Make vect_model_store_cost take a vec_load_store_type
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob0a6c30ad8b9fea3797294640037e1fb66b459f47
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Itypes; use Itypes;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Namet.Sp; use Namet.Sp;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Cat; use Sem_Cat;
48 with Sem_Ch3; use Sem_Ch3;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Dim; use Sem_Dim;
52 with Sem_Disp; use Sem_Disp;
53 with Sem_Dist; use Sem_Dist;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Res; use Sem_Res;
56 with Sem_Type; use Sem_Type;
57 with Sem_Util; use Sem_Util;
58 with Sem_Warn; use Sem_Warn;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Snames; use Snames;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch4 is
67 -- Tables which speed up the identification of dangerous calls to Ada 2012
68 -- functions with writable actuals (AI05-0144).
70 -- The following table enumerates the Ada constructs which may evaluate in
71 -- arbitrary order. It does not cover all the language constructs which can
72 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
74 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
75 (N_Aggregate => True,
76 N_Assignment_Statement => True,
77 N_Entry_Call_Statement => True,
78 N_Extension_Aggregate => True,
79 N_Full_Type_Declaration => True,
80 N_Indexed_Component => True,
81 N_Object_Declaration => True,
82 N_Pragma => True,
83 N_Range => True,
84 N_Slice => True,
85 N_Array_Type_Definition => True,
86 N_Membership_Test => True,
87 N_Binary_Op => True,
88 N_Subprogram_Call => True,
89 others => False);
91 -- The following table enumerates the nodes on which we stop climbing when
92 -- locating the outermost Ada construct that can be evaluated in arbitrary
93 -- order.
95 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
96 (N_Aggregate => True,
97 N_Assignment_Statement => True,
98 N_Entry_Call_Statement => True,
99 N_Extended_Return_Statement => True,
100 N_Extension_Aggregate => True,
101 N_Full_Type_Declaration => True,
102 N_Object_Declaration => True,
103 N_Object_Renaming_Declaration => True,
104 N_Package_Specification => True,
105 N_Pragma => True,
106 N_Procedure_Call_Statement => True,
107 N_Simple_Return_Statement => True,
108 N_Has_Condition => True,
109 others => False);
111 -----------------------
112 -- Local Subprograms --
113 -----------------------
115 procedure Analyze_Concatenation_Rest (N : Node_Id);
116 -- Does the "rest" of the work of Analyze_Concatenation, after the left
117 -- operand has been analyzed. See Analyze_Concatenation for details.
119 procedure Analyze_Expression (N : Node_Id);
120 -- For expressions that are not names, this is just a call to analyze. If
121 -- the expression is a name, it may be a call to a parameterless function,
122 -- and if so must be converted into an explicit call node and analyzed as
123 -- such. This deproceduring must be done during the first pass of overload
124 -- resolution, because otherwise a procedure call with overloaded actuals
125 -- may fail to resolve.
127 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
128 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
129 -- operator name or an expanded name whose selector is an operator name,
130 -- and one possible interpretation is as a predefined operator.
132 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
133 -- If the prefix of a selected_component is overloaded, the proper
134 -- interpretation that yields a record type with the proper selector
135 -- name must be selected.
137 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
138 -- Procedure to analyze a user defined binary operator, which is resolved
139 -- like a function, but instead of a list of actuals it is presented
140 -- with the left and right operands of an operator node.
142 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
143 -- Procedure to analyze a user defined unary operator, which is resolved
144 -- like a function, but instead of a list of actuals, it is presented with
145 -- the operand of the operator node.
147 procedure Ambiguous_Operands (N : Node_Id);
148 -- For equality, membership, and comparison operators with overloaded
149 -- arguments, list possible interpretations.
151 procedure Analyze_One_Call
152 (N : Node_Id;
153 Nam : Entity_Id;
154 Report : Boolean;
155 Success : out Boolean;
156 Skip_First : Boolean := False);
157 -- Check one interpretation of an overloaded subprogram name for
158 -- compatibility with the types of the actuals in a call. If there is a
159 -- single interpretation which does not match, post error if Report is
160 -- set to True.
162 -- Nam is the entity that provides the formals against which the actuals
163 -- are checked. Nam is either the name of a subprogram, or the internal
164 -- subprogram type constructed for an access_to_subprogram. If the actuals
165 -- are compatible with Nam, then Nam is added to the list of candidate
166 -- interpretations for N, and Success is set to True.
168 -- The flag Skip_First is used when analyzing a call that was rewritten
169 -- from object notation. In this case the first actual may have to receive
170 -- an explicit dereference, depending on the first formal of the operation
171 -- being called. The caller will have verified that the object is legal
172 -- for the call. If the remaining parameters match, the first parameter
173 -- will rewritten as a dereference if needed, prior to completing analysis.
175 procedure Check_Misspelled_Selector
176 (Prefix : Entity_Id;
177 Sel : Node_Id);
178 -- Give possible misspelling message if Sel seems likely to be a mis-
179 -- spelling of one of the selectors of the Prefix. This is called by
180 -- Analyze_Selected_Component after producing an invalid selector error
181 -- message.
183 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
184 -- Verify that type T is declared in scope S. Used to find interpretations
185 -- for operators given by expanded names. This is abstracted as a separate
186 -- function to handle extensions to System, where S is System, but T is
187 -- declared in the extension.
189 procedure Find_Arithmetic_Types
190 (L, R : Node_Id;
191 Op_Id : Entity_Id;
192 N : Node_Id);
193 -- L and R are the operands of an arithmetic operator. Find consistent
194 -- pairs of interpretations for L and R that have a numeric type consistent
195 -- with the semantics of the operator.
197 procedure Find_Comparison_Types
198 (L, R : Node_Id;
199 Op_Id : Entity_Id;
200 N : Node_Id);
201 -- L and R are operands of a comparison operator. Find consistent pairs of
202 -- interpretations for L and R.
204 procedure Find_Concatenation_Types
205 (L, R : Node_Id;
206 Op_Id : Entity_Id;
207 N : Node_Id);
208 -- For the four varieties of concatenation
210 procedure Find_Equality_Types
211 (L, R : Node_Id;
212 Op_Id : Entity_Id;
213 N : Node_Id);
214 -- Ditto for equality operators
216 procedure Find_Boolean_Types
217 (L, R : Node_Id;
218 Op_Id : Entity_Id;
219 N : Node_Id);
220 -- Ditto for binary logical operations
222 procedure Find_Negation_Types
223 (R : Node_Id;
224 Op_Id : Entity_Id;
225 N : Node_Id);
226 -- Find consistent interpretation for operand of negation operator
228 procedure Find_Non_Universal_Interpretations
229 (N : Node_Id;
230 R : Node_Id;
231 Op_Id : Entity_Id;
232 T1 : Entity_Id);
233 -- For equality and comparison operators, the result is always boolean, and
234 -- the legality of the operation is determined from the visibility of the
235 -- operand types. If one of the operands has a universal interpretation,
236 -- the legality check uses some compatible non-universal interpretation of
237 -- the other operand. N can be an operator node, or a function call whose
238 -- name is an operator designator. Any_Access, which is the initial type of
239 -- the literal NULL, is a universal type for the purpose of this routine.
241 function Find_Primitive_Operation (N : Node_Id) return Boolean;
242 -- Find candidate interpretations for the name Obj.Proc when it appears in
243 -- a subprogram renaming declaration.
245 procedure Find_Unary_Types
246 (R : Node_Id;
247 Op_Id : Entity_Id;
248 N : Node_Id);
249 -- Unary arithmetic types: plus, minus, abs
251 procedure Check_Arithmetic_Pair
252 (T1, T2 : Entity_Id;
253 Op_Id : Entity_Id;
254 N : Node_Id);
255 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
256 -- for left and right operand. Determine whether they constitute a valid
257 -- pair for the given operator, and record the corresponding interpretation
258 -- of the operator node. The node N may be an operator node (the usual
259 -- case) or a function call whose prefix is an operator designator. In
260 -- both cases Op_Id is the operator name itself.
262 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
263 -- Give detailed information on overloaded call where none of the
264 -- interpretations match. N is the call node, Nam the designator for
265 -- the overloaded entity being called.
267 function Junk_Operand (N : Node_Id) return Boolean;
268 -- Test for an operand that is an inappropriate entity (e.g. a package
269 -- name or a label). If so, issue an error message and return True. If
270 -- the operand is not an inappropriate entity kind, return False.
272 procedure Operator_Check (N : Node_Id);
273 -- Verify that an operator has received some valid interpretation. If none
274 -- was found, determine whether a use clause would make the operation
275 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
276 -- every type compatible with the operator, even if the operator for the
277 -- type is not directly visible. The routine uses this type to emit a more
278 -- informative message.
280 function Process_Implicit_Dereference_Prefix
281 (E : Entity_Id;
282 P : Node_Id) return Entity_Id;
283 -- Called when P is the prefix of an implicit dereference, denoting an
284 -- object E. The function returns the designated type of the prefix, taking
285 -- into account that the designated type of an anonymous access type may be
286 -- a limited view, when the nonlimited view is visible.
288 -- If in semantics only mode (-gnatc or generic), the function also records
289 -- that the prefix is a reference to E, if any. Normally, such a reference
290 -- is generated only when the implicit dereference is expanded into an
291 -- explicit one, but for consistency we must generate the reference when
292 -- expansion is disabled as well.
294 procedure Remove_Abstract_Operations (N : Node_Id);
295 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
296 -- operation is not a candidate interpretation.
298 function Try_Container_Indexing
299 (N : Node_Id;
300 Prefix : Node_Id;
301 Exprs : List_Id) return Boolean;
302 -- AI05-0139: Generalized indexing to support iterators over containers
304 function Try_Indexed_Call
305 (N : Node_Id;
306 Nam : Entity_Id;
307 Typ : Entity_Id;
308 Skip_First : Boolean) return Boolean;
309 -- If a function has defaults for all its actuals, a call to it may in fact
310 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
311 -- interpretation as an indexing, prior to analysis as a call. If both are
312 -- possible, the node is overloaded with both interpretations (same symbol
313 -- but two different types). If the call is written in prefix form, the
314 -- prefix becomes the first parameter in the call, and only the remaining
315 -- actuals must be checked for the presence of defaults.
317 function Try_Indirect_Call
318 (N : Node_Id;
319 Nam : Entity_Id;
320 Typ : Entity_Id) return Boolean;
321 -- Similarly, a function F that needs no actuals can return an access to a
322 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
323 -- the call may be overloaded with both interpretations.
325 procedure wpo (T : Entity_Id);
326 pragma Warnings (Off, wpo);
327 -- Used for debugging: obtain list of primitive operations even if
328 -- type is not frozen and dispatch table is not built yet.
330 ------------------------
331 -- Ambiguous_Operands --
332 ------------------------
334 procedure Ambiguous_Operands (N : Node_Id) is
335 procedure List_Operand_Interps (Opnd : Node_Id);
337 --------------------------
338 -- List_Operand_Interps --
339 --------------------------
341 procedure List_Operand_Interps (Opnd : Node_Id) is
342 Nam : Node_Id := Empty;
343 Err : Node_Id := N;
345 begin
346 if Is_Overloaded (Opnd) then
347 if Nkind (Opnd) in N_Op then
348 Nam := Opnd;
350 elsif Nkind (Opnd) = N_Function_Call then
351 Nam := Name (Opnd);
353 elsif Ada_Version >= Ada_2012 then
354 declare
355 It : Interp;
356 I : Interp_Index;
358 begin
359 Get_First_Interp (Opnd, I, It);
360 while Present (It.Nam) loop
361 if Has_Implicit_Dereference (It.Typ) then
362 Error_Msg_N
363 ("can be interpreted as implicit dereference", Opnd);
364 return;
365 end if;
367 Get_Next_Interp (I, It);
368 end loop;
369 end;
371 return;
372 end if;
374 else
375 return;
376 end if;
378 if Opnd = Left_Opnd (N) then
379 Error_Msg_N
380 ("\left operand has the following interpretations", N);
381 else
382 Error_Msg_N
383 ("\right operand has the following interpretations", N);
384 Err := Opnd;
385 end if;
387 List_Interps (Nam, Err);
388 end List_Operand_Interps;
390 -- Start of processing for Ambiguous_Operands
392 begin
393 if Nkind (N) in N_Membership_Test then
394 Error_Msg_N ("ambiguous operands for membership", N);
396 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
397 Error_Msg_N ("ambiguous operands for equality", N);
399 else
400 Error_Msg_N ("ambiguous operands for comparison", N);
401 end if;
403 if All_Errors_Mode then
404 List_Operand_Interps (Left_Opnd (N));
405 List_Operand_Interps (Right_Opnd (N));
406 else
407 Error_Msg_N ("\use -gnatf switch for details", N);
408 end if;
409 end Ambiguous_Operands;
411 -----------------------
412 -- Analyze_Aggregate --
413 -----------------------
415 -- Most of the analysis of Aggregates requires that the type be known, and
416 -- is therefore put off until resolution of the context. Delta aggregates
417 -- have a base component that determines the enclosing aggregate type so
418 -- its type can be ascertained earlier. This also allows delta aggregates
419 -- to appear in the context of a record type with a private extension, as
420 -- per the latest update of AI12-0127.
422 procedure Analyze_Aggregate (N : Node_Id) is
423 begin
424 if No (Etype (N)) then
425 if Nkind (N) = N_Delta_Aggregate then
426 declare
427 Base : constant Node_Id := Expression (N);
429 I : Interp_Index;
430 It : Interp;
432 begin
433 Analyze (Base);
435 -- If the base is overloaded, propagate interpretations to the
436 -- enclosing aggregate.
438 if Is_Overloaded (Base) then
439 Get_First_Interp (Base, I, It);
440 Set_Etype (N, Any_Type);
442 while Present (It.Nam) loop
443 Add_One_Interp (N, It.Typ, It.Typ);
444 Get_Next_Interp (I, It);
445 end loop;
447 else
448 Set_Etype (N, Etype (Base));
449 end if;
450 end;
452 else
453 Set_Etype (N, Any_Composite);
454 end if;
455 end if;
456 end Analyze_Aggregate;
458 -----------------------
459 -- Analyze_Allocator --
460 -----------------------
462 procedure Analyze_Allocator (N : Node_Id) is
463 Loc : constant Source_Ptr := Sloc (N);
464 Sav_Errs : constant Nat := Serious_Errors_Detected;
465 E : Node_Id := Expression (N);
466 Acc_Type : Entity_Id;
467 Type_Id : Entity_Id;
468 P : Node_Id;
469 C : Node_Id;
470 Onode : Node_Id;
472 begin
473 Check_SPARK_05_Restriction ("allocator is not allowed", N);
475 -- Deal with allocator restrictions
477 -- In accordance with H.4(7), the No_Allocators restriction only applies
478 -- to user-written allocators. The same consideration applies to the
479 -- No_Standard_Allocators_Before_Elaboration restriction.
481 if Comes_From_Source (N) then
482 Check_Restriction (No_Allocators, N);
484 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
485 -- look at enclosing context, checking task/main subprogram case.
487 C := N;
488 P := Parent (C);
489 while Present (P) loop
491 -- For the task case we need a handled sequence of statements,
492 -- where the occurrence of the allocator is within the statements
493 -- and the parent is a task body
495 if Nkind (P) = N_Handled_Sequence_Of_Statements
496 and then Is_List_Member (C)
497 and then List_Containing (C) = Statements (P)
498 then
499 Onode := Original_Node (Parent (P));
501 -- Check for allocator within task body, this is a definite
502 -- violation of No_Allocators_After_Elaboration we can detect
503 -- at compile time.
505 if Nkind (Onode) = N_Task_Body then
506 Check_Restriction
507 (No_Standard_Allocators_After_Elaboration, N);
508 exit;
509 end if;
510 end if;
512 -- The other case is appearance in a subprogram body. This is
513 -- a violation if this is a library level subprogram with no
514 -- parameters. Note that this is now a static error even if the
515 -- subprogram is not the main program (this is a change, in an
516 -- earlier version only the main program was affected, and the
517 -- check had to be done in the binder.
519 if Nkind (P) = N_Subprogram_Body
520 and then Nkind (Parent (P)) = N_Compilation_Unit
521 and then No (Parameter_Specifications (Specification (P)))
522 then
523 Check_Restriction
524 (No_Standard_Allocators_After_Elaboration, N);
525 end if;
527 C := P;
528 P := Parent (C);
529 end loop;
530 end if;
532 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
533 -- any. The expected type for the name is any type. A non-overloading
534 -- rule then requires it to be of a type descended from
535 -- System.Storage_Pools.Subpools.Subpool_Handle.
537 -- This isn't exactly what the AI says, but it seems to be the right
538 -- rule. The AI should be fixed.???
540 declare
541 Subpool : constant Node_Id := Subpool_Handle_Name (N);
543 begin
544 if Present (Subpool) then
545 Analyze (Subpool);
547 if Is_Overloaded (Subpool) then
548 Error_Msg_N ("ambiguous subpool handle", Subpool);
549 end if;
551 -- Check that Etype (Subpool) is descended from Subpool_Handle
553 Resolve (Subpool);
554 end if;
555 end;
557 -- Analyze the qualified expression or subtype indication
559 if Nkind (E) = N_Qualified_Expression then
560 Acc_Type := Create_Itype (E_Allocator_Type, N);
561 Set_Etype (Acc_Type, Acc_Type);
562 Find_Type (Subtype_Mark (E));
564 -- Analyze the qualified expression, and apply the name resolution
565 -- rule given in 4.7(3).
567 Analyze (E);
568 Type_Id := Etype (E);
569 Set_Directly_Designated_Type (Acc_Type, Type_Id);
571 -- A qualified expression requires an exact match of the type,
572 -- class-wide matching is not allowed.
574 -- if Is_Class_Wide_Type (Type_Id)
575 -- and then Base_Type
576 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
577 -- then
578 -- Wrong_Type (Expression (E), Type_Id);
579 -- end if;
581 -- We don't analyze the qualified expression itself because it's
582 -- part of the allocator. It is fully analyzed and resolved when
583 -- the allocator is resolved with the context type.
585 Set_Etype (E, Type_Id);
587 -- Case where allocator has a subtype indication
589 else
590 declare
591 Def_Id : Entity_Id;
592 Base_Typ : Entity_Id;
594 begin
595 -- If the allocator includes a N_Subtype_Indication then a
596 -- constraint is present, otherwise the node is a subtype mark.
597 -- Introduce an explicit subtype declaration into the tree
598 -- defining some anonymous subtype and rewrite the allocator to
599 -- use this subtype rather than the subtype indication.
601 -- It is important to introduce the explicit subtype declaration
602 -- so that the bounds of the subtype indication are attached to
603 -- the tree in case the allocator is inside a generic unit.
605 -- Finally, if there is no subtype indication and the type is
606 -- a tagged unconstrained type with discriminants, the designated
607 -- object is constrained by their default values, and it is
608 -- simplest to introduce an explicit constraint now. In some cases
609 -- this is done during expansion, but freeze actions are certain
610 -- to be emitted in the proper order if constraint is explicit.
612 if Is_Entity_Name (E) and then Expander_Active then
613 Find_Type (E);
614 Type_Id := Entity (E);
616 if Is_Tagged_Type (Type_Id)
617 and then Has_Discriminants (Type_Id)
618 and then not Is_Constrained (Type_Id)
619 and then
620 Present
621 (Discriminant_Default_Value
622 (First_Discriminant (Type_Id)))
623 then
624 declare
625 Constr : constant List_Id := New_List;
626 Loc : constant Source_Ptr := Sloc (E);
627 Discr : Entity_Id := First_Discriminant (Type_Id);
629 begin
630 if Present (Discriminant_Default_Value (Discr)) then
631 while Present (Discr) loop
632 Append (Discriminant_Default_Value (Discr), Constr);
633 Next_Discriminant (Discr);
634 end loop;
636 Rewrite (E,
637 Make_Subtype_Indication (Loc,
638 Subtype_Mark => New_Occurrence_Of (Type_Id, Loc),
639 Constraint =>
640 Make_Index_Or_Discriminant_Constraint (Loc,
641 Constraints => Constr)));
642 end if;
643 end;
644 end if;
645 end if;
647 if Nkind (E) = N_Subtype_Indication then
649 -- A constraint is only allowed for a composite type in Ada
650 -- 95. In Ada 83, a constraint is also allowed for an
651 -- access-to-composite type, but the constraint is ignored.
653 Find_Type (Subtype_Mark (E));
654 Base_Typ := Entity (Subtype_Mark (E));
656 if Is_Elementary_Type (Base_Typ) then
657 if not (Ada_Version = Ada_83
658 and then Is_Access_Type (Base_Typ))
659 then
660 Error_Msg_N ("constraint not allowed here", E);
662 if Nkind (Constraint (E)) =
663 N_Index_Or_Discriminant_Constraint
664 then
665 Error_Msg_N -- CODEFIX
666 ("\if qualified expression was meant, " &
667 "use apostrophe", Constraint (E));
668 end if;
669 end if;
671 -- Get rid of the bogus constraint:
673 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
674 Analyze_Allocator (N);
675 return;
676 end if;
678 if Expander_Active then
679 Def_Id := Make_Temporary (Loc, 'S');
681 Insert_Action (E,
682 Make_Subtype_Declaration (Loc,
683 Defining_Identifier => Def_Id,
684 Subtype_Indication => Relocate_Node (E)));
686 if Sav_Errs /= Serious_Errors_Detected
687 and then Nkind (Constraint (E)) =
688 N_Index_Or_Discriminant_Constraint
689 then
690 Error_Msg_N -- CODEFIX
691 ("if qualified expression was meant, "
692 & "use apostrophe!", Constraint (E));
693 end if;
695 E := New_Occurrence_Of (Def_Id, Loc);
696 Rewrite (Expression (N), E);
697 end if;
698 end if;
700 Type_Id := Process_Subtype (E, N);
701 Acc_Type := Create_Itype (E_Allocator_Type, N);
702 Set_Etype (Acc_Type, Acc_Type);
703 Set_Directly_Designated_Type (Acc_Type, Type_Id);
704 Check_Fully_Declared (Type_Id, N);
706 -- Ada 2005 (AI-231): If the designated type is itself an access
707 -- type that excludes null, its default initialization will
708 -- be a null object, and we can insert an unconditional raise
709 -- before the allocator.
711 -- Ada 2012 (AI-104): A not null indication here is altogether
712 -- illegal.
714 if Can_Never_Be_Null (Type_Id) then
715 declare
716 Not_Null_Check : constant Node_Id :=
717 Make_Raise_Constraint_Error (Sloc (E),
718 Reason => CE_Null_Not_Allowed);
720 begin
721 if Expander_Active then
722 Insert_Action (N, Not_Null_Check);
723 Analyze (Not_Null_Check);
725 elsif Warn_On_Ada_2012_Compatibility then
726 Error_Msg_N
727 ("null value not allowed here in Ada 2012?y?", E);
728 end if;
729 end;
730 end if;
732 -- Check for missing initialization. Skip this check if we already
733 -- had errors on analyzing the allocator, since in that case these
734 -- are probably cascaded errors.
736 if not Is_Definite_Subtype (Type_Id)
737 and then Serious_Errors_Detected = Sav_Errs
738 then
739 -- The build-in-place machinery may produce an allocator when
740 -- the designated type is indefinite but the underlying type is
741 -- not. In this case the unknown discriminants are meaningless
742 -- and should not trigger error messages. Check the parent node
743 -- because the allocator is marked as coming from source.
745 if Present (Underlying_Type (Type_Id))
746 and then Is_Definite_Subtype (Underlying_Type (Type_Id))
747 and then not Comes_From_Source (Parent (N))
748 then
749 null;
751 -- An unusual case arises when the parent of a derived type is
752 -- a limited record extension with unknown discriminants, and
753 -- its full view has no discriminants.
755 -- A more general fix might be to create the proper underlying
756 -- type for such a derived type, but it is a record type with
757 -- no private attributes, so this required extending the
758 -- meaning of this attribute. ???
760 elsif Ekind (Etype (Type_Id)) = E_Record_Type_With_Private
761 and then Present (Underlying_Type (Etype (Type_Id)))
762 and then
763 not Has_Discriminants (Underlying_Type (Etype (Type_Id)))
764 and then not Comes_From_Source (Parent (N))
765 then
766 null;
768 elsif Is_Class_Wide_Type (Type_Id) then
769 Error_Msg_N
770 ("initialization required in class-wide allocation", N);
772 else
773 if Ada_Version < Ada_2005
774 and then Is_Limited_Type (Type_Id)
775 then
776 Error_Msg_N ("unconstrained allocation not allowed", N);
778 if Is_Array_Type (Type_Id) then
779 Error_Msg_N
780 ("\constraint with array bounds required", N);
782 elsif Has_Unknown_Discriminants (Type_Id) then
783 null;
785 else pragma Assert (Has_Discriminants (Type_Id));
786 Error_Msg_N
787 ("\constraint with discriminant values required", N);
788 end if;
790 -- Limited Ada 2005 and general nonlimited case
792 else
793 Error_Msg_N
794 ("uninitialized unconstrained allocation not "
795 & "allowed", N);
797 if Is_Array_Type (Type_Id) then
798 Error_Msg_N
799 ("\qualified expression or constraint with "
800 & "array bounds required", N);
802 elsif Has_Unknown_Discriminants (Type_Id) then
803 Error_Msg_N ("\qualified expression required", N);
805 else pragma Assert (Has_Discriminants (Type_Id));
806 Error_Msg_N
807 ("\qualified expression or constraint with "
808 & "discriminant values required", N);
809 end if;
810 end if;
811 end if;
812 end if;
813 end;
814 end if;
816 if Is_Abstract_Type (Type_Id) then
817 Error_Msg_N ("cannot allocate abstract object", E);
818 end if;
820 if Has_Task (Designated_Type (Acc_Type)) then
821 Check_Restriction (No_Tasking, N);
822 Check_Restriction (Max_Tasks, N);
823 Check_Restriction (No_Task_Allocators, N);
824 end if;
826 -- Check restriction against dynamically allocated protected objects
828 if Has_Protected (Designated_Type (Acc_Type)) then
829 Check_Restriction (No_Protected_Type_Allocators, N);
830 end if;
832 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
833 -- type is nested, and the designated type needs finalization. The rule
834 -- is conservative in that class-wide types need finalization.
836 if Needs_Finalization (Designated_Type (Acc_Type))
837 and then not Is_Library_Level_Entity (Acc_Type)
838 then
839 Check_Restriction (No_Nested_Finalization, N);
840 end if;
842 -- Check that an allocator of a nested access type doesn't create a
843 -- protected object when restriction No_Local_Protected_Objects applies.
845 if Has_Protected (Designated_Type (Acc_Type))
846 and then not Is_Library_Level_Entity (Acc_Type)
847 then
848 Check_Restriction (No_Local_Protected_Objects, N);
849 end if;
851 -- Likewise for No_Local_Timing_Events
853 if Has_Timing_Event (Designated_Type (Acc_Type))
854 and then not Is_Library_Level_Entity (Acc_Type)
855 then
856 Check_Restriction (No_Local_Timing_Events, N);
857 end if;
859 -- If the No_Streams restriction is set, check that the type of the
860 -- object is not, and does not contain, any subtype derived from
861 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
862 -- Has_Stream just for efficiency reasons. There is no point in
863 -- spending time on a Has_Stream check if the restriction is not set.
865 if Restriction_Check_Required (No_Streams) then
866 if Has_Stream (Designated_Type (Acc_Type)) then
867 Check_Restriction (No_Streams, N);
868 end if;
869 end if;
871 Set_Etype (N, Acc_Type);
873 if not Is_Library_Level_Entity (Acc_Type) then
874 Check_Restriction (No_Local_Allocators, N);
875 end if;
877 if Serious_Errors_Detected > Sav_Errs then
878 Set_Error_Posted (N);
879 Set_Etype (N, Any_Type);
880 end if;
881 end Analyze_Allocator;
883 ---------------------------
884 -- Analyze_Arithmetic_Op --
885 ---------------------------
887 procedure Analyze_Arithmetic_Op (N : Node_Id) is
888 L : constant Node_Id := Left_Opnd (N);
889 R : constant Node_Id := Right_Opnd (N);
890 Op_Id : Entity_Id;
892 begin
893 Candidate_Type := Empty;
894 Analyze_Expression (L);
895 Analyze_Expression (R);
897 -- If the entity is already set, the node is the instantiation of a
898 -- generic node with a non-local reference, or was manufactured by a
899 -- call to Make_Op_xxx. In either case the entity is known to be valid,
900 -- and we do not need to collect interpretations, instead we just get
901 -- the single possible interpretation.
903 Op_Id := Entity (N);
905 if Present (Op_Id) then
906 if Ekind (Op_Id) = E_Operator then
908 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
909 and then Treat_Fixed_As_Integer (N)
910 then
911 null;
912 else
913 Set_Etype (N, Any_Type);
914 Find_Arithmetic_Types (L, R, Op_Id, N);
915 end if;
917 else
918 Set_Etype (N, Any_Type);
919 Add_One_Interp (N, Op_Id, Etype (Op_Id));
920 end if;
922 -- Entity is not already set, so we do need to collect interpretations
924 else
925 Set_Etype (N, Any_Type);
927 Op_Id := Get_Name_Entity_Id (Chars (N));
928 while Present (Op_Id) loop
929 if Ekind (Op_Id) = E_Operator
930 and then Present (Next_Entity (First_Entity (Op_Id)))
931 then
932 Find_Arithmetic_Types (L, R, Op_Id, N);
934 -- The following may seem superfluous, because an operator cannot
935 -- be generic, but this ignores the cleverness of the author of
936 -- ACVC bc1013a.
938 elsif Is_Overloadable (Op_Id) then
939 Analyze_User_Defined_Binary_Op (N, Op_Id);
940 end if;
942 Op_Id := Homonym (Op_Id);
943 end loop;
944 end if;
946 Operator_Check (N);
947 Check_Function_Writable_Actuals (N);
948 end Analyze_Arithmetic_Op;
950 ------------------
951 -- Analyze_Call --
952 ------------------
954 -- Function, procedure, and entry calls are checked here. The Name in
955 -- the call may be overloaded. The actuals have been analyzed and may
956 -- themselves be overloaded. On exit from this procedure, the node N
957 -- may have zero, one or more interpretations. In the first case an
958 -- error message is produced. In the last case, the node is flagged
959 -- as overloaded and the interpretations are collected in All_Interp.
961 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
962 -- the type-checking is similar to that of other calls.
964 procedure Analyze_Call (N : Node_Id) is
965 Actuals : constant List_Id := Parameter_Associations (N);
966 Loc : constant Source_Ptr := Sloc (N);
967 Nam : Node_Id;
968 X : Interp_Index;
969 It : Interp;
970 Nam_Ent : Entity_Id;
971 Success : Boolean := False;
973 Deref : Boolean := False;
974 -- Flag indicates whether an interpretation of the prefix is a
975 -- parameterless call that returns an access_to_subprogram.
977 procedure Check_Mixed_Parameter_And_Named_Associations;
978 -- Check that parameter and named associations are not mixed. This is
979 -- a restriction in SPARK mode.
981 procedure Check_Writable_Actuals (N : Node_Id);
982 -- If the call has out or in-out parameters then mark its outermost
983 -- enclosing construct as a node on which the writable actuals check
984 -- must be performed.
986 function Name_Denotes_Function return Boolean;
987 -- If the type of the name is an access to subprogram, this may be the
988 -- type of a name, or the return type of the function being called. If
989 -- the name is not an entity then it can denote a protected function.
990 -- Until we distinguish Etype from Return_Type, we must use this routine
991 -- to resolve the meaning of the name in the call.
993 procedure No_Interpretation;
994 -- Output error message when no valid interpretation exists
996 --------------------------------------------------
997 -- Check_Mixed_Parameter_And_Named_Associations --
998 --------------------------------------------------
1000 procedure Check_Mixed_Parameter_And_Named_Associations is
1001 Actual : Node_Id;
1002 Named_Seen : Boolean;
1004 begin
1005 Named_Seen := False;
1007 Actual := First (Actuals);
1008 while Present (Actual) loop
1009 case Nkind (Actual) is
1010 when N_Parameter_Association =>
1011 if Named_Seen then
1012 Check_SPARK_05_Restriction
1013 ("named association cannot follow positional one",
1014 Actual);
1015 exit;
1016 end if;
1018 when others =>
1019 Named_Seen := True;
1020 end case;
1022 Next (Actual);
1023 end loop;
1024 end Check_Mixed_Parameter_And_Named_Associations;
1026 ----------------------------
1027 -- Check_Writable_Actuals --
1028 ----------------------------
1030 -- The identification of conflicts in calls to functions with writable
1031 -- actuals is performed in the analysis phase of the front end to ensure
1032 -- that it reports exactly the same errors compiling with and without
1033 -- expansion enabled. It is performed in two stages:
1035 -- 1) When a call to a function with out-mode parameters is found,
1036 -- we climb to the outermost enclosing construct that can be
1037 -- evaluated in arbitrary order and we mark it with the flag
1038 -- Check_Actuals.
1040 -- 2) When the analysis of the marked node is complete, we traverse
1041 -- its decorated subtree searching for conflicts (see function
1042 -- Sem_Util.Check_Function_Writable_Actuals).
1044 -- The unique exception to this general rule is for aggregates, since
1045 -- their analysis is performed by the front end in the resolution
1046 -- phase. For aggregates we do not climb to their enclosing construct:
1047 -- we restrict the analysis to the subexpressions initializing the
1048 -- aggregate components.
1050 -- This implies that the analysis of expressions containing aggregates
1051 -- is not complete, since there may be conflicts on writable actuals
1052 -- involving subexpressions of the enclosing logical or arithmetic
1053 -- expressions. However, we cannot wait and perform the analysis when
1054 -- the whole subtree is resolved, since the subtrees may be transformed,
1055 -- thus adding extra complexity and computation cost to identify and
1056 -- report exactly the same errors compiling with and without expansion
1057 -- enabled.
1059 procedure Check_Writable_Actuals (N : Node_Id) is
1060 begin
1061 if Comes_From_Source (N)
1062 and then Present (Get_Subprogram_Entity (N))
1063 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
1064 then
1065 -- For procedures and entries there is no need to climb since
1066 -- we only need to check if the actuals of this call invoke
1067 -- functions whose out-mode parameters overlap.
1069 if Nkind (N) /= N_Function_Call then
1070 Set_Check_Actuals (N);
1072 -- For calls to functions we climb to the outermost enclosing
1073 -- construct where the out-mode actuals of this function may
1074 -- introduce conflicts.
1076 else
1077 declare
1078 Outermost : Node_Id := Empty; -- init to avoid warning
1079 P : Node_Id := N;
1081 begin
1082 while Present (P) loop
1083 -- For object declarations we can climb to the node from
1084 -- its object definition branch or from its initializing
1085 -- expression. We prefer to mark the child node as the
1086 -- outermost construct to avoid adding further complexity
1087 -- to the routine that will later take care of
1088 -- performing the writable actuals check.
1090 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1091 and then not Nkind_In (P, N_Assignment_Statement,
1092 N_Object_Declaration)
1093 then
1094 Outermost := P;
1095 end if;
1097 -- Avoid climbing more than needed
1099 exit when Stop_Subtree_Climbing (Nkind (P))
1100 or else (Nkind (P) = N_Range
1101 and then not
1102 Nkind_In (Parent (P), N_In, N_Not_In));
1104 P := Parent (P);
1105 end loop;
1107 Set_Check_Actuals (Outermost);
1108 end;
1109 end if;
1110 end if;
1111 end Check_Writable_Actuals;
1113 ---------------------------
1114 -- Name_Denotes_Function --
1115 ---------------------------
1117 function Name_Denotes_Function return Boolean is
1118 begin
1119 if Is_Entity_Name (Nam) then
1120 return Ekind (Entity (Nam)) = E_Function;
1121 elsif Nkind (Nam) = N_Selected_Component then
1122 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1123 else
1124 return False;
1125 end if;
1126 end Name_Denotes_Function;
1128 -----------------------
1129 -- No_Interpretation --
1130 -----------------------
1132 procedure No_Interpretation is
1133 L : constant Boolean := Is_List_Member (N);
1134 K : constant Node_Kind := Nkind (Parent (N));
1136 begin
1137 -- If the node is in a list whose parent is not an expression then it
1138 -- must be an attempted procedure call.
1140 if L and then K not in N_Subexpr then
1141 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1142 Error_Msg_NE
1143 ("must instantiate generic procedure& before call",
1144 Nam, Entity (Nam));
1145 else
1146 Error_Msg_N ("procedure or entry name expected", Nam);
1147 end if;
1149 -- Check for tasking cases where only an entry call will do
1151 elsif not L
1152 and then Nkind_In (K, N_Entry_Call_Alternative,
1153 N_Triggering_Alternative)
1154 then
1155 Error_Msg_N ("entry name expected", Nam);
1157 -- Otherwise give general error message
1159 else
1160 Error_Msg_N ("invalid prefix in call", Nam);
1161 end if;
1162 end No_Interpretation;
1164 -- Start of processing for Analyze_Call
1166 begin
1167 if Restriction_Check_Required (SPARK_05) then
1168 Check_Mixed_Parameter_And_Named_Associations;
1169 end if;
1171 -- Initialize the type of the result of the call to the error type,
1172 -- which will be reset if the type is successfully resolved.
1174 Set_Etype (N, Any_Type);
1176 Nam := Name (N);
1178 if not Is_Overloaded (Nam) then
1180 -- Only one interpretation to check
1182 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1183 Nam_Ent := Etype (Nam);
1185 -- If the prefix is an access_to_subprogram, this may be an indirect
1186 -- call. This is the case if the name in the call is not an entity
1187 -- name, or if it is a function name in the context of a procedure
1188 -- call. In this latter case, we have a call to a parameterless
1189 -- function that returns a pointer_to_procedure which is the entity
1190 -- being called. Finally, F (X) may be a call to a parameterless
1191 -- function that returns a pointer to a function with parameters.
1192 -- Note that if F returns an access-to-subprogram whose designated
1193 -- type is an array, F (X) cannot be interpreted as an indirect call
1194 -- through the result of the call to F.
1196 elsif Is_Access_Type (Etype (Nam))
1197 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1198 and then
1199 (not Name_Denotes_Function
1200 or else Nkind (N) = N_Procedure_Call_Statement
1201 or else
1202 (Nkind (Parent (N)) /= N_Explicit_Dereference
1203 and then Is_Entity_Name (Nam)
1204 and then No (First_Formal (Entity (Nam)))
1205 and then not
1206 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1207 and then Present (Actuals)))
1208 then
1209 Nam_Ent := Designated_Type (Etype (Nam));
1210 Insert_Explicit_Dereference (Nam);
1212 -- Selected component case. Simple entry or protected operation,
1213 -- where the entry name is given by the selector name.
