AVX-512. Branch to hold overall changes introduced by 20140717 EAS.
[official-gcc.git] / gcc / simplify-rtx.c
blob07b93538969036b0c55e570b801e37c54a07f0a9
1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "varasm.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "diagnostic-core.h"
37 #include "ggc.h"
38 #include "target.h"
40 /* Simplification and canonicalization of RTL. */
42 /* Much code operates on (low, high) pairs; the low value is an
43 unsigned wide int, the high value a signed wide int. We
44 occasionally need to sign extend from low to high as if low were a
45 signed wide int. */
46 #define HWI_SIGN_EXTEND(low) \
47 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
49 static rtx neg_const_int (enum machine_mode, const_rtx);
50 static bool plus_minus_operand_p (const_rtx);
51 static bool simplify_plus_minus_op_data_cmp (rtx, rtx);
52 static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
53 static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
54 unsigned int);
55 static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
56 rtx, rtx);
57 static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
58 enum machine_mode, rtx, rtx);
59 static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
60 static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
61 rtx, rtx, rtx, rtx);
63 /* Negate a CONST_INT rtx, truncating (because a conversion from a
64 maximally negative number can overflow). */
65 static rtx
66 neg_const_int (enum machine_mode mode, const_rtx i)
68 return gen_int_mode (-(unsigned HOST_WIDE_INT) INTVAL (i), mode);
71 /* Test whether expression, X, is an immediate constant that represents
72 the most significant bit of machine mode MODE. */
74 bool
75 mode_signbit_p (enum machine_mode mode, const_rtx x)
77 unsigned HOST_WIDE_INT val;
78 unsigned int width;
80 if (GET_MODE_CLASS (mode) != MODE_INT)
81 return false;
83 width = GET_MODE_PRECISION (mode);
84 if (width == 0)
85 return false;
87 if (width <= HOST_BITS_PER_WIDE_INT
88 && CONST_INT_P (x))
89 val = INTVAL (x);
90 #if TARGET_SUPPORTS_WIDE_INT
91 else if (CONST_WIDE_INT_P (x))
93 unsigned int i;
94 unsigned int elts = CONST_WIDE_INT_NUNITS (x);
95 if (elts != (width + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT)
96 return false;
97 for (i = 0; i < elts - 1; i++)
98 if (CONST_WIDE_INT_ELT (x, i) != 0)
99 return false;
100 val = CONST_WIDE_INT_ELT (x, elts - 1);
101 width %= HOST_BITS_PER_WIDE_INT;
102 if (width == 0)
103 width = HOST_BITS_PER_WIDE_INT;
105 #else
106 else if (width <= HOST_BITS_PER_DOUBLE_INT
107 && CONST_DOUBLE_AS_INT_P (x)
108 && CONST_DOUBLE_LOW (x) == 0)
110 val = CONST_DOUBLE_HIGH (x);
111 width -= HOST_BITS_PER_WIDE_INT;
113 #endif
114 else
115 /* X is not an integer constant. */
116 return false;
118 if (width < HOST_BITS_PER_WIDE_INT)
119 val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
120 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
123 /* Test whether VAL is equal to the most significant bit of mode MODE
124 (after masking with the mode mask of MODE). Returns false if the
125 precision of MODE is too large to handle. */
127 bool
128 val_signbit_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
130 unsigned int width;
132 if (GET_MODE_CLASS (mode) != MODE_INT)
133 return false;
135 width = GET_MODE_PRECISION (mode);
136 if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
137 return false;
139 val &= GET_MODE_MASK (mode);
140 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
143 /* Test whether the most significant bit of mode MODE is set in VAL.
144 Returns false if the precision of MODE is too large to handle. */
145 bool
146 val_signbit_known_set_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
148 unsigned int width;
150 if (GET_MODE_CLASS (mode) != MODE_INT)
151 return false;
153 width = GET_MODE_PRECISION (mode);
154 if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
155 return false;
157 val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
158 return val != 0;
161 /* Test whether the most significant bit of mode MODE is clear in VAL.
162 Returns false if the precision of MODE is too large to handle. */
163 bool
164 val_signbit_known_clear_p (enum machine_mode mode, unsigned HOST_WIDE_INT val)
166 unsigned int width;
168 if (GET_MODE_CLASS (mode) != MODE_INT)
169 return false;
171 width = GET_MODE_PRECISION (mode);
172 if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
173 return false;
175 val &= (unsigned HOST_WIDE_INT) 1 << (width - 1);
176 return val == 0;
179 /* Make a binary operation by properly ordering the operands and
180 seeing if the expression folds. */
183 simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
184 rtx op1)
186 rtx tem;
188 /* If this simplifies, do it. */
189 tem = simplify_binary_operation (code, mode, op0, op1);
190 if (tem)
191 return tem;
193 /* Put complex operands first and constants second if commutative. */
194 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
195 && swap_commutative_operands_p (op0, op1))
196 tem = op0, op0 = op1, op1 = tem;
198 return gen_rtx_fmt_ee (code, mode, op0, op1);
201 /* If X is a MEM referencing the constant pool, return the real value.
202 Otherwise return X. */
204 avoid_constant_pool_reference (rtx x)
206 rtx c, tmp, addr;
207 enum machine_mode cmode;
208 HOST_WIDE_INT offset = 0;
210 switch (GET_CODE (x))
212 case MEM:
213 break;
215 case FLOAT_EXTEND:
216 /* Handle float extensions of constant pool references. */
217 tmp = XEXP (x, 0);
218 c = avoid_constant_pool_reference (tmp);
219 if (c != tmp && CONST_DOUBLE_AS_FLOAT_P (c))
221 REAL_VALUE_TYPE d;
223 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
224 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
226 return x;
228 default:
229 return x;
232 if (GET_MODE (x) == BLKmode)
233 return x;
235 addr = XEXP (x, 0);
237 /* Call target hook to avoid the effects of -fpic etc.... */
238 addr = targetm.delegitimize_address (addr);
240 /* Split the address into a base and integer offset. */
241 if (GET_CODE (addr) == CONST
242 && GET_CODE (XEXP (addr, 0)) == PLUS
243 && CONST_INT_P (XEXP (XEXP (addr, 0), 1)))
245 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
246 addr = XEXP (XEXP (addr, 0), 0);
249 if (GET_CODE (addr) == LO_SUM)
250 addr = XEXP (addr, 1);
252 /* If this is a constant pool reference, we can turn it into its
253 constant and hope that simplifications happen. */
254 if (GET_CODE (addr) == SYMBOL_REF
255 && CONSTANT_POOL_ADDRESS_P (addr))
257 c = get_pool_constant (addr);
258 cmode = get_pool_mode (addr);
260 /* If we're accessing the constant in a different mode than it was
261 originally stored, attempt to fix that up via subreg simplifications.
262 If that fails we have no choice but to return the original memory. */
263 if ((offset != 0 || cmode != GET_MODE (x))
264 && offset >= 0 && offset < GET_MODE_SIZE (cmode))
266 rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
267 if (tem && CONSTANT_P (tem))
268 return tem;
270 else
271 return c;
274 return x;
277 /* Simplify a MEM based on its attributes. This is the default
278 delegitimize_address target hook, and it's recommended that every
279 overrider call it. */
282 delegitimize_mem_from_attrs (rtx x)
284 /* MEMs without MEM_OFFSETs may have been offset, so we can't just
285 use their base addresses as equivalent. */
286 if (MEM_P (x)
287 && MEM_EXPR (x)
288 && MEM_OFFSET_KNOWN_P (x))
290 tree decl = MEM_EXPR (x);
291 enum machine_mode mode = GET_MODE (x);
292 HOST_WIDE_INT offset = 0;
294 switch (TREE_CODE (decl))
296 default:
297 decl = NULL;
298 break;
300 case VAR_DECL:
301 break;
303 case ARRAY_REF:
304 case ARRAY_RANGE_REF:
305 case COMPONENT_REF:
306 case BIT_FIELD_REF:
307 case REALPART_EXPR:
308 case IMAGPART_EXPR:
309 case VIEW_CONVERT_EXPR:
311 HOST_WIDE_INT bitsize, bitpos;
312 tree toffset;
313 int unsignedp, volatilep = 0;
315 decl = get_inner_reference (decl, &bitsize, &bitpos, &toffset,
316 &mode, &unsignedp, &volatilep, false);
317 if (bitsize != GET_MODE_BITSIZE (mode)
318 || (bitpos % BITS_PER_UNIT)
319 || (toffset && !tree_fits_shwi_p (toffset)))
320 decl = NULL;
321 else
323 offset += bitpos / BITS_PER_UNIT;
324 if (toffset)
325 offset += tree_to_shwi (toffset);
327 break;
331 if (decl
332 && mode == GET_MODE (x)
333 && TREE_CODE (decl) == VAR_DECL
334 && (TREE_STATIC (decl)
335 || DECL_THREAD_LOCAL_P (decl))
336 && DECL_RTL_SET_P (decl)
337 && MEM_P (DECL_RTL (decl)))
339 rtx newx;
341 offset += MEM_OFFSET (x);
343 newx = DECL_RTL (decl);
345 if (MEM_P (newx))
347 rtx n = XEXP (newx, 0), o = XEXP (x, 0);
349 /* Avoid creating a new MEM needlessly if we already had
350 the same address. We do if there's no OFFSET and the
351 old address X is identical to NEWX, or if X is of the
352 form (plus NEWX OFFSET), or the NEWX is of the form
353 (plus Y (const_int Z)) and X is that with the offset
354 added: (plus Y (const_int Z+OFFSET)). */
355 if (!((offset == 0
356 || (GET_CODE (o) == PLUS
357 && GET_CODE (XEXP (o, 1)) == CONST_INT
358 && (offset == INTVAL (XEXP (o, 1))
359 || (GET_CODE (n) == PLUS
360 && GET_CODE (XEXP (n, 1)) == CONST_INT
361 && (INTVAL (XEXP (n, 1)) + offset
362 == INTVAL (XEXP (o, 1)))
363 && (n = XEXP (n, 0))))
364 && (o = XEXP (o, 0))))
365 && rtx_equal_p (o, n)))
366 x = adjust_address_nv (newx, mode, offset);
368 else if (GET_MODE (x) == GET_MODE (newx)
369 && offset == 0)
370 x = newx;
374 return x;
377 /* Make a unary operation by first seeing if it folds and otherwise making
378 the specified operation. */
381 simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
382 enum machine_mode op_mode)
384 rtx tem;
386 /* If this simplifies, use it. */
387 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
388 return tem;
390 return gen_rtx_fmt_e (code, mode, op);
393 /* Likewise for ternary operations. */
396 simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
397 enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
399 rtx tem;
401 /* If this simplifies, use it. */
402 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
403 op0, op1, op2)))
404 return tem;
406 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
409 /* Likewise, for relational operations.
410 CMP_MODE specifies mode comparison is done in. */
413 simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
414 enum machine_mode cmp_mode, rtx op0, rtx op1)
416 rtx tem;
418 if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
419 op0, op1)))
420 return tem;
422 return gen_rtx_fmt_ee (code, mode, op0, op1);
425 /* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
426 and simplify the result. If FN is non-NULL, call this callback on each
427 X, if it returns non-NULL, replace X with its return value and simplify the
428 result. */
431 simplify_replace_fn_rtx (rtx x, const_rtx old_rtx,
432 rtx (*fn) (rtx, const_rtx, void *), void *data)
434 enum rtx_code code = GET_CODE (x);
435 enum machine_mode mode = GET_MODE (x);
436 enum machine_mode op_mode;
437 const char *fmt;
438 rtx op0, op1, op2, newx, op;
439 rtvec vec, newvec;
440 int i, j;
442 if (__builtin_expect (fn != NULL, 0))
444 newx = fn (x, old_rtx, data);
445 if (newx)
446 return newx;
448 else if (rtx_equal_p (x, old_rtx))
449 return copy_rtx ((rtx) data);
451 switch (GET_RTX_CLASS (code))
453 case RTX_UNARY:
454 op0 = XEXP (x, 0);
455 op_mode = GET_MODE (op0);
456 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
457 if (op0 == XEXP (x, 0))
458 return x;
459 return simplify_gen_unary (code, mode, op0, op_mode);
461 case RTX_BIN_ARITH:
462 case RTX_COMM_ARITH:
463 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
464 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
465 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
466 return x;
467 return simplify_gen_binary (code, mode, op0, op1);
469 case RTX_COMPARE:
470 case RTX_COMM_COMPARE:
471 op0 = XEXP (x, 0);
472 op1 = XEXP (x, 1);
473 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
474 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
475 op1 = simplify_replace_fn_rtx (op1, old_rtx, fn, data);
476 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
477 return x;
478 return simplify_gen_relational (code, mode, op_mode, op0, op1);
480 case RTX_TERNARY:
481 case RTX_BITFIELD_OPS:
482 op0 = XEXP (x, 0);
483 op_mode = GET_MODE (op0);
484 op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
485 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
486 op2 = simplify_replace_fn_rtx (XEXP (x, 2), old_rtx, fn, data);
487 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
488 return x;
489 if (op_mode == VOIDmode)
490 op_mode = GET_MODE (op0);
491 return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
493 case RTX_EXTRA:
494 if (code == SUBREG)
496 op0 = simplify_replace_fn_rtx (SUBREG_REG (x), old_rtx, fn, data);
497 if (op0 == SUBREG_REG (x))
498 return x;
499 op0 = simplify_gen_subreg (GET_MODE (x), op0,
500 GET_MODE (SUBREG_REG (x)),
501 SUBREG_BYTE (x));
502 return op0 ? op0 : x;
504 break;
506 case RTX_OBJ:
507 if (code == MEM)
509 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
510 if (op0 == XEXP (x, 0))
511 return x;
512 return replace_equiv_address_nv (x, op0);
514 else if (code == LO_SUM)
516 op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
517 op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
519 /* (lo_sum (high x) x) -> x */
520 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
521 return op1;
523 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
524 return x;
525 return gen_rtx_LO_SUM (mode, op0, op1);
527 break;
529 default:
530 break;
533 newx = x;
534 fmt = GET_RTX_FORMAT (code);
535 for (i = 0; fmt[i]; i++)
536 switch (fmt[i])
538 case 'E':
539 vec = XVEC (x, i);
540 newvec = XVEC (newx, i);
541 for (j = 0; j < GET_NUM_ELEM (vec); j++)
543 op = simplify_replace_fn_rtx (RTVEC_ELT (vec, j),
544 old_rtx, fn, data);
545 if (op != RTVEC_ELT (vec, j))
547 if (newvec == vec)
549 newvec = shallow_copy_rtvec (vec);
550 if (x == newx)
551 newx = shallow_copy_rtx (x);
552 XVEC (newx, i) = newvec;
554 RTVEC_ELT (newvec, j) = op;
557 break;
559 case 'e':
560 if (XEXP (x, i))
562 op = simplify_replace_fn_rtx (XEXP (x, i), old_rtx, fn, data);
563 if (op != XEXP (x, i))
565 if (x == newx)
566 newx = shallow_copy_rtx (x);
567 XEXP (newx, i) = op;
570 break;
572 return newx;
575 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
576 resulting RTX. Return a new RTX which is as simplified as possible. */
579 simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
581 return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
584 /* Try to simplify a MODE truncation of OP, which has OP_MODE.
585 Only handle cases where the truncated value is inherently an rvalue.
587 RTL provides two ways of truncating a value:
589 1. a lowpart subreg. This form is only a truncation when both
590 the outer and inner modes (here MODE and OP_MODE respectively)
591 are scalar integers, and only then when the subreg is used as
592 an rvalue.
594 It is only valid to form such truncating subregs if the
595 truncation requires no action by the target. The onus for
596 proving this is on the creator of the subreg -- e.g. the
597 caller to simplify_subreg or simplify_gen_subreg -- and typically
598 involves either TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode.
600 2. a TRUNCATE. This form handles both scalar and compound integers.
602 The first form is preferred where valid. However, the TRUNCATE
603 handling in simplify_unary_operation turns the second form into the
604 first form when TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode allow,
605 so it is generally safe to form rvalue truncations using:
607 simplify_gen_unary (TRUNCATE, ...)
609 and leave simplify_unary_operation to work out which representation
610 should be used.
612 Because of the proof requirements on (1), simplify_truncation must
613 also use simplify_gen_unary (TRUNCATE, ...) to truncate parts of OP,
614 regardless of whether the outer truncation came from a SUBREG or a
615 TRUNCATE. For example, if the caller has proven that an SImode
616 truncation of:
618 (and:DI X Y)
620 is a no-op and can be represented as a subreg, it does not follow
621 that SImode truncations of X and Y are also no-ops. On a target
622 like 64-bit MIPS that requires SImode values to be stored in
623 sign-extended form, an SImode truncation of:
625 (and:DI (reg:DI X) (const_int 63))
627 is trivially a no-op because only the lower 6 bits can be set.
628 However, X is still an arbitrary 64-bit number and so we cannot
629 assume that truncating it too is a no-op. */
631 static rtx
632 simplify_truncation (enum machine_mode mode, rtx op,
633 enum machine_mode op_mode)
635 unsigned int precision = GET_MODE_UNIT_PRECISION (mode);
636 unsigned int op_precision = GET_MODE_UNIT_PRECISION (op_mode);
637 gcc_assert (precision <= op_precision);
639 /* Optimize truncations of zero and sign extended values. */
640 if (GET_CODE (op) == ZERO_EXTEND
641 || GET_CODE (op) == SIGN_EXTEND)
643 /* There are three possibilities. If MODE is the same as the
644 origmode, we can omit both the extension and the subreg.
645 If MODE is not larger than the origmode, we can apply the
646 truncation without the extension. Finally, if the outermode
647 is larger than the origmode, we can just extend to the appropriate
648 mode. */
649 enum machine_mode origmode = GET_MODE (XEXP (op, 0));
650 if (mode == origmode)
651 return XEXP (op, 0);
652 else if (precision <= GET_MODE_UNIT_PRECISION (origmode))
653 return simplify_gen_unary (TRUNCATE, mode,
654 XEXP (op, 0), origmode);
655 else
656 return simplify_gen_unary (GET_CODE (op), mode,
657 XEXP (op, 0), origmode);
660 /* If the machine can perform operations in the truncated mode, distribute
661 the truncation, i.e. simplify (truncate:QI (op:SI (x:SI) (y:SI))) into
662 (op:QI (truncate:QI (x:SI)) (truncate:QI (y:SI))). */
663 if (1
664 #ifdef WORD_REGISTER_OPERATIONS
665 && precision >= BITS_PER_WORD
666 #endif
667 && (GET_CODE (op) == PLUS
668 || GET_CODE (op) == MINUS
669 || GET_CODE (op) == MULT))
671 rtx op0 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0), op_mode);
672 if (op0)
674 rtx op1 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 1), op_mode);
675 if (op1)
676 return simplify_gen_binary (GET_CODE (op), mode, op0, op1);
680 /* Simplify (truncate:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C)) into
681 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
682 the outer subreg is effectively a truncation to the original mode. */
683 if ((GET_CODE (op) == LSHIFTRT
684 || GET_CODE (op) == ASHIFTRT)
685 /* Ensure that OP_MODE is at least twice as wide as MODE
686 to avoid the possibility that an outer LSHIFTRT shifts by more
687 than the sign extension's sign_bit_copies and introduces zeros
688 into the high bits of the result. */
689 && 2 * precision <= op_precision
690 && CONST_INT_P (XEXP (op, 1))
691 && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
692 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
693 && UINTVAL (XEXP (op, 1)) < precision)
694 return simplify_gen_binary (ASHIFTRT, mode,
695 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
697 /* Likewise (truncate:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C)) into
698 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
699 the outer subreg is effectively a truncation to the original mode. */
700 if ((GET_CODE (op) == LSHIFTRT
701 || GET_CODE (op) == ASHIFTRT)
702 && CONST_INT_P (XEXP (op, 1))
703 && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
704 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
705 && UINTVAL (XEXP (op, 1)) < precision)
706 return simplify_gen_binary (LSHIFTRT, mode,
707 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
709 /* Likewise (truncate:QI (ashift:SI (zero_extend:SI (x:QI)) C)) into
710 to (ashift:QI (x:QI) C), where C is a suitable small constant and
711 the outer subreg is effectively a truncation to the original mode. */
712 if (GET_CODE (op) == ASHIFT
713 && CONST_INT_P (XEXP (op, 1))
714 && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
715 || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
716 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
717 && UINTVAL (XEXP (op, 1)) < precision)
718 return simplify_gen_binary (ASHIFT, mode,
719 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
721 /* Recognize a word extraction from a multi-word subreg. */
722 if ((GET_CODE (op) == LSHIFTRT
723 || GET_CODE (op) == ASHIFTRT)
724 && SCALAR_INT_MODE_P (mode)
725 && SCALAR_INT_MODE_P (op_mode)
726 && precision >= BITS_PER_WORD
727 && 2 * precision <= op_precision
728 && CONST_INT_P (XEXP (op, 1))
729 && (INTVAL (XEXP (op, 1)) & (precision - 1)) == 0
730 && UINTVAL (XEXP (op, 1)) < op_precision)
732 int byte = subreg_lowpart_offset (mode, op_mode);
733 int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
734 return simplify_gen_subreg (mode, XEXP (op, 0), op_mode,
735 (WORDS_BIG_ENDIAN
736 ? byte - shifted_bytes
737 : byte + shifted_bytes));
740 /* If we have a TRUNCATE of a right shift of MEM, make a new MEM
741 and try replacing the TRUNCATE and shift with it. Don't do this
742 if the MEM has a mode-dependent address. */
743 if ((GET_CODE (op) == LSHIFTRT
744 || GET_CODE (op) == ASHIFTRT)
745 && SCALAR_INT_MODE_P (op_mode)
746 && MEM_P (XEXP (op, 0))
747 && CONST_INT_P (XEXP (op, 1))
748 && (INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (mode)) == 0
749 && INTVAL (XEXP (op, 1)) > 0
750 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (op_mode)
751 && ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0),
752 MEM_ADDR_SPACE (XEXP (op, 0)))
753 && ! MEM_VOLATILE_P (XEXP (op, 0))
754 && (GET_MODE_SIZE (mode) >= UNITS_PER_WORD
755 || WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
757 int byte = subreg_lowpart_offset (mode, op_mode);
758 int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
759 return adjust_address_nv (XEXP (op, 0), mode,
760 (WORDS_BIG_ENDIAN
761 ? byte - shifted_bytes
762 : byte + shifted_bytes));
765 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
766 (OP:SI foo:SI) if OP is NEG or ABS. */
767 if ((GET_CODE (op) == ABS
768 || GET_CODE (op) == NEG)
769 && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
770 || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
771 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
772 return simplify_gen_unary (GET_CODE (op), mode,
773 XEXP (XEXP (op, 0), 0), mode);
775 /* (truncate:A (subreg:B (truncate:C X) 0)) is
776 (truncate:A X). */
777 if (GET_CODE (op) == SUBREG
778 && SCALAR_INT_MODE_P (mode)
779 && SCALAR_INT_MODE_P (op_mode)
780 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op)))
781 && GET_CODE (SUBREG_REG (op)) == TRUNCATE
782 && subreg_lowpart_p (op))
784 rtx inner = XEXP (SUBREG_REG (op), 0);
785 if (GET_MODE_PRECISION (mode)
786 <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op))))
787 return simplify_gen_unary (TRUNCATE, mode, inner, GET_MODE (inner));
788 else
789 /* If subreg above is paradoxical and C is narrower
790 than A, return (subreg:A (truncate:C X) 0). */
791 return simplify_gen_subreg (mode, SUBREG_REG (op),
792 GET_MODE (SUBREG_REG (op)), 0);
795 /* (truncate:A (truncate:B X)) is (truncate:A X). */
796 if (GET_CODE (op) == TRUNCATE)
797 return simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0),
798 GET_MODE (XEXP (op, 0)));
800 return NULL_RTX;
