Daily bump.
[official-gcc.git] / gcc / doc / invoke.texi
blob3487a62ab284209321cee4118b9d79656dbe3180
1 @c Copyright (C) 1988-2017 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2017 Free Software Foundation, Inc.
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below).  A copy of the license is
19 included in the gfdl(7) man page.
21 (a) The FSF's Front-Cover Text is:
23      A GNU Manual
25 (b) The FSF's Back-Cover Text is:
27      You have freedom to copy and modify this GNU Manual, like GNU
28      software.  Copies published by the Free Software Foundation raise
29      funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36     [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37     [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38     [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39     [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40     [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41     [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
43 Only the most useful options are listed here; see below for the
44 remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking.  The ``overall options'' allow you to stop this
72 process at an intermediate stage.  For example, the @option{-c} option
73 says not to run the linker.  Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
77 Other options are passed on to one or more stages of processing.  Some options
78 control the preprocessor and others the compiler itself.  Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly.  If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++} 
98 instead.  @xref{Invoking G++,,Compiling C++ Programs}, 
99 for information about the differences in behavior between @command{gcc} 
100 and @code{g++} when compiling C++ programs.
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands.  Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments.  For the most part, the order
112 you use doesn't matter.  Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified.  Also,
115 the placement of the @option{-l} option is significant.
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}.  This manual documents
122 only one of these two forms, whichever one is not the default.
124 @c man end
126 @xref{Option Index}, for an index to GCC's options.
128 @menu
129 * Option Summary::      Brief list of all options, without explanations.
130 * Overall Options::     Controlling the kind of output:
131                         an executable, object files, assembler files,
132                         or preprocessed source.
133 * Invoking G++::        Compiling C++ programs.
134 * C Dialect Options::   Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137                         and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139                         be formatted.
140 * Warning Options::     How picky should the compiler be?
141 * Debugging Options::   Producing debuggable code.
142 * Optimize Options::    How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145                          Also, getting dependency information for Make.
146 * Assembler Options::   Passing options to the assembler.
147 * Link Options::        Specifying libraries and so on.
148 * Directory Options::   Where to find header files and libraries.
149                         Where to find the compiler executable files.
150 * Code Gen Options::    Specifying conventions for function calls, data layout
151                         and register usage.
152 * Developer Options::   Printing GCC configuration info, statistics, and
153                         debugging dumps.
154 * Submodel Options::    Target-specific options, such as compiling for a
155                         specific processor variant.
156 * Spec Files::          How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
161 @c man begin OPTIONS
163 @node Option Summary
164 @section Option Summary
166 Here is a summary of all the options, grouped by type.  Explanations are
167 in the following sections.
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c  -S  -E  -o @var{file}  -x @var{language}  @gol
173 -v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  --version @gol
174 -pass-exit-codes  -pipe  -specs=@var{file}  -wrapper  @gol
175 @@@var{file}  -fplugin=@var{file}  -fplugin-arg-@var{name}=@var{arg}  @gol
176 -fdump-ada-spec@r{[}-slim@r{]}  -fada-spec-parent=@var{unit}  -fdump-go-spec=@var{file}}
178 @item C Language Options
179 @xref{C Dialect Options,,Options Controlling C Dialect}.
180 @gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
181 -fpermitted-flt-eval-methods=@var{standard} @gol
182 -aux-info @var{filename}  -fallow-parameterless-variadic-functions @gol
183 -fno-asm  -fno-builtin  -fno-builtin-@var{function}  -fgimple@gol
184 -fhosted  -ffreestanding  -fopenacc  -fopenmp  -fopenmp-simd @gol
185 -fms-extensions  -fplan9-extensions  -fsso-struct=@var{endianness} @gol
186 -fallow-single-precision  -fcond-mismatch  -flax-vector-conversions @gol
187 -fsigned-bitfields  -fsigned-char @gol
188 -funsigned-bitfields  -funsigned-char}
190 @item C++ Language Options
191 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
192 @gccoptlist{-fabi-version=@var{n}  -fno-access-control @gol
193 -faligned-new=@var{n}  -fargs-in-order=@var{n}  -fcheck-new @gol
194 -fconstexpr-depth=@var{n}  -fconstexpr-loop-limit=@var{n} @gol
195 -ffriend-injection @gol
196 -fno-elide-constructors @gol
197 -fno-enforce-eh-specs @gol
198 -ffor-scope  -fno-for-scope  -fno-gnu-keywords @gol
199 -fno-implicit-templates @gol
200 -fno-implicit-inline-templates @gol
201 -fno-implement-inlines  -fms-extensions @gol
202 -fnew-inheriting-ctors @gol
203 -fnew-ttp-matching @gol
204 -fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
205 -fno-optional-diags  -fpermissive @gol
206 -fno-pretty-templates @gol
207 -frepo  -fno-rtti  -fsized-deallocation @gol
208 -ftemplate-backtrace-limit=@var{n} @gol
209 -ftemplate-depth=@var{n} @gol
210 -fno-threadsafe-statics  -fuse-cxa-atexit @gol
211 -fno-weak  -nostdinc++ @gol
212 -fvisibility-inlines-hidden @gol
213 -fvisibility-ms-compat @gol
214 -fext-numeric-literals @gol
215 -Wabi=@var{n}  -Wabi-tag  -Wconversion-null  -Wctor-dtor-privacy @gol
216 -Wdelete-non-virtual-dtor  -Wliteral-suffix  -Wmultiple-inheritance @gol
217 -Wnamespaces  -Wnarrowing @gol
218 -Wnoexcept  -Wnoexcept-type  -Wclass-memaccess @gol
219 -Wnon-virtual-dtor  -Wreorder  -Wregister @gol
220 -Weffc++  -Wstrict-null-sentinel  -Wtemplates @gol
221 -Wno-non-template-friend  -Wold-style-cast @gol
222 -Woverloaded-virtual  -Wno-pmf-conversions @gol
223 -Wsign-promo  -Wvirtual-inheritance}
225 @item Objective-C and Objective-C++ Language Options
226 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
227 Objective-C and Objective-C++ Dialects}.
228 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
229 -fgnu-runtime  -fnext-runtime @gol
230 -fno-nil-receivers @gol
231 -fobjc-abi-version=@var{n} @gol
232 -fobjc-call-cxx-cdtors @gol
233 -fobjc-direct-dispatch @gol
234 -fobjc-exceptions @gol
235 -fobjc-gc @gol
236 -fobjc-nilcheck @gol
237 -fobjc-std=objc1 @gol
238 -fno-local-ivars @gol
239 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
240 -freplace-objc-classes @gol
241 -fzero-link @gol
242 -gen-decls @gol
243 -Wassign-intercept @gol
244 -Wno-protocol  -Wselector @gol
245 -Wstrict-selector-match @gol
246 -Wundeclared-selector}
248 @item Diagnostic Message Formatting Options
249 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
250 @gccoptlist{-fmessage-length=@var{n}  @gol
251 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
252 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
253 -fno-diagnostics-show-option  -fno-diagnostics-show-caret @gol
254 -fdiagnostics-parseable-fixits  -fdiagnostics-generate-patch @gol
255 -fdiagnostics-show-template-tree -fno-elide-type @gol
256 -fno-show-column}
258 @item Warning Options
259 @xref{Warning Options,,Options to Request or Suppress Warnings}.
260 @gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
261 -pedantic-errors @gol
262 -w  -Wextra  -Wall  -Waddress  -Waggregate-return  @gol
263 -Walloc-zero  -Walloc-size-larger-than=@var{n}
264 -Walloca  -Walloca-larger-than=@var{n} @gol
265 -Wno-aggressive-loop-optimizations  -Warray-bounds  -Warray-bounds=@var{n} @gol
266 -Wno-attributes  -Wbool-compare  -Wbool-operation @gol
267 -Wno-builtin-declaration-mismatch @gol
268 -Wno-builtin-macro-redefined  -Wc90-c99-compat  -Wc99-c11-compat @gol
269 -Wc++-compat  -Wc++11-compat  -Wc++14-compat  @gol
270 -Wcast-align  -Wcast-align=strict  -Wcast-qual  @gol
271 -Wchar-subscripts  -Wchkp  -Wcatch-value  -Wcatch-value=@var{n} @gol
272 -Wclobbered  -Wcomment  -Wconditionally-supported @gol
273 -Wconversion  -Wcoverage-mismatch  -Wno-cpp  -Wdangling-else  -Wdate-time @gol
274 -Wdelete-incomplete @gol
275 -Wno-deprecated  -Wno-deprecated-declarations  -Wno-designated-init @gol
276 -Wdisabled-optimization @gol
277 -Wno-discarded-qualifiers  -Wno-discarded-array-qualifiers @gol
278 -Wno-div-by-zero  -Wdouble-promotion @gol
279 -Wduplicated-branches  -Wduplicated-cond @gol
280 -Wempty-body  -Wenum-compare  -Wno-endif-labels  -Wexpansion-to-defined @gol
281 -Werror  -Werror=*  -Wextra-semi  -Wfatal-errors @gol
282 -Wfloat-equal  -Wformat  -Wformat=2 @gol
283 -Wno-format-contains-nul  -Wno-format-extra-args  @gol
284 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
285 -Wformat-security  -Wformat-signedness  -Wformat-truncation=@var{n} @gol
286 -Wformat-y2k  -Wframe-address @gol
287 -Wframe-larger-than=@var{len}  -Wno-free-nonheap-object  -Wjump-misses-init @gol
288 -Wif-not-aligned @gol
289 -Wignored-qualifiers  -Wignored-attributes  -Wincompatible-pointer-types @gol
290 -Wimplicit  -Wimplicit-fallthrough  -Wimplicit-fallthrough=@var{n} @gol
291 -Wimplicit-function-declaration  -Wimplicit-int @gol
292 -Winit-self  -Winline  -Wno-int-conversion  -Wint-in-bool-context @gol
293 -Wno-int-to-pointer-cast  -Winvalid-memory-model  -Wno-invalid-offsetof @gol
294 -Winvalid-pch  -Wlarger-than=@var{len} @gol
295 -Wlogical-op  -Wlogical-not-parentheses  -Wlong-long @gol
296 -Wmain  -Wmaybe-uninitialized  -Wmemset-elt-size  -Wmemset-transposed-args @gol
297 -Wmisleading-indentation  -Wmissing-braces @gol
298 -Wmissing-field-initializers  -Wmissing-include-dirs @gol
299 -Wno-multichar  -Wmultistatement-macros  -Wnonnull  -Wnonnull-compare @gol
300 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
301 -Wnull-dereference  -Wodr  -Wno-overflow  -Wopenmp-simd  @gol
302 -Woverride-init-side-effects  -Woverlength-strings @gol
303 -Wpacked  -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
304 -Wparentheses  -Wno-pedantic-ms-format @gol
305 -Wplacement-new  -Wplacement-new=@var{n} @gol
306 -Wpointer-arith  -Wpointer-compare  -Wno-pointer-to-int-cast @gol
307 -Wno-pragmas  -Wredundant-decls  -Wrestrict  -Wno-return-local-addr @gol
308 -Wreturn-type  -Wsequence-point  -Wshadow  -Wno-shadow-ivar @gol
309 -Wshadow=global,  -Wshadow=local,  -Wshadow=compatible-local @gol
310 -Wshift-overflow  -Wshift-overflow=@var{n} @gol
311 -Wshift-count-negative  -Wshift-count-overflow  -Wshift-negative-value @gol
312 -Wsign-compare  -Wsign-conversion  -Wfloat-conversion @gol
313 -Wno-scalar-storage-order  -Wsizeof-pointer-div @gol
314 -Wsizeof-pointer-memaccess  -Wsizeof-array-argument @gol
315 -Wstack-protector  -Wstack-usage=@var{len}  -Wstrict-aliasing @gol
316 -Wstrict-aliasing=n  -Wstrict-overflow  -Wstrict-overflow=@var{n} @gol
317 -Wstringop-overflow=@var{n} -Wstringop-truncation @gol
318 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
319 -Wsuggest-final-types @gol  -Wsuggest-final-methods  -Wsuggest-override @gol
320 -Wmissing-format-attribute  -Wsubobject-linkage @gol
321 -Wswitch  -Wswitch-bool  -Wswitch-default  -Wswitch-enum @gol
322 -Wswitch-unreachable  -Wsync-nand @gol
323 -Wsystem-headers  -Wtautological-compare  -Wtrampolines  -Wtrigraphs @gol
324 -Wtype-limits  -Wundef @gol
325 -Wuninitialized  -Wunknown-pragmas  -Wunsafe-loop-optimizations @gol
326 -Wunsuffixed-float-constants  -Wunused  -Wunused-function @gol
327 -Wunused-label  -Wunused-local-typedefs  -Wunused-macros @gol
328 -Wunused-parameter  -Wno-unused-result @gol
329 -Wunused-value  -Wunused-variable @gol
330 -Wunused-const-variable  -Wunused-const-variable=@var{n} @gol
331 -Wunused-but-set-parameter  -Wunused-but-set-variable @gol
332 -Wuseless-cast  -Wvariadic-macros  -Wvector-operation-performance @gol
333 -Wvla  -Wvla-larger-than=@var{n}  -Wvolatile-register-var  -Wwrite-strings @gol
334 -Wzero-as-null-pointer-constant  -Whsa}
336 @item C and Objective-C-only Warning Options
337 @gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
338 -Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
339 -Wold-style-declaration  -Wold-style-definition @gol
340 -Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
341 -Wdeclaration-after-statement  -Wpointer-sign}
343 @item Debugging Options
344 @xref{Debugging Options,,Options for Debugging Your Program}.
345 @gccoptlist{-g  -g@var{level}  -gdwarf  -gdwarf-@var{version} @gol
346 -ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
347 -gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
348 -gcolumn-info  -gno-column-info @gol
349 -gvms  -gxcoff  -gxcoff+  -gz@r{[}=@var{type}@r{]} @gol
350 -fdebug-prefix-map=@var{old}=@var{new}  -fdebug-types-section @gol
351 -fno-eliminate-unused-debug-types @gol
352 -femit-struct-debug-baseonly  -femit-struct-debug-reduced @gol
353 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
354 -feliminate-unused-debug-symbols  -femit-class-debug-always @gol
355 -fno-merge-debug-strings  -fno-dwarf2-cfi-asm @gol
356 -fvar-tracking  -fvar-tracking-assignments}
358 @item Optimization Options
359 @xref{Optimize Options,,Options that Control Optimization}.
360 @gccoptlist{-faggressive-loop-optimizations  -falign-functions[=@var{n}] @gol
361 -falign-jumps[=@var{n}] @gol
362 -falign-labels[=@var{n}]  -falign-loops[=@var{n}] @gol
363 -fassociative-math  -fauto-profile  -fauto-profile[=@var{path}] @gol
364 -fauto-inc-dec  -fbranch-probabilities @gol
365 -fbranch-target-load-optimize  -fbranch-target-load-optimize2 @gol
366 -fbtr-bb-exclusive  -fcaller-saves @gol
367 -fcombine-stack-adjustments  -fconserve-stack @gol
368 -fcompare-elim  -fcprop-registers  -fcrossjumping @gol
369 -fcse-follow-jumps  -fcse-skip-blocks  -fcx-fortran-rules @gol
370 -fcx-limited-range @gol
371 -fdata-sections  -fdce  -fdelayed-branch @gol
372 -fdelete-null-pointer-checks  -fdevirtualize  -fdevirtualize-speculatively @gol
373 -fdevirtualize-at-ltrans  -fdse @gol
374 -fearly-inlining  -fipa-sra  -fexpensive-optimizations  -ffat-lto-objects @gol
375 -ffast-math  -ffinite-math-only  -ffloat-store  -fexcess-precision=@var{style} @gol
376 -fforward-propagate  -ffp-contract=@var{style}  -ffunction-sections @gol
377 -fgcse  -fgcse-after-reload  -fgcse-las  -fgcse-lm  -fgraphite-identity @gol
378 -fgcse-sm  -fhoist-adjacent-loads  -fif-conversion @gol
379 -fif-conversion2  -findirect-inlining @gol
380 -finline-functions  -finline-functions-called-once  -finline-limit=@var{n} @gol
381 -finline-small-functions  -fipa-cp  -fipa-cp-clone @gol
382 -fipa-bit-cp -fipa-vrp @gol
383 -fipa-pta  -fipa-profile  -fipa-pure-const  -fipa-reference  -fipa-icf @gol
384 -fira-algorithm=@var{algorithm} @gol
385 -fira-region=@var{region}  -fira-hoist-pressure @gol
386 -fira-loop-pressure  -fno-ira-share-save-slots @gol
387 -fno-ira-share-spill-slots @gol
388 -fisolate-erroneous-paths-dereference  -fisolate-erroneous-paths-attribute @gol
389 -fivopts  -fkeep-inline-functions  -fkeep-static-functions @gol
390 -fkeep-static-consts  -flimit-function-alignment  -flive-range-shrinkage @gol
391 -floop-block  -floop-interchange  -floop-strip-mine @gol
392 -floop-unroll-and-jam  -floop-nest-optimize @gol
393 -floop-parallelize-all  -flra-remat  -flto  -flto-compression-level @gol
394 -flto-partition=@var{alg}  -fmerge-all-constants @gol
395 -fmerge-constants  -fmodulo-sched  -fmodulo-sched-allow-regmoves @gol
396 -fmove-loop-invariants  -fno-branch-count-reg @gol
397 -fno-defer-pop  -fno-fp-int-builtin-inexact  -fno-function-cse @gol
398 -fno-guess-branch-probability  -fno-inline  -fno-math-errno  -fno-peephole @gol
399 -fno-peephole2  -fno-printf-return-value  -fno-sched-interblock @gol
400 -fno-sched-spec  -fno-signed-zeros @gol
401 -fno-toplevel-reorder  -fno-trapping-math  -fno-zero-initialized-in-bss @gol
402 -fomit-frame-pointer  -foptimize-sibling-calls @gol
403 -fpartial-inlining  -fpeel-loops  -fpredictive-commoning @gol
404 -fprefetch-loop-arrays @gol
405 -fprofile-correction @gol
406 -fprofile-use  -fprofile-use=@var{path}  -fprofile-values @gol
407 -fprofile-reorder-functions @gol
408 -freciprocal-math  -free  -frename-registers  -freorder-blocks @gol
409 -freorder-blocks-algorithm=@var{algorithm} @gol
410 -freorder-blocks-and-partition  -freorder-functions @gol
411 -frerun-cse-after-loop  -freschedule-modulo-scheduled-loops @gol
412 -frounding-math  -fsched2-use-superblocks  -fsched-pressure @gol
413 -fsched-spec-load  -fsched-spec-load-dangerous @gol
414 -fsched-stalled-insns-dep[=@var{n}]  -fsched-stalled-insns[=@var{n}] @gol
415 -fsched-group-heuristic  -fsched-critical-path-heuristic @gol
416 -fsched-spec-insn-heuristic  -fsched-rank-heuristic @gol
417 -fsched-last-insn-heuristic  -fsched-dep-count-heuristic @gol
418 -fschedule-fusion @gol
419 -fschedule-insns  -fschedule-insns2  -fsection-anchors @gol
420 -fselective-scheduling  -fselective-scheduling2 @gol
421 -fsel-sched-pipelining  -fsel-sched-pipelining-outer-loops @gol
422 -fsemantic-interposition  -fshrink-wrap  -fshrink-wrap-separate @gol
423 -fsignaling-nans @gol
424 -fsingle-precision-constant  -fsplit-ivs-in-unroller  -fsplit-loops@gol
425 -fsplit-paths @gol
426 -fsplit-wide-types  -fssa-backprop  -fssa-phiopt @gol
427 -fstdarg-opt  -fstore-merging  -fstrict-aliasing @gol
428 -fthread-jumps  -ftracer  -ftree-bit-ccp @gol
429 -ftree-builtin-call-dce  -ftree-ccp  -ftree-ch @gol
430 -ftree-coalesce-vars  -ftree-copy-prop  -ftree-dce  -ftree-dominator-opts @gol
431 -ftree-dse  -ftree-forwprop  -ftree-fre  -fcode-hoisting @gol
432 -ftree-loop-if-convert  -ftree-loop-im @gol
433 -ftree-phiprop  -ftree-loop-distribution  -ftree-loop-distribute-patterns @gol
434 -ftree-loop-ivcanon  -ftree-loop-linear  -ftree-loop-optimize @gol
435 -ftree-loop-vectorize @gol
436 -ftree-parallelize-loops=@var{n}  -ftree-pre  -ftree-partial-pre  -ftree-pta @gol
437 -ftree-reassoc  -ftree-sink  -ftree-slsr  -ftree-sra @gol
438 -ftree-switch-conversion  -ftree-tail-merge @gol
439 -ftree-ter  -ftree-vectorize  -ftree-vrp  -funconstrained-commons @gol
440 -funit-at-a-time  -funroll-all-loops  -funroll-loops @gol
441 -funsafe-math-optimizations  -funswitch-loops @gol
442 -fipa-ra  -fvariable-expansion-in-unroller  -fvect-cost-model  -fvpt @gol
443 -fweb  -fwhole-program  -fwpa  -fuse-linker-plugin @gol
444 --param @var{name}=@var{value}
445 -O  -O0  -O1  -O2  -O3  -Os  -Ofast  -Og}
447 @item Program Instrumentation Options
448 @xref{Instrumentation Options,,Program Instrumentation Options}.
449 @gccoptlist{-p  -pg  -fprofile-arcs  --coverage  -ftest-coverage @gol
450 -fprofile-abs-path @gol
451 -fprofile-dir=@var{path}  -fprofile-generate  -fprofile-generate=@var{path} @gol
452 -fsanitize=@var{style}  -fsanitize-recover  -fsanitize-recover=@var{style} @gol
453 -fasan-shadow-offset=@var{number}  -fsanitize-sections=@var{s1},@var{s2},... @gol
454 -fsanitize-undefined-trap-on-error  -fbounds-check @gol
455 -fcheck-pointer-bounds  -fchkp-check-incomplete-type @gol
456 -fchkp-first-field-has-own-bounds  -fchkp-narrow-bounds @gol
457 -fchkp-narrow-to-innermost-array  -fchkp-optimize @gol
458 -fchkp-use-fast-string-functions  -fchkp-use-nochk-string-functions @gol
459 -fchkp-use-static-bounds  -fchkp-use-static-const-bounds @gol
460 -fchkp-treat-zero-dynamic-size-as-infinite  -fchkp-check-read @gol
461 -fchkp-check-read  -fchkp-check-write  -fchkp-store-bounds @gol
462 -fchkp-instrument-calls  -fchkp-instrument-marked-only @gol
463 -fchkp-use-wrappers  -fchkp-flexible-struct-trailing-arrays@gol
464 -fcf-protection==@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
465 -fstack-protector  -fstack-protector-all  -fstack-protector-strong @gol
466 -fstack-protector-explicit  -fstack-check @gol
467 -fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
468 -fno-stack-limit  -fsplit-stack @gol
469 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
470 -fvtv-counts  -fvtv-debug @gol
471 -finstrument-functions @gol
472 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
473 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
475 @item Preprocessor Options
476 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
477 @gccoptlist{-A@var{question}=@var{answer} @gol
478 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
479 -C  -CC  -D@var{macro}@r{[}=@var{defn}@r{]} @gol
480 -dD  -dI  -dM  -dN  -dU @gol
481 -fdebug-cpp  -fdirectives-only  -fdollars-in-identifiers  @gol
482 -fexec-charset=@var{charset}  -fextended-identifiers  @gol
483 -finput-charset=@var{charset}  -fno-canonical-system-headers @gol
484 -fpch-deps  -fpch-preprocess  -fpreprocessed @gol
485 -ftabstop=@var{width}  -ftrack-macro-expansion  @gol
486 -fwide-exec-charset=@var{charset}  -fworking-directory @gol
487 -H  -imacros @var{file}  -include @var{file} @gol
488 -M  -MD  -MF  -MG  -MM  -MMD  -MP  -MQ  -MT @gol
489 -no-integrated-cpp  -P  -pthread  -remap @gol
490 -traditional  -traditional-cpp  -trigraphs @gol
491 -U@var{macro}  -undef  @gol
492 -Wp,@var{option}  -Xpreprocessor @var{option}}
494 @item Assembler Options
495 @xref{Assembler Options,,Passing Options to the Assembler}.
496 @gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
498 @item Linker Options
499 @xref{Link Options,,Options for Linking}.
500 @gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker}  -l@var{library} @gol
501 -nostartfiles  -nodefaultlibs  -nostdlib  -pie  -pthread  -rdynamic @gol
502 -s  -static -static-pie -static-libgcc  -static-libstdc++ @gol
503 -static-libasan  -static-libtsan  -static-liblsan  -static-libubsan @gol
504 -static-libmpx  -static-libmpxwrappers @gol
505 -shared  -shared-libgcc  -symbolic @gol
506 -T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
507 -u @var{symbol}  -z @var{keyword}}
509 @item Directory Options
510 @xref{Directory Options,,Options for Directory Search}.
511 @gccoptlist{-B@var{prefix}  -I@var{dir}  -I- @gol
512 -idirafter @var{dir} @gol
513 -imacros @var{file}  -imultilib @var{dir} @gol
514 -iplugindir=@var{dir}  -iprefix @var{file} @gol
515 -iquote @var{dir}  -isysroot @var{dir}  -isystem @var{dir} @gol
516 -iwithprefix @var{dir}  -iwithprefixbefore @var{dir}  @gol
517 -L@var{dir}  -no-canonical-prefixes  --no-sysroot-suffix @gol
518 -nostdinc  -nostdinc++  --sysroot=@var{dir}}
520 @item Code Generation Options
521 @xref{Code Gen Options,,Options for Code Generation Conventions}.
522 @gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
523 -ffixed-@var{reg}  -fexceptions @gol
524 -fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
525 -fasynchronous-unwind-tables @gol
526 -fno-gnu-unique @gol
527 -finhibit-size-directive  -fno-common  -fno-ident @gol
528 -fpcc-struct-return  -fpic  -fPIC  -fpie  -fPIE  -fno-plt @gol
529 -fno-jump-tables @gol
530 -frecord-gcc-switches @gol
531 -freg-struct-return  -fshort-enums  -fshort-wchar @gol
532 -fverbose-asm  -fpack-struct[=@var{n}]  @gol
533 -fleading-underscore  -ftls-model=@var{model} @gol
534 -fstack-reuse=@var{reuse_level} @gol
535 -ftrampolines  -ftrapv  -fwrapv @gol
536 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
537 -fstrict-volatile-bitfields  -fsync-libcalls}
539 @item Developer Options
540 @xref{Developer Options,,GCC Developer Options}.
541 @gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
542 -dumpfullversion  -fchecking  -fchecking=@var{n}  -fdbg-cnt-list @gol
543 -fdbg-cnt=@var{counter-value-list} @gol
544 -fdisable-ipa-@var{pass_name} @gol
545 -fdisable-rtl-@var{pass_name} @gol
546 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
547 -fdisable-tree-@var{pass_name} @gol
548 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
549 -fdump-noaddr  -fdump-unnumbered  -fdump-unnumbered-links @gol
550 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
551 -fdump-final-insns@r{[}=@var{file}@r{]}
552 -fdump-ipa-all  -fdump-ipa-cgraph  -fdump-ipa-inline @gol
553 -fdump-lang-all @gol
554 -fdump-lang-@var{switch} @gol
555 -fdump-lang-@var{switch}-@var{options} @gol
556 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
557 -fdump-passes @gol
558 -fdump-rtl-@var{pass}  -fdump-rtl-@var{pass}=@var{filename} @gol
559 -fdump-statistics @gol
560 -fdump-tree-all @gol
561 -fdump-tree-@var{switch} @gol
562 -fdump-tree-@var{switch}-@var{options} @gol
563 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
564 -fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
565 -fenable-@var{kind}-@var{pass} @gol
566 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
567 -fira-verbose=@var{n} @gol
568 -flto-report  -flto-report-wpa  -fmem-report-wpa @gol
569 -fmem-report  -fpre-ipa-mem-report  -fpost-ipa-mem-report @gol
570 -fopt-info  -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
571 -fprofile-report @gol
572 -frandom-seed=@var{string}  -fsched-verbose=@var{n} @gol
573 -fsel-sched-verbose  -fsel-sched-dump-cfg  -fsel-sched-pipelining-verbose @gol
574 -fstats  -fstack-usage  -ftime-report  -ftime-report-details @gol
575 -fvar-tracking-assignments-toggle  -gtoggle @gol
576 -print-file-name=@var{library}  -print-libgcc-file-name @gol
577 -print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
578 -print-prog-name=@var{program}  -print-search-dirs  -Q @gol
579 -print-sysroot  -print-sysroot-headers-suffix @gol
580 -save-temps  -save-temps=cwd  -save-temps=obj  -time@r{[}=@var{file}@r{]}}
582 @item Machine-Dependent Options
583 @xref{Submodel Options,,Machine-Dependent Options}.
584 @c This list is ordered alphanumerically by subsection name.
585 @c Try and put the significant identifier (CPU or system) first,
586 @c so users have a clue at guessing where the ones they want will be.
588 @emph{AArch64 Options}
589 @gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
590 -mgeneral-regs-only @gol
591 -mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
592 -mstrict-align @gol
593 -momit-leaf-frame-pointer @gol
594 -mtls-dialect=desc  -mtls-dialect=traditional @gol
595 -mtls-size=@var{size} @gol
596 -mfix-cortex-a53-835769  -mfix-cortex-a53-843419 @gol
597 -mlow-precision-recip-sqrt  -mlow-precision-sqrt  -mlow-precision-div @gol
598 -mpc-relative-literal-loads @gol
599 -msign-return-address=@var{scope} @gol
600 -march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}  -moverride=@var{string}}
602 @emph{Adapteva Epiphany Options}
603 @gccoptlist{-mhalf-reg-file  -mprefer-short-insn-regs @gol
604 -mbranch-cost=@var{num}  -mcmove  -mnops=@var{num}  -msoft-cmpsf @gol
605 -msplit-lohi  -mpost-inc  -mpost-modify  -mstack-offset=@var{num} @gol
606 -mround-nearest  -mlong-calls  -mshort-calls  -msmall16 @gol
607 -mfp-mode=@var{mode}  -mvect-double  -max-vect-align=@var{num} @gol
608 -msplit-vecmove-early  -m1reg-@var{reg}}
610 @emph{ARC Options}
611 @gccoptlist{-mbarrel-shifter @gol
612 -mcpu=@var{cpu}  -mA6  -mARC600  -mA7  -mARC700 @gol
613 -mdpfp  -mdpfp-compact  -mdpfp-fast  -mno-dpfp-lrsr @gol
614 -mea  -mno-mpy  -mmul32x16  -mmul64  -matomic @gol
615 -mnorm  -mspfp  -mspfp-compact  -mspfp-fast  -msimd  -msoft-float  -mswap @gol
616 -mcrc  -mdsp-packa  -mdvbf  -mlock  -mmac-d16  -mmac-24  -mrtsc  -mswape @gol
617 -mtelephony  -mxy  -misize  -mannotate-align  -marclinux  -marclinux_prof @gol
618 -mlong-calls  -mmedium-calls  -msdata -mirq-ctrl-saved @gol
619 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
620 -mvolatile-cache  -mtp-regno=@var{regno} @gol
621 -malign-call  -mauto-modify-reg  -mbbit-peephole  -mno-brcc @gol
622 -mcase-vector-pcrel  -mcompact-casesi  -mno-cond-exec  -mearly-cbranchsi @gol
623 -mexpand-adddi  -mindexed-loads  -mlra  -mlra-priority-none @gol
624 -mlra-priority-compact mlra-priority-noncompact  -mno-millicode @gol
625 -mmixed-code  -mq-class  -mRcq  -mRcw  -msize-level=@var{level} @gol
626 -mtune=@var{cpu}  -mmultcost=@var{num} @gol
627 -munalign-prob-threshold=@var{probability}  -mmpy-option=@var{multo} @gol
628 -mdiv-rem  -mcode-density  -mll64  -mfpu=@var{fpu}}
630 @emph{ARM Options}
631 @gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
632 -mabi=@var{name} @gol
633 -mapcs-stack-check  -mno-apcs-stack-check @gol
634 -mapcs-reentrant  -mno-apcs-reentrant @gol
635 -msched-prolog  -mno-sched-prolog @gol
636 -mlittle-endian  -mbig-endian @gol
637 -mbe8 -mbe32 @gol
638 -mfloat-abi=@var{name} @gol
639 -mfp16-format=@var{name}
640 -mthumb-interwork  -mno-thumb-interwork @gol
641 -mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
642 -mtune=@var{name}  -mprint-tune-info @gol
643 -mstructure-size-boundary=@var{n} @gol
644 -mabort-on-noreturn @gol
645 -mlong-calls  -mno-long-calls @gol
646 -msingle-pic-base  -mno-single-pic-base @gol
647 -mpic-register=@var{reg} @gol
648 -mnop-fun-dllimport @gol
649 -mpoke-function-name @gol
650 -mthumb  -marm @gol
651 -mtpcs-frame  -mtpcs-leaf-frame @gol
652 -mcaller-super-interworking  -mcallee-super-interworking @gol
653 -mtp=@var{name}  -mtls-dialect=@var{dialect} @gol
654 -mword-relocations @gol
655 -mfix-cortex-m3-ldrd @gol
656 -munaligned-access @gol
657 -mneon-for-64bits @gol
658 -mslow-flash-data @gol
659 -masm-syntax-unified @gol
660 -mrestrict-it @gol
661 -mpure-code @gol
662 -mcmse}
664 @emph{AVR Options}
665 @gccoptlist{-mmcu=@var{mcu}  -mabsdata  -maccumulate-args @gol
666 -mbranch-cost=@var{cost} @gol
667 -mcall-prologues  -mgas-isr-prologues  -mint8 @gol
668 -mn_flash=@var{size}  -mno-interrupts @gol
669 -mrelax  -mrmw  -mstrict-X  -mtiny-stack  -mfract-convert-truncate @gol
670 -mshort-calls  -nodevicelib @gol
671 -Waddr-space-convert  -Wmisspelled-isr}
673 @emph{Blackfin Options}
674 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
675 -msim  -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
676 -mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
677 -mlow-64k  -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
678 -mno-id-shared-library  -mshared-library-id=@var{n} @gol
679 -mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
680 -msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
681 -mfast-fp  -minline-plt  -mmulticore  -mcorea  -mcoreb  -msdram @gol
682 -micplb}
684 @emph{C6X Options}
685 @gccoptlist{-mbig-endian  -mlittle-endian  -march=@var{cpu} @gol
686 -msim  -msdata=@var{sdata-type}}
688 @emph{CRIS Options}
689 @gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
690 -mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
691 -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
692 -mstack-align  -mdata-align  -mconst-align @gol
693 -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
694 -melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
695 -mmul-bug-workaround  -mno-mul-bug-workaround}
697 @emph{CR16 Options}
698 @gccoptlist{-mmac @gol
699 -mcr16cplus  -mcr16c @gol
700 -msim  -mint32  -mbit-ops
701 -mdata-model=@var{model}}
703 @emph{Darwin Options}
704 @gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
705 -arch_only  -bind_at_load  -bundle  -bundle_loader @gol
706 -client_name  -compatibility_version  -current_version @gol
707 -dead_strip @gol
708 -dependency-file  -dylib_file  -dylinker_install_name @gol
709 -dynamic  -dynamiclib  -exported_symbols_list @gol
710 -filelist  -flat_namespace  -force_cpusubtype_ALL @gol
711 -force_flat_namespace  -headerpad_max_install_names @gol
712 -iframework @gol
713 -image_base  -init  -install_name  -keep_private_externs @gol
714 -multi_module  -multiply_defined  -multiply_defined_unused @gol
715 -noall_load   -no_dead_strip_inits_and_terms @gol
716 -nofixprebinding  -nomultidefs  -noprebind  -noseglinkedit @gol
717 -pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
718 -private_bundle  -read_only_relocs  -sectalign @gol
719 -sectobjectsymbols  -whyload  -seg1addr @gol
720 -sectcreate  -sectobjectsymbols  -sectorder @gol
721 -segaddr  -segs_read_only_addr  -segs_read_write_addr @gol
722 -seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
723 -segprot  -segs_read_only_addr  -segs_read_write_addr @gol
724 -single_module  -static  -sub_library  -sub_umbrella @gol
725 -twolevel_namespace  -umbrella  -undefined @gol
726 -unexported_symbols_list  -weak_reference_mismatches @gol
727 -whatsloaded  -F  -gused  -gfull  -mmacosx-version-min=@var{version} @gol
728 -mkernel  -mone-byte-bool}
730 @emph{DEC Alpha Options}
731 @gccoptlist{-mno-fp-regs  -msoft-float @gol
732 -mieee  -mieee-with-inexact  -mieee-conformant @gol
733 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
734 -mtrap-precision=@var{mode}  -mbuild-constants @gol
735 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
736 -mbwx  -mmax  -mfix  -mcix @gol
737 -mfloat-vax  -mfloat-ieee @gol
738 -mexplicit-relocs  -msmall-data  -mlarge-data @gol
739 -msmall-text  -mlarge-text @gol
740 -mmemory-latency=@var{time}}
742 @emph{FR30 Options}
743 @gccoptlist{-msmall-model  -mno-lsim}
745 @emph{FT32 Options}
746 @gccoptlist{-msim  -mlra  -mnodiv  -mft32b  -mcompress  -mnopm}
748 @emph{FRV Options}
749 @gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
750 -mhard-float  -msoft-float @gol
751 -malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
752 -mdouble  -mno-double @gol
753 -mmedia  -mno-media  -mmuladd  -mno-muladd @gol
754 -mfdpic  -minline-plt  -mgprel-ro  -multilib-library-pic @gol
755 -mlinked-fp  -mlong-calls  -malign-labels @gol
756 -mlibrary-pic  -macc-4  -macc-8 @gol
757 -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
758 -moptimize-membar  -mno-optimize-membar @gol
759 -mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
760 -mvliw-branch  -mno-vliw-branch @gol
761 -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
762 -mno-nested-cond-exec  -mtomcat-stats @gol
763 -mTLS  -mtls @gol
764 -mcpu=@var{cpu}}
766 @emph{GNU/Linux Options}
767 @gccoptlist{-mglibc  -muclibc  -mmusl  -mbionic  -mandroid @gol
768 -tno-android-cc  -tno-android-ld}
770 @emph{H8/300 Options}
771 @gccoptlist{-mrelax  -mh  -ms  -mn  -mexr  -mno-exr  -mint32  -malign-300}
773 @emph{HPPA Options}
774 @gccoptlist{-march=@var{architecture-type} @gol
775 -mcaller-copies  -mdisable-fpregs  -mdisable-indexing @gol
776 -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
777 -mfixed-range=@var{register-range} @gol
778 -mjump-in-delay  -mlinker-opt  -mlong-calls @gol
779 -mlong-load-store  -mno-disable-fpregs @gol
780 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
781 -mno-jump-in-delay  -mno-long-load-store @gol
782 -mno-portable-runtime  -mno-soft-float @gol
783 -mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
784 -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
785 -mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
786 -munix=@var{unix-std}  -nolibdld  -static  -threads}
788 @emph{IA-64 Options}
789 @gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
790 -mvolatile-asm-stop  -mregister-names  -msdata  -mno-sdata @gol
791 -mconstant-gp  -mauto-pic  -mfused-madd @gol
792 -minline-float-divide-min-latency @gol
793 -minline-float-divide-max-throughput @gol
794 -mno-inline-float-divide @gol
795 -minline-int-divide-min-latency @gol
796 -minline-int-divide-max-throughput  @gol
797 -mno-inline-int-divide @gol
798 -minline-sqrt-min-latency  -minline-sqrt-max-throughput @gol
799 -mno-inline-sqrt @gol
800 -mdwarf2-asm  -mearly-stop-bits @gol
801 -mfixed-range=@var{register-range}  -mtls-size=@var{tls-size} @gol
802 -mtune=@var{cpu-type}  -milp32  -mlp64 @gol
803 -msched-br-data-spec  -msched-ar-data-spec  -msched-control-spec @gol
804 -msched-br-in-data-spec  -msched-ar-in-data-spec  -msched-in-control-spec @gol
805 -msched-spec-ldc  -msched-spec-control-ldc @gol
806 -msched-prefer-non-data-spec-insns  -msched-prefer-non-control-spec-insns @gol
807 -msched-stop-bits-after-every-cycle  -msched-count-spec-in-critical-path @gol
808 -msel-sched-dont-check-control-spec  -msched-fp-mem-deps-zero-cost @gol
809 -msched-max-memory-insns-hard-limit  -msched-max-memory-insns=@var{max-insns}}
811 @emph{LM32 Options}
812 @gccoptlist{-mbarrel-shift-enabled  -mdivide-enabled  -mmultiply-enabled @gol
813 -msign-extend-enabled  -muser-enabled}
815 @emph{M32R/D Options}
816 @gccoptlist{-m32r2  -m32rx  -m32r @gol
817 -mdebug @gol
818 -malign-loops  -mno-align-loops @gol
819 -missue-rate=@var{number} @gol
820 -mbranch-cost=@var{number} @gol
821 -mmodel=@var{code-size-model-type} @gol
822 -msdata=@var{sdata-type} @gol
823 -mno-flush-func  -mflush-func=@var{name} @gol
824 -mno-flush-trap  -mflush-trap=@var{number} @gol
825 -G @var{num}}
827 @emph{M32C Options}
828 @gccoptlist{-mcpu=@var{cpu}  -msim  -memregs=@var{number}}
830 @emph{M680x0 Options}
831 @gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
832 -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
833 -m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
834 -mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
835 -mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
836 -mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
837 -malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
838 -mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
839 -mxgot  -mno-xgot  -mlong-jump-table-offsets}
841 @emph{MCore Options}
842 @gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
843 -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
844 -m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
845 -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
846 -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
848 @emph{MeP Options}
849 @gccoptlist{-mabsdiff  -mall-opts  -maverage  -mbased=@var{n}  -mbitops @gol
850 -mc=@var{n}  -mclip  -mconfig=@var{name}  -mcop  -mcop32  -mcop64  -mivc2 @gol
851 -mdc  -mdiv  -meb  -mel  -mio-volatile  -ml  -mleadz  -mm  -mminmax @gol
852 -mmult  -mno-opts  -mrepeat  -ms  -msatur  -msdram  -msim  -msimnovec  -mtf @gol
853 -mtiny=@var{n}}
855 @emph{MicroBlaze Options}
856 @gccoptlist{-msoft-float  -mhard-float  -msmall-divides  -mcpu=@var{cpu} @gol
857 -mmemcpy  -mxl-soft-mul  -mxl-soft-div  -mxl-barrel-shift @gol
858 -mxl-pattern-compare  -mxl-stack-check  -mxl-gp-opt  -mno-clearbss @gol
859 -mxl-multiply-high  -mxl-float-convert  -mxl-float-sqrt @gol
860 -mbig-endian  -mlittle-endian  -mxl-reorder  -mxl-mode-@var{app-model}}
862 @emph{MIPS Options}
863 @gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
864 -mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
865 -mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
866 -mips16  -mno-mips16  -mflip-mips16 @gol
867 -minterlink-compressed  -mno-interlink-compressed @gol
868 -minterlink-mips16  -mno-interlink-mips16 @gol
869 -mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
870 -mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
871 -mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
872 -mno-float  -msingle-float  -mdouble-float @gol
873 -modd-spreg  -mno-odd-spreg @gol
874 -mabs=@var{mode}  -mnan=@var{encoding} @gol
875 -mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
876 -mmcu  -mmno-mcu @gol
877 -meva  -mno-eva @gol
878 -mvirt  -mno-virt @gol
879 -mxpa  -mno-xpa @gol
880 -mmicromips  -mno-micromips @gol
881 -mmsa  -mno-msa @gol
882 -mfpu=@var{fpu-type} @gol
883 -msmartmips  -mno-smartmips @gol
884 -mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
885 -mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
886 -mlong64  -mlong32  -msym32  -mno-sym32 @gol
887 -G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
888 -mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
889 -membedded-data  -mno-embedded-data @gol
890 -muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
891 -mcode-readable=@var{setting} @gol
892 -msplit-addresses  -mno-split-addresses @gol
893 -mexplicit-relocs  -mno-explicit-relocs @gol
894 -mcheck-zero-division  -mno-check-zero-division @gol
895 -mdivide-traps  -mdivide-breaks @gol
896 -mload-store-pairs  -mno-load-store-pairs @gol
897 -mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
898 -mmad  -mno-mad  -mimadd  -mno-imadd  -mfused-madd  -mno-fused-madd  -nocpp @gol
