2613 recognized, try splitting it into two insns. If that happens, I2 and I3
2614 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2615 Otherwise, I0, I1 and I2 are pseudo-deleted.
2617 Return 0 if the combination does not work. Then nothing is changed.
2618 If we did the combination, return the insn at which combine should
2619 resume scanning.
2621 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2622 new direct jump instruction.
2624 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2625 been I3 passed to an earlier try_combine within the same basic
2626 block. */
2628 static rtx_insn *
2629 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2630 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2632 /* New patterns for I3 and I2, respectively. */
2633 rtx newpat, newi2pat = 0;
2634 rtvec newpat_vec_with_clobbers = 0;
2635 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2636 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2637 dead. */
2638 int added_sets_0, added_sets_1, added_sets_2;
2639 /* Total number of SETs to put into I3. */
2640 int total_sets;
2641 /* Nonzero if I2's or I1's body now appears in I3. */
2642 int i2_is_used = 0, i1_is_used = 0;
2643 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2644 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2645 /* Contains I3 if the destination of I3 is used in its source, which means
2646 that the old life of I3 is being killed. If that usage is placed into
2647 I2 and not in I3, a REG_DEAD note must be made. */
2648 rtx i3dest_killed = 0;
2649 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2650 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2651 /* Copy of SET_SRC of I1 and I0, if needed. */
2652 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2653 /* Set if I2DEST was reused as a scratch register. */
2654 bool i2scratch = false;
2655 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2656 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2657 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2658 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2659 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2660 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2661 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2662 /* Notes that must be added to REG_NOTES in I3 and I2. */
2663 rtx new_i3_notes, new_i2_notes;
2664 /* Notes that we substituted I3 into I2 instead of the normal case. */
2665 int i3_subst_into_i2 = 0;
2666 /* Notes that I1, I2 or I3 is a MULT operation. */
2667 int have_mult = 0;
2668 int swap_i2i3 = 0;
2669 int split_i2i3 = 0;
2670 int changed_i3_dest = 0;
2672 int maxreg;
2673 rtx_insn *temp_insn;
2674 rtx temp_expr;
2675 struct insn_link *link;
2676 rtx other_pat = 0;
2677 rtx new_other_notes;
2678 int i;
2679 scalar_int_mode dest_mode, temp_mode;
2681 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2682 never be). */
2683 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2684 return 0;
2686 /* Only try four-insn combinations when there's high likelihood of
2687 success. Look for simple insns, such as loads of constants or
2688 binary operations involving a constant. */
2689 if (i0)
2691 int i;
2692 int ngood = 0;
2693 int nshift = 0;
2694 rtx set0, set3;
2696 if (!flag_expensive_optimizations)
2697 return 0;
2699 for (i = 0; i < 4; i++)
2701 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2702 rtx set = single_set (insn);
2703 rtx src;
2704 if (!set)
2705 continue;
2706 src = SET_SRC (set);
2707 if (CONSTANT_P (src))
2709 ngood += 2;
2710 break;
2712 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2713 ngood++;
2714 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2715 || GET_CODE (src) == LSHIFTRT)
2716 nshift++;
2719 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2720 are likely manipulating its value. Ideally we'll be able to combine
2721 all four insns into a bitfield insertion of some kind.
2723 Note the source in I0 might be inside a sign/zero extension and the
2724 memory modes in I0 and I3 might be different. So extract the address
2725 from the destination of I3 and search for it in the source of I0.
2727 In the event that there's a match but the source/dest do not actually
2728 refer to the same memory, the worst that happens is we try some
2729 combinations that we wouldn't have otherwise. */
2730 if ((set0 = single_set (i0))
2731 /* Ensure the source of SET0 is a MEM, possibly buried inside
2732 an extension. */
2733 && (GET_CODE (SET_SRC (set0)) == MEM
2734 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2735 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2736 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2737 && (set3 = single_set (i3))
2738 /* Ensure the destination of SET3 is a MEM. */
2739 && GET_CODE (SET_DEST (set3)) == MEM
2740 /* Would it be better to extract the base address for the MEM
2741 in SET3 and look for that? I don't have cases where it matters
2742 but I could envision such cases. */
2743 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2744 ngood += 2;
2746 if (ngood < 2 && nshift < 2)
2747 return 0;
2750 /* Exit early if one of the insns involved can't be used for
2751 combinations. */
2752 if (CALL_P (i2)
2753 || (i1 && CALL_P (i1))
2754 || (i0 && CALL_P (i0))
2755 || cant_combine_insn_p (i3)
2756 || cant_combine_insn_p (i2)
2757 || (i1 && cant_combine_insn_p (i1))
2758 || (i0 && cant_combine_insn_p (i0))
2759 || likely_spilled_retval_p (i3))
2760 return 0;
2762 combine_attempts++;
2763 undobuf.other_insn = 0;
2765 /* Reset the hard register usage information. */
2766 CLEAR_HARD_REG_SET (newpat_used_regs);
2768 if (dump_file && (dump_flags & TDF_DETAILS))
2770 if (i0)
2771 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2772 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2773 else if (i1)
2774 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2775 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2776 else
2777 fprintf (dump_file, "\nTrying %d -> %d:\n",
2778 INSN_UID (i2), INSN_UID (i3));
2780 if (i0)
2781 dump_insn_slim (dump_file, i0);
2782 if (i1)
2783 dump_insn_slim (dump_file, i1);
2784 dump_insn_slim (dump_file, i2);
2785 dump_insn_slim (dump_file, i3);
2788 /* If multiple insns feed into one of I2 or I3, they can be in any
2789 order. To simplify the code below, reorder them in sequence. */
2790 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2791 std::swap (i0, i2);
2792 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2793 std::swap (i0, i1);
2794 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2795 std::swap (i1, i2);
2797 added_links_insn = 0;
2798 added_notes_insn = 0;
2800 /* First check for one important special case that the code below will
2801 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2802 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2803 we may be able to replace that destination with the destination of I3.
2804 This occurs in the common code where we compute both a quotient and
2805 remainder into a structure, in which case we want to do the computation
2806 directly into the structure to avoid register-register copies.
2808 Note that this case handles both multiple sets in I2 and also cases
2809 where I2 has a number of CLOBBERs inside the PARALLEL.
2811 We make very conservative checks below and only try to handle the
2812 most common cases of this. For example, we only handle the case
2813 where I2 and I3 are adjacent to avoid making difficult register
2814 usage tests. */
2816 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2817 && REG_P (SET_SRC (PATTERN (i3)))
2818 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2819 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2820 && GET_CODE (PATTERN (i2)) == PARALLEL
2821 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2822 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2823 below would need to check what is inside (and reg_overlap_mentioned_p
2824 doesn't support those codes anyway). Don't allow those destinations;
2825 the resulting insn isn't likely to be recognized anyway. */
2826 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2827 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2828 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2829 SET_DEST (PATTERN (i3)))
2830 && next_active_insn (i2) == i3)
2832 rtx p2 = PATTERN (i2);
2834 /* Make sure that the destination of I3,
2835 which we are going to substitute into one output of I2,
2836 is not used within another output of I2. We must avoid making this:
2837 (parallel [(set (mem (reg 69)) ...)
2838 (set (reg 69) ...)])
2839 which is not well-defined as to order of actions.
2840 (Besides, reload can't handle output reloads for this.)
2842 The problem can also happen if the dest of I3 is a memory ref,
2843 if another dest in I2 is an indirect memory ref.
2845 Neither can this PARALLEL be an asm. We do not allow combining
2846 that usually (see can_combine_p), so do not here either. */
2847 bool ok = true;
2848 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2850 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2851 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2852 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2853 SET_DEST (XVECEXP (p2, 0, i))))
2854 ok = false;
2855 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2856 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2857 ok = false;
2860 if (ok)
2861 for (i = 0; i < XVECLEN (p2, 0); i++)
2862 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2863 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2865 combine_merges++;
2867 subst_insn = i3;
2868 subst_low_luid = DF_INSN_LUID (i2);
2870 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2871 i2src = SET_SRC (XVECEXP (p2, 0, i));
2872 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2873 i2dest_killed = dead_or_set_p (i2, i2dest);
2875 /* Replace the dest in I2 with our dest and make the resulting
2876 insn the new pattern for I3. Then skip to where we validate
2877 the pattern. Everything was set up above. */
2878 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2879 newpat = p2;
2880 i3_subst_into_i2 = 1;
2881 goto validate_replacement;
2885 /* If I2 is setting a pseudo to a constant and I3 is setting some
2886 sub-part of it to another constant, merge them by making a new
2887 constant. */
2888 if (i1 == 0
2889 && (temp_expr = single_set (i2)) != 0
2890 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2891 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2892 && GET_CODE (PATTERN (i3)) == SET
2893 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2894 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2896 rtx dest = SET_DEST (PATTERN (i3));
2897 rtx temp_dest = SET_DEST (temp_expr);
2898 int offset = -1;
2899 int width = 0;
2901 if (GET_CODE (dest) == ZERO_EXTRACT)
2903 if (CONST_INT_P (XEXP (dest, 1))
2904 && CONST_INT_P (XEXP (dest, 2))
2905 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2906 &dest_mode))
2908 width = INTVAL (XEXP (dest, 1));
2909 offset = INTVAL (XEXP (dest, 2));
2910 dest = XEXP (dest, 0);
2911 if (BITS_BIG_ENDIAN)
2912 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2915 else
2917 if (GET_CODE (dest) == STRICT_LOW_PART)
2918 dest = XEXP (dest, 0);
2919 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2921 width = GET_MODE_PRECISION (dest_mode);
2922 offset = 0;
2926 if (offset >= 0)
2928 /* If this is the low part, we're done. */
2929 if (subreg_lowpart_p (dest))
2931 /* Handle the case where inner is twice the size of outer. */
2932 else if (GET_MODE_PRECISION (temp_mode)
2933 == 2 * GET_MODE_PRECISION (dest_mode))
2934 offset += GET_MODE_PRECISION (dest_mode);
2935 /* Otherwise give up for now. */
2936 else
2937 offset = -1;
2940 if (offset >= 0)
2942 rtx inner = SET_SRC (PATTERN (i3));
2943 rtx outer = SET_SRC (temp_expr);
2945 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2946 rtx_mode_t (inner, dest_mode),
2947 offset, width);
2949 combine_merges++;
2950 subst_insn = i3;
2951 subst_low_luid = DF_INSN_LUID (i2);
2952 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2953 i2dest = temp_dest;
2954 i2dest_killed = dead_or_set_p (i2, i2dest);
2956 /* Replace the source in I2 with the new constant and make the
2957 resulting insn the new pattern for I3. Then skip to where we
2958 validate the pattern. Everything was set up above. */
2959 SUBST (SET_SRC (temp_expr),
2960 immed_wide_int_const (o, temp_mode));
2962 newpat = PATTERN (i2);
2964 /* The dest of I3 has been replaced with the dest of I2. */
2965 changed_i3_dest = 1;
2966 goto validate_replacement;
2970 /* If we have no I1 and I2 looks like:
2971 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2972 (set Y OP)])
2973 make up a dummy I1 that is
2974 (set Y OP)
2975 and change I2 to be
2976 (set (reg:CC X) (compare:CC Y (const_int 0)))
2978 (We can ignore any trailing CLOBBERs.)
2980 This undoes a previous combination and allows us to match a branch-and-
2981 decrement insn. */
2983 if (!HAVE_cc0 && i1 == 0
2984 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2985 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2986 == MODE_CC)
2987 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2988 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2989 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2990 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2991 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2992 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2994 /* We make I1 with the same INSN_UID as I2. This gives it
2995 the same DF_INSN_LUID for value tracking. Our fake I1 will
2996 never appear in the insn stream so giving it the same INSN_UID
2997 as I2 will not cause a problem. */
2999 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3000 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3001 -1, NULL_RTX);
3002 INSN_UID (i1) = INSN_UID (i2);
3004 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3005 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3006 SET_DEST (PATTERN (i1)));
3007 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3008 SUBST_LINK (LOG_LINKS (i2),
3009 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3012 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3013 make those two SETs separate I1 and I2 insns, and make an I0 that is
3014 the original I1. */
3015 if (!HAVE_cc0 && i0 == 0
3016 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3017 && can_split_parallel_of_n_reg_sets (i2, 2)
3018 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3019 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3020 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3021 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3023 /* If there is no I1, there is no I0 either. */
3024 i0 = i1;
3026 /* We make I1 with the same INSN_UID as I2. This gives it
3027 the same DF_INSN_LUID for value tracking. Our fake I1 will
3028 never appear in the insn stream so giving it the same INSN_UID
3029 as I2 will not cause a problem. */
3031 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3032 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3033 -1, NULL_RTX);
3034 INSN_UID (i1) = INSN_UID (i2);
3036 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3039 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3040 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3042 if (dump_file)
3043 fprintf (dump_file, "Can't combine i2 into i3\n");
3044 undo_all ();
3045 return 0;
3047 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3049 if (dump_file)
3050 fprintf (dump_file, "Can't combine i1 into i3\n");
3051 undo_all ();
3052 return 0;
3054 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3056 if (dump_file)
3057 fprintf (dump_file, "Can't combine i0 into i3\n");
3058 undo_all ();
3059 return 0;
3062 /* Record whether I2DEST is used in I2SRC and similarly for the other
3063 cases. Knowing this will help in register status updating below. */
3064 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3065 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3066 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3067 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3068 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3069 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3070 i2dest_killed = dead_or_set_p (i2, i2dest);
3071 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3072 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3074 /* For the earlier insns, determine which of the subsequent ones they
3075 feed. */
3076 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3077 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3078 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3079 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3080 && reg_overlap_mentioned_p (i0dest, i2src))));
3082 /* Ensure that I3's pattern can be the destination of combines. */
3083 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3084 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3085 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3086 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3087 &i3dest_killed))
3089 undo_all ();
3090 return 0;
3093 /* See if any of the insns is a MULT operation. Unless one is, we will
3094 reject a combination that is, since it must be slower. Be conservative
3095 here. */
3096 if (GET_CODE (i2src) == MULT
3097 || (i1 != 0 && GET_CODE (i1src) == MULT)
3098 || (i0 != 0 && GET_CODE (i0src) == MULT)
3099 || (GET_CODE (PATTERN (i3)) == SET
3100 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3101 have_mult = 1;
3103 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3104 We used to do this EXCEPT in one case: I3 has a post-inc in an
3105 output operand. However, that exception can give rise to insns like
3106 mov r3,(r3)+
3107 which is a famous insn on the PDP-11 where the value of r3 used as the
3108 source was model-dependent. Avoid this sort of thing. */
3110 #if 0
3111 if (!(GET_CODE (PATTERN (i3)) == SET
3112 && REG_P (SET_SRC (PATTERN (i3)))
3113 && MEM_P (SET_DEST (PATTERN (i3)))
3114 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3115 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3116 /* It's not the exception. */
3117 #endif
3118 if (AUTO_INC_DEC)
3120 rtx link;
3121 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3122 if (REG_NOTE_KIND (link) == REG_INC
3123 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3124 || (i1 != 0
3125 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3127 undo_all ();
3128 return 0;
3132 /* See if the SETs in I1 or I2 need to be kept around in the merged
3133 instruction: whenever the value set there is still needed past I3.
3134 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3136 For the SET in I1, we have two cases: if I1 and I2 independently feed
3137 into I3, the set in I1 needs to be kept around unless I1DEST dies
3138 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3139 in I1 needs to be kept around unless I1DEST dies or is set in either
3140 I2 or I3. The same considerations apply to I0. */
3142 added_sets_2 = !dead_or_set_p (i3, i2dest);
3144 if (i1)
3145 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3146 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3147 else
3148 added_sets_1 = 0;
3150 if (i0)
3151 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3152 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3153 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3154 && dead_or_set_p (i2, i0dest)));
3155 else
3156 added_sets_0 = 0;
3158 /* We are about to copy insns for the case where they need to be kept
3159 around. Check that they can be copied in the merged instruction. */
3161 if (targetm.cannot_copy_insn_p
3162 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3163 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3164 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3166 undo_all ();
3167 return 0;
3170 /* If the set in I2 needs to be kept around, we must make a copy of
3171 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3172 PATTERN (I2), we are only substituting for the original I1DEST, not into
3173 an already-substituted copy. This also prevents making self-referential
3174 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3175 I2DEST. */
3177 if (added_sets_2)
3179 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3180 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3181 else
3182 i2pat = copy_rtx (PATTERN (i2));
3185 if (added_sets_1)
3187 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3188 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3189 else
3190 i1pat = copy_rtx (PATTERN (i1));
3193 if (added_sets_0)
3195 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3196 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3197 else
3198 i0pat = copy_rtx (PATTERN (i0));
3201 combine_merges++;
3203 /* Substitute in the latest insn for the regs set by the earlier ones. */
3205 maxreg = max_reg_num ();
3207 subst_insn = i3;
3209 /* Many machines that don't use CC0 have insns that can both perform an
3210 arithmetic operation and set the condition code. These operations will
3211 be represented as a PARALLEL with the first element of the vector
3212 being a COMPARE of an arithmetic operation with the constant zero.
3213 The second element of the vector will set some pseudo to the result
3214 of the same arithmetic operation. If we simplify the COMPARE, we won't
3215 match such a pattern and so will generate an extra insn. Here we test
3216 for this case, where both the comparison and the operation result are
3217 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3218 I2SRC. Later we will make the PARALLEL that contains I2. */
3220 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3221 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3222 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3223 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3225 rtx newpat_dest;
3226 rtx *cc_use_loc = NULL;
3227 rtx_insn *cc_use_insn = NULL;
3228 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3229 machine_mode compare_mode, orig_compare_mode;
3230 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3231 scalar_int_mode mode;
3233 newpat = PATTERN (i3);
3234 newpat_dest = SET_DEST (newpat);
3235 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3237 if (undobuf.other_insn == 0
3238 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3239 &cc_use_insn)))
3241 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3242 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3243 compare_code = simplify_compare_const (compare_code, mode,
3244 op0, &op1);
3245 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3248 /* Do the rest only if op1 is const0_rtx, which may be the
3249 result of simplification. */
3250 if (op1 == const0_rtx)
3252 /* If a single use of the CC is found, prepare to modify it
3253 when SELECT_CC_MODE returns a new CC-class mode, or when
3254 the above simplify_compare_const() returned a new comparison
3255 operator. undobuf.other_insn is assigned the CC use insn
3256 when modifying it. */
3257 if (cc_use_loc)
3259 #ifdef SELECT_CC_MODE
3260 machine_mode new_mode
3261 = SELECT_CC_MODE (compare_code, op0, op1);
3262 if (new_mode != orig_compare_mode
3263 && can_change_dest_mode (SET_DEST (newpat),
3264 added_sets_2, new_mode))
3266 unsigned int regno = REGNO (newpat_dest);
3267 compare_mode = new_mode;
3268 if (regno < FIRST_PSEUDO_REGISTER)
3269 newpat_dest = gen_rtx_REG (compare_mode, regno);
3270 else
3272 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3273 newpat_dest = regno_reg_rtx[regno];
3276 #endif
3277 /* Cases for modifying the CC-using comparison. */
3278 if (compare_code != orig_compare_code
3279 /* ??? Do we need to verify the zero rtx? */
3280 && XEXP (*cc_use_loc, 1) == const0_rtx)
3282 /* Replace cc_use_loc with entire new RTX. */
3283 SUBST (*cc_use_loc,
3284 gen_rtx_fmt_ee (compare_code, compare_mode,
3285 newpat_dest, const0_rtx));
3286 undobuf.other_insn = cc_use_insn;
3288 else if (compare_mode != orig_compare_mode)
3290 /* Just replace the CC reg with a new mode. */
3291 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3292 undobuf.other_insn = cc_use_insn;
3296 /* Now we modify the current newpat:
3297 First, SET_DEST(newpat) is updated if the CC mode has been
3298 altered. For targets without SELECT_CC_MODE, this should be
3299 optimized away. */
3300 if (compare_mode != orig_compare_mode)
3301 SUBST (SET_DEST (newpat), newpat_dest);
3302 /* This is always done to propagate i2src into newpat. */
3303 SUBST (SET_SRC (newpat),
3304 gen_rtx_COMPARE (compare_mode, op0, op1));
3305 /* Create new version of i2pat if needed; the below PARALLEL
3306 creation needs this to work correctly. */
3307 if (! rtx_equal_p (i2src, op0))
3308 i2pat = gen_rtx_SET (i2dest, op0);
3309 i2_is_used = 1;
3313 if (i2_is_used == 0)
3315 /* It is possible that the source of I2 or I1 may be performing
3316 an unneeded operation, such as a ZERO_EXTEND of something
3317 that is known to have the high part zero. Handle that case
3318 by letting subst look at the inner insns.
3320 Another way to do this would be to have a function that tries
3321 to simplify a single insn instead of merging two or more
3322 insns. We don't do this because of the potential of infinite
3323 loops and because of the potential extra memory required.
3324 However, doing it the way we are is a bit of a kludge and
3325 doesn't catch all cases.
3327 But only do this if -fexpensive-optimizations since it slows
3328 things down and doesn't usually win.
3330 This is not done in the COMPARE case above because the
3331 unmodified I2PAT is used in the PARALLEL and so a pattern
3332 with a modified I2SRC would not match. */
3334 if (flag_expensive_optimizations)
3336 /* Pass pc_rtx so no substitutions are done, just
3337 simplifications. */
3338 if (i1)
3340 subst_low_luid = DF_INSN_LUID (i1);
3341 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3344 subst_low_luid = DF_INSN_LUID (i2);
3345 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3348 n_occurrences = 0; /* `subst' counts here */
3349 subst_low_luid = DF_INSN_LUID (i2);
3351 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3352 copy of I2SRC each time we substitute it, in order to avoid creating
3353 self-referential RTL when we will be substituting I1SRC for I1DEST
3354 later. Likewise if I0 feeds into I2, either directly or indirectly
3355 through I1, and I0DEST is in I0SRC. */
3356 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3357 (i1_feeds_i2_n && i1dest_in_i1src)
3358 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3359 && i0dest_in_i0src));
3360 substed_i2 = 1;
3362 /* Record whether I2's body now appears within I3's body. */
3363 i2_is_used = n_occurrences;
3366 /* If we already got a failure, don't try to do more. Otherwise, try to
3367 substitute I1 if we have it. */
3369 if (i1 && GET_CODE (newpat) != CLOBBER)
3371 /* Check that an autoincrement side-effect on I1 has not been lost.
3372 This happens if I1DEST is mentioned in I2 and dies there, and
3373 has disappeared from the new pattern. */
3374 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3375 && i1_feeds_i2_n
3376 && dead_or_set_p (i2, i1dest)
3377 && !reg_overlap_mentioned_p (i1dest, newpat))
3378 /* Before we can do this substitution, we must redo the test done
3379 above (see detailed comments there) that ensures I1DEST isn't
3380 mentioned in any SETs in NEWPAT that are field assignments. */
3381 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3382 0, 0, 0))
3384 undo_all ();
3385 return 0;
3388 n_occurrences = 0;
3389 subst_low_luid = DF_INSN_LUID (i1);
3391 /* If the following substitution will modify I1SRC, make a copy of it
3392 for the case where it is substituted for I1DEST in I2PAT later. */
3393 if (added_sets_2 && i1_feeds_i2_n)
3394 i1src_copy = copy_rtx (i1src);
3396 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3397 copy of I1SRC each time we substitute it, in order to avoid creating
3398 self-referential RTL when we will be substituting I0SRC for I0DEST
3399 later. */
3400 newpat = subst (newpat, i1dest, i1src, 0, 0,
3401 i0_feeds_i1_n && i0dest_in_i0src);
3402 substed_i1 = 1;
3404 /* Record whether I1's body now appears within I3's body. */
3405 i1_is_used = n_occurrences;
3408 /* Likewise for I0 if we have it. */
3410 if (i0 && GET_CODE (newpat) != CLOBBER)
3412 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3413 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3414 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3415 && !reg_overlap_mentioned_p (i0dest, newpat))
3416 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3417 0, 0, 0))
3419 undo_all ();
3420 return 0;
3423 /* If the following substitution will modify I0SRC, make a copy of it
3424 for the case where it is substituted for I0DEST in I1PAT later. */
3425 if (added_sets_1 && i0_feeds_i1_n)
3426 i0src_copy = copy_rtx (i0src);
3427 /* And a copy for I0DEST in I2PAT substitution. */
3428 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3429 || (i0_feeds_i2_n)))
3430 i0src_copy2 = copy_rtx (i0src);
3432 n_occurrences = 0;
3433 subst_low_luid = DF_INSN_LUID (i0);
3434 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3435 substed_i0 = 1;
3438 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3439 to count all the ways that I2SRC and I1SRC can be used. */
3440 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3441 && i2_is_used + added_sets_2 > 1)
3442 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3443 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3444 > 1))
3445 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3446 && (n_occurrences + added_sets_0
3447 + (added_sets_1 && i0_feeds_i1_n)
3448 + (added_sets_2 && i0_feeds_i2_n)
3449 > 1))
3450 /* Fail if we tried to make a new register. */
3451 || max_reg_num () != maxreg
3452 /* Fail if we couldn't do something and have a CLOBBER. */
3453 || GET_CODE (newpat) == CLOBBER
3454 /* Fail if this new pattern is a MULT and we didn't have one before
3455 at the outer level. */
3456 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3457 && ! have_mult))
3459 undo_all ();
3460 return 0;
3463 /* If the actions of the earlier insns must be kept
3464 in addition to substituting them into the latest one,
3465 we must make a new PARALLEL for the latest insn
3466 to hold additional the SETs. */
3468 if (added_sets_0 || added_sets_1 || added_sets_2)
3470 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3471 combine_extras++;
3473 if (GET_CODE (newpat) == PARALLEL)
3475 rtvec old = XVEC (newpat, 0);
3476 total_sets = XVECLEN (newpat, 0) + extra_sets;
3477 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3478 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3479 sizeof (old->elem[0]) * old->num_elem);
3481 else
3483 rtx old = newpat;
3484 total_sets = 1 + extra_sets;
3485 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3486 XVECEXP (newpat, 0, 0) = old;
3489 if (added_sets_0)
3490 XVECEXP (newpat, 0, --total_sets) = i0pat;
3492 if (added_sets_1)
3494 rtx t = i1pat;
3495 if (i0_feeds_i1_n)
3496 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3498 XVECEXP (newpat, 0, --total_sets) = t;
3500 if (added_sets_2)
3502 rtx t = i2pat;
3503 if (i1_feeds_i2_n)
3504 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3505 i0_feeds_i1_n && i0dest_in_i0src);
3506 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3507 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3509 XVECEXP (newpat, 0, --total_sets) = t;
3513 validate_replacement:
3515 /* Note which hard regs this insn has as inputs. */
3516 mark_used_regs_combine (newpat);
3518 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3519 consider splitting this pattern, we might need these clobbers. */
3520 if (i1 && GET_CODE (newpat) == PARALLEL
3521 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3523 int len = XVECLEN (newpat, 0);
3525 newpat_vec_with_clobbers = rtvec_alloc (len);
3526 for (i = 0; i < len; i++)
3527 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3530 /* We have recognized nothing yet. */
3531 insn_code_number = -1;
3533 /* See if this is a PARALLEL of two SETs where one SET's destination is
3534 a register that is unused and this isn't marked as an instruction that
3535 might trap in an EH region. In that case, we just need the other SET.
3536 We prefer this over the PARALLEL.
3538 This can occur when simplifying a divmod insn. We *must* test for this
3539 case here because the code below that splits two independent SETs doesn't
3540 handle this case correctly when it updates the register status.
3542 It's pointless doing this if we originally had two sets, one from
3543 i3, and one from i2. Combining then splitting the parallel results
3544 in the original i2 again plus an invalid insn (which we delete).
3545 The net effect is only to move instructions around, which makes
3546 debug info less accurate.
3548 If the remaining SET came from I2 its destination should not be used
3549 between I2 and I3. See PR82024. */
3551 if (!(added_sets_2 && i1 == 0)
3552 && is_parallel_of_n_reg_sets (newpat, 2)
3553 && asm_noperands (newpat) < 0)
3555 rtx set0 = XVECEXP (newpat, 0, 0);
3556 rtx set1 = XVECEXP (newpat, 0, 1);
3557 rtx oldpat = newpat;
3559 if (((REG_P (SET_DEST (set1))
3560 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3561 || (GET_CODE (SET_DEST (set1)) == SUBREG
3562 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3563 && insn_nothrow_p (i3)
3564 && !side_effects_p (SET_SRC (set1)))
3566 newpat = set0;
3567 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3570 else if (((REG_P (SET_DEST (set0))
3571 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3572 || (GET_CODE (SET_DEST (set0)) == SUBREG
3573 && find_reg_note (i3, REG_UNUSED,
3574 SUBREG_REG (SET_DEST (set0)))))
3575 && insn_nothrow_p (i3)
3576 && !side_effects_p (SET_SRC (set0)))
3578 rtx dest = SET_DEST (set1);
3579 if (GET_CODE (dest) == SUBREG)
3580 dest = SUBREG_REG (dest);
3581 if (!reg_used_between_p (dest, i2, i3))
3583 newpat = set1;
3584 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3586 if (insn_code_number >= 0)
3587 changed_i3_dest = 1;
3591 if (insn_code_number < 0)
3592 newpat = oldpat;
3595 /* Is the result of combination a valid instruction? */
3596 if (insn_code_number < 0)
3597 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3599 /* If we were combining three insns and the result is a simple SET
3600 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3601 insns. There are two ways to do this. It can be split using a
3602 machine-specific method (like when you have an addition of a large
3603 constant) or by combine in the function find_split_point. */
3605 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3606 && asm_noperands (newpat) < 0)
3608 rtx parallel, *split;
3609 rtx_insn *m_split_insn;
3611 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3612 use I2DEST as a scratch register will help. In the latter case,
3613 convert I2DEST to the mode of the source of NEWPAT if we can. */
3615 m_split_insn = combine_split_insns (newpat, i3);
3617 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3618 inputs of NEWPAT. */
3620 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3621 possible to try that as a scratch reg. This would require adding
3622 more code to make it work though. */
3624 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3626 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3628 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3629 (temporarily, until we are committed to this instruction
3630 combination) does not work: for example, any call to nonzero_bits
3631 on the register (from a splitter in the MD file, for example)
3632 will get the old information, which is invalid.
3634 Since nowadays we can create registers during combine just fine,
3635 we should just create a new one here, not reuse i2dest. */
3637 /* First try to split using the original register as a
3638 scratch register. */
3639 parallel = gen_rtx_PARALLEL (VOIDmode,
3640 gen_rtvec (2, newpat,
3641 gen_rtx_CLOBBER (VOIDmode,
3642 i2dest)));
3643 m_split_insn = combine_split_insns (parallel, i3);
3645 /* If that didn't work, try changing the mode of I2DEST if
3646 we can. */
3647 if (m_split_insn == 0
3648 && new_mode != GET_MODE (i2dest)
3649 && new_mode != VOIDmode
3650 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3652 machine_mode old_mode = GET_MODE (i2dest);
3653 rtx ni2dest;
3655 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3656 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3657 else
3659 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3660 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3663 parallel = (gen_rtx_PARALLEL
3664 (VOIDmode,
3665 gen_rtvec (2, newpat,
3666 gen_rtx_CLOBBER (VOIDmode,
3667 ni2dest))));
3668 m_split_insn = combine_split_insns (parallel, i3);
3670 if (m_split_insn == 0
3671 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3673 struct undo *buf;
3675 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3676 buf = undobuf.undos;
3677 undobuf.undos = buf->next;
3678 buf->next = undobuf.frees;
3679 undobuf.frees = buf;
3683 i2scratch = m_split_insn != 0;
3686 /* If recog_for_combine has discarded clobbers, try to use them
3687 again for the split. */
3688 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3690 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3691 m_split_insn = combine_split_insns (parallel, i3);
3694 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3696 rtx m_split_pat = PATTERN (m_split_insn);
3697 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3698 if (insn_code_number >= 0)
3699 newpat = m_split_pat;
3701 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3702 && (next_nonnote_nondebug_insn (i2) == i3
3703 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3705 rtx i2set, i3set;
3706 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3707 newi2pat = PATTERN (m_split_insn);
3709 i3set = single_set (NEXT_INSN (m_split_insn));
3710 i2set = single_set (m_split_insn);
3712 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3714 /* If I2 or I3 has multiple SETs, we won't know how to track
3715 register status, so don't use these insns. If I2's destination
3716 is used between I2 and I3, we also can't use these insns. */
3718 if (i2_code_number >= 0 && i2set && i3set
3719 && (next_nonnote_nondebug_insn (i2) == i3
3720 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3721 insn_code_number = recog_for_combine (&newi3pat, i3,
3722 &new_i3_notes);
3723 if (insn_code_number >= 0)
3724 newpat = newi3pat;
3726 /* It is possible that both insns now set the destination of I3.
3727 If so, we must show an extra use of it. */
3729 if (insn_code_number >= 0)
3731 rtx new_i3_dest = SET_DEST (i3set);
3732 rtx new_i2_dest = SET_DEST (i2set);
3734 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3735 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3736 || GET_CODE (new_i3_dest) == SUBREG)
3737 new_i3_dest = XEXP (new_i3_dest, 0);
3739 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3740 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3741 || GET_CODE (new_i2_dest) == SUBREG)
3742 new_i2_dest = XEXP (new_i2_dest, 0);
3744 if (REG_P (new_i3_dest)
3745 && REG_P (new_i2_dest)
3746 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3747 && REGNO (new_i2_dest) < reg_n_sets_max)
3748 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3752 /* If we can split it and use I2DEST, go ahead and see if that
3753 helps things be recognized. Verify that none of the registers
3754 are set between I2 and I3. */
3755 if (insn_code_number < 0
3756 && (split = find_split_point (&newpat, i3, false)) != 0
3757 && (!HAVE_cc0 || REG_P (i2dest))
3758 /* We need I2DEST in the proper mode. If it is a hard register
3759 or the only use of a pseudo, we can change its mode.
3760 Make sure we don't change a hard register to have a mode that
3761 isn't valid for it, or change the number of registers. */
3762 && (GET_MODE (*split) == GET_MODE (i2dest)
3763 || GET_MODE (*split) == VOIDmode
3764 || can_change_dest_mode (i2dest, added_sets_2,
3765 GET_MODE (*split)))
3766 && (next_nonnote_nondebug_insn (i2) == i3
3767 || !modified_between_p (*split, i2, i3))
3768 /* We can't overwrite I2DEST if its value is still used by
3769 NEWPAT. */
3770 && ! reg_referenced_p (i2dest, newpat))
3772 rtx newdest = i2dest;
3773 enum rtx_code split_code = GET_CODE (*split);
3774 machine_mode split_mode = GET_MODE (*split);
3775 bool subst_done = false;
3776 newi2pat = NULL_RTX;
3778 i2scratch = true;
3780 /* *SPLIT may be part of I2SRC, so make sure we have the
3781 original expression around for later debug processing.
3782 We should not need I2SRC any more in other cases. */
3783 if (MAY_HAVE_DEBUG_BIND_INSNS)
3784 i2src = copy_rtx (i2src);
3785 else
3786 i2src = NULL;
3788 /* Get NEWDEST as a register in the proper mode. We have already
3789 validated that we can do this. */
3790 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3792 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3793 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3794 else
3796 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3797 newdest = regno_reg_rtx[REGNO (i2dest)];
3801 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3802 an ASHIFT. This can occur if it was inside a PLUS and hence
3803 appeared to be a memory address. This is a kludge. */
3804 if (split_code == MULT
3805 && CONST_INT_P (XEXP (*split, 1))
3806 && INTVAL (XEXP (*split, 1)) > 0
3807 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3809 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3810 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3811 XEXP (*split, 0), i_rtx));
3812 /* Update split_code because we may not have a multiply
3813 anymore. */
3814 split_code = GET_CODE (*split);
3817 /* Similarly for (plus (mult FOO (const_int pow2))). */
3818 if (split_code == PLUS
3819 && GET_CODE (XEXP (*split, 0)) == MULT
3820 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3821 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3822 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3824 rtx nsplit = XEXP (*split, 0);
3825 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3826 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3827 XEXP (nsplit, 0),
3828 i_rtx));
3829 /* Update split_code because we may not have a multiply
3830 anymore. */
3831 split_code = GET_CODE (*split);
3834 #ifdef INSN_SCHEDULING
3835 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3836 be written as a ZERO_EXTEND. */
3837 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3839 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3840 what it really is. */
3841 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3842 == SIGN_EXTEND)
3843 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3844 SUBREG_REG (*split)));
3845 else
3846 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3847 SUBREG_REG (*split)));
3849 #endif
3851 /* Attempt to split binary operators using arithmetic identities. */
3852 if (BINARY_P (SET_SRC (newpat))
3853 && split_mode == GET_MODE (SET_SRC (newpat))
3854 && ! side_effects_p (SET_SRC (newpat)))
3856 rtx setsrc = SET_SRC (newpat);
3857 machine_mode mode = GET_MODE (setsrc);
3858 enum rtx_code code = GET_CODE (setsrc);
3859 rtx src_op0 = XEXP (setsrc, 0);
3860 rtx src_op1 = XEXP (setsrc, 1);
3862 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3863 if (rtx_equal_p (src_op0, src_op1))
3865 newi2pat = gen_rtx_SET (newdest, src_op0);
3866 SUBST (XEXP (setsrc, 0), newdest);
3867 SUBST (XEXP (setsrc, 1), newdest);
3868 subst_done = true;
3870 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3871 else if ((code == PLUS || code == MULT)
3872 && GET_CODE (src_op0) == code
3873 && GET_CODE (XEXP (src_op0, 0)) == code
3874 && (INTEGRAL_MODE_P (mode)
3875 || (FLOAT_MODE_P (mode)
3876 && flag_unsafe_math_optimizations)))
3878 rtx p = XEXP (XEXP (src_op0, 0), 0);
3879 rtx q = XEXP (XEXP (src_op0, 0), 1);
3880 rtx r = XEXP (src_op0, 1);
3881 rtx s = src_op1;
3883 /* Split both "((X op Y) op X) op Y" and
3884 "((X op Y) op Y) op X" as "T op T" where T is
3885 "X op Y". */
3886 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3887 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3889 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3890 SUBST (XEXP (setsrc, 0), newdest);
3891 SUBST (XEXP (setsrc, 1), newdest);
3892 subst_done = true;
3894 /* Split "((X op X) op Y) op Y)" as "T op T" where
3895 T is "X op Y". */
3896 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3898 rtx tmp = simplify_gen_binary (code, mode, p, r);
3899 newi2pat = gen_rtx_SET (newdest, tmp);
3900 SUBST (XEXP (setsrc, 0), newdest);
3901 SUBST (XEXP (setsrc, 1), newdest);
3902 subst_done = true;
3907 if (!subst_done)
3909 newi2pat = gen_rtx_SET (newdest, *split);
3910 SUBST (*split, newdest);
3913 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3915 /* recog_for_combine might have added CLOBBERs to newi2pat.
3916 Make sure NEWPAT does not depend on the clobbered regs. */
3917 if (GET_CODE (newi2pat) == PARALLEL)
3918 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3919 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3921 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3922 if (reg_overlap_mentioned_p (reg, newpat))
3924 undo_all ();
3925 return 0;
3929 /* If the split point was a MULT and we didn't have one before,
3930 don't use one now. */
3931 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3932 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3936 /* Check for a case where we loaded from memory in a narrow mode and
3937 then sign extended it, but we need both registers. In that case,
3938 we have a PARALLEL with both loads from the same memory location.
3939 We can split this into a load from memory followed by a register-register
3940 copy. This saves at least one insn, more if register allocation can
3941 eliminate the copy.
3943 We cannot do this if the destination of the first assignment is a
3944 condition code register or cc0. We eliminate this case by making sure
3945 the SET_DEST and SET_SRC have the same mode.
3947 We cannot do this if the destination of the second assignment is
3948 a register that we have already assumed is zero-extended. Similarly
3949 for a SUBREG of such a register. */
3951 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3952 && GET_CODE (newpat) == PARALLEL
3953 && XVECLEN (newpat, 0) == 2
3954 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3955 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3956 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3957 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3958 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3959 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3960 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3961 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3962 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3963 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3964 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3965 (REG_P (temp_expr)
3966 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3967 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3968 BITS_PER_WORD)
3969 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3970 HOST_BITS_PER_INT)
3971 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3972 != GET_MODE_MASK (word_mode))))
3973 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3974 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3975 (REG_P (temp_expr)
3976 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3977 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3978 BITS_PER_WORD)
3979 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3980 HOST_BITS_PER_INT)
3981 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3982 != GET_MODE_MASK (word_mode)))))
3983 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3984 SET_SRC (XVECEXP (newpat, 0, 1)))
3985 && ! find_reg_note (i3, REG_UNUSED,
3986 SET_DEST (XVECEXP (newpat, 0, 0))))
3988 rtx ni2dest;
3990 newi2pat = XVECEXP (newpat, 0, 0);
3991 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3992 newpat = XVECEXP (newpat, 0, 1);
3993 SUBST (SET_SRC (newpat),
3994 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3995 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3997 if (i2_code_number >= 0)
3998 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4000 if (insn_code_number >= 0)
4001 swap_i2i3 = 1;
4004 /* Similarly, check for a case where we have a PARALLEL of two independent
4005 SETs but we started with three insns. In this case, we can do the sets
4006 as two separate insns. This case occurs when some SET allows two
4007 other insns to combine, but the destination of that SET is still live.
4009 Also do this if we started with two insns and (at least) one of the
4010 resulting sets is a noop; this noop will be deleted later. */
4012 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4013 && GET_CODE (newpat) == PARALLEL
4014 && XVECLEN (newpat, 0) == 2
4015 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4016 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4017 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
4018 || set_noop_p (XVECEXP (newpat, 0, 1)))
4019 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4020 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4021 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4022 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4023 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4024 XVECEXP (newpat, 0, 0))
4025 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4026 XVECEXP (newpat, 0, 1))
4027 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4028 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4030 rtx set0 = XVECEXP (newpat, 0, 0);
4031 rtx set1 = XVECEXP (newpat, 0, 1);
4033 /* Normally, it doesn't matter which of the two is done first,
4034 but the one that references cc0 can't be the second, and
4035 one which uses any regs/memory set in between i2 and i3 can't
4036 be first. The PARALLEL might also have been pre-existing in i3,
4037 so we need to make sure that we won't wrongly hoist a SET to i2
4038 that would conflict with a death note present in there. */
4039 if (!modified_between_p (SET_SRC (set1), i2, i3)
4040 && !(REG_P (SET_DEST (set1))
4041 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4042 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4043 && find_reg_note (i2, REG_DEAD,
4044 SUBREG_REG (SET_DEST (set1))))
4045 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4046 /* If I3 is a jump, ensure that set0 is a jump so that
4047 we do not create invalid RTL. */
4048 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4051 newi2pat = set1;
4052 newpat = set0;
4054 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4055 && !(REG_P (SET_DEST (set0))
4056 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4057 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4058 && find_reg_note (i2, REG_DEAD,
4059 SUBREG_REG (SET_DEST (set0))))
4060 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4061 /* If I3 is a jump, ensure that set1 is a jump so that
4062 we do not create invalid RTL. */
4063 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4066 newi2pat = set0;
4067 newpat = set1;
4069 else
4071 undo_all ();
4072 return 0;
4075 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4077 if (i2_code_number >= 0)
4079 /* recog_for_combine might have added CLOBBERs to newi2pat.