803 /* Try to simplify a unary operation CODE whose output mode is to be
804 MODE with input operand OP whose mode was originally OP_MODE.
805 Return zero if no simplification can be made. */
807 simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
808 rtx op, enum machine_mode op_mode)
810 rtx trueop, tem;
812 trueop = avoid_constant_pool_reference (op);
814 tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
815 if (tem)
816 return tem;
818 return simplify_unary_operation_1 (code, mode, op);
821 /* Perform some simplifications we can do even if the operands
822 aren't constant. */
823 static rtx
824 simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
826 enum rtx_code reversed;
827 rtx temp;
829 switch (code)
831 case NOT:
832 /* (not (not X)) == X. */
833 if (GET_CODE (op) == NOT)
834 return XEXP (op, 0);
836 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
837 comparison is all ones. */
838 if (COMPARISON_P (op)
839 && (mode == BImode || STORE_FLAG_VALUE == -1)
840 && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
841 return simplify_gen_relational (reversed, mode, VOIDmode,
842 XEXP (op, 0), XEXP (op, 1));
844 /* (not (plus X -1)) can become (neg X). */
845 if (GET_CODE (op) == PLUS
846 && XEXP (op, 1) == constm1_rtx)
847 return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
849 /* Similarly, (not (neg X)) is (plus X -1). */
850 if (GET_CODE (op) == NEG)
851 return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
852 CONSTM1_RTX (mode));
854 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
855 if (GET_CODE (op) == XOR
856 && CONST_INT_P (XEXP (op, 1))
857 && (temp = simplify_unary_operation (NOT, mode,
858 XEXP (op, 1), mode)) != 0)
859 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
861 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
862 if (GET_CODE (op) == PLUS
863 && CONST_INT_P (XEXP (op, 1))
864 && mode_signbit_p (mode, XEXP (op, 1))
865 && (temp = simplify_unary_operation (NOT, mode,
866 XEXP (op, 1), mode)) != 0)
867 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
870 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
871 operands other than 1, but that is not valid. We could do a
872 similar simplification for (not (lshiftrt C X)) where C is
873 just the sign bit, but this doesn't seem common enough to
874 bother with. */
875 if (GET_CODE (op) == ASHIFT
876 && XEXP (op, 0) == const1_rtx)
878 temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
879 return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
882 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
883 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
884 so we can perform the above simplification. */
885 if (STORE_FLAG_VALUE == -1
886 && GET_CODE (op) == ASHIFTRT
887 && CONST_INT_P (XEXP (op, 1))
888 && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
889 return simplify_gen_relational (GE, mode, VOIDmode,
890 XEXP (op, 0), const0_rtx);
893 if (GET_CODE (op) == SUBREG
894 && subreg_lowpart_p (op)
895 && (GET_MODE_SIZE (GET_MODE (op))
896 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
897 && GET_CODE (SUBREG_REG (op)) == ASHIFT
898 && XEXP (SUBREG_REG (op), 0) == const1_rtx)
900 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
901 rtx x;
903 x = gen_rtx_ROTATE (inner_mode,
904 simplify_gen_unary (NOT, inner_mode, const1_rtx,
905 inner_mode),
906 XEXP (SUBREG_REG (op), 1));
907 temp = rtl_hooks.gen_lowpart_no_emit (mode, x);
908 if (temp)
909 return temp;
912 /* Apply De Morgan's laws to reduce number of patterns for machines
913 with negating logical insns (and-not, nand, etc.). If result has
914 only one NOT, put it first, since that is how the patterns are
915 coded. */
916 if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
918 rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
919 enum machine_mode op_mode;
921 op_mode = GET_MODE (in1);
922 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
924 op_mode = GET_MODE (in2);
925 if (op_mode == VOIDmode)
926 op_mode = mode;
927 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
929 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
931 rtx tem = in2;
932 in2 = in1; in1 = tem;
935 return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
936 mode, in1, in2);
939 /* (not (bswap x)) -> (bswap (not x)). */
940 if (GET_CODE (op) == BSWAP)
942 rtx x = simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
943 return simplify_gen_unary (BSWAP, mode, x, mode);
945 break;
947 case NEG:
948 /* (neg (neg X)) == X. */
949 if (GET_CODE (op) == NEG)
950 return XEXP (op, 0);
952 /* (neg (plus X 1)) can become (not X). */
953 if (GET_CODE (op) == PLUS
954 && XEXP (op, 1) == const1_rtx)
955 return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
957 /* Similarly, (neg (not X)) is (plus X 1). */
958 if (GET_CODE (op) == NOT)
959 return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
960 CONST1_RTX (mode));
962 /* (neg (minus X Y)) can become (minus Y X). This transformation
963 isn't safe for modes with signed zeros, since if X and Y are
964 both +0, (minus Y X) is the same as (minus X Y). If the
965 rounding mode is towards +infinity (or -infinity) then the two
966 expressions will be rounded differently. */
967 if (GET_CODE (op) == MINUS
968 && !HONOR_SIGNED_ZEROS (mode)
969 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
970 return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
972 if (GET_CODE (op) == PLUS
973 && !HONOR_SIGNED_ZEROS (mode)
974 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
976 /* (neg (plus A C)) is simplified to (minus -C A). */
977 if (CONST_SCALAR_INT_P (XEXP (op, 1))
978 || CONST_DOUBLE_AS_FLOAT_P (XEXP (op, 1)))
980 temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
981 if (temp)
982 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
985 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
986 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
987 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
990 /* (neg (mult A B)) becomes (mult A (neg B)).
991 This works even for floating-point values. */
992 if (GET_CODE (op) == MULT
993 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
995 temp = simplify_gen_unary (NEG, mode, XEXP (op, 1), mode);
996 return simplify_gen_binary (MULT, mode, XEXP (op, 0), temp);
999 /* NEG commutes with ASHIFT since it is multiplication. Only do
1000 this if we can then eliminate the NEG (e.g., if the operand
1001 is a constant). */
1002 if (GET_CODE (op) == ASHIFT)
1004 temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
1005 if (temp)
1006 return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
1009 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
1010 C is equal to the width of MODE minus 1. */
1011 if (GET_CODE (op) == ASHIFTRT
1012 && CONST_INT_P (XEXP (op, 1))
1013 && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
1014 return simplify_gen_binary (LSHIFTRT, mode,
1015 XEXP (op, 0), XEXP (op, 1));
1017 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
1018 C is equal to the width of MODE minus 1. */
1019 if (GET_CODE (op) == LSHIFTRT
1020 && CONST_INT_P (XEXP (op, 1))
1021 && INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (mode) - 1)
1022 return simplify_gen_binary (ASHIFTRT, mode,
1023 XEXP (op, 0), XEXP (op, 1));
1025 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
1026 if (GET_CODE (op) == XOR
1027 && XEXP (op, 1) == const1_rtx
1028 && nonzero_bits (XEXP (op, 0), mode) == 1)
1029 return plus_constant (mode, XEXP (op, 0), -1);
1031 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
1032 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
1033 if (GET_CODE (op) == LT
1034 && XEXP (op, 1) == const0_rtx
1035 && SCALAR_INT_MODE_P (GET_MODE (XEXP (op, 0))))
1037 enum machine_mode inner = GET_MODE (XEXP (op, 0));
1038 int isize = GET_MODE_PRECISION (inner);
1039 if (STORE_FLAG_VALUE == 1)
1041 temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
1042 GEN_INT (isize - 1));
1043 if (mode == inner)
1044 return temp;
1045 if (GET_MODE_PRECISION (mode) > isize)
1046 return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
1047 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
1049 else if (STORE_FLAG_VALUE == -1)
1051 temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
1052 GEN_INT (isize - 1));
1053 if (mode == inner)
1054 return temp;
1055 if (GET_MODE_PRECISION (mode) > isize)
1056 return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
1057 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
1060 break;
1062 case TRUNCATE:
1063 /* Don't optimize (lshiftrt (mult ...)) as it would interfere
1064 with the umulXi3_highpart patterns. */
1065 if (GET_CODE (op) == LSHIFTRT
1066 && GET_CODE (XEXP (op, 0)) == MULT)
1067 break;
1069 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1071 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op)))
1073 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1074 if (temp)
1075 return temp;
1077 /* We can't handle truncation to a partial integer mode here
1078 because we don't know the real bitsize of the partial
1079 integer mode. */
1080 break;
1083 if (GET_MODE (op) != VOIDmode)
1085 temp = simplify_truncation (mode, op, GET_MODE (op));
1086 if (temp)
1087 return temp;
1090 /* If we know that the value is already truncated, we can
1091 replace the TRUNCATE with a SUBREG. */
1092 if (GET_MODE_NUNITS (mode) == 1
1093 && (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
1094 || truncated_to_mode (mode, op)))
1096 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1097 if (temp)
1098 return temp;
1101 /* A truncate of a comparison can be replaced with a subreg if
1102 STORE_FLAG_VALUE permits. This is like the previous test,
1103 but it works even if the comparison is done in a mode larger
1104 than HOST_BITS_PER_WIDE_INT. */
1105 if (HWI_COMPUTABLE_MODE_P (mode)
1106 && COMPARISON_P (op)
1107 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
1109 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1110 if (temp)
1111 return temp;
1114 /* A truncate of a memory is just loading the low part of the memory
1115 if we are not changing the meaning of the address. */
1116 if (GET_CODE (op) == MEM
1117 && !VECTOR_MODE_P (mode)
1118 && !MEM_VOLATILE_P (op)
1119 && !mode_dependent_address_p (XEXP (op, 0), MEM_ADDR_SPACE (op)))
1121 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1122 if (temp)
1123 return temp;
1126 break;
1128 case FLOAT_TRUNCATE:
1129 if (DECIMAL_FLOAT_MODE_P (mode))
1130 break;
1132 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
1133 if (GET_CODE (op) == FLOAT_EXTEND
1134 && GET_MODE (XEXP (op, 0)) == mode)
1135 return XEXP (op, 0);
1137 /* (float_truncate:SF (float_truncate:DF foo:XF))
1138 = (float_truncate:SF foo:XF).
1139 This may eliminate double rounding, so it is unsafe.
1141 (float_truncate:SF (float_extend:XF foo:DF))
1142 = (float_truncate:SF foo:DF).
1144 (float_truncate:DF (float_extend:XF foo:SF))
1145 = (float_extend:SF foo:DF). */
1146 if ((GET_CODE (op) == FLOAT_TRUNCATE
1147 && flag_unsafe_math_optimizations)
1148 || GET_CODE (op) == FLOAT_EXTEND)
1149 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
1150 0)))
1151 > GET_MODE_SIZE (mode)
1152 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
1153 mode,
1154 XEXP (op, 0), mode);
1156 /* (float_truncate (float x)) is (float x) */
1157 if (GET_CODE (op) == FLOAT
1158 && (flag_unsafe_math_optimizations
1159 || (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1160 && ((unsigned)significand_size (GET_MODE (op))
1161 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
1162 - num_sign_bit_copies (XEXP (op, 0),
1163 GET_MODE (XEXP (op, 0))))))))
1164 return simplify_gen_unary (FLOAT, mode,
1165 XEXP (op, 0),
1166 GET_MODE (XEXP (op, 0)));
1168 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
1169 (OP:SF foo:SF) if OP is NEG or ABS. */
1170 if ((GET_CODE (op) == ABS
1171 || GET_CODE (op) == NEG)
1172 && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
1173 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
1174 return simplify_gen_unary (GET_CODE (op), mode,
1175 XEXP (XEXP (op, 0), 0), mode);
1177 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
1178 is (float_truncate:SF x). */
1179 if (GET_CODE (op) == SUBREG
1180 && subreg_lowpart_p (op)
1181 && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
1182 return SUBREG_REG (op);
1183 break;
1185 case FLOAT_EXTEND:
1186 if (DECIMAL_FLOAT_MODE_P (mode))
1187 break;
1189 /* (float_extend (float_extend x)) is (float_extend x)
1191 (float_extend (float x)) is (float x) assuming that double
1192 rounding can't happen.
1194 if (GET_CODE (op) == FLOAT_EXTEND
1195 || (GET_CODE (op) == FLOAT
1196 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1197 && ((unsigned)significand_size (GET_MODE (op))
1198 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op, 0)))
1199 - num_sign_bit_copies (XEXP (op, 0),
1200 GET_MODE (XEXP (op, 0)))))))
1201 return simplify_gen_unary (GET_CODE (op), mode,
1202 XEXP (op, 0),
1203 GET_MODE (XEXP (op, 0)));
1205 break;
1207 case ABS:
1208 /* (abs (neg <foo>)) -> (abs <foo>) */
1209 if (GET_CODE (op) == NEG)
1210 return simplify_gen_unary (ABS, mode, XEXP (op, 0),
1211 GET_MODE (XEXP (op, 0)));
1213 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
1214 do nothing. */
1215 if (GET_MODE (op) == VOIDmode)
1216 break;
1218 /* If operand is something known to be positive, ignore the ABS. */
1219 if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
1220 || val_signbit_known_clear_p (GET_MODE (op),
1221 nonzero_bits (op, GET_MODE (op))))
1222 return op;
1224 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
1225 if (num_sign_bit_copies (op, mode) == GET_MODE_PRECISION (mode))
1226 return gen_rtx_NEG (mode, op);
1228 break;
1230 case FFS:
1231 /* (ffs (*_extend <X>)) = (ffs <X>) */
1232 if (GET_CODE (op) == SIGN_EXTEND
1233 || GET_CODE (op) == ZERO_EXTEND)
1234 return simplify_gen_unary (FFS, mode, XEXP (op, 0),
1235 GET_MODE (XEXP (op, 0)));
1236 break;
1238 case POPCOUNT:
1239 switch (GET_CODE (op))
1241 case BSWAP:
1242 case ZERO_EXTEND:
1243 /* (popcount (zero_extend <X>)) = (popcount <X>) */
1244 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
1245 GET_MODE (XEXP (op, 0)));
1247 case ROTATE:
1248 case ROTATERT:
1249 /* Rotations don't affect popcount. */
1250 if (!side_effects_p (XEXP (op, 1)))
1251 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
1252 GET_MODE (XEXP (op, 0)));
1253 break;
1255 default:
1256 break;
1258 break;
1260 case PARITY:
1261 switch (GET_CODE (op))
1263 case NOT:
1264 case BSWAP:
1265 case ZERO_EXTEND:
1266 case SIGN_EXTEND:
1267 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
1268 GET_MODE (XEXP (op, 0)));
1270 case ROTATE:
1271 case ROTATERT:
1272 /* Rotations don't affect parity. */
1273 if (!side_effects_p (XEXP (op, 1)))
1274 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
1275 GET_MODE (XEXP (op, 0)));
1276 break;
1278 default:
1279 break;
1281 break;
1283 case BSWAP:
1284 /* (bswap (bswap x)) -> x. */
1285 if (GET_CODE (op) == BSWAP)
1286 return XEXP (op, 0);
1287 break;
1289 case FLOAT:
1290 /* (float (sign_extend <X>)) = (float <X>). */
1291 if (GET_CODE (op) == SIGN_EXTEND)
1292 return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
1293 GET_MODE (XEXP (op, 0)));
1294 break;
1296 case SIGN_EXTEND:
1297 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
1298 becomes just the MINUS if its mode is MODE. This allows
1299 folding switch statements on machines using casesi (such as
1300 the VAX). */
1301 if (GET_CODE (op) == TRUNCATE
1302 && GET_MODE (XEXP (op, 0)) == mode
1303 && GET_CODE (XEXP (op, 0)) == MINUS
1304 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
1305 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
1306 return XEXP (op, 0);
1308 /* Extending a widening multiplication should be canonicalized to
1309 a wider widening multiplication. */
1310 if (GET_CODE (op) == MULT)
1312 rtx lhs = XEXP (op, 0);
1313 rtx rhs = XEXP (op, 1);
1314 enum rtx_code lcode = GET_CODE (lhs);
1315 enum rtx_code rcode = GET_CODE (rhs);
1317 /* Widening multiplies usually extend both operands, but sometimes
1318 they use a shift to extract a portion of a register. */
1319 if ((lcode == SIGN_EXTEND
1320 || (lcode == ASHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
1321 && (rcode == SIGN_EXTEND
1322 || (rcode == ASHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
1324 enum machine_mode lmode = GET_MODE (lhs);
1325 enum machine_mode rmode = GET_MODE (rhs);
1326 int bits;
1328 if (lcode == ASHIFTRT)
1329 /* Number of bits not shifted off the end. */
1330 bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
1331 else /* lcode == SIGN_EXTEND */
1332 /* Size of inner mode. */
1333 bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
1335 if (rcode == ASHIFTRT)
1336 bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
1337 else /* rcode == SIGN_EXTEND */
1338 bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
1340 /* We can only widen multiplies if the result is mathematiclly
1341 equivalent. I.e. if overflow was impossible. */
1342 if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
1343 return simplify_gen_binary
1344 (MULT, mode,
1345 simplify_gen_unary (SIGN_EXTEND, mode, lhs, lmode),
1346 simplify_gen_unary (SIGN_EXTEND, mode, rhs, rmode));
1350 /* Check for a sign extension of a subreg of a promoted
1351 variable, where the promotion is sign-extended, and the
1352 target mode is the same as the variable's promotion. */
1353 if (GET_CODE (op) == SUBREG
1354 && SUBREG_PROMOTED_VAR_P (op)
1355 && ! SUBREG_PROMOTED_UNSIGNED_P (op)
1356 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
1358 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1359 if (temp)
1360 return temp;
1363 /* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
1364 (sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1365 if (GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND)
1367 gcc_assert (GET_MODE_BITSIZE (mode)
1368 > GET_MODE_BITSIZE (GET_MODE (op)));
1369 return simplify_gen_unary (GET_CODE (op), mode, XEXP (op, 0),
1370 GET_MODE (XEXP (op, 0)));
1373 /* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
1374 is (sign_extend:M (subreg:O <X>)) if there is mode with
1375 GET_MODE_BITSIZE (N) - I bits.
1376 (sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1377 is similarly (zero_extend:M (subreg:O <X>)). */
1378 if ((GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT)
1379 && GET_CODE (XEXP (op, 0)) == ASHIFT
1380 && CONST_INT_P (XEXP (op, 1))
1381 && XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
1382 && GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
1384 enum machine_mode tmode
1385 = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
1386 - INTVAL (XEXP (op, 1)), MODE_INT, 1);
1387 gcc_assert (GET_MODE_BITSIZE (mode)
1388 > GET_MODE_BITSIZE (GET_MODE (op)));
1389 if (tmode != BLKmode)
1391 rtx inner =
1392 rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
1393 if (inner)
1394 return simplify_gen_unary (GET_CODE (op) == ASHIFTRT
1395 ? SIGN_EXTEND : ZERO_EXTEND,
1396 mode, inner, tmode);
1400 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1401 /* As we do not know which address space the pointer is referring to,
1402 we can do this only if the target does not support different pointer
1403 or address modes depending on the address space. */
1404 if (target_default_pointer_address_modes_p ()
1405 && ! POINTERS_EXTEND_UNSIGNED
1406 && mode == Pmode && GET_MODE (op) == ptr_mode
1407 && (CONSTANT_P (op)
1408 || (GET_CODE (op) == SUBREG
1409 && REG_P (SUBREG_REG (op))
1410 && REG_POINTER (SUBREG_REG (op))
1411 && GET_MODE (SUBREG_REG (op)) == Pmode)))
1412 return convert_memory_address (Pmode, op);
1413 #endif
1414 break;
1416 case ZERO_EXTEND:
1417 /* Check for a zero extension of a subreg of a promoted
1418 variable, where the promotion is zero-extended, and the
1419 target mode is the same as the variable's promotion. */
1420 if (GET_CODE (op) == SUBREG
1421 && SUBREG_PROMOTED_VAR_P (op)
1422 && SUBREG_PROMOTED_UNSIGNED_P (op) > 0
1423 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (XEXP (op, 0))))
1425 temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
1426 if (temp)
1427 return temp;
1430 /* Extending a widening multiplication should be canonicalized to
1431 a wider widening multiplication. */
1432 if (GET_CODE (op) == MULT)
1434 rtx lhs = XEXP (op, 0);
1435 rtx rhs = XEXP (op, 1);
1436 enum rtx_code lcode = GET_CODE (lhs);
1437 enum rtx_code rcode = GET_CODE (rhs);
1439 /* Widening multiplies usually extend both operands, but sometimes
1440 they use a shift to extract a portion of a register. */
1441 if ((lcode == ZERO_EXTEND
1442 || (lcode == LSHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
1443 && (rcode == ZERO_EXTEND
1444 || (rcode == LSHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
1446 enum machine_mode lmode = GET_MODE (lhs);
1447 enum machine_mode rmode = GET_MODE (rhs);
1448 int bits;
1450 if (lcode == LSHIFTRT)
1451 /* Number of bits not shifted off the end. */
1452 bits = GET_MODE_PRECISION (lmode) - INTVAL (XEXP (lhs, 1));
1453 else /* lcode == ZERO_EXTEND */
1454 /* Size of inner mode. */
1455 bits = GET_MODE_PRECISION (GET_MODE (XEXP (lhs, 0)));
1457 if (rcode == LSHIFTRT)
1458 bits += GET_MODE_PRECISION (rmode) - INTVAL (XEXP (rhs, 1));
1459 else /* rcode == ZERO_EXTEND */
1460 bits += GET_MODE_PRECISION (GET_MODE (XEXP (rhs, 0)));
1462 /* We can only widen multiplies if the result is mathematiclly
1463 equivalent. I.e. if overflow was impossible. */
1464 if (bits <= GET_MODE_PRECISION (GET_MODE (op)))
1465 return simplify_gen_binary
1466 (MULT, mode,
1467 simplify_gen_unary (ZERO_EXTEND, mode, lhs, lmode),
1468 simplify_gen_unary (ZERO_EXTEND, mode, rhs, rmode));
1472 /* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1473 if (GET_CODE (op) == ZERO_EXTEND)
1474 return simplify_gen_unary (ZERO_EXTEND, mode, XEXP (op, 0),
1475 GET_MODE (XEXP (op, 0)));
1477 /* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1478 is (zero_extend:M (subreg:O <X>)) if there is mode with
1479 GET_MODE_BITSIZE (N) - I bits. */
1480 if (GET_CODE (op) == LSHIFTRT
1481 && GET_CODE (XEXP (op, 0)) == ASHIFT
1482 && CONST_INT_P (XEXP (op, 1))
1483 && XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
1484 && GET_MODE_BITSIZE (GET_MODE (op)) > INTVAL (XEXP (op, 1)))
1486 enum machine_mode tmode
1487 = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op))
1488 - INTVAL (XEXP (op, 1)), MODE_INT, 1);
1489 if (tmode != BLKmode)
1491 rtx inner =
1492 rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
1493 if (inner)
1494 return simplify_gen_unary (ZERO_EXTEND, mode, inner, tmode);
1498 /* (zero_extend:M (subreg:N <X:O>)) is <X:O> (for M == O) or
1499 (zero_extend:M <X:O>), if X doesn't have any non-zero bits outside
1500 of mode N. E.g.
