Make vect_model_store_cost take a vec_load_store_type
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blob9098188e9880b38f5115bc97389d071cf5c94629
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 by the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "backend.h"
91 #include "target.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "gimple.h"
95 #include "predict.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "ssa.h"
99 #include "optabs-tree.h"
100 #include "gimple-pretty-print.h"
101 #include "alias.h"
102 #include "fold-const.h"
103 #include "gimple-fold.h"
104 #include "gimple-iterator.h"
105 #include "gimplify.h"
106 #include "gimplify-me.h"
107 #include "stor-layout.h"
108 #include "tree-cfg.h"
109 #include "tree-dfa.h"
110 #include "tree-ssa.h"
111 #include "builtins.h"
112 #include "params.h"
113 #include "internal-fn.h"
114 #include "case-cfn-macros.h"
115 #include "optabs-libfuncs.h"
116 #include "tree-eh.h"
117 #include "targhooks.h"
119 /* This structure represents one basic block that either computes a
120 division, or is a common dominator for basic block that compute a
121 division. */
122 struct occurrence {
123 /* The basic block represented by this structure. */
124 basic_block bb;
126 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
127 inserted in BB. */
128 tree recip_def;
130 /* If non-NULL, the SSA_NAME holding the definition for a squared
131 reciprocal inserted in BB. */
132 tree square_recip_def;
134 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
135 was inserted in BB. */
136 gimple *recip_def_stmt;
138 /* Pointer to a list of "struct occurrence"s for blocks dominated
139 by BB. */
140 struct occurrence *children;
142 /* Pointer to the next "struct occurrence"s in the list of blocks
143 sharing a common dominator. */
144 struct occurrence *next;
146 /* The number of divisions that are in BB before compute_merit. The
147 number of divisions that are in BB or post-dominate it after
148 compute_merit. */
149 int num_divisions;
151 /* True if the basic block has a division, false if it is a common
152 dominator for basic blocks that do. If it is false and trapping
153 math is active, BB is not a candidate for inserting a reciprocal. */
154 bool bb_has_division;
157 static struct
159 /* Number of 1.0/X ops inserted. */
160 int rdivs_inserted;
162 /* Number of 1.0/FUNC ops inserted. */
163 int rfuncs_inserted;
164 } reciprocal_stats;
166 static struct
168 /* Number of cexpi calls inserted. */
169 int inserted;
170 } sincos_stats;
172 static struct
174 /* Number of widening multiplication ops inserted. */
175 int widen_mults_inserted;
177 /* Number of integer multiply-and-accumulate ops inserted. */
178 int maccs_inserted;
180 /* Number of fp fused multiply-add ops inserted. */
181 int fmas_inserted;
183 /* Number of divmod calls inserted. */
184 int divmod_calls_inserted;
185 } widen_mul_stats;
187 /* The instance of "struct occurrence" representing the highest
188 interesting block in the dominator tree. */
189 static struct occurrence *occ_head;
191 /* Allocation pool for getting instances of "struct occurrence". */
192 static object_allocator<occurrence> *occ_pool;
196 /* Allocate and return a new struct occurrence for basic block BB, and
197 whose children list is headed by CHILDREN. */
198 static struct occurrence *
199 occ_new (basic_block bb, struct occurrence *children)
201 struct occurrence *occ;
203 bb->aux = occ = occ_pool->allocate ();
204 memset (occ, 0, sizeof (struct occurrence));
206 occ->bb = bb;
207 occ->children = children;
208 return occ;
212 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
213 list of "struct occurrence"s, one per basic block, having IDOM as
214 their common dominator.
216 We try to insert NEW_OCC as deep as possible in the tree, and we also
217 insert any other block that is a common dominator for BB and one
218 block already in the tree. */
220 static void
221 insert_bb (struct occurrence *new_occ, basic_block idom,
222 struct occurrence **p_head)
224 struct occurrence *occ, **p_occ;
226 for (p_occ = p_head; (occ = *p_occ) != NULL; )
228 basic_block bb = new_occ->bb, occ_bb = occ->bb;
229 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
230 if (dom == bb)
232 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
233 from its list. */
234 *p_occ = occ->next;
235 occ->next = new_occ->children;
236 new_occ->children = occ;
238 /* Try the next block (it may as well be dominated by BB). */
241 else if (dom == occ_bb)
243 /* OCC_BB dominates BB. Tail recurse to look deeper. */
244 insert_bb (new_occ, dom, &occ->children);
245 return;
248 else if (dom != idom)
250 gcc_assert (!dom->aux);
252 /* There is a dominator between IDOM and BB, add it and make
253 two children out of NEW_OCC and OCC. First, remove OCC from
254 its list. */
255 *p_occ = occ->next;
256 new_occ->next = occ;
257 occ->next = NULL;
259 /* None of the previous blocks has DOM as a dominator: if we tail
260 recursed, we would reexamine them uselessly. Just switch BB with
261 DOM, and go on looking for blocks dominated by DOM. */
262 new_occ = occ_new (dom, new_occ);
265 else
267 /* Nothing special, go on with the next element. */
268 p_occ = &occ->next;
272 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
273 new_occ->next = *p_head;
274 *p_head = new_occ;
277 /* Register that we found a division in BB.
278 IMPORTANCE is a measure of how much weighting to give
279 that division. Use IMPORTANCE = 2 to register a single
280 division. If the division is going to be found multiple
281 times use 1 (as it is with squares). */
283 static inline void
284 register_division_in (basic_block bb, int importance)
286 struct occurrence *occ;
288 occ = (struct occurrence *) bb->aux;
289 if (!occ)
291 occ = occ_new (bb, NULL);
292 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
295 occ->bb_has_division = true;
296 occ->num_divisions += importance;
300 /* Compute the number of divisions that postdominate each block in OCC and
301 its children. */
303 static void
304 compute_merit (struct occurrence *occ)
306 struct occurrence *occ_child;
307 basic_block dom = occ->bb;
309 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
311 basic_block bb;
312 if (occ_child->children)
313 compute_merit (occ_child);
315 if (flag_exceptions)
316 bb = single_noncomplex_succ (dom);
317 else
318 bb = dom;
320 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
321 occ->num_divisions += occ_child->num_divisions;
326 /* Return whether USE_STMT is a floating-point division by DEF. */
327 static inline bool
328 is_division_by (gimple *use_stmt, tree def)
330 return is_gimple_assign (use_stmt)
331 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
332 && gimple_assign_rhs2 (use_stmt) == def
333 /* Do not recognize x / x as valid division, as we are getting
334 confused later by replacing all immediate uses x in such
335 a stmt. */
336 && gimple_assign_rhs1 (use_stmt) != def;
339 /* Return whether USE_STMT is DEF * DEF. */
340 static inline bool
341 is_square_of (gimple *use_stmt, tree def)
343 if (gimple_code (use_stmt) == GIMPLE_ASSIGN
344 && gimple_assign_rhs_code (use_stmt) == MULT_EXPR)
346 tree op0 = gimple_assign_rhs1 (use_stmt);
347 tree op1 = gimple_assign_rhs2 (use_stmt);
349 return op0 == op1 && op0 == def;
351 return 0;
354 /* Return whether USE_STMT is a floating-point division by
355 DEF * DEF. */
356 static inline bool
357 is_division_by_square (gimple *use_stmt, tree def)
359 if (gimple_code (use_stmt) == GIMPLE_ASSIGN
360 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
361 && gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs2 (use_stmt))
363 tree denominator = gimple_assign_rhs2 (use_stmt);
364 if (TREE_CODE (denominator) == SSA_NAME)
366 return is_square_of (SSA_NAME_DEF_STMT (denominator), def);
369 return 0;
372 /* Walk the subset of the dominator tree rooted at OCC, setting the
373 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
374 the given basic block. The field may be left NULL, of course,
375 if it is not possible or profitable to do the optimization.
377 DEF_BSI is an iterator pointing at the statement defining DEF.
378 If RECIP_DEF is set, a dominator already has a computation that can
379 be used.
381 If should_insert_square_recip is set, then this also inserts
382 the square of the reciprocal immediately after the definition
383 of the reciprocal. */
385 static void
386 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
387 tree def, tree recip_def, tree square_recip_def,
388 int should_insert_square_recip, int threshold)
390 tree type;
391 gassign *new_stmt, *new_square_stmt;
392 gimple_stmt_iterator gsi;
393 struct occurrence *occ_child;
395 if (!recip_def
396 && (occ->bb_has_division || !flag_trapping_math)
397 /* Divide by two as all divisions are counted twice in
398 the costing loop. */
399 && occ->num_divisions / 2 >= threshold)
401 /* Make a variable with the replacement and substitute it. */
402 type = TREE_TYPE (def);
403 recip_def = create_tmp_reg (type, "reciptmp");
404 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
405 build_one_cst (type), def);
407 if (should_insert_square_recip)
409 square_recip_def = create_tmp_reg (type, "powmult_reciptmp");
410 new_square_stmt = gimple_build_assign (square_recip_def, MULT_EXPR,
411 recip_def, recip_def);
414 if (occ->bb_has_division)
416 /* Case 1: insert before an existing division. */
417 gsi = gsi_after_labels (occ->bb);
418 while (!gsi_end_p (gsi)
419 && (!is_division_by (gsi_stmt (gsi), def))
420 && (!is_division_by_square (gsi_stmt (gsi), def)))
421 gsi_next (&gsi);
423 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
425 else if (def_gsi && occ->bb == def_gsi->bb)
427 /* Case 2: insert right after the definition. Note that this will
428 never happen if the definition statement can throw, because in
429 that case the sole successor of the statement's basic block will
430 dominate all the uses as well. */
431 gsi = *def_gsi;
432 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
434 else
436 /* Case 3: insert in a basic block not containing defs/uses. */
437 gsi = gsi_after_labels (occ->bb);
438 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
441 /* Regardless of which case the reciprocal as inserted in,
442 we insert the square immediately after the reciprocal. */
443 if (should_insert_square_recip)
444 gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
446 reciprocal_stats.rdivs_inserted++;
448 occ->recip_def_stmt = new_stmt;
451 occ->recip_def = recip_def;
452 occ->square_recip_def = square_recip_def;
453 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
454 insert_reciprocals (def_gsi, occ_child, def, recip_def,
455 square_recip_def, should_insert_square_recip,
456 threshold);
459 /* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)).
460 Take as argument the use for (x * x). */
461 static inline void
462 replace_reciprocal_squares (use_operand_p use_p)
464 gimple *use_stmt = USE_STMT (use_p);
465 basic_block bb = gimple_bb (use_stmt);
466 struct occurrence *occ = (struct occurrence *) bb->aux;
468 if (optimize_bb_for_speed_p (bb) && occ->square_recip_def
469 && occ->recip_def)
471 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
472 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
473 gimple_assign_set_rhs2 (use_stmt, occ->square_recip_def);
474 SET_USE (use_p, occ->square_recip_def);
475 fold_stmt_inplace (&gsi);
476 update_stmt (use_stmt);
481 /* Replace the division at USE_P with a multiplication by the reciprocal, if
482 possible. */
484 static inline void
485 replace_reciprocal (use_operand_p use_p)
487 gimple *use_stmt = USE_STMT (use_p);
488 basic_block bb = gimple_bb (use_stmt);
489 struct occurrence *occ = (struct occurrence *) bb->aux;
491 if (optimize_bb_for_speed_p (bb)
492 && occ->recip_def && use_stmt != occ->recip_def_stmt)
494 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
495 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
496 SET_USE (use_p, occ->recip_def);
497 fold_stmt_inplace (&gsi);
498 update_stmt (use_stmt);
503 /* Free OCC and return one more "struct occurrence" to be freed. */
505 static struct occurrence *
506 free_bb (struct occurrence *occ)
508 struct occurrence *child, *next;
510 /* First get the two pointers hanging off OCC. */
511 next = occ->next;
512 child = occ->children;
513 occ->bb->aux = NULL;
514 occ_pool->remove (occ);
516 /* Now ensure that we don't recurse unless it is necessary. */
517 if (!child)
518 return next;
519 else
521 while (next)
522 next = free_bb (next);
524 return child;
529 /* Look for floating-point divisions among DEF's uses, and try to
530 replace them by multiplications with the reciprocal. Add
531 as many statements computing the reciprocal as needed.