4080 Make sure NEWPAT does not depend on the clobbered regs. */
4081 if (GET_CODE (newi2pat) == PARALLEL)
4083 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4084 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4086 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4087 if (reg_overlap_mentioned_p (reg, newpat))
4089 undo_all ();
4090 return 0;
4095 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4097 if (insn_code_number >= 0)
4098 split_i2i3 = 1;
4102 /* If it still isn't recognized, fail and change things back the way they
4103 were. */
4104 if ((insn_code_number < 0
4105 /* Is the result a reasonable ASM_OPERANDS? */
4106 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4108 undo_all ();
4109 return 0;
4112 /* If we had to change another insn, make sure it is valid also. */
4113 if (undobuf.other_insn)
4115 CLEAR_HARD_REG_SET (newpat_used_regs);
4117 other_pat = PATTERN (undobuf.other_insn);
4118 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4119 &new_other_notes);
4121 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4123 undo_all ();
4124 return 0;
4128 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4129 they are adjacent to each other or not. */
4130 if (HAVE_cc0)
4132 rtx_insn *p = prev_nonnote_insn (i3);
4133 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4134 && sets_cc0_p (newi2pat))
4136 undo_all ();
4137 return 0;
4141 /* Only allow this combination if insn_cost reports that the
4142 replacement instructions are cheaper than the originals. */
4143 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4145 undo_all ();
4146 return 0;
4149 if (MAY_HAVE_DEBUG_BIND_INSNS)
4151 struct undo *undo;
4153 for (undo = undobuf.undos; undo; undo = undo->next)
4154 if (undo->kind == UNDO_MODE)
4156 rtx reg = *undo->where.r;
4157 machine_mode new_mode = GET_MODE (reg);
4158 machine_mode old_mode = undo->old_contents.m;
4160 /* Temporarily revert mode back. */
4161 adjust_reg_mode (reg, old_mode);
4163 if (reg == i2dest && i2scratch)
4165 /* If we used i2dest as a scratch register with a
4166 different mode, substitute it for the original
4167 i2src while its original mode is temporarily
4168 restored, and then clear i2scratch so that we don't
4169 do it again later. */
4170 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4171 this_basic_block);
4172 i2scratch = false;
4173 /* Put back the new mode. */
4174 adjust_reg_mode (reg, new_mode);
4176 else
4178 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4179 rtx_insn *first, *last;
4181 if (reg == i2dest)
4183 first = i2;
4184 last = last_combined_insn;
4186 else
4188 first = i3;
4189 last = undobuf.other_insn;
4190 gcc_assert (last);
4191 if (DF_INSN_LUID (last)
4192 < DF_INSN_LUID (last_combined_insn))
4193 last = last_combined_insn;
4196 /* We're dealing with a reg that changed mode but not
4197 meaning, so we want to turn it into a subreg for
4198 the new mode. However, because of REG sharing and
4199 because its mode had already changed, we have to do
4200 it in two steps. First, replace any debug uses of
4201 reg, with its original mode temporarily restored,
4202 with this copy we have created; then, replace the
4203 copy with the SUBREG of the original shared reg,
4204 once again changed to the new mode. */
4205 propagate_for_debug (first, last, reg, tempreg,
4206 this_basic_block);
4207 adjust_reg_mode (reg, new_mode);
4208 propagate_for_debug (first, last, tempreg,
4209 lowpart_subreg (old_mode, reg, new_mode),
4210 this_basic_block);
4215 /* If we will be able to accept this, we have made a
4216 change to the destination of I3. This requires us to
4217 do a few adjustments. */
4219 if (changed_i3_dest)
4221 PATTERN (i3) = newpat;
4222 adjust_for_new_dest (i3);
4225 /* We now know that we can do this combination. Merge the insns and
4226 update the status of registers and LOG_LINKS. */
4228 if (undobuf.other_insn)
4230 rtx note, next;
4232 PATTERN (undobuf.other_insn) = other_pat;
4234 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4235 ensure that they are still valid. Then add any non-duplicate
4236 notes added by recog_for_combine. */
4237 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4239 next = XEXP (note, 1);
4241 if ((REG_NOTE_KIND (note) == REG_DEAD
4242 && !reg_referenced_p (XEXP (note, 0),
4243 PATTERN (undobuf.other_insn)))
4244 ||(REG_NOTE_KIND (note) == REG_UNUSED
4245 && !reg_set_p (XEXP (note, 0),
4246 PATTERN (undobuf.other_insn)))
4247 /* Simply drop equal note since it may be no longer valid
4248 for other_insn. It may be possible to record that CC
4249 register is changed and only discard those notes, but
4250 in practice it's unnecessary complication and doesn't
4251 give any meaningful improvement.
4253 See PR78559. */
4254 || REG_NOTE_KIND (note) == REG_EQUAL
4255 || REG_NOTE_KIND (note) == REG_EQUIV)
4256 remove_note (undobuf.other_insn, note);
4259 distribute_notes (new_other_notes, undobuf.other_insn,
4260 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4261 NULL_RTX);
4264 if (swap_i2i3)
4266 /* I3 now uses what used to be its destination and which is now
4267 I2's destination. This requires us to do a few adjustments. */
4268 PATTERN (i3) = newpat;
4269 adjust_for_new_dest (i3);
4272 if (swap_i2i3 || split_i2i3)
4274 /* We might need a LOG_LINK from I3 to I2. But then we used to
4275 have one, so we still will.
4277 However, some later insn might be using I2's dest and have
4278 a LOG_LINK pointing at I3. We should change it to point at
4279 I2 instead. */
4281 /* newi2pat is usually a SET here; however, recog_for_combine might
4282 have added some clobbers. */
4283 rtx x = newi2pat;
4284 if (GET_CODE (x) == PARALLEL)
4285 x = XVECEXP (newi2pat, 0, 0);
4287 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4288 unsigned int regno = reg_or_subregno (SET_DEST (x));
4290 bool done = false;
4291 for (rtx_insn *insn = NEXT_INSN (i3);
4292 !done
4293 && insn
4294 && NONDEBUG_INSN_P (insn)
4295 && BLOCK_FOR_INSN (insn) == this_basic_block;
4296 insn = NEXT_INSN (insn))
4298 struct insn_link *link;
4299 FOR_EACH_LOG_LINK (link, insn)
4300 if (link->insn == i3 && link->regno == regno)
4302 link->insn = i2;
4303 done = true;
4304 break;
4310 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4311 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4312 rtx midnotes = 0;
4313 int from_luid;
4314 /* Compute which registers we expect to eliminate. newi2pat may be setting
4315 either i3dest or i2dest, so we must check it. */
4316 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4317 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4318 || !i2dest_killed
4319 ? 0 : i2dest);
4320 /* For i1, we need to compute both local elimination and global
4321 elimination information with respect to newi2pat because i1dest
4322 may be the same as i3dest, in which case newi2pat may be setting
4323 i1dest. Global information is used when distributing REG_DEAD
4324 note for i2 and i3, in which case it does matter if newi2pat sets
4325 i1dest or not.
4327 Local information is used when distributing REG_DEAD note for i1,
4328 in which case it doesn't matter if newi2pat sets i1dest or not.
4329 See PR62151, if we have four insns combination:
4330 i0: r0 <- i0src
4331 i1: r1 <- i1src (using r0)
4332 REG_DEAD (r0)
4333 i2: r0 <- i2src (using r1)
4334 i3: r3 <- i3src (using r0)
4335 ix: using r0
4336 From i1's point of view, r0 is eliminated, no matter if it is set
4337 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4338 should be discarded.
4340 Note local information only affects cases in forms like "I1->I2->I3",
4341 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4342 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4343 i0dest anyway. */
4344 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4345 || !i1dest_killed
4346 ? 0 : i1dest);
4347 rtx elim_i1 = (local_elim_i1 == 0
4348 || (newi2pat && reg_set_p (i1dest, newi2pat))
4349 ? 0 : i1dest);
4350 /* Same case as i1. */
4351 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4352 ? 0 : i0dest);
4353 rtx elim_i0 = (local_elim_i0 == 0
4354 || (newi2pat && reg_set_p (i0dest, newi2pat))
4355 ? 0 : i0dest);
4357 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4358 clear them. */
4359 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4360 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4361 if (i1)
4362 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4363 if (i0)
4364 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4366 /* Ensure that we do not have something that should not be shared but
4367 occurs multiple times in the new insns. Check this by first
4368 resetting all the `used' flags and then copying anything is shared. */
4370 reset_used_flags (i3notes);
4371 reset_used_flags (i2notes);
4372 reset_used_flags (i1notes);
4373 reset_used_flags (i0notes);
4374 reset_used_flags (newpat);
4375 reset_used_flags (newi2pat);
4376 if (undobuf.other_insn)
4377 reset_used_flags (PATTERN (undobuf.other_insn));
4379 i3notes = copy_rtx_if_shared (i3notes);
4380 i2notes = copy_rtx_if_shared (i2notes);
4381 i1notes = copy_rtx_if_shared (i1notes);
4382 i0notes = copy_rtx_if_shared (i0notes);
4383 newpat = copy_rtx_if_shared (newpat);
4384 newi2pat = copy_rtx_if_shared (newi2pat);
4385 if (undobuf.other_insn)
4386 reset_used_flags (PATTERN (undobuf.other_insn));
4388 INSN_CODE (i3) = insn_code_number;
4389 PATTERN (i3) = newpat;
4391 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4393 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4394 link = XEXP (link, 1))
4396 if (substed_i2)
4398 /* I2SRC must still be meaningful at this point. Some
4399 splitting operations can invalidate I2SRC, but those
4400 operations do not apply to calls. */
4401 gcc_assert (i2src);
4402 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4403 i2dest, i2src);
4405 if (substed_i1)
4406 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4407 i1dest, i1src);
4408 if (substed_i0)
4409 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4410 i0dest, i0src);
4414 if (undobuf.other_insn)
4415 INSN_CODE (undobuf.other_insn) = other_code_number;
4417 /* We had one special case above where I2 had more than one set and
4418 we replaced a destination of one of those sets with the destination
4419 of I3. In that case, we have to update LOG_LINKS of insns later
4420 in this basic block. Note that this (expensive) case is rare.
4422 Also, in this case, we must pretend that all REG_NOTEs for I2
4423 actually came from I3, so that REG_UNUSED notes from I2 will be
4424 properly handled. */
4426 if (i3_subst_into_i2)
4428 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4429 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4430 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4431 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4432 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4433 && ! find_reg_note (i2, REG_UNUSED,
4434 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4435 for (temp_insn = NEXT_INSN (i2);
4436 temp_insn
4437 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4438 || BB_HEAD (this_basic_block) != temp_insn);
4439 temp_insn = NEXT_INSN (temp_insn))
4440 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4441 FOR_EACH_LOG_LINK (link, temp_insn)
4442 if (link->insn == i2)
4443 link->insn = i3;
4445 if (i3notes)
4447 rtx link = i3notes;
4448 while (XEXP (link, 1))
4449 link = XEXP (link, 1);
4450 XEXP (link, 1) = i2notes;
4452 else
4453 i3notes = i2notes;
4454 i2notes = 0;
4457 LOG_LINKS (i3) = NULL;
4458 REG_NOTES (i3) = 0;
4459 LOG_LINKS (i2) = NULL;
4460 REG_NOTES (i2) = 0;
4462 if (newi2pat)
4464 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4465 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4466 this_basic_block);
4467 INSN_CODE (i2) = i2_code_number;
4468 PATTERN (i2) = newi2pat;
4470 else
4472 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4473 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4474 this_basic_block);
4475 SET_INSN_DELETED (i2);
4478 if (i1)
4480 LOG_LINKS (i1) = NULL;
4481 REG_NOTES (i1) = 0;
4482 if (MAY_HAVE_DEBUG_BIND_INSNS)
4483 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4484 this_basic_block);
4485 SET_INSN_DELETED (i1);
4488 if (i0)
4490 LOG_LINKS (i0) = NULL;
4491 REG_NOTES (i0) = 0;
4492 if (MAY_HAVE_DEBUG_BIND_INSNS)
4493 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4494 this_basic_block);
4495 SET_INSN_DELETED (i0);
4498 /* Get death notes for everything that is now used in either I3 or
4499 I2 and used to die in a previous insn. If we built two new
4500 patterns, move from I1 to I2 then I2 to I3 so that we get the
4501 proper movement on registers that I2 modifies. */
4503 if (i0)
4504 from_luid = DF_INSN_LUID (i0);
4505 else if (i1)
4506 from_luid = DF_INSN_LUID (i1);
4507 else
4508 from_luid = DF_INSN_LUID (i2);
4509 if (newi2pat)
4510 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4511 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4513 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4514 if (i3notes)
4515 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4516 elim_i2, elim_i1, elim_i0);
4517 if (i2notes)
4518 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4519 elim_i2, elim_i1, elim_i0);
4520 if (i1notes)
4521 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4522 elim_i2, local_elim_i1, local_elim_i0);
4523 if (i0notes)
4524 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4525 elim_i2, elim_i1, local_elim_i0);
4526 if (midnotes)
4527 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4528 elim_i2, elim_i1, elim_i0);
4530 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4531 know these are REG_UNUSED and want them to go to the desired insn,
4532 so we always pass it as i3. */
4534 if (newi2pat && new_i2_notes)
4535 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4536 NULL_RTX);
4538 if (new_i3_notes)
4539 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4540 NULL_RTX);
4542 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4543 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4544 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4545 in that case, it might delete I2. Similarly for I2 and I1.
4546 Show an additional death due to the REG_DEAD note we make here. If
4547 we discard it in distribute_notes, we will decrement it again. */
4549 if (i3dest_killed)
4551 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4552 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4553 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4554 elim_i1, elim_i0);
4555 else
4556 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4557 elim_i2, elim_i1, elim_i0);
4560 if (i2dest_in_i2src)
4562 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4563 if (newi2pat && reg_set_p (i2dest, newi2pat))
4564 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4565 NULL_RTX, NULL_RTX);
4566 else
4567 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4568 NULL_RTX, NULL_RTX, NULL_RTX);
4571 if (i1dest_in_i1src)
4573 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4574 if (newi2pat && reg_set_p (i1dest, newi2pat))
4575 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4576 NULL_RTX, NULL_RTX);
4577 else
4578 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4579 NULL_RTX, NULL_RTX, NULL_RTX);
4582 if (i0dest_in_i0src)
4584 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4585 if (newi2pat && reg_set_p (i0dest, newi2pat))
4586 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4587 NULL_RTX, NULL_RTX);
4588 else
4589 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4590 NULL_RTX, NULL_RTX, NULL_RTX);
4593 distribute_links (i3links);
4594 distribute_links (i2links);
4595 distribute_links (i1links);
4596 distribute_links (i0links);
4598 if (REG_P (i2dest))
4600 struct insn_link *link;
4601 rtx_insn *i2_insn = 0;
4602 rtx i2_val = 0, set;
4604 /* The insn that used to set this register doesn't exist, and
4605 this life of the register may not exist either. See if one of
4606 I3's links points to an insn that sets I2DEST. If it does,
4607 that is now the last known value for I2DEST. If we don't update
4608 this and I2 set the register to a value that depended on its old
4609 contents, we will get confused. If this insn is used, thing
4610 will be set correctly in combine_instructions. */
4611 FOR_EACH_LOG_LINK (link, i3)
4612 if ((set = single_set (link->insn)) != 0
4613 && rtx_equal_p (i2dest, SET_DEST (set)))
4614 i2_insn = link->insn, i2_val = SET_SRC (set);
4616 record_value_for_reg (i2dest, i2_insn, i2_val);
4618 /* If the reg formerly set in I2 died only once and that was in I3,
4619 zero its use count so it won't make `reload' do any work. */
4620 if (! added_sets_2
4621 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4622 && ! i2dest_in_i2src
4623 && REGNO (i2dest) < reg_n_sets_max)
4624 INC_REG_N_SETS (REGNO (i2dest), -1);
4627 if (i1 && REG_P (i1dest))
4629 struct insn_link *link;
4630 rtx_insn *i1_insn = 0;
4631 rtx i1_val = 0, set;
4633 FOR_EACH_LOG_LINK (link, i3)
4634 if ((set = single_set (link->insn)) != 0
4635 && rtx_equal_p (i1dest, SET_DEST (set)))
4636 i1_insn = link->insn, i1_val = SET_SRC (set);
4638 record_value_for_reg (i1dest, i1_insn, i1_val);
4640 if (! added_sets_1
4641 && ! i1dest_in_i1src
4642 && REGNO (i1dest) < reg_n_sets_max)
4643 INC_REG_N_SETS (REGNO (i1dest), -1);
4646 if (i0 && REG_P (i0dest))
4648 struct insn_link *link;
4649 rtx_insn *i0_insn = 0;
4650 rtx i0_val = 0, set;
4652 FOR_EACH_LOG_LINK (link, i3)
4653 if ((set = single_set (link->insn)) != 0
4654 && rtx_equal_p (i0dest, SET_DEST (set)))
4655 i0_insn = link->insn, i0_val = SET_SRC (set);
4657 record_value_for_reg (i0dest, i0_insn, i0_val);
4659 if (! added_sets_0
4660 && ! i0dest_in_i0src
4661 && REGNO (i0dest) < reg_n_sets_max)
4662 INC_REG_N_SETS (REGNO (i0dest), -1);
4665 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4666 been made to this insn. The order is important, because newi2pat
4667 can affect nonzero_bits of newpat. */
4668 if (newi2pat)
4669 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4670 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4673 if (undobuf.other_insn != NULL_RTX)
4675 if (dump_file)
4677 fprintf (dump_file, "modifying other_insn ");
4678 dump_insn_slim (dump_file, undobuf.other_insn);
4680 df_insn_rescan (undobuf.other_insn);
4683 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4685 if (dump_file)
4687 fprintf (dump_file, "modifying insn i0 ");
4688 dump_insn_slim (dump_file, i0);
4690 df_insn_rescan (i0);
4693 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4695 if (dump_file)
4697 fprintf (dump_file, "modifying insn i1 ");
4698 dump_insn_slim (dump_file, i1);
4700 df_insn_rescan (i1);
4703 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4705 if (dump_file)
4707 fprintf (dump_file, "modifying insn i2 ");
4708 dump_insn_slim (dump_file, i2);
4710 df_insn_rescan (i2);
4713 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4715 if (dump_file)
4717 fprintf (dump_file, "modifying insn i3 ");
4718 dump_insn_slim (dump_file, i3);
4720 df_insn_rescan (i3);
4723 /* Set new_direct_jump_p if a new return or simple jump instruction
4724 has been created. Adjust the CFG accordingly. */
4725 if (returnjump_p (i3) || any_uncondjump_p (i3))
4727 *new_direct_jump_p = 1;
4728 mark_jump_label (PATTERN (i3), i3, 0);
4729 update_cfg_for_uncondjump (i3);
4732 if (undobuf.other_insn != NULL_RTX
4733 && (returnjump_p (undobuf.other_insn)
4734 || any_uncondjump_p (undobuf.other_insn)))
4736 *new_direct_jump_p = 1;
4737 update_cfg_for_uncondjump (undobuf.other_insn);
4740 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4741 && XEXP (PATTERN (i3), 0) == const1_rtx)
4743 basic_block bb = BLOCK_FOR_INSN (i3);
4744 gcc_assert (bb);
4745 remove_edge (split_block (bb, i3));
4746 emit_barrier_after_bb (bb);
4747 *new_direct_jump_p = 1;
4750 if (undobuf.other_insn
4751 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4752 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4754 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4755 gcc_assert (bb);
4756 remove_edge (split_block (bb, undobuf.other_insn));
4757 emit_barrier_after_bb (bb);
4758 *new_direct_jump_p = 1;
4761 /* A noop might also need cleaning up of CFG, if it comes from the
4762 simplification of a jump. */
4763 if (JUMP_P (i3)
4764 && GET_CODE (newpat) == SET
4765 && SET_SRC (newpat) == pc_rtx
4766 && SET_DEST (newpat) == pc_rtx)
4768 *new_direct_jump_p = 1;
4769 update_cfg_for_uncondjump (i3);
4772 if (undobuf.other_insn != NULL_RTX
4773 && JUMP_P (undobuf.other_insn)
4774 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4775 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4776 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4778 *new_direct_jump_p = 1;
4779 update_cfg_for_uncondjump (undobuf.other_insn);
4782 combine_successes++;
4783 undo_commit ();
4785 rtx_insn *ret = newi2pat ? i2 : i3;
4786 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4787 ret = added_links_insn;
4788 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4789 ret = added_notes_insn;
4791 return ret;
4794 /* Get a marker for undoing to the current state. */
4796 static void *
4797 get_undo_marker (void)
4799 return undobuf.undos;
4802 /* Undo the modifications up to the marker. */
4804 static void
4805 undo_to_marker (void *marker)
4807 struct undo *undo, *next;
4809 for (undo = undobuf.undos; undo != marker; undo = next)
4811 gcc_assert (undo);
4813 next = undo->next;
4814 switch (undo->kind)
4816 case UNDO_RTX:
4817 *undo->where.r = undo->old_contents.r;
4818 break;
4819 case UNDO_INT:
4820 *undo->where.i = undo->old_contents.i;
4821 break;
4822 case UNDO_MODE:
4823 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4824 break;
4825 case UNDO_LINKS:
4826 *undo->where.l = undo->old_contents.l;
4827 break;
4828 default:
4829 gcc_unreachable ();
4832 undo->next = undobuf.frees;
4833 undobuf.frees = undo;
4836 undobuf.undos = (struct undo *) marker;
4839 /* Undo all the modifications recorded in undobuf. */
4841 static void
4842 undo_all (void)
4844 undo_to_marker (0);
4847 /* We've committed to accepting the changes we made. Move all
4848 of the undos to the free list. */
4850 static void
4851 undo_commit (void)
4853 struct undo *undo, *next;
4855 for (undo = undobuf.undos; undo; undo = next)
4857 next = undo->next;
4858 undo->next = undobuf.frees;
4859 undobuf.frees = undo;
4861 undobuf.undos = 0;
4864 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4865 where we have an arithmetic expression and return that point. LOC will
4866 be inside INSN.
4868 try_combine will call this function to see if an insn can be split into
4869 two insns. */
4871 static rtx *
4872 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4874 rtx x = *loc;
4875 enum rtx_code code = GET_CODE (x);
4876 rtx *split;
4877 unsigned HOST_WIDE_INT len = 0;
4878 HOST_WIDE_INT pos = 0;
4879 int unsignedp = 0;
4880 rtx inner = NULL_RTX;
4881 scalar_int_mode mode, inner_mode;
4883 /* First special-case some codes. */
4884 switch (code)
4886 case SUBREG:
4887 #ifdef INSN_SCHEDULING
4888 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4889 point. */
4890 if (MEM_P (SUBREG_REG (x)))
4891 return loc;
4892 #endif
4893 return find_split_point (&SUBREG_REG (x), insn, false);
4895 case MEM:
4896 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4897 using LO_SUM and HIGH. */
4898 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4899 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4901 machine_mode address_mode = get_address_mode (x);
4903 SUBST (XEXP (x, 0),
4904 gen_rtx_LO_SUM (address_mode,
4905 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4906 XEXP (x, 0)));
4907 return &XEXP (XEXP (x, 0), 0);
4910 /* If we have a PLUS whose second operand is a constant and the
4911 address is not valid, perhaps will can split it up using
4912 the machine-specific way to split large constants. We use
4913 the first pseudo-reg (one of the virtual regs) as a placeholder;
4914 it will not remain in the result. */
4915 if (GET_CODE (XEXP (x, 0)) == PLUS
4916 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4917 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4918 MEM_ADDR_SPACE (x)))
4920 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4921 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4922 subst_insn);
4924 /* This should have produced two insns, each of which sets our
4925 placeholder. If the source of the second is a valid address,
4926 we can make put both sources together and make a split point
4927 in the middle. */
4929 if (seq
4930 && NEXT_INSN (seq) != NULL_RTX
4931 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4932 && NONJUMP_INSN_P (seq)
4933 && GET_CODE (PATTERN (seq)) == SET
4934 && SET_DEST (PATTERN (seq)) == reg
4935 && ! reg_mentioned_p (reg,
4936 SET_SRC (PATTERN (seq)))
4937 && NONJUMP_INSN_P (NEXT_INSN (seq))
4938 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4939 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4940 && memory_address_addr_space_p
4941 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4942 MEM_ADDR_SPACE (x)))
4944 rtx src1 = SET_SRC (PATTERN (seq));
4945 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4947 /* Replace the placeholder in SRC2 with SRC1. If we can
4948 find where in SRC2 it was placed, that can become our
4949 split point and we can replace this address with SRC2.
4950 Just try two obvious places. */
4952 src2 = replace_rtx (src2, reg, src1);
4953 split = 0;
4954 if (XEXP (src2, 0) == src1)
4955 split = &XEXP (src2, 0);
4956 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4957 && XEXP (XEXP (src2, 0), 0) == src1)
4958 split = &XEXP (XEXP (src2, 0), 0);
4960 if (split)
4962 SUBST (XEXP (x, 0), src2);
4963 return split;
4967 /* If that didn't work, perhaps the first operand is complex and
4968 needs to be computed separately, so make a split point there.
4969 This will occur on machines that just support REG + CONST
4970 and have a constant moved through some previous computation. */
4972 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4973 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4974 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4975 return &XEXP (XEXP (x, 0), 0);
4978 /* If we have a PLUS whose first operand is complex, try computing it
4979 separately by making a split there. */
4980 if (GET_CODE (XEXP (x, 0)) == PLUS
4981 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4982 MEM_ADDR_SPACE (x))
4983 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4984 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4985 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4986 return &XEXP (XEXP (x, 0), 0);
4987 break;
4989 case SET:
4990 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4991 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4992 we need to put the operand into a register. So split at that
4993 point. */
4995 if (SET_DEST (x) == cc0_rtx
4996 && GET_CODE (SET_SRC (x)) != COMPARE
4997 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4998 && !OBJECT_P (SET_SRC (x))
4999 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5000 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5001 return &SET_SRC (x);
5003 /* See if we can split SET_SRC as it stands. */
5004 split = find_split_point (&SET_SRC (x), insn, true);
5005 if (split && split != &SET_SRC (x))
5006 return split;
5008 /* See if we can split SET_DEST as it stands. */
5009 split = find_split_point (&SET_DEST (x), insn, false);
5010 if (split && split != &SET_DEST (x))
5011 return split;
5013 /* See if this is a bitfield assignment with everything constant. If
5014 so, this is an IOR of an AND, so split it into that. */
5015 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5016 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5017 &inner_mode)
5018 && HWI_COMPUTABLE_MODE_P (inner_mode)
5019 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5020 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5021 && CONST_INT_P (SET_SRC (x))
5022 && ((INTVAL (XEXP (SET_DEST (x), 1))
5023 + INTVAL (XEXP (SET_DEST (x), 2)))
5024 <= GET_MODE_PRECISION (inner_mode))
5025 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5027 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5028 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5029 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5030 rtx dest = XEXP (SET_DEST (x), 0);
5031 unsigned HOST_WIDE_INT mask
5032 = (HOST_WIDE_INT_1U << len) - 1;
5033 rtx or_mask;
5035 if (BITS_BIG_ENDIAN)
5036 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5038 or_mask = gen_int_mode (src << pos, inner_mode);
5039 if (src == mask)
5040 SUBST (SET_SRC (x),
5041 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5042 else
5044 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5045 SUBST (SET_SRC (x),
5046 simplify_gen_binary (IOR, inner_mode,
5047 simplify_gen_binary (AND, inner_mode,
5048 dest, negmask),
5049 or_mask));
5052 SUBST (SET_DEST (x), dest);
5054 split = find_split_point (&SET_SRC (x), insn, true);
5055 if (split && split != &SET_SRC (x))
5056 return split;
5059 /* Otherwise, see if this is an operation that we can split into two.
5060 If so, try to split that. */
5061 code = GET_CODE (SET_SRC (x));
5063 switch (code)
5065 case AND:
5066 /* If we are AND'ing with a large constant that is only a single
5067 bit and the result is only being used in a context where we
5068 need to know if it is zero or nonzero, replace it with a bit
5069 extraction. This will avoid the large constant, which might
5070 have taken more than one insn to make. If the constant were
5071 not a valid argument to the AND but took only one insn to make,
5072 this is no worse, but if it took more than one insn, it will
5073 be better. */
5075 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5076 && REG_P (XEXP (SET_SRC (x), 0))
5077 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5078 && REG_P (SET_DEST (x))
5079 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5080 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5081 && XEXP (*split, 0) == SET_DEST (x)
5082 && XEXP (*split, 1) == const0_rtx)
5084 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5085 XEXP (SET_SRC (x), 0),
5086 pos, NULL_RTX, 1, 1, 0, 0);
5087 if (extraction != 0)
5089 SUBST (SET_SRC (x), extraction);
5090 return find_split_point (loc, insn, false);
5093 break;
5095 case NE:
5096 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5097 is known to be on, this can be converted into a NEG of a shift. */
5098 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5099 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5100 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5101 GET_MODE (XEXP (SET_SRC (x),
5102 0))))) >= 1))
5104 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5105 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5106 SUBST (SET_SRC (x),
5107 gen_rtx_NEG (mode,
5108 gen_rtx_LSHIFTRT (mode,
5109 XEXP (SET_SRC (x), 0),
5110 pos_rtx)));
5112 split = find_split_point (&SET_SRC (x), insn, true);
5113 if (split && split != &SET_SRC (x))
5114 return split;
5116 break;
5118 case SIGN_EXTEND:
5119 inner = XEXP (SET_SRC (x), 0);
5121 /* We can't optimize if either mode is a partial integer
5122 mode as we don't know how many bits are significant
5123 in those modes. */
5124 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5125 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5126 break;
5128 pos = 0;
5129 len = GET_MODE_PRECISION (inner_mode);
5130 unsignedp = 0;
5131 break;
5133 case SIGN_EXTRACT:
5134 case ZERO_EXTRACT:
5135 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5136 &inner_mode)
5137 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5138 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5140 inner = XEXP (SET_SRC (x), 0);
5141 len = INTVAL (XEXP (SET_SRC (x), 1));
5142 pos = INTVAL (XEXP (SET_SRC (x), 2));
5144 if (BITS_BIG_ENDIAN)
5145 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5146 unsignedp = (code == ZERO_EXTRACT);
5148 break;
5150 default:
5151 break;
5154 if (len
5155 && known_subrange_p (pos, len,
5156 0, GET_MODE_PRECISION (GET_MODE (inner)))
5157 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5159 /* For unsigned, we have a choice of a shift followed by an
5160 AND or two shifts. Use two shifts for field sizes where the
5161 constant might be too large. We assume here that we can
5162 always at least get 8-bit constants in an AND insn, which is
5163 true for every current RISC. */
5165 if (unsignedp && len <= 8)
5167 unsigned HOST_WIDE_INT mask
5168 = (HOST_WIDE_INT_1U << len) - 1;
5169 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5170 SUBST (SET_SRC (x),
5171 gen_rtx_AND (mode,
5172 gen_rtx_LSHIFTRT
5173 (mode, gen_lowpart (mode, inner), pos_rtx),
5174 gen_int_mode (mask, mode)));
5176 split = find_split_point (&SET_SRC (x), insn, true);
5177 if (split && split != &SET_SRC (x))
5178 return split;
5180 else
5182 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5183 int right_bits = GET_MODE_PRECISION (mode) - len;
5184 SUBST (SET_SRC (x),
5185 gen_rtx_fmt_ee
5186 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5187 gen_rtx_ASHIFT (mode,
5188 gen_lowpart (mode, inner),
5189 gen_int_shift_amount (mode, left_bits)),
5190 gen_int_shift_amount (mode, right_bits)));
5192 split = find_split_point (&SET_SRC (x), insn, true);
5193 if (split && split != &SET_SRC (x))
5194 return split;
5198 /* See if this is a simple operation with a constant as the second
5199 operand. It might be that this constant is out of range and hence
5200 could be used as a split point. */
5201 if (BINARY_P (SET_SRC (x))
5202 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5203 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5204 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5205 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5206 return &XEXP (SET_SRC (x), 1);
5208 /* Finally, see if this is a simple operation with its first operand
5209 not in a register. The operation might require this operand in a
5210 register, so return it as a split point. We can always do this
5211 because if the first operand were another operation, we would have
5212 already found it as a split point. */
5213 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5214 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5215 return &XEXP (SET_SRC (x), 0);
5217 return 0;
5219 case AND:
5220 case IOR:
5221 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5222 it is better to write this as (not (ior A B)) so we can split it.
5223 Similarly for IOR. */
5224 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5226 SUBST (*loc,
5227 gen_rtx_NOT (GET_MODE (x),
5228 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5229 GET_MODE (x),
5230 XEXP (XEXP (x, 0), 0),
5231 XEXP (XEXP (x, 1), 0))));
5232 return find_split_point (loc, insn, set_src);
5235 /* Many RISC machines have a large set of logical insns. If the
5236 second operand is a NOT, put it first so we will try to split the
5237 other operand first. */
5238 if (GET_CODE (XEXP (x, 1)) == NOT)
5240 rtx tem = XEXP (x, 0);
5241 SUBST (XEXP (x, 0), XEXP (x, 1));
5242 SUBST (XEXP (x, 1), tem);
5244 break;
5246 case PLUS:
5247 case MINUS:
5248 /* Canonicalization can produce (minus A (mult B C)), where C is a
5249 constant. It may be better to try splitting (plus (mult B -C) A)
5250 instead if this isn't a multiply by a power of two. */
5251 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5252 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5253 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5255 machine_mode mode = GET_MODE (x);
5256 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5257 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5258 SUBST (*loc, gen_rtx_PLUS (mode,
5259 gen_rtx_MULT (mode,
5260 XEXP (XEXP (x, 1), 0),
5261 gen_int_mode (other_int,
5262 mode)),
5263 XEXP (x, 0)));
5264 return find_split_point (loc, insn, set_src);
5267 /* Split at a multiply-accumulate instruction. However if this is
5268 the SET_SRC, we likely do not have such an instruction and it's
5269 worthless to try this split. */
5270 if (!set_src
5271 && (GET_CODE (XEXP (x, 0)) == MULT
5272 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5273 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5274 return loc;
5276 default:
5277 break;
5280 /* Otherwise, select our actions depending on our rtx class. */
5281 switch (GET_RTX_CLASS (code))
5283 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5284 case RTX_TERNARY:
5285 split = find_split_point (&XEXP (x, 2), insn, false);
5286 if (split)
5287 return split;
5288 /* fall through */
5289 case RTX_BIN_ARITH:
5290 case RTX_COMM_ARITH:
5291 case RTX_COMPARE:
5292 case RTX_COMM_COMPARE:
5293 split = find_split_point (&XEXP (x, 1), insn, false);
5294 if (split)
5295 return split;
5296 /* fall through */
5297 case RTX_UNARY:
5298 /* Some machines have (and (shift ...) ...) insns. If X is not
5299 an AND, but XEXP (X, 0) is, use it as our split point. */
5300 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5301 return &XEXP (x, 0);
5303 split = find_split_point (&XEXP (x, 0), insn, false);
5304 if (split)
5305 return split;
5306 return loc;
5308 default:
5309 /* Otherwise, we don't have a split point. */
5310 return 0;
5314 /* Throughout X, replace FROM with TO, and return the result.
5315 The result is TO if X is FROM;
5316 otherwise the result is X, but its contents may have been modified.
5317 If they were modified, a record was made in undobuf so that
5318 undo_all will (among other things) return X to its original state.
5320 If the number of changes necessary is too much to record to undo,
5321 the excess changes are not made, so the result is invalid.
5322 The changes already made can still be undone.
5323 undobuf.num_undo is incremented for such changes, so by testing that
5324 the caller can tell whether the result is valid.
5326 `n_occurrences' is incremented each time FROM is replaced.
5328 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5330 IN_COND is nonzero if we are at the top level of a condition.
5332 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5333 by copying if `n_occurrences' is nonzero. */
5335 static rtx
5336 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5338 enum rtx_code code = GET_CODE (x);
5339 machine_mode op0_mode = VOIDmode;
5340 const char *fmt;
5341 int len, i;
5342 rtx new_rtx;
5344 /* Two expressions are equal if they are identical copies of a shared
5345 RTX or if they are both registers with the same register number
5346 and mode. */
5348 #define COMBINE_RTX_EQUAL_P(X,Y) \
5349 ((X) == (Y) \
5350 || (REG_P (X) && REG_P (Y) \
5351 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5353 /* Do not substitute into clobbers of regs -- this will never result in
5354 valid RTL. */
5355 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5356 return x;
5358 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5360 n_occurrences++;
5361 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5364 /* If X and FROM are the same register but different modes, they
5365 will not have been seen as equal above. However, the log links code
5366 will make a LOG_LINKS entry for that case. If we do nothing, we
5367 will try to rerecognize our original insn and, when it succeeds,
5368 we will delete the feeding insn, which is incorrect.
5370 So force this insn not to match in this (rare) case. */
5371 if (! in_dest && code == REG && REG_P (from)
5372 && reg_overlap_mentioned_p (x, from))
5373 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5375 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5376 of which may contain things that can be combined. */
5377 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5378 return x;
5380 /* It is possible to have a subexpression appear twice in the insn.
5381 Suppose that FROM is a register that appears within TO.
5382 Then, after that subexpression has been scanned once by `subst',
5383 the second time it is scanned, TO may be found. If we were
5384 to scan TO here, we would find FROM within it and create a
5385 self-referent rtl structure which is completely wrong. */
5386 if (COMBINE_RTX_EQUAL_P (x, to))
5387 return to;
5389 /* Parallel asm_operands need special attention because all of the
5390 inputs are shared across the arms. Furthermore, unsharing the
5391 rtl results in recognition failures. Failure to handle this case
5392 specially can result in circular rtl.
5394 Solve this by doing a normal pass across the first entry of the
5395 parallel, and only processing the SET_DESTs of the subsequent
5396 entries. Ug. */
5398 if (code == PARALLEL
5399 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5400 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5402 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5404 /* If this substitution failed, this whole thing fails. */
5405 if (GET_CODE (new_rtx) == CLOBBER
5406 && XEXP (new_rtx, 0) == const0_rtx)
5407 return new_rtx;
5409 SUBST (XVECEXP (x, 0, 0), new_rtx);
5411 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5413 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5415 if (!REG_P (dest)
5416 && GET_CODE (dest) != CC0
5417 && GET_CODE (dest) != PC)
5419 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5421 /* If this substitution failed, this whole thing fails. */
5422 if (GET_CODE (new_rtx) == CLOBBER
5423 && XEXP (new_rtx, 0) == const0_rtx)
5424 return new_rtx;
5426 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5430 else
5432 len = GET_RTX_LENGTH (code);
5433 fmt = GET_RTX_FORMAT (code);
5435 /* We don't need to process a SET_DEST that is a register, CC0,
5436 or PC, so set up to skip this common case. All other cases
5437 where we want to suppress replacing something inside a
5438 SET_SRC are handled via the IN_DEST operand. */
5439 if (code == SET
5440 && (REG_P (SET_DEST (x))
5441 || GET_CODE (SET_DEST (x)) == CC0
5442 || GET_CODE (SET_DEST (x)) == PC))
5443 fmt = "ie";
5445 /* Trying to simplify the operands of a widening MULT is not likely
5446 to create RTL matching a machine insn. */
5447 if (code == MULT
5448 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5449 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5450 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5451 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5452 && REG_P (XEXP (XEXP (x, 0), 0))
5453 && REG_P (XEXP (XEXP (x, 1), 0))
5454 && from == to)
5455 return x;
5458 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5459 constant. */
5460 if (fmt[0] == 'e')
5461 op0_mode = GET_MODE (XEXP (x, 0));
5463 for (i = 0; i < len; i++)
5465 if (fmt[i] == 'E')
5467 int j;
5468 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5470 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5472 new_rtx = (unique_copy && n_occurrences
5473 ? copy_rtx (to) : to);
5474 n_occurrences++;
5476 else
5478 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5479 unique_copy);
5481 /* If this substitution failed, this whole thing
5482 fails. */
5483 if (GET_CODE (new_rtx) == CLOBBER
5484 && XEXP (new_rtx, 0) == const0_rtx)
5485 return new_rtx;
5488 SUBST (XVECEXP (x, i, j), new_rtx);
5491 else if (fmt[i] == 'e')
5493 /* If this is a register being set, ignore it. */
5494 new_rtx = XEXP (x, i);
5495 if (in_dest
5496 && i == 0
5497 && (((code == SUBREG || code == ZERO_EXTRACT)
5498 && REG_P (new_rtx))
5499 || code == STRICT_LOW_PART))
5502 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5504 /* In general, don't install a subreg involving two
5505 modes not tieable. It can worsen register
5506 allocation, and can even make invalid reload
5507 insns, since the reg inside may need to be copied
5508 from in the outside mode, and that may be invalid
5509 if it is an fp reg copied in integer mode.
5511 We allow two exceptions to this: It is valid if
5512 it is inside another SUBREG and the mode of that
5513 SUBREG and the mode of the inside of TO is
5514 tieable and it is valid if X is a SET that copies
5515 FROM to CC0. */
5517 if (GET_CODE (to) == SUBREG
5518 && !targetm.modes_tieable_p (GET_MODE (to),
5519 GET_MODE (SUBREG_REG (to)))
5520 && ! (code == SUBREG
5521 && (targetm.modes_tieable_p
5522 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5523 && (!HAVE_cc0
5524 || (! (code == SET
5525 && i == 1
5526 && XEXP (x, 0) == cc0_rtx))))
5527 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5529 if (code == SUBREG
5530 && REG_P (to)
5531 && REGNO (to) < FIRST_PSEUDO_REGISTER
5532 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5533 SUBREG_BYTE (x),
5534 GET_MODE (x)) < 0)
5535 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5537 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5538 n_occurrences++;
5540 else
5541 /* If we are in a SET_DEST, suppress most cases unless we
5542 have gone inside a MEM, in which case we want to
5543 simplify the address. We assume here that things that
5544 are actually part of the destination have their inner
5545 parts in the first expression. This is true for SUBREG,
5546 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5547 things aside from REG and MEM that should appear in a
5548 SET_DEST. */
5549 new_rtx = subst (XEXP (x, i), from, to,
5550 (((in_dest
5551 && (code == SUBREG || code == STRICT_LOW_PART
5552 || code == ZERO_EXTRACT))
5553 || code == SET)
5554 && i == 0),
5555 code == IF_THEN_ELSE && i == 0,
5556 unique_copy);
5558 /* If we found that we will have to reject this combination,
5559 indicate that by returning the CLOBBER ourselves, rather than
5560 an expression containing it. This will speed things up as
5561 well as prevent accidents where two CLOBBERs are considered
5562 to be equal, thus producing an incorrect simplification. */
5564 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5565 return new_rtx;
5567 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5569 machine_mode mode = GET_MODE (x);
5571 x = simplify_subreg (GET_MODE (x), new_rtx,
5572 GET_MODE (SUBREG_REG (x)),
5573 SUBREG_BYTE (x));
5574 if (! x)
5575 x = gen_rtx_CLOBBER (mode, const0_rtx);
5577 else if (CONST_SCALAR_INT_P (new_rtx)
5578 && GET_CODE (x) == ZERO_EXTEND)
5580 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5581 new_rtx, GET_MODE (XEXP (x, 0)));
5582 gcc_assert (x);
5584 else
5585 SUBST (XEXP (x, i), new_rtx);
5590 /* Check if we are loading something from the constant pool via float
5591 extension; in this case we would undo compress_float_constant
5592 optimization and degenerate constant load to an immediate value. */
5593 if (GET_CODE (x) == FLOAT_EXTEND
5594 && MEM_P (XEXP (x, 0))
5595 && MEM_READONLY_P (XEXP (x, 0)))
5597 rtx tmp = avoid_constant_pool_reference (x);
5598 if (x != tmp)
5599 return x;
5602 /* Try to simplify X. If the simplification changed the code, it is likely
5603 that further simplification will help, so loop, but limit the number
5604 of repetitions that will be performed. */
5606 for (i = 0; i < 4; i++)
5608 /* If X is sufficiently simple, don't bother trying to do anything
5609 with it. */
5610 if (code != CONST_INT && code != REG && code != CLOBBER)
5611 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5613 if (GET_CODE (x) == code)
5614 break;
5616 code = GET_CODE (x);
5618 /* We no longer know the original mode of operand 0 since we
5619 have changed the form of X) */
5620 op0_mode = VOIDmode;
5623 return x;
5626 /* If X is a commutative operation whose operands are not in the canonical
5627 order, use substitutions to swap them. */
5629 static void
5630 maybe_swap_commutative_operands (rtx x)
5632 if (COMMUTATIVE_ARITH_P (x)
5633 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5635 rtx temp = XEXP (x, 0);
5636 SUBST (XEXP (x, 0), XEXP (x, 1));
5637 SUBST (XEXP (x, 1), temp);
5641 /* Simplify X, a piece of RTL. We just operate on the expression at the
5642 outer level; call `subst' to simplify recursively. Return the new
5643 expression.