1501 (zero_extend:SI (subreg:QI (and:SI (reg:SI) (const_int 63)) 0)) is
1502 (and:SI (reg:SI) (const_int 63)). */
1503 if (GET_CODE (op) == SUBREG
1504 && GET_MODE_PRECISION (GET_MODE (op))
1505 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
1506 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
1507 <= HOST_BITS_PER_WIDE_INT
1508 && GET_MODE_PRECISION (mode)
1509 >= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op)))
1510 && subreg_lowpart_p (op)
1511 && (nonzero_bits (SUBREG_REG (op), GET_MODE (SUBREG_REG (op)))
1512 & ~GET_MODE_MASK (GET_MODE (op))) == 0)
1514 if (GET_MODE_PRECISION (mode)
1515 == GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op))))
1516 return SUBREG_REG (op);
1517 return simplify_gen_unary (ZERO_EXTEND, mode, SUBREG_REG (op),
1518 GET_MODE (SUBREG_REG (op)));
1521 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1522 /* As we do not know which address space the pointer is referring to,
1523 we can do this only if the target does not support different pointer
1524 or address modes depending on the address space. */
1525 if (target_default_pointer_address_modes_p ()
1526 && POINTERS_EXTEND_UNSIGNED > 0
1527 && mode == Pmode && GET_MODE (op) == ptr_mode
1528 && (CONSTANT_P (op)
1529 || (GET_CODE (op) == SUBREG
1530 && REG_P (SUBREG_REG (op))
1531 && REG_POINTER (SUBREG_REG (op))
1532 && GET_MODE (SUBREG_REG (op)) == Pmode)))
1533 return convert_memory_address (Pmode, op);
1534 #endif
1535 break;
1537 default:
1538 break;
1541 return 0;
1544 /* Try to compute the value of a unary operation CODE whose output mode is to
1545 be MODE with input operand OP whose mode was originally OP_MODE.
1546 Return zero if the value cannot be computed. */
1548 simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
1549 rtx op, enum machine_mode op_mode)
1551 unsigned int width = GET_MODE_PRECISION (mode);
1553 if (code == VEC_DUPLICATE)
1555 gcc_assert (VECTOR_MODE_P (mode));
1556 if (GET_MODE (op) != VOIDmode)
1558 if (!VECTOR_MODE_P (GET_MODE (op)))
1559 gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
1560 else
1561 gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
1562 (GET_MODE (op)));
1564 if (CONST_SCALAR_INT_P (op) || CONST_DOUBLE_AS_FLOAT_P (op)
1565 || GET_CODE (op) == CONST_VECTOR)
1567 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1568 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1569 rtvec v = rtvec_alloc (n_elts);
1570 unsigned int i;
1572 if (GET_CODE (op) != CONST_VECTOR)
1573 for (i = 0; i < n_elts; i++)
1574 RTVEC_ELT (v, i) = op;
1575 else
1577 enum machine_mode inmode = GET_MODE (op);
1578 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
1579 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
1581 gcc_assert (in_n_elts < n_elts);
1582 gcc_assert ((n_elts % in_n_elts) == 0);
1583 for (i = 0; i < n_elts; i++)
1584 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
1586 return gen_rtx_CONST_VECTOR (mode, v);
1590 if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
1592 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
1593 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
1594 enum machine_mode opmode = GET_MODE (op);
1595 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
1596 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
1597 rtvec v = rtvec_alloc (n_elts);
1598 unsigned int i;
1600 gcc_assert (op_n_elts == n_elts);
1601 for (i = 0; i < n_elts; i++)
1603 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
1604 CONST_VECTOR_ELT (op, i),
1605 GET_MODE_INNER (opmode));
1606 if (!x)
1607 return 0;
1608 RTVEC_ELT (v, i) = x;
1610 return gen_rtx_CONST_VECTOR (mode, v);
1613 /* The order of these tests is critical so that, for example, we don't
1614 check the wrong mode (input vs. output) for a conversion operation,
1615 such as FIX. At some point, this should be simplified. */
1617 if (code == FLOAT && CONST_SCALAR_INT_P (op))
1619 REAL_VALUE_TYPE d;
1621 if (op_mode == VOIDmode)
1623 /* CONST_INT have VOIDmode as the mode. We assume that all
1624 the bits of the constant are significant, though, this is
1625 a dangerous assumption as many times CONST_INTs are
1626 created and used with garbage in the bits outside of the
1627 precision of the implied mode of the const_int. */
1628 op_mode = MAX_MODE_INT;
1631 real_from_integer (&d, mode, std::make_pair (op, op_mode), SIGNED);
1632 d = real_value_truncate (mode, d);
1633 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1635 else if (code == UNSIGNED_FLOAT && CONST_SCALAR_INT_P (op))
1637 REAL_VALUE_TYPE d;
1639 if (op_mode == VOIDmode)
1641 /* CONST_INT have VOIDmode as the mode. We assume that all
1642 the bits of the constant are significant, though, this is
1643 a dangerous assumption as many times CONST_INTs are
1644 created and used with garbage in the bits outside of the
1645 precision of the implied mode of the const_int. */
1646 op_mode = MAX_MODE_INT;
1649 real_from_integer (&d, mode, std::make_pair (op, op_mode), UNSIGNED);
1650 d = real_value_truncate (mode, d);
1651 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1654 if (CONST_SCALAR_INT_P (op) && width > 0)
1656 wide_int result;
1657 enum machine_mode imode = op_mode == VOIDmode ? mode : op_mode;
1658 rtx_mode_t op0 = std::make_pair (op, imode);
1659 int int_value;
1661 #if TARGET_SUPPORTS_WIDE_INT == 0
1662 /* This assert keeps the simplification from producing a result
1663 that cannot be represented in a CONST_DOUBLE but a lot of
1664 upstream callers expect that this function never fails to
1665 simplify something and so you if you added this to the test
1666 above the code would die later anyway. If this assert
1667 happens, you just need to make the port support wide int. */
1668 gcc_assert (width <= HOST_BITS_PER_DOUBLE_INT);
1669 #endif
1671 switch (code)
1673 case NOT:
1674 result = wi::bit_not (op0);
1675 break;
1677 case NEG:
1678 result = wi::neg (op0);
1679 break;
1681 case ABS:
1682 result = wi::abs (op0);
1683 break;
1685 case FFS:
1686 result = wi::shwi (wi::ffs (op0), mode);
1687 break;
1689 case CLZ:
1690 if (wi::ne_p (op0, 0))
1691 int_value = wi::clz (op0);
1692 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, int_value))
1693 int_value = GET_MODE_PRECISION (mode);
1694 result = wi::shwi (int_value, mode);
1695 break;
1697 case CLRSB:
1698 result = wi::shwi (wi::clrsb (op0), mode);
1699 break;
1701 case CTZ:
1702 if (wi::ne_p (op0, 0))
1703 int_value = wi::ctz (op0);
1704 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, int_value))
1705 int_value = GET_MODE_PRECISION (mode);
1706 result = wi::shwi (int_value, mode);
1707 break;
1709 case POPCOUNT:
1710 result = wi::shwi (wi::popcount (op0), mode);
1711 break;
1713 case PARITY:
1714 result = wi::shwi (wi::parity (op0), mode);
1715 break;
1717 case BSWAP:
1718 result = wide_int (op0).bswap ();
1719 break;
1721 case TRUNCATE:
1722 case ZERO_EXTEND:
1723 result = wide_int::from (op0, width, UNSIGNED);
1724 break;
1726 case SIGN_EXTEND:
1727 result = wide_int::from (op0, width, SIGNED);
1728 break;
1730 case SQRT:
1731 default:
1732 return 0;
1735 return immed_wide_int_const (result, mode);
1738 else if (CONST_DOUBLE_AS_FLOAT_P (op)
1739 && SCALAR_FLOAT_MODE_P (mode)
1740 && SCALAR_FLOAT_MODE_P (GET_MODE (op)))
1742 REAL_VALUE_TYPE d;
1743 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1745 switch (code)
1747 case SQRT:
1748 return 0;
1749 case ABS:
1750 d = real_value_abs (&d);
1751 break;
1752 case NEG:
1753 d = real_value_negate (&d);
1754 break;
1755 case FLOAT_TRUNCATE:
1756 d = real_value_truncate (mode, d);
1757 break;
1758 case FLOAT_EXTEND:
1759 /* All this does is change the mode, unless changing
1760 mode class. */
1761 if (GET_MODE_CLASS (mode) != GET_MODE_CLASS (GET_MODE (op)))
1762 real_convert (&d, mode, &d);
1763 break;
1764 case FIX:
1765 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
1766 break;
1767 case NOT:
1769 long tmp[4];
1770 int i;
1772 real_to_target (tmp, &d, GET_MODE (op));
1773 for (i = 0; i < 4; i++)
1774 tmp[i] = ~tmp[i];
1775 real_from_target (&d, tmp, mode);
1776 break;
1778 default:
1779 gcc_unreachable ();
1781 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1783 else if (CONST_DOUBLE_AS_FLOAT_P (op)
1784 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1785 && GET_MODE_CLASS (mode) == MODE_INT
1786 && width > 0)
1788 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1789 operators are intentionally left unspecified (to ease implementation
1790 by target backends), for consistency, this routine implements the
1791 same semantics for constant folding as used by the middle-end. */
1793 /* This was formerly used only for non-IEEE float.
1794 eggert@twinsun.com says it is safe for IEEE also. */
1795 REAL_VALUE_TYPE x, t;
1796 REAL_VALUE_FROM_CONST_DOUBLE (x, op);
1797 wide_int wmax, wmin;
1798 /* This is part of the abi to real_to_integer, but we check
1799 things before making this call. */
1800 bool fail;
1802 switch (code)
1804 case FIX:
1805 if (REAL_VALUE_ISNAN (x))
1806 return const0_rtx;
1808 /* Test against the signed upper bound. */
1809 wmax = wi::max_value (width, SIGNED);
1810 real_from_integer (&t, VOIDmode, wmax, SIGNED);
1811 if (REAL_VALUES_LESS (t, x))
1812 return immed_wide_int_const (wmax, mode);
1814 /* Test against the signed lower bound. */
1815 wmin = wi::min_value (width, SIGNED);
1816 real_from_integer (&t, VOIDmode, wmin, SIGNED);
1817 if (REAL_VALUES_LESS (x, t))
1818 return immed_wide_int_const (wmin, mode);
1820 return immed_wide_int_const (real_to_integer (&x, &fail, width), mode);
1821 break;
1823 case UNSIGNED_FIX:
1824 if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
1825 return const0_rtx;
1827 /* Test against the unsigned upper bound. */
1828 wmax = wi::max_value (width, UNSIGNED);
1829 real_from_integer (&t, VOIDmode, wmax, UNSIGNED);
1830 if (REAL_VALUES_LESS (t, x))
1831 return immed_wide_int_const (wmax, mode);
1833 return immed_wide_int_const (real_to_integer (&x, &fail, width),
1834 mode);
1835 break;
1837 default:
1838 gcc_unreachable ();
1842 return NULL_RTX;
1845 /* Subroutine of simplify_binary_operation to simplify a binary operation
1846 CODE that can commute with byte swapping, with result mode MODE and
1847 operating on OP0 and OP1. CODE is currently one of AND, IOR or XOR.
1848 Return zero if no simplification or canonicalization is possible. */
1850 static rtx
1851 simplify_byte_swapping_operation (enum rtx_code code, enum machine_mode mode,
1852 rtx op0, rtx op1)
1854 rtx tem;
1856 /* (op (bswap x) C1)) -> (bswap (op x C2)) with C2 swapped. */
1857 if (GET_CODE (op0) == BSWAP && CONST_SCALAR_INT_P (op1))
1859 tem = simplify_gen_binary (code, mode, XEXP (op0, 0),
1860 simplify_gen_unary (BSWAP, mode, op1, mode));
1861 return simplify_gen_unary (BSWAP, mode, tem, mode);
1864 /* (op (bswap x) (bswap y)) -> (bswap (op x y)). */
1865 if (GET_CODE (op0) == BSWAP && GET_CODE (op1) == BSWAP)
1867 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), XEXP (op1, 0));
1868 return simplify_gen_unary (BSWAP, mode, tem, mode);
1871 return NULL_RTX;
1874 /* Subroutine of simplify_binary_operation to simplify a commutative,
1875 associative binary operation CODE with result mode MODE, operating
1876 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1877 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1878 canonicalization is possible. */
1880 static rtx
1881 simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
1882 rtx op0, rtx op1)
1884 rtx tem;
1886 /* Linearize the operator to the left. */
1887 if (GET_CODE (op1) == code)
1889 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1890 if (GET_CODE (op0) == code)
1892 tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
1893 return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
1896 /* "a op (b op c)" becomes "(b op c) op a". */
1897 if (! swap_commutative_operands_p (op1, op0))
1898 return simplify_gen_binary (code, mode, op1, op0);
1900 tem = op0;
1901 op0 = op1;
1902 op1 = tem;
1905 if (GET_CODE (op0) == code)
1907 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1908 if (swap_commutative_operands_p (XEXP (op0, 1), op1))
1910 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
1911 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1914 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1915 tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
1916 if (tem != 0)
1917 return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
1919 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1920 tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
1921 if (tem != 0)
1922 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1925 return 0;
1929 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1930 and OP1. Return 0 if no simplification is possible.
1932 Don't use this for relational operations such as EQ or LT.
1933 Use simplify_relational_operation instead. */
1935 simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
1936 rtx op0, rtx op1)
1938 rtx trueop0, trueop1;
1939 rtx tem;
1941 /* Relational operations don't work here. We must know the mode
1942 of the operands in order to do the comparison correctly.
1943 Assuming a full word can give incorrect results.
1944 Consider comparing 128 with -128 in QImode. */
1945 gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
1946 gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
1948 /* Make sure the constant is second. */
1949 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
1950 && swap_commutative_operands_p (op0, op1))
1952 tem = op0, op0 = op1, op1 = tem;
1955 trueop0 = avoid_constant_pool_reference (op0);
1956 trueop1 = avoid_constant_pool_reference (op1);
1958 tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
1959 if (tem)
1960 return tem;
1961 return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
1964 /* Subroutine of simplify_binary_operation. Simplify a binary operation
1965 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
1966 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
1967 actual constants. */
1969 static rtx
1970 simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
1971 rtx op0, rtx op1, rtx trueop0, rtx trueop1)
1973 rtx tem, reversed, opleft, opright;
1974 HOST_WIDE_INT val;
1975 unsigned int width = GET_MODE_PRECISION (mode);
1977 /* Even if we can't compute a constant result,
1978 there are some cases worth simplifying. */
1980 switch (code)
1982 case PLUS:
1983 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1984 when x is NaN, infinite, or finite and nonzero. They aren't
1985 when x is -0 and the rounding mode is not towards -infinity,
1986 since (-0) + 0 is then 0. */
1987 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
1988 return op0;
1990 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1991 transformations are safe even for IEEE. */
1992 if (GET_CODE (op0) == NEG)
1993 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
1994 else if (GET_CODE (op1) == NEG)
1995 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
1997 /* (~a) + 1 -> -a */
1998 if (INTEGRAL_MODE_P (mode)
1999 && GET_CODE (op0) == NOT
2000 && trueop1 == const1_rtx)
2001 return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
2003 /* Handle both-operands-constant cases. We can only add
2004 CONST_INTs to constants since the sum of relocatable symbols
2005 can't be handled by most assemblers. Don't add CONST_INT
2006 to CONST_INT since overflow won't be computed properly if wider
2007 than HOST_BITS_PER_WIDE_INT. */
2009 if ((GET_CODE (op0) == CONST
2010 || GET_CODE (op0) == SYMBOL_REF
2011 || GET_CODE (op0) == LABEL_REF)
2012 && CONST_INT_P (op1))
2013 return plus_constant (mode, op0, INTVAL (op1));
2014 else if ((GET_CODE (op1) == CONST
2015 || GET_CODE (op1) == SYMBOL_REF
2016 || GET_CODE (op1) == LABEL_REF)
2017 && CONST_INT_P (op0))
2018 return plus_constant (mode, op1, INTVAL (op0));
2020 /* See if this is something like X * C - X or vice versa or
2021 if the multiplication is written as a shift. If so, we can
2022 distribute and make a new multiply, shift, or maybe just
2023 have X (if C is 2 in the example above). But don't make
2024 something more expensive than we had before. */
2026 if (SCALAR_INT_MODE_P (mode))
2028 rtx lhs = op0, rhs = op1;
2030 wide_int coeff0 = wi::one (GET_MODE_PRECISION (mode));
2031 wide_int coeff1 = wi::one (GET_MODE_PRECISION (mode));
2033 if (GET_CODE (lhs) == NEG)
2035 coeff0 = wi::minus_one (GET_MODE_PRECISION (mode));
2036 lhs = XEXP (lhs, 0);
2038 else if (GET_CODE (lhs) == MULT
2039 && CONST_SCALAR_INT_P (XEXP (lhs, 1)))
2041 coeff0 = std::make_pair (XEXP (lhs, 1), mode);
2042 lhs = XEXP (lhs, 0);
2044 else if (GET_CODE (lhs) == ASHIFT
2045 && CONST_INT_P (XEXP (lhs, 1))
2046 && INTVAL (XEXP (lhs, 1)) >= 0
2047 && INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (mode))
2049 coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
2050 GET_MODE_PRECISION (mode));
2051 lhs = XEXP (lhs, 0);
2054 if (GET_CODE (rhs) == NEG)
2056 coeff1 = wi::minus_one (GET_MODE_PRECISION (mode));
2057 rhs = XEXP (rhs, 0);
2059 else if (GET_CODE (rhs) == MULT
2060 && CONST_INT_P (XEXP (rhs, 1)))
2062 coeff1 = std::make_pair (XEXP (rhs, 1), mode);
2063 rhs = XEXP (rhs, 0);
2065 else if (GET_CODE (rhs) == ASHIFT
2066 && CONST_INT_P (XEXP (rhs, 1))
2067 && INTVAL (XEXP (rhs, 1)) >= 0
2068 && INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (mode))
2070 coeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
2071 GET_MODE_PRECISION (mode));
2072 rhs = XEXP (rhs, 0);
2075 if (rtx_equal_p (lhs, rhs))
2077 rtx orig = gen_rtx_PLUS (mode, op0, op1);
2078 rtx coeff;
2079 bool speed = optimize_function_for_speed_p (cfun);
2081 coeff = immed_wide_int_const (coeff0 + coeff1, mode);
2083 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
2084 return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
2085 ? tem : 0;
2089 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
2090 if (CONST_SCALAR_INT_P (op1)
2091 && GET_CODE (op0) == XOR
2092 && CONST_SCALAR_INT_P (XEXP (op0, 1))
2093 && mode_signbit_p (mode, op1))
2094 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2095 simplify_gen_binary (XOR, mode, op1,
2096 XEXP (op0, 1)));
2098 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
2099 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2100 && GET_CODE (op0) == MULT
2101 && GET_CODE (XEXP (op0, 0)) == NEG)
2103 rtx in1, in2;
2105 in1 = XEXP (XEXP (op0, 0), 0);
2106 in2 = XEXP (op0, 1);
2107 return simplify_gen_binary (MINUS, mode, op1,
2108 simplify_gen_binary (MULT, mode,
2109 in1, in2));
2112 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
2113 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
2114 is 1. */
2115 if (COMPARISON_P (op0)
2116 && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
2117 || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
2118 && (reversed = reversed_comparison (op0, mode)))
2119 return
2120 simplify_gen_unary (NEG, mode, reversed, mode);
2122 /* If one of the operands is a PLUS or a MINUS, see if we can
2123 simplify this by the associative law.
2124 Don't use the associative law for floating point.
2125 The inaccuracy makes it nonassociative,
2126 and subtle programs can break if operations are associated. */
2128 if (INTEGRAL_MODE_P (mode)
2129 && (plus_minus_operand_p (op0)
2130 || plus_minus_operand_p (op1))
2131 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
2132 return tem;
2134 /* Reassociate floating point addition only when the user
2135 specifies associative math operations. */
2136 if (FLOAT_MODE_P (mode)
2137 && flag_associative_math)
2139 tem = simplify_associative_operation (code, mode, op0, op1);
2140 if (tem)
2141 return tem;
2143 break;
2145 case COMPARE:
2146 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
2147 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
2148 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
2149 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
2151 rtx xop00 = XEXP (op0, 0);
2152 rtx xop10 = XEXP (op1, 0);
2154 #ifdef HAVE_cc0
2155 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
2156 #else
2157 if (REG_P (xop00) && REG_P (xop10)
2158 && GET_MODE (xop00) == GET_MODE (xop10)
2159 && REGNO (xop00) == REGNO (xop10)
2160 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
2161 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
2162 #endif
2163 return xop00;
2165 break;
2167 case MINUS:
2168 /* We can't assume x-x is 0 even with non-IEEE floating point,
2169 but since it is zero except in very strange circumstances, we
2170 will treat it as zero with -ffinite-math-only. */
2171 if (rtx_equal_p (trueop0, trueop1)
2172 && ! side_effects_p (op0)
2173 && (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
2174 return CONST0_RTX (mode);
2176 /* Change subtraction from zero into negation. (0 - x) is the
2177 same as -x when x is NaN, infinite, or finite and nonzero.