1215 elsif Nkind (Nam) = N_Selected_Component then
1216 Nam_Ent := Entity (Selector_Name (Nam));
1218 if not Ekind_In (Nam_Ent, E_Entry,
1219 E_Entry_Family,
1220 E_Function,
1221 E_Procedure)
1222 then
1223 Error_Msg_N ("name in call is not a callable entity", Nam);
1224 Set_Etype (N, Any_Type);
1225 return;
1226 end if;
1228 -- If the name is an Indexed component, it can be a call to a member
1229 -- of an entry family. The prefix must be a selected component whose
1230 -- selector is the entry. Analyze_Procedure_Call normalizes several
1231 -- kinds of call into this form.
1233 elsif Nkind (Nam) = N_Indexed_Component then
1234 if Nkind (Prefix (Nam)) = N_Selected_Component then
1235 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1236 else
1237 Error_Msg_N ("name in call is not a callable entity", Nam);
1238 Set_Etype (N, Any_Type);
1239 return;
1240 end if;
1242 elsif not Is_Entity_Name (Nam) then
1243 Error_Msg_N ("name in call is not a callable entity", Nam);
1244 Set_Etype (N, Any_Type);
1245 return;
1247 else
1248 Nam_Ent := Entity (Nam);
1250 -- If not overloadable, this may be a generalized indexing
1251 -- operation with named associations. Rewrite again as an
1252 -- indexed component and analyze as container indexing.
1254 if not Is_Overloadable (Nam_Ent) then
1255 if Present
1256 (Find_Value_Of_Aspect
1257 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1258 then
1259 Replace (N,
1260 Make_Indexed_Component (Sloc (N),
1261 Prefix => Nam,
1262 Expressions => Parameter_Associations (N)));
1264 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1265 return;
1266 else
1267 No_Interpretation;
1268 end if;
1270 else
1271 No_Interpretation;
1272 end if;
1274 return;
1275 end if;
1276 end if;
1278 -- Operations generated for RACW stub types are called only through
1279 -- dispatching, and can never be the static interpretation of a call.
1281 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1282 No_Interpretation;
1283 return;
1284 end if;
1286 Analyze_One_Call (N, Nam_Ent, True, Success);
1288 -- If this is an indirect call, the return type of the access_to
1289 -- subprogram may be an incomplete type. At the point of the call,
1290 -- use the full type if available, and at the same time update the
1291 -- return type of the access_to_subprogram.
1293 if Success
1294 and then Nkind (Nam) = N_Explicit_Dereference
1295 and then Ekind (Etype (N)) = E_Incomplete_Type
1296 and then Present (Full_View (Etype (N)))
1297 then
1298 Set_Etype (N, Full_View (Etype (N)));
1299 Set_Etype (Nam_Ent, Etype (N));
1300 end if;
1302 -- Overloaded call
1304 else
1305 -- An overloaded selected component must denote overloaded operations
1306 -- of a concurrent type. The interpretations are attached to the
1307 -- simple name of those operations.
1309 if Nkind (Nam) = N_Selected_Component then
1310 Nam := Selector_Name (Nam);
1311 end if;
1313 Get_First_Interp (Nam, X, It);
1314 while Present (It.Nam) loop
1315 Nam_Ent := It.Nam;
1316 Deref := False;
1318 -- Name may be call that returns an access to subprogram, or more
1319 -- generally an overloaded expression one of whose interpretations
1320 -- yields an access to subprogram. If the name is an entity, we do
1321 -- not dereference, because the node is a call that returns the
1322 -- access type: note difference between f(x), where the call may
1323 -- return an access subprogram type, and f(x)(y), where the type
1324 -- returned by the call to f is implicitly dereferenced to analyze
1325 -- the outer call.
1327 if Is_Access_Type (Nam_Ent) then
1328 Nam_Ent := Designated_Type (Nam_Ent);
1330 elsif Is_Access_Type (Etype (Nam_Ent))
1331 and then
1332 (not Is_Entity_Name (Nam)
1333 or else Nkind (N) = N_Procedure_Call_Statement)
1334 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1335 = E_Subprogram_Type
1336 then
1337 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1339 if Is_Entity_Name (Nam) then
1340 Deref := True;
1341 end if;
1342 end if;
1344 -- If the call has been rewritten from a prefixed call, the first
1345 -- parameter has been analyzed, but may need a subsequent
1346 -- dereference, so skip its analysis now.
1348 if N /= Original_Node (N)
1349 and then Nkind (Original_Node (N)) = Nkind (N)
1350 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1351 and then Present (Parameter_Associations (N))
1352 and then Present (Etype (First (Parameter_Associations (N))))
1353 then
1354 Analyze_One_Call
1355 (N, Nam_Ent, False, Success, Skip_First => True);
1356 else
1357 Analyze_One_Call (N, Nam_Ent, False, Success);
1358 end if;
1360 -- If the interpretation succeeds, mark the proper type of the
1361 -- prefix (any valid candidate will do). If not, remove the
1362 -- candidate interpretation. If this is a parameterless call
1363 -- on an anonymous access to subprogram, X is a variable with
1364 -- an access discriminant D, the entity in the interpretation is
1365 -- D, so rewrite X as X.D.all.
1367 if Success then
1368 if Deref
1369 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1370 then
1371 if Ekind (It.Nam) = E_Discriminant
1372 and then Has_Implicit_Dereference (It.Nam)
1373 then
1374 Rewrite (Name (N),
1375 Make_Explicit_Dereference (Loc,
1376 Prefix =>
1377 Make_Selected_Component (Loc,
1378 Prefix =>
1379 New_Occurrence_Of (Entity (Nam), Loc),
1380 Selector_Name =>
1381 New_Occurrence_Of (It.Nam, Loc))));
1383 Analyze (N);
1384 return;
1386 else
1387 Set_Entity (Nam, It.Nam);
1388 Insert_Explicit_Dereference (Nam);
1389 Set_Etype (Nam, Nam_Ent);
1390 end if;
1392 else
1393 Set_Etype (Nam, It.Typ);
1394 end if;
1396 elsif Nkind_In (Name (N), N_Function_Call, N_Selected_Component)
1397 then
1398 Remove_Interp (X);
1399 end if;
1401 Get_Next_Interp (X, It);
1402 end loop;
1404 -- If the name is the result of a function call, it can only be a
1405 -- call to a function returning an access to subprogram. Insert
1406 -- explicit dereference.
1408 if Nkind (Nam) = N_Function_Call then
1409 Insert_Explicit_Dereference (Nam);
1410 end if;
1412 if Etype (N) = Any_Type then
1414 -- None of the interpretations is compatible with the actuals
1416 Diagnose_Call (N, Nam);
1418 -- Special checks for uninstantiated put routines
1420 if Nkind (N) = N_Procedure_Call_Statement
1421 and then Is_Entity_Name (Nam)
1422 and then Chars (Nam) = Name_Put
1423 and then List_Length (Actuals) = 1
1424 then
1425 declare
1426 Arg : constant Node_Id := First (Actuals);
1427 Typ : Entity_Id;
1429 begin
1430 if Nkind (Arg) = N_Parameter_Association then
1431 Typ := Etype (Explicit_Actual_Parameter (Arg));
1432 else
1433 Typ := Etype (Arg);
1434 end if;
1436 if Is_Signed_Integer_Type (Typ) then
1437 Error_Msg_N
1438 ("possible missing instantiation of "
1439 & "'Text_'I'O.'Integer_'I'O!", Nam);
1441 elsif Is_Modular_Integer_Type (Typ) then
1442 Error_Msg_N
1443 ("possible missing instantiation of "
1444 & "'Text_'I'O.'Modular_'I'O!", Nam);
1446 elsif Is_Floating_Point_Type (Typ) then
1447 Error_Msg_N
1448 ("possible missing instantiation of "
1449 & "'Text_'I'O.'Float_'I'O!", Nam);
1451 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1452 Error_Msg_N
1453 ("possible missing instantiation of "
1454 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1456 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1457 Error_Msg_N
1458 ("possible missing instantiation of "
1459 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1461 elsif Is_Enumeration_Type (Typ) then
1462 Error_Msg_N
1463 ("possible missing instantiation of "
1464 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1465 end if;
1466 end;
1467 end if;
1469 elsif not Is_Overloaded (N)
1470 and then Is_Entity_Name (Nam)
1471 then
1472 -- Resolution yields a single interpretation. Verify that the
1473 -- reference has capitalization consistent with the declaration.
1475 Set_Entity_With_Checks (Nam, Entity (Nam));
1476 Generate_Reference (Entity (Nam), Nam);
1478 Set_Etype (Nam, Etype (Entity (Nam)));
1479 else
1480 Remove_Abstract_Operations (N);
1481 end if;
1483 End_Interp_List;
1484 end if;
1486 if Ada_Version >= Ada_2012 then
1488 -- Check if the call contains a function with writable actuals
1490 Check_Writable_Actuals (N);
1492 -- If found and the outermost construct that can be evaluated in
1493 -- an arbitrary order is precisely this call, then check all its
1494 -- actuals.
1496 Check_Function_Writable_Actuals (N);
1498 -- The return type of the function may be incomplete. This can be
1499 -- the case if the type is a generic formal, or a limited view. It
1500 -- can also happen when the function declaration appears before the
1501 -- full view of the type (which is legal in Ada 2012) and the call
1502 -- appears in a different unit, in which case the incomplete view
1503 -- must be replaced with the full view (or the nonlimited view)
1504 -- to prevent subsequent type errors. Note that the usual install/
1505 -- removal of limited_with clauses is not sufficient to handle this
1506 -- case, because the limited view may have been captured in another
1507 -- compilation unit that defines the current function.
1509 if Is_Incomplete_Type (Etype (N)) then
1510 if Present (Full_View (Etype (N))) then
1511 if Is_Entity_Name (Nam) then
1512 Set_Etype (Nam, Full_View (Etype (N)));
1513 Set_Etype (Entity (Nam), Full_View (Etype (N)));
1514 end if;
1516 Set_Etype (N, Full_View (Etype (N)));
1518 elsif From_Limited_With (Etype (N))
1519 and then Present (Non_Limited_View (Etype (N)))
1520 then
1521 Set_Etype (N, Non_Limited_View (Etype (N)));
1523 -- If there is no completion for the type, this may be because
1524 -- there is only a limited view of it and there is nothing in
1525 -- the context of the current unit that has required a regular
1526 -- compilation of the unit containing the type. We recognize
1527 -- this unusual case by the fact that that unit is not analyzed.
1528 -- Note that the call being analyzed is in a different unit from
1529 -- the function declaration, and nothing indicates that the type
1530 -- is a limited view.
1532 elsif Ekind (Scope (Etype (N))) = E_Package
1533 and then Present (Limited_View (Scope (Etype (N))))
1534 and then not Analyzed (Unit_Declaration_Node (Scope (Etype (N))))
1535 then
1536 Error_Msg_NE
1537 ("cannot call function that returns limited view of}",
1538 N, Etype (N));
1540 Error_Msg_NE
1541 ("\there must be a regular with_clause for package & in the "
1542 & "current unit, or in some unit in its context",
1543 N, Scope (Etype (N)));
1545 Set_Etype (N, Any_Type);
1546 end if;
1547 end if;
1548 end if;
1549 end Analyze_Call;
1551 -----------------------------
1552 -- Analyze_Case_Expression --
1553 -----------------------------
1555 procedure Analyze_Case_Expression (N : Node_Id) is
1556 procedure Non_Static_Choice_Error (Choice : Node_Id);
1557 -- Error routine invoked by the generic instantiation below when
1558 -- the case expression has a non static choice.
1560 package Case_Choices_Analysis is new
1561 Generic_Analyze_Choices
1562 (Process_Associated_Node => No_OP);
1563 use Case_Choices_Analysis;
1565 package Case_Choices_Checking is new
1566 Generic_Check_Choices
1567 (Process_Empty_Choice => No_OP,
1568 Process_Non_Static_Choice => Non_Static_Choice_Error,
1569 Process_Associated_Node => No_OP);
1570 use Case_Choices_Checking;
1572 -----------------------------
1573 -- Non_Static_Choice_Error --
1574 -----------------------------
1576 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1577 begin
1578 Flag_Non_Static_Expr
1579 ("choice given in case expression is not static!", Choice);
1580 end Non_Static_Choice_Error;
1582 -- Local variables
1584 Expr : constant Node_Id := Expression (N);
1585 Alt : Node_Id;
1586 Exp_Type : Entity_Id;
1587 Exp_Btype : Entity_Id;
1589 FirstX : Node_Id := Empty;
1590 -- First expression in the case for which there is some type information
1591 -- available, i.e. it is not Any_Type, which can happen because of some
1592 -- error, or from the use of e.g. raise Constraint_Error.
1594 Others_Present : Boolean;
1595 -- Indicates if Others was present
1597 Wrong_Alt : Node_Id := Empty;
1598 -- For error reporting
1600 -- Start of processing for Analyze_Case_Expression
1602 begin
1603 if Comes_From_Source (N) then
1604 Check_Compiler_Unit ("case expression", N);
1605 end if;
1607 Analyze_And_Resolve (Expr, Any_Discrete);
1608 Check_Unset_Reference (Expr);
1609 Exp_Type := Etype (Expr);
1610 Exp_Btype := Base_Type (Exp_Type);
1612 Alt := First (Alternatives (N));
1613 while Present (Alt) loop
1614 if Error_Posted (Expression (Alt)) then
1615 return;
1616 end if;
1618 Analyze (Expression (Alt));
1620 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1621 FirstX := Expression (Alt);
1622 end if;
1624 Next (Alt);
1625 end loop;
1627 -- Get our initial type from the first expression for which we got some
1628 -- useful type information from the expression.
1630 if No (FirstX) then
1631 return;
1632 end if;
1634 if not Is_Overloaded (FirstX) then
1635 Set_Etype (N, Etype (FirstX));
1637 else
1638 declare
1639 I : Interp_Index;
1640 It : Interp;
1642 begin
1643 Set_Etype (N, Any_Type);
1645 Get_First_Interp (FirstX, I, It);
1646 while Present (It.Nam) loop
1648 -- For each interpretation of the first expression, we only
1649 -- add the interpretation if every other expression in the
1650 -- case expression alternatives has a compatible type.
1652 Alt := Next (First (Alternatives (N)));
1653 while Present (Alt) loop
1654 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1655 Next (Alt);
1656 end loop;
1658 if No (Alt) then
1659 Add_One_Interp (N, It.Typ, It.Typ);
1660 else
1661 Wrong_Alt := Alt;
1662 end if;
1664 Get_Next_Interp (I, It);
1665 end loop;
1666 end;
1667 end if;
1669 Exp_Btype := Base_Type (Exp_Type);
1671 -- The expression must be of a discrete type which must be determinable
1672 -- independently of the context in which the expression occurs, but
1673 -- using the fact that the expression must be of a discrete type.
1674 -- Moreover, the type this expression must not be a character literal
1675 -- (which is always ambiguous).
1677 -- If error already reported by Resolve, nothing more to do
1679 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1680 return;
1682 -- Special casee message for character literal
1684 elsif Exp_Btype = Any_Character then
1685 Error_Msg_N
1686 ("character literal as case expression is ambiguous", Expr);
1687 return;
1688 end if;
1690 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1691 Error_Msg_N
1692 ("type incompatible with that of previous alternatives",
1693 Expression (Wrong_Alt));
1694 return;
1695 end if;
1697 -- If the case expression is a formal object of mode in out, then
1698 -- treat it as having a nonstatic subtype by forcing use of the base
1699 -- type (which has to get passed to Check_Case_Choices below). Also
1700 -- use base type when the case expression is parenthesized.
1702 if Paren_Count (Expr) > 0
1703 or else (Is_Entity_Name (Expr)
1704 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1705 then
1706 Exp_Type := Exp_Btype;
1707 end if;
1709 -- The case expression alternatives cover the range of a static subtype
1710 -- subject to aspect Static_Predicate. Do not check the choices when the
1711 -- case expression has not been fully analyzed yet because this may lead
1712 -- to bogus errors.
1714 if Is_OK_Static_Subtype (Exp_Type)
1715 and then Has_Static_Predicate_Aspect (Exp_Type)
1716 and then In_Spec_Expression
1717 then
1718 null;
1720 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1722 else
1723 Analyze_Choices (Alternatives (N), Exp_Type);
1724 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1726 if Exp_Type = Universal_Integer and then not Others_Present then
1727 Error_Msg_N
1728 ("case on universal integer requires OTHERS choice", Expr);
1729 end if;
1730 end if;
1731 end Analyze_Case_Expression;
1733 ---------------------------
1734 -- Analyze_Comparison_Op --
1735 ---------------------------
1737 procedure Analyze_Comparison_Op (N : Node_Id) is
1738 L : constant Node_Id := Left_Opnd (N);
1739 R : constant Node_Id := Right_Opnd (N);
1740 Op_Id : Entity_Id := Entity (N);
1742 begin
1743 Set_Etype (N, Any_Type);
1744 Candidate_Type := Empty;
1746 Analyze_Expression (L);
1747 Analyze_Expression (R);
1749 if Present (Op_Id) then
1750 if Ekind (Op_Id) = E_Operator then
1751 Find_Comparison_Types (L, R, Op_Id, N);
1752 else
1753 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1754 end if;
1756 if Is_Overloaded (L) then
1757 Set_Etype (L, Intersect_Types (L, R));
1758 end if;
1760 else
1761 Op_Id := Get_Name_Entity_Id (Chars (N));
1762 while Present (Op_Id) loop
1763 if Ekind (Op_Id) = E_Operator then
1764 Find_Comparison_Types (L, R, Op_Id, N);
1765 else
1766 Analyze_User_Defined_Binary_Op (N, Op_Id);
1767 end if;
1769 Op_Id := Homonym (Op_Id);
1770 end loop;
1771 end if;
1773 Operator_Check (N);
1774 Check_Function_Writable_Actuals (N);
1775 end Analyze_Comparison_Op;
1777 ---------------------------
1778 -- Analyze_Concatenation --
1779 ---------------------------
1781 procedure Analyze_Concatenation (N : Node_Id) is
1783 -- We wish to avoid deep recursion, because concatenations are often
1784 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1785 -- operands nonrecursively until we find something that is not a
1786 -- concatenation (A in this case), or has already been analyzed. We
1787 -- analyze that, and then walk back up the tree following Parent
1788 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1789 -- work at each level. The Parent pointers allow us to avoid recursion,
1790 -- and thus avoid running out of memory.
1792 NN : Node_Id := N;
1793 L : Node_Id;
1795 begin
1796 Candidate_Type := Empty;
1798 -- The following code is equivalent to:
1800 -- Set_Etype (N, Any_Type);
1801 -- Analyze_Expression (Left_Opnd (N));
1802 -- Analyze_Concatenation_Rest (N);
1804 -- where the Analyze_Expression call recurses back here if the left
1805 -- operand is a concatenation.
1807 -- Walk down left operands
1809 loop
1810 Set_Etype (NN, Any_Type);
1811 L := Left_Opnd (NN);
1812 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1813 NN := L;
1814 end loop;
1816 -- Now (given the above example) NN is A&B and L is A
1818 -- First analyze L ...
1820 Analyze_Expression (L);
1822 -- ... then walk NN back up until we reach N (where we started), calling
1823 -- Analyze_Concatenation_Rest along the way.
1825 loop
1826 Analyze_Concatenation_Rest (NN);
1827 exit when NN = N;
1828 NN := Parent (NN);
1829 end loop;
1830 end Analyze_Concatenation;
1832 --------------------------------
1833 -- Analyze_Concatenation_Rest --
1834 --------------------------------
1836 -- If the only one-dimensional array type in scope is String,
1837 -- this is the resulting type of the operation. Otherwise there
1838 -- will be a concatenation operation defined for each user-defined
1839 -- one-dimensional array.
1841 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1842 L : constant Node_Id := Left_Opnd (N);
1843 R : constant Node_Id := Right_Opnd (N);
1844 Op_Id : Entity_Id := Entity (N);
1845 LT : Entity_Id;
1846 RT : Entity_Id;
1848 begin
1849 Analyze_Expression (R);
1851 -- If the entity is present, the node appears in an instance, and
1852 -- denotes a predefined concatenation operation. The resulting type is
1853 -- obtained from the arguments when possible. If the arguments are
1854 -- aggregates, the array type and the concatenation type must be
1855 -- visible.
1857 if Present (Op_Id) then
1858 if Ekind (Op_Id) = E_Operator then
1859 LT := Base_Type (Etype (L));
1860 RT := Base_Type (Etype (R));
1862 if Is_Array_Type (LT)
1863 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1864 then
1865 Add_One_Interp (N, Op_Id, LT);
1867 elsif Is_Array_Type (RT)
1868 and then LT = Base_Type (Component_Type (RT))
1869 then
1870 Add_One_Interp (N, Op_Id, RT);
1872 -- If one operand is a string type or a user-defined array type,
1873 -- and the other is a literal, result is of the specific type.
1875 elsif
1876 (Root_Type (LT) = Standard_String
1877 or else Scope (LT) /= Standard_Standard)
1878 and then Etype (R) = Any_String
1879 then
1880 Add_One_Interp (N, Op_Id, LT);
1882 elsif
1883 (Root_Type (RT) = Standard_String
1884 or else Scope (RT) /= Standard_Standard)
1885 and then Etype (L) = Any_String
1886 then
1887 Add_One_Interp (N, Op_Id, RT);
1889 elsif not Is_Generic_Type (Etype (Op_Id)) then
1890 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1892 else
1893 -- Type and its operations must be visible
1895 Set_Entity (N, Empty);
1896 Analyze_Concatenation (N);
1897 end if;
1899 else
1900 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1901 end if;
1903 else
1904 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1905 while Present (Op_Id) loop
1906 if Ekind (Op_Id) = E_Operator then
1908 -- Do not consider operators declared in dead code, they can
1909 -- not be part of the resolution.
1911 if Is_Eliminated (Op_Id) then
1912 null;
1913 else
1914 Find_Concatenation_Types (L, R, Op_Id, N);
1915 end if;
1917 else
1918 Analyze_User_Defined_Binary_Op (N, Op_Id);
1919 end if;
1921 Op_Id := Homonym (Op_Id);
1922 end loop;
1923 end if;
1925 Operator_Check (N);
1926 end Analyze_Concatenation_Rest;
1928 -------------------------
1929 -- Analyze_Equality_Op --
1930 -------------------------
1932 procedure Analyze_Equality_Op (N : Node_Id) is
1933 Loc : constant Source_Ptr := Sloc (N);
1934 L : constant Node_Id := Left_Opnd (N);
1935 R : constant Node_Id := Right_Opnd (N);
1936 Op_Id : Entity_Id;
1938 begin
1939 Set_Etype (N, Any_Type);
1940 Candidate_Type := Empty;
1942 Analyze_Expression (L);
1943 Analyze_Expression (R);
1945 -- If the entity is set, the node is a generic instance with a non-local
1946 -- reference to the predefined operator or to a user-defined function.
1947 -- It can also be an inequality that is expanded into the negation of a
1948 -- call to a user-defined equality operator.
1950 -- For the predefined case, the result is Boolean, regardless of the
1951 -- type of the operands. The operands may even be limited, if they are
1952 -- generic actuals. If they are overloaded, label the left argument with
1953 -- the common type that must be present, or with the type of the formal
1954 -- of the user-defined function.
1956 if Present (Entity (N)) then
1957 Op_Id := Entity (N);
1959 if Ekind (Op_Id) = E_Operator then
1960 Add_One_Interp (N, Op_Id, Standard_Boolean);
1961 else
1962 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1963 end if;
1965 if Is_Overloaded (L) then
1966 if Ekind (Op_Id) = E_Operator then
1967 Set_Etype (L, Intersect_Types (L, R));
1968 else
1969 Set_Etype (L, Etype (First_Formal (Op_Id)));
1970 end if;
1971 end if;
1973 else
1974 Op_Id := Get_Name_Entity_Id (Chars (N));
1975 while Present (Op_Id) loop
1976 if Ekind (Op_Id) = E_Operator then
1977 Find_Equality_Types (L, R, Op_Id, N);
1978 else
1979 Analyze_User_Defined_Binary_Op (N, Op_Id);
1980 end if;
1982 Op_Id := Homonym (Op_Id);
1983 end loop;
1984 end if;
1986 -- If there was no match, and the operator is inequality, this may be
1987 -- a case where inequality has not been made explicit, as for tagged
1988 -- types. Analyze the node as the negation of an equality operation.
1989 -- This cannot be done earlier, because before analysis we cannot rule
1990 -- out the presence of an explicit inequality.
1992 if Etype (N) = Any_Type
1993 and then Nkind (N) = N_Op_Ne
1994 then
1995 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1996 while Present (Op_Id) loop
1997 if Ekind (Op_Id) = E_Operator then
1998 Find_Equality_Types (L, R, Op_Id, N);
1999 else
2000 Analyze_User_Defined_Binary_Op (N, Op_Id);
2001 end if;
2003 Op_Id := Homonym (Op_Id);
2004 end loop;
2006 if Etype (N) /= Any_Type then
2007 Op_Id := Entity (N);
2009 Rewrite (N,
2010 Make_Op_Not (Loc,
2011 Right_Opnd =>
2012 Make_Op_Eq (Loc,
2013 Left_Opnd => Left_Opnd (N),
2014 Right_Opnd => Right_Opnd (N))));
2016 Set_Entity (Right_Opnd (N), Op_Id);
2017 Analyze (N);
2018 end if;
2019 end if;
2021 Operator_Check (N);
2022 Check_Function_Writable_Actuals (N);
2023 end Analyze_Equality_Op;
2025 ----------------------------------
2026 -- Analyze_Explicit_Dereference --
2027 ----------------------------------
2029 procedure Analyze_Explicit_Dereference (N : Node_Id) is
2030 Loc : constant Source_Ptr := Sloc (N);
2031 P : constant Node_Id := Prefix (N);
2032 T : Entity_Id;
2033 I : Interp_Index;
2034 It : Interp;
2035 New_N : Node_Id;
2037 function Is_Function_Type return Boolean;
2038 -- Check whether node may be interpreted as an implicit function call
2040 ----------------------
2041 -- Is_Function_Type --
2042 ----------------------
2044 function Is_Function_Type return Boolean is
2045 I : Interp_Index;
2046 It : Interp;
2048 begin
2049 if not Is_Overloaded (N) then
2050 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
2051 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
2053 else
2054 Get_First_Interp (N, I, It);
2055 while Present (It.Nam) loop
2056 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
2057 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
2058 then
2059 return False;
2060 end if;
2062 Get_Next_Interp (I, It);
2063 end loop;
2065 return True;
2066 end if;
2067 end Is_Function_Type;
2069 -- Start of processing for Analyze_Explicit_Dereference
2071 begin
2072 -- If source node, check SPARK restriction. We guard this with the
2073 -- source node check, because ???
2075 if Comes_From_Source (N) then
2076 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
2077 end if;
2079 -- In formal verification mode, keep track of all reads and writes
2080 -- through explicit dereferences.
2082 if GNATprove_Mode then
2083 SPARK_Specific.Generate_Dereference (N);
2084 end if;
2086 Analyze (P);
2087 Set_Etype (N, Any_Type);
2089 -- Test for remote access to subprogram type, and if so return
2090 -- after rewriting the original tree.
2092 if Remote_AST_E_Dereference (P) then
2093 return;
2094 end if;
2096 -- Normal processing for other than remote access to subprogram type
2098 if not Is_Overloaded (P) then
2099 if Is_Access_Type (Etype (P)) then
2101 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
2102 -- avoid other problems caused by the Private_Subtype and it is
2103 -- safe to go to the Base_Type because this is the same as
2104 -- converting the access value to its Base_Type.
2106 declare
2107 DT : Entity_Id := Designated_Type (Etype (P));
2109 begin
2110 if Ekind (DT) = E_Private_Subtype
2111 and then Is_For_Access_Subtype (DT)
2112 then
2113 DT := Base_Type (DT);
2114 end if;
2116 -- An explicit dereference is a legal occurrence of an
2117 -- incomplete type imported through a limited_with clause, if
2118 -- the full view is visible, or if we are within an instance
2119 -- body, where the enclosing body has a regular with_clause
2120 -- on the unit.
2122 if From_Limited_With (DT)
2123 and then not From_Limited_With (Scope (DT))
2124 and then
2125 (Is_Immediately_Visible (Scope (DT))
2126 or else
2127 (Is_Child_Unit (Scope (DT))
2128 and then Is_Visible_Lib_Unit (Scope (DT)))
2129 or else In_Instance_Body)
2130 then
2131 Set_Etype (N, Available_View (DT));
2133 else
2134 Set_Etype (N, DT);
2135 end if;
2136 end;
2138 elsif Etype (P) /= Any_Type then
2139 Error_Msg_N ("prefix of dereference must be an access type", N);
2140 return;
2141 end if;
2143 else
2144 Get_First_Interp (P, I, It);
2145 while Present (It.Nam) loop
2146 T := It.Typ;
2148 if Is_Access_Type (T) then
2149 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2150 end if;
2152 Get_Next_Interp (I, It);
2153 end loop;
2155 -- Error if no interpretation of the prefix has an access type
2157 if Etype (N) = Any_Type then
2158 Error_Msg_N
2159 ("access type required in prefix of explicit dereference", P);
2160 Set_Etype (N, Any_Type);
2161 return;
2162 end if;
2163 end if;
2165 if Is_Function_Type
2166 and then Nkind (Parent (N)) /= N_Indexed_Component
2168 and then (Nkind (Parent (N)) /= N_Function_Call
2169 or else N /= Name (Parent (N)))
2171 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2172 or else N /= Name (Parent (N)))
2174 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2175 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2176 or else
2177 (Attribute_Name (Parent (N)) /= Name_Address
2178 and then
2179 Attribute_Name (Parent (N)) /= Name_Access))
2180 then
2181 -- Name is a function call with no actuals, in a context that
2182 -- requires deproceduring (including as an actual in an enclosing
2183 -- function or procedure call). There are some pathological cases
2184 -- where the prefix might include functions that return access to
2185 -- subprograms and others that return a regular type. Disambiguation
2186 -- of those has to take place in Resolve.
2188 New_N :=
2189 Make_Function_Call (Loc,
2190 Name => Make_Explicit_Dereference (Loc, P),
2191 Parameter_Associations => New_List);
2193 -- If the prefix is overloaded, remove operations that have formals,
2194 -- we know that this is a parameterless call.
2196 if Is_Overloaded (P) then
2197 Get_First_Interp (P, I, It);
2198 while Present (It.Nam) loop
2199 T := It.Typ;
2201 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2202 Set_Etype (P, T);
2203 else
2204 Remove_Interp (I);
2205 end if;
2207 Get_Next_Interp (I, It);
2208 end loop;
2209 end if;
2211 Rewrite (N, New_N);
2212 Analyze (N);
2214 elsif not Is_Function_Type
2215 and then Is_Overloaded (N)
2216 then
2217 -- The prefix may include access to subprograms and other access
2218 -- types. If the context selects the interpretation that is a
2219 -- function call (not a procedure call) we cannot rewrite the node
2220 -- yet, but we include the result of the call interpretation.
2222 Get_First_Interp (N, I, It);
2223 while Present (It.Nam) loop
2224 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2225 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2226 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2227 then
2228 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2229 end if;
2231 Get_Next_Interp (I, It);
2232 end loop;
2233 end if;
2235 -- A value of remote access-to-class-wide must not be dereferenced
2236 -- (RM E.2.2(16)).
2238 Validate_Remote_Access_To_Class_Wide_Type (N);
2239 end Analyze_Explicit_Dereference;
2241 ------------------------
2242 -- Analyze_Expression --
2243 ------------------------
2245 procedure Analyze_Expression (N : Node_Id) is
2246 begin
2248 -- If the expression is an indexed component that will be rewritten
2249 -- as a container indexing, it has already been analyzed.
2251 if Nkind (N) = N_Indexed_Component
2252 and then Present (Generalized_Indexing (N))
2253 then
2254 null;
2256 else
2257 Analyze (N);
2258 Check_Parameterless_Call (N);
2259 end if;
2260 end Analyze_Expression;
2262 -------------------------------------
2263 -- Analyze_Expression_With_Actions --
2264 -------------------------------------
2266 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2267 A : Node_Id;
2269 begin
2270 A := First (Actions (N));
2271 while Present (A) loop
2272 Analyze (A);
2273 Next (A);
2274 end loop;
2276 Analyze_Expression (Expression (N));
2277 Set_Etype (N, Etype (Expression (N)));
2278 end Analyze_Expression_With_Actions;
2280 ---------------------------
2281 -- Analyze_If_Expression --
2282 ---------------------------
2284 procedure Analyze_If_Expression (N : Node_Id) is
2285 Condition : constant Node_Id := First (Expressions (N));
2286 Then_Expr : Node_Id;
2287 Else_Expr : Node_Id;
2289 begin
2290 -- Defend against error of missing expressions from previous error
2292 if No (Condition) then
2293 Check_Error_Detected;
2294 return;
2295 end if;
2297 Then_Expr := Next (Condition);
2299 if No (Then_Expr) then
2300 Check_Error_Detected;
2301 return;
2302 end if;
2304 Else_Expr := Next (Then_Expr);
2306 if Comes_From_Source (N) then
2307 Check_SPARK_05_Restriction ("if expression is not allowed", N);
2308 end if;
2310 if Comes_From_Source (N) then
2311 Check_Compiler_Unit ("if expression", N);
2312 end if;
2314 -- Analyze and resolve the condition. We need to resolve this now so
2315 -- that it gets folded to True/False if possible, before we analyze
2316 -- the THEN/ELSE branches, because when analyzing these branches, we
2317 -- may call Is_Statically_Unevaluated, which expects the condition of
2318 -- an enclosing IF to have been analyze/resolved/evaluated.
2320 Analyze_Expression (Condition);
2321 Resolve (Condition, Any_Boolean);
2323 -- Analyze THEN expression and (if present) ELSE expression. For those
2324 -- we delay resolution in the normal manner, because of overloading etc.
2326 Analyze_Expression (Then_Expr);
2328 if Present (Else_Expr) then
2329 Analyze_Expression (Else_Expr);
2330 end if;
2332 -- If then expression not overloaded, then that decides the type
2334 if not Is_Overloaded (Then_Expr) then
2335 Set_Etype (N, Etype (Then_Expr));
2337 -- Case where then expression is overloaded
2339 else
2340 declare
2341 I : Interp_Index;
2342 It : Interp;
2344 begin
2345 Set_Etype (N, Any_Type);
2347 -- Loop through interpretations of Then_Expr
2349 Get_First_Interp (Then_Expr, I, It);
2350 while Present (It.Nam) loop
2352 -- Add possible interpretation of Then_Expr if no Else_Expr, or
2353 -- Else_Expr is present and has a compatible type.
2355 if No (Else_Expr)
2356 or else Has_Compatible_Type (Else_Expr, It.Typ)
2357 then
2358 Add_One_Interp (N, It.Typ, It.Typ);
2359 end if;
2361 Get_Next_Interp (I, It);
2362 end loop;
2364 -- If no valid interpretation has been found, then the type of the
2365 -- ELSE expression does not match any interpretation of the THEN
2366 -- expression.
2368 if Etype (N) = Any_Type then
2369 Error_Msg_N
2370 ("type incompatible with that of `THEN` expression",
2371 Else_Expr);
2372 return;
2373 end if;
2374 end;
2375 end if;
2376 end Analyze_If_Expression;
2378 ------------------------------------
2379 -- Analyze_Indexed_Component_Form --
2380 ------------------------------------
2382 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2383 P : constant Node_Id := Prefix (N);
2384 Exprs : constant List_Id := Expressions (N);
2385 Exp : Node_Id;
2386 P_T : Entity_Id;
2387 E : Node_Id;
2388 U_N : Entity_Id;
2390 procedure Process_Function_Call;
2391 -- Prefix in indexed component form is an overloadable entity, so the
2392 -- node is a function call. Reformat it as such.
2394 procedure Process_Indexed_Component;
2395 -- Prefix in indexed component form is actually an indexed component.
2396 -- This routine processes it, knowing that the prefix is already
2397 -- resolved.
2399 procedure Process_Indexed_Component_Or_Slice;
2400 -- An indexed component with a single index may designate a slice if
2401 -- the index is a subtype mark. This routine disambiguates these two
2402 -- cases by resolving the prefix to see if it is a subtype mark.
2404 procedure Process_Overloaded_Indexed_Component;
2405 -- If the prefix of an indexed component is overloaded, the proper
2406 -- interpretation is selected by the index types and the context.
2408 ---------------------------
2409 -- Process_Function_Call --
2410 ---------------------------
2412 procedure Process_Function_Call is
2413 Loc : constant Source_Ptr := Sloc (N);
2414 Actual : Node_Id;
2416 begin
2417 Change_Node (N, N_Function_Call);
2418 Set_Name (N, P);
2419 Set_Parameter_Associations (N, Exprs);
2421 -- Analyze actuals prior to analyzing the call itself
2423 Actual := First (Parameter_Associations (N));
2424 while Present (Actual) loop
2425 Analyze (Actual);
2426 Check_Parameterless_Call (Actual);
2428 -- Move to next actual. Note that we use Next, not Next_Actual
2429 -- here. The reason for this is a bit subtle. If a function call
2430 -- includes named associations, the parser recognizes the node
2431 -- as a call, and it is analyzed as such. If all associations are
2432 -- positional, the parser builds an indexed_component node, and
2433 -- it is only after analysis of the prefix that the construct
2434 -- is recognized as a call, in which case Process_Function_Call
2435 -- rewrites the node and analyzes the actuals. If the list of
2436 -- actuals is malformed, the parser may leave the node as an
2437 -- indexed component (despite the presence of named associations).
2438 -- The iterator Next_Actual is equivalent to Next if the list is
2439 -- positional, but follows the normalized chain of actuals when
2440 -- named associations are present. In this case normalization has
2441 -- not taken place, and actuals remain unanalyzed, which leads to
2442 -- subsequent crashes or loops if there is an attempt to continue
2443 -- analysis of the program.
2445 -- IF there is a single actual and it is a type name, the node
2446 -- can only be interpreted as a slice of a parameterless call.
2447 -- Rebuild the node as such and analyze.