5645 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5646 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5647 of a condition. */
5649 static rtx
5650 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5651 int in_cond)
5653 enum rtx_code code = GET_CODE (x);
5654 machine_mode mode = GET_MODE (x);
5655 scalar_int_mode int_mode;
5656 rtx temp;
5657 int i;
5659 /* If this is a commutative operation, put a constant last and a complex
5660 expression first. We don't need to do this for comparisons here. */
5661 maybe_swap_commutative_operands (x);
5663 /* Try to fold this expression in case we have constants that weren't
5664 present before. */
5665 temp = 0;
5666 switch (GET_RTX_CLASS (code))
5668 case RTX_UNARY:
5669 if (op0_mode == VOIDmode)
5670 op0_mode = GET_MODE (XEXP (x, 0));
5671 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5672 break;
5673 case RTX_COMPARE:
5674 case RTX_COMM_COMPARE:
5676 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5677 if (cmp_mode == VOIDmode)
5679 cmp_mode = GET_MODE (XEXP (x, 1));
5680 if (cmp_mode == VOIDmode)
5681 cmp_mode = op0_mode;
5683 temp = simplify_relational_operation (code, mode, cmp_mode,
5684 XEXP (x, 0), XEXP (x, 1));
5686 break;
5687 case RTX_COMM_ARITH:
5688 case RTX_BIN_ARITH:
5689 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5690 break;
5691 case RTX_BITFIELD_OPS:
5692 case RTX_TERNARY:
5693 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5694 XEXP (x, 1), XEXP (x, 2));
5695 break;
5696 default:
5697 break;
5700 if (temp)
5702 x = temp;
5703 code = GET_CODE (temp);
5704 op0_mode = VOIDmode;
5705 mode = GET_MODE (temp);
5708 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5709 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5710 things. Check for cases where both arms are testing the same
5711 condition.
5713 Don't do anything if all operands are very simple. */
5715 if ((BINARY_P (x)
5716 && ((!OBJECT_P (XEXP (x, 0))
5717 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5718 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5719 || (!OBJECT_P (XEXP (x, 1))
5720 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5721 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5722 || (UNARY_P (x)
5723 && (!OBJECT_P (XEXP (x, 0))
5724 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5725 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5727 rtx cond, true_rtx, false_rtx;
5729 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5730 if (cond != 0
5731 /* If everything is a comparison, what we have is highly unlikely
5732 to be simpler, so don't use it. */
5733 && ! (COMPARISON_P (x)
5734 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5735 /* Similarly, if we end up with one of the expressions the same
5736 as the original, it is certainly not simpler. */
5737 && ! rtx_equal_p (x, true_rtx)
5738 && ! rtx_equal_p (x, false_rtx))
5740 rtx cop1 = const0_rtx;
5741 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5743 if (cond_code == NE && COMPARISON_P (cond))
5744 return x;
5746 /* Simplify the alternative arms; this may collapse the true and
5747 false arms to store-flag values. Be careful to use copy_rtx
5748 here since true_rtx or false_rtx might share RTL with x as a
5749 result of the if_then_else_cond call above. */
5750 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5751 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5753 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5754 is unlikely to be simpler. */
5755 if (general_operand (true_rtx, VOIDmode)
5756 && general_operand (false_rtx, VOIDmode))
5758 enum rtx_code reversed;
5760 /* Restarting if we generate a store-flag expression will cause
5761 us to loop. Just drop through in this case. */
5763 /* If the result values are STORE_FLAG_VALUE and zero, we can
5764 just make the comparison operation. */
5765 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5766 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5767 cond, cop1);
5768 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5769 && ((reversed = reversed_comparison_code_parts
5770 (cond_code, cond, cop1, NULL))
5771 != UNKNOWN))
5772 x = simplify_gen_relational (reversed, mode, VOIDmode,
5773 cond, cop1);
5775 /* Likewise, we can make the negate of a comparison operation
5776 if the result values are - STORE_FLAG_VALUE and zero. */
5777 else if (CONST_INT_P (true_rtx)
5778 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5779 && false_rtx == const0_rtx)
5780 x = simplify_gen_unary (NEG, mode,
5781 simplify_gen_relational (cond_code,
5782 mode, VOIDmode,
5783 cond, cop1),
5784 mode);
5785 else if (CONST_INT_P (false_rtx)
5786 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5787 && true_rtx == const0_rtx
5788 && ((reversed = reversed_comparison_code_parts
5789 (cond_code, cond, cop1, NULL))
5790 != UNKNOWN))
5791 x = simplify_gen_unary (NEG, mode,
5792 simplify_gen_relational (reversed,
5793 mode, VOIDmode,
5794 cond, cop1),
5795 mode);
5796 else
5797 return gen_rtx_IF_THEN_ELSE (mode,
5798 simplify_gen_relational (cond_code,
5799 mode,
5800 VOIDmode,
5801 cond,
5802 cop1),
5803 true_rtx, false_rtx);
5805 code = GET_CODE (x);
5806 op0_mode = VOIDmode;
5811 /* First see if we can apply the inverse distributive law. */
5812 if (code == PLUS || code == MINUS
5813 || code == AND || code == IOR || code == XOR)
5815 x = apply_distributive_law (x);
5816 code = GET_CODE (x);
5817 op0_mode = VOIDmode;
5820 /* If CODE is an associative operation not otherwise handled, see if we
5821 can associate some operands. This can win if they are constants or
5822 if they are logically related (i.e. (a & b) & a). */
5823 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5824 || code == AND || code == IOR || code == XOR
5825 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5826 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5827 || (flag_associative_math && FLOAT_MODE_P (mode))))
5829 if (GET_CODE (XEXP (x, 0)) == code)
5831 rtx other = XEXP (XEXP (x, 0), 0);
5832 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5833 rtx inner_op1 = XEXP (x, 1);
5834 rtx inner;
5836 /* Make sure we pass the constant operand if any as the second
5837 one if this is a commutative operation. */
5838 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5839 std::swap (inner_op0, inner_op1);
5840 inner = simplify_binary_operation (code == MINUS ? PLUS
5841 : code == DIV ? MULT
5842 : code,
5843 mode, inner_op0, inner_op1);
5845 /* For commutative operations, try the other pair if that one
5846 didn't simplify. */
5847 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5849 other = XEXP (XEXP (x, 0), 1);
5850 inner = simplify_binary_operation (code, mode,
5851 XEXP (XEXP (x, 0), 0),
5852 XEXP (x, 1));
5855 if (inner)
5856 return simplify_gen_binary (code, mode, other, inner);
5860 /* A little bit of algebraic simplification here. */
5861 switch (code)
5863 case MEM:
5864 /* Ensure that our address has any ASHIFTs converted to MULT in case
5865 address-recognizing predicates are called later. */
5866 temp = make_compound_operation (XEXP (x, 0), MEM);
5867 SUBST (XEXP (x, 0), temp);
5868 break;
5870 case SUBREG:
5871 if (op0_mode == VOIDmode)
5872 op0_mode = GET_MODE (SUBREG_REG (x));
5874 /* See if this can be moved to simplify_subreg. */
5875 if (CONSTANT_P (SUBREG_REG (x))
5876 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5877 /* Don't call gen_lowpart if the inner mode
5878 is VOIDmode and we cannot simplify it, as SUBREG without
5879 inner mode is invalid. */
5880 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5881 || gen_lowpart_common (mode, SUBREG_REG (x))))
5882 return gen_lowpart (mode, SUBREG_REG (x));
5884 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5885 break;
5887 rtx temp;
5888 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5889 SUBREG_BYTE (x));
5890 if (temp)
5891 return temp;
5893 /* If op is known to have all lower bits zero, the result is zero. */
5894 scalar_int_mode int_mode, int_op0_mode;
5895 if (!in_dest
5896 && is_a <scalar_int_mode> (mode, &int_mode)
5897 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5898 && (GET_MODE_PRECISION (int_mode)
5899 < GET_MODE_PRECISION (int_op0_mode))
5900 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5901 SUBREG_BYTE (x))
5902 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5903 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5904 & GET_MODE_MASK (int_mode)) == 0)
5905 return CONST0_RTX (int_mode);
5908 /* Don't change the mode of the MEM if that would change the meaning
5909 of the address. */
5910 if (MEM_P (SUBREG_REG (x))
5911 && (MEM_VOLATILE_P (SUBREG_REG (x))
5912 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5913 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5914 return gen_rtx_CLOBBER (mode, const0_rtx);
5916 /* Note that we cannot do any narrowing for non-constants since
5917 we might have been counting on using the fact that some bits were
5918 zero. We now do this in the SET. */
5920 break;
5922 case NEG:
5923 temp = expand_compound_operation (XEXP (x, 0));
5925 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5926 replaced by (lshiftrt X C). This will convert
5927 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5929 if (GET_CODE (temp) == ASHIFTRT
5930 && CONST_INT_P (XEXP (temp, 1))
5931 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5932 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5933 INTVAL (XEXP (temp, 1)));
5935 /* If X has only a single bit that might be nonzero, say, bit I, convert
5936 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5937 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5938 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5939 or a SUBREG of one since we'd be making the expression more
5940 complex if it was just a register. */
5942 if (!REG_P (temp)
5943 && ! (GET_CODE (temp) == SUBREG
5944 && REG_P (SUBREG_REG (temp)))
5945 && is_a <scalar_int_mode> (mode, &int_mode)
5946 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5948 rtx temp1 = simplify_shift_const
5949 (NULL_RTX, ASHIFTRT, int_mode,
5950 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5951 GET_MODE_PRECISION (int_mode) - 1 - i),
5952 GET_MODE_PRECISION (int_mode) - 1 - i);
5954 /* If all we did was surround TEMP with the two shifts, we
5955 haven't improved anything, so don't use it. Otherwise,
5956 we are better off with TEMP1. */
5957 if (GET_CODE (temp1) != ASHIFTRT
5958 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5959 || XEXP (XEXP (temp1, 0), 0) != temp)
5960 return temp1;
5962 break;
5964 case TRUNCATE:
5965 /* We can't handle truncation to a partial integer mode here
5966 because we don't know the real bitsize of the partial
5967 integer mode. */
5968 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5969 break;
5971 if (HWI_COMPUTABLE_MODE_P (mode))
5972 SUBST (XEXP (x, 0),
5973 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5974 GET_MODE_MASK (mode), 0));
5976 /* We can truncate a constant value and return it. */
5977 if (CONST_INT_P (XEXP (x, 0)))
5978 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5980 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5981 whose value is a comparison can be replaced with a subreg if
5982 STORE_FLAG_VALUE permits. */
5983 if (HWI_COMPUTABLE_MODE_P (mode)
5984 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5985 && (temp = get_last_value (XEXP (x, 0)))
5986 && COMPARISON_P (temp))
5987 return gen_lowpart (mode, XEXP (x, 0));
5988 break;
5990 case CONST:
5991 /* (const (const X)) can become (const X). Do it this way rather than
5992 returning the inner CONST since CONST can be shared with a
5993 REG_EQUAL note. */
5994 if (GET_CODE (XEXP (x, 0)) == CONST)
5995 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5996 break;
5998 case LO_SUM:
5999 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6000 can add in an offset. find_split_point will split this address up
6001 again if it doesn't match. */
6002 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6003 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6004 return XEXP (x, 1);
6005 break;
6007 case PLUS:
6008 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6009 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6010 bit-field and can be replaced by either a sign_extend or a
6011 sign_extract. The `and' may be a zero_extend and the two
6012 <c>, -<c> constants may be reversed. */
6013 if (GET_CODE (XEXP (x, 0)) == XOR
6014 && is_a <scalar_int_mode> (mode, &int_mode)
6015 && CONST_INT_P (XEXP (x, 1))
6016 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6017 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6018 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6019 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6020 && HWI_COMPUTABLE_MODE_P (int_mode)
6021 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6022 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6023 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6024 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6025 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6026 && known_eq ((GET_MODE_PRECISION
6027 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6028 (unsigned int) i + 1))))
6029 return simplify_shift_const
6030 (NULL_RTX, ASHIFTRT, int_mode,
6031 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6032 XEXP (XEXP (XEXP (x, 0), 0), 0),
6033 GET_MODE_PRECISION (int_mode) - (i + 1)),
6034 GET_MODE_PRECISION (int_mode) - (i + 1));
6036 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6037 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6038 the bitsize of the mode - 1. This allows simplification of
6039 "a = (b & 8) == 0;" */
6040 if (XEXP (x, 1) == constm1_rtx
6041 && !REG_P (XEXP (x, 0))
6042 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6043 && REG_P (SUBREG_REG (XEXP (x, 0))))
6044 && is_a <scalar_int_mode> (mode, &int_mode)
6045 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6046 return simplify_shift_const
6047 (NULL_RTX, ASHIFTRT, int_mode,
6048 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6049 gen_rtx_XOR (int_mode, XEXP (x, 0),
6050 const1_rtx),
6051 GET_MODE_PRECISION (int_mode) - 1),
6052 GET_MODE_PRECISION (int_mode) - 1);
6054 /* If we are adding two things that have no bits in common, convert
6055 the addition into an IOR. This will often be further simplified,
6056 for example in cases like ((a & 1) + (a & 2)), which can
6057 become a & 3. */
6059 if (HWI_COMPUTABLE_MODE_P (mode)
6060 && (nonzero_bits (XEXP (x, 0), mode)
6061 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6063 /* Try to simplify the expression further. */
6064 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6065 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6067 /* If we could, great. If not, do not go ahead with the IOR
6068 replacement, since PLUS appears in many special purpose
6069 address arithmetic instructions. */
6070 if (GET_CODE (temp) != CLOBBER
6071 && (GET_CODE (temp) != IOR
6072 || ((XEXP (temp, 0) != XEXP (x, 0)
6073 || XEXP (temp, 1) != XEXP (x, 1))
6074 && (XEXP (temp, 0) != XEXP (x, 1)
6075 || XEXP (temp, 1) != XEXP (x, 0)))))
6076 return temp;
6079 /* Canonicalize x + x into x << 1. */
6080 if (GET_MODE_CLASS (mode) == MODE_INT
6081 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6082 && !side_effects_p (XEXP (x, 0)))
6083 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6085 break;
6087 case MINUS:
6088 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6089 (and <foo> (const_int pow2-1)) */
6090 if (is_a <scalar_int_mode> (mode, &int_mode)
6091 && GET_CODE (XEXP (x, 1)) == AND
6092 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6093 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6094 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6095 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6096 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6097 break;
6099 case MULT:
6100 /* If we have (mult (plus A B) C), apply the distributive law and then
6101 the inverse distributive law to see if things simplify. This
6102 occurs mostly in addresses, often when unrolling loops. */
6104 if (GET_CODE (XEXP (x, 0)) == PLUS)
6106 rtx result = distribute_and_simplify_rtx (x, 0);
6107 if (result)
6108 return result;
6111 /* Try simplify a*(b/c) as (a*b)/c. */
6112 if (FLOAT_MODE_P (mode) && flag_associative_math
6113 && GET_CODE (XEXP (x, 0)) == DIV)
6115 rtx tem = simplify_binary_operation (MULT, mode,
6116 XEXP (XEXP (x, 0), 0),
6117 XEXP (x, 1));
6118 if (tem)
6119 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6121 break;
6123 case UDIV:
6124 /* If this is a divide by a power of two, treat it as a shift if
6125 its first operand is a shift. */
6126 if (is_a <scalar_int_mode> (mode, &int_mode)
6127 && CONST_INT_P (XEXP (x, 1))
6128 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6129 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6130 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6131 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6132 || GET_CODE (XEXP (x, 0)) == ROTATE
6133 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6134 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6135 XEXP (x, 0), i);
6136 break;
6138 case EQ: case NE:
6139 case GT: case GTU: case GE: case GEU:
6140 case LT: case LTU: case LE: case LEU:
6141 case UNEQ: case LTGT:
6142 case UNGT: case UNGE:
6143 case UNLT: case UNLE:
6144 case UNORDERED: case ORDERED:
6145 /* If the first operand is a condition code, we can't do anything
6146 with it. */
6147 if (GET_CODE (XEXP (x, 0)) == COMPARE
6148 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6149 && ! CC0_P (XEXP (x, 0))))
6151 rtx op0 = XEXP (x, 0);
6152 rtx op1 = XEXP (x, 1);
6153 enum rtx_code new_code;
6155 if (GET_CODE (op0) == COMPARE)
6156 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6158 /* Simplify our comparison, if possible. */
6159 new_code = simplify_comparison (code, &op0, &op1);
6161 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6162 if only the low-order bit is possibly nonzero in X (such as when
6163 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6164 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6165 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6166 (plus X 1).
6168 Remove any ZERO_EXTRACT we made when thinking this was a
6169 comparison. It may now be simpler to use, e.g., an AND. If a
6170 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6171 the call to make_compound_operation in the SET case.
6173 Don't apply these optimizations if the caller would
6174 prefer a comparison rather than a value.
6175 E.g., for the condition in an IF_THEN_ELSE most targets need
6176 an explicit comparison. */
6178 if (in_cond)
6181 else if (STORE_FLAG_VALUE == 1
6182 && new_code == NE
6183 && is_int_mode (mode, &int_mode)
6184 && op1 == const0_rtx
6185 && int_mode == GET_MODE (op0)
6186 && nonzero_bits (op0, int_mode) == 1)
6187 return gen_lowpart (int_mode,
6188 expand_compound_operation (op0));
6190 else if (STORE_FLAG_VALUE == 1
6191 && new_code == NE
6192 && is_int_mode (mode, &int_mode)
6193 && op1 == const0_rtx
6194 && int_mode == GET_MODE (op0)
6195 && (num_sign_bit_copies (op0, int_mode)
6196 == GET_MODE_PRECISION (int_mode)))
6198 op0 = expand_compound_operation (op0);
6199 return simplify_gen_unary (NEG, int_mode,
6200 gen_lowpart (int_mode, op0),
6201 int_mode);
6204 else if (STORE_FLAG_VALUE == 1
6205 && new_code == EQ
6206 && is_int_mode (mode, &int_mode)
6207 && op1 == const0_rtx
6208 && int_mode == GET_MODE (op0)
6209 && nonzero_bits (op0, int_mode) == 1)
6211 op0 = expand_compound_operation (op0);
6212 return simplify_gen_binary (XOR, int_mode,
6213 gen_lowpart (int_mode, op0),
6214 const1_rtx);
6217 else if (STORE_FLAG_VALUE == 1
6218 && new_code == EQ
6219 && is_int_mode (mode, &int_mode)
6220 && op1 == const0_rtx
6221 && int_mode == GET_MODE (op0)
6222 && (num_sign_bit_copies (op0, int_mode)
6223 == GET_MODE_PRECISION (int_mode)))
6225 op0 = expand_compound_operation (op0);
6226 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6229 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6230 those above. */
6231 if (in_cond)
6234 else if (STORE_FLAG_VALUE == -1
6235 && new_code == NE
6236 && is_int_mode (mode, &int_mode)
6237 && op1 == const0_rtx
6238 && int_mode == GET_MODE (op0)
6239 && (num_sign_bit_copies (op0, int_mode)
6240 == GET_MODE_PRECISION (int_mode)))
6241 return gen_lowpart (int_mode, expand_compound_operation (op0));
6243 else if (STORE_FLAG_VALUE == -1
6244 && new_code == NE
6245 && is_int_mode (mode, &int_mode)
6246 && op1 == const0_rtx
6247 && int_mode == GET_MODE (op0)
6248 && nonzero_bits (op0, int_mode) == 1)
6250 op0 = expand_compound_operation (op0);
6251 return simplify_gen_unary (NEG, int_mode,
6252 gen_lowpart (int_mode, op0),
6253 int_mode);
6256 else if (STORE_FLAG_VALUE == -1
6257 && new_code == EQ
6258 && is_int_mode (mode, &int_mode)
6259 && op1 == const0_rtx
6260 && int_mode == GET_MODE (op0)
6261 && (num_sign_bit_copies (op0, int_mode)
6262 == GET_MODE_PRECISION (int_mode)))
6264 op0 = expand_compound_operation (op0);
6265 return simplify_gen_unary (NOT, int_mode,
6266 gen_lowpart (int_mode, op0),
6267 int_mode);
6270 /* If X is 0/1, (eq X 0) is X-1. */
6271 else if (STORE_FLAG_VALUE == -1
6272 && new_code == EQ
6273 && is_int_mode (mode, &int_mode)
6274 && op1 == const0_rtx
6275 && int_mode == GET_MODE (op0)
6276 && nonzero_bits (op0, int_mode) == 1)
6278 op0 = expand_compound_operation (op0);
6279 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6282 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6283 one bit that might be nonzero, we can convert (ne x 0) to
6284 (ashift x c) where C puts the bit in the sign bit. Remove any
6285 AND with STORE_FLAG_VALUE when we are done, since we are only
6286 going to test the sign bit. */
6287 if (new_code == NE
6288 && is_int_mode (mode, &int_mode)
6289 && HWI_COMPUTABLE_MODE_P (int_mode)
6290 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6291 && op1 == const0_rtx
6292 && int_mode == GET_MODE (op0)
6293 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6295 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6296 expand_compound_operation (op0),
6297 GET_MODE_PRECISION (int_mode) - 1 - i);
6298 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6299 return XEXP (x, 0);
6300 else
6301 return x;
6304 /* If the code changed, return a whole new comparison.
6305 We also need to avoid using SUBST in cases where
6306 simplify_comparison has widened a comparison with a CONST_INT,
6307 since in that case the wider CONST_INT may fail the sanity
6308 checks in do_SUBST. */
6309 if (new_code != code
6310 || (CONST_INT_P (op1)
6311 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6312 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6313 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6315 /* Otherwise, keep this operation, but maybe change its operands.
6316 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6317 SUBST (XEXP (x, 0), op0);
6318 SUBST (XEXP (x, 1), op1);
6320 break;
6322 case IF_THEN_ELSE:
6323 return simplify_if_then_else (x);
6325 case ZERO_EXTRACT:
6326 case SIGN_EXTRACT:
6327 case ZERO_EXTEND:
6328 case SIGN_EXTEND:
6329 /* If we are processing SET_DEST, we are done. */
6330 if (in_dest)
6331 return x;
6333 return expand_compound_operation (x);
6335 case SET:
6336 return simplify_set (x);
6338 case AND:
6339 case IOR:
6340 return simplify_logical (x);
6342 case ASHIFT:
6343 case LSHIFTRT:
6344 case ASHIFTRT:
6345 case ROTATE:
6346 case ROTATERT:
6347 /* If this is a shift by a constant amount, simplify it. */
6348 if (CONST_INT_P (XEXP (x, 1)))
6349 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6350 INTVAL (XEXP (x, 1)));
6352 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6353 SUBST (XEXP (x, 1),
6354 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6355 (HOST_WIDE_INT_1U
6356 << exact_log2 (GET_MODE_UNIT_BITSIZE
6357 (GET_MODE (x))))
6358 - 1,
6359 0));
6360 break;
6362 default:
6363 break;
6366 return x;
6369 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6371 static rtx
6372 simplify_if_then_else (rtx x)
6374 machine_mode mode = GET_MODE (x);
6375 rtx cond = XEXP (x, 0);
6376 rtx true_rtx = XEXP (x, 1);
6377 rtx false_rtx = XEXP (x, 2);
6378 enum rtx_code true_code = GET_CODE (cond);
6379 int comparison_p = COMPARISON_P (cond);
6380 rtx temp;
6381 int i;
6382 enum rtx_code false_code;
6383 rtx reversed;
6384 scalar_int_mode int_mode, inner_mode;
6386 /* Simplify storing of the truth value. */
6387 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6388 return simplify_gen_relational (true_code, mode, VOIDmode,
6389 XEXP (cond, 0), XEXP (cond, 1));
6391 /* Also when the truth value has to be reversed. */
6392 if (comparison_p
6393 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6394 && (reversed = reversed_comparison (cond, mode)))
6395 return reversed;
6397 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6398 in it is being compared against certain values. Get the true and false
6399 comparisons and see if that says anything about the value of each arm. */
6401 if (comparison_p
6402 && ((false_code = reversed_comparison_code (cond, NULL))
6403 != UNKNOWN)
6404 && REG_P (XEXP (cond, 0)))
6406 HOST_WIDE_INT nzb;
6407 rtx from = XEXP (cond, 0);
6408 rtx true_val = XEXP (cond, 1);
6409 rtx false_val = true_val;
6410 int swapped = 0;
6412 /* If FALSE_CODE is EQ, swap the codes and arms. */
6414 if (false_code == EQ)
6416 swapped = 1, true_code = EQ, false_code = NE;
6417 std::swap (true_rtx, false_rtx);
6420 scalar_int_mode from_mode;
6421 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6423 /* If we are comparing against zero and the expression being
6424 tested has only a single bit that might be nonzero, that is
6425 its value when it is not equal to zero. Similarly if it is
6426 known to be -1 or 0. */
6427 if (true_code == EQ
6428 && true_val == const0_rtx
6429 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6431 false_code = EQ;
6432 false_val = gen_int_mode (nzb, from_mode);
6434 else if (true_code == EQ
6435 && true_val == const0_rtx
6436 && (num_sign_bit_copies (from, from_mode)
6437 == GET_MODE_PRECISION (from_mode)))
6439 false_code = EQ;
6440 false_val = constm1_rtx;
6444 /* Now simplify an arm if we know the value of the register in the
6445 branch and it is used in the arm. Be careful due to the potential
6446 of locally-shared RTL. */
6448 if (reg_mentioned_p (from, true_rtx))
6449 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6450 from, true_val),
6451 pc_rtx, pc_rtx, 0, 0, 0);
6452 if (reg_mentioned_p (from, false_rtx))
6453 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6454 from, false_val),
6455 pc_rtx, pc_rtx, 0, 0, 0);
6457 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6458 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6460 true_rtx = XEXP (x, 1);
6461 false_rtx = XEXP (x, 2);
6462 true_code = GET_CODE (cond);
6465 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6466 reversed, do so to avoid needing two sets of patterns for
6467 subtract-and-branch insns. Similarly if we have a constant in the true
6468 arm, the false arm is the same as the first operand of the comparison, or
6469 the false arm is more complicated than the true arm. */
6471 if (comparison_p
6472 && reversed_comparison_code (cond, NULL) != UNKNOWN
6473 && (true_rtx == pc_rtx
6474 || (CONSTANT_P (true_rtx)
6475 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6476 || true_rtx == const0_rtx
6477 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6478 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6479 && !OBJECT_P (false_rtx))
6480 || reg_mentioned_p (true_rtx, false_rtx)
6481 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6483 true_code = reversed_comparison_code (cond, NULL);
6484 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6485 SUBST (XEXP (x, 1), false_rtx);
6486 SUBST (XEXP (x, 2), true_rtx);
6488 std::swap (true_rtx, false_rtx);
6489 cond = XEXP (x, 0);
6491 /* It is possible that the conditional has been simplified out. */
6492 true_code = GET_CODE (cond);
6493 comparison_p = COMPARISON_P (cond);
6496 /* If the two arms are identical, we don't need the comparison. */
6498 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6499 return true_rtx;
6501 /* Convert a == b ? b : a to "a". */
6502 if (true_code == EQ && ! side_effects_p (cond)
6503 && !HONOR_NANS (mode)
6504 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6505 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6506 return false_rtx;
6507 else if (true_code == NE && ! side_effects_p (cond)
6508 && !HONOR_NANS (mode)
6509 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6510 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6511 return true_rtx;
6513 /* Look for cases where we have (abs x) or (neg (abs X)). */
6515 if (GET_MODE_CLASS (mode) == MODE_INT
6516 && comparison_p
6517 && XEXP (cond, 1) == const0_rtx
6518 && GET_CODE (false_rtx) == NEG
6519 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6520 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6521 && ! side_effects_p (true_rtx))
6522 switch (true_code)
6524 case GT:
6525 case GE:
6526 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6527 case LT:
6528 case LE:
6529 return
6530 simplify_gen_unary (NEG, mode,
6531 simplify_gen_unary (ABS, mode, true_rtx, mode),
6532 mode);
6533 default:
6534 break;
6537 /* Look for MIN or MAX. */
6539 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6540 && comparison_p
6541 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6542 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6543 && ! side_effects_p (cond))
6544 switch (true_code)
6546 case GE:
6547 case GT:
6548 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6549 case LE:
6550 case LT:
6551 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6552 case GEU:
6553 case GTU:
6554 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6555 case LEU:
6556 case LTU:
6557 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6558 default:
6559 break;
6562 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6563 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6564 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6565 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6566 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6567 neither 1 or -1, but it isn't worth checking for. */
6569 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6570 && comparison_p
6571 && is_int_mode (mode, &int_mode)
6572 && ! side_effects_p (x))
6574 rtx t = make_compound_operation (true_rtx, SET);
6575 rtx f = make_compound_operation (false_rtx, SET);
6576 rtx cond_op0 = XEXP (cond, 0);
6577 rtx cond_op1 = XEXP (cond, 1);
6578 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6579 scalar_int_mode m = int_mode;
6580 rtx z = 0, c1 = NULL_RTX;
6582 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6583 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6584 || GET_CODE (t) == ASHIFT
6585 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6586 && rtx_equal_p (XEXP (t, 0), f))
6587 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6589 /* If an identity-zero op is commutative, check whether there
6590 would be a match if we swapped the operands. */
6591 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6592 || GET_CODE (t) == XOR)
6593 && rtx_equal_p (XEXP (t, 1), f))
6594 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6595 else if (GET_CODE (t) == SIGN_EXTEND
6596 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6597 && (GET_CODE (XEXP (t, 0)) == PLUS
6598 || GET_CODE (XEXP (t, 0)) == MINUS
6599 || GET_CODE (XEXP (t, 0)) == IOR
6600 || GET_CODE (XEXP (t, 0)) == XOR
6601 || GET_CODE (XEXP (t, 0)) == ASHIFT
6602 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6603 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6604 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6605 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6606 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6607 && (num_sign_bit_copies (f, GET_MODE (f))
6608 > (unsigned int)
6609 (GET_MODE_PRECISION (int_mode)
6610 - GET_MODE_PRECISION (inner_mode))))
6612 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6613 extend_op = SIGN_EXTEND;
6614 m = inner_mode;
6616 else if (GET_CODE (t) == SIGN_EXTEND
6617 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6618 && (GET_CODE (XEXP (t, 0)) == PLUS
6619 || GET_CODE (XEXP (t, 0)) == IOR
6620 || GET_CODE (XEXP (t, 0)) == XOR)
6621 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6622 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6623 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6624 && (num_sign_bit_copies (f, GET_MODE (f))
6625 > (unsigned int)
6626 (GET_MODE_PRECISION (int_mode)
6627 - GET_MODE_PRECISION (inner_mode))))
6629 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6630 extend_op = SIGN_EXTEND;
6631 m = inner_mode;
6633 else if (GET_CODE (t) == ZERO_EXTEND
6634 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6635 && (GET_CODE (XEXP (t, 0)) == PLUS
6636 || GET_CODE (XEXP (t, 0)) == MINUS
6637 || GET_CODE (XEXP (t, 0)) == IOR
6638 || GET_CODE (XEXP (t, 0)) == XOR
6639 || GET_CODE (XEXP (t, 0)) == ASHIFT
6640 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6641 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6642 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6643 && HWI_COMPUTABLE_MODE_P (int_mode)
6644 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6645 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6646 && ((nonzero_bits (f, GET_MODE (f))
6647 & ~GET_MODE_MASK (inner_mode))
6648 == 0))
6650 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6651 extend_op = ZERO_EXTEND;
6652 m = inner_mode;
6654 else if (GET_CODE (t) == ZERO_EXTEND
6655 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6656 && (GET_CODE (XEXP (t, 0)) == PLUS
6657 || GET_CODE (XEXP (t, 0)) == IOR
6658 || GET_CODE (XEXP (t, 0)) == XOR)
6659 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6660 && HWI_COMPUTABLE_MODE_P (int_mode)
6661 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6662 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6663 && ((nonzero_bits (f, GET_MODE (f))
6664 & ~GET_MODE_MASK (inner_mode))
6665 == 0))
6667 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6668 extend_op = ZERO_EXTEND;
6669 m = inner_mode;
6672 if (z)
6674 machine_mode cm = m;
6675 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6676 && GET_MODE (c1) != VOIDmode)
6677 cm = GET_MODE (c1);
6678 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6679 cond_op0, cond_op1),
6680 pc_rtx, pc_rtx, 0, 0, 0);
6681 temp = simplify_gen_binary (MULT, cm, temp,
6682 simplify_gen_binary (MULT, cm, c1,
6683 const_true_rtx));
6684 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6685 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6687 if (extend_op != UNKNOWN)
6688 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6690 return temp;
6694 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6695 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6696 negation of a single bit, we can convert this operation to a shift. We
6697 can actually do this more generally, but it doesn't seem worth it. */
6699 if (true_code == NE
6700 && is_a <scalar_int_mode> (mode, &int_mode)
6701 && XEXP (cond, 1) == const0_rtx
6702 && false_rtx == const0_rtx
6703 && CONST_INT_P (true_rtx)
6704 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6705 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6706 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6707 == GET_MODE_PRECISION (int_mode))
6708 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6709 return
6710 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6711 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6713 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6714 non-zero bit in A is C1. */
6715 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6716 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6717 && is_a <scalar_int_mode> (mode, &int_mode)
6718 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6719 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6720 == nonzero_bits (XEXP (cond, 0), inner_mode)
6721 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6723 rtx val = XEXP (cond, 0);
6724 if (inner_mode == int_mode)
6725 return val;
6726 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6727 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6730 return x;
6733 /* Simplify X, a SET expression. Return the new expression. */
6735 static rtx
6736 simplify_set (rtx x)
6738 rtx src = SET_SRC (x);
6739 rtx dest = SET_DEST (x);
6740 machine_mode mode
6741 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6742 rtx_insn *other_insn;
6743 rtx *cc_use;
6744 scalar_int_mode int_mode;
6746 /* (set (pc) (return)) gets written as (return). */
6747 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6748 return src;
6750 /* Now that we know for sure which bits of SRC we are using, see if we can
6751 simplify the expression for the object knowing that we only need the
6752 low-order bits. */
6754 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6756 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6757 SUBST (SET_SRC (x), src);
6760 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6761 the comparison result and try to simplify it unless we already have used
6762 undobuf.other_insn. */
6763 if ((GET_MODE_CLASS (mode) == MODE_CC
6764 || GET_CODE (src) == COMPARE
6765 || CC0_P (dest))
6766 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6767 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6768 && COMPARISON_P (*cc_use)
6769 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6771 enum rtx_code old_code = GET_CODE (*cc_use);
6772 enum rtx_code new_code;
6773 rtx op0, op1, tmp;
6774 int other_changed = 0;
6775 rtx inner_compare = NULL_RTX;
6776 machine_mode compare_mode = GET_MODE (dest);
6778 if (GET_CODE (src) == COMPARE)
6780 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6781 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6783 inner_compare = op0;
6784 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6787 else
6788 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6790 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6791 op0, op1);
6792 if (!tmp)
6793 new_code = old_code;
6794 else if (!CONSTANT_P (tmp))
6796 new_code = GET_CODE (tmp);
6797 op0 = XEXP (tmp, 0);
6798 op1 = XEXP (tmp, 1);
6800 else
6802 rtx pat = PATTERN (other_insn);
6803 undobuf.other_insn = other_insn;
6804 SUBST (*cc_use, tmp);
6806 /* Attempt to simplify CC user. */
6807 if (GET_CODE (pat) == SET)
6809 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6810 if (new_rtx != NULL_RTX)
6811 SUBST (SET_SRC (pat), new_rtx);
6814 /* Convert X into a no-op move. */
6815 SUBST (SET_DEST (x), pc_rtx);
6816 SUBST (SET_SRC (x), pc_rtx);
6817 return x;
6820 /* Simplify our comparison, if possible. */
6821 new_code = simplify_comparison (new_code, &op0, &op1);
6823 #ifdef SELECT_CC_MODE
6824 /* If this machine has CC modes other than CCmode, check to see if we
6825 need to use a different CC mode here. */
6826 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6827 compare_mode = GET_MODE (op0);
6828 else if (inner_compare
6829 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6830 && new_code == old_code
6831 && op0 == XEXP (inner_compare, 0)
6832 && op1 == XEXP (inner_compare, 1))
6833 compare_mode = GET_MODE (inner_compare);
6834 else
6835 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6837 /* If the mode changed, we have to change SET_DEST, the mode in the
6838 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6839 a hard register, just build new versions with the proper mode. If it
6840 is a pseudo, we lose unless it is only time we set the pseudo, in
6841 which case we can safely change its mode. */
6842 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6844 if (can_change_dest_mode (dest, 0, compare_mode))
6846 unsigned int regno = REGNO (dest);
6847 rtx new_dest;
6849 if (regno < FIRST_PSEUDO_REGISTER)
6850 new_dest = gen_rtx_REG (compare_mode, regno);
6851 else
6853 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6854 new_dest = regno_reg_rtx[regno];
6857 SUBST (SET_DEST (x), new_dest);
6858 SUBST (XEXP (*cc_use, 0), new_dest);
6859 other_changed = 1;
6861 dest = new_dest;
6864 #endif /* SELECT_CC_MODE */
6866 /* If the code changed, we have to build a new comparison in
6867 undobuf.other_insn. */
6868 if (new_code != old_code)
6870 int other_changed_previously = other_changed;
6871 unsigned HOST_WIDE_INT mask;
6872 rtx old_cc_use = *cc_use;
6874 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6875 dest, const0_rtx));
6876 other_changed = 1;
6878 /* If the only change we made was to change an EQ into an NE or
6879 vice versa, OP0 has only one bit that might be nonzero, and OP1
6880 is zero, check if changing the user of the condition code will
6881 produce a valid insn. If it won't, we can keep the original code
6882 in that insn by surrounding our operation with an XOR. */
6884 if (((old_code == NE && new_code == EQ)
6885 || (old_code == EQ && new_code == NE))
6886 && ! other_changed_previously && op1 == const0_rtx
6887 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6888 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6890 rtx pat = PATTERN (other_insn), note = 0;
6892 if ((recog_for_combine (&pat, other_insn, &note) < 0
6893 && ! check_asm_operands (pat)))
6895 *cc_use = old_cc_use;
6896 other_changed = 0;
6898 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6899 gen_int_mode (mask,
6900 GET_MODE (op0)));
6905 if (other_changed)
6906 undobuf.other_insn = other_insn;
6908 /* Don't generate a compare of a CC with 0, just use that CC. */
6909 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6911 SUBST (SET_SRC (x), op0);
6912 src = SET_SRC (x);
6914 /* Otherwise, if we didn't previously have the same COMPARE we
6915 want, create it from scratch. */
6916 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6917 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6919 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6920 src = SET_SRC (x);
6923 else
6925 /* Get SET_SRC in a form where we have placed back any
6926 compound expressions. Then do the checks below. */
6927 src = make_compound_operation (src, SET);
6928 SUBST (SET_SRC (x), src);
6931 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6932 and X being a REG or (subreg (reg)), we may be able to convert this to
6933 (set (subreg:m2 x) (op)).
6935 We can always do this if M1 is narrower than M2 because that means that
6936 we only care about the low bits of the result.
6938 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6939 perform a narrower operation than requested since the high-order bits will
6940 be undefined. On machine where it is defined, this transformation is safe
6941 as long as M1 and M2 have the same number of words. */
6943 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6944 && !OBJECT_P (SUBREG_REG (src))
6945 && (known_equal_after_align_up
6946 (GET_MODE_SIZE (GET_MODE (src)),
6947 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6948 UNITS_PER_WORD))
6949 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6950 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6951 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6952 GET_MODE (SUBREG_REG (src)),
6953 GET_MODE (src)))
6954 && (REG_P (dest)
6955 || (GET_CODE (dest) == SUBREG
6956 && REG_P (SUBREG_REG (dest)))))
6958 SUBST (SET_DEST (x),
6959 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6960 dest));
6961 SUBST (SET_SRC (x), SUBREG_REG (src));
6963 src = SET_SRC (x), dest = SET_DEST (x);
6966 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6967 in SRC. */
6968 if (dest == cc0_rtx
6969 && partial_subreg_p (src)
6970 && subreg_lowpart_p (src))
6972 rtx inner = SUBREG_REG (src);
6973 machine_mode inner_mode = GET_MODE (inner);
6975 /* Here we make sure that we don't have a sign bit on. */
6976 if (val_signbit_known_clear_p (GET_MODE (src),
6977 nonzero_bits (inner, inner_mode)))
6979 SUBST (SET_SRC (x), inner);
6980 src = SET_SRC (x);
6984 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6985 would require a paradoxical subreg. Replace the subreg with a
6986 zero_extend to avoid the reload that would otherwise be required.
6987 Don't do this unless we have a scalar integer mode, otherwise the
6988 transformation is incorrect. */
6990 enum rtx_code extend_op;
6991 if (paradoxical_subreg_p (src)
6992 && MEM_P (SUBREG_REG (src))
6993 && SCALAR_INT_MODE_P (GET_MODE (src))
6994 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6996 SUBST (SET_SRC (x),
6997 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6999 src = SET_SRC (x);
7002 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7003 are comparing an item known to be 0 or -1 against 0, use a logical
7004 operation instead. Check for one of the arms being an IOR of the other
7005 arm with some value. We compute three terms to be IOR'ed together. In
7006 practice, at most two will be nonzero. Then we do the IOR's. */
7008 if (GET_CODE (dest) != PC
7009 && GET_CODE (src) == IF_THEN_ELSE
7010 && is_int_mode (GET_MODE (src), &int_mode)
7011 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7012 && XEXP (XEXP (src, 0), 1) == const0_rtx
7013 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7014 && (!HAVE_conditional_move
7015 || ! can_conditionally_move_p (int_mode))
7016 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7017 == GET_MODE_PRECISION (int_mode))
7018 && ! side_effects_p (src))
7020 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7021 ? XEXP (src, 1) : XEXP (src, 2));
7022 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7023 ? XEXP (src, 2) : XEXP (src, 1));
7024 rtx term1 = const0_rtx, term2, term3;
7026 if (GET_CODE (true_rtx) == IOR
7027 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7028 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7029 else if (GET_CODE (true_rtx) == IOR
7030 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7031 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7032 else if (GET_CODE (false_rtx) == IOR
7033 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7034 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7035 else if (GET_CODE (false_rtx) == IOR
7036 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7037 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7039 term2 = simplify_gen_binary (AND, int_mode,
7040 XEXP (XEXP (src, 0), 0), true_rtx);
7041 term3 = simplify_gen_binary (AND, int_mode,
7042 simplify_gen_unary (NOT, int_mode,
7043 XEXP (XEXP (src, 0), 0),
7044 int_mode),
7045 false_rtx);
7047 SUBST (SET_SRC (x),
7048 simplify_gen_binary (IOR, int_mode,
7049 simplify_gen_binary (IOR, int_mode,
7050 term1, term2),
7051 term3));
7053 src = SET_SRC (x);
7056 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7057 whole thing fail. */
7058 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7059 return src;
7060 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7061 return dest;
7062 else
7063 /* Convert this into a field assignment operation, if possible. */
7064 return make_field_assignment (x);
7067 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7068 result. */
7070 static rtx
7071 simplify_logical (rtx x)
7073 rtx op0 = XEXP (x, 0);
7074 rtx op1 = XEXP (x, 1);
7075 scalar_int_mode mode;
7077 switch (GET_CODE (x))
7079 case AND:
7080 /* We can call simplify_and_const_int only if we don't lose
7081 any (sign) bits when converting INTVAL (op1) to
7082 "unsigned HOST_WIDE_INT". */
7083 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7084 && CONST_INT_P (op1)
7085 && (HWI_COMPUTABLE_MODE_P (mode)
7086 || INTVAL (op1) > 0))
7088 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7089 if (GET_CODE (x) != AND)
7090 return x;
7092 op0 = XEXP (x, 0);
7093 op1 = XEXP (x, 1);
7096 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7097 apply the distributive law and then the inverse distributive
7098 law to see if things simplify. */
7099 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7101 rtx result = distribute_and_simplify_rtx (x, 0);
7102 if (result)
7103 return result;
7105 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7107 rtx result = distribute_and_simplify_rtx (x, 1);
7108 if (result)
7109 return result;
7111 break;
7113 case IOR:
7114 /* If we have (ior (and A B) C), apply the distributive law and then
7115 the inverse distributive law to see if things simplify. */
7117 if (GET_CODE (op0) == AND)
7119 rtx result = distribute_and_simplify_rtx (x, 0);
7120 if (result)
7121 return result;
7124 if (GET_CODE (op1) == AND)
7126 rtx result = distribute_and_simplify_rtx (x, 1);
7127 if (result)
7128 return result;
7130 break;
7132 default:
7133 gcc_unreachable ();
7136 return x;
7139 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7140 operations" because they can be replaced with two more basic operations.
