Make vect_model_store_cost take a vec_load_store_type
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob6199225ca9e9b47b0000435b32d6f4accc72abc6
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Contracts; use Contracts;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Elists; use Elists;
33 with Expander; use Expander;
34 with Exp_Aggr; use Exp_Aggr;
35 with Exp_Atag; use Exp_Atag;
36 with Exp_Ch2; use Exp_Ch2;
37 with Exp_Ch3; use Exp_Ch3;
38 with Exp_Ch7; use Exp_Ch7;
39 with Exp_Ch9; use Exp_Ch9;
40 with Exp_Dbug; use Exp_Dbug;
41 with Exp_Disp; use Exp_Disp;
42 with Exp_Dist; use Exp_Dist;
43 with Exp_Intr; use Exp_Intr;
44 with Exp_Pakd; use Exp_Pakd;
45 with Exp_Tss; use Exp_Tss;
46 with Exp_Util; use Exp_Util;
47 with Freeze; use Freeze;
48 with Inline; use Inline;
49 with Itypes; use Itypes;
50 with Lib; use Lib;
51 with Namet; use Namet;
52 with Nlists; use Nlists;
53 with Nmake; use Nmake;
54 with Opt; use Opt;
55 with Restrict; use Restrict;
56 with Rident; use Rident;
57 with Rtsfind; use Rtsfind;
58 with Sem; use Sem;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch12; use Sem_Ch12;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Eval; use Sem_Eval;
68 with Sem_Mech; use Sem_Mech;
69 with Sem_Res; use Sem_Res;
70 with Sem_SCIL; use Sem_SCIL;
71 with Sem_Util; use Sem_Util;
72 with Sinfo; use Sinfo;
73 with Snames; use Snames;
74 with Stand; use Stand;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Validsw; use Validsw;
79 package body Exp_Ch6 is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 function Caller_Known_Size
141 (Func_Call : Node_Id;
142 Result_Subt : Entity_Id) return Boolean;
143 -- True if result subtype is definite, or has a size that does not require
144 -- secondary stack usage (i.e. no variant part or components whose type
145 -- depends on discriminants). In particular, untagged types with only
146 -- access discriminants do not require secondary stack use. Note we must
147 -- always use the secondary stack for dispatching-on-result calls.
149 procedure Check_Overriding_Operation (Subp : Entity_Id);
150 -- Subp is a dispatching operation. Check whether it may override an
151 -- inherited private operation, in which case its DT entry is that of
152 -- the hidden operation, not the one it may have received earlier.
153 -- This must be done before emitting the code to set the corresponding
154 -- DT to the address of the subprogram. The actual placement of Subp in
155 -- the proper place in the list of primitive operations is done in
156 -- Declare_Inherited_Private_Subprograms, which also has to deal with
157 -- implicit operations. This duplication is unavoidable for now???
159 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
160 -- This procedure is called only if the subprogram body N, whose spec
161 -- has the given entity Spec, contains a parameterless recursive call.
162 -- It attempts to generate runtime code to detect if this a case of
163 -- infinite recursion.
165 -- The body is scanned to determine dependencies. If the only external
166 -- dependencies are on a small set of scalar variables, then the values
167 -- of these variables are captured on entry to the subprogram, and if
168 -- the values are not changed for the call, we know immediately that
169 -- we have an infinite recursion.
171 procedure Expand_Actuals
172 (N : Node_Id;
173 Subp : Entity_Id;
174 Post_Call : out List_Id);
175 -- Return a list of actions to take place after the call in Post_Call. The
176 -- call will later be rewritten as an Expression_With_Actions, with the
177 -- Post_Call actions inserted, and the call inside.
179 -- For each actual of an in-out or out parameter which is a numeric (view)
180 -- conversion of the form T (A), where A denotes a variable, we insert the
181 -- declaration:
183 -- Temp : T[ := T (A)];
185 -- prior to the call. Then we replace the actual with a reference to Temp,
186 -- and append the assignment:
188 -- A := TypeA (Temp);
190 -- after the call. Here TypeA is the actual type of variable A. For out
191 -- parameters, the initial declaration has no expression. If A is not an
192 -- entity name, we generate instead:
194 -- Var : TypeA renames A;
195 -- Temp : T := Var; -- omitting expression for out parameter.
196 -- ...
197 -- Var := TypeA (Temp);
199 -- For other in-out parameters, we emit the required constraint checks
200 -- before and/or after the call.
202 -- For all parameter modes, actuals that denote components and slices of
203 -- packed arrays are expanded into suitable temporaries.
205 -- For non-scalar objects that are possibly unaligned, add call by copy
206 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
208 -- For OUT and IN OUT parameters, add predicate checks after the call
209 -- based on the predicates of the actual type.
211 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
212 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
214 procedure Expand_Ctrl_Function_Call (N : Node_Id);
215 -- N is a function call which returns a controlled object. Transform the
216 -- call into a temporary which retrieves the returned object from the
217 -- secondary stack using 'reference.
219 procedure Expand_Non_Function_Return (N : Node_Id);
220 -- Expand a simple return statement found in a procedure body, entry body,
221 -- accept statement, or an extended return statement. Note that all non-
222 -- function returns are simple return statements.
224 function Expand_Protected_Object_Reference
225 (N : Node_Id;
226 Scop : Entity_Id) return Node_Id;
228 procedure Expand_Protected_Subprogram_Call
229 (N : Node_Id;
230 Subp : Entity_Id;
231 Scop : Entity_Id);
232 -- A call to a protected subprogram within the protected object may appear
233 -- as a regular call. The list of actuals must be expanded to contain a
234 -- reference to the object itself, and the call becomes a call to the
235 -- corresponding protected subprogram.
237 procedure Expand_Simple_Function_Return (N : Node_Id);
238 -- Expand simple return from function. In the case where we are returning
239 -- from a function body this is called by Expand_N_Simple_Return_Statement.
241 function Has_Unconstrained_Access_Discriminants
242 (Subtyp : Entity_Id) return Boolean;
243 -- Returns True if the given subtype is unconstrained and has one or more
244 -- access discriminants.
246 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
247 -- Insert the Post_Call list previously produced by routine Expand_Actuals
248 -- or Expand_Call_Helper into the tree.
250 procedure Replace_Renaming_Declaration_Id
251 (New_Decl : Node_Id;
252 Orig_Decl : Node_Id);
253 -- Replace the internal identifier of the new renaming declaration New_Decl
254 -- with the identifier of its original declaration Orig_Decl exchanging the
255 -- entities containing their defining identifiers to ensure the correct
256 -- replacement of the object declaration by the object renaming declaration
257 -- to avoid homograph conflicts (since the object declaration's defining
258 -- identifier was already entered in the current scope). The Next_Entity
259 -- links of the two entities are also swapped since the entities are part
260 -- of the return scope's entity list and the list structure would otherwise
261 -- be corrupted. The homonym chain is preserved as well.
263 procedure Rewrite_Function_Call_For_C (N : Node_Id);
264 -- When generating C code, replace a call to a function that returns an
265 -- array into the generated procedure with an additional out parameter.
267 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
268 -- N is a return statement for a function that returns its result on the
269 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
270 -- function and all blocks and loops that the return statement is jumping
271 -- out of. This ensures that the secondary stack is not released; otherwise
272 -- the function result would be reclaimed before returning to the caller.
274 ----------------------------------------------
275 -- Add_Access_Actual_To_Build_In_Place_Call --
276 ----------------------------------------------
278 procedure Add_Access_Actual_To_Build_In_Place_Call
279 (Function_Call : Node_Id;
280 Function_Id : Entity_Id;
281 Return_Object : Node_Id;
282 Is_Access : Boolean := False)
284 Loc : constant Source_Ptr := Sloc (Function_Call);
285 Obj_Address : Node_Id;
286 Obj_Acc_Formal : Entity_Id;
288 begin
289 -- Locate the implicit access parameter in the called function
291 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
293 -- If no return object is provided, then pass null
295 if not Present (Return_Object) then
296 Obj_Address := Make_Null (Loc);
297 Set_Parent (Obj_Address, Function_Call);
299 -- If Return_Object is already an expression of an access type, then use
300 -- it directly, since it must be an access value denoting the return
301 -- object, and couldn't possibly be the return object itself.
303 elsif Is_Access then
304 Obj_Address := Return_Object;
305 Set_Parent (Obj_Address, Function_Call);
307 -- Apply Unrestricted_Access to caller's return object
309 else
310 Obj_Address :=
311 Make_Attribute_Reference (Loc,
312 Prefix => Return_Object,
313 Attribute_Name => Name_Unrestricted_Access);
315 Set_Parent (Return_Object, Obj_Address);
316 Set_Parent (Obj_Address, Function_Call);
317 end if;
319 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
321 -- Build the parameter association for the new actual and add it to the
322 -- end of the function's actuals.
324 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
325 end Add_Access_Actual_To_Build_In_Place_Call;
327 ------------------------------------------------------
328 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
329 ------------------------------------------------------
331 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
332 (Function_Call : Node_Id;
333 Function_Id : Entity_Id;
334 Alloc_Form : BIP_Allocation_Form := Unspecified;
335 Alloc_Form_Exp : Node_Id := Empty;
336 Pool_Actual : Node_Id := Make_Null (No_Location))
338 Loc : constant Source_Ptr := Sloc (Function_Call);
339 Alloc_Form_Actual : Node_Id;
340 Alloc_Form_Formal : Node_Id;
341 Pool_Formal : Node_Id;
343 begin
344 -- The allocation form generally doesn't need to be passed in the case
345 -- of a constrained result subtype, since normally the caller performs
346 -- the allocation in that case. However this formal is still needed in
347 -- the case where the function has a tagged result, because generally
348 -- such functions can be called in a dispatching context and such calls
349 -- must be handled like calls to class-wide functions.
351 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
352 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
353 then
354 return;
355 end if;
357 -- Locate the implicit allocation form parameter in the called function.
358 -- Maybe it would be better for each implicit formal of a build-in-place
359 -- function to have a flag or a Uint attribute to identify it. ???
361 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
363 if Present (Alloc_Form_Exp) then
364 pragma Assert (Alloc_Form = Unspecified);
366 Alloc_Form_Actual := Alloc_Form_Exp;
368 else
369 pragma Assert (Alloc_Form /= Unspecified);
371 Alloc_Form_Actual :=
372 Make_Integer_Literal (Loc,
373 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
374 end if;
376 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
378 -- Build the parameter association for the new actual and add it to the
379 -- end of the function's actuals.
381 Add_Extra_Actual_To_Call
382 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
384 -- Pass the Storage_Pool parameter. This parameter is omitted on
385 -- ZFP as those targets do not support pools.
387 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
388 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
389 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
390 Add_Extra_Actual_To_Call
391 (Function_Call, Pool_Formal, Pool_Actual);
392 end if;
393 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
395 -----------------------------------------------------------
396 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
397 -----------------------------------------------------------
399 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
400 (Func_Call : Node_Id;
401 Func_Id : Entity_Id;
402 Ptr_Typ : Entity_Id := Empty;
403 Master_Exp : Node_Id := Empty)
405 begin
406 if not Needs_BIP_Finalization_Master (Func_Id) then
407 return;
408 end if;
410 declare
411 Formal : constant Entity_Id :=
412 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
413 Loc : constant Source_Ptr := Sloc (Func_Call);
415 Actual : Node_Id;
416 Desig_Typ : Entity_Id;
418 begin
419 -- If there is a finalization master actual, such as the implicit
420 -- finalization master of an enclosing build-in-place function,
421 -- then this must be added as an extra actual of the call.
423 if Present (Master_Exp) then
424 Actual := Master_Exp;
426 -- Case where the context does not require an actual master
428 elsif No (Ptr_Typ) then
429 Actual := Make_Null (Loc);
431 else
432 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
434 -- Check for a library-level access type whose designated type has
435 -- suppressed finalization or the access type is subject to pragma
436 -- No_Heap_Finalization. Such an access type lacks a master. Pass
437 -- a null actual to callee in order to signal a missing master.
439 if Is_Library_Level_Entity (Ptr_Typ)
440 and then (Finalize_Storage_Only (Desig_Typ)
441 or else No_Heap_Finalization (Ptr_Typ))
442 then
443 Actual := Make_Null (Loc);
445 -- Types in need of finalization actions
447 elsif Needs_Finalization (Desig_Typ) then
449 -- The general mechanism of creating finalization masters for
450 -- anonymous access types is disabled by default, otherwise
451 -- finalization masters will pop all over the place. Such types
452 -- use context-specific masters.
454 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
455 and then No (Finalization_Master (Ptr_Typ))
456 then
457 Build_Anonymous_Master (Ptr_Typ);
458 end if;
460 -- Access-to-controlled types should always have a master
462 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
464 Actual :=
465 Make_Attribute_Reference (Loc,
466 Prefix =>
467 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
468 Attribute_Name => Name_Unrestricted_Access);
470 -- Tagged types
472 else
473 Actual := Make_Null (Loc);
474 end if;
475 end if;
477 Analyze_And_Resolve (Actual, Etype (Formal));
479 -- Build the parameter association for the new actual and add it to
480 -- the end of the function's actuals.
482 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
483 end;
484 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
486 ------------------------------
487 -- Add_Extra_Actual_To_Call --
488 ------------------------------
490 procedure Add_Extra_Actual_To_Call
491 (Subprogram_Call : Node_Id;
492 Extra_Formal : Entity_Id;
493 Extra_Actual : Node_Id)
495 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
496 Param_Assoc : Node_Id;
498 begin
499 Param_Assoc :=
500 Make_Parameter_Association (Loc,
501 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
502 Explicit_Actual_Parameter => Extra_Actual);
504 Set_Parent (Param_Assoc, Subprogram_Call);
505 Set_Parent (Extra_Actual, Param_Assoc);
507 if Present (Parameter_Associations (Subprogram_Call)) then
508 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
509 N_Parameter_Association
510 then
512 -- Find last named actual, and append
514 declare
515 L : Node_Id;
516 begin
517 L := First_Actual (Subprogram_Call);
518 while Present (L) loop
519 if No (Next_Actual (L)) then
520 Set_Next_Named_Actual (Parent (L), Extra_Actual);
521 exit;
522 end if;
523 Next_Actual (L);
524 end loop;
525 end;
527 else
528 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
529 end if;
531 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
533 else
534 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
535 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
536 end if;
537 end Add_Extra_Actual_To_Call;
539 ---------------------------------------------
540 -- Add_Task_Actuals_To_Build_In_Place_Call --
541 ---------------------------------------------
543 procedure Add_Task_Actuals_To_Build_In_Place_Call
544 (Function_Call : Node_Id;
545 Function_Id : Entity_Id;
546 Master_Actual : Node_Id;
547 Chain : Node_Id := Empty)
549 Loc : constant Source_Ptr := Sloc (Function_Call);
550 Result_Subt : constant Entity_Id :=
551 Available_View (Etype (Function_Id));
552 Actual : Node_Id;
553 Chain_Actual : Node_Id;
554 Chain_Formal : Node_Id;
555 Master_Formal : Node_Id;
557 begin
558 -- No such extra parameters are needed if there are no tasks
560 if not Has_Task (Result_Subt) then
561 return;
562 end if;
564 Actual := Master_Actual;
566 -- Use a dummy _master actual in case of No_Task_Hierarchy
568 if Restriction_Active (No_Task_Hierarchy) then
569 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
571 -- In the case where we use the master associated with an access type,
572 -- the actual is an entity and requires an explicit reference.
574 elsif Nkind (Actual) = N_Defining_Identifier then
575 Actual := New_Occurrence_Of (Actual, Loc);
576 end if;
578 -- Locate the implicit master parameter in the called function
580 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
581 Analyze_And_Resolve (Actual, Etype (Master_Formal));
583 -- Build the parameter association for the new actual and add it to the
584 -- end of the function's actuals.
586 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
588 -- Locate the implicit activation chain parameter in the called function
590 Chain_Formal :=
591 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
593 -- Create the actual which is a pointer to the current activation chain
595 if No (Chain) then
596 Chain_Actual :=
597 Make_Attribute_Reference (Loc,
598 Prefix => Make_Identifier (Loc, Name_uChain),
599 Attribute_Name => Name_Unrestricted_Access);
601 -- Allocator case; make a reference to the Chain passed in by the caller
603 else
604 Chain_Actual :=
605 Make_Attribute_Reference (Loc,
606 Prefix => New_Occurrence_Of (Chain, Loc),
607 Attribute_Name => Name_Unrestricted_Access);
608 end if;
610 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
612 -- Build the parameter association for the new actual and add it to the
613 -- end of the function's actuals.
615 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
616 end Add_Task_Actuals_To_Build_In_Place_Call;
618 -----------------------
619 -- BIP_Formal_Suffix --
620 -----------------------
622 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
623 begin
624 case Kind is
625 when BIP_Alloc_Form =>
626 return "BIPalloc";
628 when BIP_Storage_Pool =>
629 return "BIPstoragepool";
631 when BIP_Finalization_Master =>
632 return "BIPfinalizationmaster";
634 when BIP_Task_Master =>
635 return "BIPtaskmaster";
637 when BIP_Activation_Chain =>
638 return "BIPactivationchain";
640 when BIP_Object_Access =>
641 return "BIPaccess";
642 end case;
643 end BIP_Formal_Suffix;
645 ---------------------------
646 -- Build_In_Place_Formal --
647 ---------------------------
649 function Build_In_Place_Formal
650 (Func : Entity_Id;
651 Kind : BIP_Formal_Kind) return Entity_Id
653 Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
654 Extra_Formal : Entity_Id := Extra_Formals (Func);
656 begin
657 -- Maybe it would be better for each implicit formal of a build-in-place
658 -- function to have a flag or a Uint attribute to identify it. ???
660 -- The return type in the function declaration may have been a limited
661 -- view, and the extra formals for the function were not generated at
662 -- that point. At the point of call the full view must be available and
663 -- the extra formals can be created.
665 if No (Extra_Formal) then
666 Create_Extra_Formals (Func);
667 Extra_Formal := Extra_Formals (Func);
668 end if;
670 -- We search for a formal with a matching suffix. We can't search
671 -- for the full name, because of the code at the end of Sem_Ch6.-
672 -- Create_Extra_Formals, which copies the Extra_Formals over to
673 -- the Alias of an instance, which will cause the formals to have
674 -- "incorrect" names.
676 loop
677 pragma Assert (Present (Extra_Formal));
678 declare
679 Name : constant String := Get_Name_String (Chars (Extra_Formal));
680 begin
681 exit when Name'Length >= Formal_Suffix'Length
682 and then Formal_Suffix =
683 Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
684 end;
686 Next_Formal_With_Extras (Extra_Formal);
687 end loop;
689 return Extra_Formal;
690 end Build_In_Place_Formal;
692 -------------------------------
693 -- Build_Procedure_Body_Form --
694 -------------------------------
696 function Build_Procedure_Body_Form
697 (Func_Id : Entity_Id;
698 Func_Body : Node_Id) return Node_Id
700 Loc : constant Source_Ptr := Sloc (Func_Body);
702 Proc_Decl : constant Node_Id :=
703 Next (Unit_Declaration_Node (Func_Id));
704 -- It is assumed that the next node following the declaration of the
705 -- corresponding subprogram spec is the declaration of the procedure
706 -- form.
708 Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
710 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
711 -- Replace each return statement found in the list Stmts with an
712 -- assignment of the return expression to parameter Param_Id.
714 ---------------------
715 -- Replace_Returns --
716 ---------------------
718 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
719 Stmt : Node_Id;
721 begin
722 Stmt := First (Stmts);
723 while Present (Stmt) loop
724 if Nkind (Stmt) = N_Block_Statement then
725 Replace_Returns (Param_Id,
726 Statements (Handled_Statement_Sequence (Stmt)));
728 elsif Nkind (Stmt) = N_Case_Statement then
729 declare
730 Alt : Node_Id;
731 begin
732 Alt := First (Alternatives (Stmt));
733 while Present (Alt) loop
734 Replace_Returns (Param_Id, Statements (Alt));
735 Next (Alt);
736 end loop;
737 end;
739 elsif Nkind (Stmt) = N_Extended_Return_Statement then
740 declare
741 Ret_Obj : constant Entity_Id :=
742 Defining_Entity
743 (First (Return_Object_Declarations (Stmt)));
744 Assign : constant Node_Id :=
745 Make_Assignment_Statement (Sloc (Stmt),
746 Name =>
747 New_Occurrence_Of (Param_Id, Loc),
748 Expression =>
749 New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
750 Stmts : List_Id;
752 begin
753 -- The extended return may just contain the declaration
755 if Present (Handled_Statement_Sequence (Stmt)) then
756 Stmts := Statements (Handled_Statement_Sequence (Stmt));
757 else
758 Stmts := New_List;
759 end if;
761 Set_Assignment_OK (Name (Assign));
763 Rewrite (Stmt,
764 Make_Block_Statement (Sloc (Stmt),
765 Declarations =>
766 Return_Object_Declarations (Stmt),
767 Handled_Statement_Sequence =>
768 Make_Handled_Sequence_Of_Statements (Loc,
769 Statements => Stmts)));
771 Replace_Returns (Param_Id, Stmts);
773 Append_To (Stmts, Assign);
774 Append_To (Stmts, Make_Simple_Return_Statement (Loc));
775 end;
777 elsif Nkind (Stmt) = N_If_Statement then
778 Replace_Returns (Param_Id, Then_Statements (Stmt));
779 Replace_Returns (Param_Id, Else_Statements (Stmt));
781 declare
782 Part : Node_Id;
783 begin
784 Part := First (Elsif_Parts (Stmt));
785 while Present (Part) loop
786 Replace_Returns (Param_Id, Then_Statements (Part));
787 Next (Part);
788 end loop;
789 end;
791 elsif Nkind (Stmt) = N_Loop_Statement then
792 Replace_Returns (Param_Id, Statements (Stmt));
794 elsif Nkind (Stmt) = N_Simple_Return_Statement then
796 -- Generate:
797 -- Param := Expr;
798 -- return;
800 Rewrite (Stmt,
801 Make_Assignment_Statement (Sloc (Stmt),
802 Name => New_Occurrence_Of (Param_Id, Loc),
803 Expression => Relocate_Node (Expression (Stmt))));
805 Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
807 -- Skip the added return
809 Next (Stmt);
810 end if;
812 Next (Stmt);
813 end loop;
814 end Replace_Returns;
816 -- Local variables
818 Stmts : List_Id;
819 New_Body : Node_Id;
821 -- Start of processing for Build_Procedure_Body_Form
823 begin
824 -- This routine replaces the original function body:
826 -- function F (...) return Array_Typ is
827 -- begin
828 -- ...
829 -- return Something;
830 -- end F;
832 -- with the following:
834 -- procedure P (..., Result : out Array_Typ) is
835 -- begin
836 -- ...
837 -- Result := Something;
838 -- end P;
840 Stmts :=
841 Statements (Handled_Statement_Sequence (Func_Body));
842 Replace_Returns (Last_Entity (Proc_Id), Stmts);
844 New_Body :=
845 Make_Subprogram_Body (Loc,
846 Specification =>
847 Copy_Subprogram_Spec (Specification (Proc_Decl)),
848 Declarations => Declarations (Func_Body),
849 Handled_Statement_Sequence =>
850 Make_Handled_Sequence_Of_Statements (Loc,
851 Statements => Stmts));
853 -- If the function is a generic instance, so is the new procedure.
854 -- Set flag accordingly so that the proper renaming declarations are
855 -- generated.
857 Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
858 return New_Body;
859 end Build_Procedure_Body_Form;
861 -----------------------
862 -- Caller_Known_Size --
863 -----------------------
865 function Caller_Known_Size
866 (Func_Call : Node_Id;
867 Result_Subt : Entity_Id) return Boolean
869 begin
870 return
871 (Is_Definite_Subtype (Underlying_Type (Result_Subt))
872 and then No (Controlling_Argument (Func_Call)))
873 or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
874 end Caller_Known_Size;
876 --------------------------------
877 -- Check_Overriding_Operation --
878 --------------------------------
880 procedure Check_Overriding_Operation (Subp : Entity_Id) is
881 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
882 Op_List : constant Elist_Id := Primitive_Operations (Typ);
883 Op_Elmt : Elmt_Id;
884 Prim_Op : Entity_Id;
885 Par_Op : Entity_Id;
887 begin
888 if Is_Derived_Type (Typ)
889 and then not Is_Private_Type (Typ)
890 and then In_Open_Scopes (Scope (Etype (Typ)))
891 and then Is_Base_Type (Typ)
892 then
893 -- Subp overrides an inherited private operation if there is an
894 -- inherited operation with a different name than Subp (see
895 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
896 -- same name as Subp.
898 Op_Elmt := First_Elmt (Op_List);
899 while Present (Op_Elmt) loop
900 Prim_Op := Node (Op_Elmt);
901 Par_Op := Alias (Prim_Op);
903 if Present (Par_Op)
904 and then not Comes_From_Source (Prim_Op)
905 and then Chars (Prim_Op) /= Chars (Par_Op)
906 and then Chars (Par_Op) = Chars (Subp)
907 and then Is_Hidden (Par_Op)
908 and then Type_Conformant (Prim_Op, Subp)
909 then
910 Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
911 end if;
913 Next_Elmt (Op_Elmt);
914 end loop;
915 end if;
916 end Check_Overriding_Operation;
918 -------------------------------
919 -- Detect_Infinite_Recursion --
920 -------------------------------
922 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
923 Loc : constant Source_Ptr := Sloc (N);
925 Var_List : constant Elist_Id := New_Elmt_List;
926 -- List of globals referenced by body of procedure
928 Call_List : constant Elist_Id := New_Elmt_List;
929 -- List of recursive calls in body of procedure
931 Shad_List : constant Elist_Id := New_Elmt_List;
932 -- List of entity id's for entities created to capture the value of
933 -- referenced globals on entry to the procedure.
935 Scop : constant Uint := Scope_Depth (Spec);
936 -- This is used to record the scope depth of the current procedure, so
937 -- that we can identify global references.
939 Max_Vars : constant := 4;
940 -- Do not test more than four global variables
942 Count_Vars : Natural := 0;
943 -- Count variables found so far
945 Var : Entity_Id;
946 Elm : Elmt_Id;
947 Ent : Entity_Id;
948 Call : Elmt_Id;
949 Decl : Node_Id;
950 Test : Node_Id;
951 Elm1 : Elmt_Id;
952 Elm2 : Elmt_Id;
953 Last : Node_Id;
955 function Process (Nod : Node_Id) return Traverse_Result;
956 -- Function to traverse the subprogram body (using Traverse_Func)
958 -------------
959 -- Process --
960 -------------
962 function Process (Nod : Node_Id) return Traverse_Result is
963 begin
964 -- Procedure call
966 if Nkind (Nod) = N_Procedure_Call_Statement then
968 -- Case of one of the detected recursive calls
970 if Is_Entity_Name (Name (Nod))
971 and then Has_Recursive_Call (Entity (Name (Nod)))
972 and then Entity (Name (Nod)) = Spec
973 then
974 Append_Elmt (Nod, Call_List);
975 return Skip;
977 -- Any other procedure call may have side effects
979 else
980 return Abandon;
981 end if;
983 -- A call to a pure function can always be ignored
985 elsif Nkind (Nod) = N_Function_Call
986 and then Is_Entity_Name (Name (Nod))
987 and then Is_Pure (Entity (Name (Nod)))
988 then
989 return Skip;
991 -- Case of an identifier reference
993 elsif Nkind (Nod) = N_Identifier then
994 Ent := Entity (Nod);
996 -- If no entity, then ignore the reference
998 -- Not clear why this can happen. To investigate, remove this
999 -- test and look at the crash that occurs here in 3401-004 ???
1001 if No (Ent) then
1002 return Skip;
1004 -- Ignore entities with no Scope, again not clear how this
1005 -- can happen, to investigate, look at 4108-008 ???
1007 elsif No (Scope (Ent)) then
1008 return Skip;
1010 -- Ignore the reference if not to a more global object
1012 elsif Scope_Depth (Scope (Ent)) >= Scop then
1013 return Skip;
1015 -- References to types, exceptions and constants are always OK
1017 elsif Is_Type (Ent)
1018 or else Ekind (Ent) = E_Exception
1019 or else Ekind (Ent) = E_Constant
1020 then
1021 return Skip;
1023 -- If other than a non-volatile scalar variable, we have some
1024 -- kind of global reference (e.g. to a function) that we cannot
1025 -- deal with so we forget the attempt.
1027 elsif Ekind (Ent) /= E_Variable
1028 or else not Is_Scalar_Type (Etype (Ent))
1029 or else Treat_As_Volatile (Ent)
1030 then
1031 return Abandon;
1033 -- Otherwise we have a reference to a global scalar
1035 else
1036 -- Loop through global entities already detected
1038 Elm := First_Elmt (Var_List);
1039 loop
1040 -- If not detected before, record this new global reference
1042 if No (Elm) then
1043 Count_Vars := Count_Vars + 1;
1045 if Count_Vars <= Max_Vars then
1046 Append_Elmt (Entity (Nod), Var_List);
1047 else
1048 return Abandon;
1049 end if;
1051 exit;
1053 -- If recorded before, ignore
1055 elsif Node (Elm) = Entity (Nod) then
1056 return Skip;
1058 -- Otherwise keep looking
1060 else
1061 Next_Elmt (Elm);
1062 end if;
1063 end loop;
1065 return Skip;
1066 end if;
1068 -- For all other node kinds, recursively visit syntactic children
1070 else
1071 return OK;
1072 end if;
1073 end Process;
1075 function Traverse_Body is new Traverse_Func (Process);
1077 -- Start of processing for Detect_Infinite_Recursion
1079 begin
1080 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1081 -- won't be able to generate the code to handle the recursion in any
1082 -- case.
1084 if Restriction_Active (No_Implicit_Conditionals) then
1085 return;
1086 end if;
1088 -- Otherwise do traversal and quit if we get abandon signal
1090 if Traverse_Body (N) = Abandon then
1091 return;
1093 -- We must have a call, since Has_Recursive_Call was set. If not just
1094 -- ignore (this is only an error check, so if we have a funny situation,
1095 -- due to bugs or errors, we do not want to bomb).
1097 elsif Is_Empty_Elmt_List (Call_List) then
1098 return;
1099 end if;
1101 -- Here is the case where we detect recursion at compile time
1103 -- Push our current scope for analyzing the declarations and code that
1104 -- we will insert for the checking.
1106 Push_Scope (Spec);
1108 -- This loop builds temporary variables for each of the referenced
1109 -- globals, so that at the end of the loop the list Shad_List contains
1110 -- these temporaries in one-to-one correspondence with the elements in
1111 -- Var_List.
1113 Last := Empty;
1114 Elm := First_Elmt (Var_List);
1115 while Present (Elm) loop
1116 Var := Node (Elm);
1117 Ent := Make_Temporary (Loc, 'S');
1118 Append_Elmt (Ent, Shad_List);
1120 -- Insert a declaration for this temporary at the start of the
1121 -- declarations for the procedure. The temporaries are declared as
1122 -- constant objects initialized to the current values of the
1123 -- corresponding temporaries.
1125 Decl :=
1126 Make_Object_Declaration (Loc,
1127 Defining_Identifier => Ent,
1128 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
1129 Constant_Present => True,
1130 Expression => New_Occurrence_Of (Var, Loc));
1132 if No (Last) then
1133 Prepend (Decl, Declarations (N));
1134 else
1135 Insert_After (Last, Decl);
1136 end if;
1138 Last := Decl;
1139 Analyze (Decl);
1140 Next_Elmt (Elm);
1141 end loop;
1143 -- Loop through calls
1145 Call := First_Elmt (Call_List);
1146 while Present (Call) loop
1148 -- Build a predicate expression of the form
1150 -- True
1151 -- and then global1 = temp1
1152 -- and then global2 = temp2
1153 -- ...
1155 -- This predicate determines if any of the global values
1156 -- referenced by the procedure have changed since the
1157 -- current call, if not an infinite recursion is assured.
1159 Test := New_Occurrence_Of (Standard_True, Loc);
1161 Elm1 := First_Elmt (Var_List);
1162 Elm2 := First_Elmt (Shad_List);
1163 while Present (Elm1) loop
1164 Test :=
1165 Make_And_Then (Loc,
1166 Left_Opnd => Test,
1167 Right_Opnd =>
1168 Make_Op_Eq (Loc,
1169 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
1170 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1172 Next_Elmt (Elm1);
1173 Next_Elmt (Elm2);
1174 end loop;
1176 -- Now we replace the call with the sequence
1178 -- if no-changes (see above) then
1179 -- raise Storage_Error;
1180 -- else
1181 -- original-call
1182 -- end if;
1184 Rewrite (Node (Call),
1185 Make_If_Statement (Loc,
1186 Condition => Test,
1187 Then_Statements => New_List (
1188 Make_Raise_Storage_Error (Loc,
1189 Reason => SE_Infinite_Recursion)),
1191 Else_Statements => New_List (
1192 Relocate_Node (Node (Call)))));
1194 Analyze (Node (Call));
1196 Next_Elmt (Call);
1197 end loop;
1199 -- Remove temporary scope stack entry used for analysis
1201 Pop_Scope;
1202 end Detect_Infinite_Recursion;
1204 --------------------
1205 -- Expand_Actuals --
1206 --------------------
1208 procedure Expand_Actuals
1209 (N : Node_Id;
1210 Subp : Entity_Id;
1211 Post_Call : out List_Id)
1213 Loc : constant Source_Ptr := Sloc (N);
1214 Actual : Node_Id;
1215 Formal : Entity_Id;
1216 N_Node : Node_Id;
1217 E_Actual : Entity_Id;
1218 E_Formal : Entity_Id;
1220 procedure Add_Call_By_Copy_Code;
1221 -- For cases where the parameter must be passed by copy, this routine
1222 -- generates a temporary variable into which the actual is copied and
1223 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1224 -- an assignment is also generated to copy the result back. The call
1225 -- also takes care of any constraint checks required for the type
1226 -- conversion case (on both the way in and the way out).
1228 procedure Add_Simple_Call_By_Copy_Code;
1229 -- This is similar to the above, but is used in cases where we know
1230 -- that all that is needed is to simply create a temporary and copy
1231 -- the value in and out of the temporary.
1233 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1234 -- Perform copy-back for actual parameter Act which denotes a validation
1235 -- variable.
1237 procedure Check_Fortran_Logical;
1238 -- A value of type Logical that is passed through a formal parameter
1239 -- must be normalized because .TRUE. usually does not have the same
1240 -- representation as True. We assume that .FALSE. = False = 0.
1241 -- What about functions that return a logical type ???
1243 function Is_Legal_Copy return Boolean;
1244 -- Check that an actual can be copied before generating the temporary
1245 -- to be used in the call. If the actual is of a by_reference type then
1246 -- the program is illegal (this can only happen in the presence of
1247 -- rep. clauses that force an incorrect alignment). If the formal is
1248 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1249 -- the effect that this might lead to unaligned arguments.
1251 function Make_Var (Actual : Node_Id) return Entity_Id;
1252 -- Returns an entity that refers to the given actual parameter, Actual
1253 -- (not including any type conversion). If Actual is an entity name,
1254 -- then this entity is returned unchanged, otherwise a renaming is
1255 -- created to provide an entity for the actual.
1257 procedure Reset_Packed_Prefix;
1258 -- The expansion of a packed array component reference is delayed in
1259 -- the context of a call. Now we need to complete the expansion, so we
1260 -- unmark the analyzed bits in all prefixes.
1262 ---------------------------
1263 -- Add_Call_By_Copy_Code --
1264 ---------------------------
1266 procedure Add_Call_By_Copy_Code is
1267 Crep : Boolean;
1268 Expr : Node_Id;
1269 F_Typ : Entity_Id := Etype (Formal);
1270 Indic : Node_Id;
1271 Init : Node_Id;
1272 Temp : Entity_Id;
1273 V_Typ : Entity_Id;
1274 Var : Entity_Id;
1276 begin
1277 if not Is_Legal_Copy then
1278 return;
1279 end if;
1281 Temp := Make_Temporary (Loc, 'T', Actual);
1283 -- Handle formals whose type comes from the limited view
1285 if From_Limited_With (F_Typ)
1286 and then Has_Non_Limited_View (F_Typ)
1287 then
1288 F_Typ := Non_Limited_View (F_Typ);
1289 end if;
1291 -- Use formal type for temp, unless formal type is an unconstrained
1292 -- array, in which case we don't have to worry about bounds checks,
1293 -- and we use the actual type, since that has appropriate bounds.
1295 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1296 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1297 else
1298 Indic := New_Occurrence_Of (F_Typ, Loc);
1299 end if;
1301 if Nkind (Actual) = N_Type_Conversion then
1302 V_Typ := Etype (Expression (Actual));
1304 -- If the formal is an (in-)out parameter, capture the name
1305 -- of the variable in order to build the post-call assignment.
1307 Var := Make_Var (Expression (Actual));
1309 Crep := not Same_Representation
1310 (F_Typ, Etype (Expression (Actual)));
1312 else
1313 V_Typ := Etype (Actual);
1314 Var := Make_Var (Actual);
1315 Crep := False;
1316 end if;
1318 -- Setup initialization for case of in out parameter, or an out
1319 -- parameter where the formal is an unconstrained array (in the
1320 -- latter case, we have to pass in an object with bounds).