2449 if No (Next (Actual))
2450 and then Is_Entity_Name (Actual)
2451 and then Is_Type (Entity (Actual))
2452 and then Is_Discrete_Type (Entity (Actual))
2453 then
2454 Replace (N,
2455 Make_Slice (Loc,
2456 Prefix => P,
2457 Discrete_Range =>
2458 New_Occurrence_Of (Entity (Actual), Loc)));
2459 Analyze (N);
2460 return;
2462 else
2463 Next (Actual);
2464 end if;
2465 end loop;
2467 Analyze_Call (N);
2468 end Process_Function_Call;
2470 -------------------------------
2471 -- Process_Indexed_Component --
2472 -------------------------------
2474 procedure Process_Indexed_Component is
2475 Exp : Node_Id;
2476 Array_Type : Entity_Id;
2477 Index : Node_Id;
2478 Pent : Entity_Id := Empty;
2480 begin
2481 Exp := First (Exprs);
2483 if Is_Overloaded (P) then
2484 Process_Overloaded_Indexed_Component;
2486 else
2487 Array_Type := Etype (P);
2489 if Is_Entity_Name (P) then
2490 Pent := Entity (P);
2491 elsif Nkind (P) = N_Selected_Component
2492 and then Is_Entity_Name (Selector_Name (P))
2493 then
2494 Pent := Entity (Selector_Name (P));
2495 end if;
2497 -- Prefix must be appropriate for an array type, taking into
2498 -- account a possible implicit dereference.
2500 if Is_Access_Type (Array_Type) then
2501 Error_Msg_NW
2502 (Warn_On_Dereference, "?d?implicit dereference", N);
2503 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2504 end if;
2506 if Is_Array_Type (Array_Type) then
2508 -- In order to correctly access First_Index component later,
2509 -- replace string literal subtype by its parent type.
2511 if Ekind (Array_Type) = E_String_Literal_Subtype then
2512 Array_Type := Etype (Array_Type);
2513 end if;
2515 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2516 Analyze (Exp);
2517 Set_Etype (N, Any_Type);
2519 if not Has_Compatible_Type (Exp, Entry_Index_Type (Pent)) then
2520 Error_Msg_N ("invalid index type in entry name", N);
2522 elsif Present (Next (Exp)) then
2523 Error_Msg_N ("too many subscripts in entry reference", N);
2525 else
2526 Set_Etype (N, Etype (P));
2527 end if;
2529 return;
2531 elsif Is_Record_Type (Array_Type)
2532 and then Remote_AST_I_Dereference (P)
2533 then
2534 return;
2536 elsif Try_Container_Indexing (N, P, Exprs) then
2537 return;
2539 elsif Array_Type = Any_Type then
2540 Set_Etype (N, Any_Type);
2542 -- In most cases the analysis of the prefix will have emitted
2543 -- an error already, but if the prefix may be interpreted as a
2544 -- call in prefixed notation, the report is left to the caller.
2545 -- To prevent cascaded errors, report only if no previous ones.
2547 if Serious_Errors_Detected = 0 then
2548 Error_Msg_N ("invalid prefix in indexed component", P);
2550 if Nkind (P) = N_Expanded_Name then
2551 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2552 end if;
2553 end if;
2555 return;
2557 -- Here we definitely have a bad indexing
2559 else
2560 if Nkind (Parent (N)) = N_Requeue_Statement
2561 and then Present (Pent) and then Ekind (Pent) = E_Entry
2562 then
2563 Error_Msg_N
2564 ("REQUEUE does not permit parameters", First (Exprs));
2566 elsif Is_Entity_Name (P)
2567 and then Etype (P) = Standard_Void_Type
2568 then
2569 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2571 else
2572 Error_Msg_N ("array type required in indexed component", P);
2573 end if;
2575 Set_Etype (N, Any_Type);
2576 return;
2577 end if;
2579 Index := First_Index (Array_Type);
2580 while Present (Index) and then Present (Exp) loop
2581 if not Has_Compatible_Type (Exp, Etype (Index)) then
2582 Wrong_Type (Exp, Etype (Index));
2583 Set_Etype (N, Any_Type);
2584 return;
2585 end if;
2587 Next_Index (Index);
2588 Next (Exp);
2589 end loop;
2591 Set_Etype (N, Component_Type (Array_Type));
2592 Check_Implicit_Dereference (N, Etype (N));
2594 if Present (Index) then
2595 Error_Msg_N
2596 ("too few subscripts in array reference", First (Exprs));
2598 elsif Present (Exp) then
2599 Error_Msg_N ("too many subscripts in array reference", Exp);
2600 end if;
2601 end if;
2602 end Process_Indexed_Component;
2604 ----------------------------------------
2605 -- Process_Indexed_Component_Or_Slice --
2606 ----------------------------------------
2608 procedure Process_Indexed_Component_Or_Slice is
2609 begin
2610 Exp := First (Exprs);
2611 while Present (Exp) loop
2612 Analyze_Expression (Exp);
2613 Next (Exp);
2614 end loop;
2616 Exp := First (Exprs);
2618 -- If one index is present, and it is a subtype name, then the node
2619 -- denotes a slice (note that the case of an explicit range for a
2620 -- slice was already built as an N_Slice node in the first place,
2621 -- so that case is not handled here).
2623 -- We use a replace rather than a rewrite here because this is one
2624 -- of the cases in which the tree built by the parser is plain wrong.
2626 if No (Next (Exp))
2627 and then Is_Entity_Name (Exp)
2628 and then Is_Type (Entity (Exp))
2629 then
2630 Replace (N,
2631 Make_Slice (Sloc (N),
2632 Prefix => P,
2633 Discrete_Range => New_Copy (Exp)));
2634 Analyze (N);
2636 -- Otherwise (more than one index present, or single index is not
2637 -- a subtype name), then we have the indexed component case.
2639 else
2640 Process_Indexed_Component;
2641 end if;
2642 end Process_Indexed_Component_Or_Slice;
2644 ------------------------------------------
2645 -- Process_Overloaded_Indexed_Component --
2646 ------------------------------------------
2648 procedure Process_Overloaded_Indexed_Component is
2649 Exp : Node_Id;
2650 I : Interp_Index;
2651 It : Interp;
2652 Typ : Entity_Id;
2653 Index : Node_Id;
2654 Found : Boolean;
2656 begin
2657 Set_Etype (N, Any_Type);
2659 Get_First_Interp (P, I, It);
2660 while Present (It.Nam) loop
2661 Typ := It.Typ;
2663 if Is_Access_Type (Typ) then
2664 Typ := Designated_Type (Typ);
2665 Error_Msg_NW
2666 (Warn_On_Dereference, "?d?implicit dereference", N);
2667 end if;
2669 if Is_Array_Type (Typ) then
2671 -- Got a candidate: verify that index types are compatible
2673 Index := First_Index (Typ);
2674 Found := True;
2675 Exp := First (Exprs);
2676 while Present (Index) and then Present (Exp) loop
2677 if Has_Compatible_Type (Exp, Etype (Index)) then
2678 null;
2679 else
2680 Found := False;
2681 Remove_Interp (I);
2682 exit;
2683 end if;
2685 Next_Index (Index);
2686 Next (Exp);
2687 end loop;
2689 if Found and then No (Index) and then No (Exp) then
2690 declare
2691 CT : constant Entity_Id :=
2692 Base_Type (Component_Type (Typ));
2693 begin
2694 Add_One_Interp (N, CT, CT);
2695 Check_Implicit_Dereference (N, CT);
2696 end;
2697 end if;
2699 elsif Try_Container_Indexing (N, P, Exprs) then
2700 return;
2702 end if;
2704 Get_Next_Interp (I, It);
2705 end loop;
2707 if Etype (N) = Any_Type then
2708 Error_Msg_N ("no legal interpretation for indexed component", N);
2709 Set_Is_Overloaded (N, False);
2710 end if;
2712 End_Interp_List;
2713 end Process_Overloaded_Indexed_Component;
2715 -- Start of processing for Analyze_Indexed_Component_Form
2717 begin
2718 -- Get name of array, function or type
2720 Analyze (P);
2722 -- If P is an explicit dereference whose prefix is of a remote access-
2723 -- to-subprogram type, then N has already been rewritten as a subprogram
2724 -- call and analyzed.
2726 if Nkind (N) in N_Subprogram_Call then
2727 return;
2729 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2730 -- the indexed component denotes a loop name, the indexed form is turned
2731 -- into an attribute reference.
2733 elsif Nkind (N) = N_Attribute_Reference
2734 and then Attribute_Name (N) = Name_Loop_Entry
2735 then
2736 return;
2737 end if;
2739 pragma Assert (Nkind (N) = N_Indexed_Component);
2741 P_T := Base_Type (Etype (P));
2743 if Is_Entity_Name (P) and then Present (Entity (P)) then
2744 U_N := Entity (P);
2746 if Is_Type (U_N) then
2748 -- Reformat node as a type conversion
2750 E := Remove_Head (Exprs);
2752 if Present (First (Exprs)) then
2753 Error_Msg_N
2754 ("argument of type conversion must be single expression", N);
2755 end if;
2757 Change_Node (N, N_Type_Conversion);
2758 Set_Subtype_Mark (N, P);
2759 Set_Etype (N, U_N);
2760 Set_Expression (N, E);
2762 -- After changing the node, call for the specific Analysis
2763 -- routine directly, to avoid a double call to the expander.
2765 Analyze_Type_Conversion (N);
2766 return;
2767 end if;
2769 if Is_Overloadable (U_N) then
2770 Process_Function_Call;
2772 elsif Ekind (Etype (P)) = E_Subprogram_Type
2773 or else (Is_Access_Type (Etype (P))
2774 and then
2775 Ekind (Designated_Type (Etype (P))) =
2776 E_Subprogram_Type)
2777 then
2778 -- Call to access_to-subprogram with possible implicit dereference
2780 Process_Function_Call;
2782 elsif Is_Generic_Subprogram (U_N) then
2784 -- A common beginner's (or C++ templates fan) error
2786 Error_Msg_N ("generic subprogram cannot be called", N);
2787 Set_Etype (N, Any_Type);
2788 return;
2790 else
2791 Process_Indexed_Component_Or_Slice;
2792 end if;
2794 -- If not an entity name, prefix is an expression that may denote
2795 -- an array or an access-to-subprogram.
2797 else
2798 if Ekind (P_T) = E_Subprogram_Type
2799 or else (Is_Access_Type (P_T)
2800 and then
2801 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2802 then
2803 Process_Function_Call;
2805 elsif Nkind (P) = N_Selected_Component
2806 and then Present (Entity (Selector_Name (P)))
2807 and then Is_Overloadable (Entity (Selector_Name (P)))
2808 then
2809 Process_Function_Call;
2811 -- In ASIS mode within a generic, a prefixed call is analyzed and
2812 -- partially rewritten but the original indexed component has not
2813 -- yet been rewritten as a call. Perform the replacement now.
2815 elsif Nkind (P) = N_Selected_Component
2816 and then Nkind (Parent (P)) = N_Function_Call
2817 and then ASIS_Mode
2818 then
2819 Rewrite (N, Parent (P));
2820 Analyze (N);
2822 else
2823 -- Indexed component, slice, or a call to a member of a family
2824 -- entry, which will be converted to an entry call later.
2826 Process_Indexed_Component_Or_Slice;
2827 end if;
2828 end if;
2830 Analyze_Dimension (N);
2831 end Analyze_Indexed_Component_Form;
2833 ------------------------
2834 -- Analyze_Logical_Op --
2835 ------------------------
2837 procedure Analyze_Logical_Op (N : Node_Id) is
2838 L : constant Node_Id := Left_Opnd (N);
2839 R : constant Node_Id := Right_Opnd (N);
2840 Op_Id : Entity_Id := Entity (N);
2842 begin
2843 Set_Etype (N, Any_Type);
2844 Candidate_Type := Empty;
2846 Analyze_Expression (L);
2847 Analyze_Expression (R);
2849 if Present (Op_Id) then
2851 if Ekind (Op_Id) = E_Operator then
2852 Find_Boolean_Types (L, R, Op_Id, N);
2853 else
2854 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2855 end if;
2857 else
2858 Op_Id := Get_Name_Entity_Id (Chars (N));
2859 while Present (Op_Id) loop
2860 if Ekind (Op_Id) = E_Operator then
2861 Find_Boolean_Types (L, R, Op_Id, N);
2862 else
2863 Analyze_User_Defined_Binary_Op (N, Op_Id);
2864 end if;
2866 Op_Id := Homonym (Op_Id);
2867 end loop;
2868 end if;
2870 Operator_Check (N);
2871 Check_Function_Writable_Actuals (N);
2872 end Analyze_Logical_Op;
2874 ---------------------------
2875 -- Analyze_Membership_Op --
2876 ---------------------------
2878 procedure Analyze_Membership_Op (N : Node_Id) is
2879 Loc : constant Source_Ptr := Sloc (N);
2880 L : constant Node_Id := Left_Opnd (N);
2881 R : constant Node_Id := Right_Opnd (N);
2883 Index : Interp_Index;
2884 It : Interp;
2885 Found : Boolean := False;
2886 I_F : Interp_Index;
2887 T_F : Entity_Id;
2889 procedure Try_One_Interp (T1 : Entity_Id);
2890 -- Routine to try one proposed interpretation. Note that the context
2891 -- of the operation plays no role in resolving the arguments, so that
2892 -- if there is more than one interpretation of the operands that is
2893 -- compatible with a membership test, the operation is ambiguous.
2895 --------------------
2896 -- Try_One_Interp --
2897 --------------------
2899 procedure Try_One_Interp (T1 : Entity_Id) is
2900 begin
2901 if Has_Compatible_Type (R, T1) then
2902 if Found
2903 and then Base_Type (T1) /= Base_Type (T_F)
2904 then
2905 It := Disambiguate (L, I_F, Index, Any_Type);
2907 if It = No_Interp then
2908 Ambiguous_Operands (N);
2909 Set_Etype (L, Any_Type);
2910 return;
2912 else
2913 T_F := It.Typ;
2914 end if;
2916 else
2917 Found := True;
2918 T_F := T1;
2919 I_F := Index;
2920 end if;
2922 Set_Etype (L, T_F);
2923 end if;
2924 end Try_One_Interp;
2926 procedure Analyze_Set_Membership;
2927 -- If a set of alternatives is present, analyze each and find the
2928 -- common type to which they must all resolve.
2930 ----------------------------
2931 -- Analyze_Set_Membership --
2932 ----------------------------
2934 procedure Analyze_Set_Membership is
2935 Alt : Node_Id;
2936 Index : Interp_Index;
2937 It : Interp;
2938 Candidate_Interps : Node_Id;
2939 Common_Type : Entity_Id := Empty;
2941 begin
2942 if Comes_From_Source (N) then
2943 Check_Compiler_Unit ("set membership", N);
2944 end if;
2946 Analyze (L);
2947 Candidate_Interps := L;
2949 if not Is_Overloaded (L) then
2950 Common_Type := Etype (L);
2952 Alt := First (Alternatives (N));
2953 while Present (Alt) loop
2954 Analyze (Alt);
2956 if not Has_Compatible_Type (Alt, Common_Type) then
2957 Wrong_Type (Alt, Common_Type);
2958 end if;
2960 Next (Alt);
2961 end loop;
2963 else
2964 Alt := First (Alternatives (N));
2965 while Present (Alt) loop
2966 Analyze (Alt);
2967 if not Is_Overloaded (Alt) then
2968 Common_Type := Etype (Alt);
2970 else
2971 Get_First_Interp (Alt, Index, It);
2972 while Present (It.Typ) loop
2973 if not
2974 Has_Compatible_Type (Candidate_Interps, It.Typ)
2975 then
2976 Remove_Interp (Index);
2977 end if;
2979 Get_Next_Interp (Index, It);
2980 end loop;
2982 Get_First_Interp (Alt, Index, It);
2984 if No (It.Typ) then
2985 Error_Msg_N ("alternative has no legal type", Alt);
2986 return;
2987 end if;
2989 -- If alternative is not overloaded, we have a unique type
2990 -- for all of them.
2992 Set_Etype (Alt, It.Typ);
2994 -- If the alternative is an enumeration literal, use the one
2995 -- for this interpretation.
2997 if Is_Entity_Name (Alt) then
2998 Set_Entity (Alt, It.Nam);
2999 end if;
3001 Get_Next_Interp (Index, It);
3003 if No (It.Typ) then
3004 Set_Is_Overloaded (Alt, False);
3005 Common_Type := Etype (Alt);
3006 end if;
3008 Candidate_Interps := Alt;
3009 end if;
3011 Next (Alt);
3012 end loop;
3013 end if;
3015 Set_Etype (N, Standard_Boolean);
3017 if Present (Common_Type) then
3018 Set_Etype (L, Common_Type);
3020 -- The left operand may still be overloaded, to be resolved using
3021 -- the Common_Type.
3023 else
3024 Error_Msg_N ("cannot resolve membership operation", N);
3025 end if;
3026 end Analyze_Set_Membership;
3028 -- Start of processing for Analyze_Membership_Op
3030 begin
3031 Analyze_Expression (L);
3033 if No (R) and then Ada_Version >= Ada_2012 then
3034 Analyze_Set_Membership;
3035 Check_Function_Writable_Actuals (N);
3037 return;
3038 end if;
3040 if Nkind (R) = N_Range
3041 or else (Nkind (R) = N_Attribute_Reference
3042 and then Attribute_Name (R) = Name_Range)
3043 then
3044 Analyze (R);
3046 if not Is_Overloaded (L) then
3047 Try_One_Interp (Etype (L));
3049 else
3050 Get_First_Interp (L, Index, It);
3051 while Present (It.Typ) loop
3052 Try_One_Interp (It.Typ);
3053 Get_Next_Interp (Index, It);
3054 end loop;
3055 end if;
3057 -- If not a range, it can be a subtype mark, or else it is a degenerate
3058 -- membership test with a singleton value, i.e. a test for equality,
3059 -- if the types are compatible.
3061 else
3062 Analyze (R);
3064 if Is_Entity_Name (R)
3065 and then Is_Type (Entity (R))
3066 then
3067 Find_Type (R);
3068 Check_Fully_Declared (Entity (R), R);
3070 elsif Ada_Version >= Ada_2012
3071 and then Has_Compatible_Type (R, Etype (L))
3072 then
3073 if Nkind (N) = N_In then
3074 Rewrite (N,
3075 Make_Op_Eq (Loc,
3076 Left_Opnd => L,
3077 Right_Opnd => R));
3078 else
3079 Rewrite (N,
3080 Make_Op_Ne (Loc,
3081 Left_Opnd => L,
3082 Right_Opnd => R));
3083 end if;
3085 Analyze (N);
3086 return;
3088 else
3089 -- In all versions of the language, if we reach this point there
3090 -- is a previous error that will be diagnosed below.
3092 Find_Type (R);
3093 end if;
3094 end if;
3096 -- Compatibility between expression and subtype mark or range is
3097 -- checked during resolution. The result of the operation is Boolean
3098 -- in any case.
3100 Set_Etype (N, Standard_Boolean);
3102 if Comes_From_Source (N)
3103 and then Present (Right_Opnd (N))
3104 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
3105 then
3106 Error_Msg_N ("membership test not applicable to cpp-class types", N);
3107 end if;
3109 Check_Function_Writable_Actuals (N);
3110 end Analyze_Membership_Op;
3112 -----------------
3113 -- Analyze_Mod --
3114 -----------------
3116 procedure Analyze_Mod (N : Node_Id) is
3117 begin
3118 -- A special warning check, if we have an expression of the form:
3119 -- expr mod 2 * literal
3120 -- where literal is 64 or less, then probably what was meant was
3121 -- expr mod 2 ** literal
3122 -- so issue an appropriate warning.
3124 if Warn_On_Suspicious_Modulus_Value
3125 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
3126 and then Intval (Right_Opnd (N)) = Uint_2
3127 and then Nkind (Parent (N)) = N_Op_Multiply
3128 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
3129 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
3130 then
3131 Error_Msg_N
3132 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
3133 end if;
3135 -- Remaining processing is same as for other arithmetic operators
3137 Analyze_Arithmetic_Op (N);
3138 end Analyze_Mod;
3140 ----------------------
3141 -- Analyze_Negation --
3142 ----------------------
3144 procedure Analyze_Negation (N : Node_Id) is
3145 R : constant Node_Id := Right_Opnd (N);
3146 Op_Id : Entity_Id := Entity (N);
3148 begin
3149 Set_Etype (N, Any_Type);
3150 Candidate_Type := Empty;
3152 Analyze_Expression (R);
3154 if Present (Op_Id) then
3155 if Ekind (Op_Id) = E_Operator then
3156 Find_Negation_Types (R, Op_Id, N);
3157 else
3158 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3159 end if;
3161 else
3162 Op_Id := Get_Name_Entity_Id (Chars (N));
3163 while Present (Op_Id) loop
3164 if Ekind (Op_Id) = E_Operator then
3165 Find_Negation_Types (R, Op_Id, N);
3166 else
3167 Analyze_User_Defined_Unary_Op (N, Op_Id);
3168 end if;
3170 Op_Id := Homonym (Op_Id);
3171 end loop;
3172 end if;
3174 Operator_Check (N);
3175 end Analyze_Negation;
3177 ------------------
3178 -- Analyze_Null --
3179 ------------------
3181 procedure Analyze_Null (N : Node_Id) is
3182 begin
3183 Check_SPARK_05_Restriction ("null is not allowed", N);
3185 Set_Etype (N, Any_Access);
3186 end Analyze_Null;
3188 ----------------------
3189 -- Analyze_One_Call --
3190 ----------------------
3192 procedure Analyze_One_Call
3193 (N : Node_Id;
3194 Nam : Entity_Id;
3195 Report : Boolean;
3196 Success : out Boolean;
3197 Skip_First : Boolean := False)
3199 Actuals : constant List_Id := Parameter_Associations (N);
3200 Prev_T : constant Entity_Id := Etype (N);
3202 Must_Skip : constant Boolean := Skip_First
3203 or else Nkind (Original_Node (N)) = N_Selected_Component
3204 or else
3205 (Nkind (Original_Node (N)) = N_Indexed_Component
3206 and then Nkind (Prefix (Original_Node (N)))
3207 = N_Selected_Component);
3208 -- The first formal must be omitted from the match when trying to find
3209 -- a primitive operation that is a possible interpretation, and also
3210 -- after the call has been rewritten, because the corresponding actual
3211 -- is already known to be compatible, and because this may be an
3212 -- indexing of a call with default parameters.
3214 Formal : Entity_Id;
3215 Actual : Node_Id;
3216 Is_Indexed : Boolean := False;
3217 Is_Indirect : Boolean := False;
3218 Subp_Type : constant Entity_Id := Etype (Nam);
3219 Norm_OK : Boolean;
3221 function Compatible_Types_In_Predicate
3222 (T1 : Entity_Id;
3223 T2 : Entity_Id) return Boolean;
3224 -- For an Ada 2012 predicate or invariant, a call may mention an
3225 -- incomplete type, while resolution of the corresponding predicate
3226 -- function may see the full view, as a consequence of the delayed
3227 -- resolution of the corresponding expressions. This may occur in
3228 -- the body of a predicate function, or in a call to such. Anomalies
3229 -- involving private and full views can also happen. In each case,
3230 -- rewrite node or add conversions to remove spurious type errors.
3232 procedure Indicate_Name_And_Type;
3233 -- If candidate interpretation matches, indicate name and type of result
3234 -- on call node.
3236 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3237 -- There may be a user-defined operator that hides the current
3238 -- interpretation. We must check for this independently of the
3239 -- analysis of the call with the user-defined operation, because
3240 -- the parameter names may be wrong and yet the hiding takes place.
3241 -- This fixes a problem with ACATS test B34014O.
3243 -- When the type Address is a visible integer type, and the DEC
3244 -- system extension is visible, the predefined operator may be
3245 -- hidden as well, by one of the address operations in auxdec.
3246 -- Finally, The abstract operations on address do not hide the
3247 -- predefined operator (this is the purpose of making them abstract).
3249 -----------------------------------
3250 -- Compatible_Types_In_Predicate --
3251 -----------------------------------
3253 function Compatible_Types_In_Predicate
3254 (T1 : Entity_Id;
3255 T2 : Entity_Id) return Boolean
3257 function Common_Type (T : Entity_Id) return Entity_Id;
3258 -- Find non-private full view if any, without going to ancestor type
3259 -- (as opposed to Underlying_Type).
3261 -----------------
3262 -- Common_Type --
3263 -----------------
3265 function Common_Type (T : Entity_Id) return Entity_Id is
3266 begin
3267 if Is_Private_Type (T) and then Present (Full_View (T)) then
3268 return Base_Type (Full_View (T));
3269 else
3270 return Base_Type (T);
3271 end if;
3272 end Common_Type;
3274 -- Start of processing for Compatible_Types_In_Predicate
3276 begin
3277 if (Ekind (Current_Scope) = E_Function
3278 and then Is_Predicate_Function (Current_Scope))
3279 or else
3280 (Ekind (Nam) = E_Function
3281 and then Is_Predicate_Function (Nam))
3282 then
3283 if Is_Incomplete_Type (T1)
3284 and then Present (Full_View (T1))
3285 and then Full_View (T1) = T2
3286 then
3287 Set_Etype (Formal, Etype (Actual));
3288 return True;
3290 elsif Common_Type (T1) = Common_Type (T2) then
3291 Rewrite (Actual, Unchecked_Convert_To (Etype (Formal), Actual));
3292 return True;
3294 else
3295 return False;
3296 end if;
3298 else
3299 return False;
3300 end if;
3301 end Compatible_Types_In_Predicate;
3303 ----------------------------
3304 -- Indicate_Name_And_Type --
3305 ----------------------------
3307 procedure Indicate_Name_And_Type is
3308 begin
3309 Add_One_Interp (N, Nam, Etype (Nam));
3310 Check_Implicit_Dereference (N, Etype (Nam));
3311 Success := True;
3313 -- If the prefix of the call is a name, indicate the entity
3314 -- being called. If it is not a name, it is an expression that
3315 -- denotes an access to subprogram or else an entry or family. In
3316 -- the latter case, the name is a selected component, and the entity
3317 -- being called is noted on the selector.
3319 if not Is_Type (Nam) then
3320 if Is_Entity_Name (Name (N)) then
3321 Set_Entity (Name (N), Nam);
3322 Set_Etype (Name (N), Etype (Nam));
3324 elsif Nkind (Name (N)) = N_Selected_Component then
3325 Set_Entity (Selector_Name (Name (N)), Nam);
3326 end if;
3327 end if;
3329 if Debug_Flag_E and not Report then
3330 Write_Str (" Overloaded call ");
3331 Write_Int (Int (N));
3332 Write_Str (" compatible with ");
3333 Write_Int (Int (Nam));
3334 Write_Eol;
3335 end if;
3336 end Indicate_Name_And_Type;
3338 ------------------------
3339 -- Operator_Hidden_By --
3340 ------------------------
3342 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3343 Act1 : constant Node_Id := First_Actual (N);
3344 Act2 : constant Node_Id := Next_Actual (Act1);
3345 Form1 : constant Entity_Id := First_Formal (Fun);
3346 Form2 : constant Entity_Id := Next_Formal (Form1);
3348 begin
3349 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3350 return False;
3352 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3353 return False;
3355 elsif Present (Form2) then
3356 if No (Act2)
3357 or else not Has_Compatible_Type (Act2, Etype (Form2))
3358 then
3359 return False;
3360 end if;
3362 elsif Present (Act2) then
3363 return False;
3364 end if;
3366 -- Now we know that the arity of the operator matches the function,
3367 -- and the function call is a valid interpretation. The function
3368 -- hides the operator if it has the right signature, or if one of
3369 -- its operands is a non-abstract operation on Address when this is
3370 -- a visible integer type.
3372 return Hides_Op (Fun, Nam)
3373 or else Is_Descendant_Of_Address (Etype (Form1))
3374 or else
3375 (Present (Form2)
3376 and then Is_Descendant_Of_Address (Etype (Form2)));
3377 end Operator_Hidden_By;
3379 -- Start of processing for Analyze_One_Call
3381 begin
3382 Success := False;
3384 -- If the subprogram has no formals or if all the formals have defaults,
3385 -- and the return type is an array type, the node may denote an indexing
3386 -- of the result of a parameterless call. In Ada 2005, the subprogram
3387 -- may have one non-defaulted formal, and the call may have been written
3388 -- in prefix notation, so that the rebuilt parameter list has more than
3389 -- one actual.
3391 if not Is_Overloadable (Nam)
3392 and then Ekind (Nam) /= E_Subprogram_Type
3393 and then Ekind (Nam) /= E_Entry_Family
3394 then
3395 return;
3396 end if;
3398 -- An indexing requires at least one actual. The name of the call cannot
3399 -- be an implicit indirect call, so it cannot be a generated explicit
3400 -- dereference.
3402 if not Is_Empty_List (Actuals)
3403 and then
3404 (Needs_No_Actuals (Nam)
3405 or else
3406 (Needs_One_Actual (Nam)
3407 and then Present (Next_Actual (First (Actuals)))))
3408 then
3409 if Is_Array_Type (Subp_Type)
3410 and then
3411 (Nkind (Name (N)) /= N_Explicit_Dereference
3412 or else Comes_From_Source (Name (N)))
3413 then
3414 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3416 elsif Is_Access_Type (Subp_Type)
3417 and then Is_Array_Type (Designated_Type (Subp_Type))
3418 then
3419 Is_Indexed :=
3420 Try_Indexed_Call
3421 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3423 -- The prefix can also be a parameterless function that returns an
3424 -- access to subprogram, in which case this is an indirect call.
3425 -- If this succeeds, an explicit dereference is added later on,
3426 -- in Analyze_Call or Resolve_Call.
3428 elsif Is_Access_Type (Subp_Type)
3429 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3430 then
3431 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3432 end if;
3434 end if;
3436 -- If the call has been transformed into a slice, it is of the form
3437 -- F (Subtype) where F is parameterless. The node has been rewritten in
3438 -- Try_Indexed_Call and there is nothing else to do.
3440 if Is_Indexed
3441 and then Nkind (N) = N_Slice
3442 then
3443 return;
3444 end if;
3446 Normalize_Actuals
3447 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3449 if not Norm_OK then
3451 -- If an indirect call is a possible interpretation, indicate
3452 -- success to the caller. This may be an indexing of an explicit
3453 -- dereference of a call that returns an access type (see above).
3455 if Is_Indirect
3456 or else (Is_Indexed
3457 and then Nkind (Name (N)) = N_Explicit_Dereference
3458 and then Comes_From_Source (Name (N)))
3459 then
3460 Success := True;
3461 return;
3463 -- Mismatch in number or names of parameters
3465 elsif Debug_Flag_E then
3466 Write_Str (" normalization fails in call ");
3467 Write_Int (Int (N));
3468 Write_Str (" with subprogram ");
3469 Write_Int (Int (Nam));
3470 Write_Eol;
3471 end if;
3473 -- If the context expects a function call, discard any interpretation
3474 -- that is a procedure. If the node is not overloaded, leave as is for
3475 -- better error reporting when type mismatch is found.
3477 elsif Nkind (N) = N_Function_Call
3478 and then Is_Overloaded (Name (N))
3479 and then Ekind (Nam) = E_Procedure
3480 then
3481 return;
3483 -- Ditto for function calls in a procedure context
3485 elsif Nkind (N) = N_Procedure_Call_Statement
3486 and then Is_Overloaded (Name (N))
3487 and then Etype (Nam) /= Standard_Void_Type
3488 then
3489 return;
3491 elsif No (Actuals) then
3493 -- If Normalize succeeds, then there are default parameters for
3494 -- all formals.
3496 Indicate_Name_And_Type;
3498 elsif Ekind (Nam) = E_Operator then
3499 if Nkind (N) = N_Procedure_Call_Statement then
3500 return;
3501 end if;
3503 -- This can occur when the prefix of the call is an operator
3504 -- name or an expanded name whose selector is an operator name.
3506 Analyze_Operator_Call (N, Nam);
3508 if Etype (N) /= Prev_T then
3510 -- Check that operator is not hidden by a function interpretation
3512 if Is_Overloaded (Name (N)) then
3513 declare
3514 I : Interp_Index;
3515 It : Interp;
3517 begin
3518 Get_First_Interp (Name (N), I, It);
3519 while Present (It.Nam) loop
3520 if Operator_Hidden_By (It.Nam) then
3521 Set_Etype (N, Prev_T);
3522 return;
3523 end if;
3525 Get_Next_Interp (I, It);
3526 end loop;
3527 end;
3528 end if;
3530 -- If operator matches formals, record its name on the call.
3531 -- If the operator is overloaded, Resolve will select the
3532 -- correct one from the list of interpretations. The call
3533 -- node itself carries the first candidate.
3535 Set_Entity (Name (N), Nam);
3536 Success := True;
3538 elsif Report and then Etype (N) = Any_Type then
3539 Error_Msg_N ("incompatible arguments for operator", N);
3540 end if;
3542 else
3543 -- Normalize_Actuals has chained the named associations in the
3544 -- correct order of the formals.
3546 Actual := First_Actual (N);
3547 Formal := First_Formal (Nam);
3549 -- If we are analyzing a call rewritten from object notation, skip
3550 -- first actual, which may be rewritten later as an explicit
3551 -- dereference.
3553 if Must_Skip then
3554 Next_Actual (Actual);
3555 Next_Formal (Formal);
3556 end if;
3558 while Present (Actual) and then Present (Formal) loop
3559 if Nkind (Parent (Actual)) /= N_Parameter_Association
3560 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3561 then
3562 -- The actual can be compatible with the formal, but we must
3563 -- also check that the context is not an address type that is
3564 -- visibly an integer type. In this case the use of literals is
3565 -- illegal, except in the body of descendants of system, where
3566 -- arithmetic operations on address are of course used.
3568 if Has_Compatible_Type (Actual, Etype (Formal))
3569 and then
3570 (Etype (Actual) /= Universal_Integer
3571 or else not Is_Descendant_Of_Address (Etype (Formal))
3572 or else In_Predefined_Unit (N))
3573 then
3574 Next_Actual (Actual);
3575 Next_Formal (Formal);
3577 -- In Allow_Integer_Address mode, we allow an actual integer to
3578 -- match a formal address type and vice versa. We only do this
3579 -- if we are certain that an error will otherwise be issued
3581 elsif Address_Integer_Convert_OK
3582 (Etype (Actual), Etype (Formal))
3583 and then (Report and not Is_Indexed and not Is_Indirect)
3584 then
3585 -- Handle this case by introducing an unchecked conversion
3587 Rewrite (Actual,
3588 Unchecked_Convert_To (Etype (Formal),
3589 Relocate_Node (Actual)));
3590 Analyze_And_Resolve (Actual, Etype (Formal));
3591 Next_Actual (Actual);
3592 Next_Formal (Formal);
3594 -- Under relaxed RM semantics silently replace occurrences of
3595 -- null by System.Address_Null. We only do this if we know that
3596 -- an error will otherwise be issued.
3598 elsif Null_To_Null_Address_Convert_OK (Actual, Etype (Formal))
3599 and then (Report and not Is_Indexed and not Is_Indirect)
3600 then
3601 Replace_Null_By_Null_Address (Actual);
3602 Analyze_And_Resolve (Actual, Etype (Formal));
3603 Next_Actual (Actual);
3604 Next_Formal (Formal);
3606 elsif Compatible_Types_In_Predicate
3607 (Etype (Formal), Etype (Actual))
3608 then
3609 Next_Actual (Actual);
3610 Next_Formal (Formal);
3612 -- In a complex case where an enclosing generic and a nested
3613 -- generic package, both declared with partially parameterized
3614 -- formal subprograms with the same names, are instantiated
3615 -- with the same type, the types of the actual parameter and
3616 -- that of the formal may appear incompatible at first sight.
3618 -- generic
3619 -- type Outer_T is private;
3620 -- with function Func (Formal : Outer_T)
3621 -- return ... is <>;
3623 -- package Outer_Gen is
3624 -- generic
3625 -- type Inner_T is private;
3626 -- with function Func (Formal : Inner_T) -- (1)
3627 -- return ... is <>;
3629 -- package Inner_Gen is
3630 -- function Inner_Func (Formal : Inner_T) -- (2)
3631 -- return ... is (Func (Formal));
3632 -- end Inner_Gen;
3633 -- end Outer_Generic;
3635 -- package Outer_Inst is new Outer_Gen (Actual_T);
3636 -- package Inner_Inst is new Outer_Inst.Inner_Gen (Actual_T);
3638 -- In the example above, the type of parameter
3639 -- Inner_Func.Formal at (2) is incompatible with the type of
3640 -- Func.Formal at (1) in the context of instantiations
3641 -- Outer_Inst and Inner_Inst. In reality both types are generic
3642 -- actual subtypes renaming base type Actual_T as part of the
3643 -- generic prologues for the instantiations.
3645 -- Recognize this case and add a type conversion to allow this
3646 -- kind of generic actual subtype conformance. Note that this
3647 -- is done only when the call is non-overloaded because the
3648 -- resolution mechanism already has the means to disambiguate
3649 -- similar cases.
3651 elsif not Is_Overloaded (Name (N))
3652 and then Is_Type (Etype (Actual))
3653 and then Is_Type (Etype (Formal))
3654 and then Is_Generic_Actual_Type (Etype (Actual))
3655 and then Is_Generic_Actual_Type (Etype (Formal))
3656 and then Base_Type (Etype (Actual)) =
3657 Base_Type (Etype (Formal))
3658 then
3659 Rewrite (Actual,
3660 Convert_To (Etype (Formal), Relocate_Node (Actual)));
3661 Analyze_And_Resolve (Actual, Etype (Formal));
3662 Next_Actual (Actual);
3663 Next_Formal (Formal);
3665 -- Handle failed type check
3667 else
3668 if Debug_Flag_E then
3669 Write_Str (" type checking fails in call ");
3670 Write_Int (Int (N));
3671 Write_Str (" with formal ");
3672 Write_Int (Int (Formal));
3673 Write_Str (" in subprogram ");
3674 Write_Int (Int (Nam));
3675 Write_Eol;
3676 end if;
3678 -- Comment needed on the following test???
3680 if Report and not Is_Indexed and not Is_Indirect then
3682 -- Ada 2005 (AI-251): Complete the error notification
3683 -- to help new Ada 2005 users.