7141 ZERO_EXTEND is also considered "compound" because it can be replaced with
7142 an AND operation, which is simpler, though only one operation.
7144 The function expand_compound_operation is called with an rtx expression
7145 and will convert it to the appropriate shifts and AND operations,
7146 simplifying at each stage.
7148 The function make_compound_operation is called to convert an expression
7149 consisting of shifts and ANDs into the equivalent compound expression.
7150 It is the inverse of this function, loosely speaking. */
7152 static rtx
7153 expand_compound_operation (rtx x)
7155 unsigned HOST_WIDE_INT pos = 0, len;
7156 int unsignedp = 0;
7157 unsigned int modewidth;
7158 rtx tem;
7159 scalar_int_mode inner_mode;
7161 switch (GET_CODE (x))
7163 case ZERO_EXTEND:
7164 unsignedp = 1;
7165 /* FALLTHRU */
7166 case SIGN_EXTEND:
7167 /* We can't necessarily use a const_int for a multiword mode;
7168 it depends on implicitly extending the value.
7169 Since we don't know the right way to extend it,
7170 we can't tell whether the implicit way is right.
7172 Even for a mode that is no wider than a const_int,
7173 we can't win, because we need to sign extend one of its bits through
7174 the rest of it, and we don't know which bit. */
7175 if (CONST_INT_P (XEXP (x, 0)))
7176 return x;
7178 /* Reject modes that aren't scalar integers because turning vector
7179 or complex modes into shifts causes problems. */
7180 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7181 return x;
7183 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7184 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7185 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7186 reloaded. If not for that, MEM's would very rarely be safe.
7188 Reject modes bigger than a word, because we might not be able
7189 to reference a two-register group starting with an arbitrary register
7190 (and currently gen_lowpart might crash for a SUBREG). */
7192 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7193 return x;
7195 len = GET_MODE_PRECISION (inner_mode);
7196 /* If the inner object has VOIDmode (the only way this can happen
7197 is if it is an ASM_OPERANDS), we can't do anything since we don't
7198 know how much masking to do. */
7199 if (len == 0)
7200 return x;
7202 break;
7204 case ZERO_EXTRACT:
7205 unsignedp = 1;
7207 /* fall through */
7209 case SIGN_EXTRACT:
7210 /* If the operand is a CLOBBER, just return it. */
7211 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7212 return XEXP (x, 0);
7214 if (!CONST_INT_P (XEXP (x, 1))
7215 || !CONST_INT_P (XEXP (x, 2)))
7216 return x;
7218 /* Reject modes that aren't scalar integers because turning vector
7219 or complex modes into shifts causes problems. */
7220 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7221 return x;
7223 len = INTVAL (XEXP (x, 1));
7224 pos = INTVAL (XEXP (x, 2));
7226 /* This should stay within the object being extracted, fail otherwise. */
7227 if (len + pos > GET_MODE_PRECISION (inner_mode))
7228 return x;
7230 if (BITS_BIG_ENDIAN)
7231 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7233 break;
7235 default:
7236 return x;
7239 /* We've rejected non-scalar operations by now. */
7240 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7242 /* Convert sign extension to zero extension, if we know that the high
7243 bit is not set, as this is easier to optimize. It will be converted
7244 back to cheaper alternative in make_extraction. */
7245 if (GET_CODE (x) == SIGN_EXTEND
7246 && HWI_COMPUTABLE_MODE_P (mode)
7247 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7248 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7249 == 0))
7251 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7252 rtx temp2 = expand_compound_operation (temp);
7254 /* Make sure this is a profitable operation. */
7255 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7256 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7257 return temp2;
7258 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7259 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7260 return temp;
7261 else
7262 return x;
7265 /* We can optimize some special cases of ZERO_EXTEND. */
7266 if (GET_CODE (x) == ZERO_EXTEND)
7268 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7269 know that the last value didn't have any inappropriate bits
7270 set. */
7271 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7272 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7273 && HWI_COMPUTABLE_MODE_P (mode)
7274 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7275 & ~GET_MODE_MASK (inner_mode)) == 0)
7276 return XEXP (XEXP (x, 0), 0);
7278 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7279 if (GET_CODE (XEXP (x, 0)) == SUBREG
7280 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7281 && subreg_lowpart_p (XEXP (x, 0))
7282 && HWI_COMPUTABLE_MODE_P (mode)
7283 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7284 & ~GET_MODE_MASK (inner_mode)) == 0)
7285 return SUBREG_REG (XEXP (x, 0));
7287 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7288 is a comparison and STORE_FLAG_VALUE permits. This is like
7289 the first case, but it works even when MODE is larger
7290 than HOST_WIDE_INT. */
7291 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7292 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7293 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7294 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7295 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7296 return XEXP (XEXP (x, 0), 0);
7298 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7299 if (GET_CODE (XEXP (x, 0)) == SUBREG
7300 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7301 && subreg_lowpart_p (XEXP (x, 0))
7302 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7303 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7304 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7305 return SUBREG_REG (XEXP (x, 0));
7309 /* If we reach here, we want to return a pair of shifts. The inner
7310 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7311 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7312 logical depending on the value of UNSIGNEDP.
7314 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7315 converted into an AND of a shift.
7317 We must check for the case where the left shift would have a negative
7318 count. This can happen in a case like (x >> 31) & 255 on machines
7319 that can't shift by a constant. On those machines, we would first
7320 combine the shift with the AND to produce a variable-position
7321 extraction. Then the constant of 31 would be substituted in
7322 to produce such a position. */
7324 modewidth = GET_MODE_PRECISION (mode);
7325 if (modewidth >= pos + len)
7327 tem = gen_lowpart (mode, XEXP (x, 0));
7328 if (!tem || GET_CODE (tem) == CLOBBER)
7329 return x;
7330 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7331 tem, modewidth - pos - len);
7332 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7333 mode, tem, modewidth - len);
7335 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7336 tem = simplify_and_const_int (NULL_RTX, mode,
7337 simplify_shift_const (NULL_RTX, LSHIFTRT,
7338 mode, XEXP (x, 0),
7339 pos),
7340 (HOST_WIDE_INT_1U << len) - 1);
7341 else
7342 /* Any other cases we can't handle. */
7343 return x;
7345 /* If we couldn't do this for some reason, return the original
7346 expression. */
7347 if (GET_CODE (tem) == CLOBBER)
7348 return x;
7350 return tem;
7353 /* X is a SET which contains an assignment of one object into
7354 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7355 or certain SUBREGS). If possible, convert it into a series of
7356 logical operations.
7358 We half-heartedly support variable positions, but do not at all
7359 support variable lengths. */
7361 static const_rtx
7362 expand_field_assignment (const_rtx x)
7364 rtx inner;
7365 rtx pos; /* Always counts from low bit. */
7366 int len, inner_len;
7367 rtx mask, cleared, masked;
7368 scalar_int_mode compute_mode;
7370 /* Loop until we find something we can't simplify. */
7371 while (1)
7373 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7374 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7376 rtx x0 = XEXP (SET_DEST (x), 0);
7377 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7378 break;
7379 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7380 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7381 MAX_MODE_INT);
7383 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7384 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7386 inner = XEXP (SET_DEST (x), 0);
7387 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7388 break;
7390 len = INTVAL (XEXP (SET_DEST (x), 1));
7391 pos = XEXP (SET_DEST (x), 2);
7393 /* A constant position should stay within the width of INNER. */
7394 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7395 break;
7397 if (BITS_BIG_ENDIAN)
7399 if (CONST_INT_P (pos))
7400 pos = GEN_INT (inner_len - len - INTVAL (pos));
7401 else if (GET_CODE (pos) == MINUS
7402 && CONST_INT_P (XEXP (pos, 1))
7403 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7404 /* If position is ADJUST - X, new position is X. */
7405 pos = XEXP (pos, 0);
7406 else
7407 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7408 gen_int_mode (inner_len - len,
7409 GET_MODE (pos)),
7410 pos);
7414 /* If the destination is a subreg that overwrites the whole of the inner
7415 register, we can move the subreg to the source. */
7416 else if (GET_CODE (SET_DEST (x)) == SUBREG
7417 /* We need SUBREGs to compute nonzero_bits properly. */
7418 && nonzero_sign_valid
7419 && !read_modify_subreg_p (SET_DEST (x)))
7421 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7422 gen_lowpart
7423 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7424 SET_SRC (x)));
7425 continue;
7427 else
7428 break;
7430 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7431 inner = SUBREG_REG (inner);
7433 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7434 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7436 /* Don't do anything for vector or complex integral types. */
7437 if (! FLOAT_MODE_P (GET_MODE (inner)))
7438 break;
7440 /* Try to find an integral mode to pun with. */
7441 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7442 .exists (&compute_mode))
7443 break;
7445 inner = gen_lowpart (compute_mode, inner);
7448 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7449 if (len >= HOST_BITS_PER_WIDE_INT)
7450 break;
7452 /* Don't try to compute in too wide unsupported modes. */
7453 if (!targetm.scalar_mode_supported_p (compute_mode))
7454 break;
7456 /* Now compute the equivalent expression. Make a copy of INNER
7457 for the SET_DEST in case it is a MEM into which we will substitute;
7458 we don't want shared RTL in that case. */
7459 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7460 compute_mode);
7461 cleared = simplify_gen_binary (AND, compute_mode,
7462 simplify_gen_unary (NOT, compute_mode,
7463 simplify_gen_binary (ASHIFT,
7464 compute_mode,
7465 mask, pos),
7466 compute_mode),
7467 inner);
7468 masked = simplify_gen_binary (ASHIFT, compute_mode,
7469 simplify_gen_binary (
7470 AND, compute_mode,
7471 gen_lowpart (compute_mode, SET_SRC (x)),
7472 mask),
7473 pos);
7475 x = gen_rtx_SET (copy_rtx (inner),
7476 simplify_gen_binary (IOR, compute_mode,
7477 cleared, masked));
7480 return x;
7483 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7484 it is an RTX that represents the (variable) starting position; otherwise,
7485 POS is the (constant) starting bit position. Both are counted from the LSB.
7487 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7489 IN_DEST is nonzero if this is a reference in the destination of a SET.
7490 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7491 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7492 be used.
7494 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7495 ZERO_EXTRACT should be built even for bits starting at bit 0.
7497 MODE is the desired mode of the result (if IN_DEST == 0).
7499 The result is an RTX for the extraction or NULL_RTX if the target
7500 can't handle it. */
7502 static rtx
7503 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7504 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7505 int in_dest, int in_compare)
7507 /* This mode describes the size of the storage area
7508 to fetch the overall value from. Within that, we
7509 ignore the POS lowest bits, etc. */
7510 machine_mode is_mode = GET_MODE (inner);
7511 machine_mode inner_mode;
7512 scalar_int_mode wanted_inner_mode;
7513 scalar_int_mode wanted_inner_reg_mode = word_mode;
7514 scalar_int_mode pos_mode = word_mode;
7515 machine_mode extraction_mode = word_mode;
7516 rtx new_rtx = 0;
7517 rtx orig_pos_rtx = pos_rtx;
7518 HOST_WIDE_INT orig_pos;
7520 if (pos_rtx && CONST_INT_P (pos_rtx))
7521 pos = INTVAL (pos_rtx), pos_rtx = 0;
7523 if (GET_CODE (inner) == SUBREG
7524 && subreg_lowpart_p (inner)
7525 && (paradoxical_subreg_p (inner)
7526 /* If trying or potentionally trying to extract
7527 bits outside of is_mode, don't look through
7528 non-paradoxical SUBREGs. See PR82192. */
7529 || (pos_rtx == NULL_RTX
7530 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7532 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7533 consider just the QI as the memory to extract from.
7534 The subreg adds or removes high bits; its mode is
7535 irrelevant to the meaning of this extraction,
7536 since POS and LEN count from the lsb. */
7537 if (MEM_P (SUBREG_REG (inner)))
7538 is_mode = GET_MODE (SUBREG_REG (inner));
7539 inner = SUBREG_REG (inner);
7541 else if (GET_CODE (inner) == ASHIFT
7542 && CONST_INT_P (XEXP (inner, 1))
7543 && pos_rtx == 0 && pos == 0
7544 && len > UINTVAL (XEXP (inner, 1)))
7546 /* We're extracting the least significant bits of an rtx
7547 (ashift X (const_int C)), where LEN > C. Extract the
7548 least significant (LEN - C) bits of X, giving an rtx
7549 whose mode is MODE, then shift it left C times. */
7550 new_rtx = make_extraction (mode, XEXP (inner, 0),
7551 0, 0, len - INTVAL (XEXP (inner, 1)),
7552 unsignedp, in_dest, in_compare);
7553 if (new_rtx != 0)
7554 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7556 else if (GET_CODE (inner) == TRUNCATE
7557 /* If trying or potentionally trying to extract
7558 bits outside of is_mode, don't look through
7559 TRUNCATE. See PR82192. */
7560 && pos_rtx == NULL_RTX
7561 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7562 inner = XEXP (inner, 0);
7564 inner_mode = GET_MODE (inner);
7566 /* See if this can be done without an extraction. We never can if the
7567 width of the field is not the same as that of some integer mode. For
7568 registers, we can only avoid the extraction if the position is at the
7569 low-order bit and this is either not in the destination or we have the
7570 appropriate STRICT_LOW_PART operation available.
7572 For MEM, we can avoid an extract if the field starts on an appropriate
7573 boundary and we can change the mode of the memory reference. */
7575 scalar_int_mode tmode;
7576 if (int_mode_for_size (len, 1).exists (&tmode)
7577 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7578 && !MEM_P (inner)
7579 && (pos == 0 || REG_P (inner))
7580 && (inner_mode == tmode
7581 || !REG_P (inner)
7582 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7583 || reg_truncated_to_mode (tmode, inner))
7584 && (! in_dest
7585 || (REG_P (inner)
7586 && have_insn_for (STRICT_LOW_PART, tmode))))
7587 || (MEM_P (inner) && pos_rtx == 0
7588 && (pos
7589 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7590 : BITS_PER_UNIT)) == 0
7591 /* We can't do this if we are widening INNER_MODE (it
7592 may not be aligned, for one thing). */
7593 && !paradoxical_subreg_p (tmode, inner_mode)
7594 && (inner_mode == tmode
7595 || (! mode_dependent_address_p (XEXP (inner, 0),
7596 MEM_ADDR_SPACE (inner))
7597 && ! MEM_VOLATILE_P (inner))))))
7599 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7600 field. If the original and current mode are the same, we need not
7601 adjust the offset. Otherwise, we do if bytes big endian.
7603 If INNER is not a MEM, get a piece consisting of just the field
7604 of interest (in this case POS % BITS_PER_WORD must be 0). */
7606 if (MEM_P (inner))
7608 poly_int64 offset;
7610 /* POS counts from lsb, but make OFFSET count in memory order. */
7611 if (BYTES_BIG_ENDIAN)
7612 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7613 - len - pos);
7614 else
7615 offset = pos / BITS_PER_UNIT;
7617 new_rtx = adjust_address_nv (inner, tmode, offset);
7619 else if (REG_P (inner))
7621 if (tmode != inner_mode)
7623 /* We can't call gen_lowpart in a DEST since we
7624 always want a SUBREG (see below) and it would sometimes
7625 return a new hard register. */
7626 if (pos || in_dest)
7628 poly_uint64 offset
7629 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7631 /* Avoid creating invalid subregs, for example when
7632 simplifying (x>>32)&255. */
7633 if (!validate_subreg (tmode, inner_mode, inner, offset))
7634 return NULL_RTX;
7636 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7638 else
7639 new_rtx = gen_lowpart (tmode, inner);
7641 else
7642 new_rtx = inner;
7644 else
7645 new_rtx = force_to_mode (inner, tmode,
7646 len >= HOST_BITS_PER_WIDE_INT
7647 ? HOST_WIDE_INT_M1U
7648 : (HOST_WIDE_INT_1U << len) - 1, 0);
7650 /* If this extraction is going into the destination of a SET,
7651 make a STRICT_LOW_PART unless we made a MEM. */
7653 if (in_dest)
7654 return (MEM_P (new_rtx) ? new_rtx
7655 : (GET_CODE (new_rtx) != SUBREG
7656 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7657 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7659 if (mode == tmode)
7660 return new_rtx;
7662 if (CONST_SCALAR_INT_P (new_rtx))
7663 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7664 mode, new_rtx, tmode);
7666 /* If we know that no extraneous bits are set, and that the high
7667 bit is not set, convert the extraction to the cheaper of
7668 sign and zero extension, that are equivalent in these cases. */
7669 if (flag_expensive_optimizations
7670 && (HWI_COMPUTABLE_MODE_P (tmode)
7671 && ((nonzero_bits (new_rtx, tmode)
7672 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7673 == 0)))
7675 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7676 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7678 /* Prefer ZERO_EXTENSION, since it gives more information to
7679 backends. */
7680 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7681 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7682 return temp;
7683 return temp1;
7686 /* Otherwise, sign- or zero-extend unless we already are in the
7687 proper mode. */
7689 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7690 mode, new_rtx));
7693 /* Unless this is a COMPARE or we have a funny memory reference,
7694 don't do anything with zero-extending field extracts starting at
7695 the low-order bit since they are simple AND operations. */
7696 if (pos_rtx == 0 && pos == 0 && ! in_dest
7697 && ! in_compare && unsignedp)
7698 return 0;
7700 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7701 if the position is not a constant and the length is not 1. In all
7702 other cases, we would only be going outside our object in cases when
7703 an original shift would have been undefined. */
7704 if (MEM_P (inner)
7705 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7706 || (pos_rtx != 0 && len != 1)))
7707 return 0;
7709 enum extraction_pattern pattern = (in_dest ? EP_insv
7710 : unsignedp ? EP_extzv : EP_extv);
7712 /* If INNER is not from memory, we want it to have the mode of a register
7713 extraction pattern's structure operand, or word_mode if there is no
7714 such pattern. The same applies to extraction_mode and pos_mode
7715 and their respective operands.
7717 For memory, assume that the desired extraction_mode and pos_mode
7718 are the same as for a register operation, since at present we don't
7719 have named patterns for aligned memory structures. */
7720 struct extraction_insn insn;
7721 unsigned int inner_size;
7722 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7723 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7725 wanted_inner_reg_mode = insn.struct_mode.require ();
7726 pos_mode = insn.pos_mode;
7727 extraction_mode = insn.field_mode;
7730 /* Never narrow an object, since that might not be safe. */
7732 if (mode != VOIDmode
7733 && partial_subreg_p (extraction_mode, mode))
7734 extraction_mode = mode;
7736 if (!MEM_P (inner))
7737 wanted_inner_mode = wanted_inner_reg_mode;
7738 else
7740 /* Be careful not to go beyond the extracted object and maintain the
7741 natural alignment of the memory. */
7742 wanted_inner_mode = smallest_int_mode_for_size (len);
7743 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7744 > GET_MODE_BITSIZE (wanted_inner_mode))
7745 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7748 orig_pos = pos;
7750 if (BITS_BIG_ENDIAN)
7752 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7753 BITS_BIG_ENDIAN style. If position is constant, compute new
7754 position. Otherwise, build subtraction.
7755 Note that POS is relative to the mode of the original argument.
7756 If it's a MEM we need to recompute POS relative to that.
7757 However, if we're extracting from (or inserting into) a register,
7758 we want to recompute POS relative to wanted_inner_mode. */
7759 int width;
7760 if (!MEM_P (inner))
7761 width = GET_MODE_BITSIZE (wanted_inner_mode);
7762 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7763 return NULL_RTX;
7765 if (pos_rtx == 0)
7766 pos = width - len - pos;
7767 else
7768 pos_rtx
7769 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7770 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7771 pos_rtx);
7772 /* POS may be less than 0 now, but we check for that below.
7773 Note that it can only be less than 0 if !MEM_P (inner). */
7776 /* If INNER has a wider mode, and this is a constant extraction, try to
7777 make it smaller and adjust the byte to point to the byte containing
7778 the value. */
7779 if (wanted_inner_mode != VOIDmode
7780 && inner_mode != wanted_inner_mode
7781 && ! pos_rtx
7782 && partial_subreg_p (wanted_inner_mode, is_mode)
7783 && MEM_P (inner)
7784 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7785 && ! MEM_VOLATILE_P (inner))
7787 poly_int64 offset = 0;
7789 /* The computations below will be correct if the machine is big
7790 endian in both bits and bytes or little endian in bits and bytes.
7791 If it is mixed, we must adjust. */
7793 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7794 adjust OFFSET to compensate. */
7795 if (BYTES_BIG_ENDIAN
7796 && paradoxical_subreg_p (is_mode, inner_mode))
7797 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7799 /* We can now move to the desired byte. */
7800 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7801 * GET_MODE_SIZE (wanted_inner_mode);
7802 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7804 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7805 && is_mode != wanted_inner_mode)
7806 offset = (GET_MODE_SIZE (is_mode)
7807 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7809 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7812 /* If INNER is not memory, get it into the proper mode. If we are changing
7813 its mode, POS must be a constant and smaller than the size of the new
7814 mode. */
7815 else if (!MEM_P (inner))
7817 /* On the LHS, don't create paradoxical subregs implicitely truncating
7818 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7819 if (in_dest
7820 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7821 wanted_inner_mode))
7822 return NULL_RTX;
7824 if (GET_MODE (inner) != wanted_inner_mode
7825 && (pos_rtx != 0
7826 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7827 return NULL_RTX;
7829 if (orig_pos < 0)
7830 return NULL_RTX;
7832 inner = force_to_mode (inner, wanted_inner_mode,
7833 pos_rtx
7834 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7835 ? HOST_WIDE_INT_M1U
7836 : (((HOST_WIDE_INT_1U << len) - 1)
7837 << orig_pos),
7841 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7842 have to zero extend. Otherwise, we can just use a SUBREG.
7844 We dealt with constant rtxes earlier, so pos_rtx cannot
7845 have VOIDmode at this point. */
7846 if (pos_rtx != 0
7847 && (GET_MODE_SIZE (pos_mode)
7848 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7850 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7851 GET_MODE (pos_rtx));
7853 /* If we know that no extraneous bits are set, and that the high
7854 bit is not set, convert extraction to cheaper one - either
7855 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7856 cases. */
7857 if (flag_expensive_optimizations
7858 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7859 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7860 & ~(((unsigned HOST_WIDE_INT)
7861 GET_MODE_MASK (GET_MODE (pos_rtx)))
7862 >> 1))
7863 == 0)))
7865 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7866 GET_MODE (pos_rtx));
7868 /* Prefer ZERO_EXTENSION, since it gives more information to
7869 backends. */
7870 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7871 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7872 temp = temp1;
7874 pos_rtx = temp;
7877 /* Make POS_RTX unless we already have it and it is correct. If we don't
7878 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7879 be a CONST_INT. */
7880 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7881 pos_rtx = orig_pos_rtx;
7883 else if (pos_rtx == 0)
7884 pos_rtx = GEN_INT (pos);
7886 /* Make the required operation. See if we can use existing rtx. */
7887 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7888 extraction_mode, inner, GEN_INT (len), pos_rtx);
7889 if (! in_dest)
7890 new_rtx = gen_lowpart (mode, new_rtx);
7892 return new_rtx;
7895 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7896 can be commuted with any other operations in X. Return X without
7897 that shift if so. */
7899 static rtx
7900 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7902 enum rtx_code code = GET_CODE (x);
7903 rtx tem;
7905 switch (code)
7907 case ASHIFT:
7908 /* This is the shift itself. If it is wide enough, we will return
7909 either the value being shifted if the shift count is equal to
7910 COUNT or a shift for the difference. */
7911 if (CONST_INT_P (XEXP (x, 1))
7912 && INTVAL (XEXP (x, 1)) >= count)
7913 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7914 INTVAL (XEXP (x, 1)) - count);
7915 break;
7917 case NEG: case NOT:
7918 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7919 return simplify_gen_unary (code, mode, tem, mode);
7921 break;
7923 case PLUS: case IOR: case XOR: case AND:
7924 /* If we can safely shift this constant and we find the inner shift,
7925 make a new operation. */
7926 if (CONST_INT_P (XEXP (x, 1))
7927 && (UINTVAL (XEXP (x, 1))
7928 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7929 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7931 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7932 return simplify_gen_binary (code, mode, tem,
7933 gen_int_mode (val, mode));
7935 break;
7937 default:
7938 break;
7941 return 0;
7944 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7945 level of the expression and MODE is its mode. IN_CODE is as for
7946 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7947 that should be used when recursing on operands of *X_PTR.
7949 There are two possible actions:
7951 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7952 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7954 - Return a new rtx, which the caller returns directly. */
7956 static rtx
7957 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7958 enum rtx_code in_code,
7959 enum rtx_code *next_code_ptr)
7961 rtx x = *x_ptr;
7962 enum rtx_code next_code = *next_code_ptr;
7963 enum rtx_code code = GET_CODE (x);
7964 int mode_width = GET_MODE_PRECISION (mode);
7965 rtx rhs, lhs;
7966 rtx new_rtx = 0;
7967 int i;
7968 rtx tem;
7969 scalar_int_mode inner_mode;
7970 bool equality_comparison = false;
7972 if (in_code == EQ)
7974 equality_comparison = true;
7975 in_code = COMPARE;
7978 /* Process depending on the code of this operation. If NEW is set
7979 nonzero, it will be returned. */
7981 switch (code)
7983 case ASHIFT:
7984 /* Convert shifts by constants into multiplications if inside
7985 an address. */
7986 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7987 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7988 && INTVAL (XEXP (x, 1)) >= 0)
7990 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7991 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7993 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7994 if (GET_CODE (new_rtx) == NEG)
7996 new_rtx = XEXP (new_rtx, 0);
7997 multval = -multval;
7999 multval = trunc_int_for_mode (multval, mode);
8000 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8002 break;
8004 case PLUS:
8005 lhs = XEXP (x, 0);
8006 rhs = XEXP (x, 1);
8007 lhs = make_compound_operation (lhs, next_code);
8008 rhs = make_compound_operation (rhs, next_code);
8009 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8011 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8012 XEXP (lhs, 1));
8013 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8015 else if (GET_CODE (lhs) == MULT
8016 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8018 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8019 simplify_gen_unary (NEG, mode,
8020 XEXP (lhs, 1),
8021 mode));
8022 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8024 else
8026 SUBST (XEXP (x, 0), lhs);
8027 SUBST (XEXP (x, 1), rhs);
8029 maybe_swap_commutative_operands (x);
8030 return x;
8032 case MINUS:
8033 lhs = XEXP (x, 0);
8034 rhs = XEXP (x, 1);
8035 lhs = make_compound_operation (lhs, next_code);
8036 rhs = make_compound_operation (rhs, next_code);
8037 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8039 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8040 XEXP (rhs, 1));
8041 return simplify_gen_binary (PLUS, mode, tem, lhs);
8043 else if (GET_CODE (rhs) == MULT
8044 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8046 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8047 simplify_gen_unary (NEG, mode,
8048 XEXP (rhs, 1),
8049 mode));
8050 return simplify_gen_binary (PLUS, mode, tem, lhs);
8052 else
8054 SUBST (XEXP (x, 0), lhs);
8055 SUBST (XEXP (x, 1), rhs);
8056 return x;
8059 case AND:
8060 /* If the second operand is not a constant, we can't do anything
8061 with it. */
8062 if (!CONST_INT_P (XEXP (x, 1)))
8063 break;
8065 /* If the constant is a power of two minus one and the first operand
8066 is a logical right shift, make an extraction. */
8067 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8068 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8070 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8071 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8072 i, 1, 0, in_code == COMPARE);
8075 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8076 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8077 && subreg_lowpart_p (XEXP (x, 0))
8078 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8079 &inner_mode)
8080 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8081 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8083 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8084 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8085 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8086 XEXP (inner_x0, 1),
8087 i, 1, 0, in_code == COMPARE);
8089 /* If we narrowed the mode when dropping the subreg, then we lose. */
8090 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8091 new_rtx = NULL;
8093 /* If that didn't give anything, see if the AND simplifies on
8094 its own. */
8095 if (!new_rtx && i >= 0)
8097 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8098 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8099 0, in_code == COMPARE);
8102 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8103 else if ((GET_CODE (XEXP (x, 0)) == XOR
8104 || GET_CODE (XEXP (x, 0)) == IOR)
8105 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8106 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8107 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8109 /* Apply the distributive law, and then try to make extractions. */
8110 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8111 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8112 XEXP (x, 1)),
8113 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8114 XEXP (x, 1)));
8115 new_rtx = make_compound_operation (new_rtx, in_code);
8118 /* If we are have (and (rotate X C) M) and C is larger than the number
8119 of bits in M, this is an extraction. */
8121 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8122 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8123 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8124 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8126 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8127 new_rtx = make_extraction (mode, new_rtx,
8128 (GET_MODE_PRECISION (mode)
8129 - INTVAL (XEXP (XEXP (x, 0), 1))),
8130 NULL_RTX, i, 1, 0, in_code == COMPARE);
8133 /* On machines without logical shifts, if the operand of the AND is
8134 a logical shift and our mask turns off all the propagated sign
8135 bits, we can replace the logical shift with an arithmetic shift. */
8136 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8137 && !have_insn_for (LSHIFTRT, mode)
8138 && have_insn_for (ASHIFTRT, mode)
8139 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8140 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8141 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8142 && mode_width <= HOST_BITS_PER_WIDE_INT)
8144 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8146 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8147 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8148 SUBST (XEXP (x, 0),
8149 gen_rtx_ASHIFTRT (mode,
8150 make_compound_operation (XEXP (XEXP (x,
8153 next_code),
8154 XEXP (XEXP (x, 0), 1)));
8157 /* If the constant is one less than a power of two, this might be
8158 representable by an extraction even if no shift is present.
8159 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8160 we are in a COMPARE. */
8161 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8162 new_rtx = make_extraction (mode,
8163 make_compound_operation (XEXP (x, 0),
8164 next_code),
8165 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8167 /* If we are in a comparison and this is an AND with a power of two,
8168 convert this into the appropriate bit extract. */
8169 else if (in_code == COMPARE
8170 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8171 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8172 new_rtx = make_extraction (mode,
8173 make_compound_operation (XEXP (x, 0),
8174 next_code),
8175 i, NULL_RTX, 1, 1, 0, 1);
8177 /* If the one operand is a paradoxical subreg of a register or memory and
8178 the constant (limited to the smaller mode) has only zero bits where
8179 the sub expression has known zero bits, this can be expressed as
8180 a zero_extend. */
8181 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8183 rtx sub;
8185 sub = XEXP (XEXP (x, 0), 0);
8186 machine_mode sub_mode = GET_MODE (sub);
8187 int sub_width;
8188 if ((REG_P (sub) || MEM_P (sub))
8189 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8190 && sub_width < mode_width)
8192 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8193 unsigned HOST_WIDE_INT mask;
8195 /* original AND constant with all the known zero bits set */
8196 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8197 if ((mask & mode_mask) == mode_mask)
8199 new_rtx = make_compound_operation (sub, next_code);
8200 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8201 1, 0, in_code == COMPARE);
8206 break;
8208 case LSHIFTRT:
8209 /* If the sign bit is known to be zero, replace this with an
8210 arithmetic shift. */
8211 if (have_insn_for (ASHIFTRT, mode)
8212 && ! have_insn_for (LSHIFTRT, mode)
8213 && mode_width <= HOST_BITS_PER_WIDE_INT
8214 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8216 new_rtx = gen_rtx_ASHIFTRT (mode,
8217 make_compound_operation (XEXP (x, 0),
8218 next_code),
8219 XEXP (x, 1));
8220 break;
8223 /* fall through */
8225 case ASHIFTRT:
8226 lhs = XEXP (x, 0);
8227 rhs = XEXP (x, 1);
8229 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8230 this is a SIGN_EXTRACT. */
8231 if (CONST_INT_P (rhs)
8232 && GET_CODE (lhs) == ASHIFT
8233 && CONST_INT_P (XEXP (lhs, 1))
8234 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8235 && INTVAL (XEXP (lhs, 1)) >= 0
8236 && INTVAL (rhs) < mode_width)
8238 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8239 new_rtx = make_extraction (mode, new_rtx,
8240 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8241 NULL_RTX, mode_width - INTVAL (rhs),
8242 code == LSHIFTRT, 0, in_code == COMPARE);
8243 break;
8246 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8247 If so, try to merge the shifts into a SIGN_EXTEND. We could
8248 also do this for some cases of SIGN_EXTRACT, but it doesn't
8249 seem worth the effort; the case checked for occurs on Alpha. */
8251 if (!OBJECT_P (lhs)
8252 && ! (GET_CODE (lhs) == SUBREG
8253 && (OBJECT_P (SUBREG_REG (lhs))))
8254 && CONST_INT_P (rhs)
8255 && INTVAL (rhs) >= 0
8256 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8257 && INTVAL (rhs) < mode_width
8258 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8259 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8260 next_code),
8261 0, NULL_RTX, mode_width - INTVAL (rhs),
8262 code == LSHIFTRT, 0, in_code == COMPARE);
8264 break;
8266 case SUBREG:
8267 /* Call ourselves recursively on the inner expression. If we are
8268 narrowing the object and it has a different RTL code from
8269 what it originally did, do this SUBREG as a force_to_mode. */
8271 rtx inner = SUBREG_REG (x), simplified;
8272 enum rtx_code subreg_code = in_code;
8274 /* If the SUBREG is masking of a logical right shift,
8275 make an extraction. */
8276 if (GET_CODE (inner) == LSHIFTRT
8277 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8278 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8279 && CONST_INT_P (XEXP (inner, 1))
8280 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8281 && subreg_lowpart_p (x))
8283 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8284 int width = GET_MODE_PRECISION (inner_mode)
8285 - INTVAL (XEXP (inner, 1));
8286 if (width > mode_width)
8287 width = mode_width;
8288 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8289 width, 1, 0, in_code == COMPARE);
8290 break;
8293 /* If in_code is COMPARE, it isn't always safe to pass it through
8294 to the recursive make_compound_operation call. */
8295 if (subreg_code == COMPARE
8296 && (!subreg_lowpart_p (x)
8297 || GET_CODE (inner) == SUBREG
8298 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8299 is (const_int 0), rather than
8300 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8301 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8302 for non-equality comparisons against 0 is not equivalent
8303 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8304 || (GET_CODE (inner) == AND
8305 && CONST_INT_P (XEXP (inner, 1))
8306 && partial_subreg_p (x)
8307 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8308 >= GET_MODE_BITSIZE (mode) - 1)))
8309 subreg_code = SET;
8311 tem = make_compound_operation (inner, subreg_code);
8313 simplified
8314 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8315 if (simplified)
8316 tem = simplified;
8318 if (GET_CODE (tem) != GET_CODE (inner)
8319 && partial_subreg_p (x)
8320 && subreg_lowpart_p (x))
8322 rtx newer
8323 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8325 /* If we have something other than a SUBREG, we might have
8326 done an expansion, so rerun ourselves. */
8327 if (GET_CODE (newer) != SUBREG)
8328 newer = make_compound_operation (newer, in_code);
8330 /* force_to_mode can expand compounds. If it just re-expanded
8331 the compound, use gen_lowpart to convert to the desired
8332 mode. */
8333 if (rtx_equal_p (newer, x)
8334 /* Likewise if it re-expanded the compound only partially.
8335 This happens for SUBREG of ZERO_EXTRACT if they extract
8336 the same number of bits. */
8337 || (GET_CODE (newer) == SUBREG
8338 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8339 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8340 && GET_CODE (inner) == AND
8341 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8342 return gen_lowpart (GET_MODE (x), tem);
8344 return newer;
8347 if (simplified)
8348 return tem;
8350 break;
8352 default:
8353 break;
8356 if (new_rtx)
8357 *x_ptr = gen_lowpart (mode, new_rtx);
8358 *next_code_ptr = next_code;
8359 return NULL_RTX;
8362 /* Look at the expression rooted at X. Look for expressions
8363 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8364 Form these expressions.
8366 Return the new rtx, usually just X.
8368 Also, for machines like the VAX that don't have logical shift insns,
8369 try to convert logical to arithmetic shift operations in cases where
8370 they are equivalent. This undoes the canonicalizations to logical
8371 shifts done elsewhere.
8373 We try, as much as possible, to re-use rtl expressions to save memory.
8375 IN_CODE says what kind of expression we are processing. Normally, it is
8376 SET. In a memory address it is MEM. When processing the arguments of
8377 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8378 precisely it is an equality comparison against zero. */
8381 make_compound_operation (rtx x, enum rtx_code in_code)
8383 enum rtx_code code = GET_CODE (x);
8384 const char *fmt;
8385 int i, j;
8386 enum rtx_code next_code;
8387 rtx new_rtx, tem;
8389 /* Select the code to be used in recursive calls. Once we are inside an
8390 address, we stay there. If we have a comparison, set to COMPARE,
8391 but once inside, go back to our default of SET. */
8393 next_code = (code == MEM ? MEM
8394 : ((code == COMPARE || COMPARISON_P (x))
8395 && XEXP (x, 1) == const0_rtx) ? COMPARE
8396 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8398 scalar_int_mode mode;
8399 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8401 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8402 &next_code);
8403 if (new_rtx)
8404 return new_rtx;
8405 code = GET_CODE (x);
8408 /* Now recursively process each operand of this operation. We need to
8409 handle ZERO_EXTEND specially so that we don't lose track of the
8410 inner mode. */
8411 if (code == ZERO_EXTEND)
8413 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8414 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8415 new_rtx, GET_MODE (XEXP (x, 0)));
8416 if (tem)
8417 return tem;
8418 SUBST (XEXP (x, 0), new_rtx);
8419 return x;
8422 fmt = GET_RTX_FORMAT (code);
8423 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8424 if (fmt[i] == 'e')
8426 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8427 SUBST (XEXP (x, i), new_rtx);
8429 else if (fmt[i] == 'E')
8430 for (j = 0; j < XVECLEN (x, i); j++)
8432 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8433 SUBST (XVECEXP (x, i, j), new_rtx);
8436 maybe_swap_commutative_operands (x);
8437 return x;
8440 /* Given M see if it is a value that would select a field of bits
8441 within an item, but not the entire word. Return -1 if not.
8442 Otherwise, return the starting position of the field, where 0 is the
8443 low-order bit.
8445 *PLEN is set to the length of the field. */
8447 static int
8448 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8450 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8451 int pos = m ? ctz_hwi (m) : -1;
8452 int len = 0;
8454 if (pos >= 0)
8455 /* Now shift off the low-order zero bits and see if we have a
8456 power of two minus 1. */
8457 len = exact_log2 ((m >> pos) + 1);
8459 if (len <= 0)
8460 pos = -1;
8462 *plen = len;
8463 return pos;
8466 /* If X refers to a register that equals REG in value, replace these
8467 references with REG. */
8468 static rtx
8469 canon_reg_for_combine (rtx x, rtx reg)
8471 rtx op0, op1, op2;
8472 const char *fmt;
8473 int i;
8474 bool copied;
8476 enum rtx_code code = GET_CODE (x);
8477 switch (GET_RTX_CLASS (code))
8479 case RTX_UNARY:
8480 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8481 if (op0 != XEXP (x, 0))
8482 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8483 GET_MODE (reg));
8484 break;
8486 case RTX_BIN_ARITH:
8487 case RTX_COMM_ARITH:
8488 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8489 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8490 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8491 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8492 break;
8494 case RTX_COMPARE:
8495 case RTX_COMM_COMPARE:
8496 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8497 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8498 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8499 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8500 GET_MODE (op0), op0, op1);
8501 break;
8503 case RTX_TERNARY:
8504 case RTX_BITFIELD_OPS:
8505 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8506 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8507 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8508 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8509 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8510 GET_MODE (op0), op0, op1, op2);
8511 /* FALLTHRU */
8513 case RTX_OBJ:
8514 if (REG_P (x))
8516 if (rtx_equal_p (get_last_value (reg), x)
8517 || rtx_equal_p (reg, get_last_value (x)))
8518 return reg;
8519 else
8520 break;
8523 /* fall through */
8525 default:
8526 fmt = GET_RTX_FORMAT (code);
8527 copied = false;
8528 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8529 if (fmt[i] == 'e')
8531 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8532 if (op != XEXP (x, i))
8534 if (!copied)
8536 copied = true;
8537 x = copy_rtx (x);
8539 XEXP (x, i) = op;
8542 else if (fmt[i] == 'E')
8544 int j;
8545 for (j = 0; j < XVECLEN (x, i); j++)
8547 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8548 if (op != XVECEXP (x, i, j))
8550 if (!copied)
8552 copied = true;
8553 x = copy_rtx (x);
8555 XVECEXP (x, i, j) = op;
8560 break;
8563 return x;
8566 /* Return X converted to MODE. If the value is already truncated to
8567 MODE we can just return a subreg even though in the general case we
8568 would need an explicit truncation. */
8570 static rtx
8571 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8573 if (!CONST_INT_P (x)
8574 && partial_subreg_p (mode, GET_MODE (x))
8575 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8576 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8578 /* Bit-cast X into an integer mode. */
8579 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8580 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8581 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8582 x, GET_MODE (x));
8585 return gen_lowpart (mode, x);
8588 /* See if X can be simplified knowing that we will only refer to it in
8589 MODE and will only refer to those bits that are nonzero in MASK.
8590 If other bits are being computed or if masking operations are done
8591 that select a superset of the bits in MASK, they can sometimes be
8592 ignored.
8594 Return a possibly simplified expression, but always convert X to
8595 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8597 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8598 are all off in X. This is used when X will be complemented, by either
8599 NOT, NEG, or XOR. */
8601 static rtx
8602 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8603 int just_select)
8605 enum rtx_code code = GET_CODE (x);
8606 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8607 machine_mode op_mode;
8608 unsigned HOST_WIDE_INT nonzero;
8610 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8611 code below will do the wrong thing since the mode of such an
8612 expression is VOIDmode.