2178 But if the mode has signed zeros, and does not round towards
2179 -infinity, then 0 - 0 is 0, not -0. */
2180 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
2181 return simplify_gen_unary (NEG, mode, op1, mode);
2183 /* (-1 - a) is ~a. */
2184 if (trueop0 == constm1_rtx)
2185 return simplify_gen_unary (NOT, mode, op1, mode);
2187 /* Subtracting 0 has no effect unless the mode has signed zeros
2188 and supports rounding towards -infinity. In such a case,
2189 0 - 0 is -0. */
2190 if (!(HONOR_SIGNED_ZEROS (mode)
2191 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
2192 && trueop1 == CONST0_RTX (mode))
2193 return op0;
2195 /* See if this is something like X * C - X or vice versa or
2196 if the multiplication is written as a shift. If so, we can
2197 distribute and make a new multiply, shift, or maybe just
2198 have X (if C is 2 in the example above). But don't make
2199 something more expensive than we had before. */
2201 if (SCALAR_INT_MODE_P (mode))
2203 rtx lhs = op0, rhs = op1;
2205 wide_int coeff0 = wi::one (GET_MODE_PRECISION (mode));
2206 wide_int negcoeff1 = wi::minus_one (GET_MODE_PRECISION (mode));
2208 if (GET_CODE (lhs) == NEG)
2210 coeff0 = wi::minus_one (GET_MODE_PRECISION (mode));
2211 lhs = XEXP (lhs, 0);
2213 else if (GET_CODE (lhs) == MULT
2214 && CONST_SCALAR_INT_P (XEXP (lhs, 1)))
2216 coeff0 = std::make_pair (XEXP (lhs, 1), mode);
2217 lhs = XEXP (lhs, 0);
2219 else if (GET_CODE (lhs) == ASHIFT
2220 && CONST_INT_P (XEXP (lhs, 1))
2221 && INTVAL (XEXP (lhs, 1)) >= 0
2222 && INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (mode))
2224 coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
2225 GET_MODE_PRECISION (mode));
2226 lhs = XEXP (lhs, 0);
2229 if (GET_CODE (rhs) == NEG)
2231 negcoeff1 = wi::one (GET_MODE_PRECISION (mode));
2232 rhs = XEXP (rhs, 0);
2234 else if (GET_CODE (rhs) == MULT
2235 && CONST_INT_P (XEXP (rhs, 1)))
2237 negcoeff1 = wi::neg (std::make_pair (XEXP (rhs, 1), mode));
2238 rhs = XEXP (rhs, 0);
2240 else if (GET_CODE (rhs) == ASHIFT
2241 && CONST_INT_P (XEXP (rhs, 1))
2242 && INTVAL (XEXP (rhs, 1)) >= 0
2243 && INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (mode))
2245 negcoeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
2246 GET_MODE_PRECISION (mode));
2247 negcoeff1 = -negcoeff1;
2248 rhs = XEXP (rhs, 0);
2251 if (rtx_equal_p (lhs, rhs))
2253 rtx orig = gen_rtx_MINUS (mode, op0, op1);
2254 rtx coeff;
2255 bool speed = optimize_function_for_speed_p (cfun);
2257 coeff = immed_wide_int_const (coeff0 + negcoeff1, mode);
2259 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
2260 return set_src_cost (tem, speed) <= set_src_cost (orig, speed)
2261 ? tem : 0;
2265 /* (a - (-b)) -> (a + b). True even for IEEE. */
2266 if (GET_CODE (op1) == NEG)
2267 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
2269 /* (-x - c) may be simplified as (-c - x). */
2270 if (GET_CODE (op0) == NEG
2271 && (CONST_SCALAR_INT_P (op1) || CONST_DOUBLE_AS_FLOAT_P (op1)))
2273 tem = simplify_unary_operation (NEG, mode, op1, mode);
2274 if (tem)
2275 return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
2278 /* Don't let a relocatable value get a negative coeff. */
2279 if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
2280 return simplify_gen_binary (PLUS, mode,
2281 op0,
2282 neg_const_int (mode, op1));
2284 /* (x - (x & y)) -> (x & ~y) */
2285 if (INTEGRAL_MODE_P (mode) && GET_CODE (op1) == AND)
2287 if (rtx_equal_p (op0, XEXP (op1, 0)))
2289 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
2290 GET_MODE (XEXP (op1, 1)));
2291 return simplify_gen_binary (AND, mode, op0, tem);
2293 if (rtx_equal_p (op0, XEXP (op1, 1)))
2295 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
2296 GET_MODE (XEXP (op1, 0)));
2297 return simplify_gen_binary (AND, mode, op0, tem);
2301 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
2302 by reversing the comparison code if valid. */
2303 if (STORE_FLAG_VALUE == 1
2304 && trueop0 == const1_rtx
2305 && COMPARISON_P (op1)
2306 && (reversed = reversed_comparison (op1, mode)))
2307 return reversed;
2309 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
2310 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2311 && GET_CODE (op1) == MULT
2312 && GET_CODE (XEXP (op1, 0)) == NEG)
2314 rtx in1, in2;
2316 in1 = XEXP (XEXP (op1, 0), 0);
2317 in2 = XEXP (op1, 1);
2318 return simplify_gen_binary (PLUS, mode,
2319 simplify_gen_binary (MULT, mode,
2320 in1, in2),
2321 op0);
2324 /* Canonicalize (minus (neg A) (mult B C)) to
2325 (minus (mult (neg B) C) A). */
2326 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
2327 && GET_CODE (op1) == MULT
2328 && GET_CODE (op0) == NEG)
2330 rtx in1, in2;
2332 in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
2333 in2 = XEXP (op1, 1);
2334 return simplify_gen_binary (MINUS, mode,
2335 simplify_gen_binary (MULT, mode,
2336 in1, in2),
2337 XEXP (op0, 0));
2340 /* If one of the operands is a PLUS or a MINUS, see if we can
2341 simplify this by the associative law. This will, for example,
2342 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
2343 Don't use the associative law for floating point.
2344 The inaccuracy makes it nonassociative,
2345 and subtle programs can break if operations are associated. */
2347 if (INTEGRAL_MODE_P (mode)
2348 && (plus_minus_operand_p (op0)
2349 || plus_minus_operand_p (op1))
2350 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
2351 return tem;
2352 break;
2354 case MULT:
2355 if (trueop1 == constm1_rtx)
2356 return simplify_gen_unary (NEG, mode, op0, mode);
2358 if (GET_CODE (op0) == NEG)
2360 rtx temp = simplify_unary_operation (NEG, mode, op1, mode);
2361 /* If op1 is a MULT as well and simplify_unary_operation
2362 just moved the NEG to the second operand, simplify_gen_binary
2363 below could through simplify_associative_operation move
2364 the NEG around again and recurse endlessly. */
2365 if (temp
2366 && GET_CODE (op1) == MULT
2367 && GET_CODE (temp) == MULT
2368 && XEXP (op1, 0) == XEXP (temp, 0)
2369 && GET_CODE (XEXP (temp, 1)) == NEG
2370 && XEXP (op1, 1) == XEXP (XEXP (temp, 1), 0))
2371 temp = NULL_RTX;
2372 if (temp)
2373 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), temp);
2375 if (GET_CODE (op1) == NEG)
2377 rtx temp = simplify_unary_operation (NEG, mode, op0, mode);
2378 /* If op0 is a MULT as well and simplify_unary_operation
2379 just moved the NEG to the second operand, simplify_gen_binary
2380 below could through simplify_associative_operation move
2381 the NEG around again and recurse endlessly. */
2382 if (temp
2383 && GET_CODE (op0) == MULT
2384 && GET_CODE (temp) == MULT
2385 && XEXP (op0, 0) == XEXP (temp, 0)
2386 && GET_CODE (XEXP (temp, 1)) == NEG
2387 && XEXP (op0, 1) == XEXP (XEXP (temp, 1), 0))
2388 temp = NULL_RTX;
2389 if (temp)
2390 return simplify_gen_binary (MULT, mode, temp, XEXP (op1, 0));
2393 /* Maybe simplify x * 0 to 0. The reduction is not valid if
2394 x is NaN, since x * 0 is then also NaN. Nor is it valid
2395 when the mode has signed zeros, since multiplying a negative
2396 number by 0 will give -0, not 0. */
2397 if (!HONOR_NANS (mode)
2398 && !HONOR_SIGNED_ZEROS (mode)
2399 && trueop1 == CONST0_RTX (mode)
2400 && ! side_effects_p (op0))
2401 return op1;
2403 /* In IEEE floating point, x*1 is not equivalent to x for
2404 signalling NaNs. */
2405 if (!HONOR_SNANS (mode)
2406 && trueop1 == CONST1_RTX (mode))
2407 return op0;
2409 /* Convert multiply by constant power of two into shift. */
2410 if (CONST_SCALAR_INT_P (trueop1))
2412 val = wi::exact_log2 (std::make_pair (trueop1, mode));
2413 if (val >= 0)
2414 return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
2417 /* x*2 is x+x and x*(-1) is -x */
2418 if (CONST_DOUBLE_AS_FLOAT_P (trueop1)
2419 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
2420 && !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1))
2421 && GET_MODE (op0) == mode)
2423 REAL_VALUE_TYPE d;
2424 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2426 if (REAL_VALUES_EQUAL (d, dconst2))
2427 return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
2429 if (!HONOR_SNANS (mode)
2430 && REAL_VALUES_EQUAL (d, dconstm1))
2431 return simplify_gen_unary (NEG, mode, op0, mode);
2434 /* Optimize -x * -x as x * x. */
2435 if (FLOAT_MODE_P (mode)
2436 && GET_CODE (op0) == NEG
2437 && GET_CODE (op1) == NEG
2438 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2439 && !side_effects_p (XEXP (op0, 0)))
2440 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2442 /* Likewise, optimize abs(x) * abs(x) as x * x. */
2443 if (SCALAR_FLOAT_MODE_P (mode)
2444 && GET_CODE (op0) == ABS
2445 && GET_CODE (op1) == ABS
2446 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2447 && !side_effects_p (XEXP (op0, 0)))
2448 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2450 /* Reassociate multiplication, but for floating point MULTs
2451 only when the user specifies unsafe math optimizations. */
2452 if (! FLOAT_MODE_P (mode)
2453 || flag_unsafe_math_optimizations)
2455 tem = simplify_associative_operation (code, mode, op0, op1);
2456 if (tem)
2457 return tem;
2459 break;
2461 case IOR:
2462 if (trueop1 == CONST0_RTX (mode))
2463 return op0;
2464 if (INTEGRAL_MODE_P (mode)
2465 && trueop1 == CONSTM1_RTX (mode)
2466 && !side_effects_p (op0))
2467 return op1;
2468 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2469 return op0;
2470 /* A | (~A) -> -1 */
2471 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2472 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2473 && ! side_effects_p (op0)
2474 && SCALAR_INT_MODE_P (mode))
2475 return constm1_rtx;
2477 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
2478 if (CONST_INT_P (op1)
2479 && HWI_COMPUTABLE_MODE_P (mode)
2480 && (nonzero_bits (op0, mode) & ~UINTVAL (op1)) == 0
2481 && !side_effects_p (op0))
2482 return op1;
2484 /* Canonicalize (X & C1) | C2. */
2485 if (GET_CODE (op0) == AND
2486 && CONST_INT_P (trueop1)
2487 && CONST_INT_P (XEXP (op0, 1)))
2489 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
2490 HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
2491 HOST_WIDE_INT c2 = INTVAL (trueop1);
2493 /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
2494 if ((c1 & c2) == c1
2495 && !side_effects_p (XEXP (op0, 0)))
2496 return trueop1;
2498 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
2499 if (((c1|c2) & mask) == mask)
2500 return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
2502 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
2503 if (((c1 & ~c2) & mask) != (c1 & mask))
2505 tem = simplify_gen_binary (AND, mode, XEXP (op0, 0),
2506 gen_int_mode (c1 & ~c2, mode));
2507 return simplify_gen_binary (IOR, mode, tem, op1);
2511 /* Convert (A & B) | A to A. */
2512 if (GET_CODE (op0) == AND
2513 && (rtx_equal_p (XEXP (op0, 0), op1)
2514 || rtx_equal_p (XEXP (op0, 1), op1))
2515 && ! side_effects_p (XEXP (op0, 0))
2516 && ! side_effects_p (XEXP (op0, 1)))
2517 return op1;
2519 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
2520 mode size to (rotate A CX). */
2522 if (GET_CODE (op1) == ASHIFT
2523 || GET_CODE (op1) == SUBREG)
2525 opleft = op1;
2526 opright = op0;
2528 else
2530 opright = op1;
2531 opleft = op0;
2534 if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
2535 && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
2536 && CONST_INT_P (XEXP (opleft, 1))
2537 && CONST_INT_P (XEXP (opright, 1))
2538 && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
2539 == GET_MODE_PRECISION (mode)))
2540 return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
2542 /* Same, but for ashift that has been "simplified" to a wider mode
2543 by simplify_shift_const. */
2545 if (GET_CODE (opleft) == SUBREG
2546 && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
2547 && GET_CODE (opright) == LSHIFTRT
2548 && GET_CODE (XEXP (opright, 0)) == SUBREG
2549 && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
2550 && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
2551 && (GET_MODE_SIZE (GET_MODE (opleft))
2552 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
2553 && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
2554 SUBREG_REG (XEXP (opright, 0)))
2555 && CONST_INT_P (XEXP (SUBREG_REG (opleft), 1))
2556 && CONST_INT_P (XEXP (opright, 1))
2557 && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
2558 == GET_MODE_PRECISION (mode)))
2559 return gen_rtx_ROTATE (mode, XEXP (opright, 0),
2560 XEXP (SUBREG_REG (opleft), 1));
2562 /* If we have (ior (and (X C1) C2)), simplify this by making
2563 C1 as small as possible if C1 actually changes. */
2564 if (CONST_INT_P (op1)
2565 && (HWI_COMPUTABLE_MODE_P (mode)
2566 || INTVAL (op1) > 0)
2567 && GET_CODE (op0) == AND
2568 && CONST_INT_P (XEXP (op0, 1))
2569 && CONST_INT_P (op1)
2570 && (UINTVAL (XEXP (op0, 1)) & UINTVAL (op1)) != 0)
2572 rtx tmp = simplify_gen_binary (AND, mode, XEXP (op0, 0),
2573 gen_int_mode (UINTVAL (XEXP (op0, 1))
2574 & ~UINTVAL (op1),
2575 mode));
2576 return simplify_gen_binary (IOR, mode, tmp, op1);
2579 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2580 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2581 the PLUS does not affect any of the bits in OP1: then we can do
2582 the IOR as a PLUS and we can associate. This is valid if OP1
2583 can be safely shifted left C bits. */
2584 if (CONST_INT_P (trueop1) && GET_CODE (op0) == ASHIFTRT
2585 && GET_CODE (XEXP (op0, 0)) == PLUS
2586 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
2587 && CONST_INT_P (XEXP (op0, 1))
2588 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
2590 int count = INTVAL (XEXP (op0, 1));
2591 HOST_WIDE_INT mask = INTVAL (trueop1) << count;
2593 if (mask >> count == INTVAL (trueop1)
2594 && trunc_int_for_mode (mask, mode) == mask
2595 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
2596 return simplify_gen_binary (ASHIFTRT, mode,
2597 plus_constant (mode, XEXP (op0, 0),
2598 mask),
2599 XEXP (op0, 1));
2602 tem = simplify_byte_swapping_operation (code, mode, op0, op1);
2603 if (tem)
2604 return tem;
2606 tem = simplify_associative_operation (code, mode, op0, op1);
2607 if (tem)
2608 return tem;
2609 break;
2611 case XOR:
2612 if (trueop1 == CONST0_RTX (mode))
2613 return op0;
2614 if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
2615 return simplify_gen_unary (NOT, mode, op0, mode);
2616 if (rtx_equal_p (trueop0, trueop1)
2617 && ! side_effects_p (op0)
2618 && GET_MODE_CLASS (mode) != MODE_CC)
2619 return CONST0_RTX (mode);
2621 /* Canonicalize XOR of the most significant bit to PLUS. */
2622 if (CONST_SCALAR_INT_P (op1)
2623 && mode_signbit_p (mode, op1))
2624 return simplify_gen_binary (PLUS, mode, op0, op1);
2625 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2626 if (CONST_SCALAR_INT_P (op1)
2627 && GET_CODE (op0) == PLUS
2628 && CONST_SCALAR_INT_P (XEXP (op0, 1))
2629 && mode_signbit_p (mode, XEXP (op0, 1)))
2630 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2631 simplify_gen_binary (XOR, mode, op1,
2632 XEXP (op0, 1)));
2634 /* If we are XORing two things that have no bits in common,
2635 convert them into an IOR. This helps to detect rotation encoded
2636 using those methods and possibly other simplifications. */
2638 if (HWI_COMPUTABLE_MODE_P (mode)
2639 && (nonzero_bits (op0, mode)
2640 & nonzero_bits (op1, mode)) == 0)
2641 return (simplify_gen_binary (IOR, mode, op0, op1));
2643 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2644 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2645 (NOT y). */
2647 int num_negated = 0;
2649 if (GET_CODE (op0) == NOT)
2650 num_negated++, op0 = XEXP (op0, 0);
2651 if (GET_CODE (op1) == NOT)
2652 num_negated++, op1 = XEXP (op1, 0);
2654 if (num_negated == 2)
2655 return simplify_gen_binary (XOR, mode, op0, op1);
2656 else if (num_negated == 1)
2657 return simplify_gen_unary (NOT, mode,
2658 simplify_gen_binary (XOR, mode, op0, op1),
2659 mode);
2662 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2663 correspond to a machine insn or result in further simplifications
2664 if B is a constant. */
2666 if (GET_CODE (op0) == AND
2667 && rtx_equal_p (XEXP (op0, 1), op1)
2668 && ! side_effects_p (op1))
2669 return simplify_gen_binary (AND, mode,
2670 simplify_gen_unary (NOT, mode,
2671 XEXP (op0, 0), mode),
2672 op1);
2674 else if (GET_CODE (op0) == AND
2675 && rtx_equal_p (XEXP (op0, 0), op1)
2676 && ! side_effects_p (op1))
2677 return simplify_gen_binary (AND, mode,
2678 simplify_gen_unary (NOT, mode,
2679 XEXP (op0, 1), mode),
2680 op1);
2682 /* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
2683 we can transform like this:
2684 (A&B)^C == ~(A&B)&C | ~C&(A&B)
2685 == (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
2686 == ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
2687 Attempt a few simplifications when B and C are both constants. */
2688 if (GET_CODE (op0) == AND
2689 && CONST_INT_P (op1)
2690 && CONST_INT_P (XEXP (op0, 1)))
2692 rtx a = XEXP (op0, 0);
2693 rtx b = XEXP (op0, 1);
2694 rtx c = op1;
2695 HOST_WIDE_INT bval = INTVAL (b);
2696 HOST_WIDE_INT cval = INTVAL (c);
2698 rtx na_c
2699 = simplify_binary_operation (AND, mode,
2700 simplify_gen_unary (NOT, mode, a, mode),
2702 if ((~cval & bval) == 0)
2704 /* Try to simplify ~A&C | ~B&C. */
2705 if (na_c != NULL_RTX)
2706 return simplify_gen_binary (IOR, mode, na_c,
2707 gen_int_mode (~bval & cval, mode));
2709 else
2711 /* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
2712 if (na_c == const0_rtx)
2714 rtx a_nc_b = simplify_gen_binary (AND, mode, a,
2715 gen_int_mode (~cval & bval,
2716 mode));
2717 return simplify_gen_binary (IOR, mode, a_nc_b,
2718 gen_int_mode (~bval & cval,
2719 mode));
2724 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2725 comparison if STORE_FLAG_VALUE is 1. */
2726 if (STORE_FLAG_VALUE == 1
2727 && trueop1 == const1_rtx
2728 && COMPARISON_P (op0)
2729 && (reversed = reversed_comparison (op0, mode)))
2730 return reversed;
2732 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2733 is (lt foo (const_int 0)), so we can perform the above
2734 simplification if STORE_FLAG_VALUE is 1. */
2736 if (STORE_FLAG_VALUE == 1
2737 && trueop1 == const1_rtx
2738 && GET_CODE (op0) == LSHIFTRT
2739 && CONST_INT_P (XEXP (op0, 1))
2740 && INTVAL (XEXP (op0, 1)) == GET_MODE_PRECISION (mode) - 1)
2741 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
2743 /* (xor (comparison foo bar) (const_int sign-bit))
2744 when STORE_FLAG_VALUE is the sign bit. */
2745 if (val_signbit_p (mode, STORE_FLAG_VALUE)
2746 && trueop1 == const_true_rtx
2747 && COMPARISON_P (op0)
2748 && (reversed = reversed_comparison (op0, mode)))
2749 return reversed;
2751 tem = simplify_byte_swapping_operation (code, mode, op0, op1);
2752 if (tem)
2753 return tem;
2755 tem = simplify_associative_operation (code, mode, op0, op1);
2756 if (tem)
2757 return tem;
2758 break;
2760 case AND:
2761 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2762 return trueop1;
2763 if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
2764 return op0;
2765 if (HWI_COMPUTABLE_MODE_P (mode))
2767 HOST_WIDE_INT nzop0 = nonzero_bits (trueop0, mode);
2768 HOST_WIDE_INT nzop1;
2769 if (CONST_INT_P (trueop1))
2771 HOST_WIDE_INT val1 = INTVAL (trueop1);
2772 /* If we are turning off bits already known off in OP0, we need
2773 not do an AND. */
2774 if ((nzop0 & ~val1) == 0)
2775 return op0;
2777 nzop1 = nonzero_bits (trueop1, mode);
2778 /* If we are clearing all the nonzero bits, the result is zero. */
2779 if ((nzop1 & nzop0) == 0
2780 && !side_effects_p (op0) && !side_effects_p (op1))
2781 return CONST0_RTX (mode);
2783 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
2784 && GET_MODE_CLASS (mode) != MODE_CC)
2785 return op0;
2786 /* A & (~A) -> 0 */
2787 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2788 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2789 && ! side_effects_p (op0)
2790 && GET_MODE_CLASS (mode) != MODE_CC)
2791 return CONST0_RTX (mode);
2793 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2794 there are no nonzero bits of C outside of X's mode. */
2795 if ((GET_CODE (op0) == SIGN_EXTEND
2796 || GET_CODE (op0) == ZERO_EXTEND)
2797 && CONST_INT_P (trueop1)
2798 && HWI_COMPUTABLE_MODE_P (mode)
2799 && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
2800 & UINTVAL (trueop1)) == 0)
2802 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2803 tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
2804 gen_int_mode (INTVAL (trueop1),
2805 imode));
2806 return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
2809 /* Transform (and (truncate X) C) into (truncate (and X C)). This way
2810 we might be able to further simplify the AND with X and potentially
2811 remove the truncation altogether. */
2812 if (GET_CODE (op0) == TRUNCATE && CONST_INT_P (trueop1))
2814 rtx x = XEXP (op0, 0);
2815 enum machine_mode xmode = GET_MODE (x);
2816 tem = simplify_gen_binary (AND, xmode, x,
2817 gen_int_mode (INTVAL (trueop1), xmode));
2818 return simplify_gen_unary (TRUNCATE, mode, tem, xmode);
2821 /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
2822 if (GET_CODE (op0) == IOR
2823 && CONST_INT_P (trueop1)
2824 && CONST_INT_P (XEXP (op0, 1)))
2826 HOST_WIDE_INT tmp = INTVAL (trueop1) & INTVAL (XEXP (op0, 1));
2827 return simplify_gen_binary (IOR, mode,
2828 simplify_gen_binary (AND, mode,
2829 XEXP (op0, 0), op1),
2830 gen_int_mode (tmp, mode));
2833 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2834 insn (and may simplify more). */
2835 if (GET_CODE (op0) == XOR
2836 && rtx_equal_p (XEXP (op0, 0), op1)
2837 && ! side_effects_p (op1))
2838 return simplify_gen_binary (AND, mode,
2839 simplify_gen_unary (NOT, mode,
2840 XEXP (op0, 1), mode),
2841 op1);
2843 if (GET_CODE (op0) == XOR
2844 && rtx_equal_p (XEXP (op0, 1), op1)
2845 && ! side_effects_p (op1))
2846 return simplify_gen_binary (AND, mode,
2847 simplify_gen_unary (NOT, mode,
2848 XEXP (op0, 0), mode),
2849 op1);
2851 /* Similarly for (~(A ^ B)) & A. */
2852 if (GET_CODE (op0) == NOT
2853 && GET_CODE (XEXP (op0, 0)) == XOR
2854 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
2855 && ! side_effects_p (op1))
2856 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
2858 if (GET_CODE (op0) == NOT
2859 && GET_CODE (XEXP (op0, 0)) == XOR
2860 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
2861 && ! side_effects_p (op1))
2862 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
2864 /* Convert (A | B) & A to A. */
2865 if (GET_CODE (op0) == IOR
2866 && (rtx_equal_p (XEXP (op0, 0), op1)
2867 || rtx_equal_p (XEXP (op0, 1), op1))
2868 && ! side_effects_p (XEXP (op0, 0))
2869 && ! side_effects_p (XEXP (op0, 1)))
2870 return op1;
2872 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2873 ((A & N) + B) & M -> (A + B) & M
2874 Similarly if (N & M) == 0,
2875 ((A | N) + B) & M -> (A + B) & M
2876 and for - instead of + and/or ^ instead of |.