899 -mfix-24k  -mno-fix-24k @gol
900 -mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
901 -mfix-r10000  -mno-fix-r10000  -mfix-rm7000  -mno-fix-rm7000 @gol
902 -mfix-vr4120  -mno-fix-vr4120 @gol
903 -mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
904 -mflush-func=@var{func}  -mno-flush-func @gol
905 -mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
906 -mcompact-branches=@var{policy} @gol
907 -mfp-exceptions  -mno-fp-exceptions @gol
908 -mvr4130-align  -mno-vr4130-align  -msynci  -mno-synci @gol
909 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
910 -mrelax-pic-calls  -mno-relax-pic-calls  -mmcount-ra-address @gol
911 -mframe-header-opt  -mno-frame-header-opt}
913 @emph{MMIX Options}
914 @gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
915 -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
916 -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
917 -mno-base-addresses  -msingle-exit  -mno-single-exit}
919 @emph{MN10300 Options}
920 @gccoptlist{-mmult-bug  -mno-mult-bug @gol
921 -mno-am33  -mam33  -mam33-2  -mam34 @gol
922 -mtune=@var{cpu-type} @gol
923 -mreturn-pointer-on-d0 @gol
924 -mno-crt0  -mrelax  -mliw  -msetlb}
926 @emph{Moxie Options}
927 @gccoptlist{-meb  -mel  -mmul.x  -mno-crt0}
929 @emph{MSP430 Options}
930 @gccoptlist{-msim  -masm-hex  -mmcu=  -mcpu=  -mlarge  -msmall  -mrelax @gol
931 -mwarn-mcu @gol
932 -mcode-region=  -mdata-region= @gol
933 -msilicon-errata=  -msilicon-errata-warn= @gol
934 -mhwmult=  -minrt}
936 @emph{NDS32 Options}
937 @gccoptlist{-mbig-endian  -mlittle-endian @gol
938 -mreduced-regs  -mfull-regs @gol
939 -mcmov  -mno-cmov @gol
940 -mperf-ext  -mno-perf-ext @gol
941 -mv3push  -mno-v3push @gol
942 -m16bit  -mno-16bit @gol
943 -misr-vector-size=@var{num} @gol
944 -mcache-block-size=@var{num} @gol
945 -march=@var{arch} @gol
946 -mcmodel=@var{code-model} @gol
947 -mctor-dtor  -mrelax}
949 @emph{Nios II Options}
950 @gccoptlist{-G @var{num}  -mgpopt=@var{option}  -mgpopt  -mno-gpopt @gol
951 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
952 -mel  -meb @gol
953 -mno-bypass-cache  -mbypass-cache @gol
954 -mno-cache-volatile  -mcache-volatile @gol
955 -mno-fast-sw-div  -mfast-sw-div @gol
956 -mhw-mul  -mno-hw-mul  -mhw-mulx  -mno-hw-mulx  -mno-hw-div  -mhw-div @gol
957 -mcustom-@var{insn}=@var{N}  -mno-custom-@var{insn} @gol
958 -mcustom-fpu-cfg=@var{name} @gol
959 -mhal  -msmallc  -msys-crt0=@var{name}  -msys-lib=@var{name} @gol
960 -march=@var{arch}  -mbmx  -mno-bmx  -mcdx  -mno-cdx}
962 @emph{Nvidia PTX Options}
963 @gccoptlist{-m32  -m64  -mmainkernel  -moptimize}
965 @emph{PDP-11 Options}
966 @gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
967 -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 @gol
968 -mint16  -mno-int32  -mfloat32  -mno-float64 @gol
969 -mfloat64  -mno-float32  -mabshi  -mno-abshi @gol
970 -mbranch-expensive  -mbranch-cheap @gol
971 -munix-asm  -mdec-asm}
973 @emph{picoChip Options}
974 @gccoptlist{-mae=@var{ae_type}  -mvliw-lookahead=@var{N} @gol
975 -msymbol-as-address  -mno-inefficient-warnings}
977 @emph{PowerPC Options}
978 See RS/6000 and PowerPC Options.
980 @emph{RISC-V Options}
981 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
982 -mplt  -mno-plt @gol
983 -mabi=@var{ABI-string} @gol
984 -mfdiv  -mno-fdiv @gol
985 -mdiv  -mno-div @gol
986 -march=@var{ISA-string} @gol
987 -mtune=@var{processor-string} @gol
988 -msmall-data-limit=@var{N-bytes} @gol
989 -msave-restore  -mno-save-restore @gol
990 -mstrict-align -mno-strict-align @gol
991 -mcmodel=medlow -mcmodel=medany @gol
992 -mexplicit-relocs  -mno-explicit-relocs @gol}
994 @emph{RL78 Options}
995 @gccoptlist{-msim  -mmul=none  -mmul=g13  -mmul=g14  -mallregs @gol
996 -mcpu=g10  -mcpu=g13  -mcpu=g14  -mg10  -mg13  -mg14 @gol
997 -m64bit-doubles  -m32bit-doubles  -msave-mduc-in-interrupts}
999 @emph{RS/6000 and PowerPC Options}
1000 @gccoptlist{-mcpu=@var{cpu-type} @gol
1001 -mtune=@var{cpu-type} @gol
1002 -mcmodel=@var{code-model} @gol
1003 -mpowerpc64 @gol
1004 -maltivec  -mno-altivec @gol
1005 -mpowerpc-gpopt  -mno-powerpc-gpopt @gol
1006 -mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
1007 -mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb  -mpopcntd  -mno-popcntd @gol
1008 -mfprnd  -mno-fprnd @gol
1009 -mcmpb  -mno-cmpb  -mmfpgpr  -mno-mfpgpr  -mhard-dfp  -mno-hard-dfp @gol
1010 -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
1011 -m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
1012 -malign-power  -malign-natural @gol
1013 -msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
1014 -msingle-float  -mdouble-float  -msimple-fpu @gol
1015 -mstring  -mno-string  -mupdate  -mno-update @gol
1016 -mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
1017 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
1018 -mstrict-align  -mno-strict-align  -mrelocatable @gol
1019 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
1020 -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
1021 -mdynamic-no-pic  -maltivec  -mswdiv  -msingle-pic-base @gol
1022 -mprioritize-restricted-insns=@var{priority} @gol
1023 -msched-costly-dep=@var{dependence_type} @gol
1024 -minsert-sched-nops=@var{scheme} @gol
1025 -mcall-sysv  -mcall-netbsd @gol
1026 -maix-struct-return  -msvr4-struct-return @gol
1027 -mabi=@var{abi-type}  -msecure-plt  -mbss-plt @gol
1028 -mblock-move-inline-limit=@var{num} @gol
1029 -misel  -mno-isel @gol
1030 -misel=yes  -misel=no @gol
1031 -mspe  -mno-spe @gol
1032 -mspe=yes  -mspe=no @gol
1033 -mpaired @gol
1034 -mvrsave  -mno-vrsave @gol
1035 -mmulhw  -mno-mulhw @gol
1036 -mdlmzb  -mno-dlmzb @gol
1037 -mfloat-gprs=yes  -mfloat-gprs=no  -mfloat-gprs=single  -mfloat-gprs=double @gol
1038 -mprototype  -mno-prototype @gol
1039 -msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
1040 -msdata=@var{opt}  -mvxworks  -G @var{num} @gol
1041 -mrecip  -mrecip=@var{opt}  -mno-recip  -mrecip-precision @gol
1042 -mno-recip-precision @gol
1043 -mveclibabi=@var{type}  -mfriz  -mno-friz @gol
1044 -mpointers-to-nested-functions  -mno-pointers-to-nested-functions @gol
1045 -msave-toc-indirect  -mno-save-toc-indirect @gol
1046 -mpower8-fusion  -mno-mpower8-fusion  -mpower8-vector  -mno-power8-vector @gol
1047 -mcrypto  -mno-crypto  -mhtm  -mno-htm  -mdirect-move  -mno-direct-move @gol
1048 -mquad-memory  -mno-quad-memory @gol
1049 -mquad-memory-atomic  -mno-quad-memory-atomic @gol
1050 -mcompat-align-parm  -mno-compat-align-parm @gol
1051 -mfloat128  -mno-float128  -mfloat128-hardware  -mno-float128-hardware @gol
1052 -mgnu-attribute  -mno-gnu-attribute @gol
1053 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1054 -mstack-protector-guard-offset=@var{offset}}
1056 @emph{RX Options}
1057 @gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
1058 -mcpu=@gol
1059 -mbig-endian-data  -mlittle-endian-data @gol
1060 -msmall-data @gol
1061 -msim  -mno-sim@gol
1062 -mas100-syntax  -mno-as100-syntax@gol
1063 -mrelax@gol
1064 -mmax-constant-size=@gol
1065 -mint-register=@gol
1066 -mpid@gol
1067 -mallow-string-insns  -mno-allow-string-insns@gol
1068 -mjsr@gol
1069 -mno-warn-multiple-fast-interrupts@gol
1070 -msave-acc-in-interrupts}
1072 @emph{S/390 and zSeries Options}
1073 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1074 -mhard-float  -msoft-float  -mhard-dfp  -mno-hard-dfp @gol
1075 -mlong-double-64  -mlong-double-128 @gol
1076 -mbackchain  -mno-backchain  -mpacked-stack  -mno-packed-stack @gol
1077 -msmall-exec  -mno-small-exec  -mmvcle  -mno-mvcle @gol
1078 -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
1079 -mhtm  -mvx  -mzvector @gol
1080 -mtpf-trace  -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
1081 -mwarn-framesize  -mwarn-dynamicstack  -mstack-size  -mstack-guard @gol
1082 -mhotpatch=@var{halfwords},@var{halfwords}}
1084 @emph{Score Options}
1085 @gccoptlist{-meb  -mel @gol
1086 -mnhwloop @gol
1087 -muls @gol
1088 -mmac @gol
1089 -mscore5  -mscore5u  -mscore7  -mscore7d}
1091 @emph{SH Options}
1092 @gccoptlist{-m1  -m2  -m2e @gol
1093 -m2a-nofpu  -m2a-single-only  -m2a-single  -m2a @gol
1094 -m3  -m3e @gol
1095 -m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
1096 -m4a-nofpu  -m4a-single-only  -m4a-single  -m4a  -m4al @gol
1097 -mb  -ml  -mdalign  -mrelax @gol
1098 -mbigtable  -mfmovd  -mrenesas  -mno-renesas  -mnomacsave @gol
1099 -mieee  -mno-ieee  -mbitops  -misize  -minline-ic_invalidate  -mpadstruct @gol
1100 -mprefergot  -musermode  -multcost=@var{number}  -mdiv=@var{strategy} @gol
1101 -mdivsi3_libfunc=@var{name}  -mfixed-range=@var{register-range} @gol
1102 -maccumulate-outgoing-args @gol
1103 -matomic-model=@var{atomic-model} @gol
1104 -mbranch-cost=@var{num}  -mzdcbranch  -mno-zdcbranch @gol
1105 -mcbranch-force-delay-slot @gol
1106 -mfused-madd  -mno-fused-madd  -mfsca  -mno-fsca  -mfsrra  -mno-fsrra @gol
1107 -mpretend-cmove  -mtas}
1109 @emph{Solaris 2 Options}
1110 @gccoptlist{-mclear-hwcap  -mno-clear-hwcap  -mimpure-text  -mno-impure-text @gol
1111 -pthreads}
1113 @emph{SPARC Options}
1114 @gccoptlist{-mcpu=@var{cpu-type} @gol
1115 -mtune=@var{cpu-type} @gol
1116 -mcmodel=@var{code-model} @gol
1117 -mmemory-model=@var{mem-model} @gol
1118 -m32  -m64  -mapp-regs  -mno-app-regs @gol
1119 -mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1120 -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1121 -mhard-quad-float  -msoft-quad-float @gol
1122 -mstack-bias  -mno-stack-bias @gol
1123 -mstd-struct-return  -mno-std-struct-return @gol
1124 -munaligned-doubles  -mno-unaligned-doubles @gol
1125 -muser-mode  -mno-user-mode @gol
1126 -mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1127 -mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1128 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1129 -mcbcond  -mno-cbcond  -mfmaf  -mno-fmaf  -mfsmuld  -mno-fsmuld  @gol
1130 -mpopc  -mno-popc  -msubxc  -mno-subxc @gol
1131 -mfix-at697f  -mfix-ut699  -mfix-ut700  -mfix-gr712rc @gol
1132 -mlra  -mno-lra}
1134 @emph{SPU Options}
1135 @gccoptlist{-mwarn-reloc  -merror-reloc @gol
1136 -msafe-dma  -munsafe-dma @gol
1137 -mbranch-hints @gol
1138 -msmall-mem  -mlarge-mem  -mstdmain @gol
1139 -mfixed-range=@var{register-range} @gol
1140 -mea32  -mea64 @gol
1141 -maddress-space-conversion  -mno-address-space-conversion @gol
1142 -mcache-size=@var{cache-size} @gol
1143 -matomic-updates  -mno-atomic-updates}
1145 @emph{System V Options}
1146 @gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1148 @emph{TILE-Gx Options}
1149 @gccoptlist{-mcpu=CPU  -m32  -m64  -mbig-endian  -mlittle-endian @gol
1150 -mcmodel=@var{code-model}}
1152 @emph{TILEPro Options}
1153 @gccoptlist{-mcpu=@var{cpu}  -m32}
1155 @emph{V850 Options}
1156 @gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1157 -mprolog-function  -mno-prolog-function  -mspace @gol
1158 -mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1159 -mapp-regs  -mno-app-regs @gol
1160 -mdisable-callt  -mno-disable-callt @gol
1161 -mv850e2v3  -mv850e2  -mv850e1  -mv850es @gol
1162 -mv850e  -mv850  -mv850e3v5 @gol
1163 -mloop @gol
1164 -mrelax @gol
1165 -mlong-jumps @gol
1166 -msoft-float @gol
1167 -mhard-float @gol
1168 -mgcc-abi @gol
1169 -mrh850-abi @gol
1170 -mbig-switch}
1172 @emph{VAX Options}
1173 @gccoptlist{-mg  -mgnu  -munix}
1175 @emph{Visium Options}
1176 @gccoptlist{-mdebug  -msim  -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1177 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type}  -msv-mode  -muser-mode}
1179 @emph{VMS Options}
1180 @gccoptlist{-mvms-return-codes  -mdebug-main=@var{prefix}  -mmalloc64 @gol
1181 -mpointer-size=@var{size}}
1183 @emph{VxWorks Options}
1184 @gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1185 -Xbind-lazy  -Xbind-now}
1187 @emph{x86 Options}
1188 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1189 -mtune-ctrl=@var{feature-list}  -mdump-tune-features  -mno-default @gol
1190 -mfpmath=@var{unit} @gol
1191 -masm=@var{dialect}  -mno-fancy-math-387 @gol
1192 -mno-fp-ret-in-387  -m80387  -mhard-float  -msoft-float @gol
1193 -mno-wide-multiply  -mrtd  -malign-double @gol
1194 -mpreferred-stack-boundary=@var{num} @gol
1195 -mincoming-stack-boundary=@var{num} @gol
1196 -mcld  -mcx16  -msahf  -mmovbe  -mcrc32 @gol
1197 -mrecip  -mrecip=@var{opt} @gol
1198 -mvzeroupper  -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1199 -mmmx  -msse  -msse2  -msse3  -mssse3  -msse4.1  -msse4.2  -msse4  -mavx @gol
1200 -mavx2  -mavx512f  -mavx512pf  -mavx512er  -mavx512cd  -mavx512vl @gol
1201 -mavx512bw  -mavx512dq  -mavx512ifma  -mavx512vbmi  -msha  -maes @gol
1202 -mpclmul  -mfsgsbase  -mrdrnd  -mf16c  -mfma @gol
1203 -mprefetchwt1  -mclflushopt  -mxsavec  -mxsaves @gol
1204 -msse4a  -m3dnow  -m3dnowa  -mpopcnt  -mabm  -mbmi  -mtbm  -mfma4  -mxop @gol
1205 -mlzcnt  -mbmi2  -mfxsr  -mxsave  -mxsaveopt  -mrtm  -mlwp  -mmpx  @gol
1206 -mmwaitx  -mclzero  -mpku  -mthreads -mgfni @gol
1207 -mcet -mibt -mshstk -mforce-indirect-call -mavx512vbmi2 @gol
1208 -mms-bitfields  -mno-align-stringops  -minline-all-stringops @gol
1209 -minline-stringops-dynamically  -mstringop-strategy=@var{alg} @gol
1210 -mmemcpy-strategy=@var{strategy}  -mmemset-strategy=@var{strategy} @gol
1211 -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1212 -m96bit-long-double  -mlong-double-64  -mlong-double-80  -mlong-double-128 @gol
1213 -mregparm=@var{num}  -msseregparm @gol
1214 -mveclibabi=@var{type}  -mvect8-ret-in-mem @gol
1215 -mpc32  -mpc64  -mpc80  -mstackrealign @gol
1216 -momit-leaf-frame-pointer  -mno-red-zone  -mno-tls-direct-seg-refs @gol
1217 -mcmodel=@var{code-model}  -mabi=@var{name}  -maddress-mode=@var{mode} @gol
1218 -m32  -m64  -mx32  -m16  -miamcu  -mlarge-data-threshold=@var{num} @gol
1219 -msse2avx  -mfentry  -mrecord-mcount  -mnop-mcount  -m8bit-idiv @gol
1220 -mavx256-split-unaligned-load  -mavx256-split-unaligned-store @gol
1221 -malign-data=@var{type}  -mstack-protector-guard=@var{guard} @gol
1222 -mstack-protector-guard-reg=@var{reg} @gol
1223 -mstack-protector-guard-offset=@var{offset} @gol
1224 -mstack-protector-guard-symbol=@var{symbol} -mmitigate-rop @gol
1225 -mgeneral-regs-only  -mcall-ms2sysv-xlogues}
1227 @emph{x86 Windows Options}
1228 @gccoptlist{-mconsole  -mcygwin  -mno-cygwin  -mdll @gol
1229 -mnop-fun-dllimport  -mthread @gol
1230 -municode  -mwin32  -mwindows  -fno-set-stack-executable}
1232 @emph{Xstormy16 Options}
1233 @gccoptlist{-msim}
1235 @emph{Xtensa Options}
1236 @gccoptlist{-mconst16  -mno-const16 @gol
1237 -mfused-madd  -mno-fused-madd @gol
1238 -mforce-no-pic @gol
1239 -mserialize-volatile  -mno-serialize-volatile @gol
1240 -mtext-section-literals  -mno-text-section-literals @gol
1241 -mauto-litpools  -mno-auto-litpools @gol
1242 -mtarget-align  -mno-target-align @gol
1243 -mlongcalls  -mno-longcalls}
1245 @emph{zSeries Options}
1246 See S/390 and zSeries Options.
1247 @end table
1250 @node Overall Options
1251 @section Options Controlling the Kind of Output
1253 Compilation can involve up to four stages: preprocessing, compilation
1254 proper, assembly and linking, always in that order.  GCC is capable of
1255 preprocessing and compiling several files either into several
1256 assembler input files, or into one assembler input file; then each
1257 assembler input file produces an object file, and linking combines all
1258 the object files (those newly compiled, and those specified as input)
1259 into an executable file.
1261 @cindex file name suffix
1262 For any given input file, the file name suffix determines what kind of
1263 compilation is done:
1265 @table @gcctabopt
1266 @item @var{file}.c
1267 C source code that must be preprocessed.
1269 @item @var{file}.i
1270 C source code that should not be preprocessed.
1272 @item @var{file}.ii
1273 C++ source code that should not be preprocessed.
1275 @item @var{file}.m
1276 Objective-C source code.  Note that you must link with the @file{libobjc}
1277 library to make an Objective-C program work.
1279 @item @var{file}.mi
1280 Objective-C source code that should not be preprocessed.
1282 @item @var{file}.mm
1283 @itemx @var{file}.M
1284 Objective-C++ source code.  Note that you must link with the @file{libobjc}
1285 library to make an Objective-C++ program work.  Note that @samp{.M} refers
1286 to a literal capital M@.
1288 @item @var{file}.mii
1289 Objective-C++ source code that should not be preprocessed.
1291 @item @var{file}.h
1292 C, C++, Objective-C or Objective-C++ header file to be turned into a
1293 precompiled header (default), or C, C++ header file to be turned into an
1294 Ada spec (via the @option{-fdump-ada-spec} switch).
1296 @item @var{file}.cc
1297 @itemx @var{file}.cp
1298 @itemx @var{file}.cxx
1299 @itemx @var{file}.cpp
1300 @itemx @var{file}.CPP
1301 @itemx @var{file}.c++
1302 @itemx @var{file}.C
1303 C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1304 the last two letters must both be literally @samp{x}.  Likewise,
1305 @samp{.C} refers to a literal capital C@.
1307 @item @var{file}.mm
1308 @itemx @var{file}.M
1309 Objective-C++ source code that must be preprocessed.
1311 @item @var{file}.mii
1312 Objective-C++ source code that should not be preprocessed.
1314 @item @var{file}.hh
1315 @itemx @var{file}.H
1316 @itemx @var{file}.hp
1317 @itemx @var{file}.hxx
1318 @itemx @var{file}.hpp
1319 @itemx @var{file}.HPP
1320 @itemx @var{file}.h++
1321 @itemx @var{file}.tcc
1322 C++ header file to be turned into a precompiled header or Ada spec.
1324 @item @var{file}.f
1325 @itemx @var{file}.for
1326 @itemx @var{file}.ftn
1327 Fixed form Fortran source code that should not be preprocessed.
1329 @item @var{file}.F
1330 @itemx @var{file}.FOR
1331 @itemx @var{file}.fpp
1332 @itemx @var{file}.FPP
1333 @itemx @var{file}.FTN
1334 Fixed form Fortran source code that must be preprocessed (with the traditional
1335 preprocessor).
1337 @item @var{file}.f90
1338 @itemx @var{file}.f95
1339 @itemx @var{file}.f03
1340 @itemx @var{file}.f08
1341 Free form Fortran source code that should not be preprocessed.
1343 @item @var{file}.F90
1344 @itemx @var{file}.F95
1345 @itemx @var{file}.F03
1346 @itemx @var{file}.F08
1347 Free form Fortran source code that must be preprocessed (with the
1348 traditional preprocessor).
1350 @item @var{file}.go
1351 Go source code.
1353 @item @var{file}.brig
1354 BRIG files (binary representation of HSAIL).
1356 @item @var{file}.ads
1357 Ada source code file that contains a library unit declaration (a
1358 declaration of a package, subprogram, or generic, or a generic
1359 instantiation), or a library unit renaming declaration (a package,
1360 generic, or subprogram renaming declaration).  Such files are also
1361 called @dfn{specs}.
1363 @item @var{file}.adb
1364 Ada source code file containing a library unit body (a subprogram or
1365 package body).  Such files are also called @dfn{bodies}.
1367 @c GCC also knows about some suffixes for languages not yet included:
1368 @c Pascal:
1369 @c @var{file}.p
1370 @c @var{file}.pas
1371 @c Ratfor:
1372 @c @var{file}.r
1374 @item @var{file}.s
1375 Assembler code.
1377 @item @var{file}.S
1378 @itemx @var{file}.sx
1379 Assembler code that must be preprocessed.
1381 @item @var{other}
1382 An object file to be fed straight into linking.
1383 Any file name with no recognized suffix is treated this way.
1384 @end table
1386 @opindex x
1387 You can specify the input language explicitly with the @option{-x} option:
1389 @table @gcctabopt
1390 @item -x @var{language}
1391 Specify explicitly the @var{language} for the following input files
1392 (rather than letting the compiler choose a default based on the file
1393 name suffix).  This option applies to all following input files until
1394 the next @option{-x} option.  Possible values for @var{language} are:
1395 @smallexample
1396 c  c-header  cpp-output
1397 c++  c++-header  c++-cpp-output
1398 objective-c  objective-c-header  objective-c-cpp-output
1399 objective-c++ objective-c++-header objective-c++-cpp-output
1400 assembler  assembler-with-cpp
1402 f77  f77-cpp-input f95  f95-cpp-input
1404 brig
1405 @end smallexample
1407 @item -x none
1408 Turn off any specification of a language, so that subsequent files are
1409 handled according to their file name suffixes (as they are if @option{-x}
1410 has not been used at all).
1411 @end table
1413 If you only want some of the stages of compilation, you can use
1414 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1415 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1416 @command{gcc} is to stop.  Note that some combinations (for example,
1417 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1419 @table @gcctabopt
1420 @item -c
1421 @opindex c
1422 Compile or assemble the source files, but do not link.  The linking
1423 stage simply is not done.  The ultimate output is in the form of an
1424 object file for each source file.
1426 By default, the object file name for a source file is made by replacing
1427 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1429 Unrecognized input files, not requiring compilation or assembly, are
1430 ignored.
1432 @item -S
1433 @opindex S
1434 Stop after the stage of compilation proper; do not assemble.  The output
1435 is in the form of an assembler code file for each non-assembler input
1436 file specified.
1438 By default, the assembler file name for a source file is made by
1439 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1441 Input files that don't require compilation are ignored.
1443 @item -E
1444 @opindex E
1445 Stop after the preprocessing stage; do not run the compiler proper.  The
1446 output is in the form of preprocessed source code, which is sent to the
1447 standard output.
1449 Input files that don't require preprocessing are ignored.
1451 @cindex output file option
1452 @item -o @var{file}
1453 @opindex o
1454 Place output in file @var{file}.  This applies to whatever
1455 sort of output is being produced, whether it be an executable file,
1456 an object file, an assembler file or preprocessed C code.
1458 If @option{-o} is not specified, the default is to put an executable
1459 file in @file{a.out}, the object file for
1460 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1461 assembler file in @file{@var{source}.s}, a precompiled header file in
1462 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1463 standard output.
1465 @item -v
1466 @opindex v
1467 Print (on standard error output) the commands executed to run the stages
1468 of compilation.  Also print the version number of the compiler driver
1469 program and of the preprocessor and the compiler proper.
1471 @item -###
1472 @opindex ###
1473 Like @option{-v} except the commands are not executed and arguments
1474 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1475 This is useful for shell scripts to capture the driver-generated command lines.
1477 @item --help
1478 @opindex help
1479 Print (on the standard output) a description of the command-line options
1480 understood by @command{gcc}.  If the @option{-v} option is also specified
1481 then @option{--help} is also passed on to the various processes
1482 invoked by @command{gcc}, so that they can display the command-line options
1483 they accept.  If the @option{-Wextra} option has also been specified
1484 (prior to the @option{--help} option), then command-line options that
1485 have no documentation associated with them are also displayed.
1487 @item --target-help
1488 @opindex target-help
1489 Print (on the standard output) a description of target-specific command-line
1490 options for each tool.  For some targets extra target-specific
1491 information may also be printed.
1493 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1494 Print (on the standard output) a description of the command-line
1495 options understood by the compiler that fit into all specified classes
1496 and qualifiers.  These are the supported classes:
1498 @table @asis
1499 @item @samp{optimizers}
1500 Display all of the optimization options supported by the
1501 compiler.
1503 @item @samp{warnings}
1504 Display all of the options controlling warning messages
1505 produced by the compiler.
1507 @item @samp{target}
1508 Display target-specific options.  Unlike the
1509 @option{--target-help} option however, target-specific options of the
1510 linker and assembler are not displayed.  This is because those
1511 tools do not currently support the extended @option{--help=} syntax.
1513 @item @samp{params}
1514 Display the values recognized by the @option{--param}
1515 option.
1517 @item @var{language}
1518 Display the options supported for @var{language}, where
1519 @var{language} is the name of one of the languages supported in this
1520 version of GCC@.
1522 @item @samp{common}
1523 Display the options that are common to all languages.
1524 @end table
1526 These are the supported qualifiers:
1528 @table @asis
1529 @item @samp{undocumented}
1530 Display only those options that are undocumented.
1532 @item @samp{joined}
1533 Display options taking an argument that appears after an equal
1534 sign in the same continuous piece of text, such as:
1535 @samp{--help=target}.
1537 @item @samp{separate}
1538 Display options taking an argument that appears as a separate word
1539 following the original option, such as: @samp{-o output-file}.
1540 @end table
1542 Thus for example to display all the undocumented target-specific
1543 switches supported by the compiler, use:
1545 @smallexample
1546 --help=target,undocumented
1547 @end smallexample
1549 The sense of a qualifier can be inverted by prefixing it with the
1550 @samp{^} character, so for example to display all binary warning
1551 options (i.e., ones that are either on or off and that do not take an
1552 argument) that have a description, use:
1554 @smallexample
1555 --help=warnings,^joined,^undocumented
1556 @end smallexample
1558 The argument to @option{--help=} should not consist solely of inverted
1559 qualifiers.
1561 Combining several classes is possible, although this usually
1562 restricts the output so much that there is nothing to display.  One
1563 case where it does work, however, is when one of the classes is
1564 @var{target}.  For example, to display all the target-specific
1565 optimization options, use:
1567 @smallexample
1568 --help=target,optimizers
1569 @end smallexample
1571 The @option{--help=} option can be repeated on the command line.  Each
1572 successive use displays its requested class of options, skipping
1573 those that have already been displayed.
1575 If the @option{-Q} option appears on the command line before the
1576 @option{--help=} option, then the descriptive text displayed by
1577 @option{--help=} is changed.  Instead of describing the displayed
1578 options, an indication is given as to whether the option is enabled,
1579 disabled or set to a specific value (assuming that the compiler
1580 knows this at the point where the @option{--help=} option is used).
1582 Here is a truncated example from the ARM port of @command{gcc}:
1584 @smallexample
1585   % gcc -Q -mabi=2 --help=target -c
1586   The following options are target specific:
1587   -mabi=                                2
1588   -mabort-on-noreturn                   [disabled]
1589   -mapcs                                [disabled]
1590 @end smallexample
1592 The output is sensitive to the effects of previous command-line
1593 options, so for example it is possible to find out which optimizations
1594 are enabled at @option{-O2} by using:
1596 @smallexample
1597 -Q -O2 --help=optimizers
1598 @end smallexample
1600 Alternatively you can discover which binary optimizations are enabled
1601 by @option{-O3} by using:
1603 @smallexample
1604 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1605 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1606 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1607 @end smallexample
1609 @item --version
1610 @opindex version
1611 Display the version number and copyrights of the invoked GCC@.
1613 @item -pass-exit-codes
1614 @opindex pass-exit-codes
1615 Normally the @command{gcc} program exits with the code of 1 if any
1616 phase of the compiler returns a non-success return code.  If you specify
1617 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1618 the numerically highest error produced by any phase returning an error
1619 indication.  The C, C++, and Fortran front ends return 4 if an internal
1620 compiler error is encountered.
1622 @item -pipe
1623 @opindex pipe
1624 Use pipes rather than temporary files for communication between the
1625 various stages of compilation.  This fails to work on some systems where
1626 the assembler is unable to read from a pipe; but the GNU assembler has
1627 no trouble.
1629 @item -specs=@var{file}
1630 @opindex specs
1631 Process @var{file} after the compiler reads in the standard @file{specs}
1632 file, in order to override the defaults which the @command{gcc} driver
1633 program uses when determining what switches to pass to @command{cc1},
1634 @command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
1635 @option{-specs=@var{file}} can be specified on the command line, and they
1636 are processed in order, from left to right.  @xref{Spec Files}, for
1637 information about the format of the @var{file}.
1639 @item -wrapper
1640 @opindex wrapper
1641 Invoke all subcommands under a wrapper program.  The name of the
1642 wrapper program and its parameters are passed as a comma separated
1643 list.
1645 @smallexample
1646 gcc -c t.c -wrapper gdb,--args
1647 @end smallexample
1649 @noindent
1650 This invokes all subprograms of @command{gcc} under
1651 @samp{gdb --args}, thus the invocation of @command{cc1} is
1652 @samp{gdb --args cc1 @dots{}}.
1654 @item -fplugin=@var{name}.so
1655 @opindex fplugin
1656 Load the plugin code in file @var{name}.so, assumed to be a
1657 shared object to be dlopen'd by the compiler.  The base name of
1658 the shared object file is used to identify the plugin for the
1659 purposes of argument parsing (See
1660 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1661 Each plugin should define the callback functions specified in the
1662 Plugins API.
1664 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1665 @opindex fplugin-arg
1666 Define an argument called @var{key} with a value of @var{value}
1667 for the plugin called @var{name}.
1669 @item -fdump-ada-spec@r{[}-slim@r{]}
1670 @opindex fdump-ada-spec
1671 For C and C++ source and include files, generate corresponding Ada specs.
1672 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1673 GNAT User's Guide}, which provides detailed documentation on this feature.
1675 @item -fada-spec-parent=@var{unit}
1676 @opindex fada-spec-parent
1677 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1678 Ada specs as child units of parent @var{unit}.
1680 @item -fdump-go-spec=@var{file}
1681 @opindex fdump-go-spec
1682 For input files in any language, generate corresponding Go
1683 declarations in @var{file}.  This generates Go @code{const},
1684 @code{type}, @code{var}, and @code{func} declarations which may be a
1685 useful way to start writing a Go interface to code written in some
1686 other language.
1688 @include @value{srcdir}/../libiberty/at-file.texi
1689 @end table
1691 @node Invoking G++
1692 @section Compiling C++ Programs
1694 @cindex suffixes for C++ source
1695 @cindex C++ source file suffixes
1696 C++ source files conventionally use one of the suffixes @samp{.C},
1697 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1698 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1699 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1700 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1701 files with these names and compiles them as C++ programs even if you
1702 call the compiler the same way as for compiling C programs (usually
1703 with the name @command{gcc}).
1705 @findex g++
1706 @findex c++
1707 However, the use of @command{gcc} does not add the C++ library.
1708 @command{g++} is a program that calls GCC and automatically specifies linking
1709 against the C++ library.  It treats @samp{.c},
1710 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1711 files unless @option{-x} is used.  This program is also useful when
1712 precompiling a C header file with a @samp{.h} extension for use in C++
1713 compilations.  On many systems, @command{g++} is also installed with
1714 the name @command{c++}.
1716 @cindex invoking @command{g++}
1717 When you compile C++ programs, you may specify many of the same
1718 command-line options that you use for compiling programs in any
1719 language; or command-line options meaningful for C and related
1720 languages; or options that are meaningful only for C++ programs.
1721 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1722 explanations of options for languages related to C@.
1723 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1724 explanations of options that are meaningful only for C++ programs.
1726 @node C Dialect Options
1727 @section Options Controlling C Dialect
1728 @cindex dialect options
1729 @cindex language dialect options
1730 @cindex options, dialect
1732 The following options control the dialect of C (or languages derived
1733 from C, such as C++, Objective-C and Objective-C++) that the compiler
1734 accepts:
1736 @table @gcctabopt
1737 @cindex ANSI support
1738 @cindex ISO support
1739 @item -ansi
1740 @opindex ansi
1741 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1742 equivalent to @option{-std=c++98}.
1744 This turns off certain features of GCC that are incompatible with ISO
1745 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1746 such as the @code{asm} and @code{typeof} keywords, and
1747 predefined macros such as @code{unix} and @code{vax} that identify the
1748 type of system you are using.  It also enables the undesirable and
1749 rarely used ISO trigraph feature.  For the C compiler,
1750 it disables recognition of C++ style @samp{//} comments as well as
1751 the @code{inline} keyword.
1753 The alternate keywords @code{__asm__}, @code{__extension__},
1754 @code{__inline__} and @code{__typeof__} continue to work despite
1755 @option{-ansi}.  You would not want to use them in an ISO C program, of
1756 course, but it is useful to put them in header files that might be included
1757 in compilations done with @option{-ansi}.  Alternate predefined macros
1758 such as @code{__unix__} and @code{__vax__} are also available, with or
1759 without @option{-ansi}.
1761 The @option{-ansi} option does not cause non-ISO programs to be
1762 rejected gratuitously.  For that, @option{-Wpedantic} is required in
1763 addition to @option{-ansi}.  @xref{Warning Options}.
1765 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1766 option is used.  Some header files may notice this macro and refrain
1767 from declaring certain functions or defining certain macros that the
1768 ISO standard doesn't call for; this is to avoid interfering with any
1769 programs that might use these names for other things.
1771 Functions that are normally built in but do not have semantics
1772 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1773 functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
1774 built-in functions provided by GCC}, for details of the functions
1775 affected.
1777 @item -std=
1778 @opindex std
1779 Determine the language standard. @xref{Standards,,Language Standards
1780 Supported by GCC}, for details of these standard versions.  This option
1781 is currently only supported when compiling C or C++.
1783 The compiler can accept several base standards, such as @samp{c90} or
1784 @samp{c++98}, and GNU dialects of those standards, such as
1785 @samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
1786 compiler accepts all programs following that standard plus those
1787 using GNU extensions that do not contradict it.  For example,
1788 @option{-std=c90} turns off certain features of GCC that are
1789 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1790 keywords, but not other GNU extensions that do not have a meaning in
1791 ISO C90, such as omitting the middle term of a @code{?:}
1792 expression. On the other hand, when a GNU dialect of a standard is
1793 specified, all features supported by the compiler are enabled, even when
1794 those features change the meaning of the base standard.  As a result, some
1795 strict-conforming programs may be rejected.  The particular standard
1796 is used by @option{-Wpedantic} to identify which features are GNU
1797 extensions given that version of the standard. For example
1798 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1799 comments, while @option{-std=gnu99 -Wpedantic} does not.
1801 A value for this option must be provided; possible values are
1803 @table @samp
1804 @item c90
1805 @itemx c89
1806 @itemx iso9899:1990
1807 Support all ISO C90 programs (certain GNU extensions that conflict
1808 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1810 @item iso9899:199409
1811 ISO C90 as modified in amendment 1.
1813 @item c99
1814 @itemx c9x
1815 @itemx iso9899:1999
1816 @itemx iso9899:199x
1817 ISO C99.  This standard is substantially completely supported, modulo
1818 bugs and floating-point issues
1819 (mainly but not entirely relating to optional C99 features from
1820 Annexes F and G).  See
1821 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1822 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1824 @item c11
1825 @itemx c1x
1826 @itemx iso9899:2011
1827 ISO C11, the 2011 revision of the ISO C standard.  This standard is
1828 substantially completely supported, modulo bugs, floating-point issues
1829 (mainly but not entirely relating to optional C11 features from
1830 Annexes F and G) and the optional Annexes K (Bounds-checking
1831 interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
1833 @item c17
1834 @itemx c18
1835 @itemx iso9899:2017
1836 @itemx iso9899:2018
1837 ISO C17, the 2017 revision of the ISO C standard (expected to be
1838 published in 2018).  This standard is
1839 same as C11 except for corrections of defects (all of which are also
1840 applied with @option{-std=c11}) and a new value of
1841 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1843 @item gnu90
1844 @itemx gnu89
1845 GNU dialect of ISO C90 (including some C99 features).
1847 @item gnu99
1848 @itemx gnu9x
1849 GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
1851 @item gnu11
1852 @itemx gnu1x
1853 GNU dialect of ISO C11.
1854 The name @samp{gnu1x} is deprecated.
1856 @item gnu17
1857 @itemx gnu18
1858 GNU dialect of ISO C17.  This is the default for C code.
1860 @item c++98
1861 @itemx c++03
1862 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1863 additional defect reports. Same as @option{-ansi} for C++ code.