8614 Also do nothing if X is a CLOBBER; this can happen if X was
8615 the return value from a call to gen_lowpart. */
8616 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8617 return x;
8619 /* We want to perform the operation in its present mode unless we know
8620 that the operation is valid in MODE, in which case we do the operation
8621 in MODE. */
8622 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8623 && have_insn_for (code, mode))
8624 ? mode : GET_MODE (x));
8626 /* It is not valid to do a right-shift in a narrower mode
8627 than the one it came in with. */
8628 if ((code == LSHIFTRT || code == ASHIFTRT)
8629 && partial_subreg_p (mode, GET_MODE (x)))
8630 op_mode = GET_MODE (x);
8632 /* Truncate MASK to fit OP_MODE. */
8633 if (op_mode)
8634 mask &= GET_MODE_MASK (op_mode);
8636 /* Determine what bits of X are guaranteed to be (non)zero. */
8637 nonzero = nonzero_bits (x, mode);
8639 /* If none of the bits in X are needed, return a zero. */
8640 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8641 x = const0_rtx;
8643 /* If X is a CONST_INT, return a new one. Do this here since the
8644 test below will fail. */
8645 if (CONST_INT_P (x))
8647 if (SCALAR_INT_MODE_P (mode))
8648 return gen_int_mode (INTVAL (x) & mask, mode);
8649 else
8651 x = GEN_INT (INTVAL (x) & mask);
8652 return gen_lowpart_common (mode, x);
8656 /* If X is narrower than MODE and we want all the bits in X's mode, just
8657 get X in the proper mode. */
8658 if (paradoxical_subreg_p (mode, GET_MODE (x))
8659 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8660 return gen_lowpart (mode, x);
8662 /* We can ignore the effect of a SUBREG if it narrows the mode or
8663 if the constant masks to zero all the bits the mode doesn't have. */
8664 if (GET_CODE (x) == SUBREG
8665 && subreg_lowpart_p (x)
8666 && (partial_subreg_p (x)
8667 || (mask
8668 & GET_MODE_MASK (GET_MODE (x))
8669 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8670 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8672 scalar_int_mode int_mode, xmode;
8673 if (is_a <scalar_int_mode> (mode, &int_mode)
8674 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8675 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8676 integer too. */
8677 return force_int_to_mode (x, int_mode, xmode,
8678 as_a <scalar_int_mode> (op_mode),
8679 mask, just_select);
8681 return gen_lowpart_or_truncate (mode, x);
8684 /* Subroutine of force_to_mode that handles cases in which both X and
8685 the result are scalar integers. MODE is the mode of the result,
8686 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8687 is preferred for simplified versions of X. The other arguments
8688 are as for force_to_mode. */
8690 static rtx
8691 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8692 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8693 int just_select)
8695 enum rtx_code code = GET_CODE (x);
8696 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8697 unsigned HOST_WIDE_INT fuller_mask;
8698 rtx op0, op1, temp;
8700 /* When we have an arithmetic operation, or a shift whose count we
8701 do not know, we need to assume that all bits up to the highest-order
8702 bit in MASK will be needed. This is how we form such a mask. */
8703 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8704 fuller_mask = HOST_WIDE_INT_M1U;
8705 else
8706 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8707 - 1);
8709 switch (code)
8711 case CLOBBER:
8712 /* If X is a (clobber (const_int)), return it since we know we are
8713 generating something that won't match. */
8714 return x;
8716 case SIGN_EXTEND:
8717 case ZERO_EXTEND:
8718 case ZERO_EXTRACT:
8719 case SIGN_EXTRACT:
8720 x = expand_compound_operation (x);
8721 if (GET_CODE (x) != code)
8722 return force_to_mode (x, mode, mask, next_select);
8723 break;
8725 case TRUNCATE:
8726 /* Similarly for a truncate. */
8727 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8729 case AND:
8730 /* If this is an AND with a constant, convert it into an AND
8731 whose constant is the AND of that constant with MASK. If it
8732 remains an AND of MASK, delete it since it is redundant. */
8734 if (CONST_INT_P (XEXP (x, 1)))
8736 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8737 mask & INTVAL (XEXP (x, 1)));
8738 xmode = op_mode;
8740 /* If X is still an AND, see if it is an AND with a mask that
8741 is just some low-order bits. If so, and it is MASK, we don't
8742 need it. */
8744 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8745 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8746 x = XEXP (x, 0);
8748 /* If it remains an AND, try making another AND with the bits
8749 in the mode mask that aren't in MASK turned on. If the
8750 constant in the AND is wide enough, this might make a
8751 cheaper constant. */
8753 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8754 && GET_MODE_MASK (xmode) != mask
8755 && HWI_COMPUTABLE_MODE_P (xmode))
8757 unsigned HOST_WIDE_INT cval
8758 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8759 rtx y;
8761 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8762 gen_int_mode (cval, xmode));
8763 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8764 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8765 x = y;
8768 break;
8771 goto binop;
8773 case PLUS:
8774 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8775 low-order bits (as in an alignment operation) and FOO is already
8776 aligned to that boundary, mask C1 to that boundary as well.
8777 This may eliminate that PLUS and, later, the AND. */
8780 unsigned int width = GET_MODE_PRECISION (mode);
8781 unsigned HOST_WIDE_INT smask = mask;
8783 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8784 number, sign extend it. */
8786 if (width < HOST_BITS_PER_WIDE_INT
8787 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8788 smask |= HOST_WIDE_INT_M1U << width;
8790 if (CONST_INT_P (XEXP (x, 1))
8791 && pow2p_hwi (- smask)
8792 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8793 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8794 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8795 (INTVAL (XEXP (x, 1)) & smask)),
8796 mode, smask, next_select);
8799 /* fall through */
8801 case MULT:
8802 /* Substituting into the operands of a widening MULT is not likely to
8803 create RTL matching a machine insn. */
8804 if (code == MULT
8805 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8806 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8807 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8808 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8809 && REG_P (XEXP (XEXP (x, 0), 0))
8810 && REG_P (XEXP (XEXP (x, 1), 0)))
8811 return gen_lowpart_or_truncate (mode, x);
8813 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8814 most significant bit in MASK since carries from those bits will
8815 affect the bits we are interested in. */
8816 mask = fuller_mask;
8817 goto binop;
8819 case MINUS:
8820 /* If X is (minus C Y) where C's least set bit is larger than any bit
8821 in the mask, then we may replace with (neg Y). */
8822 if (CONST_INT_P (XEXP (x, 0))
8823 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8825 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8826 return force_to_mode (x, mode, mask, next_select);
8829 /* Similarly, if C contains every bit in the fuller_mask, then we may
8830 replace with (not Y). */
8831 if (CONST_INT_P (XEXP (x, 0))
8832 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8834 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8835 return force_to_mode (x, mode, mask, next_select);
8838 mask = fuller_mask;
8839 goto binop;
8841 case IOR:
8842 case XOR:
8843 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8844 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8845 operation which may be a bitfield extraction. Ensure that the
8846 constant we form is not wider than the mode of X. */
8848 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8849 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8850 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8851 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8852 && CONST_INT_P (XEXP (x, 1))
8853 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8854 + floor_log2 (INTVAL (XEXP (x, 1))))
8855 < GET_MODE_PRECISION (xmode))
8856 && (UINTVAL (XEXP (x, 1))
8857 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8859 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8860 << INTVAL (XEXP (XEXP (x, 0), 1)),
8861 xmode);
8862 temp = simplify_gen_binary (GET_CODE (x), xmode,
8863 XEXP (XEXP (x, 0), 0), temp);
8864 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8865 XEXP (XEXP (x, 0), 1));
8866 return force_to_mode (x, mode, mask, next_select);
8869 binop:
8870 /* For most binary operations, just propagate into the operation and
8871 change the mode if we have an operation of that mode. */
8873 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8874 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8876 /* If we ended up truncating both operands, truncate the result of the
8877 operation instead. */
8878 if (GET_CODE (op0) == TRUNCATE
8879 && GET_CODE (op1) == TRUNCATE)
8881 op0 = XEXP (op0, 0);
8882 op1 = XEXP (op1, 0);
8885 op0 = gen_lowpart_or_truncate (op_mode, op0);
8886 op1 = gen_lowpart_or_truncate (op_mode, op1);
8888 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8890 x = simplify_gen_binary (code, op_mode, op0, op1);
8891 xmode = op_mode;
8893 break;
8895 case ASHIFT:
8896 /* For left shifts, do the same, but just for the first operand.
8897 However, we cannot do anything with shifts where we cannot
8898 guarantee that the counts are smaller than the size of the mode
8899 because such a count will have a different meaning in a
8900 wider mode. */
8902 if (! (CONST_INT_P (XEXP (x, 1))
8903 && INTVAL (XEXP (x, 1)) >= 0
8904 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8905 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8906 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8907 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8908 break;
8910 /* If the shift count is a constant and we can do arithmetic in
8911 the mode of the shift, refine which bits we need. Otherwise, use the
8912 conservative form of the mask. */
8913 if (CONST_INT_P (XEXP (x, 1))
8914 && INTVAL (XEXP (x, 1)) >= 0
8915 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8916 && HWI_COMPUTABLE_MODE_P (op_mode))
8917 mask >>= INTVAL (XEXP (x, 1));
8918 else
8919 mask = fuller_mask;
8921 op0 = gen_lowpart_or_truncate (op_mode,
8922 force_to_mode (XEXP (x, 0), mode,
8923 mask, next_select));
8925 if (op_mode != xmode || op0 != XEXP (x, 0))
8927 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8928 xmode = op_mode;
8930 break;
8932 case LSHIFTRT:
8933 /* Here we can only do something if the shift count is a constant,
8934 this shift constant is valid for the host, and we can do arithmetic
8935 in OP_MODE. */
8937 if (CONST_INT_P (XEXP (x, 1))
8938 && INTVAL (XEXP (x, 1)) >= 0
8939 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8940 && HWI_COMPUTABLE_MODE_P (op_mode))
8942 rtx inner = XEXP (x, 0);
8943 unsigned HOST_WIDE_INT inner_mask;
8945 /* Select the mask of the bits we need for the shift operand. */
8946 inner_mask = mask << INTVAL (XEXP (x, 1));
8948 /* We can only change the mode of the shift if we can do arithmetic
8949 in the mode of the shift and INNER_MASK is no wider than the
8950 width of X's mode. */
8951 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8952 op_mode = xmode;
8954 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8956 if (xmode != op_mode || inner != XEXP (x, 0))
8958 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8959 xmode = op_mode;
8963 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8964 shift and AND produces only copies of the sign bit (C2 is one less
8965 than a power of two), we can do this with just a shift. */
8967 if (GET_CODE (x) == LSHIFTRT
8968 && CONST_INT_P (XEXP (x, 1))
8969 /* The shift puts one of the sign bit copies in the least significant
8970 bit. */
8971 && ((INTVAL (XEXP (x, 1))
8972 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8973 >= GET_MODE_PRECISION (xmode))
8974 && pow2p_hwi (mask + 1)
8975 /* Number of bits left after the shift must be more than the mask
8976 needs. */
8977 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8978 <= GET_MODE_PRECISION (xmode))
8979 /* Must be more sign bit copies than the mask needs. */
8980 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8981 >= exact_log2 (mask + 1)))
8983 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
8984 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8985 gen_int_shift_amount (xmode, nbits));
8987 goto shiftrt;
8989 case ASHIFTRT:
8990 /* If we are just looking for the sign bit, we don't need this shift at
8991 all, even if it has a variable count. */
8992 if (val_signbit_p (xmode, mask))
8993 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8995 /* If this is a shift by a constant, get a mask that contains those bits
8996 that are not copies of the sign bit. We then have two cases: If
8997 MASK only includes those bits, this can be a logical shift, which may
8998 allow simplifications. If MASK is a single-bit field not within
8999 those bits, we are requesting a copy of the sign bit and hence can
9000 shift the sign bit to the appropriate location. */
9002 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9003 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9005 unsigned HOST_WIDE_INT nonzero;
9006 int i;
9008 /* If the considered data is wider than HOST_WIDE_INT, we can't
9009 represent a mask for all its bits in a single scalar.
9010 But we only care about the lower bits, so calculate these. */
9012 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9014 nonzero = HOST_WIDE_INT_M1U;
9016 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9017 is the number of bits a full-width mask would have set.
9018 We need only shift if these are fewer than nonzero can
9019 hold. If not, we must keep all bits set in nonzero. */
9021 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9022 < HOST_BITS_PER_WIDE_INT)
9023 nonzero >>= INTVAL (XEXP (x, 1))
9024 + HOST_BITS_PER_WIDE_INT
9025 - GET_MODE_PRECISION (xmode);
9027 else
9029 nonzero = GET_MODE_MASK (xmode);
9030 nonzero >>= INTVAL (XEXP (x, 1));
9033 if ((mask & ~nonzero) == 0)
9035 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9036 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9037 if (GET_CODE (x) != ASHIFTRT)
9038 return force_to_mode (x, mode, mask, next_select);
9041 else if ((i = exact_log2 (mask)) >= 0)
9043 x = simplify_shift_const
9044 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9045 GET_MODE_PRECISION (xmode) - 1 - i);
9047 if (GET_CODE (x) != ASHIFTRT)
9048 return force_to_mode (x, mode, mask, next_select);
9052 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9053 even if the shift count isn't a constant. */
9054 if (mask == 1)
9055 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9057 shiftrt:
9059 /* If this is a zero- or sign-extension operation that just affects bits
9060 we don't care about, remove it. Be sure the call above returned
9061 something that is still a shift. */
9063 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9064 && CONST_INT_P (XEXP (x, 1))
9065 && INTVAL (XEXP (x, 1)) >= 0
9066 && (INTVAL (XEXP (x, 1))
9067 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9068 && GET_CODE (XEXP (x, 0)) == ASHIFT
9069 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9070 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9071 next_select);
9073 break;
9075 case ROTATE:
9076 case ROTATERT:
9077 /* If the shift count is constant and we can do computations
9078 in the mode of X, compute where the bits we care about are.
9079 Otherwise, we can't do anything. Don't change the mode of
9080 the shift or propagate MODE into the shift, though. */
9081 if (CONST_INT_P (XEXP (x, 1))
9082 && INTVAL (XEXP (x, 1)) >= 0)
9084 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9085 xmode, gen_int_mode (mask, xmode),
9086 XEXP (x, 1));
9087 if (temp && CONST_INT_P (temp))
9088 x = simplify_gen_binary (code, xmode,
9089 force_to_mode (XEXP (x, 0), xmode,
9090 INTVAL (temp), next_select),
9091 XEXP (x, 1));
9093 break;
9095 case NEG:
9096 /* If we just want the low-order bit, the NEG isn't needed since it
9097 won't change the low-order bit. */
9098 if (mask == 1)
9099 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9101 /* We need any bits less significant than the most significant bit in
9102 MASK since carries from those bits will affect the bits we are
9103 interested in. */
9104 mask = fuller_mask;
9105 goto unop;
9107 case NOT:
9108 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9109 same as the XOR case above. Ensure that the constant we form is not
9110 wider than the mode of X. */
9112 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9113 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9114 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9115 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9116 < GET_MODE_PRECISION (xmode))
9117 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9119 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9120 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9121 x = simplify_gen_binary (LSHIFTRT, xmode,
9122 temp, XEXP (XEXP (x, 0), 1));
9124 return force_to_mode (x, mode, mask, next_select);
9127 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9128 use the full mask inside the NOT. */
9129 mask = fuller_mask;
9131 unop:
9132 op0 = gen_lowpart_or_truncate (op_mode,
9133 force_to_mode (XEXP (x, 0), mode, mask,
9134 next_select));
9135 if (op_mode != xmode || op0 != XEXP (x, 0))
9137 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9138 xmode = op_mode;
9140 break;
9142 case NE:
9143 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9144 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9145 which is equal to STORE_FLAG_VALUE. */
9146 if ((mask & ~STORE_FLAG_VALUE) == 0
9147 && XEXP (x, 1) == const0_rtx
9148 && GET_MODE (XEXP (x, 0)) == mode
9149 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9150 && (nonzero_bits (XEXP (x, 0), mode)
9151 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9152 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9154 break;
9156 case IF_THEN_ELSE:
9157 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9158 written in a narrower mode. We play it safe and do not do so. */
9160 op0 = gen_lowpart_or_truncate (xmode,
9161 force_to_mode (XEXP (x, 1), mode,
9162 mask, next_select));
9163 op1 = gen_lowpart_or_truncate (xmode,
9164 force_to_mode (XEXP (x, 2), mode,
9165 mask, next_select));
9166 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9167 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9168 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9169 op0, op1);
9170 break;
9172 default:
9173 break;
9176 /* Ensure we return a value of the proper mode. */
9177 return gen_lowpart_or_truncate (mode, x);
9180 /* Return nonzero if X is an expression that has one of two values depending on
9181 whether some other value is zero or nonzero. In that case, we return the
9182 value that is being tested, *PTRUE is set to the value if the rtx being
9183 returned has a nonzero value, and *PFALSE is set to the other alternative.
9185 If we return zero, we set *PTRUE and *PFALSE to X. */
9187 static rtx
9188 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9190 machine_mode mode = GET_MODE (x);
9191 enum rtx_code code = GET_CODE (x);
9192 rtx cond0, cond1, true0, true1, false0, false1;
9193 unsigned HOST_WIDE_INT nz;
9194 scalar_int_mode int_mode;
9196 /* If we are comparing a value against zero, we are done. */
9197 if ((code == NE || code == EQ)
9198 && XEXP (x, 1) == const0_rtx)
9200 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9201 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9202 return XEXP (x, 0);
9205 /* If this is a unary operation whose operand has one of two values, apply
9206 our opcode to compute those values. */
9207 else if (UNARY_P (x)
9208 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9210 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9211 *pfalse = simplify_gen_unary (code, mode, false0,
9212 GET_MODE (XEXP (x, 0)));
9213 return cond0;
9216 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9217 make can't possibly match and would suppress other optimizations. */
9218 else if (code == COMPARE)
9221 /* If this is a binary operation, see if either side has only one of two
9222 values. If either one does or if both do and they are conditional on
9223 the same value, compute the new true and false values. */
9224 else if (BINARY_P (x))
9226 rtx op0 = XEXP (x, 0);
9227 rtx op1 = XEXP (x, 1);
9228 cond0 = if_then_else_cond (op0, &true0, &false0);
9229 cond1 = if_then_else_cond (op1, &true1, &false1);
9231 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9232 && (REG_P (op0) || REG_P (op1)))
9234 /* Try to enable a simplification by undoing work done by
9235 if_then_else_cond if it converted a REG into something more
9236 complex. */
9237 if (REG_P (op0))
9239 cond0 = 0;
9240 true0 = false0 = op0;
9242 else
9244 cond1 = 0;
9245 true1 = false1 = op1;
9249 if ((cond0 != 0 || cond1 != 0)
9250 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9252 /* If if_then_else_cond returned zero, then true/false are the
9253 same rtl. We must copy one of them to prevent invalid rtl
9254 sharing. */
9255 if (cond0 == 0)
9256 true0 = copy_rtx (true0);
9257 else if (cond1 == 0)
9258 true1 = copy_rtx (true1);
9260 if (COMPARISON_P (x))
9262 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9263 true0, true1);
9264 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9265 false0, false1);
9267 else
9269 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9270 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9273 return cond0 ? cond0 : cond1;
9276 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9277 operands is zero when the other is nonzero, and vice-versa,
9278 and STORE_FLAG_VALUE is 1 or -1. */
9280 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9281 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9282 || code == UMAX)
9283 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9285 rtx op0 = XEXP (XEXP (x, 0), 1);
9286 rtx op1 = XEXP (XEXP (x, 1), 1);
9288 cond0 = XEXP (XEXP (x, 0), 0);
9289 cond1 = XEXP (XEXP (x, 1), 0);
9291 if (COMPARISON_P (cond0)
9292 && COMPARISON_P (cond1)
9293 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9294 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9295 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9296 || ((swap_condition (GET_CODE (cond0))
9297 == reversed_comparison_code (cond1, NULL))
9298 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9299 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9300 && ! side_effects_p (x))
9302 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9303 *pfalse = simplify_gen_binary (MULT, mode,
9304 (code == MINUS
9305 ? simplify_gen_unary (NEG, mode,
9306 op1, mode)
9307 : op1),
9308 const_true_rtx);
9309 return cond0;
9313 /* Similarly for MULT, AND and UMIN, except that for these the result
9314 is always zero. */
9315 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9316 && (code == MULT || code == AND || code == UMIN)
9317 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9319 cond0 = XEXP (XEXP (x, 0), 0);
9320 cond1 = XEXP (XEXP (x, 1), 0);
9322 if (COMPARISON_P (cond0)
9323 && COMPARISON_P (cond1)
9324 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9325 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9326 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9327 || ((swap_condition (GET_CODE (cond0))
9328 == reversed_comparison_code (cond1, NULL))
9329 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9330 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9331 && ! side_effects_p (x))
9333 *ptrue = *pfalse = const0_rtx;
9334 return cond0;
9339 else if (code == IF_THEN_ELSE)
9341 /* If we have IF_THEN_ELSE already, extract the condition and
9342 canonicalize it if it is NE or EQ. */
9343 cond0 = XEXP (x, 0);
9344 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9345 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9346 return XEXP (cond0, 0);
9347 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9349 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9350 return XEXP (cond0, 0);
9352 else
9353 return cond0;
9356 /* If X is a SUBREG, we can narrow both the true and false values
9357 if the inner expression, if there is a condition. */
9358 else if (code == SUBREG
9359 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9360 &false0)) != 0)
9362 true0 = simplify_gen_subreg (mode, true0,
9363 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9364 false0 = simplify_gen_subreg (mode, false0,
9365 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9366 if (true0 && false0)
9368 *ptrue = true0;
9369 *pfalse = false0;
9370 return cond0;
9374 /* If X is a constant, this isn't special and will cause confusions
9375 if we treat it as such. Likewise if it is equivalent to a constant. */
9376 else if (CONSTANT_P (x)
9377 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9380 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9381 will be least confusing to the rest of the compiler. */
9382 else if (mode == BImode)
9384 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9385 return x;
9388 /* If X is known to be either 0 or -1, those are the true and
9389 false values when testing X. */
9390 else if (x == constm1_rtx || x == const0_rtx
9391 || (is_a <scalar_int_mode> (mode, &int_mode)
9392 && (num_sign_bit_copies (x, int_mode)
9393 == GET_MODE_PRECISION (int_mode))))
9395 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9396 return x;
9399 /* Likewise for 0 or a single bit. */
9400 else if (HWI_COMPUTABLE_MODE_P (mode)
9401 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9403 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9404 return x;
9407 /* Otherwise fail; show no condition with true and false values the same. */
9408 *ptrue = *pfalse = x;
9409 return 0;
9412 /* Return the value of expression X given the fact that condition COND
9413 is known to be true when applied to REG as its first operand and VAL
9414 as its second. X is known to not be shared and so can be modified in
9415 place.
9417 We only handle the simplest cases, and specifically those cases that
9418 arise with IF_THEN_ELSE expressions. */
9420 static rtx
9421 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9423 enum rtx_code code = GET_CODE (x);
9424 const char *fmt;
9425 int i, j;
9427 if (side_effects_p (x))
9428 return x;
9430 /* If either operand of the condition is a floating point value,
9431 then we have to avoid collapsing an EQ comparison. */
9432 if (cond == EQ
9433 && rtx_equal_p (x, reg)
9434 && ! FLOAT_MODE_P (GET_MODE (x))
9435 && ! FLOAT_MODE_P (GET_MODE (val)))
9436 return val;
9438 if (cond == UNEQ && rtx_equal_p (x, reg))
9439 return val;
9441 /* If X is (abs REG) and we know something about REG's relationship
9442 with zero, we may be able to simplify this. */
9444 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9445 switch (cond)
9447 case GE: case GT: case EQ:
9448 return XEXP (x, 0);
9449 case LT: case LE:
9450 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9451 XEXP (x, 0),
9452 GET_MODE (XEXP (x, 0)));
9453 default:
9454 break;
9457 /* The only other cases we handle are MIN, MAX, and comparisons if the
9458 operands are the same as REG and VAL. */
9460 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9462 if (rtx_equal_p (XEXP (x, 0), val))
9464 std::swap (val, reg);
9465 cond = swap_condition (cond);
9468 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9470 if (COMPARISON_P (x))
9472 if (comparison_dominates_p (cond, code))
9473 return const_true_rtx;
9475 code = reversed_comparison_code (x, NULL);
9476 if (code != UNKNOWN
9477 && comparison_dominates_p (cond, code))
9478 return const0_rtx;
9479 else
9480 return x;
9482 else if (code == SMAX || code == SMIN
9483 || code == UMIN || code == UMAX)
9485 int unsignedp = (code == UMIN || code == UMAX);
9487 /* Do not reverse the condition when it is NE or EQ.
9488 This is because we cannot conclude anything about
9489 the value of 'SMAX (x, y)' when x is not equal to y,
9490 but we can when x equals y. */
9491 if ((code == SMAX || code == UMAX)
9492 && ! (cond == EQ || cond == NE))
9493 cond = reverse_condition (cond);
9495 switch (cond)
9497 case GE: case GT:
9498 return unsignedp ? x : XEXP (x, 1);
9499 case LE: case LT:
9500 return unsignedp ? x : XEXP (x, 0);
9501 case GEU: case GTU:
9502 return unsignedp ? XEXP (x, 1) : x;
9503 case LEU: case LTU:
9504 return unsignedp ? XEXP (x, 0) : x;
9505 default:
9506 break;
9511 else if (code == SUBREG)
9513 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9514 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9516 if (SUBREG_REG (x) != r)
9518 /* We must simplify subreg here, before we lose track of the
9519 original inner_mode. */
9520 new_rtx = simplify_subreg (GET_MODE (x), r,
9521 inner_mode, SUBREG_BYTE (x));
9522 if (new_rtx)
9523 return new_rtx;
9524 else
9525 SUBST (SUBREG_REG (x), r);
9528 return x;
9530 /* We don't have to handle SIGN_EXTEND here, because even in the
9531 case of replacing something with a modeless CONST_INT, a
9532 CONST_INT is already (supposed to be) a valid sign extension for
9533 its narrower mode, which implies it's already properly
9534 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9535 story is different. */
9536 else if (code == ZERO_EXTEND)
9538 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9539 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9541 if (XEXP (x, 0) != r)
9543 /* We must simplify the zero_extend here, before we lose
9544 track of the original inner_mode. */
9545 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9546 r, inner_mode);
9547 if (new_rtx)
9548 return new_rtx;
9549 else
9550 SUBST (XEXP (x, 0), r);
9553 return x;
9556 fmt = GET_RTX_FORMAT (code);
9557 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9559 if (fmt[i] == 'e')
9560 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9561 else if (fmt[i] == 'E')
9562 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9563 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9564 cond, reg, val));
9567 return x;
9570 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9571 assignment as a field assignment. */
9573 static int
9574 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9576 if (widen_x && GET_MODE (x) != GET_MODE (y))
9578 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9579 return 0;
9580 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9581 return 0;
9582 x = adjust_address_nv (x, GET_MODE (y),
9583 byte_lowpart_offset (GET_MODE (y),
9584 GET_MODE (x)));
9587 if (x == y || rtx_equal_p (x, y))
9588 return 1;
9590 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9591 return 0;
9593 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9594 Note that all SUBREGs of MEM are paradoxical; otherwise they
9595 would have been rewritten. */
9596 if (MEM_P (x) && GET_CODE (y) == SUBREG
9597 && MEM_P (SUBREG_REG (y))
9598 && rtx_equal_p (SUBREG_REG (y),
9599 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9600 return 1;
9602 if (MEM_P (y) && GET_CODE (x) == SUBREG
9603 && MEM_P (SUBREG_REG (x))
9604 && rtx_equal_p (SUBREG_REG (x),
9605 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9606 return 1;
9608 /* We used to see if get_last_value of X and Y were the same but that's
9609 not correct. In one direction, we'll cause the assignment to have
9610 the wrong destination and in the case, we'll import a register into this
9611 insn that might have already have been dead. So fail if none of the
9612 above cases are true. */
9613 return 0;
9616 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9617 Return that assignment if so.
9619 We only handle the most common cases. */
9621 static rtx
9622 make_field_assignment (rtx x)
9624 rtx dest = SET_DEST (x);
9625 rtx src = SET_SRC (x);
9626 rtx assign;
9627 rtx rhs, lhs;
9628 HOST_WIDE_INT c1;
9629 HOST_WIDE_INT pos;
9630 unsigned HOST_WIDE_INT len;
9631 rtx other;
9633 /* All the rules in this function are specific to scalar integers. */
9634 scalar_int_mode mode;
9635 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9636 return x;
9638 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9639 a clear of a one-bit field. We will have changed it to
9640 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9641 for a SUBREG. */
9643 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9644 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9645 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9646 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9648 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9649 1, 1, 1, 0);
9650 if (assign != 0)
9651 return gen_rtx_SET (assign, const0_rtx);
9652 return x;
9655 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9656 && subreg_lowpart_p (XEXP (src, 0))
9657 && partial_subreg_p (XEXP (src, 0))
9658 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9659 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9660 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9661 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9663 assign = make_extraction (VOIDmode, dest, 0,
9664 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9665 1, 1, 1, 0);
9666 if (assign != 0)
9667 return gen_rtx_SET (assign, const0_rtx);
9668 return x;
9671 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9672 one-bit field. */
9673 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9674 && XEXP (XEXP (src, 0), 0) == const1_rtx
9675 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9677 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9678 1, 1, 1, 0);
9679 if (assign != 0)
9680 return gen_rtx_SET (assign, const1_rtx);
9681 return x;
9684 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9685 SRC is an AND with all bits of that field set, then we can discard
9686 the AND. */
9687 if (GET_CODE (dest) == ZERO_EXTRACT
9688 && CONST_INT_P (XEXP (dest, 1))
9689 && GET_CODE (src) == AND
9690 && CONST_INT_P (XEXP (src, 1)))
9692 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9693 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9694 unsigned HOST_WIDE_INT ze_mask;
9696 if (width >= HOST_BITS_PER_WIDE_INT)
9697 ze_mask = -1;
9698 else
9699 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9701 /* Complete overlap. We can remove the source AND. */
9702 if ((and_mask & ze_mask) == ze_mask)
9703 return gen_rtx_SET (dest, XEXP (src, 0));
9705 /* Partial overlap. We can reduce the source AND. */
9706 if ((and_mask & ze_mask) != and_mask)
9708 src = gen_rtx_AND (mode, XEXP (src, 0),
9709 gen_int_mode (and_mask & ze_mask, mode));
9710 return gen_rtx_SET (dest, src);
9714 /* The other case we handle is assignments into a constant-position
9715 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9716 a mask that has all one bits except for a group of zero bits and
9717 OTHER is known to have zeros where C1 has ones, this is such an
9718 assignment. Compute the position and length from C1. Shift OTHER
9719 to the appropriate position, force it to the required mode, and
9720 make the extraction. Check for the AND in both operands. */
9722 /* One or more SUBREGs might obscure the constant-position field
9723 assignment. The first one we are likely to encounter is an outer
9724 narrowing SUBREG, which we can just strip for the purposes of
9725 identifying the constant-field assignment. */
9726 scalar_int_mode src_mode = mode;
9727 if (GET_CODE (src) == SUBREG
9728 && subreg_lowpart_p (src)
9729 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9730 src = SUBREG_REG (src);
9732 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9733 return x;
9735 rhs = expand_compound_operation (XEXP (src, 0));
9736 lhs = expand_compound_operation (XEXP (src, 1));
9738 if (GET_CODE (rhs) == AND
9739 && CONST_INT_P (XEXP (rhs, 1))
9740 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9741 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9742 /* The second SUBREG that might get in the way is a paradoxical
9743 SUBREG around the first operand of the AND. We want to
9744 pretend the operand is as wide as the destination here. We
9745 do this by adjusting the MEM to wider mode for the sole
9746 purpose of the call to rtx_equal_for_field_assignment_p. Also
9747 note this trick only works for MEMs. */
9748 else if (GET_CODE (rhs) == AND
9749 && paradoxical_subreg_p (XEXP (rhs, 0))
9750 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9751 && CONST_INT_P (XEXP (rhs, 1))
9752 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9753 dest, true))
9754 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9755 else if (GET_CODE (lhs) == AND
9756 && CONST_INT_P (XEXP (lhs, 1))
9757 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9758 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9759 /* The second SUBREG that might get in the way is a paradoxical
9760 SUBREG around the first operand of the AND. We want to
9761 pretend the operand is as wide as the destination here. We
9762 do this by adjusting the MEM to wider mode for the sole
9763 purpose of the call to rtx_equal_for_field_assignment_p. Also
9764 note this trick only works for MEMs. */
9765 else if (GET_CODE (lhs) == AND
9766 && paradoxical_subreg_p (XEXP (lhs, 0))
9767 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9768 && CONST_INT_P (XEXP (lhs, 1))
9769 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9770 dest, true))
9771 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9772 else
9773 return x;
9775 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9776 if (pos < 0
9777 || pos + len > GET_MODE_PRECISION (mode)
9778 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9779 || (c1 & nonzero_bits (other, mode)) != 0)
9780 return x;
9782 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9783 if (assign == 0)
9784 return x;
9786 /* The mode to use for the source is the mode of the assignment, or of
9787 what is inside a possible STRICT_LOW_PART. */
9788 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9789 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9791 /* Shift OTHER right POS places and make it the source, restricting it
9792 to the proper length and mode. */
9794 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9795 src_mode, other, pos),
9796 dest);
9797 src = force_to_mode (src, new_mode,
9798 len >= HOST_BITS_PER_WIDE_INT
9799 ? HOST_WIDE_INT_M1U
9800 : (HOST_WIDE_INT_1U << len) - 1,
9803 /* If SRC is masked by an AND that does not make a difference in
9804 the value being stored, strip it. */
9805 if (GET_CODE (assign) == ZERO_EXTRACT
9806 && CONST_INT_P (XEXP (assign, 1))
9807 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9808 && GET_CODE (src) == AND
9809 && CONST_INT_P (XEXP (src, 1))
9810 && UINTVAL (XEXP (src, 1))
9811 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9812 src = XEXP (src, 0);
9814 return gen_rtx_SET (assign, src);
9817 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9818 if so. */
9820 static rtx
9821 apply_distributive_law (rtx x)
9823 enum rtx_code code = GET_CODE (x);
9824 enum rtx_code inner_code;
9825 rtx lhs, rhs, other;
9826 rtx tem;
9828 /* Distributivity is not true for floating point as it can change the
9829 value. So we don't do it unless -funsafe-math-optimizations. */
9830 if (FLOAT_MODE_P (GET_MODE (x))
9831 && ! flag_unsafe_math_optimizations)
9832 return x;
9834 /* The outer operation can only be one of the following: */
9835 if (code != IOR && code != AND && code != XOR
9836 && code != PLUS && code != MINUS)
9837 return x;
9839 lhs = XEXP (x, 0);
9840 rhs = XEXP (x, 1);
9842 /* If either operand is a primitive we can't do anything, so get out
9843 fast. */
9844 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9845 return x;
9847 lhs = expand_compound_operation (lhs);
9848 rhs = expand_compound_operation (rhs);
9849 inner_code = GET_CODE (lhs);
9850 if (inner_code != GET_CODE (rhs))
9851 return x;
9853 /* See if the inner and outer operations distribute. */
9854 switch (inner_code)
9856 case LSHIFTRT:
9857 case ASHIFTRT:
9858 case AND:
9859 case IOR:
9860 /* These all distribute except over PLUS. */
9861 if (code == PLUS || code == MINUS)
9862 return x;
9863 break;
9865 case MULT:
9866 if (code != PLUS && code != MINUS)
9867 return x;
9868 break;
9870 case ASHIFT:
9871 /* This is also a multiply, so it distributes over everything. */
9872 break;
9874 /* This used to handle SUBREG, but this turned out to be counter-
9875 productive, since (subreg (op ...)) usually is not handled by
9876 insn patterns, and this "optimization" therefore transformed
9877 recognizable patterns into unrecognizable ones. Therefore the
9878 SUBREG case was removed from here.
9880 It is possible that distributing SUBREG over arithmetic operations
9881 leads to an intermediate result than can then be optimized further,
9882 e.g. by moving the outer SUBREG to the other side of a SET as done
9883 in simplify_set. This seems to have been the original intent of
9884 handling SUBREGs here.
9886 However, with current GCC this does not appear to actually happen,
9887 at least on major platforms. If some case is found where removing
9888 the SUBREG case here prevents follow-on optimizations, distributing
9889 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9891 default:
9892 return x;
9895 /* Set LHS and RHS to the inner operands (A and B in the example
9896 above) and set OTHER to the common operand (C in the example).
9897 There is only one way to do this unless the inner operation is
9898 commutative. */
9899 if (COMMUTATIVE_ARITH_P (lhs)
9900 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9901 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9902 else if (COMMUTATIVE_ARITH_P (lhs)
9903 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9904 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9905 else if (COMMUTATIVE_ARITH_P (lhs)
9906 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9907 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9908 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9909 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9910 else
9911 return x;
9913 /* Form the new inner operation, seeing if it simplifies first. */
9914 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9916 /* There is one exception to the general way of distributing:
9917 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9918 if (code == XOR && inner_code == IOR)
9920 inner_code = AND;
9921 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9924 /* We may be able to continuing distributing the result, so call
9925 ourselves recursively on the inner operation before forming the
9926 outer operation, which we return. */
9927 return simplify_gen_binary (inner_code, GET_MODE (x),
9928 apply_distributive_law (tem), other);
9931 /* See if X is of the form (* (+ A B) C), and if so convert to
9932 (+ (* A C) (* B C)) and try to simplify.
9934 Most of the time, this results in no change. However, if some of
9935 the operands are the same or inverses of each other, simplifications
9936 will result.
9938 For example, (and (ior A B) (not B)) can occur as the result of
9939 expanding a bit field assignment. When we apply the distributive
9940 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9941 which then simplifies to (and (A (not B))).
9943 Note that no checks happen on the validity of applying the inverse
9944 distributive law. This is pointless since we can do it in the
9945 few places where this routine is called.
9947 N is the index of the term that is decomposed (the arithmetic operation,
9948 i.e. (+ A B) in the first example above). !N is the index of the term that
9949 is distributed, i.e. of C in the first example above. */
9950 static rtx
9951 distribute_and_simplify_rtx (rtx x, int n)
9953 machine_mode mode;
9954 enum rtx_code outer_code, inner_code;
9955 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9957 /* Distributivity is not true for floating point as it can change the
9958 value. So we don't do it unless -funsafe-math-optimizations. */
9959 if (FLOAT_MODE_P (GET_MODE (x))
9960 && ! flag_unsafe_math_optimizations)
9961 return NULL_RTX;
9963 decomposed = XEXP (x, n);
9964 if (!ARITHMETIC_P (decomposed))
9965 return NULL_RTX;
9967 mode = GET_MODE (x);
9968 outer_code = GET_CODE (x);
9969 distributed = XEXP (x, !n);
9971 inner_code = GET_CODE (decomposed);
9972 inner_op0 = XEXP (decomposed, 0);
9973 inner_op1 = XEXP (decomposed, 1);
9975 /* Special case (and (xor B C) (not A)), which is equivalent to
9976 (xor (ior A B) (ior A C)) */
9977 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9979 distributed = XEXP (distributed, 0);
9980 outer_code = IOR;
9983 if (n == 0)
9985 /* Distribute the second term. */
9986 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9987 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9989 else
9991 /* Distribute the first term. */
9992 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9993 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9996 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9997 new_op0, new_op1));
9998 if (GET_CODE (tmp) != outer_code
9999 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10000 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10001 return tmp;
10003 return NULL_RTX;
10006 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10007 in MODE. Return an equivalent form, if different from (and VAROP
10008 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10010 static rtx
10011 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10012 unsigned HOST_WIDE_INT constop)
10014 unsigned HOST_WIDE_INT nonzero;
10015 unsigned HOST_WIDE_INT orig_constop;
10016 rtx orig_varop;
10017 int i;
10019 orig_varop = varop;
10020 orig_constop = constop;
10021 if (GET_CODE (varop) == CLOBBER)
10022 return NULL_RTX;
10024 /* Simplify VAROP knowing that we will be only looking at some of the
10025 bits in it.
10027 Note by passing in CONSTOP, we guarantee that the bits not set in
10028 CONSTOP are not significant and will never be examined. We must
10029 ensure that is the case by explicitly masking out those bits
10030 before returning. */
10031 varop = force_to_mode (varop, mode, constop, 0);
10033 /* If VAROP is a CLOBBER, we will fail so return it. */
10034 if (GET_CODE (varop) == CLOBBER)
10035 return varop;
10037 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10038 to VAROP and return the new constant. */
10039 if (CONST_INT_P (varop))
10040 return gen_int_mode (INTVAL (varop) & constop, mode);
10042 /* See what bits may be nonzero in VAROP. Unlike the general case of
10043 a call to nonzero_bits, here we don't care about bits outside
10044 MODE. */
10046 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10048 /* Turn off all bits in the constant that are known to already be zero.
10049 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10050 which is tested below. */
10052 constop &= nonzero;
10054 /* If we don't have any bits left, return zero. */
10055 if (constop == 0)
10056 return const0_rtx;
10058 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10059 a power of two, we can replace this with an ASHIFT. */
10060 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10061 && (i = exact_log2 (constop)) >= 0)
10062 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10064 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10065 or XOR, then try to apply the distributive law. This may eliminate
10066 operations if either branch can be simplified because of the AND.
10067 It may also make some cases more complex, but those cases probably
10068 won't match a pattern either with or without this. */
10070 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10072 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10073 return
10074 gen_lowpart
10075 (mode,
10076 apply_distributive_law
10077 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10078 simplify_and_const_int (NULL_RTX, varop_mode,
10079 XEXP (varop, 0),
10080 constop),
10081 simplify_and_const_int (NULL_RTX, varop_mode,
10082 XEXP (varop, 1),
10083 constop))));
10086 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10087 the AND and see if one of the operands simplifies to zero. If so, we
10088 may eliminate it. */
10090 if (GET_CODE (varop) == PLUS
10091 && pow2p_hwi (constop + 1))
10093 rtx o0, o1;
10095 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10096 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10097 if (o0 == const0_rtx)
10098 return o1;
10099 if (o1 == const0_rtx)
10100 return o0;
10103 /* Make a SUBREG if necessary. If we can't make it, fail. */
10104 varop = gen_lowpart (mode, varop);
10105 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10106 return NULL_RTX;
10108 /* If we are only masking insignificant bits, return VAROP. */
10109 if (constop == nonzero)
10110 return varop;
10112 if (varop == orig_varop && constop == orig_constop)
10113 return NULL_RTX;
10115 /* Otherwise, return an AND. */
10116 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10120 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10121 in MODE.
10123 Return an equivalent form, if different from X. Otherwise, return X. If
10124 X is zero, we are to always construct the equivalent form. */
10126 static rtx
10127 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10128 unsigned HOST_WIDE_INT constop)
10130 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10131 if (tem)
10132 return tem;
10134 if (!x)
10135 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10136 gen_int_mode (constop, mode));
10137 if (GET_MODE (x) != mode)
10138 x = gen_lowpart (mode, x);
10139 return x;
10142 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10143 We don't care about bits outside of those defined in MODE.
10145 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10146 a shift, AND, or zero_extract, we can do better. */
10148 static rtx
10149 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10150 scalar_int_mode mode,
10151 unsigned HOST_WIDE_INT *nonzero)
10153 rtx tem;
10154 reg_stat_type *rsp;
10156 /* If X is a register whose nonzero bits value is current, use it.
10157 Otherwise, if X is a register whose value we can find, use that
10158 value. Otherwise, use the previously-computed global nonzero bits
10159 for this register. */
10161 rsp = &reg_stat[REGNO (x)];
10162 if (rsp->last_set_value != 0
10163 && (rsp->last_set_mode == mode
10164 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10165 && GET_MODE_CLASS (mode) == MODE_INT))
10166 && ((rsp->last_set_label >= label_tick_ebb_start
10167 && rsp->last_set_label < label_tick)
10168 || (rsp->last_set_label == label_tick
10169 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10170 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10171 && REGNO (x) < reg_n_sets_max
10172 && REG_N_SETS (REGNO (x)) == 1
10173 && !REGNO_REG_SET_P
10174 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10175 REGNO (x)))))
10177 /* Note that, even if the precision of last_set_mode is lower than that
10178 of mode, record_value_for_reg invoked nonzero_bits on the register
10179 with nonzero_bits_mode (because last_set_mode is necessarily integral
10180 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10181 are all valid, hence in mode too since nonzero_bits_mode is defined
10182 to the largest HWI_COMPUTABLE_MODE_P mode. */
10183 *nonzero &= rsp->last_set_nonzero_bits;
10184 return NULL;
10187 tem = get_last_value (x);
10188 if (tem)
10190 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10191 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10193 return tem;
10196 if (nonzero_sign_valid && rsp->nonzero_bits)
10198 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10200 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10201 /* We don't know anything about the upper bits. */
10202 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10204 *nonzero &= mask;
10207 return NULL;
10210 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10211 end of X that are known to be equal to the sign bit. X will be used
10212 in mode MODE; the returned value will always be between 1 and the
10213 number of bits in MODE. */
10215 static rtx
10216 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10217 scalar_int_mode mode,
10218 unsigned int *result)
10220 rtx tem;
10221 reg_stat_type *rsp;
10223 rsp = &reg_stat[REGNO (x)];
10224 if (rsp->last_set_value != 0
10225 && rsp->last_set_mode == mode
10226 && ((rsp->last_set_label >= label_tick_ebb_start
10227 && rsp->last_set_label < label_tick)
10228 || (rsp->last_set_label == label_tick
10229 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10230 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10231 && REGNO (x) < reg_n_sets_max
10232 && REG_N_SETS (REGNO (x)) == 1
10233 && !REGNO_REG_SET_P
10234 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10235 REGNO (x)))))
10237 *result = rsp->last_set_sign_bit_copies;
10238 return NULL;
10241 tem = get_last_value (x);
10242 if (tem != 0)
10243 return tem;
10245 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10246 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10247 *result = rsp->sign_bit_copies;
10249 return NULL;
10252 /* Return the number of "extended" bits there are in X, when interpreted
10253 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10254 unsigned quantities, this is the number of high-order zero bits.