1322 -- If this is an out parameter, the initial copy is wasteful, so as
1323 -- an optimization for the one-dimensional case we extract the
1324 -- bounds of the actual and build an uninitialized temporary of the
1325 -- right size.
1327 if Ekind (Formal) = E_In_Out_Parameter
1328 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1329 then
1330 if Nkind (Actual) = N_Type_Conversion then
1331 if Conversion_OK (Actual) then
1332 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1333 else
1334 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1335 end if;
1337 elsif Ekind (Formal) = E_Out_Parameter
1338 and then Is_Array_Type (F_Typ)
1339 and then Number_Dimensions (F_Typ) = 1
1340 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1341 then
1342 -- Actual is a one-dimensional array or slice, and the type
1343 -- requires no initialization. Create a temporary of the
1344 -- right size, but do not copy actual into it (optimization).
1346 Init := Empty;
1347 Indic :=
1348 Make_Subtype_Indication (Loc,
1349 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1350 Constraint =>
1351 Make_Index_Or_Discriminant_Constraint (Loc,
1352 Constraints => New_List (
1353 Make_Range (Loc,
1354 Low_Bound =>
1355 Make_Attribute_Reference (Loc,
1356 Prefix => New_Occurrence_Of (Var, Loc),
1357 Attribute_Name => Name_First),
1358 High_Bound =>
1359 Make_Attribute_Reference (Loc,
1360 Prefix => New_Occurrence_Of (Var, Loc),
1361 Attribute_Name => Name_Last)))));
1363 else
1364 Init := New_Occurrence_Of (Var, Loc);
1365 end if;
1367 -- An initialization is created for packed conversions as
1368 -- actuals for out parameters to enable Make_Object_Declaration
1369 -- to determine the proper subtype for N_Node. Note that this
1370 -- is wasteful because the extra copying on the call side is
1371 -- not required for such out parameters. ???
1373 elsif Ekind (Formal) = E_Out_Parameter
1374 and then Nkind (Actual) = N_Type_Conversion
1375 and then (Is_Bit_Packed_Array (F_Typ)
1376 or else
1377 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1378 then
1379 if Conversion_OK (Actual) then
1380 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1381 else
1382 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1383 end if;
1385 elsif Ekind (Formal) = E_In_Parameter then
1387 -- Handle the case in which the actual is a type conversion
1389 if Nkind (Actual) = N_Type_Conversion then
1390 if Conversion_OK (Actual) then
1391 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1392 else
1393 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1394 end if;
1395 else
1396 Init := New_Occurrence_Of (Var, Loc);
1397 end if;
1399 else
1400 Init := Empty;
1401 end if;
1403 N_Node :=
1404 Make_Object_Declaration (Loc,
1405 Defining_Identifier => Temp,
1406 Object_Definition => Indic,
1407 Expression => Init);
1408 Set_Assignment_OK (N_Node);
1409 Insert_Action (N, N_Node);
1411 -- Now, normally the deal here is that we use the defining
1412 -- identifier created by that object declaration. There is
1413 -- one exception to this. In the change of representation case
1414 -- the above declaration will end up looking like:
1416 -- temp : type := identifier;
1418 -- And in this case we might as well use the identifier directly
1419 -- and eliminate the temporary. Note that the analysis of the
1420 -- declaration was not a waste of time in that case, since it is
1421 -- what generated the necessary change of representation code. If
1422 -- the change of representation introduced additional code, as in
1423 -- a fixed-integer conversion, the expression is not an identifier
1424 -- and must be kept.
1426 if Crep
1427 and then Present (Expression (N_Node))
1428 and then Is_Entity_Name (Expression (N_Node))
1429 then
1430 Temp := Entity (Expression (N_Node));
1431 Rewrite (N_Node, Make_Null_Statement (Loc));
1432 end if;
1434 -- For IN parameter, all we do is to replace the actual
1436 if Ekind (Formal) = E_In_Parameter then
1437 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1438 Analyze (Actual);
1440 -- Processing for OUT or IN OUT parameter
1442 else
1443 -- Kill current value indications for the temporary variable we
1444 -- created, since we just passed it as an OUT parameter.
1446 Kill_Current_Values (Temp);
1447 Set_Is_Known_Valid (Temp, False);
1449 -- If type conversion, use reverse conversion on exit
1451 if Nkind (Actual) = N_Type_Conversion then
1452 if Conversion_OK (Actual) then
1453 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1454 else
1455 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1456 end if;
1457 else
1458 Expr := New_Occurrence_Of (Temp, Loc);
1459 end if;
1461 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1462 Analyze (Actual);
1464 -- If the actual is a conversion of a packed reference, it may
1465 -- already have been expanded by Remove_Side_Effects, and the
1466 -- resulting variable is a temporary which does not designate
1467 -- the proper out-parameter, which may not be addressable. In
1468 -- that case, generate an assignment to the original expression
1469 -- (before expansion of the packed reference) so that the proper
1470 -- expansion of assignment to a packed component can take place.
1472 declare
1473 Obj : Node_Id;
1474 Lhs : Node_Id;
1476 begin
1477 if Is_Renaming_Of_Object (Var)
1478 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1479 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1480 = N_Indexed_Component
1481 and then
1482 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1483 then
1484 Obj := Renamed_Object (Var);
1485 Lhs :=
1486 Make_Selected_Component (Loc,
1487 Prefix =>
1488 New_Copy_Tree (Original_Node (Prefix (Obj))),
1489 Selector_Name => New_Copy (Selector_Name (Obj)));
1490 Reset_Analyzed_Flags (Lhs);
1492 else
1493 Lhs := New_Occurrence_Of (Var, Loc);
1494 end if;
1496 Set_Assignment_OK (Lhs);
1498 if Is_Access_Type (E_Formal)
1499 and then Is_Entity_Name (Lhs)
1500 and then
1501 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1502 then
1503 -- Copyback target is an Ada 2012 stand-alone object of an
1504 -- anonymous access type.
1506 pragma Assert (Ada_Version >= Ada_2012);
1508 if Type_Access_Level (E_Formal) >
1509 Object_Access_Level (Lhs)
1510 then
1511 Append_To (Post_Call,
1512 Make_Raise_Program_Error (Loc,
1513 Reason => PE_Accessibility_Check_Failed));
1514 end if;
1516 Append_To (Post_Call,
1517 Make_Assignment_Statement (Loc,
1518 Name => Lhs,
1519 Expression => Expr));
1521 -- We would like to somehow suppress generation of the
1522 -- extra_accessibility assignment generated by the expansion
1523 -- of the above assignment statement. It's not a correctness
1524 -- issue because the following assignment renders it dead,
1525 -- but generating back-to-back assignments to the same
1526 -- target is undesirable. ???
1528 Append_To (Post_Call,
1529 Make_Assignment_Statement (Loc,
1530 Name => New_Occurrence_Of (
1531 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1532 Expression => Make_Integer_Literal (Loc,
1533 Type_Access_Level (E_Formal))));
1535 else
1536 Append_To (Post_Call,
1537 Make_Assignment_Statement (Loc,
1538 Name => Lhs,
1539 Expression => Expr));
1540 end if;
1541 end;
1542 end if;
1543 end Add_Call_By_Copy_Code;
1545 ----------------------------------
1546 -- Add_Simple_Call_By_Copy_Code --
1547 ----------------------------------
1549 procedure Add_Simple_Call_By_Copy_Code is
1550 Decl : Node_Id;
1551 F_Typ : Entity_Id := Etype (Formal);
1552 Incod : Node_Id;
1553 Indic : Node_Id;
1554 Lhs : Node_Id;
1555 Outcod : Node_Id;
1556 Rhs : Node_Id;
1557 Temp : Entity_Id;
1559 begin
1560 if not Is_Legal_Copy then
1561 return;
1562 end if;
1564 -- Handle formals whose type comes from the limited view
1566 if From_Limited_With (F_Typ)
1567 and then Has_Non_Limited_View (F_Typ)
1568 then
1569 F_Typ := Non_Limited_View (F_Typ);
1570 end if;
1572 -- Use formal type for temp, unless formal type is an unconstrained
1573 -- array, in which case we don't have to worry about bounds checks,
1574 -- and we use the actual type, since that has appropriate bounds.
1576 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1577 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1578 else
1579 Indic := New_Occurrence_Of (F_Typ, Loc);
1580 end if;
1582 -- Prepare to generate code
1584 Reset_Packed_Prefix;
1586 Temp := Make_Temporary (Loc, 'T', Actual);
1587 Incod := Relocate_Node (Actual);
1588 Outcod := New_Copy_Tree (Incod);
1590 -- Generate declaration of temporary variable, initializing it
1591 -- with the input parameter unless we have an OUT formal or
1592 -- this is an initialization call.
1594 -- If the formal is an out parameter with discriminants, the
1595 -- discriminants must be captured even if the rest of the object
1596 -- is in principle uninitialized, because the discriminants may
1597 -- be read by the called subprogram.
1599 if Ekind (Formal) = E_Out_Parameter then
1600 Incod := Empty;
1602 if Has_Discriminants (F_Typ) then
1603 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1604 end if;
1606 elsif Inside_Init_Proc then
1608 -- Could use a comment here to match comment below ???
1610 if Nkind (Actual) /= N_Selected_Component
1611 or else
1612 not Has_Discriminant_Dependent_Constraint
1613 (Entity (Selector_Name (Actual)))
1614 then
1615 Incod := Empty;
1617 -- Otherwise, keep the component in order to generate the proper
1618 -- actual subtype, that depends on enclosing discriminants.
1620 else
1621 null;
1622 end if;
1623 end if;
1625 Decl :=
1626 Make_Object_Declaration (Loc,
1627 Defining_Identifier => Temp,
1628 Object_Definition => Indic,
1629 Expression => Incod);
1631 if Inside_Init_Proc
1632 and then No (Incod)
1633 then
1634 -- If the call is to initialize a component of a composite type,
1635 -- and the component does not depend on discriminants, use the
1636 -- actual type of the component. This is required in case the
1637 -- component is constrained, because in general the formal of the
1638 -- initialization procedure will be unconstrained. Note that if
1639 -- the component being initialized is constrained by an enclosing
1640 -- discriminant, the presence of the initialization in the
1641 -- declaration will generate an expression for the actual subtype.
1643 Set_No_Initialization (Decl);
1644 Set_Object_Definition (Decl,
1645 New_Occurrence_Of (Etype (Actual), Loc));
1646 end if;
1648 Insert_Action (N, Decl);
1650 -- The actual is simply a reference to the temporary
1652 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1654 -- Generate copy out if OUT or IN OUT parameter
1656 if Ekind (Formal) /= E_In_Parameter then
1657 Lhs := Outcod;
1658 Rhs := New_Occurrence_Of (Temp, Loc);
1660 -- Deal with conversion
1662 if Nkind (Lhs) = N_Type_Conversion then
1663 Lhs := Expression (Lhs);
1664 Rhs := Convert_To (Etype (Actual), Rhs);
1665 end if;
1667 Append_To (Post_Call,
1668 Make_Assignment_Statement (Loc,
1669 Name => Lhs,
1670 Expression => Rhs));
1671 Set_Assignment_OK (Name (Last (Post_Call)));
1672 end if;
1673 end Add_Simple_Call_By_Copy_Code;
1675 --------------------------------------
1676 -- Add_Validation_Call_By_Copy_Code --
1677 --------------------------------------
1679 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
1680 Expr : Node_Id;
1681 Obj : Node_Id;
1682 Obj_Typ : Entity_Id;
1683 Var : constant Node_Id := Unqual_Conv (Act);
1684 Var_Id : Entity_Id;
1686 begin
1687 -- Copy the value of the validation variable back into the object
1688 -- being validated.
1690 if Is_Entity_Name (Var) then
1691 Var_Id := Entity (Var);
1692 Obj := Validated_Object (Var_Id);
1693 Obj_Typ := Etype (Obj);
1695 Expr := New_Occurrence_Of (Var_Id, Loc);
1697 -- A type conversion is needed when the validation variable and
1698 -- the validated object carry different types. This case occurs
1699 -- when the actual is qualified in some fashion.
1701 -- Common:
1702 -- subtype Int is Integer range ...;
1703 -- procedure Call (Val : in out Integer);
1705 -- Original:
1706 -- Object : Int;
1707 -- Call (Integer (Object));
1709 -- Expanded:
1710 -- Object : Int;
1711 -- Var : Integer := Object; -- conversion to base type
1712 -- if not Var'Valid then -- validity check
1713 -- Call (Var); -- modify Var
1714 -- Object := Int (Var); -- conversion to subtype
1716 if Etype (Var_Id) /= Obj_Typ then
1717 Expr :=
1718 Make_Type_Conversion (Loc,
1719 Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
1720 Expression => Expr);
1721 end if;
1723 -- Generate:
1724 -- Object := Var;
1725 -- <or>
1726 -- Object := Object_Type (Var);
1728 Append_To (Post_Call,
1729 Make_Assignment_Statement (Loc,
1730 Name => Obj,
1731 Expression => Expr));
1733 -- If the flow reaches this point, then this routine was invoked with
1734 -- an actual which does not denote a validation variable.
1736 else
1737 pragma Assert (False);
1738 null;
1739 end if;
1740 end Add_Validation_Call_By_Copy_Code;
1742 ---------------------------
1743 -- Check_Fortran_Logical --
1744 ---------------------------
1746 procedure Check_Fortran_Logical is
1747 Logical : constant Entity_Id := Etype (Formal);
1748 Var : Entity_Id;
1750 -- Note: this is very incomplete, e.g. it does not handle arrays
1751 -- of logical values. This is really not the right approach at all???)
1753 begin
1754 if Convention (Subp) = Convention_Fortran
1755 and then Root_Type (Etype (Formal)) = Standard_Boolean
1756 and then Ekind (Formal) /= E_In_Parameter
1757 then
1758 Var := Make_Var (Actual);
1759 Append_To (Post_Call,
1760 Make_Assignment_Statement (Loc,
1761 Name => New_Occurrence_Of (Var, Loc),
1762 Expression =>
1763 Unchecked_Convert_To (
1764 Logical,
1765 Make_Op_Ne (Loc,
1766 Left_Opnd => New_Occurrence_Of (Var, Loc),
1767 Right_Opnd =>
1768 Unchecked_Convert_To (
1769 Logical,
1770 New_Occurrence_Of (Standard_False, Loc))))));
1771 end if;
1772 end Check_Fortran_Logical;
1774 -------------------
1775 -- Is_Legal_Copy --
1776 -------------------
1778 function Is_Legal_Copy return Boolean is
1779 begin
1780 -- An attempt to copy a value of such a type can only occur if
1781 -- representation clauses give the actual a misaligned address.
1783 if Is_By_Reference_Type (Etype (Formal)) then
1785 -- The actual may in fact be properly aligned but there is not
1786 -- enough front-end information to determine this. In that case
1787 -- gigi will emit an error if a copy is not legal, or generate
1788 -- the proper code.
1790 return False;
1792 -- For users of Starlet, we assume that the specification of by-
1793 -- reference mechanism is mandatory. This may lead to unaligned
1794 -- objects but at least for DEC legacy code it is known to work.
1795 -- The warning will alert users of this code that a problem may
1796 -- be lurking.
1798 elsif Mechanism (Formal) = By_Reference
1799 and then Is_Valued_Procedure (Scope (Formal))
1800 then
1801 Error_Msg_N
1802 ("by_reference actual may be misaligned??", Actual);
1803 return False;
1805 else
1806 return True;
1807 end if;
1808 end Is_Legal_Copy;
1810 --------------
1811 -- Make_Var --
1812 --------------
1814 function Make_Var (Actual : Node_Id) return Entity_Id is
1815 Var : Entity_Id;
1817 begin
1818 if Is_Entity_Name (Actual) then
1819 return Entity (Actual);
1821 else
1822 Var := Make_Temporary (Loc, 'T', Actual);
1824 N_Node :=
1825 Make_Object_Renaming_Declaration (Loc,
1826 Defining_Identifier => Var,
1827 Subtype_Mark =>
1828 New_Occurrence_Of (Etype (Actual), Loc),
1829 Name => Relocate_Node (Actual));
1831 Insert_Action (N, N_Node);
1832 return Var;
1833 end if;
1834 end Make_Var;
1836 -------------------------
1837 -- Reset_Packed_Prefix --
1838 -------------------------
1840 procedure Reset_Packed_Prefix is
1841 Pfx : Node_Id := Actual;
1842 begin
1843 loop
1844 Set_Analyzed (Pfx, False);
1845 exit when
1846 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1847 Pfx := Prefix (Pfx);
1848 end loop;
1849 end Reset_Packed_Prefix;
1851 -- Start of processing for Expand_Actuals
1853 begin
1854 Post_Call := New_List;
1856 Formal := First_Formal (Subp);
1857 Actual := First_Actual (N);
1858 while Present (Formal) loop
1859 E_Formal := Etype (Formal);
1860 E_Actual := Etype (Actual);
1862 -- Handle formals whose type comes from the limited view
1864 if From_Limited_With (E_Formal)
1865 and then Has_Non_Limited_View (E_Formal)
1866 then
1867 E_Formal := Non_Limited_View (E_Formal);
1868 end if;
1870 if Is_Scalar_Type (E_Formal)
1871 or else Nkind (Actual) = N_Slice
1872 then
1873 Check_Fortran_Logical;
1875 -- RM 6.4.1 (11)
1877 elsif Ekind (Formal) /= E_Out_Parameter then
1879 -- The unusual case of the current instance of a protected type
1880 -- requires special handling. This can only occur in the context
1881 -- of a call within the body of a protected operation.
1883 if Is_Entity_Name (Actual)
1884 and then Ekind (Entity (Actual)) = E_Protected_Type
1885 and then In_Open_Scopes (Entity (Actual))
1886 then
1887 if Scope (Subp) /= Entity (Actual) then
1888 Error_Msg_N
1889 ("operation outside protected type may not "
1890 & "call back its protected operations??", Actual);
1891 end if;
1893 Rewrite (Actual,
1894 Expand_Protected_Object_Reference (N, Entity (Actual)));
1895 end if;
1897 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1898 -- build-in-place function, then a temporary return object needs
1899 -- to be created and access to it must be passed to the function.
1900 -- Currently we limit such functions to those with inherently
1901 -- limited result subtypes, but eventually we plan to expand the
1902 -- functions that are treated as build-in-place to include other
1903 -- composite result types.
1905 if Is_Build_In_Place_Function_Call (Actual) then
1906 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1908 -- Ada 2005 (AI-318-02): Specialization of the previous case for
1909 -- actuals containing build-in-place function calls whose returned
1910 -- object covers interface types.
1912 elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
1913 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
1914 end if;
1916 Apply_Constraint_Check (Actual, E_Formal);
1918 -- Out parameter case. No constraint checks on access type
1919 -- RM 6.4.1 (13)
1921 elsif Is_Access_Type (E_Formal) then
1922 null;
1924 -- RM 6.4.1 (14)
1926 elsif Has_Discriminants (Base_Type (E_Formal))
1927 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1928 then
1929 Apply_Constraint_Check (Actual, E_Formal);
1931 -- RM 6.4.1 (15)
1933 else
1934 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1935 end if;
1937 -- Processing for IN-OUT and OUT parameters
1939 if Ekind (Formal) /= E_In_Parameter then
1941 -- For type conversions of arrays, apply length/range checks
1943 if Is_Array_Type (E_Formal)
1944 and then Nkind (Actual) = N_Type_Conversion
1945 then
1946 if Is_Constrained (E_Formal) then
1947 Apply_Length_Check (Expression (Actual), E_Formal);
1948 else
1949 Apply_Range_Check (Expression (Actual), E_Formal);
1950 end if;
1951 end if;
1953 -- The actual denotes a variable which captures the value of an
1954 -- object for validation purposes. Add a copy-back to reflect any
1955 -- potential changes in value back into the original object.
1957 -- Var : ... := Object;
1958 -- if not Var'Valid then -- validity check
1959 -- Call (Var); -- modify var
1960 -- Object := Var; -- update Object
1962 -- This case is given higher priority because the subsequent check
1963 -- for type conversion may add an extra copy of the variable and
1964 -- prevent proper value propagation back in the original object.
1966 if Is_Validation_Variable_Reference (Actual) then
1967 Add_Validation_Call_By_Copy_Code (Actual);
1969 -- If argument is a type conversion for a type that is passed by
1970 -- copy, then we must pass the parameter by copy.
1972 elsif Nkind (Actual) = N_Type_Conversion
1973 and then
1974 (Is_Numeric_Type (E_Formal)
1975 or else Is_Access_Type (E_Formal)
1976 or else Is_Enumeration_Type (E_Formal)
1977 or else Is_Bit_Packed_Array (Etype (Formal))
1978 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1980 -- Also pass by copy if change of representation
1982 or else not Same_Representation
1983 (Etype (Formal),
1984 Etype (Expression (Actual))))
1985 then
1986 Add_Call_By_Copy_Code;
1988 -- References to components of bit-packed arrays are expanded
1989 -- at this point, rather than at the point of analysis of the
1990 -- actuals, to handle the expansion of the assignment to
1991 -- [in] out parameters.
1993 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1994 Add_Simple_Call_By_Copy_Code;
1996 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1997 -- because the back-end cannot cope with such objects. In other
1998 -- cases where alignment forces a copy, the back-end generates
1999 -- it properly. It should not be generated unconditionally in the
2000 -- front-end because it does not know precisely the alignment
2001 -- requirements of the target, and makes too conservative an
2002 -- estimate, leading to superfluous copies or spurious errors
2003 -- on by-reference parameters.
2005 elsif Nkind (Actual) = N_Selected_Component
2006 and then
2007 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
2008 and then not Represented_As_Scalar (Etype (Formal))
2009 then
2010 Add_Simple_Call_By_Copy_Code;
2012 -- References to slices of bit-packed arrays are expanded
2014 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2015 Add_Call_By_Copy_Code;
2017 -- References to possibly unaligned slices of arrays are expanded
2019 elsif Is_Possibly_Unaligned_Slice (Actual) then
2020 Add_Call_By_Copy_Code;
2022 -- Deal with access types where the actual subtype and the
2023 -- formal subtype are not the same, requiring a check.
2025 -- It is necessary to exclude tagged types because of "downward
2026 -- conversion" errors.
2028 elsif Is_Access_Type (E_Formal)
2029 and then not Same_Type (E_Formal, E_Actual)
2030 and then not Is_Tagged_Type (Designated_Type (E_Formal))
2031 then
2032 Add_Call_By_Copy_Code;
2034 -- If the actual is not a scalar and is marked for volatile
2035 -- treatment, whereas the formal is not volatile, then pass
2036 -- by copy unless it is a by-reference type.
2038 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
2039 -- because this is the enforcement of a language rule that applies
2040 -- only to "real" volatile variables, not e.g. to the address
2041 -- clause overlay case.
2043 elsif Is_Entity_Name (Actual)
2044 and then Is_Volatile (Entity (Actual))
2045 and then not Is_By_Reference_Type (E_Actual)
2046 and then not Is_Scalar_Type (Etype (Entity (Actual)))
2047 and then not Is_Volatile (E_Formal)
2048 then
2049 Add_Call_By_Copy_Code;
2051 elsif Nkind (Actual) = N_Indexed_Component
2052 and then Is_Entity_Name (Prefix (Actual))
2053 and then Has_Volatile_Components (Entity (Prefix (Actual)))
2054 then
2055 Add_Call_By_Copy_Code;
2057 -- Add call-by-copy code for the case of scalar out parameters
2058 -- when it is not known at compile time that the subtype of the
2059 -- formal is a subrange of the subtype of the actual (or vice
2060 -- versa for in out parameters), in order to get range checks
2061 -- on such actuals. (Maybe this case should be handled earlier
2062 -- in the if statement???)
2064 elsif Is_Scalar_Type (E_Formal)
2065 and then
2066 (not In_Subrange_Of (E_Formal, E_Actual)
2067 or else
2068 (Ekind (Formal) = E_In_Out_Parameter
2069 and then not In_Subrange_Of (E_Actual, E_Formal)))
2070 then
2071 -- Perhaps the setting back to False should be done within
2072 -- Add_Call_By_Copy_Code, since it could get set on other
2073 -- cases occurring above???
2075 if Do_Range_Check (Actual) then
2076 Set_Do_Range_Check (Actual, False);
2077 end if;
2079 Add_Call_By_Copy_Code;
2080 end if;
2082 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2083 -- by-reference parameters on exit from the call. If the actual
2084 -- is a derived type and the operation is inherited, the body
2085 -- of the operation will not contain a call to the predicate
2086 -- function, so it must be done explicitly after the call. Ditto
2087 -- if the actual is an entity of a predicated subtype.
2089 -- The rule refers to by-reference types, but a check is needed
2090 -- for by-copy types as well. That check is subsumed by the rule
2091 -- for subtype conversion on assignment, but we can generate the
2092 -- required check now.
2094 -- Note also that Subp may be either a subprogram entity for
2095 -- direct calls, or a type entity for indirect calls, which must
2096 -- be handled separately because the name does not denote an
2097 -- overloadable entity.
2099 By_Ref_Predicate_Check : declare
2100 Aund : constant Entity_Id := Underlying_Type (E_Actual);
2101 Atyp : Entity_Id;
2103 function Is_Public_Subp return Boolean;
2104 -- Check whether the subprogram being called is a visible
2105 -- operation of the type of the actual. Used to determine
2106 -- whether an invariant check must be generated on the
2107 -- caller side.
2109 ---------------------
2110 -- Is_Public_Subp --
2111 ---------------------
2113 function Is_Public_Subp return Boolean is
2114 Pack : constant Entity_Id := Scope (Subp);
2115 Subp_Decl : Node_Id;
2117 begin
2118 if not Is_Subprogram (Subp) then
2119 return False;
2121 -- The operation may be inherited, or a primitive of the
2122 -- root type.
2124 elsif
2125 Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
2126 N_Full_Type_Declaration)
2127 then
2128 Subp_Decl := Parent (Subp);
2130 else
2131 Subp_Decl := Unit_Declaration_Node (Subp);
2132 end if;
2134 return Ekind (Pack) = E_Package
2135 and then
2136 List_Containing (Subp_Decl) =
2137 Visible_Declarations
2138 (Specification (Unit_Declaration_Node (Pack)));
2139 end Is_Public_Subp;
2141 -- Start of processing for By_Ref_Predicate_Check
2143 begin
2144 if No (Aund) then
2145 Atyp := E_Actual;
2146 else
2147 Atyp := Aund;
2148 end if;
2150 if Has_Predicates (Atyp)
2151 and then Present (Predicate_Function (Atyp))
2153 -- Skip predicate checks for special cases
2155 and then Predicate_Tests_On_Arguments (Subp)
2156 then
2157 Append_To (Post_Call,
2158 Make_Predicate_Check (Atyp, Actual));
2159 end if;
2161 -- We generated caller-side invariant checks in two cases:
2163 -- a) when calling an inherited operation, where there is an
2164 -- implicit view conversion of the actual to the parent type.
2166 -- b) When the conversion is explicit
2168 -- We treat these cases separately because the required
2169 -- conversion for a) is added later when expanding the call.
2171 if Has_Invariants (Etype (Actual))
2172 and then
2173 Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2174 then
2175 if Comes_From_Source (N) and then Is_Public_Subp then
2176 Append_To (Post_Call, Make_Invariant_Call (Actual));
2177 end if;
2179 elsif Nkind (Actual) = N_Type_Conversion
2180 and then Has_Invariants (Etype (Expression (Actual)))
2181 then
2182 if Comes_From_Source (N) and then Is_Public_Subp then
2183 Append_To (Post_Call,
2184 Make_Invariant_Call (Expression (Actual)));
2185 end if;
2186 end if;
2187 end By_Ref_Predicate_Check;
2189 -- Processing for IN parameters
2191 else
2192 -- For IN parameters in the bit-packed array case, we expand an
2193 -- indexed component (the circuit in Exp_Ch4 deliberately left
2194 -- indexed components appearing as actuals untouched, so that
2195 -- the special processing above for the OUT and IN OUT cases
2196 -- could be performed. We could make the test in Exp_Ch4 more
2197 -- complex and have it detect the parameter mode, but it is
2198 -- easier simply to handle all cases here.)
2200 if Nkind (Actual) = N_Indexed_Component
2201 and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2202 then
2203 Reset_Packed_Prefix;
2204 Expand_Packed_Element_Reference (Actual);
2206 -- If we have a reference to a bit-packed array, we copy it, since
2207 -- the actual must be byte aligned.
2209 -- Is this really necessary in all cases???
2211 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2212 Add_Simple_Call_By_Copy_Code;
2214 -- If a non-scalar actual is possibly unaligned, we need a copy
2216 elsif Is_Possibly_Unaligned_Object (Actual)
2217 and then not Represented_As_Scalar (Etype (Formal))
2218 then
2219 Add_Simple_Call_By_Copy_Code;
2221 -- Similarly, we have to expand slices of packed arrays here
2222 -- because the result must be byte aligned.
2224 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2225 Add_Call_By_Copy_Code;
2227 -- Only processing remaining is to pass by copy if this is a
2228 -- reference to a possibly unaligned slice, since the caller
2229 -- expects an appropriately aligned argument.
2231 elsif Is_Possibly_Unaligned_Slice (Actual) then
2232 Add_Call_By_Copy_Code;
2234 -- An unusual case: a current instance of an enclosing task can be
2235 -- an actual, and must be replaced by a reference to self.
2237 elsif Is_Entity_Name (Actual)
2238 and then Is_Task_Type (Entity (Actual))
2239 then
2240 if In_Open_Scopes (Entity (Actual)) then
2241 Rewrite (Actual,
2242 (Make_Function_Call (Loc,
2243 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2244 Analyze (Actual);
2246 -- A task type cannot otherwise appear as an actual
2248 else
2249 raise Program_Error;
2250 end if;
2251 end if;
2252 end if;
2254 Next_Formal (Formal);
2255 Next_Actual (Actual);
2256 end loop;
2257 end Expand_Actuals;
2259 -----------------
2260 -- Expand_Call --
2261 -----------------
2263 procedure Expand_Call (N : Node_Id) is
2264 Post_Call : List_Id;
2266 begin
2267 pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
2268 N_Function_Call,
2269 N_Procedure_Call_Statement));
2271 Expand_Call_Helper (N, Post_Call);
2272 Insert_Post_Call_Actions (N, Post_Call);
2273 end Expand_Call;
2275 ------------------------
2276 -- Expand_Call_Helper --
2277 ------------------------
2279 -- This procedure handles expansion of function calls and procedure call
2280 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2281 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2283 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2284 -- Provide values of actuals for all formals in Extra_Formals list
2285 -- Replace "call" to enumeration literal function by literal itself
2286 -- Rewrite call to predefined operator as operator
2287 -- Replace actuals to in-out parameters that are numeric conversions,
2288 -- with explicit assignment to temporaries before and after the call.
2290 -- Note that the list of actuals has been filled with default expressions
2291 -- during semantic analysis of the call. Only the extra actuals required
2292 -- for the 'Constrained attribute and for accessibility checks are added
2293 -- at this point.
2295 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
2296 Loc : constant Source_Ptr := Sloc (N);
2297 Call_Node : Node_Id := N;
2298 Extra_Actuals : List_Id := No_List;
2299 Prev : Node_Id := Empty;
2301 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2302 -- Adds one entry to the end of the actual parameter list. Used for
2303 -- default parameters and for extra actuals (for Extra_Formals). The
2304 -- argument is an N_Parameter_Association node.
2306 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2307 -- Adds an extra actual to the list of extra actuals. Expr is the
2308 -- expression for the value of the actual, EF is the entity for the
2309 -- extra formal.
2311 procedure Add_View_Conversion_Invariants
2312 (Formal : Entity_Id;
2313 Actual : Node_Id);
2314 -- Adds invariant checks for every intermediate type between the range
2315 -- of a view converted argument to its ancestor (from parent to child).
2317 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2318 -- Within an instance, a type derived from an untagged formal derived
2319 -- type inherits from the original parent, not from the actual. The
2320 -- current derivation mechanism has the derived type inherit from the
2321 -- actual, which is only correct outside of the instance. If the
2322 -- subprogram is inherited, we test for this particular case through a
2323 -- convoluted tree traversal before setting the proper subprogram to be
2324 -- called.
2326 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2327 -- Return true if E comes from an instance that is not yet frozen
2329 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2330 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2332 function New_Value (From : Node_Id) return Node_Id;
2333 -- From is the original Expression. New_Value is equivalent to a call
2334 -- to Duplicate_Subexpr with an explicit dereference when From is an
2335 -- access parameter.
2337 --------------------------
2338 -- Add_Actual_Parameter --
2339 --------------------------
2341 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2342 Actual_Expr : constant Node_Id :=
2343 Explicit_Actual_Parameter (Insert_Param);
2345 begin
2346 -- Case of insertion is first named actual
2348 if No (Prev) or else
2349 Nkind (Parent (Prev)) /= N_Parameter_Association
2350 then
2351 Set_Next_Named_Actual
2352 (Insert_Param, First_Named_Actual (Call_Node));
2353 Set_First_Named_Actual (Call_Node, Actual_Expr);
2355 if No (Prev) then
2356 if No (Parameter_Associations (Call_Node)) then
2357 Set_Parameter_Associations (Call_Node, New_List);
2358 end if;
2360 Append (Insert_Param, Parameter_Associations (Call_Node));
2362 else
2363 Insert_After (Prev, Insert_Param);
2364 end if;
2366 -- Case of insertion is not first named actual
2368 else
2369 Set_Next_Named_Actual
2370 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2371 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2372 Append (Insert_Param, Parameter_Associations (Call_Node));
2373 end if;
2375 Prev := Actual_Expr;
2376 end Add_Actual_Parameter;
2378 ----------------------
2379 -- Add_Extra_Actual --
2380 ----------------------
2382 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2383 Loc : constant Source_Ptr := Sloc (Expr);
2385 begin
2386 if Extra_Actuals = No_List then
2387 Extra_Actuals := New_List;
2388 Set_Parent (Extra_Actuals, Call_Node);
2389 end if;
2391 Append_To (Extra_Actuals,
2392 Make_Parameter_Association (Loc,
2393 Selector_Name => New_Occurrence_Of (EF, Loc),
2394 Explicit_Actual_Parameter => Expr));
2396 Analyze_And_Resolve (Expr, Etype (EF));
2398 if Nkind (Call_Node) = N_Function_Call then
2399 Set_Is_Accessibility_Actual (Parent (Expr));
2400 end if;
2401 end Add_Extra_Actual;
2403 ------------------------------------
2404 -- Add_View_Conversion_Invariants --
2405 ------------------------------------
2407 procedure Add_View_Conversion_Invariants
2408 (Formal : Entity_Id;
2409 Actual : Node_Id)
2411 Arg : Entity_Id;
2412 Curr_Typ : Entity_Id;
2413 Inv_Checks : List_Id;
2414 Par_Typ : Entity_Id;
2416 begin
2417 Inv_Checks := No_List;
2419 -- Extract the argument from a potentially nested set of view
2420 -- conversions.
2422 Arg := Actual;
2423 while Nkind (Arg) = N_Type_Conversion loop
2424 Arg := Expression (Arg);
2425 end loop;
2427 -- Move up the derivation chain starting with the type of the formal
2428 -- parameter down to the type of the actual object.
2430 Curr_Typ := Empty;
2431 Par_Typ := Etype (Arg);
2432 while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
2433 Curr_Typ := Par_Typ;
2435 if Has_Invariants (Curr_Typ)
2436 and then Present (Invariant_Procedure (Curr_Typ))
2437 then
2438 -- Verify the invariate of the current type. Generate:
2440 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
2442 Prepend_New_To (Inv_Checks,
2443 Make_Procedure_Call_Statement (Loc,
2444 Name =>
2445 New_Occurrence_Of
2446 (Invariant_Procedure (Curr_Typ), Loc),
2447 Parameter_Associations => New_List (
2448 Make_Type_Conversion (Loc,
2449 Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
2450 Expression => New_Copy_Tree (Arg)))));
2451 end if;
2453 Par_Typ := Base_Type (Etype (Curr_Typ));
2454 end loop;
2456 if not Is_Empty_List (Inv_Checks) then
2457 Insert_Actions_After (N, Inv_Checks);
2458 end if;
2459 end Add_View_Conversion_Invariants;
2461 ---------------------------
2462 -- Inherited_From_Formal --
2463 ---------------------------
2465 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2466 Par : Entity_Id;
2467 Gen_Par : Entity_Id;
2468 Gen_Prim : Elist_Id;
2469 Elmt : Elmt_Id;
2470 Indic : Node_Id;
2472 begin
2473 -- If the operation is inherited, it is attached to the corresponding
2474 -- type derivation. If the parent in the derivation is a generic
2475 -- actual, it is a subtype of the actual, and we have to recover the
2476 -- original derived type declaration to find the proper parent.
2478 if Nkind (Parent (S)) /= N_Full_Type_Declaration
2479 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2480 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2481 N_Derived_Type_Definition
2482 or else not In_Instance
2483 then
2484 return Empty;
2486 else
2487 Indic :=
2488 Subtype_Indication
2489 (Type_Definition (Original_Node (Parent (S))));
2491 if Nkind (Indic) = N_Subtype_Indication then
2492 Par := Entity (Subtype_Mark (Indic));
2493 else
2494 Par := Entity (Indic);
2495 end if;
2496 end if;
2498 if not Is_Generic_Actual_Type (Par)
2499 or else Is_Tagged_Type (Par)
2500 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2501 or else not In_Open_Scopes (Scope (Par))
2502 then
2503 return Empty;
2504 else
2505 Gen_Par := Generic_Parent_Type (Parent (Par));
2506 end if;
2508 -- If the actual has no generic parent type, the formal is not
2509 -- a formal derived type, so nothing to inherit.