1865 @item gnu++98
1866 @itemx gnu++03
1867 GNU dialect of @option{-std=c++98}.
1869 @item c++11
1870 @itemx c++0x
1871 The 2011 ISO C++ standard plus amendments.
1872 The name @samp{c++0x} is deprecated.
1874 @item gnu++11
1875 @itemx gnu++0x
1876 GNU dialect of @option{-std=c++11}.
1877 The name @samp{gnu++0x} is deprecated.
1879 @item c++14
1880 @itemx c++1y
1881 The 2014 ISO C++ standard plus amendments.
1882 The name @samp{c++1y} is deprecated.
1884 @item gnu++14
1885 @itemx gnu++1y
1886 GNU dialect of @option{-std=c++14}.
1887 This is the default for C++ code.
1888 The name @samp{gnu++1y} is deprecated.
1890 @item c++17
1891 @itemx c++1z
1892 The 2017 ISO C++ standard plus amendments.
1893 The name @samp{c++1z} is deprecated.
1895 @item gnu++17
1896 @itemx gnu++1z
1897 GNU dialect of @option{-std=c++17}.
1898 The name @samp{gnu++1z} is deprecated.
1900 @item c++2a
1901 The next revision of the ISO C++ standard, tentatively planned for
1902 2020.  Support is highly experimental, and will almost certainly
1903 change in incompatible ways in future releases.
1905 @item gnu++2a
1906 GNU dialect of @option{-std=c++2a}.  Support is highly experimental,
1907 and will almost certainly change in incompatible ways in future
1908 releases.
1909 @end table
1911 @item -fgnu89-inline
1912 @opindex fgnu89-inline
1913 The option @option{-fgnu89-inline} tells GCC to use the traditional
1914 GNU semantics for @code{inline} functions when in C99 mode.
1915 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1916 Using this option is roughly equivalent to adding the
1917 @code{gnu_inline} function attribute to all inline functions
1918 (@pxref{Function Attributes}).
1920 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1921 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1922 specifies the default behavior).
1923 This option is not supported in @option{-std=c90} or
1924 @option{-std=gnu90} mode.
1926 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1927 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1928 in effect for @code{inline} functions.  @xref{Common Predefined
1929 Macros,,,cpp,The C Preprocessor}.
1931 @item -fpermitted-flt-eval-methods=@var{style}
1932 @opindex fpermitted-flt-eval-methods
1933 @opindex fpermitted-flt-eval-methods=c11
1934 @opindex fpermitted-flt-eval-methods=ts-18661-3
1935 ISO/IEC TS 18661-3 defines new permissible values for
1936 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
1937 a semantic type that is an interchange or extended format should be
1938 evaluated to the precision and range of that type.  These new values are
1939 a superset of those permitted under C99/C11, which does not specify the
1940 meaning of other positive values of @code{FLT_EVAL_METHOD}.  As such, code
1941 conforming to C11 may not have been written expecting the possibility of
1942 the new values.
1944 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
1945 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
1946 or the extended set of values specified in ISO/IEC TS 18661-3.
1948 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
1950 The default when in a standards compliant mode (@option{-std=c11} or similar)
1951 is @option{-fpermitted-flt-eval-methods=c11}.  The default when in a GNU
1952 dialect (@option{-std=gnu11} or similar) is
1953 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
1955 @item -aux-info @var{filename}
1956 @opindex aux-info
1957 Output to the given filename prototyped declarations for all functions
1958 declared and/or defined in a translation unit, including those in header
1959 files.  This option is silently ignored in any language other than C@.
1961 Besides declarations, the file indicates, in comments, the origin of
1962 each declaration (source file and line), whether the declaration was
1963 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1964 @samp{O} for old, respectively, in the first character after the line
1965 number and the colon), and whether it came from a declaration or a
1966 definition (@samp{C} or @samp{F}, respectively, in the following
1967 character).  In the case of function definitions, a K&R-style list of
1968 arguments followed by their declarations is also provided, inside
1969 comments, after the declaration.
1971 @item -fallow-parameterless-variadic-functions
1972 @opindex fallow-parameterless-variadic-functions
1973 Accept variadic functions without named parameters.
1975 Although it is possible to define such a function, this is not very
1976 useful as it is not possible to read the arguments.  This is only
1977 supported for C as this construct is allowed by C++.
1979 @item -fno-asm
1980 @opindex fno-asm
1981 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1982 keyword, so that code can use these words as identifiers.  You can use
1983 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1984 instead.  @option{-ansi} implies @option{-fno-asm}.
1986 In C++, this switch only affects the @code{typeof} keyword, since
1987 @code{asm} and @code{inline} are standard keywords.  You may want to
1988 use the @option{-fno-gnu-keywords} flag instead, which has the same
1989 effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1990 switch only affects the @code{asm} and @code{typeof} keywords, since
1991 @code{inline} is a standard keyword in ISO C99.
1993 @item -fno-builtin
1994 @itemx -fno-builtin-@var{function}
1995 @opindex fno-builtin
1996 @cindex built-in functions
1997 Don't recognize built-in functions that do not begin with
1998 @samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
1999 functions provided by GCC}, for details of the functions affected,
2000 including those which are not built-in functions when @option{-ansi} or
2001 @option{-std} options for strict ISO C conformance are used because they
2002 do not have an ISO standard meaning.
2004 GCC normally generates special code to handle certain built-in functions
2005 more efficiently; for instance, calls to @code{alloca} may become single
2006 instructions which adjust the stack directly, and calls to @code{memcpy}
2007 may become inline copy loops.  The resulting code is often both smaller
2008 and faster, but since the function calls no longer appear as such, you
2009 cannot set a breakpoint on those calls, nor can you change the behavior
2010 of the functions by linking with a different library.  In addition,
2011 when a function is recognized as a built-in function, GCC may use
2012 information about that function to warn about problems with calls to
2013 that function, or to generate more efficient code, even if the
2014 resulting code still contains calls to that function.  For example,
2015 warnings are given with @option{-Wformat} for bad calls to
2016 @code{printf} when @code{printf} is built in and @code{strlen} is
2017 known not to modify global memory.
2019 With the @option{-fno-builtin-@var{function}} option
2020 only the built-in function @var{function} is
2021 disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
2022 function is named that is not built-in in this version of GCC, this
2023 option is ignored.  There is no corresponding
2024 @option{-fbuiltin-@var{function}} option; if you wish to enable
2025 built-in functions selectively when using @option{-fno-builtin} or
2026 @option{-ffreestanding}, you may define macros such as:
2028 @smallexample
2029 #define abs(n)          __builtin_abs ((n))
2030 #define strcpy(d, s)    __builtin_strcpy ((d), (s))
2031 @end smallexample
2033 @item -fgimple
2034 @opindex fgimple
2036 Enable parsing of function definitions marked with @code{__GIMPLE}.
2037 This is an experimental feature that allows unit testing of GIMPLE
2038 passes.
2040 @item -fhosted
2041 @opindex fhosted
2042 @cindex hosted environment
2044 Assert that compilation targets a hosted environment.  This implies
2045 @option{-fbuiltin}.  A hosted environment is one in which the
2046 entire standard library is available, and in which @code{main} has a return
2047 type of @code{int}.  Examples are nearly everything except a kernel.
2048 This is equivalent to @option{-fno-freestanding}.
2050 @item -ffreestanding
2051 @opindex ffreestanding
2052 @cindex hosted environment
2054 Assert that compilation targets a freestanding environment.  This
2055 implies @option{-fno-builtin}.  A freestanding environment
2056 is one in which the standard library may not exist, and program startup may
2057 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
2058 This is equivalent to @option{-fno-hosted}.
2060 @xref{Standards,,Language Standards Supported by GCC}, for details of
2061 freestanding and hosted environments.
2063 @item -fopenacc
2064 @opindex fopenacc
2065 @cindex OpenACC accelerator programming
2066 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2067 @code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
2068 compiler generates accelerated code according to the OpenACC Application
2069 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}.  This option
2070 implies @option{-pthread}, and thus is only supported on targets that
2071 have support for @option{-pthread}.
2073 @item -fopenacc-dim=@var{geom}
2074 @opindex fopenacc-dim
2075 @cindex OpenACC accelerator programming
2076 Specify default compute dimensions for parallel offload regions that do
2077 not explicitly specify.  The @var{geom} value is a triple of
2078 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'.  A size
2079 can be omitted, to use a target-specific default value.
2081 @item -fopenmp
2082 @opindex fopenmp
2083 @cindex OpenMP parallel
2084 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2085 @code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
2086 compiler generates parallel code according to the OpenMP Application
2087 Program Interface v4.5 @w{@uref{http://www.openmp.org/}}.  This option
2088 implies @option{-pthread}, and thus is only supported on targets that
2089 have support for @option{-pthread}. @option{-fopenmp} implies
2090 @option{-fopenmp-simd}.
2092 @item -fopenmp-simd
2093 @opindex fopenmp-simd
2094 @cindex OpenMP SIMD
2095 @cindex SIMD
2096 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2097 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2098 are ignored.
2100 @item -fgnu-tm
2101 @opindex fgnu-tm
2102 When the option @option{-fgnu-tm} is specified, the compiler
2103 generates code for the Linux variant of Intel's current Transactional
2104 Memory ABI specification document (Revision 1.1, May 6 2009).  This is
2105 an experimental feature whose interface may change in future versions
2106 of GCC, as the official specification changes.  Please note that not
2107 all architectures are supported for this feature.
2109 For more information on GCC's support for transactional memory,
2110 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2111 Transactional Memory Library}.
2113 Note that the transactional memory feature is not supported with
2114 non-call exceptions (@option{-fnon-call-exceptions}).
2116 @item -fms-extensions
2117 @opindex fms-extensions
2118 Accept some non-standard constructs used in Microsoft header files.
2120 In C++ code, this allows member names in structures to be similar
2121 to previous types declarations.
2123 @smallexample
2124 typedef int UOW;
2125 struct ABC @{
2126   UOW UOW;
2128 @end smallexample
2130 Some cases of unnamed fields in structures and unions are only
2131 accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
2132 fields within structs/unions}, for details.
2134 Note that this option is off for all targets but x86 
2135 targets using ms-abi.
2137 @item -fplan9-extensions
2138 @opindex fplan9-extensions
2139 Accept some non-standard constructs used in Plan 9 code.
2141 This enables @option{-fms-extensions}, permits passing pointers to
2142 structures with anonymous fields to functions that expect pointers to
2143 elements of the type of the field, and permits referring to anonymous
2144 fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
2145 struct/union fields within structs/unions}, for details.  This is only
2146 supported for C, not C++.
2148 @item -fcond-mismatch
2149 @opindex fcond-mismatch
2150 Allow conditional expressions with mismatched types in the second and
2151 third arguments.  The value of such an expression is void.  This option
2152 is not supported for C++.
2154 @item -flax-vector-conversions
2155 @opindex flax-vector-conversions
2156 Allow implicit conversions between vectors with differing numbers of
2157 elements and/or incompatible element types.  This option should not be
2158 used for new code.
2160 @item -funsigned-char
2161 @opindex funsigned-char
2162 Let the type @code{char} be unsigned, like @code{unsigned char}.
2164 Each kind of machine has a default for what @code{char} should
2165 be.  It is either like @code{unsigned char} by default or like
2166 @code{signed char} by default.
2168 Ideally, a portable program should always use @code{signed char} or
2169 @code{unsigned char} when it depends on the signedness of an object.
2170 But many programs have been written to use plain @code{char} and
2171 expect it to be signed, or expect it to be unsigned, depending on the
2172 machines they were written for.  This option, and its inverse, let you
2173 make such a program work with the opposite default.
2175 The type @code{char} is always a distinct type from each of
2176 @code{signed char} or @code{unsigned char}, even though its behavior
2177 is always just like one of those two.
2179 @item -fsigned-char
2180 @opindex fsigned-char
2181 Let the type @code{char} be signed, like @code{signed char}.
2183 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2184 the negative form of @option{-funsigned-char}.  Likewise, the option
2185 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2187 @item -fsigned-bitfields
2188 @itemx -funsigned-bitfields
2189 @itemx -fno-signed-bitfields
2190 @itemx -fno-unsigned-bitfields
2191 @opindex fsigned-bitfields
2192 @opindex funsigned-bitfields
2193 @opindex fno-signed-bitfields
2194 @opindex fno-unsigned-bitfields
2195 These options control whether a bit-field is signed or unsigned, when the
2196 declaration does not use either @code{signed} or @code{unsigned}.  By
2197 default, such a bit-field is signed, because this is consistent: the
2198 basic integer types such as @code{int} are signed types.
2200 @item -fsso-struct=@var{endianness}
2201 @opindex fsso-struct
2202 Set the default scalar storage order of structures and unions to the
2203 specified endianness.  The accepted values are @samp{big-endian},
2204 @samp{little-endian} and @samp{native} for the native endianness of
2205 the target (the default).  This option is not supported for C++.
2207 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2208 code that is not binary compatible with code generated without it if the
2209 specified endianness is not the native endianness of the target.
2210 @end table
2212 @node C++ Dialect Options
2213 @section Options Controlling C++ Dialect
2215 @cindex compiler options, C++
2216 @cindex C++ options, command-line
2217 @cindex options, C++
2218 This section describes the command-line options that are only meaningful
2219 for C++ programs.  You can also use most of the GNU compiler options
2220 regardless of what language your program is in.  For example, you
2221 might compile a file @file{firstClass.C} like this:
2223 @smallexample
2224 g++ -g -fstrict-enums -O -c firstClass.C
2225 @end smallexample
2227 @noindent
2228 In this example, only @option{-fstrict-enums} is an option meant
2229 only for C++ programs; you can use the other options with any
2230 language supported by GCC@.
2232 Some options for compiling C programs, such as @option{-std}, are also
2233 relevant for C++ programs.
2234 @xref{C Dialect Options,,Options Controlling C Dialect}.
2236 Here is a list of options that are @emph{only} for compiling C++ programs:
2238 @table @gcctabopt
2240 @item -fabi-version=@var{n}
2241 @opindex fabi-version
2242 Use version @var{n} of the C++ ABI@.  The default is version 0.
2244 Version 0 refers to the version conforming most closely to
2245 the C++ ABI specification.  Therefore, the ABI obtained using version 0
2246 will change in different versions of G++ as ABI bugs are fixed.
2248 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2250 Version 2 is the version of the C++ ABI that first appeared in G++
2251 3.4, and was the default through G++ 4.9.
2253 Version 3 corrects an error in mangling a constant address as a
2254 template argument.
2256 Version 4, which first appeared in G++ 4.5, implements a standard
2257 mangling for vector types.
2259 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2260 attribute const/volatile on function pointer types, decltype of a
2261 plain decl, and use of a function parameter in the declaration of
2262 another parameter.
2264 Version 6, which first appeared in G++ 4.7, corrects the promotion
2265 behavior of C++11 scoped enums and the mangling of template argument
2266 packs, const/static_cast, prefix ++ and --, and a class scope function
2267 used as a template argument.
2269 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2270 builtin type and corrects the mangling of lambdas in default argument
2271 scope.
2273 Version 8, which first appeared in G++ 4.9, corrects the substitution
2274 behavior of function types with function-cv-qualifiers.
2276 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2277 @code{nullptr_t}.
2279 Version 10, which first appeared in G++ 6.1, adds mangling of
2280 attributes that affect type identity, such as ia32 calling convention
2281 attributes (e.g. @samp{stdcall}).
2283 Version 11, which first appeared in G++ 7, corrects the mangling of
2284 sizeof... expressions and operator names.  For multiple entities with
2285 the same name within a function, that are declared in different scopes,
2286 the mangling now changes starting with the twelfth occurrence.  It also
2287 implies @option{-fnew-inheriting-ctors}.
2289 See also @option{-Wabi}.
2291 @item -fabi-compat-version=@var{n}
2292 @opindex fabi-compat-version
2293 On targets that support strong aliases, G++
2294 works around mangling changes by creating an alias with the correct
2295 mangled name when defining a symbol with an incorrect mangled name.
2296 This switch specifies which ABI version to use for the alias.
2298 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2299 compatibility).  If another ABI version is explicitly selected, this
2300 defaults to 0.  For compatibility with GCC versions 3.2 through 4.9,
2301 use @option{-fabi-compat-version=2}.
2303 If this option is not provided but @option{-Wabi=@var{n}} is, that
2304 version is used for compatibility aliases.  If this option is provided
2305 along with @option{-Wabi} (without the version), the version from this
2306 option is used for the warning.
2308 @item -fno-access-control
2309 @opindex fno-access-control
2310 Turn off all access checking.  This switch is mainly useful for working
2311 around bugs in the access control code.
2313 @item -faligned-new
2314 @opindex faligned-new
2315 Enable support for C++17 @code{new} of types that require more
2316 alignment than @code{void* ::operator new(std::size_t)} provides.  A
2317 numeric argument such as @code{-faligned-new=32} can be used to
2318 specify how much alignment (in bytes) is provided by that function,
2319 but few users will need to override the default of
2320 @code{alignof(std::max_align_t)}.
2322 This flag is enabled by default for @option{-std=c++17}.
2324 @item -fcheck-new
2325 @opindex fcheck-new
2326 Check that the pointer returned by @code{operator new} is non-null
2327 before attempting to modify the storage allocated.  This check is
2328 normally unnecessary because the C++ standard specifies that
2329 @code{operator new} only returns @code{0} if it is declared
2330 @code{throw()}, in which case the compiler always checks the
2331 return value even without this option.  In all other cases, when
2332 @code{operator new} has a non-empty exception specification, memory
2333 exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2334 @samp{new (nothrow)}.
2336 @item -fconcepts
2337 @opindex fconcepts
2338 Enable support for the C++ Extensions for Concepts Technical
2339 Specification, ISO 19217 (2015), which allows code like
2341 @smallexample
2342 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2343 template <Addable T> T add (T a, T b) @{ return a + b; @}
2344 @end smallexample
2346 @item -fconstexpr-depth=@var{n}
2347 @opindex fconstexpr-depth
2348 Set the maximum nested evaluation depth for C++11 constexpr functions
2349 to @var{n}.  A limit is needed to detect endless recursion during
2350 constant expression evaluation.  The minimum specified by the standard
2351 is 512.
2353 @item -fconstexpr-loop-limit=@var{n}
2354 @opindex fconstexpr-loop-limit
2355 Set the maximum number of iterations for a loop in C++14 constexpr functions
2356 to @var{n}.  A limit is needed to detect infinite loops during
2357 constant expression evaluation.  The default is 262144 (1<<18).
2359 @item -fdeduce-init-list
2360 @opindex fdeduce-init-list
2361 Enable deduction of a template type parameter as
2362 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2364 @smallexample
2365 template <class T> auto forward(T t) -> decltype (realfn (t))
2367   return realfn (t);
2370 void f()
2372   forward(@{1,2@}); // call forward<std::initializer_list<int>>
2374 @end smallexample
2376 This deduction was implemented as a possible extension to the
2377 originally proposed semantics for the C++11 standard, but was not part
2378 of the final standard, so it is disabled by default.  This option is
2379 deprecated, and may be removed in a future version of G++.
2381 @item -ffriend-injection
2382 @opindex ffriend-injection
2383 Inject friend functions into the enclosing namespace, so that they are
2384 visible outside the scope of the class in which they are declared.
2385 Friend functions were documented to work this way in the old Annotated
2386 C++ Reference Manual.  
2387 However, in ISO C++ a friend function that is not declared
2388 in an enclosing scope can only be found using argument dependent
2389 lookup.  GCC defaults to the standard behavior.
2391 This option is for compatibility, and may be removed in a future
2392 release of G++.
2394 @item -fno-elide-constructors
2395 @opindex fno-elide-constructors
2396 The C++ standard allows an implementation to omit creating a temporary
2397 that is only used to initialize another object of the same type.
2398 Specifying this option disables that optimization, and forces G++ to
2399 call the copy constructor in all cases.  This option also causes G++
2400 to call trivial member functions which otherwise would be expanded inline.
2402 In C++17, the compiler is required to omit these temporaries, but this
2403 option still affects trivial member functions.
2405 @item -fno-enforce-eh-specs
2406 @opindex fno-enforce-eh-specs
2407 Don't generate code to check for violation of exception specifications
2408 at run time.  This option violates the C++ standard, but may be useful
2409 for reducing code size in production builds, much like defining
2410 @code{NDEBUG}.  This does not give user code permission to throw
2411 exceptions in violation of the exception specifications; the compiler
2412 still optimizes based on the specifications, so throwing an
2413 unexpected exception results in undefined behavior at run time.
2415 @item -fextern-tls-init
2416 @itemx -fno-extern-tls-init
2417 @opindex fextern-tls-init
2418 @opindex fno-extern-tls-init
2419 The C++11 and OpenMP standards allow @code{thread_local} and
2420 @code{threadprivate} variables to have dynamic (runtime)
2421 initialization.  To support this, any use of such a variable goes
2422 through a wrapper function that performs any necessary initialization.
2423 When the use and definition of the variable are in the same
2424 translation unit, this overhead can be optimized away, but when the
2425 use is in a different translation unit there is significant overhead
2426 even if the variable doesn't actually need dynamic initialization.  If
2427 the programmer can be sure that no use of the variable in a
2428 non-defining TU needs to trigger dynamic initialization (either
2429 because the variable is statically initialized, or a use of the
2430 variable in the defining TU will be executed before any uses in
2431 another TU), they can avoid this overhead with the
2432 @option{-fno-extern-tls-init} option.
2434 On targets that support symbol aliases, the default is
2435 @option{-fextern-tls-init}.  On targets that do not support symbol
2436 aliases, the default is @option{-fno-extern-tls-init}.
2438 @item -ffor-scope
2439 @itemx -fno-for-scope
2440 @opindex ffor-scope
2441 @opindex fno-for-scope
2442 If @option{-ffor-scope} is specified, the scope of variables declared in
2443 a @i{for-init-statement} is limited to the @code{for} loop itself,
2444 as specified by the C++ standard.
2445 If @option{-fno-for-scope} is specified, the scope of variables declared in
2446 a @i{for-init-statement} extends to the end of the enclosing scope,
2447 as was the case in old versions of G++, and other (traditional)
2448 implementations of C++.
2450 If neither flag is given, the default is to follow the standard,
2451 but to allow and give a warning for old-style code that would
2452 otherwise be invalid, or have different behavior.
2454 @item -fno-gnu-keywords
2455 @opindex fno-gnu-keywords
2456 Do not recognize @code{typeof} as a keyword, so that code can use this
2457 word as an identifier.  You can use the keyword @code{__typeof__} instead.
2458 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2459 @option{-std=c++98}, @option{-std=c++11}, etc.
2461 @item -fno-implicit-templates
2462 @opindex fno-implicit-templates
2463 Never emit code for non-inline templates that are instantiated
2464 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2465 @xref{Template Instantiation}, for more information.
2467 @item -fno-implicit-inline-templates
2468 @opindex fno-implicit-inline-templates
2469 Don't emit code for implicit instantiations of inline templates, either.
2470 The default is to handle inlines differently so that compiles with and
2471 without optimization need the same set of explicit instantiations.
2473 @item -fno-implement-inlines
2474 @opindex fno-implement-inlines
2475 To save space, do not emit out-of-line copies of inline functions
2476 controlled by @code{#pragma implementation}.  This causes linker
2477 errors if these functions are not inlined everywhere they are called.
2479 @item -fms-extensions
2480 @opindex fms-extensions
2481 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2482 int and getting a pointer to member function via non-standard syntax.
2484 @item -fnew-inheriting-ctors
2485 @opindex fnew-inheriting-ctors
2486 Enable the P0136 adjustment to the semantics of C++11 constructor
2487 inheritance.  This is part of C++17 but also considered to be a Defect
2488 Report against C++11 and C++14.  This flag is enabled by default
2489 unless @option{-fabi-version=10} or lower is specified.
2491 @item -fnew-ttp-matching
2492 @opindex fnew-ttp-matching
2493 Enable the P0522 resolution to Core issue 150, template template
2494 parameters and default arguments: this allows a template with default
2495 template arguments as an argument for a template template parameter
2496 with fewer template parameters.  This flag is enabled by default for
2497 @option{-std=c++17}.
2499 @item -fno-nonansi-builtins
2500 @opindex fno-nonansi-builtins
2501 Disable built-in declarations of functions that are not mandated by
2502 ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
2503 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2505 @item -fnothrow-opt
2506 @opindex fnothrow-opt
2507 Treat a @code{throw()} exception specification as if it were a
2508 @code{noexcept} specification to reduce or eliminate the text size
2509 overhead relative to a function with no exception specification.  If
2510 the function has local variables of types with non-trivial
2511 destructors, the exception specification actually makes the
2512 function smaller because the EH cleanups for those variables can be
2513 optimized away.  The semantic effect is that an exception thrown out of
2514 a function with such an exception specification results in a call
2515 to @code{terminate} rather than @code{unexpected}.
2517 @item -fno-operator-names
2518 @opindex fno-operator-names
2519 Do not treat the operator name keywords @code{and}, @code{bitand},
2520 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2521 synonyms as keywords.
2523 @item -fno-optional-diags
2524 @opindex fno-optional-diags
2525 Disable diagnostics that the standard says a compiler does not need to
2526 issue.  Currently, the only such diagnostic issued by G++ is the one for
2527 a name having multiple meanings within a class.
2529 @item -fpermissive
2530 @opindex fpermissive
2531 Downgrade some diagnostics about nonconformant code from errors to
2532 warnings.  Thus, using @option{-fpermissive} allows some
2533 nonconforming code to compile.
2535 @item -fno-pretty-templates
2536 @opindex fno-pretty-templates
2537 When an error message refers to a specialization of a function
2538 template, the compiler normally prints the signature of the
2539 template followed by the template arguments and any typedefs or
2540 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2541 rather than @code{void f(int)}) so that it's clear which template is
2542 involved.  When an error message refers to a specialization of a class
2543 template, the compiler omits any template arguments that match
2544 the default template arguments for that template.  If either of these
2545 behaviors make it harder to understand the error message rather than
2546 easier, you can use @option{-fno-pretty-templates} to disable them.
2548 @item -frepo
2549 @opindex frepo
2550 Enable automatic template instantiation at link time.  This option also
2551 implies @option{-fno-implicit-templates}.  @xref{Template
2552 Instantiation}, for more information.
2554 @item -fno-rtti
2555 @opindex fno-rtti
2556 Disable generation of information about every class with virtual
2557 functions for use by the C++ run-time type identification features
2558 (@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
2559 of the language, you can save some space by using this flag.  Note that
2560 exception handling uses the same information, but G++ generates it as
2561 needed. The @code{dynamic_cast} operator can still be used for casts that
2562 do not require run-time type information, i.e.@: casts to @code{void *} or to
2563 unambiguous base classes.
2565 @item -fsized-deallocation
2566 @opindex fsized-deallocation
2567 Enable the built-in global declarations
2568 @smallexample
2569 void operator delete (void *, std::size_t) noexcept;
2570 void operator delete[] (void *, std::size_t) noexcept;
2571 @end smallexample
2572 as introduced in C++14.  This is useful for user-defined replacement
2573 deallocation functions that, for example, use the size of the object
2574 to make deallocation faster.  Enabled by default under
2575 @option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
2576 warns about places that might want to add a definition.
2578 @item -fstrict-enums
2579 @opindex fstrict-enums
2580 Allow the compiler to optimize using the assumption that a value of
2581 enumerated type can only be one of the values of the enumeration (as
2582 defined in the C++ standard; basically, a value that can be
2583 represented in the minimum number of bits needed to represent all the
2584 enumerators).  This assumption may not be valid if the program uses a
2585 cast to convert an arbitrary integer value to the enumerated type.
2587 @item -fstrong-eval-order
2588 @opindex fstrong-eval-order
2589 Evaluate member access, array subscripting, and shift expressions in
2590 left-to-right order, and evaluate assignment in right-to-left order,
2591 as adopted for C++17.  Enabled by default with @option{-std=c++17}.
2592 @option{-fstrong-eval-order=some} enables just the ordering of member
2593 access and shift expressions, and is the default without
2594 @option{-std=c++17}.
2596 @item -ftemplate-backtrace-limit=@var{n}
2597 @opindex ftemplate-backtrace-limit
2598 Set the maximum number of template instantiation notes for a single
2599 warning or error to @var{n}.  The default value is 10.
2601 @item -ftemplate-depth=@var{n}
2602 @opindex ftemplate-depth
2603 Set the maximum instantiation depth for template classes to @var{n}.
2604 A limit on the template instantiation depth is needed to detect
2605 endless recursions during template class instantiation.  ANSI/ISO C++
2606 conforming programs must not rely on a maximum depth greater than 17
2607 (changed to 1024 in C++11).  The default value is 900, as the compiler
2608 can run out of stack space before hitting 1024 in some situations.
2610 @item -fno-threadsafe-statics
2611 @opindex fno-threadsafe-statics
2612 Do not emit the extra code to use the routines specified in the C++
2613 ABI for thread-safe initialization of local statics.  You can use this
2614 option to reduce code size slightly in code that doesn't need to be
2615 thread-safe.
2617 @item -fuse-cxa-atexit
2618 @opindex fuse-cxa-atexit
2619 Register destructors for objects with static storage duration with the
2620 @code{__cxa_atexit} function rather than the @code{atexit} function.
2621 This option is required for fully standards-compliant handling of static
2622 destructors, but only works if your C library supports
2623 @code{__cxa_atexit}.
2625 @item -fno-use-cxa-get-exception-ptr
2626 @opindex fno-use-cxa-get-exception-ptr
2627 Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
2628 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2629 if the runtime routine is not available.
2631 @item -fvisibility-inlines-hidden
2632 @opindex fvisibility-inlines-hidden
2633 This switch declares that the user does not attempt to compare
2634 pointers to inline functions or methods where the addresses of the two functions
2635 are taken in different shared objects.
2637 The effect of this is that GCC may, effectively, mark inline methods with
2638 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2639 appear in the export table of a DSO and do not require a PLT indirection
2640 when used within the DSO@.  Enabling this option can have a dramatic effect
2641 on load and link times of a DSO as it massively reduces the size of the
2642 dynamic export table when the library makes heavy use of templates.
2644 The behavior of this switch is not quite the same as marking the
2645 methods as hidden directly, because it does not affect static variables
2646 local to the function or cause the compiler to deduce that
2647 the function is defined in only one shared object.
2649 You may mark a method as having a visibility explicitly to negate the
2650 effect of the switch for that method.  For example, if you do want to
2651 compare pointers to a particular inline method, you might mark it as
2652 having default visibility.  Marking the enclosing class with explicit
2653 visibility has no effect.
2655 Explicitly instantiated inline methods are unaffected by this option
2656 as their linkage might otherwise cross a shared library boundary.
2657 @xref{Template Instantiation}.
2659 @item -fvisibility-ms-compat
2660 @opindex fvisibility-ms-compat
2661 This flag attempts to use visibility settings to make GCC's C++
2662 linkage model compatible with that of Microsoft Visual Studio.
2664 The flag makes these changes to GCC's linkage model:
2666 @enumerate
2667 @item
2668 It sets the default visibility to @code{hidden}, like
2669 @option{-fvisibility=hidden}.
2671 @item
2672 Types, but not their members, are not hidden by default.
2674 @item
2675 The One Definition Rule is relaxed for types without explicit
2676 visibility specifications that are defined in more than one
2677 shared object: those declarations are permitted if they are
2678 permitted when this option is not used.
2679 @end enumerate
2681 In new code it is better to use @option{-fvisibility=hidden} and
2682 export those classes that are intended to be externally visible.
2683 Unfortunately it is possible for code to rely, perhaps accidentally,
2684 on the Visual Studio behavior.
2686 Among the consequences of these changes are that static data members
2687 of the same type with the same name but defined in different shared
2688 objects are different, so changing one does not change the other;
2689 and that pointers to function members defined in different shared
2690 objects may not compare equal.  When this flag is given, it is a
2691 violation of the ODR to define types with the same name differently.
2693 @item -fno-weak
2694 @opindex fno-weak
2695 Do not use weak symbol support, even if it is provided by the linker.
2696 By default, G++ uses weak symbols if they are available.  This
2697 option exists only for testing, and should not be used by end-users;
2698 it results in inferior code and has no benefits.  This option may
2699 be removed in a future release of G++.
2701 @item -nostdinc++
2702 @opindex nostdinc++
2703 Do not search for header files in the standard directories specific to
2704 C++, but do still search the other standard directories.  (This option
2705 is used when building the C++ library.)
2706 @end table
2708 In addition, these optimization, warning, and code generation options
2709 have meanings only for C++ programs:
2711 @table @gcctabopt
2712 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2713 @opindex Wabi
2714 @opindex Wno-abi
2715 Warn when G++ it generates code that is probably not compatible with
2716 the vendor-neutral C++ ABI@.  Since G++ now defaults to updating the
2717 ABI with each major release, normally @option{-Wabi} will warn only if
2718 there is a check added later in a release series for an ABI issue
2719 discovered since the initial release.  @option{-Wabi} will warn about
2720 more things if an older ABI version is selected (with
2721 @option{-fabi-version=@var{n}}).
2723 @option{-Wabi} can also be used with an explicit version number to
2724 warn about compatibility with a particular @option{-fabi-version}
2725 level, e.g. @option{-Wabi=2} to warn about changes relative to
2726 @option{-fabi-version=2}.
2728 If an explicit version number is provided and
2729 @option{-fabi-compat-version} is not specified, the version number
2730 from this option is used for compatibility aliases.  If no explicit
2731 version number is provided with this option, but
2732 @option{-fabi-compat-version} is specified, that version number is
2733 used for ABI warnings.
2735 Although an effort has been made to warn about
2736 all such cases, there are probably some cases that are not warned about,
2737 even though G++ is generating incompatible code.  There may also be
2738 cases where warnings are emitted even though the code that is generated
2739 is compatible.
2741 You should rewrite your code to avoid these warnings if you are
2742 concerned about the fact that code generated by G++ may not be binary
2743 compatible with code generated by other compilers.
2745 Known incompatibilities in @option{-fabi-version=2} (which was the
2746 default from GCC 3.4 to 4.9) include:
2748 @itemize @bullet
2750 @item
2751 A template with a non-type template parameter of reference type was
2752 mangled incorrectly:
2753 @smallexample
2754 extern int N;
2755 template <int &> struct S @{@};
2756 void n (S<N>) @{2@}
2757 @end smallexample
2759 This was fixed in @option{-fabi-version=3}.
2761 @item
2762 SIMD vector types declared using @code{__attribute ((vector_size))} were
2763 mangled in a non-standard way that does not allow for overloading of
2764 functions taking vectors of different sizes.
2766 The mangling was changed in @option{-fabi-version=4}.
2768 @item
2769 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2770 qualifiers, and @code{decltype} of a plain declaration was folded away.
2772 These mangling issues were fixed in @option{-fabi-version=5}.
2774 @item
2775 Scoped enumerators passed as arguments to a variadic function are
2776 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2777 On most targets this does not actually affect the parameter passing
2778 ABI, as there is no way to pass an argument smaller than @code{int}.
2780 Also, the ABI changed the mangling of template argument packs,
2781 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2782 a class scope function used as a template argument.
2784 These issues were corrected in @option{-fabi-version=6}.
2786 @item
2787 Lambdas in default argument scope were mangled incorrectly, and the
2788 ABI changed the mangling of @code{nullptr_t}.
2790 These issues were corrected in @option{-fabi-version=7}.
2792 @item
2793 When mangling a function type with function-cv-qualifiers, the
2794 un-qualified function type was incorrectly treated as a substitution
2795 candidate.
2797 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2799 @item
2800 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2801 unaligned accesses.  Note that this did not affect the ABI of a
2802 function with a @code{nullptr_t} parameter, as parameters have a
2803 minimum alignment.
2805 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2807 @item
2808 Target-specific attributes that affect the identity of a type, such as
2809 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2810 did not affect the mangled name, leading to name collisions when
2811 function pointers were used as template arguments.
2813 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2815 @end itemize
2817 It also warns about psABI-related changes.  The known psABI changes at this
2818 point include:
2820 @itemize @bullet
2822 @item
2823 For SysV/x86-64, unions with @code{long double} members are 
2824 passed in memory as specified in psABI.  For example:
2826 @smallexample
2827 union U @{
2828   long double ld;
2829   int i;
2831 @end smallexample
2833 @noindent
2834 @code{union U} is always passed in memory.
2836 @end itemize
2838 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2839 @opindex Wabi-tag
2840 @opindex -Wabi-tag
2841 Warn when a type with an ABI tag is used in a context that does not
2842 have that ABI tag.  See @ref{C++ Attributes} for more information
2843 about ABI tags.
2845 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2846 @opindex Wctor-dtor-privacy
2847 @opindex Wno-ctor-dtor-privacy
2848 Warn when a class seems unusable because all the constructors or
2849 destructors in that class are private, and it has neither friends nor
2850 public static member functions.  Also warn if there are no non-private
2851 methods, and there's at least one private member function that isn't
2852 a constructor or destructor.
2854 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2855 @opindex Wdelete-non-virtual-dtor
2856 @opindex Wno-delete-non-virtual-dtor
2857 Warn when @code{delete} is used to destroy an instance of a class that
2858 has virtual functions and non-virtual destructor. It is unsafe to delete
2859 an instance of a derived class through a pointer to a base class if the
2860 base class does not have a virtual destructor.  This warning is enabled
2861 by @option{-Wall}.
2863 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2864 @opindex Wliteral-suffix
2865 @opindex Wno-literal-suffix
2866 Warn when a string or character literal is followed by a ud-suffix which does
2867 not begin with an underscore.  As a conforming extension, GCC treats such
2868 suffixes as separate preprocessing tokens in order to maintain backwards
2869 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2870 For example:
2872 @smallexample
2873 #define __STDC_FORMAT_MACROS
2874 #include <inttypes.h>
2875 #include <stdio.h>
2877 int main() @{
2878   int64_t i64 = 123;
2879   printf("My int64: %" PRId64"\n", i64);
2881 @end smallexample
2883 In this case, @code{PRId64} is treated as a separate preprocessing token.
2885 Additionally, warn when a user-defined literal operator is declared with
2886 a literal suffix identifier that doesn't begin with an underscore. Literal
2887 suffix identifiers that don't begin with an underscore are reserved for
2888 future standardization.
2890 This warning is enabled by default.
2892 @item -Wlto-type-mismatch
2893 @opindex Wlto-type-mismatch
2894 @opindex Wno-lto-type-mismatch
2896 During the link-time optimization warn about type mismatches in
2897 global declarations from different compilation units.
2898 Requires @option{-flto} to be enabled.  Enabled by default.
2900 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2901 @opindex Wnarrowing
2902 @opindex Wno-narrowing
2903 For C++11 and later standards, narrowing conversions are diagnosed by default,
2904 as required by the standard.  A narrowing conversion from a constant produces
2905 an error, and a narrowing conversion from a non-constant produces a warning,
2906 but @option{-Wno-narrowing} suppresses the diagnostic.
2907 Note that this does not affect the meaning of well-formed code;
2908 narrowing conversions are still considered ill-formed in SFINAE contexts.
2910 With @option{-Wnarrowing} in C++98, warn when a narrowing
2911 conversion prohibited by C++11 occurs within
2912 @samp{@{ @}}, e.g.
2914 @smallexample
2915 int i = @{ 2.2 @}; // error: narrowing from double to int
2916 @end smallexample
2918 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2920 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2921 @opindex Wnoexcept
2922 @opindex Wno-noexcept
2923 Warn when a noexcept-expression evaluates to false because of a call
2924 to a function that does not have a non-throwing exception
2925 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2926 the compiler to never throw an exception.
2928 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
2929 @opindex Wnoexcept-type
2930 @opindex Wno-noexcept-type
2931 Warn if the C++17 feature making @code{noexcept} part of a function
2932 type changes the mangled name of a symbol relative to C++14.  Enabled
2933 by @option{-Wabi} and @option{-Wc++17-compat}.
2935 @smallexample
2936 template <class T> void f(T t) @{ t(); @};
2937 void g() noexcept;
2938 void h() @{ f(g); @} // in C++14 calls f<void(*)()>, in C++17 calls f<void(*)()noexcept>
2939 @end smallexample
2941 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
2942 @opindex Wclass-memaccess
2943 Warn when the destination of a call to a raw memory function such as
2944 @code{memset} or @code{memcpy} is an object of class type writing into which
2945 might bypass the class non-trivial or deleted constructor or copy assignment,
2946 violate const-correctness or encapsulation, or corrupt the virtual table.
2947 Modifying the representation of such objects may violate invariants maintained
2948 by member functions of the class.  For example, the call to @code{memset}
2949 below is undefined becase it modifies a non-trivial class object and is,
2950 therefore, diagnosed.  The safe way to either initialize or clear the storage
2951 of objects of such types is by using the appropriate constructor or assignment
2952 operator, if one is available.