533 DEF must be a GIMPLE register of a floating-point type. */
535 static void
536 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
538 use_operand_p use_p, square_use_p;
539 imm_use_iterator use_iter, square_use_iter;
540 tree square_def;
541 struct occurrence *occ;
542 int count = 0;
543 int threshold;
544 int square_recip_count = 0;
545 int sqrt_recip_count = 0;
547 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def)
548 && TREE_CODE (def) == SSA_NAME);
549 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
551 /* If DEF is a square (x * x), count the number of divisions by x.
552 If there are more divisions by x than by (DEF * DEF), prefer to optimize
553 the reciprocal of x instead of DEF. This improves cases like:
554 def = x * x
555 t0 = a / def
556 t1 = b / def
557 t2 = c / x
558 Reciprocal optimization of x results in 1 division rather than 2 or 3. */
559 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
561 if (is_gimple_assign (def_stmt)
562 && gimple_assign_rhs_code (def_stmt) == MULT_EXPR
563 && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
564 && gimple_assign_rhs1 (def_stmt) == gimple_assign_rhs2 (def_stmt))
566 tree op0 = gimple_assign_rhs1 (def_stmt);
568 FOR_EACH_IMM_USE_FAST (use_p, use_iter, op0)
570 gimple *use_stmt = USE_STMT (use_p);
571 if (is_division_by (use_stmt, op0))
572 sqrt_recip_count++;
576 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
578 gimple *use_stmt = USE_STMT (use_p);
579 if (is_division_by (use_stmt, def))
581 register_division_in (gimple_bb (use_stmt), 2);
582 count++;
585 if (is_square_of (use_stmt, def))
587 square_def = gimple_assign_lhs (use_stmt);
588 FOR_EACH_IMM_USE_FAST (square_use_p, square_use_iter, square_def)
590 gimple *square_use_stmt = USE_STMT (square_use_p);
591 if (is_division_by (square_use_stmt, square_def))
593 /* This is executed twice for each division by a square. */
594 register_division_in (gimple_bb (square_use_stmt), 1);
595 square_recip_count++;
601 /* Square reciprocals were counted twice above. */
602 square_recip_count /= 2;
604 /* If it is more profitable to optimize 1 / x, don't optimize 1 / (x * x). */
605 if (sqrt_recip_count > square_recip_count)
606 return;
608 /* Do the expensive part only if we can hope to optimize something. */
609 if (count + square_recip_count >= threshold && count >= 1)
611 gimple *use_stmt;
612 for (occ = occ_head; occ; occ = occ->next)
614 compute_merit (occ);
615 insert_reciprocals (def_gsi, occ, def, NULL, NULL,
616 square_recip_count, threshold);
619 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
621 if (is_division_by (use_stmt, def))
623 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
624 replace_reciprocal (use_p);
626 else if (square_recip_count > 0 && is_square_of (use_stmt, def))
628 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
630 /* Find all uses of the square that are divisions and
631 * replace them by multiplications with the inverse. */
632 imm_use_iterator square_iterator;
633 gimple *powmult_use_stmt = USE_STMT (use_p);
634 tree powmult_def_name = gimple_assign_lhs (powmult_use_stmt);
636 FOR_EACH_IMM_USE_STMT (powmult_use_stmt,
637 square_iterator, powmult_def_name)
638 FOR_EACH_IMM_USE_ON_STMT (square_use_p, square_iterator)
640 gimple *powmult_use_stmt = USE_STMT (square_use_p);
641 if (is_division_by (powmult_use_stmt, powmult_def_name))
642 replace_reciprocal_squares (square_use_p);
649 for (occ = occ_head; occ; )
650 occ = free_bb (occ);
652 occ_head = NULL;
655 /* Return an internal function that implements the reciprocal of CALL,
656 or IFN_LAST if there is no such function that the target supports. */
658 internal_fn
659 internal_fn_reciprocal (gcall *call)
661 internal_fn ifn;
663 switch (gimple_call_combined_fn (call))
665 CASE_CFN_SQRT:
666 CASE_CFN_SQRT_FN:
667 ifn = IFN_RSQRT;
668 break;
670 default:
671 return IFN_LAST;
674 tree_pair types = direct_internal_fn_types (ifn, call);
675 if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
676 return IFN_LAST;
678 return ifn;
681 /* Go through all the floating-point SSA_NAMEs, and call
682 execute_cse_reciprocals_1 on each of them. */
683 namespace {
685 const pass_data pass_data_cse_reciprocals =
687 GIMPLE_PASS, /* type */
688 "recip", /* name */
689 OPTGROUP_NONE, /* optinfo_flags */
690 TV_TREE_RECIP, /* tv_id */
691 PROP_ssa, /* properties_required */
692 0, /* properties_provided */
693 0, /* properties_destroyed */
694 0, /* todo_flags_start */
695 TODO_update_ssa, /* todo_flags_finish */
698 class pass_cse_reciprocals : public gimple_opt_pass
700 public:
701 pass_cse_reciprocals (gcc::context *ctxt)
702 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
705 /* opt_pass methods: */
706 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
707 virtual unsigned int execute (function *);
709 }; // class pass_cse_reciprocals
711 unsigned int
712 pass_cse_reciprocals::execute (function *fun)
714 basic_block bb;
715 tree arg;
717 occ_pool = new object_allocator<occurrence> ("dominators for recip");
719 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
720 calculate_dominance_info (CDI_DOMINATORS);
721 calculate_dominance_info (CDI_POST_DOMINATORS);
723 if (flag_checking)
724 FOR_EACH_BB_FN (bb, fun)
725 gcc_assert (!bb->aux);
727 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
728 if (FLOAT_TYPE_P (TREE_TYPE (arg))
729 && is_gimple_reg (arg))
731 tree name = ssa_default_def (fun, arg);
732 if (name)
733 execute_cse_reciprocals_1 (NULL, name);
736 FOR_EACH_BB_FN (bb, fun)
738 tree def;
740 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
741 gsi_next (&gsi))
743 gphi *phi = gsi.phi ();
744 def = PHI_RESULT (phi);
745 if (! virtual_operand_p (def)
746 && FLOAT_TYPE_P (TREE_TYPE (def)))
747 execute_cse_reciprocals_1 (NULL, def);
750 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
751 gsi_next (&gsi))
753 gimple *stmt = gsi_stmt (gsi);
755 if (gimple_has_lhs (stmt)
756 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
757 && FLOAT_TYPE_P (TREE_TYPE (def))
758 && TREE_CODE (def) == SSA_NAME)
759 execute_cse_reciprocals_1 (&gsi, def);
762 if (optimize_bb_for_size_p (bb))
763 continue;
765 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
766 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
767 gsi_next (&gsi))
769 gimple *stmt = gsi_stmt (gsi);
771 if (is_gimple_assign (stmt)
772 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
774 tree arg1 = gimple_assign_rhs2 (stmt);
775 gimple *stmt1;
777 if (TREE_CODE (arg1) != SSA_NAME)
778 continue;
780 stmt1 = SSA_NAME_DEF_STMT (arg1);
782 if (is_gimple_call (stmt1)
783 && gimple_call_lhs (stmt1))
785 bool fail;
786 imm_use_iterator ui;
787 use_operand_p use_p;
788 tree fndecl = NULL_TREE;
790 gcall *call = as_a <gcall *> (stmt1);
791 internal_fn ifn = internal_fn_reciprocal (call);
792 if (ifn == IFN_LAST)
794 fndecl = gimple_call_fndecl (call);
795 if (!fndecl
796 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
797 continue;
798 fndecl = targetm.builtin_reciprocal (fndecl);
799 if (!fndecl)
800 continue;
803 /* Check that all uses of the SSA name are divisions,
804 otherwise replacing the defining statement will do
805 the wrong thing. */
806 fail = false;
807 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
809 gimple *stmt2 = USE_STMT (use_p);
810 if (is_gimple_debug (stmt2))
811 continue;
812 if (!is_gimple_assign (stmt2)
813 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
814 || gimple_assign_rhs1 (stmt2) == arg1
815 || gimple_assign_rhs2 (stmt2) != arg1)
817 fail = true;
818 break;
821 if (fail)
822 continue;
824 gimple_replace_ssa_lhs (call, arg1);
825 if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
827 auto_vec<tree, 4> args;
828 for (unsigned int i = 0;
829 i < gimple_call_num_args (call); i++)
830 args.safe_push (gimple_call_arg (call, i));
831 gcall *stmt2;
832 if (ifn == IFN_LAST)
833 stmt2 = gimple_build_call_vec (fndecl, args);
834 else
835 stmt2 = gimple_build_call_internal_vec (ifn, args);
836 gimple_call_set_lhs (stmt2, arg1);
837 if (gimple_vdef (call))
839 gimple_set_vdef (stmt2, gimple_vdef (call));
840 SSA_NAME_DEF_STMT (gimple_vdef (stmt2)) = stmt2;
842 gimple_call_set_nothrow (stmt2,
843 gimple_call_nothrow_p (call));
844 gimple_set_vuse (stmt2, gimple_vuse (call));
845 gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
846 gsi_replace (&gsi2, stmt2, true);
848 else
850 if (ifn == IFN_LAST)
851 gimple_call_set_fndecl (call, fndecl);
852 else
853 gimple_call_set_internal_fn (call, ifn);
854 update_stmt (call);
856 reciprocal_stats.rfuncs_inserted++;
858 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
860 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
861 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
862 fold_stmt_inplace (&gsi);
863 update_stmt (stmt);
870 statistics_counter_event (fun, "reciprocal divs inserted",
871 reciprocal_stats.rdivs_inserted);
872 statistics_counter_event (fun, "reciprocal functions inserted",
873 reciprocal_stats.rfuncs_inserted);
875 free_dominance_info (CDI_DOMINATORS);
876 free_dominance_info (CDI_POST_DOMINATORS);
877 delete occ_pool;
878 return 0;
881 } // anon namespace
883 gimple_opt_pass *
884 make_pass_cse_reciprocals (gcc::context *ctxt)
886 return new pass_cse_reciprocals (ctxt);
889 /* Records an occurrence at statement USE_STMT in the vector of trees
890 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
891 is not yet initialized. Returns true if the occurrence was pushed on
892 the vector. Adjusts *TOP_BB to be the basic block dominating all
893 statements in the vector. */
895 static bool
896 maybe_record_sincos (vec<gimple *> *stmts,
897 basic_block *top_bb, gimple *use_stmt)
899 basic_block use_bb = gimple_bb (use_stmt);
900 if (*top_bb
901 && (*top_bb == use_bb
902 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
903 stmts->safe_push (use_stmt);
904 else if (!*top_bb
905 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
907 stmts->safe_push (use_stmt);
908 *top_bb = use_bb;
910 else
911 return false;
913 return true;
916 /* Look for sin, cos and cexpi calls with the same argument NAME and
917 create a single call to cexpi CSEing the result in this case.