2511 if No (Gen_Par) then
2512 return Empty;
2513 end if;
2515 -- If the generic parent type is still the generic type, this is a
2516 -- private formal, not a derived formal, and there are no operations
2517 -- inherited from the formal.
2519 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2520 return Empty;
2521 end if;
2523 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2525 Elmt := First_Elmt (Gen_Prim);
2526 while Present (Elmt) loop
2527 if Chars (Node (Elmt)) = Chars (S) then
2528 declare
2529 F1 : Entity_Id;
2530 F2 : Entity_Id;
2532 begin
2533 F1 := First_Formal (S);
2534 F2 := First_Formal (Node (Elmt));
2535 while Present (F1)
2536 and then Present (F2)
2537 loop
2538 if Etype (F1) = Etype (F2)
2539 or else Etype (F2) = Gen_Par
2540 then
2541 Next_Formal (F1);
2542 Next_Formal (F2);
2543 else
2544 Next_Elmt (Elmt);
2545 exit; -- not the right subprogram
2546 end if;
2548 return Node (Elmt);
2549 end loop;
2550 end;
2552 else
2553 Next_Elmt (Elmt);
2554 end if;
2555 end loop;
2557 raise Program_Error;
2558 end Inherited_From_Formal;
2560 --------------------------
2561 -- In_Unfrozen_Instance --
2562 --------------------------
2564 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2565 S : Entity_Id;
2567 begin
2568 S := E;
2569 while Present (S) and then S /= Standard_Standard loop
2570 if Is_Generic_Instance (S)
2571 and then Present (Freeze_Node (S))
2572 and then not Analyzed (Freeze_Node (S))
2573 then
2574 return True;
2575 end if;
2577 S := Scope (S);
2578 end loop;
2580 return False;
2581 end In_Unfrozen_Instance;
2583 -------------------------
2584 -- Is_Direct_Deep_Call --
2585 -------------------------
2587 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2588 begin
2589 if Is_TSS (Subp, TSS_Deep_Adjust)
2590 or else Is_TSS (Subp, TSS_Deep_Finalize)
2591 or else Is_TSS (Subp, TSS_Deep_Initialize)
2592 then
2593 declare
2594 Actual : Node_Id;
2595 Formal : Node_Id;
2597 begin
2598 Actual := First (Parameter_Associations (N));
2599 Formal := First_Formal (Subp);
2600 while Present (Actual)
2601 and then Present (Formal)
2602 loop
2603 if Nkind (Actual) = N_Identifier
2604 and then Is_Controlling_Actual (Actual)
2605 and then Etype (Actual) = Etype (Formal)
2606 then
2607 return True;
2608 end if;
2610 Next (Actual);
2611 Next_Formal (Formal);
2612 end loop;
2613 end;
2614 end if;
2616 return False;
2617 end Is_Direct_Deep_Call;
2619 ---------------
2620 -- New_Value --
2621 ---------------
2623 function New_Value (From : Node_Id) return Node_Id is
2624 Res : constant Node_Id := Duplicate_Subexpr (From);
2625 begin
2626 if Is_Access_Type (Etype (From)) then
2627 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2628 else
2629 return Res;
2630 end if;
2631 end New_Value;
2633 -- Local variables
2635 Remote : constant Boolean := Is_Remote_Call (Call_Node);
2636 Actual : Node_Id;
2637 Formal : Entity_Id;
2638 Orig_Subp : Entity_Id := Empty;
2639 Param_Count : Natural := 0;
2640 Parent_Formal : Entity_Id;
2641 Parent_Subp : Entity_Id;
2642 Pref_Entity : Entity_Id;
2643 Scop : Entity_Id;
2644 Subp : Entity_Id;
2646 Prev_Orig : Node_Id;
2647 -- Original node for an actual, which may have been rewritten. If the
2648 -- actual is a function call that has been transformed from a selected
2649 -- component, the original node is unanalyzed. Otherwise, it carries
2650 -- semantic information used to generate additional actuals.
2652 CW_Interface_Formals_Present : Boolean := False;
2654 -- Start of processing for Expand_Call_Helper
2656 begin
2657 Post_Call := New_List;
2659 -- Expand the function or procedure call if the first actual has a
2660 -- declared dimension aspect, and the subprogram is declared in one
2661 -- of the dimension I/O packages.
2663 if Ada_Version >= Ada_2012
2664 and then
2665 Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2666 and then Present (Parameter_Associations (Call_Node))
2667 then
2668 Expand_Put_Call_With_Symbol (Call_Node);
2669 end if;
2671 -- Ignore if previous error
2673 if Nkind (Call_Node) in N_Has_Etype
2674 and then Etype (Call_Node) = Any_Type
2675 then
2676 return;
2677 end if;
2679 -- Call using access to subprogram with explicit dereference
2681 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2682 Subp := Etype (Name (Call_Node));
2683 Parent_Subp := Empty;
2685 -- Case of call to simple entry, where the Name is a selected component
2686 -- whose prefix is the task, and whose selector name is the entry name
2688 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2689 Subp := Entity (Selector_Name (Name (Call_Node)));
2690 Parent_Subp := Empty;
2692 -- Case of call to member of entry family, where Name is an indexed
2693 -- component, with the prefix being a selected component giving the
2694 -- task and entry family name, and the index being the entry index.
2696 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2697 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
2698 Parent_Subp := Empty;
2700 -- Normal case
2702 else
2703 Subp := Entity (Name (Call_Node));
2704 Parent_Subp := Alias (Subp);
2706 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2707 -- if we can tell that the first parameter cannot possibly be null.
2708 -- This improves efficiency by avoiding a run-time test.
2710 -- We do not do this if Raise_Exception_Always does not exist, which
2711 -- can happen in configurable run time profiles which provide only a
2712 -- Raise_Exception.
2714 if Is_RTE (Subp, RE_Raise_Exception)
2715 and then RTE_Available (RE_Raise_Exception_Always)
2716 then
2717 declare
2718 FA : constant Node_Id :=
2719 Original_Node (First_Actual (Call_Node));
2721 begin
2722 -- The case we catch is where the first argument is obtained
2723 -- using the Identity attribute (which must always be
2724 -- non-null).
2726 if Nkind (FA) = N_Attribute_Reference
2727 and then Attribute_Name (FA) = Name_Identity
2728 then
2729 Subp := RTE (RE_Raise_Exception_Always);
2730 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2731 end if;
2732 end;
2733 end if;
2735 if Ekind (Subp) = E_Entry then
2736 Parent_Subp := Empty;
2737 end if;
2738 end if;
2740 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2741 -- alternative in an asynchronous select or as an entry call in
2742 -- a conditional or timed select. Check whether the procedure call
2743 -- is a renaming of an entry and rewrite it as an entry call.
2745 if Ada_Version >= Ada_2005
2746 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2747 and then
2748 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2749 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2750 or else
2751 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2752 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2753 then
2754 declare
2755 Ren_Decl : Node_Id;
2756 Ren_Root : Entity_Id := Subp;
2758 begin
2759 -- This may be a chain of renamings, find the root
2761 if Present (Alias (Ren_Root)) then
2762 Ren_Root := Alias (Ren_Root);
2763 end if;
2765 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2766 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2768 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2769 Rewrite (Call_Node,
2770 Make_Entry_Call_Statement (Loc,
2771 Name =>
2772 New_Copy_Tree (Name (Ren_Decl)),
2773 Parameter_Associations =>
2774 New_Copy_List_Tree
2775 (Parameter_Associations (Call_Node))));
2777 return;
2778 end if;
2779 end if;
2780 end;
2781 end if;
2783 if Modify_Tree_For_C
2784 and then Nkind (Call_Node) = N_Function_Call
2785 and then Is_Entity_Name (Name (Call_Node))
2786 then
2787 declare
2788 Func_Id : constant Entity_Id :=
2789 Ultimate_Alias (Entity (Name (Call_Node)));
2790 begin
2791 -- When generating C code, transform a function call that returns
2792 -- a constrained array type into procedure form.
2794 if Rewritten_For_C (Func_Id) then
2796 -- For internally generated calls ensure that they reference
2797 -- the entity of the spec of the called function (needed since
2798 -- the expander may generate calls using the entity of their
2799 -- body). See for example Expand_Boolean_Operator().
2801 if not (Comes_From_Source (Call_Node))
2802 and then Nkind (Unit_Declaration_Node (Func_Id)) =
2803 N_Subprogram_Body
2804 then
2805 Set_Entity (Name (Call_Node),
2806 Corresponding_Function
2807 (Corresponding_Procedure (Func_Id)));
2808 end if;
2810 Rewrite_Function_Call_For_C (Call_Node);
2811 return;
2813 -- Also introduce a temporary for functions that return a record
2814 -- called within another procedure or function call, since records
2815 -- are passed by pointer in the generated C code, and we cannot
2816 -- take a pointer from a subprogram call.
2818 elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
2819 and then Is_Record_Type (Etype (Func_Id))
2820 then
2821 declare
2822 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
2823 Decl : Node_Id;
2825 begin
2826 -- Generate:
2827 -- Temp : ... := Func_Call (...);
2829 Decl :=
2830 Make_Object_Declaration (Loc,
2831 Defining_Identifier => Temp_Id,
2832 Object_Definition =>
2833 New_Occurrence_Of (Etype (Func_Id), Loc),
2834 Expression =>
2835 Make_Function_Call (Loc,
2836 Name =>
2837 New_Occurrence_Of (Func_Id, Loc),
2838 Parameter_Associations =>
2839 Parameter_Associations (Call_Node)));
2841 Insert_Action (Parent (Call_Node), Decl);
2842 Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
2843 return;
2844 end;
2845 end if;
2846 end;
2847 end if;
2849 -- First step, compute extra actuals, corresponding to any Extra_Formals
2850 -- present. Note that we do not access Extra_Formals directly, instead
2851 -- we simply note the presence of the extra formals as we process the
2852 -- regular formals collecting corresponding actuals in Extra_Actuals.
2854 -- We also generate any required range checks for actuals for in formals
2855 -- as we go through the loop, since this is a convenient place to do it.
2856 -- (Though it seems that this would be better done in Expand_Actuals???)
2858 -- Special case: Thunks must not compute the extra actuals; they must
2859 -- just propagate to the target primitive their extra actuals.
2861 if Is_Thunk (Current_Scope)
2862 and then Thunk_Entity (Current_Scope) = Subp
2863 and then Present (Extra_Formals (Subp))
2864 then
2865 pragma Assert (Present (Extra_Formals (Current_Scope)));
2867 declare
2868 Target_Formal : Entity_Id;
2869 Thunk_Formal : Entity_Id;
2871 begin
2872 Target_Formal := Extra_Formals (Subp);
2873 Thunk_Formal := Extra_Formals (Current_Scope);
2874 while Present (Target_Formal) loop
2875 Add_Extra_Actual
2876 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
2877 EF => Thunk_Formal);
2879 Target_Formal := Extra_Formal (Target_Formal);
2880 Thunk_Formal := Extra_Formal (Thunk_Formal);
2881 end loop;
2883 while Is_Non_Empty_List (Extra_Actuals) loop
2884 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2885 end loop;
2887 Expand_Actuals (Call_Node, Subp, Post_Call);
2888 pragma Assert (Is_Empty_List (Post_Call));
2889 return;
2890 end;
2891 end if;
2893 Formal := First_Formal (Subp);
2894 Actual := First_Actual (Call_Node);
2895 Param_Count := 1;
2896 while Present (Formal) loop
2898 -- Generate range check if required
2900 if Do_Range_Check (Actual)
2901 and then Ekind (Formal) = E_In_Parameter
2902 then
2903 Generate_Range_Check
2904 (Actual, Etype (Formal), CE_Range_Check_Failed);
2905 end if;
2907 -- Prepare to examine current entry
2909 Prev := Actual;
2910 Prev_Orig := Original_Node (Prev);
2912 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2913 -- to expand it in a further round.
2915 CW_Interface_Formals_Present :=
2916 CW_Interface_Formals_Present
2917 or else
2918 (Is_Class_Wide_Type (Etype (Formal))
2919 and then Is_Interface (Etype (Etype (Formal))))
2920 or else
2921 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2922 and then Is_Class_Wide_Type (Directly_Designated_Type
2923 (Etype (Etype (Formal))))
2924 and then Is_Interface (Directly_Designated_Type
2925 (Etype (Etype (Formal)))));
2927 -- Create possible extra actual for constrained case. Usually, the
2928 -- extra actual is of the form actual'constrained, but since this
2929 -- attribute is only available for unconstrained records, TRUE is
2930 -- expanded if the type of the formal happens to be constrained (for
2931 -- instance when this procedure is inherited from an unconstrained
2932 -- record to a constrained one) or if the actual has no discriminant
2933 -- (its type is constrained). An exception to this is the case of a
2934 -- private type without discriminants. In this case we pass FALSE
2935 -- because the object has underlying discriminants with defaults.
2937 if Present (Extra_Constrained (Formal)) then
2938 if Ekind (Etype (Prev)) in Private_Kind
2939 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2940 then
2941 Add_Extra_Actual
2942 (Expr => New_Occurrence_Of (Standard_False, Loc),
2943 EF => Extra_Constrained (Formal));
2945 elsif Is_Constrained (Etype (Formal))
2946 or else not Has_Discriminants (Etype (Prev))
2947 then
2948 Add_Extra_Actual
2949 (Expr => New_Occurrence_Of (Standard_True, Loc),
2950 EF => Extra_Constrained (Formal));
2952 -- Do not produce extra actuals for Unchecked_Union parameters.
2953 -- Jump directly to the end of the loop.
2955 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2956 goto Skip_Extra_Actual_Generation;
2958 else
2959 -- If the actual is a type conversion, then the constrained
2960 -- test applies to the actual, not the target type.
2962 declare
2963 Act_Prev : Node_Id;
2965 begin
2966 -- Test for unchecked conversions as well, which can occur
2967 -- as out parameter actuals on calls to stream procedures.
2969 Act_Prev := Prev;
2970 while Nkind_In (Act_Prev, N_Type_Conversion,
2971 N_Unchecked_Type_Conversion)
2972 loop
2973 Act_Prev := Expression (Act_Prev);
2974 end loop;
2976 -- If the expression is a conversion of a dereference, this
2977 -- is internally generated code that manipulates addresses,
2978 -- e.g. when building interface tables. No check should
2979 -- occur in this case, and the discriminated object is not
2980 -- directly a hand.
2982 if not Comes_From_Source (Actual)
2983 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2984 and then Nkind (Act_Prev) = N_Explicit_Dereference
2985 then
2986 Add_Extra_Actual
2987 (Expr => New_Occurrence_Of (Standard_False, Loc),
2988 EF => Extra_Constrained (Formal));
2990 else
2991 Add_Extra_Actual
2992 (Expr =>
2993 Make_Attribute_Reference (Sloc (Prev),
2994 Prefix =>
2995 Duplicate_Subexpr_No_Checks
2996 (Act_Prev, Name_Req => True),
2997 Attribute_Name => Name_Constrained),
2998 EF => Extra_Constrained (Formal));
2999 end if;
3000 end;
3001 end if;
3002 end if;
3004 -- Create possible extra actual for accessibility level
3006 if Present (Extra_Accessibility (Formal)) then
3008 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
3009 -- attribute, then the original actual may be an aliased object
3010 -- occurring as the prefix in a call using "Object.Operation"
3011 -- notation. In that case we must pass the level of the object,
3012 -- so Prev_Orig is reset to Prev and the attribute will be
3013 -- processed by the code for Access attributes further below.
3015 if Prev_Orig /= Prev
3016 and then Nkind (Prev) = N_Attribute_Reference
3017 and then Get_Attribute_Id (Attribute_Name (Prev)) =
3018 Attribute_Access
3019 and then Is_Aliased_View (Prev_Orig)
3020 then
3021 Prev_Orig := Prev;
3023 -- A class-wide precondition generates a test in which formals of
3024 -- the subprogram are replaced by actuals that came from source.
3025 -- In that case as well, the accessiblity comes from the actual.
3026 -- This is the one case in which there are references to formals
3027 -- outside of their subprogram.
3029 elsif Prev_Orig /= Prev
3030 and then Is_Entity_Name (Prev_Orig)
3031 and then Present (Entity (Prev_Orig))
3032 and then Is_Formal (Entity (Prev_Orig))
3033 and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
3034 then
3035 Prev_Orig := Prev;
3037 -- If the actual is a formal of an enclosing subprogram it is
3038 -- the right entity, even if it is a rewriting. This happens
3039 -- when the call is within an inherited condition or predicate.
3041 elsif Is_Entity_Name (Actual)
3042 and then Is_Formal (Entity (Actual))
3043 and then In_Open_Scopes (Scope (Entity (Actual)))
3044 then
3045 Prev_Orig := Prev;
3047 elsif Nkind (Prev_Orig) = N_Type_Conversion then
3048 Prev_Orig := Expression (Prev_Orig);
3049 end if;
3051 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3052 -- accessibility levels.
3054 if Is_Thunk (Current_Scope) then
3055 declare
3056 Parm_Ent : Entity_Id;
3058 begin
3059 if Is_Controlling_Actual (Actual) then
3061 -- Find the corresponding actual of the thunk
3063 Parm_Ent := First_Entity (Current_Scope);
3064 for J in 2 .. Param_Count loop
3065 Next_Entity (Parm_Ent);
3066 end loop;
3068 -- Handle unchecked conversion of access types generated
3069 -- in thunks (cf. Expand_Interface_Thunk).
3071 elsif Is_Access_Type (Etype (Actual))
3072 and then Nkind (Actual) = N_Unchecked_Type_Conversion
3073 then
3074 Parm_Ent := Entity (Expression (Actual));
3076 else pragma Assert (Is_Entity_Name (Actual));
3077 Parm_Ent := Entity (Actual);
3078 end if;
3080 Add_Extra_Actual
3081 (Expr =>
3082 New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
3083 EF => Extra_Accessibility (Formal));
3084 end;
3086 elsif Is_Entity_Name (Prev_Orig) then
3088 -- When passing an access parameter, or a renaming of an access
3089 -- parameter, as the actual to another access parameter we need
3090 -- to pass along the actual's own access level parameter. This
3091 -- is done if we are within the scope of the formal access
3092 -- parameter (if this is an inlined body the extra formal is
3093 -- irrelevant).
3095 if (Is_Formal (Entity (Prev_Orig))
3096 or else
3097 (Present (Renamed_Object (Entity (Prev_Orig)))
3098 and then
3099 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
3100 and then
3101 Is_Formal
3102 (Entity (Renamed_Object (Entity (Prev_Orig))))))
3103 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
3104 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
3105 then
3106 declare
3107 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
3109 begin
3110 pragma Assert (Present (Parm_Ent));
3112 if Present (Extra_Accessibility (Parm_Ent)) then
3113 Add_Extra_Actual
3114 (Expr =>
3115 New_Occurrence_Of
3116 (Extra_Accessibility (Parm_Ent), Loc),
3117 EF => Extra_Accessibility (Formal));
3119 -- If the actual access parameter does not have an
3120 -- associated extra formal providing its scope level,
3121 -- then treat the actual as having library-level
3122 -- accessibility.
3124 else
3125 Add_Extra_Actual
3126 (Expr =>
3127 Make_Integer_Literal (Loc,
3128 Intval => Scope_Depth (Standard_Standard)),
3129 EF => Extra_Accessibility (Formal));
3130 end if;
3131 end;
3133 -- The actual is a normal access value, so just pass the level
3134 -- of the actual's access type.
3136 else
3137 Add_Extra_Actual
3138 (Expr => Dynamic_Accessibility_Level (Prev_Orig),
3139 EF => Extra_Accessibility (Formal));
3140 end if;
3142 -- If the actual is an access discriminant, then pass the level
3143 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3145 elsif Nkind (Prev_Orig) = N_Selected_Component
3146 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
3147 E_Discriminant
3148 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
3149 E_Anonymous_Access_Type
3150 then
3151 Add_Extra_Actual
3152 (Expr =>
3153 Make_Integer_Literal (Loc,
3154 Intval => Object_Access_Level (Prefix (Prev_Orig))),
3155 EF => Extra_Accessibility (Formal));
3157 -- All other cases
3159 else
3160 case Nkind (Prev_Orig) is
3161 when N_Attribute_Reference =>
3162 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
3164 -- For X'Access, pass on the level of the prefix X
3166 when Attribute_Access =>
3168 -- Accessibility level of S'Access is that of A
3170 Prev_Orig := Prefix (Prev_Orig);
3172 -- If the expression is a view conversion, the
3173 -- accessibility level is that of the expression.
3175 if Nkind (Original_Node (Prev_Orig)) =
3176 N_Type_Conversion
3177 and then
3178 Nkind (Expression (Original_Node (Prev_Orig))) =
3179 N_Explicit_Dereference
3180 then
3181 Prev_Orig :=
3182 Expression (Original_Node (Prev_Orig));
3183 end if;
3185 -- If this is an Access attribute applied to the
3186 -- the current instance object passed to a type
3187 -- initialization procedure, then use the level
3188 -- of the type itself. This is not really correct,
3189 -- as there should be an extra level parameter
3190 -- passed in with _init formals (only in the case
3191 -- where the type is immutably limited), but we
3192 -- don't have an easy way currently to create such
3193 -- an extra formal (init procs aren't ever frozen).
3194 -- For now we just use the level of the type,
3195 -- which may be too shallow, but that works better
3196 -- than passing Object_Access_Level of the type,
3197 -- which can be one level too deep in some cases.
3198 -- ???
3200 -- A further case that requires special handling
3201 -- is the common idiom E.all'access. If E is a
3202 -- formal of the enclosing subprogram, the
3203 -- accessibility of the expression is that of E.
3205 if Is_Entity_Name (Prev_Orig) then
3206 Pref_Entity := Entity (Prev_Orig);
3208 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3209 and then Is_Entity_Name (Prefix (Prev_Orig))
3210 then
3211 Pref_Entity := Entity (Prefix ((Prev_Orig)));
3213 else
3214 Pref_Entity := Empty;
3215 end if;
3217 if Is_Entity_Name (Prev_Orig)
3218 and then Is_Type (Entity (Prev_Orig))
3219 then
3220 Add_Extra_Actual
3221 (Expr =>
3222 Make_Integer_Literal (Loc,
3223 Intval =>
3224 Type_Access_Level (Pref_Entity)),
3225 EF => Extra_Accessibility (Formal));
3227 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3228 and then Present (Pref_Entity)
3229 and then Is_Formal (Pref_Entity)
3230 and then Present
3231 (Extra_Accessibility (Pref_Entity))
3232 then
3233 Add_Extra_Actual
3234 (Expr =>
3235 New_Occurrence_Of
3236 (Extra_Accessibility (Pref_Entity), Loc),
3237 EF => Extra_Accessibility (Formal));
3239 else
3240 Add_Extra_Actual
3241 (Expr =>
3242 Make_Integer_Literal (Loc,
3243 Intval =>
3244 Object_Access_Level (Prev_Orig)),
3245 EF => Extra_Accessibility (Formal));
3246 end if;
3248 -- Treat the unchecked attributes as library-level
3250 when Attribute_Unchecked_Access
3251 | Attribute_Unrestricted_Access
3253 Add_Extra_Actual
3254 (Expr =>
3255 Make_Integer_Literal (Loc,
3256 Intval => Scope_Depth (Standard_Standard)),
3257 EF => Extra_Accessibility (Formal));
3259 -- No other cases of attributes returning access
3260 -- values that can be passed to access parameters.
3262 when others =>
3263 raise Program_Error;
3265 end case;
3267 -- For allocators we pass the level of the execution of the
3268 -- called subprogram, which is one greater than the current
3269 -- scope level.
3271 when N_Allocator =>
3272 Add_Extra_Actual
3273 (Expr =>
3274 Make_Integer_Literal (Loc,
3275 Intval => Scope_Depth (Current_Scope) + 1),
3276 EF => Extra_Accessibility (Formal));
3278 -- For most other cases we simply pass the level of the
3279 -- actual's access type. The type is retrieved from
3280 -- Prev rather than Prev_Orig, because in some cases
3281 -- Prev_Orig denotes an original expression that has
3282 -- not been analyzed.
3284 when others =>
3285 Add_Extra_Actual
3286 (Expr => Dynamic_Accessibility_Level (Prev),
3287 EF => Extra_Accessibility (Formal));
3288 end case;
3289 end if;
3290 end if;
3292 -- Perform the check of 4.6(49) that prevents a null value from being
3293 -- passed as an actual to an access parameter. Note that the check
3294 -- is elided in the common cases of passing an access attribute or
3295 -- access parameter as an actual. Also, we currently don't enforce
3296 -- this check for expander-generated actuals and when -gnatdj is set.
3298 if Ada_Version >= Ada_2005 then
3300 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3301 -- the intent of 6.4.1(13) is that null-exclusion checks should
3302 -- not be done for 'out' parameters, even though it refers only
3303 -- to constraint checks, and a null_exclusion is not a constraint.
3304 -- Note that AI05-0196-1 corrects this mistake in the RM.
3306 if Is_Access_Type (Etype (Formal))
3307 and then Can_Never_Be_Null (Etype (Formal))
3308 and then Ekind (Formal) /= E_Out_Parameter
3309 and then Nkind (Prev) /= N_Raise_Constraint_Error
3310 and then (Known_Null (Prev)
3311 or else not Can_Never_Be_Null (Etype (Prev)))
3312 then
3313 Install_Null_Excluding_Check (Prev);
3314 end if;
3316 -- Ada_Version < Ada_2005
3318 else
3319 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3320 or else Access_Checks_Suppressed (Subp)
3321 then
3322 null;
3324 elsif Debug_Flag_J then
3325 null;
3327 elsif not Comes_From_Source (Prev) then
3328 null;
3330 elsif Is_Entity_Name (Prev)
3331 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3332 then
3333 null;
3335 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3336 null;
3338 else
3339 Install_Null_Excluding_Check (Prev);
3340 end if;
3341 end if;
3343 -- Perform appropriate validity checks on parameters that
3344 -- are entities.
3346 if Validity_Checks_On then
3347 if (Ekind (Formal) = E_In_Parameter
3348 and then Validity_Check_In_Params)
3349 or else
3350 (Ekind (Formal) = E_In_Out_Parameter
3351 and then Validity_Check_In_Out_Params)
3352 then
3353 -- If the actual is an indexed component of a packed type (or
3354 -- is an indexed or selected component whose prefix recursively
3355 -- meets this condition), it has not been expanded yet. It will
3356 -- be copied in the validity code that follows, and has to be
3357 -- expanded appropriately, so reanalyze it.
3359 -- What we do is just to unset analyzed bits on prefixes till
3360 -- we reach something that does not have a prefix.
3362 declare
3363 Nod : Node_Id;
3365 begin
3366 Nod := Actual;
3367 while Nkind_In (Nod, N_Indexed_Component,
3368 N_Selected_Component)
3369 loop
3370 Set_Analyzed (Nod, False);
3371 Nod := Prefix (Nod);
3372 end loop;
3373 end;
3375 Ensure_Valid (Actual);
3376 end if;
3377 end if;
3379 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3380 -- since this is a left side reference. We only do this for calls
3381 -- from the source program since we assume that compiler generated
3382 -- calls explicitly generate any required checks. We also need it
3383 -- only if we are doing standard validity checks, since clearly it is
3384 -- not needed if validity checks are off, and in subscript validity
3385 -- checking mode, all indexed components are checked with a call
3386 -- directly from Expand_N_Indexed_Component.
3388 if Comes_From_Source (Call_Node)
3389 and then Ekind (Formal) /= E_In_Parameter
3390 and then Validity_Checks_On
3391 and then Validity_Check_Default
3392 and then not Validity_Check_Subscripts
3393 then
3394 Check_Valid_Lvalue_Subscripts (Actual);
3395 end if;
3397 -- Mark any scalar OUT parameter that is a simple variable as no
3398 -- longer known to be valid (unless the type is always valid). This
3399 -- reflects the fact that if an OUT parameter is never set in a
3400 -- procedure, then it can become invalid on the procedure return.
3402 if Ekind (Formal) = E_Out_Parameter
3403 and then Is_Entity_Name (Actual)
3404 and then Ekind (Entity (Actual)) = E_Variable
3405 and then not Is_Known_Valid (Etype (Actual))
3406 then
3407 Set_Is_Known_Valid (Entity (Actual), False);
3408 end if;
3410 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3411 -- clear current values, since they can be clobbered. We are probably
3412 -- doing this in more places than we need to, but better safe than
3413 -- sorry when it comes to retaining bad current values.
3415 if Ekind (Formal) /= E_In_Parameter
3416 and then Is_Entity_Name (Actual)
3417 and then Present (Entity (Actual))
3418 then
3419 declare
3420 Ent : constant Entity_Id := Entity (Actual);
3421 Sav : Node_Id;
3423 begin
3424 -- For an OUT or IN OUT parameter that is an assignable entity,
3425 -- we do not want to clobber the Last_Assignment field, since
3426 -- if it is set, it was precisely because it is indeed an OUT
3427 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3428 -- since the subprogram could have returned in invalid value.
3430 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3431 and then Is_Assignable (Ent)
3432 then
3433 Sav := Last_Assignment (Ent);
3434 Kill_Current_Values (Ent);
3435 Set_Last_Assignment (Ent, Sav);
3436 Set_Is_Known_Valid (Ent, False);
3438 -- For all other cases, just kill the current values
3440 else
3441 Kill_Current_Values (Ent);
3442 end if;
3443 end;
3444 end if;
3446 -- If the formal is class wide and the actual is an aggregate, force
3447 -- evaluation so that the back end who does not know about class-wide
3448 -- type, does not generate a temporary of the wrong size.
3450 if not Is_Class_Wide_Type (Etype (Formal)) then
3451 null;
3453 elsif Nkind (Actual) = N_Aggregate
3454 or else (Nkind (Actual) = N_Qualified_Expression
3455 and then Nkind (Expression (Actual)) = N_Aggregate)
3456 then
3457 Force_Evaluation (Actual);
3458 end if;
3460 -- In a remote call, if the formal is of a class-wide type, check
3461 -- that the actual meets the requirements described in E.4(18).
3463 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3464 Insert_Action (Actual,
3465 Make_Transportable_Check (Loc,
3466 Duplicate_Subexpr_Move_Checks (Actual)));
3467 end if;
3469 -- Perform invariant checks for all intermediate types in a view
3470 -- conversion after successful return from a call that passes the
3471 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3472 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3473 -- generating spurious checks on complex expansion such as object
3474 -- initialization through an extension aggregate.
3476 if Comes_From_Source (N)
3477 and then Ekind (Formal) /= E_In_Parameter
3478 and then Nkind (Actual) = N_Type_Conversion
3479 then
3480 Add_View_Conversion_Invariants (Formal, Actual);
3481 end if;
3483 -- Generating C the initialization of an allocator is performed by
3484 -- means of individual statements, and hence it must be done before
3485 -- the call.
3487 if Modify_Tree_For_C
3488 and then Nkind (Actual) = N_Allocator
3489 and then Nkind (Expression (Actual)) = N_Qualified_Expression
3490 then
3491 Remove_Side_Effects (Actual);
3492 end if;
3494 -- This label is required when skipping extra actual generation for
3495 -- Unchecked_Union parameters.
3497 <<Skip_Extra_Actual_Generation>>
3499 Param_Count := Param_Count + 1;
3500 Next_Actual (Actual);
3501 Next_Formal (Formal);
3502 end loop;
3504 -- If we are calling an Ada 2012 function which needs to have the
3505 -- "accessibility level determined by the point of call" (AI05-0234)
3506 -- passed in to it, then pass it in.
3508 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3509 and then
3510 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3511 then
3512 declare
3513 Ancestor : Node_Id := Parent (Call_Node);
3514 Level : Node_Id := Empty;
3515 Defer : Boolean := False;
3517 begin
3518 -- Unimplemented: if Subp returns an anonymous access type, then
3520 -- a) if the call is the operand of an explict conversion, then
3521 -- the target type of the conversion (a named access type)
3522 -- determines the accessibility level pass in;
3524 -- b) if the call defines an access discriminant of an object
3525 -- (e.g., the discriminant of an object being created by an
3526 -- allocator, or the discriminant of a function result),
3527 -- then the accessibility level to pass in is that of the
3528 -- discriminated object being initialized).
3530 -- ???
3532 while Nkind (Ancestor) = N_Qualified_Expression
3533 loop
3534 Ancestor := Parent (Ancestor);
3535 end loop;
3537 case Nkind (Ancestor) is
3538 when N_Allocator =>
3540 -- At this point, we'd like to assign
3542 -- Level := Dynamic_Accessibility_Level (Ancestor);
3544 -- but Etype of Ancestor may not have been set yet,
3545 -- so that doesn't work.
3547 -- Handle this later in Expand_Allocator_Expression.
3549 Defer := True;
3551 when N_Object_Declaration
3552 | N_Object_Renaming_Declaration
3554 declare
3555 Def_Id : constant Entity_Id :=
3556 Defining_Identifier (Ancestor);
3558 begin
3559 if Is_Return_Object (Def_Id) then
3560 if Present (Extra_Accessibility_Of_Result
3561 (Return_Applies_To (Scope (Def_Id))))
3562 then
3563 -- Pass along value that was passed in if the
3564 -- routine we are returning from also has an
3565 -- Accessibility_Of_Result formal.
3567 Level :=
3568 New_Occurrence_Of
3569 (Extra_Accessibility_Of_Result
3570 (Return_Applies_To (Scope (Def_Id))), Loc);
3571 end if;
3572 else
3573 Level :=
3574 Make_Integer_Literal (Loc,
3575 Intval => Object_Access_Level (Def_Id));
3576 end if;
3577 end;
3579 when N_Simple_Return_Statement =>
3580 if Present (Extra_Accessibility_Of_Result
3581 (Return_Applies_To
3582 (Return_Statement_Entity (Ancestor))))
3583 then
3584 -- Pass along value that was passed in if the returned
3585 -- routine also has an Accessibility_Of_Result formal.
3587 Level :=
3588 New_Occurrence_Of
3589 (Extra_Accessibility_Of_Result
3590 (Return_Applies_To
3591 (Return_Statement_Entity (Ancestor))), Loc);
3592 end if;
3594 when others =>
3595 null;
3596 end case;
3598 if not Defer then
3599 if not Present (Level) then
3601 -- The "innermost master that evaluates the function call".
3603 -- ??? - Should we use Integer'Last here instead in order
3604 -- to deal with (some of) the problems associated with
3605 -- calls to subps whose enclosing scope is unknown (e.g.,
3606 -- Anon_Access_To_Subp_Param.all)?
3608 Level :=
3609 Make_Integer_Literal (Loc,
3610 Intval => Scope_Depth (Current_Scope) + 1);
3611 end if;
3613 Add_Extra_Actual
3614 (Expr => Level,
3615 EF =>
3616 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3617 end if;
3618 end;
3619 end if;
3621 -- If we are expanding the RHS of an assignment we need to check if tag
3622 -- propagation is needed. You might expect this processing to be in
3623 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3624 -- assignment might be transformed to a declaration for an unconstrained
3625 -- value if the expression is classwide.
3627 if Nkind (Call_Node) = N_Function_Call
3628 and then Is_Tag_Indeterminate (Call_Node)
3629 and then Is_Entity_Name (Name (Call_Node))
3630 then
3631 declare
3632 Ass : Node_Id := Empty;
3634 begin
3635 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3636 Ass := Parent (Call_Node);
3638 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3639 and then Nkind (Parent (Parent (Call_Node))) =
3640 N_Assignment_Statement
3641 then
3642 Ass := Parent (Parent (Call_Node));
3644 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3645 and then Nkind (Parent (Parent (Call_Node))) =
3646 N_Assignment_Statement
3647 then
3648 Ass := Parent (Parent (Call_Node));
3649 end if;
3651 if Present (Ass)
3652 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3653 then
3654 if Is_Access_Type (Etype (Call_Node)) then
3655 if Designated_Type (Etype (Call_Node)) /=
3656 Root_Type (Etype (Name (Ass)))
3657 then
3658 Error_Msg_NE
3659 ("tag-indeterminate expression must have designated "
3660 & "type& (RM 5.2 (6))",
3661 Call_Node, Root_Type (Etype (Name (Ass))));
3662 else
3663 Propagate_Tag (Name (Ass), Call_Node);
3664 end if;
3666 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3667 Error_Msg_NE
3668 ("tag-indeterminate expression must have type & "
3669 & "(RM 5.2 (6))",
3670 Call_Node, Root_Type (Etype (Name (Ass))));
3672 else
3673 Propagate_Tag (Name (Ass), Call_Node);
3674 end if;
3676 -- The call will be rewritten as a dispatching call, and
3677 -- expanded as such.
3679 return;
3680 end if;
3681 end;
3682 end if;
3684 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3685 -- it to point to the correct secondary virtual table
3687 if Nkind (Call_Node) in N_Subprogram_Call
3688 and then CW_Interface_Formals_Present
3689 then
3690 Expand_Interface_Actuals (Call_Node);
3691 end if;
3693 -- Deals with Dispatch_Call if we still have a call, before expanding
3694 -- extra actuals since this will be done on the re-analysis of the
3695 -- dispatching call. Note that we do not try to shorten the actual list
3696 -- for a dispatching call, it would not make sense to do so. Expansion
3697 -- of dispatching calls is suppressed for VM targets, because the VM
3698 -- back-ends directly handle the generation of dispatching calls and
3699 -- would have to undo any expansion to an indirect call.