2953 @smallexample
2954 std::string str = "abc";
2955 memset (&str, 0, 3);
2956 @end smallexample
2957 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
2959 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2960 @opindex Wnon-virtual-dtor
2961 @opindex Wno-non-virtual-dtor
2962 Warn when a class has virtual functions and an accessible non-virtual
2963 destructor itself or in an accessible polymorphic base class, in which
2964 case it is possible but unsafe to delete an instance of a derived
2965 class through a pointer to the class itself or base class.  This
2966 warning is automatically enabled if @option{-Weffc++} is specified.
2968 @item -Wregister @r{(C++ and Objective-C++ only)}
2969 @opindex Wregister
2970 @opindex Wno-register
2971 Warn on uses of the @code{register} storage class specifier, except
2972 when it is part of the GNU @ref{Explicit Register Variables} extension.
2973 The use of the @code{register} keyword as storage class specifier has
2974 been deprecated in C++11 and removed in C++17.
2975 Enabled by default with @option{-std=c++17}.
2977 @item -Wreorder @r{(C++ and Objective-C++ only)}
2978 @opindex Wreorder
2979 @opindex Wno-reorder
2980 @cindex reordering, warning
2981 @cindex warning for reordering of member initializers
2982 Warn when the order of member initializers given in the code does not
2983 match the order in which they must be executed.  For instance:
2985 @smallexample
2986 struct A @{
2987   int i;
2988   int j;
2989   A(): j (0), i (1) @{ @}
2991 @end smallexample
2993 @noindent
2994 The compiler rearranges the member initializers for @code{i}
2995 and @code{j} to match the declaration order of the members, emitting
2996 a warning to that effect.  This warning is enabled by @option{-Wall}.
2998 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2999 @opindex fext-numeric-literals
3000 @opindex fno-ext-numeric-literals
3001 Accept imaginary, fixed-point, or machine-defined
3002 literal number suffixes as GNU extensions.
3003 When this option is turned off these suffixes are treated
3004 as C++11 user-defined literal numeric suffixes.
3005 This is on by default for all pre-C++11 dialects and all GNU dialects:
3006 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3007 @option{-std=gnu++14}.
3008 This option is off by default
3009 for ISO C++11 onwards (@option{-std=c++11}, ...).
3010 @end table
3012 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3014 @table @gcctabopt
3015 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3016 @opindex Weffc++
3017 @opindex Wno-effc++
3018 Warn about violations of the following style guidelines from Scott Meyers'
3019 @cite{Effective C++} series of books:
3021 @itemize @bullet
3022 @item
3023 Define a copy constructor and an assignment operator for classes
3024 with dynamically-allocated memory.
3026 @item
3027 Prefer initialization to assignment in constructors.
3029 @item
3030 Have @code{operator=} return a reference to @code{*this}.
3032 @item
3033 Don't try to return a reference when you must return an object.
3035 @item
3036 Distinguish between prefix and postfix forms of increment and
3037 decrement operators.
3039 @item
3040 Never overload @code{&&}, @code{||}, or @code{,}.
3042 @end itemize
3044 This option also enables @option{-Wnon-virtual-dtor}, which is also
3045 one of the effective C++ recommendations.  However, the check is
3046 extended to warn about the lack of virtual destructor in accessible
3047 non-polymorphic bases classes too.
3049 When selecting this option, be aware that the standard library
3050 headers do not obey all of these guidelines; use @samp{grep -v}
3051 to filter out those warnings.
3053 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3054 @opindex Wstrict-null-sentinel
3055 @opindex Wno-strict-null-sentinel
3056 Warn about the use of an uncasted @code{NULL} as sentinel.  When
3057 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3058 to @code{__null}.  Although it is a null pointer constant rather than a
3059 null pointer, it is guaranteed to be of the same size as a pointer.
3060 But this use is not portable across different compilers.
3062 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3063 @opindex Wno-non-template-friend
3064 @opindex Wnon-template-friend
3065 Disable warnings when non-template friend functions are declared
3066 within a template.  In very old versions of GCC that predate implementation
3067 of the ISO standard, declarations such as 
3068 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3069 could be interpreted as a particular specialization of a template
3070 function; the warning exists to diagnose compatibility problems, 
3071 and is enabled by default.
3073 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3074 @opindex Wold-style-cast
3075 @opindex Wno-old-style-cast
3076 Warn if an old-style (C-style) cast to a non-void type is used within
3077 a C++ program.  The new-style casts (@code{dynamic_cast},
3078 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3079 less vulnerable to unintended effects and much easier to search for.
3081 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3082 @opindex Woverloaded-virtual
3083 @opindex Wno-overloaded-virtual
3084 @cindex overloaded virtual function, warning
3085 @cindex warning for overloaded virtual function
3086 Warn when a function declaration hides virtual functions from a
3087 base class.  For example, in:
3089 @smallexample
3090 struct A @{
3091   virtual void f();
3094 struct B: public A @{
3095   void f(int);
3097 @end smallexample
3099 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3100 like:
3102 @smallexample
3103 B* b;
3104 b->f();
3105 @end smallexample
3107 @noindent
3108 fails to compile.
3110 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3111 @opindex Wno-pmf-conversions
3112 @opindex Wpmf-conversions
3113 Disable the diagnostic for converting a bound pointer to member function
3114 to a plain pointer.
3116 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3117 @opindex Wsign-promo
3118 @opindex Wno-sign-promo
3119 Warn when overload resolution chooses a promotion from unsigned or
3120 enumerated type to a signed type, over a conversion to an unsigned type of
3121 the same size.  Previous versions of G++ tried to preserve
3122 unsignedness, but the standard mandates the current behavior.
3124 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3125 @opindex Wtemplates
3126 Warn when a primary template declaration is encountered.  Some coding
3127 rules disallow templates, and this may be used to enforce that rule.
3128 The warning is inactive inside a system header file, such as the STL, so
3129 one can still use the STL.  One may also instantiate or specialize
3130 templates.
3132 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3133 @opindex Wmultiple-inheritance
3134 Warn when a class is defined with multiple direct base classes.  Some
3135 coding rules disallow multiple inheritance, and this may be used to
3136 enforce that rule.  The warning is inactive inside a system header file,
3137 such as the STL, so one can still use the STL.  One may also define
3138 classes that indirectly use multiple inheritance.
3140 @item -Wvirtual-inheritance
3141 @opindex Wvirtual-inheritance
3142 Warn when a class is defined with a virtual direct base class.  Some
3143 coding rules disallow multiple inheritance, and this may be used to
3144 enforce that rule.  The warning is inactive inside a system header file,
3145 such as the STL, so one can still use the STL.  One may also define
3146 classes that indirectly use virtual inheritance.
3148 @item -Wnamespaces
3149 @opindex Wnamespaces
3150 Warn when a namespace definition is opened.  Some coding rules disallow
3151 namespaces, and this may be used to enforce that rule.  The warning is
3152 inactive inside a system header file, such as the STL, so one can still
3153 use the STL.  One may also use using directives and qualified names.
3155 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3156 @opindex Wterminate
3157 @opindex Wno-terminate
3158 Disable the warning about a throw-expression that will immediately
3159 result in a call to @code{terminate}.
3160 @end table
3162 @node Objective-C and Objective-C++ Dialect Options
3163 @section Options Controlling Objective-C and Objective-C++ Dialects
3165 @cindex compiler options, Objective-C and Objective-C++
3166 @cindex Objective-C and Objective-C++ options, command-line
3167 @cindex options, Objective-C and Objective-C++
3168 (NOTE: This manual does not describe the Objective-C and Objective-C++
3169 languages themselves.  @xref{Standards,,Language Standards
3170 Supported by GCC}, for references.)
3172 This section describes the command-line options that are only meaningful
3173 for Objective-C and Objective-C++ programs.  You can also use most of
3174 the language-independent GNU compiler options.
3175 For example, you might compile a file @file{some_class.m} like this:
3177 @smallexample
3178 gcc -g -fgnu-runtime -O -c some_class.m
3179 @end smallexample
3181 @noindent
3182 In this example, @option{-fgnu-runtime} is an option meant only for
3183 Objective-C and Objective-C++ programs; you can use the other options with
3184 any language supported by GCC@.
3186 Note that since Objective-C is an extension of the C language, Objective-C
3187 compilations may also use options specific to the C front-end (e.g.,
3188 @option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
3189 C++-specific options (e.g., @option{-Wabi}).
3191 Here is a list of options that are @emph{only} for compiling Objective-C
3192 and Objective-C++ programs:
3194 @table @gcctabopt
3195 @item -fconstant-string-class=@var{class-name}
3196 @opindex fconstant-string-class
3197 Use @var{class-name} as the name of the class to instantiate for each
3198 literal string specified with the syntax @code{@@"@dots{}"}.  The default
3199 class name is @code{NXConstantString} if the GNU runtime is being used, and
3200 @code{NSConstantString} if the NeXT runtime is being used (see below).  The
3201 @option{-fconstant-cfstrings} option, if also present, overrides the
3202 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3203 to be laid out as constant CoreFoundation strings.
3205 @item -fgnu-runtime
3206 @opindex fgnu-runtime
3207 Generate object code compatible with the standard GNU Objective-C
3208 runtime.  This is the default for most types of systems.
3210 @item -fnext-runtime
3211 @opindex fnext-runtime
3212 Generate output compatible with the NeXT runtime.  This is the default
3213 for NeXT-based systems, including Darwin and Mac OS X@.  The macro
3214 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3215 used.
3217 @item -fno-nil-receivers
3218 @opindex fno-nil-receivers
3219 Assume that all Objective-C message dispatches (@code{[receiver
3220 message:arg]}) in this translation unit ensure that the receiver is
3221 not @code{nil}.  This allows for more efficient entry points in the
3222 runtime to be used.  This option is only available in conjunction with
3223 the NeXT runtime and ABI version 0 or 1.
3225 @item -fobjc-abi-version=@var{n}
3226 @opindex fobjc-abi-version
3227 Use version @var{n} of the Objective-C ABI for the selected runtime.
3228 This option is currently supported only for the NeXT runtime.  In that
3229 case, Version 0 is the traditional (32-bit) ABI without support for
3230 properties and other Objective-C 2.0 additions.  Version 1 is the
3231 traditional (32-bit) ABI with support for properties and other
3232 Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
3233 nothing is specified, the default is Version 0 on 32-bit target
3234 machines, and Version 2 on 64-bit target machines.
3236 @item -fobjc-call-cxx-cdtors
3237 @opindex fobjc-call-cxx-cdtors
3238 For each Objective-C class, check if any of its instance variables is a
3239 C++ object with a non-trivial default constructor.  If so, synthesize a
3240 special @code{- (id) .cxx_construct} instance method which runs
3241 non-trivial default constructors on any such instance variables, in order,
3242 and then return @code{self}.  Similarly, check if any instance variable
3243 is a C++ object with a non-trivial destructor, and if so, synthesize a
3244 special @code{- (void) .cxx_destruct} method which runs
3245 all such default destructors, in reverse order.
3247 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3248 methods thusly generated only operate on instance variables
3249 declared in the current Objective-C class, and not those inherited
3250 from superclasses.  It is the responsibility of the Objective-C
3251 runtime to invoke all such methods in an object's inheritance
3252 hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
3253 by the runtime immediately after a new object instance is allocated;
3254 the @code{- (void) .cxx_destruct} methods are invoked immediately
3255 before the runtime deallocates an object instance.
3257 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3258 support for invoking the @code{- (id) .cxx_construct} and
3259 @code{- (void) .cxx_destruct} methods.
3261 @item -fobjc-direct-dispatch
3262 @opindex fobjc-direct-dispatch
3263 Allow fast jumps to the message dispatcher.  On Darwin this is
3264 accomplished via the comm page.
3266 @item -fobjc-exceptions
3267 @opindex fobjc-exceptions
3268 Enable syntactic support for structured exception handling in
3269 Objective-C, similar to what is offered by C++.  This option
3270 is required to use the Objective-C keywords @code{@@try},
3271 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3272 @code{@@synchronized}.  This option is available with both the GNU
3273 runtime and the NeXT runtime (but not available in conjunction with
3274 the NeXT runtime on Mac OS X 10.2 and earlier).
3276 @item -fobjc-gc
3277 @opindex fobjc-gc
3278 Enable garbage collection (GC) in Objective-C and Objective-C++
3279 programs.  This option is only available with the NeXT runtime; the
3280 GNU runtime has a different garbage collection implementation that
3281 does not require special compiler flags.
3283 @item -fobjc-nilcheck
3284 @opindex fobjc-nilcheck
3285 For the NeXT runtime with version 2 of the ABI, check for a nil
3286 receiver in method invocations before doing the actual method call.
3287 This is the default and can be disabled using
3288 @option{-fno-objc-nilcheck}.  Class methods and super calls are never
3289 checked for nil in this way no matter what this flag is set to.
3290 Currently this flag does nothing when the GNU runtime, or an older
3291 version of the NeXT runtime ABI, is used.
3293 @item -fobjc-std=objc1
3294 @opindex fobjc-std
3295 Conform to the language syntax of Objective-C 1.0, the language
3296 recognized by GCC 4.0.  This only affects the Objective-C additions to
3297 the C/C++ language; it does not affect conformance to C/C++ standards,
3298 which is controlled by the separate C/C++ dialect option flags.  When
3299 this option is used with the Objective-C or Objective-C++ compiler,
3300 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3301 This is useful if you need to make sure that your Objective-C code can
3302 be compiled with older versions of GCC@.
3304 @item -freplace-objc-classes
3305 @opindex freplace-objc-classes
3306 Emit a special marker instructing @command{ld(1)} not to statically link in
3307 the resulting object file, and allow @command{dyld(1)} to load it in at
3308 run time instead.  This is used in conjunction with the Fix-and-Continue
3309 debugging mode, where the object file in question may be recompiled and
3310 dynamically reloaded in the course of program execution, without the need
3311 to restart the program itself.  Currently, Fix-and-Continue functionality
3312 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3313 and later.
3315 @item -fzero-link
3316 @opindex fzero-link
3317 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3318 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3319 compile time) with static class references that get initialized at load time,
3320 which improves run-time performance.  Specifying the @option{-fzero-link} flag
3321 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3322 to be retained.  This is useful in Zero-Link debugging mode, since it allows
3323 for individual class implementations to be modified during program execution.
3324 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3325 regardless of command-line options.
3327 @item -fno-local-ivars
3328 @opindex fno-local-ivars
3329 @opindex flocal-ivars
3330 By default instance variables in Objective-C can be accessed as if
3331 they were local variables from within the methods of the class they're
3332 declared in.  This can lead to shadowing between instance variables
3333 and other variables declared either locally inside a class method or
3334 globally with the same name.  Specifying the @option{-fno-local-ivars}
3335 flag disables this behavior thus avoiding variable shadowing issues.
3337 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3338 @opindex fivar-visibility
3339 Set the default instance variable visibility to the specified option
3340 so that instance variables declared outside the scope of any access
3341 modifier directives default to the specified visibility.
3343 @item -gen-decls
3344 @opindex gen-decls
3345 Dump interface declarations for all classes seen in the source file to a
3346 file named @file{@var{sourcename}.decl}.
3348 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3349 @opindex Wassign-intercept
3350 @opindex Wno-assign-intercept
3351 Warn whenever an Objective-C assignment is being intercepted by the
3352 garbage collector.
3354 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3355 @opindex Wno-protocol
3356 @opindex Wprotocol
3357 If a class is declared to implement a protocol, a warning is issued for
3358 every method in the protocol that is not implemented by the class.  The
3359 default behavior is to issue a warning for every method not explicitly
3360 implemented in the class, even if a method implementation is inherited
3361 from the superclass.  If you use the @option{-Wno-protocol} option, then
3362 methods inherited from the superclass are considered to be implemented,
3363 and no warning is issued for them.
3365 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3366 @opindex Wselector
3367 @opindex Wno-selector
3368 Warn if multiple methods of different types for the same selector are
3369 found during compilation.  The check is performed on the list of methods
3370 in the final stage of compilation.  Additionally, a check is performed
3371 for each selector appearing in a @code{@@selector(@dots{})}
3372 expression, and a corresponding method for that selector has been found
3373 during compilation.  Because these checks scan the method table only at
3374 the end of compilation, these warnings are not produced if the final
3375 stage of compilation is not reached, for example because an error is
3376 found during compilation, or because the @option{-fsyntax-only} option is
3377 being used.
3379 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3380 @opindex Wstrict-selector-match
3381 @opindex Wno-strict-selector-match
3382 Warn if multiple methods with differing argument and/or return types are
3383 found for a given selector when attempting to send a message using this
3384 selector to a receiver of type @code{id} or @code{Class}.  When this flag
3385 is off (which is the default behavior), the compiler omits such warnings
3386 if any differences found are confined to types that share the same size
3387 and alignment.
3389 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3390 @opindex Wundeclared-selector
3391 @opindex Wno-undeclared-selector
3392 Warn if a @code{@@selector(@dots{})} expression referring to an
3393 undeclared selector is found.  A selector is considered undeclared if no
3394 method with that name has been declared before the
3395 @code{@@selector(@dots{})} expression, either explicitly in an
3396 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3397 an @code{@@implementation} section.  This option always performs its
3398 checks as soon as a @code{@@selector(@dots{})} expression is found,
3399 while @option{-Wselector} only performs its checks in the final stage of
3400 compilation.  This also enforces the coding style convention
3401 that methods and selectors must be declared before being used.
3403 @item -print-objc-runtime-info
3404 @opindex print-objc-runtime-info
3405 Generate C header describing the largest structure that is passed by
3406 value, if any.
3408 @end table
3410 @node Diagnostic Message Formatting Options
3411 @section Options to Control Diagnostic Messages Formatting
3412 @cindex options to control diagnostics formatting
3413 @cindex diagnostic messages
3414 @cindex message formatting
3416 Traditionally, diagnostic messages have been formatted irrespective of
3417 the output device's aspect (e.g.@: its width, @dots{}).  You can use the
3418 options described below
3419 to control the formatting algorithm for diagnostic messages, 
3420 e.g.@: how many characters per line, how often source location
3421 information should be reported.  Note that some language front ends may not
3422 honor these options.
3424 @table @gcctabopt
3425 @item -fmessage-length=@var{n}
3426 @opindex fmessage-length
3427 Try to format error messages so that they fit on lines of about
3428 @var{n} characters.  If @var{n} is zero, then no line-wrapping is
3429 done; each error message appears on a single line.  This is the
3430 default for all front ends.
3432 @item -fdiagnostics-show-location=once
3433 @opindex fdiagnostics-show-location
3434 Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
3435 reporter to emit source location information @emph{once}; that is, in
3436 case the message is too long to fit on a single physical line and has to
3437 be wrapped, the source location won't be emitted (as prefix) again,
3438 over and over, in subsequent continuation lines.  This is the default
3439 behavior.
3441 @item -fdiagnostics-show-location=every-line
3442 Only meaningful in line-wrapping mode.  Instructs the diagnostic
3443 messages reporter to emit the same source location information (as
3444 prefix) for physical lines that result from the process of breaking
3445 a message which is too long to fit on a single line.
3447 @item -fdiagnostics-color[=@var{WHEN}]
3448 @itemx -fno-diagnostics-color
3449 @opindex fdiagnostics-color
3450 @cindex highlight, color
3451 @vindex GCC_COLORS @r{environment variable}
3452 Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
3453 or @samp{auto}.  The default depends on how the compiler has been configured,
3454 it can be any of the above @var{WHEN} options or also @samp{never}
3455 if @env{GCC_COLORS} environment variable isn't present in the environment,
3456 and @samp{auto} otherwise.
3457 @samp{auto} means to use color only when the standard error is a terminal.
3458 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3459 aliases for @option{-fdiagnostics-color=always} and
3460 @option{-fdiagnostics-color=never}, respectively.
3462 The colors are defined by the environment variable @env{GCC_COLORS}.
3463 Its value is a colon-separated list of capabilities and Select Graphic
3464 Rendition (SGR) substrings. SGR commands are interpreted by the
3465 terminal or terminal emulator.  (See the section in the documentation
3466 of your text terminal for permitted values and their meanings as
3467 character attributes.)  These substring values are integers in decimal
3468 representation and can be concatenated with semicolons.
3469 Common values to concatenate include
3470 @samp{1} for bold,
3471 @samp{4} for underline,
3472 @samp{5} for blink,
3473 @samp{7} for inverse,
3474 @samp{39} for default foreground color,
3475 @samp{30} to @samp{37} for foreground colors,
3476 @samp{90} to @samp{97} for 16-color mode foreground colors,
3477 @samp{38;5;0} to @samp{38;5;255}
3478 for 88-color and 256-color modes foreground colors,
3479 @samp{49} for default background color,
3480 @samp{40} to @samp{47} for background colors,
3481 @samp{100} to @samp{107} for 16-color mode background colors,
3482 and @samp{48;5;0} to @samp{48;5;255}
3483 for 88-color and 256-color modes background colors.
3485 The default @env{GCC_COLORS} is
3486 @smallexample
3487 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3488 quote=01:fixit-insert=32:fixit-delete=31:\
3489 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3490 type-diff=01;32
3491 @end smallexample
3492 @noindent
3493 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3494 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3495 @samp{01} is bold, and @samp{31} is red.
3496 Setting @env{GCC_COLORS} to the empty string disables colors.
3497 Supported capabilities are as follows.
3499 @table @code
3500 @item error=
3501 @vindex error GCC_COLORS @r{capability}
3502 SGR substring for error: markers.
3504 @item warning=
3505 @vindex warning GCC_COLORS @r{capability}
3506 SGR substring for warning: markers.
3508 @item note=
3509 @vindex note GCC_COLORS @r{capability}
3510 SGR substring for note: markers.
3512 @item range1=
3513 @vindex range1 GCC_COLORS @r{capability}
3514 SGR substring for first additional range.
3516 @item range2=
3517 @vindex range2 GCC_COLORS @r{capability}
3518 SGR substring for second additional range.
3520 @item locus=
3521 @vindex locus GCC_COLORS @r{capability}
3522 SGR substring for location information, @samp{file:line} or
3523 @samp{file:line:column} etc.
3525 @item quote=
3526 @vindex quote GCC_COLORS @r{capability}
3527 SGR substring for information printed within quotes.
3529 @item fixit-insert=
3530 @vindex fixit-insert GCC_COLORS @r{capability}
3531 SGR substring for fix-it hints suggesting text to
3532 be inserted or replaced.
3534 @item fixit-delete=
3535 @vindex fixit-delete GCC_COLORS @r{capability}
3536 SGR substring for fix-it hints suggesting text to
3537 be deleted.
3539 @item diff-filename=
3540 @vindex diff-filename GCC_COLORS @r{capability}
3541 SGR substring for filename headers within generated patches.
3543 @item diff-hunk=
3544 @vindex diff-hunk GCC_COLORS @r{capability}
3545 SGR substring for the starts of hunks within generated patches.
3547 @item diff-delete=
3548 @vindex diff-delete GCC_COLORS @r{capability}
3549 SGR substring for deleted lines within generated patches.
3551 @item diff-insert=
3552 @vindex diff-insert GCC_COLORS @r{capability}
3553 SGR substring for inserted lines within generated patches.
3555 @item type-diff=
3556 @vindex type-diff GCC_COLORS @r{capability}
3557 SGR substring for highlighting mismatching types within template
3558 arguments in the C++ frontend.
3559 @end table
3561 @item -fno-diagnostics-show-option
3562 @opindex fno-diagnostics-show-option
3563 @opindex fdiagnostics-show-option
3564 By default, each diagnostic emitted includes text indicating the
3565 command-line option that directly controls the diagnostic (if such an
3566 option is known to the diagnostic machinery).  Specifying the
3567 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3569 @item -fno-diagnostics-show-caret
3570 @opindex fno-diagnostics-show-caret
3571 @opindex fdiagnostics-show-caret
3572 By default, each diagnostic emitted includes the original source line
3573 and a caret @samp{^} indicating the column.  This option suppresses this
3574 information.  The source line is truncated to @var{n} characters, if
3575 the @option{-fmessage-length=n} option is given.  When the output is done
3576 to the terminal, the width is limited to the width given by the
3577 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3579 @item -fdiagnostics-parseable-fixits
3580 @opindex fdiagnostics-parseable-fixits
3581 Emit fix-it hints in a machine-parseable format, suitable for consumption
3582 by IDEs.  For each fix-it, a line will be printed after the relevant
3583 diagnostic, starting with the string ``fix-it:''.  For example:
3585 @smallexample
3586 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3587 @end smallexample
3589 The location is expressed as a half-open range, expressed as a count of
3590 bytes, starting at byte 1 for the initial column.  In the above example,
3591 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3592 given string:
3594 @smallexample
3595 00000000011111111112222222222
3596 12345678901234567890123456789
3597   gtk_widget_showall (dlg);
3598   ^^^^^^^^^^^^^^^^^^
3599   gtk_widget_show_all
3600 @end smallexample
3602 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3603 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3604 (e.g. vertical tab as ``\013'').
3606 An empty replacement string indicates that the given range is to be removed.
3607 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3608 be inserted at the given position.
3610 @item -fdiagnostics-generate-patch
3611 @opindex fdiagnostics-generate-patch
3612 Print fix-it hints to stderr in unified diff format, after any diagnostics
3613 are printed.  For example:
3615 @smallexample
3616 --- test.c
3617 +++ test.c
3618 @@ -42,5 +42,5 @@
3620  void show_cb(GtkDialog *dlg)
3621  @{
3622 -  gtk_widget_showall(dlg);
3623 +  gtk_widget_show_all(dlg);
3624  @}
3626 @end smallexample
3628 The diff may or may not be colorized, following the same rules
3629 as for diagnostics (see @option{-fdiagnostics-color}).
3631 @item -fdiagnostics-show-template-tree
3632 @opindex fdiagnostics-show-template-tree
3634 In the C++ frontend, when printing diagnostics showing mismatching
3635 template types, such as:
3637 @smallexample
3638   could not convert 'std::map<int, std::vector<double> >()'
3639     from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3640 @end smallexample
3642 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3643 tree-like structure showing the common and differing parts of the types,
3644 such as:
3646 @smallexample
3647   map<
3648     [...],
3649     vector<
3650       [double != float]>>
3651 @end smallexample
3653 The parts that differ are highlighted with color (``double'' and
3654 ``float'' in this case).
3656 @item -fno-elide-type
3657 @opindex fno-elide-type
3658 @opindex felide-type
3659 By default when the C++ frontend prints diagnostics showing mismatching
3660 template types, common parts of the types are printed as ``[...]'' to
3661 simplify the error message.  For example:
3663 @smallexample
3664   could not convert 'std::map<int, std::vector<double> >()'
3665     from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3666 @end smallexample
3668 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3669 This flag also affects the output of the
3670 @option{-fdiagnostics-show-template-tree} flag.
3672 @item -fno-show-column
3673 @opindex fno-show-column
3674 Do not print column numbers in diagnostics.  This may be necessary if
3675 diagnostics are being scanned by a program that does not understand the
3676 column numbers, such as @command{dejagnu}.
3678 @end table
3680 @node Warning Options
3681 @section Options to Request or Suppress Warnings
3682 @cindex options to control warnings
3683 @cindex warning messages
3684 @cindex messages, warning
3685 @cindex suppressing warnings
3687 Warnings are diagnostic messages that report constructions that
3688 are not inherently erroneous but that are risky or suggest there
3689 may have been an error.
3691 The following language-independent options do not enable specific
3692 warnings but control the kinds of diagnostics produced by GCC@.
3694 @table @gcctabopt
3695 @cindex syntax checking
3696 @item -fsyntax-only
3697 @opindex fsyntax-only
3698 Check the code for syntax errors, but don't do anything beyond that.
3700 @item -fmax-errors=@var{n}
3701 @opindex fmax-errors
3702 Limits the maximum number of error messages to @var{n}, at which point
3703 GCC bails out rather than attempting to continue processing the source
3704 code.  If @var{n} is 0 (the default), there is no limit on the number
3705 of error messages produced.  If @option{-Wfatal-errors} is also
3706 specified, then @option{-Wfatal-errors} takes precedence over this
3707 option.
3709 @item -w
3710 @opindex w
3711 Inhibit all warning messages.
3713 @item -Werror
3714 @opindex Werror
3715 @opindex Wno-error
3716 Make all warnings into errors.
3718 @item -Werror=
3719 @opindex Werror=
3720 @opindex Wno-error=
3721 Make the specified warning into an error.  The specifier for a warning
3722 is appended; for example @option{-Werror=switch} turns the warnings
3723 controlled by @option{-Wswitch} into errors.  This switch takes a
3724 negative form, to be used to negate @option{-Werror} for specific
3725 warnings; for example @option{-Wno-error=switch} makes
3726 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3727 is in effect.
3729 The warning message for each controllable warning includes the
3730 option that controls the warning.  That option can then be used with
3731 @option{-Werror=} and @option{-Wno-error=} as described above.
3732 (Printing of the option in the warning message can be disabled using the
3733 @option{-fno-diagnostics-show-option} flag.)
3735 Note that specifying @option{-Werror=}@var{foo} automatically implies
3736 @option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
3737 imply anything.
3739 @item -Wfatal-errors
3740 @opindex Wfatal-errors
3741 @opindex Wno-fatal-errors
3742 This option causes the compiler to abort compilation on the first error
3743 occurred rather than trying to keep going and printing further error
3744 messages.
3746 @end table
3748 You can request many specific warnings with options beginning with
3749 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3750 implicit declarations.  Each of these specific warning options also
3751 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3752 example, @option{-Wno-implicit}.  This manual lists only one of the
3753 two forms, whichever is not the default.  For further
3754 language-specific options also refer to @ref{C++ Dialect Options} and
3755 @ref{Objective-C and Objective-C++ Dialect Options}.
3757 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3758 options, such as @option{-Wunused}, which may turn on further options,
3759 such as @option{-Wunused-value}. The combined effect of positive and
3760 negative forms is that more specific options have priority over less
3761 specific ones, independently of their position in the command-line. For
3762 options of the same specificity, the last one takes effect. Options
3763 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3764 as if they appeared at the end of the command-line.
3766 When an unrecognized warning option is requested (e.g.,
3767 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3768 that the option is not recognized.  However, if the @option{-Wno-} form
3769 is used, the behavior is slightly different: no diagnostic is
3770 produced for @option{-Wno-unknown-warning} unless other diagnostics
3771 are being produced.  This allows the use of new @option{-Wno-} options
3772 with old compilers, but if something goes wrong, the compiler
3773 warns that an unrecognized option is present.
3775 @table @gcctabopt
3776 @item -Wpedantic
3777 @itemx -pedantic
3778 @opindex pedantic
3779 @opindex Wpedantic
3780 Issue all the warnings demanded by strict ISO C and ISO C++;
3781 reject all programs that use forbidden extensions, and some other
3782 programs that do not follow ISO C and ISO C++.  For ISO C, follows the
3783 version of the ISO C standard specified by any @option{-std} option used.
3785 Valid ISO C and ISO C++ programs should compile properly with or without
3786 this option (though a rare few require @option{-ansi} or a
3787 @option{-std} option specifying the required version of ISO C)@.  However,
3788 without this option, certain GNU extensions and traditional C and C++
3789 features are supported as well.  With this option, they are rejected.
3791 @option{-Wpedantic} does not cause warning messages for use of the
3792 alternate keywords whose names begin and end with @samp{__}.  Pedantic
3793 warnings are also disabled in the expression that follows
3794 @code{__extension__}.  However, only system header files should use
3795 these escape routes; application programs should avoid them.
3796 @xref{Alternate Keywords}.
3798 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3799 C conformance.  They soon find that it does not do quite what they want:
3800 it finds some non-ISO practices, but not all---only those for which
3801 ISO C @emph{requires} a diagnostic, and some others for which
3802 diagnostics have been added.
3804 A feature to report any failure to conform to ISO C might be useful in
3805 some instances, but would require considerable additional work and would
3806 be quite different from @option{-Wpedantic}.  We don't have plans to
3807 support such a feature in the near future.
3809 Where the standard specified with @option{-std} represents a GNU
3810 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3811 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3812 extended dialect is based.  Warnings from @option{-Wpedantic} are given
3813 where they are required by the base standard.  (It does not make sense
3814 for such warnings to be given only for features not in the specified GNU
3815 C dialect, since by definition the GNU dialects of C include all
3816 features the compiler supports with the given option, and there would be
3817 nothing to warn about.)
3819 @item -pedantic-errors
3820 @opindex pedantic-errors
3821 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3822 requires a diagnostic, in some cases where there is undefined behavior
3823 at compile-time and in some other cases that do not prevent compilation
3824 of programs that are valid according to the standard. This is not
3825 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3826 by this option and not enabled by the latter and vice versa.
3828 @item -Wall
3829 @opindex Wall
3830 @opindex Wno-all
3831 This enables all the warnings about constructions that some users
3832 consider questionable, and that are easy to avoid (or modify to
3833 prevent the warning), even in conjunction with macros.  This also
3834 enables some language-specific warnings described in @ref{C++ Dialect
3835 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3837 @option{-Wall} turns on the following warning flags:
3839 @gccoptlist{-Waddress   @gol
3840 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
3841 -Wbool-compare  @gol
3842 -Wbool-operation  @gol
3843 -Wc++11-compat  -Wc++14-compat  @gol
3844 -Wcatch-value @r{(C++ and Objective-C++ only)}  @gol
3845 -Wchar-subscripts  @gol
3846 -Wcomment  @gol
3847 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3848 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3849 -Wformat   @gol
3850 -Wint-in-bool-context  @gol
3851 -Wimplicit @r{(C and Objective-C only)} @gol
3852 -Wimplicit-int @r{(C and Objective-C only)} @gol
3853 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3854 -Winit-self @r{(only for C++)} @gol
3855 -Wlogical-not-parentheses @gol
3856 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
3857 -Wmaybe-uninitialized @gol
3858 -Wmemset-elt-size @gol
3859 -Wmemset-transposed-args @gol
3860 -Wmisleading-indentation @r{(only for C/C++)} @gol
3861 -Wmissing-braces @r{(only for C/ObjC)} @gol
3862 -Wmultistatement-macros  @gol
3863 -Wnarrowing @r{(only for C++)}  @gol
3864 -Wnonnull  @gol
3865 -Wnonnull-compare  @gol
3866 -Wopenmp-simd @gol
3867 -Wparentheses  @gol
3868 -Wpointer-sign  @gol
3869 -Wreorder   @gol
3870 -Wreturn-type  @gol
3871 -Wsequence-point  @gol
3872 -Wsign-compare @r{(only in C++)}  @gol
3873 -Wsizeof-pointer-div @gol
3874 -Wsizeof-pointer-memaccess @gol
3875 -Wstrict-aliasing  @gol
3876 -Wstrict-overflow=1  @gol
3877 -Wswitch  @gol
3878 -Wtautological-compare  @gol
3879 -Wtrigraphs  @gol
3880 -Wuninitialized  @gol
3881 -Wunknown-pragmas  @gol
3882 -Wunused-function  @gol
3883 -Wunused-label     @gol
3884 -Wunused-value     @gol
3885 -Wunused-variable  @gol
3886 -Wvolatile-register-var @gol
3889 Note that some warning flags are not implied by @option{-Wall}.  Some of
3890 them warn about constructions that users generally do not consider
3891 questionable, but which occasionally you might wish to check for;
3892 others warn about constructions that are necessary or hard to avoid in
3893 some cases, and there is no simple way to modify the code to suppress
3894 the warning. Some of them are enabled by @option{-Wextra} but many of
3895 them must be enabled individually.
3897 @item -Wextra
3898 @opindex W
3899 @opindex Wextra
3900 @opindex Wno-extra
3901 This enables some extra warning flags that are not enabled by
3902 @option{-Wall}. (This option used to be called @option{-W}.  The older
3903 name is still supported, but the newer name is more descriptive.)
3905 @gccoptlist{-Wclobbered  @gol
3906 -Wempty-body  @gol
3907 -Wignored-qualifiers @gol
3908 -Wimplicit-fallthrough=3 @gol
3909 -Wmissing-field-initializers  @gol
3910 -Wmissing-parameter-type @r{(C only)}  @gol
3911 -Wold-style-declaration @r{(C only)}  @gol
3912 -Woverride-init  @gol
3913 -Wsign-compare @r{(C only)} @gol
3914 -Wtype-limits  @gol
3915 -Wuninitialized  @gol
3916 -Wshift-negative-value @r{(in C++03 and in C99 and newer)}  @gol
3917 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3918 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}  @gol
3921 The option @option{-Wextra} also prints warning messages for the
3922 following cases:
3924 @itemize @bullet
3926 @item
3927 A pointer is compared against integer zero with @code{<}, @code{<=},
3928 @code{>}, or @code{>=}.
3930 @item
3931 (C++ only) An enumerator and a non-enumerator both appear in a
3932 conditional expression.
3934 @item
3935 (C++ only) Ambiguous virtual bases.
3937 @item
3938 (C++ only) Subscripting an array that has been declared @code{register}.
3940 @item
3941 (C++ only) Taking the address of a variable that has been declared
3942 @code{register}.
3944 @item
3945 (C++ only) A base class is not initialized in the copy constructor
3946 of a derived class.
3948 @end itemize
3950 @item -Wchar-subscripts
3951 @opindex Wchar-subscripts
3952 @opindex Wno-char-subscripts
3953 Warn if an array subscript has type @code{char}.  This is a common cause
3954 of error, as programmers often forget that this type is signed on some
3955 machines.
3956 This warning is enabled by @option{-Wall}.
3958 @item -Wchkp
3959 @opindex Wchkp
3960 Warn about an invalid memory access that is found by Pointer Bounds Checker
3961 (@option{-fcheck-pointer-bounds}).
3963 @item -Wno-coverage-mismatch
3964 @opindex Wno-coverage-mismatch
3965 Warn if feedback profiles do not match when using the
3966 @option{-fprofile-use} option.
3967 If a source file is changed between compiling with @option{-fprofile-gen} and
3968 with @option{-fprofile-use}, the files with the profile feedback can fail
3969 to match the source file and GCC cannot use the profile feedback
3970 information.  By default, this warning is enabled and is treated as an
3971 error.  @option{-Wno-coverage-mismatch} can be used to disable the
3972 warning or @option{-Wno-error=coverage-mismatch} can be used to
3973 disable the error.  Disabling the error for this warning can result in
3974 poorly optimized code and is useful only in the
3975 case of very minor changes such as bug fixes to an existing code-base.
3976 Completely disabling the warning is not recommended.
3978 @item -Wno-cpp
3979 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3981 Suppress warning messages emitted by @code{#warning} directives.
3983 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3984 @opindex Wdouble-promotion
3985 @opindex Wno-double-promotion
3986 Give a warning when a value of type @code{float} is implicitly
3987 promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
3988 floating-point unit implement @code{float} in hardware, but emulate
3989 @code{double} in software.  On such a machine, doing computations
3990 using @code{double} values is much more expensive because of the
3991 overhead required for software emulation.
3993 It is easy to accidentally do computations with @code{double} because
3994 floating-point literals are implicitly of type @code{double}.  For
3995 example, in:
3996 @smallexample
3997 @group
3998 float area(float radius)
4000    return 3.14159 * radius * radius;
4002 @end group
4003 @end smallexample
4004 the compiler performs the entire computation with @code{double}
4005 because the floating-point literal is a @code{double}.
4007 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4008 @opindex Wduplicate-decl-specifier
4009 @opindex Wno-duplicate-decl-specifier
4010 Warn if a declaration has duplicate @code{const}, @code{volatile},
4011 @code{restrict} or @code{_Atomic} specifier.  This warning is enabled by
4012 @option{-Wall}.
4014 @item -Wformat
4015 @itemx -Wformat=@var{n}
4016 @opindex Wformat
4017 @opindex Wno-format
4018 @opindex ffreestanding
4019 @opindex fno-builtin
4020 @opindex Wformat=
4021 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4022 the arguments supplied have types appropriate to the format string
4023 specified, and that the conversions specified in the format string make
4024 sense.  This includes standard functions, and others specified by format
4025 attributes (@pxref{Function Attributes}), in the @code{printf},
4026 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4027 not in the C standard) families (or other target-specific families).
4028 Which functions are checked without format attributes having been
4029 specified depends on the standard version selected, and such checks of
4030 functions without the attribute specified are disabled by
4031 @option{-ffreestanding} or @option{-fno-builtin}.
4033 The formats are checked against the format features supported by GNU
4034 libc version 2.2.  These include all ISO C90 and C99 features, as well
4035 as features from the Single Unix Specification and some BSD and GNU
4036 extensions.  Other library implementations may not support all these
4037 features; GCC does not support warning about features that go beyond a
4038 particular library's limitations.  However, if @option{-Wpedantic} is used
4039 with @option{-Wformat}, warnings are given about format features not
4040 in the selected standard version (but not for @code{strfmon} formats,
4041 since those are not in any version of the C standard).  @xref{C Dialect
4042 Options,,Options Controlling C Dialect}.
4044 @table @gcctabopt
4045 @item -Wformat=1
4046 @itemx -Wformat
4047 @opindex Wformat
4048 @opindex Wformat=1
4049 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4050 @option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
4051 @option{-Wformat} also checks for null format arguments for several
4052 functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
4053 aspects of this level of format checking can be disabled by the
4054 options: @option{-Wno-format-contains-nul},
4055 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4056 @option{-Wformat} is enabled by @option{-Wall}.
