* lto.c (do_stream_out): Add PART parameter; open dump file.
[official-gcc.git] / gcc / ada / sem_util.ads
bloba0b95fa1cbcc6bdf92dfc22f62d418b15e9ba14d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Opt; use Opt;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
37 package Sem_Util is
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- The list of interfaces implemented by Typ. Empty if there are none,
41 -- including the cases where there can't be any because e.g. the type is
42 -- not tagged.
44 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
45 -- Add A to the list of access types to process when expanding the
46 -- freeze node of E.
48 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
49 -- Given a block statement N, generate an internal E_Block label and make
50 -- it the identifier of the block. Id denotes the generated entity. If the
51 -- block already has an identifier, Id returns the entity of its label.
53 procedure Add_Global_Declaration (N : Node_Id);
54 -- These procedures adds a declaration N at the library level, to be
55 -- elaborated before any other code in the unit. It is used for example
56 -- for the entity that marks whether a unit has been elaborated. The
57 -- declaration is added to the Declarations list of the Aux_Decls_Node
58 -- for the current unit. The declarations are added in the current scope,
59 -- so the caller should push a new scope as required before the call.
61 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
62 -- Returns the name of E adding Suffix
64 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
65 -- Given two types, returns True if we are in Allow_Integer_Address mode
66 -- and one of the types is (a descendant of) System.Address (and this type
67 -- is private), and the other type is any integer type.
69 function Address_Value (N : Node_Id) return Node_Id;
70 -- Return the underlying value of the expression N of an address clause
72 function Addressable (V : Uint) return Boolean;
73 function Addressable (V : Int) return Boolean;
74 pragma Inline (Addressable);
75 -- Returns True if the value of V is the word size or an addressable factor
76 -- of the word size (typically 8, 16, 32 or 64).
78 procedure Aggregate_Constraint_Checks
79 (Exp : Node_Id;
80 Check_Typ : Entity_Id);
81 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
82 -- and Check_Typ a constrained record type with discriminants, we generate
83 -- the appropriate discriminant checks. If Exp is an array aggregate then
84 -- emit the appropriate length checks. If Exp is a scalar type, or a string
85 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
86 -- are performed at run time. Also used for expressions in the argument of
87 -- 'Update, which shares some of the features of an aggregate.
89 function Alignment_In_Bits (E : Entity_Id) return Uint;
90 -- If the alignment of the type or object E is currently known to the
91 -- compiler, then this function returns the alignment value in bits.
92 -- Otherwise Uint_0 is returned, indicating that the alignment of the
93 -- entity is not yet known to the compiler.
95 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
96 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
97 -- Given a constraint or subtree of a constraint on a composite
98 -- subtype/object, returns True if there are no nonstatic constraints,
99 -- which might cause objects to be created with dynamic size.
100 -- Called for subtype declarations (including implicit ones created for
101 -- subtype indications in object declarations, as well as discriminated
102 -- record aggregate cases). For record aggregates, only records containing
103 -- discriminant-dependent arrays matter, because the discriminants must be
104 -- static when governing a variant part. Access discriminants are
105 -- irrelevant. Also called for array aggregates, but only named notation,
106 -- because those are the only dynamic cases.
108 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
109 -- Recursive procedure to construct string for qualified name of enclosing
110 -- program unit. The qualification stops at an enclosing scope has no
111 -- source name (block or loop). If entity is a subprogram instance, skip
112 -- enclosing wrapper package. The name is appended to Buf.
114 procedure Append_Inherited_Subprogram (S : Entity_Id);
115 -- If the parent of the operation is declared in the visible part of
116 -- the current scope, the inherited operation is visible even though the
117 -- derived type that inherits the operation may be completed in the private
118 -- part of the current package.
120 procedure Apply_Compile_Time_Constraint_Error
121 (N : Node_Id;
122 Msg : String;
123 Reason : RT_Exception_Code;
124 Ent : Entity_Id := Empty;
125 Typ : Entity_Id := Empty;
126 Loc : Source_Ptr := No_Location;
127 Rep : Boolean := True;
128 Warn : Boolean := False);
129 -- N is a subexpression which will raise constraint error when evaluated
130 -- at runtime. Msg is a message that explains the reason for raising the
131 -- exception. The last character is ? if the message is always a warning,
132 -- even in Ada 95, and is not a ? if the message represents an illegality
133 -- (because of violation of static expression rules) in Ada 95 (but not
134 -- in Ada 83). Typically this routine posts all messages at the Sloc of
135 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
136 -- the message. After posting the appropriate message, and if the flag
137 -- Rep is set, this routine replaces the expression with an appropriate
138 -- N_Raise_Constraint_Error node using the given Reason code. This node
139 -- is then marked as being static if the original node is static, but
140 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
141 -- The error message may contain a } or & insertion character. This
142 -- normally references Etype (N), unless the Ent argument is given
143 -- explicitly, in which case it is used instead. The type of the raise
144 -- node that is built is normally Etype (N), but if the Typ parameter
145 -- is present, this is used instead. Warn is normally False. If it is
146 -- True then the message is treated as a warning even though it does
147 -- not end with a ? (this is used when the caller wants to parameterize
148 -- whether an error or warning is given), or when the message should be
149 -- treated as a warning even when SPARK_Mode is On (which otherwise would
150 -- force an error).
152 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
153 -- Given the entity of an abstract state or a variable, determine whether
154 -- Id is subject to external property Async_Readers and if it is, the
155 -- related expression evaluates to True.
157 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
158 -- Given the entity of an abstract state or a variable, determine whether
159 -- Id is subject to external property Async_Writers and if it is, the
160 -- related expression evaluates to True.
162 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
163 -- If at the point of declaration an array type has a private or limited
164 -- component, several array operations are not available on the type, and
165 -- the array type is flagged accordingly. If in the immediate scope of
166 -- the array type the component becomes non-private or non-limited, these
167 -- operations become available. This can happen if the scopes of both types
168 -- are open, and the scope of the array is not outside the scope of the
169 -- component.
171 procedure Bad_Attribute
172 (N : Node_Id;
173 Nam : Name_Id;
174 Warn : Boolean := False);
175 -- Called when node N is expected to contain a valid attribute name, and
176 -- Nam is found instead. If Warn is set True this is a warning, else this
177 -- is an error.
179 procedure Bad_Predicated_Subtype_Use
180 (Msg : String;
181 N : Node_Id;
182 Typ : Entity_Id;
183 Suggest_Static : Boolean := False);
184 -- This is called when Typ, a predicated subtype, is used in a context
185 -- which does not allow the use of a predicated subtype. Msg is passed to
186 -- Error_Msg_FE to output an appropriate message using N as the location,
187 -- and Typ as the entity. The caller must set up any insertions other than
188 -- the & for the type itself. Note that if Typ is a generic actual type,
189 -- then the message will be output as a warning, and a raise Program_Error
190 -- is inserted using Insert_Action with node N as the insertion point. Node
191 -- N also supplies the source location for construction of the raise node.
192 -- If Typ does not have any predicates, the call has no effect. Set flag
193 -- Suggest_Static when the context warrants an advice on how to avoid the
194 -- use error.
196 function Bad_Unordered_Enumeration_Reference
197 (N : Node_Id;
198 T : Entity_Id) return Boolean;
199 -- Node N contains a potentially dubious reference to type T, either an
200 -- explicit comparison, or an explicit range. This function returns True
201 -- if the type T is an enumeration type for which No pragma Order has been
202 -- given, and the reference N is not in the same extended source unit as
203 -- the declaration of T.
205 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
206 -- Given block statement, entry body, package body, subprogram body, or
207 -- task body N, return the closest source location to the "begin" keyword.
209 function Build_Actual_Subtype
210 (T : Entity_Id;
211 N : Node_Or_Entity_Id) return Node_Id;
212 -- Build an anonymous subtype for an entity or expression, using the
213 -- bounds of the entity or the discriminants of the enclosing record.
214 -- T is the type for which the actual subtype is required, and N is either
215 -- a defining identifier, or any subexpression.
217 function Build_Actual_Subtype_Of_Component
218 (T : Entity_Id;
219 N : Node_Id) return Node_Id;
220 -- Determine whether a selected component has a type that depends on
221 -- discriminants, and build actual subtype for it if so.
223 -- Handling of inherited primitives whose ancestors have class-wide
224 -- pre/postconditions.
226 -- If a primitive operation of a parent type has a class-wide pre/post-
227 -- condition that includes calls to other primitives, and that operation
228 -- is inherited by a descendant type that also overrides some of these
229 -- other primitives, the condition that applies to the inherited
230 -- operation has a modified condition in which the overridden primitives
231 -- have been replaced by the primitives of the descendent type. A call
232 -- to the inherited operation cannot be simply a call to the parent
233 -- operation (with an appropriate conversion) as is the case for other
234 -- inherited operations, but must appear with a wrapper subprogram to which
235 -- the modified conditions apply. Furthermore the call to the parent
236 -- operation must not be subject to the original class-wide condition,
237 -- given that modified conditions apply. To implement these semantics
238 -- economically we create a subprogram body (a "class-wide clone") to
239 -- which no pre/postconditions apply, and we create bodies for the
240 -- original and the inherited operation that have their respective
241 -- pre/postconditions and simply call the clone. The following operations
242 -- take care of constructing declaration and body of the clone, and
243 -- building the calls to it within the appropriate wrappers.
245 procedure Build_Class_Wide_Clone_Body
246 (Spec_Id : Entity_Id;
247 Bod : Node_Id);
248 -- Build body of subprogram that has a class-wide condition that contains
249 -- calls to other primitives. Spec_Id is the Id of the subprogram, and B
250 -- is its source body, which becomes the body of the clone.
252 function Build_Class_Wide_Clone_Call
253 (Loc : Source_Ptr;
254 Decls : List_Id;
255 Spec_Id : Entity_Id;
256 Spec : Node_Id) return Node_Id;
257 -- Build a call to the common class-wide clone of a subprogram with
258 -- class-wide conditions. The body of the subprogram becomes a wrapper
259 -- for a call to the clone. The inherited operation becomes a similar
260 -- wrapper to which modified conditions apply, and the call to the
261 -- clone includes the proper conversion in a call the parent operation.
263 procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id);
264 -- For a subprogram that has a class-wide condition that contains calls
265 -- to other primitives, build an internal subprogram that is invoked
266 -- through a type-specific wrapper for all inherited subprograms that
267 -- may have a modified condition.
269 function Build_Default_Subtype
270 (T : Entity_Id;
271 N : Node_Id) return Entity_Id;
272 -- If T is an unconstrained type with defaulted discriminants, build a
273 -- subtype constrained by the default values, insert the subtype
274 -- declaration in the tree before N, and return the entity of that
275 -- subtype. Otherwise, simply return T.
277 function Build_Discriminal_Subtype_Of_Component
278 (T : Entity_Id) return Node_Id;
279 -- Determine whether a record component has a type that depends on
280 -- discriminants, and build actual subtype for it if so.
282 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
283 -- Given a compilation unit node N, allocate an elaboration counter for
284 -- the compilation unit, and install it in the Elaboration_Entity field
285 -- of Spec_Id, the entity for the compilation unit.
287 function Build_Overriding_Spec
288 (Op : Node_Id;
289 Typ : Entity_Id) return Node_Id;
290 -- Build a subprogram specification for the wrapper of an inherited
291 -- operation with a modified pre- or postcondition (See AI12-0113).
292 -- Op is the parent operation, and Typ is the descendant type that
293 -- inherits the operation.
295 procedure Build_Explicit_Dereference
296 (Expr : Node_Id;
297 Disc : Entity_Id);
298 -- AI05-139: Names with implicit dereference. If the expression N is a
299 -- reference type and the context imposes the corresponding designated
300 -- type, convert N into N.Disc.all. Such expressions are always over-
301 -- loaded with both interpretations, and the dereference interpretation
302 -- carries the name of the reference discriminant.
304 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
305 -- Returns True if the expression cannot possibly raise Constraint_Error.
306 -- The response is conservative in the sense that a result of False does
307 -- not necessarily mean that CE could be raised, but a response of True
308 -- means that for sure CE cannot be raised.
310 procedure Check_Dynamically_Tagged_Expression
311 (Expr : Node_Id;
312 Typ : Entity_Id;
313 Related_Nod : Node_Id);
314 -- Check wrong use of dynamically tagged expression
316 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
317 -- Verify that the full declaration of type T has been seen. If not, place
318 -- error message on node N. Used in object declarations, type conversions
319 -- and qualified expressions.
321 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
322 -- A subprogram that has an Address parameter and is declared in a Pure
323 -- package is not considered Pure, because the parameter may be used as a
324 -- pointer and the referenced data may change even if the address value
325 -- itself does not.
326 -- If the programmer gave an explicit Pure_Function pragma, then we respect
327 -- the pragma and leave the subprogram Pure.
329 procedure Check_Function_Writable_Actuals (N : Node_Id);
330 -- (Ada 2012): If the construct N has two or more direct constituents that
331 -- are names or expressions whose evaluation may occur in an arbitrary
332 -- order, at least one of which contains a function call with an in out or
333 -- out parameter, then the construct is legal only if: for each name that
334 -- is passed as a parameter of mode in out or out to some inner function
335 -- call C2 (not including the construct N itself), there is no other name
336 -- anywhere within a direct constituent of the construct C other than
337 -- the one containing C2, that is known to refer to the same object (RM
338 -- 6.4.1(6.17/3)).
340 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
341 -- AI05-139-2: Accessors and iterators for containers. This procedure
342 -- checks whether T is a reference type, and if so it adds an interprettion
343 -- to N whose type is the designated type of the reference_discriminant.
344 -- If N is a generalized indexing operation, the interpretation is added
345 -- both to the corresponding function call, and to the indexing node.
347 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
348 -- Within a protected function, the current object is a constant, and
349 -- internal calls to a procedure or entry are illegal. Similarly, other
350 -- uses of a protected procedure in a renaming or a generic instantiation
351 -- in the context of a protected function are illegal (AI05-0225).