3685 if Is_Class_Wide_Type (Etype (Formal))
3686 and then Is_Interface (Etype (Etype (Formal)))
3687 and then not Interface_Present_In_Ancestor
3688 (Typ => Etype (Actual),
3689 Iface => Etype (Etype (Formal)))
3690 then
3691 Error_Msg_NE
3692 ("(Ada 2005) does not implement interface }",
3693 Actual, Etype (Etype (Formal)));
3694 end if;
3696 Wrong_Type (Actual, Etype (Formal));
3698 if Nkind (Actual) = N_Op_Eq
3699 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3700 then
3701 Formal := First_Formal (Nam);
3702 while Present (Formal) loop
3703 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3704 Error_Msg_N -- CODEFIX
3705 ("possible misspelling of `='>`!", Actual);
3706 exit;
3707 end if;
3709 Next_Formal (Formal);
3710 end loop;
3711 end if;
3713 if All_Errors_Mode then
3714 Error_Msg_Sloc := Sloc (Nam);
3716 if Etype (Formal) = Any_Type then
3717 Error_Msg_N
3718 ("there is no legal actual parameter", Actual);
3719 end if;
3721 if Is_Overloadable (Nam)
3722 and then Present (Alias (Nam))
3723 and then not Comes_From_Source (Nam)
3724 then
3725 Error_Msg_NE
3726 ("\\ =='> in call to inherited operation & #!",
3727 Actual, Nam);
3729 elsif Ekind (Nam) = E_Subprogram_Type then
3730 declare
3731 Access_To_Subprogram_Typ :
3732 constant Entity_Id :=
3733 Defining_Identifier
3734 (Associated_Node_For_Itype (Nam));
3735 begin
3736 Error_Msg_NE
3737 ("\\ =='> in call to dereference of &#!",
3738 Actual, Access_To_Subprogram_Typ);
3739 end;
3741 else
3742 Error_Msg_NE
3743 ("\\ =='> in call to &#!", Actual, Nam);
3745 end if;
3746 end if;
3747 end if;
3749 return;
3750 end if;
3752 else
3753 -- Normalize_Actuals has verified that a default value exists
3754 -- for this formal. Current actual names a subsequent formal.
3756 Next_Formal (Formal);
3757 end if;
3758 end loop;
3760 -- On exit, all actuals match
3762 Indicate_Name_And_Type;
3763 end if;
3764 end Analyze_One_Call;
3766 ---------------------------
3767 -- Analyze_Operator_Call --
3768 ---------------------------
3770 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3771 Op_Name : constant Name_Id := Chars (Op_Id);
3772 Act1 : constant Node_Id := First_Actual (N);
3773 Act2 : constant Node_Id := Next_Actual (Act1);
3775 begin
3776 -- Binary operator case
3778 if Present (Act2) then
3780 -- If more than two operands, then not binary operator after all
3782 if Present (Next_Actual (Act2)) then
3783 return;
3784 end if;
3786 -- Otherwise action depends on operator
3788 case Op_Name is
3789 when Name_Op_Add
3790 | Name_Op_Divide
3791 | Name_Op_Expon
3792 | Name_Op_Mod
3793 | Name_Op_Multiply
3794 | Name_Op_Rem
3795 | Name_Op_Subtract
3797 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3799 when Name_Op_And
3800 | Name_Op_Or
3801 | Name_Op_Xor
3803 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3805 when Name_Op_Ge
3806 | Name_Op_Gt
3807 | Name_Op_Le
3808 | Name_Op_Lt
3810 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3812 when Name_Op_Eq
3813 | Name_Op_Ne
3815 Find_Equality_Types (Act1, Act2, Op_Id, N);
3817 when Name_Op_Concat =>
3818 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3820 -- Is this when others, or should it be an abort???
3822 when others =>
3823 null;
3824 end case;
3826 -- Unary operator case
3828 else
3829 case Op_Name is
3830 when Name_Op_Abs
3831 | Name_Op_Add
3832 | Name_Op_Subtract
3834 Find_Unary_Types (Act1, Op_Id, N);
3836 when Name_Op_Not =>
3837 Find_Negation_Types (Act1, Op_Id, N);
3839 -- Is this when others correct, or should it be an abort???
3841 when others =>
3842 null;
3843 end case;
3844 end if;
3845 end Analyze_Operator_Call;
3847 -------------------------------------------
3848 -- Analyze_Overloaded_Selected_Component --
3849 -------------------------------------------
3851 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3852 Nam : constant Node_Id := Prefix (N);
3853 Sel : constant Node_Id := Selector_Name (N);
3854 Comp : Entity_Id;
3855 I : Interp_Index;
3856 It : Interp;
3857 T : Entity_Id;
3859 begin
3860 Set_Etype (Sel, Any_Type);
3862 Get_First_Interp (Nam, I, It);
3863 while Present (It.Typ) loop
3864 if Is_Access_Type (It.Typ) then
3865 T := Designated_Type (It.Typ);
3866 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3867 else
3868 T := It.Typ;
3869 end if;
3871 -- Locate the component. For a private prefix the selector can denote
3872 -- a discriminant.
3874 if Is_Record_Type (T) or else Is_Private_Type (T) then
3876 -- If the prefix is a class-wide type, the visible components are
3877 -- those of the base type.
3879 if Is_Class_Wide_Type (T) then
3880 T := Etype (T);
3881 end if;
3883 Comp := First_Entity (T);
3884 while Present (Comp) loop
3885 if Chars (Comp) = Chars (Sel)
3886 and then Is_Visible_Component (Comp)
3887 then
3889 -- AI05-105: if the context is an object renaming with
3890 -- an anonymous access type, the expected type of the
3891 -- object must be anonymous. This is a name resolution rule.
3893 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3894 or else No (Access_Definition (Parent (N)))
3895 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3896 or else
3897 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3898 then
3899 Set_Entity (Sel, Comp);
3900 Set_Etype (Sel, Etype (Comp));
3901 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3902 Check_Implicit_Dereference (N, Etype (Comp));
3904 -- This also specifies a candidate to resolve the name.
3905 -- Further overloading will be resolved from context.
3906 -- The selector name itself does not carry overloading
3907 -- information.
3909 Set_Etype (Nam, It.Typ);
3911 else
3912 -- Named access type in the context of a renaming
3913 -- declaration with an access definition. Remove
3914 -- inapplicable candidate.
3916 Remove_Interp (I);
3917 end if;
3918 end if;
3920 Next_Entity (Comp);
3921 end loop;
3923 elsif Is_Concurrent_Type (T) then
3924 Comp := First_Entity (T);
3925 while Present (Comp)
3926 and then Comp /= First_Private_Entity (T)
3927 loop
3928 if Chars (Comp) = Chars (Sel) then
3929 if Is_Overloadable (Comp) then
3930 Add_One_Interp (Sel, Comp, Etype (Comp));
3931 else
3932 Set_Entity_With_Checks (Sel, Comp);
3933 Generate_Reference (Comp, Sel);
3934 end if;
3936 Set_Etype (Sel, Etype (Comp));
3937 Set_Etype (N, Etype (Comp));
3938 Set_Etype (Nam, It.Typ);
3940 -- For access type case, introduce explicit dereference for
3941 -- more uniform treatment of entry calls. Do this only once
3942 -- if several interpretations yield an access type.
3944 if Is_Access_Type (Etype (Nam))
3945 and then Nkind (Nam) /= N_Explicit_Dereference
3946 then
3947 Insert_Explicit_Dereference (Nam);
3948 Error_Msg_NW
3949 (Warn_On_Dereference, "?d?implicit dereference", N);
3950 end if;
3951 end if;
3953 Next_Entity (Comp);
3954 end loop;
3956 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3957 end if;
3959 Get_Next_Interp (I, It);
3960 end loop;
3962 if Etype (N) = Any_Type
3963 and then not Try_Object_Operation (N)
3964 then
3965 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3966 Set_Entity (Sel, Any_Id);
3967 Set_Etype (Sel, Any_Type);
3968 end if;
3969 end Analyze_Overloaded_Selected_Component;
3971 ----------------------------------
3972 -- Analyze_Qualified_Expression --
3973 ----------------------------------
3975 procedure Analyze_Qualified_Expression (N : Node_Id) is
3976 Mark : constant Entity_Id := Subtype_Mark (N);
3977 Expr : constant Node_Id := Expression (N);
3978 I : Interp_Index;
3979 It : Interp;
3980 T : Entity_Id;
3982 begin
3983 Analyze_Expression (Expr);
3985 Set_Etype (N, Any_Type);
3986 Find_Type (Mark);
3987 T := Entity (Mark);
3989 if Nkind_In (Enclosing_Declaration (N), N_Formal_Type_Declaration,
3990 N_Full_Type_Declaration,
3991 N_Incomplete_Type_Declaration,
3992 N_Protected_Type_Declaration,
3993 N_Private_Extension_Declaration,
3994 N_Private_Type_Declaration,
3995 N_Subtype_Declaration,
3996 N_Task_Type_Declaration)
3997 and then T = Defining_Identifier (Enclosing_Declaration (N))
3998 then
3999 Error_Msg_N ("current instance not allowed", Mark);
4000 T := Any_Type;
4001 end if;
4003 Set_Etype (N, T);
4005 if T = Any_Type then
4006 return;
4007 end if;
4009 Check_Fully_Declared (T, N);
4011 -- If expected type is class-wide, check for exact match before
4012 -- expansion, because if the expression is a dispatching call it
4013 -- may be rewritten as explicit dereference with class-wide result.
4014 -- If expression is overloaded, retain only interpretations that
4015 -- will yield exact matches.
4017 if Is_Class_Wide_Type (T) then
4018 if not Is_Overloaded (Expr) then
4019 if Base_Type (Etype (Expr)) /= Base_Type (T) then
4020 if Nkind (Expr) = N_Aggregate then
4021 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
4022 else
4023 Wrong_Type (Expr, T);
4024 end if;
4025 end if;
4027 else
4028 Get_First_Interp (Expr, I, It);
4030 while Present (It.Nam) loop
4031 if Base_Type (It.Typ) /= Base_Type (T) then
4032 Remove_Interp (I);
4033 end if;
4035 Get_Next_Interp (I, It);
4036 end loop;
4037 end if;
4038 end if;
4040 Set_Etype (N, T);
4041 end Analyze_Qualified_Expression;
4043 -----------------------------------
4044 -- Analyze_Quantified_Expression --
4045 -----------------------------------
4047 procedure Analyze_Quantified_Expression (N : Node_Id) is
4048 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
4049 -- If the iterator is part of a quantified expression, and the range is
4050 -- known to be statically empty, emit a warning and replace expression
4051 -- with its static value. Returns True if the replacement occurs.
4053 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
4054 -- Determine whether if expression If_Expr lacks an else part or if it
4055 -- has one, it evaluates to True.
4057 --------------------
4058 -- Is_Empty_Range --
4059 --------------------
4061 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
4062 Loc : constant Source_Ptr := Sloc (N);
4064 begin
4065 if Is_Array_Type (Typ)
4066 and then Compile_Time_Known_Bounds (Typ)
4067 and then
4068 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
4069 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
4070 then
4071 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
4073 if All_Present (N) then
4074 Error_Msg_N
4075 ("??quantified expression with ALL "
4076 & "over a null range has value True", N);
4077 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
4079 else
4080 Error_Msg_N
4081 ("??quantified expression with SOME "
4082 & "over a null range has value False", N);
4083 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
4084 end if;
4086 Analyze (N);
4087 return True;
4089 else
4090 return False;
4091 end if;
4092 end Is_Empty_Range;
4094 -----------------------------
4095 -- No_Else_Or_Trivial_True --
4096 -----------------------------
4098 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
4099 Else_Expr : constant Node_Id :=
4100 Next (Next (First (Expressions (If_Expr))));
4101 begin
4102 return
4103 No (Else_Expr)
4104 or else (Compile_Time_Known_Value (Else_Expr)
4105 and then Is_True (Expr_Value (Else_Expr)));
4106 end No_Else_Or_Trivial_True;
4108 -- Local variables
4110 Cond : constant Node_Id := Condition (N);
4111 Loop_Id : Entity_Id;
4112 QE_Scop : Entity_Id;
4114 -- Start of processing for Analyze_Quantified_Expression
4116 begin
4117 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
4119 -- Create a scope to emulate the loop-like behavior of the quantified
4120 -- expression. The scope is needed to provide proper visibility of the
4121 -- loop variable.
4123 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
4124 Set_Etype (QE_Scop, Standard_Void_Type);
4125 Set_Scope (QE_Scop, Current_Scope);
4126 Set_Parent (QE_Scop, N);
4128 Push_Scope (QE_Scop);
4130 -- All constituents are preanalyzed and resolved to avoid untimely
4131 -- generation of various temporaries and types. Full analysis and
4132 -- expansion is carried out when the quantified expression is
4133 -- transformed into an expression with actions.
4135 if Present (Iterator_Specification (N)) then
4136 Preanalyze (Iterator_Specification (N));
4138 -- Do not proceed with the analysis when the range of iteration is
4139 -- empty. The appropriate error is issued by Is_Empty_Range.
4141 if Is_Entity_Name (Name (Iterator_Specification (N)))
4142 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
4143 then
4144 return;
4145 end if;
4147 else pragma Assert (Present (Loop_Parameter_Specification (N)));
4148 declare
4149 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
4151 begin
4152 Preanalyze (Loop_Par);
4154 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
4155 and then Parent (Loop_Par) /= N
4156 then
4157 -- The parser cannot distinguish between a loop specification
4158 -- and an iterator specification. If after preanalysis the
4159 -- proper form has been recognized, rewrite the expression to
4160 -- reflect the right kind. This is needed for proper ASIS
4161 -- navigation. If expansion is enabled, the transformation is
4162 -- performed when the expression is rewritten as a loop.
4164 Set_Iterator_Specification (N,
4165 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
4167 Set_Defining_Identifier (Iterator_Specification (N),
4168 Relocate_Node (Defining_Identifier (Loop_Par)));
4169 Set_Name (Iterator_Specification (N),
4170 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
4171 Set_Comes_From_Source (Iterator_Specification (N),
4172 Comes_From_Source (Loop_Parameter_Specification (N)));
4173 Set_Loop_Parameter_Specification (N, Empty);
4174 end if;
4175 end;
4176 end if;
4178 Preanalyze_And_Resolve (Cond, Standard_Boolean);
4180 End_Scope;
4181 Set_Etype (N, Standard_Boolean);
4183 -- Verify that the loop variable is used within the condition of the
4184 -- quantified expression.
4186 if Present (Iterator_Specification (N)) then
4187 Loop_Id := Defining_Identifier (Iterator_Specification (N));
4188 else
4189 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
4190 end if;
4192 if Warn_On_Suspicious_Contract
4193 and then not Referenced (Loop_Id, Cond)
4194 then
4195 -- Generating C, this check causes spurious warnings on inlined
4196 -- postconditions; we can safely disable it because this check
4197 -- was previously performed when analyzing the internally built
4198 -- postconditions procedure.
4200 if Modify_Tree_For_C and then In_Inlined_Body then
4201 null;
4202 else
4203 Error_Msg_N ("?T?unused variable &", Loop_Id);
4204 end if;
4205 end if;
4207 -- Diagnose a possible misuse of the SOME existential quantifier. When
4208 -- we have a quantified expression of the form:
4210 -- for some X => (if P then Q [else True])
4212 -- any value for X that makes P False results in the if expression being
4213 -- trivially True, and so also results in the quantified expression
4214 -- being trivially True.
4216 if Warn_On_Suspicious_Contract
4217 and then not All_Present (N)
4218 and then Nkind (Cond) = N_If_Expression
4219 and then No_Else_Or_Trivial_True (Cond)
4220 then
4221 Error_Msg_N ("?T?suspicious expression", N);
4222 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
4223 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
4224 end if;
4225 end Analyze_Quantified_Expression;
4227 -------------------
4228 -- Analyze_Range --
4229 -------------------
4231 procedure Analyze_Range (N : Node_Id) is
4232 L : constant Node_Id := Low_Bound (N);
4233 H : constant Node_Id := High_Bound (N);
4234 I1, I2 : Interp_Index;
4235 It1, It2 : Interp;
4237 procedure Check_Common_Type (T1, T2 : Entity_Id);
4238 -- Verify the compatibility of two types, and choose the
4239 -- non universal one if the other is universal.
4241 procedure Check_High_Bound (T : Entity_Id);
4242 -- Test one interpretation of the low bound against all those
4243 -- of the high bound.
4245 procedure Check_Universal_Expression (N : Node_Id);
4246 -- In Ada 83, reject bounds of a universal range that are not literals
4247 -- or entity names.
4249 -----------------------
4250 -- Check_Common_Type --
4251 -----------------------
4253 procedure Check_Common_Type (T1, T2 : Entity_Id) is
4254 begin
4255 if Covers (T1 => T1, T2 => T2)
4256 or else
4257 Covers (T1 => T2, T2 => T1)
4258 then
4259 if T1 = Universal_Integer
4260 or else T1 = Universal_Real
4261 or else T1 = Any_Character
4262 then
4263 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
4265 elsif T1 = T2 then
4266 Add_One_Interp (N, T1, T1);
4268 else
4269 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
4270 end if;
4271 end if;
4272 end Check_Common_Type;
4274 ----------------------
4275 -- Check_High_Bound --
4276 ----------------------
4278 procedure Check_High_Bound (T : Entity_Id) is
4279 begin
4280 if not Is_Overloaded (H) then
4281 Check_Common_Type (T, Etype (H));
4282 else
4283 Get_First_Interp (H, I2, It2);
4284 while Present (It2.Typ) loop
4285 Check_Common_Type (T, It2.Typ);
4286 Get_Next_Interp (I2, It2);
4287 end loop;
4288 end if;
4289 end Check_High_Bound;
4291 -----------------------------
4292 -- Is_Universal_Expression --
4293 -----------------------------
4295 procedure Check_Universal_Expression (N : Node_Id) is
4296 begin
4297 if Etype (N) = Universal_Integer
4298 and then Nkind (N) /= N_Integer_Literal
4299 and then not Is_Entity_Name (N)
4300 and then Nkind (N) /= N_Attribute_Reference
4301 then
4302 Error_Msg_N ("illegal bound in discrete range", N);
4303 end if;
4304 end Check_Universal_Expression;
4306 -- Start of processing for Analyze_Range
4308 begin
4309 Set_Etype (N, Any_Type);
4310 Analyze_Expression (L);
4311 Analyze_Expression (H);
4313 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
4314 return;
4316 else
4317 if not Is_Overloaded (L) then
4318 Check_High_Bound (Etype (L));
4319 else
4320 Get_First_Interp (L, I1, It1);
4321 while Present (It1.Typ) loop
4322 Check_High_Bound (It1.Typ);
4323 Get_Next_Interp (I1, It1);
4324 end loop;
4325 end if;
4327 -- If result is Any_Type, then we did not find a compatible pair
4329 if Etype (N) = Any_Type then
4330 Error_Msg_N ("incompatible types in range ", N);
4331 end if;
4332 end if;
4334 if Ada_Version = Ada_83
4335 and then
4336 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4337 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4338 then
4339 Check_Universal_Expression (L);
4340 Check_Universal_Expression (H);
4341 end if;
4343 Check_Function_Writable_Actuals (N);
4344 end Analyze_Range;
4346 -----------------------------------
4347 -- Analyze_Reduction_Expression --
4348 -----------------------------------
4350 procedure Analyze_Reduction_Expression (N : Node_Id) is
4351 Expr : constant Node_Id := Expression (N);
4352 QE_Scop : Entity_Id;
4354 begin
4355 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
4356 Set_Etype (QE_Scop, Standard_Void_Type);
4357 Set_Scope (QE_Scop, Current_Scope);
4358 Set_Parent (QE_Scop, N);
4360 Push_Scope (QE_Scop);
4362 -- All constituents are preanalyzed and resolved to avoid untimely
4363 -- generation of various temporaries and types. Full analysis and
4364 -- expansion is carried out when the reduction expression is
4365 -- transformed into an expression with actions.
4367 if Present (Iterator_Specification (N)) then
4368 Preanalyze (Iterator_Specification (N));
4370 else pragma Assert (Present (Loop_Parameter_Specification (N)));
4371 declare
4372 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
4374 begin
4375 Preanalyze (Loop_Par);
4377 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
4378 and then Parent (Loop_Par) /= N
4379 then
4380 -- The parser cannot distinguish between a loop specification
4381 -- and an iterator specification. If after preanalysis the
4382 -- proper form has been recognized, rewrite the expression to
4383 -- reflect the right kind. This is needed for proper ASIS
4384 -- navigation. If expansion is enabled, the transformation is
4385 -- performed when the expression is rewritten as a loop.
4387 Set_Iterator_Specification (N,
4388 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
4390 Set_Defining_Identifier (Iterator_Specification (N),
4391 Relocate_Node (Defining_Identifier (Loop_Par)));
4392 Set_Name (Iterator_Specification (N),
4393 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
4394 Set_Comes_From_Source (Iterator_Specification (N),
4395 Comes_From_Source (Loop_Parameter_Specification (N)));
4396 Set_Loop_Parameter_Specification (N, Empty);
4397 end if;
4398 end;
4399 end if;
4401 Preanalyze (Expr);
4402 End_Scope;
4404 Set_Etype (N, Etype (Expr));
4405 end Analyze_Reduction_Expression;
4407 --------------------------------------------
4408 -- Analyze_Reduction_Expression_Parameter --
4409 --------------------------------------------
4411 procedure Analyze_Reduction_Expression_Parameter (N : Node_Id) is
4412 Expr : constant Node_Id := Expression (N);
4414 begin
4415 Analyze (Expr);
4416 Set_Etype (N, Etype (Expr));
4417 end Analyze_Reduction_Expression_Parameter;
4419 -----------------------
4420 -- Analyze_Reference --
4421 -----------------------
4423 procedure Analyze_Reference (N : Node_Id) is
4424 P : constant Node_Id := Prefix (N);
4425 E : Entity_Id;
4426 T : Entity_Id;
4427 Acc_Type : Entity_Id;
4429 begin
4430 Analyze (P);
4432 -- An interesting error check, if we take the 'Ref of an object for
4433 -- which a pragma Atomic or Volatile has been given, and the type of the
4434 -- object is not Atomic or Volatile, then we are in trouble. The problem
4435 -- is that no trace of the atomic/volatile status will remain for the
4436 -- backend to respect when it deals with the resulting pointer, since
4437 -- the pointer type will not be marked atomic (it is a pointer to the
4438 -- base type of the object).
4440 -- It is not clear if that can ever occur, but in case it does, we will
4441 -- generate an error message. Not clear if this message can ever be
4442 -- generated, and pretty clear that it represents a bug if it is, still
4443 -- seems worth checking, except in CodePeer mode where we do not really
4444 -- care and don't want to bother the user.
4446 T := Etype (P);
4448 if Is_Entity_Name (P)
4449 and then Is_Object_Reference (P)
4450 and then not CodePeer_Mode
4451 then
4452 E := Entity (P);
4453 T := Etype (P);
4455 if (Has_Atomic_Components (E)
4456 and then not Has_Atomic_Components (T))
4457 or else
4458 (Has_Volatile_Components (E)
4459 and then not Has_Volatile_Components (T))
4460 or else (Is_Atomic (E) and then not Is_Atomic (T))
4461 or else (Is_Volatile (E) and then not Is_Volatile (T))
4462 then
4463 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4464 end if;
4465 end if;
4467 -- Carry on with normal processing
4469 Acc_Type := Create_Itype (E_Allocator_Type, N);
4470 Set_Etype (Acc_Type, Acc_Type);
4471 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4472 Set_Etype (N, Acc_Type);
4473 end Analyze_Reference;
4475 --------------------------------
4476 -- Analyze_Selected_Component --
4477 --------------------------------
4479 -- Prefix is a record type or a task or protected type. In the latter case,
4480 -- the selector must denote a visible entry.
4482 procedure Analyze_Selected_Component (N : Node_Id) is
4483 Name : constant Node_Id := Prefix (N);
4484 Sel : constant Node_Id := Selector_Name (N);
4485 Act_Decl : Node_Id;
4486 Comp : Entity_Id;
4487 Has_Candidate : Boolean := False;
4488 Hidden_Comp : Entity_Id;
4489 In_Scope : Boolean;
4490 Is_Private_Op : Boolean;
4491 Parent_N : Node_Id;
4492 Pent : Entity_Id := Empty;
4493 Prefix_Type : Entity_Id;
4495 Type_To_Use : Entity_Id;
4496 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4497 -- a class-wide type, we use its root type, whose components are
4498 -- present in the class-wide type.
4500 Is_Single_Concurrent_Object : Boolean;
4501 -- Set True if the prefix is a single task or a single protected object
4503 procedure Find_Component_In_Instance (Rec : Entity_Id);
4504 -- In an instance, a component of a private extension may not be visible
4505 -- while it was visible in the generic. Search candidate scope for a
4506 -- component with the proper identifier. This is only done if all other
4507 -- searches have failed. If a match is found, the Etype of both N and
4508 -- Sel are set from this component, and the entity of Sel is set to
4509 -- reference this component. If no match is found, Entity (Sel) remains
4510 -- unset. For a derived type that is an actual of the instance, the
4511 -- desired component may be found in any ancestor.
4513 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4514 -- It is known that the parent of N denotes a subprogram call. Comp
4515 -- is an overloadable component of the concurrent type of the prefix.
4516 -- Determine whether all formals of the parent of N and Comp are mode
4517 -- conformant. If the parent node is not analyzed yet it may be an
4518 -- indexed component rather than a function call.
4520 function Has_Dereference (Nod : Node_Id) return Boolean;
4521 -- Check whether prefix includes a dereference at any level.
4523 --------------------------------
4524 -- Find_Component_In_Instance --
4525 --------------------------------
4527 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4528 Comp : Entity_Id;
4529 Typ : Entity_Id;
4531 begin
4532 Typ := Rec;
4533 while Present (Typ) loop
4534 Comp := First_Component (Typ);
4535 while Present (Comp) loop
4536 if Chars (Comp) = Chars (Sel) then
4537 Set_Entity_With_Checks (Sel, Comp);
4538 Set_Etype (Sel, Etype (Comp));
4539 Set_Etype (N, Etype (Comp));
4540 return;
4541 end if;
4543 Next_Component (Comp);
4544 end loop;
4546 -- If not found, the component may be declared in the parent
4547 -- type or its full view, if any.
4549 if Is_Derived_Type (Typ) then
4550 Typ := Etype (Typ);
4552 if Is_Private_Type (Typ) then
4553 Typ := Full_View (Typ);
4554 end if;
4556 else
4557 return;
4558 end if;
4559 end loop;
4561 -- If we fall through, no match, so no changes made
4563 return;
4564 end Find_Component_In_Instance;
4566 ------------------------------
4567 -- Has_Mode_Conformant_Spec --
4568 ------------------------------
4570 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4571 Comp_Param : Entity_Id;
4572 Param : Node_Id;
4573 Param_Typ : Entity_Id;
4575 begin
4576 Comp_Param := First_Formal (Comp);
4578 if Nkind (Parent (N)) = N_Indexed_Component then
4579 Param := First (Expressions (Parent (N)));
4580 else
4581 Param := First (Parameter_Associations (Parent (N)));
4582 end if;
4584 while Present (Comp_Param)
4585 and then Present (Param)
4586 loop
4587 Param_Typ := Find_Parameter_Type (Param);
4589 if Present (Param_Typ)
4590 and then
4591 not Conforming_Types
4592 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4593 then
4594 return False;
4595 end if;
4597 Next_Formal (Comp_Param);
4598 Next (Param);
4599 end loop;
4601 -- One of the specs has additional formals; there is no match, unless
4602 -- this may be an indexing of a parameterless call.
4604 -- Note that when expansion is disabled, the corresponding record
4605 -- type of synchronized types is not constructed, so that there is
4606 -- no point is attempting an interpretation as a prefixed call, as
4607 -- this is bound to fail because the primitive operations will not
4608 -- be properly located.
4610 if Present (Comp_Param) or else Present (Param) then
4611 if Needs_No_Actuals (Comp)
4612 and then Is_Array_Type (Etype (Comp))
4613 and then not Expander_Active
4614 then
4615 return True;
4616 else
4617 return False;
4618 end if;
4619 end if;
4621 return True;
4622 end Has_Mode_Conformant_Spec;
4624 ---------------------
4625 -- Has_Dereference --
4626 ---------------------
4628 function Has_Dereference (Nod : Node_Id) return Boolean is
4629 begin
4630 if Nkind (Nod) = N_Explicit_Dereference then
4631 return True;
4633 -- When expansion is disabled an explicit dereference may not have
4634 -- been inserted, but if this is an access type the indirection makes
4635 -- the call safe.
4637 elsif Is_Access_Type (Etype (Nod)) then
4638 return True;
4640 elsif Nkind_In (Nod, N_Indexed_Component, N_Selected_Component) then
4641 return Has_Dereference (Prefix (Nod));
4643 else
4644 return False;
4645 end if;
4646 end Has_Dereference;
4648 -- Start of processing for Analyze_Selected_Component
4650 begin
4651 Set_Etype (N, Any_Type);
4653 if Is_Overloaded (Name) then
4654 Analyze_Overloaded_Selected_Component (N);
4655 return;
4657 elsif Etype (Name) = Any_Type then
4658 Set_Entity (Sel, Any_Id);
4659 Set_Etype (Sel, Any_Type);
4660 return;
4662 else
4663 Prefix_Type := Etype (Name);
4664 end if;
4666 if Is_Access_Type (Prefix_Type) then
4668 -- A RACW object can never be used as prefix of a selected component
4669 -- since that means it is dereferenced without being a controlling
4670 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4671 -- reporting an error, we must check whether this is actually a
4672 -- dispatching call in prefix form.
4674 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4675 and then Comes_From_Source (N)
4676 then
4677 if Try_Object_Operation (N) then
4678 return;
4679 else
4680 Error_Msg_N
4681 ("invalid dereference of a remote access-to-class-wide value",
4683 end if;
4685 -- Normal case of selected component applied to access type
4687 else
4688 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4690 if Is_Entity_Name (Name) then
4691 Pent := Entity (Name);
4692 elsif Nkind (Name) = N_Selected_Component
4693 and then Is_Entity_Name (Selector_Name (Name))
4694 then
4695 Pent := Entity (Selector_Name (Name));
4696 end if;
4698 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4699 end if;
4701 -- If we have an explicit dereference of a remote access-to-class-wide
4702 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4703 -- have to check for the case of a prefix that is a controlling operand
4704 -- of a prefixed dispatching call, as the dereference is legal in that
4705 -- case. Normally this condition is checked in Validate_Remote_Access_
4706 -- To_Class_Wide_Type, but we have to defer the checking for selected
4707 -- component prefixes because of the prefixed dispatching call case.
4708 -- Note that implicit dereferences are checked for this just above.
4710 elsif Nkind (Name) = N_Explicit_Dereference
4711 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4712 and then Comes_From_Source (N)
4713 then
4714 if Try_Object_Operation (N) then
4715 return;
4716 else
4717 Error_Msg_N
4718 ("invalid dereference of a remote access-to-class-wide value",
4720 end if;
4721 end if;
4723 -- (Ada 2005): if the prefix is the limited view of a type, and
4724 -- the context already includes the full view, use the full view
4725 -- in what follows, either to retrieve a component of to find
4726 -- a primitive operation. If the prefix is an explicit dereference,
4727 -- set the type of the prefix to reflect this transformation.
4728 -- If the nonlimited view is itself an incomplete type, get the
4729 -- full view if available.
4731 if From_Limited_With (Prefix_Type)
4732 and then Has_Non_Limited_View (Prefix_Type)
4733 then
4734 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4736 if Nkind (N) = N_Explicit_Dereference then
4737 Set_Etype (Prefix (N), Prefix_Type);
4738 end if;
4739 end if;
4741 if Ekind (Prefix_Type) = E_Private_Subtype then
4742 Prefix_Type := Base_Type (Prefix_Type);
4743 end if;
4745 Type_To_Use := Prefix_Type;
4747 -- For class-wide types, use the entity list of the root type. This
4748 -- indirection is specially important for private extensions because
4749 -- only the root type get switched (not the class-wide type).
4751 if Is_Class_Wide_Type (Prefix_Type) then
4752 Type_To_Use := Root_Type (Prefix_Type);
4753 end if;
4755 -- If the prefix is a single concurrent object, use its name in error
4756 -- messages, rather than that of its anonymous type.
4758 Is_Single_Concurrent_Object :=
4759 Is_Concurrent_Type (Prefix_Type)
4760 and then Is_Internal_Name (Chars (Prefix_Type))
4761 and then not Is_Derived_Type (Prefix_Type)
4762 and then Is_Entity_Name (Name);
4764 Comp := First_Entity (Type_To_Use);
4766 -- If the selector has an original discriminant, the node appears in
4767 -- an instance. Replace the discriminant with the corresponding one
4768 -- in the current discriminated type. For nested generics, this must
4769 -- be done transitively, so note the new original discriminant.
4771 if Nkind (Sel) = N_Identifier
4772 and then In_Instance
4773 and then Present (Original_Discriminant (Sel))
4774 then
4775 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4777 -- Mark entity before rewriting, for completeness and because
4778 -- subsequent semantic checks might examine the original node.
4780 Set_Entity (Sel, Comp);
4781 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4782 Set_Original_Discriminant (Selector_Name (N), Comp);
4783 Set_Etype (N, Etype (Comp));
4784 Check_Implicit_Dereference (N, Etype (Comp));
4786 if Is_Access_Type (Etype (Name)) then
4787 Insert_Explicit_Dereference (Name);
4788 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4789 end if;
4791 elsif Is_Record_Type (Prefix_Type) then
4793 -- Find component with given name. In an instance, if the node is
4794 -- known as a prefixed call, do not examine components whose
4795 -- visibility may be accidental.
4797 while Present (Comp) and then not Is_Prefixed_Call (N) loop
4798 if Chars (Comp) = Chars (Sel)
4799 and then Is_Visible_Component (Comp, N)
4800 then
4801 Set_Entity_With_Checks (Sel, Comp);
4802 Set_Etype (Sel, Etype (Comp));
4804 if Ekind (Comp) = E_Discriminant then
4805 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4806 Error_Msg_N
4807 ("cannot reference discriminant of unchecked union",
4808 Sel);
4809 end if;
4811 if Is_Generic_Type (Prefix_Type)
4812 or else
4813 Is_Generic_Type (Root_Type (Prefix_Type))
4814 then
4815 Set_Original_Discriminant (Sel, Comp);
4816 end if;
4817 end if;
4819 -- Resolve the prefix early otherwise it is not possible to
4820 -- build the actual subtype of the component: it may need
4821 -- to duplicate this prefix and duplication is only allowed
4822 -- on fully resolved expressions.
4824 Resolve (Name);
4826 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4827 -- subtypes in a package specification.
4828 -- Example:
4830 -- limited with Pkg;
4831 -- package Pkg is
4832 -- type Acc_Inc is access Pkg.T;
4833 -- X : Acc_Inc;
4834 -- N : Natural := X.all.Comp; -- ERROR, limited view
4835 -- end Pkg; -- Comp is not visible
4837 if Nkind (Name) = N_Explicit_Dereference
4838 and then From_Limited_With (Etype (Prefix (Name)))
4839 and then not Is_Potentially_Use_Visible (Etype (Name))
4840 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4841 N_Package_Specification
4842 then
4843 Error_Msg_NE
4844 ("premature usage of incomplete}", Prefix (Name),
4845 Etype (Prefix (Name)));
4846 end if;
4848 -- We never need an actual subtype for the case of a selection
4849 -- for a indexed component of a non-packed array, since in
4850 -- this case gigi generates all the checks and can find the
4851 -- necessary bounds information.
4853 -- We also do not need an actual subtype for the case of a
4854 -- first, last, length, or range attribute applied to a
4855 -- non-packed array, since gigi can again get the bounds in
4856 -- these cases (gigi cannot handle the packed case, since it
4857 -- has the bounds of the packed array type, not the original
4858 -- bounds of the type). However, if the prefix is itself a
4859 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4860 -- as a dynamic-sized temporary, so we do generate an actual
4861 -- subtype for this case.
4863 Parent_N := Parent (N);
4865 if not Is_Packed (Etype (Comp))
4866 and then
4867 ((Nkind (Parent_N) = N_Indexed_Component
4868 and then Nkind (Name) /= N_Selected_Component)
4869 or else
4870 (Nkind (Parent_N) = N_Attribute_Reference
4871 and then
4872 Nam_In (Attribute_Name (Parent_N), Name_First,
4873 Name_Last,
4874 Name_Length,
4875 Name_Range)))
4876 then
4877 Set_Etype (N, Etype (Comp));
4879 -- If full analysis is not enabled, we do not generate an
4880 -- actual subtype, because in the absence of expansion
4881 -- reference to a formal of a protected type, for example,
4882 -- will not be properly transformed, and will lead to
4883 -- out-of-scope references in gigi.
4885 -- In all other cases, we currently build an actual subtype.
4886 -- It seems likely that many of these cases can be avoided,
4887 -- but right now, the front end makes direct references to the
4888 -- bounds (e.g. in generating a length check), and if we do
4889 -- not make an actual subtype, we end up getting a direct
4890 -- reference to a discriminant, which will not do.
4892 elsif Full_Analysis then
4893 Act_Decl :=
4894 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4895 Insert_Action (N, Act_Decl);
4897 if No (Act_Decl) then
4898 Set_Etype (N, Etype (Comp));
4900 else
4901 -- Component type depends on discriminants. Enter the
4902 -- main attributes of the subtype.
4904 declare
4905 Subt : constant Entity_Id :=
4906 Defining_Identifier (Act_Decl);
4908 begin
4909 Set_Etype (Subt, Base_Type (Etype (Comp)));
4910 Set_Ekind (Subt, Ekind (Etype (Comp)));
4911 Set_Etype (N, Subt);
4912 end;
4913 end if;
4915 -- If Full_Analysis not enabled, just set the Etype
4917 else
4918 Set_Etype (N, Etype (Comp));
4919 end if;
4921 Check_Implicit_Dereference (N, Etype (N));
4922 return;
4923 end if;
4925 -- If the prefix is a private extension, check only the visible
4926 -- components of the partial view. This must include the tag,
4927 -- which can appear in expanded code in a tag check.
4929 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4930 and then Chars (Selector_Name (N)) /= Name_uTag
4931 then
4932 exit when Comp = Last_Entity (Type_To_Use);
4933 end if;
4935 Next_Entity (Comp);
4936 end loop;
4938 -- Ada 2005 (AI-252): The selected component can be interpreted as
4939 -- a prefixed view of a subprogram. Depending on the context, this is
4940 -- either a name that can appear in a renaming declaration, or part
4941 -- of an enclosing call given in prefix form.
4943 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4944 -- selected component should resolve to a name.