10255 For signed quantities, this is the number of copies of the sign bit
10256 minus 1. In both case, this function returns the number of "spare"
10257 bits. For example, if two quantities for which this function returns
10258 at least 1 are added, the addition is known not to overflow.
10260 This function will always return 0 unless called during combine, which
10261 implies that it must be called from a define_split. */
10263 unsigned int
10264 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10266 if (nonzero_sign_valid == 0)
10267 return 0;
10269 scalar_int_mode int_mode;
10270 return (unsignedp
10271 ? (is_a <scalar_int_mode> (mode, &int_mode)
10272 && HWI_COMPUTABLE_MODE_P (int_mode)
10273 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10274 - floor_log2 (nonzero_bits (x, int_mode)))
10275 : 0)
10276 : num_sign_bit_copies (x, mode) - 1);
10279 /* This function is called from `simplify_shift_const' to merge two
10280 outer operations. Specifically, we have already found that we need
10281 to perform operation *POP0 with constant *PCONST0 at the outermost
10282 position. We would now like to also perform OP1 with constant CONST1
10283 (with *POP0 being done last).
10285 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10286 the resulting operation. *PCOMP_P is set to 1 if we would need to
10287 complement the innermost operand, otherwise it is unchanged.
10289 MODE is the mode in which the operation will be done. No bits outside
10290 the width of this mode matter. It is assumed that the width of this mode
10291 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10293 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10294 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10295 result is simply *PCONST0.
10297 If the resulting operation cannot be expressed as one operation, we
10298 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10300 static int
10301 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10303 enum rtx_code op0 = *pop0;
10304 HOST_WIDE_INT const0 = *pconst0;
10306 const0 &= GET_MODE_MASK (mode);
10307 const1 &= GET_MODE_MASK (mode);
10309 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10310 if (op0 == AND)
10311 const1 &= const0;
10313 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10314 if OP0 is SET. */
10316 if (op1 == UNKNOWN || op0 == SET)
10317 return 1;
10319 else if (op0 == UNKNOWN)
10320 op0 = op1, const0 = const1;
10322 else if (op0 == op1)
10324 switch (op0)
10326 case AND:
10327 const0 &= const1;
10328 break;
10329 case IOR:
10330 const0 |= const1;
10331 break;
10332 case XOR:
10333 const0 ^= const1;
10334 break;
10335 case PLUS:
10336 const0 += const1;
10337 break;
10338 case NEG:
10339 op0 = UNKNOWN;
10340 break;
10341 default:
10342 break;
10346 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10347 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10348 return 0;
10350 /* If the two constants aren't the same, we can't do anything. The
10351 remaining six cases can all be done. */
10352 else if (const0 != const1)
10353 return 0;
10355 else
10356 switch (op0)
10358 case IOR:
10359 if (op1 == AND)
10360 /* (a & b) | b == b */
10361 op0 = SET;
10362 else /* op1 == XOR */
10363 /* (a ^ b) | b == a | b */
10365 break;
10367 case XOR:
10368 if (op1 == AND)
10369 /* (a & b) ^ b == (~a) & b */
10370 op0 = AND, *pcomp_p = 1;
10371 else /* op1 == IOR */
10372 /* (a | b) ^ b == a & ~b */
10373 op0 = AND, const0 = ~const0;
10374 break;
10376 case AND:
10377 if (op1 == IOR)
10378 /* (a | b) & b == b */
10379 op0 = SET;
10380 else /* op1 == XOR */
10381 /* (a ^ b) & b) == (~a) & b */
10382 *pcomp_p = 1;
10383 break;
10384 default:
10385 break;
10388 /* Check for NO-OP cases. */
10389 const0 &= GET_MODE_MASK (mode);
10390 if (const0 == 0
10391 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10392 op0 = UNKNOWN;
10393 else if (const0 == 0 && op0 == AND)
10394 op0 = SET;
10395 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10396 && op0 == AND)
10397 op0 = UNKNOWN;
10399 *pop0 = op0;
10401 /* ??? Slightly redundant with the above mask, but not entirely.
10402 Moving this above means we'd have to sign-extend the mode mask
10403 for the final test. */
10404 if (op0 != UNKNOWN && op0 != NEG)
10405 *pconst0 = trunc_int_for_mode (const0, mode);
10407 return 1;
10410 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10411 the shift in. The original shift operation CODE is performed on OP in
10412 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10413 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10414 result of the shift is subject to operation OUTER_CODE with operand
10415 OUTER_CONST. */
10417 static scalar_int_mode
10418 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10419 scalar_int_mode orig_mode, scalar_int_mode mode,
10420 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10422 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10424 /* In general we can't perform in wider mode for right shift and rotate. */
10425 switch (code)
10427 case ASHIFTRT:
10428 /* We can still widen if the bits brought in from the left are identical
10429 to the sign bit of ORIG_MODE. */
10430 if (num_sign_bit_copies (op, mode)
10431 > (unsigned) (GET_MODE_PRECISION (mode)
10432 - GET_MODE_PRECISION (orig_mode)))
10433 return mode;
10434 return orig_mode;
10436 case LSHIFTRT:
10437 /* Similarly here but with zero bits. */
10438 if (HWI_COMPUTABLE_MODE_P (mode)
10439 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10440 return mode;
10442 /* We can also widen if the bits brought in will be masked off. This
10443 operation is performed in ORIG_MODE. */
10444 if (outer_code == AND)
10446 int care_bits = low_bitmask_len (orig_mode, outer_const);
10448 if (care_bits >= 0
10449 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10450 return mode;
10452 /* fall through */
10454 case ROTATE:
10455 return orig_mode;
10457 case ROTATERT:
10458 gcc_unreachable ();
10460 default:
10461 return mode;
10465 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10466 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10467 if we cannot simplify it. Otherwise, return a simplified value.
10469 The shift is normally computed in the widest mode we find in VAROP, as
10470 long as it isn't a different number of words than RESULT_MODE. Exceptions
10471 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10473 static rtx
10474 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10475 rtx varop, int orig_count)
10477 enum rtx_code orig_code = code;
10478 rtx orig_varop = varop;
10479 int count, log2;
10480 machine_mode mode = result_mode;
10481 machine_mode shift_mode;
10482 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10483 /* We form (outer_op (code varop count) (outer_const)). */
10484 enum rtx_code outer_op = UNKNOWN;
10485 HOST_WIDE_INT outer_const = 0;
10486 int complement_p = 0;
10487 rtx new_rtx, x;
10489 /* Make sure and truncate the "natural" shift on the way in. We don't
10490 want to do this inside the loop as it makes it more difficult to
10491 combine shifts. */
10492 if (SHIFT_COUNT_TRUNCATED)
10493 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10495 /* If we were given an invalid count, don't do anything except exactly
10496 what was requested. */
10498 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10499 return NULL_RTX;
10501 count = orig_count;
10503 /* Unless one of the branches of the `if' in this loop does a `continue',
10504 we will `break' the loop after the `if'. */
10506 while (count != 0)
10508 /* If we have an operand of (clobber (const_int 0)), fail. */
10509 if (GET_CODE (varop) == CLOBBER)
10510 return NULL_RTX;
10512 /* Convert ROTATERT to ROTATE. */
10513 if (code == ROTATERT)
10515 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10516 code = ROTATE;
10517 count = bitsize - count;
10520 shift_mode = result_mode;
10521 if (shift_mode != mode)
10523 /* We only change the modes of scalar shifts. */
10524 int_mode = as_a <scalar_int_mode> (mode);
10525 int_result_mode = as_a <scalar_int_mode> (result_mode);
10526 shift_mode = try_widen_shift_mode (code, varop, count,
10527 int_result_mode, int_mode,
10528 outer_op, outer_const);
10531 scalar_int_mode shift_unit_mode
10532 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10534 /* Handle cases where the count is greater than the size of the mode
10535 minus 1. For ASHIFT, use the size minus one as the count (this can
10536 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10537 take the count modulo the size. For other shifts, the result is
10538 zero.
10540 Since these shifts are being produced by the compiler by combining
10541 multiple operations, each of which are defined, we know what the
10542 result is supposed to be. */
10544 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10546 if (code == ASHIFTRT)
10547 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10548 else if (code == ROTATE || code == ROTATERT)
10549 count %= GET_MODE_PRECISION (shift_unit_mode);
10550 else
10552 /* We can't simply return zero because there may be an
10553 outer op. */
10554 varop = const0_rtx;
10555 count = 0;
10556 break;
10560 /* If we discovered we had to complement VAROP, leave. Making a NOT
10561 here would cause an infinite loop. */
10562 if (complement_p)
10563 break;
10565 if (shift_mode == shift_unit_mode)
10567 /* An arithmetic right shift of a quantity known to be -1 or 0
10568 is a no-op. */
10569 if (code == ASHIFTRT
10570 && (num_sign_bit_copies (varop, shift_unit_mode)
10571 == GET_MODE_PRECISION (shift_unit_mode)))
10573 count = 0;
10574 break;
10577 /* If we are doing an arithmetic right shift and discarding all but
10578 the sign bit copies, this is equivalent to doing a shift by the
10579 bitsize minus one. Convert it into that shift because it will
10580 often allow other simplifications. */
10582 if (code == ASHIFTRT
10583 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10584 >= GET_MODE_PRECISION (shift_unit_mode)))
10585 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10587 /* We simplify the tests below and elsewhere by converting
10588 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10589 `make_compound_operation' will convert it to an ASHIFTRT for
10590 those machines (such as VAX) that don't have an LSHIFTRT. */
10591 if (code == ASHIFTRT
10592 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10593 && val_signbit_known_clear_p (shift_unit_mode,
10594 nonzero_bits (varop,
10595 shift_unit_mode)))
10596 code = LSHIFTRT;
10598 if (((code == LSHIFTRT
10599 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10600 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10601 || (code == ASHIFT
10602 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10603 && !((nonzero_bits (varop, shift_unit_mode) << count)
10604 & GET_MODE_MASK (shift_unit_mode))))
10605 && !side_effects_p (varop))
10606 varop = const0_rtx;
10609 switch (GET_CODE (varop))
10611 case SIGN_EXTEND:
10612 case ZERO_EXTEND:
10613 case SIGN_EXTRACT:
10614 case ZERO_EXTRACT:
10615 new_rtx = expand_compound_operation (varop);
10616 if (new_rtx != varop)
10618 varop = new_rtx;
10619 continue;
10621 break;
10623 case MEM:
10624 /* The following rules apply only to scalars. */
10625 if (shift_mode != shift_unit_mode)
10626 break;
10627 int_mode = as_a <scalar_int_mode> (mode);
10629 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10630 minus the width of a smaller mode, we can do this with a
10631 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10632 if ((code == ASHIFTRT || code == LSHIFTRT)
10633 && ! mode_dependent_address_p (XEXP (varop, 0),
10634 MEM_ADDR_SPACE (varop))
10635 && ! MEM_VOLATILE_P (varop)
10636 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10637 .exists (&tmode)))
10639 new_rtx = adjust_address_nv (varop, tmode,
10640 BYTES_BIG_ENDIAN ? 0
10641 : count / BITS_PER_UNIT);
10643 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10644 : ZERO_EXTEND, int_mode, new_rtx);
10645 count = 0;
10646 continue;
10648 break;
10650 case SUBREG:
10651 /* The following rules apply only to scalars. */
10652 if (shift_mode != shift_unit_mode)
10653 break;
10654 int_mode = as_a <scalar_int_mode> (mode);
10655 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10657 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10658 the same number of words as what we've seen so far. Then store
10659 the widest mode in MODE. */
10660 if (subreg_lowpart_p (varop)
10661 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10662 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10663 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10664 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10665 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10667 varop = SUBREG_REG (varop);
10668 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10669 mode = inner_mode;
10670 continue;
10672 break;
10674 case MULT:
10675 /* Some machines use MULT instead of ASHIFT because MULT
10676 is cheaper. But it is still better on those machines to
10677 merge two shifts into one. */
10678 if (CONST_INT_P (XEXP (varop, 1))
10679 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10681 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10682 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10683 XEXP (varop, 0), log2_rtx);
10684 continue;
10686 break;
10688 case UDIV:
10689 /* Similar, for when divides are cheaper. */
10690 if (CONST_INT_P (XEXP (varop, 1))
10691 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10693 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10694 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10695 XEXP (varop, 0), log2_rtx);
10696 continue;
10698 break;
10700 case ASHIFTRT:
10701 /* If we are extracting just the sign bit of an arithmetic
10702 right shift, that shift is not needed. However, the sign
10703 bit of a wider mode may be different from what would be
10704 interpreted as the sign bit in a narrower mode, so, if
10705 the result is narrower, don't discard the shift. */
10706 if (code == LSHIFTRT
10707 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10708 && (GET_MODE_UNIT_BITSIZE (result_mode)
10709 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10711 varop = XEXP (varop, 0);
10712 continue;
10715 /* fall through */
10717 case LSHIFTRT:
10718 case ASHIFT:
10719 case ROTATE:
10720 /* The following rules apply only to scalars. */
10721 if (shift_mode != shift_unit_mode)
10722 break;
10723 int_mode = as_a <scalar_int_mode> (mode);
10724 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10725 int_result_mode = as_a <scalar_int_mode> (result_mode);
10727 /* Here we have two nested shifts. The result is usually the
10728 AND of a new shift with a mask. We compute the result below. */
10729 if (CONST_INT_P (XEXP (varop, 1))
10730 && INTVAL (XEXP (varop, 1)) >= 0
10731 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10732 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10733 && HWI_COMPUTABLE_MODE_P (int_mode))
10735 enum rtx_code first_code = GET_CODE (varop);
10736 unsigned int first_count = INTVAL (XEXP (varop, 1));
10737 unsigned HOST_WIDE_INT mask;
10738 rtx mask_rtx;
10740 /* We have one common special case. We can't do any merging if
10741 the inner code is an ASHIFTRT of a smaller mode. However, if
10742 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10743 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10744 we can convert it to
10745 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10746 This simplifies certain SIGN_EXTEND operations. */
10747 if (code == ASHIFT && first_code == ASHIFTRT
10748 && count == (GET_MODE_PRECISION (int_result_mode)
10749 - GET_MODE_PRECISION (int_varop_mode)))
10751 /* C3 has the low-order C1 bits zero. */
10753 mask = GET_MODE_MASK (int_mode)
10754 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10756 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10757 XEXP (varop, 0), mask);
10758 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10759 int_result_mode, varop, count);
10760 count = first_count;
10761 code = ASHIFTRT;
10762 continue;
10765 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10766 than C1 high-order bits equal to the sign bit, we can convert
10767 this to either an ASHIFT or an ASHIFTRT depending on the
10768 two counts.
10770 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10772 if (code == ASHIFTRT && first_code == ASHIFT
10773 && int_varop_mode == shift_unit_mode
10774 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10775 > first_count))
10777 varop = XEXP (varop, 0);
10778 count -= first_count;
10779 if (count < 0)
10781 count = -count;
10782 code = ASHIFT;
10785 continue;
10788 /* There are some cases we can't do. If CODE is ASHIFTRT,
10789 we can only do this if FIRST_CODE is also ASHIFTRT.
10791 We can't do the case when CODE is ROTATE and FIRST_CODE is
10792 ASHIFTRT.
10794 If the mode of this shift is not the mode of the outer shift,
10795 we can't do this if either shift is a right shift or ROTATE.
10797 Finally, we can't do any of these if the mode is too wide
10798 unless the codes are the same.
10800 Handle the case where the shift codes are the same
10801 first. */
10803 if (code == first_code)
10805 if (int_varop_mode != int_result_mode
10806 && (code == ASHIFTRT || code == LSHIFTRT
10807 || code == ROTATE))
10808 break;
10810 count += first_count;
10811 varop = XEXP (varop, 0);
10812 continue;
10815 if (code == ASHIFTRT
10816 || (code == ROTATE && first_code == ASHIFTRT)
10817 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10818 || (int_varop_mode != int_result_mode
10819 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10820 || first_code == ROTATE
10821 || code == ROTATE)))
10822 break;
10824 /* To compute the mask to apply after the shift, shift the
10825 nonzero bits of the inner shift the same way the
10826 outer shift will. */
10828 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10829 int_result_mode);
10830 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10831 mask_rtx
10832 = simplify_const_binary_operation (code, int_result_mode,
10833 mask_rtx, count_rtx);
10835 /* Give up if we can't compute an outer operation to use. */
10836 if (mask_rtx == 0
10837 || !CONST_INT_P (mask_rtx)
10838 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10839 INTVAL (mask_rtx),
10840 int_result_mode, &complement_p))
10841 break;
10843 /* If the shifts are in the same direction, we add the
10844 counts. Otherwise, we subtract them. */
10845 if ((code == ASHIFTRT || code == LSHIFTRT)
10846 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10847 count += first_count;
10848 else
10849 count -= first_count;
10851 /* If COUNT is positive, the new shift is usually CODE,
10852 except for the two exceptions below, in which case it is
10853 FIRST_CODE. If the count is negative, FIRST_CODE should
10854 always be used */
10855 if (count > 0
10856 && ((first_code == ROTATE && code == ASHIFT)
10857 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10858 code = first_code;
10859 else if (count < 0)
10860 code = first_code, count = -count;
10862 varop = XEXP (varop, 0);
10863 continue;
10866 /* If we have (A << B << C) for any shift, we can convert this to
10867 (A << C << B). This wins if A is a constant. Only try this if
10868 B is not a constant. */
10870 else if (GET_CODE (varop) == code
10871 && CONST_INT_P (XEXP (varop, 0))
10872 && !CONST_INT_P (XEXP (varop, 1)))
10874 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10875 sure the result will be masked. See PR70222. */
10876 if (code == LSHIFTRT
10877 && int_mode != int_result_mode
10878 && !merge_outer_ops (&outer_op, &outer_const, AND,
10879 GET_MODE_MASK (int_result_mode)
10880 >> orig_count, int_result_mode,
10881 &complement_p))
10882 break;
10883 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10884 up outer sign extension (often left and right shift) is
10885 hardly more efficient than the original. See PR70429. */
10886 if (code == ASHIFTRT && int_mode != int_result_mode)
10887 break;
10889 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10890 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10891 XEXP (varop, 0),
10892 count_rtx);
10893 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10894 count = 0;
10895 continue;
10897 break;
10899 case NOT:
10900 /* The following rules apply only to scalars. */
10901 if (shift_mode != shift_unit_mode)
10902 break;
10904 /* Make this fit the case below. */
10905 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10906 continue;
10908 case IOR:
10909 case AND:
10910 case XOR:
10911 /* The following rules apply only to scalars. */
10912 if (shift_mode != shift_unit_mode)
10913 break;
10914 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10915 int_result_mode = as_a <scalar_int_mode> (result_mode);
10917 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10918 with C the size of VAROP - 1 and the shift is logical if
10919 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10920 we have an (le X 0) operation. If we have an arithmetic shift
10921 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10922 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10924 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10925 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10926 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10927 && (code == LSHIFTRT || code == ASHIFTRT)
10928 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10929 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10931 count = 0;
10932 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10933 const0_rtx);
10935 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10936 varop = gen_rtx_NEG (int_varop_mode, varop);
10938 continue;
10941 /* If we have (shift (logical)), move the logical to the outside
10942 to allow it to possibly combine with another logical and the
10943 shift to combine with another shift. This also canonicalizes to
10944 what a ZERO_EXTRACT looks like. Also, some machines have
10945 (and (shift)) insns. */
10947 if (CONST_INT_P (XEXP (varop, 1))
10948 /* We can't do this if we have (ashiftrt (xor)) and the
10949 constant has its sign bit set in shift_unit_mode with
10950 shift_unit_mode wider than result_mode. */
10951 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10952 && int_result_mode != shift_unit_mode
10953 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10954 shift_unit_mode) < 0)
10955 && (new_rtx = simplify_const_binary_operation
10956 (code, int_result_mode,
10957 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10958 gen_int_shift_amount (int_result_mode, count))) != 0
10959 && CONST_INT_P (new_rtx)
10960 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10961 INTVAL (new_rtx), int_result_mode,
10962 &complement_p))
10964 varop = XEXP (varop, 0);
10965 continue;
10968 /* If we can't do that, try to simplify the shift in each arm of the
10969 logical expression, make a new logical expression, and apply
10970 the inverse distributive law. This also can't be done for
10971 (ashiftrt (xor)) where we've widened the shift and the constant
10972 changes the sign bit. */
10973 if (CONST_INT_P (XEXP (varop, 1))
10974 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10975 && int_result_mode != shift_unit_mode
10976 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10977 shift_unit_mode) < 0))
10979 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10980 XEXP (varop, 0), count);
10981 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10982 XEXP (varop, 1), count);
10984 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10985 lhs, rhs);
10986 varop = apply_distributive_law (varop);
10988 count = 0;
10989 continue;
10991 break;
10993 case EQ:
10994 /* The following rules apply only to scalars. */
10995 if (shift_mode != shift_unit_mode)
10996 break;
10997 int_result_mode = as_a <scalar_int_mode> (result_mode);
10999 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11000 says that the sign bit can be tested, FOO has mode MODE, C is
11001 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11002 that may be nonzero. */
11003 if (code == LSHIFTRT
11004 && XEXP (varop, 1) == const0_rtx
11005 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11006 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11007 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11008 && STORE_FLAG_VALUE == -1
11009 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11010 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11011 int_result_mode, &complement_p))
11013 varop = XEXP (varop, 0);
11014 count = 0;
11015 continue;
11017 break;
11019 case NEG:
11020 /* The following rules apply only to scalars. */
11021 if (shift_mode != shift_unit_mode)
11022 break;
11023 int_result_mode = as_a <scalar_int_mode> (result_mode);
11025 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11026 than the number of bits in the mode is equivalent to A. */
11027 if (code == LSHIFTRT
11028 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11029 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11031 varop = XEXP (varop, 0);
11032 count = 0;
11033 continue;
11036 /* NEG commutes with ASHIFT since it is multiplication. Move the
11037 NEG outside to allow shifts to combine. */
11038 if (code == ASHIFT
11039 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11040 int_result_mode, &complement_p))
11042 varop = XEXP (varop, 0);
11043 continue;
11045 break;
11047 case PLUS:
11048 /* The following rules apply only to scalars. */
11049 if (shift_mode != shift_unit_mode)
11050 break;
11051 int_result_mode = as_a <scalar_int_mode> (result_mode);
11053 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11054 is one less than the number of bits in the mode is
11055 equivalent to (xor A 1). */
11056 if (code == LSHIFTRT
11057 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11058 && XEXP (varop, 1) == constm1_rtx
11059 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11060 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11061 int_result_mode, &complement_p))
11063 count = 0;
11064 varop = XEXP (varop, 0);
11065 continue;
11068 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11069 that might be nonzero in BAR are those being shifted out and those
11070 bits are known zero in FOO, we can replace the PLUS with FOO.
11071 Similarly in the other operand order. This code occurs when
11072 we are computing the size of a variable-size array. */
11074 if ((code == ASHIFTRT || code == LSHIFTRT)
11075 && count < HOST_BITS_PER_WIDE_INT
11076 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11077 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11078 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11080 varop = XEXP (varop, 0);
11081 continue;
11083 else if ((code == ASHIFTRT || code == LSHIFTRT)
11084 && count < HOST_BITS_PER_WIDE_INT
11085 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11086 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11087 >> count) == 0
11088 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11089 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11091 varop = XEXP (varop, 1);
11092 continue;
11095 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11096 if (code == ASHIFT
11097 && CONST_INT_P (XEXP (varop, 1))
11098 && (new_rtx = simplify_const_binary_operation
11099 (ASHIFT, int_result_mode,
11100 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11101 gen_int_shift_amount (int_result_mode, count))) != 0
11102 && CONST_INT_P (new_rtx)
11103 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11104 INTVAL (new_rtx), int_result_mode,
11105 &complement_p))
11107 varop = XEXP (varop, 0);
11108 continue;
11111 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11112 signbit', and attempt to change the PLUS to an XOR and move it to
11113 the outer operation as is done above in the AND/IOR/XOR case
11114 leg for shift(logical). See details in logical handling above
11115 for reasoning in doing so. */
11116 if (code == LSHIFTRT
11117 && CONST_INT_P (XEXP (varop, 1))
11118 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11119 && (new_rtx = simplify_const_binary_operation
11120 (code, int_result_mode,
11121 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11122 gen_int_shift_amount (int_result_mode, count))) != 0
11123 && CONST_INT_P (new_rtx)
11124 && merge_outer_ops (&outer_op, &outer_const, XOR,
11125 INTVAL (new_rtx), int_result_mode,
11126 &complement_p))
11128 varop = XEXP (varop, 0);
11129 continue;
11132 break;
11134 case MINUS:
11135 /* The following rules apply only to scalars. */
11136 if (shift_mode != shift_unit_mode)
11137 break;
11138 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11140 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11141 with C the size of VAROP - 1 and the shift is logical if
11142 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11143 we have a (gt X 0) operation. If the shift is arithmetic with
11144 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11145 we have a (neg (gt X 0)) operation. */
11147 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11148 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11149 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11150 && (code == LSHIFTRT || code == ASHIFTRT)
11151 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11152 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11153 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11155 count = 0;
11156 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11157 const0_rtx);
11159 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11160 varop = gen_rtx_NEG (int_varop_mode, varop);
11162 continue;
11164 break;
11166 case TRUNCATE:
11167 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11168 if the truncate does not affect the value. */
11169 if (code == LSHIFTRT
11170 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11171 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11172 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11173 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11174 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11176 rtx varop_inner = XEXP (varop, 0);
11177 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11178 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11179 new_count);
11180 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11181 XEXP (varop_inner, 0),
11182 new_count_rtx);
11183 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11184 count = 0;
11185 continue;
11187 break;
11189 default:
11190 break;
11193 break;
11196 shift_mode = result_mode;
11197 if (shift_mode != mode)
11199 /* We only change the modes of scalar shifts. */
11200 int_mode = as_a <scalar_int_mode> (mode);
11201 int_result_mode = as_a <scalar_int_mode> (result_mode);
11202 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11203 int_mode, outer_op, outer_const);
11206 /* We have now finished analyzing the shift. The result should be
11207 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11208 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11209 to the result of the shift. OUTER_CONST is the relevant constant,
11210 but we must turn off all bits turned off in the shift. */
11212 if (outer_op == UNKNOWN
11213 && orig_code == code && orig_count == count
11214 && varop == orig_varop
11215 && shift_mode == GET_MODE (varop))
11216 return NULL_RTX;
11218 /* Make a SUBREG if necessary. If we can't make it, fail. */
11219 varop = gen_lowpart (shift_mode, varop);
11220 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11221 return NULL_RTX;
11223 /* If we have an outer operation and we just made a shift, it is
11224 possible that we could have simplified the shift were it not
11225 for the outer operation. So try to do the simplification
11226 recursively. */
11228 if (outer_op != UNKNOWN)
11229 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11230 else
11231 x = NULL_RTX;
11233 if (x == NULL_RTX)
11234 x = simplify_gen_binary (code, shift_mode, varop,
11235 gen_int_shift_amount (shift_mode, count));
11237 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11238 turn off all the bits that the shift would have turned off. */
11239 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11240 /* We only change the modes of scalar shifts. */
11241 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11242 x, GET_MODE_MASK (result_mode) >> orig_count);
11244 /* Do the remainder of the processing in RESULT_MODE. */
11245 x = gen_lowpart_or_truncate (result_mode, x);
11247 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11248 operation. */
11249 if (complement_p)
11250 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11252 if (outer_op != UNKNOWN)
11254 int_result_mode = as_a <scalar_int_mode> (result_mode);
11256 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11257 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11258 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11260 if (outer_op == AND)
11261 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11262 else if (outer_op == SET)
11264 /* This means that we have determined that the result is
11265 equivalent to a constant. This should be rare. */
11266 if (!side_effects_p (x))
11267 x = GEN_INT (outer_const);
11269 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11270 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11271 else
11272 x = simplify_gen_binary (outer_op, int_result_mode, x,
11273 GEN_INT (outer_const));
11276 return x;
11279 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11280 The result of the shift is RESULT_MODE. If we cannot simplify it,
11281 return X or, if it is NULL, synthesize the expression with
11282 simplify_gen_binary. Otherwise, return a simplified value.
11284 The shift is normally computed in the widest mode we find in VAROP, as
11285 long as it isn't a different number of words than RESULT_MODE. Exceptions
11286 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11288 static rtx
11289 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11290 rtx varop, int count)
11292 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11293 if (tem)
11294 return tem;
11296 if (!x)
11297 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11298 gen_int_shift_amount (GET_MODE (varop), count));
11299 if (GET_MODE (x) != result_mode)
11300 x = gen_lowpart (result_mode, x);
11301 return x;
11305 /* A subroutine of recog_for_combine. See there for arguments and
11306 return value. */
11308 static int
11309 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11311 rtx pat = *pnewpat;
11312 rtx pat_without_clobbers;
11313 int insn_code_number;
11314 int num_clobbers_to_add = 0;
11315 int i;
11316 rtx notes = NULL_RTX;
11317 rtx old_notes, old_pat;
11318 int old_icode;
11320 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11321 we use to indicate that something didn't match. If we find such a
11322 thing, force rejection. */
11323 if (GET_CODE (pat) == PARALLEL)
11324 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11325 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11326 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11327 return -1;
11329 old_pat = PATTERN (insn);
11330 old_notes = REG_NOTES (insn);
11331 PATTERN (insn) = pat;
11332 REG_NOTES (insn) = NULL_RTX;
11334 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11335 if (dump_file && (dump_flags & TDF_DETAILS))
11337 if (insn_code_number < 0)
11338 fputs ("Failed to match this instruction:\n", dump_file);
11339 else
11340 fputs ("Successfully matched this instruction:\n", dump_file);
11341 print_rtl_single (dump_file, pat);
11344 /* If it isn't, there is the possibility that we previously had an insn
11345 that clobbered some register as a side effect, but the combined
11346 insn doesn't need to do that. So try once more without the clobbers
11347 unless this represents an ASM insn. */
11349 if (insn_code_number < 0 && ! check_asm_operands (pat)
11350 && GET_CODE (pat) == PARALLEL)
11352 int pos;
11354 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11355 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11357 if (i != pos)
11358 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11359 pos++;
11362 SUBST_INT (XVECLEN (pat, 0), pos);
11364 if (pos == 1)
11365 pat = XVECEXP (pat, 0, 0);
11367 PATTERN (insn) = pat;
11368 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11369 if (dump_file && (dump_flags & TDF_DETAILS))
11371 if (insn_code_number < 0)
11372 fputs ("Failed to match this instruction:\n", dump_file);
11373 else
11374 fputs ("Successfully matched this instruction:\n", dump_file);
11375 print_rtl_single (dump_file, pat);
11379 pat_without_clobbers = pat;
11381 PATTERN (insn) = old_pat;
11382 REG_NOTES (insn) = old_notes;
11384 /* Recognize all noop sets, these will be killed by followup pass. */
11385 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11386 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11388 /* If we had any clobbers to add, make a new pattern than contains
11389 them. Then check to make sure that all of them are dead. */
11390 if (num_clobbers_to_add)
11392 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11393 rtvec_alloc (GET_CODE (pat) == PARALLEL
11394 ? (XVECLEN (pat, 0)
11395 + num_clobbers_to_add)
11396 : num_clobbers_to_add + 1));
11398 if (GET_CODE (pat) == PARALLEL)
11399 for (i = 0; i < XVECLEN (pat, 0); i++)
11400 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11401 else
11402 XVECEXP (newpat, 0, 0) = pat;
11404 add_clobbers (newpat, insn_code_number);
11406 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11407 i < XVECLEN (newpat, 0); i++)
11409 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11410 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11411 return -1;
11412 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11414 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11415 notes = alloc_reg_note (REG_UNUSED,
11416 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11419 pat = newpat;
11422 if (insn_code_number >= 0
11423 && insn_code_number != NOOP_MOVE_INSN_CODE)
11425 old_pat = PATTERN (insn);
11426 old_notes = REG_NOTES (insn);
11427 old_icode = INSN_CODE (insn);
11428 PATTERN (insn) = pat;
11429 REG_NOTES (insn) = notes;
11430 INSN_CODE (insn) = insn_code_number;
11432 /* Allow targets to reject combined insn. */
11433 if (!targetm.legitimate_combined_insn (insn))
11435 if (dump_file && (dump_flags & TDF_DETAILS))
11436 fputs ("Instruction not appropriate for target.",
11437 dump_file);
11439 /* Callers expect recog_for_combine to strip
11440 clobbers from the pattern on failure. */
11441 pat = pat_without_clobbers;
11442 notes = NULL_RTX;
11444 insn_code_number = -1;
11447 PATTERN (insn) = old_pat;
11448 REG_NOTES (insn) = old_notes;
11449 INSN_CODE (insn) = old_icode;
11452 *pnewpat = pat;
11453 *pnotes = notes;
11455 return insn_code_number;
11458 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11459 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11460 Return whether anything was so changed. */
11462 static bool
11463 change_zero_ext (rtx pat)
11465 bool changed = false;
11466 rtx *src = &SET_SRC (pat);
11468 subrtx_ptr_iterator::array_type array;
11469 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11471 rtx x = **iter;
11472 scalar_int_mode mode, inner_mode;
11473 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11474 continue;
11475 int size;
11477 if (GET_CODE (x) == ZERO_EXTRACT
11478 && CONST_INT_P (XEXP (x, 1))
11479 && CONST_INT_P (XEXP (x, 2))
11480 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11481 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11483 size = INTVAL (XEXP (x, 1));
11485 int start = INTVAL (XEXP (x, 2));
11486 if (BITS_BIG_ENDIAN)
11487 start = GET_MODE_PRECISION (inner_mode) - size - start;
11489 if (start != 0)
11490 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11491 gen_int_shift_amount (inner_mode, start));
11492 else
11493 x = XEXP (x, 0);
11495 if (mode != inner_mode)
11497 if (REG_P (x) && HARD_REGISTER_P (x)
11498 && !can_change_dest_mode (x, 0, mode))
11499 continue;
11501 x = gen_lowpart_SUBREG (mode, x);
11504 else if (GET_CODE (x) == ZERO_EXTEND
11505 && GET_CODE (XEXP (x, 0)) == SUBREG
11506 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11507 && !paradoxical_subreg_p (XEXP (x, 0))
11508 && subreg_lowpart_p (XEXP (x, 0)))
11510 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11511 size = GET_MODE_PRECISION (inner_mode);
11512 x = SUBREG_REG (XEXP (x, 0));
11513 if (GET_MODE (x) != mode)
11515 if (REG_P (x) && HARD_REGISTER_P (x)
11516 && !can_change_dest_mode (x, 0, mode))
11517 continue;
11519 x = gen_lowpart_SUBREG (mode, x);
11522 else if (GET_CODE (x) == ZERO_EXTEND
11523 && REG_P (XEXP (x, 0))
11524 && HARD_REGISTER_P (XEXP (x, 0))
11525 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11527 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11528 size = GET_MODE_PRECISION (inner_mode);
11529 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11531 else
11532 continue;
11534 if (!(GET_CODE (x) == LSHIFTRT
11535 && CONST_INT_P (XEXP (x, 1))
11536 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11538 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11539 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11542 SUBST (**iter, x);
11543 changed = true;
11546 if (changed)
11547 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11548 maybe_swap_commutative_operands (**iter);
11550 rtx *dst = &SET_DEST (pat);
11551 scalar_int_mode mode;
11552 if (GET_CODE (*dst) == ZERO_EXTRACT
11553 && REG_P (XEXP (*dst, 0))
11554 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11555 && CONST_INT_P (XEXP (*dst, 1))
11556 && CONST_INT_P (XEXP (*dst, 2)))
11558 rtx reg = XEXP (*dst, 0);
11559 int width = INTVAL (XEXP (*dst, 1));
11560 int offset = INTVAL (XEXP (*dst, 2));
11561 int reg_width = GET_MODE_PRECISION (mode);
11562 if (BITS_BIG_ENDIAN)
11563 offset = reg_width - width - offset;
11565 rtx x, y, z, w;
11566 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11567 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11568 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11569 if (offset)
11570 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11571 else
11572 y = SET_SRC (pat);
11573 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11574 w = gen_rtx_IOR (mode, x, z);
11575 SUBST (SET_DEST (pat), reg);
11576 SUBST (SET_SRC (pat), w);
11578 changed = true;
11581 return changed;
11584 /* Like recog, but we receive the address of a pointer to a new pattern.
11585 We try to match the rtx that the pointer points to.
11586 If that fails, we may try to modify or replace the pattern,
11587 storing the replacement into the same pointer object.
11589 Modifications include deletion or addition of CLOBBERs. If the
11590 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11591 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11592 (and undo if that fails).
11594 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11595 the CLOBBERs are placed.
11597 The value is the final insn code from the pattern ultimately matched,
11598 or -1. */
11600 static int
11601 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11603 rtx pat = *pnewpat;
11604 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11605 if (insn_code_number >= 0 || check_asm_operands (pat))
11606 return insn_code_number;
11608 void *marker = get_undo_marker ();
11609 bool changed = false;
11611 if (GET_CODE (pat) == SET)
11612 changed = change_zero_ext (pat);
11613 else if (GET_CODE (pat) == PARALLEL)
11615 int i;
11616 for (i = 0; i < XVECLEN (pat, 0); i++)
11618 rtx set = XVECEXP (pat, 0, i);
11619 if (GET_CODE (set) == SET)
11620 changed |= change_zero_ext (set);
11624 if (changed)
11626 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11628 if (insn_code_number < 0)
11629 undo_to_marker (marker);
11632 return insn_code_number;
11635 /* Like gen_lowpart_general but for use by combine. In combine it
11636 is not possible to create any new pseudoregs. However, it is
11637 safe to create invalid memory addresses, because combine will
11638 try to recognize them and all they will do is make the combine
11639 attempt fail.
11641 If for some reason this cannot do its job, an rtx
11642 (clobber (const_int 0)) is returned.
11643 An insn containing that will not be recognized. */
11645 static rtx
11646 gen_lowpart_for_combine (machine_mode omode, rtx x)
11648 machine_mode imode = GET_MODE (x);
11649 rtx result;
11651 if (omode == imode)
11652 return x;
11654 /* We can only support MODE being wider than a word if X is a
11655 constant integer or has a mode the same size. */
11656 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11657 && ! (CONST_SCALAR_INT_P (x)
11658 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11659 goto fail;
11661 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11662 won't know what to do. So we will strip off the SUBREG here and
11663 process normally. */
11664 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11666 x = SUBREG_REG (x);
11668 /* For use in case we fall down into the address adjustments
11669 further below, we need to adjust the known mode and size of
11670 x; imode and isize, since we just adjusted x. */
11671 imode = GET_MODE (x);
11673 if (imode == omode)
11674 return x;
11677 result = gen_lowpart_common (omode, x);
11679 if (result)
11680 return result;
11682 if (MEM_P (x))
11684 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11685 address. */
11686 if (MEM_VOLATILE_P (x)
11687 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11688 goto fail;
11690 /* If we want to refer to something bigger than the original memref,
11691 generate a paradoxical subreg instead. That will force a reload
11692 of the original memref X. */
11693 if (paradoxical_subreg_p (omode, imode))
11694 return gen_rtx_SUBREG (omode, x, 0);
11696 poly_int64 offset = byte_lowpart_offset (omode, imode);
11697 return adjust_address_nv (x, omode, offset);
11700 /* If X is a comparison operator, rewrite it in a new mode. This
11701 probably won't match, but may allow further simplifications. */
11702 else if (COMPARISON_P (x))
11703 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11705 /* If we couldn't simplify X any other way, just enclose it in a
11706 SUBREG. Normally, this SUBREG won't match, but some patterns may
11707 include an explicit SUBREG or we may simplify it further in combine. */
11708 else
11710 rtx res;
11712 if (imode == VOIDmode)
11714 imode = int_mode_for_mode (omode).require ();
11715 x = gen_lowpart_common (imode, x);
11716 if (x == NULL)
11717 goto fail;
11719 res = lowpart_subreg (omode, x, imode);
11720 if (res)
11721 return res;
11724 fail:
11725 return gen_rtx_CLOBBER (omode, const0_rtx);
11728 /* Try to simplify a comparison between OP0 and a constant OP1,
11729 where CODE is the comparison code that will be tested, into a
11730 (CODE OP0 const0_rtx) form.
11732 The result is a possibly different comparison code to use.
11733 *POP1 may be updated. */
11735 static enum rtx_code
11736 simplify_compare_const (enum rtx_code code, machine_mode mode,
11737 rtx op0, rtx *pop1)
11739 scalar_int_mode int_mode;
11740 HOST_WIDE_INT const_op = INTVAL (*pop1);
11742 /* Get the constant we are comparing against and turn off all bits
11743 not on in our mode. */
11744 if (mode != VOIDmode)
11745 const_op = trunc_int_for_mode (const_op, mode);
11747 /* If we are comparing against a constant power of two and the value
11748 being compared can only have that single bit nonzero (e.g., it was
11749 `and'ed with that bit), we can replace this with a comparison
11750 with zero. */
11751 if (const_op
11752 && (code == EQ || code == NE || code == GE || code == GEU
11753 || code == LT || code == LTU)
11754 && is_a <scalar_int_mode> (mode, &int_mode)
11755 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11756 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11757 && (nonzero_bits (op0, int_mode)
11758 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11760 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11761 const_op = 0;
11764 /* Similarly, if we are comparing a value known to be either -1 or
11765 0 with -1, change it to the opposite comparison against zero. */
11766 if (const_op == -1
11767 && (code == EQ || code == NE || code == GT || code == LE
11768 || code == GEU || code == LTU)
11769 && is_a <scalar_int_mode> (mode, &int_mode)
11770 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11772 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11773 const_op = 0;
11776 /* Do some canonicalizations based on the comparison code. We prefer
11777 comparisons against zero and then prefer equality comparisons.