3701 if Nkind (Call_Node) in N_Subprogram_Call
3702 and then Present (Controlling_Argument (Call_Node))
3703 then
3704 declare
3705 Call_Typ : constant Entity_Id := Etype (Call_Node);
3706 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3707 Eq_Prim_Op : Entity_Id := Empty;
3708 New_Call : Node_Id;
3709 Param : Node_Id;
3710 Prev_Call : Node_Id;
3712 begin
3713 if not Is_Limited_Type (Typ) then
3714 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3715 end if;
3717 if Tagged_Type_Expansion then
3718 Expand_Dispatching_Call (Call_Node);
3720 -- The following return is worrisome. Is it really OK to skip
3721 -- all remaining processing in this procedure ???
3723 return;
3725 -- VM targets
3727 else
3728 Apply_Tag_Checks (Call_Node);
3730 -- If this is a dispatching "=", we must first compare the
3731 -- tags so we generate: x.tag = y.tag and then x = y
3733 if Subp = Eq_Prim_Op then
3735 -- Mark the node as analyzed to avoid reanalyzing this
3736 -- dispatching call (which would cause a never-ending loop)
3738 Prev_Call := Relocate_Node (Call_Node);
3739 Set_Analyzed (Prev_Call);
3741 Param := First_Actual (Call_Node);
3742 New_Call :=
3743 Make_And_Then (Loc,
3744 Left_Opnd =>
3745 Make_Op_Eq (Loc,
3746 Left_Opnd =>
3747 Make_Selected_Component (Loc,
3748 Prefix => New_Value (Param),
3749 Selector_Name =>
3750 New_Occurrence_Of
3751 (First_Tag_Component (Typ), Loc)),
3753 Right_Opnd =>
3754 Make_Selected_Component (Loc,
3755 Prefix =>
3756 Unchecked_Convert_To (Typ,
3757 New_Value (Next_Actual (Param))),
3758 Selector_Name =>
3759 New_Occurrence_Of
3760 (First_Tag_Component (Typ), Loc))),
3761 Right_Opnd => Prev_Call);
3763 Rewrite (Call_Node, New_Call);
3765 Analyze_And_Resolve
3766 (Call_Node, Call_Typ, Suppress => All_Checks);
3767 end if;
3769 -- Expansion of a dispatching call results in an indirect call,
3770 -- which in turn causes current values to be killed (see
3771 -- Resolve_Call), so on VM targets we do the call here to
3772 -- ensure consistent warnings between VM and non-VM targets.
3774 Kill_Current_Values;
3775 end if;
3777 -- If this is a dispatching "=" then we must update the reference
3778 -- to the call node because we generated:
3779 -- x.tag = y.tag and then x = y
3781 if Subp = Eq_Prim_Op then
3782 Call_Node := Right_Opnd (Call_Node);
3783 end if;
3784 end;
3785 end if;
3787 -- Similarly, expand calls to RCI subprograms on which pragma
3788 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3789 -- later. Do this only when the call comes from source since we
3790 -- do not want such a rewriting to occur in expanded code.
3792 if Is_All_Remote_Call (Call_Node) then
3793 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3795 -- Similarly, do not add extra actuals for an entry call whose entity
3796 -- is a protected procedure, or for an internal protected subprogram
3797 -- call, because it will be rewritten as a protected subprogram call
3798 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3800 elsif Is_Protected_Type (Scope (Subp))
3801 and then (Ekind (Subp) = E_Procedure
3802 or else Ekind (Subp) = E_Function)
3803 then
3804 null;
3806 -- During that loop we gathered the extra actuals (the ones that
3807 -- correspond to Extra_Formals), so now they can be appended.
3809 else
3810 while Is_Non_Empty_List (Extra_Actuals) loop
3811 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3812 end loop;
3813 end if;
3815 -- At this point we have all the actuals, so this is the point at which
3816 -- the various expansion activities for actuals is carried out.
3818 Expand_Actuals (Call_Node, Subp, Post_Call);
3820 -- Verify that the actuals do not share storage. This check must be done
3821 -- on the caller side rather that inside the subprogram to avoid issues
3822 -- of parameter passing.
3824 if Check_Aliasing_Of_Parameters then
3825 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3826 end if;
3828 -- If the subprogram is a renaming, or if it is inherited, replace it in
3829 -- the call with the name of the actual subprogram being called. If this
3830 -- is a dispatching call, the run-time decides what to call. The Alias
3831 -- attribute does not apply to entries.
3833 if Nkind (Call_Node) /= N_Entry_Call_Statement
3834 and then No (Controlling_Argument (Call_Node))
3835 and then Present (Parent_Subp)
3836 and then not Is_Direct_Deep_Call (Subp)
3837 then
3838 if Present (Inherited_From_Formal (Subp)) then
3839 Parent_Subp := Inherited_From_Formal (Subp);
3840 else
3841 Parent_Subp := Ultimate_Alias (Parent_Subp);
3842 end if;
3844 -- The below setting of Entity is suspect, see F109-018 discussion???
3846 Set_Entity (Name (Call_Node), Parent_Subp);
3848 if Is_Abstract_Subprogram (Parent_Subp)
3849 and then not In_Instance
3850 then
3851 Error_Msg_NE
3852 ("cannot call abstract subprogram &!",
3853 Name (Call_Node), Parent_Subp);
3854 end if;
3856 -- Inspect all formals of derived subprogram Subp. Compare parameter
3857 -- types with the parent subprogram and check whether an actual may
3858 -- need a type conversion to the corresponding formal of the parent
3859 -- subprogram.
3861 -- Not clear whether intrinsic subprograms need such conversions. ???
3863 if not Is_Intrinsic_Subprogram (Parent_Subp)
3864 or else Is_Generic_Instance (Parent_Subp)
3865 then
3866 declare
3867 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3868 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3869 -- and resolve the newly generated construct.
3871 -------------
3872 -- Convert --
3873 -------------
3875 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3876 begin
3877 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3878 Analyze (Act);
3879 Resolve (Act, Typ);
3880 end Convert;
3882 -- Local variables
3884 Actual_Typ : Entity_Id;
3885 Formal_Typ : Entity_Id;
3886 Parent_Typ : Entity_Id;
3888 begin
3889 Actual := First_Actual (Call_Node);
3890 Formal := First_Formal (Subp);
3891 Parent_Formal := First_Formal (Parent_Subp);
3892 while Present (Formal) loop
3893 Actual_Typ := Etype (Actual);
3894 Formal_Typ := Etype (Formal);
3895 Parent_Typ := Etype (Parent_Formal);
3897 -- For an IN parameter of a scalar type, the parent formal
3898 -- type and derived formal type differ or the parent formal
3899 -- type and actual type do not match statically.
3901 if Is_Scalar_Type (Formal_Typ)
3902 and then Ekind (Formal) = E_In_Parameter
3903 and then Formal_Typ /= Parent_Typ
3904 and then
3905 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3906 and then not Raises_Constraint_Error (Actual)
3907 then
3908 Convert (Actual, Parent_Typ);
3909 Enable_Range_Check (Actual);
3911 -- If the actual has been marked as requiring a range
3912 -- check, then generate it here.
3914 if Do_Range_Check (Actual) then
3915 Generate_Range_Check
3916 (Actual, Etype (Formal), CE_Range_Check_Failed);
3917 end if;
3919 -- For access types, the parent formal type and actual type
3920 -- differ.
3922 elsif Is_Access_Type (Formal_Typ)
3923 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3924 then
3925 if Ekind (Formal) /= E_In_Parameter then
3926 Convert (Actual, Parent_Typ);
3928 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3929 and then Designated_Type (Parent_Typ) /=
3930 Designated_Type (Actual_Typ)
3931 and then not Is_Controlling_Formal (Formal)
3932 then
3933 -- This unchecked conversion is not necessary unless
3934 -- inlining is enabled, because in that case the type
3935 -- mismatch may become visible in the body about to be
3936 -- inlined.
3938 Rewrite (Actual,
3939 Unchecked_Convert_To (Parent_Typ,
3940 Relocate_Node (Actual)));
3941 Analyze (Actual);
3942 Resolve (Actual, Parent_Typ);
3943 end if;
3945 -- If there is a change of representation, then generate a
3946 -- warning, and do the change of representation.
3948 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3949 Error_Msg_N
3950 ("??change of representation required", Actual);
3951 Convert (Actual, Parent_Typ);
3953 -- For array and record types, the parent formal type and
3954 -- derived formal type have different sizes or pragma Pack
3955 -- status.
3957 elsif ((Is_Array_Type (Formal_Typ)
3958 and then Is_Array_Type (Parent_Typ))
3959 or else
3960 (Is_Record_Type (Formal_Typ)
3961 and then Is_Record_Type (Parent_Typ)))
3962 and then
3963 (Esize (Formal_Typ) /= Esize (Parent_Typ)
3964 or else Has_Pragma_Pack (Formal_Typ) /=
3965 Has_Pragma_Pack (Parent_Typ))
3966 then
3967 Convert (Actual, Parent_Typ);
3968 end if;
3970 Next_Actual (Actual);
3971 Next_Formal (Formal);
3972 Next_Formal (Parent_Formal);
3973 end loop;
3974 end;
3975 end if;
3977 Orig_Subp := Subp;
3978 Subp := Parent_Subp;
3979 end if;
3981 -- Deal with case where call is an explicit dereference
3983 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3985 -- Handle case of access to protected subprogram type
3987 if Is_Access_Protected_Subprogram_Type
3988 (Base_Type (Etype (Prefix (Name (Call_Node)))))
3989 then
3990 -- If this is a call through an access to protected operation, the
3991 -- prefix has the form (object'address, operation'access). Rewrite
3992 -- as a for other protected calls: the object is the 1st parameter
3993 -- of the list of actuals.
3995 declare
3996 Call : Node_Id;
3997 Parm : List_Id;
3998 Nam : Node_Id;
3999 Obj : Node_Id;
4000 Ptr : constant Node_Id := Prefix (Name (Call_Node));
4002 T : constant Entity_Id :=
4003 Equivalent_Type (Base_Type (Etype (Ptr)));
4005 D_T : constant Entity_Id :=
4006 Designated_Type (Base_Type (Etype (Ptr)));
4008 begin
4009 Obj :=
4010 Make_Selected_Component (Loc,
4011 Prefix => Unchecked_Convert_To (T, Ptr),
4012 Selector_Name =>
4013 New_Occurrence_Of (First_Entity (T), Loc));
4015 Nam :=
4016 Make_Selected_Component (Loc,
4017 Prefix => Unchecked_Convert_To (T, Ptr),
4018 Selector_Name =>
4019 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
4021 Nam :=
4022 Make_Explicit_Dereference (Loc,
4023 Prefix => Nam);
4025 if Present (Parameter_Associations (Call_Node)) then
4026 Parm := Parameter_Associations (Call_Node);
4027 else
4028 Parm := New_List;
4029 end if;
4031 Prepend (Obj, Parm);
4033 if Etype (D_T) = Standard_Void_Type then
4034 Call :=
4035 Make_Procedure_Call_Statement (Loc,
4036 Name => Nam,
4037 Parameter_Associations => Parm);
4038 else
4039 Call :=
4040 Make_Function_Call (Loc,
4041 Name => Nam,
4042 Parameter_Associations => Parm);
4043 end if;
4045 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
4046 Set_Etype (Call, Etype (D_T));
4048 -- We do not re-analyze the call to avoid infinite recursion.
4049 -- We analyze separately the prefix and the object, and set
4050 -- the checks on the prefix that would otherwise be emitted
4051 -- when resolving a call.
4053 Rewrite (Call_Node, Call);
4054 Analyze (Nam);
4055 Apply_Access_Check (Nam);
4056 Analyze (Obj);
4057 return;
4058 end;
4059 end if;
4060 end if;
4062 -- If this is a call to an intrinsic subprogram, then perform the
4063 -- appropriate expansion to the corresponding tree node and we
4064 -- are all done (since after that the call is gone).
4066 -- In the case where the intrinsic is to be processed by the back end,
4067 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
4068 -- since the idea in this case is to pass the call unchanged. If the
4069 -- intrinsic is an inherited unchecked conversion, and the derived type
4070 -- is the target type of the conversion, we must retain it as the return
4071 -- type of the expression. Otherwise the expansion below, which uses the
4072 -- parent operation, will yield the wrong type.
4074 if Is_Intrinsic_Subprogram (Subp) then
4075 Expand_Intrinsic_Call (Call_Node, Subp);
4077 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
4078 and then Parent_Subp /= Orig_Subp
4079 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
4080 then
4081 Set_Etype (Call_Node, Etype (Orig_Subp));
4082 end if;
4084 return;
4085 end if;
4087 if Ekind_In (Subp, E_Function, E_Procedure) then
4089 -- We perform a simple optimization on calls for To_Address by
4090 -- replacing them with an unchecked conversion. Not only is this
4091 -- efficient, but it also avoids order of elaboration problems when
4092 -- address clauses are inlined (address expression elaborated at the
4093 -- wrong point).
4095 -- We perform this optimization regardless of whether we are in the
4096 -- main unit or in a unit in the context of the main unit, to ensure
4097 -- that the generated tree is the same in both cases, for CodePeer
4098 -- use.
4100 if Is_RTE (Subp, RE_To_Address) then
4101 Rewrite (Call_Node,
4102 Unchecked_Convert_To
4103 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
4104 return;
4106 -- A call to a null procedure is replaced by a null statement, but we
4107 -- are not allowed to ignore possible side effects of the call, so we
4108 -- make sure that actuals are evaluated.
4109 -- We also suppress this optimization for GNATCoverage.
4111 elsif Is_Null_Procedure (Subp)
4112 and then not Opt.Suppress_Control_Flow_Optimizations
4113 then
4114 Actual := First_Actual (Call_Node);
4115 while Present (Actual) loop
4116 Remove_Side_Effects (Actual);
4117 Next_Actual (Actual);
4118 end loop;
4120 Rewrite (Call_Node, Make_Null_Statement (Loc));
4121 return;
4122 end if;
4124 -- Handle inlining. No action needed if the subprogram is not inlined
4126 if not Is_Inlined (Subp) then
4127 null;
4129 -- Frontend inlining of expression functions (performed also when
4130 -- backend inlining is enabled).
4132 elsif Is_Inlinable_Expression_Function (Subp) then
4133 Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
4134 Analyze (N);
4135 return;
4137 -- Handle frontend inlining
4139 elsif not Back_End_Inlining then
4140 Inlined_Subprogram : declare
4141 Bod : Node_Id;
4142 Must_Inline : Boolean := False;
4143 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
4145 begin
4146 -- Verify that the body to inline has already been seen, and
4147 -- that if the body is in the current unit the inlining does
4148 -- not occur earlier. This avoids order-of-elaboration problems
4149 -- in the back end.
4151 -- This should be documented in sinfo/einfo ???
4153 if No (Spec)
4154 or else Nkind (Spec) /= N_Subprogram_Declaration
4155 or else No (Body_To_Inline (Spec))
4156 then
4157 Must_Inline := False;
4159 -- If this an inherited function that returns a private type,
4160 -- do not inline if the full view is an unconstrained array,
4161 -- because such calls cannot be inlined.
4163 elsif Present (Orig_Subp)
4164 and then Is_Array_Type (Etype (Orig_Subp))
4165 and then not Is_Constrained (Etype (Orig_Subp))
4166 then
4167 Must_Inline := False;
4169 elsif In_Unfrozen_Instance (Scope (Subp)) then
4170 Must_Inline := False;
4172 else
4173 Bod := Body_To_Inline (Spec);
4175 if (In_Extended_Main_Code_Unit (Call_Node)
4176 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
4177 or else Has_Pragma_Inline_Always (Subp))
4178 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
4179 or else
4180 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
4181 then
4182 Must_Inline := True;
4184 -- If we are compiling a package body that is not the main
4185 -- unit, it must be for inlining/instantiation purposes,
4186 -- in which case we inline the call to insure that the same
4187 -- temporaries are generated when compiling the body by
4188 -- itself. Otherwise link errors can occur.
4190 -- If the function being called is itself in the main unit,
4191 -- we cannot inline, because there is a risk of double
4192 -- elaboration and/or circularity: the inlining can make
4193 -- visible a private entity in the body of the main unit,
4194 -- that gigi will see before its sees its proper definition.
4196 elsif not (In_Extended_Main_Code_Unit (Call_Node))
4197 and then In_Package_Body
4198 then
4199 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
4201 -- Inline calls to _postconditions when generating C code
4203 elsif Modify_Tree_For_C
4204 and then In_Same_Extended_Unit (Sloc (Bod), Loc)
4205 and then Chars (Name (N)) = Name_uPostconditions
4206 then
4207 Must_Inline := True;
4208 end if;
4209 end if;
4211 if Must_Inline then
4212 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4214 else
4215 -- Let the back end handle it
4217 Add_Inlined_Body (Subp, Call_Node);
4219 if Front_End_Inlining
4220 and then Nkind (Spec) = N_Subprogram_Declaration
4221 and then (In_Extended_Main_Code_Unit (Call_Node))
4222 and then No (Body_To_Inline (Spec))
4223 and then not Has_Completion (Subp)
4224 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
4225 then
4226 Cannot_Inline
4227 ("cannot inline& (body not seen yet)?",
4228 Call_Node, Subp);
4229 end if;
4230 end if;
4231 end Inlined_Subprogram;
4233 -- Back end inlining: let the back end handle it
4235 elsif No (Unit_Declaration_Node (Subp))
4236 or else Nkind (Unit_Declaration_Node (Subp)) /=
4237 N_Subprogram_Declaration
4238 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
4239 or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
4240 N_Entity
4241 then
4242 Add_Inlined_Body (Subp, Call_Node);
4244 -- If the inlined call appears within an instantiation and some
4245 -- level of optimization is required, ensure that the enclosing
4246 -- instance body is available so that the back-end can actually
4247 -- perform the inlining.
4249 if In_Instance
4250 and then Comes_From_Source (Subp)
4251 and then Optimization_Level > 0
4252 then
4253 declare
4254 Decl : Node_Id;
4255 Inst : Entity_Id;
4256 Inst_Node : Node_Id;
4258 begin
4259 Inst := Scope (Subp);
4261 -- Find enclosing instance
4263 while Present (Inst) and then Inst /= Standard_Standard loop
4264 exit when Is_Generic_Instance (Inst);
4265 Inst := Scope (Inst);
4266 end loop;
4268 if Present (Inst)
4269 and then Is_Generic_Instance (Inst)
4270 and then not Is_Inlined (Inst)
4271 then
4272 Set_Is_Inlined (Inst);
4273 Decl := Unit_Declaration_Node (Inst);
4275 -- Do not add a pending instantiation if the body exits
4276 -- already, or if the instance is a compilation unit, or
4277 -- the instance node is missing.
4279 if Present (Corresponding_Body (Decl))
4280 or else Nkind (Parent (Decl)) = N_Compilation_Unit
4281 or else No (Next (Decl))
4282 then
4283 null;
4285 else
4286 -- The instantiation node usually follows the package
4287 -- declaration for the instance. If the generic unit
4288 -- has aspect specifications, they are transformed
4289 -- into pragmas in the instance, and the instance node
4290 -- appears after them.
4292 Inst_Node := Next (Decl);
4294 while Nkind (Inst_Node) /= N_Package_Instantiation loop
4295 Inst_Node := Next (Inst_Node);
4296 end loop;
4298 Add_Pending_Instantiation (Inst_Node, Decl);
4299 end if;
4300 end if;
4301 end;
4302 end if;
4304 -- Front end expansion of simple functions returning unconstrained
4305 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4306 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4307 -- also Build_Renamed_Body) cannot be expanded here because this may
4308 -- give rise to order-of-elaboration issues for the types of the
4309 -- parameters of the subprogram, if any.
4311 else
4312 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4313 end if;
4314 end if;
4316 -- Check for protected subprogram. This is either an intra-object call,
4317 -- or a protected function call. Protected procedure calls are rewritten
4318 -- as entry calls and handled accordingly.
4320 -- In Ada 2005, this may be an indirect call to an access parameter that
4321 -- is an access_to_subprogram. In that case the anonymous type has a
4322 -- scope that is a protected operation, but the call is a regular one.
4323 -- In either case do not expand call if subprogram is eliminated.
4325 Scop := Scope (Subp);
4327 if Nkind (Call_Node) /= N_Entry_Call_Statement
4328 and then Is_Protected_Type (Scop)
4329 and then Ekind (Subp) /= E_Subprogram_Type
4330 and then not Is_Eliminated (Subp)
4331 then
4332 -- If the call is an internal one, it is rewritten as a call to the
4333 -- corresponding unprotected subprogram.
4335 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
4336 end if;
4338 -- Functions returning controlled objects need special attention. If
4339 -- the return type is limited, then the context is initialization and
4340 -- different processing applies. If the call is to a protected function,
4341 -- the expansion above will call Expand_Call recursively. Otherwise the
4342 -- function call is transformed into a temporary which obtains the
4343 -- result from the secondary stack.
4345 if Needs_Finalization (Etype (Subp)) then
4346 if not Is_Build_In_Place_Function_Call (Call_Node)
4347 and then
4348 (No (First_Formal (Subp))
4349 or else
4350 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4351 then
4352 Expand_Ctrl_Function_Call (Call_Node);
4354 -- Build-in-place function calls which appear in anonymous contexts
4355 -- need a transient scope to ensure the proper finalization of the
4356 -- intermediate result after its use.
4358 elsif Is_Build_In_Place_Function_Call (Call_Node)
4359 and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
4360 N_Attribute_Reference,
4361 N_Function_Call,
4362 N_Indexed_Component,
4363 N_Object_Renaming_Declaration,
4364 N_Procedure_Call_Statement,
4365 N_Selected_Component,
4366 N_Slice)
4367 and then
4368 (Ekind (Current_Scope) /= E_Loop
4369 or else Nkind (Parent (N)) /= N_Function_Call
4370 or else not Is_Build_In_Place_Function_Call (Parent (N)))
4371 then
4372 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
4373 end if;
4374 end if;
4375 end Expand_Call_Helper;
4377 -------------------------------
4378 -- Expand_Ctrl_Function_Call --
4379 -------------------------------
4381 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4382 function Is_Element_Reference (N : Node_Id) return Boolean;
4383 -- Determine whether node N denotes a reference to an Ada 2012 container
4384 -- element.
4386 --------------------------
4387 -- Is_Element_Reference --
4388 --------------------------
4390 function Is_Element_Reference (N : Node_Id) return Boolean is
4391 Ref : constant Node_Id := Original_Node (N);
4393 begin
4394 -- Analysis marks an element reference by setting the generalized
4395 -- indexing attribute of an indexed component before the component
4396 -- is rewritten into a function call.
4398 return
4399 Nkind (Ref) = N_Indexed_Component
4400 and then Present (Generalized_Indexing (Ref));
4401 end Is_Element_Reference;
4403 -- Start of processing for Expand_Ctrl_Function_Call
4405 begin
4406 -- Optimization, if the returned value (which is on the sec-stack) is
4407 -- returned again, no need to copy/readjust/finalize, we can just pass
4408 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4409 -- attachment is needed
4411 if Nkind (Parent (N)) = N_Simple_Return_Statement then
4412 return;
4413 end if;
4415 -- Resolution is now finished, make sure we don't start analysis again
4416 -- because of the duplication.
4418 Set_Analyzed (N);
4420 -- A function which returns a controlled object uses the secondary
4421 -- stack. Rewrite the call into a temporary which obtains the result of
4422 -- the function using 'reference.
4424 Remove_Side_Effects (N);
4426 -- The side effect removal of the function call produced a temporary.
4427 -- When the context is a case expression, if expression, or expression
4428 -- with actions, the lifetime of the temporary must be extended to match
4429 -- that of the context. Otherwise the function result will be finalized
4430 -- too early and affect the result of the expression. To prevent this
4431 -- unwanted effect, the temporary should not be considered for clean up
4432 -- actions by the general finalization machinery.
4434 -- Exception to this rule are references to Ada 2012 container elements.
4435 -- Such references must be finalized at the end of each iteration of the
4436 -- related quantified expression, otherwise the container will remain
4437 -- busy.
4439 if Nkind (N) = N_Explicit_Dereference
4440 and then Within_Case_Or_If_Expression (N)
4441 and then not Is_Element_Reference (N)
4442 then
4443 Set_Is_Ignored_Transient (Entity (Prefix (N)));
4444 end if;
4445 end Expand_Ctrl_Function_Call;
4447 ----------------------------------------
4448 -- Expand_N_Extended_Return_Statement --
4449 ----------------------------------------
4451 -- If there is a Handled_Statement_Sequence, we rewrite this:
4453 -- return Result : T := <expression> do
4454 -- <handled_seq_of_stms>
4455 -- end return;
4457 -- to be:
4459 -- declare
4460 -- Result : T := <expression>;
4461 -- begin
4462 -- <handled_seq_of_stms>
4463 -- return Result;
4464 -- end;
4466 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4468 -- return Result : T := <expression>;
4470 -- to be:
4472 -- return <expression>;
4474 -- unless it's build-in-place or there's no <expression>, in which case
4475 -- we generate:
4477 -- declare
4478 -- Result : T := <expression>;
4479 -- begin
4480 -- return Result;
4481 -- end;
4483 -- Note that this case could have been written by the user as an extended
4484 -- return statement, or could have been transformed to this from a simple
4485 -- return statement.
4487 -- That is, we need to have a reified return object if there are statements
4488 -- (which might refer to it) or if we're doing build-in-place (so we can
4489 -- set its address to the final resting place or if there is no expression
4490 -- (in which case default initial values might need to be set).
4492 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4493 Loc : constant Source_Ptr := Sloc (N);
4495 function Build_Heap_Allocator
4496 (Temp_Id : Entity_Id;
4497 Temp_Typ : Entity_Id;
4498 Func_Id : Entity_Id;
4499 Ret_Typ : Entity_Id;
4500 Alloc_Expr : Node_Id) return Node_Id;
4501 -- Create the statements necessary to allocate a return object on the
4502 -- caller's master. The master is available through implicit parameter
4503 -- BIPfinalizationmaster.
4505 -- if BIPfinalizationmaster /= null then
4506 -- declare
4507 -- type Ptr_Typ is access Ret_Typ;
4508 -- for Ptr_Typ'Storage_Pool use
4509 -- Base_Pool (BIPfinalizationmaster.all).all;
4510 -- Local : Ptr_Typ;
4512 -- begin
4513 -- procedure Allocate (...) is
4514 -- begin
4515 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4516 -- end Allocate;
4518 -- Local := <Alloc_Expr>;
4519 -- Temp_Id := Temp_Typ (Local);
4520 -- end;
4521 -- end if;
4523 -- Temp_Id is the temporary which is used to reference the internally
4524 -- created object in all allocation forms. Temp_Typ is the type of the
4525 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4526 -- type of Func_Id. Alloc_Expr is the actual allocator.
4528 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4529 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4530 -- with parameters:
4531 -- From current activation chain
4532 -- To activation chain passed in by the caller
4533 -- New_Master master passed in by the caller
4535 -- Func_Id is the entity of the function where the extended return
4536 -- statement appears.
4538 --------------------------
4539 -- Build_Heap_Allocator --
4540 --------------------------
4542 function Build_Heap_Allocator
4543 (Temp_Id : Entity_Id;
4544 Temp_Typ : Entity_Id;
4545 Func_Id : Entity_Id;
4546 Ret_Typ : Entity_Id;
4547 Alloc_Expr : Node_Id) return Node_Id
4549 begin
4550 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4552 -- Processing for build-in-place object allocation.
4554 if Needs_Finalization (Ret_Typ) then
4555 declare
4556 Decls : constant List_Id := New_List;
4557 Fin_Mas_Id : constant Entity_Id :=
4558 Build_In_Place_Formal
4559 (Func_Id, BIP_Finalization_Master);
4560 Stmts : constant List_Id := New_List;
4561 Desig_Typ : Entity_Id;
4562 Local_Id : Entity_Id;
4563 Pool_Id : Entity_Id;
4564 Ptr_Typ : Entity_Id;
4566 begin
4567 -- Generate:
4568 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4570 Pool_Id := Make_Temporary (Loc, 'P');
4572 Append_To (Decls,
4573 Make_Object_Renaming_Declaration (Loc,
4574 Defining_Identifier => Pool_Id,
4575 Subtype_Mark =>
4576 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4577 Name =>
4578 Make_Explicit_Dereference (Loc,
4579 Prefix =>
4580 Make_Function_Call (Loc,
4581 Name =>
4582 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4583 Parameter_Associations => New_List (
4584 Make_Explicit_Dereference (Loc,
4585 Prefix =>
4586 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4588 -- Create an access type which uses the storage pool of the
4589 -- caller's master. This additional type is necessary because
4590 -- the finalization master cannot be associated with the type
4591 -- of the temporary. Otherwise the secondary stack allocation
4592 -- will fail.
4594 Desig_Typ := Ret_Typ;
4596 -- Ensure that the build-in-place machinery uses a fat pointer
4597 -- when allocating an unconstrained array on the heap. In this
4598 -- case the result object type is a constrained array type even
4599 -- though the function type is unconstrained.
4601 if Ekind (Desig_Typ) = E_Array_Subtype then
4602 Desig_Typ := Base_Type (Desig_Typ);
4603 end if;
4605 -- Generate:
4606 -- type Ptr_Typ is access Desig_Typ;
4608 Ptr_Typ := Make_Temporary (Loc, 'P');
4610 Append_To (Decls,
4611 Make_Full_Type_Declaration (Loc,
4612 Defining_Identifier => Ptr_Typ,
4613 Type_Definition =>
4614 Make_Access_To_Object_Definition (Loc,
4615 Subtype_Indication =>
4616 New_Occurrence_Of (Desig_Typ, Loc))));
4618 -- Perform minor decoration in order to set the master and the
4619 -- storage pool attributes.
4621 Set_Ekind (Ptr_Typ, E_Access_Type);
4622 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
4623 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4625 -- Create the temporary, generate:
4626 -- Local_Id : Ptr_Typ;
4628 Local_Id := Make_Temporary (Loc, 'T');
4630 Append_To (Decls,
4631 Make_Object_Declaration (Loc,
4632 Defining_Identifier => Local_Id,
4633 Object_Definition =>
4634 New_Occurrence_Of (Ptr_Typ, Loc)));
4636 -- Allocate the object, generate:
4637 -- Local_Id := <Alloc_Expr>;
4639 Append_To (Stmts,
4640 Make_Assignment_Statement (Loc,
4641 Name => New_Occurrence_Of (Local_Id, Loc),
4642 Expression => Alloc_Expr));
4644 -- Generate:
4645 -- Temp_Id := Temp_Typ (Local_Id);
4647 Append_To (Stmts,
4648 Make_Assignment_Statement (Loc,
4649 Name => New_Occurrence_Of (Temp_Id, Loc),
4650 Expression =>
4651 Unchecked_Convert_To (Temp_Typ,
4652 New_Occurrence_Of (Local_Id, Loc))));
4654 -- Wrap the allocation in a block. This is further conditioned
4655 -- by checking the caller finalization master at runtime. A
4656 -- null value indicates a non-existent master, most likely due
4657 -- to a Finalize_Storage_Only allocation.
4659 -- Generate:
4660 -- if BIPfinalizationmaster /= null then
4661 -- declare
4662 -- <Decls>
4663 -- begin
4664 -- <Stmts>
4665 -- end;
4666 -- end if;
4668 return
4669 Make_If_Statement (Loc,
4670 Condition =>
4671 Make_Op_Ne (Loc,
4672 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
4673 Right_Opnd => Make_Null (Loc)),
4675 Then_Statements => New_List (
4676 Make_Block_Statement (Loc,
4677 Declarations => Decls,
4678 Handled_Statement_Sequence =>
4679 Make_Handled_Sequence_Of_Statements (Loc,
4680 Statements => Stmts))));
4681 end;
4683 -- For all other cases, generate:
4684 -- Temp_Id := <Alloc_Expr>;
4686 else
4687 return
4688 Make_Assignment_Statement (Loc,
4689 Name => New_Occurrence_Of (Temp_Id, Loc),
4690 Expression => Alloc_Expr);
4691 end if;
4692 end Build_Heap_Allocator;
4694 ---------------------------
4695 -- Move_Activation_Chain --
4696 ---------------------------
4698 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4699 begin
4700 return
4701 Make_Procedure_Call_Statement (Loc,
4702 Name =>
4703 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4705 Parameter_Associations => New_List (
4707 -- Source chain
4709 Make_Attribute_Reference (Loc,
4710 Prefix => Make_Identifier (Loc, Name_uChain),
4711 Attribute_Name => Name_Unrestricted_Access),
4713 -- Destination chain
4715 New_Occurrence_Of
4716 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4718 -- New master
4720 New_Occurrence_Of
4721 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4722 end Move_Activation_Chain;
4724 -- Local variables
4726 Func_Id : constant Entity_Id :=
4727 Return_Applies_To (Return_Statement_Entity (N));
4728 Is_BIP_Func : constant Boolean :=
4729 Is_Build_In_Place_Function (Func_Id);
4730 Ret_Obj_Id : constant Entity_Id :=
4731 First_Entity (Return_Statement_Entity (N));
4732 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4733 Ret_Typ : constant Entity_Id := Etype (Func_Id);
4735 Exp : Node_Id;
4736 HSS : Node_Id;
4737 Result : Node_Id;
4738 Stmts : List_Id;
4740 Return_Stmt : Node_Id := Empty;
4741 -- Force initialization to facilitate static analysis
4743 -- Start of processing for Expand_N_Extended_Return_Statement
4745 begin
4746 -- Given that functionality of interface thunks is simple (just displace
4747 -- the pointer to the object) they are always handled by means of
4748 -- simple return statements.
4750 pragma Assert (not Is_Thunk (Current_Scope));
4752 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4753 Exp := Expression (Ret_Obj_Decl);
4755 -- Assert that if F says "return R : T := G(...) do..."
4756 -- then F and G are both b-i-p, or neither b-i-p.
4758 if Nkind (Exp) = N_Function_Call then
4759 pragma Assert (Ekind (Current_Scope) = E_Function);
4760 pragma Assert
4761 (Is_Build_In_Place_Function (Current_Scope) =
4762 Is_Build_In_Place_Function_Call (Exp));
4763 null;
4764 end if;
4765 else
4766 Exp := Empty;
4767 end if;
4769 HSS := Handled_Statement_Sequence (N);
4771 -- If the returned object needs finalization actions, the function must
4772 -- perform the appropriate cleanup should it fail to return. The state
4773 -- of the function itself is tracked through a flag which is coupled
4774 -- with the scope finalizer. There is one flag per each return object
4775 -- in case of multiple returns.
4777 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4778 declare
4779 Flag_Decl : Node_Id;
4780 Flag_Id : Entity_Id;
4781 Func_Bod : Node_Id;
4783 begin
4784 -- Recover the function body
4786 Func_Bod := Unit_Declaration_Node (Func_Id);
4788 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4789 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4790 end if;
4792 if Nkind (Func_Bod) = N_Function_Specification then
4793 Func_Bod := Parent (Func_Bod); -- one more level for child units
4794 end if;
4796 pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
4798 -- Create a flag to track the function state
4800 Flag_Id := Make_Temporary (Loc, 'F');
4801 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4803 -- Insert the flag at the beginning of the function declarations,
4804 -- generate:
4805 -- Fnn : Boolean := False;
4807 Flag_Decl :=
4808 Make_Object_Declaration (Loc,
4809 Defining_Identifier => Flag_Id,
4810 Object_Definition =>
4811 New_Occurrence_Of (Standard_Boolean, Loc),
4812 Expression =>
4813 New_Occurrence_Of (Standard_False, Loc));
4815 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4816 Analyze (Flag_Decl);
4817 end;
4818 end if;
4820 -- Build a simple_return_statement that returns the return object when
4821 -- there is a statement sequence, or no expression, or the result will
4822 -- be built in place. Note however that we currently do this for all
4823 -- composite cases, even though not all are built in place.
4825 if Present (HSS)
4826 or else Is_Composite_Type (Ret_Typ)
4827 or else No (Exp)
4828 then
4829 if No (HSS) then
4830 Stmts := New_List;
4832 -- If the extended return has a handled statement sequence, then wrap
4833 -- it in a block and use the block as the first statement.
4835 else
4836 Stmts := New_List (
4837 Make_Block_Statement (Loc,
4838 Declarations => New_List,
4839 Handled_Statement_Sequence => HSS));
4840 end if;
4842 -- If the result type contains tasks, we call Move_Activation_Chain.
4843 -- Later, the cleanup code will call Complete_Master, which will
4844 -- terminate any unactivated tasks belonging to the return statement
4845 -- master. But Move_Activation_Chain updates their master to be that
4846 -- of the caller, so they will not be terminated unless the return
4847 -- statement completes unsuccessfully due to exception, abort, goto,
4848 -- or exit. As a formality, we test whether the function requires the
4849 -- result to be built in place, though that's necessarily true for
4850 -- the case of result types with task parts.