4946 if Ada_Version >= Ada_2005
4947 and then Is_Tagged_Type (Prefix_Type)
4948 and then not Is_Concurrent_Type (Prefix_Type)
4949 then
4950 if Nkind (Parent (N)) = N_Generic_Association
4951 or else Nkind (Parent (N)) = N_Requeue_Statement
4952 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4953 then
4954 if Find_Primitive_Operation (N) then
4955 return;
4956 end if;
4958 elsif Try_Object_Operation (N) then
4959 return;
4960 end if;
4962 -- If the transformation fails, it will be necessary to redo the
4963 -- analysis with all errors enabled, to indicate candidate
4964 -- interpretations and reasons for each failure ???
4966 end if;
4968 elsif Is_Private_Type (Prefix_Type) then
4970 -- Allow access only to discriminants of the type. If the type has
4971 -- no full view, gigi uses the parent type for the components, so we
4972 -- do the same here.
4974 if No (Full_View (Prefix_Type)) then
4975 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4976 Comp := First_Entity (Type_To_Use);
4977 end if;
4979 while Present (Comp) loop
4980 if Chars (Comp) = Chars (Sel) then
4981 if Ekind (Comp) = E_Discriminant then
4982 Set_Entity_With_Checks (Sel, Comp);
4983 Generate_Reference (Comp, Sel);
4985 Set_Etype (Sel, Etype (Comp));
4986 Set_Etype (N, Etype (Comp));
4987 Check_Implicit_Dereference (N, Etype (N));
4989 if Is_Generic_Type (Prefix_Type)
4990 or else Is_Generic_Type (Root_Type (Prefix_Type))
4991 then
4992 Set_Original_Discriminant (Sel, Comp);
4993 end if;
4995 -- Before declaring an error, check whether this is tagged
4996 -- private type and a call to a primitive operation.
4998 elsif Ada_Version >= Ada_2005
4999 and then Is_Tagged_Type (Prefix_Type)
5000 and then Try_Object_Operation (N)
5001 then
5002 return;
5004 else
5005 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5006 Error_Msg_NE ("invisible selector& for }", N, Sel);
5007 Set_Entity (Sel, Any_Id);
5008 Set_Etype (N, Any_Type);
5009 end if;
5011 return;
5012 end if;
5014 Next_Entity (Comp);
5015 end loop;
5017 elsif Is_Concurrent_Type (Prefix_Type) then
5019 -- Find visible operation with given name. For a protected type,
5020 -- the possible candidates are discriminants, entries or protected
5021 -- subprograms. For a task type, the set can only include entries or
5022 -- discriminants if the task type is not an enclosing scope. If it
5023 -- is an enclosing scope (e.g. in an inner task) then all entities
5024 -- are visible, but the prefix must denote the enclosing scope, i.e.
5025 -- can only be a direct name or an expanded name.
5027 Set_Etype (Sel, Any_Type);
5028 Hidden_Comp := Empty;
5029 In_Scope := In_Open_Scopes (Prefix_Type);
5030 Is_Private_Op := False;
5032 while Present (Comp) loop
5034 -- Do not examine private operations of the type if not within
5035 -- its scope.
5037 if Chars (Comp) = Chars (Sel) then
5038 if Is_Overloadable (Comp)
5039 and then (In_Scope
5040 or else Comp /= First_Private_Entity (Type_To_Use))
5041 then
5042 Add_One_Interp (Sel, Comp, Etype (Comp));
5043 if Comp = First_Private_Entity (Type_To_Use) then
5044 Is_Private_Op := True;
5045 end if;
5047 -- If the prefix is tagged, the correct interpretation may
5048 -- lie in the primitive or class-wide operations of the
5049 -- type. Perform a simple conformance check to determine
5050 -- whether Try_Object_Operation should be invoked even if
5051 -- a visible entity is found.
5053 if Is_Tagged_Type (Prefix_Type)
5054 and then Nkind_In (Parent (N), N_Function_Call,
5055 N_Indexed_Component,
5056 N_Procedure_Call_Statement)
5057 and then Has_Mode_Conformant_Spec (Comp)
5058 then
5059 Has_Candidate := True;
5060 end if;
5062 -- Note: a selected component may not denote a component of a
5063 -- protected type (4.1.3(7)).
5065 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
5066 or else (In_Scope
5067 and then not Is_Protected_Type (Prefix_Type)
5068 and then Is_Entity_Name (Name))
5069 then
5070 Set_Entity_With_Checks (Sel, Comp);
5071 Generate_Reference (Comp, Sel);
5073 -- The selector is not overloadable, so we have a candidate
5074 -- interpretation.
5076 Has_Candidate := True;
5078 else
5079 if Ekind (Comp) = E_Component then
5080 Hidden_Comp := Comp;
5081 end if;
5083 goto Next_Comp;
5084 end if;
5086 Set_Etype (Sel, Etype (Comp));
5087 Set_Etype (N, Etype (Comp));
5089 if Ekind (Comp) = E_Discriminant then
5090 Set_Original_Discriminant (Sel, Comp);
5091 end if;
5093 -- For access type case, introduce explicit dereference for
5094 -- more uniform treatment of entry calls.
5096 if Is_Access_Type (Etype (Name)) then
5097 Insert_Explicit_Dereference (Name);
5098 Error_Msg_NW
5099 (Warn_On_Dereference, "?d?implicit dereference", N);
5100 end if;
5101 end if;
5103 <<Next_Comp>>
5104 if Comp = First_Private_Entity (Type_To_Use) then
5105 if Etype (Sel) /= Any_Type then
5107 -- We have a candiate
5109 exit;
5111 else
5112 -- Indicate that subsequent operations are private,
5113 -- for better error reporting.
5115 Is_Private_Op := True;
5116 end if;
5117 end if;
5119 -- Do not examine private operations if not within scope of
5120 -- the synchronized type.
5122 exit when not In_Scope
5123 and then
5124 Comp = First_Private_Entity (Base_Type (Prefix_Type));
5125 Next_Entity (Comp);
5126 end loop;
5128 -- If the scope is a current instance, the prefix cannot be an
5129 -- expression of the same type, unless the selector designates a
5130 -- public operation (otherwise that would represent an attempt to
5131 -- reach an internal entity of another synchronized object).
5133 -- This is legal if prefix is an access to such type and there is
5134 -- a dereference, or is a component with a dereferenced prefix.
5135 -- It is also legal if the prefix is a component of a task type,
5136 -- and the selector is one of the task operations.
5138 if In_Scope
5139 and then not Is_Entity_Name (Name)
5140 and then not Has_Dereference (Name)
5141 then
5142 if Is_Task_Type (Prefix_Type)
5143 and then Present (Entity (Sel))
5144 and then Ekind_In (Entity (Sel), E_Entry, E_Entry_Family)
5145 then
5146 null;
5148 elsif Is_Protected_Type (Prefix_Type)
5149 and then Is_Overloadable (Entity (Sel))
5150 and then not Is_Private_Op
5151 then
5152 null;
5154 else
5155 Error_Msg_NE
5156 ("invalid reference to internal operation of some object of "
5157 & "type &", N, Type_To_Use);
5158 Set_Entity (Sel, Any_Id);
5159 Set_Etype (Sel, Any_Type);
5160 return;
5161 end if;
5163 -- Another special case: the prefix may denote an object of the type
5164 -- (but not a type) in which case this is an external call and the
5165 -- operation must be public.
5167 elsif In_Scope
5168 and then Is_Object_Reference (Original_Node (Prefix (N)))
5169 and then Comes_From_Source (N)
5170 and then Is_Private_Op
5171 then
5172 if Present (Hidden_Comp) then
5173 Error_Msg_NE
5174 ("invalid reference to private component of object of type "
5175 & "&", N, Type_To_Use);
5177 else
5178 Error_Msg_NE
5179 ("invalid reference to private operation of some object of "
5180 & "type &", N, Type_To_Use);
5181 end if;
5183 Set_Entity (Sel, Any_Id);
5184 Set_Etype (Sel, Any_Type);
5185 return;
5186 end if;
5188 -- If there is no visible entity with the given name or none of the
5189 -- visible entities are plausible interpretations, check whether
5190 -- there is some other primitive operation with that name.
5192 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
5193 if (Etype (N) = Any_Type
5194 or else not Has_Candidate)
5195 and then Try_Object_Operation (N)
5196 then
5197 return;
5199 -- If the context is not syntactically a procedure call, it
5200 -- may be a call to a primitive function declared outside of
5201 -- the synchronized type.
5203 -- If the context is a procedure call, there might still be
5204 -- an overloading between an entry and a primitive procedure
5205 -- declared outside of the synchronized type, called in prefix
5206 -- notation. This is harder to disambiguate because in one case
5207 -- the controlling formal is implicit ???
5209 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
5210 and then Nkind (Parent (N)) /= N_Indexed_Component
5211 and then Try_Object_Operation (N)
5212 then
5213 return;
5214 end if;
5216 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
5217 -- entry or procedure of a tagged concurrent type we must check
5218 -- if there are class-wide subprograms covering the primitive. If
5219 -- true then Try_Object_Operation reports the error.
5221 if Has_Candidate
5222 and then Is_Concurrent_Type (Prefix_Type)
5223 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
5224 then
5225 -- Duplicate the call. This is required to avoid problems with
5226 -- the tree transformations performed by Try_Object_Operation.
5227 -- Set properly the parent of the copied call, because it is
5228 -- about to be reanalyzed.
5230 declare
5231 Par : constant Node_Id := New_Copy_Tree (Parent (N));
5233 begin
5234 Set_Parent (Par, Parent (Parent (N)));
5236 if Try_Object_Operation
5237 (Sinfo.Name (Par), CW_Test_Only => True)
5238 then
5239 return;
5240 end if;
5241 end;
5242 end if;
5243 end if;
5245 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
5247 -- Case of a prefix of a protected type: selector might denote
5248 -- an invisible private component.
5250 Comp := First_Private_Entity (Base_Type (Prefix_Type));
5251 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
5252 Next_Entity (Comp);
5253 end loop;
5255 if Present (Comp) then
5256 if Is_Single_Concurrent_Object then
5257 Error_Msg_Node_2 := Entity (Name);
5258 Error_Msg_NE ("invisible selector& for &", N, Sel);
5260 else
5261 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5262 Error_Msg_NE ("invisible selector& for }", N, Sel);
5263 end if;
5264 return;
5265 end if;
5266 end if;
5268 Set_Is_Overloaded (N, Is_Overloaded (Sel));
5270 else
5271 -- Invalid prefix
5273 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
5274 end if;
5276 -- If N still has no type, the component is not defined in the prefix
5278 if Etype (N) = Any_Type then
5280 if Is_Single_Concurrent_Object then
5281 Error_Msg_Node_2 := Entity (Name);
5282 Error_Msg_NE ("no selector& for&", N, Sel);
5284 Check_Misspelled_Selector (Type_To_Use, Sel);
5286 -- If this is a derived formal type, the parent may have different
5287 -- visibility at this point. Try for an inherited component before
5288 -- reporting an error.
5290 elsif Is_Generic_Type (Prefix_Type)
5291 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
5292 and then Prefix_Type /= Etype (Prefix_Type)
5293 and then Is_Record_Type (Etype (Prefix_Type))
5294 then
5295 Set_Etype (Prefix (N), Etype (Prefix_Type));
5296 Analyze_Selected_Component (N);
5297 return;
5299 -- Similarly, if this is the actual for a formal derived type, or
5300 -- a derived type thereof, the component inherited from the generic
5301 -- parent may not be visible in the actual, but the selected
5302 -- component is legal. Climb up the derivation chain of the generic
5303 -- parent type until we find the proper ancestor type.
5305 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
5306 declare
5307 Par : Entity_Id := Prefix_Type;
5308 begin
5309 -- Climb up derivation chain to generic actual subtype
5311 while not Is_Generic_Actual_Type (Par) loop
5312 if Ekind (Par) = E_Record_Type then
5313 Par := Parent_Subtype (Par);
5314 exit when No (Par);
5315 else
5316 exit when Par = Etype (Par);
5317 Par := Etype (Par);
5318 end if;
5319 end loop;
5321 if Present (Par) and then Is_Generic_Actual_Type (Par) then
5323 -- Now look for component in ancestor types
5325 Par := Generic_Parent_Type (Declaration_Node (Par));
5326 loop
5327 Find_Component_In_Instance (Par);
5328 exit when Present (Entity (Sel))
5329 or else Par = Etype (Par);
5330 Par := Etype (Par);
5331 end loop;
5333 -- Another special case: the type is an extension of a private
5334 -- type T, is an actual in an instance, and we are in the body
5335 -- of the instance, so the generic body had a full view of the
5336 -- type declaration for T or of some ancestor that defines the
5337 -- component in question.
5339 elsif Is_Derived_Type (Type_To_Use)
5340 and then Used_As_Generic_Actual (Type_To_Use)
5341 and then In_Instance_Body
5342 then
5343 Find_Component_In_Instance (Parent_Subtype (Type_To_Use));
5345 -- In ASIS mode the generic parent type may be absent. Examine
5346 -- the parent type directly for a component that may have been
5347 -- visible in a parent generic unit.
5349 elsif Is_Derived_Type (Prefix_Type) then
5350 Par := Etype (Prefix_Type);
5351 Find_Component_In_Instance (Par);
5352 end if;
5353 end;
5355 -- The search above must have eventually succeeded, since the
5356 -- selected component was legal in the generic.
5358 if No (Entity (Sel)) then
5359 raise Program_Error;
5360 end if;
5362 return;
5364 -- Component not found, specialize error message when appropriate
5366 else
5367 if Ekind (Prefix_Type) = E_Record_Subtype then
5369 -- Check whether this is a component of the base type which
5370 -- is absent from a statically constrained subtype. This will
5371 -- raise constraint error at run time, but is not a compile-
5372 -- time error. When the selector is illegal for base type as
5373 -- well fall through and generate a compilation error anyway.
5375 Comp := First_Component (Base_Type (Prefix_Type));
5376 while Present (Comp) loop
5377 if Chars (Comp) = Chars (Sel)
5378 and then Is_Visible_Component (Comp)
5379 then
5380 Set_Entity_With_Checks (Sel, Comp);
5381 Generate_Reference (Comp, Sel);
5382 Set_Etype (Sel, Etype (Comp));
5383 Set_Etype (N, Etype (Comp));
5385 -- Emit appropriate message. The node will be replaced
5386 -- by an appropriate raise statement.
5388 -- Note that in SPARK mode, as with all calls to apply a
5389 -- compile time constraint error, this will be made into
5390 -- an error to simplify the processing of the formal
5391 -- verification backend.
5393 Apply_Compile_Time_Constraint_Error
5394 (N, "component not present in }??",
5395 CE_Discriminant_Check_Failed,
5396 Ent => Prefix_Type, Rep => False);
5398 Set_Raises_Constraint_Error (N);
5399 return;
5400 end if;
5402 Next_Component (Comp);
5403 end loop;
5405 end if;
5407 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5408 Error_Msg_NE ("no selector& for}", N, Sel);
5410 -- Add information in the case of an incomplete prefix
5412 if Is_Incomplete_Type (Type_To_Use) then
5413 declare
5414 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
5416 begin
5417 if From_Limited_With (Scope (Type_To_Use)) then
5418 Error_Msg_NE
5419 ("\limited view of& has no components", N, Inc);
5421 else
5422 Error_Msg_NE
5423 ("\premature usage of incomplete type&", N, Inc);
5425 if Nkind (Parent (Inc)) =
5426 N_Incomplete_Type_Declaration
5427 then
5428 -- Record location of premature use in entity so that
5429 -- a continuation message is generated when the
5430 -- completion is seen.
5432 Set_Premature_Use (Parent (Inc), N);
5433 end if;
5434 end if;
5435 end;
5436 end if;
5438 Check_Misspelled_Selector (Type_To_Use, Sel);
5439 end if;
5441 Set_Entity (Sel, Any_Id);
5442 Set_Etype (Sel, Any_Type);
5443 end if;
5444 end Analyze_Selected_Component;
5446 ---------------------------
5447 -- Analyze_Short_Circuit --
5448 ---------------------------
5450 procedure Analyze_Short_Circuit (N : Node_Id) is
5451 L : constant Node_Id := Left_Opnd (N);
5452 R : constant Node_Id := Right_Opnd (N);
5453 Ind : Interp_Index;
5454 It : Interp;
5456 begin
5457 Analyze_Expression (L);
5458 Analyze_Expression (R);
5459 Set_Etype (N, Any_Type);
5461 if not Is_Overloaded (L) then
5462 if Root_Type (Etype (L)) = Standard_Boolean
5463 and then Has_Compatible_Type (R, Etype (L))
5464 then
5465 Add_One_Interp (N, Etype (L), Etype (L));
5466 end if;
5468 else
5469 Get_First_Interp (L, Ind, It);
5470 while Present (It.Typ) loop
5471 if Root_Type (It.Typ) = Standard_Boolean
5472 and then Has_Compatible_Type (R, It.Typ)
5473 then
5474 Add_One_Interp (N, It.Typ, It.Typ);
5475 end if;
5477 Get_Next_Interp (Ind, It);
5478 end loop;
5479 end if;
5481 -- Here we have failed to find an interpretation. Clearly we know that
5482 -- it is not the case that both operands can have an interpretation of
5483 -- Boolean, but this is by far the most likely intended interpretation.
5484 -- So we simply resolve both operands as Booleans, and at least one of
5485 -- these resolutions will generate an error message, and we do not need
5486 -- to give another error message on the short circuit operation itself.
5488 if Etype (N) = Any_Type then
5489 Resolve (L, Standard_Boolean);
5490 Resolve (R, Standard_Boolean);
5491 Set_Etype (N, Standard_Boolean);
5492 end if;
5493 end Analyze_Short_Circuit;
5495 -------------------
5496 -- Analyze_Slice --
5497 -------------------
5499 procedure Analyze_Slice (N : Node_Id) is
5500 D : constant Node_Id := Discrete_Range (N);
5501 P : constant Node_Id := Prefix (N);
5502 Array_Type : Entity_Id;
5503 Index_Type : Entity_Id;
5505 procedure Analyze_Overloaded_Slice;
5506 -- If the prefix is overloaded, select those interpretations that
5507 -- yield a one-dimensional array type.
5509 ------------------------------
5510 -- Analyze_Overloaded_Slice --
5511 ------------------------------
5513 procedure Analyze_Overloaded_Slice is
5514 I : Interp_Index;
5515 It : Interp;
5516 Typ : Entity_Id;
5518 begin
5519 Set_Etype (N, Any_Type);
5521 Get_First_Interp (P, I, It);
5522 while Present (It.Nam) loop
5523 Typ := It.Typ;
5525 if Is_Access_Type (Typ) then
5526 Typ := Designated_Type (Typ);
5527 Error_Msg_NW
5528 (Warn_On_Dereference, "?d?implicit dereference", N);
5529 end if;
5531 if Is_Array_Type (Typ)
5532 and then Number_Dimensions (Typ) = 1
5533 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
5534 then
5535 Add_One_Interp (N, Typ, Typ);
5536 end if;
5538 Get_Next_Interp (I, It);
5539 end loop;
5541 if Etype (N) = Any_Type then
5542 Error_Msg_N ("expect array type in prefix of slice", N);
5543 end if;
5544 end Analyze_Overloaded_Slice;
5546 -- Start of processing for Analyze_Slice
5548 begin
5549 if Comes_From_Source (N) then
5550 Check_SPARK_05_Restriction ("slice is not allowed", N);
5551 end if;
5553 Analyze (P);
5554 Analyze (D);
5556 if Is_Overloaded (P) then
5557 Analyze_Overloaded_Slice;
5559 else
5560 Array_Type := Etype (P);
5561 Set_Etype (N, Any_Type);
5563 if Is_Access_Type (Array_Type) then
5564 Array_Type := Designated_Type (Array_Type);
5565 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5566 end if;
5568 if not Is_Array_Type (Array_Type) then
5569 Wrong_Type (P, Any_Array);
5571 elsif Number_Dimensions (Array_Type) > 1 then
5572 Error_Msg_N
5573 ("type is not one-dimensional array in slice prefix", N);
5575 else
5576 if Ekind (Array_Type) = E_String_Literal_Subtype then
5577 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
5578 else
5579 Index_Type := Etype (First_Index (Array_Type));
5580 end if;
5582 if not Has_Compatible_Type (D, Index_Type) then
5583 Wrong_Type (D, Index_Type);
5584 else
5585 Set_Etype (N, Array_Type);
5586 end if;
5587 end if;
5588 end if;
5589 end Analyze_Slice;
5591 -----------------------------
5592 -- Analyze_Type_Conversion --
5593 -----------------------------
5595 procedure Analyze_Type_Conversion (N : Node_Id) is
5596 Expr : constant Node_Id := Expression (N);
5597 Typ : Entity_Id;
5599 begin
5600 -- If Conversion_OK is set, then the Etype is already set, and the only
5601 -- processing required is to analyze the expression. This is used to
5602 -- construct certain "illegal" conversions which are not allowed by Ada
5603 -- semantics, but can be handled by Gigi, see Sinfo for further details.
5605 if Conversion_OK (N) then
5606 Analyze (Expr);
5607 return;
5608 end if;
5610 -- Otherwise full type analysis is required, as well as some semantic
5611 -- checks to make sure the argument of the conversion is appropriate.
5613 Find_Type (Subtype_Mark (N));
5614 Typ := Entity (Subtype_Mark (N));
5615 Set_Etype (N, Typ);
5616 Check_Fully_Declared (Typ, N);
5617 Analyze_Expression (Expr);
5618 Validate_Remote_Type_Type_Conversion (N);
5620 -- Only remaining step is validity checks on the argument. These
5621 -- are skipped if the conversion does not come from the source.
5623 if not Comes_From_Source (N) then
5624 return;
5626 -- If there was an error in a generic unit, no need to replicate the
5627 -- error message. Conversely, constant-folding in the generic may
5628 -- transform the argument of a conversion into a string literal, which
5629 -- is legal. Therefore the following tests are not performed in an
5630 -- instance. The same applies to an inlined body.
5632 elsif In_Instance or In_Inlined_Body then
5633 return;
5635 elsif Nkind (Expr) = N_Null then
5636 Error_Msg_N ("argument of conversion cannot be null", N);
5637 Error_Msg_N ("\use qualified expression instead", N);
5638 Set_Etype (N, Any_Type);
5640 elsif Nkind (Expr) = N_Aggregate then
5641 Error_Msg_N ("argument of conversion cannot be aggregate", N);
5642 Error_Msg_N ("\use qualified expression instead", N);
5644 elsif Nkind (Expr) = N_Allocator then
5645 Error_Msg_N ("argument of conversion cannot be an allocator", N);
5646 Error_Msg_N ("\use qualified expression instead", N);
5648 elsif Nkind (Expr) = N_String_Literal then
5649 Error_Msg_N ("argument of conversion cannot be string literal", N);
5650 Error_Msg_N ("\use qualified expression instead", N);
5652 elsif Nkind (Expr) = N_Character_Literal then
5653 if Ada_Version = Ada_83 then
5654 Resolve (Expr, Typ);
5655 else
5656 Error_Msg_N ("argument of conversion cannot be character literal",
5658 Error_Msg_N ("\use qualified expression instead", N);
5659 end if;
5661 elsif Nkind (Expr) = N_Attribute_Reference
5662 and then Nam_In (Attribute_Name (Expr), Name_Access,
5663 Name_Unchecked_Access,
5664 Name_Unrestricted_Access)
5665 then
5666 Error_Msg_N ("argument of conversion cannot be access", N);
5667 Error_Msg_N ("\use qualified expression instead", N);
5668 end if;
5670 -- A formal parameter of a specific tagged type whose related subprogram
5671 -- is subject to pragma Extensions_Visible with value "False" cannot
5672 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
5673 -- internally generated expressions.
5675 if Is_Class_Wide_Type (Typ)
5676 and then Comes_From_Source (Expr)
5677 and then Is_EVF_Expression (Expr)
5678 then
5679 Error_Msg_N
5680 ("formal parameter cannot be converted to class-wide type when "
5681 & "Extensions_Visible is False", Expr);
5682 end if;
5683 end Analyze_Type_Conversion;
5685 ----------------------
5686 -- Analyze_Unary_Op --
5687 ----------------------
5689 procedure Analyze_Unary_Op (N : Node_Id) is
5690 R : constant Node_Id := Right_Opnd (N);
5691 Op_Id : Entity_Id := Entity (N);
5693 begin
5694 Set_Etype (N, Any_Type);
5695 Candidate_Type := Empty;
5697 Analyze_Expression (R);
5699 if Present (Op_Id) then
5700 if Ekind (Op_Id) = E_Operator then
5701 Find_Unary_Types (R, Op_Id, N);
5702 else
5703 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5704 end if;
5706 else
5707 Op_Id := Get_Name_Entity_Id (Chars (N));
5708 while Present (Op_Id) loop
5709 if Ekind (Op_Id) = E_Operator then
5710 if No (Next_Entity (First_Entity (Op_Id))) then
5711 Find_Unary_Types (R, Op_Id, N);
5712 end if;
5714 elsif Is_Overloadable (Op_Id) then
5715 Analyze_User_Defined_Unary_Op (N, Op_Id);
5716 end if;
5718 Op_Id := Homonym (Op_Id);
5719 end loop;
5720 end if;
5722 Operator_Check (N);
5723 end Analyze_Unary_Op;
5725 ----------------------------------
5726 -- Analyze_Unchecked_Expression --
5727 ----------------------------------
5729 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5730 begin
5731 Analyze (Expression (N), Suppress => All_Checks);
5732 Set_Etype (N, Etype (Expression (N)));
5733 Save_Interps (Expression (N), N);
5734 end Analyze_Unchecked_Expression;
5736 ---------------------------------------
5737 -- Analyze_Unchecked_Type_Conversion --
5738 ---------------------------------------
5740 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5741 begin
5742 Find_Type (Subtype_Mark (N));
5743 Analyze_Expression (Expression (N));
5744 Set_Etype (N, Entity (Subtype_Mark (N)));
5745 end Analyze_Unchecked_Type_Conversion;
5747 ------------------------------------
5748 -- Analyze_User_Defined_Binary_Op --
5749 ------------------------------------
5751 procedure Analyze_User_Defined_Binary_Op
5752 (N : Node_Id;
5753 Op_Id : Entity_Id)
5755 begin
5756 -- Only do analysis if the operator Comes_From_Source, since otherwise
5757 -- the operator was generated by the expander, and all such operators
5758 -- always refer to the operators in package Standard.
5760 if Comes_From_Source (N) then
5761 declare
5762 F1 : constant Entity_Id := First_Formal (Op_Id);
5763 F2 : constant Entity_Id := Next_Formal (F1);
5765 begin
5766 -- Verify that Op_Id is a visible binary function. Note that since
5767 -- we know Op_Id is overloaded, potentially use visible means use
5768 -- visible for sure (RM 9.4(11)).
5770 if Ekind (Op_Id) = E_Function
5771 and then Present (F2)
5772 and then (Is_Immediately_Visible (Op_Id)
5773 or else Is_Potentially_Use_Visible (Op_Id))
5774 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5775 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5776 then
5777 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5779 -- If the left operand is overloaded, indicate that the current
5780 -- type is a viable candidate. This is redundant in most cases,
5781 -- but for equality and comparison operators where the context
5782 -- does not impose a type on the operands, setting the proper
5783 -- type is necessary to avoid subsequent ambiguities during
5784 -- resolution, when both user-defined and predefined operators
5785 -- may be candidates.
5787 if Is_Overloaded (Left_Opnd (N)) then
5788 Set_Etype (Left_Opnd (N), Etype (F1));
5789 end if;
5791 if Debug_Flag_E then
5792 Write_Str ("user defined operator ");
5793 Write_Name (Chars (Op_Id));
5794 Write_Str (" on node ");
5795 Write_Int (Int (N));
5796 Write_Eol;
5797 end if;
5798 end if;
5799 end;
5800 end if;
5801 end Analyze_User_Defined_Binary_Op;
5803 -----------------------------------
5804 -- Analyze_User_Defined_Unary_Op --
5805 -----------------------------------
5807 procedure Analyze_User_Defined_Unary_Op
5808 (N : Node_Id;
5809 Op_Id : Entity_Id)
5811 begin
5812 -- Only do analysis if the operator Comes_From_Source, since otherwise
5813 -- the operator was generated by the expander, and all such operators
5814 -- always refer to the operators in package Standard.
5816 if Comes_From_Source (N) then
5817 declare
5818 F : constant Entity_Id := First_Formal (Op_Id);
5820 begin
5821 -- Verify that Op_Id is a visible unary function. Note that since
5822 -- we know Op_Id is overloaded, potentially use visible means use
5823 -- visible for sure (RM 9.4(11)).
5825 if Ekind (Op_Id) = E_Function
5826 and then No (Next_Formal (F))
5827 and then (Is_Immediately_Visible (Op_Id)
5828 or else Is_Potentially_Use_Visible (Op_Id))
5829 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5830 then
5831 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5832 end if;
5833 end;
5834 end if;
5835 end Analyze_User_Defined_Unary_Op;
5837 ---------------------------
5838 -- Check_Arithmetic_Pair --
5839 ---------------------------
5841 procedure Check_Arithmetic_Pair
5842 (T1, T2 : Entity_Id;
5843 Op_Id : Entity_Id;
5844 N : Node_Id)
5846 Op_Name : constant Name_Id := Chars (Op_Id);
5848 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5849 -- Check whether the fixed-point type Typ has a user-defined operator
5850 -- (multiplication or division) that should hide the corresponding
5851 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5852 -- such operators more visible and therefore useful.
5854 -- If the name of the operation is an expanded name with prefix
5855 -- Standard, the predefined universal fixed operator is available,
5856 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5858 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5859 -- Get specific type (i.e. non-universal type if there is one)
5861 ------------------
5862 -- Has_Fixed_Op --
5863 ------------------
5865 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5866 Bas : constant Entity_Id := Base_Type (Typ);
5867 Ent : Entity_Id;
5868 F1 : Entity_Id;
5869 F2 : Entity_Id;
5871 begin
5872 -- If the universal_fixed operation is given explicitly the rule
5873 -- concerning primitive operations of the type do not apply.
5875 if Nkind (N) = N_Function_Call
5876 and then Nkind (Name (N)) = N_Expanded_Name
5877 and then Entity (Prefix (Name (N))) = Standard_Standard
5878 then
5879 return False;
5880 end if;
5882 -- The operation is treated as primitive if it is declared in the
5883 -- same scope as the type, and therefore on the same entity chain.
5885 Ent := Next_Entity (Typ);
5886 while Present (Ent) loop
5887 if Chars (Ent) = Chars (Op) then
5888 F1 := First_Formal (Ent);
5889 F2 := Next_Formal (F1);
5891 -- The operation counts as primitive if either operand or
5892 -- result are of the given base type, and both operands are
5893 -- fixed point types.
5895 if (Base_Type (Etype (F1)) = Bas
5896 and then Is_Fixed_Point_Type (Etype (F2)))
5898 or else
5899 (Base_Type (Etype (F2)) = Bas
5900 and then Is_Fixed_Point_Type (Etype (F1)))
5902 or else
5903 (Base_Type (Etype (Ent)) = Bas
5904 and then Is_Fixed_Point_Type (Etype (F1))
5905 and then Is_Fixed_Point_Type (Etype (F2)))
5906 then
5907 return True;
5908 end if;
5909 end if;
5911 Next_Entity (Ent);
5912 end loop;
5914 return False;
5915 end Has_Fixed_Op;
5917 -------------------
5918 -- Specific_Type --
5919 -------------------
5921 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5922 begin
5923 if T1 = Universal_Integer or else T1 = Universal_Real then
5924 return Base_Type (T2);
5925 else
5926 return Base_Type (T1);
5927 end if;
5928 end Specific_Type;
5930 -- Start of processing for Check_Arithmetic_Pair
5932 begin
5933 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5934 if Is_Numeric_Type (T1)
5935 and then Is_Numeric_Type (T2)
5936 and then (Covers (T1 => T1, T2 => T2)
5937 or else
5938 Covers (T1 => T2, T2 => T1))
5939 then
5940 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5941 end if;
5943 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5944 if Is_Fixed_Point_Type (T1)
5945 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5946 then
5947 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5948 -- and no further processing is required (this is the case of an
5949 -- operator constructed by Exp_Fixd for a fixed point operation)
5950 -- Otherwise add one interpretation with universal fixed result
5951 -- If the operator is given in functional notation, it comes
5952 -- from source and Fixed_As_Integer cannot apply.
5954 if (Nkind (N) not in N_Op
5955 or else not Treat_Fixed_As_Integer (N))
5956 and then
5957 (not Has_Fixed_Op (T1, Op_Id)
5958 or else Nkind (Parent (N)) = N_Type_Conversion)
5959 then
5960 Add_One_Interp (N, Op_Id, Universal_Fixed);
5961 end if;
5963 elsif Is_Fixed_Point_Type (T2)
5964 and then (Nkind (N) not in N_Op
5965 or else not Treat_Fixed_As_Integer (N))
5966 and then T1 = Universal_Real
5967 and then
5968 (not Has_Fixed_Op (T1, Op_Id)
5969 or else Nkind (Parent (N)) = N_Type_Conversion)
5970 then
5971 Add_One_Interp (N, Op_Id, Universal_Fixed);
5973 elsif Is_Numeric_Type (T1)
5974 and then Is_Numeric_Type (T2)
5975 and then (Covers (T1 => T1, T2 => T2)
5976 or else
5977 Covers (T1 => T2, T2 => T1))
5978 then
5979 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5981 elsif Is_Fixed_Point_Type (T1)
5982 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5983 or else T2 = Universal_Integer)
5984 then
5985 Add_One_Interp (N, Op_Id, T1);
5987 elsif T2 = Universal_Real
5988 and then Base_Type (T1) = Base_Type (Standard_Integer)
5989 and then Op_Name = Name_Op_Multiply
5990 then
5991 Add_One_Interp (N, Op_Id, Any_Fixed);
5993 elsif T1 = Universal_Real
5994 and then Base_Type (T2) = Base_Type (Standard_Integer)
5995 then
5996 Add_One_Interp (N, Op_Id, Any_Fixed);
5998 elsif Is_Fixed_Point_Type (T2)
5999 and then (Base_Type (T1) = Base_Type (Standard_Integer)
6000 or else T1 = Universal_Integer)
6001 and then Op_Name = Name_Op_Multiply
6002 then
6003 Add_One_Interp (N, Op_Id, T2);
6005 elsif T1 = Universal_Real and then T2 = Universal_Integer then
6006 Add_One_Interp (N, Op_Id, T1);
6008 elsif T2 = Universal_Real
6009 and then T1 = Universal_Integer
6010 and then Op_Name = Name_Op_Multiply
6011 then
6012 Add_One_Interp (N, Op_Id, T2);
6013 end if;
6015 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
6017 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
6018 -- set does not require any special processing, since the Etype is
6019 -- already set (case of operation constructed by Exp_Fixed).
6021 if Is_Integer_Type (T1)
6022 and then (Covers (T1 => T1, T2 => T2)
6023 or else
6024 Covers (T1 => T2, T2 => T1))
6025 then
6026 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
6027 end if;
6029 elsif Op_Name = Name_Op_Expon then
6030 if Is_Numeric_Type (T1)
6031 and then not Is_Fixed_Point_Type (T1)
6032 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6033 or else T2 = Universal_Integer)
6034 then
6035 Add_One_Interp (N, Op_Id, Base_Type (T1));
6036 end if;
6038 else pragma Assert (Nkind (N) in N_Op_Shift);
6040 -- If not one of the predefined operators, the node may be one
6041 -- of the intrinsic functions. Its kind is always specific, and
6042 -- we can use it directly, rather than the name of the operation.
6044 if Is_Integer_Type (T1)
6045 and then (Base_Type (T2) = Base_Type (Standard_Integer)
6046 or else T2 = Universal_Integer)
6047 then
6048 Add_One_Interp (N, Op_Id, Base_Type (T1));
6049 end if;
6050 end if;
6051 end Check_Arithmetic_Pair;
6053 -------------------------------
6054 -- Check_Misspelled_Selector --
6055 -------------------------------
6057 procedure Check_Misspelled_Selector
6058 (Prefix : Entity_Id;
6059 Sel : Node_Id)
6061 Max_Suggestions : constant := 2;
6062 Nr_Of_Suggestions : Natural := 0;
6064 Suggestion_1 : Entity_Id := Empty;
6065 Suggestion_2 : Entity_Id := Empty;
6067 Comp : Entity_Id;
6069 begin
6070 -- All the components of the prefix of selector Sel are matched against
6071 -- Sel and a count is maintained of possible misspellings. When at
6072 -- the end of the analysis there are one or two (not more) possible
6073 -- misspellings, these misspellings will be suggested as possible
6074 -- correction.
6076 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
6078 -- Concurrent types should be handled as well ???
6080 return;
6081 end if;
6083 Comp := First_Entity (Prefix);
6084 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
6085 if Is_Visible_Component (Comp) then
6086 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
6087 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
6089 case Nr_Of_Suggestions is
6090 when 1 => Suggestion_1 := Comp;
6091 when 2 => Suggestion_2 := Comp;
6092 when others => null;
6093 end case;
6094 end if;
6095 end if;
6097 Comp := Next_Entity (Comp);
6098 end loop;
6100 -- Report at most two suggestions
6102 if Nr_Of_Suggestions = 1 then
6103 Error_Msg_NE -- CODEFIX
6104 ("\possible misspelling of&", Sel, Suggestion_1);
6106 elsif Nr_Of_Suggestions = 2 then
6107 Error_Msg_Node_2 := Suggestion_2;
6108 Error_Msg_NE -- CODEFIX
6109 ("\possible misspelling of& or&", Sel, Suggestion_1);
6110 end if;
6111 end Check_Misspelled_Selector;
6113 ----------------------
6114 -- Defined_In_Scope --
6115 ----------------------
6117 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
6119 S1 : constant Entity_Id := Scope (Base_Type (T));
6120 begin
6121 return S1 = S
6122 or else (S1 = System_Aux_Id and then S = Scope (S1));
6123 end Defined_In_Scope;
6125 -------------------
6126 -- Diagnose_Call --
6127 -------------------
6129 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
6130 Actual : Node_Id;
6131 X : Interp_Index;
6132 It : Interp;
6133 Err_Mode : Boolean;
6134 New_Nam : Node_Id;
6135 Void_Interp_Seen : Boolean := False;
6137 Success : Boolean;
6138 pragma Warnings (Off, Boolean);
6140 begin
6141 if Ada_Version >= Ada_2005 then
6142 Actual := First_Actual (N);
6143 while Present (Actual) loop
6145 -- Ada 2005 (AI-50217): Post an error in case of premature
6146 -- usage of an entity from the limited view.