2877 Also, if (N & M) == 0, then
2878 (A +- N) & M -> A & M. */
2879 if (CONST_INT_P (trueop1)
2880 && HWI_COMPUTABLE_MODE_P (mode)
2881 && ~UINTVAL (trueop1)
2882 && (UINTVAL (trueop1) & (UINTVAL (trueop1) + 1)) == 0
2883 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
2885 rtx pmop[2];
2886 int which;
2888 pmop[0] = XEXP (op0, 0);
2889 pmop[1] = XEXP (op0, 1);
2891 if (CONST_INT_P (pmop[1])
2892 && (UINTVAL (pmop[1]) & UINTVAL (trueop1)) == 0)
2893 return simplify_gen_binary (AND, mode, pmop[0], op1);
2895 for (which = 0; which < 2; which++)
2897 tem = pmop[which];
2898 switch (GET_CODE (tem))
2900 case AND:
2901 if (CONST_INT_P (XEXP (tem, 1))
2902 && (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1))
2903 == UINTVAL (trueop1))
2904 pmop[which] = XEXP (tem, 0);
2905 break;
2906 case IOR:
2907 case XOR:
2908 if (CONST_INT_P (XEXP (tem, 1))
2909 && (UINTVAL (XEXP (tem, 1)) & UINTVAL (trueop1)) == 0)
2910 pmop[which] = XEXP (tem, 0);
2911 break;
2912 default:
2913 break;
2917 if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
2919 tem = simplify_gen_binary (GET_CODE (op0), mode,
2920 pmop[0], pmop[1]);
2921 return simplify_gen_binary (code, mode, tem, op1);
2925 /* (and X (ior (not X) Y) -> (and X Y) */
2926 if (GET_CODE (op1) == IOR
2927 && GET_CODE (XEXP (op1, 0)) == NOT
2928 && op0 == XEXP (XEXP (op1, 0), 0))
2929 return simplify_gen_binary (AND, mode, op0, XEXP (op1, 1));
2931 /* (and (ior (not X) Y) X) -> (and X Y) */
2932 if (GET_CODE (op0) == IOR
2933 && GET_CODE (XEXP (op0, 0)) == NOT
2934 && op1 == XEXP (XEXP (op0, 0), 0))
2935 return simplify_gen_binary (AND, mode, op1, XEXP (op0, 1));
2937 tem = simplify_byte_swapping_operation (code, mode, op0, op1);
2938 if (tem)
2939 return tem;
2941 tem = simplify_associative_operation (code, mode, op0, op1);
2942 if (tem)
2943 return tem;
2944 break;
2946 case UDIV:
2947 /* 0/x is 0 (or x&0 if x has side-effects). */
2948 if (trueop0 == CONST0_RTX (mode))
2950 if (side_effects_p (op1))
2951 return simplify_gen_binary (AND, mode, op1, trueop0);
2952 return trueop0;
2954 /* x/1 is x. */
2955 if (trueop1 == CONST1_RTX (mode))
2957 tem = rtl_hooks.gen_lowpart_no_emit (mode, op0);
2958 if (tem)
2959 return tem;
2961 /* Convert divide by power of two into shift. */
2962 if (CONST_INT_P (trueop1)
2963 && (val = exact_log2 (UINTVAL (trueop1))) > 0)
2964 return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
2965 break;
2967 case DIV:
2968 /* Handle floating point and integers separately. */
2969 if (SCALAR_FLOAT_MODE_P (mode))
2971 /* Maybe change 0.0 / x to 0.0. This transformation isn't
2972 safe for modes with NaNs, since 0.0 / 0.0 will then be
2973 NaN rather than 0.0. Nor is it safe for modes with signed
2974 zeros, since dividing 0 by a negative number gives -0.0 */
2975 if (trueop0 == CONST0_RTX (mode)
2976 && !HONOR_NANS (mode)
2977 && !HONOR_SIGNED_ZEROS (mode)
2978 && ! side_effects_p (op1))
2979 return op0;
2980 /* x/1.0 is x. */
2981 if (trueop1 == CONST1_RTX (mode)
2982 && !HONOR_SNANS (mode))
2983 return op0;
2985 if (CONST_DOUBLE_AS_FLOAT_P (trueop1)
2986 && trueop1 != CONST0_RTX (mode))
2988 REAL_VALUE_TYPE d;
2989 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2991 /* x/-1.0 is -x. */
2992 if (REAL_VALUES_EQUAL (d, dconstm1)
2993 && !HONOR_SNANS (mode))
2994 return simplify_gen_unary (NEG, mode, op0, mode);
2996 /* Change FP division by a constant into multiplication.
2997 Only do this with -freciprocal-math. */
2998 if (flag_reciprocal_math
2999 && !REAL_VALUES_EQUAL (d, dconst0))
3001 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
3002 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3003 return simplify_gen_binary (MULT, mode, op0, tem);
3007 else if (SCALAR_INT_MODE_P (mode))
3009 /* 0/x is 0 (or x&0 if x has side-effects). */
3010 if (trueop0 == CONST0_RTX (mode)
3011 && !cfun->can_throw_non_call_exceptions)
3013 if (side_effects_p (op1))
3014 return simplify_gen_binary (AND, mode, op1, trueop0);
3015 return trueop0;
3017 /* x/1 is x. */
3018 if (trueop1 == CONST1_RTX (mode))
3020 tem = rtl_hooks.gen_lowpart_no_emit (mode, op0);
3021 if (tem)
3022 return tem;
3024 /* x/-1 is -x. */
3025 if (trueop1 == constm1_rtx)
3027 rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
3028 if (x)
3029 return simplify_gen_unary (NEG, mode, x, mode);
3032 break;
3034 case UMOD:
3035 /* 0%x is 0 (or x&0 if x has side-effects). */
3036 if (trueop0 == CONST0_RTX (mode))
3038 if (side_effects_p (op1))
3039 return simplify_gen_binary (AND, mode, op1, trueop0);
3040 return trueop0;
3042 /* x%1 is 0 (of x&0 if x has side-effects). */
3043 if (trueop1 == CONST1_RTX (mode))
3045 if (side_effects_p (op0))
3046 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
3047 return CONST0_RTX (mode);
3049 /* Implement modulus by power of two as AND. */
3050 if (CONST_INT_P (trueop1)
3051 && exact_log2 (UINTVAL (trueop1)) > 0)
3052 return simplify_gen_binary (AND, mode, op0,
3053 gen_int_mode (INTVAL (op1) - 1, mode));
3054 break;
3056 case MOD:
3057 /* 0%x is 0 (or x&0 if x has side-effects). */
3058 if (trueop0 == CONST0_RTX (mode))
3060 if (side_effects_p (op1))
3061 return simplify_gen_binary (AND, mode, op1, trueop0);
3062 return trueop0;
3064 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
3065 if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
3067 if (side_effects_p (op0))
3068 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
3069 return CONST0_RTX (mode);
3071 break;
3073 case ROTATERT:
3074 case ROTATE:
3075 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
3076 prefer left rotation, if op1 is from bitsize / 2 + 1 to
3077 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
3078 amount instead. */
3079 #if defined(HAVE_rotate) && defined(HAVE_rotatert)
3080 if (CONST_INT_P (trueop1)
3081 && IN_RANGE (INTVAL (trueop1),
3082 GET_MODE_BITSIZE (mode) / 2 + (code == ROTATE),
3083 GET_MODE_BITSIZE (mode) - 1))
3084 return simplify_gen_binary (code == ROTATE ? ROTATERT : ROTATE,
3085 mode, op0, GEN_INT (GET_MODE_BITSIZE (mode)
3086 - INTVAL (trueop1)));
3087 #endif
3088 /* FALLTHRU */
3089 case ASHIFTRT:
3090 if (trueop1 == CONST0_RTX (mode))
3091 return op0;
3092 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
3093 return op0;
3094 /* Rotating ~0 always results in ~0. */
3095 if (CONST_INT_P (trueop0) && width <= HOST_BITS_PER_WIDE_INT
3096 && UINTVAL (trueop0) == GET_MODE_MASK (mode)
3097 && ! side_effects_p (op1))
3098 return op0;
3099 canonicalize_shift:
3100 if (SHIFT_COUNT_TRUNCATED && CONST_INT_P (op1))
3102 val = INTVAL (op1) & (GET_MODE_BITSIZE (mode) - 1);
3103 if (val != INTVAL (op1))
3104 return simplify_gen_binary (code, mode, op0, GEN_INT (val));
3106 break;
3108 case ASHIFT:
3109 case SS_ASHIFT:
3110 case US_ASHIFT:
3111 if (trueop1 == CONST0_RTX (mode))
3112 return op0;
3113 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
3114 return op0;
3115 goto canonicalize_shift;
3117 case LSHIFTRT:
3118 if (trueop1 == CONST0_RTX (mode))
3119 return op0;
3120 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
3121 return op0;
3122 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
3123 if (GET_CODE (op0) == CLZ
3124 && CONST_INT_P (trueop1)
3125 && STORE_FLAG_VALUE == 1
3126 && INTVAL (trueop1) < (HOST_WIDE_INT)width)
3128 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
3129 unsigned HOST_WIDE_INT zero_val = 0;
3131 if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
3132 && zero_val == GET_MODE_PRECISION (imode)
3133 && INTVAL (trueop1) == exact_log2 (zero_val))
3134 return simplify_gen_relational (EQ, mode, imode,
3135 XEXP (op0, 0), const0_rtx);
3137 goto canonicalize_shift;
3139 case SMIN:
3140 if (width <= HOST_BITS_PER_WIDE_INT
3141 && mode_signbit_p (mode, trueop1)
3142 && ! side_effects_p (op0))
3143 return op1;
3144 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3145 return op0;
3146 tem = simplify_associative_operation (code, mode, op0, op1);
3147 if (tem)
3148 return tem;
3149 break;
3151 case SMAX:
3152 if (width <= HOST_BITS_PER_WIDE_INT
3153 && CONST_INT_P (trueop1)
3154 && (UINTVAL (trueop1) == GET_MODE_MASK (mode) >> 1)
3155 && ! side_effects_p (op0))
3156 return op1;
3157 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3158 return op0;
3159 tem = simplify_associative_operation (code, mode, op0, op1);
3160 if (tem)
3161 return tem;
3162 break;
3164 case UMIN:
3165 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
3166 return op1;
3167 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3168 return op0;
3169 tem = simplify_associative_operation (code, mode, op0, op1);
3170 if (tem)
3171 return tem;
3172 break;
3174 case UMAX:
3175 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
3176 return op1;
3177 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
3178 return op0;
3179 tem = simplify_associative_operation (code, mode, op0, op1);
3180 if (tem)
3181 return tem;
3182 break;
3184 case SS_PLUS:
3185 case US_PLUS:
3186 case SS_MINUS:
3187 case US_MINUS:
3188 case SS_MULT:
3189 case US_MULT:
3190 case SS_DIV:
3191 case US_DIV:
3192 /* ??? There are simplifications that can be done. */
3193 return 0;
3195 case VEC_SELECT:
3196 if (!VECTOR_MODE_P (mode))
3198 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
3199 gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
3200 gcc_assert (GET_CODE (trueop1) == PARALLEL);
3201 gcc_assert (XVECLEN (trueop1, 0) == 1);
3202 gcc_assert (CONST_INT_P (XVECEXP (trueop1, 0, 0)));
3204 if (GET_CODE (trueop0) == CONST_VECTOR)
3205 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
3206 (trueop1, 0, 0)));
3208 /* Extract a scalar element from a nested VEC_SELECT expression
3209 (with optional nested VEC_CONCAT expression). Some targets
3210 (i386) extract scalar element from a vector using chain of
3211 nested VEC_SELECT expressions. When input operand is a memory
3212 operand, this operation can be simplified to a simple scalar
3213 load from an offseted memory address. */
3214 if (GET_CODE (trueop0) == VEC_SELECT)
3216 rtx op0 = XEXP (trueop0, 0);
3217 rtx op1 = XEXP (trueop0, 1);
3219 enum machine_mode opmode = GET_MODE (op0);
3220 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
3221 int n_elts = GET_MODE_SIZE (opmode) / elt_size;
3223 int i = INTVAL (XVECEXP (trueop1, 0, 0));
3224 int elem;
3226 rtvec vec;
3227 rtx tmp_op, tmp;
3229 gcc_assert (GET_CODE (op1) == PARALLEL);
3230 gcc_assert (i < n_elts);
3232 /* Select element, pointed by nested selector. */
3233 elem = INTVAL (XVECEXP (op1, 0, i));
3235 /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
3236 if (GET_CODE (op0) == VEC_CONCAT)
3238 rtx op00 = XEXP (op0, 0);
3239 rtx op01 = XEXP (op0, 1);
3241 enum machine_mode mode00, mode01;
3242 int n_elts00, n_elts01;
3244 mode00 = GET_MODE (op00);
3245 mode01 = GET_MODE (op01);
3247 /* Find out number of elements of each operand. */
3248 if (VECTOR_MODE_P (mode00))
3250 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode00));
3251 n_elts00 = GET_MODE_SIZE (mode00) / elt_size;
3253 else
3254 n_elts00 = 1;
3256 if (VECTOR_MODE_P (mode01))
3258 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode01));
3259 n_elts01 = GET_MODE_SIZE (mode01) / elt_size;
3261 else
3262 n_elts01 = 1;
3264 gcc_assert (n_elts == n_elts00 + n_elts01);
3266 /* Select correct operand of VEC_CONCAT
3267 and adjust selector. */
3268 if (elem < n_elts01)
3269 tmp_op = op00;
3270 else
3272 tmp_op = op01;
3273 elem -= n_elts00;
3276 else
3277 tmp_op = op0;
3279 vec = rtvec_alloc (1);
3280 RTVEC_ELT (vec, 0) = GEN_INT (elem);
3282 tmp = gen_rtx_fmt_ee (code, mode,
3283 tmp_op, gen_rtx_PARALLEL (VOIDmode, vec));
3284 return tmp;
3286 if (GET_CODE (trueop0) == VEC_DUPLICATE
3287 && GET_MODE (XEXP (trueop0, 0)) == mode)
3288 return XEXP (trueop0, 0);
3290 else
3292 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
3293 gcc_assert (GET_MODE_INNER (mode)
3294 == GET_MODE_INNER (GET_MODE (trueop0)));
3295 gcc_assert (GET_CODE (trueop1) == PARALLEL);
3297 if (GET_CODE (trueop0) == CONST_VECTOR)
3299 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
3300 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
3301 rtvec v = rtvec_alloc (n_elts);
3302 unsigned int i;
3304 gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
3305 for (i = 0; i < n_elts; i++)
3307 rtx x = XVECEXP (trueop1, 0, i);
3309 gcc_assert (CONST_INT_P (x));
3310 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
3311 INTVAL (x));
3314 return gen_rtx_CONST_VECTOR (mode, v);
3317 /* Recognize the identity. */
3318 if (GET_MODE (trueop0) == mode)
3320 bool maybe_ident = true;
3321 for (int i = 0; i < XVECLEN (trueop1, 0); i++)
3323 rtx j = XVECEXP (trueop1, 0, i);
3324 if (!CONST_INT_P (j) || INTVAL (j) != i)
3326 maybe_ident = false;
3327 break;
3330 if (maybe_ident)
3331 return trueop0;
3334 /* If we build {a,b} then permute it, build the result directly. */
3335 if (XVECLEN (trueop1, 0) == 2
3336 && CONST_INT_P (XVECEXP (trueop1, 0, 0))
3337 && CONST_INT_P (XVECEXP (trueop1, 0, 1))
3338 && GET_CODE (trueop0) == VEC_CONCAT
3339 && GET_CODE (XEXP (trueop0, 0)) == VEC_CONCAT
3340 && GET_MODE (XEXP (trueop0, 0)) == mode
3341 && GET_CODE (XEXP (trueop0, 1)) == VEC_CONCAT
3342 && GET_MODE (XEXP (trueop0, 1)) == mode)
3344 unsigned int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
3345 unsigned int i1 = INTVAL (XVECEXP (trueop1, 0, 1));
3346 rtx subop0, subop1;
3348 gcc_assert (i0 < 4 && i1 < 4);
3349 subop0 = XEXP (XEXP (trueop0, i0 / 2), i0 % 2);
3350 subop1 = XEXP (XEXP (trueop0, i1 / 2), i1 % 2);
3352 return simplify_gen_binary (VEC_CONCAT, mode, subop0, subop1);
3355 if (XVECLEN (trueop1, 0) == 2
3356 && CONST_INT_P (XVECEXP (trueop1, 0, 0))
3357 && CONST_INT_P (XVECEXP (trueop1, 0, 1))
3358 && GET_CODE (trueop0) == VEC_CONCAT
3359 && GET_MODE (trueop0) == mode)
3361 unsigned int i0 = INTVAL (XVECEXP (trueop1, 0, 0));
3362 unsigned int i1 = INTVAL (XVECEXP (trueop1, 0, 1));
3363 rtx subop0, subop1;
3365 gcc_assert (i0 < 2 && i1 < 2);
3366 subop0 = XEXP (trueop0, i0);
3367 subop1 = XEXP (trueop0, i1);
3369 return simplify_gen_binary (VEC_CONCAT, mode, subop0, subop1);
3373 if (XVECLEN (trueop1, 0) == 1
3374 && CONST_INT_P (XVECEXP (trueop1, 0, 0))
3375 && GET_CODE (trueop0) == VEC_CONCAT)
3377 rtx vec = trueop0;
3378 int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
3380 /* Try to find the element in the VEC_CONCAT. */
3381 while (GET_MODE (vec) != mode
3382 && GET_CODE (vec) == VEC_CONCAT)
3384 HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
3385 if (offset < vec_size)
3386 vec = XEXP (vec, 0);
3387 else
3389 offset -= vec_size;
3390 vec = XEXP (vec, 1);
3392 vec = avoid_constant_pool_reference (vec);
3395 if (GET_MODE (vec) == mode)
3396 return vec;
3399 /* If we select elements in a vec_merge that all come from the same
3400 operand, select from that operand directly. */
3401 if (GET_CODE (op0) == VEC_MERGE)
3403 rtx trueop02 = avoid_constant_pool_reference (XEXP (op0, 2));
3404 if (CONST_INT_P (trueop02))
3406 unsigned HOST_WIDE_INT sel = UINTVAL (trueop02);
3407 bool all_operand0 = true;
3408 bool all_operand1 = true;
3409 for (int i = 0; i < XVECLEN (trueop1, 0); i++)
3411 rtx j = XVECEXP (trueop1, 0, i);
3412 if (sel & (1 << UINTVAL (j)))
3413 all_operand1 = false;
3414 else
3415 all_operand0 = false;
3417 if (all_operand0 && !side_effects_p (XEXP (op0, 1)))
3418 return simplify_gen_binary (VEC_SELECT, mode, XEXP (op0, 0), op1);
3419 if (all_operand1 && !side_effects_p (XEXP (op0, 0)))
3420 return simplify_gen_binary (VEC_SELECT, mode, XEXP (op0, 1), op1);
3424 /* If we have two nested selects that are inverses of each
3425 other, replace them with the source operand. */
3426 if (GET_CODE (trueop0) == VEC_SELECT
3427 && GET_MODE (XEXP (trueop0, 0)) == mode)
3429 rtx op0_subop1 = XEXP (trueop0, 1);
3430 gcc_assert (GET_CODE (op0_subop1) == PARALLEL);
3431 gcc_assert (XVECLEN (trueop1, 0) == GET_MODE_NUNITS (mode));
3433 /* Apply the outer ordering vector to the inner one. (The inner
3434 ordering vector is expressly permitted to be of a different
3435 length than the outer one.) If the result is { 0, 1, ..., n-1 }
3436 then the two VEC_SELECTs cancel. */
3437 for (int i = 0; i < XVECLEN (trueop1, 0); ++i)
3439 rtx x = XVECEXP (trueop1, 0, i);
3440 if (!CONST_INT_P (x))
3441 return 0;
3442 rtx y = XVECEXP (op0_subop1, 0, INTVAL (x));
3443 if (!CONST_INT_P (y) || i != INTVAL (y))
3444 return 0;
3446 return XEXP (trueop0, 0);
3449 return 0;
3450 case VEC_CONCAT:
3452 enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
3453 ? GET_MODE (trueop0)
3454 : GET_MODE_INNER (mode));
3455 enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
3456 ? GET_MODE (trueop1)
3457 : GET_MODE_INNER (mode));
3459 gcc_assert (VECTOR_MODE_P (mode));
3460 gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
3461 == GET_MODE_SIZE (mode));
3463 if (VECTOR_MODE_P (op0_mode))
3464 gcc_assert (GET_MODE_INNER (mode)
3465 == GET_MODE_INNER (op0_mode));
3466 else
3467 gcc_assert (GET_MODE_INNER (mode) == op0_mode);
3469 if (VECTOR_MODE_P (op1_mode))
3470 gcc_assert (GET_MODE_INNER (mode)
3471 == GET_MODE_INNER (op1_mode));
3472 else
3473 gcc_assert (GET_MODE_INNER (mode) == op1_mode);
3475 if ((GET_CODE (trueop0) == CONST_VECTOR
3476 || CONST_SCALAR_INT_P (trueop0)
3477 || CONST_DOUBLE_AS_FLOAT_P (trueop0))
3478 && (GET_CODE (trueop1) == CONST_VECTOR
3479 || CONST_SCALAR_INT_P (trueop1)
3480 || CONST_DOUBLE_AS_FLOAT_P (trueop1)))
3482 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
3483 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
3484 rtvec v = rtvec_alloc (n_elts);
3485 unsigned int i;
3486 unsigned in_n_elts = 1;
3488 if (VECTOR_MODE_P (op0_mode))
3489 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
3490 for (i = 0; i < n_elts; i++)
3492 if (i < in_n_elts)
3494 if (!VECTOR_MODE_P (op0_mode))
3495 RTVEC_ELT (v, i) = trueop0;
3496 else
3497 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
3499 else
3501 if (!VECTOR_MODE_P (op1_mode))
3502 RTVEC_ELT (v, i) = trueop1;
3503 else
3504 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
3505 i - in_n_elts);
3509 return gen_rtx_CONST_VECTOR (mode, v);
3512 /* Try to merge two VEC_SELECTs from the same vector into a single one.