918 We first walk over all immediate uses of the argument collecting
919 statements that we can CSE in a vector and in a second pass replace
920 the statement rhs with a REALPART or IMAGPART expression on the
921 result of the cexpi call we insert before the use statement that
922 dominates all other candidates. */
924 static bool
925 execute_cse_sincos_1 (tree name)
927 gimple_stmt_iterator gsi;
928 imm_use_iterator use_iter;
929 tree fndecl, res, type;
930 gimple *def_stmt, *use_stmt, *stmt;
931 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
932 auto_vec<gimple *> stmts;
933 basic_block top_bb = NULL;
934 int i;
935 bool cfg_changed = false;
937 type = TREE_TYPE (name);
938 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
940 if (gimple_code (use_stmt) != GIMPLE_CALL
941 || !gimple_call_lhs (use_stmt))
942 continue;
944 switch (gimple_call_combined_fn (use_stmt))
946 CASE_CFN_COS:
947 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
948 break;
950 CASE_CFN_SIN:
951 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
952 break;
954 CASE_CFN_CEXPI:
955 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
956 break;
958 default:;
962 if (seen_cos + seen_sin + seen_cexpi <= 1)
963 return false;
965 /* Simply insert cexpi at the beginning of top_bb but not earlier than
966 the name def statement. */
967 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
968 if (!fndecl)
969 return false;
970 stmt = gimple_build_call (fndecl, 1, name);
971 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
972 gimple_call_set_lhs (stmt, res);
974 def_stmt = SSA_NAME_DEF_STMT (name);
975 if (!SSA_NAME_IS_DEFAULT_DEF (name)
976 && gimple_code (def_stmt) != GIMPLE_PHI
977 && gimple_bb (def_stmt) == top_bb)
979 gsi = gsi_for_stmt (def_stmt);
980 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
982 else
984 gsi = gsi_after_labels (top_bb);
985 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
987 sincos_stats.inserted++;
989 /* And adjust the recorded old call sites. */
990 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
992 tree rhs = NULL;
994 switch (gimple_call_combined_fn (use_stmt))
996 CASE_CFN_COS:
997 rhs = fold_build1 (REALPART_EXPR, type, res);
998 break;
1000 CASE_CFN_SIN:
1001 rhs = fold_build1 (IMAGPART_EXPR, type, res);
1002 break;
1004 CASE_CFN_CEXPI:
1005 rhs = res;
1006 break;
1008 default:;
1009 gcc_unreachable ();
1012 /* Replace call with a copy. */
1013 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
1015 gsi = gsi_for_stmt (use_stmt);
1016 gsi_replace (&gsi, stmt, true);
1017 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
1018 cfg_changed = true;
1021 return cfg_changed;
1024 /* To evaluate powi(x,n), the floating point value x raised to the
1025 constant integer exponent n, we use a hybrid algorithm that
1026 combines the "window method" with look-up tables. For an
1027 introduction to exponentiation algorithms and "addition chains",
1028 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
1029 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
1030 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
1031 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
1033 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
1034 multiplications to inline before calling the system library's pow
1035 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
1036 so this default never requires calling pow, powf or powl. */
1038 #ifndef POWI_MAX_MULTS
1039 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
1040 #endif
1042 /* The size of the "optimal power tree" lookup table. All
1043 exponents less than this value are simply looked up in the
1044 powi_table below. This threshold is also used to size the
1045 cache of pseudo registers that hold intermediate results. */
1046 #define POWI_TABLE_SIZE 256
1048 /* The size, in bits of the window, used in the "window method"
1049 exponentiation algorithm. This is equivalent to a radix of
1050 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
1051 #define POWI_WINDOW_SIZE 3
1053 /* The following table is an efficient representation of an
1054 "optimal power tree". For each value, i, the corresponding
1055 value, j, in the table states than an optimal evaluation
1056 sequence for calculating pow(x,i) can be found by evaluating
1057 pow(x,j)*pow(x,i-j). An optimal power tree for the first
1058 100 integers is given in Knuth's "Seminumerical algorithms". */
1060 static const unsigned char powi_table[POWI_TABLE_SIZE] =
1062 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
1063 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
1064 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
1065 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
1066 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
1067 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
1068 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
1069 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
1070 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
1071 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
1072 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
1073 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
1074 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
1075 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
1076 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
1077 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
1078 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
1079 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
1080 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
1081 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
1082 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
1083 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
1084 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
1085 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
1086 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
1087 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
1088 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
1089 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
1090 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
1091 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
1092 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
1093 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
1097 /* Return the number of multiplications required to calculate
1098 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
1099 subroutine of powi_cost. CACHE is an array indicating
1100 which exponents have already been calculated. */
1102 static int
1103 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
1105 /* If we've already calculated this exponent, then this evaluation
1106 doesn't require any additional multiplications. */
1107 if (cache[n])
1108 return 0;
1110 cache[n] = true;
1111 return powi_lookup_cost (n - powi_table[n], cache)
1112 + powi_lookup_cost (powi_table[n], cache) + 1;
1115 /* Return the number of multiplications required to calculate
1116 powi(x,n) for an arbitrary x, given the exponent N. This
1117 function needs to be kept in sync with powi_as_mults below. */
1119 static int
1120 powi_cost (HOST_WIDE_INT n)
1122 bool cache[POWI_TABLE_SIZE];
1123 unsigned HOST_WIDE_INT digit;
1124 unsigned HOST_WIDE_INT val;
1125 int result;
1127 if (n == 0)
1128 return 0;
1130 /* Ignore the reciprocal when calculating the cost. */
1131 val = (n < 0) ? -n : n;
1133 /* Initialize the exponent cache. */
1134 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
1135 cache[1] = true;
1137 result = 0;
1139 while (val >= POWI_TABLE_SIZE)
1141 if (val & 1)
1143 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
1144 result += powi_lookup_cost (digit, cache)
1145 + POWI_WINDOW_SIZE + 1;
1146 val >>= POWI_WINDOW_SIZE;
1148 else
1150 val >>= 1;
1151 result++;
1155 return result + powi_lookup_cost (val, cache);
1158 /* Recursive subroutine of powi_as_mults. This function takes the
1159 array, CACHE, of already calculated exponents and an exponent N and
1160 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1162 static tree
1163 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
1164 HOST_WIDE_INT n, tree *cache)
1166 tree op0, op1, ssa_target;
1167 unsigned HOST_WIDE_INT digit;
1168 gassign *mult_stmt;
1170 if (n < POWI_TABLE_SIZE && cache[n])
1171 return cache[n];
1173 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1175 if (n < POWI_TABLE_SIZE)
1177 cache[n] = ssa_target;
1178 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1179 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1181 else if (n & 1)
1183 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1184 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1185 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1187 else
1189 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1190 op1 = op0;
1193 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1194 gimple_set_location (mult_stmt, loc);
1195 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1197 return ssa_target;
1200 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1201 This function needs to be kept in sync with powi_cost above. */
1203 static tree
1204 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1205 tree arg0, HOST_WIDE_INT n)
1207 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1208 gassign *div_stmt;
1209 tree target;
1211 if (n == 0)
1212 return build_real (type, dconst1);
1214 memset (cache, 0, sizeof (cache));
1215 cache[1] = arg0;
1217 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1218 if (n >= 0)
1219 return result;
1221 /* If the original exponent was negative, reciprocate the result. */
1222 target = make_temp_ssa_name (type, NULL, "powmult");
1223 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1224 build_real (type, dconst1), result);
1225 gimple_set_location (div_stmt, loc);
1226 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1228 return target;
1231 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1232 location info LOC. If the arguments are appropriate, create an
1233 equivalent sequence of statements prior to GSI using an optimal
1234 number of multiplications, and return an expession holding the
1235 result. */
1237 static tree
1238 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1239 tree arg0, HOST_WIDE_INT n)
1241 /* Avoid largest negative number. */
1242 if (n != -n
1243 && ((n >= -1 && n <= 2)
1244 || (optimize_function_for_speed_p (cfun)
1245 && powi_cost (n) <= POWI_MAX_MULTS)))
1246 return powi_as_mults (gsi, loc, arg0, n);
1248 return NULL_TREE;
1251 /* Build a gimple call statement that calls FN with argument ARG.
1252 Set the lhs of the call statement to a fresh SSA name. Insert the
1253 statement prior to GSI's current position, and return the fresh
1254 SSA name. */
1256 static tree
1257 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1258 tree fn, tree arg)
1260 gcall *call_stmt;
1261 tree ssa_target;
1263 call_stmt = gimple_build_call (fn, 1, arg);
1264 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1265 gimple_set_lhs (call_stmt, ssa_target);
1266 gimple_set_location (call_stmt, loc);
1267 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1269 return ssa_target;
1272 /* Build a gimple binary operation with the given CODE and arguments
1273 ARG0, ARG1, assigning the result to a new SSA name for variable
1274 TARGET. Insert the statement prior to GSI's current position, and
1275 return the fresh SSA name.*/
1277 static tree
1278 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1279 const char *name, enum tree_code code,
1280 tree arg0, tree arg1)
1282 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1283 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1284 gimple_set_location (stmt, loc);
1285 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1286 return result;
1289 /* Build a gimple reference operation with the given CODE and argument
1290 ARG, assigning the result to a new SSA name of TYPE with NAME.
1291 Insert the statement prior to GSI's current position, and return
1292 the fresh SSA name. */
1294 static inline tree
1295 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1296 const char *name, enum tree_code code, tree arg0)
1298 tree result = make_temp_ssa_name (type, NULL, name);
1299 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
1300 gimple_set_location (stmt, loc);
1301 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1302 return result;
1305 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1306 prior to GSI's current position, and return the fresh SSA name. */
1308 static tree
1309 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1310 tree type, tree val)
1312 tree result = make_ssa_name (type);
1313 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1314 gimple_set_location (stmt, loc);
1315 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1316 return result;
1319 struct pow_synth_sqrt_info
1321 bool *factors;
1322 unsigned int deepest;
1323 unsigned int num_mults;
1326 /* Return true iff the real value C can be represented as a
1327 sum of powers of 0.5 up to N. That is:
1328 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1329 Record in INFO the various parameters of the synthesis algorithm such
1330 as the factors a[i], the maximum 0.5 power and the number of
1331 multiplications that will be required. */
1333 bool
1334 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1335 struct pow_synth_sqrt_info *info)
1337 REAL_VALUE_TYPE factor = dconsthalf;
1338 REAL_VALUE_TYPE remainder = c;
1340 info->deepest = 0;
1341 info->num_mults = 0;
1342 memset (info->factors, 0, n * sizeof (bool));
1344 for (unsigned i = 0; i < n; i++)
1346 REAL_VALUE_TYPE res;
1348 /* If something inexact happened bail out now. */
1349 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
1350 return false;
1352 /* We have hit zero. The number is representable as a sum
1353 of powers of 0.5. */
1354 if (real_equal (&res, &dconst0))
1356 info->factors[i] = true;
1357 info->deepest = i + 1;
1358 return true;
1360 else if (!REAL_VALUE_NEGATIVE (res))
1362 remainder = res;
1363 info->factors[i] = true;
1364 info->num_mults++;
1366 else
1367 info->factors[i] = false;
1369 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
1371 return false;
1374 /* Return the tree corresponding to FN being applied
1375 to ARG N times at GSI and LOC.