6148 if not Analyzed (Etype (Actual))
6149 and then From_Limited_With (Etype (Actual))
6150 then
6151 Error_Msg_Qual_Level := 1;
6152 Error_Msg_NE
6153 ("missing with_clause for scope of imported type&",
6154 Actual, Etype (Actual));
6155 Error_Msg_Qual_Level := 0;
6156 end if;
6158 Next_Actual (Actual);
6159 end loop;
6160 end if;
6162 -- Before listing the possible candidates, check whether this is
6163 -- a prefix of a selected component that has been rewritten as a
6164 -- parameterless function call because there is a callable candidate
6165 -- interpretation. If there is a hidden package in the list of homonyms
6166 -- of the function name (bad programming style in any case) suggest that
6167 -- this is the intended entity.
6169 if No (Parameter_Associations (N))
6170 and then Nkind (Parent (N)) = N_Selected_Component
6171 and then Nkind (Parent (Parent (N))) in N_Declaration
6172 and then Is_Overloaded (Nam)
6173 then
6174 declare
6175 Ent : Entity_Id;
6177 begin
6178 Ent := Current_Entity (Nam);
6179 while Present (Ent) loop
6180 if Ekind (Ent) = E_Package then
6181 Error_Msg_N
6182 ("no legal interpretations as function call,!", Nam);
6183 Error_Msg_NE ("\package& is not visible", N, Ent);
6185 Rewrite (Parent (N),
6186 New_Occurrence_Of (Any_Type, Sloc (N)));
6187 return;
6188 end if;
6190 Ent := Homonym (Ent);
6191 end loop;
6192 end;
6193 end if;
6195 -- Analyze each candidate call again, with full error reporting for
6196 -- each.
6198 Error_Msg_N
6199 ("no candidate interpretations match the actuals:!", Nam);
6200 Err_Mode := All_Errors_Mode;
6201 All_Errors_Mode := True;
6203 -- If this is a call to an operation of a concurrent type,
6204 -- the failed interpretations have been removed from the
6205 -- name. Recover them to provide full diagnostics.
6207 if Nkind (Parent (Nam)) = N_Selected_Component then
6208 Set_Entity (Nam, Empty);
6209 New_Nam := New_Copy_Tree (Parent (Nam));
6210 Set_Is_Overloaded (New_Nam, False);
6211 Set_Is_Overloaded (Selector_Name (New_Nam), False);
6212 Set_Parent (New_Nam, Parent (Parent (Nam)));
6213 Analyze_Selected_Component (New_Nam);
6214 Get_First_Interp (Selector_Name (New_Nam), X, It);
6215 else
6216 Get_First_Interp (Nam, X, It);
6217 end if;
6219 while Present (It.Nam) loop
6220 if Etype (It.Nam) = Standard_Void_Type then
6221 Void_Interp_Seen := True;
6222 end if;
6224 Analyze_One_Call (N, It.Nam, True, Success);
6225 Get_Next_Interp (X, It);
6226 end loop;
6228 if Nkind (N) = N_Function_Call then
6229 Get_First_Interp (Nam, X, It);
6230 while Present (It.Nam) loop
6231 if Ekind_In (It.Nam, E_Function, E_Operator) then
6232 return;
6233 else
6234 Get_Next_Interp (X, It);
6235 end if;
6236 end loop;
6238 -- If all interpretations are procedures, this deserves a
6239 -- more precise message. Ditto if this appears as the prefix
6240 -- of a selected component, which may be a lexical error.
6242 Error_Msg_N
6243 ("\context requires function call, found procedure name", Nam);
6245 if Nkind (Parent (N)) = N_Selected_Component
6246 and then N = Prefix (Parent (N))
6247 then
6248 Error_Msg_N -- CODEFIX
6249 ("\period should probably be semicolon", Parent (N));
6250 end if;
6252 elsif Nkind (N) = N_Procedure_Call_Statement
6253 and then not Void_Interp_Seen
6254 then
6255 Error_Msg_N (
6256 "\function name found in procedure call", Nam);
6257 end if;
6259 All_Errors_Mode := Err_Mode;
6260 end Diagnose_Call;
6262 ---------------------------
6263 -- Find_Arithmetic_Types --
6264 ---------------------------
6266 procedure Find_Arithmetic_Types
6267 (L, R : Node_Id;
6268 Op_Id : Entity_Id;
6269 N : Node_Id)
6271 Index1 : Interp_Index;
6272 Index2 : Interp_Index;
6273 It1 : Interp;
6274 It2 : Interp;
6276 procedure Check_Right_Argument (T : Entity_Id);
6277 -- Check right operand of operator
6279 --------------------------
6280 -- Check_Right_Argument --
6281 --------------------------
6283 procedure Check_Right_Argument (T : Entity_Id) is
6284 begin
6285 if not Is_Overloaded (R) then
6286 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
6287 else
6288 Get_First_Interp (R, Index2, It2);
6289 while Present (It2.Typ) loop
6290 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
6291 Get_Next_Interp (Index2, It2);
6292 end loop;
6293 end if;
6294 end Check_Right_Argument;
6296 -- Start of processing for Find_Arithmetic_Types
6298 begin
6299 if not Is_Overloaded (L) then
6300 Check_Right_Argument (Etype (L));
6302 else
6303 Get_First_Interp (L, Index1, It1);
6304 while Present (It1.Typ) loop
6305 Check_Right_Argument (It1.Typ);
6306 Get_Next_Interp (Index1, It1);
6307 end loop;
6308 end if;
6310 end Find_Arithmetic_Types;
6312 ------------------------
6313 -- Find_Boolean_Types --
6314 ------------------------
6316 procedure Find_Boolean_Types
6317 (L, R : Node_Id;
6318 Op_Id : Entity_Id;
6319 N : Node_Id)
6321 Index : Interp_Index;
6322 It : Interp;
6324 procedure Check_Numeric_Argument (T : Entity_Id);
6325 -- Special case for logical operations one of whose operands is an
6326 -- integer literal. If both are literal the result is any modular type.
6328 ----------------------------
6329 -- Check_Numeric_Argument --
6330 ----------------------------
6332 procedure Check_Numeric_Argument (T : Entity_Id) is
6333 begin
6334 if T = Universal_Integer then
6335 Add_One_Interp (N, Op_Id, Any_Modular);
6337 elsif Is_Modular_Integer_Type (T) then
6338 Add_One_Interp (N, Op_Id, T);
6339 end if;
6340 end Check_Numeric_Argument;
6342 -- Start of processing for Find_Boolean_Types
6344 begin
6345 if not Is_Overloaded (L) then
6346 if Etype (L) = Universal_Integer
6347 or else Etype (L) = Any_Modular
6348 then
6349 if not Is_Overloaded (R) then
6350 Check_Numeric_Argument (Etype (R));
6352 else
6353 Get_First_Interp (R, Index, It);
6354 while Present (It.Typ) loop
6355 Check_Numeric_Argument (It.Typ);
6356 Get_Next_Interp (Index, It);
6357 end loop;
6358 end if;
6360 -- If operands are aggregates, we must assume that they may be
6361 -- boolean arrays, and leave disambiguation for the second pass.
6362 -- If only one is an aggregate, verify that the other one has an
6363 -- interpretation as a boolean array
6365 elsif Nkind (L) = N_Aggregate then
6366 if Nkind (R) = N_Aggregate then
6367 Add_One_Interp (N, Op_Id, Etype (L));
6369 elsif not Is_Overloaded (R) then
6370 if Valid_Boolean_Arg (Etype (R)) then
6371 Add_One_Interp (N, Op_Id, Etype (R));
6372 end if;
6374 else
6375 Get_First_Interp (R, Index, It);
6376 while Present (It.Typ) loop
6377 if Valid_Boolean_Arg (It.Typ) then
6378 Add_One_Interp (N, Op_Id, It.Typ);
6379 end if;
6381 Get_Next_Interp (Index, It);
6382 end loop;
6383 end if;
6385 elsif Valid_Boolean_Arg (Etype (L))
6386 and then Has_Compatible_Type (R, Etype (L))
6387 then
6388 Add_One_Interp (N, Op_Id, Etype (L));
6389 end if;
6391 else
6392 Get_First_Interp (L, Index, It);
6393 while Present (It.Typ) loop
6394 if Valid_Boolean_Arg (It.Typ)
6395 and then Has_Compatible_Type (R, It.Typ)
6396 then
6397 Add_One_Interp (N, Op_Id, It.Typ);
6398 end if;
6400 Get_Next_Interp (Index, It);
6401 end loop;
6402 end if;
6403 end Find_Boolean_Types;
6405 ---------------------------
6406 -- Find_Comparison_Types --
6407 ---------------------------
6409 procedure Find_Comparison_Types
6410 (L, R : Node_Id;
6411 Op_Id : Entity_Id;
6412 N : Node_Id)
6414 Index : Interp_Index;
6415 It : Interp;
6416 Found : Boolean := False;
6417 I_F : Interp_Index;
6418 T_F : Entity_Id;
6419 Scop : Entity_Id := Empty;
6421 procedure Try_One_Interp (T1 : Entity_Id);
6422 -- Routine to try one proposed interpretation. Note that the context
6423 -- of the operator plays no role in resolving the arguments, so that
6424 -- if there is more than one interpretation of the operands that is
6425 -- compatible with comparison, the operation is ambiguous.
6427 --------------------
6428 -- Try_One_Interp --
6429 --------------------
6431 procedure Try_One_Interp (T1 : Entity_Id) is
6432 begin
6433 -- If the operator is an expanded name, then the type of the operand
6434 -- must be defined in the corresponding scope. If the type is
6435 -- universal, the context will impose the correct type. Note that we
6436 -- also avoid returning if we are currently within a generic instance
6437 -- due to the fact that the generic package declaration has already
6438 -- been successfully analyzed and Defined_In_Scope expects the base
6439 -- type to be defined within the instance which will never be the
6440 -- case.
6442 if Present (Scop)
6443 and then not Defined_In_Scope (T1, Scop)
6444 and then not In_Instance
6445 and then T1 /= Universal_Integer
6446 and then T1 /= Universal_Real
6447 and then T1 /= Any_String
6448 and then T1 /= Any_Composite
6449 then
6450 return;
6451 end if;
6453 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
6454 if Found and then Base_Type (T1) /= Base_Type (T_F) then
6455 It := Disambiguate (L, I_F, Index, Any_Type);
6457 if It = No_Interp then
6458 Ambiguous_Operands (N);
6459 Set_Etype (L, Any_Type);
6460 return;
6462 else
6463 T_F := It.Typ;
6464 end if;
6465 else
6466 Found := True;
6467 T_F := T1;
6468 I_F := Index;
6469 end if;
6471 Set_Etype (L, T_F);
6472 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6473 end if;
6474 end Try_One_Interp;
6476 -- Start of processing for Find_Comparison_Types
6478 begin
6479 -- If left operand is aggregate, the right operand has to
6480 -- provide a usable type for it.
6482 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
6483 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6484 return;
6485 end if;
6487 if Nkind (N) = N_Function_Call
6488 and then Nkind (Name (N)) = N_Expanded_Name
6489 then
6490 Scop := Entity (Prefix (Name (N)));
6492 -- The prefix may be a package renaming, and the subsequent test
6493 -- requires the original package.
6495 if Ekind (Scop) = E_Package
6496 and then Present (Renamed_Entity (Scop))
6497 then
6498 Scop := Renamed_Entity (Scop);
6499 Set_Entity (Prefix (Name (N)), Scop);
6500 end if;
6501 end if;
6503 if not Is_Overloaded (L) then
6504 Try_One_Interp (Etype (L));
6506 else
6507 Get_First_Interp (L, Index, It);
6508 while Present (It.Typ) loop
6509 Try_One_Interp (It.Typ);
6510 Get_Next_Interp (Index, It);
6511 end loop;
6512 end if;
6513 end Find_Comparison_Types;
6515 ----------------------------------------
6516 -- Find_Non_Universal_Interpretations --
6517 ----------------------------------------
6519 procedure Find_Non_Universal_Interpretations
6520 (N : Node_Id;
6521 R : Node_Id;
6522 Op_Id : Entity_Id;
6523 T1 : Entity_Id)
6525 Index : Interp_Index;
6526 It : Interp;
6528 begin
6529 if T1 = Universal_Integer or else T1 = Universal_Real
6531 -- If the left operand of an equality operator is null, the visibility
6532 -- of the operator must be determined from the interpretation of the
6533 -- right operand. This processing must be done for Any_Access, which
6534 -- is the internal representation of the type of the literal null.
6536 or else T1 = Any_Access
6537 then
6538 if not Is_Overloaded (R) then
6539 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
6540 else
6541 Get_First_Interp (R, Index, It);
6542 while Present (It.Typ) loop
6543 if Covers (It.Typ, T1) then
6544 Add_One_Interp
6545 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
6546 end if;
6548 Get_Next_Interp (Index, It);
6549 end loop;
6550 end if;
6551 else
6552 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
6553 end if;
6554 end Find_Non_Universal_Interpretations;
6556 ------------------------------
6557 -- Find_Concatenation_Types --
6558 ------------------------------
6560 procedure Find_Concatenation_Types
6561 (L, R : Node_Id;
6562 Op_Id : Entity_Id;
6563 N : Node_Id)
6565 Is_String : constant Boolean := Nkind (L) = N_String_Literal
6566 or else
6567 Nkind (R) = N_String_Literal;
6568 Op_Type : constant Entity_Id := Etype (Op_Id);
6570 begin
6571 if Is_Array_Type (Op_Type)
6573 -- Small but very effective optimization: if at least one operand is a
6574 -- string literal, then the type of the operator must be either array
6575 -- of characters or array of strings.
6577 and then (not Is_String
6578 or else
6579 Is_Character_Type (Component_Type (Op_Type))
6580 or else
6581 Is_String_Type (Component_Type (Op_Type)))
6583 and then not Is_Limited_Type (Op_Type)
6585 and then (Has_Compatible_Type (L, Op_Type)
6586 or else
6587 Has_Compatible_Type (L, Component_Type (Op_Type)))
6589 and then (Has_Compatible_Type (R, Op_Type)
6590 or else
6591 Has_Compatible_Type (R, Component_Type (Op_Type)))
6592 then
6593 Add_One_Interp (N, Op_Id, Op_Type);
6594 end if;
6595 end Find_Concatenation_Types;
6597 -------------------------
6598 -- Find_Equality_Types --
6599 -------------------------
6601 procedure Find_Equality_Types
6602 (L, R : Node_Id;
6603 Op_Id : Entity_Id;
6604 N : Node_Id)
6606 Index : Interp_Index;
6607 It : Interp;
6608 Found : Boolean := False;
6609 I_F : Interp_Index;
6610 T_F : Entity_Id;
6611 Scop : Entity_Id := Empty;
6613 procedure Try_One_Interp (T1 : Entity_Id);
6614 -- The context of the equality operator plays no role in resolving the
6615 -- arguments, so that if there is more than one interpretation of the
6616 -- operands that is compatible with equality, the construct is ambiguous
6617 -- and an error can be emitted now, after trying to disambiguate, i.e.
6618 -- applying preference rules.
6620 --------------------
6621 -- Try_One_Interp --
6622 --------------------
6624 procedure Try_One_Interp (T1 : Entity_Id) is
6625 Bas : Entity_Id;
6627 begin
6628 -- Perform a sanity check in case of previous errors
6630 if No (T1) then
6631 return;
6632 end if;
6634 Bas := Base_Type (T1);
6636 -- If the operator is an expanded name, then the type of the operand
6637 -- must be defined in the corresponding scope. If the type is
6638 -- universal, the context will impose the correct type. An anonymous
6639 -- type for a 'Access reference is also universal in this sense, as
6640 -- the actual type is obtained from context.
6642 -- In Ada 2005, the equality operator for anonymous access types
6643 -- is declared in Standard, and preference rules apply to it.
6645 if Present (Scop) then
6647 -- Note that we avoid returning if we are currently within a
6648 -- generic instance due to the fact that the generic package
6649 -- declaration has already been successfully analyzed and
6650 -- Defined_In_Scope expects the base type to be defined within
6651 -- the instance which will never be the case.
6653 if Defined_In_Scope (T1, Scop)
6654 or else In_Instance
6655 or else T1 = Universal_Integer
6656 or else T1 = Universal_Real
6657 or else T1 = Any_Access
6658 or else T1 = Any_String
6659 or else T1 = Any_Composite
6660 or else (Ekind (T1) = E_Access_Subprogram_Type
6661 and then not Comes_From_Source (T1))
6662 then
6663 null;
6665 elsif Ekind (T1) = E_Anonymous_Access_Type
6666 and then Scop = Standard_Standard
6667 then
6668 null;
6670 else
6671 -- The scope does not contain an operator for the type
6673 return;
6674 end if;
6676 -- If we have infix notation, the operator must be usable. Within
6677 -- an instance, if the type is already established we know it is
6678 -- correct. If an operand is universal it is compatible with any
6679 -- numeric type.
6681 elsif In_Open_Scopes (Scope (Bas))
6682 or else Is_Potentially_Use_Visible (Bas)
6683 or else In_Use (Bas)
6684 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
6686 -- In an instance, the type may have been immediately visible.
6687 -- Either the types are compatible, or one operand is universal
6688 -- (numeric or null).
6690 or else
6691 ((In_Instance or else In_Inlined_Body)
6692 and then
6693 (First_Subtype (T1) = First_Subtype (Etype (R))
6694 or else Nkind (R) = N_Null
6695 or else
6696 (Is_Numeric_Type (T1)
6697 and then Is_Universal_Numeric_Type (Etype (R)))))
6699 -- In Ada 2005, the equality on anonymous access types is declared
6700 -- in Standard, and is always visible.
6702 or else Ekind (T1) = E_Anonymous_Access_Type
6703 then
6704 null;
6706 else
6707 -- Save candidate type for subsequent error message, if any
6709 if not Is_Limited_Type (T1) then
6710 Candidate_Type := T1;
6711 end if;
6713 return;
6714 end if;
6716 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6717 -- Do not allow anonymous access types in equality operators.
6719 if Ada_Version < Ada_2005
6720 and then Ekind (T1) = E_Anonymous_Access_Type
6721 then
6722 return;
6723 end if;
6725 -- If the right operand has a type compatible with T1, check for an
6726 -- acceptable interpretation, unless T1 is limited (no predefined
6727 -- equality available), or this is use of a "/=" for a tagged type.
6728 -- In the latter case, possible interpretations of equality need
6729 -- to be considered, we don't want the default inequality declared
6730 -- in Standard to be chosen, and the "/=" will be rewritten as a
6731 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6732 -- that rewriting happens during analysis rather than being
6733 -- delayed until expansion (this is needed for ASIS, which only sees
6734 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6735 -- is Name_Op_Eq then we still proceed with the interpretation,
6736 -- because that indicates the potential rewriting case where the
6737 -- interpretation to consider is actually "=" and the node may be
6738 -- about to be rewritten by Analyze_Equality_Op.
6740 if T1 /= Standard_Void_Type
6741 and then Has_Compatible_Type (R, T1)
6743 and then
6744 ((not Is_Limited_Type (T1)
6745 and then not Is_Limited_Composite (T1))
6747 or else
6748 (Is_Array_Type (T1)
6749 and then not Is_Limited_Type (Component_Type (T1))
6750 and then Available_Full_View_Of_Component (T1)))
6752 and then
6753 (Nkind (N) /= N_Op_Ne
6754 or else not Is_Tagged_Type (T1)
6755 or else Chars (Op_Id) = Name_Op_Eq)
6756 then
6757 if Found
6758 and then Base_Type (T1) /= Base_Type (T_F)
6759 then
6760 It := Disambiguate (L, I_F, Index, Any_Type);
6762 if It = No_Interp then
6763 Ambiguous_Operands (N);
6764 Set_Etype (L, Any_Type);
6765 return;
6767 else
6768 T_F := It.Typ;
6769 end if;
6771 else
6772 Found := True;
6773 T_F := T1;
6774 I_F := Index;
6775 end if;
6777 if not Analyzed (L) then
6778 Set_Etype (L, T_F);
6779 end if;
6781 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6783 -- Case of operator was not visible, Etype still set to Any_Type
6785 if Etype (N) = Any_Type then
6786 Found := False;
6787 end if;
6789 elsif Scop = Standard_Standard
6790 and then Ekind (T1) = E_Anonymous_Access_Type
6791 then
6792 Found := True;
6793 end if;
6794 end Try_One_Interp;
6796 -- Start of processing for Find_Equality_Types
6798 begin
6799 -- If left operand is aggregate, the right operand has to
6800 -- provide a usable type for it.
6802 if Nkind (L) = N_Aggregate
6803 and then Nkind (R) /= N_Aggregate
6804 then
6805 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6806 return;
6807 end if;
6809 if Nkind (N) = N_Function_Call
6810 and then Nkind (Name (N)) = N_Expanded_Name
6811 then
6812 Scop := Entity (Prefix (Name (N)));
6814 -- The prefix may be a package renaming, and the subsequent test
6815 -- requires the original package.
6817 if Ekind (Scop) = E_Package
6818 and then Present (Renamed_Entity (Scop))
6819 then
6820 Scop := Renamed_Entity (Scop);
6821 Set_Entity (Prefix (Name (N)), Scop);
6822 end if;
6823 end if;
6825 if not Is_Overloaded (L) then
6826 Try_One_Interp (Etype (L));
6828 else
6829 Get_First_Interp (L, Index, It);
6830 while Present (It.Typ) loop
6831 Try_One_Interp (It.Typ);
6832 Get_Next_Interp (Index, It);
6833 end loop;
6834 end if;
6835 end Find_Equality_Types;
6837 -------------------------
6838 -- Find_Negation_Types --
6839 -------------------------
6841 procedure Find_Negation_Types
6842 (R : Node_Id;
6843 Op_Id : Entity_Id;
6844 N : Node_Id)
6846 Index : Interp_Index;
6847 It : Interp;
6849 begin
6850 if not Is_Overloaded (R) then
6851 if Etype (R) = Universal_Integer then
6852 Add_One_Interp (N, Op_Id, Any_Modular);
6853 elsif Valid_Boolean_Arg (Etype (R)) then
6854 Add_One_Interp (N, Op_Id, Etype (R));
6855 end if;
6857 else
6858 Get_First_Interp (R, Index, It);
6859 while Present (It.Typ) loop
6860 if Valid_Boolean_Arg (It.Typ) then
6861 Add_One_Interp (N, Op_Id, It.Typ);
6862 end if;
6864 Get_Next_Interp (Index, It);
6865 end loop;
6866 end if;
6867 end Find_Negation_Types;
6869 ------------------------------
6870 -- Find_Primitive_Operation --
6871 ------------------------------
6873 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6874 Obj : constant Node_Id := Prefix (N);
6875 Op : constant Node_Id := Selector_Name (N);
6877 Prim : Elmt_Id;
6878 Prims : Elist_Id;
6879 Typ : Entity_Id;
6881 begin
6882 Set_Etype (Op, Any_Type);
6884 if Is_Access_Type (Etype (Obj)) then
6885 Typ := Designated_Type (Etype (Obj));
6886 else
6887 Typ := Etype (Obj);
6888 end if;
6890 if Is_Class_Wide_Type (Typ) then
6891 Typ := Root_Type (Typ);
6892 end if;
6894 Prims := Primitive_Operations (Typ);
6896 Prim := First_Elmt (Prims);
6897 while Present (Prim) loop
6898 if Chars (Node (Prim)) = Chars (Op) then
6899 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6900 Set_Etype (N, Etype (Node (Prim)));
6901 end if;
6903 Next_Elmt (Prim);
6904 end loop;
6906 -- Now look for class-wide operations of the type or any of its
6907 -- ancestors by iterating over the homonyms of the selector.
6909 declare
6910 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6911 Hom : Entity_Id;
6913 begin
6914 Hom := Current_Entity (Op);
6915 while Present (Hom) loop
6916 if (Ekind (Hom) = E_Procedure
6917 or else
6918 Ekind (Hom) = E_Function)
6919 and then Scope (Hom) = Scope (Typ)
6920 and then Present (First_Formal (Hom))
6921 and then
6922 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6923 or else
6924 (Is_Access_Type (Etype (First_Formal (Hom)))
6925 and then
6926 Ekind (Etype (First_Formal (Hom))) =
6927 E_Anonymous_Access_Type
6928 and then
6929 Base_Type
6930 (Designated_Type (Etype (First_Formal (Hom)))) =
6931 Cls_Type))
6932 then
6933 Add_One_Interp (Op, Hom, Etype (Hom));
6934 Set_Etype (N, Etype (Hom));
6935 end if;
6937 Hom := Homonym (Hom);
6938 end loop;
6939 end;
6941 return Etype (Op) /= Any_Type;
6942 end Find_Primitive_Operation;
6944 ----------------------
6945 -- Find_Unary_Types --
6946 ----------------------
6948 procedure Find_Unary_Types
6949 (R : Node_Id;
6950 Op_Id : Entity_Id;
6951 N : Node_Id)
6953 Index : Interp_Index;
6954 It : Interp;
6956 begin
6957 if not Is_Overloaded (R) then
6958 if Is_Numeric_Type (Etype (R)) then
6960 -- In an instance a generic actual may be a numeric type even if
6961 -- the formal in the generic unit was not. In that case, the
6962 -- predefined operator was not a possible interpretation in the
6963 -- generic, and cannot be one in the instance, unless the operator
6964 -- is an actual of an instance.
6966 if In_Instance
6967 and then
6968 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6969 then
6970 null;
6971 else
6972 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6973 end if;
6974 end if;
6976 else
6977 Get_First_Interp (R, Index, It);
6978 while Present (It.Typ) loop
6979 if Is_Numeric_Type (It.Typ) then
6980 if In_Instance
6981 and then
6982 not Is_Numeric_Type
6983 (Corresponding_Generic_Type (Etype (It.Typ)))
6984 then
6985 null;
6987 else
6988 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6989 end if;
6990 end if;
6992 Get_Next_Interp (Index, It);
6993 end loop;
6994 end if;
6995 end Find_Unary_Types;
6997 ------------------
6998 -- Junk_Operand --
6999 ------------------
7001 function Junk_Operand (N : Node_Id) return Boolean is
7002 Enode : Node_Id;
7004 begin
7005 if Error_Posted (N) then
7006 return False;
7007 end if;
7009 -- Get entity to be tested
7011 if Is_Entity_Name (N)
7012 and then Present (Entity (N))
7013 then
7014 Enode := N;
7016 -- An odd case, a procedure name gets converted to a very peculiar
7017 -- function call, and here is where we detect this happening.
7019 elsif Nkind (N) = N_Function_Call
7020 and then Is_Entity_Name (Name (N))
7021 and then Present (Entity (Name (N)))
7022 then
7023 Enode := Name (N);
7025 -- Another odd case, there are at least some cases of selected
7026 -- components where the selected component is not marked as having
7027 -- an entity, even though the selector does have an entity
7029 elsif Nkind (N) = N_Selected_Component
7030 and then Present (Entity (Selector_Name (N)))
7031 then
7032 Enode := Selector_Name (N);
7034 else
7035 return False;
7036 end if;
7038 -- Now test the entity we got to see if it is a bad case
7040 case Ekind (Entity (Enode)) is
7041 when E_Package =>
7042 Error_Msg_N
7043 ("package name cannot be used as operand", Enode);
7045 when Generic_Unit_Kind =>
7046 Error_Msg_N
7047 ("generic unit name cannot be used as operand", Enode);
7049 when Type_Kind =>
7050 Error_Msg_N
7051 ("subtype name cannot be used as operand", Enode);
7053 when Entry_Kind =>
7054 Error_Msg_N
7055 ("entry name cannot be used as operand", Enode);
7057 when E_Procedure =>
7058 Error_Msg_N
7059 ("procedure name cannot be used as operand", Enode);
7061 when E_Exception =>
7062 Error_Msg_N
7063 ("exception name cannot be used as operand", Enode);
7065 when E_Block
7066 | E_Label
7067 | E_Loop
7069 Error_Msg_N
7070 ("label name cannot be used as operand", Enode);
7072 when others =>
7073 return False;
7074 end case;
7076 return True;
7077 end Junk_Operand;
7079 --------------------
7080 -- Operator_Check --
7081 --------------------
7083 procedure Operator_Check (N : Node_Id) is
7084 begin
7085 Remove_Abstract_Operations (N);
7087 -- Test for case of no interpretation found for operator
7089 if Etype (N) = Any_Type then
7090 declare
7091 L : Node_Id;
7092 R : Node_Id;
7093 Op_Id : Entity_Id := Empty;
7095 begin
7096 R := Right_Opnd (N);
7098 if Nkind (N) in N_Binary_Op then
7099 L := Left_Opnd (N);
7100 else
7101 L := Empty;
7102 end if;
7104 -- If either operand has no type, then don't complain further,
7105 -- since this simply means that we have a propagated error.
7107 if R = Error
7108 or else Etype (R) = Any_Type
7109 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
7110 then
7111 -- For the rather unusual case where one of the operands is
7112 -- a Raise_Expression, whose initial type is Any_Type, use
7113 -- the type of the other operand.
7115 if Nkind (L) = N_Raise_Expression then
7116 Set_Etype (L, Etype (R));
7117 Set_Etype (N, Etype (R));
7119 elsif Nkind (R) = N_Raise_Expression then
7120 Set_Etype (R, Etype (L));
7121 Set_Etype (N, Etype (L));
7122 end if;
7124 return;
7126 -- We explicitly check for the case of concatenation of component
7127 -- with component to avoid reporting spurious matching array types
7128 -- that might happen to be lurking in distant packages (such as
7129 -- run-time packages). This also prevents inconsistencies in the
7130 -- messages for certain ACVC B tests, which can vary depending on
7131 -- types declared in run-time interfaces. Another improvement when
7132 -- aggregates are present is to look for a well-typed operand.
7134 elsif Present (Candidate_Type)
7135 and then (Nkind (N) /= N_Op_Concat
7136 or else Is_Array_Type (Etype (L))
7137 or else Is_Array_Type (Etype (R)))
7138 then
7139 if Nkind (N) = N_Op_Concat then
7140 if Etype (L) /= Any_Composite
7141 and then Is_Array_Type (Etype (L))
7142 then
7143 Candidate_Type := Etype (L);
7145 elsif Etype (R) /= Any_Composite
7146 and then Is_Array_Type (Etype (R))
7147 then
7148 Candidate_Type := Etype (R);
7149 end if;
7150 end if;
7152 Error_Msg_NE -- CODEFIX
7153 ("operator for} is not directly visible!",
7154 N, First_Subtype (Candidate_Type));
7156 declare
7157 U : constant Node_Id :=
7158 Cunit (Get_Source_Unit (Candidate_Type));
7159 begin
7160 if Unit_Is_Visible (U) then
7161 Error_Msg_N -- CODEFIX
7162 ("use clause would make operation legal!", N);
7163 else
7164 Error_Msg_NE -- CODEFIX
7165 ("add with_clause and use_clause for&!",
7166 N, Defining_Entity (Unit (U)));
7167 end if;
7168 end;
7169 return;
7171 -- If either operand is a junk operand (e.g. package name), then
7172 -- post appropriate error messages, but do not complain further.
7174 -- Note that the use of OR in this test instead of OR ELSE is
7175 -- quite deliberate, we may as well check both operands in the
7176 -- binary operator case.
7178 elsif Junk_Operand (R)
7179 or -- really mean OR here and not OR ELSE, see above
7180 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
7181 then
7182 return;
7184 -- If we have a logical operator, one of whose operands is
7185 -- Boolean, then we know that the other operand cannot resolve to
7186 -- Boolean (since we got no interpretations), but in that case we
7187 -- pretty much know that the other operand should be Boolean, so
7188 -- resolve it that way (generating an error).
7190 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
7191 if Etype (L) = Standard_Boolean then
7192 Resolve (R, Standard_Boolean);
7193 return;
7194 elsif Etype (R) = Standard_Boolean then
7195 Resolve (L, Standard_Boolean);
7196 return;
7197 end if;
7199 -- For an arithmetic operator or comparison operator, if one
7200 -- of the operands is numeric, then we know the other operand
7201 -- is not the same numeric type. If it is a non-numeric type,
7202 -- then probably it is intended to match the other operand.
7204 elsif Nkind_In (N, N_Op_Add,
7205 N_Op_Divide,
7206 N_Op_Ge,
7207 N_Op_Gt,
7208 N_Op_Le)
7209 or else
7210 Nkind_In (N, N_Op_Lt,
7211 N_Op_Mod,
7212 N_Op_Multiply,
7213 N_Op_Rem,
7214 N_Op_Subtract)
7215 then
7216 -- If Allow_Integer_Address is active, check whether the
7217 -- operation becomes legal after converting an operand.
7219 if Is_Numeric_Type (Etype (L))
7220 and then not Is_Numeric_Type (Etype (R))
7221 then
7222 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7223 Rewrite (R,
7224 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7226 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7227 Analyze_Comparison_Op (N);
7228 else
7229 Analyze_Arithmetic_Op (N);
7230 end if;
7231 else
7232 Resolve (R, Etype (L));
7233 end if;
7235 return;
7237 elsif Is_Numeric_Type (Etype (R))
7238 and then not Is_Numeric_Type (Etype (L))
7239 then
7240 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
7241 Rewrite (L,
7242 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
7244 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7245 Analyze_Comparison_Op (N);
7246 else
7247 Analyze_Arithmetic_Op (N);
7248 end if;
7250 return;
7252 else
7253 Resolve (L, Etype (R));
7254 end if;
7256 return;
7258 elsif Allow_Integer_Address
7259 and then Is_Descendant_Of_Address (Etype (L))
7260 and then Is_Descendant_Of_Address (Etype (R))
7261 and then not Error_Posted (N)
7262 then
7263 declare
7264 Addr_Type : constant Entity_Id := Etype (L);
7266 begin
7267 Rewrite (L,
7268 Unchecked_Convert_To (
7269 Standard_Integer, Relocate_Node (L)));
7270 Rewrite (R,
7271 Unchecked_Convert_To (
7272 Standard_Integer, Relocate_Node (R)));
7274 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7275 Analyze_Comparison_Op (N);
7276 else
7277 Analyze_Arithmetic_Op (N);
7278 end if;
7280 -- If this is an operand in an enclosing arithmetic
7281 -- operation, Convert the result as an address so that
7282 -- arithmetic folding of address can continue.
7284 if Nkind (Parent (N)) in N_Op then
7285 Rewrite (N,
7286 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
7287 end if;
7289 return;
7290 end;
7292 -- Under relaxed RM semantics silently replace occurrences of
7293 -- null by System.Address_Null.
7295 elsif Null_To_Null_Address_Convert_OK (N) then
7296 Replace_Null_By_Null_Address (N);
7298 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
7299 Analyze_Comparison_Op (N);
7300 else
7301 Analyze_Arithmetic_Op (N);
7302 end if;
7304 return;
7305 end if;
7307 -- Comparisons on A'Access are common enough to deserve a
7308 -- special message.
7310 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
7311 and then Ekind (Etype (L)) = E_Access_Attribute_Type
7312 and then Ekind (Etype (R)) = E_Access_Attribute_Type
7313 then
7314 Error_Msg_N
7315 ("two access attributes cannot be compared directly", N);
7316 Error_Msg_N
7317 ("\use qualified expression for one of the operands",
7319 return;
7321 -- Another one for C programmers
7323 elsif Nkind (N) = N_Op_Concat
7324 and then Valid_Boolean_Arg (Etype (L))
7325 and then Valid_Boolean_Arg (Etype (R))
7326 then
7327 Error_Msg_N ("invalid operands for concatenation", N);
7328 Error_Msg_N -- CODEFIX
7329 ("\maybe AND was meant", N);
7330 return;
7332 -- A special case for comparison of access parameter with null
7334 elsif Nkind (N) = N_Op_Eq
7335 and then Is_Entity_Name (L)
7336 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
7337 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
7338 N_Access_Definition
7339 and then Nkind (R) = N_Null
7340 then
7341 Error_Msg_N ("access parameter is not allowed to be null", L);
7342 Error_Msg_N ("\(call would raise Constraint_Error)", L);
7343 return;
7345 -- Another special case for exponentiation, where the right
7346 -- operand must be Natural, independently of the base.
7348 elsif Nkind (N) = N_Op_Expon
7349 and then Is_Numeric_Type (Etype (L))
7350 and then not Is_Overloaded (R)
7351 and then
7352 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
7353 and then Base_Type (Etype (R)) /= Universal_Integer
7354 then
7355 if Ada_Version >= Ada_2012
7356 and then Has_Dimension_System (Etype (L))
7357 then
7358 Error_Msg_NE
7359 ("exponent for dimensioned type must be a rational" &
7360 ", found}", R, Etype (R));
7361 else
7362 Error_Msg_NE
7363 ("exponent must be of type Natural, found}", R, Etype (R));
7364 end if;
7366 return;
7368 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
7369 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7370 Rewrite (R,
7371 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7372 Analyze_Equality_Op (N);
7373 return;
7375 -- Under relaxed RM semantics silently replace occurrences of
7376 -- null by System.Address_Null.
7378 elsif Null_To_Null_Address_Convert_OK (N) then
7379 Replace_Null_By_Null_Address (N);
7380 Analyze_Equality_Op (N);
7381 return;
7382 end if;
7383 end if;
7385 -- If we fall through then just give general message. Note that in
7386 -- the following messages, if the operand is overloaded we choose
7387 -- an arbitrary type to complain about, but that is probably more
7388 -- useful than not giving a type at all.
7390 if Nkind (N) in N_Unary_Op then
7391 Error_Msg_Node_2 := Etype (R);
7392 Error_Msg_N ("operator& not defined for}", N);
7393 return;
7395 else
7396 if Nkind (N) in N_Binary_Op then
7397 if not Is_Overloaded (L)
7398 and then not Is_Overloaded (R)
7399 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7400 then
7401 Error_Msg_Node_2 := First_Subtype (Etype (R));
7402 Error_Msg_N ("there is no applicable operator& for}", N);
7404 else
7405 -- Another attempt to find a fix: one of the candidate
7406 -- interpretations may not be use-visible. This has
7407 -- already been checked for predefined operators, so
7408 -- we examine only user-defined functions.