353 procedure Check_Later_Vs_Basic_Declarations
354 (Decls : List_Id;
355 During_Parsing : Boolean);
356 -- If During_Parsing is True, check for misplacement of later vs basic
357 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
358 -- restriction is set, do the same: although SPARK 95 removes the
359 -- distinction between initial and later declarative items, the distinction
360 -- remains in the Examiner (JB01-005). Note that the Examiner does not
361 -- count package declarations in later declarative items.
363 procedure Check_No_Hidden_State (Id : Entity_Id);
364 -- Determine whether object or state Id introduces a hidden state. If this
365 -- is the case, emit an error.
367 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
368 -- Verify that the profile of nonvolatile function Func_Id does not contain
369 -- effectively volatile parameters or return type.
371 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
372 -- Verify the legality of reference Ref to variable Var_Id when the
373 -- variable is a constituent of a single protected/task type.
375 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
376 -- N is one of the statement forms that is a potentially blocking
377 -- operation. If it appears within a protected action, emit warning.
379 procedure Check_Previous_Null_Procedure
380 (Decl : Node_Id;
381 Prev : Entity_Id);
382 -- A null procedure or a subprogram renaming can complete a previous
383 -- declaration, unless that previous declaration is itself a null
384 -- procedure. This must be treated specially because the analysis of
385 -- the null procedure leaves the corresponding entity as having no
386 -- completion, because its completion is provided by a generated body
387 -- inserted after all other declarations.
389 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
390 -- Determine whether the contract of subprogram Subp_Id mentions attribute
391 -- 'Result and it contains an expression that evaluates differently in pre-
392 -- and post-state.
394 procedure Check_State_Refinements
395 (Context : Node_Id;
396 Is_Main_Unit : Boolean := False);
397 -- Verify that all abstract states declared in a block statement, entry
398 -- body, package body, protected body, subprogram body, task body, or a
399 -- package declaration denoted by Context have proper refinement. Emit an
400 -- error if this is not the case. Flag Is_Main_Unit should be set when
401 -- Context denotes the main compilation unit.
403 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
404 -- Verify that all abstract states and objects declared in the state space
405 -- of package body Body_Id are used as constituents. Emit an error if this
406 -- is not the case.
408 procedure Check_Unprotected_Access
409 (Context : Node_Id;
410 Expr : Node_Id);
411 -- Check whether the expression is a pointer to a protected component,
412 -- and the context is external to the protected operation, to warn against
413 -- a possible unlocked access to data.
415 function Choice_List (N : Node_Id) return List_Id;
416 -- Utility to retrieve the choices of a Component_Association or the
417 -- Discrete_Choices of an Iterated_Component_Association. For various
418 -- reasons these nodes have a different structure even though they play
419 -- similar roles in array aggregates.
421 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
422 -- Gather the entities of all abstract states and objects declared in the
423 -- body state space of package body Body_Id.
425 procedure Collect_Interfaces
426 (T : Entity_Id;
427 Ifaces_List : out Elist_Id;
428 Exclude_Parents : Boolean := False;
429 Use_Full_View : Boolean := True);
430 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
431 -- directly or indirectly implemented by T. Exclude_Parents is used to
432 -- avoid the addition of inherited interfaces to the generated list.
433 -- Use_Full_View is used to collect the interfaces using the full-view
434 -- (if available).
436 procedure Collect_Interface_Components
437 (Tagged_Type : Entity_Id;
438 Components_List : out Elist_Id);
439 -- Ada 2005 (AI-251): Collect all the tag components associated with the
440 -- secondary dispatch tables of a tagged type.
442 procedure Collect_Interfaces_Info
443 (T : Entity_Id;
444 Ifaces_List : out Elist_Id;
445 Components_List : out Elist_Id;
446 Tags_List : out Elist_Id);
447 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
448 -- the record component and tag associated with each of these interfaces.
449 -- On exit Ifaces_List, Components_List and Tags_List have the same number
450 -- of elements, and elements at the same position on these tables provide
451 -- information on the same interface type.
453 procedure Collect_Parents
454 (T : Entity_Id;
455 List : out Elist_Id;
456 Use_Full_View : Boolean := True);
457 -- Collect all the parents of Typ. Use_Full_View is used to collect them
458 -- using the full-view of private parents (if available).
460 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
461 -- Called upon type derivation and extension. We scan the declarative part
462 -- in which the type appears, and collect subprograms that have one
463 -- subsidiary subtype of the type. These subprograms can only appear after
464 -- the type itself.
466 function Compile_Time_Constraint_Error
467 (N : Node_Id;
468 Msg : String;
469 Ent : Entity_Id := Empty;
470 Loc : Source_Ptr := No_Location;
471 Warn : Boolean := False) return Node_Id;
472 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
473 -- generates a warning (or error) message in the same manner, but it does
474 -- not replace any nodes. For convenience, the function always returns its
475 -- first argument. The message is a warning if the message ends with ?, or
476 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
478 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
479 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
480 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
481 -- False).
483 function Copy_Component_List
484 (R_Typ : Entity_Id;
485 Loc : Source_Ptr) return List_Id;
486 -- Copy components from record type R_Typ that come from source. Used to
487 -- create a new compatible record type. Loc is the source location assigned
488 -- to the created nodes.
490 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
491 -- Utility to create a parameter profile for a new subprogram spec, when
492 -- the subprogram has a body that acts as spec. This is done for some cases
493 -- of inlining, and for private protected ops. Also used to create bodies
494 -- for stubbed subprograms.
496 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
497 -- Copy the SPARK_Mode aspect if present in the aspect specifications
498 -- of node From to node To. On entry it is assumed that To does not have
499 -- aspect specifications. If From has no aspects, the routine has no
500 -- effect.
502 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
503 -- Replicate a function or a procedure specification denoted by Spec. The
504 -- resulting tree is an exact duplicate of the original tree. New entities
505 -- are created for the unit name and the formal parameters.
507 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
508 -- If a type is a generic actual type, return the corresponding formal in
509 -- the generic parent unit. There is no direct link in the tree for this
510 -- attribute, except in the case of formal private and derived types.
511 -- Possible optimization???
513 function Current_Entity (N : Node_Id) return Entity_Id;
514 pragma Inline (Current_Entity);
515 -- Find the currently visible definition for a given identifier, that is to
516 -- say the first entry in the visibility chain for the Chars of N.
518 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
519 -- Find whether there is a previous definition for identifier N in the
520 -- current scope. Because declarations for a scope are not necessarily
521 -- contiguous (e.g. for packages) the first entry on the visibility chain
522 -- for N is not necessarily in the current scope.
524 function Current_Scope return Entity_Id;
525 -- Get entity representing current scope
527 function Current_Scope_No_Loops return Entity_Id;
528 -- Return the current scope ignoring internally generated loops
530 function Current_Subprogram return Entity_Id;
531 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
532 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
533 -- Current_Scope is returned. The returned value is Empty if this is called
534 -- from a library package which is not within any subprogram.
536 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
537 -- Same as Type_Access_Level, except that if the type is the type of an Ada
538 -- 2012 stand-alone object of an anonymous access type, then return the
539 -- static accesssibility level of the object. In that case, the dynamic
540 -- accessibility level of the object may take on values in a range. The low
541 -- bound of that range is returned by Type_Access_Level; this function
542 -- yields the high bound of that range. Also differs from Type_Access_Level
543 -- in the case of a descendant of a generic formal type (returns Int'Last
544 -- instead of 0).
546 function Defining_Entity
547 (N : Node_Id;
548 Empty_On_Errors : Boolean := False;
549 Concurrent_Subunit : Boolean := False) return Entity_Id;
550 -- Given a declaration N, returns the associated defining entity. If the
551 -- declaration has a specification, the entity is obtained from the
552 -- specification. If the declaration has a defining unit name, then the
553 -- defining entity is obtained from the defining unit name ignoring any
554 -- child unit prefixes.
556 -- Iterator loops also have a defining entity, which holds the list of
557 -- local entities declared during loop expansion. These entities need
558 -- debugging information, generated through Qualify_Entity_Names, and
559 -- the loop declaration must be placed in the table Name_Qualify_Units.
561 -- Set flag Empty_On_Error to change the behavior of this routine as
562 -- follows:
564 -- * True - A declaration that lacks a defining entity returns Empty.
565 -- A node that does not allow for a defining entity returns Empty.
567 -- * False - A declaration that lacks a defining entity is given a new
568 -- internally generated entity which is subsequently returned. A node
569 -- that does not allow for a defining entity raises Program_Error.
571 -- The former semantics is appropriate for the back end; the latter
572 -- semantics is appropriate for the front end.
574 -- Set flag Concurrent_Subunit to handle rewritings of concurrent bodies
575 -- which act as subunits. Such bodies are generally rewritten as null.
577 function Denotes_Discriminant
578 (N : Node_Id;
579 Check_Concurrent : Boolean := False) return Boolean;
580 -- Returns True if node N is an Entity_Name node for a discriminant. If the
581 -- flag Check_Concurrent is true, function also returns true when N denotes
582 -- the discriminal of the discriminant of a concurrent type. This is needed
583 -- to disable some optimizations on private components of protected types,
584 -- and constraint checks on entry families constrained by discriminants.
586 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
587 -- Detect suspicious overlapping between actuals in a call, when both are
588 -- writable (RM 2012 6.4.1(6.4/3))
590 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
591 -- Functions to detect suspicious overlapping between actuals in a call,
592 -- when one of them is writable. The predicates are those proposed in
593 -- AI05-0144, to detect dangerous order dependence in complex calls.
594 -- I would add a parameter Warn which enables more extensive testing of
595 -- cases as we find appropriate when we are only warning ??? Or perhaps
596 -- return an indication of (Error, Warn, OK) ???
598 function Denotes_Variable (N : Node_Id) return Boolean;
599 -- Returns True if node N denotes a single variable without parentheses
601 function Depends_On_Discriminant (N : Node_Id) return Boolean;
602 -- Returns True if N denotes a discriminant or if N is a range, a subtype
603 -- indication or a scalar subtype where one of the bounds is a
604 -- discriminant.
606 function Designate_Same_Unit
607 (Name1 : Node_Id;
608 Name2 : Node_Id) return Boolean;
609 -- Returns True if Name1 and Name2 designate the same unit name; each of
610 -- these names is supposed to be a selected component name, an expanded
611 -- name, a defining program unit name or an identifier.
613 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
614 -- Emit an error if iterated component association N is actually an illegal
615 -- quantified expression lacking a quantifier.
617 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
618 -- Expr should be an expression of an access type. Builds an integer
619 -- literal except in cases involving anonymous access types where
620 -- accessibility levels are tracked at runtime (access parameters and Ada
621 -- 2012 stand-alone objects).
623 function Discriminated_Size (Comp : Entity_Id) return Boolean;
624 -- If a component size is not static then a warning will be emitted
625 -- in Ravenscar or other restricted contexts. When a component is non-
626 -- static because of a discriminant constraint we can specialize the
627 -- warning by mentioning discriminants explicitly. This was created for
628 -- private components of protected objects, but is generally useful when
629 -- retriction (No_Implicit_Heap_Allocation) is active.
631 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
632 -- Same as Einfo.Extra_Accessibility except thtat object renames
633 -- are looked through.
635 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
636 -- Given the entity of an abstract state or a variable, determine whether
637 -- Id is subject to external property Effective_Reads and if it is, the
638 -- related expression evaluates to True.
640 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
641 -- Given the entity of an abstract state or a variable, determine whether
642 -- Id is subject to external property Effective_Writes and if it is, the
643 -- related expression evaluates to True.
645 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
646 -- Returns the enclosing N_Compilation_Unit node that is the root of a
647 -- subtree containing N.
649 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
650 -- Returns the closest ancestor of Typ that is a CPP type.
652 function Enclosing_Declaration (N : Node_Id) return Node_Id;
653 -- Returns the declaration node enclosing N (including possibly N itself),
654 -- if any, or Empty otherwise.
656 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
657 -- Returns the Node_Id associated with the innermost enclosing generic
658 -- body, if any. If none, then returns Empty.
660 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
661 -- Returns the Node_Id associated with the innermost enclosing generic
662 -- unit, if any. If none, then returns Empty.
664 function Enclosing_Lib_Unit_Entity
665 (E : Entity_Id := Current_Scope) return Entity_Id;
666 -- Returns the entity of enclosing library unit node which is the root of
667 -- the current scope (which must not be Standard_Standard, and the caller
668 -- is responsible for ensuring this condition) or other specified entity.
670 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
671 -- Returns the N_Compilation_Unit node of the library unit that is directly
672 -- or indirectly (through a subunit) at the root of a subtree containing
673 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
674 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
675 -- library unit. If no such item is found, returns Empty.
677 function Enclosing_Package (E : Entity_Id) return Entity_Id;
678 -- Utility function to return the Ada entity of the package enclosing
679 -- the entity E, if any. Returns Empty if no enclosing package.
681 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
682 -- Returns the entity of the package or subprogram enclosing E, if any.
683 -- Returns Empty if no enclosing package or subprogram.
685 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
686 -- Utility function to return the Ada entity of the subprogram enclosing
687 -- the entity E, if any. Returns Empty if no enclosing subprogram.
689 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
690 -- Given block statement, entry body, package body, package declaration,
691 -- protected body, [single] protected type declaration, subprogram body,
692 -- task body, or [single] task type declaration N, return the closest
693 -- source location of the "end" keyword.
695 procedure Ensure_Freeze_Node (E : Entity_Id);
696 -- Make sure a freeze node is allocated for entity E. If necessary, build
697 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
699 procedure Enter_Name (Def_Id : Entity_Id);
700 -- Insert new name in symbol table of current scope with check for
701 -- duplications (error message is issued if a conflict is found).