4058 @item -Wno-format-contains-nul
4059 @opindex Wno-format-contains-nul
4060 @opindex Wformat-contains-nul
4061 If @option{-Wformat} is specified, do not warn about format strings that
4062 contain NUL bytes.
4064 @item -Wno-format-extra-args
4065 @opindex Wno-format-extra-args
4066 @opindex Wformat-extra-args
4067 If @option{-Wformat} is specified, do not warn about excess arguments to a
4068 @code{printf} or @code{scanf} format function.  The C standard specifies
4069 that such arguments are ignored.
4071 Where the unused arguments lie between used arguments that are
4072 specified with @samp{$} operand number specifications, normally
4073 warnings are still given, since the implementation could not know what
4074 type to pass to @code{va_arg} to skip the unused arguments.  However,
4075 in the case of @code{scanf} formats, this option suppresses the
4076 warning if the unused arguments are all pointers, since the Single
4077 Unix Specification says that such unused arguments are allowed.
4079 @item -Wformat-overflow
4080 @itemx -Wformat-overflow=@var{level}
4081 @opindex Wformat-overflow
4082 @opindex Wno-format-overflow
4083 Warn about calls to formatted input/output functions such as @code{sprintf}
4084 and @code{vsprintf} that might overflow the destination buffer.  When the
4085 exact number of bytes written by a format directive cannot be determined
4086 at compile-time it is estimated based on heuristics that depend on the
4087 @var{level} argument and on optimization.  While enabling optimization
4088 will in most cases improve the accuracy of the warning, it may also
4089 result in false positives.
4091 @table @gcctabopt
4092 @item -Wformat-overflow
4093 @item -Wformat-overflow=1
4094 @opindex Wformat-overflow
4095 @opindex Wno-format-overflow
4096 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4097 employs a conservative approach that warns only about calls that most
4098 likely overflow the buffer.  At this level, numeric arguments to format
4099 directives with unknown values are assumed to have the value of one, and
4100 strings of unknown length to be empty.  Numeric arguments that are known
4101 to be bounded to a subrange of their type, or string arguments whose output
4102 is bounded either by their directive's precision or by a finite set of
4103 string literals, are assumed to take on the value within the range that
4104 results in the most bytes on output.  For example, the call to @code{sprintf}
4105 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4106 the terminating NUL character (@code{'\0'}) appended by the function
4107 to the destination buffer will be written past its end.  Increasing
4108 the size of the buffer by a single byte is sufficient to avoid the
4109 warning, though it may not be sufficient to avoid the overflow.
4111 @smallexample
4112 void f (int a, int b)
4114   char buf [12];
4115   sprintf (buf, "a = %i, b = %i\n", a, b);
4117 @end smallexample
4119 @item -Wformat-overflow=2
4120 Level @var{2} warns also about calls that might overflow the destination
4121 buffer given an argument of sufficient length or magnitude.  At level
4122 @var{2}, unknown numeric arguments are assumed to have the minimum
4123 representable value for signed types with a precision greater than 1, and
4124 the maximum representable value otherwise.  Unknown string arguments whose
4125 length cannot be assumed to be bounded either by the directive's precision,
4126 or by a finite set of string literals they may evaluate to, or the character
4127 array they may point to, are assumed to be 1 character long.
4129 At level @var{2}, the call in the example above is again diagnosed, but
4130 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4131 @code{%i} directive will write some of its digits beyond the end of
4132 the destination buffer.  To make the call safe regardless of the values
4133 of the two variables, the size of the destination buffer must be increased
4134 to at least 34 bytes.  GCC includes the minimum size of the buffer in
4135 an informational note following the warning.
4137 An alternative to increasing the size of the destination buffer is to
4138 constrain the range of formatted values.  The maximum length of string
4139 arguments can be bounded by specifying the precision in the format
4140 directive.  When numeric arguments of format directives can be assumed
4141 to be bounded by less than the precision of their type, choosing
4142 an appropriate length modifier to the format specifier will reduce
4143 the required buffer size.  For example, if @var{a} and @var{b} in the
4144 example above can be assumed to be within the precision of
4145 the @code{short int} type then using either the @code{%hi} format
4146 directive or casting the argument to @code{short} reduces the maximum
4147 required size of the buffer to 24 bytes.
4149 @smallexample
4150 void f (int a, int b)
4152   char buf [23];
4153   sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4155 @end smallexample
4156 @end table
4158 @item -Wno-format-zero-length
4159 @opindex Wno-format-zero-length
4160 @opindex Wformat-zero-length
4161 If @option{-Wformat} is specified, do not warn about zero-length formats.
4162 The C standard specifies that zero-length formats are allowed.
4165 @item -Wformat=2
4166 @opindex Wformat=2
4167 Enable @option{-Wformat} plus additional format checks.  Currently
4168 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4169 -Wformat-y2k}.
4171 @item -Wformat-nonliteral
4172 @opindex Wformat-nonliteral
4173 @opindex Wno-format-nonliteral
4174 If @option{-Wformat} is specified, also warn if the format string is not a
4175 string literal and so cannot be checked, unless the format function
4176 takes its format arguments as a @code{va_list}.
4178 @item -Wformat-security
4179 @opindex Wformat-security
4180 @opindex Wno-format-security
4181 If @option{-Wformat} is specified, also warn about uses of format
4182 functions that represent possible security problems.  At present, this
4183 warns about calls to @code{printf} and @code{scanf} functions where the
4184 format string is not a string literal and there are no format arguments,
4185 as in @code{printf (foo);}.  This may be a security hole if the format
4186 string came from untrusted input and contains @samp{%n}.  (This is
4187 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4188 in future warnings may be added to @option{-Wformat-security} that are not
4189 included in @option{-Wformat-nonliteral}.)
4191 @item -Wformat-signedness
4192 @opindex Wformat-signedness
4193 @opindex Wno-format-signedness
4194 If @option{-Wformat} is specified, also warn if the format string
4195 requires an unsigned argument and the argument is signed and vice versa.
4197 @item -Wformat-truncation
4198 @itemx -Wformat-truncation=@var{level}
4199 @opindex Wformat-truncation
4200 @opindex Wno-format-truncation
4201 Warn about calls to formatted input/output functions such as @code{snprintf}
4202 and @code{vsnprintf} that might result in output truncation.  When the exact
4203 number of bytes written by a format directive cannot be determined at
4204 compile-time it is estimated based on heuristics that depend on
4205 the @var{level} argument and on optimization.  While enabling optimization
4206 will in most cases improve the accuracy of the warning, it may also result
4207 in false positives.  Except as noted otherwise, the option uses the same
4208 logic @option{-Wformat-overflow}.
4210 @table @gcctabopt
4211 @item -Wformat-truncation
4212 @item -Wformat-truncation=1
4213 @opindex Wformat-truncation
4214 @opindex Wno-format-overflow
4215 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4216 employs a conservative approach that warns only about calls to bounded
4217 functions whose return value is unused and that will most likely result
4218 in output truncation.
4220 @item -Wformat-truncation=2
4221 Level @var{2} warns also about calls to bounded functions whose return
4222 value is used and that might result in truncation given an argument of
4223 sufficient length or magnitude.
4224 @end table
4226 @item -Wformat-y2k
4227 @opindex Wformat-y2k
4228 @opindex Wno-format-y2k
4229 If @option{-Wformat} is specified, also warn about @code{strftime}
4230 formats that may yield only a two-digit year.
4231 @end table
4233 @item -Wnonnull
4234 @opindex Wnonnull
4235 @opindex Wno-nonnull
4236 Warn about passing a null pointer for arguments marked as
4237 requiring a non-null value by the @code{nonnull} function attribute.
4239 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
4240 can be disabled with the @option{-Wno-nonnull} option.
4242 @item -Wnonnull-compare
4243 @opindex Wnonnull-compare
4244 @opindex Wno-nonnull-compare
4245 Warn when comparing an argument marked with the @code{nonnull}
4246 function attribute against null inside the function.
4248 @option{-Wnonnull-compare} is included in @option{-Wall}.  It
4249 can be disabled with the @option{-Wno-nonnull-compare} option.
4251 @item -Wnull-dereference
4252 @opindex Wnull-dereference
4253 @opindex Wno-null-dereference
4254 Warn if the compiler detects paths that trigger erroneous or
4255 undefined behavior due to dereferencing a null pointer.  This option
4256 is only active when @option{-fdelete-null-pointer-checks} is active,
4257 which is enabled by optimizations in most targets.  The precision of
4258 the warnings depends on the optimization options used.
4260 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4261 @opindex Winit-self
4262 @opindex Wno-init-self
4263 Warn about uninitialized variables that are initialized with themselves.
4264 Note this option can only be used with the @option{-Wuninitialized} option.
4266 For example, GCC warns about @code{i} being uninitialized in the
4267 following snippet only when @option{-Winit-self} has been specified:
4268 @smallexample
4269 @group
4270 int f()
4272   int i = i;
4273   return i;
4275 @end group
4276 @end smallexample
4278 This warning is enabled by @option{-Wall} in C++.
4280 @item -Wimplicit-int @r{(C and Objective-C only)}
4281 @opindex Wimplicit-int
4282 @opindex Wno-implicit-int
4283 Warn when a declaration does not specify a type.
4284 This warning is enabled by @option{-Wall}.
4286 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4287 @opindex Wimplicit-function-declaration
4288 @opindex Wno-implicit-function-declaration
4289 Give a warning whenever a function is used before being declared. In
4290 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4291 enabled by default and it is made into an error by
4292 @option{-pedantic-errors}. This warning is also enabled by
4293 @option{-Wall}.
4295 @item -Wimplicit @r{(C and Objective-C only)}
4296 @opindex Wimplicit
4297 @opindex Wno-implicit
4298 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4299 This warning is enabled by @option{-Wall}.
4301 @item -Wimplicit-fallthrough
4302 @opindex Wimplicit-fallthrough
4303 @opindex Wno-implicit-fallthrough
4304 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4305 and @option{-Wno-implicit-fallthrough} is the same as
4306 @option{-Wimplicit-fallthrough=0}.
4308 @item -Wimplicit-fallthrough=@var{n}
4309 @opindex Wimplicit-fallthrough=
4310 Warn when a switch case falls through.  For example:
4312 @smallexample
4313 @group
4314 switch (cond)
4315   @{
4316   case 1:
4317     a = 1;
4318     break;
4319   case 2:
4320     a = 2;
4321   case 3:
4322     a = 3;
4323     break;
4324   @}
4325 @end group
4326 @end smallexample
4328 This warning does not warn when the last statement of a case cannot
4329 fall through, e.g. when there is a return statement or a call to function
4330 declared with the noreturn attribute.  @option{-Wimplicit-fallthrough=}
4331 also takes into account control flow statements, such as ifs, and only
4332 warns when appropriate.  E.g.@:
4334 @smallexample
4335 @group
4336 switch (cond)
4337   @{
4338   case 1:
4339     if (i > 3) @{
4340       bar (5);
4341       break;
4342     @} else if (i < 1) @{
4343       bar (0);
4344     @} else
4345       return;
4346   default:
4347     @dots{}
4348   @}
4349 @end group
4350 @end smallexample
4352 Since there are occasions where a switch case fall through is desirable,
4353 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4354 to be used along with a null statement to suppress this warning that
4355 would normally occur:
4357 @smallexample
4358 @group
4359 switch (cond)
4360   @{
4361   case 1:
4362     bar (0);
4363     __attribute__ ((fallthrough));
4364   default:
4365     @dots{}
4366   @}
4367 @end group
4368 @end smallexample
4370 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4371 warning using @code{[[fallthrough]];} instead of the GNU attribute.  In C++11
4372 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4373 Instead of these attributes, it is also possible to add a fallthrough comment
4374 to silence the warning.  The whole body of the C or C++ style comment should
4375 match the given regular expressions listed below.  The option argument @var{n}
4376 specifies what kind of comments are accepted:
4378 @itemize @bullet
4380 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4382 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4383 expression, any comment is used as fallthrough comment.
4385 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4386 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4388 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4389 following regular expressions:
4391 @itemize @bullet
4393 @item @code{-fallthrough}
4395 @item @code{@@fallthrough@@}
4397 @item @code{lint -fallthrough[ \t]*}
4399 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4401 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4403 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4405 @end itemize
4407 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4408 following regular expressions:
4410 @itemize @bullet
4412 @item @code{-fallthrough}
4414 @item @code{@@fallthrough@@}
4416 @item @code{lint -fallthrough[ \t]*}
4418 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4420 @end itemize
4422 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4423 fallthrough comments, only attributes disable the warning.
4425 @end itemize
4427 The comment needs to be followed after optional whitespace and other comments
4428 by @code{case} or @code{default} keywords or by a user label that precedes some
4429 @code{case} or @code{default} label.
4431 @smallexample
4432 @group
4433 switch (cond)
4434   @{
4435   case 1:
4436     bar (0);
4437     /* FALLTHRU */
4438   default:
4439     @dots{}
4440   @}
4441 @end group
4442 @end smallexample
4444 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4446 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4447 @opindex Wif-not-aligned
4448 @opindex Wno-if-not-aligned
4449 Control if warning triggered by the @code{warn_if_not_aligned} attribute
4450 should be issued.  This is is enabled by default.
4451 Use @option{-Wno-if-not-aligned} to disable it.
4453 @item -Wignored-qualifiers @r{(C and C++ only)}
4454 @opindex Wignored-qualifiers
4455 @opindex Wno-ignored-qualifiers
4456 Warn if the return type of a function has a type qualifier
4457 such as @code{const}.  For ISO C such a type qualifier has no effect,
4458 since the value returned by a function is not an lvalue.
4459 For C++, the warning is only emitted for scalar types or @code{void}.
4460 ISO C prohibits qualified @code{void} return types on function
4461 definitions, so such return types always receive a warning
4462 even without this option.
4464 This warning is also enabled by @option{-Wextra}.
4466 @item -Wignored-attributes @r{(C and C++ only)}
4467 @opindex Wignored-attributes
4468 @opindex Wno-ignored-attributes
4469 Warn when an attribute is ignored.  This is different from the
4470 @option{-Wattributes} option in that it warns whenever the compiler decides
4471 to drop an attribute, not that the attribute is either unknown, used in a
4472 wrong place, etc.  This warning is enabled by default.
4474 @item -Wmain
4475 @opindex Wmain
4476 @opindex Wno-main
4477 Warn if the type of @code{main} is suspicious.  @code{main} should be
4478 a function with external linkage, returning int, taking either zero
4479 arguments, two, or three arguments of appropriate types.  This warning
4480 is enabled by default in C++ and is enabled by either @option{-Wall}
4481 or @option{-Wpedantic}.
4483 @item -Wmisleading-indentation @r{(C and C++ only)}
4484 @opindex Wmisleading-indentation
4485 @opindex Wno-misleading-indentation
4486 Warn when the indentation of the code does not reflect the block structure.
4487 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4488 @code{for} clauses with a guarded statement that does not use braces,
4489 followed by an unguarded statement with the same indentation.
4491 In the following example, the call to ``bar'' is misleadingly indented as
4492 if it were guarded by the ``if'' conditional.
4494 @smallexample
4495   if (some_condition ())
4496     foo ();
4497     bar ();  /* Gotcha: this is not guarded by the "if".  */
4498 @end smallexample
4500 In the case of mixed tabs and spaces, the warning uses the
4501 @option{-ftabstop=} option to determine if the statements line up
4502 (defaulting to 8).
4504 The warning is not issued for code involving multiline preprocessor logic
4505 such as the following example.
4507 @smallexample
4508   if (flagA)
4509     foo (0);
4510 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4511   if (flagB)
4512 #endif
4513     foo (1);
4514 @end smallexample
4516 The warning is not issued after a @code{#line} directive, since this
4517 typically indicates autogenerated code, and no assumptions can be made
4518 about the layout of the file that the directive references.
4520 This warning is enabled by @option{-Wall} in C and C++.
4522 @item -Wmissing-braces
4523 @opindex Wmissing-braces
4524 @opindex Wno-missing-braces
4525 Warn if an aggregate or union initializer is not fully bracketed.  In
4526 the following example, the initializer for @code{a} is not fully
4527 bracketed, but that for @code{b} is fully bracketed.  This warning is
4528 enabled by @option{-Wall} in C.
4530 @smallexample
4531 int a[2][2] = @{ 0, 1, 2, 3 @};
4532 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4533 @end smallexample
4535 This warning is enabled by @option{-Wall}.
4537 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4538 @opindex Wmissing-include-dirs
4539 @opindex Wno-missing-include-dirs
4540 Warn if a user-supplied include directory does not exist.
4542 @item -Wmultistatement-macros
4543 @opindex Wmultistatement-macros
4544 @opindex Wno-multistatement-macros
4545 Warn about unsafe multiple statement macros that appear to be guarded
4546 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4547 @code{while}, in which only the first statement is actually guarded after
4548 the macro is expanded.
4550 For example:
4552 @smallexample
4553 #define DOIT x++; y++
4554 if (c)
4555   DOIT;
4556 @end smallexample
4558 will increment @code{y} unconditionally, not just when @code{c} holds.
4559 The can usually be fixed by wrapping the macro in a do-while loop:
4560 @smallexample
4561 #define DOIT do @{ x++; y++; @} while (0)
4562 if (c)
4563   DOIT;
4564 @end smallexample
4566 This warning is enabled by @option{-Wall} in C and C++.
4568 @item -Wparentheses
4569 @opindex Wparentheses
4570 @opindex Wno-parentheses
4571 Warn if parentheses are omitted in certain contexts, such
4572 as when there is an assignment in a context where a truth value
4573 is expected, or when operators are nested whose precedence people
4574 often get confused about.
4576 Also warn if a comparison like @code{x<=y<=z} appears; this is
4577 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4578 interpretation from that of ordinary mathematical notation.
4580 Also warn for dangerous uses of the GNU extension to
4581 @code{?:} with omitted middle operand. When the condition
4582 in the @code{?}: operator is a boolean expression, the omitted value is
4583 always 1.  Often programmers expect it to be a value computed
4584 inside the conditional expression instead.
4586 For C++ this also warns for some cases of unnecessary parentheses in
4587 declarations, which can indicate an attempt at a function call instead
4588 of a declaration:
4589 @smallexample
4591   // Declares a local variable called mymutex.
4592   std::unique_lock<std::mutex> (mymutex);
4593   // User meant std::unique_lock<std::mutex> lock (mymutex);
4595 @end smallexample
4597 This warning is enabled by @option{-Wall}.
4599 @item -Wsequence-point
4600 @opindex Wsequence-point
4601 @opindex Wno-sequence-point
4602 Warn about code that may have undefined semantics because of violations
4603 of sequence point rules in the C and C++ standards.
4605 The C and C++ standards define the order in which expressions in a C/C++
4606 program are evaluated in terms of @dfn{sequence points}, which represent
4607 a partial ordering between the execution of parts of the program: those
4608 executed before the sequence point, and those executed after it.  These
4609 occur after the evaluation of a full expression (one which is not part
4610 of a larger expression), after the evaluation of the first operand of a
4611 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4612 function is called (but after the evaluation of its arguments and the
4613 expression denoting the called function), and in certain other places.
4614 Other than as expressed by the sequence point rules, the order of
4615 evaluation of subexpressions of an expression is not specified.  All
4616 these rules describe only a partial order rather than a total order,
4617 since, for example, if two functions are called within one expression
4618 with no sequence point between them, the order in which the functions
4619 are called is not specified.  However, the standards committee have
4620 ruled that function calls do not overlap.
4622 It is not specified when between sequence points modifications to the
4623 values of objects take effect.  Programs whose behavior depends on this
4624 have undefined behavior; the C and C++ standards specify that ``Between
4625 the previous and next sequence point an object shall have its stored
4626 value modified at most once by the evaluation of an expression.
4627 Furthermore, the prior value shall be read only to determine the value
4628 to be stored.''.  If a program breaks these rules, the results on any
4629 particular implementation are entirely unpredictable.
4631 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4632 = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
4633 diagnosed by this option, and it may give an occasional false positive
4634 result, but in general it has been found fairly effective at detecting
4635 this sort of problem in programs.
4637 The C++17 standard will define the order of evaluation of operands in
4638 more cases: in particular it requires that the right-hand side of an
4639 assignment be evaluated before the left-hand side, so the above
4640 examples are no longer undefined.  But this warning will still warn
4641 about them, to help people avoid writing code that is undefined in C
4642 and earlier revisions of C++.
4644 The standard is worded confusingly, therefore there is some debate
4645 over the precise meaning of the sequence point rules in subtle cases.
4646 Links to discussions of the problem, including proposed formal
4647 definitions, may be found on the GCC readings page, at
4648 @uref{http://gcc.gnu.org/@/readings.html}.
4650 This warning is enabled by @option{-Wall} for C and C++.
4652 @item -Wno-return-local-addr
4653 @opindex Wno-return-local-addr
4654 @opindex Wreturn-local-addr
4655 Do not warn about returning a pointer (or in C++, a reference) to a
4656 variable that goes out of scope after the function returns.
4658 @item -Wreturn-type
4659 @opindex Wreturn-type
4660 @opindex Wno-return-type
4661 Warn whenever a function is defined with a return type that defaults
4662 to @code{int}.  Also warn about any @code{return} statement with no
4663 return value in a function whose return type is not @code{void}
4664 (falling off the end of the function body is considered returning
4665 without a value).
4667 For C only, warn about a @code{return} statement with an expression in a
4668 function whose return type is @code{void}, unless the expression type is
4669 also @code{void}.  As a GNU extension, the latter case is accepted
4670 without a warning unless @option{-Wpedantic} is used.
4672 For C++, a function without return type always produces a diagnostic
4673 message, even when @option{-Wno-return-type} is specified.  The only
4674 exceptions are @code{main} and functions defined in system headers.
4676 This warning is enabled by @option{-Wall}.
4678 @item -Wshift-count-negative
4679 @opindex Wshift-count-negative
4680 @opindex Wno-shift-count-negative
4681 Warn if shift count is negative. This warning is enabled by default.
4683 @item -Wshift-count-overflow
4684 @opindex Wshift-count-overflow
4685 @opindex Wno-shift-count-overflow
4686 Warn if shift count >= width of type. This warning is enabled by default.
4688 @item -Wshift-negative-value
4689 @opindex Wshift-negative-value
4690 @opindex Wno-shift-negative-value
4691 Warn if left shifting a negative value.  This warning is enabled by
4692 @option{-Wextra} in C99 and C++11 modes (and newer).
4694 @item -Wshift-overflow
4695 @itemx -Wshift-overflow=@var{n}
4696 @opindex Wshift-overflow
4697 @opindex Wno-shift-overflow
4698 Warn about left shift overflows.  This warning is enabled by
4699 default in C99 and C++11 modes (and newer).
4701 @table @gcctabopt
4702 @item -Wshift-overflow=1
4703 This is the warning level of @option{-Wshift-overflow} and is enabled
4704 by default in C99 and C++11 modes (and newer).  This warning level does
4705 not warn about left-shifting 1 into the sign bit.  (However, in C, such
4706 an overflow is still rejected in contexts where an integer constant expression
4707 is required.)
4709 @item -Wshift-overflow=2
4710 This warning level also warns about left-shifting 1 into the sign bit,
4711 unless C++14 mode is active.
4712 @end table
4714 @item -Wswitch
4715 @opindex Wswitch
4716 @opindex Wno-switch
4717 Warn whenever a @code{switch} statement has an index of enumerated type
4718 and lacks a @code{case} for one or more of the named codes of that
4719 enumeration.  (The presence of a @code{default} label prevents this
4720 warning.)  @code{case} labels outside the enumeration range also
4721 provoke warnings when this option is used (even if there is a
4722 @code{default} label).
4723 This warning is enabled by @option{-Wall}.
4725 @item -Wswitch-default
4726 @opindex Wswitch-default
4727 @opindex Wno-switch-default
4728 Warn whenever a @code{switch} statement does not have a @code{default}
4729 case.
4731 @item -Wswitch-enum
4732 @opindex Wswitch-enum
4733 @opindex Wno-switch-enum
4734 Warn whenever a @code{switch} statement has an index of enumerated type
4735 and lacks a @code{case} for one or more of the named codes of that
4736 enumeration.  @code{case} labels outside the enumeration range also
4737 provoke warnings when this option is used.  The only difference
4738 between @option{-Wswitch} and this option is that this option gives a
4739 warning about an omitted enumeration code even if there is a
4740 @code{default} label.
4742 @item -Wswitch-bool
4743 @opindex Wswitch-bool
4744 @opindex Wno-switch-bool
4745 Warn whenever a @code{switch} statement has an index of boolean type
4746 and the case values are outside the range of a boolean type.
4747 It is possible to suppress this warning by casting the controlling
4748 expression to a type other than @code{bool}.  For example:
4749 @smallexample
4750 @group
4751 switch ((int) (a == 4))
4752   @{
4753   @dots{}
4754   @}
4755 @end group
4756 @end smallexample
4757 This warning is enabled by default for C and C++ programs.
4759 @item -Wswitch-unreachable
4760 @opindex Wswitch-unreachable
4761 @opindex Wno-switch-unreachable
4762 Warn whenever a @code{switch} statement contains statements between the
4763 controlling expression and the first case label, which will never be
4764 executed.  For example:
4765 @smallexample
4766 @group
4767 switch (cond)
4768   @{
4769    i = 15;
4770   @dots{}
4771    case 5:
4772   @dots{}
4773   @}
4774 @end group
4775 @end smallexample
4776 @option{-Wswitch-unreachable} does not warn if the statement between the
4777 controlling expression and the first case label is just a declaration:
4778 @smallexample
4779 @group
4780 switch (cond)
4781   @{
4782    int i;
4783   @dots{}
4784    case 5:
4785    i = 5;
4786   @dots{}
4787   @}
4788 @end group
4789 @end smallexample
4790 This warning is enabled by default for C and C++ programs.
4792 @item -Wsync-nand @r{(C and C++ only)}
4793 @opindex Wsync-nand
4794 @opindex Wno-sync-nand
4795 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4796 built-in functions are used.  These functions changed semantics in GCC 4.4.
4798 @item -Wunused-but-set-parameter
4799 @opindex Wunused-but-set-parameter
4800 @opindex Wno-unused-but-set-parameter
4801 Warn whenever a function parameter is assigned to, but otherwise unused
4802 (aside from its declaration).
4804 To suppress this warning use the @code{unused} attribute
4805 (@pxref{Variable Attributes}).
4807 This warning is also enabled by @option{-Wunused} together with
4808 @option{-Wextra}.
4810 @item -Wunused-but-set-variable
4811 @opindex Wunused-but-set-variable
4812 @opindex Wno-unused-but-set-variable
4813 Warn whenever a local variable is assigned to, but otherwise unused
4814 (aside from its declaration).
4815 This warning is enabled by @option{-Wall}.
4817 To suppress this warning use the @code{unused} attribute
4818 (@pxref{Variable Attributes}).
4820 This warning is also enabled by @option{-Wunused}, which is enabled
4821 by @option{-Wall}.
4823 @item -Wunused-function
4824 @opindex Wunused-function
4825 @opindex Wno-unused-function
4826 Warn whenever a static function is declared but not defined or a
4827 non-inline static function is unused.
4828 This warning is enabled by @option{-Wall}.
4830 @item -Wunused-label
4831 @opindex Wunused-label
4832 @opindex Wno-unused-label
4833 Warn whenever a label is declared but not used.
4834 This warning is enabled by @option{-Wall}.
4836 To suppress this warning use the @code{unused} attribute
4837 (@pxref{Variable Attributes}).
4839 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4840 @opindex Wunused-local-typedefs
4841 Warn when a typedef locally defined in a function is not used.
4842 This warning is enabled by @option{-Wall}.
4844 @item -Wunused-parameter
4845 @opindex Wunused-parameter
4846 @opindex Wno-unused-parameter
4847 Warn whenever a function parameter is unused aside from its declaration.
4849 To suppress this warning use the @code{unused} attribute
4850 (@pxref{Variable Attributes}).
4852 @item -Wno-unused-result
4853 @opindex Wunused-result
4854 @opindex Wno-unused-result
4855 Do not warn if a caller of a function marked with attribute
4856 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4857 its return value. The default is @option{-Wunused-result}.
4859 @item -Wunused-variable
4860 @opindex Wunused-variable
4861 @opindex Wno-unused-variable
4862 Warn whenever a local or static variable is unused aside from its
4863 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4864 but not for C++. This warning is enabled by @option{-Wall}.
4866 To suppress this warning use the @code{unused} attribute
4867 (@pxref{Variable Attributes}).
4869 @item -Wunused-const-variable
4870 @itemx -Wunused-const-variable=@var{n}
4871 @opindex Wunused-const-variable
4872 @opindex Wno-unused-const-variable
4873 Warn whenever a constant static variable is unused aside from its declaration.
4874 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4875 for C, but not for C++. In C this declares variable storage, but in C++ this
4876 is not an error since const variables take the place of @code{#define}s.
4878 To suppress this warning use the @code{unused} attribute
4879 (@pxref{Variable Attributes}).
4881 @table @gcctabopt
4882 @item -Wunused-const-variable=1
4883 This is the warning level that is enabled by @option{-Wunused-variable} for
4884 C.  It warns only about unused static const variables defined in the main
4885 compilation unit, but not about static const variables declared in any
4886 header included.
4888 @item -Wunused-const-variable=2
4889 This warning level also warns for unused constant static variables in
4890 headers (excluding system headers).  This is the warning level of
4891 @option{-Wunused-const-variable} and must be explicitly requested since
4892 in C++ this isn't an error and in C it might be harder to clean up all
4893 headers included.
4894 @end table
4896 @item -Wunused-value
4897 @opindex Wunused-value
4898 @opindex Wno-unused-value
4899 Warn whenever a statement computes a result that is explicitly not
4900 used. To suppress this warning cast the unused expression to
4901 @code{void}. This includes an expression-statement or the left-hand
4902 side of a comma expression that contains no side effects. For example,
4903 an expression such as @code{x[i,j]} causes a warning, while
4904 @code{x[(void)i,j]} does not.
4906 This warning is enabled by @option{-Wall}.
4908 @item -Wunused
4909 @opindex Wunused
4910 @opindex Wno-unused
4911 All the above @option{-Wunused} options combined.
4913 In order to get a warning about an unused function parameter, you must
4914 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4915 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4917 @item -Wuninitialized
4918 @opindex Wuninitialized
4919 @opindex Wno-uninitialized
4920 Warn if an automatic variable is used without first being initialized
4921 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4922 warn if a non-static reference or non-static @code{const} member
4923 appears in a class without constructors.
4925 If you want to warn about code that uses the uninitialized value of the
4926 variable in its own initializer, use the @option{-Winit-self} option.
4928 These warnings occur for individual uninitialized or clobbered
4929 elements of structure, union or array variables as well as for
4930 variables that are uninitialized or clobbered as a whole.  They do
4931 not occur for variables or elements declared @code{volatile}.  Because
4932 these warnings depend on optimization, the exact variables or elements
4933 for which there are warnings depends on the precise optimization
4934 options and version of GCC used.
4936 Note that there may be no warning about a variable that is used only
4937 to compute a value that itself is never used, because such
4938 computations may be deleted by data flow analysis before the warnings
4939 are printed.
4941 @item -Winvalid-memory-model
4942 @opindex Winvalid-memory-model
4943 @opindex Wno-invalid-memory-model
4944 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4945 and the C11 atomic generic functions with a memory consistency argument
4946 that is either invalid for the operation or outside the range of values
4947 of the @code{memory_order} enumeration.  For example, since the
4948 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4949 defined for the relaxed, release, and sequentially consistent memory
4950 orders the following code is diagnosed:
4952 @smallexample
4953 void store (int *i)
4955   __atomic_store_n (i, 0, memory_order_consume);
4957 @end smallexample
4959 @option{-Winvalid-memory-model} is enabled by default.
4961 @item -Wmaybe-uninitialized
4962 @opindex Wmaybe-uninitialized
4963 @opindex Wno-maybe-uninitialized
4964 For an automatic (i.e.@ local) variable, if there exists a path from the
4965 function entry to a use of the variable that is initialized, but there exist
4966 some other paths for which the variable is not initialized, the compiler
4967 emits a warning if it cannot prove the uninitialized paths are not
4968 executed at run time.
4970 These warnings are only possible in optimizing compilation, because otherwise
4971 GCC does not keep track of the state of variables.
4973 These warnings are made optional because GCC may not be able to determine when
4974 the code is correct in spite of appearing to have an error.  Here is one
4975 example of how this can happen:
4977 @smallexample
4978 @group
4980   int x;
4981   switch (y)
4982     @{
4983     case 1: x = 1;
4984       break;
4985     case 2: x = 4;
4986       break;
4987     case 3: x = 5;
4988     @}
4989   foo (x);
4991 @end group
4992 @end smallexample
4994 @noindent
4995 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4996 always initialized, but GCC doesn't know this. To suppress the
4997 warning, you need to provide a default case with assert(0) or
4998 similar code.
5000 @cindex @code{longjmp} warnings
5001 This option also warns when a non-volatile automatic variable might be
5002 changed by a call to @code{longjmp}.
5003 The compiler sees only the calls to @code{setjmp}.  It cannot know
5004 where @code{longjmp} will be called; in fact, a signal handler could
5005 call it at any point in the code.  As a result, you may get a warning
5006 even when there is in fact no problem because @code{longjmp} cannot
5007 in fact be called at the place that would cause a problem.
5009 Some spurious warnings can be avoided if you declare all the functions
5010 you use that never return as @code{noreturn}.  @xref{Function
5011 Attributes}.
5013 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5015 @item -Wunknown-pragmas
5016 @opindex Wunknown-pragmas
5017 @opindex Wno-unknown-pragmas
5018 @cindex warning for unknown pragmas
5019 @cindex unknown pragmas, warning
5020 @cindex pragmas, warning of unknown
5021 Warn when a @code{#pragma} directive is encountered that is not understood by 
5022 GCC@.  If this command-line option is used, warnings are even issued
5023 for unknown pragmas in system header files.  This is not the case if
5024 the warnings are only enabled by the @option{-Wall} command-line option.
5026 @item -Wno-pragmas
5027 @opindex Wno-pragmas
5028 @opindex Wpragmas
5029 Do not warn about misuses of pragmas, such as incorrect parameters,
5030 invalid syntax, or conflicts between pragmas.  See also
5031 @option{-Wunknown-pragmas}.
5033 @item -Wstrict-aliasing
5034 @opindex Wstrict-aliasing
5035 @opindex Wno-strict-aliasing
5036 This option is only active when @option{-fstrict-aliasing} is active.
5037 It warns about code that might break the strict aliasing rules that the
5038 compiler is using for optimization.  The warning does not catch all
5039 cases, but does attempt to catch the more common pitfalls.  It is
5040 included in @option{-Wall}.
5041 It is equivalent to @option{-Wstrict-aliasing=3}
5043 @item -Wstrict-aliasing=n
5044 @opindex Wstrict-aliasing=n
5045 This option is only active when @option{-fstrict-aliasing} is active.
5046 It warns about code that might break the strict aliasing rules that the
5047 compiler is using for optimization.
5048 Higher levels correspond to higher accuracy (fewer false positives).
5049 Higher levels also correspond to more effort, similar to the way @option{-O} 
5050 works.
5051 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5053 Level 1: Most aggressive, quick, least accurate.
5054 Possibly useful when higher levels
5055 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5056 false negatives.  However, it has many false positives.
5057 Warns for all pointer conversions between possibly incompatible types,
5058 even if never dereferenced.  Runs in the front end only.
5060 Level 2: Aggressive, quick, not too precise.
5061 May still have many false positives (not as many as level 1 though),
5062 and few false negatives (but possibly more than level 1).
5063 Unlike level 1, it only warns when an address is taken.  Warns about
5064 incomplete types.  Runs in the front end only.
5066 Level 3 (default for @option{-Wstrict-aliasing}):
5067 Should have very few false positives and few false
5068 negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
5069 Takes care of the common pun+dereference pattern in the front end:
5070 @code{*(int*)&some_float}.
5071 If optimization is enabled, it also runs in the back end, where it deals
5072 with multiple statement cases using flow-sensitive points-to information.
5073 Only warns when the converted pointer is dereferenced.
5074 Does not warn about incomplete types.
5076 @item -Wstrict-overflow
5077 @itemx -Wstrict-overflow=@var{n}
5078 @opindex Wstrict-overflow
5079 @opindex Wno-strict-overflow
5080 This option is only active when signed overflow is undefined.
5081 It warns about cases where the compiler optimizes based on the
5082 assumption that signed overflow does not occur.  Note that it does not
5083 warn about all cases where the code might overflow: it only warns
5084 about cases where the compiler implements some optimization.  Thus
5085 this warning depends on the optimization level.
5087 An optimization that assumes that signed overflow does not occur is
5088 perfectly safe if the values of the variables involved are such that
5089 overflow never does, in fact, occur.  Therefore this warning can
5090 easily give a false positive: a warning about code that is not
5091 actually a problem.  To help focus on important issues, several
5092 warning levels are defined.  No warnings are issued for the use of
5093 undefined signed overflow when estimating how many iterations a loop
5094 requires, in particular when determining whether a loop will be
5095 executed at all.
5097 @table @gcctabopt
5098 @item -Wstrict-overflow=1
5099 Warn about cases that are both questionable and easy to avoid.  For
5100 example the compiler simplifies
5101 @code{x + 1 > x} to @code{1}.  This level of
5102 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5103 are not, and must be explicitly requested.
5105 @item -Wstrict-overflow=2
5106 Also warn about other cases where a comparison is simplified to a
5107 constant.  For example: @code{abs (x) >= 0}.  This can only be
5108 simplified when signed integer overflow is undefined, because
5109 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5110 zero.  @option{-Wstrict-overflow} (with no level) is the same as
5111 @option{-Wstrict-overflow=2}.
5113 @item -Wstrict-overflow=3
5114 Also warn about other cases where a comparison is simplified.  For
5115 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5117 @item -Wstrict-overflow=4
5118 Also warn about other simplifications not covered by the above cases.
5119 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5121 @item -Wstrict-overflow=5
5122 Also warn about cases where the compiler reduces the magnitude of a
5123 constant involved in a comparison.  For example: @code{x + 2 > y} is
5124 simplified to @code{x + 1 >= y}.  This is reported only at the
5125 highest warning level because this simplification applies to many
5126 comparisons, so this warning level gives a very large number of
5127 false positives.
5128 @end table
5130 @item -Wstringop-overflow
5131 @itemx -Wstringop-overflow=@var{type}
5132 @opindex Wstringop-overflow
5133 @opindex Wno-stringop-overflow
5134 Warn for calls to string manipulation functions such as @code{memcpy} and
5135 @code{strcpy} that are determined to overflow the destination buffer.  The
5136 optional argument is one greater than the type of Object Size Checking to
5137 perform to determine the size of the destination.  @xref{Object Size Checking}.
5138 The argument is meaningful only for functions that operate on character arrays
5139 but not for raw memory functions like @code{memcpy} which always make use
5140 of Object Size type-0.  The option also warns for calls that specify a size
5141 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5142 The option produces the best results with optimization enabled but can detect
5143 a small subset of simple buffer overflows even without optimization in
5144 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5145 correspond to the standard functions.  In any case, the option warns about
5146 just a subset of buffer overflows detected by the corresponding overflow
5147 checking built-ins.  For example, the option will issue a warning for
5148 the @code{strcpy} call below because it copies at least 5 characters
5149 (the string @code{"blue"} including the terminating NUL) into the buffer
5150 of size 4.
5152 @smallexample
5153 enum Color @{ blue, purple, yellow @};
5154 const char* f (enum Color clr)
5156   static char buf [4];
5157   const char *str;
5158   switch (clr)
5159     @{
5160       case blue: str = "blue"; break;
5161       case purple: str = "purple"; break;
5162       case yellow: str = "yellow"; break;
5163     @}
5165   return strcpy (buf, str);   // warning here
5167 @end smallexample
5169 Option @option{-Wstringop-overflow=2} is enabled by default.
5171 @table @gcctabopt
5172 @item -Wstringop-overflow
5173 @item -Wstringop-overflow=1
5174 @opindex Wstringop-overflow
5175 @opindex Wno-stringop-overflow
5176 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5177 to determine the sizes of destination objects.  This is the default setting
5178 of the option.  At this setting the option will not warn for writes past
5179 the end of subobjects of larger objects accessed by pointers unless the
5180 size of the largest surrounding object is known.  When the destination may
5181 be one of several objects it is assumed to be the largest one of them.  On
5182 Linux systems, when optimization is enabled at this setting the option warns
5183 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5184 a non-zero value.
5186 @item -Wstringop-overflow=2
5187 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5188 to determine the sizes of destination objects.  At this setting the option
5189 will warn about overflows when writing to members of the largest complete
5190 objects whose exact size is known.  It will, however, not warn for excessive
5191 writes to the same members of unknown objects referenced by pointers since
5192 they may point to arrays containing unknown numbers of elements.
5194 @item -Wstringop-overflow=3
5195 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5196 to determine the sizes of destination objects.  At this setting the option
5197 warns about overflowing the smallest object or data member.  This is the
5198 most restrictive setting of the option that may result in warnings for safe
5199 code.
5201 @item -Wstringop-overflow=4
5202 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5203 to determine the sizes of destination objects.  At this setting the option
5204 will warn about overflowing any data members, and when the destination is
5205 one of several objects it uses the size of the largest of them to decide
5206 whether to issue a warning.  Similarly to @option{-Wstringop-overflow=3} this
5207 setting of the option may result in warnings for benign code.