11778 If we can reduce the size of a constant, we will do that too. */
11779 switch (code)
11781 case LT:
11782 /* < C is equivalent to <= (C - 1) */
11783 if (const_op > 0)
11785 const_op -= 1;
11786 code = LE;
11787 /* ... fall through to LE case below. */
11788 gcc_fallthrough ();
11790 else
11791 break;
11793 case LE:
11794 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11795 if (const_op < 0)
11797 const_op += 1;
11798 code = LT;
11801 /* If we are doing a <= 0 comparison on a value known to have
11802 a zero sign bit, we can replace this with == 0. */
11803 else if (const_op == 0
11804 && is_a <scalar_int_mode> (mode, &int_mode)
11805 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11806 && (nonzero_bits (op0, int_mode)
11807 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11808 == 0)
11809 code = EQ;
11810 break;
11812 case GE:
11813 /* >= C is equivalent to > (C - 1). */
11814 if (const_op > 0)
11816 const_op -= 1;
11817 code = GT;
11818 /* ... fall through to GT below. */
11819 gcc_fallthrough ();
11821 else
11822 break;
11824 case GT:
11825 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11826 if (const_op < 0)
11828 const_op += 1;
11829 code = GE;
11832 /* If we are doing a > 0 comparison on a value known to have
11833 a zero sign bit, we can replace this with != 0. */
11834 else if (const_op == 0
11835 && is_a <scalar_int_mode> (mode, &int_mode)
11836 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11837 && (nonzero_bits (op0, int_mode)
11838 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11839 == 0)
11840 code = NE;
11841 break;
11843 case LTU:
11844 /* < C is equivalent to <= (C - 1). */
11845 if (const_op > 0)
11847 const_op -= 1;
11848 code = LEU;
11849 /* ... fall through ... */
11850 gcc_fallthrough ();
11852 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11853 else if (is_a <scalar_int_mode> (mode, &int_mode)
11854 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11855 && ((unsigned HOST_WIDE_INT) const_op
11856 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11858 const_op = 0;
11859 code = GE;
11860 break;
11862 else
11863 break;
11865 case LEU:
11866 /* unsigned <= 0 is equivalent to == 0 */
11867 if (const_op == 0)
11868 code = EQ;
11869 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11870 else if (is_a <scalar_int_mode> (mode, &int_mode)
11871 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11872 && ((unsigned HOST_WIDE_INT) const_op
11873 == ((HOST_WIDE_INT_1U
11874 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11876 const_op = 0;
11877 code = GE;
11879 break;
11881 case GEU:
11882 /* >= C is equivalent to > (C - 1). */
11883 if (const_op > 1)
11885 const_op -= 1;
11886 code = GTU;
11887 /* ... fall through ... */
11888 gcc_fallthrough ();
11891 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11892 else if (is_a <scalar_int_mode> (mode, &int_mode)
11893 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11894 && ((unsigned HOST_WIDE_INT) const_op
11895 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11897 const_op = 0;
11898 code = LT;
11899 break;
11901 else
11902 break;
11904 case GTU:
11905 /* unsigned > 0 is equivalent to != 0 */
11906 if (const_op == 0)
11907 code = NE;
11908 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11909 else if (is_a <scalar_int_mode> (mode, &int_mode)
11910 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11911 && ((unsigned HOST_WIDE_INT) const_op
11912 == (HOST_WIDE_INT_1U
11913 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11915 const_op = 0;
11916 code = LT;
11918 break;
11920 default:
11921 break;
11924 *pop1 = GEN_INT (const_op);
11925 return code;
11928 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11929 comparison code that will be tested.
11931 The result is a possibly different comparison code to use. *POP0 and
11932 *POP1 may be updated.
11934 It is possible that we might detect that a comparison is either always
11935 true or always false. However, we do not perform general constant
11936 folding in combine, so this knowledge isn't useful. Such tautologies
11937 should have been detected earlier. Hence we ignore all such cases. */
11939 static enum rtx_code
11940 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11942 rtx op0 = *pop0;
11943 rtx op1 = *pop1;
11944 rtx tem, tem1;
11945 int i;
11946 scalar_int_mode mode, inner_mode, tmode;
11947 opt_scalar_int_mode tmode_iter;
11949 /* Try a few ways of applying the same transformation to both operands. */
11950 while (1)
11952 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11953 so check specially. */
11954 if (!WORD_REGISTER_OPERATIONS
11955 && code != GTU && code != GEU && code != LTU && code != LEU
11956 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11957 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11958 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11959 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11960 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11961 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11962 && (is_a <scalar_int_mode>
11963 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11964 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11965 && CONST_INT_P (XEXP (op0, 1))
11966 && XEXP (op0, 1) == XEXP (op1, 1)
11967 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11968 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11969 && (INTVAL (XEXP (op0, 1))
11970 == (GET_MODE_PRECISION (mode)
11971 - GET_MODE_PRECISION (inner_mode))))
11973 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11974 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11977 /* If both operands are the same constant shift, see if we can ignore the
11978 shift. We can if the shift is a rotate or if the bits shifted out of
11979 this shift are known to be zero for both inputs and if the type of
11980 comparison is compatible with the shift. */
11981 if (GET_CODE (op0) == GET_CODE (op1)
11982 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11983 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11984 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11985 && (code != GT && code != LT && code != GE && code != LE))
11986 || (GET_CODE (op0) == ASHIFTRT
11987 && (code != GTU && code != LTU
11988 && code != GEU && code != LEU)))
11989 && CONST_INT_P (XEXP (op0, 1))
11990 && INTVAL (XEXP (op0, 1)) >= 0
11991 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11992 && XEXP (op0, 1) == XEXP (op1, 1))
11994 machine_mode mode = GET_MODE (op0);
11995 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11996 int shift_count = INTVAL (XEXP (op0, 1));
11998 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11999 mask &= (mask >> shift_count) << shift_count;
12000 else if (GET_CODE (op0) == ASHIFT)
12001 mask = (mask & (mask << shift_count)) >> shift_count;
12003 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12004 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12005 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12006 else
12007 break;
12010 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12011 SUBREGs are of the same mode, and, in both cases, the AND would
12012 be redundant if the comparison was done in the narrower mode,
12013 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12014 and the operand's possibly nonzero bits are 0xffffff01; in that case
12015 if we only care about QImode, we don't need the AND). This case
12016 occurs if the output mode of an scc insn is not SImode and
12017 STORE_FLAG_VALUE == 1 (e.g., the 386).
12019 Similarly, check for a case where the AND's are ZERO_EXTEND
12020 operations from some narrower mode even though a SUBREG is not
12021 present. */
12023 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12024 && CONST_INT_P (XEXP (op0, 1))
12025 && CONST_INT_P (XEXP (op1, 1)))
12027 rtx inner_op0 = XEXP (op0, 0);
12028 rtx inner_op1 = XEXP (op1, 0);
12029 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12030 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12031 int changed = 0;
12033 if (paradoxical_subreg_p (inner_op0)
12034 && GET_CODE (inner_op1) == SUBREG
12035 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12036 && (GET_MODE (SUBREG_REG (inner_op0))
12037 == GET_MODE (SUBREG_REG (inner_op1)))
12038 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12039 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12040 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12041 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12043 op0 = SUBREG_REG (inner_op0);
12044 op1 = SUBREG_REG (inner_op1);
12046 /* The resulting comparison is always unsigned since we masked
12047 off the original sign bit. */
12048 code = unsigned_condition (code);
12050 changed = 1;
12053 else if (c0 == c1)
12054 FOR_EACH_MODE_UNTIL (tmode,
12055 as_a <scalar_int_mode> (GET_MODE (op0)))
12056 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12058 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12059 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12060 code = unsigned_condition (code);
12061 changed = 1;
12062 break;
12065 if (! changed)
12066 break;
12069 /* If both operands are NOT, we can strip off the outer operation
12070 and adjust the comparison code for swapped operands; similarly for
12071 NEG, except that this must be an equality comparison. */
12072 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12073 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12074 && (code == EQ || code == NE)))
12075 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12077 else
12078 break;
12081 /* If the first operand is a constant, swap the operands and adjust the
12082 comparison code appropriately, but don't do this if the second operand
12083 is already a constant integer. */
12084 if (swap_commutative_operands_p (op0, op1))
12086 std::swap (op0, op1);
12087 code = swap_condition (code);
12090 /* We now enter a loop during which we will try to simplify the comparison.
12091 For the most part, we only are concerned with comparisons with zero,
12092 but some things may really be comparisons with zero but not start
12093 out looking that way. */
12095 while (CONST_INT_P (op1))
12097 machine_mode raw_mode = GET_MODE (op0);
12098 scalar_int_mode int_mode;
12099 int equality_comparison_p;
12100 int sign_bit_comparison_p;
12101 int unsigned_comparison_p;
12102 HOST_WIDE_INT const_op;
12104 /* We only want to handle integral modes. This catches VOIDmode,
12105 CCmode, and the floating-point modes. An exception is that we
12106 can handle VOIDmode if OP0 is a COMPARE or a comparison
12107 operation. */
12109 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12110 && ! (raw_mode == VOIDmode
12111 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12112 break;
12114 /* Try to simplify the compare to constant, possibly changing the
12115 comparison op, and/or changing op1 to zero. */
12116 code = simplify_compare_const (code, raw_mode, op0, &op1);
12117 const_op = INTVAL (op1);
12119 /* Compute some predicates to simplify code below. */
12121 equality_comparison_p = (code == EQ || code == NE);
12122 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12123 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12124 || code == GEU);
12126 /* If this is a sign bit comparison and we can do arithmetic in
12127 MODE, say that we will only be needing the sign bit of OP0. */
12128 if (sign_bit_comparison_p
12129 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12130 && HWI_COMPUTABLE_MODE_P (int_mode))
12131 op0 = force_to_mode (op0, int_mode,
12132 HOST_WIDE_INT_1U
12133 << (GET_MODE_PRECISION (int_mode) - 1),
12136 if (COMPARISON_P (op0))
12138 /* We can't do anything if OP0 is a condition code value, rather
12139 than an actual data value. */
12140 if (const_op != 0
12141 || CC0_P (XEXP (op0, 0))
12142 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12143 break;
12145 /* Get the two operands being compared. */
12146 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12147 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12148 else
12149 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12151 /* Check for the cases where we simply want the result of the
12152 earlier test or the opposite of that result. */
12153 if (code == NE || code == EQ
12154 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12155 && (code == LT || code == GE)))
12157 enum rtx_code new_code;
12158 if (code == LT || code == NE)
12159 new_code = GET_CODE (op0);
12160 else
12161 new_code = reversed_comparison_code (op0, NULL);
12163 if (new_code != UNKNOWN)
12165 code = new_code;
12166 op0 = tem;
12167 op1 = tem1;
12168 continue;
12171 break;
12174 if (raw_mode == VOIDmode)
12175 break;
12176 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12178 /* Now try cases based on the opcode of OP0. If none of the cases
12179 does a "continue", we exit this loop immediately after the
12180 switch. */
12182 unsigned int mode_width = GET_MODE_PRECISION (mode);
12183 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12184 switch (GET_CODE (op0))
12186 case ZERO_EXTRACT:
12187 /* If we are extracting a single bit from a variable position in
12188 a constant that has only a single bit set and are comparing it
12189 with zero, we can convert this into an equality comparison
12190 between the position and the location of the single bit. */
12191 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12192 have already reduced the shift count modulo the word size. */
12193 if (!SHIFT_COUNT_TRUNCATED
12194 && CONST_INT_P (XEXP (op0, 0))
12195 && XEXP (op0, 1) == const1_rtx
12196 && equality_comparison_p && const_op == 0
12197 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12199 if (BITS_BIG_ENDIAN)
12200 i = BITS_PER_WORD - 1 - i;
12202 op0 = XEXP (op0, 2);
12203 op1 = GEN_INT (i);
12204 const_op = i;
12206 /* Result is nonzero iff shift count is equal to I. */
12207 code = reverse_condition (code);
12208 continue;
12211 /* fall through */
12213 case SIGN_EXTRACT:
12214 tem = expand_compound_operation (op0);
12215 if (tem != op0)
12217 op0 = tem;
12218 continue;
12220 break;
12222 case NOT:
12223 /* If testing for equality, we can take the NOT of the constant. */
12224 if (equality_comparison_p
12225 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12227 op0 = XEXP (op0, 0);
12228 op1 = tem;
12229 continue;
12232 /* If just looking at the sign bit, reverse the sense of the
12233 comparison. */
12234 if (sign_bit_comparison_p)
12236 op0 = XEXP (op0, 0);
12237 code = (code == GE ? LT : GE);
12238 continue;
12240 break;
12242 case NEG:
12243 /* If testing for equality, we can take the NEG of the constant. */
12244 if (equality_comparison_p
12245 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12247 op0 = XEXP (op0, 0);
12248 op1 = tem;
12249 continue;
12252 /* The remaining cases only apply to comparisons with zero. */
12253 if (const_op != 0)
12254 break;
12256 /* When X is ABS or is known positive,
12257 (neg X) is < 0 if and only if X != 0. */
12259 if (sign_bit_comparison_p
12260 && (GET_CODE (XEXP (op0, 0)) == ABS
12261 || (mode_width <= HOST_BITS_PER_WIDE_INT
12262 && (nonzero_bits (XEXP (op0, 0), mode)
12263 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12264 == 0)))
12266 op0 = XEXP (op0, 0);
12267 code = (code == LT ? NE : EQ);
12268 continue;
12271 /* If we have NEG of something whose two high-order bits are the
12272 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12273 if (num_sign_bit_copies (op0, mode) >= 2)
12275 op0 = XEXP (op0, 0);
12276 code = swap_condition (code);
12277 continue;
12279 break;
12281 case ROTATE:
12282 /* If we are testing equality and our count is a constant, we
12283 can perform the inverse operation on our RHS. */
12284 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12285 && (tem = simplify_binary_operation (ROTATERT, mode,
12286 op1, XEXP (op0, 1))) != 0)
12288 op0 = XEXP (op0, 0);
12289 op1 = tem;
12290 continue;
12293 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12294 a particular bit. Convert it to an AND of a constant of that
12295 bit. This will be converted into a ZERO_EXTRACT. */
12296 if (const_op == 0 && sign_bit_comparison_p
12297 && CONST_INT_P (XEXP (op0, 1))
12298 && mode_width <= HOST_BITS_PER_WIDE_INT)
12300 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12301 (HOST_WIDE_INT_1U
12302 << (mode_width - 1
12303 - INTVAL (XEXP (op0, 1)))));
12304 code = (code == LT ? NE : EQ);
12305 continue;
12308 /* Fall through. */
12310 case ABS:
12311 /* ABS is ignorable inside an equality comparison with zero. */
12312 if (const_op == 0 && equality_comparison_p)
12314 op0 = XEXP (op0, 0);
12315 continue;
12317 break;
12319 case SIGN_EXTEND:
12320 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12321 (compare FOO CONST) if CONST fits in FOO's mode and we
12322 are either testing inequality or have an unsigned
12323 comparison with ZERO_EXTEND or a signed comparison with
12324 SIGN_EXTEND. But don't do it if we don't have a compare
12325 insn of the given mode, since we'd have to revert it
12326 later on, and then we wouldn't know whether to sign- or
12327 zero-extend. */
12328 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12329 && ! unsigned_comparison_p
12330 && HWI_COMPUTABLE_MODE_P (mode)
12331 && trunc_int_for_mode (const_op, mode) == const_op
12332 && have_insn_for (COMPARE, mode))
12334 op0 = XEXP (op0, 0);
12335 continue;
12337 break;
12339 case SUBREG:
12340 /* Check for the case where we are comparing A - C1 with C2, that is
12342 (subreg:MODE (plus (A) (-C1))) op (C2)
12344 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12345 comparison in the wider mode. One of the following two conditions
12346 must be true in order for this to be valid:
12348 1. The mode extension results in the same bit pattern being added
12349 on both sides and the comparison is equality or unsigned. As
12350 C2 has been truncated to fit in MODE, the pattern can only be
12351 all 0s or all 1s.
12353 2. The mode extension results in the sign bit being copied on
12354 each side.
12356 The difficulty here is that we have predicates for A but not for
12357 (A - C1) so we need to check that C1 is within proper bounds so
12358 as to perturbate A as little as possible. */
12360 if (mode_width <= HOST_BITS_PER_WIDE_INT
12361 && subreg_lowpart_p (op0)
12362 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12363 &inner_mode)
12364 && GET_MODE_PRECISION (inner_mode) > mode_width
12365 && GET_CODE (SUBREG_REG (op0)) == PLUS
12366 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12368 rtx a = XEXP (SUBREG_REG (op0), 0);
12369 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12371 if ((c1 > 0
12372 && (unsigned HOST_WIDE_INT) c1
12373 < HOST_WIDE_INT_1U << (mode_width - 1)
12374 && (equality_comparison_p || unsigned_comparison_p)
12375 /* (A - C1) zero-extends if it is positive and sign-extends
12376 if it is negative, C2 both zero- and sign-extends. */
12377 && (((nonzero_bits (a, inner_mode)
12378 & ~GET_MODE_MASK (mode)) == 0
12379 && const_op >= 0)
12380 /* (A - C1) sign-extends if it is positive and 1-extends
12381 if it is negative, C2 both sign- and 1-extends. */
12382 || (num_sign_bit_copies (a, inner_mode)
12383 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12384 - mode_width)
12385 && const_op < 0)))
12386 || ((unsigned HOST_WIDE_INT) c1
12387 < HOST_WIDE_INT_1U << (mode_width - 2)
12388 /* (A - C1) always sign-extends, like C2. */
12389 && num_sign_bit_copies (a, inner_mode)
12390 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12391 - (mode_width - 1))))
12393 op0 = SUBREG_REG (op0);
12394 continue;
12398 /* If the inner mode is narrower and we are extracting the low part,
12399 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12400 if (paradoxical_subreg_p (op0))
12402 else if (subreg_lowpart_p (op0)
12403 && GET_MODE_CLASS (mode) == MODE_INT
12404 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12405 && (code == NE || code == EQ)
12406 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12407 && !paradoxical_subreg_p (op0)
12408 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12409 & ~GET_MODE_MASK (mode)) == 0)
12411 /* Remove outer subregs that don't do anything. */
12412 tem = gen_lowpart (inner_mode, op1);
12414 if ((nonzero_bits (tem, inner_mode)
12415 & ~GET_MODE_MASK (mode)) == 0)
12417 op0 = SUBREG_REG (op0);
12418 op1 = tem;
12419 continue;
12421 break;
12423 else
12424 break;
12426 /* FALLTHROUGH */
12428 case ZERO_EXTEND:
12429 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12430 && (unsigned_comparison_p || equality_comparison_p)
12431 && HWI_COMPUTABLE_MODE_P (mode)
12432 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12433 && const_op >= 0
12434 && have_insn_for (COMPARE, mode))
12436 op0 = XEXP (op0, 0);
12437 continue;
12439 break;
12441 case PLUS:
12442 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12443 this for equality comparisons due to pathological cases involving
12444 overflows. */
12445 if (equality_comparison_p
12446 && (tem = simplify_binary_operation (MINUS, mode,
12447 op1, XEXP (op0, 1))) != 0)
12449 op0 = XEXP (op0, 0);
12450 op1 = tem;
12451 continue;
12454 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12455 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12456 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12458 op0 = XEXP (XEXP (op0, 0), 0);
12459 code = (code == LT ? EQ : NE);
12460 continue;
12462 break;
12464 case MINUS:
12465 /* We used to optimize signed comparisons against zero, but that
12466 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12467 arrive here as equality comparisons, or (GEU, LTU) are
12468 optimized away. No need to special-case them. */
12470 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12471 (eq B (minus A C)), whichever simplifies. We can only do
12472 this for equality comparisons due to pathological cases involving
12473 overflows. */
12474 if (equality_comparison_p
12475 && (tem = simplify_binary_operation (PLUS, mode,
12476 XEXP (op0, 1), op1)) != 0)
12478 op0 = XEXP (op0, 0);
12479 op1 = tem;
12480 continue;
12483 if (equality_comparison_p
12484 && (tem = simplify_binary_operation (MINUS, mode,
12485 XEXP (op0, 0), op1)) != 0)
12487 op0 = XEXP (op0, 1);
12488 op1 = tem;
12489 continue;
12492 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12493 of bits in X minus 1, is one iff X > 0. */
12494 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12495 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12496 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12497 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12499 op0 = XEXP (op0, 1);
12500 code = (code == GE ? LE : GT);
12501 continue;
12503 break;
12505 case XOR:
12506 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12507 if C is zero or B is a constant. */
12508 if (equality_comparison_p
12509 && (tem = simplify_binary_operation (XOR, mode,
12510 XEXP (op0, 1), op1)) != 0)
12512 op0 = XEXP (op0, 0);
12513 op1 = tem;
12514 continue;
12516 break;
12519 case IOR:
12520 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12521 iff X <= 0. */
12522 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12523 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12524 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12526 op0 = XEXP (op0, 1);
12527 code = (code == GE ? GT : LE);
12528 continue;
12530 break;
12532 case AND:
12533 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12534 will be converted to a ZERO_EXTRACT later. */
12535 if (const_op == 0 && equality_comparison_p
12536 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12537 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12539 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12540 XEXP (XEXP (op0, 0), 1));
12541 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12542 continue;
12545 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12546 zero and X is a comparison and C1 and C2 describe only bits set
12547 in STORE_FLAG_VALUE, we can compare with X. */
12548 if (const_op == 0 && equality_comparison_p
12549 && mode_width <= HOST_BITS_PER_WIDE_INT
12550 && CONST_INT_P (XEXP (op0, 1))
12551 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12552 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12553 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12554 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12556 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12557 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12558 if ((~STORE_FLAG_VALUE & mask) == 0
12559 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12560 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12561 && COMPARISON_P (tem))))
12563 op0 = XEXP (XEXP (op0, 0), 0);
12564 continue;
12568 /* If we are doing an equality comparison of an AND of a bit equal
12569 to the sign bit, replace this with a LT or GE comparison of
12570 the underlying value. */
12571 if (equality_comparison_p
12572 && const_op == 0
12573 && CONST_INT_P (XEXP (op0, 1))
12574 && mode_width <= HOST_BITS_PER_WIDE_INT
12575 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12576 == HOST_WIDE_INT_1U << (mode_width - 1)))
12578 op0 = XEXP (op0, 0);
12579 code = (code == EQ ? GE : LT);
12580 continue;
12583 /* If this AND operation is really a ZERO_EXTEND from a narrower
12584 mode, the constant fits within that mode, and this is either an
12585 equality or unsigned comparison, try to do this comparison in
12586 the narrower mode.
12588 Note that in:
12590 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12591 -> (ne:DI (reg:SI 4) (const_int 0))
12593 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12594 known to hold a value of the required mode the
12595 transformation is invalid. */
12596 if ((equality_comparison_p || unsigned_comparison_p)
12597 && CONST_INT_P (XEXP (op0, 1))
12598 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12599 & GET_MODE_MASK (mode))
12600 + 1)) >= 0
12601 && const_op >> i == 0
12602 && int_mode_for_size (i, 1).exists (&tmode))
12604 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12605 continue;
12608 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12609 fits in both M1 and M2 and the SUBREG is either paradoxical
12610 or represents the low part, permute the SUBREG and the AND
12611 and try again. */
12612 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12613 && CONST_INT_P (XEXP (op0, 1)))
12615 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12616 /* Require an integral mode, to avoid creating something like
12617 (AND:SF ...). */
12618 if ((is_a <scalar_int_mode>
12619 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12620 /* It is unsafe to commute the AND into the SUBREG if the
12621 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12622 not defined. As originally written the upper bits
12623 have a defined value due to the AND operation.
12624 However, if we commute the AND inside the SUBREG then
12625 they no longer have defined values and the meaning of
12626 the code has been changed.
12627 Also C1 should not change value in the smaller mode,
12628 see PR67028 (a positive C1 can become negative in the
12629 smaller mode, so that the AND does no longer mask the
12630 upper bits). */
12631 && ((WORD_REGISTER_OPERATIONS
12632 && mode_width > GET_MODE_PRECISION (tmode)
12633 && mode_width <= BITS_PER_WORD
12634 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12635 || (mode_width <= GET_MODE_PRECISION (tmode)
12636 && subreg_lowpart_p (XEXP (op0, 0))))
12637 && mode_width <= HOST_BITS_PER_WIDE_INT
12638 && HWI_COMPUTABLE_MODE_P (tmode)
12639 && (c1 & ~mask) == 0
12640 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12641 && c1 != mask
12642 && c1 != GET_MODE_MASK (tmode))
12644 op0 = simplify_gen_binary (AND, tmode,
12645 SUBREG_REG (XEXP (op0, 0)),
12646 gen_int_mode (c1, tmode));
12647 op0 = gen_lowpart (mode, op0);
12648 continue;
12652 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12653 if (const_op == 0 && equality_comparison_p
12654 && XEXP (op0, 1) == const1_rtx
12655 && GET_CODE (XEXP (op0, 0)) == NOT)
12657 op0 = simplify_and_const_int (NULL_RTX, mode,
12658 XEXP (XEXP (op0, 0), 0), 1);
12659 code = (code == NE ? EQ : NE);
12660 continue;
12663 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12664 (eq (and (lshiftrt X) 1) 0).
12665 Also handle the case where (not X) is expressed using xor. */
12666 if (const_op == 0 && equality_comparison_p
12667 && XEXP (op0, 1) == const1_rtx
12668 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12670 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12671 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12673 if (GET_CODE (shift_op) == NOT
12674 || (GET_CODE (shift_op) == XOR
12675 && CONST_INT_P (XEXP (shift_op, 1))
12676 && CONST_INT_P (shift_count)
12677 && HWI_COMPUTABLE_MODE_P (mode)
12678 && (UINTVAL (XEXP (shift_op, 1))
12679 == HOST_WIDE_INT_1U
12680 << INTVAL (shift_count))))
12683 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12684 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12685 code = (code == NE ? EQ : NE);
12686 continue;
12689 break;
12691 case ASHIFT:
12692 /* If we have (compare (ashift FOO N) (const_int C)) and
12693 the high order N bits of FOO (N+1 if an inequality comparison)
12694 are known to be zero, we can do this by comparing FOO with C
12695 shifted right N bits so long as the low-order N bits of C are
12696 zero. */
12697 if (CONST_INT_P (XEXP (op0, 1))
12698 && INTVAL (XEXP (op0, 1)) >= 0
12699 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12700 < HOST_BITS_PER_WIDE_INT)
12701 && (((unsigned HOST_WIDE_INT) const_op
12702 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12703 - 1)) == 0)
12704 && mode_width <= HOST_BITS_PER_WIDE_INT
12705 && (nonzero_bits (XEXP (op0, 0), mode)
12706 & ~(mask >> (INTVAL (XEXP (op0, 1))
12707 + ! equality_comparison_p))) == 0)
12709 /* We must perform a logical shift, not an arithmetic one,
12710 as we want the top N bits of C to be zero. */
12711 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12713 temp >>= INTVAL (XEXP (op0, 1));
12714 op1 = gen_int_mode (temp, mode);
12715 op0 = XEXP (op0, 0);
12716 continue;
12719 /* If we are doing a sign bit comparison, it means we are testing
12720 a particular bit. Convert it to the appropriate AND. */
12721 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12722 && mode_width <= HOST_BITS_PER_WIDE_INT)
12724 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12725 (HOST_WIDE_INT_1U
12726 << (mode_width - 1
12727 - INTVAL (XEXP (op0, 1)))));
12728 code = (code == LT ? NE : EQ);
12729 continue;
12732 /* If this an equality comparison with zero and we are shifting
12733 the low bit to the sign bit, we can convert this to an AND of the
12734 low-order bit. */
12735 if (const_op == 0 && equality_comparison_p
12736 && CONST_INT_P (XEXP (op0, 1))
12737 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12739 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12740 continue;
12742 break;
12744 case ASHIFTRT:
12745 /* If this is an equality comparison with zero, we can do this
12746 as a logical shift, which might be much simpler. */
12747 if (equality_comparison_p && const_op == 0
12748 && CONST_INT_P (XEXP (op0, 1)))
12750 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12751 XEXP (op0, 0),
12752 INTVAL (XEXP (op0, 1)));
12753 continue;
12756 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12757 do the comparison in a narrower mode. */
12758 if (! unsigned_comparison_p
12759 && CONST_INT_P (XEXP (op0, 1))
12760 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12761 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12762 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12763 .exists (&tmode))
12764 && (((unsigned HOST_WIDE_INT) const_op
12765 + (GET_MODE_MASK (tmode) >> 1) + 1)
12766 <= GET_MODE_MASK (tmode)))
12768 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12769 continue;
12772 /* Likewise if OP0 is a PLUS of a sign extension with a
12773 constant, which is usually represented with the PLUS
12774 between the shifts. */
12775 if (! unsigned_comparison_p
12776 && CONST_INT_P (XEXP (op0, 1))
12777 && GET_CODE (XEXP (op0, 0)) == PLUS
12778 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12779 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12780 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12781 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12782 .exists (&tmode))
12783 && (((unsigned HOST_WIDE_INT) const_op
12784 + (GET_MODE_MASK (tmode) >> 1) + 1)
12785 <= GET_MODE_MASK (tmode)))
12787 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12788 rtx add_const = XEXP (XEXP (op0, 0), 1);
12789 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12790 add_const, XEXP (op0, 1));
12792 op0 = simplify_gen_binary (PLUS, tmode,
12793 gen_lowpart (tmode, inner),
12794 new_const);
12795 continue;
12798 /* FALLTHROUGH */
12799 case LSHIFTRT:
12800 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12801 the low order N bits of FOO are known to be zero, we can do this
12802 by comparing FOO with C shifted left N bits so long as no
12803 overflow occurs. Even if the low order N bits of FOO aren't known
12804 to be zero, if the comparison is >= or < we can use the same
12805 optimization and for > or <= by setting all the low
12806 order N bits in the comparison constant. */
12807 if (CONST_INT_P (XEXP (op0, 1))
12808 && INTVAL (XEXP (op0, 1)) > 0
12809 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12810 && mode_width <= HOST_BITS_PER_WIDE_INT
12811 && (((unsigned HOST_WIDE_INT) const_op
12812 + (GET_CODE (op0) != LSHIFTRT
12813 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12814 + 1)
12815 : 0))
12816 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12818 unsigned HOST_WIDE_INT low_bits
12819 = (nonzero_bits (XEXP (op0, 0), mode)
12820 & ((HOST_WIDE_INT_1U
12821 << INTVAL (XEXP (op0, 1))) - 1));
12822 if (low_bits == 0 || !equality_comparison_p)
12824 /* If the shift was logical, then we must make the condition
12825 unsigned. */
12826 if (GET_CODE (op0) == LSHIFTRT)
12827 code = unsigned_condition (code);
12829 const_op = (unsigned HOST_WIDE_INT) const_op
12830 << INTVAL (XEXP (op0, 1));
12831 if (low_bits != 0
12832 && (code == GT || code == GTU
12833 || code == LE || code == LEU))
12834 const_op
12835 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12836 op1 = GEN_INT (const_op);
12837 op0 = XEXP (op0, 0);
12838 continue;
12842 /* If we are using this shift to extract just the sign bit, we
12843 can replace this with an LT or GE comparison. */
12844 if (const_op == 0
12845 && (equality_comparison_p || sign_bit_comparison_p)
12846 && CONST_INT_P (XEXP (op0, 1))
12847 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12849 op0 = XEXP (op0, 0);
12850 code = (code == NE || code == GT ? LT : GE);
12851 continue;
12853 break;
12855 default:
12856 break;
12859 break;
12862 /* Now make any compound operations involved in this comparison. Then,
12863 check for an outmost SUBREG on OP0 that is not doing anything or is
12864 paradoxical. The latter transformation must only be performed when
12865 it is known that the "extra" bits will be the same in op0 and op1 or
12866 that they don't matter. There are three cases to consider:
12868 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12869 care bits and we can assume they have any convenient value. So
12870 making the transformation is safe.
12872 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12873 In this case the upper bits of op0 are undefined. We should not make
12874 the simplification in that case as we do not know the contents of
12875 those bits.
12877 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12878 In that case we know those bits are zeros or ones. We must also be
12879 sure that they are the same as the upper bits of op1.
12881 We can never remove a SUBREG for a non-equality comparison because
12882 the sign bit is in a different place in the underlying object. */
12884 rtx_code op0_mco_code = SET;
12885 if (op1 == const0_rtx)
12886 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12888 op0 = make_compound_operation (op0, op0_mco_code);
12889 op1 = make_compound_operation (op1, SET);
12891 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12892 && is_int_mode (GET_MODE (op0), &mode)
12893 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12894 && (code == NE || code == EQ))
12896 if (paradoxical_subreg_p (op0))
12898 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12899 implemented. */
12900 if (REG_P (SUBREG_REG (op0)))
12902 op0 = SUBREG_REG (op0);
12903 op1 = gen_lowpart (inner_mode, op1);
12906 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12907 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12908 & ~GET_MODE_MASK (mode)) == 0)
12910 tem = gen_lowpart (inner_mode, op1);
12912 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12913 op0 = SUBREG_REG (op0), op1 = tem;
12917 /* We now do the opposite procedure: Some machines don't have compare
12918 insns in all modes. If OP0's mode is an integer mode smaller than a
12919 word and we can't do a compare in that mode, see if there is a larger
12920 mode for which we can do the compare. There are a number of cases in
12921 which we can use the wider mode. */
12923 if (is_int_mode (GET_MODE (op0), &mode)
12924 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12925 && ! have_insn_for (COMPARE, mode))
12926 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12928 tmode = tmode_iter.require ();
12929 if (!HWI_COMPUTABLE_MODE_P (tmode))
12930 break;
12931 if (have_insn_for (COMPARE, tmode))
12933 int zero_extended;
12935 /* If this is a test for negative, we can make an explicit
12936 test of the sign bit. Test this first so we can use
12937 a paradoxical subreg to extend OP0. */
12939 if (op1 == const0_rtx && (code == LT || code == GE)
12940 && HWI_COMPUTABLE_MODE_P (mode))
12942 unsigned HOST_WIDE_INT sign
12943 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12944 op0 = simplify_gen_binary (AND, tmode,
12945 gen_lowpart (tmode, op0),
12946 gen_int_mode (sign, tmode));
12947 code = (code == LT) ? NE : EQ;
12948 break;
12951 /* If the only nonzero bits in OP0 and OP1 are those in the
12952 narrower mode and this is an equality or unsigned comparison,
12953 we can use the wider mode. Similarly for sign-extended
12954 values, in which case it is true for all comparisons. */
12955 zero_extended = ((code == EQ || code == NE
12956 || code == GEU || code == GTU
12957 || code == LEU || code == LTU)
12958 && (nonzero_bits (op0, tmode)
12959 & ~GET_MODE_MASK (mode)) == 0
12960 && ((CONST_INT_P (op1)
12961 || (nonzero_bits (op1, tmode)
12962 & ~GET_MODE_MASK (mode)) == 0)));
12964 if (zero_extended
12965 || ((num_sign_bit_copies (op0, tmode)
12966 > (unsigned int) (GET_MODE_PRECISION (tmode)
12967 - GET_MODE_PRECISION (mode)))
12968 && (num_sign_bit_copies (op1, tmode)
12969 > (unsigned int) (GET_MODE_PRECISION (tmode)
12970 - GET_MODE_PRECISION (mode)))))
12972 /* If OP0 is an AND and we don't have an AND in MODE either,
12973 make a new AND in the proper mode. */
12974 if (GET_CODE (op0) == AND
12975 && !have_insn_for (AND, mode))
12976 op0 = simplify_gen_binary (AND, tmode,
12977 gen_lowpart (tmode,
12978 XEXP (op0, 0)),
12979 gen_lowpart (tmode,
12980 XEXP (op0, 1)));
12981 else
12983 if (zero_extended)
12985 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12986 op0, mode);
12987 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12988 op1, mode);
12990 else
12992 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12993 op0, mode);
12994 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12995 op1, mode);
12997 break;
13003 /* We may have changed the comparison operands. Re-canonicalize. */
13004 if (swap_commutative_operands_p (op0, op1))
13006 std::swap (op0, op1);
13007 code = swap_condition (code);
13010 /* If this machine only supports a subset of valid comparisons, see if we
13011 can convert an unsupported one into a supported one. */
13012 target_canonicalize_comparison (&code, &op0, &op1, 0);
13014 *pop0 = op0;
13015 *pop1 = op1;
13017 return code;
13020 /* Utility function for record_value_for_reg. Count number of
13021 rtxs in X. */
13022 static int
13023 count_rtxs (rtx x)
13025 enum rtx_code code = GET_CODE (x);
13026 const char *fmt;
13027 int i, j, ret = 1;
13029 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13030 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13032 rtx x0 = XEXP (x, 0);
13033 rtx x1 = XEXP (x, 1);
13035 if (x0 == x1)
13036 return 1 + 2 * count_rtxs (x0);
13038 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13039 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13040 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13041 return 2 + 2 * count_rtxs (x0)
13042 + count_rtxs (x == XEXP (x1, 0)
13043 ? XEXP (x1, 1) : XEXP (x1, 0));
13045 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13046 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13047 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13048 return 2 + 2 * count_rtxs (x1)
13049 + count_rtxs (x == XEXP (x0, 0)
13050 ? XEXP (x0, 1) : XEXP (x0, 0));
13053 fmt = GET_RTX_FORMAT (code);
13054 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13055 if (fmt[i] == 'e')
13056 ret += count_rtxs (XEXP (x, i));
13057 else if (fmt[i] == 'E')
13058 for (j = 0; j < XVECLEN (x, i); j++)
13059 ret += count_rtxs (XVECEXP (x, i, j));
13061 return ret;
13064 /* Utility function for following routine. Called when X is part of a value
13065 being stored into last_set_value. Sets last_set_table_tick
13066 for each register mentioned. Similar to mention_regs in cse.c */
13068 static void
13069 update_table_tick (rtx x)
13071 enum rtx_code code = GET_CODE (x);
13072 const char *fmt = GET_RTX_FORMAT (code);
13073 int i, j;
13075 if (code == REG)
13077 unsigned int regno = REGNO (x);
13078 unsigned int endregno = END_REGNO (x);
13079 unsigned int r;
13081 for (r = regno; r < endregno; r++)
13083 reg_stat_type *rsp = &reg_stat[r];
13084 rsp->last_set_table_tick = label_tick;
13087 return;
13090 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13091 if (fmt[i] == 'e')
13093 /* Check for identical subexpressions. If x contains
13094 identical subexpression we only have to traverse one of
13095 them. */
13096 if (i == 0 && ARITHMETIC_P (x))
13098 /* Note that at this point x1 has already been
13099 processed. */
13100 rtx x0 = XEXP (x, 0);
13101 rtx x1 = XEXP (x, 1);
13103 /* If x0 and x1 are identical then there is no need to
13104 process x0. */
13105 if (x0 == x1)
13106 break;
13108 /* If x0 is identical to a subexpression of x1 then while
13109 processing x1, x0 has already been processed. Thus we
13110 are done with x. */
13111 if (ARITHMETIC_P (x1)
13112 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13113 break;
13115 /* If x1 is identical to a subexpression of x0 then we
13116 still have to process the rest of x0. */
13117 if (ARITHMETIC_P (x0)
13118 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13120 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13121 break;
13125 update_table_tick (XEXP (x, i));
13127 else if (fmt[i] == 'E')
13128 for (j = 0; j < XVECLEN (x, i); j++)
13129 update_table_tick (XVECEXP (x, i, j));
13132 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13133 are saying that the register is clobbered and we no longer know its
13134 value. If INSN is zero, don't update reg_stat[].last_set; this is
13135 only permitted with VALUE also zero and is used to invalidate the
13136 register. */
13138 static void
13139 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13141 unsigned int regno = REGNO (reg);
13142 unsigned int endregno = END_REGNO (reg);
13143 unsigned int i;
13144 reg_stat_type *rsp;
13146 /* If VALUE contains REG and we have a previous value for REG, substitute
13147 the previous value. */
13148 if (value && insn && reg_overlap_mentioned_p (reg, value))
13150 rtx tem;
13152 /* Set things up so get_last_value is allowed to see anything set up to
13153 our insn. */
13154 subst_low_luid = DF_INSN_LUID (insn);
13155 tem = get_last_value (reg);
13157 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13158 it isn't going to be useful and will take a lot of time to process,
13159 so just use the CLOBBER. */
13161 if (tem)
13163 if (ARITHMETIC_P (tem)
13164 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13165 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13166 tem = XEXP (tem, 0);
13167 else if (count_occurrences (value, reg, 1) >= 2)
13169 /* If there are two or more occurrences of REG in VALUE,
13170 prevent the value from growing too much. */
13171 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13172 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13175 value = replace_rtx (copy_rtx (value), reg, tem);
13179 /* For each register modified, show we don't know its value, that
13180 we don't know about its bitwise content, that its value has been
13181 updated, and that we don't know the location of the death of the
13182 register. */
13183 for (i = regno; i < endregno; i++)
13185 rsp = &reg_stat[i];
13187 if (insn)
13188 rsp->last_set = insn;
13190 rsp->last_set_value = 0;
13191 rsp->last_set_mode = VOIDmode;
13192 rsp->last_set_nonzero_bits = 0;
13193 rsp->last_set_sign_bit_copies = 0;
13194 rsp->last_death = 0;
13195 rsp->truncated_to_mode = VOIDmode;
13198 /* Mark registers that are being referenced in this value. */
13199 if (value)
13200 update_table_tick (value);
13202 /* Now update the status of each register being set.
13203 If someone is using this register in this block, set this register
13204 to invalid since we will get confused between the two lives in this
13205 basic block. This makes using this register always invalid. In cse, we
13206 scan the table to invalidate all entries using this register, but this
13207 is too much work for us. */
13209 for (i = regno; i < endregno; i++)
13211 rsp = &reg_stat[i];
13212 rsp->last_set_label = label_tick;
13213 if (!insn
13214 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13215 rsp->last_set_invalid = 1;
13216 else
13217 rsp->last_set_invalid = 0;
13220 /* The value being assigned might refer to X (like in "x++;"). In that
13221 case, we must replace it with (clobber (const_int 0)) to prevent
13222 infinite loops. */
13223 rsp = &reg_stat[regno];
13224 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13226 value = copy_rtx (value);
13227 if (!get_last_value_validate (&value, insn, label_tick, 1))
13228 value = 0;
13231 /* For the main register being modified, update the value, the mode, the
13232 nonzero bits, and the number of sign bit copies. */
13234 rsp->last_set_value = value;
13236 if (value)
13238 machine_mode mode = GET_MODE (reg);
13239 subst_low_luid = DF_INSN_LUID (insn);
13240 rsp->last_set_mode = mode;
13241 if (GET_MODE_CLASS (mode) == MODE_INT
13242 && HWI_COMPUTABLE_MODE_P (mode))
13243 mode = nonzero_bits_mode;
13244 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13245 rsp->last_set_sign_bit_copies
13246 = num_sign_bit_copies (value, GET_MODE (reg));
13250 /* Called via note_stores from record_dead_and_set_regs to handle one
13251 SET or CLOBBER in an insn. DATA is the instruction in which the
13252 set is occurring. */
13254 static void
13255 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13257 rtx_insn *record_dead_insn = (rtx_insn *) data;
13259 if (GET_CODE (dest) == SUBREG)
13260 dest = SUBREG_REG (dest);
13262 if (!record_dead_insn)
13264 if (REG_P (dest))
13265 record_value_for_reg (dest, NULL, NULL_RTX);
13266 return;
13269 if (REG_P (dest))
13271 /* If we are setting the whole register, we know its value. Otherwise
13272 show that we don't know the value. We can handle a SUBREG if it's
13273 the low part, but we must be careful with paradoxical SUBREGs on
13274 RISC architectures because we cannot strip e.g. an extension around
13275 a load and record the naked load since the RTL middle-end considers
13276 that the upper bits are defined according to LOAD_EXTEND_OP. */
13277 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13278 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13279 else if (GET_CODE (setter) == SET
13280 && GET_CODE (SET_DEST (setter)) == SUBREG
13281 && SUBREG_REG (SET_DEST (setter)) == dest
13282 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13283 BITS_PER_WORD)
13284 && subreg_lowpart_p (SET_DEST (setter)))
13285 record_value_for_reg (dest, record_dead_insn,
13286 WORD_REGISTER_OPERATIONS
13287 && paradoxical_subreg_p (SET_DEST (setter))
13288 ? SET_SRC (setter)
13289 : gen_lowpart (GET_MODE (dest),
13290 SET_SRC (setter)));
13291 else
13292 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13294 else if (MEM_P (dest)
13295 /* Ignore pushes, they clobber nothing. */
13296 && ! push_operand (dest, GET_MODE (dest)))
13297 mem_last_set = DF_INSN_LUID (record_dead_insn);
13300 /* Update the records of when each REG was most recently set or killed
13301 for the things done by INSN. This is the last thing done in processing
13302 INSN in the combiner loop.
13304 We update reg_stat[], in particular fields last_set, last_set_value,
13305 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13306 last_death, and also the similar information mem_last_set (which insn
13307 most recently modified memory) and last_call_luid (which insn was the
13308 most recent subroutine call). */
13310 static void
13311 record_dead_and_set_regs (rtx_insn *insn)
13313 rtx link;
13314 unsigned int i;
13316 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13318 if (REG_NOTE_KIND (link) == REG_DEAD
13319 && REG_P (XEXP (link, 0)))
13321 unsigned int regno = REGNO (XEXP (link, 0));
13322 unsigned int endregno = END_REGNO (XEXP (link, 0));
13324 for (i = regno; i < endregno; i++)
13326 reg_stat_type *rsp;
13328 rsp = &reg_stat[i];
13329 rsp->last_death = insn;
13332 else if (REG_NOTE_KIND (link) == REG_INC)
13333 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13336 if (CALL_P (insn))
13338 hard_reg_set_iterator hrsi;
13339 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13341 reg_stat_type *rsp;
13343 rsp = &reg_stat[i];
13344 rsp->last_set_invalid = 1;
13345 rsp->last_set = insn;
13346 rsp->last_set_value = 0;
13347 rsp->last_set_mode = VOIDmode;
13348 rsp->last_set_nonzero_bits = 0;
13349 rsp->last_set_sign_bit_copies = 0;
13350 rsp->last_death = 0;
13351 rsp->truncated_to_mode = VOIDmode;
13354 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13356 /* We can't combine into a call pattern. Remember, though, that
13357 the return value register is set at this LUID. We could
13358 still replace a register with the return value from the
13359 wrong subroutine call! */
13360 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13362 else
13363 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13366 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13367 register present in the SUBREG, so for each such SUBREG go back and
13368 adjust nonzero and sign bit information of the registers that are
13369 known to have some zero/sign bits set.