4852 if Is_BIP_Func and then Has_Task (Ret_Typ) then
4854 -- The return expression is an aggregate for a complex type which
4855 -- contains tasks. This particular case is left unexpanded since
4856 -- the regular expansion would insert all temporaries and
4857 -- initialization code in the wrong block.
4859 if Nkind (Exp) = N_Aggregate then
4860 Expand_N_Aggregate (Exp);
4861 end if;
4863 -- Do not move the activation chain if the return object does not
4864 -- contain tasks.
4866 if Has_Task (Etype (Ret_Obj_Id)) then
4867 Append_To (Stmts, Move_Activation_Chain (Func_Id));
4868 end if;
4869 end if;
4871 -- Update the state of the function right before the object is
4872 -- returned.
4874 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4875 declare
4876 Flag_Id : constant Entity_Id :=
4877 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4879 begin
4880 -- Generate:
4881 -- Fnn := True;
4883 Append_To (Stmts,
4884 Make_Assignment_Statement (Loc,
4885 Name => New_Occurrence_Of (Flag_Id, Loc),
4886 Expression => New_Occurrence_Of (Standard_True, Loc)));
4887 end;
4888 end if;
4890 -- Build a simple_return_statement that returns the return object
4892 Return_Stmt :=
4893 Make_Simple_Return_Statement (Loc,
4894 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4895 Append_To (Stmts, Return_Stmt);
4897 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4898 end if;
4900 -- Case where we build a return statement block
4902 if Present (HSS) then
4903 Result :=
4904 Make_Block_Statement (Loc,
4905 Declarations => Return_Object_Declarations (N),
4906 Handled_Statement_Sequence => HSS);
4908 -- We set the entity of the new block statement to be that of the
4909 -- return statement. This is necessary so that various fields, such
4910 -- as Finalization_Chain_Entity carry over from the return statement
4911 -- to the block. Note that this block is unusual, in that its entity
4912 -- is an E_Return_Statement rather than an E_Block.
4914 Set_Identifier
4915 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4917 -- If the object decl was already rewritten as a renaming, then we
4918 -- don't want to do the object allocation and transformation of
4919 -- the return object declaration to a renaming. This case occurs
4920 -- when the return object is initialized by a call to another
4921 -- build-in-place function, and that function is responsible for
4922 -- the allocation of the return object.
4924 if Is_BIP_Func
4925 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4926 then
4927 pragma Assert
4928 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4929 and then
4931 -- It is a regular BIP object declaration
4933 (Is_Build_In_Place_Function_Call
4934 (Expression (Original_Node (Ret_Obj_Decl)))
4936 -- It is a BIP object declaration that displaces the pointer
4937 -- to the object to reference a convered interface type.
4939 or else
4940 Present (Unqual_BIP_Iface_Function_Call
4941 (Expression (Original_Node (Ret_Obj_Decl))))));
4943 -- Return the build-in-place result by reference
4945 Set_By_Ref (Return_Stmt);
4947 elsif Is_BIP_Func then
4949 -- Locate the implicit access parameter associated with the
4950 -- caller-supplied return object and convert the return
4951 -- statement's return object declaration to a renaming of a
4952 -- dereference of the access parameter. If the return object's
4953 -- declaration includes an expression that has not already been
4954 -- expanded as separate assignments, then add an assignment
4955 -- statement to ensure the return object gets initialized.
4957 -- declare
4958 -- Result : T [:= <expression>];
4959 -- begin
4960 -- ...
4962 -- is converted to
4964 -- declare
4965 -- Result : T renames FuncRA.all;
4966 -- [Result := <expression;]
4967 -- begin
4968 -- ...
4970 declare
4971 Ret_Obj_Expr : constant Node_Id := Expression (Ret_Obj_Decl);
4972 Ret_Obj_Typ : constant Entity_Id := Etype (Ret_Obj_Id);
4974 Init_Assignment : Node_Id := Empty;
4975 Obj_Acc_Formal : Entity_Id;
4976 Obj_Acc_Deref : Node_Id;
4977 Obj_Alloc_Formal : Entity_Id;
4979 begin
4980 -- Build-in-place results must be returned by reference
4982 Set_By_Ref (Return_Stmt);
4984 -- Retrieve the implicit access parameter passed by the caller
4986 Obj_Acc_Formal :=
4987 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
4989 -- If the return object's declaration includes an expression
4990 -- and the declaration isn't marked as No_Initialization, then
4991 -- we need to generate an assignment to the object and insert
4992 -- it after the declaration before rewriting it as a renaming
4993 -- (otherwise we'll lose the initialization). The case where
4994 -- the result type is an interface (or class-wide interface)
4995 -- is also excluded because the context of the function call
4996 -- must be unconstrained, so the initialization will always
4997 -- be done as part of an allocator evaluation (storage pool
4998 -- or secondary stack), never to a constrained target object
4999 -- passed in by the caller. Besides the assignment being
5000 -- unneeded in this case, it avoids problems with trying to
5001 -- generate a dispatching assignment when the return expression
5002 -- is a nonlimited descendant of a limited interface (the
5003 -- interface has no assignment operation).
5005 if Present (Ret_Obj_Expr)
5006 and then not No_Initialization (Ret_Obj_Decl)
5007 and then not Is_Interface (Ret_Obj_Typ)
5008 then
5009 Init_Assignment :=
5010 Make_Assignment_Statement (Loc,
5011 Name => New_Occurrence_Of (Ret_Obj_Id, Loc),
5012 Expression => New_Copy_Tree (Ret_Obj_Expr));
5014 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5015 Set_Assignment_OK (Name (Init_Assignment));
5016 Set_No_Ctrl_Actions (Init_Assignment);
5018 Set_Parent (Name (Init_Assignment), Init_Assignment);
5019 Set_Parent (Expression (Init_Assignment), Init_Assignment);
5021 Set_Expression (Ret_Obj_Decl, Empty);
5023 if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
5024 and then not Is_Class_Wide_Type
5025 (Etype (Expression (Init_Assignment)))
5026 then
5027 Rewrite (Expression (Init_Assignment),
5028 Make_Type_Conversion (Loc,
5029 Subtype_Mark =>
5030 New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
5031 Expression =>
5032 Relocate_Node (Expression (Init_Assignment))));
5033 end if;
5035 -- In the case of functions where the calling context can
5036 -- determine the form of allocation needed, initialization
5037 -- is done with each part of the if statement that handles
5038 -- the different forms of allocation (this is true for
5039 -- unconstrained and tagged result subtypes).
5041 if Is_Constrained (Ret_Typ)
5042 and then not Is_Tagged_Type (Underlying_Type (Ret_Typ))
5043 then
5044 Insert_After (Ret_Obj_Decl, Init_Assignment);
5045 end if;
5046 end if;
5048 -- When the function's subtype is unconstrained, a run-time
5049 -- test is needed to determine the form of allocation to use
5050 -- for the return object. The function has an implicit formal
5051 -- parameter indicating this. If the BIP_Alloc_Form formal has
5052 -- the value one, then the caller has passed access to an
5053 -- existing object for use as the return object. If the value
5054 -- is two, then the return object must be allocated on the
5055 -- secondary stack. Otherwise, the object must be allocated in
5056 -- a storage pool. We generate an if statement to test the
5057 -- implicit allocation formal and initialize a local access
5058 -- value appropriately, creating allocators in the secondary
5059 -- stack and global heap cases. The special formal also exists
5060 -- and must be tested when the function has a tagged result,
5061 -- even when the result subtype is constrained, because in
5062 -- general such functions can be called in dispatching contexts
5063 -- and must be handled similarly to functions with a class-wide
5064 -- result.
5066 if not Is_Constrained (Ret_Typ)
5067 or else Is_Tagged_Type (Underlying_Type (Ret_Typ))
5068 then
5069 Obj_Alloc_Formal :=
5070 Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
5072 declare
5073 Pool_Id : constant Entity_Id :=
5074 Make_Temporary (Loc, 'P');
5075 Alloc_Obj_Id : Entity_Id;
5076 Alloc_Obj_Decl : Node_Id;
5077 Alloc_If_Stmt : Node_Id;
5078 Heap_Allocator : Node_Id;
5079 Pool_Decl : Node_Id;
5080 Pool_Allocator : Node_Id;
5081 Ptr_Type_Decl : Node_Id;
5082 Ref_Type : Entity_Id;
5083 SS_Allocator : Node_Id;
5085 begin
5086 -- Reuse the itype created for the function's implicit
5087 -- access formal. This avoids the need to create a new
5088 -- access type here, plus it allows assigning the access
5089 -- formal directly without applying a conversion.
5091 -- Ref_Type := Etype (Object_Access);
5093 -- Create an access type designating the function's
5094 -- result subtype.
5096 Ref_Type := Make_Temporary (Loc, 'A');
5098 Ptr_Type_Decl :=
5099 Make_Full_Type_Declaration (Loc,
5100 Defining_Identifier => Ref_Type,
5101 Type_Definition =>
5102 Make_Access_To_Object_Definition (Loc,
5103 All_Present => True,
5104 Subtype_Indication =>
5105 New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5107 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5109 -- Create an access object that will be initialized to an
5110 -- access value denoting the return object, either coming
5111 -- from an implicit access value passed in by the caller
5112 -- or from the result of an allocator.
5114 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5115 Set_Etype (Alloc_Obj_Id, Ref_Type);
5117 Alloc_Obj_Decl :=
5118 Make_Object_Declaration (Loc,
5119 Defining_Identifier => Alloc_Obj_Id,
5120 Object_Definition =>
5121 New_Occurrence_Of (Ref_Type, Loc));
5123 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5125 -- Create allocators for both the secondary stack and
5126 -- global heap. If there's an initialization expression,
5127 -- then create these as initialized allocators.
5129 if Present (Ret_Obj_Expr)
5130 and then not No_Initialization (Ret_Obj_Decl)
5131 then
5132 -- Always use the type of the expression for the
5133 -- qualified expression, rather than the result type.
5134 -- In general we cannot always use the result type
5135 -- for the allocator, because the expression might be
5136 -- of a specific type, such as in the case of an
5137 -- aggregate or even a nonlimited object when the
5138 -- result type is a limited class-wide interface type.
5140 Heap_Allocator :=
5141 Make_Allocator (Loc,
5142 Expression =>
5143 Make_Qualified_Expression (Loc,
5144 Subtype_Mark =>
5145 New_Occurrence_Of
5146 (Etype (Ret_Obj_Expr), Loc),
5147 Expression => New_Copy_Tree (Ret_Obj_Expr)));
5149 else
5150 -- If the function returns a class-wide type we cannot
5151 -- use the return type for the allocator. Instead we
5152 -- use the type of the expression, which must be an
5153 -- aggregate of a definite type.
5155 if Is_Class_Wide_Type (Ret_Obj_Typ) then
5156 Heap_Allocator :=
5157 Make_Allocator (Loc,
5158 Expression =>
5159 New_Occurrence_Of
5160 (Etype (Ret_Obj_Expr), Loc));
5161 else
5162 Heap_Allocator :=
5163 Make_Allocator (Loc,
5164 Expression =>
5165 New_Occurrence_Of (Ret_Obj_Typ, Loc));
5166 end if;
5168 -- If the object requires default initialization then
5169 -- that will happen later following the elaboration of
5170 -- the object renaming. If we don't turn it off here
5171 -- then the object will be default initialized twice.
5173 Set_No_Initialization (Heap_Allocator);
5174 end if;
5176 -- Set the flag indicating that the allocator came from
5177 -- a build-in-place return statement, so we can avoid
5178 -- adjusting the allocated object. Note that this flag
5179 -- will be inherited by the copies made below.
5181 Set_Alloc_For_BIP_Return (Heap_Allocator);
5183 -- The Pool_Allocator is just like the Heap_Allocator,
5184 -- except we set Storage_Pool and Procedure_To_Call so
5185 -- it will use the user-defined storage pool.
5187 Pool_Allocator := New_Copy_Tree (Heap_Allocator);
5188 pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
5190 -- Do not generate the renaming of the build-in-place
5191 -- pool parameter on ZFP because the parameter is not
5192 -- created in the first place.
5194 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
5195 Pool_Decl :=
5196 Make_Object_Renaming_Declaration (Loc,
5197 Defining_Identifier => Pool_Id,
5198 Subtype_Mark =>
5199 New_Occurrence_Of
5200 (RTE (RE_Root_Storage_Pool), Loc),
5201 Name =>
5202 Make_Explicit_Dereference (Loc,
5203 New_Occurrence_Of
5204 (Build_In_Place_Formal
5205 (Func_Id, BIP_Storage_Pool), Loc)));
5206 Set_Storage_Pool (Pool_Allocator, Pool_Id);
5207 Set_Procedure_To_Call
5208 (Pool_Allocator, RTE (RE_Allocate_Any));
5209 else
5210 Pool_Decl := Make_Null_Statement (Loc);
5211 end if;
5213 -- If the No_Allocators restriction is active, then only
5214 -- an allocator for secondary stack allocation is needed.
5215 -- It's OK for such allocators to have Comes_From_Source
5216 -- set to False, because gigi knows not to flag them as
5217 -- being a violation of No_Implicit_Heap_Allocations.
5219 if Restriction_Active (No_Allocators) then
5220 SS_Allocator := Heap_Allocator;
5221 Heap_Allocator := Make_Null (Loc);
5222 Pool_Allocator := Make_Null (Loc);
5224 -- Otherwise the heap and pool allocators may be needed,
5225 -- so we make another allocator for secondary stack
5226 -- allocation.
5228 else
5229 SS_Allocator := New_Copy_Tree (Heap_Allocator);
5230 pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
5232 -- The heap and pool allocators are marked as
5233 -- Comes_From_Source since they correspond to an
5234 -- explicit user-written allocator (that is, it will
5235 -- only be executed on behalf of callers that call the
5236 -- function as initialization for such an allocator).
5237 -- Prevents errors when No_Implicit_Heap_Allocations
5238 -- is in force.
5240 Set_Comes_From_Source (Heap_Allocator, True);
5241 Set_Comes_From_Source (Pool_Allocator, True);
5242 end if;
5244 -- The allocator is returned on the secondary stack.
5246 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5247 Set_Procedure_To_Call
5248 (SS_Allocator, RTE (RE_SS_Allocate));
5250 -- The allocator is returned on the secondary stack,
5251 -- so indicate that the function return, as well as
5252 -- all blocks that encloses the allocator, must not
5253 -- release it. The flags must be set now because
5254 -- the decision to use the secondary stack is done
5255 -- very late in the course of expanding the return
5256 -- statement, past the point where these flags are
5257 -- normally set.
5259 Set_Uses_Sec_Stack (Func_Id);
5260 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
5261 Set_Sec_Stack_Needed_For_Return
5262 (Return_Statement_Entity (N));
5263 Set_Enclosing_Sec_Stack_Return (N);
5265 -- Create an if statement to test the BIP_Alloc_Form
5266 -- formal and initialize the access object to either the
5267 -- BIP_Object_Access formal (BIP_Alloc_Form =
5268 -- Caller_Allocation), the result of allocating the
5269 -- object in the secondary stack (BIP_Alloc_Form =
5270 -- Secondary_Stack), or else an allocator to create the
5271 -- return object in the heap or user-defined pool
5272 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5274 -- ??? An unchecked type conversion must be made in the
5275 -- case of assigning the access object formal to the
5276 -- local access object, because a normal conversion would
5277 -- be illegal in some cases (such as converting access-
5278 -- to-unconstrained to access-to-constrained), but the
5279 -- the unchecked conversion will presumably fail to work
5280 -- right in just such cases. It's not clear at all how to
5281 -- handle this. ???
5283 Alloc_If_Stmt :=
5284 Make_If_Statement (Loc,
5285 Condition =>
5286 Make_Op_Eq (Loc,
5287 Left_Opnd =>
5288 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5289 Right_Opnd =>
5290 Make_Integer_Literal (Loc,
5291 UI_From_Int (BIP_Allocation_Form'Pos
5292 (Caller_Allocation)))),
5294 Then_Statements => New_List (
5295 Make_Assignment_Statement (Loc,
5296 Name =>
5297 New_Occurrence_Of (Alloc_Obj_Id, Loc),
5298 Expression =>
5299 Make_Unchecked_Type_Conversion (Loc,
5300 Subtype_Mark =>
5301 New_Occurrence_Of (Ref_Type, Loc),
5302 Expression =>
5303 New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
5305 Elsif_Parts => New_List (
5306 Make_Elsif_Part (Loc,
5307 Condition =>
5308 Make_Op_Eq (Loc,
5309 Left_Opnd =>
5310 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5311 Right_Opnd =>
5312 Make_Integer_Literal (Loc,
5313 UI_From_Int (BIP_Allocation_Form'Pos
5314 (Secondary_Stack)))),
5316 Then_Statements => New_List (
5317 Make_Assignment_Statement (Loc,
5318 Name =>
5319 New_Occurrence_Of (Alloc_Obj_Id, Loc),
5320 Expression => SS_Allocator))),
5322 Make_Elsif_Part (Loc,
5323 Condition =>
5324 Make_Op_Eq (Loc,
5325 Left_Opnd =>
5326 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5327 Right_Opnd =>
5328 Make_Integer_Literal (Loc,
5329 UI_From_Int (BIP_Allocation_Form'Pos
5330 (Global_Heap)))),
5332 Then_Statements => New_List (
5333 Build_Heap_Allocator
5334 (Temp_Id => Alloc_Obj_Id,
5335 Temp_Typ => Ref_Type,
5336 Func_Id => Func_Id,
5337 Ret_Typ => Ret_Obj_Typ,
5338 Alloc_Expr => Heap_Allocator))),
5340 -- ???If all is well, we can put the following
5341 -- 'elsif' in the 'else', but this is a useful
5342 -- self-check in case caller and callee don't agree
5343 -- on whether BIPAlloc and so on should be passed.
5345 Make_Elsif_Part (Loc,
5346 Condition =>
5347 Make_Op_Eq (Loc,
5348 Left_Opnd =>
5349 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5350 Right_Opnd =>
5351 Make_Integer_Literal (Loc,
5352 UI_From_Int (BIP_Allocation_Form'Pos
5353 (User_Storage_Pool)))),
5355 Then_Statements => New_List (
5356 Pool_Decl,
5357 Build_Heap_Allocator
5358 (Temp_Id => Alloc_Obj_Id,
5359 Temp_Typ => Ref_Type,
5360 Func_Id => Func_Id,
5361 Ret_Typ => Ret_Obj_Typ,
5362 Alloc_Expr => Pool_Allocator)))),
5364 -- Raise Program_Error if it's none of the above;
5365 -- this is a compiler bug.
5367 Else_Statements => New_List (
5368 Make_Raise_Program_Error (Loc,
5369 Reason => PE_Build_In_Place_Mismatch)));
5371 -- If a separate initialization assignment was created
5372 -- earlier, append that following the assignment of the
5373 -- implicit access formal to the access object, to ensure
5374 -- that the return object is initialized in that case. In
5375 -- this situation, the target of the assignment must be
5376 -- rewritten to denote a dereference of the access to the
5377 -- return object passed in by the caller.
5379 if Present (Init_Assignment) then
5380 Rewrite (Name (Init_Assignment),
5381 Make_Explicit_Dereference (Loc,
5382 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
5383 pragma Assert
5384 (Assignment_OK
5385 (Original_Node (Name (Init_Assignment))));
5386 Set_Assignment_OK (Name (Init_Assignment));
5388 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5390 Append_To
5391 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
5392 end if;
5394 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
5396 -- Remember the local access object for use in the
5397 -- dereference of the renaming created below.
5399 Obj_Acc_Formal := Alloc_Obj_Id;
5400 end;
5401 end if;
5403 -- Replace the return object declaration with a renaming of a
5404 -- dereference of the access value designating the return
5405 -- object.
5407 Obj_Acc_Deref :=
5408 Make_Explicit_Dereference (Loc,
5409 Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
5411 Rewrite (Ret_Obj_Decl,
5412 Make_Object_Renaming_Declaration (Loc,
5413 Defining_Identifier => Ret_Obj_Id,
5414 Access_Definition => Empty,
5415 Subtype_Mark => New_Occurrence_Of (Ret_Obj_Typ, Loc),
5416 Name => Obj_Acc_Deref));
5418 Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
5419 end;
5420 end if;
5422 -- Case where we do not build a block
5424 else
5425 -- We're about to drop Return_Object_Declarations on the floor, so
5426 -- we need to insert it, in case it got expanded into useful code.
5427 -- Remove side effects from expression, which may be duplicated in
5428 -- subsequent checks (see Expand_Simple_Function_Return).
5430 Insert_List_Before (N, Return_Object_Declarations (N));
5431 Remove_Side_Effects (Exp);
5433 -- Build simple_return_statement that returns the expression directly
5435 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5436 Result := Return_Stmt;
5437 end if;
5439 -- Set the flag to prevent infinite recursion
5441 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5443 Rewrite (N, Result);
5444 Analyze (N);
5445 end Expand_N_Extended_Return_Statement;
5447 ----------------------------
5448 -- Expand_N_Function_Call --
5449 ----------------------------
5451 procedure Expand_N_Function_Call (N : Node_Id) is
5452 begin
5453 Expand_Call (N);
5454 end Expand_N_Function_Call;
5456 ---------------------------------------
5457 -- Expand_N_Procedure_Call_Statement --
5458 ---------------------------------------
5460 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5461 begin
5462 Expand_Call (N);
5463 end Expand_N_Procedure_Call_Statement;
5465 --------------------------------------
5466 -- Expand_N_Simple_Return_Statement --
5467 --------------------------------------
5469 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5470 begin
5471 -- Defend against previous errors (i.e. the return statement calls a
5472 -- function that is not available in configurable runtime).
5474 if Present (Expression (N))
5475 and then Nkind (Expression (N)) = N_Empty
5476 then
5477 Check_Error_Detected;
5478 return;
5479 end if;
5481 -- Distinguish the function and non-function cases:
5483 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5484 when E_Function
5485 | E_Generic_Function
5487 Expand_Simple_Function_Return (N);
5489 when E_Entry
5490 | E_Entry_Family
5491 | E_Generic_Procedure
5492 | E_Procedure
5493 | E_Return_Statement
5495 Expand_Non_Function_Return (N);
5497 when others =>
5498 raise Program_Error;
5499 end case;
5501 exception
5502 when RE_Not_Available =>
5503 return;
5504 end Expand_N_Simple_Return_Statement;
5506 ------------------------------
5507 -- Expand_N_Subprogram_Body --
5508 ------------------------------
5510 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5511 -- by the back-end.
5513 -- Add dummy push/pop label nodes at start and end to clear any local
5514 -- exception indications if local-exception-to-goto optimization is active.
5516 -- Add return statement if last statement in body is not a return statement
5517 -- (this makes things easier on Gigi which does not want to have to handle
5518 -- a missing return).
5520 -- Add call to Activate_Tasks if body is a task activator
5522 -- Deal with possible detection of infinite recursion
5524 -- Eliminate body completely if convention stubbed
5526 -- Encode entity names within body, since we will not need to reference
5527 -- these entities any longer in the front end.
5529 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5531 -- Reset Pure indication if any parameter has root type System.Address
5532 -- or has any parameters of limited types, where limited means that the
5533 -- run-time view is limited (i.e. the full type is limited).
5535 -- Wrap thread body
5537 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5538 Body_Id : constant Entity_Id := Defining_Entity (N);
5539 HSS : constant Node_Id := Handled_Statement_Sequence (N);
5540 Loc : constant Source_Ptr := Sloc (N);
5542 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5543 -- Append a return statement to the statement sequence Stmts if the last
5544 -- statement is not already a return or a goto statement. Note that the
5545 -- latter test is not critical, it does not matter if we add a few extra
5546 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5547 -- the corresponding spec of the subprogram body.
5549 ----------------
5550 -- Add_Return --
5551 ----------------
5553 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5554 Last_Stmt : Node_Id;
5555 Loc : Source_Ptr;
5556 Stmt : Node_Id;
5558 begin
5559 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5560 -- not relevant in this context since they are not executable.
5562 Last_Stmt := Last (Stmts);
5563 while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5564 Prev (Last_Stmt);
5565 end loop;
5567 -- Now insert return unless last statement is a transfer
5569 if not Is_Transfer (Last_Stmt) then
5571 -- The source location for the return is the end label of the
5572 -- procedure if present. Otherwise use the sloc of the last
5573 -- statement in the list. If the list comes from a generated
5574 -- exception handler and we are not debugging generated code,
5575 -- all the statements within the handler are made invisible
5576 -- to the debugger.
5578 if Nkind (Parent (Stmts)) = N_Exception_Handler
5579 and then not Comes_From_Source (Parent (Stmts))
5580 then
5581 Loc := Sloc (Last_Stmt);
5582 elsif Present (End_Label (HSS)) then
5583 Loc := Sloc (End_Label (HSS));
5584 else
5585 Loc := Sloc (Last_Stmt);
5586 end if;
5588 -- Append return statement, and set analyzed manually. We can't
5589 -- call Analyze on this return since the scope is wrong.
5591 -- Note: it almost works to push the scope and then do the Analyze
5592 -- call, but something goes wrong in some weird cases and it is
5593 -- not worth worrying about ???
5595 Stmt := Make_Simple_Return_Statement (Loc);
5597 -- The return statement is handled properly, and the call to the
5598 -- postcondition, inserted below, does not require information
5599 -- from the body either. However, that call is analyzed in the
5600 -- enclosing scope, and an elaboration check might improperly be
5601 -- added to it. A guard in Sem_Elab is needed to prevent that
5602 -- spurious check, see Check_Elab_Call.
5604 Append_To (Stmts, Stmt);
5605 Set_Analyzed (Stmt);
5607 -- Call the _Postconditions procedure if the related subprogram
5608 -- has contract assertions that need to be verified on exit.
5610 if Ekind (Spec_Id) = E_Procedure
5611 and then Present (Postconditions_Proc (Spec_Id))
5612 then
5613 Insert_Action (Stmt,
5614 Make_Procedure_Call_Statement (Loc,
5615 Name =>
5616 New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5617 end if;
5618 end if;
5619 end Add_Return;
5621 -- Local variables
5623 Except_H : Node_Id;
5624 L : List_Id;
5625 Spec_Id : Entity_Id;
5627 -- Start of processing for Expand_N_Subprogram_Body
5629 begin
5630 if Present (Corresponding_Spec (N)) then
5631 Spec_Id := Corresponding_Spec (N);
5632 else
5633 Spec_Id := Body_Id;
5634 end if;
5636 -- If this is a Pure function which has any parameters whose root type
5637 -- is System.Address, reset the Pure indication.
5638 -- This check is also performed when the subprogram is frozen, but we
5639 -- repeat it on the body so that the indication is consistent, and so
5640 -- it applies as well to bodies without separate specifications.
5642 if Is_Pure (Spec_Id)
5643 and then Is_Subprogram (Spec_Id)
5644 and then not Has_Pragma_Pure_Function (Spec_Id)
5645 then
5646 Check_Function_With_Address_Parameter (Spec_Id);
5648 if Spec_Id /= Body_Id then
5649 Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5650 end if;
5651 end if;
5653 -- Set L to either the list of declarations if present, or to the list
5654 -- of statements if no declarations are present. This is used to insert
5655 -- new stuff at the start.
5657 if Is_Non_Empty_List (Declarations (N)) then
5658 L := Declarations (N);
5659 else
5660 L := Statements (HSS);
5661 end if;
5663 -- If local-exception-to-goto optimization active, insert dummy push
5664 -- statements at start, and dummy pop statements at end, but inhibit
5665 -- this if we have No_Exception_Handlers, since they are useless and
5666 -- intefere with analysis, e.g. by codepeer.
5668 if (Debug_Flag_Dot_G
5669 or else Restriction_Active (No_Exception_Propagation))
5670 and then not Restriction_Active (No_Exception_Handlers)
5671 and then not CodePeer_Mode
5672 and then Is_Non_Empty_List (L)
5673 then
5674 declare
5675 FS : constant Node_Id := First (L);
5676 FL : constant Source_Ptr := Sloc (FS);
5677 LS : Node_Id;
5678 LL : Source_Ptr;
5680 begin
5681 -- LS points to either last statement, if statements are present
5682 -- or to the last declaration if there are no statements present.
5683 -- It is the node after which the pop's are generated.
5685 if Is_Non_Empty_List (Statements (HSS)) then
5686 LS := Last (Statements (HSS));
5687 else
5688 LS := Last (L);
5689 end if;
5691 LL := Sloc (LS);
5693 Insert_List_Before_And_Analyze (FS, New_List (
5694 Make_Push_Constraint_Error_Label (FL),
5695 Make_Push_Program_Error_Label (FL),
5696 Make_Push_Storage_Error_Label (FL)));
5698 Insert_List_After_And_Analyze (LS, New_List (
5699 Make_Pop_Constraint_Error_Label (LL),
5700 Make_Pop_Program_Error_Label (LL),
5701 Make_Pop_Storage_Error_Label (LL)));
5702 end;
5703 end if;
5705 -- Need poll on entry to subprogram if polling enabled. We only do this
5706 -- for non-empty subprograms, since it does not seem necessary to poll
5707 -- for a dummy null subprogram.
5709 if Is_Non_Empty_List (L) then
5711 -- Do not add a polling call if the subprogram is to be inlined by
5712 -- the back-end, to avoid repeated calls with multiple inlinings.
5714 if Is_Inlined (Spec_Id)
5715 and then Front_End_Inlining
5716 and then Optimization_Level > 1
5717 then
5718 null;
5719 else
5720 Generate_Poll_Call (First (L));
5721 end if;
5722 end if;
5724 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5726 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5727 declare
5728 F : Entity_Id;
5729 A : Node_Id;
5731 begin
5732 -- Loop through formals
5734 F := First_Formal (Spec_Id);
5735 while Present (F) loop
5736 if Is_Scalar_Type (Etype (F))
5737 and then Ekind (F) = E_Out_Parameter
5738 then
5739 Check_Restriction (No_Default_Initialization, F);
5741 -- Insert the initialization. We turn off validity checks
5742 -- for this assignment, since we do not want any check on
5743 -- the initial value itself (which may well be invalid).
5744 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5746 A :=
5747 Make_Assignment_Statement (Loc,
5748 Name => New_Occurrence_Of (F, Loc),
5749 Expression => Get_Simple_Init_Val (Etype (F), N));
5750 Set_Suppress_Assignment_Checks (A);
5752 Insert_Before_And_Analyze (First (L),
5753 A, Suppress => Validity_Check);
5754 end if;
5756 Next_Formal (F);
5757 end loop;
5758 end;
5759 end if;
5761 -- Clear out statement list for stubbed procedure
5763 if Present (Corresponding_Spec (N)) then
5764 Set_Elaboration_Flag (N, Spec_Id);
5766 if Convention (Spec_Id) = Convention_Stubbed
5767 or else Is_Eliminated (Spec_Id)
5768 then
5769 Set_Declarations (N, Empty_List);
5770 Set_Handled_Statement_Sequence (N,
5771 Make_Handled_Sequence_Of_Statements (Loc,
5772 Statements => New_List (Make_Null_Statement (Loc))));
5774 return;
5775 end if;
5776 end if;
5778 -- Create a set of discriminals for the next protected subprogram body
5780 if Is_List_Member (N)
5781 and then Present (Parent (List_Containing (N)))
5782 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5783 and then Present (Next_Protected_Operation (N))
5784 then
5785 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5786 end if;
5788 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5789 -- subprograms with no specs are not frozen.
5791 declare
5792 Typ : constant Entity_Id := Etype (Spec_Id);
5793 Utyp : constant Entity_Id := Underlying_Type (Typ);
5795 begin
5796 if Is_Limited_View (Typ) then
5797 Set_Returns_By_Ref (Spec_Id);
5799 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5800 Set_Returns_By_Ref (Spec_Id);
5801 end if;
5802 end;
5804 -- For a procedure, we add a return for all possible syntactic ends of
5805 -- the subprogram.
5807 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5808 Add_Return (Spec_Id, Statements (HSS));
5810 if Present (Exception_Handlers (HSS)) then
5811 Except_H := First_Non_Pragma (Exception_Handlers (HSS));
5812 while Present (Except_H) loop
5813 Add_Return (Spec_Id, Statements (Except_H));
5814 Next_Non_Pragma (Except_H);
5815 end loop;
5816 end if;
5818 -- For a function, we must deal with the case where there is at least
5819 -- one missing return. What we do is to wrap the entire body of the
5820 -- function in a block:
5822 -- begin
5823 -- ...
5824 -- end;
5826 -- becomes
5828 -- begin
5829 -- begin
5830 -- ...
5831 -- end;
5833 -- raise Program_Error;
5834 -- end;
5836 -- This approach is necessary because the raise must be signalled to the
5837 -- caller, not handled by any local handler (RM 6.4(11)).
5839 -- Note: we do not need to analyze the constructed sequence here, since
5840 -- it has no handler, and an attempt to analyze the handled statement
5841 -- sequence twice is risky in various ways (e.g. the issue of expanding
5842 -- cleanup actions twice).
5844 elsif Has_Missing_Return (Spec_Id) then
5845 declare
5846 Hloc : constant Source_Ptr := Sloc (HSS);
5847 Blok : constant Node_Id :=
5848 Make_Block_Statement (Hloc,
5849 Handled_Statement_Sequence => HSS);
5850 Rais : constant Node_Id :=
5851 Make_Raise_Program_Error (Hloc,
5852 Reason => PE_Missing_Return);
5854 begin
5855 Set_Handled_Statement_Sequence (N,
5856 Make_Handled_Sequence_Of_Statements (Hloc,
5857 Statements => New_List (Blok, Rais)));
5859 Push_Scope (Spec_Id);
5860 Analyze (Blok);
5861 Analyze (Rais);
5862 Pop_Scope;
5863 end;
5864 end if;
5866 -- If subprogram contains a parameterless recursive call, then we may
5867 -- have an infinite recursion, so see if we can generate code to check
5868 -- for this possibility if storage checks are not suppressed.
5870 if Ekind (Spec_Id) = E_Procedure
5871 and then Has_Recursive_Call (Spec_Id)
5872 and then not Storage_Checks_Suppressed (Spec_Id)
5873 then
5874 Detect_Infinite_Recursion (N, Spec_Id);
5875 end if;
5877 -- Set to encode entity names in package body before gigi is called
5879 Qualify_Entity_Names (N);
5881 -- If the body belongs to a nonabstract library-level source primitive
5882 -- of a tagged type, install an elaboration check which ensures that a
5883 -- dispatching call targeting the primitive will not execute the body
5884 -- without it being previously elaborated.
5886 Install_Primitive_Elaboration_Check (N);
5887 end Expand_N_Subprogram_Body;
5889 -----------------------------------
5890 -- Expand_N_Subprogram_Body_Stub --
5891 -----------------------------------
5893 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5894 Bod : Node_Id;
5896 begin
5897 if Present (Corresponding_Body (N)) then
5898 Bod := Unit_Declaration_Node (Corresponding_Body (N));
5900 -- The body may have been expanded already when it is analyzed
5901 -- through the subunit node. Do no expand again: it interferes
5902 -- with the construction of unnesting tables when generating C.
5904 if not Analyzed (Bod) then
5905 Expand_N_Subprogram_Body (Bod);
5906 end if;
5908 -- Add full qualification to entities that may be created late
5909 -- during unnesting.
5911 Qualify_Entity_Names (N);
5912 end if;
5913 end Expand_N_Subprogram_Body_Stub;
5915 -------------------------------------
5916 -- Expand_N_Subprogram_Declaration --
5917 -------------------------------------
5919 -- If the declaration appears within a protected body, it is a private
5920 -- operation of the protected type. We must create the corresponding
5921 -- protected subprogram an associated formals. For a normal protected
5922 -- operation, this is done when expanding the protected type declaration.
5924 -- If the declaration is for a null procedure, emit null body
5926 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5927 Loc : constant Source_Ptr := Sloc (N);
5928 Subp : constant Entity_Id := Defining_Entity (N);
5930 -- Local variables
5932 Scop : constant Entity_Id := Scope (Subp);
5933 Prot_Bod : Node_Id;
5934 Prot_Decl : Node_Id;
5935 Prot_Id : Entity_Id;
5937 -- Start of processing for Expand_N_Subprogram_Declaration
5939 begin
5940 -- In SPARK, subprogram declarations are only allowed in package
5941 -- specifications.
5943 if Nkind (Parent (N)) /= N_Package_Specification then
5944 if Nkind (Parent (N)) = N_Compilation_Unit then
5945 Check_SPARK_05_Restriction
5946 ("subprogram declaration is not a library item", N);
5948 elsif Present (Next (N))
5949 and then Nkind (Next (N)) = N_Pragma
5950 and then Get_Pragma_Id (Next (N)) = Pragma_Import
5951 then
5952 -- In SPARK, subprogram declarations are also permitted in
5953 -- declarative parts when immediately followed by a corresponding
5954 -- pragma Import. We only check here that there is some pragma
5955 -- Import.
5957 null;
5958 else
5959 Check_SPARK_05_Restriction
5960 ("subprogram declaration is not allowed here", N);
5961 end if;
5962 end if;
5964 -- Deal with case of protected subprogram. Do not generate protected
5965 -- operation if operation is flagged as eliminated.