1376 Look up previous results from CACHE if need be.
1377 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1379 static tree
1380 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1381 tree fn, location_t loc, tree *cache)
1383 tree res = cache[n];
1384 if (!res)
1386 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1387 res = build_and_insert_call (gsi, loc, fn, prev);
1388 cache[n] = res;
1391 return res;
1394 /* Print to STREAM the repeated application of function FNAME to ARG
1395 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1396 "foo (foo (x))". */
1398 static void
1399 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1400 unsigned int n)
1402 if (n == 0)
1403 fprintf (stream, "%s", arg);
1404 else
1406 fprintf (stream, "%s (", fname);
1407 print_nested_fn (stream, fname, arg, n - 1);
1408 fprintf (stream, ")");
1412 /* Print to STREAM the fractional sequence of sqrt chains
1413 applied to ARG, described by INFO. Used for the dump file. */
1415 static void
1416 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1417 struct pow_synth_sqrt_info *info)
1419 for (unsigned int i = 0; i < info->deepest; i++)
1421 bool is_set = info->factors[i];
1422 if (is_set)
1424 print_nested_fn (stream, "sqrt", arg, i + 1);
1425 if (i != info->deepest - 1)
1426 fprintf (stream, " * ");
1431 /* Print to STREAM a representation of raising ARG to an integer
1432 power N. Used for the dump file. */
1434 static void
1435 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1437 if (n > 1)
1438 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1439 else if (n == 1)
1440 fprintf (stream, "%s", arg);
1443 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1444 square roots. Place at GSI and LOC. Limit the maximum depth
1445 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1446 result of the expanded sequence or NULL_TREE if the expansion failed.
1448 This routine assumes that ARG1 is a real number with a fractional part
1449 (the integer exponent case will have been handled earlier in
1450 gimple_expand_builtin_pow).
1452 For ARG1 > 0.0:
1453 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1454 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1455 FRAC_PART == ARG1 - WHOLE_PART:
1456 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1457 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1458 if it can be expressed as such, that is if FRAC_PART satisfies:
1459 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1460 where integer a[i] is either 0 or 1.
1462 Example:
1463 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1464 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1466 For ARG1 < 0.0 there are two approaches:
1467 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1468 is calculated as above.
1470 Example:
1471 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1472 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1474 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1475 FRAC_PART := ARG1 - WHOLE_PART
1476 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1477 Example:
1478 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1479 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1481 For ARG1 < 0.0 we choose between (A) and (B) depending on
1482 how many multiplications we'd have to do.
1483 So, for the example in (B): POW (x, -5.875), if we were to
1484 follow algorithm (A) we would produce:
1485 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1486 which contains more multiplications than approach (B).
1488 Hopefully, this approach will eliminate potentially expensive POW library
1489 calls when unsafe floating point math is enabled and allow the compiler to
1490 further optimise the multiplies, square roots and divides produced by this
1491 function. */
1493 static tree
1494 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1495 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1497 tree type = TREE_TYPE (arg0);
1498 machine_mode mode = TYPE_MODE (type);
1499 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1500 bool one_over = true;
1502 if (!sqrtfn)
1503 return NULL_TREE;
1505 if (TREE_CODE (arg1) != REAL_CST)
1506 return NULL_TREE;
1508 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1510 gcc_assert (max_depth > 0);
1511 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1513 struct pow_synth_sqrt_info synth_info;
1514 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1515 synth_info.deepest = 0;
1516 synth_info.num_mults = 0;
1518 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1519 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1521 /* The whole and fractional parts of exp. */
1522 REAL_VALUE_TYPE whole_part;
1523 REAL_VALUE_TYPE frac_part;
1525 real_floor (&whole_part, mode, &exp);
1526 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
1529 REAL_VALUE_TYPE ceil_whole = dconst0;
1530 REAL_VALUE_TYPE ceil_fract = dconst0;
1532 if (neg_exp)
1534 real_ceil (&ceil_whole, mode, &exp);
1535 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
1538 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1539 return NULL_TREE;
1541 /* Check whether it's more profitable to not use 1.0 / ... */
1542 if (neg_exp)
1544 struct pow_synth_sqrt_info alt_synth_info;
1545 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1546 alt_synth_info.deepest = 0;
1547 alt_synth_info.num_mults = 0;
1549 if (representable_as_half_series_p (ceil_fract, max_depth,
1550 &alt_synth_info)
1551 && alt_synth_info.deepest <= synth_info.deepest
1552 && alt_synth_info.num_mults < synth_info.num_mults)
1554 whole_part = ceil_whole;
1555 frac_part = ceil_fract;
1556 synth_info.deepest = alt_synth_info.deepest;
1557 synth_info.num_mults = alt_synth_info.num_mults;
1558 memcpy (synth_info.factors, alt_synth_info.factors,
1559 (max_depth + 1) * sizeof (bool));
1560 one_over = false;
1564 HOST_WIDE_INT n = real_to_integer (&whole_part);
1565 REAL_VALUE_TYPE cint;
1566 real_from_integer (&cint, VOIDmode, n, SIGNED);
1568 if (!real_identical (&whole_part, &cint))
1569 return NULL_TREE;
1571 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1572 return NULL_TREE;
1574 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1576 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1578 /* Calculate the integer part of the exponent. */
1579 if (n > 1)
1581 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1582 if (!integer_res)
1583 return NULL_TREE;
1586 if (dump_file)
1588 char string[64];
1590 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1591 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1593 if (neg_exp)
1595 if (one_over)
1597 fprintf (dump_file, "1.0 / (");
1598 dump_integer_part (dump_file, "x", n);
1599 if (n > 0)
1600 fprintf (dump_file, " * ");
1601 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1602 fprintf (dump_file, ")");
1604 else
1606 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1607 fprintf (dump_file, " / (");
1608 dump_integer_part (dump_file, "x", n);
1609 fprintf (dump_file, ")");
1612 else
1614 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1615 if (n > 0)
1616 fprintf (dump_file, " * ");
1617 dump_integer_part (dump_file, "x", n);
1620 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1624 tree fract_res = NULL_TREE;
1625 cache[0] = arg0;
1627 /* Calculate the fractional part of the exponent. */
1628 for (unsigned i = 0; i < synth_info.deepest; i++)
1630 if (synth_info.factors[i])
1632 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1634 if (!fract_res)
1635 fract_res = sqrt_chain;
1637 else
1638 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1639 fract_res, sqrt_chain);
1643 tree res = NULL_TREE;
1645 if (neg_exp)
1647 if (one_over)
1649 if (n > 0)
1650 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1651 fract_res, integer_res);
1652 else
1653 res = fract_res;
1655 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1656 build_real (type, dconst1), res);
1658 else
1660 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1661 fract_res, integer_res);
1664 else
1665 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1666 fract_res, integer_res);
1667 return res;
1670 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1671 with location info LOC. If possible, create an equivalent and
1672 less expensive sequence of statements prior to GSI, and return an
1673 expession holding the result. */
1675 static tree
1676 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1677 tree arg0, tree arg1)
1679 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1680 REAL_VALUE_TYPE c2, dconst3;
1681 HOST_WIDE_INT n;
1682 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1683 machine_mode mode;
1684 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1685 bool hw_sqrt_exists, c_is_int, c2_is_int;
1687 dconst1_4 = dconst1;
1688 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1690 /* If the exponent isn't a constant, there's nothing of interest
1691 to be done. */
1692 if (TREE_CODE (arg1) != REAL_CST)
1693 return NULL_TREE;
1695 /* Don't perform the operation if flag_signaling_nans is on
1696 and the operand is a signaling NaN. */
1697 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1698 && ((TREE_CODE (arg0) == REAL_CST
1699 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
1700 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
1701 return NULL_TREE;
1703 /* If the exponent is equivalent to an integer, expand to an optimal
1704 multiplication sequence when profitable. */
1705 c = TREE_REAL_CST (arg1);
1706 n = real_to_integer (&c);
1707 real_from_integer (&cint, VOIDmode, n, SIGNED);
1708 c_is_int = real_identical (&c, &cint);
1710 if (c_is_int
1711 && ((n >= -1 && n <= 2)
1712 || (flag_unsafe_math_optimizations
1713 && speed_p
1714 && powi_cost (n) <= POWI_MAX_MULTS)))
1715 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1717 /* Attempt various optimizations using sqrt and cbrt. */
1718 type = TREE_TYPE (arg0);
1719 mode = TYPE_MODE (type);
1720 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1722 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1723 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1724 sqrt(-0) = -0. */
1725 if (sqrtfn
1726 && real_equal (&c, &dconsthalf)
1727 && !HONOR_SIGNED_ZEROS (mode))
1728 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1730 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1732 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1733 optimizations since 1./3. is not exactly representable. If x
1734 is negative and finite, the correct value of pow(x,1./3.) is
1735 a NaN with the "invalid" exception raised, because the value
1736 of 1./3. actually has an even denominator. The correct value
1737 of cbrt(x) is a negative real value. */
1738 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1739 dconst1_3 = real_value_truncate (mode, dconst_third ());
1741 if (flag_unsafe_math_optimizations
1742 && cbrtfn
1743 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1744 && real_equal (&c, &dconst1_3))
1745 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1747 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1748 if we don't have a hardware sqrt insn. */
1749 dconst1_6 = dconst1_3;
1750 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1752 if (flag_unsafe_math_optimizations
1753 && sqrtfn
1754 && cbrtfn
1755 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1756 && speed_p
1757 && hw_sqrt_exists
1758 && real_equal (&c, &dconst1_6))
1760 /* sqrt(x) */
1761 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1763 /* cbrt(sqrt(x)) */
1764 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1768 /* Attempt to expand the POW as a product of square root chains.