702 -- Note: Enter_Name is not used for overloadable entities, instead these
703 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
705 function Entity_Of (N : Node_Id) return Entity_Id;
706 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
707 -- entity of the earliest renamed source abstract state or whole object.
708 -- If no suitable entity is available, return Empty.
710 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
711 -- This procedure is called after issuing a message complaining about an
712 -- inappropriate use of limited type T. If useful, it adds additional
713 -- continuation lines to the message explaining why type T is limited.
714 -- Messages are placed at node N.
716 function Expression_Of_Expression_Function
717 (Subp : Entity_Id) return Node_Id;
718 -- Return the expression of expression function Subp
720 type Extensions_Visible_Mode is
721 (Extensions_Visible_None,
722 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
723 -- value acts as a default in a non-SPARK compilation.
725 Extensions_Visible_False,
726 -- A value of "False" signifies that Extensions_Visible is either
727 -- missing or the pragma is present and the value of its Boolean
728 -- expression is False.
730 Extensions_Visible_True);
731 -- A value of "True" signifies that Extensions_Visible is present and
732 -- the value of its Boolean expression is True.
734 function Extensions_Visible_Status
735 (Id : Entity_Id) return Extensions_Visible_Mode;
736 -- Given the entity of a subprogram or formal parameter subject to pragma
737 -- Extensions_Visible, return the Boolean value denoted by the expression
738 -- of the pragma.
740 procedure Find_Actual
741 (N : Node_Id;
742 Formal : out Entity_Id;
743 Call : out Node_Id);
744 -- Determines if the node N is an actual parameter of a function or a
745 -- procedure call. If so, then Formal points to the entity for the formal
746 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
747 -- Call is set to the node for the corresponding call. If the node N is not
748 -- an actual parameter then Formal and Call are set to Empty.
750 function Find_Body_Discriminal
751 (Spec_Discriminant : Entity_Id) return Entity_Id;
752 -- Given a discriminant of the record type that implements a task or
753 -- protected type, return the discriminal of the corresponding discriminant
754 -- of the actual concurrent type.
756 function Find_Corresponding_Discriminant
757 (Id : Node_Id;
758 Typ : Entity_Id) return Entity_Id;
759 -- Because discriminants may have different names in a generic unit and in
760 -- an instance, they are resolved positionally when possible. A reference
761 -- to a discriminant carries the discriminant that it denotes when it is
762 -- analyzed. Subsequent uses of this id on a different type denotes the
763 -- discriminant at the same position in this new type.
765 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
766 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
767 -- defines the Default_Initial_Condition pragma of type Typ. This is either
768 -- Typ itself or a parent type when the pragma is inherited.
770 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
771 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
772 -- such a loop exists, return the entity of its identifier (E_Loop scope),
773 -- otherwise return Empty.
775 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
776 -- Find the nearest scope which encloses arbitrary node N
778 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
779 -- Find the nested loop statement in a conditional block. Loops subject to
780 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
781 -- loop are nested within the block.
783 procedure Find_Overlaid_Entity
784 (N : Node_Id;
785 Ent : out Entity_Id;
786 Off : out Boolean);
787 -- The node N should be an address representation clause. Determines if
788 -- the target expression is the address of an entity with an optional
789 -- offset. If so, set Ent to the entity and, if there is an offset, set
790 -- Off to True, otherwise to False. If N is not an address representation
791 -- clause, or if it is not possible to determine that the address is of
792 -- this form, then set Ent to Empty.
794 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
795 -- Return the type of formal parameter Param as determined by its
796 -- specification.
798 -- The following type describes the placement of an arbitrary entity with
799 -- respect to SPARK visible / hidden state space.
801 type State_Space_Kind is
802 (Not_In_Package,
803 -- An entity is not in the visible, private or body state space when
804 -- the immediate enclosing construct is not a package.
806 Visible_State_Space,
807 -- An entity is in the visible state space when it appears immediately
808 -- within the visible declarations of a package or when it appears in
809 -- the visible state space of a nested package which in turn is declared
810 -- in the visible declarations of an enclosing package:
812 -- package Pack is
813 -- Visible_Variable : ...
814 -- package Nested
815 -- with Abstract_State => Visible_State
816 -- is
817 -- Visible_Nested_Variable : ...
818 -- end Nested;
819 -- end Pack;
821 -- Entities associated with a package instantiation inherit the state
822 -- space from the instance placement:
824 -- generic
825 -- package Gen is
826 -- Generic_Variable : ...
827 -- end Gen;
829 -- with Gen;
830 -- package Pack is
831 -- package Inst is new Gen;
832 -- -- Generic_Variable is in the visible state space of Pack
833 -- end Pack;
835 Private_State_Space,
836 -- An entity is in the private state space when it appears immediately
837 -- within the private declarations of a package or when it appears in
838 -- the visible state space of a nested package which in turn is declared
839 -- in the private declarations of an enclosing package:
841 -- package Pack is
842 -- private
843 -- Private_Variable : ...
844 -- package Nested
845 -- with Abstract_State => Private_State
846 -- is
847 -- Private_Nested_Variable : ...
848 -- end Nested;
849 -- end Pack;
851 -- The same placement principle applies to package instantiations
853 Body_State_Space);
854 -- An entity is in the body state space when it appears immediately
855 -- within the declarations of a package body or when it appears in the
856 -- visible state space of a nested package which in turn is declared in
857 -- the declarations of an enclosing package body:
859 -- package body Pack is
860 -- Body_Variable : ...
861 -- package Nested
862 -- with Abstract_State => Body_State
863 -- is
864 -- Body_Nested_Variable : ...
865 -- end Nested;
866 -- end Pack;
868 -- The same placement principle applies to package instantiations
870 procedure Find_Placement_In_State_Space
871 (Item_Id : Entity_Id;
872 Placement : out State_Space_Kind;
873 Pack_Id : out Entity_Id);
874 -- Determine the state space placement of an item. Item_Id denotes the
875 -- entity of an abstract state, object or package instantiation. Placement
876 -- captures the precise placement of the item in the enclosing state space.
877 -- If the state space is that of a package, Pack_Id denotes its entity,
878 -- otherwise Pack_Id is Empty.
880 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
881 -- Locate primitive equality for type if it exists. Return Empty if it is
882 -- not available.
884 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
885 -- Find specific type of a class-wide type, and handle the case of an
886 -- incomplete type coming either from a limited_with clause or from an
887 -- incomplete type declaration. If resulting type is private return its
888 -- full view.
890 function Find_Static_Alternative (N : Node_Id) return Node_Id;
891 -- N is a case statement whose expression is a compile-time value.
892 -- Determine the alternative chosen, so that the code of non-selected
893 -- alternatives, and the warnings that may apply to them, are removed.
895 function First_Actual (Node : Node_Id) return Node_Id;
896 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
897 -- N_Entry_Call_Statement node. The result returned is the first actual
898 -- parameter in declaration order (not the order of parameters as they
899 -- appeared in the source, which can be quite different as a result of the
900 -- use of named parameters). Empty is returned for a call with no
901 -- parameters. The procedure for iterating through the actuals in
902 -- declaration order is to use this function to find the first actual, and
903 -- then use Next_Actual to obtain the next actual in declaration order.
904 -- Note that the value returned is always the expression (not the
905 -- N_Parameter_Association nodes, even if named association is used).
907 function First_Global
908 (Subp : Entity_Id;
909 Global_Mode : Name_Id;
910 Refined : Boolean := False) return Node_Id;
911 -- Returns the first global item of mode Global_Mode (which can be
912 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
913 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
914 -- is retrieved from the Refined_Global aspect/pragma associated to the
915 -- body of Subp if present. Next_Global can be used to get the next global
916 -- item with the same mode.
918 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
919 -- Replace all occurrences of a particular word in string Msg depending on
920 -- the Ekind of Id as follows:
921 -- * Replace "subprogram" with
922 -- - "entry" when Id is an entry [family]
923 -- - "task type" when Id is a single task object, task type or task
924 -- body.
925 -- * Replace "protected" with
926 -- - "task" when Id is a single task object, task type or task body
927 -- All other non-matching words remain as is
929 function From_Nested_Package (T : Entity_Id) return Boolean;
930 -- A type declared in a nested package may be frozen by a declaration
931 -- appearing after the package but before the package is frozen. If the
932 -- type has aspects that generate subprograms, these may contain references
933 -- to entities local to the nested package. In that case the package must
934 -- be installed on the scope stack to prevent spurious visibility errors.
936 procedure Gather_Components
937 (Typ : Entity_Id;
938 Comp_List : Node_Id;
939 Governed_By : List_Id;
940 Into : Elist_Id;
941 Report_Errors : out Boolean);
942 -- The purpose of this procedure is to gather the valid components in a
943 -- record type according to the values of its discriminants, in order to
944 -- validate the components of a record aggregate.
946 -- Typ is the type of the aggregate when its constrained discriminants
947 -- need to be collected, otherwise it is Empty.
949 -- Comp_List is an N_Component_List node.
951 -- Governed_By is a list of N_Component_Association nodes, where each
952 -- choice list contains the name of a discriminant and the expression
953 -- field gives its value. The values of the discriminants governing
954 -- the (possibly nested) variant parts in Comp_List are found in this
955 -- Component_Association List.
957 -- Into is the list where the valid components are appended. Note that
958 -- Into need not be an Empty list. If it's not, components are attached
959 -- to its tail.
961 -- Report_Errors is set to True if the values of the discriminants are
962 -- non-static.
964 -- This procedure is also used when building a record subtype. If the
965 -- discriminant constraint of the subtype is static, the components of the
966 -- subtype are only those of the variants selected by the values of the
967 -- discriminants. Otherwise all components of the parent must be included
968 -- in the subtype for semantic analysis.
970 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
971 -- Given a node for an expression, obtain the actual subtype of the
972 -- expression. In the case of a parameter where the formal is an
973 -- unconstrained array or discriminated type, this will be the previously
974 -- constructed subtype of the actual. Note that this is not quite the
975 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
976 -- it is the subtype of the value of the actual. The actual subtype is also
977 -- returned in other cases where it has already been constructed for an
978 -- object. Otherwise the expression type is returned unchanged, except for
979 -- the case of an unconstrained array type, where an actual subtype is
980 -- created, using Insert_Actions if necessary to insert any associated
981 -- actions.
983 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
984 -- This is like Get_Actual_Subtype, except that it never constructs an
985 -- actual subtype. If an actual subtype is already available, i.e. the
986 -- Actual_Subtype field of the corresponding entity is set, then it is
987 -- returned. Otherwise the Etype of the node is returned.
989 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
990 -- Return the body node for a stub
992 function Get_Cursor_Type
993 (Aspect : Node_Id;
994 Typ : Entity_Id) return Entity_Id;
995 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
996 -- primitive operation First. For use in resolving the other primitive
997 -- operations of an Iterable type and expanding loops and quantified
998 -- expressions over formal containers.
1000 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1001 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1002 -- primitive operation First. For use after resolving the primitive
1003 -- operations of an Iterable type.
1005 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1006 -- This is used to construct the string literal node representing a
1007 -- default external name, i.e. one that is constructed from the name of an
1008 -- entity, or (in the case of extended DEC import/export pragmas, an
1009 -- identifier provided as the external name. Letters in the name are
1010 -- according to the setting of Opt.External_Name_Default_Casing.
1012 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1013 -- If expression N references a part of an object, return this object.
1014 -- Otherwise return Empty. Expression N should have been resolved already.
1016 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1017 -- Returns the true generic entity in an instantiation. If the name in the
1018 -- instantiation is a renaming, the function returns the renamed generic.
1020 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1021 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1022 -- in a child unit a derived type is within the derivation class of an
1023 -- ancestor declared in a parent unit, even if there is an intermediate
1024 -- derivation that does not see the full view of that ancestor.
1026 procedure Get_Index_Bounds
1027 (N : Node_Id;
1028 L : out Node_Id;
1029 H : out Node_Id;
1030 Use_Full_View : Boolean := False);
1031 -- This procedure assigns to L and H respectively the values of the low and
1032 -- high bounds of node N, which must be a range, subtype indication, or the
1033 -- name of a scalar subtype. The result in L, H may be set to Error if
1034 -- there was an earlier error in the range.
1035 -- Use_Full_View is intended for use by clients other than the compiler
1036 -- (specifically, gnat2scil) to indicate that we want the full view if
1037 -- the index type turns out to be a partial view; this case should not
1038 -- arise during normal compilation of semantically correct programs.
1040 procedure Get_Interfacing_Aspects
1041 (Iface_Asp : Node_Id;
1042 Conv_Asp : out Node_Id;
1043 EN_Asp : out Node_Id;
1044 Expo_Asp : out Node_Id;
1045 Imp_Asp : out Node_Id;
1046 LN_Asp : out Node_Id;
1047 Do_Checks : Boolean := False);
1048 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1049 -- aspects that apply to the same related entity. The aspects considered by
1050 -- this routine are as follows:
1052 -- Conv_Asp - aspect Convention
1053 -- EN_Asp - aspect External_Name
1054 -- Expo_Asp - aspect Export
1055 -- Imp_Asp - aspect Import
1056 -- LN_Asp - aspect Link_Name
1058 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1059 -- aspects.
1061 function Get_Enum_Lit_From_Pos
1062 (T : Entity_Id;
1063 Pos : Uint;
1064 Loc : Source_Ptr) return Node_Id;
1065 -- This function returns an identifier denoting the E_Enumeration_Literal
1066 -- entity for the specified value from the enumeration type or subtype T.
1067 -- The second argument is the Pos value. Constraint_Error is raised if
1068 -- argument Pos is not in range. The third argument supplies a source
1069 -- location for constructed nodes returned by this function. If No_Location
1070 -- is supplied as source location, the location of the returned node is
1071 -- copied from the original source location for the enumeration literal,
1072 -- when available.
1074 function Get_Iterable_Type_Primitive
1075 (Typ : Entity_Id;
1076 Nam : Name_Id) return Entity_Id;
1077 -- Retrieve one of the primitives First, Next, Has_Element, Element from
1078 -- the value of the Iterable aspect of a type.