5967 if Is_List_Member (N)
5968 and then Present (Parent (List_Containing (N)))
5969 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5970 and then Is_Protected_Type (Scop)
5971 then
5972 if No (Protected_Body_Subprogram (Subp))
5973 and then not Is_Eliminated (Subp)
5974 then
5975 Prot_Decl :=
5976 Make_Subprogram_Declaration (Loc,
5977 Specification =>
5978 Build_Protected_Sub_Specification
5979 (N, Scop, Unprotected_Mode));
5981 -- The protected subprogram is declared outside of the protected
5982 -- body. Given that the body has frozen all entities so far, we
5983 -- analyze the subprogram and perform freezing actions explicitly.
5984 -- including the generation of an explicit freeze node, to ensure
5985 -- that gigi has the proper order of elaboration.
5986 -- If the body is a subunit, the insertion point is before the
5987 -- stub in the parent.
5989 Prot_Bod := Parent (List_Containing (N));
5991 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5992 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5993 end if;
5995 Insert_Before (Prot_Bod, Prot_Decl);
5996 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5997 Set_Has_Delayed_Freeze (Prot_Id);
5999 Push_Scope (Scope (Scop));
6000 Analyze (Prot_Decl);
6001 Freeze_Before (N, Prot_Id);
6002 Set_Protected_Body_Subprogram (Subp, Prot_Id);
6004 -- Create protected operation as well. Even though the operation
6005 -- is only accessible within the body, it is possible to make it
6006 -- available outside of the protected object by using 'Access to
6007 -- provide a callback, so build protected version in all cases.
6009 Prot_Decl :=
6010 Make_Subprogram_Declaration (Loc,
6011 Specification =>
6012 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
6013 Insert_Before (Prot_Bod, Prot_Decl);
6014 Analyze (Prot_Decl);
6016 Pop_Scope;
6017 end if;
6019 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
6020 -- cases this is superfluous because calls to it will be automatically
6021 -- inlined, but we definitely need the body if preconditions for the
6022 -- procedure are present, or if performing coverage analysis.
6024 elsif Nkind (Specification (N)) = N_Procedure_Specification
6025 and then Null_Present (Specification (N))
6026 then
6027 declare
6028 Bod : constant Node_Id := Body_To_Inline (N);
6030 begin
6031 Set_Has_Completion (Subp, False);
6032 Append_Freeze_Action (Subp, Bod);
6034 -- The body now contains raise statements, so calls to it will
6035 -- not be inlined.
6037 Set_Is_Inlined (Subp, False);
6038 end;
6039 end if;
6041 -- When generating C code, transform a function that returns a
6042 -- constrained array type into a procedure with an out parameter
6043 -- that carries the return value.
6045 -- We skip this transformation for unchecked conversions, since they
6046 -- are not needed by the C generator (and this also produces cleaner
6047 -- output).
6049 if Modify_Tree_For_C
6050 and then Nkind (Specification (N)) = N_Function_Specification
6051 and then Is_Array_Type (Etype (Subp))
6052 and then Is_Constrained (Etype (Subp))
6053 and then not Is_Unchecked_Conversion_Instance (Subp)
6054 then
6055 Build_Procedure_Form (N);
6056 end if;
6057 end Expand_N_Subprogram_Declaration;
6059 --------------------------------
6060 -- Expand_Non_Function_Return --
6061 --------------------------------
6063 procedure Expand_Non_Function_Return (N : Node_Id) is
6064 pragma Assert (No (Expression (N)));
6066 Loc : constant Source_Ptr := Sloc (N);
6067 Scope_Id : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6068 Kind : constant Entity_Kind := Ekind (Scope_Id);
6069 Call : Node_Id;
6070 Acc_Stat : Node_Id;
6071 Goto_Stat : Node_Id;
6072 Lab_Node : Node_Id;
6074 begin
6075 -- Call the _Postconditions procedure if the related subprogram has
6076 -- contract assertions that need to be verified on exit.
6078 if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
6079 and then Present (Postconditions_Proc (Scope_Id))
6080 then
6081 Insert_Action (N,
6082 Make_Procedure_Call_Statement (Loc,
6083 Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
6084 end if;
6086 -- If it is a return from a procedure do no extra steps
6088 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6089 return;
6091 -- If it is a nested return within an extended one, replace it with a
6092 -- return of the previously declared return object.
6094 elsif Kind = E_Return_Statement then
6095 Rewrite (N,
6096 Make_Simple_Return_Statement (Loc,
6097 Expression =>
6098 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6099 Set_Comes_From_Extended_Return_Statement (N);
6100 Set_Return_Statement_Entity (N, Scope_Id);
6101 Expand_Simple_Function_Return (N);
6102 return;
6103 end if;
6105 pragma Assert (Is_Entry (Scope_Id));
6107 -- Look at the enclosing block to see whether the return is from an
6108 -- accept statement or an entry body.
6110 for J in reverse 0 .. Scope_Stack.Last loop
6111 Scope_Id := Scope_Stack.Table (J).Entity;
6112 exit when Is_Concurrent_Type (Scope_Id);
6113 end loop;
6115 -- If it is a return from accept statement it is expanded as call to
6116 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6118 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6119 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6121 if Is_Task_Type (Scope_Id) then
6123 Call :=
6124 Make_Procedure_Call_Statement (Loc,
6125 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6126 Insert_Before (N, Call);
6127 -- why not insert actions here???
6128 Analyze (Call);
6130 Acc_Stat := Parent (N);
6131 while Nkind (Acc_Stat) /= N_Accept_Statement loop
6132 Acc_Stat := Parent (Acc_Stat);
6133 end loop;
6135 Lab_Node := Last (Statements
6136 (Handled_Statement_Sequence (Acc_Stat)));
6138 Goto_Stat := Make_Goto_Statement (Loc,
6139 Name => New_Occurrence_Of
6140 (Entity (Identifier (Lab_Node)), Loc));
6142 Set_Analyzed (Goto_Stat);
6144 Rewrite (N, Goto_Stat);
6145 Analyze (N);
6147 -- If it is a return from an entry body, put a Complete_Entry_Body call
6148 -- in front of the return.
6150 elsif Is_Protected_Type (Scope_Id) then
6151 Call :=
6152 Make_Procedure_Call_Statement (Loc,
6153 Name =>
6154 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6155 Parameter_Associations => New_List (
6156 Make_Attribute_Reference (Loc,
6157 Prefix =>
6158 New_Occurrence_Of
6159 (Find_Protection_Object (Current_Scope), Loc),
6160 Attribute_Name => Name_Unchecked_Access)));
6162 Insert_Before (N, Call);
6163 Analyze (Call);
6164 end if;
6165 end Expand_Non_Function_Return;
6167 ---------------------------------------
6168 -- Expand_Protected_Object_Reference --
6169 ---------------------------------------
6171 function Expand_Protected_Object_Reference
6172 (N : Node_Id;
6173 Scop : Entity_Id) return Node_Id
6175 Loc : constant Source_Ptr := Sloc (N);
6176 Corr : Entity_Id;
6177 Rec : Node_Id;
6178 Param : Entity_Id;
6179 Proc : Entity_Id;
6181 begin
6182 Rec := Make_Identifier (Loc, Name_uObject);
6183 Set_Etype (Rec, Corresponding_Record_Type (Scop));
6185 -- Find enclosing protected operation, and retrieve its first parameter,
6186 -- which denotes the enclosing protected object. If the enclosing
6187 -- operation is an entry, we are immediately within the protected body,
6188 -- and we can retrieve the object from the service entries procedure. A
6189 -- barrier function has the same signature as an entry. A barrier
6190 -- function is compiled within the protected object, but unlike
6191 -- protected operations its never needs locks, so that its protected
6192 -- body subprogram points to itself.
6194 Proc := Current_Scope;
6195 while Present (Proc)
6196 and then Scope (Proc) /= Scop
6197 loop
6198 Proc := Scope (Proc);
6199 end loop;
6201 Corr := Protected_Body_Subprogram (Proc);
6203 if No (Corr) then
6205 -- Previous error left expansion incomplete.
6206 -- Nothing to do on this call.
6208 return Empty;
6209 end if;
6211 Param :=
6212 Defining_Identifier
6213 (First (Parameter_Specifications (Parent (Corr))));
6215 if Is_Subprogram (Proc) and then Proc /= Corr then
6217 -- Protected function or procedure
6219 Set_Entity (Rec, Param);
6221 -- Rec is a reference to an entity which will not be in scope when
6222 -- the call is reanalyzed, and needs no further analysis.
6224 Set_Analyzed (Rec);
6226 else
6227 -- Entry or barrier function for entry body. The first parameter of
6228 -- the entry body procedure is pointer to the object. We create a
6229 -- local variable of the proper type, duplicating what is done to
6230 -- define _object later on.
6232 declare
6233 Decls : List_Id;
6234 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6236 begin
6237 Decls := New_List (
6238 Make_Full_Type_Declaration (Loc,
6239 Defining_Identifier => Obj_Ptr,
6240 Type_Definition =>
6241 Make_Access_To_Object_Definition (Loc,
6242 Subtype_Indication =>
6243 New_Occurrence_Of
6244 (Corresponding_Record_Type (Scop), Loc))));
6246 Insert_Actions (N, Decls);
6247 Freeze_Before (N, Obj_Ptr);
6249 Rec :=
6250 Make_Explicit_Dereference (Loc,
6251 Prefix =>
6252 Unchecked_Convert_To (Obj_Ptr,
6253 New_Occurrence_Of (Param, Loc)));
6255 -- Analyze new actual. Other actuals in calls are already analyzed
6256 -- and the list of actuals is not reanalyzed after rewriting.
6258 Set_Parent (Rec, N);
6259 Analyze (Rec);
6260 end;
6261 end if;
6263 return Rec;
6264 end Expand_Protected_Object_Reference;
6266 --------------------------------------
6267 -- Expand_Protected_Subprogram_Call --
6268 --------------------------------------
6270 procedure Expand_Protected_Subprogram_Call
6271 (N : Node_Id;
6272 Subp : Entity_Id;
6273 Scop : Entity_Id)
6275 Rec : Node_Id;
6277 procedure Expand_Internal_Init_Call;
6278 -- A call to an operation of the type may occur in the initialization
6279 -- of a private component. In that case the prefix of the call is an
6280 -- entity name and the call is treated as internal even though it
6281 -- appears in code outside of the protected type.
6283 procedure Freeze_Called_Function;
6284 -- If it is a function call it can appear in elaboration code and
6285 -- the called entity must be frozen before the call. This must be
6286 -- done before the call is expanded, as the expansion may rewrite it
6287 -- to something other than a call (e.g. a temporary initialized in a
6288 -- transient block).
6290 -------------------------------
6291 -- Expand_Internal_Init_Call --
6292 -------------------------------
6294 procedure Expand_Internal_Init_Call is
6295 begin
6296 -- If the context is a protected object (rather than a protected
6297 -- type) the call itself is bound to raise program_error because
6298 -- the protected body will not have been elaborated yet. This is
6299 -- diagnosed subsequently in Sem_Elab.
6301 Freeze_Called_Function;
6303 -- The target of the internal call is the first formal of the
6304 -- enclosing initialization procedure.
6306 Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6307 Build_Protected_Subprogram_Call (N,
6308 Name => Name (N),
6309 Rec => Rec,
6310 External => False);
6311 Analyze (N);
6312 Resolve (N, Etype (Subp));
6313 end Expand_Internal_Init_Call;
6315 ----------------------------
6316 -- Freeze_Called_Function --
6317 ----------------------------
6319 procedure Freeze_Called_Function is
6320 begin
6321 if Ekind (Subp) = E_Function then
6322 Freeze_Expression (Name (N));
6323 end if;
6324 end Freeze_Called_Function;
6326 -- Start of processing for Expand_Protected_Subprogram_Call
6328 begin
6329 -- If the protected object is not an enclosing scope, this is an inter-
6330 -- object function call. Inter-object procedure calls are expanded by
6331 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6332 -- subprogram being called is in the protected body being compiled, and
6333 -- if the protected object in the call is statically the enclosing type.
6334 -- The object may be a component of some other data structure, in which
6335 -- case this must be handled as an inter-object call.
6337 if not In_Open_Scopes (Scop)
6338 or else Is_Entry_Wrapper (Current_Scope)
6339 or else not Is_Entity_Name (Name (N))
6340 then
6341 if Nkind (Name (N)) = N_Selected_Component then
6342 Rec := Prefix (Name (N));
6344 elsif Nkind (Name (N)) = N_Indexed_Component then
6345 Rec := Prefix (Prefix (Name (N)));
6347 -- If this is a call within an entry wrapper, it appears within a
6348 -- precondition that calls another primitive of the synchronized
6349 -- type. The target object of the call is the first actual on the
6350 -- wrapper. Note that this is an external call, because the wrapper
6351 -- is called outside of the synchronized object. This means that
6352 -- an entry call to an entry with preconditions involves two
6353 -- synchronized operations.
6355 elsif Ekind (Current_Scope) = E_Procedure
6356 and then Is_Entry_Wrapper (Current_Scope)
6357 then
6358 Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6360 else
6361 -- If the context is the initialization procedure for a protected
6362 -- type, the call is legal because the called entity must be a
6363 -- function of that enclosing type, and this is treated as an
6364 -- internal call.
6366 pragma Assert
6367 (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6369 Expand_Internal_Init_Call;
6370 return;
6371 end if;
6373 Freeze_Called_Function;
6374 Build_Protected_Subprogram_Call (N,
6375 Name => New_Occurrence_Of (Subp, Sloc (N)),
6376 Rec => Convert_Concurrent (Rec, Etype (Rec)),
6377 External => True);
6379 else
6380 Rec := Expand_Protected_Object_Reference (N, Scop);
6382 if No (Rec) then
6383 return;
6384 end if;
6386 Freeze_Called_Function;
6387 Build_Protected_Subprogram_Call (N,
6388 Name => Name (N),
6389 Rec => Rec,
6390 External => False);
6391 end if;
6393 -- Analyze and resolve the new call. The actuals have already been
6394 -- resolved, but expansion of a function call will add extra actuals
6395 -- if needed. Analysis of a procedure call already includes resolution.
6397 Analyze (N);
6399 if Ekind (Subp) = E_Function then
6400 Resolve (N, Etype (Subp));
6401 end if;
6402 end Expand_Protected_Subprogram_Call;
6404 -----------------------------------
6405 -- Expand_Simple_Function_Return --
6406 -----------------------------------
6408 -- The "simple" comes from the syntax rule simple_return_statement. The
6409 -- semantics are not at all simple.
6411 procedure Expand_Simple_Function_Return (N : Node_Id) is
6412 Loc : constant Source_Ptr := Sloc (N);
6414 Scope_Id : constant Entity_Id :=
6415 Return_Applies_To (Return_Statement_Entity (N));
6416 -- The function we are returning from
6418 R_Type : constant Entity_Id := Etype (Scope_Id);
6419 -- The result type of the function
6421 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6423 Exp : Node_Id := Expression (N);
6424 pragma Assert (Present (Exp));
6426 Exptyp : constant Entity_Id := Etype (Exp);
6427 -- The type of the expression (not necessarily the same as R_Type)
6429 Subtype_Ind : Node_Id;
6430 -- If the result type of the function is class-wide and the expression
6431 -- has a specific type, then we use the expression's type as the type of
6432 -- the return object. In cases where the expression is an aggregate that
6433 -- is built in place, this avoids the need for an expensive conversion
6434 -- of the return object to the specific type on assignments to the
6435 -- individual components.
6437 begin
6438 if Is_Class_Wide_Type (R_Type)
6439 and then not Is_Class_Wide_Type (Exptyp)
6440 and then Nkind (Exp) /= N_Type_Conversion
6441 then
6442 Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6443 else
6444 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6446 -- If the result type is class-wide and the expression is a view
6447 -- conversion, the conversion plays no role in the expansion because
6448 -- it does not modify the tag of the object. Remove the conversion
6449 -- altogether to prevent tag overwriting.
6451 if Is_Class_Wide_Type (R_Type)
6452 and then not Is_Class_Wide_Type (Exptyp)
6453 and then Nkind (Exp) = N_Type_Conversion
6454 then
6455 Exp := Expression (Exp);
6456 end if;
6457 end if;
6459 -- Assert that if F says "return G(...);"
6460 -- then F and G are both b-i-p, or neither b-i-p.
6462 if Nkind (Exp) = N_Function_Call then
6463 pragma Assert (Ekind (Scope_Id) = E_Function);
6464 pragma Assert
6465 (Is_Build_In_Place_Function (Scope_Id) =
6466 Is_Build_In_Place_Function_Call (Exp));
6467 null;
6468 end if;
6470 -- For the case of a simple return that does not come from an
6471 -- extended return, in the case of build-in-place, we rewrite
6472 -- "return <expression>;" to be:
6474 -- return _anon_ : <return_subtype> := <expression>
6476 -- The expansion produced by Expand_N_Extended_Return_Statement will
6477 -- contain simple return statements (for example, a block containing
6478 -- simple return of the return object), which brings us back here with
6479 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6480 -- checking for a simple return that does not come from an extended
6481 -- return is to avoid this infinite recursion.
6483 -- The reason for this design is that for Ada 2005 limited returns, we
6484 -- need to reify the return object, so we can build it "in place", and
6485 -- we need a block statement to hang finalization and tasking stuff.
6487 -- ??? In order to avoid disruption, we avoid translating to extended
6488 -- return except in the cases where we really need to (Ada 2005 for
6489 -- inherently limited). We might prefer to do this translation in all
6490 -- cases (except perhaps for the case of Ada 95 inherently limited),
6491 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6492 -- code. This would also allow us to do the build-in-place optimization
6493 -- for efficiency even in cases where it is semantically not required.
6495 -- As before, we check the type of the return expression rather than the
6496 -- return type of the function, because the latter may be a limited
6497 -- class-wide interface type, which is not a limited type, even though
6498 -- the type of the expression may be.
6500 pragma Assert
6501 (Comes_From_Extended_Return_Statement (N)
6502 or else not Is_Build_In_Place_Function_Call (Exp)
6503 or else Is_Build_In_Place_Function (Scope_Id));
6505 if not Comes_From_Extended_Return_Statement (N)
6506 and then Is_Build_In_Place_Function (Scope_Id)
6507 and then not Debug_Flag_Dot_L
6509 -- The functionality of interface thunks is simple and it is always
6510 -- handled by means of simple return statements. This leaves their
6511 -- expansion simple and clean.
6513 and then not Is_Thunk (Current_Scope)
6514 then
6515 declare
6516 Return_Object_Entity : constant Entity_Id :=
6517 Make_Temporary (Loc, 'R', Exp);
6519 Obj_Decl : constant Node_Id :=
6520 Make_Object_Declaration (Loc,
6521 Defining_Identifier => Return_Object_Entity,
6522 Object_Definition => Subtype_Ind,
6523 Expression => Exp);
6525 Ext : constant Node_Id :=
6526 Make_Extended_Return_Statement (Loc,
6527 Return_Object_Declarations => New_List (Obj_Decl));
6528 -- Do not perform this high-level optimization if the result type
6529 -- is an interface because the "this" pointer must be displaced.
6531 begin
6532 Rewrite (N, Ext);
6533 Analyze (N);
6534 return;
6535 end;
6536 end if;
6538 -- Here we have a simple return statement that is part of the expansion
6539 -- of an extended return statement (either written by the user, or
6540 -- generated by the above code).
6542 -- Always normalize C/Fortran boolean result. This is not always needed,
6543 -- but it seems a good idea to minimize the passing around of non-
6544 -- normalized values, and in any case this handles the processing of
6545 -- barrier functions for protected types, which turn the condition into
6546 -- a return statement.
6548 if Is_Boolean_Type (Exptyp)
6549 and then Nonzero_Is_True (Exptyp)
6550 then
6551 Adjust_Condition (Exp);
6552 Adjust_Result_Type (Exp, Exptyp);
6553 end if;
6555 -- Do validity check if enabled for returns
6557 if Validity_Checks_On
6558 and then Validity_Check_Returns
6559 then
6560 Ensure_Valid (Exp);
6561 end if;
6563 -- Check the result expression of a scalar function against the subtype
6564 -- of the function by inserting a conversion. This conversion must
6565 -- eventually be performed for other classes of types, but for now it's
6566 -- only done for scalars.
6567 -- ???
6569 if Is_Scalar_Type (Exptyp) then
6570 Rewrite (Exp, Convert_To (R_Type, Exp));
6572 -- The expression is resolved to ensure that the conversion gets
6573 -- expanded to generate a possible constraint check.
6575 Analyze_And_Resolve (Exp, R_Type);
6576 end if;
6578 -- Deal with returning variable length objects and controlled types
6580 -- Nothing to do if we are returning by reference, or this is not a
6581 -- type that requires special processing (indicated by the fact that
6582 -- it requires a cleanup scope for the secondary stack case).
6584 if Is_Build_In_Place_Function (Scope_Id)
6585 or else Is_Limited_Interface (Exptyp)
6586 then
6587 null;
6589 -- No copy needed for thunks returning interface type objects since
6590 -- the object is returned by reference and the maximum functionality
6591 -- required is just to displace the pointer.
6593 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6594 null;
6596 -- If the call is within a thunk and the type is a limited view, the
6597 -- backend will eventually see the non-limited view of the type.
6599 elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6600 return;
6602 elsif not Requires_Transient_Scope (R_Type) then
6604 -- Mutable records with variable-length components are not returned
6605 -- on the sec-stack, so we need to make sure that the back end will
6606 -- only copy back the size of the actual value, and not the maximum
6607 -- size. We create an actual subtype for this purpose. However we
6608 -- need not do it if the expression is a function call since this
6609 -- will be done in the called function and doing it here too would
6610 -- cause a temporary with maximum size to be created.
6612 declare
6613 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6614 Decl : Node_Id;
6615 Ent : Entity_Id;
6616 begin
6617 if Nkind (Exp) /= N_Function_Call
6618 and then Has_Discriminants (Ubt)
6619 and then not Is_Constrained (Ubt)
6620 and then not Has_Unchecked_Union (Ubt)
6621 then
6622 Decl := Build_Actual_Subtype (Ubt, Exp);
6623 Ent := Defining_Identifier (Decl);
6624 Insert_Action (Exp, Decl);
6625 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6626 Analyze_And_Resolve (Exp);
6627 end if;
6628 end;
6630 -- Here if secondary stack is used
6632 else
6633 -- Prevent the reclamation of the secondary stack by all enclosing
6634 -- blocks and loops as well as the related function; otherwise the
6635 -- result would be reclaimed too early.
6637 Set_Enclosing_Sec_Stack_Return (N);
6639 -- Optimize the case where the result is a function call. In this
6640 -- case either the result is already on the secondary stack, or is
6641 -- already being returned with the stack pointer depressed and no
6642 -- further processing is required except to set the By_Ref flag
6643 -- to ensure that gigi does not attempt an extra unnecessary copy.
6644 -- (actually not just unnecessary but harmfully wrong in the case
6645 -- of a controlled type, where gigi does not know how to do a copy).
6646 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6647 -- for array types if the constrained status of the target type is
6648 -- different from that of the expression.
6650 if Requires_Transient_Scope (Exptyp)
6651 and then
6652 (not Is_Array_Type (Exptyp)
6653 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6654 or else CW_Or_Has_Controlled_Part (Utyp))
6655 and then Nkind (Exp) = N_Function_Call
6656 then
6657 Set_By_Ref (N);
6659 -- Remove side effects from the expression now so that other parts
6660 -- of the expander do not have to reanalyze this node without this
6661 -- optimization
6663 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6665 -- Ada 2005 (AI-251): If the type of the returned object is
6666 -- an interface then add an implicit type conversion to force
6667 -- displacement of the "this" pointer.
6669 if Is_Interface (R_Type) then
6670 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6671 end if;
6673 Analyze_And_Resolve (Exp, R_Type);
6675 -- For controlled types, do the allocation on the secondary stack
6676 -- manually in order to call adjust at the right time:
6678 -- type Anon1 is access R_Type;
6679 -- for Anon1'Storage_pool use ss_pool;
6680 -- Anon2 : anon1 := new R_Type'(expr);
6681 -- return Anon2.all;
6683 -- We do the same for classwide types that are not potentially
6684 -- controlled (by the virtue of restriction No_Finalization) because
6685 -- gigi is not able to properly allocate class-wide types.
6687 elsif CW_Or_Has_Controlled_Part (Utyp) then
6688 declare
6689 Loc : constant Source_Ptr := Sloc (N);
6690 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6691 Alloc_Node : Node_Id;
6692 Temp : Entity_Id;
6694 begin
6695 Set_Ekind (Acc_Typ, E_Access_Type);
6697 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6699 -- This is an allocator for the secondary stack, and it's fine
6700 -- to have Comes_From_Source set False on it, as gigi knows not
6701 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6703 Alloc_Node :=
6704 Make_Allocator (Loc,
6705 Expression =>
6706 Make_Qualified_Expression (Loc,
6707 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6708 Expression => Relocate_Node (Exp)));
6710 -- We do not want discriminant checks on the declaration,
6711 -- given that it gets its value from the allocator.
6713 Set_No_Initialization (Alloc_Node);
6715 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6717 Insert_List_Before_And_Analyze (N, New_List (
6718 Make_Full_Type_Declaration (Loc,
6719 Defining_Identifier => Acc_Typ,
6720 Type_Definition =>
6721 Make_Access_To_Object_Definition (Loc,
6722 Subtype_Indication => Subtype_Ind)),
6724 Make_Object_Declaration (Loc,
6725 Defining_Identifier => Temp,
6726 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
6727 Expression => Alloc_Node)));
6729 Rewrite (Exp,
6730 Make_Explicit_Dereference (Loc,
6731 Prefix => New_Occurrence_Of (Temp, Loc)));
6733 -- Ada 2005 (AI-251): If the type of the returned object is
6734 -- an interface then add an implicit type conversion to force
6735 -- displacement of the "this" pointer.
6737 if Is_Interface (R_Type) then
6738 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6739 end if;
6741 Analyze_And_Resolve (Exp, R_Type);
6742 end;
6744 -- Otherwise use the gigi mechanism to allocate result on the
6745 -- secondary stack.
6747 else
6748 Check_Restriction (No_Secondary_Stack, N);
6749 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6750 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6751 end if;
6752 end if;
6754 -- Implement the rules of 6.5(8-10), which require a tag check in
6755 -- the case of a limited tagged return type, and tag reassignment for
6756 -- nonlimited tagged results. These actions are needed when the return
6757 -- type is a specific tagged type and the result expression is a
6758 -- conversion or a formal parameter, because in that case the tag of
6759 -- the expression might differ from the tag of the specific result type.
6761 if Is_Tagged_Type (Utyp)
6762 and then not Is_Class_Wide_Type (Utyp)
6763 and then (Nkind_In (Exp, N_Type_Conversion,
6764 N_Unchecked_Type_Conversion)
6765 or else (Is_Entity_Name (Exp)
6766 and then Ekind (Entity (Exp)) in Formal_Kind))
6767 then
6768 -- When the return type is limited, perform a check that the tag of
6769 -- the result is the same as the tag of the return type.
6771 if Is_Limited_Type (R_Type) then
6772 Insert_Action (Exp,
6773 Make_Raise_Constraint_Error (Loc,
6774 Condition =>
6775 Make_Op_Ne (Loc,
6776 Left_Opnd =>
6777 Make_Selected_Component (Loc,
6778 Prefix => Duplicate_Subexpr (Exp),
6779 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6780 Right_Opnd =>
6781 Make_Attribute_Reference (Loc,
6782 Prefix =>
6783 New_Occurrence_Of (Base_Type (Utyp), Loc),
6784 Attribute_Name => Name_Tag)),
6785 Reason => CE_Tag_Check_Failed));
6787 -- If the result type is a specific nonlimited tagged type, then we
6788 -- have to ensure that the tag of the result is that of the result
6789 -- type. This is handled by making a copy of the expression in
6790 -- the case where it might have a different tag, namely when the
6791 -- expression is a conversion or a formal parameter. We create a new
6792 -- object of the result type and initialize it from the expression,
6793 -- which will implicitly force the tag to be set appropriately.
6795 else
6796 declare
6797 ExpR : constant Node_Id := Relocate_Node (Exp);
6798 Result_Id : constant Entity_Id :=
6799 Make_Temporary (Loc, 'R', ExpR);
6800 Result_Exp : constant Node_Id :=
6801 New_Occurrence_Of (Result_Id, Loc);
6802 Result_Obj : constant Node_Id :=
6803 Make_Object_Declaration (Loc,
6804 Defining_Identifier => Result_Id,
6805 Object_Definition =>
6806 New_Occurrence_Of (R_Type, Loc),
6807 Constant_Present => True,
6808 Expression => ExpR);
6810 begin
6811 Set_Assignment_OK (Result_Obj);
6812 Insert_Action (Exp, Result_Obj);
6814 Rewrite (Exp, Result_Exp);
6815 Analyze_And_Resolve (Exp, R_Type);
6816 end;
6817 end if;
6819 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6820 -- a check that the level of the return expression's underlying type
6821 -- is not deeper than the level of the master enclosing the function.
6822 -- Always generate the check when the type of the return expression
6823 -- is class-wide, when it's a type conversion, or when it's a formal
6824 -- parameter. Otherwise, suppress the check in the case where the
6825 -- return expression has a specific type whose level is known not to
6826 -- be statically deeper than the function's result type.
6828 -- No runtime check needed in interface thunks since it is performed
6829 -- by the target primitive associated with the thunk.
6831 -- Note: accessibility check is skipped in the VM case, since there
6832 -- does not seem to be any practical way to implement this check.
6834 elsif Ada_Version >= Ada_2005
6835 and then Tagged_Type_Expansion
6836 and then Is_Class_Wide_Type (R_Type)
6837 and then not Is_Thunk (Current_Scope)
6838 and then not Scope_Suppress.Suppress (Accessibility_Check)
6839 and then
6840 (Is_Class_Wide_Type (Etype (Exp))
6841 or else Nkind_In (Exp, N_Type_Conversion,
6842 N_Unchecked_Type_Conversion)
6843 or else (Is_Entity_Name (Exp)
6844 and then Ekind (Entity (Exp)) in Formal_Kind)
6845 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6846 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6847 then
6848 declare
6849 Tag_Node : Node_Id;
6851 begin
6852 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6853 -- "this" to reference the base of the object. This is required to
6854 -- get access to the TSD of the object.
6856 if Is_Class_Wide_Type (Etype (Exp))
6857 and then Is_Interface (Etype (Exp))
6858 then
6859 -- If the expression is an explicit dereference then we can
6860 -- directly displace the pointer to reference the base of
6861 -- the object.
6863 if Nkind (Exp) = N_Explicit_Dereference then
6864 Tag_Node :=
6865 Make_Explicit_Dereference (Loc,
6866 Prefix =>
6867 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6868 Make_Function_Call (Loc,
6869 Name =>
6870 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6871 Parameter_Associations => New_List (
6872 Unchecked_Convert_To (RTE (RE_Address),
6873 Duplicate_Subexpr (Prefix (Exp)))))));
6875 -- Similar case to the previous one but the expression is a
6876 -- renaming of an explicit dereference.
6878 elsif Nkind (Exp) = N_Identifier
6879 and then Present (Renamed_Object (Entity (Exp)))
6880 and then Nkind (Renamed_Object (Entity (Exp)))
6881 = N_Explicit_Dereference
6882 then
6883 Tag_Node :=
6884 Make_Explicit_Dereference (Loc,
6885 Prefix =>
6886 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6887 Make_Function_Call (Loc,
6888 Name =>
6889 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6890 Parameter_Associations => New_List (
6891 Unchecked_Convert_To (RTE (RE_Address),
6892 Duplicate_Subexpr
6893 (Prefix
6894 (Renamed_Object (Entity (Exp)))))))));
6896 -- Common case: obtain the address of the actual object and
6897 -- displace the pointer to reference the base of the object.
6899 else
6900 Tag_Node :=
6901 Make_Explicit_Dereference (Loc,
6902 Prefix =>
6903 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6904 Make_Function_Call (Loc,
6905 Name =>
6906 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6907 Parameter_Associations => New_List (
6908 Make_Attribute_Reference (Loc,
6909 Prefix => Duplicate_Subexpr (Exp),
6910 Attribute_Name => Name_Address)))));
6911 end if;
6912 else
6913 Tag_Node :=
6914 Make_Attribute_Reference (Loc,
6915 Prefix => Duplicate_Subexpr (Exp),
6916 Attribute_Name => Name_Tag);
6917 end if;
6919 -- CodePeer does not do anything useful with
6920 -- Ada.Tags.Type_Specific_Data components.
6922 if not CodePeer_Mode then
6923 Insert_Action (Exp,
6924 Make_Raise_Program_Error (Loc,
6925 Condition =>
6926 Make_Op_Gt (Loc,
6927 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
6928 Right_Opnd =>
6929 Make_Integer_Literal (Loc,
6930 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6931 Reason => PE_Accessibility_Check_Failed));
6932 end if;
6933 end;
6935 -- AI05-0073: If function has a controlling access result, check that
6936 -- the tag of the return value, if it is not null, matches designated
6937 -- type of return type.
6939 -- The return expression is referenced twice in the code below, so it
6940 -- must be made free of side effects. Given that different compilers
6941 -- may evaluate these parameters in different order, both occurrences
6942 -- perform a copy.
6944 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6945 and then Has_Controlling_Result (Scope_Id)
6946 then
6947 Insert_Action (N,
6948 Make_Raise_Constraint_Error (Loc,
6949 Condition =>
6950 Make_And_Then (Loc,
6951 Left_Opnd =>
6952 Make_Op_Ne (Loc,
6953 Left_Opnd => Duplicate_Subexpr (Exp),
6954 Right_Opnd => Make_Null (Loc)),
6956 Right_Opnd => Make_Op_Ne (Loc,
6957 Left_Opnd =>
6958 Make_Selected_Component (Loc,
6959 Prefix => Duplicate_Subexpr (Exp),
6960 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6962 Right_Opnd =>
6963 Make_Attribute_Reference (Loc,
6964 Prefix =>
6965 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6966 Attribute_Name => Name_Tag))),
6968 Reason => CE_Tag_Check_Failed),
6969 Suppress => All_Checks);
6970 end if;
6972 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6973 -- ensure that the function result does not outlive an
6974 -- object designated by one of it discriminants.
6976 if Present (Extra_Accessibility_Of_Result (Scope_Id))
6977 and then Has_Unconstrained_Access_Discriminants (R_Type)
6978 then
6979 declare
6980 Discrim_Source : Node_Id;
6982 procedure Check_Against_Result_Level (Level : Node_Id);
6983 -- Check the given accessibility level against the level
6984 -- determined by the point of call. (AI05-0234).
6986 --------------------------------
6987 -- Check_Against_Result_Level --
6988 --------------------------------
6990 procedure Check_Against_Result_Level (Level : Node_Id) is
6991 begin
6992 Insert_Action (N,
6993 Make_Raise_Program_Error (Loc,
6994 Condition =>
6995 Make_Op_Gt (Loc,
6996 Left_Opnd => Level,
6997 Right_Opnd =>
6998 New_Occurrence_Of
6999 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
7000 Reason => PE_Accessibility_Check_Failed));
7001 end Check_Against_Result_Level;
7003 begin
7004 Discrim_Source := Exp;
7005 while Nkind (Discrim_Source) = N_Qualified_Expression loop
7006 Discrim_Source := Expression (Discrim_Source);
7007 end loop;
7009 if Nkind (Discrim_Source) = N_Identifier
7010 and then Is_Return_Object (Entity (Discrim_Source))
7011 then
7012 Discrim_Source := Entity (Discrim_Source);
7014 if Is_Constrained (Etype (Discrim_Source)) then
7015 Discrim_Source := Etype (Discrim_Source);
7016 else
7017 Discrim_Source := Expression (Parent (Discrim_Source));
7018 end if;
7020 elsif Nkind (Discrim_Source) = N_Identifier
7021 and then Nkind_In (Original_Node (Discrim_Source),
7022 N_Aggregate, N_Extension_Aggregate)
7023 then
7024 Discrim_Source := Original_Node (Discrim_Source);
7026 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
7027 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
7028 then
7029 Discrim_Source := Original_Node (Discrim_Source);
7030 end if;
7032 Discrim_Source := Unqual_Conv (Discrim_Source);
7034 case Nkind (Discrim_Source) is
7035 when N_Defining_Identifier =>
7036 pragma Assert (Is_Composite_Type (Discrim_Source)
7037 and then Has_Discriminants (Discrim_Source)
7038 and then Is_Constrained (Discrim_Source));
7040 declare
7041 Discrim : Entity_Id :=
7042 First_Discriminant (Base_Type (R_Type));
7043 Disc_Elmt : Elmt_Id :=
7044 First_Elmt (Discriminant_Constraint
7045 (Discrim_Source));
7046 begin
7047 loop
7048 if Ekind (Etype (Discrim)) =
7049 E_Anonymous_Access_Type
7050 then
7051 Check_Against_Result_Level
7052 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
7053 end if;
7055 Next_Elmt (Disc_Elmt);
7056 Next_Discriminant (Discrim);
7057 exit when not Present (Discrim);
7058 end loop;
7059 end;
7061 when N_Aggregate
7062 | N_Extension_Aggregate
7064 -- Unimplemented: extension aggregate case where discrims
7065 -- come from ancestor part, not extension part.
7067 declare
7068 Discrim : Entity_Id :=
7069 First_Discriminant (Base_Type (R_Type));
7071 Disc_Exp : Node_Id := Empty;
7073 Positionals_Exhausted
7074 : Boolean := not Present (Expressions
7075 (Discrim_Source));
7077 function Associated_Expr
7078 (Comp_Id : Entity_Id;
7079 Associations : List_Id) return Node_Id;
7081 -- Given a component and a component associations list,
7082 -- locate the expression for that component; returns
7083 -- Empty if no such expression is found.