3513 Restrict the transformation to avoid generating a VEC_SELECT with a
3514 mode unrelated to its operand. */
3515 if (GET_CODE (trueop0) == VEC_SELECT
3516 && GET_CODE (trueop1) == VEC_SELECT
3517 && rtx_equal_p (XEXP (trueop0, 0), XEXP (trueop1, 0))
3518 && GET_MODE (XEXP (trueop0, 0)) == mode)
3520 rtx par0 = XEXP (trueop0, 1);
3521 rtx par1 = XEXP (trueop1, 1);
3522 int len0 = XVECLEN (par0, 0);
3523 int len1 = XVECLEN (par1, 0);
3524 rtvec vec = rtvec_alloc (len0 + len1);
3525 for (int i = 0; i < len0; i++)
3526 RTVEC_ELT (vec, i) = XVECEXP (par0, 0, i);
3527 for (int i = 0; i < len1; i++)
3528 RTVEC_ELT (vec, len0 + i) = XVECEXP (par1, 0, i);
3529 return simplify_gen_binary (VEC_SELECT, mode, XEXP (trueop0, 0),
3530 gen_rtx_PARALLEL (VOIDmode, vec));
3533 return 0;
3535 default:
3536 gcc_unreachable ();
3539 return 0;
3543 simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
3544 rtx op0, rtx op1)
3546 unsigned int width = GET_MODE_PRECISION (mode);
3548 if (VECTOR_MODE_P (mode)
3549 && code != VEC_CONCAT
3550 && GET_CODE (op0) == CONST_VECTOR
3551 && GET_CODE (op1) == CONST_VECTOR)
3553 unsigned n_elts = GET_MODE_NUNITS (mode);
3554 enum machine_mode op0mode = GET_MODE (op0);
3555 unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
3556 enum machine_mode op1mode = GET_MODE (op1);
3557 unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
3558 rtvec v = rtvec_alloc (n_elts);
3559 unsigned int i;
3561 gcc_assert (op0_n_elts == n_elts);
3562 gcc_assert (op1_n_elts == n_elts);
3563 for (i = 0; i < n_elts; i++)
3565 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
3566 CONST_VECTOR_ELT (op0, i),
3567 CONST_VECTOR_ELT (op1, i));
3568 if (!x)
3569 return 0;
3570 RTVEC_ELT (v, i) = x;
3573 return gen_rtx_CONST_VECTOR (mode, v);
3576 if (VECTOR_MODE_P (mode)
3577 && code == VEC_CONCAT
3578 && (CONST_SCALAR_INT_P (op0)
3579 || GET_CODE (op0) == CONST_FIXED
3580 || CONST_DOUBLE_AS_FLOAT_P (op0))
3581 && (CONST_SCALAR_INT_P (op1)
3582 || CONST_DOUBLE_AS_FLOAT_P (op1)
3583 || GET_CODE (op1) == CONST_FIXED))
3585 unsigned n_elts = GET_MODE_NUNITS (mode);
3586 rtvec v = rtvec_alloc (n_elts);
3588 gcc_assert (n_elts >= 2);
3589 if (n_elts == 2)
3591 gcc_assert (GET_CODE (op0) != CONST_VECTOR);
3592 gcc_assert (GET_CODE (op1) != CONST_VECTOR);
3594 RTVEC_ELT (v, 0) = op0;
3595 RTVEC_ELT (v, 1) = op1;
3597 else
3599 unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
3600 unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
3601 unsigned i;
3603 gcc_assert (GET_CODE (op0) == CONST_VECTOR);
3604 gcc_assert (GET_CODE (op1) == CONST_VECTOR);
3605 gcc_assert (op0_n_elts + op1_n_elts == n_elts);
3607 for (i = 0; i < op0_n_elts; ++i)
3608 RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
3609 for (i = 0; i < op1_n_elts; ++i)
3610 RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
3613 return gen_rtx_CONST_VECTOR (mode, v);
3616 if (SCALAR_FLOAT_MODE_P (mode)
3617 && CONST_DOUBLE_AS_FLOAT_P (op0)
3618 && CONST_DOUBLE_AS_FLOAT_P (op1)
3619 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
3621 if (code == AND
3622 || code == IOR
3623 || code == XOR)
3625 long tmp0[4];
3626 long tmp1[4];
3627 REAL_VALUE_TYPE r;
3628 int i;
3630 real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
3631 GET_MODE (op0));
3632 real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
3633 GET_MODE (op1));
3634 for (i = 0; i < 4; i++)
3636 switch (code)
3638 case AND:
3639 tmp0[i] &= tmp1[i];
3640 break;
3641 case IOR:
3642 tmp0[i] |= tmp1[i];
3643 break;
3644 case XOR:
3645 tmp0[i] ^= tmp1[i];
3646 break;
3647 default:
3648 gcc_unreachable ();
3651 real_from_target (&r, tmp0, mode);
3652 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
3654 else
3656 REAL_VALUE_TYPE f0, f1, value, result;
3657 bool inexact;
3659 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3660 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3661 real_convert (&f0, mode, &f0);
3662 real_convert (&f1, mode, &f1);
3664 if (HONOR_SNANS (mode)
3665 && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
3666 return 0;
3668 if (code == DIV
3669 && REAL_VALUES_EQUAL (f1, dconst0)
3670 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
3671 return 0;
3673 if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3674 && flag_trapping_math
3675 && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
3677 int s0 = REAL_VALUE_NEGATIVE (f0);
3678 int s1 = REAL_VALUE_NEGATIVE (f1);
3680 switch (code)
3682 case PLUS:
3683 /* Inf + -Inf = NaN plus exception. */
3684 if (s0 != s1)
3685 return 0;
3686 break;
3687 case MINUS:
3688 /* Inf - Inf = NaN plus exception. */
3689 if (s0 == s1)
3690 return 0;
3691 break;
3692 case DIV:
3693 /* Inf / Inf = NaN plus exception. */
3694 return 0;
3695 default:
3696 break;
3700 if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3701 && flag_trapping_math
3702 && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
3703 || (REAL_VALUE_ISINF (f1)
3704 && REAL_VALUES_EQUAL (f0, dconst0))))
3705 /* Inf * 0 = NaN plus exception. */
3706 return 0;
3708 inexact = real_arithmetic (&value, rtx_to_tree_code (code),
3709 &f0, &f1);
3710 real_convert (&result, mode, &value);
3712 /* Don't constant fold this floating point operation if
3713 the result has overflowed and flag_trapping_math. */
3715 if (flag_trapping_math
3716 && MODE_HAS_INFINITIES (mode)
3717 && REAL_VALUE_ISINF (result)
3718 && !REAL_VALUE_ISINF (f0)
3719 && !REAL_VALUE_ISINF (f1))
3720 /* Overflow plus exception. */
3721 return 0;
3723 /* Don't constant fold this floating point operation if the
3724 result may dependent upon the run-time rounding mode and
3725 flag_rounding_math is set, or if GCC's software emulation
3726 is unable to accurately represent the result. */
3728 if ((flag_rounding_math
3729 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
3730 && (inexact || !real_identical (&result, &value)))
3731 return NULL_RTX;
3733 return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
3737 /* We can fold some multi-word operations. */
3738 if (GET_MODE_CLASS (mode) == MODE_INT
3739 && CONST_SCALAR_INT_P (op0)
3740 && CONST_SCALAR_INT_P (op1))
3742 wide_int result;
3743 bool overflow;
3744 rtx_mode_t pop0 = std::make_pair (op0, mode);
3745 rtx_mode_t pop1 = std::make_pair (op1, mode);
3747 #if TARGET_SUPPORTS_WIDE_INT == 0
3748 /* This assert keeps the simplification from producing a result
3749 that cannot be represented in a CONST_DOUBLE but a lot of
3750 upstream callers expect that this function never fails to
3751 simplify something and so you if you added this to the test
3752 above the code would die later anyway. If this assert
3753 happens, you just need to make the port support wide int. */
3754 gcc_assert (width <= HOST_BITS_PER_DOUBLE_INT);
3755 #endif
3756 switch (code)
3758 case MINUS:
3759 result = wi::sub (pop0, pop1);
3760 break;
3762 case PLUS:
3763 result = wi::add (pop0, pop1);
3764 break;
3766 case MULT:
3767 result = wi::mul (pop0, pop1);
3768 break;
3770 case DIV:
3771 result = wi::div_trunc (pop0, pop1, SIGNED, &overflow);
3772 if (overflow)
3773 return NULL_RTX;
3774 break;
3776 case MOD:
3777 result = wi::mod_trunc (pop0, pop1, SIGNED, &overflow);
3778 if (overflow)
3779 return NULL_RTX;
3780 break;
3782 case UDIV:
3783 result = wi::div_trunc (pop0, pop1, UNSIGNED, &overflow);
3784 if (overflow)
3785 return NULL_RTX;
3786 break;
3788 case UMOD:
3789 result = wi::mod_trunc (pop0, pop1, UNSIGNED, &overflow);
3790 if (overflow)
3791 return NULL_RTX;
3792 break;
3794 case AND:
3795 result = wi::bit_and (pop0, pop1);
3796 break;
3798 case IOR:
3799 result = wi::bit_or (pop0, pop1);
3800 break;
3802 case XOR:
3803 result = wi::bit_xor (pop0, pop1);
3804 break;
3806 case SMIN:
3807 result = wi::smin (pop0, pop1);
3808 break;
3810 case SMAX:
3811 result = wi::smax (pop0, pop1);
3812 break;
3814 case UMIN:
3815 result = wi::umin (pop0, pop1);
3816 break;
3818 case UMAX:
3819 result = wi::umax (pop0, pop1);
3820 break;
3822 case LSHIFTRT:
3823 case ASHIFTRT:
3824 case ASHIFT:
3826 wide_int wop1 = pop1;
3827 if (SHIFT_COUNT_TRUNCATED)
3828 wop1 = wi::umod_trunc (wop1, width);
3829 else if (wi::geu_p (wop1, width))
3830 return NULL_RTX;
3832 switch (code)
3834 case LSHIFTRT:
3835 result = wi::lrshift (pop0, wop1);
3836 break;
3838 case ASHIFTRT:
3839 result = wi::arshift (pop0, wop1);
3840 break;
3842 case ASHIFT:
3843 result = wi::lshift (pop0, wop1);
3844 break;
3846 default:
3847 gcc_unreachable ();
3849 break;
3851 case ROTATE:
3852 case ROTATERT:
3854 if (wi::neg_p (pop1))
3855 return NULL_RTX;
3857 switch (code)
3859 case ROTATE:
3860 result = wi::lrotate (pop0, pop1);
3861 break;
3863 case ROTATERT:
3864 result = wi::rrotate (pop0, pop1);
3865 break;
3867 default:
3868 gcc_unreachable ();
3870 break;
3872 default:
3873 return NULL_RTX;
3875 return immed_wide_int_const (result, mode);
3878 return NULL_RTX;
3883 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3884 PLUS or MINUS.
3886 Rather than test for specific case, we do this by a brute-force method
3887 and do all possible simplifications until no more changes occur. Then
3888 we rebuild the operation. */
3890 struct simplify_plus_minus_op_data
3892 rtx op;
3893 short neg;
3896 static bool
3897 simplify_plus_minus_op_data_cmp (rtx x, rtx y)
3899 int result;
3901 result = (commutative_operand_precedence (y)
3902 - commutative_operand_precedence (x));
3903 if (result)
3904 return result > 0;
3906 /* Group together equal REGs to do more simplification. */
3907 if (REG_P (x) && REG_P (y))
3908 return REGNO (x) > REGNO (y);
3909 else
3910 return false;
3913 static rtx
3914 simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
3915 rtx op1)
3917 struct simplify_plus_minus_op_data ops[8];
3918 rtx result, tem;
3919 int n_ops = 2, input_ops = 2;
3920 int changed, n_constants = 0, canonicalized = 0;
3921 int i, j;
3923 memset (ops, 0, sizeof ops);
3925 /* Set up the two operands and then expand them until nothing has been
3926 changed. If we run out of room in our array, give up; this should
3927 almost never happen. */
3929 ops[0].op = op0;
3930 ops[0].neg = 0;
3931 ops[1].op = op1;
3932 ops[1].neg = (code == MINUS);
3936 changed = 0;
3938 for (i = 0; i < n_ops; i++)
3940 rtx this_op = ops[i].op;
3941 int this_neg = ops[i].neg;
3942 enum rtx_code this_code = GET_CODE (this_op);
3944 switch (this_code)
3946 case PLUS:
3947 case MINUS:
3948 if (n_ops == 7)
3949 return NULL_RTX;
3951 ops[n_ops].op = XEXP (this_op, 1);
3952 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
3953 n_ops++;
3955 ops[i].op = XEXP (this_op, 0);
3956 input_ops++;
3957 changed = 1;
3958 canonicalized |= this_neg;
3959 break;
3961 case NEG:
3962 ops[i].op = XEXP (this_op, 0);
3963 ops[i].neg = ! this_neg;
3964 changed = 1;
3965 canonicalized = 1;
3966 break;
3968 case CONST:
3969 if (n_ops < 7
3970 && GET_CODE (XEXP (this_op, 0)) == PLUS
3971 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
3972 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
3974 ops[i].op = XEXP (XEXP (this_op, 0), 0);
3975 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
3976 ops[n_ops].neg = this_neg;
3977 n_ops++;
3978 changed = 1;
3979 canonicalized = 1;
3981 break;
3983 case NOT:
3984 /* ~a -> (-a - 1) */
3985 if (n_ops != 7)
3987 ops[n_ops].op = CONSTM1_RTX (mode);
3988 ops[n_ops++].neg = this_neg;
3989 ops[i].op = XEXP (this_op, 0);
3990 ops[i].neg = !this_neg;
3991 changed = 1;
3992 canonicalized = 1;
3994 break;
3996 case CONST_INT:
3997 n_constants++;
3998 if (this_neg)
4000 ops[i].op = neg_const_int (mode, this_op);
4001 ops[i].neg = 0;
4002 changed = 1;
4003 canonicalized = 1;
4005 break;
4007 default:
4008 break;
4012 while (changed);
4014 if (n_constants > 1)
4015 canonicalized = 1;
4017 gcc_assert (n_ops >= 2);
4019 /* If we only have two operands, we can avoid the loops. */
4020 if (n_ops == 2)
4022 enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
4023 rtx lhs, rhs;
4025 /* Get the two operands. Be careful with the order, especially for
4026 the cases where code == MINUS. */
4027 if (ops[0].neg && ops[1].neg)
4029 lhs = gen_rtx_NEG (mode, ops[0].op);
4030 rhs = ops[1].op;
4032 else if (ops[0].neg)
4034 lhs = ops[1].op;
4035 rhs = ops[0].op;
4037 else
4039 lhs = ops[0].op;
4040 rhs = ops[1].op;
4043 return simplify_const_binary_operation (code, mode, lhs, rhs);
4046 /* Now simplify each pair of operands until nothing changes. */
4049 /* Insertion sort is good enough for an eight-element array. */
4050 for (i = 1; i < n_ops; i++)
4052 struct simplify_plus_minus_op_data save;
4053 j = i - 1;
4054 if (!simplify_plus_minus_op_data_cmp (ops[j].op, ops[i].op))
4055 continue;
4057 canonicalized = 1;
4058 save = ops[i];
4060 ops[j + 1] = ops[j];
4061 while (j-- && simplify_plus_minus_op_data_cmp (ops[j].op, save.op));
4062 ops[j + 1] = save;
4065 changed = 0;
4066 for (i = n_ops - 1; i > 0; i--)
4067 for (j = i - 1; j >= 0; j--)
4069 rtx lhs = ops[j].op, rhs = ops[i].op;
4070 int lneg = ops[j].neg, rneg = ops[i].neg;
4072 if (lhs != 0 && rhs != 0)
4074 enum rtx_code ncode = PLUS;
4076 if (lneg != rneg)
4078 ncode = MINUS;
4079 if (lneg)
4080 tem = lhs, lhs = rhs, rhs = tem;
4082 else if (swap_commutative_operands_p (lhs, rhs))
4083 tem = lhs, lhs = rhs, rhs = tem;
4085 if ((GET_CODE (lhs) == CONST || CONST_INT_P (lhs))
4086 && (GET_CODE (rhs) == CONST || CONST_INT_P (rhs)))
4088 rtx tem_lhs, tem_rhs;
4090 tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
4091 tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
4092 tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
4094 if (tem && !CONSTANT_P (tem))
4095 tem = gen_rtx_CONST (GET_MODE (tem), tem);
4097 else
4098 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
4100 /* Reject "simplifications" that just wrap the two
4101 arguments in a CONST. Failure to do so can result
4102 in infinite recursion with simplify_binary_operation
4103 when it calls us to simplify CONST operations. */
4104 if (tem
4105 && ! (GET_CODE (tem) == CONST
4106 && GET_CODE (XEXP (tem, 0)) == ncode
4107 && XEXP (XEXP (tem, 0), 0) == lhs
4108 && XEXP (XEXP (tem, 0), 1) == rhs))
4110 lneg &= rneg;
4111 if (GET_CODE (tem) == NEG)
4112 tem = XEXP (tem, 0), lneg = !lneg;
4113 if (CONST_INT_P (tem) && lneg)
4114 tem = neg_const_int (mode, tem), lneg = 0;
4116 ops[i].op = tem;
4117 ops[i].neg = lneg;
4118 ops[j].op = NULL_RTX;
4119 changed = 1;
4120 canonicalized = 1;
4125 /* If nothing changed, fail. */
4126 if (!canonicalized)
4127 return NULL_RTX;
4129 /* Pack all the operands to the lower-numbered entries. */
4130 for (i = 0, j = 0; j < n_ops; j++)
4131 if (ops[j].op)
4133 ops[i] = ops[j];
4134 i++;
4136 n_ops = i;
4138 while (changed);
4140 /* Create (minus -C X) instead of (neg (const (plus X C))). */
4141 if (n_ops == 2
4142 && CONST_INT_P (ops[1].op)
4143 && CONSTANT_P (ops[0].op)
4144 && ops[0].neg)
4145 return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
4147 /* We suppressed creation of trivial CONST expressions in the
4148 combination loop to avoid recursion. Create one manually now.
4149 The combination loop should have ensured that there is exactly
4150 one CONST_INT, and the sort will have ensured that it is last
4151 in the array and that any other constant will be next-to-last. */
4153 if (n_ops > 1
4154 && CONST_INT_P (ops[n_ops - 1].op)
4155 && CONSTANT_P (ops[n_ops - 2].op))
4157 rtx value = ops[n_ops - 1].op;
4158 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
4159 value = neg_const_int (mode, value);
4160 ops[n_ops - 2].op = plus_constant (mode, ops[n_ops - 2].op,
4161 INTVAL (value));
4162 n_ops--;
4165 /* Put a non-negated operand first, if possible. */
4167 for (i = 0; i < n_ops && ops[i].neg; i++)
4168 continue;
4169 if (i == n_ops)
4170 ops[0].op = gen_rtx_NEG (mode, ops[0].op);
4171 else if (i != 0)
4173 tem = ops[0].op;
4174 ops[0] = ops[i];
4175 ops[i].op = tem;
4176 ops[i].neg = 1;
4179 /* Now make the result by performing the requested operations. */
4180 result = ops[0].op;
4181 for (i = 1; i < n_ops; i++)
4182 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
4183 mode, result, ops[i].op);
4185 return result;
4188 /* Check whether an operand is suitable for calling simplify_plus_minus. */
4189 static bool
4190 plus_minus_operand_p (const_rtx x)
4192 return GET_CODE (x) == PLUS
4193 || GET_CODE (x) == MINUS
4194 || (GET_CODE (x) == CONST
4195 && GET_CODE (XEXP (x, 0)) == PLUS
4196 && CONSTANT_P (XEXP (XEXP (x, 0), 0))
4197 && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
4200 /* Like simplify_binary_operation except used for relational operators.
4201 MODE is the mode of the result. If MODE is VOIDmode, both operands must
4202 not also be VOIDmode.
4204 CMP_MODE specifies in which mode the comparison is done in, so it is
4205 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
4206 the operands or, if both are VOIDmode, the operands are compared in
4207 "infinite precision". */
4209 simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
4210 enum machine_mode cmp_mode, rtx op0, rtx op1)
4212 rtx tem, trueop0, trueop1;
4214 if (cmp_mode == VOIDmode)
4215 cmp_mode = GET_MODE (op0);
4216 if (cmp_mode == VOIDmode)
4217 cmp_mode = GET_MODE (op1);
4219 tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
4220 if (tem)
4222 if (SCALAR_FLOAT_MODE_P (mode))
4224 if (tem == const0_rtx)
4225 return CONST0_RTX (mode);
4226 #ifdef FLOAT_STORE_FLAG_VALUE
4228 REAL_VALUE_TYPE val;
4229 val = FLOAT_STORE_FLAG_VALUE (mode);
4230 return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
4232 #else
4233 return NULL_RTX;
4234 #endif
4236 if (VECTOR_MODE_P (mode))
4238 if (tem == const0_rtx)
4239 return CONST0_RTX (mode);
4240 #ifdef VECTOR_STORE_FLAG_VALUE
4242 int i, units;
4243 rtvec v;
4245 rtx val = VECTOR_STORE_FLAG_VALUE (mode);
4246 if (val == NULL_RTX)
4247 return NULL_RTX;
4248 if (val == const1_rtx)
4249 return CONST1_RTX (mode);
4251 units = GET_MODE_NUNITS (mode);
4252 v = rtvec_alloc (units);
4253 for (i = 0; i < units; i++)
4254 RTVEC_ELT (v, i) = val;
4255 return gen_rtx_raw_CONST_VECTOR (mode, v);
4257 #else
4258 return NULL_RTX;
4259 #endif
4262 return tem;
4265 /* For the following tests, ensure const0_rtx is op1. */
4266 if (swap_commutative_operands_p (op0, op1)
4267 || (op0 == const0_rtx && op1 != const0_rtx))
4268 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
4270 /* If op0 is a compare, extract the comparison arguments from it. */
4271 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4272 return simplify_gen_relational (code, mode, VOIDmode,
4273 XEXP (op0, 0), XEXP (op0, 1));
4275 if (GET_MODE_CLASS (cmp_mode) == MODE_CC
4276 || CC0_P (op0))
4277 return NULL_RTX;
4279 trueop0 = avoid_constant_pool_reference (op0);
4280 trueop1 = avoid_constant_pool_reference (op1);
4281 return simplify_relational_operation_1 (code, mode, cmp_mode,
4282 trueop0, trueop1);
4285 /* This part of simplify_relational_operation is only used when CMP_MODE
4286 is not in class MODE_CC (i.e. it is a real comparison).