1769 Expand the 0.25 case even when otpimising for size. */
1770 if (flag_unsafe_math_optimizations
1771 && sqrtfn
1772 && hw_sqrt_exists
1773 && (speed_p || real_equal (&c, &dconst1_4))
1774 && !HONOR_SIGNED_ZEROS (mode))
1776 unsigned int max_depth = speed_p
1777 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1778 : 2;
1780 tree expand_with_sqrts
1781 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1783 if (expand_with_sqrts)
1784 return expand_with_sqrts;
1787 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1788 n = real_to_integer (&c2);
1789 real_from_integer (&cint, VOIDmode, n, SIGNED);
1790 c2_is_int = real_identical (&c2, &cint);
1792 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1794 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1795 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1797 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1798 different from pow(x, 1./3.) due to rounding and behavior with
1799 negative x, we need to constrain this transformation to unsafe
1800 math and positive x or finite math. */
1801 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1802 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1803 real_round (&c2, mode, &c2);
1804 n = real_to_integer (&c2);
1805 real_from_integer (&cint, VOIDmode, n, SIGNED);
1806 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1807 real_convert (&c2, mode, &c2);
1809 if (flag_unsafe_math_optimizations
1810 && cbrtfn
1811 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
1812 && real_identical (&c2, &c)
1813 && !c2_is_int
1814 && optimize_function_for_speed_p (cfun)
1815 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1817 tree powi_x_ndiv3 = NULL_TREE;
1819 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1820 possible or profitable, give up. Skip the degenerate case when
1821 abs(n) < 3, where the result is always 1. */
1822 if (absu_hwi (n) >= 3)
1824 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1825 abs_hwi (n / 3));
1826 if (!powi_x_ndiv3)
1827 return NULL_TREE;
1830 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1831 as that creates an unnecessary variable. Instead, just produce
1832 either cbrt(x) or cbrt(x) * cbrt(x). */
1833 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1835 if (absu_hwi (n) % 3 == 1)
1836 powi_cbrt_x = cbrt_x;
1837 else
1838 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1839 cbrt_x, cbrt_x);
1841 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1842 if (absu_hwi (n) < 3)
1843 result = powi_cbrt_x;
1844 else
1845 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1846 powi_x_ndiv3, powi_cbrt_x);
1848 /* If n is negative, reciprocate the result. */
1849 if (n < 0)
1850 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1851 build_real (type, dconst1), result);
1853 return result;
1856 /* No optimizations succeeded. */
1857 return NULL_TREE;
1860 /* ARG is the argument to a cabs builtin call in GSI with location info
1861 LOC. Create a sequence of statements prior to GSI that calculates
1862 sqrt(R*R + I*I), where R and I are the real and imaginary components
1863 of ARG, respectively. Return an expression holding the result. */
1865 static tree
1866 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1868 tree real_part, imag_part, addend1, addend2, sum, result;
1869 tree type = TREE_TYPE (TREE_TYPE (arg));
1870 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1871 machine_mode mode = TYPE_MODE (type);
1873 if (!flag_unsafe_math_optimizations
1874 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1875 || !sqrtfn
1876 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1877 return NULL_TREE;
1879 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1880 REALPART_EXPR, arg);
1881 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1882 real_part, real_part);
1883 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1884 IMAGPART_EXPR, arg);
1885 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1886 imag_part, imag_part);
1887 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1888 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1890 return result;
1893 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1894 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1895 an optimal number of multiplies, when n is a constant. */
1897 namespace {
1899 const pass_data pass_data_cse_sincos =
1901 GIMPLE_PASS, /* type */
1902 "sincos", /* name */
1903 OPTGROUP_NONE, /* optinfo_flags */
1904 TV_TREE_SINCOS, /* tv_id */
1905 PROP_ssa, /* properties_required */
1906 PROP_gimple_opt_math, /* properties_provided */
1907 0, /* properties_destroyed */
1908 0, /* todo_flags_start */
1909 TODO_update_ssa, /* todo_flags_finish */
1912 class pass_cse_sincos : public gimple_opt_pass
1914 public:
1915 pass_cse_sincos (gcc::context *ctxt)
1916 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1919 /* opt_pass methods: */
1920 virtual bool gate (function *)
1922 /* We no longer require either sincos or cexp, since powi expansion
1923 piggybacks on this pass. */
1924 return optimize;
1927 virtual unsigned int execute (function *);
1929 }; // class pass_cse_sincos
1931 unsigned int
1932 pass_cse_sincos::execute (function *fun)
1934 basic_block bb;
1935 bool cfg_changed = false;
1937 calculate_dominance_info (CDI_DOMINATORS);
1938 memset (&sincos_stats, 0, sizeof (sincos_stats));
1940 FOR_EACH_BB_FN (bb, fun)
1942 gimple_stmt_iterator gsi;
1943 bool cleanup_eh = false;
1945 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1947 gimple *stmt = gsi_stmt (gsi);
1949 /* Only the last stmt in a bb could throw, no need to call
1950 gimple_purge_dead_eh_edges if we change something in the middle
1951 of a basic block. */
1952 cleanup_eh = false;
1954 if (is_gimple_call (stmt)
1955 && gimple_call_lhs (stmt))
1957 tree arg, arg0, arg1, result;
1958 HOST_WIDE_INT n;
1959 location_t loc;
1961 switch (gimple_call_combined_fn (stmt))
1963 CASE_CFN_COS:
1964 CASE_CFN_SIN:
1965 CASE_CFN_CEXPI:
1966 /* Make sure we have either sincos or cexp. */
1967 if (!targetm.libc_has_function (function_c99_math_complex)
1968 && !targetm.libc_has_function (function_sincos))
1969 break;
1971 arg = gimple_call_arg (stmt, 0);
1972 if (TREE_CODE (arg) == SSA_NAME)
1973 cfg_changed |= execute_cse_sincos_1 (arg);
1974 break;
1976 CASE_CFN_POW:
1977 arg0 = gimple_call_arg (stmt, 0);
1978 arg1 = gimple_call_arg (stmt, 1);
1980 loc = gimple_location (stmt);
1981 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1983 if (result)
1985 tree lhs = gimple_get_lhs (stmt);
1986 gassign *new_stmt = gimple_build_assign (lhs, result);
1987 gimple_set_location (new_stmt, loc);
1988 unlink_stmt_vdef (stmt);
1989 gsi_replace (&gsi, new_stmt, true);
1990 cleanup_eh = true;
1991 if (gimple_vdef (stmt))
1992 release_ssa_name (gimple_vdef (stmt));
1994 break;
1996 CASE_CFN_POWI:
1997 arg0 = gimple_call_arg (stmt, 0);
1998 arg1 = gimple_call_arg (stmt, 1);
1999 loc = gimple_location (stmt);
2001 if (real_minus_onep (arg0))
2003 tree t0, t1, cond, one, minus_one;
2004 gassign *stmt;
2006 t0 = TREE_TYPE (arg0);
2007 t1 = TREE_TYPE (arg1);
2008 one = build_real (t0, dconst1);
2009 minus_one = build_real (t0, dconstm1);
2011 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
2012 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
2013 arg1, build_int_cst (t1, 1));
2014 gimple_set_location (stmt, loc);
2015 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2017 result = make_temp_ssa_name (t0, NULL, "powi");
2018 stmt = gimple_build_assign (result, COND_EXPR, cond,
2019 minus_one, one);
2020 gimple_set_location (stmt, loc);
2021 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2023 else
2025 if (!tree_fits_shwi_p (arg1))
2026 break;
2028 n = tree_to_shwi (arg1);
2029 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
2032 if (result)
2034 tree lhs = gimple_get_lhs (stmt);
2035 gassign *new_stmt = gimple_build_assign (lhs, result);
2036 gimple_set_location (new_stmt, loc);
2037 unlink_stmt_vdef (stmt);
2038 gsi_replace (&gsi, new_stmt, true);
2039 cleanup_eh = true;
2040 if (gimple_vdef (stmt))
2041 release_ssa_name (gimple_vdef (stmt));
2043 break;
2045 CASE_CFN_CABS:
2046 arg0 = gimple_call_arg (stmt, 0);
2047 loc = gimple_location (stmt);
2048 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
2050 if (result)
2052 tree lhs = gimple_get_lhs (stmt);
2053 gassign *new_stmt = gimple_build_assign (lhs, result);
2054 gimple_set_location (new_stmt, loc);
2055 unlink_stmt_vdef (stmt);
2056 gsi_replace (&gsi, new_stmt, true);
2057 cleanup_eh = true;
2058 if (gimple_vdef (stmt))
2059 release_ssa_name (gimple_vdef (stmt));
2061 break;
2063 default:;
2067 if (cleanup_eh)
2068 cfg_changed |= gimple_purge_dead_eh_edges (bb);
2071 statistics_counter_event (fun, "sincos statements inserted",
2072 sincos_stats.inserted);
2074 return cfg_changed ? TODO_cleanup_cfg : 0;
2077 } // anon namespace
2079 gimple_opt_pass *
2080 make_pass_cse_sincos (gcc::context *ctxt)
2082 return new pass_cse_sincos (ctxt);
2085 /* Return true if stmt is a type conversion operation that can be stripped
2086 when used in a widening multiply operation. */
2087 static bool
2088 widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
2090 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2092 if (TREE_CODE (result_type) == INTEGER_TYPE)
2094 tree op_type;
2095 tree inner_op_type;
2097 if (!CONVERT_EXPR_CODE_P (rhs_code))
2098 return false;
2100 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2102 /* If the type of OP has the same precision as the result, then
2103 we can strip this conversion. The multiply operation will be
2104 selected to create the correct extension as a by-product. */
2105 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2106 return true;
2108 /* We can also strip a conversion if it preserves the signed-ness of
2109 the operation and doesn't narrow the range. */
2110 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2112 /* If the inner-most type is unsigned, then we can strip any
2113 intermediate widening operation. If it's signed, then the
2114 intermediate widening operation must also be signed. */
2115 if ((TYPE_UNSIGNED (inner_op_type)
2116 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2117 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2118 return true;
2120 return false;
2123 return rhs_code == FIXED_CONVERT_EXPR;
2126 /* Return true if RHS is a suitable operand for a widening multiplication,
2127 assuming a target type of TYPE.
2128 There are two cases:
2130 - RHS makes some value at least twice as wide. Store that value
2131 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2133 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2134 but leave *TYPE_OUT untouched. */
2136 static bool
2137 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2138 tree *new_rhs_out)
2140 gimple *stmt;
2141 tree type1, rhs1;
2143 if (TREE_CODE (rhs) == SSA_NAME)
2145 stmt = SSA_NAME_DEF_STMT (rhs);
2146 if (is_gimple_assign (stmt))
2148 if (! widening_mult_conversion_strippable_p (type, stmt))
2149 rhs1 = rhs;
2150 else
2152 rhs1 = gimple_assign_rhs1 (stmt);
2154 if (TREE_CODE (rhs1) == INTEGER_CST)
2156 *new_rhs_out = rhs1;
2157 *type_out = NULL;
2158 return true;
2162 else
2163 rhs1 = rhs;
2165 type1 = TREE_TYPE (rhs1);
2167 if (TREE_CODE (type1) != TREE_CODE (type)
2168 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2169 return false;
2171 *new_rhs_out = rhs1;
2172 *type_out = type1;
2173 return true;
2176 if (TREE_CODE (rhs) == INTEGER_CST)
2178 *new_rhs_out = rhs;
2179 *type_out = NULL;
2180 return true;
2183 return false;
2186 /* Return true if STMT performs a widening multiplication, assuming the
2187 output type is TYPE. If so, store the unwidened types of the operands
2188 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2189 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2190 and *TYPE2_OUT would give the operands of the multiplication. */
2192 static bool
2193 is_widening_mult_p (gimple *stmt,
2194 tree *type1_out, tree *rhs1_out,
2195 tree *type2_out, tree *rhs2_out)
2197 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2199 if (TREE_CODE (type) == INTEGER_TYPE)
2201 if (TYPE_OVERFLOW_TRAPS (type))
2202 return false;
2204 else if (TREE_CODE (type) != FIXED_POINT_TYPE)
2205 return false;
2207 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2208 rhs1_out))
2209 return false;
2211 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2212 rhs2_out))
2213 return false;
2215 if (*type1_out == NULL)
2217 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2218 return false;
2219 *type1_out = *type2_out;
2222 if (*type2_out == NULL)
2224 if (!int_fits_type_p (*rhs2_out, *type1_out))
2225 return false;
2226 *type2_out = *type1_out;
2229 /* Ensure that the larger of the two operands comes first. */
2230 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2232 std::swap (*type1_out, *type2_out);
2233 std::swap (*rhs1_out, *rhs2_out);
2236 return true;
2239 /* Check to see if the CALL statement is an invocation of copysign
2240 with 1. being the first argument. */
2241 static bool
2242 is_copysign_call_with_1 (gimple *call)
2244 gcall *c = dyn_cast <gcall *> (call);
2245 if (! c)
2246 return false;
2248 enum combined_fn code = gimple_call_combined_fn (c);
2250 if (code == CFN_LAST)
2251 return false;
2253 if (builtin_fn_p (code))
2255 switch (as_builtin_fn (code))
2257 CASE_FLT_FN (BUILT_IN_COPYSIGN):
2258 CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
2259 return real_onep (gimple_call_arg (c, 0));
2260 default:
2261 return false;
2265 if (internal_fn_p (code))
2267 switch (as_internal_fn (code))
2269 case IFN_COPYSIGN:
2270 return real_onep (gimple_call_arg (c, 0));
2271 default:
2272 return false;
2276 return false;
2279 /* Try to expand the pattern x * copysign (1, y) into xorsign (x, y).