7085 ---------------------
7086 -- Associated_Expr --
7087 ---------------------
7089 function Associated_Expr
7090 (Comp_Id : Entity_Id;
7091 Associations : List_Id) return Node_Id
7093 Assoc : Node_Id;
7094 Choice : Node_Id;
7096 begin
7097 -- Simple linear search seems ok here
7099 Assoc := First (Associations);
7100 while Present (Assoc) loop
7101 Choice := First (Choices (Assoc));
7102 while Present (Choice) loop
7103 if (Nkind (Choice) = N_Identifier
7104 and then Chars (Choice) = Chars (Comp_Id))
7105 or else (Nkind (Choice) = N_Others_Choice)
7106 then
7107 return Expression (Assoc);
7108 end if;
7110 Next (Choice);
7111 end loop;
7113 Next (Assoc);
7114 end loop;
7116 return Empty;
7117 end Associated_Expr;
7119 begin
7120 if not Positionals_Exhausted then
7121 Disc_Exp := First (Expressions (Discrim_Source));
7122 end if;
7124 loop
7125 if Positionals_Exhausted then
7126 Disc_Exp :=
7127 Associated_Expr
7128 (Discrim,
7129 Component_Associations (Discrim_Source));
7130 end if;
7132 if Ekind (Etype (Discrim)) =
7133 E_Anonymous_Access_Type
7134 then
7135 Check_Against_Result_Level
7136 (Dynamic_Accessibility_Level (Disc_Exp));
7137 end if;
7139 Next_Discriminant (Discrim);
7140 exit when not Present (Discrim);
7142 if not Positionals_Exhausted then
7143 Next (Disc_Exp);
7144 Positionals_Exhausted := not Present (Disc_Exp);
7145 end if;
7146 end loop;
7147 end;
7149 when N_Function_Call =>
7151 -- No check needed (check performed by callee)
7153 null;
7155 when others =>
7156 declare
7157 Level : constant Node_Id :=
7158 Make_Integer_Literal (Loc,
7159 Object_Access_Level (Discrim_Source));
7161 begin
7162 -- Unimplemented: check for name prefix that includes
7163 -- a dereference of an access value with a dynamic
7164 -- accessibility level (e.g., an access param or a
7165 -- saooaaat) and use dynamic level in that case. For
7166 -- example:
7167 -- return Access_Param.all(Some_Index).Some_Component;
7168 -- ???
7170 Set_Etype (Level, Standard_Natural);
7171 Check_Against_Result_Level (Level);
7172 end;
7173 end case;
7174 end;
7175 end if;
7177 -- If we are returning an object that may not be bit-aligned, then copy
7178 -- the value into a temporary first. This copy may need to expand to a
7179 -- loop of component operations.
7181 if Is_Possibly_Unaligned_Slice (Exp)
7182 or else Is_Possibly_Unaligned_Object (Exp)
7183 then
7184 declare
7185 ExpR : constant Node_Id := Relocate_Node (Exp);
7186 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7187 begin
7188 Insert_Action (Exp,
7189 Make_Object_Declaration (Loc,
7190 Defining_Identifier => Tnn,
7191 Constant_Present => True,
7192 Object_Definition => New_Occurrence_Of (R_Type, Loc),
7193 Expression => ExpR),
7194 Suppress => All_Checks);
7195 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7196 end;
7197 end if;
7199 -- Call the _Postconditions procedure if the related function has
7200 -- contract assertions that need to be verified on exit.
7202 if Ekind (Scope_Id) = E_Function
7203 and then Present (Postconditions_Proc (Scope_Id))
7204 then
7205 -- In the case of discriminated objects, we have created a
7206 -- constrained subtype above, and used the underlying type. This
7207 -- transformation is post-analysis and harmless, except that now the
7208 -- call to the post-condition will be analyzed and the type kinds
7209 -- have to match.
7211 if Nkind (Exp) = N_Unchecked_Type_Conversion
7212 and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
7213 then
7214 Rewrite (Exp, Expression (Relocate_Node (Exp)));
7215 end if;
7217 -- We are going to reference the returned value twice in this case,
7218 -- once in the call to _Postconditions, and once in the actual return
7219 -- statement, but we can't have side effects happening twice.
7221 Force_Evaluation (Exp, Mode => Strict);
7223 -- Generate call to _Postconditions
7225 Insert_Action (Exp,
7226 Make_Procedure_Call_Statement (Loc,
7227 Name =>
7228 New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
7229 Parameter_Associations => New_List (New_Copy_Tree (Exp))));
7230 end if;
7232 -- Ada 2005 (AI-251): If this return statement corresponds with an
7233 -- simple return statement associated with an extended return statement
7234 -- and the type of the returned object is an interface then generate an
7235 -- implicit conversion to force displacement of the "this" pointer.
7237 if Ada_Version >= Ada_2005
7238 and then Comes_From_Extended_Return_Statement (N)
7239 and then Nkind (Expression (N)) = N_Identifier
7240 and then Is_Interface (Utyp)
7241 and then Utyp /= Underlying_Type (Exptyp)
7242 then
7243 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7244 Analyze_And_Resolve (Exp);
7245 end if;
7246 end Expand_Simple_Function_Return;
7248 --------------------------------------------
7249 -- Has_Unconstrained_Access_Discriminants --
7250 --------------------------------------------
7252 function Has_Unconstrained_Access_Discriminants
7253 (Subtyp : Entity_Id) return Boolean
7255 Discr : Entity_Id;
7257 begin
7258 if Has_Discriminants (Subtyp)
7259 and then not Is_Constrained (Subtyp)
7260 then
7261 Discr := First_Discriminant (Subtyp);
7262 while Present (Discr) loop
7263 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
7264 return True;
7265 end if;
7267 Next_Discriminant (Discr);
7268 end loop;
7269 end if;
7271 return False;
7272 end Has_Unconstrained_Access_Discriminants;
7274 -----------------------------------
7275 -- Is_Build_In_Place_Result_Type --
7276 -----------------------------------
7278 function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
7279 begin
7280 if not Expander_Active then
7281 return False;
7282 end if;
7284 -- In Ada 2005 all functions with an inherently limited return type
7285 -- must be handled using a build-in-place profile, including the case
7286 -- of a function with a limited interface result, where the function
7287 -- may return objects of nonlimited descendants.
7289 if Is_Limited_View (Typ) then
7290 return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
7292 else
7293 if Debug_Flag_Dot_9 then
7294 return False;
7295 end if;
7297 if Has_Interfaces (Typ) then
7298 return False;
7299 end if;
7301 declare
7302 T : Entity_Id := Typ;
7303 begin
7304 -- For T'Class, return True if it's True for T. This is necessary
7305 -- because a class-wide function might say "return F (...)", where
7306 -- F returns the corresponding specific type. We need a loop in
7307 -- case T is a subtype of a class-wide type.
7309 while Is_Class_Wide_Type (T) loop
7310 T := Etype (T);
7311 end loop;
7313 -- If this is a generic formal type in an instance, return True if
7314 -- it's True for the generic actual type.
7316 if Nkind (Parent (T)) = N_Subtype_Declaration
7317 and then Present (Generic_Parent_Type (Parent (T)))
7318 then
7319 T := Entity (Subtype_Indication (Parent (T)));
7321 if Present (Full_View (T)) then
7322 T := Full_View (T);
7323 end if;
7324 end if;
7326 if Present (Underlying_Type (T)) then
7327 T := Underlying_Type (T);
7328 end if;
7330 declare
7331 Result : Boolean;
7332 -- So we can stop here in the debugger
7333 begin
7334 -- ???For now, enable build-in-place for a very narrow set of
7335 -- controlled types. Change "if True" to "if False" to
7336 -- experiment with more controlled types. Eventually, we might
7337 -- like to enable build-in-place for all tagged types, all
7338 -- types that need finalization, and all caller-unknown-size
7339 -- types.
7341 if True then
7342 Result := Is_Controlled (T)
7343 and then Present (Enclosing_Subprogram (T))
7344 and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
7345 and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
7346 else
7347 Result := Is_Controlled (T);
7348 end if;
7350 return Result;
7351 end;
7352 end;
7353 end if;
7354 end Is_Build_In_Place_Result_Type;
7356 --------------------------------
7357 -- Is_Build_In_Place_Function --
7358 --------------------------------
7360 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7361 begin
7362 -- This function is called from Expand_Subtype_From_Expr during
7363 -- semantic analysis, even when expansion is off. In those cases
7364 -- the build_in_place expansion will not take place.
7366 if not Expander_Active then
7367 return False;
7368 end if;
7370 -- For now we test whether E denotes a function or access-to-function
7371 -- type whose result subtype is inherently limited. Later this test
7372 -- may be revised to allow composite nonlimited types. Functions with
7373 -- a foreign convention or whose result type has a foreign convention
7374 -- never qualify.
7376 if Ekind_In (E, E_Function, E_Generic_Function)
7377 or else (Ekind (E) = E_Subprogram_Type
7378 and then Etype (E) /= Standard_Void_Type)
7379 then
7380 -- Note: If the function has a foreign convention, it cannot build
7381 -- its result in place, so you're on your own. On the other hand,
7382 -- if only the return type has a foreign convention, its layout is
7383 -- intended to be compatible with the other language, but the build-
7384 -- in place machinery can ensure that the object is not copied.
7386 return Is_Build_In_Place_Result_Type (Etype (E))
7387 and then not Has_Foreign_Convention (E)
7388 and then not Debug_Flag_Dot_L;
7390 else
7391 return False;
7392 end if;
7393 end Is_Build_In_Place_Function;
7395 -------------------------------------
7396 -- Is_Build_In_Place_Function_Call --
7397 -------------------------------------
7399 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
7400 Exp_Node : constant Node_Id := Unqual_Conv (N);
7401 Function_Id : Entity_Id;
7403 begin
7404 -- Return False if the expander is currently inactive, since awareness
7405 -- of build-in-place treatment is only relevant during expansion. Note
7406 -- that Is_Build_In_Place_Function, which is called as part of this
7407 -- function, is also conditioned this way, but we need to check here as
7408 -- well to avoid blowing up on processing protected calls when expansion
7409 -- is disabled (such as with -gnatc) since those would trip over the
7410 -- raise of Program_Error below.
7412 -- In SPARK mode, build-in-place calls are not expanded, so that we
7413 -- may end up with a call that is neither resolved to an entity, nor
7414 -- an indirect call.
7416 if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
7417 return False;
7418 end if;
7420 if Is_Entity_Name (Name (Exp_Node)) then
7421 Function_Id := Entity (Name (Exp_Node));
7423 -- In the case of an explicitly dereferenced call, use the subprogram
7424 -- type generated for the dereference.
7426 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
7427 Function_Id := Etype (Name (Exp_Node));
7429 -- This may be a call to a protected function.
7431 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
7432 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
7434 else
7435 raise Program_Error;
7436 end if;
7438 declare
7439 Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
7440 -- So we can stop here in the debugger
7441 begin
7442 return Result;
7443 end;
7444 end Is_Build_In_Place_Function_Call;
7446 -----------------------
7447 -- Freeze_Subprogram --
7448 -----------------------
7450 procedure Freeze_Subprogram (N : Node_Id) is
7451 Loc : constant Source_Ptr := Sloc (N);
7453 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7454 -- (Ada 2005): Register a predefined primitive in all the secondary
7455 -- dispatch tables of its primitive type.
7457 ----------------------------------
7458 -- Register_Predefined_DT_Entry --
7459 ----------------------------------
7461 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7462 Iface_DT_Ptr : Elmt_Id;
7463 Tagged_Typ : Entity_Id;
7464 Thunk_Id : Entity_Id;
7465 Thunk_Code : Node_Id;
7467 begin
7468 Tagged_Typ := Find_Dispatching_Type (Prim);
7470 if No (Access_Disp_Table (Tagged_Typ))
7471 or else not Has_Interfaces (Tagged_Typ)
7472 or else not RTE_Available (RE_Interface_Tag)
7473 or else Restriction_Active (No_Dispatching_Calls)
7474 then
7475 return;
7476 end if;
7478 -- Skip the first two access-to-dispatch-table pointers since they
7479 -- leads to the primary dispatch table (predefined DT and user
7480 -- defined DT). We are only concerned with the secondary dispatch
7481 -- table pointers. Note that the access-to- dispatch-table pointer
7482 -- corresponds to the first implemented interface retrieved below.
7484 Iface_DT_Ptr :=
7485 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7487 while Present (Iface_DT_Ptr)
7488 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7489 loop
7490 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7491 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7493 if Present (Thunk_Code) then
7494 Insert_Actions_After (N, New_List (
7495 Thunk_Code,
7497 Build_Set_Predefined_Prim_Op_Address (Loc,
7498 Tag_Node =>
7499 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7500 Position => DT_Position (Prim),
7501 Address_Node =>
7502 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7503 Make_Attribute_Reference (Loc,
7504 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
7505 Attribute_Name => Name_Unrestricted_Access))),
7507 Build_Set_Predefined_Prim_Op_Address (Loc,
7508 Tag_Node =>
7509 New_Occurrence_Of
7510 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7511 Loc),
7512 Position => DT_Position (Prim),
7513 Address_Node =>
7514 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7515 Make_Attribute_Reference (Loc,
7516 Prefix => New_Occurrence_Of (Prim, Loc),
7517 Attribute_Name => Name_Unrestricted_Access)))));
7518 end if;
7520 -- Skip the tag of the predefined primitives dispatch table
7522 Next_Elmt (Iface_DT_Ptr);
7523 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7525 -- Skip tag of the no-thunks dispatch table
7527 Next_Elmt (Iface_DT_Ptr);
7528 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7530 -- Skip tag of predefined primitives no-thunks dispatch table
7532 Next_Elmt (Iface_DT_Ptr);
7533 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7535 Next_Elmt (Iface_DT_Ptr);
7536 end loop;
7537 end Register_Predefined_DT_Entry;
7539 -- Local variables
7541 Subp : constant Entity_Id := Entity (N);
7543 -- Start of processing for Freeze_Subprogram
7545 begin
7546 -- We suppress the initialization of the dispatch table entry when
7547 -- not Tagged_Type_Expansion because the dispatching mechanism is
7548 -- handled internally by the target.
7550 if Is_Dispatching_Operation (Subp)
7551 and then not Is_Abstract_Subprogram (Subp)
7552 and then Present (DTC_Entity (Subp))
7553 and then Present (Scope (DTC_Entity (Subp)))
7554 and then Tagged_Type_Expansion
7555 and then not Restriction_Active (No_Dispatching_Calls)
7556 and then RTE_Available (RE_Tag)
7557 then
7558 declare
7559 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7561 begin
7562 -- Handle private overridden primitives
7564 if not Is_CPP_Class (Typ) then
7565 Check_Overriding_Operation (Subp);
7566 end if;
7568 -- We assume that imported CPP primitives correspond with objects
7569 -- whose constructor is in the CPP side; therefore we don't need
7570 -- to generate code to register them in the dispatch table.
7572 if Is_CPP_Class (Typ) then
7573 null;
7575 -- Handle CPP primitives found in derivations of CPP_Class types.
7576 -- These primitives must have been inherited from some parent, and
7577 -- there is no need to register them in the dispatch table because
7578 -- Build_Inherit_Prims takes care of initializing these slots.
7580 elsif Is_Imported (Subp)
7581 and then (Convention (Subp) = Convention_CPP
7582 or else Convention (Subp) = Convention_C)
7583 then
7584 null;
7586 -- Generate code to register the primitive in non statically
7587 -- allocated dispatch tables
7589 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7591 -- When a primitive is frozen, enter its name in its dispatch
7592 -- table slot.
7594 if not Is_Interface (Typ)
7595 or else Present (Interface_Alias (Subp))
7596 then
7597 if Is_Predefined_Dispatching_Operation (Subp) then
7598 Register_Predefined_DT_Entry (Subp);
7599 end if;
7601 Insert_Actions_After (N,
7602 Register_Primitive (Loc, Prim => Subp));
7603 end if;
7604 end if;
7605 end;
7606 end if;
7608 -- Mark functions that return by reference. Note that it cannot be part
7609 -- of the normal semantic analysis of the spec since the underlying
7610 -- returned type may not be known yet (for private types).
7612 declare
7613 Typ : constant Entity_Id := Etype (Subp);
7614 Utyp : constant Entity_Id := Underlying_Type (Typ);
7616 begin
7617 if Is_Limited_View (Typ) then
7618 Set_Returns_By_Ref (Subp);
7620 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7621 Set_Returns_By_Ref (Subp);
7622 end if;
7623 end;
7625 -- Wnen freezing a null procedure, analyze its delayed aspects now
7626 -- because we may not have reached the end of the declarative list when
7627 -- delayed aspects are normally analyzed. This ensures that dispatching
7628 -- calls are properly rewritten when the generated _Postcondition
7629 -- procedure is analyzed in the null procedure body.
7631 if Nkind (Parent (Subp)) = N_Procedure_Specification
7632 and then Null_Present (Parent (Subp))
7633 then
7634 Analyze_Entry_Or_Subprogram_Contract (Subp);
7635 end if;
7636 end Freeze_Subprogram;
7638 ------------------------------
7639 -- Insert_Post_Call_Actions --
7640 ------------------------------
7642 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7643 Context : constant Node_Id := Parent (N);
7645 begin
7646 if Is_Empty_List (Post_Call) then
7647 return;
7648 end if;
7650 -- Cases where the call is not a member of a statement list. This
7651 -- includes the case where the call is an actual in another function
7652 -- call or indexing, i.e. an expression context as well.
7654 if not Is_List_Member (N)
7655 or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
7656 then
7657 -- In Ada 2012 the call may be a function call in an expression
7658 -- (since OUT and IN OUT parameters are now allowed for such calls).
7659 -- The write-back of (in)-out parameters is handled by the back-end,
7660 -- but the constraint checks generated when subtypes of formal and
7661 -- actual don't match must be inserted in the form of assignments.
7663 if Nkind (Original_Node (N)) = N_Function_Call then
7664 pragma Assert (Ada_Version >= Ada_2012);
7665 -- Functions with '[in] out' parameters are only allowed in Ada
7666 -- 2012.
7668 -- We used to handle this by climbing up parents to a
7669 -- non-statement/declaration and then simply making a call to
7670 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7671 -- for Ada 2012. If we are in the middle of an expression, e.g.
7672 -- the condition of an IF, this call would insert after the IF
7673 -- statement, which is much too late to be doing the write back.
7674 -- For example:
7676 -- if Clobber (X) then
7677 -- Put_Line (X'Img);
7678 -- else
7679 -- goto Junk
7680 -- end if;
7682 -- Now assume Clobber changes X, if we put the write back after
7683 -- the IF, the Put_Line gets the wrong value and the goto causes
7684 -- the write back to be skipped completely.
7686 -- To deal with this, we replace the call by
7688 -- do
7689 -- Tnnn : constant function-result-type := function-call;
7690 -- Post_Call actions
7691 -- in
7692 -- Tnnn;
7693 -- end;
7695 declare
7696 Loc : constant Source_Ptr := Sloc (N);
7697 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
7698 FRTyp : constant Entity_Id := Etype (N);
7699 Name : constant Node_Id := Relocate_Node (N);
7701 begin
7702 Prepend_To (Post_Call,
7703 Make_Object_Declaration (Loc,
7704 Defining_Identifier => Tnnn,
7705 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7706 Constant_Present => True,
7707 Expression => Name));
7709 Rewrite (N,
7710 Make_Expression_With_Actions (Loc,
7711 Actions => Post_Call,
7712 Expression => New_Occurrence_Of (Tnnn, Loc)));
7714 -- We don't want to just blindly call Analyze_And_Resolve
7715 -- because that would cause unwanted recursion on the call.
7716 -- So for a moment set the call as analyzed to prevent that
7717 -- recursion, and get the rest analyzed properly, then reset
7718 -- the analyzed flag, so our caller can continue.
7720 Set_Analyzed (Name, True);
7721 Analyze_And_Resolve (N, FRTyp);
7722 Set_Analyzed (Name, False);
7723 end;
7725 -- If not the special Ada 2012 case of a function call, then we must
7726 -- have the triggering statement of a triggering alternative or an
7727 -- entry call alternative, and we can add the post call stuff to the
7728 -- corresponding statement list.
7730 else
7731 pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
7732 N_Triggering_Alternative));
7734 if Is_Non_Empty_List (Statements (Context)) then
7735 Insert_List_Before_And_Analyze
7736 (First (Statements (Context)), Post_Call);
7737 else
7738 Set_Statements (Context, Post_Call);
7739 end if;
7740 end if;
7742 -- A procedure call is always part of a declarative or statement list,
7743 -- however a function call may appear nested within a construct. Most
7744 -- cases of function call nesting are handled in the special case above.
7745 -- The only exception is when the function call acts as an actual in a
7746 -- procedure call. In this case the function call is in a list, but the
7747 -- post-call actions must be inserted after the procedure call.
7749 elsif Nkind (Context) = N_Procedure_Call_Statement then
7750 Insert_Actions_After (Context, Post_Call);
7752 -- Otherwise, normal case where N is in a statement sequence, just put
7753 -- the post-call stuff after the call statement.
7755 else
7756 Insert_Actions_After (N, Post_Call);
7757 end if;
7758 end Insert_Post_Call_Actions;
7760 -----------------------
7761 -- Is_Null_Procedure --
7762 -----------------------
7764 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
7765 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
7767 begin
7768 if Ekind (Subp) /= E_Procedure then
7769 return False;
7771 -- Check if this is a declared null procedure
7773 elsif Nkind (Decl) = N_Subprogram_Declaration then
7774 if not Null_Present (Specification (Decl)) then
7775 return False;
7777 elsif No (Body_To_Inline (Decl)) then
7778 return False;
7780 -- Check if the body contains only a null statement, followed by
7781 -- the return statement added during expansion.
7783 else
7784 declare
7785 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7787 Stat : Node_Id;
7788 Stat2 : Node_Id;
7790 begin
7791 if Nkind (Orig_Bod) /= N_Subprogram_Body then
7792 return False;
7793 else
7794 -- We must skip SCIL nodes because they are currently
7795 -- implemented as special N_Null_Statement nodes.
7797 Stat :=
7798 First_Non_SCIL_Node
7799 (Statements (Handled_Statement_Sequence (Orig_Bod)));
7800 Stat2 := Next_Non_SCIL_Node (Stat);
7802 return
7803 Is_Empty_List (Declarations (Orig_Bod))
7804 and then Nkind (Stat) = N_Null_Statement
7805 and then
7806 (No (Stat2)
7807 or else
7808 (Nkind (Stat2) = N_Simple_Return_Statement
7809 and then No (Next (Stat2))));
7810 end if;
7811 end;
7812 end if;
7814 else
7815 return False;
7816 end if;
7817 end Is_Null_Procedure;
7819 -------------------------------------------
7820 -- Make_Build_In_Place_Call_In_Allocator --
7821 -------------------------------------------
7823 procedure Make_Build_In_Place_Call_In_Allocator
7824 (Allocator : Node_Id;
7825 Function_Call : Node_Id)
7827 Acc_Type : constant Entity_Id := Etype (Allocator);
7828 Loc : constant Source_Ptr := Sloc (Function_Call);
7829 Func_Call : Node_Id := Function_Call;
7830 Ref_Func_Call : Node_Id;
7831 Function_Id : Entity_Id;
7832 Result_Subt : Entity_Id;
7833 New_Allocator : Node_Id;
7834 Return_Obj_Access : Entity_Id; -- temp for function result
7835 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
7836 Alloc_Form : BIP_Allocation_Form;
7837 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
7838 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
7839 Chain : Entity_Id; -- activation chain, in case of tasks
7841 begin
7842 -- Step past qualification or unchecked conversion (the latter can occur
7843 -- in cases of calls to 'Input).
7845 if Nkind_In (Func_Call,
7846 N_Qualified_Expression,
7847 N_Type_Conversion,
7848 N_Unchecked_Type_Conversion)
7849 then
7850 Func_Call := Expression (Func_Call);
7851 end if;
7853 -- Mark the call as processed as a build-in-place call
7855 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
7856 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7858 if Is_Entity_Name (Name (Func_Call)) then
7859 Function_Id := Entity (Name (Func_Call));
7861 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7862 Function_Id := Etype (Name (Func_Call));
7864 else
7865 raise Program_Error;
7866 end if;
7868 Result_Subt := Available_View (Etype (Function_Id));
7870 -- Create a temp for the function result. In the caller-allocates case,
7871 -- this will be initialized to the result of a new uninitialized
7872 -- allocator. Note: we do not use Allocator as the Related_Node of
7873 -- Return_Obj_Access in call to Make_Temporary below as this would
7874 -- create a sort of infinite "recursion".
7876 Return_Obj_Access := Make_Temporary (Loc, 'R');
7877 Set_Etype (Return_Obj_Access, Acc_Type);
7878 Set_Can_Never_Be_Null (Acc_Type, False);
7879 -- It gets initialized to null, so we can't have that
7881 -- When the result subtype is constrained, the return object is
7882 -- allocated on the caller side, and access to it is passed to the
7883 -- function.
7885 -- Here and in related routines, we must examine the full view of the
7886 -- type, because the view at the point of call may differ from that
7887 -- that in the function body, and the expansion mechanism depends on
7888 -- the characteristics of the full view.
7890 if Is_Constrained (Underlying_Type (Result_Subt)) then
7891 -- Replace the initialized allocator of form "new T'(Func (...))"
7892 -- with an uninitialized allocator of form "new T", where T is the
7893 -- result subtype of the called function. The call to the function
7894 -- is handled separately further below.
7896 New_Allocator :=
7897 Make_Allocator (Loc,
7898 Expression => New_Occurrence_Of (Result_Subt, Loc));
7899 Set_No_Initialization (New_Allocator);
7901 -- Copy attributes to new allocator. Note that the new allocator
7902 -- logically comes from source if the original one did, so copy the
7903 -- relevant flag. This ensures proper treatment of the restriction
7904 -- No_Implicit_Heap_Allocations in this case.
7906 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
7907 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
7908 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
7910 Rewrite (Allocator, New_Allocator);
7912 -- Initial value of the temp is the result of the uninitialized
7913 -- allocator. Unchecked_Convert is needed for T'Input where T is
7914 -- derived from a controlled type.
7916 Temp_Init := Relocate_Node (Allocator);
7918 if Nkind_In
7919 (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
7920 then
7921 Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
7922 end if;
7924 -- Indicate that caller allocates, and pass in the return object
7926 Alloc_Form := Caller_Allocation;
7927 Pool := Make_Null (No_Location);
7928 Return_Obj_Actual :=
7929 Make_Unchecked_Type_Conversion (Loc,
7930 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7931 Expression =>
7932 Make_Explicit_Dereference (Loc,
7933 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
7935 -- When the result subtype is unconstrained, the function itself must
7936 -- perform the allocation of the return object, so we pass parameters
7937 -- indicating that.
7939 else
7940 Temp_Init := Empty;
7942 -- Case of a user-defined storage pool. Pass an allocation parameter
7943 -- indicating that the function should allocate its result in the
7944 -- pool, and pass the pool. Use 'Unrestricted_Access because the
7945 -- pool may not be aliased.
7947 if Present (Associated_Storage_Pool (Acc_Type)) then
7948 Alloc_Form := User_Storage_Pool;
7949 Pool :=
7950 Make_Attribute_Reference (Loc,
7951 Prefix =>
7952 New_Occurrence_Of
7953 (Associated_Storage_Pool (Acc_Type), Loc),
7954 Attribute_Name => Name_Unrestricted_Access);
7956 -- No user-defined pool; pass an allocation parameter indicating that
7957 -- the function should allocate its result on the heap.
7959 else
7960 Alloc_Form := Global_Heap;
7961 Pool := Make_Null (No_Location);
7962 end if;
7964 -- The caller does not provide the return object in this case, so we
7965 -- have to pass null for the object access actual.
7967 Return_Obj_Actual := Empty;
7968 end if;
7970 -- Declare the temp object
7972 Insert_Action (Allocator,
7973 Make_Object_Declaration (Loc,
7974 Defining_Identifier => Return_Obj_Access,
7975 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
7976 Expression => Temp_Init));
7978 Ref_Func_Call := Make_Reference (Loc, Func_Call);
7980 -- Ada 2005 (AI-251): If the type of the allocator is an interface
7981 -- then generate an implicit conversion to force displacement of the
7982 -- "this" pointer.
7984 if Is_Interface (Designated_Type (Acc_Type)) then
7985 Rewrite
7986 (Ref_Func_Call,
7987 OK_Convert_To (Acc_Type, Ref_Func_Call));
7989 -- If the types are incompatible, we need an unchecked conversion. Note
7990 -- that the full types will be compatible, but the types not visibly
7991 -- compatible.
7993 elsif Nkind_In
7994 (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
7995 then
7996 Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
7997 end if;
7999 declare
8000 Assign : constant Node_Id :=
8001 Make_Assignment_Statement (Loc,
8002 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8003 Expression => Ref_Func_Call);
8004 -- Assign the result of the function call into the temp. In the
8005 -- caller-allocates case, this is overwriting the temp with its
8006 -- initial value, which has no effect. In the callee-allocates case,
8007 -- this is setting the temp to point to the object allocated by the
8008 -- callee. Unchecked_Convert is needed for T'Input where T is derived
8009 -- from a controlled type.
8011 Actions : List_Id;
8012 -- Actions to be inserted. If there are no tasks, this is just the
8013 -- assignment statement. If the allocated object has tasks, we need
8014 -- to wrap the assignment in a block that activates them. The
8015 -- activation chain of that block must be passed to the function,
8016 -- rather than some outer chain.
8017 begin
8018 if Has_Task (Result_Subt) then
8019 Actions := New_List;
8020 Build_Task_Allocate_Block_With_Init_Stmts
8021 (Actions, Allocator, Init_Stmts => New_List (Assign));
8022 Chain := Activation_Chain_Entity (Last (Actions));
8023 else
8024 Actions := New_List (Assign);
8025 Chain := Empty;
8026 end if;
8028 Insert_Actions (Allocator, Actions);
8029 end;
8031 -- When the function has a controlling result, an allocation-form
8032 -- parameter must be passed indicating that the caller is allocating
8033 -- the result object. This is needed because such a function can be
8034 -- called as a dispatching operation and must be treated similarly
8035 -- to functions with unconstrained result subtypes.
8037 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8038 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8040 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8041 (Func_Call, Function_Id, Acc_Type);
8043 Add_Task_Actuals_To_Build_In_Place_Call
8044 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8045 Chain => Chain);
8047 -- Add an implicit actual to the function call that provides access
8048 -- to the allocated object. An unchecked conversion to the (specific)
8049 -- result subtype of the function is inserted to handle cases where
8050 -- the access type of the allocator has a class-wide designated type.
8052 Add_Access_Actual_To_Build_In_Place_Call
8053 (Func_Call, Function_Id, Return_Obj_Actual);
8055 -- Finally, replace the allocator node with a reference to the temp
8057 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8059 Analyze_And_Resolve (Allocator, Acc_Type);
8060 end Make_Build_In_Place_Call_In_Allocator;
8062 ---------------------------------------------------
8063 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8064 ---------------------------------------------------
8066 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8067 (Function_Call : Node_Id)
8069 Loc : constant Source_Ptr := Sloc (Function_Call);
8070 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8071 Function_Id : Entity_Id;
8072 Result_Subt : Entity_Id;
8073 Return_Obj_Id : Entity_Id;
8074 Return_Obj_Decl : Entity_Id;
8076 begin
8077 -- If the call has already been processed to add build-in-place actuals
8078 -- then return. One place this can occur is for calls to build-in-place
8079 -- functions that occur within a call to a protected operation, where
8080 -- due to rewriting and expansion of the protected call there can be
8081 -- more than one call to Expand_Actuals for the same set of actuals.
8083 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8084 return;
8085 end if;
8087 -- Mark the call as processed as a build-in-place call
8089 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8091 if Is_Entity_Name (Name (Func_Call)) then
8092 Function_Id := Entity (Name (Func_Call));
8094 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8095 Function_Id := Etype (Name (Func_Call));
8097 else
8098 raise Program_Error;
8099 end if;
8101 Result_Subt := Etype (Function_Id);
8103 -- If the build-in-place function returns a controlled object, then the
8104 -- object needs to be finalized immediately after the context. Since
8105 -- this case produces a transient scope, the servicing finalizer needs
8106 -- to name the returned object. Create a temporary which is initialized
8107 -- with the function call:
8109 -- Temp_Id : Func_Type := BIP_Func_Call;
8111 -- The initialization expression of the temporary will be rewritten by
8112 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8113 -- Call_In_Object_Declaration.
8115 if Needs_Finalization (Result_Subt) then
8116 declare
8117 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8118 Temp_Decl : Node_Id;
8120 begin
8121 -- Reset the guard on the function call since the following does
8122 -- not perform actual call expansion.
8124 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8126 Temp_Decl :=
8127 Make_Object_Declaration (Loc,
8128 Defining_Identifier => Temp_Id,
8129 Object_Definition =>
8130 New_Occurrence_Of (Result_Subt, Loc),
8131 Expression =>
8132 New_Copy_Tree (Function_Call));
8134 Insert_Action (Function_Call, Temp_Decl);
8136 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8137 Analyze (Function_Call);
8138 end;
8140 -- When the result subtype is definite, an object of the subtype is
8141 -- declared and an access value designating it is passed as an actual.
8143 elsif Caller_Known_Size (Func_Call, Result_Subt) then
8145 -- Create a temporary object to hold the function result
8147 Return_Obj_Id := Make_Temporary (Loc, 'R');
8148 Set_Etype (Return_Obj_Id, Result_Subt);
8150 Return_Obj_Decl :=
8151 Make_Object_Declaration (Loc,
8152 Defining_Identifier => Return_Obj_Id,
8153 Aliased_Present => True,
8154 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8156 Set_No_Initialization (Return_Obj_Decl);
8158 Insert_Action (Func_Call, Return_Obj_Decl);
8160 -- When the function has a controlling result, an allocation-form
8161 -- parameter must be passed indicating that the caller is allocating
8162 -- the result object. This is needed because such a function can be
8163 -- called as a dispatching operation and must be treated similarly
8164 -- to functions with unconstrained result subtypes.
8166 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8167 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8169 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8170 (Func_Call, Function_Id);
8172 Add_Task_Actuals_To_Build_In_Place_Call
8173 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8175 -- Add an implicit actual to the function call that provides access
8176 -- to the caller's return object.
8178 Add_Access_Actual_To_Build_In_Place_Call
8179 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8181 -- When the result subtype is unconstrained, the function must allocate
8182 -- the return object in the secondary stack, so appropriate implicit
8183 -- parameters are added to the call to indicate that. A transient
8184 -- scope is established to ensure eventual cleanup of the result.
8186 else
8187 -- Pass an allocation parameter indicating that the function should
8188 -- allocate its result on the secondary stack.
8190 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8191 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8193 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8194 (Func_Call, Function_Id);
8196 Add_Task_Actuals_To_Build_In_Place_Call
8197 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8199 -- Pass a null value to the function since no return object is
8200 -- available on the caller side.
8202 Add_Access_Actual_To_Build_In_Place_Call
8203 (Func_Call, Function_Id, Empty);
8204 end if;
8205 end Make_Build_In_Place_Call_In_Anonymous_Context;
8207 --------------------------------------------
8208 -- Make_Build_In_Place_Call_In_Assignment --
8209 --------------------------------------------
8211 procedure Make_Build_In_Place_Call_In_Assignment
8212 (Assign : Node_Id;
8213 Function_Call : Node_Id)
8215 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8216 Lhs : constant Node_Id := Name (Assign);
8217 Loc : constant Source_Ptr := Sloc (Function_Call);
8218 Func_Id : Entity_Id;
8219 Obj_Decl : Node_Id;
8220 Obj_Id : Entity_Id;
8221 Ptr_Typ : Entity_Id;
8222 Ptr_Typ_Decl : Node_Id;
8223 New_Expr : Node_Id;
8224 Result_Subt : Entity_Id;
8226 begin
8227 -- Mark the call as processed as a build-in-place call
8229 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8230 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8232 if Is_Entity_Name (Name (Func_Call)) then
8233 Func_Id := Entity (Name (Func_Call));
8235 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8236 Func_Id := Etype (Name (Func_Call));
8238 else
8239 raise Program_Error;
8240 end if;
8242 Result_Subt := Etype (Func_Id);
8244 -- When the result subtype is unconstrained, an additional actual must
8245 -- be passed to indicate that the caller is providing the return object.
8246 -- This parameter must also be passed when the called function has a
8247 -- controlling result, because dispatching calls to the function needs
8248 -- to be treated effectively the same as calls to class-wide functions.
8250 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8251 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8253 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8254 (Func_Call, Func_Id);
8256 Add_Task_Actuals_To_Build_In_Place_Call
8257 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8259 -- Add an implicit actual to the function call that provides access to
8260 -- the caller's return object.