1080 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1081 -- Retrieve the fully expanded name of the library unit declared by
1082 -- Decl_Node into the name buffer.
1084 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1085 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1086 -- is not present. It is assumed that Id denotes an entry.
1088 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1089 pragma Inline (Get_Name_Entity_Id);
1090 -- An entity value is associated with each name in the name table. The
1091 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1092 -- is the innermost visible entity with the given name. See the body of
1093 -- Sem_Ch8 for further details on handling of entity visibility.
1095 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1096 -- Return the Name component of Test_Case pragma N
1097 -- Bad name now that this no longer applies to Contract_Case ???
1099 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1100 -- Get defining entity of parent unit of a child unit. In most cases this
1101 -- is the defining entity of the unit, but for a child instance whose
1102 -- parent needs a body for inlining, the instantiation node of the parent
1103 -- has not yet been rewritten as a package declaration, and the entity has
1104 -- to be retrieved from the Instance_Spec of the unit.
1106 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1107 pragma Inline (Get_Pragma_Id);
1108 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1110 function Get_Qualified_Name
1111 (Id : Entity_Id;
1112 Suffix : Entity_Id := Empty) return Name_Id;
1113 -- Obtain the fully qualified form of entity Id. The format is:
1114 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1116 function Get_Qualified_Name
1117 (Nam : Name_Id;
1118 Suffix : Name_Id := No_Name;
1119 Scop : Entity_Id := Current_Scope) return Name_Id;
1120 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1121 -- Scop. The format is:
1122 -- scop-1__scop__nam__suffix
1124 procedure Get_Reason_String (N : Node_Id);
1125 -- Recursive routine to analyze reason argument for pragma Warnings. The
1126 -- value of the reason argument is appended to the current string using
1127 -- Store_String_Chars. The reason argument is expected to be a string
1128 -- literal or concatenation of string literals. An error is given for
1129 -- any other form.
1131 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1132 -- If Typ has Implicit_Dereference, return discriminant specified in the
1133 -- corresponding aspect.
1135 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1136 -- Given a node, return the renamed object if the node represents a renamed
1137 -- object, otherwise return the node unchanged. The node may represent an
1138 -- arbitrary expression.
1140 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1141 -- Given an entity for an exception, package, subprogram or generic unit,
1142 -- returns the ultimately renamed entity if this is a renaming. If this is
1143 -- not a renamed entity, returns its argument. It is an error to call this
1144 -- with any other kind of entity.
1146 function Get_Return_Object (N : Node_Id) return Entity_Id;
1147 -- Given an extended return statement, return the corresponding return
1148 -- object, identified as the one for which Is_Return_Object = True.
1150 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1151 -- Nod is either a procedure call statement, or a function call, or an
1152 -- accept statement node. This procedure finds the Entity_Id of the related
1153 -- subprogram or entry and returns it, or if no subprogram can be found,
1154 -- returns Empty.
1156 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1157 -- Given an entity for a task type or subtype, retrieves the
1158 -- Task_Body_Procedure field from the corresponding task type declaration.
1160 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1161 -- For a type entity, return the entity of the primitive equality function
1162 -- for the type if it exists, otherwise return Empty.
1164 procedure Get_Views
1165 (Typ : Entity_Id;
1166 Priv_Typ : out Entity_Id;
1167 Full_Typ : out Entity_Id;
1168 Full_Base : out Entity_Id;
1169 CRec_Typ : out Entity_Id);
1170 -- Obtain the partial and full view of type Typ and in addition any extra
1171 -- types the full view may have. The return entities are as follows:
1173 -- Priv_Typ - the partial view (a private type)
1174 -- Full_Typ - the full view
1175 -- Full_Base - the base type of the full view
1176 -- CRec_Typ - the corresponding record type of the full view
1178 function Has_Access_Values (T : Entity_Id) return Boolean;
1179 -- Returns true if type or subtype T is an access type, or has a component
1180 -- (at any recursive level) that is an access type. This is a conservative
1181 -- predicate, if it is not known whether or not T contains access values
1182 -- (happens for generic formals in some cases), then False is returned.
1183 -- Note that tagged types return False. Even though the tag is implemented
1184 -- as an access type internally, this function tests only for access types
1185 -- known to the programmer. See also Has_Tagged_Component.
1187 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1188 -- Result of Has_Compatible_Alignment test, description found below. Note
1189 -- that the values are arranged in increasing order of problematicness.
1191 function Has_Compatible_Alignment
1192 (Obj : Entity_Id;
1193 Expr : Node_Id;
1194 Layout_Done : Boolean) return Alignment_Result;
1195 -- Obj is an object entity, and expr is a node for an object reference. If
1196 -- the alignment of the object referenced by Expr is known to be compatible
1197 -- with the alignment of Obj (i.e. is larger or the same), then the result
1198 -- is Known_Compatible. If the alignment of the object referenced by Expr
1199 -- is known to be less than the alignment of Obj, then Known_Incompatible
1200 -- is returned. If neither condition can be reliably established at compile
1201 -- time, then Unknown is returned. If Layout_Done is True, the function can
1202 -- assume that the information on size and alignment of types and objects
1203 -- is present in the tree. This is used to determine if alignment checks
1204 -- are required for address clauses (Layout_Done is False in this case) as
1205 -- well as to issue appropriate warnings for them in the post compilation
1206 -- phase (Layout_Done is True in this case).
1208 -- Note: Known_Incompatible does not mean that at run time the alignment
1209 -- of Expr is known to be wrong for Obj, just that it can be determined
1210 -- that alignments have been explicitly or implicitly specified which are
1211 -- incompatible (whereas Unknown means that even this is not known). The
1212 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1213 -- Unknown, but issue a warning that there may be an alignment error.
1215 function Has_Declarations (N : Node_Id) return Boolean;
1216 -- Determines if the node can have declarations
1218 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1219 -- Simple predicate to test for defaulted discriminants
1221 function Has_Denormals (E : Entity_Id) return Boolean;
1222 -- Determines if the floating-point type E supports denormal numbers.
1223 -- Returns False if E is not a floating-point type.
1225 function Has_Discriminant_Dependent_Constraint
1226 (Comp : Entity_Id) return Boolean;
1227 -- Returns True if and only if Comp has a constrained subtype that depends
1228 -- on a discriminant.
1230 function Has_Effectively_Volatile_Profile
1231 (Subp_Id : Entity_Id) return Boolean;
1232 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1233 -- parameter or returns an effectively volatile value.
1235 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1236 -- Determine whether type Typ defines "full default initialization" as
1237 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1238 -- * A scalar type with specified Default_Value
1239 -- * An array-of-scalar type with specified Default_Component_Value
1240 -- * An array type whose element type defines full default initialization
1241 -- * A protected type, record type or type extension whose components
1242 -- either include a default expression or have a type which defines
1243 -- full default initialization. In the case of type extensions, the
1244 -- parent type defines full default initialization.
1245 -- * A task type
1246 -- * A private type with pragma Default_Initial_Condition that provides
1247 -- full default initialization.
1249 function Has_Fully_Default_Initializing_DIC_Pragma
1250 (Typ : Entity_Id) return Boolean;
1251 -- Determine whether type Typ has a suitable Default_Initial_Condition
1252 -- pragma which provides the full default initialization of the type.
1254 function Has_Infinities (E : Entity_Id) return Boolean;
1255 -- Determines if the range of the floating-point type E includes
1256 -- infinities. Returns False if E is not a floating-point type.
1258 function Has_Interfaces
1259 (T : Entity_Id;
1260 Use_Full_View : Boolean := True) return Boolean;
1261 -- Where T is a concurrent type or a record type, returns true if T covers
1262 -- any abstract interface types. In case of private types the argument
1263 -- Use_Full_View controls if the check is done using its full view (if
1264 -- available).
1266 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1267 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1268 -- assumed that Id denotes an entry.
1270 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1271 -- This is a simple minded function for determining whether an expression
1272 -- has no obvious side effects. It is used only for determining whether
1273 -- warnings are needed in certain situations, and is not guaranteed to
1274 -- be accurate in either direction. Exceptions may mean an expression
1275 -- does in fact have side effects, but this may be ignored and True is
1276 -- returned, or a complex expression may in fact be side effect free
1277 -- but we don't recognize it here and return False. The Side_Effect_Free
1278 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1279 -- be shared, so that this routine would be more accurate.
1281 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1282 -- Determine whether abstract state Id has at least one nonnull constituent
1283 -- as expressed in pragma Refined_State. This function does not take into
1284 -- account the visible refinement region of abstract state Id.
1286 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1287 -- Determine whether subprogram Subp has a class-wide precondition that is
1288 -- not statically True.
1290 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1291 -- Determine whether the body of procedure Proc_Id contains a sole null
1292 -- statement, possibly followed by an optional return. Used to optimize
1293 -- useless calls to assertion checks.
1295 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1296 -- Determine whether node N has a null exclusion
1298 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1299 -- Determine whether abstract state Id has a null refinement as expressed
1300 -- in pragma Refined_State. This function does not take into account the
1301 -- visible refinement region of abstract state Id.
1303 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1304 -- Return True if L has non-null statements
1306 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1307 -- Predicate to determine whether a controlled type has a user-defined
1308 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1309 -- non-null), which causes the type to not have preelaborable
1310 -- initialization.
1312 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1313 -- Return True iff type E has preelaborable initialization as defined in
1314 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1316 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1317 -- Check if a type has a (sub)component of a private type that has not
1318 -- yet received a full declaration.
1320 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1321 -- Determines if the floating-point type E supports signed zeros.
1322 -- Returns False if E is not a floating-point type.
1324 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1325 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1326 -- All subprograms have a N_Contract node, but this does not mean that the
1327 -- contract is useful.
1329 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1330 -- Return whether an array type has static bounds
1332 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1333 -- Determine whether array type Typ has static non-empty bounds
1335 function Has_Stream (T : Entity_Id) return Boolean;
1336 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1337 -- case of a composite type, has a component for which this predicate is
1338 -- True, and if so returns True. Otherwise a result of False means that
1339 -- there is no Stream type in sight. For a private type, the test is
1340 -- applied to the underlying type (or returns False if there is no
1341 -- underlying type).
1343 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1344 -- Returns true if the last character of E is Suffix. Used in Assertions.
1346 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1347 -- Returns True if Typ is a composite type (array or record) that is either
1348 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1349 -- noncomposite type, or if no tagged subcomponents are present. This
1350 -- function is used to check if "=" has to be expanded into a bunch
1351 -- component comparisons.
1353 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1354 -- Given arbitrary expression Expr, determine whether it contains at
1355 -- least one name whose entity is Any_Id.
1357 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1358 -- Given arbitrary type Typ, determine whether it contains at least one
1359 -- volatile component.
1361 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1362 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1363 -- implementation requirement which the pragma imposes. The return value is
1364 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1366 function Implements_Interface
1367 (Typ_Ent : Entity_Id;
1368 Iface_Ent : Entity_Id;
1369 Exclude_Parents : Boolean := False) return Boolean;
1370 -- Returns true if the Typ_Ent implements interface Iface_Ent
1372 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1373 -- Returns True if node N appears within a pragma that acts as an assertion
1374 -- expression. See Sem_Prag for the list of qualifying pragmas.
1376 function In_Generic_Scope (E : Entity_Id) return Boolean;
1377 -- Returns True if entity E is inside a generic scope
1379 function In_Instance return Boolean;
1380 -- Returns True if the current scope is within a generic instance
1382 function In_Instance_Body return Boolean;
1383 -- Returns True if current scope is within the body of an instance, where
1384 -- several semantic checks (e.g. accessibility checks) are relaxed.
1386 function In_Instance_Not_Visible return Boolean;
1387 -- Returns True if current scope is with the private part or the body of
1388 -- an instance. Other semantic checks are suppressed in this context.
1390 function In_Instance_Visible_Part
1391 (Id : Entity_Id := Current_Scope) return Boolean;
1392 -- Returns True if arbitrary entity Id is within the visible part of a
1393 -- package instance, where several additional semantic checks apply.
1395 function In_Package_Body return Boolean;
1396 -- Returns True if current scope is within a package body
1398 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1399 -- Returns true if the expression N occurs within a pragma with name Nam
1401 function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1402 -- Returns True if node N appears within a pre/postcondition pragma. Note
1403 -- the pragma Check equivalents are NOT considered.
1405 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1406 -- Returns True if N denotes a component or subcomponent in a record or
1407 -- array that has Reverse_Storage_Order.
1409 function In_Same_Declarative_Part
1410 (Context : Node_Id;
1411 N : Node_Id) return Boolean;
1412 -- True if the node N appears within the same declarative part denoted by
1413 -- the node Context.
1415 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1416 -- Determines if the current scope is within a subprogram compilation unit
1417 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1418 -- declaration) or within a task or protected body. The test is for
1419 -- appearing anywhere within such a construct (that is it does not need
1420 -- to be directly within).
1422 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1423 -- Determine whether node N is within the subtree rooted at Root
1425 function In_Subtree
1426 (N : Node_Id;
1427 Root1 : Node_Id;
1428 Root2 : Node_Id) return Boolean;
1429 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1430 -- This version is more efficient than calling the single root version of
1431 -- Is_Subtree twice.
1433 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1434 -- Determine whether a declaration occurs within the visible part of a
1435 -- package specification. The package must be on the scope stack, and the
1436 -- corresponding private part must not.
1438 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1439 -- Given the entity of a constant or a type, retrieve the incomplete or
1440 -- partial view of the same entity. Note that Id may not have a partial
1441 -- view in which case the function returns Empty.
1443 function Incomplete_View_From_Limited_With
1444 (Typ : Entity_Id) return Entity_Id;
1445 -- Typ is a type entity. This normally returns Typ. However, if there is
1446 -- an incomplete view of this entity that comes from a limited-with'ed
1447 -- package, then this returns that incomplete view.