2280 This only happens when the the xorsign optab is defined, if the
2281 pattern is not a xorsign pattern or if expansion fails FALSE is
2282 returned, otherwise TRUE is returned. */
2283 static bool
2284 convert_expand_mult_copysign (gimple *stmt, gimple_stmt_iterator *gsi)
2286 tree treeop0, treeop1, lhs, type;
2287 location_t loc = gimple_location (stmt);
2288 lhs = gimple_assign_lhs (stmt);
2289 treeop0 = gimple_assign_rhs1 (stmt);
2290 treeop1 = gimple_assign_rhs2 (stmt);
2291 type = TREE_TYPE (lhs);
2292 machine_mode mode = TYPE_MODE (type);
2294 if (HONOR_SNANS (type))
2295 return false;
2297 if (TREE_CODE (treeop0) == SSA_NAME && TREE_CODE (treeop1) == SSA_NAME)
2299 gimple *call0 = SSA_NAME_DEF_STMT (treeop0);
2300 if (!has_single_use (treeop0) || !is_copysign_call_with_1 (call0))
2302 call0 = SSA_NAME_DEF_STMT (treeop1);
2303 if (!has_single_use (treeop1) || !is_copysign_call_with_1 (call0))
2304 return false;
2306 treeop1 = treeop0;
2308 if (optab_handler (xorsign_optab, mode) == CODE_FOR_nothing)
2309 return false;
2311 gcall *c = as_a<gcall*> (call0);
2312 treeop0 = gimple_call_arg (c, 1);
2314 gcall *call_stmt
2315 = gimple_build_call_internal (IFN_XORSIGN, 2, treeop1, treeop0);
2316 gimple_set_lhs (call_stmt, lhs);
2317 gimple_set_location (call_stmt, loc);
2318 gsi_replace (gsi, call_stmt, true);
2319 return true;
2322 return false;
2325 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2326 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2327 value is true iff we converted the statement. */
2329 static bool
2330 convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
2332 tree lhs, rhs1, rhs2, type, type1, type2;
2333 enum insn_code handler;
2334 scalar_int_mode to_mode, from_mode, actual_mode;
2335 optab op;
2336 int actual_precision;
2337 location_t loc = gimple_location (stmt);
2338 bool from_unsigned1, from_unsigned2;
2340 lhs = gimple_assign_lhs (stmt);
2341 type = TREE_TYPE (lhs);
2342 if (TREE_CODE (type) != INTEGER_TYPE)
2343 return false;
2345 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2346 return false;
2348 to_mode = SCALAR_INT_TYPE_MODE (type);
2349 from_mode = SCALAR_INT_TYPE_MODE (type1);
2350 if (to_mode == from_mode)
2351 return false;
2353 from_unsigned1 = TYPE_UNSIGNED (type1);
2354 from_unsigned2 = TYPE_UNSIGNED (type2);
2356 if (from_unsigned1 && from_unsigned2)
2357 op = umul_widen_optab;
2358 else if (!from_unsigned1 && !from_unsigned2)
2359 op = smul_widen_optab;
2360 else
2361 op = usmul_widen_optab;
2363 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2364 &actual_mode);
2366 if (handler == CODE_FOR_nothing)
2368 if (op != smul_widen_optab)
2370 /* We can use a signed multiply with unsigned types as long as
2371 there is a wider mode to use, or it is the smaller of the two
2372 types that is unsigned. Note that type1 >= type2, always. */
2373 if ((TYPE_UNSIGNED (type1)
2374 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2375 || (TYPE_UNSIGNED (type2)
2376 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2378 if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2379 || GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2380 return false;
2383 op = smul_widen_optab;
2384 handler = find_widening_optab_handler_and_mode (op, to_mode,
2385 from_mode,
2386 &actual_mode);
2388 if (handler == CODE_FOR_nothing)
2389 return false;
2391 from_unsigned1 = from_unsigned2 = false;
2393 else
2394 return false;
2397 /* Ensure that the inputs to the handler are in the correct precison
2398 for the opcode. This will be the full mode size. */
2399 actual_precision = GET_MODE_PRECISION (actual_mode);
2400 if (2 * actual_precision > TYPE_PRECISION (type))
2401 return false;
2402 if (actual_precision != TYPE_PRECISION (type1)
2403 || from_unsigned1 != TYPE_UNSIGNED (type1))
2404 rhs1 = build_and_insert_cast (gsi, loc,
2405 build_nonstandard_integer_type
2406 (actual_precision, from_unsigned1), rhs1);
2407 if (actual_precision != TYPE_PRECISION (type2)
2408 || from_unsigned2 != TYPE_UNSIGNED (type2))
2409 rhs2 = build_and_insert_cast (gsi, loc,
2410 build_nonstandard_integer_type
2411 (actual_precision, from_unsigned2), rhs2);
2413 /* Handle constants. */
2414 if (TREE_CODE (rhs1) == INTEGER_CST)
2415 rhs1 = fold_convert (type1, rhs1);
2416 if (TREE_CODE (rhs2) == INTEGER_CST)
2417 rhs2 = fold_convert (type2, rhs2);
2419 gimple_assign_set_rhs1 (stmt, rhs1);
2420 gimple_assign_set_rhs2 (stmt, rhs2);
2421 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2422 update_stmt (stmt);
2423 widen_mul_stats.widen_mults_inserted++;
2424 return true;
2427 /* Process a single gimple statement STMT, which is found at the
2428 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2429 rhs (given by CODE), and try to convert it into a
2430 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2431 is true iff we converted the statement. */
2433 static bool
2434 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
2435 enum tree_code code)
2437 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
2438 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
2439 tree type, type1, type2, optype;
2440 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2441 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2442 optab this_optab;
2443 enum tree_code wmult_code;
2444 enum insn_code handler;
2445 scalar_mode to_mode, from_mode, actual_mode;
2446 location_t loc = gimple_location (stmt);
2447 int actual_precision;
2448 bool from_unsigned1, from_unsigned2;
2450 lhs = gimple_assign_lhs (stmt);
2451 type = TREE_TYPE (lhs);
2452 if (TREE_CODE (type) != INTEGER_TYPE
2453 && TREE_CODE (type) != FIXED_POINT_TYPE)
2454 return false;
2456 if (code == MINUS_EXPR)
2457 wmult_code = WIDEN_MULT_MINUS_EXPR;
2458 else
2459 wmult_code = WIDEN_MULT_PLUS_EXPR;
2461 rhs1 = gimple_assign_rhs1 (stmt);
2462 rhs2 = gimple_assign_rhs2 (stmt);
2464 if (TREE_CODE (rhs1) == SSA_NAME)
2466 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2467 if (is_gimple_assign (rhs1_stmt))
2468 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2471 if (TREE_CODE (rhs2) == SSA_NAME)
2473 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2474 if (is_gimple_assign (rhs2_stmt))
2475 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2478 /* Allow for one conversion statement between the multiply
2479 and addition/subtraction statement. If there are more than
2480 one conversions then we assume they would invalidate this
2481 transformation. If that's not the case then they should have
2482 been folded before now. */
2483 if (CONVERT_EXPR_CODE_P (rhs1_code))
2485 conv1_stmt = rhs1_stmt;
2486 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2487 if (TREE_CODE (rhs1) == SSA_NAME)
2489 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2490 if (is_gimple_assign (rhs1_stmt))
2491 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2493 else
2494 return false;
2496 if (CONVERT_EXPR_CODE_P (rhs2_code))
2498 conv2_stmt = rhs2_stmt;
2499 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2500 if (TREE_CODE (rhs2) == SSA_NAME)
2502 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2503 if (is_gimple_assign (rhs2_stmt))
2504 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2506 else
2507 return false;
2510 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2511 is_widening_mult_p, but we still need the rhs returns.
2513 It might also appear that it would be sufficient to use the existing
2514 operands of the widening multiply, but that would limit the choice of
2515 multiply-and-accumulate instructions.
2517 If the widened-multiplication result has more than one uses, it is
2518 probably wiser not to do the conversion. */
2519 if (code == PLUS_EXPR
2520 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2522 if (!has_single_use (rhs1)
2523 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2524 &type2, &mult_rhs2))
2525 return false;
2526 add_rhs = rhs2;
2527 conv_stmt = conv1_stmt;
2529 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2531 if (!has_single_use (rhs2)
2532 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2533 &type2, &mult_rhs2))
2534 return false;
2535 add_rhs = rhs1;
2536 conv_stmt = conv2_stmt;
2538 else
2539 return false;
2541 to_mode = SCALAR_TYPE_MODE (type);
2542 from_mode = SCALAR_TYPE_MODE (type1);
2543 if (to_mode == from_mode)
2544 return false;
2546 from_unsigned1 = TYPE_UNSIGNED (type1);
2547 from_unsigned2 = TYPE_UNSIGNED (type2);
2548 optype = type1;
2550 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2551 if (from_unsigned1 != from_unsigned2)
2553 if (!INTEGRAL_TYPE_P (type))
2554 return false;
2555 /* We can use a signed multiply with unsigned types as long as
2556 there is a wider mode to use, or it is the smaller of the two
2557 types that is unsigned. Note that type1 >= type2, always. */
2558 if ((from_unsigned1
2559 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2560 || (from_unsigned2
2561 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2563 if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2564 || GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2565 return false;
2568 from_unsigned1 = from_unsigned2 = false;
2569 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2570 false);
2573 /* If there was a conversion between the multiply and addition
2574 then we need to make sure it fits a multiply-and-accumulate.