5208 @end table
5210 @item -Wstringop-truncation
5211 @opindex Wstringop-truncation
5212 @opindex Wno-stringop-truncation
5213 Warn for calls to bounded string manipulation functions such as @code{strncat},
5214 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5215 or leave the destination unchanged.
5217 In the following example, the call to @code{strncat} specifies a bound that
5218 is less than the length of the source string.  As a result, the copy of
5219 the source will be truncated and so the call is diagnosed.  To avoid the
5220 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5222 @smallexample
5223 void append (char *buf, size_t bufsize)
5225   strncat (buf, ".txt", 3);
5227 @end smallexample
5229 As another example, the following call to @code{strncpy} results in copying
5230 to @code{d} just the characters preceding the terminating NUL, without
5231 appending the NUL to the end.  Assuming the result of @code{strncpy} is
5232 necessarily a NUL-terminated string is a common mistake, and so the call
5233 is diagnosed.  To avoid the warning when the result is not expected to be
5234 NUL-terminated, call @code{memcpy} instead.
5236 @smallexample
5237 void copy (char *d, const char *s)
5239   strncpy (d, s, strlen (s));
5241 @end smallexample
5243 In the following example, the call to @code{strncpy} specifies the size
5244 of the destination buffer as the bound.  If the length of the source
5245 string is equal to or greater than this size the result of the copy will
5246 not be NUL-terminated.  Therefore, the call is also diagnosed.  To avoid
5247 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5248 element of the buffer to @code{NUL}.
5250 @smallexample
5251 void copy (const char *s)
5253   char buf[80];
5254   strncpy (buf, s, sizeof buf);
5255   @dots{}
5257 @end smallexample
5259 In situations where a character array is intended to store a sequence
5260 of bytes with no terminating @code{NUL} such an array may be annotated
5261 with attribute @code{nonstring} to avoid this warning.  Such arrays,
5262 however, are not suitable arguments to functions that expect
5263 @code{NUL}-terminated strings.  To help detect accidental misuses of
5264 such arrays GCC issues warnings unless it can prove that the use is
5265 safe.  @xref{Common Variable Attributes}.
5267 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5268 @opindex Wsuggest-attribute=
5269 @opindex Wno-suggest-attribute=
5270 Warn for cases where adding an attribute may be beneficial. The
5271 attributes currently supported are listed below.
5273 @table @gcctabopt
5274 @item -Wsuggest-attribute=pure
5275 @itemx -Wsuggest-attribute=const
5276 @itemx -Wsuggest-attribute=noreturn
5277 @itemx -Wsuggest-attribute=malloc
5278 @opindex Wsuggest-attribute=pure
5279 @opindex Wno-suggest-attribute=pure
5280 @opindex Wsuggest-attribute=const
5281 @opindex Wno-suggest-attribute=const
5282 @opindex Wsuggest-attribute=noreturn
5283 @opindex Wno-suggest-attribute=noreturn
5284 @opindex Wsuggest-attribute=malloc
5285 @opindex Wno-suggest-attribute=malloc
5287 Warn about functions that might be candidates for attributes
5288 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5289 only warns for functions visible in other compilation units or (in the case of
5290 @code{pure} and @code{const}) if it cannot prove that the function returns
5291 normally. A function returns normally if it doesn't contain an infinite loop or
5292 return abnormally by throwing, calling @code{abort} or trapping.  This analysis
5293 requires option @option{-fipa-pure-const}, which is enabled by default at
5294 @option{-O} and higher.  Higher optimization levels improve the accuracy
5295 of the analysis.
5297 @item -Wsuggest-attribute=format
5298 @itemx -Wmissing-format-attribute
5299 @opindex Wsuggest-attribute=format
5300 @opindex Wmissing-format-attribute
5301 @opindex Wno-suggest-attribute=format
5302 @opindex Wno-missing-format-attribute
5303 @opindex Wformat
5304 @opindex Wno-format
5306 Warn about function pointers that might be candidates for @code{format}
5307 attributes.  Note these are only possible candidates, not absolute ones.
5308 GCC guesses that function pointers with @code{format} attributes that
5309 are used in assignment, initialization, parameter passing or return
5310 statements should have a corresponding @code{format} attribute in the
5311 resulting type.  I.e.@: the left-hand side of the assignment or
5312 initialization, the type of the parameter variable, or the return type
5313 of the containing function respectively should also have a @code{format}
5314 attribute to avoid the warning.
5316 GCC also warns about function definitions that might be
5317 candidates for @code{format} attributes.  Again, these are only
5318 possible candidates.  GCC guesses that @code{format} attributes
5319 might be appropriate for any function that calls a function like
5320 @code{vprintf} or @code{vscanf}, but this might not always be the
5321 case, and some functions for which @code{format} attributes are
5322 appropriate may not be detected.
5324 @item -Wsuggest-attribute=cold
5325 @opindex Wsuggest-attribute=cold
5326 @opindex Wno-suggest-attribute=cold
5328 Warn about functions that might be candidates for @code{cold} attribute.  This
5329 is based on static detection and generally will only warn about functions which
5330 always leads to a call to another @code{cold} function such as wrappers of
5331 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5332 @end table
5334 @item -Wsuggest-final-types
5335 @opindex Wno-suggest-final-types
5336 @opindex Wsuggest-final-types
5337 Warn about types with virtual methods where code quality would be improved
5338 if the type were declared with the C++11 @code{final} specifier, 
5339 or, if possible,
5340 declared in an anonymous namespace. This allows GCC to more aggressively
5341 devirtualize the polymorphic calls. This warning is more effective with link
5342 time optimization, where the information about the class hierarchy graph is
5343 more complete.
5345 @item -Wsuggest-final-methods
5346 @opindex Wno-suggest-final-methods
5347 @opindex Wsuggest-final-methods
5348 Warn about virtual methods where code quality would be improved if the method
5349 were declared with the C++11 @code{final} specifier, 
5350 or, if possible, its type were
5351 declared in an anonymous namespace or with the @code{final} specifier.
5352 This warning is
5353 more effective with link-time optimization, where the information about the
5354 class hierarchy graph is more complete. It is recommended to first consider
5355 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5356 annotations.
5358 @item -Wsuggest-override
5359 Warn about overriding virtual functions that are not marked with the override
5360 keyword.
5362 @item -Walloc-zero
5363 @opindex Wno-alloc-zero
5364 @opindex Walloc-zero
5365 Warn about calls to allocation functions decorated with attribute
5366 @code{alloc_size} that specify zero bytes, including those to the built-in
5367 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5368 @code{malloc}, and @code{realloc}.  Because the behavior of these functions
5369 when called with a zero size differs among implementations (and in the case
5370 of @code{realloc} has been deprecated) relying on it may result in subtle
5371 portability bugs and should be avoided.
5373 @item -Walloc-size-larger-than=@var{n}
5374 Warn about calls to functions decorated with attribute @code{alloc_size}
5375 that attempt to allocate objects larger than the specified number of bytes,
5376 or where the result of the size computation in an integer type with infinite
5377 precision would exceed @code{SIZE_MAX / 2}.  The option argument @var{n}
5378 may end in one of the standard suffixes designating a multiple of bytes
5379 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5380 @code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5381 @xref{Function Attributes}.
5383 @item -Walloca
5384 @opindex Wno-alloca
5385 @opindex Walloca
5386 This option warns on all uses of @code{alloca} in the source.
5388 @item -Walloca-larger-than=@var{n}
5389 This option warns on calls to @code{alloca} that are not bounded by a
5390 controlling predicate limiting its argument of integer type to at most
5391 @var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5392 Arguments of non-integer types are considered unbounded even if they
5393 appear to be constrained to the expected range.
5395 For example, a bounded case of @code{alloca} could be:
5397 @smallexample
5398 void func (size_t n)
5400   void *p;
5401   if (n <= 1000)
5402     p = alloca (n);
5403   else
5404     p = malloc (n);
5405   f (p);
5407 @end smallexample
5409 In the above example, passing @code{-Walloca-larger-than=1000} would not
5410 issue a warning because the call to @code{alloca} is known to be at most
5411 1000 bytes.  However, if @code{-Walloca-larger-than=500} were passed,
5412 the compiler would emit a warning.
5414 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5415 controlling predicate constraining its integer argument.  For example:
5417 @smallexample
5418 void func ()
5420   void *p = alloca (n);
5421   f (p);
5423 @end smallexample
5425 If @code{-Walloca-larger-than=500} were passed, the above would trigger
5426 a warning, but this time because of the lack of bounds checking.
5428 Note, that even seemingly correct code involving signed integers could
5429 cause a warning:
5431 @smallexample
5432 void func (signed int n)
5434   if (n < 500)
5435     @{
5436       p = alloca (n);
5437       f (p);
5438     @}
5440 @end smallexample
5442 In the above example, @var{n} could be negative, causing a larger than
5443 expected argument to be implicitly cast into the @code{alloca} call.
5445 This option also warns when @code{alloca} is used in a loop.
5447 This warning is not enabled by @option{-Wall}, and is only active when
5448 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5450 See also @option{-Wvla-larger-than=@var{n}}.
5452 @item -Warray-bounds
5453 @itemx -Warray-bounds=@var{n}
5454 @opindex Wno-array-bounds
5455 @opindex Warray-bounds
5456 This option is only active when @option{-ftree-vrp} is active
5457 (default for @option{-O2} and above). It warns about subscripts to arrays
5458 that are always out of bounds. This warning is enabled by @option{-Wall}.
5460 @table @gcctabopt
5461 @item -Warray-bounds=1
5462 This is the warning level of @option{-Warray-bounds} and is enabled
5463 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5465 @item -Warray-bounds=2
5466 This warning level also warns about out of bounds access for
5467 arrays at the end of a struct and for arrays accessed through
5468 pointers. This warning level may give a larger number of
5469 false positives and is deactivated by default.
5470 @end table
5472 @item -Wattribute-alias
5473 Warn about declarations using the @code{alias} and similar attributes whose
5474 target is incompatible with the type of the alias.  @xref{Function Attributes,
5475 ,Declaring Attributes of Functions}.
5477 @item -Wbool-compare
5478 @opindex Wno-bool-compare
5479 @opindex Wbool-compare
5480 Warn about boolean expression compared with an integer value different from
5481 @code{true}/@code{false}.  For instance, the following comparison is
5482 always false:
5483 @smallexample
5484 int n = 5;
5485 @dots{}
5486 if ((n > 1) == 2) @{ @dots{} @}
5487 @end smallexample
5488 This warning is enabled by @option{-Wall}.
5490 @item -Wbool-operation
5491 @opindex Wno-bool-operation
5492 @opindex Wbool-operation
5493 Warn about suspicious operations on expressions of a boolean type.  For
5494 instance, bitwise negation of a boolean is very likely a bug in the program.
5495 For C, this warning also warns about incrementing or decrementing a boolean,
5496 which rarely makes sense.  (In C++, decrementing a boolean is always invalid.
5497 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
5499 This warning is enabled by @option{-Wall}.
5501 @item -Wduplicated-branches
5502 @opindex Wno-duplicated-branches
5503 @opindex Wduplicated-branches
5504 Warn when an if-else has identical branches.  This warning detects cases like
5505 @smallexample
5506 if (p != NULL)
5507   return 0;
5508 else
5509   return 0;
5510 @end smallexample
5511 It doesn't warn when both branches contain just a null statement.  This warning
5512 also warn for conditional operators:
5513 @smallexample
5514   int i = x ? *p : *p;
5515 @end smallexample
5517 @item -Wduplicated-cond
5518 @opindex Wno-duplicated-cond
5519 @opindex Wduplicated-cond
5520 Warn about duplicated conditions in an if-else-if chain.  For instance,
5521 warn for the following code:
5522 @smallexample
5523 if (p->q != NULL) @{ @dots{} @}
5524 else if (p->q != NULL) @{ @dots{} @}
5525 @end smallexample
5527 @item -Wframe-address
5528 @opindex Wno-frame-address
5529 @opindex Wframe-address
5530 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5531 is called with an argument greater than 0.  Such calls may return indeterminate
5532 values or crash the program.  The warning is included in @option{-Wall}.
5534 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5535 @opindex Wno-discarded-qualifiers
5536 @opindex Wdiscarded-qualifiers
5537 Do not warn if type qualifiers on pointers are being discarded.
5538 Typically, the compiler warns if a @code{const char *} variable is
5539 passed to a function that takes a @code{char *} parameter.  This option
5540 can be used to suppress such a warning.
5542 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5543 @opindex Wno-discarded-array-qualifiers
5544 @opindex Wdiscarded-array-qualifiers
5545 Do not warn if type qualifiers on arrays which are pointer targets
5546 are being discarded. Typically, the compiler warns if a
5547 @code{const int (*)[]} variable is passed to a function that
5548 takes a @code{int (*)[]} parameter.  This option can be used to
5549 suppress such a warning.
5551 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5552 @opindex Wno-incompatible-pointer-types
5553 @opindex Wincompatible-pointer-types
5554 Do not warn when there is a conversion between pointers that have incompatible
5555 types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
5556 which warns for pointer argument passing or assignment with different
5557 signedness.
5559 @item -Wno-int-conversion @r{(C and Objective-C only)}
5560 @opindex Wno-int-conversion
5561 @opindex Wint-conversion
5562 Do not warn about incompatible integer to pointer and pointer to integer
5563 conversions.  This warning is about implicit conversions; for explicit
5564 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5565 @option{-Wno-pointer-to-int-cast} may be used.
5567 @item -Wno-div-by-zero
5568 @opindex Wno-div-by-zero
5569 @opindex Wdiv-by-zero
5570 Do not warn about compile-time integer division by zero.  Floating-point
5571 division by zero is not warned about, as it can be a legitimate way of
5572 obtaining infinities and NaNs.
5574 @item -Wsystem-headers
5575 @opindex Wsystem-headers
5576 @opindex Wno-system-headers
5577 @cindex warnings from system headers
5578 @cindex system headers, warnings from
5579 Print warning messages for constructs found in system header files.
5580 Warnings from system headers are normally suppressed, on the assumption
5581 that they usually do not indicate real problems and would only make the
5582 compiler output harder to read.  Using this command-line option tells
5583 GCC to emit warnings from system headers as if they occurred in user
5584 code.  However, note that using @option{-Wall} in conjunction with this
5585 option does @emph{not} warn about unknown pragmas in system
5586 headers---for that, @option{-Wunknown-pragmas} must also be used.
5588 @item -Wtautological-compare
5589 @opindex Wtautological-compare
5590 @opindex Wno-tautological-compare
5591 Warn if a self-comparison always evaluates to true or false.  This
5592 warning detects various mistakes such as:
5593 @smallexample
5594 int i = 1;
5595 @dots{}
5596 if (i > i) @{ @dots{} @}
5597 @end smallexample
5599 This warning also warns about bitwise comparisons that always evaluate
5600 to true or false, for instance:
5601 @smallexample
5602 if ((a & 16) == 10) @{ @dots{} @}
5603 @end smallexample
5604 will always be false.
5606 This warning is enabled by @option{-Wall}.
5608 @item -Wtrampolines
5609 @opindex Wtrampolines
5610 @opindex Wno-trampolines
5611 Warn about trampolines generated for pointers to nested functions.
5612 A trampoline is a small piece of data or code that is created at run
5613 time on the stack when the address of a nested function is taken, and is
5614 used to call the nested function indirectly.  For some targets, it is
5615 made up of data only and thus requires no special treatment.  But, for
5616 most targets, it is made up of code and thus requires the stack to be
5617 made executable in order for the program to work properly.
5619 @item -Wfloat-equal
5620 @opindex Wfloat-equal
5621 @opindex Wno-float-equal
5622 Warn if floating-point values are used in equality comparisons.
5624 The idea behind this is that sometimes it is convenient (for the
5625 programmer) to consider floating-point values as approximations to
5626 infinitely precise real numbers.  If you are doing this, then you need
5627 to compute (by analyzing the code, or in some other way) the maximum or
5628 likely maximum error that the computation introduces, and allow for it
5629 when performing comparisons (and when producing output, but that's a
5630 different problem).  In particular, instead of testing for equality, you
5631 should check to see whether the two values have ranges that overlap; and
5632 this is done with the relational operators, so equality comparisons are
5633 probably mistaken.
5635 @item -Wtraditional @r{(C and Objective-C only)}
5636 @opindex Wtraditional
5637 @opindex Wno-traditional
5638 Warn about certain constructs that behave differently in traditional and
5639 ISO C@.  Also warn about ISO C constructs that have no traditional C
5640 equivalent, and/or problematic constructs that should be avoided.
5642 @itemize @bullet
5643 @item
5644 Macro parameters that appear within string literals in the macro body.
5645 In traditional C macro replacement takes place within string literals,
5646 but in ISO C it does not.
5648 @item
5649 In traditional C, some preprocessor directives did not exist.
5650 Traditional preprocessors only considered a line to be a directive
5651 if the @samp{#} appeared in column 1 on the line.  Therefore
5652 @option{-Wtraditional} warns about directives that traditional C
5653 understands but ignores because the @samp{#} does not appear as the
5654 first character on the line.  It also suggests you hide directives like
5655 @code{#pragma} not understood by traditional C by indenting them.  Some
5656 traditional implementations do not recognize @code{#elif}, so this option
5657 suggests avoiding it altogether.
5659 @item
5660 A function-like macro that appears without arguments.
5662 @item
5663 The unary plus operator.
5665 @item
5666 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5667 constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
5668 constants.)  Note, these suffixes appear in macros defined in the system
5669 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5670 Use of these macros in user code might normally lead to spurious
5671 warnings, however GCC's integrated preprocessor has enough context to
5672 avoid warning in these cases.
5674 @item
5675 A function declared external in one block and then used after the end of
5676 the block.
5678 @item
5679 A @code{switch} statement has an operand of type @code{long}.
5681 @item
5682 A non-@code{static} function declaration follows a @code{static} one.
5683 This construct is not accepted by some traditional C compilers.
5685 @item
5686 The ISO type of an integer constant has a different width or
5687 signedness from its traditional type.  This warning is only issued if
5688 the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
5689 typically represent bit patterns, are not warned about.
5691 @item
5692 Usage of ISO string concatenation is detected.
5694 @item
5695 Initialization of automatic aggregates.
5697 @item
5698 Identifier conflicts with labels.  Traditional C lacks a separate
5699 namespace for labels.
5701 @item
5702 Initialization of unions.  If the initializer is zero, the warning is
5703 omitted.  This is done under the assumption that the zero initializer in
5704 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5705 initializer warnings and relies on default initialization to zero in the
5706 traditional C case.
5708 @item
5709 Conversions by prototypes between fixed/floating-point values and vice
5710 versa.  The absence of these prototypes when compiling with traditional
5711 C causes serious problems.  This is a subset of the possible
5712 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5714 @item
5715 Use of ISO C style function definitions.  This warning intentionally is
5716 @emph{not} issued for prototype declarations or variadic functions
5717 because these ISO C features appear in your code when using
5718 libiberty's traditional C compatibility macros, @code{PARAMS} and
5719 @code{VPARAMS}.  This warning is also bypassed for nested functions
5720 because that feature is already a GCC extension and thus not relevant to
5721 traditional C compatibility.
5722 @end itemize
5724 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5725 @opindex Wtraditional-conversion
5726 @opindex Wno-traditional-conversion
5727 Warn if a prototype causes a type conversion that is different from what
5728 would happen to the same argument in the absence of a prototype.  This
5729 includes conversions of fixed point to floating and vice versa, and
5730 conversions changing the width or signedness of a fixed-point argument
5731 except when the same as the default promotion.
5733 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5734 @opindex Wdeclaration-after-statement
5735 @opindex Wno-declaration-after-statement
5736 Warn when a declaration is found after a statement in a block.  This
5737 construct, known from C++, was introduced with ISO C99 and is by default
5738 allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Declarations}.
5740 @item -Wshadow
5741 @opindex Wshadow
5742 @opindex Wno-shadow
5743 Warn whenever a local variable or type declaration shadows another
5744 variable, parameter, type, class member (in C++), or instance variable
5745 (in Objective-C) or whenever a built-in function is shadowed. Note
5746 that in C++, the compiler warns if a local variable shadows an
5747 explicit typedef, but not if it shadows a struct/class/enum.
5748 Same as @option{-Wshadow=global}.
5750 @item -Wno-shadow-ivar @r{(Objective-C only)}
5751 @opindex Wno-shadow-ivar
5752 @opindex Wshadow-ivar
5753 Do not warn whenever a local variable shadows an instance variable in an
5754 Objective-C method.
5756 @item -Wshadow=global
5757 @opindex Wshadow=local
5758 The default for @option{-Wshadow}. Warns for any (global) shadowing.
5760 @item -Wshadow=local
5761 @opindex Wshadow=local
5762 Warn when a local variable shadows another local variable or parameter.
5763 This warning is enabled by @option{-Wshadow=global}.
5765 @item -Wshadow=compatible-local
5766 @opindex Wshadow=compatible-local
5767 Warn when a local variable shadows another local variable or parameter
5768 whose type is compatible with that of the shadowing variable. In C++,
5769 type compatibility here means the type of the shadowing variable can be
5770 converted to that of the shadowed variable. The creation of this flag
5771 (in addition to @option{-Wshadow=local}) is based on the idea that when
5772 a local variable shadows another one of incompatible type, it is most
5773 likely intentional, not a bug or typo, as shown in the following example:
5775 @smallexample
5776 @group
5777 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5779   for (int i = 0; i < N; ++i)
5780   @{
5781     ...
5782   @}
5783   ...
5785 @end group
5786 @end smallexample
5788 Since the two variable @code{i} in the example above have incompatible types,
5789 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5790 Because their types are incompatible, if a programmer accidentally uses one
5791 in place of the other, type checking will catch that and emit an error or
5792 warning. So not warning (about shadowing) in this case will not lead to
5793 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5794 possibly reduce the number of warnings triggered by intentional shadowing.
5796 This warning is enabled by @option{-Wshadow=local}.
5798 @item -Wlarger-than=@var{len}
5799 @opindex Wlarger-than=@var{len}
5800 @opindex Wlarger-than-@var{len}
5801 Warn whenever an object of larger than @var{len} bytes is defined.
5803 @item -Wframe-larger-than=@var{len}
5804 @opindex Wframe-larger-than
5805 Warn if the size of a function frame is larger than @var{len} bytes.
5806 The computation done to determine the stack frame size is approximate
5807 and not conservative.
5808 The actual requirements may be somewhat greater than @var{len}
5809 even if you do not get a warning.  In addition, any space allocated
5810 via @code{alloca}, variable-length arrays, or related constructs
5811 is not included by the compiler when determining
5812 whether or not to issue a warning.
5814 @item -Wno-free-nonheap-object
5815 @opindex Wno-free-nonheap-object
5816 @opindex Wfree-nonheap-object
5817 Do not warn when attempting to free an object that was not allocated
5818 on the heap.
5820 @item -Wstack-usage=@var{len}
5821 @opindex Wstack-usage
5822 Warn if the stack usage of a function might be larger than @var{len} bytes.
5823 The computation done to determine the stack usage is conservative.
5824 Any space allocated via @code{alloca}, variable-length arrays, or related
5825 constructs is included by the compiler when determining whether or not to
5826 issue a warning.
5828 The message is in keeping with the output of @option{-fstack-usage}.
5830 @itemize
5831 @item
5832 If the stack usage is fully static but exceeds the specified amount, it's:
5834 @smallexample
5835   warning: stack usage is 1120 bytes
5836 @end smallexample
5837 @item
5838 If the stack usage is (partly) dynamic but bounded, it's:
5840 @smallexample
5841   warning: stack usage might be 1648 bytes
5842 @end smallexample
5843 @item
5844 If the stack usage is (partly) dynamic and not bounded, it's:
5846 @smallexample
5847   warning: stack usage might be unbounded
5848 @end smallexample
5849 @end itemize
5851 @item -Wunsafe-loop-optimizations
5852 @opindex Wunsafe-loop-optimizations
5853 @opindex Wno-unsafe-loop-optimizations
5854 Warn if the loop cannot be optimized because the compiler cannot
5855 assume anything on the bounds of the loop indices.  With
5856 @option{-funsafe-loop-optimizations} warn if the compiler makes
5857 such assumptions.
5859 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5860 @opindex Wno-pedantic-ms-format
5861 @opindex Wpedantic-ms-format
5862 When used in combination with @option{-Wformat}
5863 and @option{-pedantic} without GNU extensions, this option
5864 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5865 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5866 which depend on the MS runtime.
5868 @item -Waligned-new
5869 @opindex Waligned-new
5870 @opindex Wno-aligned-new
5871 Warn about a new-expression of a type that requires greater alignment
5872 than the @code{alignof(std::max_align_t)} but uses an allocation
5873 function without an explicit alignment parameter. This option is
5874 enabled by @option{-Wall}.
5876 Normally this only warns about global allocation functions, but
5877 @option{-Waligned-new=all} also warns about class member allocation
5878 functions.
5880 @item -Wplacement-new
5881 @itemx -Wplacement-new=@var{n}
5882 @opindex Wplacement-new
5883 @opindex Wno-placement-new
5884 Warn about placement new expressions with undefined behavior, such as
5885 constructing an object in a buffer that is smaller than the type of
5886 the object.  For example, the placement new expression below is diagnosed
5887 because it attempts to construct an array of 64 integers in a buffer only
5888 64 bytes large.
5889 @smallexample
5890 char buf [64];
5891 new (buf) int[64];
5892 @end smallexample
5893 This warning is enabled by default.
5895 @table @gcctabopt
5896 @item -Wplacement-new=1
5897 This is the default warning level of @option{-Wplacement-new}.  At this
5898 level the warning is not issued for some strictly undefined constructs that
5899 GCC allows as extensions for compatibility with legacy code.  For example,
5900 the following @code{new} expression is not diagnosed at this level even
5901 though it has undefined behavior according to the C++ standard because
5902 it writes past the end of the one-element array.
5903 @smallexample
5904 struct S @{ int n, a[1]; @};
5905 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
5906 new (s->a)int [32]();
5907 @end smallexample
5909 @item -Wplacement-new=2
5910 At this level, in addition to diagnosing all the same constructs as at level
5911 1, a diagnostic is also issued for placement new expressions that construct
5912 an object in the last member of structure whose type is an array of a single
5913 element and whose size is less than the size of the object being constructed.
5914 While the previous example would be diagnosed, the following construct makes
5915 use of the flexible member array extension to avoid the warning at level 2.
5916 @smallexample
5917 struct S @{ int n, a[]; @};
5918 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5919 new (s->a)int [32]();
5920 @end smallexample
5922 @end table
5924 @item -Wpointer-arith
5925 @opindex Wpointer-arith
5926 @opindex Wno-pointer-arith
5927 Warn about anything that depends on the ``size of'' a function type or
5928 of @code{void}.  GNU C assigns these types a size of 1, for
5929 convenience in calculations with @code{void *} pointers and pointers
5930 to functions.  In C++, warn also when an arithmetic operation involves
5931 @code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
5933 @item -Wpointer-compare
5934 @opindex Wpointer-compare
5935 @opindex Wno-pointer-compare
5936 Warn if a pointer is compared with a zero character constant.  This usually
5937 means that the pointer was meant to be dereferenced.  For example:
5939 @smallexample
5940 const char *p = foo ();
5941 if (p == '\0')
5942   return 42;
5943 @end smallexample
5945 Note that the code above is invalid in C++11.
5947 This warning is enabled by default.
5949 @item -Wtype-limits
5950 @opindex Wtype-limits
5951 @opindex Wno-type-limits
5952 Warn if a comparison is always true or always false due to the limited
5953 range of the data type, but do not warn for constant expressions.  For
5954 example, warn if an unsigned variable is compared against zero with
5955 @code{<} or @code{>=}.  This warning is also enabled by
5956 @option{-Wextra}.
5958 @include cppwarnopts.texi
5960 @item -Wbad-function-cast @r{(C and Objective-C only)}
5961 @opindex Wbad-function-cast
5962 @opindex Wno-bad-function-cast
5963 Warn when a function call is cast to a non-matching type.
5964 For example, warn if a call to a function returning an integer type 
5965 is cast to a pointer type.
5967 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5968 @opindex Wc90-c99-compat
5969 @opindex Wno-c90-c99-compat
5970 Warn about features not present in ISO C90, but present in ISO C99.
5971 For instance, warn about use of variable length arrays, @code{long long}
5972 type, @code{bool} type, compound literals, designated initializers, and so
5973 on.  This option is independent of the standards mode.  Warnings are disabled
5974 in the expression that follows @code{__extension__}.
5976 @item -Wc99-c11-compat @r{(C and Objective-C only)}
5977 @opindex Wc99-c11-compat
5978 @opindex Wno-c99-c11-compat
5979 Warn about features not present in ISO C99, but present in ISO C11.
5980 For instance, warn about use of anonymous structures and unions,
5981 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
5982 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
5983 and so on.  This option is independent of the standards mode.  Warnings are
5984 disabled in the expression that follows @code{__extension__}.
5986 @item -Wc++-compat @r{(C and Objective-C only)}
5987 @opindex Wc++-compat
5988 Warn about ISO C constructs that are outside of the common subset of
5989 ISO C and ISO C++, e.g.@: request for implicit conversion from
5990 @code{void *} to a pointer to non-@code{void} type.
5992 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
5993 @opindex Wc++11-compat
5994 Warn about C++ constructs whose meaning differs between ISO C++ 1998
5995 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
5996 in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
5997 enabled by @option{-Wall}.
5999 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6000 @opindex Wc++14-compat
6001 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6002 and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
6004 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6005 @opindex Wc++17-compat
6006 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6007 and ISO C++ 2017.  This warning is enabled by @option{-Wall}.
6009 @item -Wcast-qual
6010 @opindex Wcast-qual
6011 @opindex Wno-cast-qual
6012 Warn whenever a pointer is cast so as to remove a type qualifier from
6013 the target type.  For example, warn if a @code{const char *} is cast
6014 to an ordinary @code{char *}.
6016 Also warn when making a cast that introduces a type qualifier in an
6017 unsafe way.  For example, casting @code{char **} to @code{const char **}
6018 is unsafe, as in this example:
6020 @smallexample
6021   /* p is char ** value.  */
6022   const char **q = (const char **) p;
6023   /* Assignment of readonly string to const char * is OK.  */
6024   *q = "string";
6025   /* Now char** pointer points to read-only memory.  */
6026   **p = 'b';
6027 @end smallexample
6029 @item -Wcast-align
6030 @opindex Wcast-align
6031 @opindex Wno-cast-align
6032 Warn whenever a pointer is cast such that the required alignment of the
6033 target is increased.  For example, warn if a @code{char *} is cast to
6034 an @code{int *} on machines where integers can only be accessed at
6035 two- or four-byte boundaries.
6037 @item -Wcast-align=strict
6038 @opindex Wcast-align=strict
6039 Warn whenever a pointer is cast such that the required alignment of the
6040 target is increased.  For example, warn if a @code{char *} is cast to
6041 an @code{int *} regardless of the target machine.
6043 @item -Wwrite-strings
6044 @opindex Wwrite-strings
6045 @opindex Wno-write-strings
6046 When compiling C, give string constants the type @code{const
6047 char[@var{length}]} so that copying the address of one into a
6048 non-@code{const} @code{char *} pointer produces a warning.  These
6049 warnings help you find at compile time code that can try to write
6050 into a string constant, but only if you have been very careful about
6051 using @code{const} in declarations and prototypes.  Otherwise, it is
6052 just a nuisance. This is why we did not make @option{-Wall} request
6053 these warnings.
6055 When compiling C++, warn about the deprecated conversion from string
6056 literals to @code{char *}.  This warning is enabled by default for C++
6057 programs.
6059 @item -Wcatch-value
6060 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6061 @opindex Wcatch-value
6062 @opindex Wno-catch-value
6063 Warn about catch handlers that do not catch via reference.
6064 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6065 warn about polymorphic class types that are caught by value.
6066 With @option{-Wcatch-value=2} warn about all class types that are caught
6067 by value. With @option{-Wcatch-value=3} warn about all types that are
6068 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6070 @item -Wclobbered
6071 @opindex Wclobbered
6072 @opindex Wno-clobbered
6073 Warn for variables that might be changed by @code{longjmp} or
6074 @code{vfork}.  This warning is also enabled by @option{-Wextra}.
6076 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6077 @opindex Wconditionally-supported
6078 @opindex Wno-conditionally-supported
6079 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6081 @item -Wconversion
6082 @opindex Wconversion
6083 @opindex Wno-conversion
6084 Warn for implicit conversions that may alter a value. This includes
6085 conversions between real and integer, like @code{abs (x)} when
6086 @code{x} is @code{double}; conversions between signed and unsigned,
6087 like @code{unsigned ui = -1}; and conversions to smaller types, like
6088 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6089 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6090 changed by the conversion like in @code{abs (2.0)}.  Warnings about
6091 conversions between signed and unsigned integers can be disabled by
6092 using @option{-Wno-sign-conversion}.
6094 For C++, also warn for confusing overload resolution for user-defined
6095 conversions; and conversions that never use a type conversion
6096 operator: conversions to @code{void}, the same type, a base class or a
6097 reference to them. Warnings about conversions between signed and
6098 unsigned integers are disabled by default in C++ unless
6099 @option{-Wsign-conversion} is explicitly enabled.
6101 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6102 @opindex Wconversion-null
6103 @opindex Wno-conversion-null
6104 Do not warn for conversions between @code{NULL} and non-pointer
6105 types. @option{-Wconversion-null} is enabled by default.
6107 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6108 @opindex Wzero-as-null-pointer-constant
6109 @opindex Wno-zero-as-null-pointer-constant
6110 Warn when a literal @samp{0} is used as null pointer constant.  This can
6111 be useful to facilitate the conversion to @code{nullptr} in C++11.
6113 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6114 @opindex Wsubobject-linkage
6115 @opindex Wno-subobject-linkage
6116 Warn if a class type has a base or a field whose type uses the anonymous
6117 namespace or depends on a type with no linkage.  If a type A depends on
6118 a type B with no or internal linkage, defining it in multiple
6119 translation units would be an ODR violation because the meaning of B
6120 is different in each translation unit.  If A only appears in a single
6121 translation unit, the best way to silence the warning is to give it
6122 internal linkage by putting it in an anonymous namespace as well.  The
6123 compiler doesn't give this warning for types defined in the main .C
6124 file, as those are unlikely to have multiple definitions.
6125 @option{-Wsubobject-linkage} is enabled by default.
6127 @item -Wdangling-else
6128 @opindex Wdangling-else
6129 @opindex Wno-dangling-else
6130 Warn about constructions where there may be confusion to which
6131 @code{if} statement an @code{else} branch belongs.  Here is an example of
6132 such a case:
6134 @smallexample
6135 @group
6137   if (a)
6138     if (b)
6139       foo ();
6140   else
6141     bar ();
6143 @end group
6144 @end smallexample
6146 In C/C++, every @code{else} branch belongs to the innermost possible
6147 @code{if} statement, which in this example is @code{if (b)}.  This is
6148 often not what the programmer expected, as illustrated in the above
6149 example by indentation the programmer chose.  When there is the
6150 potential for this confusion, GCC issues a warning when this flag
6151 is specified.  To eliminate the warning, add explicit braces around
6152 the innermost @code{if} statement so there is no way the @code{else}
6153 can belong to the enclosing @code{if}.  The resulting code
6154 looks like this:
6156 @smallexample
6157 @group
6159   if (a)
6160     @{
6161       if (b)
6162         foo ();
6163       else
6164         bar ();
6165     @}
6167 @end group
6168 @end smallexample
6170 This warning is enabled by @option{-Wparentheses}.
6172 @item -Wdate-time
6173 @opindex Wdate-time
6174 @opindex Wno-date-time
6175 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6176 are encountered as they might prevent bit-wise-identical reproducible
6177 compilations.
6179 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6180 @opindex Wdelete-incomplete
6181 @opindex Wno-delete-incomplete
6182 Warn when deleting a pointer to incomplete type, which may cause
6183 undefined behavior at runtime.  This warning is enabled by default.
6185 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6186 @opindex Wuseless-cast
6187 @opindex Wno-useless-cast
6188 Warn when an expression is casted to its own type.
6190 @item -Wempty-body
6191 @opindex Wempty-body
6192 @opindex Wno-empty-body
6193 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6194 while} statement.  This warning is also enabled by @option{-Wextra}.
6196 @item -Wenum-compare
6197 @opindex Wenum-compare
6198 @opindex Wno-enum-compare
6199 Warn about a comparison between values of different enumerated types.
6200 In C++ enumerated type mismatches in conditional expressions are also
6201 diagnosed and the warning is enabled by default.  In C this warning is 
6202 enabled by @option{-Wall}.
6204 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6205 @opindex Wextra-semi
6206 @opindex Wno-extra-semi
6207 Warn about redundant semicolon after in-class function definition.
6209 @item -Wjump-misses-init @r{(C, Objective-C only)}
6210 @opindex Wjump-misses-init
6211 @opindex Wno-jump-misses-init
6212 Warn if a @code{goto} statement or a @code{switch} statement jumps
6213 forward across the initialization of a variable, or jumps backward to a
6214 label after the variable has been initialized.  This only warns about
6215 variables that are initialized when they are declared.  This warning is
6216 only supported for C and Objective-C; in C++ this sort of branch is an
6217 error in any case.
6219 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
6220 can be disabled with the @option{-Wno-jump-misses-init} option.
6222 @item -Wsign-compare
6223 @opindex Wsign-compare
6224 @opindex Wno-sign-compare
6225 @cindex warning for comparison of signed and unsigned values
6226 @cindex comparison of signed and unsigned values, warning
6227 @cindex signed and unsigned values, comparison warning
6228 Warn when a comparison between signed and unsigned values could produce
6229 an incorrect result when the signed value is converted to unsigned.
6230 In C++, this warning is also enabled by @option{-Wall}.  In C, it is
6231 also enabled by @option{-Wextra}.
6233 @item -Wsign-conversion
6234 @opindex Wsign-conversion
6235 @opindex Wno-sign-conversion
6236 Warn for implicit conversions that may change the sign of an integer
6237 value, like assigning a signed integer expression to an unsigned
6238 integer variable. An explicit cast silences the warning. In C, this
6239 option is enabled also by @option{-Wconversion}.
6241 @item -Wfloat-conversion
6242 @opindex Wfloat-conversion
6243 @opindex Wno-float-conversion
6244 Warn for implicit conversions that reduce the precision of a real value.
6245 This includes conversions from real to integer, and from higher precision
6246 real to lower precision real values.  This option is also enabled by
6247 @option{-Wconversion}.
6249 @item -Wno-scalar-storage-order
6250 @opindex -Wno-scalar-storage-order
6251 @opindex -Wscalar-storage-order
6252 Do not warn on suspicious constructs involving reverse scalar storage order.
6254 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6255 @opindex Wsized-deallocation
6256 @opindex Wno-sized-deallocation
6257 Warn about a definition of an unsized deallocation function
6258 @smallexample
6259 void operator delete (void *) noexcept;
6260 void operator delete[] (void *) noexcept;
6261 @end smallexample
6262 without a definition of the corresponding sized deallocation function
6263 @smallexample
6264 void operator delete (void *, std::size_t) noexcept;
6265 void operator delete[] (void *, std::size_t) noexcept;
6266 @end smallexample
6267 or vice versa.  Enabled by @option{-Wextra} along with
6268 @option{-fsized-deallocation}.
6270 @item -Wsizeof-pointer-div
6271 @opindex Wsizeof-pointer-div
6272 @opindex Wno-sizeof-pointer-div
6273 Warn for suspicious divisions of two sizeof expressions that divide
6274 the pointer size by the element size, which is the usual way to compute
6275 the array size but won't work out correctly with pointers.  This warning
6276 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6277 not an array, but a pointer.  This warning is enabled by @option{-Wall}.
6279 @item -Wsizeof-pointer-memaccess
6280 @opindex Wsizeof-pointer-memaccess
6281 @opindex Wno-sizeof-pointer-memaccess
6282 Warn for suspicious length parameters to certain string and memory built-in
6283 functions if the argument uses @code{sizeof}.  This warning triggers for
6284 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
6285 an array, but a pointer, and suggests a possible fix, or about
6286 @code{memcpy (&foo, ptr, sizeof (&foo));}.  @option{-Wsizeof-pointer-memaccess}
6287 also warns about calls to bounded string copy functions like @code{strncat}
6288 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
6289 the source array.  For example, in the following function the call to
6290 @code{strncat} specifies the size of the source string as the bound.  That
6291 is almost certainly a mistake and so the call is diagnosed.
6292 @smallexample
6293 void make_file (const char *name)
6295   char path[PATH_MAX];
6296   strncpy (path, name, sizeof path - 1);
6297   strncat (path, ".text", sizeof ".text");
6298   @dots{}
6300 @end smallexample
6302 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
6304 @item -Wsizeof-array-argument
6305 @opindex Wsizeof-array-argument
6306 @opindex Wno-sizeof-array-argument
6307 Warn when the @code{sizeof} operator is applied to a parameter that is
6308 declared as an array in a function definition.  This warning is enabled by
6309 default for C and C++ programs.
6311 @item -Wmemset-elt-size
6312 @opindex Wmemset-elt-size
6313 @opindex Wno-memset-elt-size
6314 Warn for suspicious calls to the @code{memset} built-in function, if the
6315 first argument references an array, and the third argument is a number
6316 equal to the number of elements, but not equal to the size of the array
6317 in memory.  This indicates that the user has omitted a multiplication by
6318 the element size.  This warning is enabled by @option{-Wall}.