7410 Op_Id := Get_Name_Entity_Id (Chars (N));
7412 while Present (Op_Id) loop
7413 if Ekind (Op_Id) /= E_Operator
7414 and then Is_Overloadable (Op_Id)
7415 then
7416 if not Is_Immediately_Visible (Op_Id)
7417 and then not In_Use (Scope (Op_Id))
7418 and then not Is_Abstract_Subprogram (Op_Id)
7419 and then not Is_Hidden (Op_Id)
7420 and then Ekind (Scope (Op_Id)) = E_Package
7421 and then
7422 Has_Compatible_Type
7423 (L, Etype (First_Formal (Op_Id)))
7424 and then Present
7425 (Next_Formal (First_Formal (Op_Id)))
7426 and then
7427 Has_Compatible_Type
7429 Etype (Next_Formal (First_Formal (Op_Id))))
7430 then
7431 Error_Msg_N
7432 ("No legal interpretation for operator&", N);
7433 Error_Msg_NE
7434 ("\use clause on& would make operation legal",
7435 N, Scope (Op_Id));
7436 exit;
7437 end if;
7438 end if;
7440 Op_Id := Homonym (Op_Id);
7441 end loop;
7443 if No (Op_Id) then
7444 Error_Msg_N ("invalid operand types for operator&", N);
7446 if Nkind (N) /= N_Op_Concat then
7447 Error_Msg_NE ("\left operand has}!", N, Etype (L));
7448 Error_Msg_NE ("\right operand has}!", N, Etype (R));
7450 -- For concatenation operators it is more difficult to
7451 -- determine which is the wrong operand. It is worth
7452 -- flagging explicitly an access type, for those who
7453 -- might think that a dereference happens here.
7455 elsif Is_Access_Type (Etype (L)) then
7456 Error_Msg_N ("\left operand is access type", N);
7458 elsif Is_Access_Type (Etype (R)) then
7459 Error_Msg_N ("\right operand is access type", N);
7460 end if;
7461 end if;
7462 end if;
7463 end if;
7464 end if;
7465 end;
7466 end if;
7467 end Operator_Check;
7469 -----------------------------------------
7470 -- Process_Implicit_Dereference_Prefix --
7471 -----------------------------------------
7473 function Process_Implicit_Dereference_Prefix
7474 (E : Entity_Id;
7475 P : Entity_Id) return Entity_Id
7477 Ref : Node_Id;
7478 Typ : constant Entity_Id := Designated_Type (Etype (P));
7480 begin
7481 if Present (E)
7482 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
7483 then
7484 -- We create a dummy reference to E to ensure that the reference is
7485 -- not considered as part of an assignment (an implicit dereference
7486 -- can never assign to its prefix). The Comes_From_Source attribute
7487 -- needs to be propagated for accurate warnings.
7489 Ref := New_Occurrence_Of (E, Sloc (P));
7490 Set_Comes_From_Source (Ref, Comes_From_Source (P));
7491 Generate_Reference (E, Ref);
7492 end if;
7494 -- An implicit dereference is a legal occurrence of an incomplete type
7495 -- imported through a limited_with clause, if the full view is visible.
7497 if From_Limited_With (Typ)
7498 and then not From_Limited_With (Scope (Typ))
7499 and then
7500 (Is_Immediately_Visible (Scope (Typ))
7501 or else
7502 (Is_Child_Unit (Scope (Typ))
7503 and then Is_Visible_Lib_Unit (Scope (Typ))))
7504 then
7505 return Available_View (Typ);
7506 else
7507 return Typ;
7508 end if;
7509 end Process_Implicit_Dereference_Prefix;
7511 --------------------------------
7512 -- Remove_Abstract_Operations --
7513 --------------------------------
7515 procedure Remove_Abstract_Operations (N : Node_Id) is
7516 Abstract_Op : Entity_Id := Empty;
7517 Address_Descendant : Boolean := False;
7518 I : Interp_Index;
7519 It : Interp;
7521 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
7522 -- activate this if either extensions are enabled, or if the abstract
7523 -- operation in question comes from a predefined file. This latter test
7524 -- allows us to use abstract to make operations invisible to users. In
7525 -- particular, if type Address is non-private and abstract subprograms
7526 -- are used to hide its operators, they will be truly hidden.
7528 type Operand_Position is (First_Op, Second_Op);
7529 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
7531 procedure Remove_Address_Interpretations (Op : Operand_Position);
7532 -- Ambiguities may arise when the operands are literal and the address
7533 -- operations in s-auxdec are visible. In that case, remove the
7534 -- interpretation of a literal as Address, to retain the semantics
7535 -- of Address as a private type.
7537 ------------------------------------
7538 -- Remove_Address_Interpretations --
7539 ------------------------------------
7541 procedure Remove_Address_Interpretations (Op : Operand_Position) is
7542 Formal : Entity_Id;
7544 begin
7545 if Is_Overloaded (N) then
7546 Get_First_Interp (N, I, It);
7547 while Present (It.Nam) loop
7548 Formal := First_Entity (It.Nam);
7550 if Op = Second_Op then
7551 Formal := Next_Entity (Formal);
7552 end if;
7554 if Is_Descendant_Of_Address (Etype (Formal)) then
7555 Address_Descendant := True;
7556 Remove_Interp (I);
7557 end if;
7559 Get_Next_Interp (I, It);
7560 end loop;
7561 end if;
7562 end Remove_Address_Interpretations;
7564 -- Start of processing for Remove_Abstract_Operations
7566 begin
7567 if Is_Overloaded (N) then
7568 if Debug_Flag_V then
7569 Write_Str ("Remove_Abstract_Operations: ");
7570 Write_Overloads (N);
7571 end if;
7573 Get_First_Interp (N, I, It);
7575 while Present (It.Nam) loop
7576 if Is_Overloadable (It.Nam)
7577 and then Is_Abstract_Subprogram (It.Nam)
7578 and then not Is_Dispatching_Operation (It.Nam)
7579 then
7580 Abstract_Op := It.Nam;
7582 if Is_Descendant_Of_Address (It.Typ) then
7583 Address_Descendant := True;
7584 Remove_Interp (I);
7585 exit;
7587 -- In Ada 2005, this operation does not participate in overload
7588 -- resolution. If the operation is defined in a predefined
7589 -- unit, it is one of the operations declared abstract in some
7590 -- variants of System, and it must be removed as well.
7592 elsif Ada_Version >= Ada_2005
7593 or else In_Predefined_Unit (It.Nam)
7594 then
7595 Remove_Interp (I);
7596 exit;
7597 end if;
7598 end if;
7600 Get_Next_Interp (I, It);
7601 end loop;
7603 if No (Abstract_Op) then
7605 -- If some interpretation yields an integer type, it is still
7606 -- possible that there are address interpretations. Remove them
7607 -- if one operand is a literal, to avoid spurious ambiguities
7608 -- on systems where Address is a visible integer type.
7610 if Is_Overloaded (N)
7611 and then Nkind (N) in N_Op
7612 and then Is_Integer_Type (Etype (N))
7613 then
7614 if Nkind (N) in N_Binary_Op then
7615 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7616 Remove_Address_Interpretations (Second_Op);
7618 elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
7619 Remove_Address_Interpretations (First_Op);
7620 end if;
7621 end if;
7622 end if;
7624 elsif Nkind (N) in N_Op then
7626 -- Remove interpretations that treat literals as addresses. This
7627 -- is never appropriate, even when Address is defined as a visible
7628 -- Integer type. The reason is that we would really prefer Address
7629 -- to behave as a private type, even in this case. If Address is a
7630 -- visible integer type, we get lots of overload ambiguities.
7632 if Nkind (N) in N_Binary_Op then
7633 declare
7634 U1 : constant Boolean :=
7635 Present (Universal_Interpretation (Right_Opnd (N)));
7636 U2 : constant Boolean :=
7637 Present (Universal_Interpretation (Left_Opnd (N)));
7639 begin
7640 if U1 then
7641 Remove_Address_Interpretations (Second_Op);
7642 end if;
7644 if U2 then
7645 Remove_Address_Interpretations (First_Op);
7646 end if;
7648 if not (U1 and U2) then
7650 -- Remove corresponding predefined operator, which is
7651 -- always added to the overload set.
7653 Get_First_Interp (N, I, It);
7654 while Present (It.Nam) loop
7655 if Scope (It.Nam) = Standard_Standard
7656 and then Base_Type (It.Typ) =
7657 Base_Type (Etype (Abstract_Op))
7658 then
7659 Remove_Interp (I);
7660 end if;
7662 Get_Next_Interp (I, It);
7663 end loop;
7665 elsif Is_Overloaded (N)
7666 and then Present (Univ_Type)
7667 then
7668 -- If both operands have a universal interpretation,
7669 -- it is still necessary to remove interpretations that
7670 -- yield Address. Any remaining ambiguities will be
7671 -- removed in Disambiguate.
7673 Get_First_Interp (N, I, It);
7674 while Present (It.Nam) loop
7675 if Is_Descendant_Of_Address (It.Typ) then
7676 Remove_Interp (I);
7678 elsif not Is_Type (It.Nam) then
7679 Set_Entity (N, It.Nam);
7680 end if;
7682 Get_Next_Interp (I, It);
7683 end loop;
7684 end if;
7685 end;
7686 end if;
7688 elsif Nkind (N) = N_Function_Call
7689 and then
7690 (Nkind (Name (N)) = N_Operator_Symbol
7691 or else
7692 (Nkind (Name (N)) = N_Expanded_Name
7693 and then
7694 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
7695 then
7697 declare
7698 Arg1 : constant Node_Id := First (Parameter_Associations (N));
7699 U1 : constant Boolean :=
7700 Present (Universal_Interpretation (Arg1));
7701 U2 : constant Boolean :=
7702 Present (Next (Arg1)) and then
7703 Present (Universal_Interpretation (Next (Arg1)));
7705 begin
7706 if U1 then
7707 Remove_Address_Interpretations (First_Op);
7708 end if;
7710 if U2 then
7711 Remove_Address_Interpretations (Second_Op);
7712 end if;
7714 if not (U1 and U2) then
7715 Get_First_Interp (N, I, It);
7716 while Present (It.Nam) loop
7717 if Scope (It.Nam) = Standard_Standard
7718 and then It.Typ = Base_Type (Etype (Abstract_Op))
7719 then
7720 Remove_Interp (I);
7721 end if;
7723 Get_Next_Interp (I, It);
7724 end loop;
7725 end if;
7726 end;
7727 end if;
7729 -- If the removal has left no valid interpretations, emit an error
7730 -- message now and label node as illegal.
7732 if Present (Abstract_Op) then
7733 Get_First_Interp (N, I, It);
7735 if No (It.Nam) then
7737 -- Removal of abstract operation left no viable candidate
7739 Set_Etype (N, Any_Type);
7740 Error_Msg_Sloc := Sloc (Abstract_Op);
7741 Error_Msg_NE
7742 ("cannot call abstract operation& declared#", N, Abstract_Op);
7744 -- In Ada 2005, an abstract operation may disable predefined
7745 -- operators. Since the context is not yet known, we mark the
7746 -- predefined operators as potentially hidden. Do not include
7747 -- predefined operators when addresses are involved since this
7748 -- case is handled separately.
7750 elsif Ada_Version >= Ada_2005 and then not Address_Descendant then
7751 while Present (It.Nam) loop
7752 if Is_Numeric_Type (It.Typ)
7753 and then Scope (It.Typ) = Standard_Standard
7754 then
7755 Set_Abstract_Op (I, Abstract_Op);
7756 end if;
7758 Get_Next_Interp (I, It);
7759 end loop;
7760 end if;
7761 end if;
7763 if Debug_Flag_V then
7764 Write_Str ("Remove_Abstract_Operations done: ");
7765 Write_Overloads (N);
7766 end if;
7767 end if;
7768 end Remove_Abstract_Operations;
7770 ----------------------------
7771 -- Try_Container_Indexing --
7772 ----------------------------
7774 function Try_Container_Indexing
7775 (N : Node_Id;
7776 Prefix : Node_Id;
7777 Exprs : List_Id) return Boolean
7779 Pref_Typ : constant Entity_Id := Etype (Prefix);
7781 function Constant_Indexing_OK return Boolean;
7782 -- Constant_Indexing is legal if there is no Variable_Indexing defined
7783 -- for the type, or else node not a target of assignment, or an actual
7784 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
7786 function Expr_Matches_In_Formal
7787 (Subp : Entity_Id;
7788 Par : Node_Id) return Boolean;
7789 -- Find formal corresponding to given indexed component that is an
7790 -- actual in a call. Note that the enclosing subprogram call has not
7791 -- been analyzed yet, and the parameter list is not normalized, so
7792 -- that if the argument is a parameter association we must match it
7793 -- by name and not by position.
7795 function Find_Indexing_Operations
7796 (T : Entity_Id;
7797 Nam : Name_Id;
7798 Is_Constant : Boolean) return Node_Id;
7799 -- Return a reference to the primitive operation of type T denoted by
7800 -- name Nam. If the operation is overloaded, the reference carries all
7801 -- interpretations. Flag Is_Constant should be set when the context is
7802 -- constant indexing.
7804 --------------------------
7805 -- Constant_Indexing_OK --
7806 --------------------------
7808 function Constant_Indexing_OK return Boolean is
7809 Par : Node_Id;
7811 begin
7812 if No (Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing)) then
7813 return True;
7815 elsif not Is_Variable (Prefix) then
7816 return True;
7817 end if;
7819 Par := N;
7820 while Present (Par) loop
7821 if Nkind (Parent (Par)) = N_Assignment_Statement
7822 and then Par = Name (Parent (Par))
7823 then
7824 return False;
7826 -- The call may be overloaded, in which case we assume that its
7827 -- resolution does not depend on the type of the parameter that
7828 -- includes the indexing operation.
7830 elsif Nkind_In (Parent (Par), N_Function_Call,
7831 N_Procedure_Call_Statement)
7832 and then Is_Entity_Name (Name (Parent (Par)))
7833 then
7834 declare
7835 Proc : Entity_Id;
7837 begin
7838 -- We should look for an interpretation with the proper
7839 -- number of formals, and determine whether it is an
7840 -- In_Parameter, but for now we examine the formal that
7841 -- corresponds to the indexing, and assume that variable
7842 -- indexing is required if some interpretation has an
7843 -- assignable formal at that position. Still does not
7844 -- cover the most complex cases ???
7846 if Is_Overloaded (Name (Parent (Par))) then
7847 declare
7848 Proc : constant Node_Id := Name (Parent (Par));
7849 I : Interp_Index;
7850 It : Interp;
7852 begin
7853 Get_First_Interp (Proc, I, It);
7854 while Present (It.Nam) loop
7855 if not Expr_Matches_In_Formal (It.Nam, Par) then
7856 return False;
7857 end if;
7859 Get_Next_Interp (I, It);
7860 end loop;
7861 end;
7863 -- All interpretations have a matching in-mode formal
7865 return True;
7867 else
7868 Proc := Entity (Name (Parent (Par)));
7870 -- If this is an indirect call, get formals from
7871 -- designated type.
7873 if Is_Access_Subprogram_Type (Etype (Proc)) then
7874 Proc := Designated_Type (Etype (Proc));
7875 end if;
7876 end if;
7878 return Expr_Matches_In_Formal (Proc, Par);
7879 end;
7881 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
7882 return False;
7884 -- If the indexed component is a prefix it may be the first actual
7885 -- of a prefixed call. Retrieve the called entity, if any, and
7886 -- check its first formal. Determine if the context is a procedure
7887 -- or function call.
7889 elsif Nkind (Parent (Par)) = N_Selected_Component then
7890 declare
7891 Sel : constant Node_Id := Selector_Name (Parent (Par));
7892 Nam : constant Entity_Id := Current_Entity (Sel);
7894 begin
7895 if Present (Nam) and then Is_Overloadable (Nam) then
7896 if Nkind (Parent (Parent (Par))) =
7897 N_Procedure_Call_Statement
7898 then
7899 return False;
7901 elsif Ekind (Nam) = E_Function
7902 and then Present (First_Formal (Nam))
7903 then
7904 return Ekind (First_Formal (Nam)) = E_In_Parameter;
7905 end if;
7906 end if;
7907 end;
7909 elsif Nkind (Par) in N_Op then
7910 return True;
7911 end if;
7913 Par := Parent (Par);
7914 end loop;
7916 -- In all other cases, constant indexing is legal
7918 return True;
7919 end Constant_Indexing_OK;
7921 ----------------------------
7922 -- Expr_Matches_In_Formal --
7923 ----------------------------
7925 function Expr_Matches_In_Formal
7926 (Subp : Entity_Id;
7927 Par : Node_Id) return Boolean
7929 Actual : Node_Id;
7930 Formal : Node_Id;
7932 begin
7933 Formal := First_Formal (Subp);
7934 Actual := First (Parameter_Associations ((Parent (Par))));
7936 if Nkind (Par) /= N_Parameter_Association then
7938 -- Match by position
7940 while Present (Actual) and then Present (Formal) loop
7941 exit when Actual = Par;
7942 Next (Actual);
7944 if Present (Formal) then
7945 Next_Formal (Formal);
7947 -- Otherwise this is a parameter mismatch, the error is
7948 -- reported elsewhere, or else variable indexing is implied.
7950 else
7951 return False;
7952 end if;
7953 end loop;
7955 else
7956 -- Match by name
7958 while Present (Formal) loop
7959 exit when Chars (Formal) = Chars (Selector_Name (Par));
7960 Next_Formal (Formal);
7962 if No (Formal) then
7963 return False;
7964 end if;
7965 end loop;
7966 end if;
7968 return Present (Formal) and then Ekind (Formal) = E_In_Parameter;
7969 end Expr_Matches_In_Formal;
7971 ------------------------------
7972 -- Find_Indexing_Operations --
7973 ------------------------------
7975 function Find_Indexing_Operations
7976 (T : Entity_Id;
7977 Nam : Name_Id;
7978 Is_Constant : Boolean) return Node_Id
7980 procedure Inspect_Declarations
7981 (Typ : Entity_Id;
7982 Ref : in out Node_Id);
7983 -- Traverse the declarative list where type Typ resides and collect
7984 -- all suitable interpretations in node Ref.
7986 procedure Inspect_Primitives
7987 (Typ : Entity_Id;
7988 Ref : in out Node_Id);
7989 -- Traverse the list of primitive operations of type Typ and collect
7990 -- all suitable interpretations in node Ref.
7992 function Is_OK_Candidate
7993 (Subp_Id : Entity_Id;
7994 Typ : Entity_Id) return Boolean;
7995 -- Determine whether subprogram Subp_Id is a suitable indexing
7996 -- operation for type Typ. To qualify as such, the subprogram must
7997 -- be a function, have at least two parameters, and the type of the
7998 -- first parameter must be either Typ, or Typ'Class, or access [to
7999 -- constant] with designated type Typ or Typ'Class.
8001 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id);
8002 -- Store subprogram Subp_Id as an interpretation in node Ref
8004 --------------------------
8005 -- Inspect_Declarations --
8006 --------------------------
8008 procedure Inspect_Declarations
8009 (Typ : Entity_Id;
8010 Ref : in out Node_Id)
8012 Typ_Decl : constant Node_Id := Declaration_Node (Typ);
8013 Decl : Node_Id;
8014 Subp_Id : Entity_Id;
8016 begin
8017 -- Ensure that the routine is not called with itypes, which lack a
8018 -- declarative node.
8020 pragma Assert (Present (Typ_Decl));
8021 pragma Assert (Is_List_Member (Typ_Decl));
8023 Decl := First (List_Containing (Typ_Decl));
8024 while Present (Decl) loop
8025 if Nkind (Decl) = N_Subprogram_Declaration then
8026 Subp_Id := Defining_Entity (Decl);
8028 if Is_OK_Candidate (Subp_Id, Typ) then
8029 Record_Interp (Subp_Id, Ref);
8030 end if;
8031 end if;
8033 Next (Decl);
8034 end loop;
8035 end Inspect_Declarations;
8037 ------------------------
8038 -- Inspect_Primitives --
8039 ------------------------
8041 procedure Inspect_Primitives
8042 (Typ : Entity_Id;
8043 Ref : in out Node_Id)
8045 Prim_Elmt : Elmt_Id;
8046 Prim_Id : Entity_Id;
8048 begin
8049 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
8050 while Present (Prim_Elmt) loop
8051 Prim_Id := Node (Prim_Elmt);
8053 if Is_OK_Candidate (Prim_Id, Typ) then
8054 Record_Interp (Prim_Id, Ref);
8055 end if;
8057 Next_Elmt (Prim_Elmt);
8058 end loop;
8059 end Inspect_Primitives;
8061 ---------------------
8062 -- Is_OK_Candidate --
8063 ---------------------
8065 function Is_OK_Candidate
8066 (Subp_Id : Entity_Id;
8067 Typ : Entity_Id) return Boolean
8069 Formal : Entity_Id;
8070 Formal_Typ : Entity_Id;
8071 Param_Typ : Node_Id;
8073 begin
8074 -- To classify as a suitable candidate, the subprogram must be a
8075 -- function whose name matches the argument of aspect Constant or
8076 -- Variable_Indexing.
8078 if Ekind (Subp_Id) = E_Function and then Chars (Subp_Id) = Nam then
8079 Formal := First_Formal (Subp_Id);
8081 -- The candidate requires at least two parameters
8083 if Present (Formal) and then Present (Next_Formal (Formal)) then
8084 Formal_Typ := Empty;
8085 Param_Typ := Parameter_Type (Parent (Formal));
8087 -- Use the designated type when the first parameter is of an
8088 -- access type.
8090 if Nkind (Param_Typ) = N_Access_Definition
8091 and then Present (Subtype_Mark (Param_Typ))
8092 then
8093 -- When the context is a constant indexing, the access
8094 -- definition must be access-to-constant. This does not
8095 -- apply to variable indexing.
8097 if not Is_Constant
8098 or else Constant_Present (Param_Typ)
8099 then
8100 Formal_Typ := Etype (Subtype_Mark (Param_Typ));
8101 end if;
8103 -- Otherwise use the parameter type
8105 else
8106 Formal_Typ := Etype (Param_Typ);
8107 end if;
8109 if Present (Formal_Typ) then
8111 -- Use the specific type when the parameter type is
8112 -- class-wide.
8114 if Is_Class_Wide_Type (Formal_Typ) then
8115 Formal_Typ := Etype (Base_Type (Formal_Typ));
8116 end if;
8118 -- Use the full view when the parameter type is private
8119 -- or incomplete.
8121 if Is_Incomplete_Or_Private_Type (Formal_Typ)
8122 and then Present (Full_View (Formal_Typ))
8123 then
8124 Formal_Typ := Full_View (Formal_Typ);
8125 end if;
8127 -- The type of the first parameter must denote the type
8128 -- of the container or acts as its ancestor type.
8130 return
8131 Formal_Typ = Typ
8132 or else Is_Ancestor (Formal_Typ, Typ);
8133 end if;
8134 end if;
8135 end if;
8137 return False;
8138 end Is_OK_Candidate;
8140 -------------------
8141 -- Record_Interp --
8142 -------------------
8144 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id) is
8145 begin
8146 if Present (Ref) then
8147 Add_One_Interp (Ref, Subp_Id, Etype (Subp_Id));
8149 -- Otherwise this is the first interpretation. Create a reference
8150 -- where all remaining interpretations will be collected.
8152 else
8153 Ref := New_Occurrence_Of (Subp_Id, Sloc (T));
8154 end if;
8155 end Record_Interp;
8157 -- Local variables
8159 Ref : Node_Id;
8160 Typ : Entity_Id;
8162 -- Start of processing for Find_Indexing_Operations
8164 begin
8165 Typ := T;
8167 -- Use the specific type when the parameter type is class-wide
8169 if Is_Class_Wide_Type (Typ) then
8170 Typ := Root_Type (Typ);
8171 end if;
8173 Ref := Empty;
8174 Typ := Underlying_Type (Base_Type (Typ));
8176 Inspect_Primitives (Typ, Ref);
8178 -- Now look for explicit declarations of an indexing operation.
8179 -- If the type is private the operation may be declared in the
8180 -- visible part that contains the partial view.
8182 if Is_Private_Type (T) then
8183 Inspect_Declarations (T, Ref);
8184 end if;
8186 Inspect_Declarations (Typ, Ref);
8188 return Ref;
8189 end Find_Indexing_Operations;
8191 -- Local variables
8193 Loc : constant Source_Ptr := Sloc (N);
8194 Assoc : List_Id;
8195 C_Type : Entity_Id;
8196 Func : Entity_Id;
8197 Func_Name : Node_Id;
8198 Indexing : Node_Id;
8200 Is_Constant_Indexing : Boolean := False;
8201 -- This flag reflects the nature of the container indexing. Note that
8202 -- the context may be suited for constant indexing, but the type may
8203 -- lack a Constant_Indexing annotation.
8205 -- Start of processing for Try_Container_Indexing
8207 begin
8208 -- Node may have been analyzed already when testing for a prefixed
8209 -- call, in which case do not redo analysis.
8211 if Present (Generalized_Indexing (N)) then
8212 return True;
8213 end if;
8215 C_Type := Pref_Typ;
8217 -- If indexing a class-wide container, obtain indexing primitive from
8218 -- specific type.
8220 if Is_Class_Wide_Type (C_Type) then
8221 C_Type := Etype (Base_Type (C_Type));
8222 end if;
8224 -- Check whether the type has a specified indexing aspect
8226 Func_Name := Empty;
8228 -- The context is suitable for constant indexing, so obtain the name of
8229 -- the indexing function from aspect Constant_Indexing.
8231 if Constant_Indexing_OK then
8232 Func_Name :=
8233 Find_Value_Of_Aspect (Pref_Typ, Aspect_Constant_Indexing);
8234 end if;
8236 if Present (Func_Name) then
8237 Is_Constant_Indexing := True;
8239 -- Otherwise attempt variable indexing
8241 else
8242 Func_Name :=
8243 Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing);
8244 end if;
8246 -- The type is not subject to either form of indexing, therefore the
8247 -- indexed component does not denote container indexing. If this is a
8248 -- true error, it is diagnosed by the caller.
8250 if No (Func_Name) then
8252 -- The prefix itself may be an indexing of a container. Rewrite it
8253 -- as such and retry.
8255 if Has_Implicit_Dereference (Pref_Typ) then
8256 Build_Explicit_Dereference (Prefix, First_Discriminant (Pref_Typ));
8257 return Try_Container_Indexing (N, Prefix, Exprs);
8259 -- Otherwise this is definitely not container indexing
8261 else
8262 return False;
8263 end if;
8265 -- If the container type is derived from another container type, the
8266 -- value of the inherited aspect is the Reference operation declared
8267 -- for the parent type.
8269 -- However, Reference is also a primitive operation of the type, and the
8270 -- inherited operation has a different signature. We retrieve the right
8271 -- ones (the function may be overloaded) from the list of primitive
8272 -- operations of the derived type.
8274 -- Note that predefined containers are typically all derived from one of
8275 -- the Controlled types. The code below is motivated by containers that
8276 -- are derived from other types with a Reference aspect.
8278 elsif Is_Derived_Type (C_Type)
8279 and then Etype (First_Formal (Entity (Func_Name))) /= Pref_Typ
8280 then
8281 Func_Name :=
8282 Find_Indexing_Operations
8283 (T => C_Type,
8284 Nam => Chars (Func_Name),
8285 Is_Constant => Is_Constant_Indexing);
8286 end if;
8288 Assoc := New_List (Relocate_Node (Prefix));
8290 -- A generalized indexing may have nore than one index expression, so
8291 -- transfer all of them to the argument list to be used in the call.
8292 -- Note that there may be named associations, in which case the node
8293 -- was rewritten earlier as a call, and has been transformed back into
8294 -- an indexed expression to share the following processing.
8296 -- The generalized indexing node is the one on which analysis and
8297 -- resolution take place. Before expansion the original node is replaced
8298 -- with the generalized indexing node, which is a call, possibly with a
8299 -- dereference operation.
8301 if Comes_From_Source (N) then
8302 Check_Compiler_Unit ("generalized indexing", N);
8303 end if;
8305 -- Create argument list for function call that represents generalized
8306 -- indexing. Note that indices (i.e. actuals) may themselves be
8307 -- overloaded.
8309 declare
8310 Arg : Node_Id;
8311 New_Arg : Node_Id;
8313 begin
8314 Arg := First (Exprs);
8315 while Present (Arg) loop
8316 New_Arg := Relocate_Node (Arg);
8318 -- The arguments can be parameter associations, in which case the
8319 -- explicit actual parameter carries the overloadings.
8321 if Nkind (New_Arg) /= N_Parameter_Association then
8322 Save_Interps (Arg, New_Arg);
8323 end if;
8325 Append (New_Arg, Assoc);
8326 Next (Arg);
8327 end loop;
8328 end;
8330 if not Is_Overloaded (Func_Name) then
8331 Func := Entity (Func_Name);
8333 Indexing :=
8334 Make_Function_Call (Loc,
8335 Name => New_Occurrence_Of (Func, Loc),
8336 Parameter_Associations => Assoc);
8338 Set_Parent (Indexing, Parent (N));
8339 Set_Generalized_Indexing (N, Indexing);
8340 Analyze (Indexing);
8341 Set_Etype (N, Etype (Indexing));
8343 -- If the return type of the indexing function is a reference type,
8344 -- add the dereference as a possible interpretation. Note that the
8345 -- indexing aspect may be a function that returns the element type
8346 -- with no intervening implicit dereference, and that the reference
8347 -- discriminant is not the first discriminant.
8349 if Has_Discriminants (Etype (Func)) then
8350 Check_Implicit_Dereference (N, Etype (Func));
8351 end if;
8353 else
8354 -- If there are multiple indexing functions, build a function call
8355 -- and analyze it for each of the possible interpretations.
8357 Indexing :=
8358 Make_Function_Call (Loc,
8359 Name =>
8360 Make_Identifier (Loc, Chars (Func_Name)),
8361 Parameter_Associations => Assoc);
8362 Set_Parent (Indexing, Parent (N));
8363 Set_Generalized_Indexing (N, Indexing);
8364 Set_Etype (N, Any_Type);
8365 Set_Etype (Name (Indexing), Any_Type);
8367 declare
8368 I : Interp_Index;
8369 It : Interp;
8370 Success : Boolean;
8372 begin
8373 Get_First_Interp (Func_Name, I, It);
8374 Set_Etype (Indexing, Any_Type);
8376 -- Analyze each candidate function with the given actuals
8378 while Present (It.Nam) loop
8379 Analyze_One_Call (Indexing, It.Nam, False, Success);
8380 Get_Next_Interp (I, It);
8381 end loop;
8383 -- If there are several successful candidates, resolution will
8384 -- be by result. Mark the interpretations of the function name
8385 -- itself.
8387 if Is_Overloaded (Indexing) then
8388 Get_First_Interp (Indexing, I, It);
8390 while Present (It.Nam) loop
8391 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
8392 Get_Next_Interp (I, It);
8393 end loop;
8395 else
8396 Set_Etype (Name (Indexing), Etype (Indexing));
8397 end if;
8399 -- Now add the candidate interpretations to the indexing node
8400 -- itself, to be replaced later by the function call.
8402 if Is_Overloaded (Name (Indexing)) then
8403 Get_First_Interp (Name (Indexing), I, It);
8405 while Present (It.Nam) loop
8406 Add_One_Interp (N, It.Nam, It.Typ);
8408 -- Add dereference interpretation if the result type has
8409 -- implicit reference discriminants.
8411 if Has_Discriminants (Etype (It.Nam)) then
8412 Check_Implicit_Dereference (N, Etype (It.Nam));
8413 end if;
8415 Get_Next_Interp (I, It);
8416 end loop;
8418 else
8419 Set_Etype (N, Etype (Name (Indexing)));
8420 if Has_Discriminants (Etype (N)) then
8421 Check_Implicit_Dereference (N, Etype (N));
8422 end if;
8423 end if;
8424 end;
8425 end if;
8427 if Etype (Indexing) = Any_Type then
8428 Error_Msg_NE
8429 ("container cannot be indexed with&", N, Etype (First (Exprs)));
8430 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
8431 end if;
8433 return True;
8434 end Try_Container_Indexing;
8436 -----------------------
8437 -- Try_Indirect_Call --
8438 -----------------------
8440 function Try_Indirect_Call
8441 (N : Node_Id;
8442 Nam : Entity_Id;
8443 Typ : Entity_Id) return Boolean
8445 Actual : Node_Id;
8446 Formal : Entity_Id;
8448 Call_OK : Boolean;
8449 pragma Warnings (Off, Call_OK);
8451 begin
8452 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
8454 Actual := First_Actual (N);
8455 Formal := First_Formal (Designated_Type (Typ));
8456 while Present (Actual) and then Present (Formal) loop
8457 if not Has_Compatible_Type (Actual, Etype (Formal)) then
8458 return False;
8459 end if;
8461 Next (Actual);
8462 Next_Formal (Formal);
8463 end loop;
8465 if No (Actual) and then No (Formal) then
8466 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
8468 -- Nam is a candidate interpretation for the name in the call,
8469 -- if it is not an indirect call.
8471 if not Is_Type (Nam)
8472 and then Is_Entity_Name (Name (N))
8473 then
8474 Set_Entity (Name (N), Nam);
8475 end if;
8477 return True;
8479 else
8480 return False;
8481 end if;
8482 end Try_Indirect_Call;
8484 ----------------------
8485 -- Try_Indexed_Call --
8486 ----------------------
8488 function Try_Indexed_Call
8489 (N : Node_Id;
8490 Nam : Entity_Id;
8491 Typ : Entity_Id;
8492 Skip_First : Boolean) return Boolean
8494 Loc : constant Source_Ptr := Sloc (N);
8495 Actuals : constant List_Id := Parameter_Associations (N);
8496 Actual : Node_Id;
8497 Index : Entity_Id;
8499 begin
8500 Actual := First (Actuals);
8502 -- If the call was originally written in prefix form, skip the first
8503 -- actual, which is obviously not defaulted.
8505 if Skip_First then
8506 Next (Actual);
8507 end if;
8509 Index := First_Index (Typ);
8510 while Present (Actual) and then Present (Index) loop
8512 -- If the parameter list has a named association, the expression
8513 -- is definitely a call and not an indexed component.
8515 if Nkind (Actual) = N_Parameter_Association then
8516 return False;
8517 end if;
8519 if Is_Entity_Name (Actual)
8520 and then Is_Type (Entity (Actual))
8521 and then No (Next (Actual))
8522 then
8523 -- A single actual that is a type name indicates a slice if the
8524 -- type is discrete, and an error otherwise.
8526 if Is_Discrete_Type (Entity (Actual)) then
8527 Rewrite (N,
8528 Make_Slice (Loc,
8529 Prefix =>
8530 Make_Function_Call (Loc,
8531 Name => Relocate_Node (Name (N))),
8532 Discrete_Range =>
8533 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
8535 Analyze (N);
8537 else
8538 Error_Msg_N ("invalid use of type in expression", Actual);
8539 Set_Etype (N, Any_Type);
8540 end if;
8542 return True;
8544 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
8545 return False;
8546 end if;
8548 Next (Actual);
8549 Next_Index (Index);
8550 end loop;
8552 if No (Actual) and then No (Index) then
8553 Add_One_Interp (N, Nam, Component_Type (Typ));
8555 -- Nam is a candidate interpretation for the name in the call,
8556 -- if it is not an indirect call.
8558 if not Is_Type (Nam)
8559 and then Is_Entity_Name (Name (N))
8560 then
8561 Set_Entity (Name (N), Nam);
8562 end if;
8564 return True;
8565 else
8566 return False;
8567 end if;
8568 end Try_Indexed_Call;
8570 --------------------------
8571 -- Try_Object_Operation --
8572 --------------------------
8574 function Try_Object_Operation
8575 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
8577 K : constant Node_Kind := Nkind (Parent (N));
8578 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
8579 Loc : constant Source_Ptr := Sloc (N);
8580 Obj : constant Node_Id := Prefix (N);
8582 Subprog : constant Node_Id :=
8583 Make_Identifier (Sloc (Selector_Name (N)),
8584 Chars => Chars (Selector_Name (N)));
8585 -- Identifier on which possible interpretations will be collected
8587 Report_Error : Boolean := False;
8588 -- If no candidate interpretation matches the context, redo analysis
8589 -- with Report_Error True to provide additional information.
8591 Actual : Node_Id;
8592 Candidate : Entity_Id := Empty;
8593 New_Call_Node : Node_Id := Empty;
8594 Node_To_Replace : Node_Id;
8595 Obj_Type : Entity_Id := Etype (Obj);
8596 Success : Boolean := False;
8598 procedure Complete_Object_Operation
8599 (Call_Node : Node_Id;
8600 Node_To_Replace : Node_Id);
8601 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
8602 -- Call_Node, insert the object (or its dereference) as the first actual
8603 -- in the call, and complete the analysis of the call.
8605 procedure Report_Ambiguity (Op : Entity_Id);
8606 -- If a prefixed procedure call is ambiguous, indicate whether the call
8607 -- includes an implicit dereference or an implicit 'Access.
8609 procedure Transform_Object_Operation
8610 (Call_Node : out Node_Id;
8611 Node_To_Replace : out Node_Id);
8612 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
8613 -- Call_Node is the resulting subprogram call, Node_To_Replace is
8614 -- either N or the parent of N, and Subprog is a reference to the
8615 -- subprogram we are trying to match.
8617 function Try_Class_Wide_Operation
8618 (Call_Node : Node_Id;
8619 Node_To_Replace : Node_Id) return Boolean;
8620 -- Traverse all ancestor types looking for a class-wide subprogram for
8621 -- which the current operation is a valid non-dispatching call.
8623 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
8624 -- If prefix is overloaded, its interpretation may include different
8625 -- tagged types, and we must examine the primitive operations and the
8626 -- class-wide operations of each in order to find candidate
8627 -- interpretations for the call as a whole.
8629 function Try_Primitive_Operation
8630 (Call_Node : Node_Id;
8631 Node_To_Replace : Node_Id) return Boolean;
8632 -- Traverse the list of primitive subprograms looking for a dispatching
8633 -- operation for which the current node is a valid call.
8635 function Valid_Candidate
8636 (Success : Boolean;
8637 Call : Node_Id;
8638 Subp : Entity_Id) return Entity_Id;
8639 -- If the subprogram is a valid interpretation, record it, and add to
8640 -- the list of interpretations of Subprog. Otherwise return Empty.
8642 -------------------------------
8643 -- Complete_Object_Operation --
8644 -------------------------------
8646 procedure Complete_Object_Operation
8647 (Call_Node : Node_Id;
8648 Node_To_Replace : Node_Id)
8650 Control : constant Entity_Id := First_Formal (Entity (Subprog));
8651 Formal_Type : constant Entity_Id := Etype (Control);
8652 First_Actual : Node_Id;
8654 begin
8655 -- Place the name of the operation, with its interpretations,
8656 -- on the rewritten call.