4288 MODE is the mode of the result, while CMP_MODE specifies in which
4289 mode the comparison is done in, so it is the mode of the operands. */
4291 static rtx
4292 simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
4293 enum machine_mode cmp_mode, rtx op0, rtx op1)
4295 enum rtx_code op0code = GET_CODE (op0);
4297 if (op1 == const0_rtx && COMPARISON_P (op0))
4299 /* If op0 is a comparison, extract the comparison arguments
4300 from it. */
4301 if (code == NE)
4303 if (GET_MODE (op0) == mode)
4304 return simplify_rtx (op0);
4305 else
4306 return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
4307 XEXP (op0, 0), XEXP (op0, 1));
4309 else if (code == EQ)
4311 enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
4312 if (new_code != UNKNOWN)
4313 return simplify_gen_relational (new_code, mode, VOIDmode,
4314 XEXP (op0, 0), XEXP (op0, 1));
4318 /* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
4319 (GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
4320 if ((code == LTU || code == GEU)
4321 && GET_CODE (op0) == PLUS
4322 && CONST_INT_P (XEXP (op0, 1))
4323 && (rtx_equal_p (op1, XEXP (op0, 0))
4324 || rtx_equal_p (op1, XEXP (op0, 1)))
4325 /* (LTU/GEU (PLUS a 0) 0) is not the same as (GEU/LTU a 0). */
4326 && XEXP (op0, 1) != const0_rtx)
4328 rtx new_cmp
4329 = simplify_gen_unary (NEG, cmp_mode, XEXP (op0, 1), cmp_mode);
4330 return simplify_gen_relational ((code == LTU ? GEU : LTU), mode,
4331 cmp_mode, XEXP (op0, 0), new_cmp);
4334 /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
4335 if ((code == LTU || code == GEU)
4336 && GET_CODE (op0) == PLUS
4337 && rtx_equal_p (op1, XEXP (op0, 1))
4338 /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
4339 && !rtx_equal_p (op1, XEXP (op0, 0)))
4340 return simplify_gen_relational (code, mode, cmp_mode, op0,
4341 copy_rtx (XEXP (op0, 0)));
4343 if (op1 == const0_rtx)
4345 /* Canonicalize (GTU x 0) as (NE x 0). */
4346 if (code == GTU)
4347 return simplify_gen_relational (NE, mode, cmp_mode, op0, op1);
4348 /* Canonicalize (LEU x 0) as (EQ x 0). */
4349 if (code == LEU)
4350 return simplify_gen_relational (EQ, mode, cmp_mode, op0, op1);
4352 else if (op1 == const1_rtx)
4354 switch (code)
4356 case GE:
4357 /* Canonicalize (GE x 1) as (GT x 0). */
4358 return simplify_gen_relational (GT, mode, cmp_mode,
4359 op0, const0_rtx);
4360 case GEU:
4361 /* Canonicalize (GEU x 1) as (NE x 0). */
4362 return simplify_gen_relational (NE, mode, cmp_mode,
4363 op0, const0_rtx);
4364 case LT:
4365 /* Canonicalize (LT x 1) as (LE x 0). */
4366 return simplify_gen_relational (LE, mode, cmp_mode,
4367 op0, const0_rtx);
4368 case LTU:
4369 /* Canonicalize (LTU x 1) as (EQ x 0). */
4370 return simplify_gen_relational (EQ, mode, cmp_mode,
4371 op0, const0_rtx);
4372 default:
4373 break;
4376 else if (op1 == constm1_rtx)
4378 /* Canonicalize (LE x -1) as (LT x 0). */
4379 if (code == LE)
4380 return simplify_gen_relational (LT, mode, cmp_mode, op0, const0_rtx);
4381 /* Canonicalize (GT x -1) as (GE x 0). */
4382 if (code == GT)
4383 return simplify_gen_relational (GE, mode, cmp_mode, op0, const0_rtx);
4386 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
4387 if ((code == EQ || code == NE)
4388 && (op0code == PLUS || op0code == MINUS)
4389 && CONSTANT_P (op1)
4390 && CONSTANT_P (XEXP (op0, 1))
4391 && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
4393 rtx x = XEXP (op0, 0);
4394 rtx c = XEXP (op0, 1);
4395 enum rtx_code invcode = op0code == PLUS ? MINUS : PLUS;
4396 rtx tem = simplify_gen_binary (invcode, cmp_mode, op1, c);
4398 /* Detect an infinite recursive condition, where we oscillate at this
4399 simplification case between:
4400 A + B == C <---> C - B == A,
4401 where A, B, and C are all constants with non-simplifiable expressions,
4402 usually SYMBOL_REFs. */
4403 if (GET_CODE (tem) == invcode
4404 && CONSTANT_P (x)
4405 && rtx_equal_p (c, XEXP (tem, 1)))
4406 return NULL_RTX;
4408 return simplify_gen_relational (code, mode, cmp_mode, x, tem);
4411 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
4412 the same as (zero_extract:SI FOO (const_int 1) BAR). */
4413 if (code == NE
4414 && op1 == const0_rtx
4415 && GET_MODE_CLASS (mode) == MODE_INT
4416 && cmp_mode != VOIDmode
4417 /* ??? Work-around BImode bugs in the ia64 backend. */
4418 && mode != BImode
4419 && cmp_mode != BImode
4420 && nonzero_bits (op0, cmp_mode) == 1
4421 && STORE_FLAG_VALUE == 1)
4422 return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
4423 ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
4424 : lowpart_subreg (mode, op0, cmp_mode);
4426 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
4427 if ((code == EQ || code == NE)
4428 && op1 == const0_rtx
4429 && op0code == XOR)
4430 return simplify_gen_relational (code, mode, cmp_mode,
4431 XEXP (op0, 0), XEXP (op0, 1));
4433 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
4434 if ((code == EQ || code == NE)
4435 && op0code == XOR
4436 && rtx_equal_p (XEXP (op0, 0), op1)
4437 && !side_effects_p (XEXP (op0, 0)))
4438 return simplify_gen_relational (code, mode, cmp_mode,
4439 XEXP (op0, 1), const0_rtx);
4441 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
4442 if ((code == EQ || code == NE)
4443 && op0code == XOR
4444 && rtx_equal_p (XEXP (op0, 1), op1)
4445 && !side_effects_p (XEXP (op0, 1)))
4446 return simplify_gen_relational (code, mode, cmp_mode,
4447 XEXP (op0, 0), const0_rtx);
4449 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
4450 if ((code == EQ || code == NE)
4451 && op0code == XOR
4452 && CONST_SCALAR_INT_P (op1)
4453 && CONST_SCALAR_INT_P (XEXP (op0, 1)))
4454 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
4455 simplify_gen_binary (XOR, cmp_mode,
4456 XEXP (op0, 1), op1));
4458 /* (eq/ne (bswap x) C1) simplifies to (eq/ne x C2) with C2 swapped. */
4459 if ((code == EQ || code == NE)
4460 && GET_CODE (op0) == BSWAP
4461 && CONST_SCALAR_INT_P (op1))
4462 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
4463 simplify_gen_unary (BSWAP, cmp_mode,
4464 op1, cmp_mode));
4466 /* (eq/ne (bswap x) (bswap y)) simplifies to (eq/ne x y). */
4467 if ((code == EQ || code == NE)
4468 && GET_CODE (op0) == BSWAP
4469 && GET_CODE (op1) == BSWAP)
4470 return simplify_gen_relational (code, mode, cmp_mode,
4471 XEXP (op0, 0), XEXP (op1, 0));
4473 if (op0code == POPCOUNT && op1 == const0_rtx)
4474 switch (code)
4476 case EQ:
4477 case LE:
4478 case LEU:
4479 /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
4480 return simplify_gen_relational (EQ, mode, GET_MODE (XEXP (op0, 0)),
4481 XEXP (op0, 0), const0_rtx);
4483 case NE:
4484 case GT:
4485 case GTU:
4486 /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
4487 return simplify_gen_relational (NE, mode, GET_MODE (XEXP (op0, 0)),
4488 XEXP (op0, 0), const0_rtx);
4490 default:
4491 break;
4494 return NULL_RTX;
4497 enum
4499 CMP_EQ = 1,
4500 CMP_LT = 2,
4501 CMP_GT = 4,
4502 CMP_LTU = 8,
4503 CMP_GTU = 16
4507 /* Convert the known results for EQ, LT, GT, LTU, GTU contained in
4508 KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
4509 For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
4510 logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
4511 For floating-point comparisons, assume that the operands were ordered. */
4513 static rtx
4514 comparison_result (enum rtx_code code, int known_results)
4516 switch (code)
4518 case EQ:
4519 case UNEQ:
4520 return (known_results & CMP_EQ) ? const_true_rtx : const0_rtx;
4521 case NE:
4522 case LTGT:
4523 return (known_results & CMP_EQ) ? const0_rtx : const_true_rtx;
4525 case LT:
4526 case UNLT:
4527 return (known_results & CMP_LT) ? const_true_rtx : const0_rtx;
4528 case GE:
4529 case UNGE:
4530 return (known_results & CMP_LT) ? const0_rtx : const_true_rtx;
4532 case GT:
4533 case UNGT:
4534 return (known_results & CMP_GT) ? const_true_rtx : const0_rtx;
4535 case LE:
4536 case UNLE:
4537 return (known_results & CMP_GT) ? const0_rtx : const_true_rtx;
4539 case LTU:
4540 return (known_results & CMP_LTU) ? const_true_rtx : const0_rtx;
4541 case GEU:
4542 return (known_results & CMP_LTU) ? const0_rtx : const_true_rtx;
4544 case GTU:
4545 return (known_results & CMP_GTU) ? const_true_rtx : const0_rtx;
4546 case LEU:
4547 return (known_results & CMP_GTU) ? const0_rtx : const_true_rtx;
4549 case ORDERED:
4550 return const_true_rtx;
4551 case UNORDERED:
4552 return const0_rtx;
4553 default:
4554 gcc_unreachable ();
4558 /* Check if the given comparison (done in the given MODE) is actually
4559 a tautology or a contradiction. If the mode is VOID_mode, the
4560 comparison is done in "infinite precision". If no simplification
4561 is possible, this function returns zero. Otherwise, it returns
4562 either const_true_rtx or const0_rtx. */
4565 simplify_const_relational_operation (enum rtx_code code,
4566 enum machine_mode mode,
4567 rtx op0, rtx op1)
4569 rtx tem;
4570 rtx trueop0;
4571 rtx trueop1;
4573 gcc_assert (mode != VOIDmode
4574 || (GET_MODE (op0) == VOIDmode
4575 && GET_MODE (op1) == VOIDmode));
4577 /* If op0 is a compare, extract the comparison arguments from it. */
4578 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4580 op1 = XEXP (op0, 1);
4581 op0 = XEXP (op0, 0);
4583 if (GET_MODE (op0) != VOIDmode)
4584 mode = GET_MODE (op0);
4585 else if (GET_MODE (op1) != VOIDmode)
4586 mode = GET_MODE (op1);
4587 else
4588 return 0;
4591 /* We can't simplify MODE_CC values since we don't know what the
4592 actual comparison is. */
4593 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
4594 return 0;
4596 /* Make sure the constant is second. */
4597 if (swap_commutative_operands_p (op0, op1))
4599 tem = op0, op0 = op1, op1 = tem;
4600 code = swap_condition (code);
4603 trueop0 = avoid_constant_pool_reference (op0);
4604 trueop1 = avoid_constant_pool_reference (op1);
4606 /* For integer comparisons of A and B maybe we can simplify A - B and can
4607 then simplify a comparison of that with zero. If A and B are both either
4608 a register or a CONST_INT, this can't help; testing for these cases will
4609 prevent infinite recursion here and speed things up.
4611 We can only do this for EQ and NE comparisons as otherwise we may
4612 lose or introduce overflow which we cannot disregard as undefined as
4613 we do not know the signedness of the operation on either the left or
4614 the right hand side of the comparison. */
4616 if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
4617 && (code == EQ || code == NE)
4618 && ! ((REG_P (op0) || CONST_INT_P (trueop0))
4619 && (REG_P (op1) || CONST_INT_P (trueop1)))
4620 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
4621 /* We cannot do this if tem is a nonzero address. */
4622 && ! nonzero_address_p (tem))
4623 return simplify_const_relational_operation (signed_condition (code),
4624 mode, tem, const0_rtx);
4626 if (! HONOR_NANS (mode) && code == ORDERED)
4627 return const_true_rtx;
4629 if (! HONOR_NANS (mode) && code == UNORDERED)
4630 return const0_rtx;
4632 /* For modes without NaNs, if the two operands are equal, we know the
4633 result except if they have side-effects. Even with NaNs we know
4634 the result of unordered comparisons and, if signaling NaNs are
4635 irrelevant, also the result of LT/GT/LTGT. */
4636 if ((! HONOR_NANS (GET_MODE (trueop0))
4637 || code == UNEQ || code == UNLE || code == UNGE
4638 || ((code == LT || code == GT || code == LTGT)
4639 && ! HONOR_SNANS (GET_MODE (trueop0))))
4640 && rtx_equal_p (trueop0, trueop1)
4641 && ! side_effects_p (trueop0))
4642 return comparison_result (code, CMP_EQ);
4644 /* If the operands are floating-point constants, see if we can fold
4645 the result. */
4646 if (CONST_DOUBLE_AS_FLOAT_P (trueop0)
4647 && CONST_DOUBLE_AS_FLOAT_P (trueop1)
4648 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
4650 REAL_VALUE_TYPE d0, d1;
4652 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
4653 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
4655 /* Comparisons are unordered iff at least one of the values is NaN. */
4656 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
4657 switch (code)
4659 case UNEQ:
4660 case UNLT:
4661 case UNGT:
4662 case UNLE:
4663 case UNGE:
4664 case NE:
4665 case UNORDERED:
4666 return const_true_rtx;
4667 case EQ:
4668 case LT:
4669 case GT:
4670 case LE:
4671 case GE:
4672 case LTGT:
4673 case ORDERED:
4674 return const0_rtx;
4675 default:
4676 return 0;
4679 return comparison_result (code,
4680 (REAL_VALUES_EQUAL (d0, d1) ? CMP_EQ :
4681 REAL_VALUES_LESS (d0, d1) ? CMP_LT : CMP_GT));
4684 /* Otherwise, see if the operands are both integers. */
4685 if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
4686 && CONST_SCALAR_INT_P (trueop0) && CONST_SCALAR_INT_P (trueop1))
4688 /* It would be nice if we really had a mode here. However, the
4689 largest int representable on the target is as good as
4690 infinite. */
4691 enum machine_mode cmode = (mode == VOIDmode) ? MAX_MODE_INT : mode;
4692 rtx_mode_t ptrueop0 = std::make_pair (trueop0, cmode);
4693 rtx_mode_t ptrueop1 = std::make_pair (trueop1, cmode);
4695 if (wi::eq_p (ptrueop0, ptrueop1))
4696 return comparison_result (code, CMP_EQ);
4697 else
4699 int cr = wi::lts_p (ptrueop0, ptrueop1) ? CMP_LT : CMP_GT;
4700 cr |= wi::ltu_p (ptrueop0, ptrueop1) ? CMP_LTU : CMP_GTU;
4701 return comparison_result (code, cr);
4705 /* Optimize comparisons with upper and lower bounds. */
4706 if (HWI_COMPUTABLE_MODE_P (mode)
4707 && CONST_INT_P (trueop1))
4709 int sign;
4710 unsigned HOST_WIDE_INT nonzero = nonzero_bits (trueop0, mode);
4711 HOST_WIDE_INT val = INTVAL (trueop1);
4712 HOST_WIDE_INT mmin, mmax;
4714 if (code == GEU
4715 || code == LEU
4716 || code == GTU
4717 || code == LTU)
4718 sign = 0;
4719 else
4720 sign = 1;
4722 /* Get a reduced range if the sign bit is zero. */
4723 if (nonzero <= (GET_MODE_MASK (mode) >> 1))
4725 mmin = 0;
4726 mmax = nonzero;
4728 else
4730 rtx mmin_rtx, mmax_rtx;
4731 get_mode_bounds (mode, sign, mode, &mmin_rtx, &mmax_rtx);
4733 mmin = INTVAL (mmin_rtx);
4734 mmax = INTVAL (mmax_rtx);
4735 if (sign)
4737 unsigned int sign_copies = num_sign_bit_copies (trueop0, mode);
4739 mmin >>= (sign_copies - 1);
4740 mmax >>= (sign_copies - 1);
4744 switch (code)
4746 /* x >= y is always true for y <= mmin, always false for y > mmax. */
4747 case GEU:
4748 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
4749 return const_true_rtx;
4750 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
4751 return const0_rtx;
4752 break;
4753 case GE:
4754 if (val <= mmin)
4755 return const_true_rtx;
4756 if (val > mmax)
4757 return const0_rtx;
4758 break;
4760 /* x <= y is always true for y >= mmax, always false for y < mmin. */
4761 case LEU:
4762 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4763 return const_true_rtx;
4764 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4765 return const0_rtx;
4766 break;
4767 case LE:
4768 if (val >= mmax)
4769 return const_true_rtx;
4770 if (val < mmin)
4771 return const0_rtx;
4772 break;
4774 case EQ:
4775 /* x == y is always false for y out of range. */
4776 if (val < mmin || val > mmax)
4777 return const0_rtx;
4778 break;
4780 /* x > y is always false for y >= mmax, always true for y < mmin. */
4781 case GTU:
4782 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4783 return const0_rtx;
4784 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4785 return const_true_rtx;
4786 break;
4787 case GT:
4788 if (val >= mmax)
4789 return const0_rtx;
4790 if (val < mmin)
4791 return const_true_rtx;
4792 break;
4794 /* x < y is always false for y <= mmin, always true for y > mmax. */
4795 case LTU:
4796 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
4797 return const0_rtx;
4798 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
4799 return const_true_rtx;
4800 break;
4801 case LT:
4802 if (val <= mmin)
4803 return const0_rtx;
4804 if (val > mmax)
4805 return const_true_rtx;
4806 break;
4808 case NE:
4809 /* x != y is always true for y out of range. */
4810 if (val < mmin || val > mmax)
4811 return const_true_rtx;
4812 break;
4814 default:
4815 break;
4819 /* Optimize integer comparisons with zero. */
4820 if (trueop1 == const0_rtx)
4822 /* Some addresses are known to be nonzero. We don't know
4823 their sign, but equality comparisons are known. */
4824 if (nonzero_address_p (trueop0))
4826 if (code == EQ || code == LEU)
4827 return const0_rtx;
4828 if (code == NE || code == GTU)
4829 return const_true_rtx;
4832 /* See if the first operand is an IOR with a constant. If so, we
4833 may be able to determine the result of this comparison. */
4834 if (GET_CODE (op0) == IOR)
4836 rtx inner_const = avoid_constant_pool_reference (XEXP (op0, 1));
4837 if (CONST_INT_P (inner_const) && inner_const != const0_rtx)
4839 int sign_bitnum = GET_MODE_PRECISION (mode) - 1;
4840 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4841 && (UINTVAL (inner_const)
4842 & ((unsigned HOST_WIDE_INT) 1
4843 << sign_bitnum)));
4845 switch (code)
4847 case EQ:
4848 case LEU:
4849 return const0_rtx;
4850 case NE:
4851 case GTU:
4852 return const_true_rtx;
4853 case LT:
4854 case LE:
4855 if (has_sign)
4856 return const_true_rtx;
4857 break;
4858 case GT:
4859 case GE:
4860 if (has_sign)
4861 return const0_rtx;
4862 break;
4863 default:
4864 break;
4870 /* Optimize comparison of ABS with zero. */
4871 if (trueop1 == CONST0_RTX (mode)
4872 && (GET_CODE (trueop0) == ABS
4873 || (GET_CODE (trueop0) == FLOAT_EXTEND
4874 && GET_CODE (XEXP (trueop0, 0)) == ABS)))
4876 switch (code)
4878 case LT:
4879 /* Optimize abs(x) < 0.0. */
4880 if (!HONOR_SNANS (mode)
4881 && (!INTEGRAL_MODE_P (mode)
4882 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
4884 if (INTEGRAL_MODE_P (mode)
4885 && (issue_strict_overflow_warning
4886 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
4887 warning (OPT_Wstrict_overflow,
4888 ("assuming signed overflow does not occur when "
4889 "assuming abs (x) < 0 is false"));
4890 return const0_rtx;
4892 break;
4894 case GE:
4895 /* Optimize abs(x) >= 0.0. */
4896 if (!HONOR_NANS (mode)
4897 && (!INTEGRAL_MODE_P (mode)
4898 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
4900 if (INTEGRAL_MODE_P (mode)
4901 && (issue_strict_overflow_warning
4902 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
4903 warning (OPT_Wstrict_overflow,
4904 ("assuming signed overflow does not occur when "
4905 "assuming abs (x) >= 0 is true"));
4906 return const_true_rtx;
4908 break;
4910 case UNGE:
4911 /* Optimize ! (abs(x) < 0.0). */
4912 return const_true_rtx;
4914 default:
4915 break;
4919 return 0;
4922 /* Simplify CODE, an operation with result mode MODE and three operands,
4923 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4924 a constant. Return 0 if no simplifications is possible. */
4927 simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
4928 enum machine_mode op0_mode, rtx op0, rtx op1,
4929 rtx op2)
4931 unsigned int width = GET_MODE_PRECISION (mode);
4932 bool any_change = false;
4933 rtx tem, trueop2;
4935 /* VOIDmode means "infinite" precision. */
4936 if (width == 0)
4937 width = HOST_BITS_PER_WIDE_INT;
4939 switch (code)
4941 case FMA:
4942 /* Simplify negations around the multiplication. */
4943 /* -a * -b + c => a * b + c. */
4944 if (GET_CODE (op0) == NEG)
4946 tem = simplify_unary_operation (NEG, mode, op1, mode);
4947 if (tem)
4948 op1 = tem, op0 = XEXP (op0, 0), any_change = true;
4950 else if (GET_CODE (op1) == NEG)
4952 tem = simplify_unary_operation (NEG, mode, op0, mode);
4953 if (tem)
4954 op0 = tem, op1 = XEXP (op1, 0), any_change = true;
4957 /* Canonicalize the two multiplication operands. */
4958 /* a * -b + c => -b * a + c. */
4959 if (swap_commutative_operands_p (op0, op1))
4960 tem = op0, op0 = op1, op1 = tem, any_change = true;
4962 if (any_change)
4963 return gen_rtx_FMA (mode, op0, op1, op2);
4964 return NULL_RTX;
4966 case SIGN_EXTRACT:
4967 case ZERO_EXTRACT:
4968 if (CONST_INT_P (op0)
4969 && CONST_INT_P (op1)
4970 && CONST_INT_P (op2)
4971 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
4972 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
4974 /* Extracting a bit-field from a constant */
4975 unsigned HOST_WIDE_INT val = UINTVAL (op0);
4976 HOST_WIDE_INT op1val = INTVAL (op1);
4977 HOST_WIDE_INT op2val = INTVAL (op2);
4978 if (BITS_BIG_ENDIAN)
4979 val >>= GET_MODE_PRECISION (op0_mode) - op2val - op1val;
4980 else
4981 val >>= op2val;
4983 if (HOST_BITS_PER_WIDE_INT != op1val)
4985 /* First zero-extend. */
4986 val &= ((unsigned HOST_WIDE_INT) 1 << op1val) - 1;
4987 /* If desired, propagate sign bit. */
4988 if (code == SIGN_EXTRACT
4989 && (val & ((unsigned HOST_WIDE_INT) 1 << (op1val - 1)))
4990 != 0)
4991 val |= ~ (((unsigned HOST_WIDE_INT) 1 << op1val) - 1);
4994 return gen_int_mode (val, mode);
4996 break;
4998 case IF_THEN_ELSE:
4999 if (CONST_INT_P (op0))
5000 return op0 != const0_rtx ? op1 : op2;
5002 /* Convert c ? a : a into "a". */
5003 if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
5004 return op1;
5006 /* Convert a != b ? a : b into "a". */
5007 if (GET_CODE (op0) == NE
5008 && ! side_effects_p (op0)
5009 && ! HONOR_NANS (mode)
5010 && ! HONOR_SIGNED_ZEROS (mode)
5011 && ((rtx_equal_p (XEXP (op0, 0), op1)
5012 && rtx_equal_p (XEXP (op0, 1), op2))
5013 || (rtx_equal_p (XEXP (op0, 0), op2)
5014 && rtx_equal_p (XEXP (op0, 1), op1))))
5015 return op1;
5017 /* Convert a == b ? a : b into "b". */
5018 if (GET_CODE (op0) == EQ
5019 && ! side_effects_p (op0)
5020 && ! HONOR_NANS (mode)
5021 && ! HONOR_SIGNED_ZEROS (mode)
5022 && ((rtx_equal_p (XEXP (op0, 0), op1)
5023 && rtx_equal_p (XEXP (op0, 1), op2))
5024 || (rtx_equal_p (XEXP (op0, 0), op2)
5025 && rtx_equal_p (XEXP (op0, 1), op1))))
5026 return op2;
5028 if (COMPARISON_P (op0) && ! side_effects_p (op0))
5030 enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
5031 ? GET_MODE (XEXP (op0, 1))
5032 : GET_MODE (XEXP (op0, 0)));
5033 rtx temp;
5035 /* Look for happy constants in op1 and op2. */
5036 if (CONST_INT_P (op1) && CONST_INT_P (op2))
5038 HOST_WIDE_INT t = INTVAL (op1);
5039 HOST_WIDE_INT f = INTVAL (op2);
5041 if (t == STORE_FLAG_VALUE && f == 0)
5042 code = GET_CODE (op0);
5043 else if (t == 0 && f == STORE_FLAG_VALUE)
5045 enum rtx_code tmp;
5046 tmp = reversed_comparison_code (op0, NULL_RTX);
5047 if (tmp == UNKNOWN)
5048 break;
5049 code = tmp;
5051 else
5052 break;
5054 return simplify_gen_relational (code, mode, cmp_mode,
5055 XEXP (op0, 0), XEXP (op0, 1));
5058 if (cmp_mode == VOIDmode)
5059 cmp_mode = op0_mode;
5060 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
5061 cmp_mode, XEXP (op0, 0),
5062 XEXP (op0, 1));
5064 /* See if any simplifications were possible. */
5065 if (temp)
5067 if (CONST_INT_P (temp))
5068 return temp == const0_rtx ? op2 : op1;
5069 else if (temp)
5070 return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