6320 @item -Wmemset-transposed-args
6321 @opindex Wmemset-transposed-args
6322 @opindex Wno-memset-transposed-args
6323 Warn for suspicious calls to the @code{memset} built-in function, if the
6324 second argument is not zero and the third argument is zero.  This warns e.g.@
6325 about @code{memset (buf, sizeof buf, 0)} where most probably
6326 @code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostics
6327 is only emitted if the third argument is literal zero.  If it is some
6328 expression that is folded to zero, a cast of zero to some type, etc., 
6329 it is far less likely that the user has mistakenly exchanged the arguments 
6330 and no warning is emitted.  This warning is enabled by @option{-Wall}.
6332 @item -Waddress
6333 @opindex Waddress
6334 @opindex Wno-address
6335 Warn about suspicious uses of memory addresses. These include using
6336 the address of a function in a conditional expression, such as
6337 @code{void func(void); if (func)}, and comparisons against the memory
6338 address of a string literal, such as @code{if (x == "abc")}.  Such
6339 uses typically indicate a programmer error: the address of a function
6340 always evaluates to true, so their use in a conditional usually
6341 indicate that the programmer forgot the parentheses in a function
6342 call; and comparisons against string literals result in unspecified
6343 behavior and are not portable in C, so they usually indicate that the
6344 programmer intended to use @code{strcmp}.  This warning is enabled by
6345 @option{-Wall}.
6347 @item -Wlogical-op
6348 @opindex Wlogical-op
6349 @opindex Wno-logical-op
6350 Warn about suspicious uses of logical operators in expressions.
6351 This includes using logical operators in contexts where a
6352 bit-wise operator is likely to be expected.  Also warns when
6353 the operands of a logical operator are the same:
6354 @smallexample
6355 extern int a;
6356 if (a < 0 && a < 0) @{ @dots{} @}
6357 @end smallexample
6359 @item -Wlogical-not-parentheses
6360 @opindex Wlogical-not-parentheses
6361 @opindex Wno-logical-not-parentheses
6362 Warn about logical not used on the left hand side operand of a comparison.
6363 This option does not warn if the right operand is considered to be a boolean
6364 expression.  Its purpose is to detect suspicious code like the following:
6365 @smallexample
6366 int a;
6367 @dots{}
6368 if (!a > 1) @{ @dots{} @}
6369 @end smallexample
6371 It is possible to suppress the warning by wrapping the LHS into
6372 parentheses:
6373 @smallexample
6374 if ((!a) > 1) @{ @dots{} @}
6375 @end smallexample
6377 This warning is enabled by @option{-Wall}.
6379 @item -Waggregate-return
6380 @opindex Waggregate-return
6381 @opindex Wno-aggregate-return
6382 Warn if any functions that return structures or unions are defined or
6383 called.  (In languages where you can return an array, this also elicits
6384 a warning.)
6386 @item -Wno-aggressive-loop-optimizations
6387 @opindex Wno-aggressive-loop-optimizations
6388 @opindex Waggressive-loop-optimizations
6389 Warn if in a loop with constant number of iterations the compiler detects
6390 undefined behavior in some statement during one or more of the iterations.
6392 @item -Wno-attributes
6393 @opindex Wno-attributes
6394 @opindex Wattributes
6395 Do not warn if an unexpected @code{__attribute__} is used, such as
6396 unrecognized attributes, function attributes applied to variables,
6397 etc.  This does not stop errors for incorrect use of supported
6398 attributes.
6400 @item -Wno-builtin-declaration-mismatch
6401 @opindex Wno-builtin-declaration-mismatch
6402 @opindex Wbuiltin-declaration-mismatch
6403 Warn if a built-in function is declared with the wrong signature or 
6404 as non-function.
6405 This warning is enabled by default.
6407 @item -Wno-builtin-macro-redefined
6408 @opindex Wno-builtin-macro-redefined
6409 @opindex Wbuiltin-macro-redefined
6410 Do not warn if certain built-in macros are redefined.  This suppresses
6411 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6412 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6414 @item -Wstrict-prototypes @r{(C and Objective-C only)}
6415 @opindex Wstrict-prototypes
6416 @opindex Wno-strict-prototypes
6417 Warn if a function is declared or defined without specifying the
6418 argument types.  (An old-style function definition is permitted without
6419 a warning if preceded by a declaration that specifies the argument
6420 types.)
6422 @item -Wold-style-declaration @r{(C and Objective-C only)}
6423 @opindex Wold-style-declaration
6424 @opindex Wno-old-style-declaration
6425 Warn for obsolescent usages, according to the C Standard, in a
6426 declaration. For example, warn if storage-class specifiers like
6427 @code{static} are not the first things in a declaration.  This warning
6428 is also enabled by @option{-Wextra}.
6430 @item -Wold-style-definition @r{(C and Objective-C only)}
6431 @opindex Wold-style-definition
6432 @opindex Wno-old-style-definition
6433 Warn if an old-style function definition is used.  A warning is given
6434 even if there is a previous prototype.
6436 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
6437 @opindex Wmissing-parameter-type
6438 @opindex Wno-missing-parameter-type
6439 A function parameter is declared without a type specifier in K&R-style
6440 functions:
6442 @smallexample
6443 void foo(bar) @{ @}
6444 @end smallexample
6446 This warning is also enabled by @option{-Wextra}.
6448 @item -Wmissing-prototypes @r{(C and Objective-C only)}
6449 @opindex Wmissing-prototypes
6450 @opindex Wno-missing-prototypes
6451 Warn if a global function is defined without a previous prototype
6452 declaration.  This warning is issued even if the definition itself
6453 provides a prototype.  Use this option to detect global functions
6454 that do not have a matching prototype declaration in a header file.
6455 This option is not valid for C++ because all function declarations
6456 provide prototypes and a non-matching declaration declares an
6457 overload rather than conflict with an earlier declaration.
6458 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6460 @item -Wmissing-declarations
6461 @opindex Wmissing-declarations
6462 @opindex Wno-missing-declarations
6463 Warn if a global function is defined without a previous declaration.
6464 Do so even if the definition itself provides a prototype.
6465 Use this option to detect global functions that are not declared in
6466 header files.  In C, no warnings are issued for functions with previous
6467 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6468 missing prototypes.  In C++, no warnings are issued for function templates,
6469 or for inline functions, or for functions in anonymous namespaces.
6471 @item -Wmissing-field-initializers
6472 @opindex Wmissing-field-initializers
6473 @opindex Wno-missing-field-initializers
6474 @opindex W
6475 @opindex Wextra
6476 @opindex Wno-extra
6477 Warn if a structure's initializer has some fields missing.  For
6478 example, the following code causes such a warning, because
6479 @code{x.h} is implicitly zero:
6481 @smallexample
6482 struct s @{ int f, g, h; @};
6483 struct s x = @{ 3, 4 @};
6484 @end smallexample
6486 This option does not warn about designated initializers, so the following
6487 modification does not trigger a warning:
6489 @smallexample
6490 struct s @{ int f, g, h; @};
6491 struct s x = @{ .f = 3, .g = 4 @};
6492 @end smallexample
6494 In C this option does not warn about the universal zero initializer
6495 @samp{@{ 0 @}}:
6497 @smallexample
6498 struct s @{ int f, g, h; @};
6499 struct s x = @{ 0 @};
6500 @end smallexample
6502 Likewise, in C++ this option does not warn about the empty @{ @}
6503 initializer, for example:
6505 @smallexample
6506 struct s @{ int f, g, h; @};
6507 s x = @{ @};
6508 @end smallexample
6510 This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
6511 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6513 @item -Wno-multichar
6514 @opindex Wno-multichar
6515 @opindex Wmultichar
6516 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6517 Usually they indicate a typo in the user's code, as they have
6518 implementation-defined values, and should not be used in portable code.
6520 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6521 @opindex Wnormalized=
6522 @opindex Wnormalized
6523 @opindex Wno-normalized
6524 @cindex NFC
6525 @cindex NFKC
6526 @cindex character set, input normalization
6527 In ISO C and ISO C++, two identifiers are different if they are
6528 different sequences of characters.  However, sometimes when characters
6529 outside the basic ASCII character set are used, you can have two
6530 different character sequences that look the same.  To avoid confusion,
6531 the ISO 10646 standard sets out some @dfn{normalization rules} which
6532 when applied ensure that two sequences that look the same are turned into
6533 the same sequence.  GCC can warn you if you are using identifiers that
6534 have not been normalized; this option controls that warning.
6536 There are four levels of warning supported by GCC@.  The default is
6537 @option{-Wnormalized=nfc}, which warns about any identifier that is
6538 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
6539 recommended form for most uses.  It is equivalent to
6540 @option{-Wnormalized}.
6542 Unfortunately, there are some characters allowed in identifiers by
6543 ISO C and ISO C++ that, when turned into NFC, are not allowed in 
6544 identifiers.  That is, there's no way to use these symbols in portable
6545 ISO C or C++ and have all your identifiers in NFC@.
6546 @option{-Wnormalized=id} suppresses the warning for these characters.
6547 It is hoped that future versions of the standards involved will correct
6548 this, which is why this option is not the default.
6550 You can switch the warning off for all characters by writing
6551 @option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
6552 only do this if you are using some other normalization scheme (like
6553 ``D''), because otherwise you can easily create bugs that are
6554 literally impossible to see.
6556 Some characters in ISO 10646 have distinct meanings but look identical
6557 in some fonts or display methodologies, especially once formatting has
6558 been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6559 LETTER N'', displays just like a regular @code{n} that has been
6560 placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
6561 normalization scheme to convert all these into a standard form as
6562 well, and GCC warns if your code is not in NFKC if you use
6563 @option{-Wnormalized=nfkc}.  This warning is comparable to warning
6564 about every identifier that contains the letter O because it might be
6565 confused with the digit 0, and so is not the default, but may be
6566 useful as a local coding convention if the programming environment 
6567 cannot be fixed to display these characters distinctly.
6569 @item -Wno-deprecated
6570 @opindex Wno-deprecated
6571 @opindex Wdeprecated
6572 Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
6574 @item -Wno-deprecated-declarations
6575 @opindex Wno-deprecated-declarations
6576 @opindex Wdeprecated-declarations
6577 Do not warn about uses of functions (@pxref{Function Attributes}),
6578 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6579 Attributes}) marked as deprecated by using the @code{deprecated}
6580 attribute.
6582 @item -Wno-overflow
6583 @opindex Wno-overflow
6584 @opindex Woverflow
6585 Do not warn about compile-time overflow in constant expressions.
6587 @item -Wno-odr
6588 @opindex Wno-odr
6589 @opindex Wodr
6590 Warn about One Definition Rule violations during link-time optimization.
6591 Requires @option{-flto-odr-type-merging} to be enabled.  Enabled by default.
6593 @item -Wopenmp-simd
6594 @opindex Wopenm-simd
6595 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
6596 simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
6597 option can be used to relax the cost model.
6599 @item -Woverride-init @r{(C and Objective-C only)}
6600 @opindex Woverride-init
6601 @opindex Wno-override-init
6602 @opindex W
6603 @opindex Wextra
6604 @opindex Wno-extra
6605 Warn if an initialized field without side effects is overridden when
6606 using designated initializers (@pxref{Designated Inits, , Designated
6607 Initializers}).
6609 This warning is included in @option{-Wextra}.  To get other
6610 @option{-Wextra} warnings without this one, use @option{-Wextra
6611 -Wno-override-init}.
6613 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6614 @opindex Woverride-init-side-effects
6615 @opindex Wno-override-init-side-effects
6616 Warn if an initialized field with side effects is overridden when
6617 using designated initializers (@pxref{Designated Inits, , Designated
6618 Initializers}).  This warning is enabled by default.
6620 @item -Wpacked
6621 @opindex Wpacked
6622 @opindex Wno-packed
6623 Warn if a structure is given the packed attribute, but the packed
6624 attribute has no effect on the layout or size of the structure.
6625 Such structures may be mis-aligned for little benefit.  For
6626 instance, in this code, the variable @code{f.x} in @code{struct bar}
6627 is misaligned even though @code{struct bar} does not itself
6628 have the packed attribute:
6630 @smallexample
6631 @group
6632 struct foo @{
6633   int x;
6634   char a, b, c, d;
6635 @} __attribute__((packed));
6636 struct bar @{
6637   char z;
6638   struct foo f;
6640 @end group
6641 @end smallexample
6643 @item -Wpacked-bitfield-compat
6644 @opindex Wpacked-bitfield-compat
6645 @opindex Wno-packed-bitfield-compat
6646 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6647 on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
6648 the change can lead to differences in the structure layout.  GCC
6649 informs you when the offset of such a field has changed in GCC 4.4.
6650 For example there is no longer a 4-bit padding between field @code{a}
6651 and @code{b} in this structure:
6653 @smallexample
6654 struct foo
6656   char a:4;
6657   char b:8;
6658 @} __attribute__ ((packed));
6659 @end smallexample
6661 This warning is enabled by default.  Use
6662 @option{-Wno-packed-bitfield-compat} to disable this warning.
6664 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
6665 @opindex Wpacked-not-aligned
6666 @opindex Wno-packed-not-aligned
6667 Warn if a structure field with explicitly specified alignment in a
6668 packed struct or union is misaligned.  For example, a warning will
6669 be issued on @code{struct S}, like, @code{warning: alignment 1 of
6670 'struct S' is less than 8}, in this code:
6672 @smallexample
6673 @group
6674 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
6675 struct __attribute__ ((packed)) S @{
6676   struct S8 s8;
6678 @end group
6679 @end smallexample
6681 This warning is enabled by @option{-Wall}.
6683 @item -Wpadded
6684 @opindex Wpadded
6685 @opindex Wno-padded
6686 Warn if padding is included in a structure, either to align an element
6687 of the structure or to align the whole structure.  Sometimes when this
6688 happens it is possible to rearrange the fields of the structure to
6689 reduce the padding and so make the structure smaller.
6691 @item -Wredundant-decls
6692 @opindex Wredundant-decls
6693 @opindex Wno-redundant-decls
6694 Warn if anything is declared more than once in the same scope, even in
6695 cases where multiple declaration is valid and changes nothing.
6697 @item -Wrestrict
6698 @opindex Wrestrict
6699 @opindex Wno-restrict
6700 Warn when an argument passed to a restrict-qualified parameter
6701 aliases with another argument.
6703 @item -Wnested-externs @r{(C and Objective-C only)}
6704 @opindex Wnested-externs
6705 @opindex Wno-nested-externs
6706 Warn if an @code{extern} declaration is encountered within a function.
6708 @item -Wno-inherited-variadic-ctor
6709 @opindex Winherited-variadic-ctor
6710 @opindex Wno-inherited-variadic-ctor
6711 Suppress warnings about use of C++11 inheriting constructors when the
6712 base class inherited from has a C variadic constructor; the warning is
6713 on by default because the ellipsis is not inherited.
6715 @item -Winline
6716 @opindex Winline
6717 @opindex Wno-inline
6718 Warn if a function that is declared as inline cannot be inlined.
6719 Even with this option, the compiler does not warn about failures to
6720 inline functions declared in system headers.
6722 The compiler uses a variety of heuristics to determine whether or not
6723 to inline a function.  For example, the compiler takes into account
6724 the size of the function being inlined and the amount of inlining
6725 that has already been done in the current function.  Therefore,
6726 seemingly insignificant changes in the source program can cause the
6727 warnings produced by @option{-Winline} to appear or disappear.
6729 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6730 @opindex Wno-invalid-offsetof
6731 @opindex Winvalid-offsetof
6732 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6733 type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
6734 to a non-standard-layout type is undefined.  In existing C++ implementations,
6735 however, @code{offsetof} typically gives meaningful results.
6736 This flag is for users who are aware that they are
6737 writing nonportable code and who have deliberately chosen to ignore the
6738 warning about it.
6740 The restrictions on @code{offsetof} may be relaxed in a future version
6741 of the C++ standard.
6743 @item -Wint-in-bool-context
6744 @opindex Wint-in-bool-context
6745 @opindex Wno-int-in-bool-context
6746 Warn for suspicious use of integer values where boolean values are expected,
6747 such as conditional expressions (?:) using non-boolean integer constants in
6748 boolean context, like @code{if (a <= b ? 2 : 3)}.  Or left shifting of signed
6749 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}.  Likewise
6750 for all kinds of multiplications regardless of the data type.
6751 This warning is enabled by @option{-Wall}.
6753 @item -Wno-int-to-pointer-cast
6754 @opindex Wno-int-to-pointer-cast
6755 @opindex Wint-to-pointer-cast
6756 Suppress warnings from casts to pointer type of an integer of a
6757 different size. In C++, casting to a pointer type of smaller size is
6758 an error. @option{Wint-to-pointer-cast} is enabled by default.
6761 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6762 @opindex Wno-pointer-to-int-cast
6763 @opindex Wpointer-to-int-cast
6764 Suppress warnings from casts from a pointer to an integer type of a
6765 different size.
6767 @item -Winvalid-pch
6768 @opindex Winvalid-pch
6769 @opindex Wno-invalid-pch
6770 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6771 the search path but cannot be used.
6773 @item -Wlong-long
6774 @opindex Wlong-long
6775 @opindex Wno-long-long
6776 Warn if @code{long long} type is used.  This is enabled by either
6777 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6778 modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
6780 @item -Wvariadic-macros
6781 @opindex Wvariadic-macros
6782 @opindex Wno-variadic-macros
6783 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6784 alternate syntax is used in ISO C99 mode.  This is enabled by either
6785 @option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
6786 messages, use @option{-Wno-variadic-macros}.
6788 @item -Wvarargs
6789 @opindex Wvarargs
6790 @opindex Wno-varargs
6791 Warn upon questionable usage of the macros used to handle variable
6792 arguments like @code{va_start}.  This is default.  To inhibit the
6793 warning messages, use @option{-Wno-varargs}.
6795 @item -Wvector-operation-performance
6796 @opindex Wvector-operation-performance
6797 @opindex Wno-vector-operation-performance
6798 Warn if vector operation is not implemented via SIMD capabilities of the
6799 architecture.  Mainly useful for the performance tuning.
6800 Vector operation can be implemented @code{piecewise}, which means that the
6801 scalar operation is performed on every vector element; 
6802 @code{in parallel}, which means that the vector operation is implemented
6803 using scalars of wider type, which normally is more performance efficient;
6804 and @code{as a single scalar}, which means that vector fits into a
6805 scalar type.
6807 @item -Wno-virtual-move-assign
6808 @opindex Wvirtual-move-assign
6809 @opindex Wno-virtual-move-assign
6810 Suppress warnings about inheriting from a virtual base with a
6811 non-trivial C++11 move assignment operator.  This is dangerous because
6812 if the virtual base is reachable along more than one path, it is
6813 moved multiple times, which can mean both objects end up in the
6814 moved-from state.  If the move assignment operator is written to avoid
6815 moving from a moved-from object, this warning can be disabled.
6817 @item -Wvla
6818 @opindex Wvla
6819 @opindex Wno-vla
6820 Warn if a variable-length array is used in the code.
6821 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6822 the variable-length array.
6824 @item -Wvla-larger-than=@var{n}
6825 If this option is used, the compiler will warn on uses of
6826 variable-length arrays where the size is either unbounded, or bounded
6827 by an argument that can be larger than @var{n} bytes.  This is similar
6828 to how @option{-Walloca-larger-than=@var{n}} works, but with
6829 variable-length arrays.
6831 Note that GCC may optimize small variable-length arrays of a known
6832 value into plain arrays, so this warning may not get triggered for
6833 such arrays.
6835 This warning is not enabled by @option{-Wall}, and is only active when
6836 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6838 See also @option{-Walloca-larger-than=@var{n}}.
6840 @item -Wvolatile-register-var
6841 @opindex Wvolatile-register-var
6842 @opindex Wno-volatile-register-var
6843 Warn if a register variable is declared volatile.  The volatile
6844 modifier does not inhibit all optimizations that may eliminate reads
6845 and/or writes to register variables.  This warning is enabled by
6846 @option{-Wall}.
6848 @item -Wdisabled-optimization
6849 @opindex Wdisabled-optimization
6850 @opindex Wno-disabled-optimization
6851 Warn if a requested optimization pass is disabled.  This warning does
6852 not generally indicate that there is anything wrong with your code; it
6853 merely indicates that GCC's optimizers are unable to handle the code
6854 effectively.  Often, the problem is that your code is too big or too
6855 complex; GCC refuses to optimize programs when the optimization
6856 itself is likely to take inordinate amounts of time.
6858 @item -Wpointer-sign @r{(C and Objective-C only)}
6859 @opindex Wpointer-sign
6860 @opindex Wno-pointer-sign
6861 Warn for pointer argument passing or assignment with different signedness.
6862 This option is only supported for C and Objective-C@.  It is implied by
6863 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
6864 @option{-Wno-pointer-sign}.
6866 @item -Wstack-protector
6867 @opindex Wstack-protector
6868 @opindex Wno-stack-protector
6869 This option is only active when @option{-fstack-protector} is active.  It
6870 warns about functions that are not protected against stack smashing.
6872 @item -Woverlength-strings
6873 @opindex Woverlength-strings
6874 @opindex Wno-overlength-strings
6875 Warn about string constants that are longer than the ``minimum
6876 maximum'' length specified in the C standard.  Modern compilers
6877 generally allow string constants that are much longer than the
6878 standard's minimum limit, but very portable programs should avoid
6879 using longer strings.
6881 The limit applies @emph{after} string constant concatenation, and does
6882 not count the trailing NUL@.  In C90, the limit was 509 characters; in
6883 C99, it was raised to 4095.  C++98 does not specify a normative
6884 minimum maximum, so we do not diagnose overlength strings in C++@.
6886 This option is implied by @option{-Wpedantic}, and can be disabled with
6887 @option{-Wno-overlength-strings}.
6889 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
6890 @opindex Wunsuffixed-float-constants
6892 Issue a warning for any floating constant that does not have
6893 a suffix.  When used together with @option{-Wsystem-headers} it
6894 warns about such constants in system header files.  This can be useful
6895 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
6896 from the decimal floating-point extension to C99.
6898 @item -Wno-designated-init @r{(C and Objective-C only)}
6899 Suppress warnings when a positional initializer is used to initialize
6900 a structure that has been marked with the @code{designated_init}
6901 attribute.
6903 @item -Whsa
6904 Issue a warning when HSAIL cannot be emitted for the compiled function or
6905 OpenMP construct.
6907 @end table
6909 @node Debugging Options
6910 @section Options for Debugging Your Program
6911 @cindex options, debugging
6912 @cindex debugging information options
6914 To tell GCC to emit extra information for use by a debugger, in almost 
6915 all cases you need only to add @option{-g} to your other options.
6917 GCC allows you to use @option{-g} with
6918 @option{-O}.  The shortcuts taken by optimized code may occasionally
6919 be surprising: some variables you declared may not exist
6920 at all; flow of control may briefly move where you did not expect it;
6921 some statements may not be executed because they compute constant
6922 results or their values are already at hand; some statements may
6923 execute in different places because they have been moved out of loops.
6924 Nevertheless it is possible to debug optimized output.  This makes
6925 it reasonable to use the optimizer for programs that might have bugs.
6927 If you are not using some other optimization option, consider
6928 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.  
6929 With no @option{-O} option at all, some compiler passes that collect
6930 information useful for debugging do not run at all, so that
6931 @option{-Og} may result in a better debugging experience.
6933 @table @gcctabopt
6934 @item -g
6935 @opindex g
6936 Produce debugging information in the operating system's native format
6937 (stabs, COFF, XCOFF, or DWARF)@.  GDB can work with this debugging
6938 information.
6940 On most systems that use stabs format, @option{-g} enables use of extra
6941 debugging information that only GDB can use; this extra information
6942 makes debugging work better in GDB but probably makes other debuggers
6943 crash or
6944 refuse to read the program.  If you want to control for certain whether
6945 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
6946 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
6948 @item -ggdb
6949 @opindex ggdb
6950 Produce debugging information for use by GDB@.  This means to use the
6951 most expressive format available (DWARF, stabs, or the native format
6952 if neither of those are supported), including GDB extensions if at all
6953 possible.
6955 @item -gdwarf
6956 @itemx -gdwarf-@var{version}
6957 @opindex gdwarf
6958 Produce debugging information in DWARF format (if that is supported).
6959 The value of @var{version} may be either 2, 3, 4 or 5; the default version
6960 for most targets is 4.  DWARF Version 5 is only experimental.
6962 Note that with DWARF Version 2, some ports require and always
6963 use some non-conflicting DWARF 3 extensions in the unwind tables.
6965 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
6966 for maximum benefit.
6968 GCC no longer supports DWARF Version 1, which is substantially
6969 different than Version 2 and later.  For historical reasons, some
6970 other DWARF-related options such as
6971 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
6972 in their names, but apply to all currently-supported versions of DWARF.
6974 @item -gstabs
6975 @opindex gstabs
6976 Produce debugging information in stabs format (if that is supported),
6977 without GDB extensions.  This is the format used by DBX on most BSD
6978 systems.  On MIPS, Alpha and System V Release 4 systems this option
6979 produces stabs debugging output that is not understood by DBX@.
6980 On System V Release 4 systems this option requires the GNU assembler.
6982 @item -gstabs+
6983 @opindex gstabs+
6984 Produce debugging information in stabs format (if that is supported),
6985 using GNU extensions understood only by the GNU debugger (GDB)@.  The
6986 use of these extensions is likely to make other debuggers crash or
6987 refuse to read the program.
6989 @item -gxcoff
6990 @opindex gxcoff
6991 Produce debugging information in XCOFF format (if that is supported).
6992 This is the format used by the DBX debugger on IBM RS/6000 systems.
6994 @item -gxcoff+
6995 @opindex gxcoff+
6996 Produce debugging information in XCOFF format (if that is supported),
6997 using GNU extensions understood only by the GNU debugger (GDB)@.  The
6998 use of these extensions is likely to make other debuggers crash or
6999 refuse to read the program, and may cause assemblers other than the GNU
7000 assembler (GAS) to fail with an error.
7002 @item -gvms
7003 @opindex gvms
7004 Produce debugging information in Alpha/VMS debug format (if that is
7005 supported).  This is the format used by DEBUG on Alpha/VMS systems.
7007 @item -g@var{level}
7008 @itemx -ggdb@var{level}
7009 @itemx -gstabs@var{level}
7010 @itemx -gxcoff@var{level}
7011 @itemx -gvms@var{level}
7012 Request debugging information and also use @var{level} to specify how
7013 much information.  The default level is 2.
7015 Level 0 produces no debug information at all.  Thus, @option{-g0} negates
7016 @option{-g}.
7018 Level 1 produces minimal information, enough for making backtraces in
7019 parts of the program that you don't plan to debug.  This includes
7020 descriptions of functions and external variables, and line number
7021 tables, but no information about local variables.
7023 Level 3 includes extra information, such as all the macro definitions
7024 present in the program.  Some debuggers support macro expansion when
7025 you use @option{-g3}.
7027 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7028 confusion with @option{-gdwarf-@var{level}}.
7029 Instead use an additional @option{-g@var{level}} option to change the
7030 debug level for DWARF.
7032 @item -feliminate-unused-debug-symbols
7033 @opindex feliminate-unused-debug-symbols
7034 Produce debugging information in stabs format (if that is supported),
7035 for only symbols that are actually used.
7037 @item -femit-class-debug-always
7038 @opindex femit-class-debug-always
7039 Instead of emitting debugging information for a C++ class in only one
7040 object file, emit it in all object files using the class.  This option
7041 should be used only with debuggers that are unable to handle the way GCC
7042 normally emits debugging information for classes because using this
7043 option increases the size of debugging information by as much as a
7044 factor of two.
7046 @item -fno-merge-debug-strings
7047 @opindex fmerge-debug-strings
7048 @opindex fno-merge-debug-strings
7049 Direct the linker to not merge together strings in the debugging
7050 information that are identical in different object files.  Merging is
7051 not supported by all assemblers or linkers.  Merging decreases the size
7052 of the debug information in the output file at the cost of increasing
7053 link processing time.  Merging is enabled by default.
7055 @item -fdebug-prefix-map=@var{old}=@var{new}
7056 @opindex fdebug-prefix-map
7057 When compiling files in directory @file{@var{old}}, record debugging
7058 information describing them as in @file{@var{new}} instead.  This can be
7059 used to replace a build-time path with an install-time path in the debug info.
7060 It can also be used to change an absolute path to a relative path by using
7061 @file{.} for @var{new}.  This can give more reproducible builds, which are
7062 location independent, but may require an extra command to tell GDB where to
7063 find the source files.
7065 @item -fvar-tracking
7066 @opindex fvar-tracking
7067 Run variable tracking pass.  It computes where variables are stored at each
7068 position in code.  Better debugging information is then generated
7069 (if the debugging information format supports this information).
7071 It is enabled by default when compiling with optimization (@option{-Os},
7072 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7073 the debug info format supports it.
7075 @item -fvar-tracking-assignments
7076 @opindex fvar-tracking-assignments
7077 @opindex fno-var-tracking-assignments
7078 Annotate assignments to user variables early in the compilation and
7079 attempt to carry the annotations over throughout the compilation all the
7080 way to the end, in an attempt to improve debug information while
7081 optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
7083 It can be enabled even if var-tracking is disabled, in which case
7084 annotations are created and maintained, but discarded at the end.
7085 By default, this flag is enabled together with @option{-fvar-tracking},
7086 except when selective scheduling is enabled.
7088 @item -gsplit-dwarf
7089 @opindex gsplit-dwarf
7090 Separate as much DWARF debugging information as possible into a
7091 separate output file with the extension @file{.dwo}.  This option allows
7092 the build system to avoid linking files with debug information.  To
7093 be useful, this option requires a debugger capable of reading @file{.dwo}
7094 files.
7096 @item -gpubnames
7097 @opindex gpubnames
7098 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7100 @item -ggnu-pubnames
7101 @opindex ggnu-pubnames
7102 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7103 suitable for conversion into a GDB@ index.  This option is only useful
7104 with a linker that can produce GDB@ index version 7.
7106 @item -fdebug-types-section
7107 @opindex fdebug-types-section
7108 @opindex fno-debug-types-section
7109 When using DWARF Version 4 or higher, type DIEs can be put into
7110 their own @code{.debug_types} section instead of making them part of the
7111 @code{.debug_info} section.  It is more efficient to put them in a separate
7112 comdat sections since the linker can then remove duplicates.
7113 But not all DWARF consumers support @code{.debug_types} sections yet
7114 and on some objects @code{.debug_types} produces larger instead of smaller
7115 debugging information.
7117 @item -grecord-gcc-switches
7118 @item -gno-record-gcc-switches
7119 @opindex grecord-gcc-switches
7120 @opindex gno-record-gcc-switches
7121 This switch causes the command-line options used to invoke the
7122 compiler that may affect code generation to be appended to the
7123 DW_AT_producer attribute in DWARF debugging information.  The options
7124 are concatenated with spaces separating them from each other and from
7125 the compiler version.  
7126 It is enabled by default.
7127 See also @option{-frecord-gcc-switches} for another
7128 way of storing compiler options into the object file.  
7130 @item -gstrict-dwarf
7131 @opindex gstrict-dwarf
7132 Disallow using extensions of later DWARF standard version than selected
7133 with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
7134 DWARF extensions from later standard versions is allowed.
7136 @item -gno-strict-dwarf
7137 @opindex gno-strict-dwarf
7138 Allow using extensions of later DWARF standard version than selected with
7139 @option{-gdwarf-@var{version}}.
7141 @item -gcolumn-info
7142 @item -gno-column-info
7143 @opindex gcolumn-info
7144 @opindex gno-column-info
7145 Emit location column information into DWARF debugging information, rather
7146 than just file and line.
7147 This option is enabled by default.
7149 @item -gz@r{[}=@var{type}@r{]}
7150 @opindex gz
7151 Produce compressed debug sections in DWARF format, if that is supported.
7152 If @var{type} is not given, the default type depends on the capabilities
7153 of the assembler and linker used.  @var{type} may be one of
7154 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
7155 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
7156 compression in traditional GNU format).  If the linker doesn't support
7157 writing compressed debug sections, the option is rejected.  Otherwise,
7158 if the assembler does not support them, @option{-gz} is silently ignored
7159 when producing object files.
7161 @item -femit-struct-debug-baseonly
7162 @opindex femit-struct-debug-baseonly
7163 Emit debug information for struct-like types
7164 only when the base name of the compilation source file
7165 matches the base name of file in which the struct is defined.
7167 This option substantially reduces the size of debugging information,
7168 but at significant potential loss in type information to the debugger.
7169 See @option{-femit-struct-debug-reduced} for a less aggressive option.
7170 See @option{-femit-struct-debug-detailed} for more detailed control.
7172 This option works only with DWARF debug output.
7174 @item -femit-struct-debug-reduced
7175 @opindex femit-struct-debug-reduced
7176 Emit debug information for struct-like types
7177 only when the base name of the compilation source file
7178 matches the base name of file in which the type is defined,
7179 unless the struct is a template or defined in a system header.
7181 This option significantly reduces the size of debugging information,
7182 with some potential loss in type information to the debugger.
7183 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7184 See @option{-femit-struct-debug-detailed} for more detailed control.
7186 This option works only with DWARF debug output.
7188 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7189 @opindex femit-struct-debug-detailed
7190 Specify the struct-like types
7191 for which the compiler generates debug information.
7192 The intent is to reduce duplicate struct debug information
7193 between different object files within the same program.
7195 This option is a detailed version of
7196 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7197 which serves for most needs.
7199 A specification has the syntax@*
7200 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7202 The optional first word limits the specification to
7203 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7204 A struct type is used directly when it is the type of a variable, member.
7205 Indirect uses arise through pointers to structs.
7206 That is, when use of an incomplete struct is valid, the use is indirect.
7207 An example is
7208 @samp{struct one direct; struct two * indirect;}.
7210 The optional second word limits the specification to
7211 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7212 Generic structs are a bit complicated to explain.
7213 For C++, these are non-explicit specializations of template classes,
7214 or non-template classes within the above.
7215 Other programming languages have generics,
7216 but @option{-femit-struct-debug-detailed} does not yet implement them.
7218 The third word specifies the source files for those
7219 structs for which the compiler should emit debug information.
7220 The values @samp{none} and @samp{any} have the normal meaning.
7221 The value @samp{base} means that
7222 the base of name of the file in which the type declaration appears
7223 must match the base of the name of the main compilation file.
7224 In practice, this means that when compiling @file{foo.c}, debug information
7225 is generated for types declared in that file and @file{foo.h},
7226 but not other header files.
7227 The value @samp{sys} means those types satisfying @samp{base}
7228 or declared in system or compiler headers.
7230 You may need to experiment to determine the best settings for your application.
7232 The default is @option{-femit-struct-debug-detailed=all}.
7234 This option works only with DWARF debug output.
7236 @item -fno-dwarf2-cfi-asm
7237 @opindex fdwarf2-cfi-asm
7238 @opindex fno-dwarf2-cfi-asm
7239 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7240 instead of using GAS @code{.cfi_*} directives.
7242 @item -fno-eliminate-unused-debug-types
7243 @opindex feliminate-unused-debug-types
7244 @opindex fno-eliminate-unused-debug-types
7245 Normally, when producing DWARF output, GCC avoids producing debug symbol 
7246 output for types that are nowhere used in the source file being compiled.
7247 Sometimes it is useful to have GCC emit debugging
7248 information for all types declared in a compilation
7249 unit, regardless of whether or not they are actually used
7250 in that compilation unit, for example 
7251 if, in the debugger, you want to cast a value to a type that is
7252 not actually used in your program (but is declared).  More often,
7253 however, this results in a significant amount of wasted space.
7254 @end table
7256 @node Optimize Options
7257 @section Options That Control Optimization
7258 @cindex optimize options
7259 @cindex options, optimization
7261 These options control various sorts of optimizations.
7263 Without any optimization option, the compiler's goal is to reduce the
7264 cost of compilation and to make debugging produce the expected
7265 results.  Statements are independent: if you stop the program with a
7266 breakpoint between statements, you can then assign a new value to any
7267 variable or change the program counter to any other statement in the
7268 function and get exactly the results you expect from the source
7269 code.
7271 Turning on optimization flags makes the compiler attempt to improve
7272 the performance and/or code size at the expense of compilation time
7273 and possibly the ability to debug the program.
7275 The compiler performs optimization based on the knowledge it has of the
7276 program.  Compiling multiple files at once to a single output file mode allows
7277 the compiler to use information gained from all of the files when compiling
7278 each of them.
7280 Not all optimizations are controlled directly by a flag.  Only
7281 optimizations that have a flag are listed in this section.
7283 Most optimizations are only enabled if an @option{-O} level is set on
7284 the command line.  Otherwise they are disabled, even if individual
7285 optimization flags are specified.
7287 Depending on the target and how GCC was configured, a slightly different
7288 set of optimizations may be enabled at each @option{-O} level than
7289 those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
7290 to find out the exact set of optimizations that are enabled at each level.
7291 @xref{Overall Options}, for examples.
7293 @table @gcctabopt
7294 @item -O
7295 @itemx -O1
7296 @opindex O
7297 @opindex O1
7298 Optimize.  Optimizing compilation takes somewhat more time, and a lot
7299 more memory for a large function.
7301 With @option{-O}, the compiler tries to reduce code size and execution
7302 time, without performing any optimizations that take a great deal of
7303 compilation time.
7305 @option{-O} turns on the following optimization flags:
7306 @gccoptlist{
7307 -fauto-inc-dec @gol
7308 -fbranch-count-reg @gol
7309 -fcombine-stack-adjustments @gol
7310 -fcompare-elim @gol
7311 -fcprop-registers @gol
7312 -fdce @gol
7313 -fdefer-pop @gol
7314 -fdelayed-branch @gol
7315 -fdse @gol
7316 -fforward-propagate @gol
7317 -fguess-branch-probability @gol
7318 -fif-conversion2 @gol
7319 -fif-conversion @gol
7320 -finline-functions-called-once @gol
7321 -fipa-pure-const @gol
7322 -fipa-profile @gol
7323 -fipa-reference @gol
7324 -fmerge-constants @gol
7325 -fmove-loop-invariants @gol
7326 -fomit-frame-pointer @gol
7327 -freorder-blocks @gol
7328 -fshrink-wrap @gol
7329 -fshrink-wrap-separate @gol
7330 -fsplit-wide-types @gol
7331 -fssa-backprop @gol
7332 -fssa-phiopt @gol
7333 -ftree-bit-ccp @gol
7334 -ftree-ccp @gol
7335 -ftree-ch @gol
7336 -ftree-coalesce-vars @gol
7337 -ftree-copy-prop @gol
7338 -ftree-dce @gol
7339 -ftree-dominator-opts @gol
7340 -ftree-dse @gol
7341 -ftree-forwprop @gol
7342 -ftree-fre @gol
7343 -ftree-phiprop @gol
7344 -ftree-sink @gol
7345 -ftree-slsr @gol
7346 -ftree-sra @gol
7347 -ftree-pta @gol
7348 -ftree-ter @gol
7349 -funit-at-a-time}
7351 @item -O2
7352 @opindex O2
7353 Optimize even more.  GCC performs nearly all supported optimizations
7354 that do not involve a space-speed tradeoff.
7355 As compared to @option{-O}, this option increases both compilation time
7356 and the performance of the generated code.
7358 @option{-O2} turns on all optimization flags specified by @option{-O}.  It
7359 also turns on the following optimization flags:
7360 @gccoptlist{-fthread-jumps @gol
7361 -falign-functions  -falign-jumps @gol
7362 -falign-loops  -falign-labels @gol
7363 -fcaller-saves @gol
7364 -fcrossjumping @gol
7365 -fcse-follow-jumps  -fcse-skip-blocks @gol
7366 -fdelete-null-pointer-checks @gol
7367 -fdevirtualize -fdevirtualize-speculatively @gol
7368 -fexpensive-optimizations @gol
7369 -fgcse  -fgcse-lm  @gol
7370 -fhoist-adjacent-loads @gol
7371 -finline-small-functions @gol
7372 -findirect-inlining @gol
7373 -fipa-cp @gol
7374 -fipa-bit-cp @gol
7375 -fipa-vrp @gol
7376 -fipa-sra @gol
7377 -fipa-icf @gol
7378 -fisolate-erroneous-paths-dereference @gol
7379 -flra-remat @gol
7380 -foptimize-sibling-calls @gol
7381 -foptimize-strlen @gol
7382 -fpartial-inlining @gol
7383 -fpeephole2 @gol
7384 -freorder-blocks-algorithm=stc @gol
7385 -freorder-blocks-and-partition -freorder-functions @gol
7386 -frerun-cse-after-loop  @gol
7387 -fsched-interblock  -fsched-spec @gol
7388 -fschedule-insns  -fschedule-insns2 @gol
7389 -fstore-merging @gol
7390 -fstrict-aliasing @gol
7391 -ftree-builtin-call-dce @gol
7392 -ftree-switch-conversion -ftree-tail-merge @gol
7393 -fcode-hoisting @gol
7394 -ftree-pre @gol
7395 -ftree-vrp @gol
7396 -fipa-ra}
7398 Please note the warning under @option{-fgcse} about
7399 invoking @option{-O2} on programs that use computed gotos.
7401 @item -O3
7402 @opindex O3
7403 Optimize yet more.  @option{-O3} turns on all optimizations specified
7404 by @option{-O2} and also turns on the following optimization flags:
7405 @gccoptlist{-finline-functions @gol
7406 -funswitch-loops @gol
7407 -fpredictive-commoning @gol
7408 -fgcse-after-reload @gol
7409 -ftree-loop-vectorize @gol
7410 -ftree-loop-distribution @gol
7411 -ftree-loop-distribute-patterns @gol
7412 -fsplit-paths @gol
7413 -ftree-slp-vectorize @gol
7414 -fvect-cost-model @gol
7415 -ftree-partial-pre @gol
7416 -fpeel-loops @gol
7417 -fipa-cp-clone}
7419 @item -O0
7420 @opindex O0
7421 Reduce compilation time and make debugging produce the expected
7422 results.  This is the default.