8658 Set_Name (Call_Node, Subprog);
8660 First_Actual := First (Parameter_Associations (Call_Node));
8662 -- For cross-reference purposes, treat the new node as being in the
8663 -- source if the original one is. Set entity and type, even though
8664 -- they may be overwritten during resolution if overloaded.
8666 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
8667 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
8669 if Nkind (N) = N_Selected_Component
8670 and then not Inside_A_Generic
8671 then
8672 Set_Entity (Selector_Name (N), Entity (Subprog));
8673 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
8674 end if;
8676 -- If need be, rewrite first actual as an explicit dereference. If
8677 -- the call is overloaded, the rewriting can only be done once the
8678 -- primitive operation is identified.
8680 if Is_Overloaded (Subprog) then
8682 -- The prefix itself may be overloaded, and its interpretations
8683 -- must be propagated to the new actual in the call.
8685 if Is_Overloaded (Obj) then
8686 Save_Interps (Obj, First_Actual);
8687 end if;
8689 Rewrite (First_Actual, Obj);
8691 elsif not Is_Access_Type (Formal_Type)
8692 and then Is_Access_Type (Etype (Obj))
8693 then
8694 Rewrite (First_Actual,
8695 Make_Explicit_Dereference (Sloc (Obj), Obj));
8696 Analyze (First_Actual);
8698 -- If we need to introduce an explicit dereference, verify that
8699 -- the resulting actual is compatible with the mode of the formal.
8701 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
8702 and then Is_Access_Constant (Etype (Obj))
8703 then
8704 Error_Msg_NE
8705 ("expect variable in call to&", Prefix (N), Entity (Subprog));
8706 end if;
8708 -- Conversely, if the formal is an access parameter and the object is
8709 -- not an access type or a reference type (i.e. a type with the
8710 -- Implicit_Dereference aspect specified), replace the actual with a
8711 -- 'Access reference. Its analysis will check that the object is
8712 -- aliased.
8714 elsif Is_Access_Type (Formal_Type)
8715 and then not Is_Access_Type (Etype (Obj))
8716 and then
8717 (not Has_Implicit_Dereference (Etype (Obj))
8718 or else
8719 not Is_Access_Type (Designated_Type (Etype
8720 (Get_Reference_Discriminant (Etype (Obj))))))
8721 then
8722 -- A special case: A.all'Access is illegal if A is an access to a
8723 -- constant and the context requires an access to a variable.
8725 if not Is_Access_Constant (Formal_Type) then
8726 if (Nkind (Obj) = N_Explicit_Dereference
8727 and then Is_Access_Constant (Etype (Prefix (Obj))))
8728 or else not Is_Variable (Obj)
8729 then
8730 Error_Msg_NE
8731 ("actual for & must be a variable", Obj, Control);
8732 end if;
8733 end if;
8735 Rewrite (First_Actual,
8736 Make_Attribute_Reference (Loc,
8737 Attribute_Name => Name_Access,
8738 Prefix => Relocate_Node (Obj)));
8740 -- If the object is not overloaded verify that taking access of
8741 -- it is legal. Otherwise check is made during resolution.
8743 if not Is_Overloaded (Obj)
8744 and then not Is_Aliased_View (Obj)
8745 then
8746 Error_Msg_NE
8747 ("object in prefixed call to & must be aliased "
8748 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
8749 end if;
8751 Analyze (First_Actual);
8753 else
8754 if Is_Overloaded (Obj) then
8755 Save_Interps (Obj, First_Actual);
8756 end if;
8758 Rewrite (First_Actual, Obj);
8759 end if;
8761 -- The operation is obtained from the dispatch table and not by
8762 -- visibility, and may be declared in a unit that is not explicitly
8763 -- referenced in the source, but is nevertheless required in the
8764 -- context of the current unit. Indicate that operation and its scope
8765 -- are referenced, to prevent spurious and misleading warnings. If
8766 -- the operation is overloaded, all primitives are in the same scope
8767 -- and we can use any of them.
8769 Set_Referenced (Entity (Subprog), True);
8770 Set_Referenced (Scope (Entity (Subprog)), True);
8772 Rewrite (Node_To_Replace, Call_Node);
8774 -- Propagate the interpretations collected in subprog to the new
8775 -- function call node, to be resolved from context.
8777 if Is_Overloaded (Subprog) then
8778 Save_Interps (Subprog, Node_To_Replace);
8780 else
8781 -- The type of the subprogram may be a limited view obtained
8782 -- transitively from another unit. If full view is available,
8783 -- use it to analyze call. If there is no nonlimited view, then
8784 -- this is diagnosed when analyzing the rewritten call.
8786 declare
8787 T : constant Entity_Id := Etype (Subprog);
8788 begin
8789 if From_Limited_With (T) then
8790 Set_Etype (Entity (Subprog), Available_View (T));
8791 end if;
8792 end;
8794 Analyze (Node_To_Replace);
8796 -- If the operation has been rewritten into a call, which may get
8797 -- subsequently an explicit dereference, preserve the type on the
8798 -- original node (selected component or indexed component) for
8799 -- subsequent legality tests, e.g. Is_Variable. which examines
8800 -- the original node.
8802 if Nkind (Node_To_Replace) = N_Function_Call then
8803 Set_Etype
8804 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
8805 end if;
8806 end if;
8807 end Complete_Object_Operation;
8809 ----------------------
8810 -- Report_Ambiguity --
8811 ----------------------
8813 procedure Report_Ambiguity (Op : Entity_Id) is
8814 Access_Actual : constant Boolean :=
8815 Is_Access_Type (Etype (Prefix (N)));
8816 Access_Formal : Boolean := False;
8818 begin
8819 Error_Msg_Sloc := Sloc (Op);
8821 if Present (First_Formal (Op)) then
8822 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
8823 end if;
8825 if Access_Formal and then not Access_Actual then
8826 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8827 Error_Msg_N
8828 ("\possible interpretation "
8829 & "(inherited, with implicit 'Access) #", N);
8830 else
8831 Error_Msg_N
8832 ("\possible interpretation (with implicit 'Access) #", N);
8833 end if;
8835 elsif not Access_Formal and then Access_Actual then
8836 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8837 Error_Msg_N
8838 ("\possible interpretation "
8839 & "(inherited, with implicit dereference) #", N);
8840 else
8841 Error_Msg_N
8842 ("\possible interpretation (with implicit dereference) #", N);
8843 end if;
8845 else
8846 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8847 Error_Msg_N ("\possible interpretation (inherited)#", N);
8848 else
8849 Error_Msg_N -- CODEFIX
8850 ("\possible interpretation#", N);
8851 end if;
8852 end if;
8853 end Report_Ambiguity;
8855 --------------------------------
8856 -- Transform_Object_Operation --
8857 --------------------------------
8859 procedure Transform_Object_Operation
8860 (Call_Node : out Node_Id;
8861 Node_To_Replace : out Node_Id)
8863 Dummy : constant Node_Id := New_Copy (Obj);
8864 -- Placeholder used as a first parameter in the call, replaced
8865 -- eventually by the proper object.
8867 Parent_Node : constant Node_Id := Parent (N);
8869 Actual : Node_Id;
8870 Actuals : List_Id;
8872 begin
8873 -- Obj may already have been rewritten if it involves an implicit
8874 -- dereference (e.g. if it is an access to a limited view). Preserve
8875 -- a link to the original node for ASIS use.
8877 if not Comes_From_Source (Obj) then
8878 Set_Original_Node (Dummy, Original_Node (Obj));
8879 end if;
8881 -- Common case covering 1) Call to a procedure and 2) Call to a
8882 -- function that has some additional actuals.
8884 if Nkind (Parent_Node) in N_Subprogram_Call
8886 -- N is a selected component node containing the name of the
8887 -- subprogram. If N is not the name of the parent node we must
8888 -- not replace the parent node by the new construct. This case
8889 -- occurs when N is a parameterless call to a subprogram that
8890 -- is an actual parameter of a call to another subprogram. For
8891 -- example:
8892 -- Some_Subprogram (..., Obj.Operation, ...)
8894 and then Name (Parent_Node) = N
8895 then
8896 Node_To_Replace := Parent_Node;
8898 Actuals := Parameter_Associations (Parent_Node);
8900 if Present (Actuals) then
8901 Prepend (Dummy, Actuals);
8902 else
8903 Actuals := New_List (Dummy);
8904 end if;
8906 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
8907 Call_Node :=
8908 Make_Procedure_Call_Statement (Loc,
8909 Name => New_Copy (Subprog),
8910 Parameter_Associations => Actuals);
8912 else
8913 Call_Node :=
8914 Make_Function_Call (Loc,
8915 Name => New_Copy (Subprog),
8916 Parameter_Associations => Actuals);
8917 end if;
8919 -- Before analysis, a function call appears as an indexed component
8920 -- if there are no named associations.
8922 elsif Nkind (Parent_Node) = N_Indexed_Component
8923 and then N = Prefix (Parent_Node)
8924 then
8925 Node_To_Replace := Parent_Node;
8926 Actuals := Expressions (Parent_Node);
8928 Actual := First (Actuals);
8929 while Present (Actual) loop
8930 Analyze (Actual);
8931 Next (Actual);
8932 end loop;
8934 Prepend (Dummy, Actuals);
8936 Call_Node :=
8937 Make_Function_Call (Loc,
8938 Name => New_Copy (Subprog),
8939 Parameter_Associations => Actuals);
8941 -- Parameterless call: Obj.F is rewritten as F (Obj)
8943 else
8944 Node_To_Replace := N;
8946 Call_Node :=
8947 Make_Function_Call (Loc,
8948 Name => New_Copy (Subprog),
8949 Parameter_Associations => New_List (Dummy));
8950 end if;
8951 end Transform_Object_Operation;
8953 ------------------------------
8954 -- Try_Class_Wide_Operation --
8955 ------------------------------
8957 function Try_Class_Wide_Operation
8958 (Call_Node : Node_Id;
8959 Node_To_Replace : Node_Id) return Boolean
8961 Anc_Type : Entity_Id;
8962 Matching_Op : Entity_Id := Empty;
8963 Error : Boolean;
8965 procedure Traverse_Homonyms
8966 (Anc_Type : Entity_Id;
8967 Error : out Boolean);
8968 -- Traverse the homonym chain of the subprogram searching for those
8969 -- homonyms whose first formal has the Anc_Type's class-wide type,
8970 -- or an anonymous access type designating the class-wide type. If
8971 -- an ambiguity is detected, then Error is set to True.
8973 procedure Traverse_Interfaces
8974 (Anc_Type : Entity_Id;
8975 Error : out Boolean);
8976 -- Traverse the list of interfaces, if any, associated with Anc_Type
8977 -- and search for acceptable class-wide homonyms associated with each
8978 -- interface. If an ambiguity is detected, then Error is set to True.
8980 -----------------------
8981 -- Traverse_Homonyms --
8982 -----------------------
8984 procedure Traverse_Homonyms
8985 (Anc_Type : Entity_Id;
8986 Error : out Boolean)
8988 Cls_Type : Entity_Id;
8989 Hom : Entity_Id;
8990 Hom_Ref : Node_Id;
8991 Success : Boolean;
8993 begin
8994 Error := False;
8996 Cls_Type := Class_Wide_Type (Anc_Type);
8998 Hom := Current_Entity (Subprog);
9000 -- Find a non-hidden operation whose first parameter is of the
9001 -- class-wide type, a subtype thereof, or an anonymous access
9002 -- to same. If in an instance, the operation can be considered
9003 -- even if hidden (it may be hidden because the instantiation
9004 -- is expanded after the containing package has been analyzed).
9006 while Present (Hom) loop
9007 if Ekind_In (Hom, E_Procedure, E_Function)
9008 and then (not Is_Hidden (Hom) or else In_Instance)
9009 and then Scope (Hom) = Scope (Base_Type (Anc_Type))
9010 and then Present (First_Formal (Hom))
9011 and then
9012 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
9013 or else
9014 (Is_Access_Type (Etype (First_Formal (Hom)))
9015 and then
9016 Ekind (Etype (First_Formal (Hom))) =
9017 E_Anonymous_Access_Type
9018 and then
9019 Base_Type
9020 (Designated_Type (Etype (First_Formal (Hom)))) =
9021 Cls_Type))
9022 then
9023 -- If the context is a procedure call, ignore functions
9024 -- in the name of the call.
9026 if Ekind (Hom) = E_Function
9027 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
9028 and then N = Name (Parent (N))
9029 then
9030 goto Next_Hom;
9032 -- If the context is a function call, ignore procedures
9033 -- in the name of the call.
9035 elsif Ekind (Hom) = E_Procedure
9036 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
9037 then
9038 goto Next_Hom;
9039 end if;
9041 Set_Etype (Call_Node, Any_Type);
9042 Set_Is_Overloaded (Call_Node, False);
9043 Success := False;
9045 if No (Matching_Op) then
9046 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
9047 Set_Etype (Call_Node, Any_Type);
9048 Set_Parent (Call_Node, Parent (Node_To_Replace));
9050 Set_Name (Call_Node, Hom_Ref);
9052 Analyze_One_Call
9053 (N => Call_Node,
9054 Nam => Hom,
9055 Report => Report_Error,
9056 Success => Success,
9057 Skip_First => True);
9059 Matching_Op :=
9060 Valid_Candidate (Success, Call_Node, Hom);
9062 else
9063 Analyze_One_Call
9064 (N => Call_Node,
9065 Nam => Hom,
9066 Report => Report_Error,
9067 Success => Success,
9068 Skip_First => True);
9070 -- The same operation may be encountered on two homonym
9071 -- traversals, before and after looking at interfaces.
9072 -- Check for this case before reporting a real ambiguity.
9074 if Present (Valid_Candidate (Success, Call_Node, Hom))
9075 and then Nkind (Call_Node) /= N_Function_Call
9076 and then Hom /= Matching_Op
9077 then
9078 Error_Msg_NE ("ambiguous call to&", N, Hom);
9079 Report_Ambiguity (Matching_Op);
9080 Report_Ambiguity (Hom);
9081 Error := True;
9082 return;
9083 end if;
9084 end if;
9085 end if;
9087 <<Next_Hom>>
9088 Hom := Homonym (Hom);
9089 end loop;
9090 end Traverse_Homonyms;
9092 -------------------------
9093 -- Traverse_Interfaces --
9094 -------------------------
9096 procedure Traverse_Interfaces
9097 (Anc_Type : Entity_Id;
9098 Error : out Boolean)
9100 Intface_List : constant List_Id :=
9101 Abstract_Interface_List (Anc_Type);
9102 Intface : Node_Id;
9104 begin
9105 Error := False;
9107 if Is_Non_Empty_List (Intface_List) then
9108 Intface := First (Intface_List);
9109 while Present (Intface) loop
9111 -- Look for acceptable class-wide homonyms associated with
9112 -- the interface.
9114 Traverse_Homonyms (Etype (Intface), Error);
9116 if Error then
9117 return;
9118 end if;
9120 -- Continue the search by looking at each of the interface's
9121 -- associated interface ancestors.
9123 Traverse_Interfaces (Etype (Intface), Error);
9125 if Error then
9126 return;
9127 end if;
9129 Next (Intface);
9130 end loop;
9131 end if;
9132 end Traverse_Interfaces;
9134 -- Start of processing for Try_Class_Wide_Operation
9136 begin
9137 -- If we are searching only for conflicting class-wide subprograms
9138 -- then initialize directly Matching_Op with the target entity.
9140 if CW_Test_Only then
9141 Matching_Op := Entity (Selector_Name (N));
9142 end if;
9144 -- Loop through ancestor types (including interfaces), traversing
9145 -- the homonym chain of the subprogram, trying out those homonyms
9146 -- whose first formal has the class-wide type of the ancestor, or
9147 -- an anonymous access type designating the class-wide type.
9149 Anc_Type := Obj_Type;
9150 loop
9151 -- Look for a match among homonyms associated with the ancestor
9153 Traverse_Homonyms (Anc_Type, Error);
9155 if Error then
9156 return True;
9157 end if;
9159 -- Continue the search for matches among homonyms associated with
9160 -- any interfaces implemented by the ancestor.
9162 Traverse_Interfaces (Anc_Type, Error);
9164 if Error then
9165 return True;
9166 end if;
9168 exit when Etype (Anc_Type) = Anc_Type;
9169 Anc_Type := Etype (Anc_Type);
9170 end loop;
9172 if Present (Matching_Op) then
9173 Set_Etype (Call_Node, Etype (Matching_Op));
9174 end if;
9176 return Present (Matching_Op);
9177 end Try_Class_Wide_Operation;
9179 -----------------------------------
9180 -- Try_One_Prefix_Interpretation --
9181 -----------------------------------
9183 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
9184 Prev_Obj_Type : constant Entity_Id := Obj_Type;
9185 -- If the interpretation does not have a valid candidate type,
9186 -- preserve current value of Obj_Type for subsequent errors.
9188 begin
9189 Obj_Type := T;
9191 if Is_Access_Type (Obj_Type) then
9192 Obj_Type := Designated_Type (Obj_Type);
9193 end if;
9195 if Ekind_In (Obj_Type, E_Private_Subtype,
9196 E_Record_Subtype_With_Private)
9197 then
9198 Obj_Type := Base_Type (Obj_Type);
9199 end if;
9201 if Is_Class_Wide_Type (Obj_Type) then
9202 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
9203 end if;
9205 -- The type may have be obtained through a limited_with clause,
9206 -- in which case the primitive operations are available on its
9207 -- nonlimited view. If still incomplete, retrieve full view.
9209 if Ekind (Obj_Type) = E_Incomplete_Type
9210 and then From_Limited_With (Obj_Type)
9211 and then Has_Non_Limited_View (Obj_Type)
9212 then
9213 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
9214 end if;
9216 -- If the object is not tagged, or the type is still an incomplete
9217 -- type, this is not a prefixed call. Restore the previous type as
9218 -- the current one is not a legal candidate.
9220 if not Is_Tagged_Type (Obj_Type)
9221 or else Is_Incomplete_Type (Obj_Type)
9222 then
9223 Obj_Type := Prev_Obj_Type;
9224 return;
9225 end if;
9227 declare
9228 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
9229 Ignore : Boolean;
9230 Prim_Result : Boolean := False;
9232 begin
9233 if not CW_Test_Only then
9234 Prim_Result :=
9235 Try_Primitive_Operation
9236 (Call_Node => New_Call_Node,
9237 Node_To_Replace => Node_To_Replace);
9238 end if;
9240 -- Check if there is a class-wide subprogram covering the
9241 -- primitive. This check must be done even if a candidate
9242 -- was found in order to report ambiguous calls.
9244 if not Prim_Result then
9245 Ignore :=
9246 Try_Class_Wide_Operation
9247 (Call_Node => New_Call_Node,
9248 Node_To_Replace => Node_To_Replace);
9250 -- If we found a primitive we search for class-wide subprograms
9251 -- using a duplicate of the call node (done to avoid missing its
9252 -- decoration if there is no ambiguity).
9254 else
9255 Ignore :=
9256 Try_Class_Wide_Operation
9257 (Call_Node => Dup_Call_Node,
9258 Node_To_Replace => Node_To_Replace);
9259 end if;
9260 end;
9261 end Try_One_Prefix_Interpretation;
9263 -----------------------------
9264 -- Try_Primitive_Operation --
9265 -----------------------------
9267 function Try_Primitive_Operation
9268 (Call_Node : Node_Id;
9269 Node_To_Replace : Node_Id) return Boolean
9271 Elmt : Elmt_Id;
9272 Prim_Op : Entity_Id;
9273 Matching_Op : Entity_Id := Empty;
9274 Prim_Op_Ref : Node_Id := Empty;
9276 Corr_Type : Entity_Id := Empty;
9277 -- If the prefix is a synchronized type, the controlling type of
9278 -- the primitive operation is the corresponding record type, else
9279 -- this is the object type itself.
9281 Success : Boolean := False;
9283 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
9284 -- For tagged types the candidate interpretations are found in
9285 -- the list of primitive operations of the type and its ancestors.
9286 -- For formal tagged types we have to find the operations declared
9287 -- in the same scope as the type (including in the generic formal
9288 -- part) because the type itself carries no primitive operations,
9289 -- except for formal derived types that inherit the operations of
9290 -- the parent and progenitors.
9292 -- If the context is a generic subprogram body, the generic formals
9293 -- are visible by name, but are not in the entity list of the
9294 -- subprogram because that list starts with the subprogram formals.
9295 -- We retrieve the candidate operations from the generic declaration.
9297 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
9298 -- Prefix notation can also be used on operations that are not
9299 -- primitives of the type, but are declared in the same immediate
9300 -- declarative part, which can only mean the corresponding package
9301 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
9302 -- list of primitives with body operations with the same name that
9303 -- may be candidates, so that Try_Primitive_Operations can examine
9304 -- them if no real primitive is found.
9306 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
9307 -- An operation that overrides an inherited operation in the private
9308 -- part of its package may be hidden, but if the inherited operation
9309 -- is visible a direct call to it will dispatch to the private one,
9310 -- which is therefore a valid candidate.
9312 function Names_Match
9313 (Obj_Type : Entity_Id;
9314 Prim_Op : Entity_Id;
9315 Subprog : Entity_Id) return Boolean;
9316 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
9317 -- is a protected type then compare also the original name of Prim_Op
9318 -- with the name of Subprog (since the expander may have added a
9319 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
9321 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
9322 -- Verify that the prefix, dereferenced if need be, is a valid
9323 -- controlling argument in a call to Op. The remaining actuals
9324 -- are checked in the subsequent call to Analyze_One_Call.
9326 ------------------------------
9327 -- Collect_Generic_Type_Ops --
9328 ------------------------------
9330 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
9331 Bas : constant Entity_Id := Base_Type (T);
9332 Candidates : constant Elist_Id := New_Elmt_List;
9333 Subp : Entity_Id;
9334 Formal : Entity_Id;
9336 procedure Check_Candidate;
9337 -- The operation is a candidate if its first parameter is a
9338 -- controlling operand of the desired type.
9340 -----------------------
9341 -- Check_Candidate; --
9342 -----------------------
9344 procedure Check_Candidate is
9345 begin
9346 Formal := First_Formal (Subp);
9348 if Present (Formal)
9349 and then Is_Controlling_Formal (Formal)
9350 and then
9351 (Base_Type (Etype (Formal)) = Bas
9352 or else
9353 (Is_Access_Type (Etype (Formal))
9354 and then Designated_Type (Etype (Formal)) = Bas))
9355 then
9356 Append_Elmt (Subp, Candidates);
9357 end if;
9358 end Check_Candidate;
9360 -- Start of processing for Collect_Generic_Type_Ops
9362 begin
9363 if Is_Derived_Type (T) then
9364 return Primitive_Operations (T);
9366 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
9368 -- Scan the list of generic formals to find subprograms
9369 -- that may have a first controlling formal of the type.
9371 if Nkind (Unit_Declaration_Node (Scope (T))) =
9372 N_Generic_Subprogram_Declaration
9373 then
9374 declare
9375 Decl : Node_Id;
9377 begin
9378 Decl :=
9379 First (Generic_Formal_Declarations
9380 (Unit_Declaration_Node (Scope (T))));
9381 while Present (Decl) loop
9382 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
9383 Subp := Defining_Entity (Decl);
9384 Check_Candidate;
9385 end if;
9387 Next (Decl);
9388 end loop;
9389 end;
9390 end if;
9391 return Candidates;
9393 else
9394 -- Scan the list of entities declared in the same scope as
9395 -- the type. In general this will be an open scope, given that
9396 -- the call we are analyzing can only appear within a generic
9397 -- declaration or body (either the one that declares T, or a
9398 -- child unit).
9400 -- For a subtype representing a generic actual type, go to the
9401 -- base type.
9403 if Is_Generic_Actual_Type (T) then
9404 Subp := First_Entity (Scope (Base_Type (T)));
9405 else
9406 Subp := First_Entity (Scope (T));
9407 end if;
9409 while Present (Subp) loop
9410 if Is_Overloadable (Subp) then
9411 Check_Candidate;
9412 end if;
9414 Next_Entity (Subp);
9415 end loop;
9417 return Candidates;
9418 end if;
9419 end Collect_Generic_Type_Ops;
9421 ----------------------------
9422 -- Extended_Primitive_Ops --
9423 ----------------------------
9425 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
9426 Type_Scope : constant Entity_Id := Scope (T);
9428 Body_Decls : List_Id;
9429 Op_Found : Boolean;
9430 Op : Entity_Id;
9431 Op_List : Elist_Id;
9433 begin
9434 Op_List := Primitive_Operations (T);
9436 if Ekind (Type_Scope) = E_Package
9437 and then In_Package_Body (Type_Scope)
9438 and then In_Open_Scopes (Type_Scope)
9439 then
9440 -- Retrieve list of declarations of package body.
9442 Body_Decls :=
9443 Declarations
9444 (Unit_Declaration_Node
9445 (Corresponding_Body
9446 (Unit_Declaration_Node (Type_Scope))));
9448 Op := Current_Entity (Subprog);
9449 Op_Found := False;
9450 while Present (Op) loop
9451 if Comes_From_Source (Op)
9452 and then Is_Overloadable (Op)
9454 -- Exclude overriding primitive operations of a type
9455 -- extension declared in the package body, to prevent
9456 -- duplicates in extended list.
9458 and then not Is_Primitive (Op)
9459 and then Is_List_Member (Unit_Declaration_Node (Op))
9460 and then List_Containing (Unit_Declaration_Node (Op)) =
9461 Body_Decls
9462 then
9463 if not Op_Found then
9465 -- Copy list of primitives so it is not affected for
9466 -- other uses.
9468 Op_List := New_Copy_Elist (Op_List);
9469 Op_Found := True;
9470 end if;
9472 Append_Elmt (Op, Op_List);
9473 end if;
9475 Op := Homonym (Op);
9476 end loop;
9477 end if;
9479 return Op_List;
9480 end Extended_Primitive_Ops;
9482 ---------------------------
9483 -- Is_Private_Overriding --
9484 ---------------------------
9486 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
9487 Visible_Op : Entity_Id;
9489 begin
9490 -- The subprogram may be overloaded with both visible and private
9491 -- entities with the same name. We have to scan the chain of
9492 -- homonyms to determine whether there is a previous implicit
9493 -- declaration in the same scope that is overridden by the
9494 -- private candidate.
9496 Visible_Op := Homonym (Op);
9497 while Present (Visible_Op) loop
9498 if Scope (Op) /= Scope (Visible_Op) then
9499 return False;
9501 elsif not Comes_From_Source (Visible_Op)
9502 and then Alias (Visible_Op) = Op
9503 and then not Is_Hidden (Visible_Op)
9504 then
9505 return True;
9506 end if;
9508 Visible_Op := Homonym (Visible_Op);
9509 end loop;
9511 return False;
9512 end Is_Private_Overriding;
9514 -----------------
9515 -- Names_Match --
9516 -----------------
9518 function Names_Match
9519 (Obj_Type : Entity_Id;
9520 Prim_Op : Entity_Id;
9521 Subprog : Entity_Id) return Boolean is
9522 begin
9523 -- Common case: exact match
9525 if Chars (Prim_Op) = Chars (Subprog) then
9526 return True;
9528 -- For protected type primitives the expander may have built the
9529 -- name of the dispatching primitive prepending the type name to
9530 -- avoid conflicts with the name of the protected subprogram (see
9531 -- Exp_Ch9.Build_Selected_Name).
9533 elsif Is_Protected_Type (Obj_Type) then
9534 return
9535 Present (Original_Protected_Subprogram (Prim_Op))
9536 and then Chars (Original_Protected_Subprogram (Prim_Op)) =
9537 Chars (Subprog);
9538 end if;
9540 return False;
9541 end Names_Match;
9543 -----------------------------
9544 -- Valid_First_Argument_Of --
9545 -----------------------------
9547 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9548 Typ : Entity_Id := Etype (First_Formal (Op));
9550 begin
9551 if Is_Concurrent_Type (Typ)
9552 and then Present (Corresponding_Record_Type (Typ))
9553 then
9554 Typ := Corresponding_Record_Type (Typ);
9555 end if;
9557 -- Simple case. Object may be a subtype of the tagged type or may
9558 -- be the corresponding record of a synchronized type.
9560 return Obj_Type = Typ
9561 or else Base_Type (Obj_Type) = Typ
9562 or else Corr_Type = Typ
9564 -- Object may be of a derived type whose parent has unknown
9565 -- discriminants, in which case the type matches the underlying
9566 -- record view of its base.
9568 or else
9569 (Has_Unknown_Discriminants (Typ)
9570 and then Typ = Underlying_Record_View (Base_Type (Obj_Type)))
9572 -- Prefix can be dereferenced
9574 or else
9575 (Is_Access_Type (Corr_Type)
9576 and then Designated_Type (Corr_Type) = Typ)
9578 -- Formal is an access parameter, for which the object can
9579 -- provide an access.
9581 or else
9582 (Ekind (Typ) = E_Anonymous_Access_Type
9583 and then
9584 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
9585 end Valid_First_Argument_Of;
9587 -- Start of processing for Try_Primitive_Operation
9589 begin
9590 -- Look for subprograms in the list of primitive operations. The name
9591 -- must be identical, and the kind of call indicates the expected
9592 -- kind of operation (function or procedure). If the type is a
9593 -- (tagged) synchronized type, the primitive ops are attached to the
9594 -- corresponding record (base) type.
9596 if Is_Concurrent_Type (Obj_Type) then
9597 if Present (Corresponding_Record_Type (Obj_Type)) then
9598 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
9599 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
9600 else
9601 Corr_Type := Obj_Type;
9602 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
9603 end if;
9605 elsif not Is_Generic_Type (Obj_Type) then
9606 Corr_Type := Obj_Type;
9607 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
9609 else
9610 Corr_Type := Obj_Type;
9611 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
9612 end if;
9614 while Present (Elmt) loop
9615 Prim_Op := Node (Elmt);
9617 if Names_Match (Obj_Type, Prim_Op, Subprog)
9618 and then Present (First_Formal (Prim_Op))
9619 and then Valid_First_Argument_Of (Prim_Op)
9620 and then
9621 (Nkind (Call_Node) = N_Function_Call)
9623 (Ekind (Prim_Op) = E_Function)
9624 then
9625 -- Ada 2005 (AI-251): If this primitive operation corresponds
9626 -- to an immediate ancestor interface there is no need to add
9627 -- it to the list of interpretations; the corresponding aliased
9628 -- primitive is also in this list of primitive operations and
9629 -- will be used instead.
9631 if (Present (Interface_Alias (Prim_Op))
9632 and then Is_Ancestor (Find_Dispatching_Type
9633 (Alias (Prim_Op)), Corr_Type))
9635 -- Do not consider hidden primitives unless the type is in an
9636 -- open scope or we are within an instance, where visibility
9637 -- is known to be correct, or else if this is an overriding
9638 -- operation in the private part for an inherited operation.
9640 or else (Is_Hidden (Prim_Op)
9641 and then not Is_Immediately_Visible (Obj_Type)
9642 and then not In_Instance
9643 and then not Is_Private_Overriding (Prim_Op))
9644 then
9645 goto Continue;
9646 end if;
9648 Set_Etype (Call_Node, Any_Type);
9649 Set_Is_Overloaded (Call_Node, False);
9651 if No (Matching_Op) then
9652 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
9653 Candidate := Prim_Op;
9655 Set_Parent (Call_Node, Parent (Node_To_Replace));
9657 Set_Name (Call_Node, Prim_Op_Ref);
9658 Success := False;
9660 Analyze_One_Call
9661 (N => Call_Node,
9662 Nam => Prim_Op,
9663 Report => Report_Error,
9664 Success => Success,
9665 Skip_First => True);
9667 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
9669 -- More than one interpretation, collect for subsequent
9670 -- disambiguation. If this is a procedure call and there
9671 -- is another match, report ambiguity now.
9673 else
9674 Analyze_One_Call
9675 (N => Call_Node,
9676 Nam => Prim_Op,
9677 Report => Report_Error,
9678 Success => Success,
9679 Skip_First => True);
9681 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
9682 and then Nkind (Call_Node) /= N_Function_Call
9683 then
9684 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
9685 Report_Ambiguity (Matching_Op);
9686 Report_Ambiguity (Prim_Op);
9687 return True;
9688 end if;
9689 end if;
9690 end if;
9692 <<Continue>>
9693 Next_Elmt (Elmt);
9694 end loop;
9696 if Present (Matching_Op) then
9697 Set_Etype (Call_Node, Etype (Matching_Op));
9698 end if;
9700 return Present (Matching_Op);
9701 end Try_Primitive_Operation;
9703 ---------------------
9704 -- Valid_Candidate --
9705 ---------------------
9707 function Valid_Candidate
9708 (Success : Boolean;
9709 Call : Node_Id;
9710 Subp : Entity_Id) return Entity_Id
9712 Arr_Type : Entity_Id;
9713 Comp_Type : Entity_Id;
9715 begin
9716 -- If the subprogram is a valid interpretation, record it in global
9717 -- variable Subprog, to collect all possible overloadings.
9719 if Success then
9720 if Subp /= Entity (Subprog) then
9721 Add_One_Interp (Subprog, Subp, Etype (Subp));
9722 end if;
9723 end if;
9725 -- If the call may be an indexed call, retrieve component type of
9726 -- resulting expression, and add possible interpretation.
9728 Arr_Type := Empty;
9729 Comp_Type := Empty;
9731 if Nkind (Call) = N_Function_Call
9732 and then Nkind (Parent (N)) = N_Indexed_Component
9733 and then Needs_One_Actual (Subp)
9734 then
9735 if Is_Array_Type (Etype (Subp)) then
9736 Arr_Type := Etype (Subp);
9738 elsif Is_Access_Type (Etype (Subp))
9739 and then Is_Array_Type (Designated_Type (Etype (Subp)))
9740 then
9741 Arr_Type := Designated_Type (Etype (Subp));
9742 end if;
9743 end if;
9745 if Present (Arr_Type) then
9747 -- Verify that the actuals (excluding the object) match the types
9748 -- of the indexes.
9750 declare
9751 Actual : Node_Id;
9752 Index : Node_Id;
9754 begin
9755 Actual := Next (First_Actual (Call));
9756 Index := First_Index (Arr_Type);
9757 while Present (Actual) and then Present (Index) loop
9758 if not Has_Compatible_Type (Actual, Etype (Index)) then
9759 Arr_Type := Empty;
9760 exit;
9761 end if;
9763 Next_Actual (Actual);
9764 Next_Index (Index);
9765 end loop;
9767 if No (Actual)
9768 and then No (Index)
9769 and then Present (Arr_Type)
9770 then
9771 Comp_Type := Component_Type (Arr_Type);
9772 end if;
9773 end;
9775 if Present (Comp_Type)
9776 and then Etype (Subprog) /= Comp_Type
9777 then
9778 Add_One_Interp (Subprog, Subp, Comp_Type);
9779 end if;
9780 end if;
9782 if Etype (Call) /= Any_Type then
9783 return Subp;
9784 else
9785 return Empty;
9786 end if;
9787 end Valid_Candidate;
9789 -- Start of processing for Try_Object_Operation
9791 begin
9792 Analyze_Expression (Obj);
9794 -- Analyze the actuals if node is known to be a subprogram call
9796 if Is_Subprg_Call and then N = Name (Parent (N)) then
9797 Actual := First (Parameter_Associations (Parent (N)));
9798 while Present (Actual) loop
9799 Analyze_Expression (Actual);
9800 Next (Actual);
9801 end loop;
9802 end if;
9804 -- Build a subprogram call node, using a copy of Obj as its first
9805 -- actual. This is a placeholder, to be replaced by an explicit
9806 -- dereference when needed.
9808 Transform_Object_Operation
9809 (Call_Node => New_Call_Node,
9810 Node_To_Replace => Node_To_Replace);
9812 Set_Etype (New_Call_Node, Any_Type);
9813 Set_Etype (Subprog, Any_Type);
9814 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
9816 if not Is_Overloaded (Obj) then
9817 Try_One_Prefix_Interpretation (Obj_Type);
9819 else
9820 declare
9821 I : Interp_Index;
9822 It : Interp;
9823 begin
9824 Get_First_Interp (Obj, I, It);
9825 while Present (It.Nam) loop
9826 Try_One_Prefix_Interpretation (It.Typ);
9827 Get_Next_Interp (I, It);
9828 end loop;
9829 end;
9830 end if;
9832 if Etype (New_Call_Node) /= Any_Type then
9834 -- No need to complete the tree transformations if we are only
9835 -- searching for conflicting class-wide subprograms
9837 if CW_Test_Only then
9838 return False;
9839 else
9840 Complete_Object_Operation
9841 (Call_Node => New_Call_Node,
9842 Node_To_Replace => Node_To_Replace);
9843 return True;
9844 end if;
9846 elsif Present (Candidate) then
9848 -- The argument list is not type correct. Re-analyze with error
9849 -- reporting enabled, and use one of the possible candidates.
9850 -- In All_Errors_Mode, re-analyze all failed interpretations.
9852 if All_Errors_Mode then
9853 Report_Error := True;
9854 if Try_Primitive_Operation
9855 (Call_Node => New_Call_Node,
9856 Node_To_Replace => Node_To_Replace)
9858 or else
9859 Try_Class_Wide_Operation
9860 (Call_Node => New_Call_Node,
9861 Node_To_Replace => Node_To_Replace)
9862 then
9863 null;
9864 end if;
9866 else
9867 Analyze_One_Call
9868 (N => New_Call_Node,
9869 Nam => Candidate,
9870 Report => True,
9871 Success => Success,
9872 Skip_First => True);
9873 end if;
9875 -- No need for further errors
9877 return True;
9879 else
9880 -- There was no candidate operation, so report it as an error
9881 -- in the caller: Analyze_Selected_Component.
9883 return False;
9884 end if;
9885 end Try_Object_Operation;
9887 ---------
9888 -- wpo --
9889 ---------
9891 procedure wpo (T : Entity_Id) is
9892 Op : Entity_Id;
9893 E : Elmt_Id;
9895 begin
9896 if not Is_Tagged_Type (T) then
9897 return;
9898 end if;
9900 E := First_Elmt (Primitive_Operations (Base_Type (T)));
9901 while Present (E) loop
9902 Op := Node (E);
9903 Write_Int (Int (Op));
9904 Write_Str (" === ");
9905 Write_Name (Chars (Op));
9906 Write_Str (" in ");
9907 Write_Name (Chars (Scope (Op)));
9908 Next_Elmt (E);
9909 Write_Eol;
9910 end loop;
9911 end wpo;
9913 end Sem_Ch4;