5073 break;
5075 case VEC_MERGE:
5076 gcc_assert (GET_MODE (op0) == mode);
5077 gcc_assert (GET_MODE (op1) == mode);
5078 gcc_assert (VECTOR_MODE_P (mode));
5079 trueop2 = avoid_constant_pool_reference (op2);
5080 if (CONST_INT_P (trueop2))
5082 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
5083 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
5084 unsigned HOST_WIDE_INT sel = UINTVAL (trueop2);
5085 unsigned HOST_WIDE_INT mask;
5086 if (n_elts == HOST_BITS_PER_WIDE_INT)
5087 mask = -1;
5088 else
5089 mask = ((unsigned HOST_WIDE_INT) 1 << n_elts) - 1;
5091 if (!(sel & mask) && !side_effects_p (op0))
5092 return op1;
5093 if ((sel & mask) == mask && !side_effects_p (op1))
5094 return op0;
5096 rtx trueop0 = avoid_constant_pool_reference (op0);
5097 rtx trueop1 = avoid_constant_pool_reference (op1);
5098 if (GET_CODE (trueop0) == CONST_VECTOR
5099 && GET_CODE (trueop1) == CONST_VECTOR)
5101 rtvec v = rtvec_alloc (n_elts);
5102 unsigned int i;
5104 for (i = 0; i < n_elts; i++)
5105 RTVEC_ELT (v, i) = ((sel & ((unsigned HOST_WIDE_INT) 1 << i))
5106 ? CONST_VECTOR_ELT (trueop0, i)
5107 : CONST_VECTOR_ELT (trueop1, i));
5108 return gen_rtx_CONST_VECTOR (mode, v);
5111 /* Replace (vec_merge (vec_merge a b m) c n) with (vec_merge b c n)
5112 if no element from a appears in the result. */
5113 if (GET_CODE (op0) == VEC_MERGE)
5115 tem = avoid_constant_pool_reference (XEXP (op0, 2));
5116 if (CONST_INT_P (tem))
5118 unsigned HOST_WIDE_INT sel0 = UINTVAL (tem);
5119 if (!(sel & sel0 & mask) && !side_effects_p (XEXP (op0, 0)))
5120 return simplify_gen_ternary (code, mode, mode,
5121 XEXP (op0, 1), op1, op2);
5122 if (!(sel & ~sel0 & mask) && !side_effects_p (XEXP (op0, 1)))
5123 return simplify_gen_ternary (code, mode, mode,
5124 XEXP (op0, 0), op1, op2);
5127 if (GET_CODE (op1) == VEC_MERGE)
5129 tem = avoid_constant_pool_reference (XEXP (op1, 2));
5130 if (CONST_INT_P (tem))
5132 unsigned HOST_WIDE_INT sel1 = UINTVAL (tem);
5133 if (!(~sel & sel1 & mask) && !side_effects_p (XEXP (op1, 0)))
5134 return simplify_gen_ternary (code, mode, mode,
5135 op0, XEXP (op1, 1), op2);
5136 if (!(~sel & ~sel1 & mask) && !side_effects_p (XEXP (op1, 1)))
5137 return simplify_gen_ternary (code, mode, mode,
5138 op0, XEXP (op1, 0), op2);
5143 if (rtx_equal_p (op0, op1)
5144 && !side_effects_p (op2) && !side_effects_p (op1))
5145 return op0;
5147 break;
5149 default:
5150 gcc_unreachable ();
5153 return 0;
5156 /* Evaluate a SUBREG of a CONST_INT or CONST_WIDE_INT or CONST_DOUBLE
5157 or CONST_FIXED or CONST_VECTOR, returning another CONST_INT or
5158 CONST_WIDE_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
5160 Works by unpacking OP into a collection of 8-bit values
5161 represented as a little-endian array of 'unsigned char', selecting by BYTE,
5162 and then repacking them again for OUTERMODE. */
5164 static rtx
5165 simplify_immed_subreg (enum machine_mode outermode, rtx op,
5166 enum machine_mode innermode, unsigned int byte)
5168 enum {
5169 value_bit = 8,
5170 value_mask = (1 << value_bit) - 1
5172 unsigned char value[MAX_BITSIZE_MODE_ANY_MODE / value_bit];
5173 int value_start;
5174 int i;
5175 int elem;
5177 int num_elem;
5178 rtx * elems;
5179 int elem_bitsize;
5180 rtx result_s;
5181 rtvec result_v = NULL;
5182 enum mode_class outer_class;
5183 enum machine_mode outer_submode;
5184 int max_bitsize;
5186 /* Some ports misuse CCmode. */
5187 if (GET_MODE_CLASS (outermode) == MODE_CC && CONST_INT_P (op))
5188 return op;
5190 /* We have no way to represent a complex constant at the rtl level. */
5191 if (COMPLEX_MODE_P (outermode))
5192 return NULL_RTX;
5194 /* We support any size mode. */
5195 max_bitsize = MAX (GET_MODE_BITSIZE (outermode),
5196 GET_MODE_BITSIZE (innermode));
5198 /* Unpack the value. */
5200 if (GET_CODE (op) == CONST_VECTOR)
5202 num_elem = CONST_VECTOR_NUNITS (op);
5203 elems = &CONST_VECTOR_ELT (op, 0);
5204 elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
5206 else
5208 num_elem = 1;
5209 elems = &op;
5210 elem_bitsize = max_bitsize;
5212 /* If this asserts, it is too complicated; reducing value_bit may help. */
5213 gcc_assert (BITS_PER_UNIT % value_bit == 0);
5214 /* I don't know how to handle endianness of sub-units. */
5215 gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
5217 for (elem = 0; elem < num_elem; elem++)
5219 unsigned char * vp;
5220 rtx el = elems[elem];
5222 /* Vectors are kept in target memory order. (This is probably
5223 a mistake.) */
5225 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
5226 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
5227 / BITS_PER_UNIT);
5228 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
5229 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
5230 unsigned bytele = (subword_byte % UNITS_PER_WORD
5231 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
5232 vp = value + (bytele * BITS_PER_UNIT) / value_bit;
5235 switch (GET_CODE (el))
5237 case CONST_INT:
5238 for (i = 0;
5239 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
5240 i += value_bit)
5241 *vp++ = INTVAL (el) >> i;
5242 /* CONST_INTs are always logically sign-extended. */
5243 for (; i < elem_bitsize; i += value_bit)
5244 *vp++ = INTVAL (el) < 0 ? -1 : 0;
5245 break;
5247 case CONST_WIDE_INT:
5249 rtx_mode_t val = std::make_pair (el, innermode);
5250 unsigned char extend = wi::sign_mask (val);
5252 for (i = 0; i < elem_bitsize; i += value_bit)
5253 *vp++ = wi::extract_uhwi (val, i, value_bit);
5254 for (; i < elem_bitsize; i += value_bit)
5255 *vp++ = extend;
5257 break;
5259 case CONST_DOUBLE:
5260 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (el) == VOIDmode)
5262 unsigned char extend = 0;
5263 /* If this triggers, someone should have generated a
5264 CONST_INT instead. */
5265 gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
5267 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
5268 *vp++ = CONST_DOUBLE_LOW (el) >> i;
5269 while (i < HOST_BITS_PER_DOUBLE_INT && i < elem_bitsize)
5271 *vp++
5272 = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
5273 i += value_bit;
5276 if (CONST_DOUBLE_HIGH (el) >> (HOST_BITS_PER_WIDE_INT - 1))
5277 extend = -1;
5278 for (; i < elem_bitsize; i += value_bit)
5279 *vp++ = extend;
5281 else
5283 /* This is big enough for anything on the platform. */
5284 long tmp[MAX_BITSIZE_MODE_ANY_MODE / 32];
5285 int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
5287 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
5288 gcc_assert (bitsize <= elem_bitsize);
5289 gcc_assert (bitsize % value_bit == 0);
5291 real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
5292 GET_MODE (el));
5294 /* real_to_target produces its result in words affected by
5295 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5296 and use WORDS_BIG_ENDIAN instead; see the documentation
5297 of SUBREG in rtl.texi. */
5298 for (i = 0; i < bitsize; i += value_bit)
5300 int ibase;
5301 if (WORDS_BIG_ENDIAN)
5302 ibase = bitsize - 1 - i;
5303 else
5304 ibase = i;
5305 *vp++ = tmp[ibase / 32] >> i % 32;
5308 /* It shouldn't matter what's done here, so fill it with
5309 zero. */
5310 for (; i < elem_bitsize; i += value_bit)
5311 *vp++ = 0;
5313 break;
5315 case CONST_FIXED:
5316 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
5318 for (i = 0; i < elem_bitsize; i += value_bit)
5319 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
5321 else
5323 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
5324 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
5325 for (; i < HOST_BITS_PER_DOUBLE_INT && i < elem_bitsize;
5326 i += value_bit)
5327 *vp++ = CONST_FIXED_VALUE_HIGH (el)
5328 >> (i - HOST_BITS_PER_WIDE_INT);
5329 for (; i < elem_bitsize; i += value_bit)
5330 *vp++ = 0;
5332 break;
5334 default:
5335 gcc_unreachable ();
5339 /* Now, pick the right byte to start with. */
5340 /* Renumber BYTE so that the least-significant byte is byte 0. A special
5341 case is paradoxical SUBREGs, which shouldn't be adjusted since they
5342 will already have offset 0. */
5343 if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
5345 unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
5346 - byte);
5347 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
5348 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
5349 byte = (subword_byte % UNITS_PER_WORD
5350 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
5353 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
5354 so if it's become negative it will instead be very large.) */
5355 gcc_assert (byte < GET_MODE_SIZE (innermode));
5357 /* Convert from bytes to chunks of size value_bit. */
5358 value_start = byte * (BITS_PER_UNIT / value_bit);
5360 /* Re-pack the value. */
5362 if (VECTOR_MODE_P (outermode))
5364 num_elem = GET_MODE_NUNITS (outermode);
5365 result_v = rtvec_alloc (num_elem);
5366 elems = &RTVEC_ELT (result_v, 0);
5367 outer_submode = GET_MODE_INNER (outermode);
5369 else
5371 num_elem = 1;
5372 elems = &result_s;
5373 outer_submode = outermode;
5376 outer_class = GET_MODE_CLASS (outer_submode);
5377 elem_bitsize = GET_MODE_BITSIZE (outer_submode);
5379 gcc_assert (elem_bitsize % value_bit == 0);
5380 gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
5382 for (elem = 0; elem < num_elem; elem++)
5384 unsigned char *vp;
5386 /* Vectors are stored in target memory order. (This is probably
5387 a mistake.) */
5389 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
5390 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
5391 / BITS_PER_UNIT);
5392 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
5393 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
5394 unsigned bytele = (subword_byte % UNITS_PER_WORD
5395 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
5396 vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
5399 switch (outer_class)
5401 case MODE_INT:
5402 case MODE_PARTIAL_INT:
5404 int u;
5405 int base = 0;
5406 int units
5407 = (GET_MODE_BITSIZE (outer_submode) + HOST_BITS_PER_WIDE_INT - 1)
5408 / HOST_BITS_PER_WIDE_INT;
5409 HOST_WIDE_INT tmp[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT];
5410 wide_int r;
5412 for (u = 0; u < units; u++)
5414 unsigned HOST_WIDE_INT buf = 0;
5415 for (i = 0;
5416 i < HOST_BITS_PER_WIDE_INT && base + i < elem_bitsize;
5417 i += value_bit)
5418 buf |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
5420 tmp[u] = buf;
5421 base += HOST_BITS_PER_WIDE_INT;
5423 gcc_assert (GET_MODE_PRECISION (outer_submode)
5424 <= MAX_BITSIZE_MODE_ANY_INT);
5425 r = wide_int::from_array (tmp, units,
5426 GET_MODE_PRECISION (outer_submode));
5427 elems[elem] = immed_wide_int_const (r, outer_submode);
5429 break;
5431 case MODE_FLOAT:
5432 case MODE_DECIMAL_FLOAT:
5434 REAL_VALUE_TYPE r;
5435 long tmp[MAX_BITSIZE_MODE_ANY_MODE / 32];
5437 /* real_from_target wants its input in words affected by
5438 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5439 and use WORDS_BIG_ENDIAN instead; see the documentation
5440 of SUBREG in rtl.texi. */
5441 for (i = 0; i < max_bitsize / 32; i++)
5442 tmp[i] = 0;
5443 for (i = 0; i < elem_bitsize; i += value_bit)
5445 int ibase;
5446 if (WORDS_BIG_ENDIAN)
5447 ibase = elem_bitsize - 1 - i;
5448 else
5449 ibase = i;
5450 tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
5453 real_from_target (&r, tmp, outer_submode);
5454 elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
5456 break;
5458 case MODE_FRACT:
5459 case MODE_UFRACT:
5460 case MODE_ACCUM:
5461 case MODE_UACCUM:
5463 FIXED_VALUE_TYPE f;
5464 f.data.low = 0;
5465 f.data.high = 0;
5466 f.mode = outer_submode;
5468 for (i = 0;
5469 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
5470 i += value_bit)
5471 f.data.low |= (unsigned HOST_WIDE_INT)(*vp++ & value_mask) << i;
5472 for (; i < elem_bitsize; i += value_bit)
5473 f.data.high |= ((unsigned HOST_WIDE_INT)(*vp++ & value_mask)
5474 << (i - HOST_BITS_PER_WIDE_INT));
5476 elems[elem] = CONST_FIXED_FROM_FIXED_VALUE (f, outer_submode);
5478 break;
5480 default:
5481 gcc_unreachable ();
5484 if (VECTOR_MODE_P (outermode))
5485 return gen_rtx_CONST_VECTOR (outermode, result_v);
5486 else
5487 return result_s;
5490 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
5491 Return 0 if no simplifications are possible. */
5493 simplify_subreg (enum machine_mode outermode, rtx op,
5494 enum machine_mode innermode, unsigned int byte)
5496 /* Little bit of sanity checking. */
5497 gcc_assert (innermode != VOIDmode);
5498 gcc_assert (outermode != VOIDmode);
5499 gcc_assert (innermode != BLKmode);
5500 gcc_assert (outermode != BLKmode);
5502 gcc_assert (GET_MODE (op) == innermode
5503 || GET_MODE (op) == VOIDmode);
5505 if ((byte % GET_MODE_SIZE (outermode)) != 0)
5506 return NULL_RTX;
5508 if (byte >= GET_MODE_SIZE (innermode))
5509 return NULL_RTX;
5511 if (outermode == innermode && !byte)
5512 return op;
5514 if (CONST_SCALAR_INT_P (op)
5515 || CONST_DOUBLE_AS_FLOAT_P (op)
5516 || GET_CODE (op) == CONST_FIXED
5517 || GET_CODE (op) == CONST_VECTOR)
5518 return simplify_immed_subreg (outermode, op, innermode, byte);
5520 /* Changing mode twice with SUBREG => just change it once,
5521 or not at all if changing back op starting mode. */
5522 if (GET_CODE (op) == SUBREG)
5524 enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
5525 int final_offset = byte + SUBREG_BYTE (op);
5526 rtx newx;
5528 if (outermode == innermostmode
5529 && byte == 0 && SUBREG_BYTE (op) == 0)
5530 return SUBREG_REG (op);
5532 /* The SUBREG_BYTE represents offset, as if the value were stored
5533 in memory. Irritating exception is paradoxical subreg, where
5534 we define SUBREG_BYTE to be 0. On big endian machines, this
5535 value should be negative. For a moment, undo this exception. */
5536 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
5538 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
5539 if (WORDS_BIG_ENDIAN)
5540 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5541 if (BYTES_BIG_ENDIAN)
5542 final_offset += difference % UNITS_PER_WORD;
5544 if (SUBREG_BYTE (op) == 0
5545 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
5547 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
5548 if (WORDS_BIG_ENDIAN)
5549 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5550 if (BYTES_BIG_ENDIAN)
5551 final_offset += difference % UNITS_PER_WORD;
5554 /* See whether resulting subreg will be paradoxical. */
5555 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
5557 /* In nonparadoxical subregs we can't handle negative offsets. */
5558 if (final_offset < 0)
5559 return NULL_RTX;
5560 /* Bail out in case resulting subreg would be incorrect. */
5561 if (final_offset % GET_MODE_SIZE (outermode)
5562 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
5563 return NULL_RTX;
5565 else
5567 int offset = 0;
5568 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
5570 /* In paradoxical subreg, see if we are still looking on lower part.
5571 If so, our SUBREG_BYTE will be 0. */
5572 if (WORDS_BIG_ENDIAN)
5573 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5574 if (BYTES_BIG_ENDIAN)
5575 offset += difference % UNITS_PER_WORD;
5576 if (offset == final_offset)
5577 final_offset = 0;
5578 else
5579 return NULL_RTX;
5582 /* Recurse for further possible simplifications. */
5583 newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
5584 final_offset);
5585 if (newx)
5586 return newx;
5587 if (validate_subreg (outermode, innermostmode,
5588 SUBREG_REG (op), final_offset))
5590 newx = gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
5591 if (SUBREG_PROMOTED_VAR_P (op)
5592 && SUBREG_PROMOTED_UNSIGNED_P (op) >= 0
5593 && GET_MODE_CLASS (outermode) == MODE_INT
5594 && IN_RANGE (GET_MODE_SIZE (outermode),
5595 GET_MODE_SIZE (innermode),
5596 GET_MODE_SIZE (innermostmode))
5597 && subreg_lowpart_p (newx))
5599 SUBREG_PROMOTED_VAR_P (newx) = 1;
5600 SUBREG_PROMOTED_UNSIGNED_SET
5601 (newx, SUBREG_PROMOTED_UNSIGNED_P (op));
5603 return newx;
5605 return NULL_RTX;
5608 /* SUBREG of a hard register => just change the register number
5609 and/or mode. If the hard register is not valid in that mode,
5610 suppress this simplification. If the hard register is the stack,
5611 frame, or argument pointer, leave this as a SUBREG. */
5613 if (REG_P (op) && HARD_REGISTER_P (op))
5615 unsigned int regno, final_regno;
5617 regno = REGNO (op);
5618 final_regno = simplify_subreg_regno (regno, innermode, byte, outermode);
5619 if (HARD_REGISTER_NUM_P (final_regno))
5621 rtx x;
5622 int final_offset = byte;
5624 /* Adjust offset for paradoxical subregs. */
5625 if (byte == 0
5626 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
5628 int difference = (GET_MODE_SIZE (innermode)
5629 - GET_MODE_SIZE (outermode));
5630 if (WORDS_BIG_ENDIAN)
5631 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5632 if (BYTES_BIG_ENDIAN)
5633 final_offset += difference % UNITS_PER_WORD;
5636 x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
5638 /* Propagate original regno. We don't have any way to specify
5639 the offset inside original regno, so do so only for lowpart.
5640 The information is used only by alias analysis that can not
5641 grog partial register anyway. */
5643 if (subreg_lowpart_offset (outermode, innermode) == byte)
5644 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
5645 return x;
5649 /* If we have a SUBREG of a register that we are replacing and we are
5650 replacing it with a MEM, make a new MEM and try replacing the
5651 SUBREG with it. Don't do this if the MEM has a mode-dependent address
5652 or if we would be widening it. */
5654 if (MEM_P (op)
5655 && ! mode_dependent_address_p (XEXP (op, 0), MEM_ADDR_SPACE (op))
5656 /* Allow splitting of volatile memory references in case we don't
5657 have instruction to move the whole thing. */
5658 && (! MEM_VOLATILE_P (op)
5659 || ! have_insn_for (SET, innermode))
5660 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
5661 return adjust_address_nv (op, outermode, byte);
5663 /* Handle complex values represented as CONCAT
5664 of real and imaginary part. */
5665 if (GET_CODE (op) == CONCAT)
5667 unsigned int part_size, final_offset;
5668 rtx part, res;
5670 part_size = GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)));
5671 if (byte < part_size)
5673 part = XEXP (op, 0);
5674 final_offset = byte;
5676 else
5678 part = XEXP (op, 1);
5679 final_offset = byte - part_size;
5682 if (final_offset + GET_MODE_SIZE (outermode) > part_size)
5683 return NULL_RTX;
5685 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
5686 if (res)
5687 return res;
5688 if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
5689 return gen_rtx_SUBREG (outermode, part, final_offset);
5690 return NULL_RTX;
5693 /* A SUBREG resulting from a zero extension may fold to zero if
5694 it extracts higher bits that the ZERO_EXTEND's source bits. */
5695 if (GET_CODE (op) == ZERO_EXTEND && SCALAR_INT_MODE_P (innermode))
5697 unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
5698 if (bitpos >= GET_MODE_PRECISION (GET_MODE (XEXP (op, 0))))
5699 return CONST0_RTX (outermode);
5702 if (SCALAR_INT_MODE_P (outermode)
5703 && SCALAR_INT_MODE_P (innermode)
5704 && GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode)
5705 && byte == subreg_lowpart_offset (outermode, innermode))
5707 rtx tem = simplify_truncation (outermode, op, innermode);
5708 if (tem)
5709 return tem;
5712 return NULL_RTX;
5715 /* Make a SUBREG operation or equivalent if it folds. */
5718 simplify_gen_subreg (enum machine_mode outermode, rtx op,
5719 enum machine_mode innermode, unsigned int byte)
5721 rtx newx;
5723 newx = simplify_subreg (outermode, op, innermode, byte);
5724 if (newx)
5725 return newx;
5727 if (GET_CODE (op) == SUBREG
5728 || GET_CODE (op) == CONCAT
5729 || GET_MODE (op) == VOIDmode)
5730 return NULL_RTX;
5732 if (validate_subreg (outermode, innermode, op, byte))
5733 return gen_rtx_SUBREG (outermode, op, byte);
5735 return NULL_RTX;
5738 /* Simplify X, an rtx expression.
5740 Return the simplified expression or NULL if no simplifications
5741 were possible.
5743 This is the preferred entry point into the simplification routines;
5744 however, we still allow passes to call the more specific routines.
5746 Right now GCC has three (yes, three) major bodies of RTL simplification
5747 code that need to be unified.
5749 1. fold_rtx in cse.c. This code uses various CSE specific
5750 information to aid in RTL simplification.
5752 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
5753 it uses combine specific information to aid in RTL
5754 simplification.
5756 3. The routines in this file.
5759 Long term we want to only have one body of simplification code; to
5760 get to that state I recommend the following steps:
5762 1. Pour over fold_rtx & simplify_rtx and move any simplifications
5763 which are not pass dependent state into these routines.
5765 2. As code is moved by #1, change fold_rtx & simplify_rtx to
5766 use this routine whenever possible.
5768 3. Allow for pass dependent state to be provided to these
5769 routines and add simplifications based on the pass dependent
5770 state. Remove code from cse.c & combine.c that becomes
5771 redundant/dead.
5773 It will take time, but ultimately the compiler will be easier to
5774 maintain and improve. It's totally silly that when we add a
5775 simplification that it needs to be added to 4 places (3 for RTL
5776 simplification and 1 for tree simplification. */
5779 simplify_rtx (const_rtx x)
5781 const enum rtx_code code = GET_CODE (x);
5782 const enum machine_mode mode = GET_MODE (x);
5784 switch (GET_RTX_CLASS (code))
5786 case RTX_UNARY:
5787 return simplify_unary_operation (code, mode,
5788 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
5789 case RTX_COMM_ARITH:
5790 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5791 return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
5793 /* Fall through.... */
5795 case RTX_BIN_ARITH:
5796 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5798 case RTX_TERNARY:
5799 case RTX_BITFIELD_OPS:
5800 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
5801 XEXP (x, 0), XEXP (x, 1),
5802 XEXP (x, 2));
5804 case RTX_COMPARE:
5805 case RTX_COMM_COMPARE:
5806 return simplify_relational_operation (code, mode,
5807 ((GET_MODE (XEXP (x, 0))
5808 != VOIDmode)
5809 ? GET_MODE (XEXP (x, 0))
5810 : GET_MODE (XEXP (x, 1))),
5811 XEXP (x, 0),
5812 XEXP (x, 1));
5814 case RTX_EXTRA:
5815 if (code == SUBREG)
5816 return simplify_subreg (mode, SUBREG_REG (x),
5817 GET_MODE (SUBREG_REG (x)),
5818 SUBREG_BYTE (x));
5819 break;
5821 case RTX_OBJ:
5822 if (code == LO_SUM)
5824 /* Convert (lo_sum (high FOO) FOO) to FOO. */
5825 if (GET_CODE (XEXP (x, 0)) == HIGH
5826 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5827 return XEXP (x, 1);
5829 break;
5831 default:
5832 break;
5834 return NULL;