2575 The should be a single mode change which does not change the
2576 value. */
2577 if (conv_stmt)
2579 /* We use the original, unmodified data types for this. */
2580 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2581 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2582 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2583 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2585 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2587 /* Conversion is a truncate. */
2588 if (TYPE_PRECISION (to_type) < data_size)
2589 return false;
2591 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2593 /* Conversion is an extend. Check it's the right sort. */
2594 if (TYPE_UNSIGNED (from_type) != is_unsigned
2595 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2596 return false;
2598 /* else convert is a no-op for our purposes. */
2601 /* Verify that the machine can perform a widening multiply
2602 accumulate in this mode/signedness combination, otherwise
2603 this transformation is likely to pessimize code. */
2604 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2605 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2606 from_mode, &actual_mode);
2608 if (handler == CODE_FOR_nothing)
2609 return false;
2611 /* Ensure that the inputs to the handler are in the correct precison
2612 for the opcode. This will be the full mode size. */
2613 actual_precision = GET_MODE_PRECISION (actual_mode);
2614 if (actual_precision != TYPE_PRECISION (type1)
2615 || from_unsigned1 != TYPE_UNSIGNED (type1))
2616 mult_rhs1 = build_and_insert_cast (gsi, loc,
2617 build_nonstandard_integer_type
2618 (actual_precision, from_unsigned1),
2619 mult_rhs1);
2620 if (actual_precision != TYPE_PRECISION (type2)
2621 || from_unsigned2 != TYPE_UNSIGNED (type2))
2622 mult_rhs2 = build_and_insert_cast (gsi, loc,
2623 build_nonstandard_integer_type
2624 (actual_precision, from_unsigned2),
2625 mult_rhs2);
2627 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2628 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2630 /* Handle constants. */
2631 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2632 mult_rhs1 = fold_convert (type1, mult_rhs1);
2633 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2634 mult_rhs2 = fold_convert (type2, mult_rhs2);
2636 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2637 add_rhs);
2638 update_stmt (gsi_stmt (*gsi));
2639 widen_mul_stats.maccs_inserted++;
2640 return true;
2643 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2644 with uses in additions and subtractions to form fused multiply-add
2645 operations. Returns true if successful and MUL_STMT should be removed. */
2647 static bool
2648 convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
2650 tree mul_result = gimple_get_lhs (mul_stmt);
2651 tree type = TREE_TYPE (mul_result);
2652 gimple *use_stmt, *neguse_stmt;
2653 gassign *fma_stmt;
2654 use_operand_p use_p;
2655 imm_use_iterator imm_iter;
2657 if (FLOAT_TYPE_P (type)
2658 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2659 return false;
2661 /* We don't want to do bitfield reduction ops. */
2662 if (INTEGRAL_TYPE_P (type)
2663 && (!type_has_mode_precision_p (type) || TYPE_OVERFLOW_TRAPS (type)))
2664 return false;
2666 /* If the target doesn't support it, don't generate it. We assume that
2667 if fma isn't available then fms, fnma or fnms are not either. */
2668 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2669 return false;
2671 /* If the multiplication has zero uses, it is kept around probably because
2672 of -fnon-call-exceptions. Don't optimize it away in that case,
2673 it is DCE job. */
2674 if (has_zero_uses (mul_result))
2675 return false;
2677 /* Make sure that the multiplication statement becomes dead after
2678 the transformation, thus that all uses are transformed to FMAs.
2679 This means we assume that an FMA operation has the same cost
2680 as an addition. */
2681 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2683 enum tree_code use_code;
2684 tree result = mul_result;
2685 bool negate_p = false;
2687 use_stmt = USE_STMT (use_p);
2689 if (is_gimple_debug (use_stmt))
2690 continue;
2692 /* For now restrict this operations to single basic blocks. In theory
2693 we would want to support sinking the multiplication in
2694 m = a*b;
2695 if ()
2696 ma = m + c;
2697 else
2698 d = m;
2699 to form a fma in the then block and sink the multiplication to the
2700 else block. */
2701 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2702 return false;
2704 if (!is_gimple_assign (use_stmt))
2705 return false;
2707 use_code = gimple_assign_rhs_code (use_stmt);
2709 /* A negate on the multiplication leads to FNMA. */
2710 if (use_code == NEGATE_EXPR)
2712 ssa_op_iter iter;
2713 use_operand_p usep;
2715 result = gimple_assign_lhs (use_stmt);
2717 /* Make sure the negate statement becomes dead with this
2718 single transformation. */
2719 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2720 &use_p, &neguse_stmt))
2721 return false;
2723 /* Make sure the multiplication isn't also used on that stmt. */
2724 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2725 if (USE_FROM_PTR (usep) == mul_result)
2726 return false;
2728 /* Re-validate. */
2729 use_stmt = neguse_stmt;
2730 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2731 return false;
2732 if (!is_gimple_assign (use_stmt))
2733 return false;
2735 use_code = gimple_assign_rhs_code (use_stmt);
2736 negate_p = true;
2739 switch (use_code)
2741 case MINUS_EXPR:
2742 if (gimple_assign_rhs2 (use_stmt) == result)
2743 negate_p = !negate_p;
2744 break;
2745 case PLUS_EXPR:
2746 break;
2747 default:
2748 /* FMA can only be formed from PLUS and MINUS. */
2749 return false;
2752 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2753 by a MULT_EXPR that we'll visit later, we might be able to
2754 get a more profitable match with fnma.
2755 OTOH, if we don't, a negate / fma pair has likely lower latency
2756 that a mult / subtract pair. */
2757 if (use_code == MINUS_EXPR && !negate_p
2758 && gimple_assign_rhs1 (use_stmt) == result
2759 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2760 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2762 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2764 if (TREE_CODE (rhs2) == SSA_NAME)
2766 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
2767 if (has_single_use (rhs2)
2768 && is_gimple_assign (stmt2)
2769 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2770 return false;
2774 /* We can't handle a * b + a * b. */
2775 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2776 return false;
2778 /* While it is possible to validate whether or not the exact form
2779 that we've recognized is available in the backend, the assumption
2780 is that the transformation is never a loss. For instance, suppose
2781 the target only has the plain FMA pattern available. Consider
2782 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2783 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2784 still have 3 operations, but in the FMA form the two NEGs are
2785 independent and could be run in parallel. */
2788 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2790 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2791 enum tree_code use_code;
2792 tree addop, mulop1 = op1, result = mul_result;
2793 bool negate_p = false;
2795 if (is_gimple_debug (use_stmt))
2796 continue;
2798 use_code = gimple_assign_rhs_code (use_stmt);
2799 if (use_code == NEGATE_EXPR)
2801 result = gimple_assign_lhs (use_stmt);
2802 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2803 gsi_remove (&gsi, true);
2804 release_defs (use_stmt);
2806 use_stmt = neguse_stmt;
2807 gsi = gsi_for_stmt (use_stmt);
2808 use_code = gimple_assign_rhs_code (use_stmt);
2809 negate_p = true;
2812 if (gimple_assign_rhs1 (use_stmt) == result)
2814 addop = gimple_assign_rhs2 (use_stmt);
2815 /* a * b - c -> a * b + (-c) */
2816 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2817 addop = force_gimple_operand_gsi (&gsi,
2818 build1 (NEGATE_EXPR,
2819 type, addop),
2820 true, NULL_TREE, true,
2821 GSI_SAME_STMT);
2823 else
2825 addop = gimple_assign_rhs1 (use_stmt);
2826 /* a - b * c -> (-b) * c + a */
2827 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2828 negate_p = !negate_p;
2831 if (negate_p)
2832 mulop1 = force_gimple_operand_gsi (&gsi,
2833 build1 (NEGATE_EXPR,
2834 type, mulop1),
2835 true, NULL_TREE, true,
2836 GSI_SAME_STMT);
2838 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
2839 FMA_EXPR, mulop1, op2, addop);
2840 gsi_replace (&gsi, fma_stmt, true);
2841 widen_mul_stats.fmas_inserted++;
2844 return true;
2848 /* Helper function of match_uaddsub_overflow. Return 1
2849 if USE_STMT is unsigned overflow check ovf != 0 for
2850 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
2851 and 0 otherwise. */
2853 static int
2854 uaddsub_overflow_check_p (gimple *stmt, gimple *use_stmt)
2856 enum tree_code ccode = ERROR_MARK;
2857 tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
2858 if (gimple_code (use_stmt) == GIMPLE_COND)
2860 ccode = gimple_cond_code (use_stmt);
2861 crhs1 = gimple_cond_lhs (use_stmt);
2862 crhs2 = gimple_cond_rhs (use_stmt);
2864 else if (is_gimple_assign (use_stmt))
2866 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
2868 ccode = gimple_assign_rhs_code (use_stmt);
2869 crhs1 = gimple_assign_rhs1 (use_stmt);
2870 crhs2 = gimple_assign_rhs2 (use_stmt);
2872 else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
2874 tree cond = gimple_assign_rhs1 (use_stmt);
2875 if (COMPARISON_CLASS_P (cond))
2877 ccode = TREE_CODE (cond);
2878 crhs1 = TREE_OPERAND (cond, 0);
2879 crhs2 = TREE_OPERAND (cond, 1);
2881 else
2882 return 0;
2884 else
2885 return 0;
2887 else
2888 return 0;
2890 if (TREE_CODE_CLASS (ccode) != tcc_comparison)
2891 return 0;
2893 enum tree_code code = gimple_assign_rhs_code (stmt);
2894 tree lhs = gimple_assign_lhs (stmt);
2895 tree rhs1 = gimple_assign_rhs1 (stmt);
2896 tree rhs2 = gimple_assign_rhs2 (stmt);
2898 switch (ccode)
2900 case GT_EXPR:
2901 case LE_EXPR:
2902 /* r = a - b; r > a or r <= a
2903 r = a + b; a > r or a <= r or b > r or b <= r. */
2904 if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
2905 || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
2906 && crhs2 == lhs))
2907 return ccode == GT_EXPR ? 1 : -1;
2908 break;
2909 case LT_EXPR:
2910 case GE_EXPR:
2911 /* r = a - b; a < r or a >= r
2912 r = a + b; r < a or r >= a or r < b or r >= b. */
2913 if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
2914 || (code == PLUS_EXPR && crhs1 == lhs
2915 && (crhs2 == rhs1 || crhs2 == rhs2)))
2916 return ccode == LT_EXPR ? 1 : -1;
2917 break;
2918 default:
2919 break;
2921 return 0;
2924 /* Recognize for unsigned x
2925 x = y - z;
2926 if (x > y)
2927 where there are other uses of x and replace it with
2928 _7 = SUB_OVERFLOW (y, z);
2929 x = REALPART_EXPR <_7>;
2930 _8 = IMAGPART_EXPR <_7>;
2931 if (_8)
2932 and similarly for addition. */
2934 static bool
2935 match_uaddsub_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
2936 enum tree_code code)
2938 tree lhs = gimple_assign_lhs (stmt);
2939 tree type = TREE_TYPE (lhs);
2940 use_operand_p use_p;
2941 imm_use_iterator iter;
2942 bool use_seen = false;
2943 bool ovf_use_seen = false;
2944 gimple *use_stmt;
2946 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);
2947 if (!INTEGRAL_TYPE_P (type)
2948 || !TYPE_UNSIGNED (type)
2949 || has_zero_uses (lhs)
2950 || has_single_use (lhs)
2951 || optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab,
2952 TYPE_MODE (type)) == CODE_FOR_nothing)
2953 return false;
2955 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
2957 use_stmt = USE_STMT (use_p);