8262 Add_Access_Actual_To_Build_In_Place_Call
8263 (Func_Call,
8264 Func_Id,
8265 Make_Unchecked_Type_Conversion (Loc,
8266 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8267 Expression => Relocate_Node (Lhs)));
8269 -- Create an access type designating the function's result subtype
8271 Ptr_Typ := Make_Temporary (Loc, 'A');
8273 Ptr_Typ_Decl :=
8274 Make_Full_Type_Declaration (Loc,
8275 Defining_Identifier => Ptr_Typ,
8276 Type_Definition =>
8277 Make_Access_To_Object_Definition (Loc,
8278 All_Present => True,
8279 Subtype_Indication =>
8280 New_Occurrence_Of (Result_Subt, Loc)));
8281 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8283 -- Finally, create an access object initialized to a reference to the
8284 -- function call. We know this access value is non-null, so mark the
8285 -- entity accordingly to suppress junk access checks.
8287 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8289 -- Add a conversion if it's the wrong type
8291 if Etype (New_Expr) /= Ptr_Typ then
8292 New_Expr :=
8293 Make_Unchecked_Type_Conversion (Loc,
8294 New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
8295 end if;
8297 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8298 Set_Etype (Obj_Id, Ptr_Typ);
8299 Set_Is_Known_Non_Null (Obj_Id);
8301 Obj_Decl :=
8302 Make_Object_Declaration (Loc,
8303 Defining_Identifier => Obj_Id,
8304 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8305 Expression => New_Expr);
8306 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8308 Rewrite (Assign, Make_Null_Statement (Loc));
8309 end Make_Build_In_Place_Call_In_Assignment;
8311 ----------------------------------------------------
8312 -- Make_Build_In_Place_Call_In_Object_Declaration --
8313 ----------------------------------------------------
8315 procedure Make_Build_In_Place_Call_In_Object_Declaration
8316 (Obj_Decl : Node_Id;
8317 Function_Call : Node_Id)
8319 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8320 -- Get the value of Function_Id, below
8322 ---------------------
8323 -- Get_Function_Id --
8324 ---------------------
8326 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8327 begin
8328 if Is_Entity_Name (Name (Func_Call)) then
8329 return Entity (Name (Func_Call));
8331 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8332 return Etype (Name (Func_Call));
8334 else
8335 raise Program_Error;
8336 end if;
8337 end Get_Function_Id;
8339 -- Local variables
8341 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8342 Function_Id : constant Entity_Id := Get_Function_Id (Func_Call);
8343 Loc : constant Source_Ptr := Sloc (Function_Call);
8344 Obj_Loc : constant Source_Ptr := Sloc (Obj_Decl);
8345 Obj_Def_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
8346 Obj_Typ : constant Entity_Id := Etype (Obj_Def_Id);
8347 Encl_Func : constant Entity_Id := Enclosing_Subprogram (Obj_Def_Id);
8348 Result_Subt : constant Entity_Id := Etype (Function_Id);
8350 Call_Deref : Node_Id;
8351 Caller_Object : Node_Id;
8352 Def_Id : Entity_Id;
8353 Designated_Type : Entity_Id;
8354 Fmaster_Actual : Node_Id := Empty;
8355 Pool_Actual : Node_Id;
8356 Ptr_Typ : Entity_Id;
8357 Ptr_Typ_Decl : Node_Id;
8358 Pass_Caller_Acc : Boolean := False;
8359 Res_Decl : Node_Id;
8361 Definite : constant Boolean :=
8362 Caller_Known_Size (Func_Call, Result_Subt)
8363 and then not Is_Class_Wide_Type (Obj_Typ);
8364 -- In the case of "X : T'Class := F(...);", where F returns a
8365 -- Caller_Known_Size (specific) tagged type, we treat it as
8366 -- indefinite, because the code for the Definite case below sets the
8367 -- initialization expression of the object to Empty, which would be
8368 -- illegal Ada, and would cause gigi to misallocate X.
8370 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8372 begin
8373 -- If the call has already been processed to add build-in-place actuals
8374 -- then return.
8376 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8377 return;
8378 end if;
8380 -- Mark the call as processed as a build-in-place call
8382 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8384 -- Create an access type designating the function's result subtype.
8385 -- We use the type of the original call because it may be a call to an
8386 -- inherited operation, which the expansion has replaced with the parent
8387 -- operation that yields the parent type. Note that this access type
8388 -- must be declared before we establish a transient scope, so that it
8389 -- receives the proper accessibility level.
8391 if Is_Class_Wide_Type (Obj_Typ)
8392 and then not Is_Interface (Obj_Typ)
8393 and then not Is_Class_Wide_Type (Etype (Function_Call))
8394 then
8395 Designated_Type := Obj_Typ;
8396 else
8397 Designated_Type := Etype (Function_Call);
8398 end if;
8400 Ptr_Typ := Make_Temporary (Loc, 'A');
8401 Ptr_Typ_Decl :=
8402 Make_Full_Type_Declaration (Loc,
8403 Defining_Identifier => Ptr_Typ,
8404 Type_Definition =>
8405 Make_Access_To_Object_Definition (Loc,
8406 All_Present => True,
8407 Subtype_Indication =>
8408 New_Occurrence_Of (Designated_Type, Loc)));
8410 -- The access type and its accompanying object must be inserted after
8411 -- the object declaration in the constrained case, so that the function
8412 -- call can be passed access to the object. In the indefinite case, or
8413 -- if the object declaration is for a return object, the access type and
8414 -- object must be inserted before the object, since the object
8415 -- declaration is rewritten to be a renaming of a dereference of the
8416 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8417 -- the result object is in a different (transient) scope, so won't cause
8418 -- freezing.
8420 if Definite and then not Is_Return_Object (Obj_Def_Id) then
8421 Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8422 else
8423 Insert_Action (Obj_Decl, Ptr_Typ_Decl);
8424 end if;
8426 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8427 -- elaborated in an inner (transient) scope and thus won't cause
8428 -- freezing by itself. It's not an itype, but it needs to be frozen
8429 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8431 Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8433 -- If the object is a return object of an enclosing build-in-place
8434 -- function, then the implicit build-in-place parameters of the
8435 -- enclosing function are simply passed along to the called function.
8436 -- (Unfortunately, this won't cover the case of extension aggregates
8437 -- where the ancestor part is a build-in-place indefinite function
8438 -- call that should be passed along the caller's parameters.
8439 -- Currently those get mishandled by reassigning the result of the
8440 -- call to the aggregate return object, when the call result should
8441 -- really be directly built in place in the aggregate and not in a
8442 -- temporary. ???)
8444 if Is_Return_Object (Obj_Def_Id) then
8445 Pass_Caller_Acc := True;
8447 -- When the enclosing function has a BIP_Alloc_Form formal then we
8448 -- pass it along to the callee (such as when the enclosing function
8449 -- has an unconstrained or tagged result type).
8451 if Needs_BIP_Alloc_Form (Encl_Func) then
8452 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8453 Pool_Actual :=
8454 New_Occurrence_Of
8455 (Build_In_Place_Formal
8456 (Encl_Func, BIP_Storage_Pool), Loc);
8458 -- The build-in-place pool formal is not built on e.g. ZFP
8460 else
8461 Pool_Actual := Empty;
8462 end if;
8464 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8465 (Function_Call => Func_Call,
8466 Function_Id => Function_Id,
8467 Alloc_Form_Exp =>
8468 New_Occurrence_Of
8469 (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
8470 Pool_Actual => Pool_Actual);
8472 -- Otherwise, if enclosing function has a definite result subtype,
8473 -- then caller allocation will be used.
8475 else
8476 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8477 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8478 end if;
8480 if Needs_BIP_Finalization_Master (Encl_Func) then
8481 Fmaster_Actual :=
8482 New_Occurrence_Of
8483 (Build_In_Place_Formal
8484 (Encl_Func, BIP_Finalization_Master), Loc);
8485 end if;
8487 -- Retrieve the BIPacc formal from the enclosing function and convert
8488 -- it to the access type of the callee's BIP_Object_Access formal.
8490 Caller_Object :=
8491 Make_Unchecked_Type_Conversion (Loc,
8492 Subtype_Mark =>
8493 New_Occurrence_Of
8494 (Etype (Build_In_Place_Formal
8495 (Function_Id, BIP_Object_Access)),
8496 Loc),
8497 Expression =>
8498 New_Occurrence_Of
8499 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
8500 Loc));
8502 -- In the definite case, add an implicit actual to the function call
8503 -- that provides access to the declared object. An unchecked conversion
8504 -- to the (specific) result type of the function is inserted to handle
8505 -- the case where the object is declared with a class-wide type.
8507 elsif Definite then
8508 Caller_Object :=
8509 Make_Unchecked_Type_Conversion (Loc,
8510 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8511 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
8513 -- When the function has a controlling result, an allocation-form
8514 -- parameter must be passed indicating that the caller is allocating
8515 -- the result object. This is needed because such a function can be
8516 -- called as a dispatching operation and must be treated similarly to
8517 -- functions with indefinite result subtypes.
8519 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8520 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8522 -- The allocation for indefinite library-level objects occurs on the
8523 -- heap as opposed to the secondary stack. This accommodates DLLs where
8524 -- the secondary stack is destroyed after each library unload. This is a
8525 -- hybrid mechanism where a stack-allocated object lives on the heap.
8527 elsif Is_Library_Level_Entity (Obj_Def_Id)
8528 and then not Restriction_Active (No_Implicit_Heap_Allocations)
8529 then
8530 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8531 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
8532 Caller_Object := Empty;
8534 -- Create a finalization master for the access result type to ensure
8535 -- that the heap allocation can properly chain the object and later
8536 -- finalize it when the library unit goes out of scope.
8538 if Needs_Finalization (Etype (Func_Call)) then
8539 Build_Finalization_Master
8540 (Typ => Ptr_Typ,
8541 For_Lib_Level => True,
8542 Insertion_Node => Ptr_Typ_Decl);
8544 Fmaster_Actual :=
8545 Make_Attribute_Reference (Loc,
8546 Prefix =>
8547 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
8548 Attribute_Name => Name_Unrestricted_Access);
8549 end if;
8551 -- In other indefinite cases, pass an indication to do the allocation on
8552 -- the secondary stack and set Caller_Object to Empty so that a null
8553 -- value will be passed for the caller's object address. A transient
8554 -- scope is established to ensure eventual cleanup of the result.
8556 else
8557 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8558 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8559 Caller_Object := Empty;
8561 Establish_Transient_Scope (Obj_Decl, Sec_Stack => True);
8562 end if;
8564 -- Pass along any finalization master actual, which is needed in the
8565 -- case where the called function initializes a return object of an
8566 -- enclosing build-in-place function.
8568 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8569 (Func_Call => Func_Call,
8570 Func_Id => Function_Id,
8571 Master_Exp => Fmaster_Actual);
8573 if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
8574 and then Has_Task (Result_Subt)
8575 then
8576 -- Here we're passing along the master that was passed in to this
8577 -- function.
8579 Add_Task_Actuals_To_Build_In_Place_Call
8580 (Func_Call, Function_Id,
8581 Master_Actual =>
8582 New_Occurrence_Of
8583 (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
8585 else
8586 Add_Task_Actuals_To_Build_In_Place_Call
8587 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8588 end if;
8590 Add_Access_Actual_To_Build_In_Place_Call
8591 (Func_Call,
8592 Function_Id,
8593 Caller_Object,
8594 Is_Access => Pass_Caller_Acc);
8596 -- Finally, create an access object initialized to a reference to the
8597 -- function call. We know this access value cannot be null, so mark the
8598 -- entity accordingly to suppress the access check.
8600 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
8601 Set_Etype (Def_Id, Ptr_Typ);
8602 Set_Is_Known_Non_Null (Def_Id);
8604 if Nkind_In (Function_Call, N_Type_Conversion,
8605 N_Unchecked_Type_Conversion)
8606 then
8607 Res_Decl :=
8608 Make_Object_Declaration (Loc,
8609 Defining_Identifier => Def_Id,
8610 Constant_Present => True,
8611 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8612 Expression =>
8613 Make_Unchecked_Type_Conversion (Loc,
8614 New_Occurrence_Of (Ptr_Typ, Loc),
8615 Make_Reference (Loc, Relocate_Node (Func_Call))));
8616 else
8617 Res_Decl :=
8618 Make_Object_Declaration (Loc,
8619 Defining_Identifier => Def_Id,
8620 Constant_Present => True,
8621 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8622 Expression =>
8623 Make_Reference (Loc, Relocate_Node (Func_Call)));
8624 end if;
8626 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
8628 -- If the result subtype of the called function is definite and is not
8629 -- itself the return expression of an enclosing BIP function, then mark
8630 -- the object as having no initialization.
8632 if Definite and then not Is_Return_Object (Obj_Def_Id) then
8634 -- The related object declaration is encased in a transient block
8635 -- because the build-in-place function call contains at least one
8636 -- nested function call that produces a controlled transient
8637 -- temporary:
8639 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8641 -- Since the build-in-place expansion decouples the call from the
8642 -- object declaration, the finalization machinery lacks the context
8643 -- which prompted the generation of the transient block. To resolve
8644 -- this scenario, store the build-in-place call.
8646 if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
8647 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8648 end if;
8650 Set_Expression (Obj_Decl, Empty);
8651 Set_No_Initialization (Obj_Decl);
8653 -- In case of an indefinite result subtype, or if the call is the
8654 -- return expression of an enclosing BIP function, rewrite the object
8655 -- declaration as an object renaming where the renamed object is a
8656 -- dereference of <function_Call>'reference:
8658 -- Obj : Subt renames <function_call>'Ref.all;
8660 else
8661 Call_Deref :=
8662 Make_Explicit_Dereference (Obj_Loc,
8663 Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
8665 Rewrite (Obj_Decl,
8666 Make_Object_Renaming_Declaration (Obj_Loc,
8667 Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
8668 Subtype_Mark =>
8669 New_Occurrence_Of (Designated_Type, Obj_Loc),
8670 Name => Call_Deref));
8672 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
8673 -- to Obj_Def_Id.
8675 Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
8677 -- If the original entity comes from source, then mark the new
8678 -- entity as needing debug information, even though it's defined
8679 -- by a generated renaming that does not come from source, so that
8680 -- the Materialize_Entity flag will be set on the entity when
8681 -- Debug_Renaming_Declaration is called during analysis.
8683 if Comes_From_Source (Obj_Def_Id) then
8684 Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
8685 end if;
8687 Analyze (Obj_Decl);
8688 Replace_Renaming_Declaration_Id
8689 (Obj_Decl, Original_Node (Obj_Decl));
8690 end if;
8691 end Make_Build_In_Place_Call_In_Object_Declaration;
8693 -------------------------------------------------
8694 -- Make_Build_In_Place_Iface_Call_In_Allocator --
8695 -------------------------------------------------
8697 procedure Make_Build_In_Place_Iface_Call_In_Allocator
8698 (Allocator : Node_Id;
8699 Function_Call : Node_Id)
8701 BIP_Func_Call : constant Node_Id :=
8702 Unqual_BIP_Iface_Function_Call (Function_Call);
8703 Loc : constant Source_Ptr := Sloc (Function_Call);
8705 Anon_Type : Entity_Id;
8706 Tmp_Decl : Node_Id;
8707 Tmp_Id : Entity_Id;
8709 begin
8710 -- No action of the call has already been processed
8712 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8713 return;
8714 end if;
8716 Tmp_Id := Make_Temporary (Loc, 'D');
8718 -- Insert a temporary before N initialized with the BIP function call
8719 -- without its enclosing type conversions and analyze it without its
8720 -- expansion. This temporary facilitates us reusing the BIP machinery,
8721 -- which takes care of adding the extra build-in-place actuals and
8722 -- transforms this object declaration into an object renaming
8723 -- declaration.
8725 Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
8726 Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
8727 Set_Etype (Anon_Type, Anon_Type);
8729 Tmp_Decl :=
8730 Make_Object_Declaration (Loc,
8731 Defining_Identifier => Tmp_Id,
8732 Object_Definition => New_Occurrence_Of (Anon_Type, Loc),
8733 Expression =>
8734 Make_Allocator (Loc,
8735 Expression =>
8736 Make_Qualified_Expression (Loc,
8737 Subtype_Mark =>
8738 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8739 Expression => New_Copy_Tree (BIP_Func_Call))));
8741 Expander_Mode_Save_And_Set (False);
8742 Insert_Action (Allocator, Tmp_Decl);
8743 Expander_Mode_Restore;
8745 Make_Build_In_Place_Call_In_Allocator
8746 (Allocator => Expression (Tmp_Decl),
8747 Function_Call => Expression (Expression (Tmp_Decl)));
8749 Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
8750 end Make_Build_In_Place_Iface_Call_In_Allocator;
8752 ---------------------------------------------------------
8753 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8754 ---------------------------------------------------------
8756 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8757 (Function_Call : Node_Id)
8759 BIP_Func_Call : constant Node_Id :=
8760 Unqual_BIP_Iface_Function_Call (Function_Call);
8761 Loc : constant Source_Ptr := Sloc (Function_Call);
8763 Tmp_Decl : Node_Id;
8764 Tmp_Id : Entity_Id;
8766 begin
8767 -- No action of the call has already been processed
8769 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8770 return;
8771 end if;
8773 pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
8775 -- Insert a temporary before the call initialized with function call to
8776 -- reuse the BIP machinery which takes care of adding the extra build-in
8777 -- place actuals and transforms this object declaration into an object
8778 -- renaming declaration.
8780 Tmp_Id := Make_Temporary (Loc, 'D');
8782 Tmp_Decl :=
8783 Make_Object_Declaration (Loc,
8784 Defining_Identifier => Tmp_Id,
8785 Object_Definition =>
8786 New_Occurrence_Of (Etype (Function_Call), Loc),
8787 Expression => Relocate_Node (Function_Call));
8789 Expander_Mode_Save_And_Set (False);
8790 Insert_Action (Function_Call, Tmp_Decl);
8791 Expander_Mode_Restore;
8793 Make_Build_In_Place_Iface_Call_In_Object_Declaration
8794 (Obj_Decl => Tmp_Decl,
8795 Function_Call => Expression (Tmp_Decl));
8796 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
8798 ----------------------------------------------------------
8799 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8800 ----------------------------------------------------------
8802 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8803 (Obj_Decl : Node_Id;
8804 Function_Call : Node_Id)
8806 BIP_Func_Call : constant Node_Id :=
8807 Unqual_BIP_Iface_Function_Call (Function_Call);
8808 Loc : constant Source_Ptr := Sloc (Function_Call);
8809 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
8811 Tmp_Decl : Node_Id;
8812 Tmp_Id : Entity_Id;
8814 begin
8815 -- No action of the call has already been processed
8817 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8818 return;
8819 end if;
8821 Tmp_Id := Make_Temporary (Loc, 'D');
8823 -- Insert a temporary before N initialized with the BIP function call
8824 -- without its enclosing type conversions and analyze it without its
8825 -- expansion. This temporary facilitates us reusing the BIP machinery,
8826 -- which takes care of adding the extra build-in-place actuals and
8827 -- transforms this object declaration into an object renaming
8828 -- declaration.
8830 Tmp_Decl :=
8831 Make_Object_Declaration (Loc,
8832 Defining_Identifier => Tmp_Id,
8833 Object_Definition =>
8834 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8835 Expression => New_Copy_Tree (BIP_Func_Call));
8837 Expander_Mode_Save_And_Set (False);
8838 Insert_Action (Obj_Decl, Tmp_Decl);
8839 Expander_Mode_Restore;
8841 Make_Build_In_Place_Call_In_Object_Declaration
8842 (Obj_Decl => Tmp_Decl,
8843 Function_Call => Expression (Tmp_Decl));
8845 pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
8847 -- Replace the original build-in-place function call by a reference to
8848 -- the resulting temporary object renaming declaration. In this way,
8849 -- all the interface conversions performed in the original Function_Call
8850 -- on the build-in-place object are preserved.
8852 Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
8854 -- Replace the original object declaration by an internal object
8855 -- renaming declaration. This leaves the generated code more clean (the
8856 -- build-in-place function call in an object renaming declaration and
8857 -- displacements of the pointer to the build-in-place object in another
8858 -- renaming declaration) and allows us to invoke the routine that takes
8859 -- care of replacing the identifier of the renaming declaration (routine
8860 -- originally developed for the regular build-in-place management).
8862 Rewrite (Obj_Decl,
8863 Make_Object_Renaming_Declaration (Loc,
8864 Defining_Identifier => Make_Temporary (Loc, 'D'),
8865 Subtype_Mark => New_Occurrence_Of (Etype (Obj_Id), Loc),
8866 Name => Function_Call));
8867 Analyze (Obj_Decl);
8869 Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
8870 end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
8872 --------------------------------------------
8873 -- Make_CPP_Constructor_Call_In_Allocator --
8874 --------------------------------------------
8876 procedure Make_CPP_Constructor_Call_In_Allocator
8877 (Allocator : Node_Id;
8878 Function_Call : Node_Id)
8880 Loc : constant Source_Ptr := Sloc (Function_Call);
8881 Acc_Type : constant Entity_Id := Etype (Allocator);
8882 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
8883 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
8885 New_Allocator : Node_Id;
8886 Return_Obj_Access : Entity_Id;
8887 Tmp_Obj : Node_Id;
8889 begin
8890 pragma Assert (Nkind (Allocator) = N_Allocator
8891 and then Nkind (Function_Call) = N_Function_Call);
8892 pragma Assert (Convention (Function_Id) = Convention_CPP
8893 and then Is_Constructor (Function_Id));
8894 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
8896 -- Replace the initialized allocator of form "new T'(Func (...))" with
8897 -- an uninitialized allocator of form "new T", where T is the result
8898 -- subtype of the called function. The call to the function is handled
8899 -- separately further below.
8901 New_Allocator :=
8902 Make_Allocator (Loc,
8903 Expression => New_Occurrence_Of (Result_Subt, Loc));
8904 Set_No_Initialization (New_Allocator);
8906 -- Copy attributes to new allocator. Note that the new allocator
8907 -- logically comes from source if the original one did, so copy the
8908 -- relevant flag. This ensures proper treatment of the restriction
8909 -- No_Implicit_Heap_Allocations in this case.
8911 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
8912 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8913 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8915 Rewrite (Allocator, New_Allocator);
8917 -- Create a new access object and initialize it to the result of the
8918 -- new uninitialized allocator. Note: we do not use Allocator as the
8919 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
8920 -- as this would create a sort of infinite "recursion".
8922 Return_Obj_Access := Make_Temporary (Loc, 'R');
8923 Set_Etype (Return_Obj_Access, Acc_Type);
8925 -- Generate:
8926 -- Rnnn : constant ptr_T := new (T);
8927 -- Init (Rnn.all,...);
8929 Tmp_Obj :=
8930 Make_Object_Declaration (Loc,
8931 Defining_Identifier => Return_Obj_Access,
8932 Constant_Present => True,
8933 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8934 Expression => Relocate_Node (Allocator));
8935 Insert_Action (Allocator, Tmp_Obj);
8937 Insert_List_After_And_Analyze (Tmp_Obj,
8938 Build_Initialization_Call (Loc,
8939 Id_Ref =>
8940 Make_Explicit_Dereference (Loc,
8941 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
8942 Typ => Etype (Function_Id),
8943 Constructor_Ref => Function_Call));
8945 -- Finally, replace the allocator node with a reference to the result of
8946 -- the function call itself (which will effectively be an access to the
8947 -- object created by the allocator).
8949 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8951 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
8952 -- generate an implicit conversion to force displacement of the "this"
8953 -- pointer.
8955 if Is_Interface (Designated_Type (Acc_Type)) then
8956 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
8957 end if;
8959 Analyze_And_Resolve (Allocator, Acc_Type);
8960 end Make_CPP_Constructor_Call_In_Allocator;
8962 -----------------------------------
8963 -- Needs_BIP_Finalization_Master --
8964 -----------------------------------
8966 function Needs_BIP_Finalization_Master
8967 (Func_Id : Entity_Id) return Boolean
8969 pragma Assert (Is_Build_In_Place_Function (Func_Id));
8970 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8971 begin
8972 -- A formal giving the finalization master is needed for build-in-place
8973 -- functions whose result type needs finalization or is a tagged type.
8974 -- Tagged primitive build-in-place functions need such a formal because
8975 -- they can be called by a dispatching call, and extensions may require
8976 -- finalization even if the root type doesn't. This means they're also
8977 -- needed for tagged nonprimitive build-in-place functions with tagged
8978 -- results, since such functions can be called via access-to-function
8979 -- types, and those can be used to call primitives, so masters have to
8980 -- be passed to all such build-in-place functions, primitive or not.
8982 return
8983 not Restriction_Active (No_Finalization)
8984 and then (Needs_Finalization (Func_Typ)
8985 or else Is_Tagged_Type (Func_Typ));
8986 end Needs_BIP_Finalization_Master;
8988 --------------------------
8989 -- Needs_BIP_Alloc_Form --
8990 --------------------------
8992 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
8993 pragma Assert (Is_Build_In_Place_Function (Func_Id));
8994 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8995 begin
8996 return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
8997 end Needs_BIP_Alloc_Form;
8999 --------------------------------------
9000 -- Needs_Result_Accessibility_Level --
9001 --------------------------------------
9003 function Needs_Result_Accessibility_Level
9004 (Func_Id : Entity_Id) return Boolean
9006 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9008 function Has_Unconstrained_Access_Discriminant_Component
9009 (Comp_Typ : Entity_Id) return Boolean;
9010 -- Returns True if any component of the type has an unconstrained access
9011 -- discriminant.
9013 -----------------------------------------------------
9014 -- Has_Unconstrained_Access_Discriminant_Component --
9015 -----------------------------------------------------
9017 function Has_Unconstrained_Access_Discriminant_Component
9018 (Comp_Typ : Entity_Id) return Boolean
9020 begin
9021 if not Is_Limited_Type (Comp_Typ) then
9022 return False;
9024 -- Only limited types can have access discriminants with
9025 -- defaults.
9027 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9028 return True;
9030 elsif Is_Array_Type (Comp_Typ) then
9031 return Has_Unconstrained_Access_Discriminant_Component
9032 (Underlying_Type (Component_Type (Comp_Typ)));
9034 elsif Is_Record_Type (Comp_Typ) then
9035 declare
9036 Comp : Entity_Id;
9038 begin
9039 Comp := First_Component (Comp_Typ);
9040 while Present (Comp) loop
9041 if Has_Unconstrained_Access_Discriminant_Component
9042 (Underlying_Type (Etype (Comp)))
9043 then
9044 return True;
9045 end if;
9047 Next_Component (Comp);
9048 end loop;
9049 end;
9050 end if;
9052 return False;
9053 end Has_Unconstrained_Access_Discriminant_Component;
9055 Feature_Disabled : constant Boolean := True;
9056 -- Temporary
9058 -- Start of processing for Needs_Result_Accessibility_Level
9060 begin
9061 -- False if completion unavailable (how does this happen???)
9063 if not Present (Func_Typ) then
9064 return False;
9066 elsif Feature_Disabled then
9067 return False;
9069 -- False if not a function, also handle enum-lit renames case
9071 elsif Func_Typ = Standard_Void_Type
9072 or else Is_Scalar_Type (Func_Typ)
9073 then
9074 return False;
9076 -- Handle a corner case, a cross-dialect subp renaming. For example,
9077 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9078 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9080 elsif Present (Alias (Func_Id)) then
9082 -- Unimplemented: a cross-dialect subp renaming which does not set
9083 -- the Alias attribute (e.g., a rename of a dereference of an access
9084 -- to subprogram value). ???
9086 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9088 -- Remaining cases require Ada 2012 mode
9090 elsif Ada_Version < Ada_2012 then
9091 return False;
9093 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9094 or else Is_Tagged_Type (Func_Typ)
9095 then
9096 -- In the case of, say, a null tagged record result type, the need
9097 -- for this extra parameter might not be obvious. This function
9098 -- returns True for all tagged types for compatibility reasons.
9099 -- A function with, say, a tagged null controlling result type might
9100 -- be overridden by a primitive of an extension having an access
9101 -- discriminant and the overrider and overridden must have compatible
9102 -- calling conventions (including implicitly declared parameters).
9103 -- Similarly, values of one access-to-subprogram type might designate
9104 -- both a primitive subprogram of a given type and a function
9105 -- which is, for example, not a primitive subprogram of any type.
9106 -- Again, this requires calling convention compatibility.
9107 -- It might be possible to solve these issues by introducing
9108 -- wrappers, but that is not the approach that was chosen.
9110 return True;
9112 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9113 return True;
9115 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9116 return True;
9118 -- False for all other cases
9120 else
9121 return False;
9122 end if;
9123 end Needs_Result_Accessibility_Level;
9125 -------------------------------------
9126 -- Replace_Renaming_Declaration_Id --
9127 -------------------------------------
9129 procedure Replace_Renaming_Declaration_Id
9130 (New_Decl : Node_Id;
9131 Orig_Decl : Node_Id)
9133 New_Id : constant Entity_Id := Defining_Entity (New_Decl);
9134 Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9136 begin
9137 Set_Chars (New_Id, Chars (Orig_Id));
9139 -- Swap next entity links in preparation for exchanging entities
9141 declare
9142 Next_Id : constant Entity_Id := Next_Entity (New_Id);
9143 begin
9144 Set_Next_Entity (New_Id, Next_Entity (Orig_Id));
9145 Set_Next_Entity (Orig_Id, Next_Id);
9146 end;
9148 Set_Homonym (New_Id, Homonym (Orig_Id));
9149 Exchange_Entities (New_Id, Orig_Id);
9151 -- Preserve source indication of original declaration, so that xref
9152 -- information is properly generated for the right entity.
9154 Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9155 Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9157 Set_Comes_From_Source (New_Id, False);
9158 end Replace_Renaming_Declaration_Id;
9160 ---------------------------------
9161 -- Rewrite_Function_Call_For_C --
9162 ---------------------------------
9164 procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9165 Orig_Func : constant Entity_Id := Entity (Name (N));
9166 Func_Id : constant Entity_Id := Ultimate_Alias (Orig_Func);
9167 Par : constant Node_Id := Parent (N);
9168 Proc_Id : constant Entity_Id := Corresponding_Procedure (Func_Id);
9169 Loc : constant Source_Ptr := Sloc (Par);
9170 Actuals : List_Id;
9171 Last_Actual : Node_Id;
9172 Last_Formal : Entity_Id;
9174 -- Start of processing for Rewrite_Function_Call_For_C
9176 begin
9177 -- The actuals may be given by named associations, so the added actual
9178 -- that is the target of the return value of the call must be a named
9179 -- association as well, so we retrieve the name of the generated
9180 -- out_formal.
9182 Last_Formal := First_Formal (Proc_Id);
9183 while Present (Next_Formal (Last_Formal)) loop
9184 Last_Formal := Next_Formal (Last_Formal);
9185 end loop;
9187 Actuals := Parameter_Associations (N);
9189 -- The original function may lack parameters
9191 if No (Actuals) then
9192 Actuals := New_List;
9193 end if;
9195 -- If the function call is the expression of an assignment statement,
9196 -- transform the assignment into a procedure call. Generate:
9198 -- LHS := Func_Call (...);
9200 -- Proc_Call (..., LHS);
9202 -- If function is inherited, a conversion may be necessary.
9204 if Nkind (Par) = N_Assignment_Statement then
9205 Last_Actual := Name (Par);
9207 if not Comes_From_Source (Orig_Func)
9208 and then Etype (Orig_Func) /= Etype (Func_Id)
9209 then
9210 Last_Actual :=
9211 Make_Type_Conversion (Loc,
9212 New_Occurrence_Of (Etype (Func_Id), Loc),
9213 Last_Actual);
9214 end if;
9216 Append_To (Actuals,
9217 Make_Parameter_Association (Loc,
9218 Selector_Name =>
9219 Make_Identifier (Loc, Chars (Last_Formal)),
9220 Explicit_Actual_Parameter => Last_Actual));
9222 Rewrite (Par,
9223 Make_Procedure_Call_Statement (Loc,
9224 Name => New_Occurrence_Of (Proc_Id, Loc),
9225 Parameter_Associations => Actuals));
9226 Analyze (Par);
9228 -- Otherwise the context is an expression. Generate a temporary and a
9229 -- procedure call to obtain the function result. Generate:
9231 -- ... Func_Call (...) ...
9233 -- Temp : ...;
9234 -- Proc_Call (..., Temp);
9235 -- ... Temp ...
9237 else
9238 declare
9239 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9240 Call : Node_Id;
9241 Decl : Node_Id;
9243 begin
9244 -- Generate:
9245 -- Temp : ...;
9247 Decl :=
9248 Make_Object_Declaration (Loc,
9249 Defining_Identifier => Temp_Id,
9250 Object_Definition =>
9251 New_Occurrence_Of (Etype (Func_Id), Loc));
9253 -- Generate:
9254 -- Proc_Call (..., Temp);
9256 Append_To (Actuals,
9257 Make_Parameter_Association (Loc,
9258 Selector_Name =>
9259 Make_Identifier (Loc, Chars (Last_Formal)),
9260 Explicit_Actual_Parameter =>
9261 New_Occurrence_Of (Temp_Id, Loc)));
9263 Call :=
9264 Make_Procedure_Call_Statement (Loc,
9265 Name => New_Occurrence_Of (Proc_Id, Loc),
9266 Parameter_Associations => Actuals);
9268 Insert_Actions (Par, New_List (Decl, Call));
9269 Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9270 end;
9271 end if;
9272 end Rewrite_Function_Call_For_C;
9274 ------------------------------------
9275 -- Set_Enclosing_Sec_Stack_Return --
9276 ------------------------------------
9278 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9279 P : Node_Id := N;
9281 begin
9282 -- Due to a possible mix of internally generated blocks, source blocks
9283 -- and loops, the scope stack may not be contiguous as all labels are
9284 -- inserted at the top level within the related function. Instead,
9285 -- perform a parent-based traversal and mark all appropriate constructs.
9287 while Present (P) loop
9289 -- Mark the label of a source or internally generated block or
9290 -- loop.
9292 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
9293 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9295 -- Mark the enclosing function
9297 elsif Nkind (P) = N_Subprogram_Body then
9298 if Present (Corresponding_Spec (P)) then
9299 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9300 else
9301 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9302 end if;
9304 -- Do not go beyond the enclosing function
9306 exit;
9307 end if;
9309 P := Parent (P);
9310 end loop;
9311 end Set_Enclosing_Sec_Stack_Return;
9313 ------------------------------------
9314 -- Unqual_BIP_Iface_Function_Call --
9315 ------------------------------------
9317 function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9318 Has_Pointer_Displacement : Boolean := False;
9319 On_Object_Declaration : Boolean := False;
9320 -- Remember if processing the renaming expressions on recursion we have
9321 -- traversed an object declaration, since we can traverse many object
9322 -- declaration renamings but just one regular object declaration.
9324 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9325 -- Search for a build-in-place function call skipping any qualification
9326 -- including qualified expressions, type conversions, references, calls
9327 -- to displace the pointer to the object, and renamings. Return Empty if
9328 -- no build-in-place function call is found.
9330 ------------------------------
9331 -- Unqual_BIP_Function_Call --
9332 ------------------------------
9334 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9335 begin
9336 -- Recurse to handle case of multiple levels of qualification and/or
9337 -- conversion.
9339 if Nkind_In (Expr, N_Qualified_Expression,
9340 N_Type_Conversion,
9341 N_Unchecked_Type_Conversion)
9342 then
9343 return Unqual_BIP_Function_Call (Expression (Expr));
9345 -- Recurse to handle case of multiple levels of references and
9346 -- explicit dereferences.
9348 elsif Nkind_In (Expr, N_Attribute_Reference,
9349 N_Explicit_Dereference,
9350 N_Reference)
9351 then
9352 return Unqual_BIP_Function_Call (Prefix (Expr));
9354 -- Recurse on object renamings
9356 elsif Nkind (Expr) = N_Identifier
9357 and then Present (Entity (Expr))
9358 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9359 and then Nkind (Parent (Entity (Expr))) =
9360 N_Object_Renaming_Declaration
9361 and then Present (Renamed_Object (Entity (Expr)))
9362 then
9363 return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9365 -- Recurse on the initializing expression of the first reference of
9366 -- an object declaration.
9368 elsif not On_Object_Declaration
9369 and then Nkind (Expr) = N_Identifier
9370 and then Present (Entity (Expr))
9371 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9372 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9373 and then Present (Expression (Parent (Entity (Expr))))
9374 then
9375 On_Object_Declaration := True;
9376 return
9377 Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9379 -- Recurse to handle calls to displace the pointer to the object to
9380 -- reference a secondary dispatch table.
9382 elsif Nkind (Expr) = N_Function_Call
9383 and then Nkind (Name (Expr)) in N_Has_Entity
9384 and then Present (Entity (Name (Expr)))
9385 and then RTU_Loaded (Ada_Tags)
9386 and then RTE_Available (RE_Displace)
9387 and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9388 then
9389 Has_Pointer_Displacement := True;
9390 return
9391 Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9393 -- Normal case: check if the inner expression is a BIP function call
9394 -- and the pointer to the object is displaced.
9396 elsif Has_Pointer_Displacement
9397 and then Is_Build_In_Place_Function_Call (Expr)
9398 then
9399 return Expr;
9401 else
9402 return Empty;
9403 end if;
9404 end Unqual_BIP_Function_Call;
9406 -- Start of processing for Unqual_BIP_Iface_Function_Call
9408 begin
9409 if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9411 -- Can happen for X'Elab_Spec in the binder-generated file
9413 return Empty;
9414 end if;
9416 return Unqual_BIP_Function_Call (Expr);
9417 end Unqual_BIP_Iface_Function_Call;
9419 end Exp_Ch6;