1449 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1450 -- Given an N_Indexed_Component node, return the first bit position of the
1451 -- component if it is known at compile time. A value of No_Uint means that
1452 -- either the value is not yet known before back-end processing or it is
1453 -- not known at compile time after back-end processing.
1455 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1456 -- Inherit the rep item chain of type From_Typ without clobbering any
1457 -- existing rep items on Typ's chain. Typ is the destination type.
1459 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1460 pragma Inline (Inherits_From_Tagged_Full_View);
1461 -- Return True if Typ is an untagged private type completed with a
1462 -- derivation of an untagged private type declaration whose full view
1463 -- is a tagged type.
1465 procedure Insert_Explicit_Dereference (N : Node_Id);
1466 -- In a context that requires a composite or subprogram type and where a
1467 -- prefix is an access type, rewrite the access type node N (which is the
1468 -- prefix, e.g. of an indexed component) as an explicit dereference.
1470 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1471 -- Examine all deferred constants in the declaration list Decls and check
1472 -- whether they have been completed by a full constant declaration or an
1473 -- Import pragma. Emit the error message if that is not the case.
1475 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1476 -- Install the elaboration model specified by pragma Elaboration_Checks
1477 -- associated with compilation unit Unit_Id. No action is taken when the
1478 -- unit lacks such pragma.
1480 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1481 -- Install both the generic formal parameters and the formal parameters of
1482 -- generic subprogram Subp_Id into visibility.
1484 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1485 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1487 function Invalid_Scalar_Value
1488 (Loc : Source_Ptr;
1489 Scal_Typ : Scalar_Id) return Node_Id;
1490 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1491 -- pragma Initialize_Scalars or by the binder. Return an expression created
1492 -- at source location Loc, which denotes the invalid value.
1494 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1495 -- Determines if N is an actual parameter of out mode in a subprogram call
1497 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1498 -- Determines if N is an actual parameter in a subprogram call
1500 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1501 -- Determines if N is an actual parameter of a formal of tagged type in a
1502 -- subprogram call.
1504 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1505 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1506 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1507 -- rules of the language, it does not take into account the restriction
1508 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1509 -- and Obj violates the restriction. The caller is responsible for calling
1510 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1511 -- requirement for obeying the restriction in the call context.
1513 function Is_Ancestor_Package
1514 (E1 : Entity_Id;
1515 E2 : Entity_Id) return Boolean;
1516 -- Determine whether package E1 is an ancestor of E2
1518 function Is_Atomic_Object (N : Node_Id) return Boolean;
1519 -- Determine whether arbitrary node N denotes a reference to an atomic
1520 -- object as per Ada RM C.6(12).
1522 function Is_Atomic_Object_Entity (Id : Entity_Id) return Boolean;
1523 -- Determine whether arbitrary entity Id denotes an atomic object as per
1524 -- Ada RM C.6(12).
1526 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1527 -- Determine whether arbitrary node N denotes a reference to an object
1528 -- which is either atomic or Volatile_Full_Access.
1530 function Is_Attribute_Result (N : Node_Id) return Boolean;
1531 -- Determine whether node N denotes attribute 'Result
1533 function Is_Attribute_Update (N : Node_Id) return Boolean;
1534 -- Determine whether node N denotes attribute 'Update
1536 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1537 -- Determine whether node N denotes a body or a package declaration
1539 function Is_Bounded_String (T : Entity_Id) return Boolean;
1540 -- True if T is a bounded string type. Used to make sure "=" composes
1541 -- properly for bounded string types.
1543 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1544 -- Exp is the expression for an array bound. Determines whether the
1545 -- bound is a compile-time known value, or a constant entity, or an
1546 -- enumeration literal, or an expression composed of constant-bound
1547 -- subexpressions which are evaluated by means of standard operators.
1549 function Is_Container_Element (Exp : Node_Id) return Boolean;
1550 -- This routine recognizes expressions that denote an element of one of
1551 -- the predefined containers, when the source only contains an indexing
1552 -- operation and an implicit dereference is inserted by the compiler.
1553 -- In the absence of this optimization, the indexing creates a temporary
1554 -- controlled cursor that sets the tampering bit of the container, and
1555 -- restricts the use of the convenient notation C (X) to contexts that
1556 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1557 -- explicit dereference. The transformation applies when it has the form
1558 -- F (X).Discr.all.
1560 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1561 -- Determine whether aspect specification or pragma Item is a contract
1562 -- annotation.
1564 function Is_Controlling_Limited_Procedure
1565 (Proc_Nam : Entity_Id) return Boolean;
1566 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1567 -- of a limited interface with a controlling first parameter.
1569 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1570 -- Returns True if N is a call to a CPP constructor
1572 function Is_CCT_Instance
1573 (Ref_Id : Entity_Id;
1574 Context_Id : Entity_Id) return Boolean;
1575 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1576 -- Global; also used when analyzing default expressions of protected and
1577 -- record components. Determine whether entity Ref_Id (which must represent
1578 -- either a protected type or a task type) denotes the current instance of
1579 -- a concurrent type. Context_Id denotes the associated context where the
1580 -- pragma appears.
1582 function Is_Child_Or_Sibling
1583 (Pack_1 : Entity_Id;
1584 Pack_2 : Entity_Id) return Boolean;
1585 -- Determine the following relations between two arbitrary packages:
1586 -- 1) One package is the parent of a child package
1587 -- 2) Both packages are siblings and share a common parent
1589 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1590 -- First determine whether type T is an interface and then check whether
1591 -- it is of protected, synchronized or task kind.
1593 function Is_Current_Instance (N : Node_Id) return Boolean;
1594 -- Predicate is true if N legally denotes a type name within its own
1595 -- declaration. Prior to Ada 2012 this covered only synchronized type
1596 -- declarations. In Ada 2012 it also covers type and subtype declarations
1597 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1599 function Is_Declaration
1600 (N : Node_Id;
1601 Body_OK : Boolean := True;
1602 Concurrent_OK : Boolean := True;
1603 Formal_OK : Boolean := True;
1604 Generic_OK : Boolean := True;
1605 Instantiation_OK : Boolean := True;
1606 Renaming_OK : Boolean := True;
1607 Stub_OK : Boolean := True;
1608 Subprogram_OK : Boolean := True;
1609 Type_OK : Boolean := True) return Boolean;
1610 -- Determine whether arbitrary node N denotes a declaration depending
1611 -- on the allowed subsets of declarations. Set the following flags to
1612 -- consider specific subsets of declarations:
1614 -- * Body_OK - body declarations
1616 -- * Concurrent_OK - concurrent type declarations
1618 -- * Formal_OK - formal declarations
1620 -- * Generic_OK - generic declarations, including generic renamings
1622 -- * Instantiation_OK - generic instantiations
1624 -- * Renaming_OK - renaming declarations, including generic renamings
1626 -- * Stub_OK - stub declarations
1628 -- * Subprogram_OK - entry, expression function, and subprogram
1629 -- declarations.
1631 -- * Type_OK - type declarations, including concurrent types
1633 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1634 -- Returns True iff component Comp is declared within a variant part
1636 function Is_Dependent_Component_Of_Mutable_Object
1637 (Object : Node_Id) return Boolean;
1638 -- Returns True if Object is the name of a subcomponent that depends on
1639 -- discriminants of a variable whose nominal subtype is unconstrained and
1640 -- not indefinite, and the variable is not aliased. Otherwise returns
1641 -- False. The nodes passed to this function are assumed to denote objects.
1643 function Is_Dereferenced (N : Node_Id) return Boolean;
1644 -- N is a subexpression node of an access type. This function returns true
1645 -- if N appears as the prefix of a node that does a dereference of the
1646 -- access value (selected/indexed component, explicit dereference or a
1647 -- slice), and false otherwise.
1649 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1650 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1651 -- This is the RM definition, a type is a descendant of another type if it
1652 -- is the same type or is derived from a descendant of the other type.
1654 function Is_Descendant_Of_Suspension_Object
1655 (Typ : Entity_Id) return Boolean;
1656 -- Determine whether type Typ is a descendant of type Suspension_Object
1657 -- defined in Ada.Synchronous_Task_Control. This version is different from
1658 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1659 -- an entity and by extension a call to RTSfind.
1661 function Is_Double_Precision_Floating_Point_Type
1662 (E : Entity_Id) return Boolean;
1663 -- Return whether E is a double precision floating point type,
1664 -- characterized by:
1665 -- . machine_radix = 2
1666 -- . machine_mantissa = 53
1667 -- . machine_emax = 2**10
1668 -- . machine_emin = 3 - machine_emax
1670 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1671 -- Determine whether a type or object denoted by entity Id is effectively
1672 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1673 -- * Volatile
1674 -- * An array type subject to aspect Volatile_Components
1675 -- * An array type whose component type is effectively volatile
1676 -- * A protected type
1677 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1679 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1680 -- Determine whether an arbitrary node denotes an effectively volatile
1681 -- object (SPARK RM 7.1.2).
1683 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1684 -- Determine whether entity Id is the body entity of an entry [family]
1686 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1687 -- Determine whether entity Id is the spec entity of an entry [family]
1689 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1690 -- Check whether a function in a call is an expanded priority attribute,
1691 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1692 -- does not take place in a configurable runtime.
1694 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1695 -- Determine whether subprogram [body] Subp denotes an expression function
1697 function Is_Expression_Function_Or_Completion
1698 (Subp : Entity_Id) return Boolean;
1699 -- Determine whether subprogram [body] Subp denotes an expression function
1700 -- or is completed by an expression function body.
1702 function Is_EVF_Expression (N : Node_Id) return Boolean;
1703 -- Determine whether node N denotes a reference to a formal parameter of
1704 -- a specific tagged type whose related subprogram is subject to pragma
1705 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1706 -- constructs fall under this category:
1707 -- 1) A qualified expression whose operand is EVF
1708 -- 2) A type conversion whose operand is EVF
1709 -- 3) An if expression with at least one EVF dependent_expression
1710 -- 4) A case expression with at least one EVF dependent_expression
1712 function Is_False (U : Uint) return Boolean;
1713 pragma Inline (Is_False);
1714 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1715 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1716 -- if it is False (i.e. zero).
1718 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1719 -- Returns True iff the number U is a model number of the fixed-point type
1720 -- T, i.e. if it is an exact multiple of Small.
1722 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1723 -- Typ is a type entity. This function returns true if this type is fully
1724 -- initialized, meaning that an object of the type is fully initialized.
1725 -- Note that initialization resulting from use of pragma Normalize_Scalars
1726 -- does not count. Note that this is only used for the purpose of issuing
1727 -- warnings for objects that are potentially referenced uninitialized. This
1728 -- means that the result returned is not crucial, but should err on the
1729 -- side of thinking things are fully initialized if it does not know.
1731 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1732 -- Determine whether arbitrary declaration Decl denotes a generic package,
1733 -- a generic subprogram or a generic body.
1735 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1736 -- E is a subprogram. Return True is E is an implicit operation inherited
1737 -- by a derived type declaration.
1739 function Is_Inherited_Operation_For_Type
1740 (E : Entity_Id;
1741 Typ : Entity_Id) return Boolean;
1742 -- E is a subprogram. Return True is E is an implicit operation inherited
1743 -- by the derived type declaration for type Typ.
1745 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
1746 -- Return True if Subp is an expression function that fulfills all the
1747 -- following requirements for inlining:
1748 -- 1. pragma/aspect Inline_Always
1749 -- 2. No formals
1750 -- 3. No contracts
1751 -- 4. No dispatching primitive
1752 -- 5. Result subtype controlled (or with controlled components)
1753 -- 6. Result subtype not subject to type-invariant checks
1754 -- 7. Result subtype not a class-wide type
1755 -- 8. Return expression naming an object global to the function
1756 -- 9. Nominal subtype of the returned object statically compatible
1757 -- with the result subtype of the expression function.
1759 function Is_Iterator (Typ : Entity_Id) return Boolean;
1760 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1761 -- Ada.Iterator_Interfaces, or it is derived from one.
1763 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1764 -- N is an iterator specification. Returns True iff N is an iterator over
1765 -- an array, either inside a loop of the form 'for X of A' or a quantified
1766 -- expression of the form 'for all/some X of A' where A is of array type.
1768 type Is_LHS_Result is (Yes, No, Unknown);
1769 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1770 -- Returns Yes if N is definitely used as Name in an assignment statement.
1771 -- Returns No if N is definitely NOT used as a Name in an assignment
1772 -- statement. Returns Unknown if we can't tell at this stage (happens in
1773 -- the case where we don't know the type of N yet, and we have something
1774 -- like N.A := 3, where this counts as N being used on the left side of
1775 -- an assignment only if N is not an access type. If it is an access type
1776 -- then it is N.all.A that is assigned, not N.
1778 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1779 -- A library-level declaration is one that is accessible from Standard,
1780 -- i.e. a library unit or an entity declared in a library package.
1782 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1783 -- Determine whether a given type is a limited class-wide type, in which
1784 -- case it needs a Master_Id, because extensions of its designated type
1785 -- may include task components. A class-wide type that comes from a
1786 -- limited view must be treated in the same way.
1788 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1789 -- Determines whether Expr is a reference to a variable or IN OUT mode
1790 -- parameter of the current enclosing subprogram.
1791 -- Why are OUT parameters not considered here ???
1793 function Is_Name_Reference (N : Node_Id) return Boolean;
1794 -- Determine whether arbitrary node N is a reference to a name. This is
1795 -- similar to Is_Object_Reference but returns True only if N can be renamed
1796 -- without the need for a temporary, the typical example of an object not
1797 -- in this category being a function call.
1799 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
1800 -- Determine whether arbitrary construct N violates preelaborability as
1801 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
1802 -- syntactic and semantic properties of the construct.
1804 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
1805 -- Determine whether entity Id denotes the procedure that verifies the
1806 -- assertion expression of pragma Default_Initial_Condition and if it does,
1807 -- the encapsulated expression is nontrivial.