2958 if (is_gimple_debug (use_stmt))
2959 continue;
2961 if (uaddsub_overflow_check_p (stmt, use_stmt))
2962 ovf_use_seen = true;
2963 else
2964 use_seen = true;
2965 if (ovf_use_seen && use_seen)
2966 break;
2969 if (!ovf_use_seen || !use_seen)
2970 return false;
2972 tree ctype = build_complex_type (type);
2973 tree rhs1 = gimple_assign_rhs1 (stmt);
2974 tree rhs2 = gimple_assign_rhs2 (stmt);
2975 gcall *g = gimple_build_call_internal (code == PLUS_EXPR
2976 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
2977 2, rhs1, rhs2);
2978 tree ctmp = make_ssa_name (ctype);
2979 gimple_call_set_lhs (g, ctmp);
2980 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2981 gassign *g2 = gimple_build_assign (lhs, REALPART_EXPR,
2982 build1 (REALPART_EXPR, type, ctmp));
2983 gsi_replace (gsi, g2, true);
2984 tree ovf = make_ssa_name (type);
2985 g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
2986 build1 (IMAGPART_EXPR, type, ctmp));
2987 gsi_insert_after (gsi, g2, GSI_NEW_STMT);
2989 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2991 if (is_gimple_debug (use_stmt))
2992 continue;
2994 int ovf_use = uaddsub_overflow_check_p (stmt, use_stmt);
2995 if (ovf_use == 0)
2996 continue;
2997 if (gimple_code (use_stmt) == GIMPLE_COND)
2999 gcond *cond_stmt = as_a <gcond *> (use_stmt);
3000 gimple_cond_set_lhs (cond_stmt, ovf);
3001 gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
3002 gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3004 else
3006 gcc_checking_assert (is_gimple_assign (use_stmt));
3007 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3009 gimple_assign_set_rhs1 (use_stmt, ovf);
3010 gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
3011 gimple_assign_set_rhs_code (use_stmt,
3012 ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3014 else
3016 gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
3017 == COND_EXPR);
3018 tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
3019 boolean_type_node, ovf,
3020 build_int_cst (type, 0));
3021 gimple_assign_set_rhs1 (use_stmt, cond);
3024 update_stmt (use_stmt);
3026 return true;
3029 /* Return true if target has support for divmod. */
3031 static bool
3032 target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode)
3034 /* If target supports hardware divmod insn, use it for divmod. */
3035 if (optab_handler (divmod_optab, mode) != CODE_FOR_nothing)
3036 return true;
3038 /* Check if libfunc for divmod is available. */
3039 rtx libfunc = optab_libfunc (divmod_optab, mode);
3040 if (libfunc != NULL_RTX)
3042 /* If optab_handler exists for div_optab, perhaps in a wider mode,
3043 we don't want to use the libfunc even if it exists for given mode. */
3044 machine_mode div_mode;
3045 FOR_EACH_MODE_FROM (div_mode, mode)
3046 if (optab_handler (div_optab, div_mode) != CODE_FOR_nothing)
3047 return false;
3049 return targetm.expand_divmod_libfunc != NULL;
3052 return false;
3055 /* Check if stmt is candidate for divmod transform. */
3057 static bool
3058 divmod_candidate_p (gassign *stmt)
3060 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3061 machine_mode mode = TYPE_MODE (type);
3062 optab divmod_optab, div_optab;
3064 if (TYPE_UNSIGNED (type))
3066 divmod_optab = udivmod_optab;
3067 div_optab = udiv_optab;
3069 else
3071 divmod_optab = sdivmod_optab;
3072 div_optab = sdiv_optab;
3075 tree op1 = gimple_assign_rhs1 (stmt);
3076 tree op2 = gimple_assign_rhs2 (stmt);
3078 /* Disable the transform if either is a constant, since division-by-constant
3079 may have specialized expansion. */
3080 if (CONSTANT_CLASS_P (op1) || CONSTANT_CLASS_P (op2))
3081 return false;
3083 /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
3084 expand using the [su]divv optabs. */
3085 if (TYPE_OVERFLOW_TRAPS (type))
3086 return false;
3088 if (!target_supports_divmod_p (divmod_optab, div_optab, mode))
3089 return false;
3091 return true;
3094 /* This function looks for:
3095 t1 = a TRUNC_DIV_EXPR b;
3096 t2 = a TRUNC_MOD_EXPR b;
3097 and transforms it to the following sequence:
3098 complex_tmp = DIVMOD (a, b);
3099 t1 = REALPART_EXPR(a);
3100 t2 = IMAGPART_EXPR(b);
3101 For conditions enabling the transform see divmod_candidate_p().
3103 The pass has three parts:
3104 1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
3105 other trunc_div_expr and trunc_mod_expr stmts.
3106 2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
3107 to stmts vector.
3108 3) Insert DIVMOD call just before top_stmt and update entries in
3109 stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
3110 IMAGPART_EXPR for mod). */
3112 static bool
3113 convert_to_divmod (gassign *stmt)
3115 if (stmt_can_throw_internal (stmt)
3116 || !divmod_candidate_p (stmt))
3117 return false;
3119 tree op1 = gimple_assign_rhs1 (stmt);
3120 tree op2 = gimple_assign_rhs2 (stmt);
3122 imm_use_iterator use_iter;
3123 gimple *use_stmt;
3124 auto_vec<gimple *> stmts;
3126 gimple *top_stmt = stmt;
3127 basic_block top_bb = gimple_bb (stmt);
3129 /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
3130 at-least stmt and possibly other trunc_div/trunc_mod stmts
3131 having same operands as stmt. */
3133 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1)
3135 if (is_gimple_assign (use_stmt)
3136 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3137 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3138 && operand_equal_p (op1, gimple_assign_rhs1 (use_stmt), 0)
3139 && operand_equal_p (op2, gimple_assign_rhs2 (use_stmt), 0))
3141 if (stmt_can_throw_internal (use_stmt))
3142 continue;
3144 basic_block bb = gimple_bb (use_stmt);
3146 if (bb == top_bb)
3148 if (gimple_uid (use_stmt) < gimple_uid (top_stmt))
3149 top_stmt = use_stmt;
3151 else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb))
3153 top_bb = bb;
3154 top_stmt = use_stmt;
3159 tree top_op1 = gimple_assign_rhs1 (top_stmt);
3160 tree top_op2 = gimple_assign_rhs2 (top_stmt);
3162 stmts.safe_push (top_stmt);
3163 bool div_seen = (gimple_assign_rhs_code (top_stmt) == TRUNC_DIV_EXPR);
3165 /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
3166 to stmts vector. The 2nd loop will always add stmt to stmts vector, since
3167 gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
3168 2nd loop ends up adding at-least single trunc_mod_expr stmt. */
3170 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1)
3172 if (is_gimple_assign (use_stmt)
3173 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3174 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3175 && operand_equal_p (top_op1, gimple_assign_rhs1 (use_stmt), 0)
3176 && operand_equal_p (top_op2, gimple_assign_rhs2 (use_stmt), 0))
3178 if (use_stmt == top_stmt
3179 || stmt_can_throw_internal (use_stmt)
3180 || !dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), top_bb))
3181 continue;
3183 stmts.safe_push (use_stmt);
3184 if (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR)
3185 div_seen = true;
3189 if (!div_seen)
3190 return false;
3192 /* Part 3: Create libcall to internal fn DIVMOD:
3193 divmod_tmp = DIVMOD (op1, op2). */
3195 gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2);
3196 tree res = make_temp_ssa_name (build_complex_type (TREE_TYPE (op1)),
3197 call_stmt, "divmod_tmp");
3198 gimple_call_set_lhs (call_stmt, res);
3199 /* We rejected throwing statements above. */
3200 gimple_call_set_nothrow (call_stmt, true);
3202 /* Insert the call before top_stmt. */
3203 gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt);
3204 gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT);
3206 widen_mul_stats.divmod_calls_inserted++;
3208 /* Update all statements in stmts vector:
3209 lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
3210 lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>. */
3212 for (unsigned i = 0; stmts.iterate (i, &use_stmt); ++i)
3214 tree new_rhs;
3216 switch (gimple_assign_rhs_code (use_stmt))
3218 case TRUNC_DIV_EXPR:
3219 new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res);
3220 break;
3222 case TRUNC_MOD_EXPR:
3223 new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res);
3224 break;
3226 default:
3227 gcc_unreachable ();
3230 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3231 gimple_assign_set_rhs_from_tree (&gsi, new_rhs);
3232 update_stmt (use_stmt);
3235 return true;
3238 /* Find integer multiplications where the operands are extended from
3239 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3240 where appropriate. */
3242 namespace {
3244 const pass_data pass_data_optimize_widening_mul =
3246 GIMPLE_PASS, /* type */
3247 "widening_mul", /* name */
3248 OPTGROUP_NONE, /* optinfo_flags */
3249 TV_TREE_WIDEN_MUL, /* tv_id */
3250 PROP_ssa, /* properties_required */
3251 0, /* properties_provided */
3252 0, /* properties_destroyed */
3253 0, /* todo_flags_start */
3254 TODO_update_ssa, /* todo_flags_finish */
3257 class pass_optimize_widening_mul : public gimple_opt_pass
3259 public:
3260 pass_optimize_widening_mul (gcc::context *ctxt)
3261 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3264 /* opt_pass methods: */
3265 virtual bool gate (function *)
3267 return flag_expensive_optimizations && optimize;
3270 virtual unsigned int execute (function *);
3272 }; // class pass_optimize_widening_mul
3274 unsigned int
3275 pass_optimize_widening_mul::execute (function *fun)
3277 basic_block bb;
3278 bool cfg_changed = false;
3280 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3281 calculate_dominance_info (CDI_DOMINATORS);
3282 renumber_gimple_stmt_uids ();
3284 FOR_EACH_BB_FN (bb, fun)
3286 gimple_stmt_iterator gsi;
3288 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3290 gimple *stmt = gsi_stmt (gsi);
3291 enum tree_code code;
3293 if (is_gimple_assign (stmt))
3295 code = gimple_assign_rhs_code (stmt);
3296 switch (code)
3298 case MULT_EXPR:
3299 if (!convert_mult_to_widen (stmt, &gsi)
3300 && !convert_expand_mult_copysign (stmt, &gsi)
3301 && convert_mult_to_fma (stmt,
3302 gimple_assign_rhs1 (stmt),
3303 gimple_assign_rhs2 (stmt)))
3305 gsi_remove (&gsi, true);
3306 release_defs (stmt);
3307 continue;
3309 break;
3311 case PLUS_EXPR:
3312 case MINUS_EXPR:
3313 if (!convert_plusminus_to_widen (&gsi, stmt, code))
3314 match_uaddsub_overflow (&gsi, stmt, code);
3315 break;
3317 case TRUNC_MOD_EXPR:
3318 convert_to_divmod (as_a<gassign *> (stmt));
3319 break;
3321 default:;
3324 else if (is_gimple_call (stmt)
3325 && gimple_call_lhs (stmt))
3327 tree fndecl = gimple_call_fndecl (stmt);
3328 if (fndecl
3329 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3331 switch (DECL_FUNCTION_CODE (fndecl))
3333 case BUILT_IN_POWF:
3334 case BUILT_IN_POW:
3335 case BUILT_IN_POWL:
3336 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3337 && real_equal
3338 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3339 &dconst2)
3340 && convert_mult_to_fma (stmt,
3341 gimple_call_arg (stmt, 0),
3342 gimple_call_arg (stmt, 0)))
3344 unlink_stmt_vdef (stmt);
3345 if (gsi_remove (&gsi, true)
3346 && gimple_purge_dead_eh_edges (bb))
3347 cfg_changed = true;
3348 release_defs (stmt);
3349 continue;
3351 break;
3353 default:;
3357 gsi_next (&gsi);
3361 statistics_counter_event (fun, "widening multiplications inserted",
3362 widen_mul_stats.widen_mults_inserted);
3363 statistics_counter_event (fun, "widening maccs inserted",
3364 widen_mul_stats.maccs_inserted);
3365 statistics_counter_event (fun, "fused multiply-adds inserted",
3366 widen_mul_stats.fmas_inserted);
3367 statistics_counter_event (fun, "divmod calls inserted",
3368 widen_mul_stats.divmod_calls_inserted);
3370 return cfg_changed ? TODO_cleanup_cfg : 0;
3373 } // anon namespace
3375 gimple_opt_pass *
3376 make_pass_optimize_widening_mul (gcc::context *ctxt)
3378 return new pass_optimize_widening_mul (ctxt);