13371 This is needed because when combine blows the SUBREGs away, the
13372 information on zero/sign bits is lost and further combines can be
13373 missed because of that. */
13375 static void
13376 record_promoted_value (rtx_insn *insn, rtx subreg)
13378 struct insn_link *links;
13379 rtx set;
13380 unsigned int regno = REGNO (SUBREG_REG (subreg));
13381 machine_mode mode = GET_MODE (subreg);
13383 if (!HWI_COMPUTABLE_MODE_P (mode))
13384 return;
13386 for (links = LOG_LINKS (insn); links;)
13388 reg_stat_type *rsp;
13390 insn = links->insn;
13391 set = single_set (insn);
13393 if (! set || !REG_P (SET_DEST (set))
13394 || REGNO (SET_DEST (set)) != regno
13395 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13397 links = links->next;
13398 continue;
13401 rsp = &reg_stat[regno];
13402 if (rsp->last_set == insn)
13404 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13405 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13408 if (REG_P (SET_SRC (set)))
13410 regno = REGNO (SET_SRC (set));
13411 links = LOG_LINKS (insn);
13413 else
13414 break;
13418 /* Check if X, a register, is known to contain a value already
13419 truncated to MODE. In this case we can use a subreg to refer to
13420 the truncated value even though in the generic case we would need
13421 an explicit truncation. */
13423 static bool
13424 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13426 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13427 machine_mode truncated = rsp->truncated_to_mode;
13429 if (truncated == 0
13430 || rsp->truncation_label < label_tick_ebb_start)
13431 return false;
13432 if (!partial_subreg_p (mode, truncated))
13433 return true;
13434 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13435 return true;
13436 return false;
13439 /* If X is a hard reg or a subreg record the mode that the register is
13440 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13441 able to turn a truncate into a subreg using this information. Return true
13442 if traversing X is complete. */
13444 static bool
13445 record_truncated_value (rtx x)
13447 machine_mode truncated_mode;
13448 reg_stat_type *rsp;
13450 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13452 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13453 truncated_mode = GET_MODE (x);
13455 if (!partial_subreg_p (truncated_mode, original_mode))
13456 return true;
13458 truncated_mode = GET_MODE (x);
13459 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13460 return true;
13462 x = SUBREG_REG (x);
13464 /* ??? For hard-regs we now record everything. We might be able to
13465 optimize this using last_set_mode. */
13466 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13467 truncated_mode = GET_MODE (x);
13468 else
13469 return false;
13471 rsp = &reg_stat[REGNO (x)];
13472 if (rsp->truncated_to_mode == 0
13473 || rsp->truncation_label < label_tick_ebb_start
13474 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13476 rsp->truncated_to_mode = truncated_mode;
13477 rsp->truncation_label = label_tick;
13480 return true;
13483 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13484 the modes they are used in. This can help truning TRUNCATEs into
13485 SUBREGs. */
13487 static void
13488 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13490 subrtx_var_iterator::array_type array;
13491 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13492 if (record_truncated_value (*iter))
13493 iter.skip_subrtxes ();
13496 /* Scan X for promoted SUBREGs. For each one found,
13497 note what it implies to the registers used in it. */
13499 static void
13500 check_promoted_subreg (rtx_insn *insn, rtx x)
13502 if (GET_CODE (x) == SUBREG
13503 && SUBREG_PROMOTED_VAR_P (x)
13504 && REG_P (SUBREG_REG (x)))
13505 record_promoted_value (insn, x);
13506 else
13508 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13509 int i, j;
13511 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13512 switch (format[i])
13514 case 'e':
13515 check_promoted_subreg (insn, XEXP (x, i));
13516 break;
13517 case 'V':
13518 case 'E':
13519 if (XVEC (x, i) != 0)
13520 for (j = 0; j < XVECLEN (x, i); j++)
13521 check_promoted_subreg (insn, XVECEXP (x, i, j));
13522 break;
13527 /* Verify that all the registers and memory references mentioned in *LOC are
13528 still valid. *LOC was part of a value set in INSN when label_tick was
13529 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13530 the invalid references with (clobber (const_int 0)) and return 1. This
13531 replacement is useful because we often can get useful information about
13532 the form of a value (e.g., if it was produced by a shift that always
13533 produces -1 or 0) even though we don't know exactly what registers it
13534 was produced from. */
13536 static int
13537 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13539 rtx x = *loc;
13540 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13541 int len = GET_RTX_LENGTH (GET_CODE (x));
13542 int i, j;
13544 if (REG_P (x))
13546 unsigned int regno = REGNO (x);
13547 unsigned int endregno = END_REGNO (x);
13548 unsigned int j;
13550 for (j = regno; j < endregno; j++)
13552 reg_stat_type *rsp = &reg_stat[j];
13553 if (rsp->last_set_invalid
13554 /* If this is a pseudo-register that was only set once and not
13555 live at the beginning of the function, it is always valid. */
13556 || (! (regno >= FIRST_PSEUDO_REGISTER
13557 && regno < reg_n_sets_max
13558 && REG_N_SETS (regno) == 1
13559 && (!REGNO_REG_SET_P
13560 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13561 regno)))
13562 && rsp->last_set_label > tick))
13564 if (replace)
13565 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13566 return replace;
13570 return 1;
13572 /* If this is a memory reference, make sure that there were no stores after
13573 it that might have clobbered the value. We don't have alias info, so we
13574 assume any store invalidates it. Moreover, we only have local UIDs, so
13575 we also assume that there were stores in the intervening basic blocks. */
13576 else if (MEM_P (x) && !MEM_READONLY_P (x)
13577 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13579 if (replace)
13580 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13581 return replace;
13584 for (i = 0; i < len; i++)
13586 if (fmt[i] == 'e')
13588 /* Check for identical subexpressions. If x contains
13589 identical subexpression we only have to traverse one of
13590 them. */
13591 if (i == 1 && ARITHMETIC_P (x))
13593 /* Note that at this point x0 has already been checked
13594 and found valid. */
13595 rtx x0 = XEXP (x, 0);
13596 rtx x1 = XEXP (x, 1);
13598 /* If x0 and x1 are identical then x is also valid. */
13599 if (x0 == x1)
13600 return 1;
13602 /* If x1 is identical to a subexpression of x0 then
13603 while checking x0, x1 has already been checked. Thus
13604 it is valid and so as x. */
13605 if (ARITHMETIC_P (x0)
13606 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13607 return 1;
13609 /* If x0 is identical to a subexpression of x1 then x is
13610 valid iff the rest of x1 is valid. */
13611 if (ARITHMETIC_P (x1)
13612 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13613 return
13614 get_last_value_validate (&XEXP (x1,
13615 x0 == XEXP (x1, 0) ? 1 : 0),
13616 insn, tick, replace);
13619 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13620 replace) == 0)
13621 return 0;
13623 else if (fmt[i] == 'E')
13624 for (j = 0; j < XVECLEN (x, i); j++)
13625 if (get_last_value_validate (&XVECEXP (x, i, j),
13626 insn, tick, replace) == 0)
13627 return 0;
13630 /* If we haven't found a reason for it to be invalid, it is valid. */
13631 return 1;
13634 /* Get the last value assigned to X, if known. Some registers
13635 in the value may be replaced with (clobber (const_int 0)) if their value
13636 is known longer known reliably. */
13638 static rtx
13639 get_last_value (const_rtx x)
13641 unsigned int regno;
13642 rtx value;
13643 reg_stat_type *rsp;
13645 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13646 then convert it to the desired mode. If this is a paradoxical SUBREG,
13647 we cannot predict what values the "extra" bits might have. */
13648 if (GET_CODE (x) == SUBREG
13649 && subreg_lowpart_p (x)
13650 && !paradoxical_subreg_p (x)
13651 && (value = get_last_value (SUBREG_REG (x))) != 0)
13652 return gen_lowpart (GET_MODE (x), value);
13654 if (!REG_P (x))
13655 return 0;
13657 regno = REGNO (x);
13658 rsp = &reg_stat[regno];
13659 value = rsp->last_set_value;
13661 /* If we don't have a value, or if it isn't for this basic block and
13662 it's either a hard register, set more than once, or it's a live
13663 at the beginning of the function, return 0.
13665 Because if it's not live at the beginning of the function then the reg
13666 is always set before being used (is never used without being set).
13667 And, if it's set only once, and it's always set before use, then all
13668 uses must have the same last value, even if it's not from this basic
13669 block. */
13671 if (value == 0
13672 || (rsp->last_set_label < label_tick_ebb_start
13673 && (regno < FIRST_PSEUDO_REGISTER
13674 || regno >= reg_n_sets_max
13675 || REG_N_SETS (regno) != 1
13676 || REGNO_REG_SET_P
13677 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13678 return 0;
13680 /* If the value was set in a later insn than the ones we are processing,
13681 we can't use it even if the register was only set once. */
13682 if (rsp->last_set_label == label_tick
13683 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13684 return 0;
13686 /* If fewer bits were set than what we are asked for now, we cannot use
13687 the value. */
13688 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13689 GET_MODE_PRECISION (GET_MODE (x))))
13690 return 0;
13692 /* If the value has all its registers valid, return it. */
13693 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13694 return value;
13696 /* Otherwise, make a copy and replace any invalid register with
13697 (clobber (const_int 0)). If that fails for some reason, return 0. */
13699 value = copy_rtx (value);
13700 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13701 return value;
13703 return 0;
13706 /* Define three variables used for communication between the following
13707 routines. */
13709 static unsigned int reg_dead_regno, reg_dead_endregno;
13710 static int reg_dead_flag;
13712 /* Function called via note_stores from reg_dead_at_p.
13714 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13715 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13717 static void
13718 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13720 unsigned int regno, endregno;
13722 if (!REG_P (dest))
13723 return;
13725 regno = REGNO (dest);
13726 endregno = END_REGNO (dest);
13727 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13728 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13731 /* Return nonzero if REG is known to be dead at INSN.
13733 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13734 referencing REG, it is dead. If we hit a SET referencing REG, it is
13735 live. Otherwise, see if it is live or dead at the start of the basic
13736 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13737 must be assumed to be always live. */
13739 static int
13740 reg_dead_at_p (rtx reg, rtx_insn *insn)
13742 basic_block block;
13743 unsigned int i;
13745 /* Set variables for reg_dead_at_p_1. */
13746 reg_dead_regno = REGNO (reg);
13747 reg_dead_endregno = END_REGNO (reg);
13749 reg_dead_flag = 0;
13751 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13752 we allow the machine description to decide whether use-and-clobber
13753 patterns are OK. */
13754 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13756 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13757 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13758 return 0;
13761 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13762 beginning of basic block. */
13763 block = BLOCK_FOR_INSN (insn);
13764 for (;;)
13766 if (INSN_P (insn))
13768 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13769 return 1;
13771 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13772 if (reg_dead_flag)
13773 return reg_dead_flag == 1 ? 1 : 0;
13775 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13776 return 1;
13779 if (insn == BB_HEAD (block))
13780 break;
13782 insn = PREV_INSN (insn);
13785 /* Look at live-in sets for the basic block that we were in. */
13786 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13787 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13788 return 0;
13790 return 1;
13793 /* Note hard registers in X that are used. */
13795 static void
13796 mark_used_regs_combine (rtx x)
13798 RTX_CODE code = GET_CODE (x);
13799 unsigned int regno;
13800 int i;
13802 switch (code)
13804 case LABEL_REF:
13805 case SYMBOL_REF:
13806 case CONST:
13807 CASE_CONST_ANY:
13808 case PC:
13809 case ADDR_VEC:
13810 case ADDR_DIFF_VEC:
13811 case ASM_INPUT:
13812 /* CC0 must die in the insn after it is set, so we don't need to take
13813 special note of it here. */
13814 case CC0:
13815 return;
13817 case CLOBBER:
13818 /* If we are clobbering a MEM, mark any hard registers inside the
13819 address as used. */
13820 if (MEM_P (XEXP (x, 0)))
13821 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13822 return;
13824 case REG:
13825 regno = REGNO (x);
13826 /* A hard reg in a wide mode may really be multiple registers.
13827 If so, mark all of them just like the first. */
13828 if (regno < FIRST_PSEUDO_REGISTER)
13830 /* None of this applies to the stack, frame or arg pointers. */
13831 if (regno == STACK_POINTER_REGNUM
13832 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13833 && regno == HARD_FRAME_POINTER_REGNUM)
13834 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13835 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13836 || regno == FRAME_POINTER_REGNUM)
13837 return;
13839 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13841 return;
13843 case SET:
13845 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13846 the address. */
13847 rtx testreg = SET_DEST (x);
13849 while (GET_CODE (testreg) == SUBREG
13850 || GET_CODE (testreg) == ZERO_EXTRACT
13851 || GET_CODE (testreg) == STRICT_LOW_PART)
13852 testreg = XEXP (testreg, 0);
13854 if (MEM_P (testreg))
13855 mark_used_regs_combine (XEXP (testreg, 0));
13857 mark_used_regs_combine (SET_SRC (x));
13859 return;
13861 default:
13862 break;
13865 /* Recursively scan the operands of this expression. */
13868 const char *fmt = GET_RTX_FORMAT (code);
13870 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13872 if (fmt[i] == 'e')
13873 mark_used_regs_combine (XEXP (x, i));
13874 else if (fmt[i] == 'E')
13876 int j;
13878 for (j = 0; j < XVECLEN (x, i); j++)
13879 mark_used_regs_combine (XVECEXP (x, i, j));
13885 /* Remove register number REGNO from the dead registers list of INSN.
13887 Return the note used to record the death, if there was one. */
13890 remove_death (unsigned int regno, rtx_insn *insn)
13892 rtx note = find_regno_note (insn, REG_DEAD, regno);
13894 if (note)
13895 remove_note (insn, note);
13897 return note;
13900 /* For each register (hardware or pseudo) used within expression X, if its
13901 death is in an instruction with luid between FROM_LUID (inclusive) and
13902 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13903 list headed by PNOTES.
13905 That said, don't move registers killed by maybe_kill_insn.
13907 This is done when X is being merged by combination into TO_INSN. These
13908 notes will then be distributed as needed. */
13910 static void
13911 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13912 rtx *pnotes)
13914 const char *fmt;
13915 int len, i;
13916 enum rtx_code code = GET_CODE (x);
13918 if (code == REG)
13920 unsigned int regno = REGNO (x);
13921 rtx_insn *where_dead = reg_stat[regno].last_death;
13923 /* If we do not know where the register died, it may still die between
13924 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13925 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
13927 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
13928 while (insn
13929 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
13930 && DF_INSN_LUID (insn) >= from_luid)
13932 if (dead_or_set_regno_p (insn, regno))
13934 if (find_regno_note (insn, REG_DEAD, regno))
13935 where_dead = insn;
13936 break;
13939 insn = prev_real_nondebug_insn (insn);
13943 /* Don't move the register if it gets killed in between from and to. */
13944 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13945 && ! reg_referenced_p (x, maybe_kill_insn))
13946 return;
13948 if (where_dead
13949 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13950 && DF_INSN_LUID (where_dead) >= from_luid
13951 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13953 rtx note = remove_death (regno, where_dead);
13955 /* It is possible for the call above to return 0. This can occur
13956 when last_death points to I2 or I1 that we combined with.
13957 In that case make a new note.
13959 We must also check for the case where X is a hard register
13960 and NOTE is a death note for a range of hard registers
13961 including X. In that case, we must put REG_DEAD notes for
13962 the remaining registers in place of NOTE. */
13964 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13965 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13967 unsigned int deadregno = REGNO (XEXP (note, 0));
13968 unsigned int deadend = END_REGNO (XEXP (note, 0));
13969 unsigned int ourend = END_REGNO (x);
13970 unsigned int i;
13972 for (i = deadregno; i < deadend; i++)
13973 if (i < regno || i >= ourend)
13974 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13977 /* If we didn't find any note, or if we found a REG_DEAD note that
13978 covers only part of the given reg, and we have a multi-reg hard
13979 register, then to be safe we must check for REG_DEAD notes
13980 for each register other than the first. They could have
13981 their own REG_DEAD notes lying around. */
13982 else if ((note == 0
13983 || (note != 0
13984 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
13985 GET_MODE (x))))
13986 && regno < FIRST_PSEUDO_REGISTER
13987 && REG_NREGS (x) > 1)
13989 unsigned int ourend = END_REGNO (x);
13990 unsigned int i, offset;
13991 rtx oldnotes = 0;
13993 if (note)
13994 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
13995 else
13996 offset = 1;
13998 for (i = regno + offset; i < ourend; i++)
13999 move_deaths (regno_reg_rtx[i],
14000 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14003 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14005 XEXP (note, 1) = *pnotes;
14006 *pnotes = note;
14008 else
14009 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14012 return;
14015 else if (GET_CODE (x) == SET)
14017 rtx dest = SET_DEST (x);
14019 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14021 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14022 that accesses one word of a multi-word item, some
14023 piece of everything register in the expression is used by
14024 this insn, so remove any old death. */
14025 /* ??? So why do we test for equality of the sizes? */
14027 if (GET_CODE (dest) == ZERO_EXTRACT
14028 || GET_CODE (dest) == STRICT_LOW_PART
14029 || (GET_CODE (dest) == SUBREG
14030 && !read_modify_subreg_p (dest)))
14032 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14033 return;
14036 /* If this is some other SUBREG, we know it replaces the entire
14037 value, so use that as the destination. */
14038 if (GET_CODE (dest) == SUBREG)
14039 dest = SUBREG_REG (dest);
14041 /* If this is a MEM, adjust deaths of anything used in the address.
14042 For a REG (the only other possibility), the entire value is
14043 being replaced so the old value is not used in this insn. */
14045 if (MEM_P (dest))
14046 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14047 to_insn, pnotes);
14048 return;
14051 else if (GET_CODE (x) == CLOBBER)
14052 return;
14054 len = GET_RTX_LENGTH (code);
14055 fmt = GET_RTX_FORMAT (code);
14057 for (i = 0; i < len; i++)
14059 if (fmt[i] == 'E')
14061 int j;
14062 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14063 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14064 to_insn, pnotes);
14066 else if (fmt[i] == 'e')
14067 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14071 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14072 pattern of an insn. X must be a REG. */
14074 static int
14075 reg_bitfield_target_p (rtx x, rtx body)
14077 int i;
14079 if (GET_CODE (body) == SET)
14081 rtx dest = SET_DEST (body);
14082 rtx target;
14083 unsigned int regno, tregno, endregno, endtregno;
14085 if (GET_CODE (dest) == ZERO_EXTRACT)
14086 target = XEXP (dest, 0);
14087 else if (GET_CODE (dest) == STRICT_LOW_PART)
14088 target = SUBREG_REG (XEXP (dest, 0));
14089 else
14090 return 0;
14092 if (GET_CODE (target) == SUBREG)
14093 target = SUBREG_REG (target);
14095 if (!REG_P (target))
14096 return 0;
14098 tregno = REGNO (target), regno = REGNO (x);
14099 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14100 return target == x;
14102 endtregno = end_hard_regno (GET_MODE (target), tregno);
14103 endregno = end_hard_regno (GET_MODE (x), regno);
14105 return endregno > tregno && regno < endtregno;
14108 else if (GET_CODE (body) == PARALLEL)
14109 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14110 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14111 return 1;
14113 return 0;
14116 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14117 as appropriate. I3 and I2 are the insns resulting from the combination
14118 insns including FROM (I2 may be zero).
14120 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14121 not need REG_DEAD notes because they are being substituted for. This
14122 saves searching in the most common cases.
14124 Each note in the list is either ignored or placed on some insns, depending
14125 on the type of note. */
14127 static void
14128 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14129 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14131 rtx note, next_note;
14132 rtx tem_note;
14133 rtx_insn *tem_insn;
14135 for (note = notes; note; note = next_note)
14137 rtx_insn *place = 0, *place2 = 0;
14139 next_note = XEXP (note, 1);
14140 switch (REG_NOTE_KIND (note))
14142 case REG_BR_PROB:
14143 case REG_BR_PRED:
14144 /* Doesn't matter much where we put this, as long as it's somewhere.
14145 It is preferable to keep these notes on branches, which is most
14146 likely to be i3. */
14147 place = i3;
14148 break;
14150 case REG_NON_LOCAL_GOTO:
14151 if (JUMP_P (i3))
14152 place = i3;
14153 else
14155 gcc_assert (i2 && JUMP_P (i2));
14156 place = i2;
14158 break;
14160 case REG_EH_REGION:
14161 /* These notes must remain with the call or trapping instruction. */
14162 if (CALL_P (i3))
14163 place = i3;
14164 else if (i2 && CALL_P (i2))
14165 place = i2;
14166 else
14168 gcc_assert (cfun->can_throw_non_call_exceptions);
14169 if (may_trap_p (i3))
14170 place = i3;
14171 else if (i2 && may_trap_p (i2))
14172 place = i2;
14173 /* ??? Otherwise assume we've combined things such that we
14174 can now prove that the instructions can't trap. Drop the
14175 note in this case. */
14177 break;
14179 case REG_ARGS_SIZE:
14180 /* ??? How to distribute between i3-i1. Assume i3 contains the
14181 entire adjustment. Assert i3 contains at least some adjust. */
14182 if (!noop_move_p (i3))
14184 poly_int64 old_size, args_size = get_args_size (note);
14185 /* fixup_args_size_notes looks at REG_NORETURN note,
14186 so ensure the note is placed there first. */
14187 if (CALL_P (i3))
14189 rtx *np;
14190 for (np = &next_note; *np; np = &XEXP (*np, 1))
14191 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14193 rtx n = *np;
14194 *np = XEXP (n, 1);
14195 XEXP (n, 1) = REG_NOTES (i3);
14196 REG_NOTES (i3) = n;
14197 break;
14200 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14201 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14202 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14203 gcc_assert (maybe_ne (old_size, args_size)
14204 || (CALL_P (i3)
14205 && !ACCUMULATE_OUTGOING_ARGS
14206 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14208 break;
14210 case REG_NORETURN:
14211 case REG_SETJMP:
14212 case REG_TM:
14213 case REG_CALL_DECL:
14214 case REG_CALL_NOCF_CHECK:
14215 /* These notes must remain with the call. It should not be
14216 possible for both I2 and I3 to be a call. */
14217 if (CALL_P (i3))
14218 place = i3;
14219 else
14221 gcc_assert (i2 && CALL_P (i2));
14222 place = i2;
14224 break;
14226 case REG_UNUSED:
14227 /* Any clobbers for i3 may still exist, and so we must process
14228 REG_UNUSED notes from that insn.
14230 Any clobbers from i2 or i1 can only exist if they were added by
14231 recog_for_combine. In that case, recog_for_combine created the
14232 necessary REG_UNUSED notes. Trying to keep any original
14233 REG_UNUSED notes from these insns can cause incorrect output
14234 if it is for the same register as the original i3 dest.
14235 In that case, we will notice that the register is set in i3,
14236 and then add a REG_UNUSED note for the destination of i3, which
14237 is wrong. However, it is possible to have REG_UNUSED notes from
14238 i2 or i1 for register which were both used and clobbered, so
14239 we keep notes from i2 or i1 if they will turn into REG_DEAD
14240 notes. */
14242 /* If this register is set or clobbered in I3, put the note there
14243 unless there is one already. */
14244 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14246 if (from_insn != i3)
14247 break;
14249 if (! (REG_P (XEXP (note, 0))
14250 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14251 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14252 place = i3;
14254 /* Otherwise, if this register is used by I3, then this register
14255 now dies here, so we must put a REG_DEAD note here unless there
14256 is one already. */
14257 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14258 && ! (REG_P (XEXP (note, 0))
14259 ? find_regno_note (i3, REG_DEAD,
14260 REGNO (XEXP (note, 0)))
14261 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14263 PUT_REG_NOTE_KIND (note, REG_DEAD);
14264 place = i3;
14267 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14268 but we can't tell which at this point. We must reset any
14269 expectations we had about the value that was previously
14270 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14271 and, if appropriate, restore its previous value, but we
14272 don't have enough information for that at this point. */
14273 else
14275 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14277 /* Otherwise, if this register is now referenced in i2
14278 then the register used to be modified in one of the
14279 original insns. If it was i3 (say, in an unused
14280 parallel), it's now completely gone, so the note can
14281 be discarded. But if it was modified in i2, i1 or i0
14282 and we still reference it in i2, then we're
14283 referencing the previous value, and since the
14284 register was modified and REG_UNUSED, we know that
14285 the previous value is now dead. So, if we only
14286 reference the register in i2, we change the note to
14287 REG_DEAD, to reflect the previous value. However, if
14288 we're also setting or clobbering the register as
14289 scratch, we know (because the register was not
14290 referenced in i3) that it's unused, just as it was
14291 unused before, and we place the note in i2. */
14292 if (from_insn != i3 && i2 && INSN_P (i2)
14293 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14295 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14296 PUT_REG_NOTE_KIND (note, REG_DEAD);
14297 if (! (REG_P (XEXP (note, 0))
14298 ? find_regno_note (i2, REG_NOTE_KIND (note),
14299 REGNO (XEXP (note, 0)))
14300 : find_reg_note (i2, REG_NOTE_KIND (note),
14301 XEXP (note, 0))))
14302 place = i2;
14306 break;
14308 case REG_EQUAL:
14309 case REG_EQUIV:
14310 case REG_NOALIAS:
14311 /* These notes say something about results of an insn. We can
14312 only support them if they used to be on I3 in which case they
14313 remain on I3. Otherwise they are ignored.
14315 If the note refers to an expression that is not a constant, we
14316 must also ignore the note since we cannot tell whether the
14317 equivalence is still true. It might be possible to do
14318 slightly better than this (we only have a problem if I2DEST
14319 or I1DEST is present in the expression), but it doesn't
14320 seem worth the trouble. */
14322 if (from_insn == i3
14323 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14324 place = i3;
14325 break;
14327 case REG_INC:
14328 /* These notes say something about how a register is used. They must
14329 be present on any use of the register in I2 or I3. */
14330 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14331 place = i3;
14333 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14335 if (place)
14336 place2 = i2;
14337 else
14338 place = i2;
14340 break;
14342 case REG_LABEL_TARGET:
14343 case REG_LABEL_OPERAND:
14344 /* This can show up in several ways -- either directly in the
14345 pattern, or hidden off in the constant pool with (or without?)
14346 a REG_EQUAL note. */
14347 /* ??? Ignore the without-reg_equal-note problem for now. */
14348 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14349 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14350 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14351 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14352 place = i3;
14354 if (i2
14355 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14356 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14357 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14358 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14360 if (place)
14361 place2 = i2;
14362 else
14363 place = i2;
14366 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14367 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14368 there. */
14369 if (place && JUMP_P (place)
14370 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14371 && (JUMP_LABEL (place) == NULL
14372 || JUMP_LABEL (place) == XEXP (note, 0)))
14374 rtx label = JUMP_LABEL (place);
14376 if (!label)
14377 JUMP_LABEL (place) = XEXP (note, 0);
14378 else if (LABEL_P (label))
14379 LABEL_NUSES (label)--;
14382 if (place2 && JUMP_P (place2)
14383 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14384 && (JUMP_LABEL (place2) == NULL
14385 || JUMP_LABEL (place2) == XEXP (note, 0)))
14387 rtx label = JUMP_LABEL (place2);
14389 if (!label)
14390 JUMP_LABEL (place2) = XEXP (note, 0);
14391 else if (LABEL_P (label))
14392 LABEL_NUSES (label)--;
14393 place2 = 0;
14395 break;
14397 case REG_NONNEG:
14398 /* This note says something about the value of a register prior
14399 to the execution of an insn. It is too much trouble to see
14400 if the note is still correct in all situations. It is better
14401 to simply delete it. */
14402 break;
14404 case REG_DEAD:
14405 /* If we replaced the right hand side of FROM_INSN with a
14406 REG_EQUAL note, the original use of the dying register
14407 will not have been combined into I3 and I2. In such cases,
14408 FROM_INSN is guaranteed to be the first of the combined
14409 instructions, so we simply need to search back before
14410 FROM_INSN for the previous use or set of this register,
14411 then alter the notes there appropriately.
14413 If the register is used as an input in I3, it dies there.
14414 Similarly for I2, if it is nonzero and adjacent to I3.
14416 If the register is not used as an input in either I3 or I2
14417 and it is not one of the registers we were supposed to eliminate,
14418 there are two possibilities. We might have a non-adjacent I2
14419 or we might have somehow eliminated an additional register
14420 from a computation. For example, we might have had A & B where
14421 we discover that B will always be zero. In this case we will
14422 eliminate the reference to A.
14424 In both cases, we must search to see if we can find a previous
14425 use of A and put the death note there. */
14427 if (from_insn
14428 && from_insn == i2mod
14429 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14430 tem_insn = from_insn;
14431 else
14433 if (from_insn
14434 && CALL_P (from_insn)
14435 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14436 place = from_insn;
14437 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14439 /* If the new I2 sets the same register that is marked
14440 dead in the note, we do not in general know where to
14441 put the note. One important case we _can_ handle is
14442 when the note comes from I3. */
14443 if (from_insn == i3)
14444 place = i3;
14445 else
14446 break;
14448 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14449 place = i3;
14450 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14451 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14452 place = i2;
14453 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14454 && !(i2mod
14455 && reg_overlap_mentioned_p (XEXP (note, 0),
14456 i2mod_old_rhs)))
14457 || rtx_equal_p (XEXP (note, 0), elim_i1)
14458 || rtx_equal_p (XEXP (note, 0), elim_i0))
14459 break;
14460 tem_insn = i3;
14463 if (place == 0)
14465 basic_block bb = this_basic_block;
14467 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14469 if (!NONDEBUG_INSN_P (tem_insn))
14471 if (tem_insn == BB_HEAD (bb))
14472 break;
14473 continue;
14476 /* If the register is being set at TEM_INSN, see if that is all
14477 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14478 into a REG_UNUSED note instead. Don't delete sets to
14479 global register vars. */
14480 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14481 || !global_regs[REGNO (XEXP (note, 0))])
14482 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14484 rtx set = single_set (tem_insn);
14485 rtx inner_dest = 0;
14486 rtx_insn *cc0_setter = NULL;
14488 if (set != 0)
14489 for (inner_dest = SET_DEST (set);
14490 (GET_CODE (inner_dest) == STRICT_LOW_PART
14491 || GET_CODE (inner_dest) == SUBREG
14492 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14493 inner_dest = XEXP (inner_dest, 0))
14496 /* Verify that it was the set, and not a clobber that
14497 modified the register.
14499 CC0 targets must be careful to maintain setter/user
14500 pairs. If we cannot delete the setter due to side
14501 effects, mark the user with an UNUSED note instead
14502 of deleting it. */
14504 if (set != 0 && ! side_effects_p (SET_SRC (set))
14505 && rtx_equal_p (XEXP (note, 0), inner_dest)
14506 && (!HAVE_cc0
14507 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14508 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14509 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14511 /* Move the notes and links of TEM_INSN elsewhere.
14512 This might delete other dead insns recursively.
14513 First set the pattern to something that won't use
14514 any register. */
14515 rtx old_notes = REG_NOTES (tem_insn);
14517 PATTERN (tem_insn) = pc_rtx;
14518 REG_NOTES (tem_insn) = NULL;
14520 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14521 NULL_RTX, NULL_RTX, NULL_RTX);
14522 distribute_links (LOG_LINKS (tem_insn));
14524 unsigned int regno = REGNO (XEXP (note, 0));
14525 reg_stat_type *rsp = &reg_stat[regno];
14526 if (rsp->last_set == tem_insn)
14527 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14529 SET_INSN_DELETED (tem_insn);
14530 if (tem_insn == i2)
14531 i2 = NULL;
14533 /* Delete the setter too. */
14534 if (cc0_setter)
14536 PATTERN (cc0_setter) = pc_rtx;
14537 old_notes = REG_NOTES (cc0_setter);
14538 REG_NOTES (cc0_setter) = NULL;
14540 distribute_notes (old_notes, cc0_setter,
14541 cc0_setter, NULL,
14542 NULL_RTX, NULL_RTX, NULL_RTX);
14543 distribute_links (LOG_LINKS (cc0_setter));
14545 SET_INSN_DELETED (cc0_setter);
14546 if (cc0_setter == i2)
14547 i2 = NULL;
14550 else
14552 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14554 /* If there isn't already a REG_UNUSED note, put one
14555 here. Do not place a REG_DEAD note, even if
14556 the register is also used here; that would not
14557 match the algorithm used in lifetime analysis
14558 and can cause the consistency check in the
14559 scheduler to fail. */
14560 if (! find_regno_note (tem_insn, REG_UNUSED,
14561 REGNO (XEXP (note, 0))))
14562 place = tem_insn;
14563 break;
14566 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14567 || (CALL_P (tem_insn)
14568 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14570 place = tem_insn;
14572 /* If we are doing a 3->2 combination, and we have a
14573 register which formerly died in i3 and was not used
14574 by i2, which now no longer dies in i3 and is used in
14575 i2 but does not die in i2, and place is between i2
14576 and i3, then we may need to move a link from place to
14577 i2. */
14578 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14579 && from_insn
14580 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14581 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14583 struct insn_link *links = LOG_LINKS (place);
14584 LOG_LINKS (place) = NULL;
14585 distribute_links (links);
14587 break;
14590 if (tem_insn == BB_HEAD (bb))
14591 break;
14596 /* If the register is set or already dead at PLACE, we needn't do
14597 anything with this note if it is still a REG_DEAD note.
14598 We check here if it is set at all, not if is it totally replaced,
14599 which is what `dead_or_set_p' checks, so also check for it being
14600 set partially. */
14602 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14604 unsigned int regno = REGNO (XEXP (note, 0));
14605 reg_stat_type *rsp = &reg_stat[regno];
14607 if (dead_or_set_p (place, XEXP (note, 0))
14608 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14610 /* Unless the register previously died in PLACE, clear
14611 last_death. [I no longer understand why this is
14612 being done.] */
14613 if (rsp->last_death != place)
14614 rsp->last_death = 0;
14615 place = 0;
14617 else
14618 rsp->last_death = place;
14620 /* If this is a death note for a hard reg that is occupying
14621 multiple registers, ensure that we are still using all
14622 parts of the object. If we find a piece of the object
14623 that is unused, we must arrange for an appropriate REG_DEAD
14624 note to be added for it. However, we can't just emit a USE
14625 and tag the note to it, since the register might actually
14626 be dead; so we recourse, and the recursive call then finds
14627 the previous insn that used this register. */
14629 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14631 unsigned int endregno = END_REGNO (XEXP (note, 0));
14632 bool all_used = true;
14633 unsigned int i;
14635 for (i = regno; i < endregno; i++)
14636 if ((! refers_to_regno_p (i, PATTERN (place))
14637 && ! find_regno_fusage (place, USE, i))
14638 || dead_or_set_regno_p (place, i))
14640 all_used = false;
14641 break;
14644 if (! all_used)
14646 /* Put only REG_DEAD notes for pieces that are
14647 not already dead or set. */
14649 for (i = regno; i < endregno;
14650 i += hard_regno_nregs (i, reg_raw_mode[i]))
14652 rtx piece = regno_reg_rtx[i];
14653 basic_block bb = this_basic_block;
14655 if (! dead_or_set_p (place, piece)
14656 && ! reg_bitfield_target_p (piece,
14657 PATTERN (place)))
14659 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14660 NULL_RTX);
14662 distribute_notes (new_note, place, place,
14663 NULL, NULL_RTX, NULL_RTX,
14664 NULL_RTX);
14666 else if (! refers_to_regno_p (i, PATTERN (place))
14667 && ! find_regno_fusage (place, USE, i))
14668 for (tem_insn = PREV_INSN (place); ;
14669 tem_insn = PREV_INSN (tem_insn))
14671 if (!NONDEBUG_INSN_P (tem_insn))
14673 if (tem_insn == BB_HEAD (bb))
14674 break;
14675 continue;
14677 if (dead_or_set_p (tem_insn, piece)
14678 || reg_bitfield_target_p (piece,
14679 PATTERN (tem_insn)))
14681 add_reg_note (tem_insn, REG_UNUSED, piece);
14682 break;
14687 place = 0;
14691 break;
14693 default:
14694 /* Any other notes should not be present at this point in the
14695 compilation. */
14696 gcc_unreachable ();
14699 if (place)
14701 XEXP (note, 1) = REG_NOTES (place);
14702 REG_NOTES (place) = note;
14704 /* Set added_notes_insn to the earliest insn we added a note to. */
14705 if (added_notes_insn == 0
14706 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14707 added_notes_insn = place;
14710 if (place2)
14712 add_shallow_copy_of_reg_note (place2, note);
14714 /* Set added_notes_insn to the earliest insn we added a note to. */
14715 if (added_notes_insn == 0
14716 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14717 added_notes_insn = place2;
14722 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14723 I3, I2, and I1 to new locations. This is also called to add a link
14724 pointing at I3 when I3's destination is changed. */
14726 static void
14727 distribute_links (struct insn_link *links)
14729 struct insn_link *link, *next_link;
14731 for (link = links; link; link = next_link)
14733 rtx_insn *place = 0;
14734 rtx_insn *insn;
14735 rtx set, reg;
14737 next_link = link->next;
14739 /* If the insn that this link points to is a NOTE, ignore it. */
14740 if (NOTE_P (link->insn))
14741 continue;
14743 set = 0;
14744 rtx pat = PATTERN (link->insn);
14745 if (GET_CODE (pat) == SET)
14746 set = pat;
14747 else if (GET_CODE (pat) == PARALLEL)
14749 int i;
14750 for (i = 0; i < XVECLEN (pat, 0); i++)
14752 set = XVECEXP (pat, 0, i);
14753 if (GET_CODE (set) != SET)
14754 continue;
14756 reg = SET_DEST (set);
14757 while (GET_CODE (reg) == ZERO_EXTRACT
14758 || GET_CODE (reg) == STRICT_LOW_PART
14759 || GET_CODE (reg) == SUBREG)
14760 reg = XEXP (reg, 0);
14762 if (!REG_P (reg))
14763 continue;
14765 if (REGNO (reg) == link->regno)
14766 break;
14768 if (i == XVECLEN (pat, 0))
14769 continue;
14771 else
14772 continue;
14774 reg = SET_DEST (set);
14776 while (GET_CODE (reg) == ZERO_EXTRACT
14777 || GET_CODE (reg) == STRICT_LOW_PART
14778 || GET_CODE (reg) == SUBREG)
14779 reg = XEXP (reg, 0);
14781 if (reg == pc_rtx)
14782 continue;
14784 /* A LOG_LINK is defined as being placed on the first insn that uses
14785 a register and points to the insn that sets the register. Start
14786 searching at the next insn after the target of the link and stop
14787 when we reach a set of the register or the end of the basic block.
14789 Note that this correctly handles the link that used to point from
14790 I3 to I2. Also note that not much searching is typically done here
14791 since most links don't point very far away. */
14793 for (insn = NEXT_INSN (link->insn);
14794 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14795 || BB_HEAD (this_basic_block->next_bb) != insn));
14796 insn = NEXT_INSN (insn))
14797 if (DEBUG_INSN_P (insn))
14798 continue;
14799 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14801 if (reg_referenced_p (reg, PATTERN (insn)))
14802 place = insn;
14803 break;
14805 else if (CALL_P (insn)
14806 && find_reg_fusage (insn, USE, reg))
14808 place = insn;
14809 break;
14811 else if (INSN_P (insn) && reg_set_p (reg, insn))
14812 break;
14814 /* If we found a place to put the link, place it there unless there
14815 is already a link to the same insn as LINK at that point. */
14817 if (place)
14819 struct insn_link *link2;
14821 FOR_EACH_LOG_LINK (link2, place)
14822 if (link2->insn == link->insn && link2->regno == link->regno)
14823 break;
14825 if (link2 == NULL)
14827 link->next = LOG_LINKS (place);
14828 LOG_LINKS (place) = link;
14830 /* Set added_links_insn to the earliest insn we added a
14831 link to. */
14832 if (added_links_insn == 0
14833 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14834 added_links_insn = place;
14840 /* Check for any register or memory mentioned in EQUIV that is not
14841 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14842 of EXPR where some registers may have been replaced by constants. */
14844 static bool
14845 unmentioned_reg_p (rtx equiv, rtx expr)
14847 subrtx_iterator::array_type array;
14848 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14850 const_rtx x = *iter;
14851 if ((REG_P (x) || MEM_P (x))
14852 && !reg_mentioned_p (x, expr))
14853 return true;
14855 return false;
14858 DEBUG_FUNCTION void
14859 dump_combine_stats (FILE *file)
14861 fprintf
14862 (file,
14863 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14864 combine_attempts, combine_merges, combine_extras, combine_successes);
14867 void
14868 dump_combine_total_stats (FILE *file)
14870 fprintf
14871 (file,
14872 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14873 total_attempts, total_merges, total_extras, total_successes);
14876 /* Try combining insns through substitution. */
14877 static unsigned int
14878 rest_of_handle_combine (void)
14880 int rebuild_jump_labels_after_combine;
14882 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14883 df_note_add_problem ();
14884 df_analyze ();
14886 regstat_init_n_sets_and_refs ();
14887 reg_n_sets_max = max_reg_num ();
14889 rebuild_jump_labels_after_combine
14890 = combine_instructions (get_insns (), max_reg_num ());
14892 /* Combining insns may have turned an indirect jump into a
14893 direct jump. Rebuild the JUMP_LABEL fields of jumping
14894 instructions. */
14895 if (rebuild_jump_labels_after_combine)
14897 if (dom_info_available_p (CDI_DOMINATORS))
14898 free_dominance_info (CDI_DOMINATORS);
14899 timevar_push (TV_JUMP);
14900 rebuild_jump_labels (get_insns ());
14901 cleanup_cfg (0);
14902 timevar_pop (TV_JUMP);
14905 regstat_free_n_sets_and_refs ();
14906 return 0;
14909 namespace {
14911 const pass_data pass_data_combine =
14913 RTL_PASS, /* type */
14914 "combine", /* name */
14915 OPTGROUP_NONE, /* optinfo_flags */
14916 TV_COMBINE, /* tv_id */
14917 PROP_cfglayout, /* properties_required */
14918 0, /* properties_provided */
14919 0, /* properties_destroyed */
14920 0, /* todo_flags_start */
14921 TODO_df_finish, /* todo_flags_finish */
14924 class pass_combine : public rtl_opt_pass
14926 public:
14927 pass_combine (gcc::context *ctxt)
14928 : rtl_opt_pass (pass_data_combine, ctxt)
14931 /* opt_pass methods: */
14932 virtual bool gate (function *) { return (optimize > 0); }
14933 virtual unsigned int execute (function *)
14935 return rest_of_handle_combine ();
14938 }; // class pass_combine
14940 } // anon namespace
14942 rtl_opt_pass *
14943 make_pass_combine (gcc::context *ctxt)
14945 return new pass_combine (ctxt);