1809 function Is_Null_Record_Type (T : Entity_Id) return Boolean;
1810 -- Determine whether T is declared with a null record definition or a
1811 -- null component list.
1813 function Is_Object_Image (Prefix : Node_Id) return Boolean;
1814 -- Returns True if an 'Image, 'Wide_Image, or 'Wide_Wide_Image attribute
1815 -- is applied to a given object or named value prefix (see below).
1817 -- AI12-00124: The ARG has adopted the GNAT semantics of 'Img for scalar
1818 -- types, so that the prefix of any 'Image attribute can be an object, a
1819 -- named value, or a type, and there is no need for an argument in the
1820 -- case it is an object reference.
1822 function Is_Object_Reference (N : Node_Id) return Boolean;
1823 -- Determines if the tree referenced by N represents an object. Both
1824 -- variable and constant objects return True (compare Is_Variable).
1826 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1827 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1828 -- Note that the Is_Variable function is not quite the right test because
1829 -- this is a case in which conversions whose expression is a variable (in
1830 -- the Is_Variable sense) with an untagged type target are considered view
1831 -- conversions and hence variables.
1833 function Is_OK_Volatile_Context
1834 (Context : Node_Id;
1835 Obj_Ref : Node_Id) return Boolean;
1836 -- Determine whether node Context denotes a "non-interfering context" (as
1837 -- defined in SPARK RM 7.1.3(12)) where volatile reference Obj_Ref can
1838 -- safely reside.
1840 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1841 -- Determine whether aspect specification or pragma Item is one of the
1842 -- following package contract annotations:
1843 -- Abstract_State
1844 -- Initial_Condition
1845 -- Initializes
1846 -- Refined_State
1848 function Is_Partially_Initialized_Type
1849 (Typ : Entity_Id;
1850 Include_Implicit : Boolean := True) return Boolean;
1851 -- Typ is a type entity. This function returns true if this type is partly
1852 -- initialized, meaning that an object of the type is at least partly
1853 -- initialized (in particular in the record case, that at least one
1854 -- component has an initialization expression). Note that initialization
1855 -- resulting from the use of pragma Normalize_Scalars does not count.
1856 -- Include_Implicit controls whether implicit initialization of access
1857 -- values to null, and of discriminant values, is counted as making the
1858 -- type be partially initialized. For the default setting of True, these
1859 -- implicit cases do count, and discriminated types or types containing
1860 -- access values not explicitly initialized will return True. Otherwise
1861 -- if Include_Implicit is False, these cases do not count as making the
1862 -- type be partially initialized.
1864 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1865 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1867 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1868 -- Determines if type T is a potentially persistent type. A potentially
1869 -- persistent type is defined (recursively) as a scalar type, an untagged
1870 -- record whose components are all of a potentially persistent type, or an
1871 -- array with all static constraints whose component type is potentially
1872 -- persistent. A private type is potentially persistent if the full type
1873 -- is potentially persistent.
1875 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
1876 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
1878 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
1879 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
1880 -- required to implement interfaces.
1882 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
1883 -- Similar to the previous one, but excludes stream operations, because
1884 -- these may be overridden, and need extra formals, like user-defined
1885 -- operations.
1887 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
1888 -- Determine whether aggregate Aggr violates the restrictions of
1889 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
1891 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
1892 -- Determine whether arbitrary node N violates the restrictions of
1893 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
1894 -- Is_Non_Preelaborable_Construct takes into account the syntactic
1895 -- and semantic properties of N for a more accurate diagnostic.
1897 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1898 -- Return True if node N denotes a protected type name which represents
1899 -- the current instance of a protected object according to RM 9.4(21/2).
1901 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1902 -- Return True if a compilation unit is the specification or the
1903 -- body of a remote call interface package.
1905 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1906 -- Return True if E is a remote access-to-class-wide type
1908 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1909 -- Return True if E is a remote access to subprogram type
1911 function Is_Remote_Call (N : Node_Id) return Boolean;
1912 -- Return True if N denotes a potentially remote call
1914 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1915 -- Return True if Proc_Nam is a procedure renaming of an entry
1917 function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1918 -- Determine whether arbitrary node N denotes a renaming declaration
1920 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1921 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1922 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1924 function Is_Selector_Name (N : Node_Id) return Boolean;
1925 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1926 -- As described in Sinfo, Selector_Names are special because they
1927 -- represent use of the N_Identifier node for a true identifier, when
1928 -- normally such nodes represent a direct name.
1930 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1931 -- Determine whether arbitrary entity Id denotes the anonymous object
1932 -- created for a single protected or single task type.
1934 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1935 -- Determine whether arbitrary entity Id denotes a single protected or
1936 -- single task type.
1938 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1939 -- Determine whether arbitrary node N denotes the declaration of a single
1940 -- protected type or single task type.
1942 function Is_Single_Precision_Floating_Point_Type
1943 (E : Entity_Id) return Boolean;
1944 -- Return whether E is a single precision floating point type,
1945 -- characterized by:
1946 -- . machine_radix = 2
1947 -- . machine_mantissa = 24
1948 -- . machine_emax = 2**7
1949 -- . machine_emin = 3 - machine_emax
1951 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
1952 -- Determine whether arbitrary entity Id denotes the anonymous object
1953 -- created for a single protected type.
1955 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
1956 -- Determine whether arbitrary entity Id denotes the anonymous object
1957 -- created for a single task type.
1959 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1960 -- Determines if the tree referenced by N represents an initialization
1961 -- expression in SPARK 2005, suitable for initializing an object in an
1962 -- object declaration.
1964 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1965 -- Determines if the tree referenced by N represents an object in SPARK
1966 -- 2005. This differs from Is_Object_Reference in that only variables,
1967 -- constants, formal parameters, and selected_components of those are
1968 -- valid objects in SPARK 2005.
1970 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1971 -- Determine whether an arbitrary [private] type is specifically tagged
1973 function Is_Statement (N : Node_Id) return Boolean;
1974 pragma Inline (Is_Statement);
1975 -- Check if the node N is a statement node. Note that this includes
1976 -- the case of procedure call statements (unlike the direct use of
1977 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1978 -- Note that a label is *not* a statement, and will return False.
1980 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
1981 -- Determine whether aspect specification or pragma Item is one of the
1982 -- following subprogram contract annotations:
1983 -- Contract_Cases
1984 -- Depends
1985 -- Extensions_Visible
1986 -- Global
1987 -- Post
1988 -- Post_Class
1989 -- Postcondition
1990 -- Pre
1991 -- Pre_Class
1992 -- Precondition
1993 -- Refined_Depends
1994 -- Refined_Global
1995 -- Refined_Post
1996 -- Test_Case
1998 function Is_Subprogram_Stub_Without_Prior_Declaration
1999 (N : Node_Id) return Boolean;
2000 -- Return True if N is a subprogram stub with no prior subprogram
2001 -- declaration.
2003 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2004 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2005 -- an arbitrary tagged type.
2007 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
2008 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
2009 -- in Ada.Synchronous_Task_Control.
2011 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2012 -- Determine whether entity Id denotes an object and if it does, whether
2013 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2014 -- such, the object must be
2015 -- * Of a type that yields a synchronized object
2016 -- * An atomic object with enabled Async_Writers
2017 -- * A constant
2018 -- * A variable subject to pragma Constant_After_Elaboration
2020 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2021 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2023 function Is_Transfer (N : Node_Id) return Boolean;
2024 -- Returns True if the node N is a statement which is known to cause an
2025 -- unconditional transfer of control at runtime, i.e. the following
2026 -- statement definitely will not be executed.
2028 function Is_True (U : Uint) return Boolean;
2029 pragma Inline (Is_True);
2030 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
2031 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
2032 -- if it is True (i.e. non-zero).
2034 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2035 -- Determine whether an arbitrary entity denotes an instance of function
2036 -- Ada.Unchecked_Conversion.
2038 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2039 pragma Inline (Is_Universal_Numeric_Type);
2040 -- True if T is Universal_Integer or Universal_Real
2042 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2043 -- Determine whether an entity denotes a user-defined equality
2045 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2046 -- Determine whether N denotes a reference to a variable which captures the
2047 -- value of an object for validation purposes.
2049 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2050 -- Returns true if E has variable size components
2052 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2053 -- Returns true if E has variable size components
2055 function Is_Variable
2056 (N : Node_Id;
2057 Use_Original_Node : Boolean := True) return Boolean;
2058 -- Determines if the tree referenced by N represents a variable, i.e. can
2059 -- appear on the left side of an assignment. There is one situation (formal
2060 -- parameters) in which untagged type conversions are also considered
2061 -- variables, but Is_Variable returns False for such cases, since it has
2062 -- no knowledge of the context. Note that this is the point at which
2063 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2064 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2065 -- default is True since this routine is commonly invoked as part of the
2066 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2068 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2069 -- Check whether T is derived from a visibly controlled type. This is true
2070 -- if the root type is declared in Ada.Finalization. If T is derived
2071 -- instead from a private type whose full view is controlled, an explicit
2072 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2073 -- one.
2075 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2076 -- Determine whether [generic] function Func_Id is subject to enabled
2077 -- pragma Volatile_Function. Protected functions are treated as volatile
2078 -- (SPARK RM 7.1.2).
2080 function Is_Volatile_Object (N : Node_Id) return Boolean;
2081 -- Determines if the given node denotes an volatile object in the sense of
2082 -- the legality checks described in RM C.6(12). Note that the test here is
2083 -- for something actually declared as volatile, not for an object that gets
2084 -- treated as volatile (see Einfo.Treat_As_Volatile).
2086 generic
2087 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2088 procedure Iterate_Call_Parameters (Call : Node_Id);
2089 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2090 -- a function, procedure, or entry call.
2092 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2093 -- Applies to Itypes. True if the Itype is attached to a declaration for
2094 -- the type through its Parent field, which may or not be present in the
2095 -- tree.
2097 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2098 -- This procedure is called to clear all constant indications from all
2099 -- entities in the current scope and in any parent scopes if the current
2100 -- scope is a block or a package (and that recursion continues to the top
2101 -- scope that is not a block or a package). This is used when the
2102 -- sequential flow-of-control assumption is violated (occurrence of a
2103 -- label, head of a loop, or start of an exception handler). The effect of
2104 -- the call is to clear the Current_Value field (but we do not need to
2105 -- clear the Is_True_Constant flag, since that only gets reset if there
2106 -- really is an assignment somewhere in the entity scope). This procedure
2107 -- also calls Kill_All_Checks, since this is a special case of needing to
2108 -- forget saved values. This procedure also clears the Is_Known_Null and
2109 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2110 -- parameters since these are also not known to be trustable any more.
2112 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2113 -- fields and leave other fields unchanged. This is used when we encounter
2114 -- an unconditional flow of control change (return, goto, raise). In such
2115 -- cases we don't need to clear the current values, since it may be that
2116 -- the flow of control change occurs in a conditional context, and if it
2117 -- is not taken, then it is just fine to keep the current values. But the
2118 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2119 -- conditional-return, assign-to-v, we do not want to complain that the
2120 -- second assignment clobbers the first.
2122 procedure Kill_Current_Values
2123 (Ent : Entity_Id;
2124 Last_Assignment_Only : Boolean := False);
2125 -- This performs the same processing as described above for the form with
2126 -- no argument, but for the specific entity given. The call has no effect
2127 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2128 -- same meaning as for the call with no Ent.
2130 procedure Kill_Size_Check_Code (E : Entity_Id);
2131 -- Called when an address clause or pragma Import is applied to an entity.
2132 -- If the entity is a variable or a constant, and size check code is
2133 -- present, this size check code is killed, since the object will not be
2134 -- allocated by the program.
2136 function Known_Non_Null (N : Node_Id) return Boolean;
2137 -- Given a node N for a subexpression of an access type, determines if
2138 -- this subexpression yields a value that is known at compile time to
2139 -- be non-null and returns True if so. Returns False otherwise. It is
2140 -- an error to call this function if N is not of an access type.
2142 function Known_Null (N : Node_Id) return Boolean;
2143 -- Given a node N for a subexpression of an access type, determines if this
2144 -- subexpression yields a value that is known at compile time to be null
2145 -- and returns True if so. Returns False otherwise. It is an error to call
2146 -- this function if N is not of an access type.
2148 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2149 -- The node N is an entity reference. This function determines whether the
2150 -- reference is for sure an assignment of the entity, returning True if
2151 -- so. This differs from May_Be_Lvalue in that it defaults in the other
2152 -- direction. Cases which may possibly be assignments but are not known to
2153 -- be may return True from May_Be_Lvalue, but False from this function.
2155 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2156 -- HSS is a handled statement sequence. This function returns the last
2157 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2158 -- such statement exists, Empty is returned.
2160 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2161 -- Given a node which designates the context of analysis and an origin in
2162 -- the tree, traverse from Root_Nod and mark all allocators as either
2163 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2164 -- cleaned up during resolution.
2166 procedure Mark_Elaboration_Attributes
2167 (N_Id : Node_Or_Entity_Id;
2168 Checks : Boolean := False;
2169 Level : Boolean := False;
2170 Modes : Boolean := False;
2171 Warnings : Boolean := False);
2172 -- Preserve relevant elaboration-related properties of the context in
2173 -- arbitrary entity or node N_Id. The flags control the properties as
2174 -- follows:
2176 -- Checks - Save the status of Elaboration_Check
2177 -- Level - Save the declaration level of N_Id (if appicable)
2178 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2179 -- Warnings - Save the status of Elab_Warnings
2181 function Matching_Static_Array_Bounds
2182 (L_Typ : Node_Id;
2183 R_Typ : Node_Id) return Boolean;
2184 -- L_Typ and R_Typ are two array types. Returns True when they have the
2185 -- same number of dimensions, and the same static bounds for each index
2186 -- position.
2188 function May_Be_Lvalue (N : Node_Id) return Boolean;
2189 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
2190 -- An lvalue is defined as any expression which appears in a context where
2191 -- a name is required by the syntax, and the identity, rather than merely
2192 -- the value of the node is needed (for example, the prefix of an Access
2193 -- attribute is in this category). Note that, as implied by the name, this
2194 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
2195 -- it returns True. It tries hard to get the answer right, but it is hard
2196 -- to guarantee this in all cases. Note that it is more possible to give
2197 -- correct answer if the tree is fully analyzed.
2199 function Might_Raise (N : Node_Id) return Boolean;
2200 -- True if evaluation of N might raise an exception. This is conservative;
2201 -- if we're not sure, we return True. If N is a subprogram body, this is
2202 -- about whether execution of that body can raise.
2204 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2205 -- Return the entity of the nearest enclosing instance which encapsulates
2206 -- entity E. If no such instance exits, return Empty.
2208 function Needs_One_Actual (E : Entity_Id) return Boolean;
2209 -- Returns True if a function has defaults for all but its first formal,
2210 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2211 -- syntactic ambiguity that results from an indexing of a function call
2212 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2214 function Needs_Simple_Initialization
2215 (Typ : Entity_Id;
2216 Consider_IS : Boolean := True) return Boolean;
2217 -- Certain types need initialization even though there is no specific
2218 -- initialization routine:
2219 -- Access types (which need initializing to null)
2220 -- All scalar types if Normalize_Scalars mode set
2221 -- Descendants of standard string types if Normalize_Scalars mode set
2222 -- Scalar types having a Default_Value attribute
2223 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2224 -- set to False, but if Consider_IS is set to True, then the cases above
2225 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2227 function Needs_Variable_Reference_Marker
2228 (N : Node_Id;
2229 Calls_OK : Boolean) return Boolean;
2230 -- Determine whether arbitrary node N denotes a reference to a variable
2231 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2232 -- be set when the reference is allowed to appear within calls.
2234 function New_Copy_List_Tree (List : List_Id) return List_Id;
2235 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2236 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2237 -- nodes (entities) either directly or indirectly using this function.
2239 function New_Copy_Tree
2240 (Source : Node_Id;
2241 Map : Elist_Id := No_Elist;
2242 New_Sloc : Source_Ptr := No_Location;
2243 New_Scope : Entity_Id := Empty) return Node_Id;
2244 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2245 -- and nodes are handled separately as follows:
2247 -- * A node is replicated by first creating a shallow copy, then copying
2248 -- its syntactic fields, where all Parent pointers of the fields are
2249 -- updated to refer to the copy. In addition, the following semantic
2250 -- fields are recreated after the replication takes place.
2252 -- First_Named_Actual
2253 -- First_Real_Statement
2254 -- Next_Named_Actual
2256 -- If applicable, the Etype field (if any) is updated to refer to a
2257 -- local itype or type (see below).
2259 -- * An entity defined within an N_Expression_With_Actions node in the
2260 -- subtree is given a new entity, and all references to the original
2261 -- entity are updated to refer to the new entity. In addition, the
2262 -- following semantic fields are replicated and/or updated to refer
2263 -- to a local entity or itype.
2265 -- Discriminant_Constraint
2266 -- Etype
2267 -- First_Index
2268 -- Next_Entity
2269 -- Packed_Array_Impl_Type
2270 -- Scalar_Range
2271 -- Scope
2273 -- Note that currently no other expression can define entities.
2275 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2276 -- is given a new entity, and all references to the original itype
2277 -- are updated to refer to the new itype. In addition, the following
2278 -- semantic fields are replicated and/or updated to refer to a local
2279 -- entity or itype.
2281 -- Discriminant_Constraint
2282 -- Etype
2283 -- First_Index
2284 -- Next_Entity
2285 -- Packed_Array_Impl_Type
2286 -- Scalar_Range
2287 -- Scope
2289 -- The Associated_Node_For_Itype is updated to refer to a replicated
2290 -- node.
2292 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2293 -- Empty or Error node yields the same node.
2295 -- Parameter Map may be used to specify a set of mappings between entities.
2296 -- These mappings are then taken into account when replicating entities.
2297 -- The format of Map must be as follows:
2299 -- old entity 1
2300 -- new entity to replace references to entity 1
2301 -- old entity 2
2302 -- new entity to replace references to entity 2
2303 -- ...
2305 -- Map and its contents are left unchanged.
2307 -- Parameter New_Sloc may be used to specify a new source location for all
2308 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2309 -- is defaulted if a new source location is provided.
2311 -- Parameter New_Scope may be used to specify a new scope for all copied
2312 -- entities and itypes.
2314 function New_External_Entity
2315 (Kind : Entity_Kind;
2316 Scope_Id : Entity_Id;
2317 Sloc_Value : Source_Ptr;
2318 Related_Id : Entity_Id;
2319 Suffix : Character;
2320 Suffix_Index : Nat := 0;
2321 Prefix : Character := ' ') return Entity_Id;
2322 -- This function creates an N_Defining_Identifier node for an internal
2323 -- created entity, such as an implicit type or subtype, or a record
2324 -- initialization procedure. The entity name is constructed with a call
2325 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2326 -- that the generated name may be referenced as a public entry, and the
2327 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2328 -- entity is for a type or subtype, the size/align fields are initialized
2329 -- to unknown (Uint_0).
2331 function New_Internal_Entity
2332 (Kind : Entity_Kind;
2333 Scope_Id : Entity_Id;
2334 Sloc_Value : Source_Ptr;
2335 Id_Char : Character) return Entity_Id;
2336 -- This function is similar to New_External_Entity, except that the
2337 -- name is constructed by New_Internal_Name (Id_Char). This is used
2338 -- when the resulting entity does not have to be referenced as a
2339 -- public entity (and in this case Is_Public is not set).
2341 procedure Next_Actual (Actual_Id : in out Node_Id);
2342 pragma Inline (Next_Actual);
2343 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2344 -- inline this procedural form, but not the functional form that follows.
2346 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2347 -- Find next actual parameter in declaration order. As described for
2348 -- First_Actual, this is the next actual in the declaration order, not
2349 -- the call order, so this does not correspond to simply taking the
2350 -- next entry of the Parameter_Associations list. The argument is an
2351 -- actual previously returned by a call to First_Actual or Next_Actual.
2352 -- Note that the result produced is always an expression, not a parameter
2353 -- association node, even if named notation was used.
2355 procedure Next_Global (Node : in out Node_Id);
2356 pragma Inline (Next_Actual);
2357 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2358 -- inline this procedural form, but not the functional form that follows.
2360 function Next_Global (Node : Node_Id) return Node_Id;
2361 -- Node is a global item from a list, obtained through calling First_Global
2362 -- and possibly Next_Global a number of times. Returns the next global item
2363 -- with the same mode.
2365 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2366 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2368 procedure Normalize_Actuals
2369 (N : Node_Id;
2370 S : Entity_Id;
2371 Report : Boolean;
2372 Success : out Boolean);
2373 -- Reorders lists of actuals according to names of formals, value returned
2374 -- in Success indicates success of reordering. For more details, see body.
2375 -- Errors are reported only if Report is set to True.
2377 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2378 -- This routine is called if the sub-expression N maybe the target of
2379 -- an assignment (e.g. it is the left side of an assignment, used as
2380 -- an out parameters, or used as prefixes of access attributes). It
2381 -- sets May_Be_Modified in the associated entity if there is one,
2382 -- taking into account the rule that in the case of renamed objects,
2383 -- it is the flag in the renamed object that must be set.
2385 -- The parameter Sure is set True if the modification is sure to occur
2386 -- (e.g. target of assignment, or out parameter), and to False if the
2387 -- modification is only potential (e.g. address of entity taken).
2389 function Null_To_Null_Address_Convert_OK
2390 (N : Node_Id;
2391 Typ : Entity_Id := Empty) return Boolean;
2392 -- Return True if we are compiling in relaxed RM semantics mode and:
2393 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2394 -- 2) N is a comparison operator, one of the operands is null, and the
2395 -- type of the other operand is a descendant of System.Address.
2397 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2398 -- Returns the number of elements in the array T if the index bounds of T
2399 -- is known at compile time. If the bounds are not known at compile time,
2400 -- the function returns the value zero.
2402 function Object_Access_Level (Obj : Node_Id) return Uint;
2403 -- Return the accessibility level of the view of the object Obj. For
2404 -- convenience, qualified expressions applied to object names are also
2405 -- allowed as actuals for this function.
2407 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2408 -- Retrieve the name of aspect or pragma N, taking into account a possible
2409 -- rewrite and whether the pragma is generated from an aspect as the names
2410 -- may be different. The routine also deals with 'Class in which case it
2411 -- returns the following values:
2413 -- Invariant -> Name_uInvariant
2414 -- Post'Class -> Name_uPost
2415 -- Pre'Class -> Name_uPre
2416 -- Type_Invariant -> Name_uType_Invariant
2417 -- Type_Invariant'Class -> Name_uType_Invariant
2419 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2420 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2421 -- or overrides an inherited dispatching primitive S2, the original
2422 -- corresponding operation of S is the original corresponding operation of
2423 -- S2. Otherwise, it is S itself.
2425 procedure Output_Entity (Id : Entity_Id);
2426 -- Print entity Id to standard output. The name of the entity appears in
2427 -- fully qualified form.
2429 -- WARNING: this routine should be used in debugging scenarios such as
2430 -- tracking down undefined symbols as it is fairly low level.
2432 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2433 -- Print name Nam to standard output. The name appears in fully qualified
2434 -- form assuming it appears in scope Scop. Note that this may not reflect
2435 -- the final qualification as the entity which carries the name may be
2436 -- relocated to a different scope.
2438 -- WARNING: this routine should be used in debugging scenarios such as
2439 -- tracking down undefined symbols as it is fairly low level.
2441 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2442 -- Given a policy, return the policy identifier associated with it. If no
2443 -- such policy is in effect, the value returned is No_Name.
2445 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2446 -- Subp is the entity for a subprogram call. This function returns True if
2447 -- predicate tests are required for the arguments in this call (this is the
2448 -- normal case). It returns False for special cases where these predicate
2449 -- tests should be skipped (see body for details).
2451 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2452 -- Returns True if the names of both entities correspond with matching
2453 -- primitives. This routine includes support for the case in which one
2454 -- or both entities correspond with entities built by Derive_Subprogram
2455 -- with a special name to avoid being overridden (i.e. return true in case
2456 -- of entities with names "nameP" and "name" or vice versa).
2458 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2459 -- Returns some private component (if any) of the given Type_Id.
2460 -- Used to enforce the rules on visibility of operations on composite
2461 -- types, that depend on the full view of the component type. For a
2462 -- record type there may be several such components, we just return
2463 -- the first one.
2465 procedure Process_End_Label
2466 (N : Node_Id;
2467 Typ : Character;
2468 Ent : Entity_Id);
2469 -- N is a node whose End_Label is to be processed, generating all
2470 -- appropriate cross-reference entries, and performing style checks
2471 -- for any identifier references in the end label. Typ is either
2472 -- 'e' or 't indicating the type of the cross-reference entity
2473 -- (e for spec, t for body, see Lib.Xref spec for details). The
2474 -- parameter Ent gives the entity to which the End_Label refers,
2475 -- and to which cross-references are to be generated.
2477 procedure Propagate_Concurrent_Flags
2478 (Typ : Entity_Id;
2479 Comp_Typ : Entity_Id);
2480 -- Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2481 -- are set on Comp_Typ. This follows the definition of these flags which
2482 -- are set (recursively) on any composite type which has a component marked
2483 -- by one of these flags. This procedure can only set flags for Typ, and
2484 -- never clear them. Comp_Typ is the type of a component or a parent.
2486 procedure Propagate_DIC_Attributes
2487 (Typ : Entity_Id;
2488 From_Typ : Entity_Id);
2489 -- Inherit all Default_Initial_Condition-related attributes from type
2490 -- From_Typ. Typ is the destination type.
2492 procedure Propagate_Invariant_Attributes
2493 (Typ : Entity_Id;
2494 From_Typ : Entity_Id);
2495 -- Inherit all invariant-related attributes form type From_Typ. Typ is the
2496 -- destination type.
2498 procedure Record_Possible_Part_Of_Reference
2499 (Var_Id : Entity_Id;
2500 Ref : Node_Id);
2501 -- Save reference Ref to variable Var_Id when the variable is subject to
2502 -- pragma Part_Of. If the variable is known to be a constituent of a single
2503 -- protected/task type, the legality of the reference is verified and the
2504 -- save does not take place.
2506 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2507 -- Determine whether entity Id is referenced within expression Expr
2509 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2510 -- Returns True if the expression Expr contains any references to a generic
2511 -- type. This can only happen within a generic template.
2513 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2514 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2515 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2516 -- performed by this routine does not affect the visibility of existing
2517 -- homonyms.
2519 procedure Remove_Homonym (Id : Entity_Id);
2520 -- Removes entity Id from the homonym chain
2522 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2523 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2524 -- the primitive operations list of the associated controlling type. Use
2525 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2526 -- by this routine does not affect the visibility of existing homonyms.
2528 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2529 -- Returns the name of E without Suffix
2531 procedure Replace_Null_By_Null_Address (N : Node_Id);
2532 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2533 -- RM semantics mode, and one of the operands is null. Replace null with
2534 -- System.Null_Address.
2536 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2537 -- This is used to construct the second argument in a call to Rep_To_Pos
2538 -- which is Standard_True if range checks are enabled (E is an entity to
2539 -- which the Range_Checks_Suppressed test is applied), and Standard_False
2540 -- if range checks are suppressed. Loc is the location for the node that
2541 -- is returned (which is a New_Occurrence of the appropriate entity).
2543 -- Note: one might think that it would be fine to always use True and
2544 -- to ignore the suppress in this case, but it is generally better to
2545 -- believe a request to suppress exceptions if possible, and further
2546 -- more there is at least one case in the generated code (the code for
2547 -- array assignment in a loop) that depends on this suppression.
2549 procedure Require_Entity (N : Node_Id);
2550 -- N is a node which should have an entity value if it is an entity name.
2551 -- If not, then check if there were previous errors. If so, just fill
2552 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2553 -- This is used as a defense mechanism against ill-formed trees caused by
2554 -- previous errors (particularly in -gnatq mode).
2556 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2557 -- Id is a type entity. The result is True when temporaries of this type
2558 -- need to be wrapped in a transient scope to be reclaimed properly when a
2559 -- secondary stack is in use. Examples of types requiring such wrapping are
2560 -- controlled types and variable-sized types including unconstrained
2561 -- arrays.
2563 procedure Reset_Analyzed_Flags (N : Node_Id);
2564 -- Reset the Analyzed flags in all nodes of the tree whose root is N
2566 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
2567 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2568 -- routine must be used in tandem with Set_SPARK_Mode.
2570 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2571 -- Return true if Subp is a function that returns an unconstrained type
2573 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2574 -- Similar to attribute Root_Type, but this version always follows the
2575 -- Full_View of a private type (if available) while searching for the
2576 -- ultimate derivation ancestor.
2578 function Safe_To_Capture_Value
2579 (N : Node_Id;
2580 Ent : Entity_Id;
2581 Cond : Boolean := False) return Boolean;
2582 -- The caller is interested in capturing a value (either the current value,
2583 -- or an indication that the value is non-null) for the given entity Ent.
2584 -- This value can only be captured if sequential execution semantics can be
2585 -- properly guaranteed so that a subsequent reference will indeed be sure
2586 -- that this current value indication is correct. The node N is the
2587 -- construct which resulted in the possible capture of the value (this
2588 -- is used to check if we are in a conditional).
2590 -- Cond is used to skip the test for being inside a conditional. It is used
2591 -- in the case of capturing values from if/while tests, which already do a
2592 -- proper job of handling scoping issues without this help.
2594 -- The only entities whose values can be captured are OUT and IN OUT formal
2595 -- parameters, and variables unless Cond is True, in which case we also
2596 -- allow IN formals, loop parameters and constants, where we cannot ever
2597 -- capture actual value information, but we can capture conditional tests.
2599 function Same_Name (N1, N2 : Node_Id) return Boolean;
2600 -- Determine if two (possibly expanded) names are the same name. This is
2601 -- a purely syntactic test, and N1 and N2 need not be analyzed.
2603 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2604 -- Determine if Node1 and Node2 are known to designate the same object.
2605 -- This is a semantic test and both nodes must be fully analyzed. A result
2606 -- of True is decisively correct. A result of False does not necessarily
2607 -- mean that different objects are designated, just that this could not
2608 -- be reliably determined at compile time.
2610 function Same_Type (T1, T2 : Entity_Id) return Boolean;
2611 -- Determines if T1 and T2 represent exactly the same type. Two types
2612 -- are the same if they are identical, or if one is an unconstrained
2613 -- subtype of the other, or they are both common subtypes of the same
2614 -- type with identical constraints. The result returned is conservative.
2615 -- It is True if the types are known to be the same, but a result of
2616 -- False is indecisive (e.g. the compiler may not be able to tell that
2617 -- two constraints are identical).
2619 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2620 -- Determines if Node1 and Node2 are known to be the same value, which is
2621 -- true if they are both compile time known values and have the same value,
2622 -- or if they are the same object (in the sense of function Same_Object).
2623 -- A result of False does not necessarily mean they have different values,
2624 -- just that it is not possible to determine they have the same value.
2626 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
2627 -- Determine whether arbitrary type Typ is a scalar type, or contains at
2628 -- least one scalar subcomponent.
2630 function Scope_Within
2631 (Inner : Entity_Id;
2632 Outer : Entity_Id) return Boolean;
2633 -- Determine whether scope Inner appears within scope Outer. Note that
2634 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
2635 -- (B, A) may both return False.
2637 function Scope_Within_Or_Same
2638 (Inner : Entity_Id;
2639 Outer : Entity_Id) return Boolean;
2640 -- Determine whether scope Inner appears within scope Outer or both renote
2641 -- the same scope. Note that scopes are partially ordered, so Scope_Within
2642 -- (A, B) and Scope_Within (B, A) may both return False.
2644 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2645 -- Same as Basic_Set_Convention, but with an extra check for access types.
2646 -- In particular, if E is an access-to-subprogram type, and Val is a
2647 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
2648 -- Also, if the Etype of E is set and is an anonymous access type with
2649 -- no convention set, this anonymous type inherits the convention of E.
2651 procedure Set_Current_Entity (E : Entity_Id);
2652 pragma Inline (Set_Current_Entity);
2653 -- Establish the entity E as the currently visible definition of its
2654 -- associated name (i.e. the Node_Id associated with its name).
2656 procedure Set_Debug_Info_Needed (T : Entity_Id);
2657 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
2658 -- that are needed by T (for an object, the type of the object is needed,
2659 -- and for a type, various subsidiary types are needed -- see body for
2660 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
2661 -- This routine should always be used instead of Set_Needs_Debug_Info to
2662 -- ensure that subsidiary entities are properly handled.
2664 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2665 -- This procedure has the same calling sequence as Set_Entity, but it
2666 -- performs additional checks as follows:
2668 -- If Style_Check is set, then it calls a style checking routine which
2669 -- can check identifier spelling style. This procedure also takes care
2670 -- of checking the restriction No_Implementation_Identifiers.
2672 -- If restriction No_Abort_Statements is set, then it checks that the
2673 -- entity is not Ada.Task_Identification.Abort_Task.
2675 -- If restriction No_Dynamic_Attachment is set, then it checks that the
2676 -- entity is not one of the restricted names for this restriction.
2678 -- If restriction No_Long_Long_Integers is set, then it checks that the
2679 -- entity is not Standard.Long_Long_Integer.
2681 -- If restriction No_Implementation_Identifiers is set, then it checks
2682 -- that the entity is not implementation defined.
2684 procedure Set_Invalid_Scalar_Value
2685 (Scal_Typ : Float_Scalar_Id;
2686 Value : Ureal);
2687 -- Associate invalid value Value with scalar type Scal_Typ as specified by
2688 -- pragma Initialize_Scalars.
2690 procedure Set_Invalid_Scalar_Value
2691 (Scal_Typ : Integer_Scalar_Id;
2692 Value : Uint);
2693 -- Associate invalid value Value with scalar type Scal_Typ as specified by
2694 -- pragma Initialize_Scalars.
2696 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2697 pragma Inline (Set_Name_Entity_Id);
2698 -- Sets the Entity_Id value associated with the given name, which is the
2699 -- Id of the innermost visible entity with the given name. See the body
2700 -- of package Sem_Ch8 for further details on the handling of visibility.
2702 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2703 -- The arguments may be parameter associations, whose descendants
2704 -- are the optional formal name and the actual parameter. Positional
2705 -- parameters are already members of a list, and do not need to be
2706 -- chained separately. See also First_Actual and Next_Actual.
2708 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2709 pragma Inline (Set_Optimize_Alignment_Flags);
2710 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
2712 procedure Set_Public_Status (Id : Entity_Id);
2713 -- If an entity (visible or otherwise) is defined in a library
2714 -- package, or a package that is itself public, then this subprogram
2715 -- labels the entity public as well.
2717 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2718 -- N is the node for either a left hand side (Out_Param set to False),
2719 -- or an Out or In_Out parameter (Out_Param set to True). If there is
2720 -- an assignable entity being referenced, then the appropriate flag
2721 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2722 -- if Out_Param is True) is set True, and the other flag set False.
2724 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
2725 pragma Inline (Set_Rep_Info);
2726 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
2727 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
2728 -- if T1 is a base type.
2730 procedure Set_Scope_Is_Transient (V : Boolean := True);
2731 -- Set the flag Is_Transient of the current scope
2733 procedure Set_Size_Info (T1, T2 : Entity_Id);
2734 pragma Inline (Set_Size_Info);
2735 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
2736 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2737 -- in the fixed-point and discrete cases, and also copies the alignment
2738 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
2739 -- separately set if this is required to be copied also.
2741 procedure Set_SPARK_Mode (Context : Entity_Id);
2742 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
2743 -- a subprogram denoted by Context. This routine must be used in tandem
2744 -- with Restore_SPARK_Mode.
2746 function Scope_Is_Transient return Boolean;
2747 -- True if the current scope is transient
2749 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
2750 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
2751 -- True if we should ignore pragmas with the specified name. In particular,
2752 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
2753 -- predefined unit. The _Par version should be called only from the parser;
2754 -- the _Sem version should be called only during semantic analysis.
2756 function Static_Boolean (N : Node_Id) return Uint;
2757 -- This function analyzes the given expression node and then resolves it
2758 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2759 -- returned corresponding to the value, otherwise an error message is
2760 -- output and No_Uint is returned.
2762 function Static_Integer (N : Node_Id) return Uint;
2763 -- This function analyzes the given expression node and then resolves it
2764 -- as any integer type. If the result is static, then the value of the
2765 -- universal expression is returned, otherwise an error message is output
2766 -- and a value of No_Uint is returned.
2768 function Statically_Different (E1, E2 : Node_Id) return Boolean;
2769 -- Return True if it can be statically determined that the Expressions
2770 -- E1 and E2 refer to different objects
2772 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2773 -- Determine whether node N is a loop statement subject to at least one
2774 -- 'Loop_Entry attribute.
2776 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2777 -- Return the accessibility level of the view denoted by Subp
2779 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2780 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2781 -- Typ is properly sized and aligned).
2783 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2784 -- Print debugging information on entry to each unit being analyzed
2786 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2787 -- Move a list of entities from one scope to another, and recompute
2788 -- Is_Public based upon the new scope.
2790 function Type_Access_Level (Typ : Entity_Id) return Uint;
2791 -- Return the accessibility level of Typ
2793 function Type_Without_Stream_Operation
2794 (T : Entity_Id;
2795 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2796 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2797 -- is active then we cannot generate stream subprograms for composite types
2798 -- with elementary subcomponents that lack user-defined stream subprograms.
2799 -- This predicate determines whether a type has such an elementary
2800 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2801 -- prevents the construction of a composite stream operation. If Op is
2802 -- specified we check only for the given stream operation.
2804 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2805 -- Return the entity that represents declaration N, so that different
2806 -- views of the same entity have the same unique defining entity:
2807 -- * private view and full view of a deferred constant
2808 -- --> full view
2809 -- * entry spec and entry body
2810 -- --> entry spec
2811 -- * formal parameter on spec and body
2812 -- --> formal parameter on spec
2813 -- * package spec, body, and body stub
2814 -- --> package spec
2815 -- * protected type, protected body, and protected body stub
2816 -- --> protected type (full view if private)
2817 -- * subprogram spec, body, and body stub
2818 -- --> subprogram spec
2819 -- * task type, task body, and task body stub
2820 -- --> task type (full view if private)
2821 -- * private or incomplete view and full view of a type
2822 -- --> full view
2823 -- In other cases, return the defining entity for N.
2825 function Unique_Entity (E : Entity_Id) return Entity_Id;
2826 -- Return the unique entity for entity E, which would be returned by
2827 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
2829 function Unique_Name (E : Entity_Id) return String;
2830 -- Return a unique name for entity E, which could be used to identify E
2831 -- across compilation units.
2833 function Unit_Is_Visible (U : Entity_Id) return Boolean;
2834 -- Determine whether a compilation unit is visible in the current context,
2835 -- because there is a with_clause that makes the unit available. Used to
2836 -- provide better messages on common visiblity errors on operators.
2838 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2839 -- Yields Universal_Integer or Universal_Real if this is a candidate
2841 function Unqualify (Expr : Node_Id) return Node_Id;
2842 pragma Inline (Unqualify);
2843 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2844 -- returns X. If Expr is not a qualified expression, returns Expr.
2846 function Unqual_Conv (Expr : Node_Id) return Node_Id;
2847 pragma Inline (Unqual_Conv);
2848 -- Similar to Unqualify, but removes qualified expressions, type
2849 -- conversions, and unchecked conversions.
2851 function Validated_View (Typ : Entity_Id) return Entity_Id;
2852 -- Obtain the "validated view" of arbitrary type Typ which is suitable
2853 -- for verification by attributes 'Valid and 'Valid_Scalars. This view
2854 -- is the type itself or its full view while stripping away concurrency,
2855 -- derivations, and privacy.
2857 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2858 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2859 -- of a type extension or private extension declaration. If the full-view
2860 -- of private parents and progenitors is available then it is used to
2861 -- generate the list of visible ancestors; otherwise their partial
2862 -- view is added to the resulting list.
2864 function Within_Init_Proc return Boolean;
2865 -- Determines if Current_Scope is within an init proc
2867 function Within_Protected_Type (E : Entity_Id) return Boolean;
2868 -- Returns True if entity E is declared within a protected type
2870 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2871 -- Returns True if entity E is declared within scope S
2873 function Within_Subprogram_Call (N : Node_Id) return Boolean;
2874 -- Determine whether arbitrary node N appears in an entry, function, or
2875 -- procedure call.
2877 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2878 -- Output error message for incorrectly typed expression. Expr is the node
2879 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2880 -- and Expected_Type is the entity for the expected type. Note that Expr
2881 -- does not have to be a subexpression, anything with an Etype field may
2882 -- be used.
2884 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2885 -- Determine whether type Typ "yields synchronized object" as specified by
2886 -- SPARK RM 9.1. To qualify as such, a type must be
2887 -- * An array type whose element type yields a synchronized object
2888 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2889 -- * A protected type
2890 -- * A record type or type extension without defaulted discriminants
2891 -- whose components are of a type that yields a synchronized object.
2892 -- * A synchronized interface type
2893 -- * A task type
2895 function Yields_Universal_Type (N : Node_Id) return Boolean;
2896 -- Determine whether unanalyzed node N yields a universal type
2898 end Sem_Util;