7424 @item -Os
7425 @opindex Os
7426 Optimize for size.  @option{-Os} enables all @option{-O2} optimizations that
7427 do not typically increase code size.  It also performs further
7428 optimizations designed to reduce code size.
7430 @option{-Os} disables the following optimization flags:
7431 @gccoptlist{-falign-functions  -falign-jumps  -falign-loops @gol
7432 -falign-labels  -freorder-blocks  -freorder-blocks-algorithm=stc @gol
7433 -freorder-blocks-and-partition  -fprefetch-loop-arrays}
7435 @item -Ofast
7436 @opindex Ofast
7437 Disregard strict standards compliance.  @option{-Ofast} enables all
7438 @option{-O3} optimizations.  It also enables optimizations that are not
7439 valid for all standard-compliant programs.
7440 It turns on @option{-ffast-math} and the Fortran-specific
7441 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
7442 specified, and @option{-fno-protect-parens}.
7444 @item -Og
7445 @opindex Og
7446 Optimize debugging experience.  @option{-Og} enables optimizations
7447 that do not interfere with debugging. It should be the optimization
7448 level of choice for the standard edit-compile-debug cycle, offering
7449 a reasonable level of optimization while maintaining fast compilation
7450 and a good debugging experience.
7451 @end table
7453 If you use multiple @option{-O} options, with or without level numbers,
7454 the last such option is the one that is effective.
7456 Options of the form @option{-f@var{flag}} specify machine-independent
7457 flags.  Most flags have both positive and negative forms; the negative
7458 form of @option{-ffoo} is @option{-fno-foo}.  In the table
7459 below, only one of the forms is listed---the one you typically 
7460 use.  You can figure out the other form by either removing @samp{no-}
7461 or adding it.
7463 The following options control specific optimizations.  They are either
7464 activated by @option{-O} options or are related to ones that are.  You
7465 can use the following flags in the rare cases when ``fine-tuning'' of
7466 optimizations to be performed is desired.
7468 @table @gcctabopt
7469 @item -fno-defer-pop
7470 @opindex fno-defer-pop
7471 Always pop the arguments to each function call as soon as that function
7472 returns.  For machines that must pop arguments after a function call,
7473 the compiler normally lets arguments accumulate on the stack for several
7474 function calls and pops them all at once.
7476 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7478 @item -fforward-propagate
7479 @opindex fforward-propagate
7480 Perform a forward propagation pass on RTL@.  The pass tries to combine two
7481 instructions and checks if the result can be simplified.  If loop unrolling
7482 is active, two passes are performed and the second is scheduled after
7483 loop unrolling.
7485 This option is enabled by default at optimization levels @option{-O},
7486 @option{-O2}, @option{-O3}, @option{-Os}.
7488 @item -ffp-contract=@var{style}
7489 @opindex ffp-contract
7490 @option{-ffp-contract=off} disables floating-point expression contraction.
7491 @option{-ffp-contract=fast} enables floating-point expression contraction
7492 such as forming of fused multiply-add operations if the target has
7493 native support for them.
7494 @option{-ffp-contract=on} enables floating-point expression contraction
7495 if allowed by the language standard.  This is currently not implemented
7496 and treated equal to @option{-ffp-contract=off}.
7498 The default is @option{-ffp-contract=fast}.
7500 @item -fomit-frame-pointer
7501 @opindex fomit-frame-pointer
7502 Omit the frame pointer in functions that don't need one.  This avoids the
7503 instructions to save, set up and restore the frame pointer; on many targets
7504 it also makes an extra register available.
7506 On some targets this flag has no effect because the standard calling sequence
7507 always uses a frame pointer, so it cannot be omitted.
7509 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
7510 is used in all functions.  Several targets always omit the frame pointer in
7511 leaf functions.
7513 Enabled by default at @option{-O} and higher.
7515 @item -foptimize-sibling-calls
7516 @opindex foptimize-sibling-calls
7517 Optimize sibling and tail recursive calls.
7519 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7521 @item -foptimize-strlen
7522 @opindex foptimize-strlen
7523 Optimize various standard C string functions (e.g. @code{strlen},
7524 @code{strchr} or @code{strcpy}) and
7525 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7527 Enabled at levels @option{-O2}, @option{-O3}.
7529 @item -fno-inline
7530 @opindex fno-inline
7531 Do not expand any functions inline apart from those marked with
7532 the @code{always_inline} attribute.  This is the default when not
7533 optimizing.
7535 Single functions can be exempted from inlining by marking them
7536 with the @code{noinline} attribute.
7538 @item -finline-small-functions
7539 @opindex finline-small-functions
7540 Integrate functions into their callers when their body is smaller than expected
7541 function call code (so overall size of program gets smaller).  The compiler
7542 heuristically decides which functions are simple enough to be worth integrating
7543 in this way.  This inlining applies to all functions, even those not declared
7544 inline.
7546 Enabled at level @option{-O2}.
7548 @item -findirect-inlining
7549 @opindex findirect-inlining
7550 Inline also indirect calls that are discovered to be known at compile
7551 time thanks to previous inlining.  This option has any effect only
7552 when inlining itself is turned on by the @option{-finline-functions}
7553 or @option{-finline-small-functions} options.
7555 Enabled at level @option{-O2}.
7557 @item -finline-functions
7558 @opindex finline-functions
7559 Consider all functions for inlining, even if they are not declared inline.
7560 The compiler heuristically decides which functions are worth integrating
7561 in this way.
7563 If all calls to a given function are integrated, and the function is
7564 declared @code{static}, then the function is normally not output as
7565 assembler code in its own right.
7567 Enabled at level @option{-O3}.
7569 @item -finline-functions-called-once
7570 @opindex finline-functions-called-once
7571 Consider all @code{static} functions called once for inlining into their
7572 caller even if they are not marked @code{inline}.  If a call to a given
7573 function is integrated, then the function is not output as assembler code
7574 in its own right.
7576 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7578 @item -fearly-inlining
7579 @opindex fearly-inlining
7580 Inline functions marked by @code{always_inline} and functions whose body seems
7581 smaller than the function call overhead early before doing
7582 @option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
7583 makes profiling significantly cheaper and usually inlining faster on programs
7584 having large chains of nested wrapper functions.
7586 Enabled by default.
7588 @item -fipa-sra
7589 @opindex fipa-sra
7590 Perform interprocedural scalar replacement of aggregates, removal of
7591 unused parameters and replacement of parameters passed by reference
7592 by parameters passed by value.
7594 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7596 @item -finline-limit=@var{n}
7597 @opindex finline-limit
7598 By default, GCC limits the size of functions that can be inlined.  This flag
7599 allows coarse control of this limit.  @var{n} is the size of functions that
7600 can be inlined in number of pseudo instructions.
7602 Inlining is actually controlled by a number of parameters, which may be
7603 specified individually by using @option{--param @var{name}=@var{value}}.
7604 The @option{-finline-limit=@var{n}} option sets some of these parameters
7605 as follows:
7607 @table @gcctabopt
7608 @item max-inline-insns-single
7609 is set to @var{n}/2.
7610 @item max-inline-insns-auto
7611 is set to @var{n}/2.
7612 @end table
7614 See below for a documentation of the individual
7615 parameters controlling inlining and for the defaults of these parameters.
7617 @emph{Note:} there may be no value to @option{-finline-limit} that results
7618 in default behavior.
7620 @emph{Note:} pseudo instruction represents, in this particular context, an
7621 abstract measurement of function's size.  In no way does it represent a count
7622 of assembly instructions and as such its exact meaning might change from one
7623 release to an another.
7625 @item -fno-keep-inline-dllexport
7626 @opindex fno-keep-inline-dllexport
7627 This is a more fine-grained version of @option{-fkeep-inline-functions},
7628 which applies only to functions that are declared using the @code{dllexport}
7629 attribute or declspec.  @xref{Function Attributes,,Declaring Attributes of
7630 Functions}.
7632 @item -fkeep-inline-functions
7633 @opindex fkeep-inline-functions
7634 In C, emit @code{static} functions that are declared @code{inline}
7635 into the object file, even if the function has been inlined into all
7636 of its callers.  This switch does not affect functions using the
7637 @code{extern inline} extension in GNU C90@.  In C++, emit any and all
7638 inline functions into the object file.
7640 @item -fkeep-static-functions
7641 @opindex fkeep-static-functions
7642 Emit @code{static} functions into the object file, even if the function
7643 is never used.
7645 @item -fkeep-static-consts
7646 @opindex fkeep-static-consts
7647 Emit variables declared @code{static const} when optimization isn't turned
7648 on, even if the variables aren't referenced.
7650 GCC enables this option by default.  If you want to force the compiler to
7651 check if a variable is referenced, regardless of whether or not
7652 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7654 @item -fmerge-constants
7655 @opindex fmerge-constants
7656 Attempt to merge identical constants (string constants and floating-point
7657 constants) across compilation units.
7659 This option is the default for optimized compilation if the assembler and
7660 linker support it.  Use @option{-fno-merge-constants} to inhibit this
7661 behavior.
7663 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7665 @item -fmerge-all-constants
7666 @opindex fmerge-all-constants
7667 Attempt to merge identical constants and identical variables.
7669 This option implies @option{-fmerge-constants}.  In addition to
7670 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7671 arrays or initialized constant variables with integral or floating-point
7672 types.  Languages like C or C++ require each variable, including multiple
7673 instances of the same variable in recursive calls, to have distinct locations,
7674 so using this option results in non-conforming
7675 behavior.
7677 @item -fmodulo-sched
7678 @opindex fmodulo-sched
7679 Perform swing modulo scheduling immediately before the first scheduling
7680 pass.  This pass looks at innermost loops and reorders their
7681 instructions by overlapping different iterations.
7683 @item -fmodulo-sched-allow-regmoves
7684 @opindex fmodulo-sched-allow-regmoves
7685 Perform more aggressive SMS-based modulo scheduling with register moves
7686 allowed.  By setting this flag certain anti-dependences edges are
7687 deleted, which triggers the generation of reg-moves based on the
7688 life-range analysis.  This option is effective only with
7689 @option{-fmodulo-sched} enabled.
7691 @item -fno-branch-count-reg
7692 @opindex fno-branch-count-reg
7693 Avoid running a pass scanning for opportunities to use ``decrement and
7694 branch'' instructions on a count register instead of generating sequences
7695 of instructions that decrement a register, compare it against zero, and
7696 then branch based upon the result.  This option is only meaningful on
7697 architectures that support such instructions, which include x86, PowerPC,
7698 IA-64 and S/390.  Note that the @option{-fno-branch-count-reg} option
7699 doesn't remove the decrement and branch instructions from the generated
7700 instruction stream introduced by other optimization passes.
7702 Enabled by default at @option{-O1} and higher.
7704 The default is @option{-fbranch-count-reg}.
7706 @item -fno-function-cse
7707 @opindex fno-function-cse
7708 Do not put function addresses in registers; make each instruction that
7709 calls a constant function contain the function's address explicitly.
7711 This option results in less efficient code, but some strange hacks
7712 that alter the assembler output may be confused by the optimizations
7713 performed when this option is not used.
7715 The default is @option{-ffunction-cse}
7717 @item -fno-zero-initialized-in-bss
7718 @opindex fno-zero-initialized-in-bss
7719 If the target supports a BSS section, GCC by default puts variables that
7720 are initialized to zero into BSS@.  This can save space in the resulting
7721 code.
7723 This option turns off this behavior because some programs explicitly
7724 rely on variables going to the data section---e.g., so that the
7725 resulting executable can find the beginning of that section and/or make
7726 assumptions based on that.
7728 The default is @option{-fzero-initialized-in-bss}.
7730 @item -fthread-jumps
7731 @opindex fthread-jumps
7732 Perform optimizations that check to see if a jump branches to a
7733 location where another comparison subsumed by the first is found.  If
7734 so, the first branch is redirected to either the destination of the
7735 second branch or a point immediately following it, depending on whether
7736 the condition is known to be true or false.
7738 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7740 @item -fsplit-wide-types
7741 @opindex fsplit-wide-types
7742 When using a type that occupies multiple registers, such as @code{long
7743 long} on a 32-bit system, split the registers apart and allocate them
7744 independently.  This normally generates better code for those types,
7745 but may make debugging more difficult.
7747 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7748 @option{-Os}.
7750 @item -fcse-follow-jumps
7751 @opindex fcse-follow-jumps
7752 In common subexpression elimination (CSE), scan through jump instructions
7753 when the target of the jump is not reached by any other path.  For
7754 example, when CSE encounters an @code{if} statement with an
7755 @code{else} clause, CSE follows the jump when the condition
7756 tested is false.
7758 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7760 @item -fcse-skip-blocks
7761 @opindex fcse-skip-blocks
7762 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7763 follow jumps that conditionally skip over blocks.  When CSE
7764 encounters a simple @code{if} statement with no else clause,
7765 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7766 body of the @code{if}.
7768 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7770 @item -frerun-cse-after-loop
7771 @opindex frerun-cse-after-loop
7772 Re-run common subexpression elimination after loop optimizations are
7773 performed.
7775 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7777 @item -fgcse
7778 @opindex fgcse
7779 Perform a global common subexpression elimination pass.
7780 This pass also performs global constant and copy propagation.
7782 @emph{Note:} When compiling a program using computed gotos, a GCC
7783 extension, you may get better run-time performance if you disable
7784 the global common subexpression elimination pass by adding
7785 @option{-fno-gcse} to the command line.
7787 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7789 @item -fgcse-lm
7790 @opindex fgcse-lm
7791 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7792 attempts to move loads that are only killed by stores into themselves.  This
7793 allows a loop containing a load/store sequence to be changed to a load outside
7794 the loop, and a copy/store within the loop.
7796 Enabled by default when @option{-fgcse} is enabled.
7798 @item -fgcse-sm
7799 @opindex fgcse-sm
7800 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7801 global common subexpression elimination.  This pass attempts to move
7802 stores out of loops.  When used in conjunction with @option{-fgcse-lm},
7803 loops containing a load/store sequence can be changed to a load before
7804 the loop and a store after the loop.
7806 Not enabled at any optimization level.
7808 @item -fgcse-las
7809 @opindex fgcse-las
7810 When @option{-fgcse-las} is enabled, the global common subexpression
7811 elimination pass eliminates redundant loads that come after stores to the
7812 same memory location (both partial and full redundancies).
7814 Not enabled at any optimization level.
7816 @item -fgcse-after-reload
7817 @opindex fgcse-after-reload
7818 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7819 pass is performed after reload.  The purpose of this pass is to clean up
7820 redundant spilling.
7822 @item -faggressive-loop-optimizations
7823 @opindex faggressive-loop-optimizations
7824 This option tells the loop optimizer to use language constraints to
7825 derive bounds for the number of iterations of a loop.  This assumes that
7826 loop code does not invoke undefined behavior by for example causing signed
7827 integer overflows or out-of-bound array accesses.  The bounds for the
7828 number of iterations of a loop are used to guide loop unrolling and peeling
7829 and loop exit test optimizations.
7830 This option is enabled by default.
7832 @item -funconstrained-commons
7833 @opindex funconstrained-commons
7834 This option tells the compiler that variables declared in common blocks
7835 (e.g. Fortran) may later be overridden with longer trailing arrays. This
7836 prevents certain optimizations that depend on knowing the array bounds.
7838 @item -fcrossjumping
7839 @opindex fcrossjumping
7840 Perform cross-jumping transformation.
7841 This transformation unifies equivalent code and saves code size.  The
7842 resulting code may or may not perform better than without cross-jumping.
7844 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7846 @item -fauto-inc-dec
7847 @opindex fauto-inc-dec
7848 Combine increments or decrements of addresses with memory accesses.
7849 This pass is always skipped on architectures that do not have
7850 instructions to support this.  Enabled by default at @option{-O} and
7851 higher on architectures that support this.
7853 @item -fdce
7854 @opindex fdce
7855 Perform dead code elimination (DCE) on RTL@.
7856 Enabled by default at @option{-O} and higher.
7858 @item -fdse
7859 @opindex fdse
7860 Perform dead store elimination (DSE) on RTL@.
7861 Enabled by default at @option{-O} and higher.
7863 @item -fif-conversion
7864 @opindex fif-conversion
7865 Attempt to transform conditional jumps into branch-less equivalents.  This
7866 includes use of conditional moves, min, max, set flags and abs instructions, and
7867 some tricks doable by standard arithmetics.  The use of conditional execution
7868 on chips where it is available is controlled by @option{-fif-conversion2}.
7870 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7872 @item -fif-conversion2
7873 @opindex fif-conversion2
7874 Use conditional execution (where available) to transform conditional jumps into
7875 branch-less equivalents.
7877 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7879 @item -fdeclone-ctor-dtor
7880 @opindex fdeclone-ctor-dtor
7881 The C++ ABI requires multiple entry points for constructors and
7882 destructors: one for a base subobject, one for a complete object, and
7883 one for a virtual destructor that calls operator delete afterwards.
7884 For a hierarchy with virtual bases, the base and complete variants are
7885 clones, which means two copies of the function.  With this option, the
7886 base and complete variants are changed to be thunks that call a common
7887 implementation.
7889 Enabled by @option{-Os}.
7891 @item -fdelete-null-pointer-checks
7892 @opindex fdelete-null-pointer-checks
7893 Assume that programs cannot safely dereference null pointers, and that
7894 no code or data element resides at address zero.
7895 This option enables simple constant
7896 folding optimizations at all optimization levels.  In addition, other
7897 optimization passes in GCC use this flag to control global dataflow
7898 analyses that eliminate useless checks for null pointers; these assume
7899 that a memory access to address zero always results in a trap, so
7900 that if a pointer is checked after it has already been dereferenced,
7901 it cannot be null.
7903 Note however that in some environments this assumption is not true.
7904 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
7905 for programs that depend on that behavior.
7907 This option is enabled by default on most targets.  On Nios II ELF, it
7908 defaults to off.  On AVR, CR16, and MSP430, this option is completely disabled.
7910 Passes that use the dataflow information
7911 are enabled independently at different optimization levels.
7913 @item -fdevirtualize
7914 @opindex fdevirtualize
7915 Attempt to convert calls to virtual functions to direct calls.  This
7916 is done both within a procedure and interprocedurally as part of
7917 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
7918 propagation (@option{-fipa-cp}).
7919 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7921 @item -fdevirtualize-speculatively
7922 @opindex fdevirtualize-speculatively
7923 Attempt to convert calls to virtual functions to speculative direct calls.
7924 Based on the analysis of the type inheritance graph, determine for a given call
7925 the set of likely targets. If the set is small, preferably of size 1, change
7926 the call into a conditional deciding between direct and indirect calls.  The
7927 speculative calls enable more optimizations, such as inlining.  When they seem
7928 useless after further optimization, they are converted back into original form.
7930 @item -fdevirtualize-at-ltrans
7931 @opindex fdevirtualize-at-ltrans
7932 Stream extra information needed for aggressive devirtualization when running
7933 the link-time optimizer in local transformation mode.  
7934 This option enables more devirtualization but
7935 significantly increases the size of streamed data. For this reason it is
7936 disabled by default.
7938 @item -fexpensive-optimizations
7939 @opindex fexpensive-optimizations
7940 Perform a number of minor optimizations that are relatively expensive.
7942 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7944 @item -free
7945 @opindex free
7946 Attempt to remove redundant extension instructions.  This is especially
7947 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
7948 registers after writing to their lower 32-bit half.
7950 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
7951 @option{-O3}, @option{-Os}.
7953 @item -fno-lifetime-dse
7954 @opindex fno-lifetime-dse
7955 In C++ the value of an object is only affected by changes within its
7956 lifetime: when the constructor begins, the object has an indeterminate
7957 value, and any changes during the lifetime of the object are dead when
7958 the object is destroyed.  Normally dead store elimination will take
7959 advantage of this; if your code relies on the value of the object
7960 storage persisting beyond the lifetime of the object, you can use this
7961 flag to disable this optimization.  To preserve stores before the
7962 constructor starts (e.g. because your operator new clears the object
7963 storage) but still treat the object as dead after the destructor you,
7964 can use @option{-flifetime-dse=1}.  The default behavior can be
7965 explicitly selected with @option{-flifetime-dse=2}.
7966 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
7968 @item -flive-range-shrinkage
7969 @opindex flive-range-shrinkage
7970 Attempt to decrease register pressure through register live range
7971 shrinkage.  This is helpful for fast processors with small or moderate
7972 size register sets.
7974 @item -fira-algorithm=@var{algorithm}
7975 @opindex fira-algorithm
7976 Use the specified coloring algorithm for the integrated register
7977 allocator.  The @var{algorithm} argument can be @samp{priority}, which
7978 specifies Chow's priority coloring, or @samp{CB}, which specifies
7979 Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
7980 for all architectures, but for those targets that do support it, it is
7981 the default because it generates better code.
7983 @item -fira-region=@var{region}
7984 @opindex fira-region
7985 Use specified regions for the integrated register allocator.  The
7986 @var{region} argument should be one of the following:
7988 @table @samp
7990 @item all
7991 Use all loops as register allocation regions.
7992 This can give the best results for machines with a small and/or
7993 irregular register set.
7995 @item mixed
7996 Use all loops except for loops with small register pressure 
7997 as the regions.  This value usually gives
7998 the best results in most cases and for most architectures,
7999 and is enabled by default when compiling with optimization for speed
8000 (@option{-O}, @option{-O2}, @dots{}).
8002 @item one
8003 Use all functions as a single region.  
8004 This typically results in the smallest code size, and is enabled by default for
8005 @option{-Os} or @option{-O0}.
8007 @end table
8009 @item -fira-hoist-pressure
8010 @opindex fira-hoist-pressure
8011 Use IRA to evaluate register pressure in the code hoisting pass for
8012 decisions to hoist expressions.  This option usually results in smaller
8013 code, but it can slow the compiler down.
8015 This option is enabled at level @option{-Os} for all targets.
8017 @item -fira-loop-pressure
8018 @opindex fira-loop-pressure
8019 Use IRA to evaluate register pressure in loops for decisions to move
8020 loop invariants.  This option usually results in generation
8021 of faster and smaller code on machines with large register files (>= 32
8022 registers), but it can slow the compiler down.
8024 This option is enabled at level @option{-O3} for some targets.
8026 @item -fno-ira-share-save-slots
8027 @opindex fno-ira-share-save-slots
8028 Disable sharing of stack slots used for saving call-used hard
8029 registers living through a call.  Each hard register gets a
8030 separate stack slot, and as a result function stack frames are
8031 larger.
8033 @item -fno-ira-share-spill-slots
8034 @opindex fno-ira-share-spill-slots
8035 Disable sharing of stack slots allocated for pseudo-registers.  Each
8036 pseudo-register that does not get a hard register gets a separate
8037 stack slot, and as a result function stack frames are larger.
8039 @item -flra-remat
8040 @opindex flra-remat
8041 Enable CFG-sensitive rematerialization in LRA.  Instead of loading
8042 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8043 values if it is profitable.
8045 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8047 @item -fdelayed-branch
8048 @opindex fdelayed-branch
8049 If supported for the target machine, attempt to reorder instructions
8050 to exploit instruction slots available after delayed branch
8051 instructions.
8053 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8055 @item -fschedule-insns
8056 @opindex fschedule-insns
8057 If supported for the target machine, attempt to reorder instructions to
8058 eliminate execution stalls due to required data being unavailable.  This
8059 helps machines that have slow floating point or memory load instructions
8060 by allowing other instructions to be issued until the result of the load
8061 or floating-point instruction is required.
8063 Enabled at levels @option{-O2}, @option{-O3}.
8065 @item -fschedule-insns2
8066 @opindex fschedule-insns2
8067 Similar to @option{-fschedule-insns}, but requests an additional pass of
8068 instruction scheduling after register allocation has been done.  This is
8069 especially useful on machines with a relatively small number of
8070 registers and where memory load instructions take more than one cycle.
8072 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8074 @item -fno-sched-interblock
8075 @opindex fno-sched-interblock
8076 Don't schedule instructions across basic blocks.  This is normally
8077 enabled by default when scheduling before register allocation, i.e.@:
8078 with @option{-fschedule-insns} or at @option{-O2} or higher.
8080 @item -fno-sched-spec
8081 @opindex fno-sched-spec
8082 Don't allow speculative motion of non-load instructions.  This is normally
8083 enabled by default when scheduling before register allocation, i.e.@:
8084 with @option{-fschedule-insns} or at @option{-O2} or higher.
8086 @item -fsched-pressure
8087 @opindex fsched-pressure
8088 Enable register pressure sensitive insn scheduling before register
8089 allocation.  This only makes sense when scheduling before register
8090 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8091 @option{-O2} or higher.  Usage of this option can improve the
8092 generated code and decrease its size by preventing register pressure
8093 increase above the number of available hard registers and subsequent
8094 spills in register allocation.
8096 @item -fsched-spec-load
8097 @opindex fsched-spec-load
8098 Allow speculative motion of some load instructions.  This only makes
8099 sense when scheduling before register allocation, i.e.@: with
8100 @option{-fschedule-insns} or at @option{-O2} or higher.
8102 @item -fsched-spec-load-dangerous
8103 @opindex fsched-spec-load-dangerous
8104 Allow speculative motion of more load instructions.  This only makes
8105 sense when scheduling before register allocation, i.e.@: with
8106 @option{-fschedule-insns} or at @option{-O2} or higher.
8108 @item -fsched-stalled-insns
8109 @itemx -fsched-stalled-insns=@var{n}
8110 @opindex fsched-stalled-insns
8111 Define how many insns (if any) can be moved prematurely from the queue
8112 of stalled insns into the ready list during the second scheduling pass.
8113 @option{-fno-sched-stalled-insns} means that no insns are moved
8114 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8115 on how many queued insns can be moved prematurely.
8116 @option{-fsched-stalled-insns} without a value is equivalent to
8117 @option{-fsched-stalled-insns=1}.
8119 @item -fsched-stalled-insns-dep
8120 @itemx -fsched-stalled-insns-dep=@var{n}
8121 @opindex fsched-stalled-insns-dep
8122 Define how many insn groups (cycles) are examined for a dependency
8123 on a stalled insn that is a candidate for premature removal from the queue
8124 of stalled insns.  This has an effect only during the second scheduling pass,
8125 and only if @option{-fsched-stalled-insns} is used.
8126 @option{-fno-sched-stalled-insns-dep} is equivalent to
8127 @option{-fsched-stalled-insns-dep=0}.
8128 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8129 @option{-fsched-stalled-insns-dep=1}.
8131 @item -fsched2-use-superblocks
8132 @opindex fsched2-use-superblocks
8133 When scheduling after register allocation, use superblock scheduling.
8134 This allows motion across basic block boundaries,
8135 resulting in faster schedules.  This option is experimental, as not all machine
8136 descriptions used by GCC model the CPU closely enough to avoid unreliable
8137 results from the algorithm.
8139 This only makes sense when scheduling after register allocation, i.e.@: with
8140 @option{-fschedule-insns2} or at @option{-O2} or higher.
8142 @item -fsched-group-heuristic
8143 @opindex fsched-group-heuristic
8144 Enable the group heuristic in the scheduler.  This heuristic favors
8145 the instruction that belongs to a schedule group.  This is enabled
8146 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8147 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8149 @item -fsched-critical-path-heuristic
8150 @opindex fsched-critical-path-heuristic
8151 Enable the critical-path heuristic in the scheduler.  This heuristic favors
8152 instructions on the critical path.  This is enabled by default when
8153 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8154 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8156 @item -fsched-spec-insn-heuristic
8157 @opindex fsched-spec-insn-heuristic
8158 Enable the speculative instruction heuristic in the scheduler.  This
8159 heuristic favors speculative instructions with greater dependency weakness.
8160 This is enabled by default when scheduling is enabled, i.e.@:
8161 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8162 or at @option{-O2} or higher.
8164 @item -fsched-rank-heuristic
8165 @opindex fsched-rank-heuristic
8166 Enable the rank heuristic in the scheduler.  This heuristic favors
8167 the instruction belonging to a basic block with greater size or frequency.
8168 This is enabled by default when scheduling is enabled, i.e.@:
8169 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8170 at @option{-O2} or higher.
8172 @item -fsched-last-insn-heuristic
8173 @opindex fsched-last-insn-heuristic
8174 Enable the last-instruction heuristic in the scheduler.  This heuristic
8175 favors the instruction that is less dependent on the last instruction
8176 scheduled.  This is enabled by default when scheduling is enabled,
8177 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8178 at @option{-O2} or higher.
8180 @item -fsched-dep-count-heuristic
8181 @opindex fsched-dep-count-heuristic
8182 Enable the dependent-count heuristic in the scheduler.  This heuristic
8183 favors the instruction that has more instructions depending on it.
8184 This is enabled by default when scheduling is enabled, i.e.@:
8185 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8186 at @option{-O2} or higher.
8188 @item -freschedule-modulo-scheduled-loops
8189 @opindex freschedule-modulo-scheduled-loops
8190 Modulo scheduling is performed before traditional scheduling.  If a loop
8191 is modulo scheduled, later scheduling passes may change its schedule.  
8192 Use this option to control that behavior.
8194 @item -fselective-scheduling
8195 @opindex fselective-scheduling
8196 Schedule instructions using selective scheduling algorithm.  Selective
8197 scheduling runs instead of the first scheduler pass.
8199 @item -fselective-scheduling2
8200 @opindex fselective-scheduling2
8201 Schedule instructions using selective scheduling algorithm.  Selective
8202 scheduling runs instead of the second scheduler pass.
8204 @item -fsel-sched-pipelining
8205 @opindex fsel-sched-pipelining
8206 Enable software pipelining of innermost loops during selective scheduling.
8207 This option has no effect unless one of @option{-fselective-scheduling} or
8208 @option{-fselective-scheduling2} is turned on.
8210 @item -fsel-sched-pipelining-outer-loops
8211 @opindex fsel-sched-pipelining-outer-loops
8212 When pipelining loops during selective scheduling, also pipeline outer loops.
8213 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8215 @item -fsemantic-interposition
8216 @opindex fsemantic-interposition
8217 Some object formats, like ELF, allow interposing of symbols by the 
8218 dynamic linker.
8219 This means that for symbols exported from the DSO, the compiler cannot perform
8220 interprocedural propagation, inlining and other optimizations in anticipation
8221 that the function or variable in question may change. While this feature is
8222 useful, for example, to rewrite memory allocation functions by a debugging
8223 implementation, it is expensive in the terms of code quality.
8224 With @option{-fno-semantic-interposition} the compiler assumes that 
8225 if interposition happens for functions the overwriting function will have 
8226 precisely the same semantics (and side effects). 
8227 Similarly if interposition happens
8228 for variables, the constructor of the variable will be the same. The flag
8229 has no effect for functions explicitly declared inline 
8230 (where it is never allowed for interposition to change semantics) 
8231 and for symbols explicitly declared weak.
8233 @item -fshrink-wrap
8234 @opindex fshrink-wrap
8235 Emit function prologues only before parts of the function that need it,
8236 rather than at the top of the function.  This flag is enabled by default at
8237 @option{-O} and higher.
8239 @item -fshrink-wrap-separate
8240 @opindex fshrink-wrap-separate
8241 Shrink-wrap separate parts of the prologue and epilogue separately, so that
8242 those parts are only executed when needed.
8243 This option is on by default, but has no effect unless @option{-fshrink-wrap}
8244 is also turned on and the target supports this.
8246 @item -fcaller-saves
8247 @opindex fcaller-saves
8248 Enable allocation of values to registers that are clobbered by
8249 function calls, by emitting extra instructions to save and restore the
8250 registers around such calls.  Such allocation is done only when it
8251 seems to result in better code.
8253 This option is always enabled by default on certain machines, usually
8254 those which have no call-preserved registers to use instead.
8256 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8258 @item -fcombine-stack-adjustments
8259 @opindex fcombine-stack-adjustments
8260 Tracks stack adjustments (pushes and pops) and stack memory references
8261 and then tries to find ways to combine them.
8263 Enabled by default at @option{-O1} and higher.
8265 @item -fipa-ra
8266 @opindex fipa-ra
8267 Use caller save registers for allocation if those registers are not used by
8268 any called function.  In that case it is not necessary to save and restore
8269 them around calls.  This is only possible if called functions are part of
8270 same compilation unit as current function and they are compiled before it.
8272 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8273 is disabled if generated code will be instrumented for profiling
8274 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8275 exactly (this happens on targets that do not expose prologues
8276 and epilogues in RTL).
8278 @item -fconserve-stack
8279 @opindex fconserve-stack
8280 Attempt to minimize stack usage.  The compiler attempts to use less
8281 stack space, even if that makes the program slower.  This option
8282 implies setting the @option{large-stack-frame} parameter to 100
8283 and the @option{large-stack-frame-growth} parameter to 400.
8285 @item -ftree-reassoc
8286 @opindex ftree-reassoc
8287 Perform reassociation on trees.  This flag is enabled by default
8288 at @option{-O} and higher.
8290 @item -fcode-hoisting
8291 @opindex fcode-hoisting
8292 Perform code hoisting.  Code hoisting tries to move the
8293 evaluation of expressions executed on all paths to the function exit
8294 as early as possible.  This is especially useful as a code size
8295 optimization, but it often helps for code speed as well.
8296 This flag is enabled by default at @option{-O2} and higher.
8298 @item -ftree-pre
8299 @opindex ftree-pre
8300 Perform partial redundancy elimination (PRE) on trees.  This flag is
8301 enabled by default at @option{-O2} and @option{-O3}.
8303 @item -ftree-partial-pre
8304 @opindex ftree-partial-pre
8305 Make partial redundancy elimination (PRE) more aggressive.  This flag is
8306 enabled by default at @option{-O3}.
8308 @item -ftree-forwprop
8309 @opindex ftree-forwprop
8310 Perform forward propagation on trees.  This flag is enabled by default
8311 at @option{-O} and higher.
8313 @item -ftree-fre
8314 @opindex ftree-fre
8315 Perform full redundancy elimination (FRE) on trees.  The difference
8316 between FRE and PRE is that FRE only considers expressions
8317 that are computed on all paths leading to the redundant computation.
8318 This analysis is faster than PRE, though it exposes fewer redundancies.
8319 This flag is enabled by default at @option{-O} and higher.
8321 @item -ftree-phiprop
8322 @opindex ftree-phiprop
8323 Perform hoisting of loads from conditional pointers on trees.  This
8324 pass is enabled by default at @option{-O} and higher.
8326 @item -fhoist-adjacent-loads
8327 @opindex fhoist-adjacent-loads
8328 Speculatively hoist loads from both branches of an if-then-else if the
8329 loads are from adjacent locations in the same structure and the target
8330 architecture has a conditional move instruction.  This flag is enabled
8331 by default at @option{-O2} and higher.
8333 @item -ftree-copy-prop
8334 @opindex ftree-copy-prop
8335 Perform copy propagation on trees.  This pass eliminates unnecessary
8336 copy operations.  This flag is enabled by default at @option{-O} and
8337 higher.
8339 @item -fipa-pure-const
8340 @opindex fipa-pure-const
8341 Discover which functions are pure or constant.
8342 Enabled by default at @option{-O} and higher.
8344 @item -fipa-reference
8345 @opindex fipa-reference
8346 Discover which static variables do not escape the
8347 compilation unit.
8348 Enabled by default at @option{-O} and higher.
8350 @item -fipa-pta
8351 @opindex fipa-pta
8352 Perform interprocedural pointer analysis and interprocedural modification
8353 and reference analysis.  This option can cause excessive memory and
8354 compile-time usage on large compilation units.  It is not enabled by
8355 default at any optimization level.
8357 @item -fipa-profile
8358 @opindex fipa-profile
8359 Perform interprocedural profile propagation.  The functions called only from
8360 cold functions are marked as cold. Also functions executed once (such as
8361 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8362 functions and loop less parts of functions executed once are then optimized for
8363 size.
8364 Enabled by default at @option{-O} and higher.
8366 @item -fipa-cp
8367 @opindex fipa-cp
8368 Perform interprocedural constant propagation.
8369 This optimization analyzes the program to determine when values passed
8370 to functions are constants and then optimizes accordingly.
8371 This optimization can substantially increase performance
8372 if the application has constants passed to functions.
8373 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8375 @item -fipa-cp-clone
8376 @opindex fipa-cp-clone
8377 Perform function cloning to make interprocedural constant propagation stronger.
8378 When enabled, interprocedural constant propagation performs function cloning
8379 when externally visible function can be called with constant arguments.
8380 Because this optimization can create multiple copies of functions,
8381 it may significantly increase code size
8382 (see @option{--param ipcp-unit-growth=@var{value}}).
8383 This flag is enabled by default at @option{-O3}.
8385 @item -fipa-bit-cp
8386 @opindex -fipa-bit-cp
8387 When enabled, perform interprocedural bitwise constant
8388 propagation. This flag is enabled by default at @option{-O2}. It
8389 requires that @option{-fipa-cp} is enabled.
8391 @item -fipa-vrp
8392 @opindex -fipa-vrp
8393 When enabled, perform interprocedural propagation of value
8394 ranges. This flag is enabled by default at @option{-O2}. It requires
8395 that @option{-fipa-cp} is enabled.
8397 @item -fipa-icf
8398 @opindex fipa-icf
8399 Perform Identical Code Folding for functions and read-only variables.
8400 The optimization reduces code size and may disturb unwind stacks by replacing
8401 a function by equivalent one with a different name. The optimization works
8402 more effectively with link-time optimization enabled.
8404 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8405 works on different levels and thus the optimizations are not same - there are
8406 equivalences that are found only by GCC and equivalences found only by Gold.
8408 This flag is enabled by default at @option{-O2} and @option{-Os}.
8410 @item -fisolate-erroneous-paths-dereference
8411 @opindex fisolate-erroneous-paths-dereference
8412 Detect paths that trigger erroneous or undefined behavior due to
8413 dereferencing a null pointer.  Isolate those paths from the main control
8414 flow and turn the statement with erroneous or undefined behavior into a trap.
8415 This flag is enabled by default at @option{-O2} and higher and depends on
8416 @option{-fdelete-null-pointer-checks} also being enabled.
8418 @item -fisolate-erroneous-paths-attribute
8419 @opindex fisolate-erroneous-paths-attribute
8420 Detect paths that trigger erroneous or undefined behavior due a null value
8421 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8422 attribute.  Isolate those paths from the main control flow and turn the
8423 statement with erroneous or undefined behavior into a trap.  This is not
8424 currently enabled, but may be enabled by @option{-O2} in the future.
8426 @item -ftree-sink
8427 @opindex ftree-sink
8428 Perform forward store motion on trees.  This flag is
8429 enabled by default at @option{-O} and higher.
8431 @item -ftree-bit-ccp
8432 @opindex ftree-bit-ccp
8433 Perform sparse conditional bit constant propagation on trees and propagate
8434 pointer alignment information.
8435 This pass only operates on local scalar variables and is enabled by default
8436 at @option{-O} and higher.  It requires that @option{-ftree-ccp} is enabled.
8438 @item -ftree-ccp
8439 @opindex ftree-ccp
8440 Perform sparse conditional constant propagation (CCP) on trees.  This
8441 pass only operates on local scalar variables and is enabled by default
8442 at @option{-O} and higher.
8444 @item -fssa-backprop
8445 @opindex fssa-backprop
8446 Propagate information about uses of a value up the definition chain
8447 in order to simplify the definitions.  For example, this pass strips
8448 sign operations if the sign of a value never matters.  The flag is
8449 enabled by default at @option{-O} and higher.
8451 @item -fssa-phiopt
8452 @opindex fssa-phiopt
8453 Perform pattern matching on SSA PHI nodes to optimize conditional
8454 code.  This pass is enabled by default at @option{-O} and higher.
8456 @item -ftree-switch-conversion
8457 @opindex ftree-switch-conversion
8458 Perform conversion of simple initializations in a switch to
8459 initializations from a scalar array.  This flag is enabled by default
8460 at @option{-O2} and higher.
8462 @item -ftree-tail-merge
8463 @opindex ftree-tail-merge
8464 Look for identical code sequences.  When found, replace one with a jump to the
8465 other.  This optimization is known as tail merging or cross jumping.  This flag
8466 is enabled by default at @option{-O2} and higher.  The compilation time
8467 in this pass can
8468 be limited using @option{max-tail-merge-comparisons} parameter and
8469 @option{max-tail-merge-iterations} parameter.
8471 @item -ftree-dce
8472 @opindex ftree-dce
8473 Perform dead code elimination (DCE) on trees.  This flag is enabled by
8474 default at @option{-O} and higher.
8476 @item -ftree-builtin-call-dce
8477 @opindex ftree-builtin-call-dce
8478 Perform conditional dead code elimination (DCE) for calls to built-in functions
8479 that may set @code{errno} but are otherwise side-effect free.  This flag is
8480 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8481 specified.
8483 @item -ftree-dominator-opts
8484 @opindex ftree-dominator-opts
8485 Perform a variety of simple scalar cleanups (constant/copy
8486 propagation, redundancy elimination, range propagation and expression
8487 simplification) based on a dominator tree traversal.  This also
8488 performs jump threading (to reduce jumps to jumps). This flag is
8489 enabled by default at @option{-O} and higher.
8491 @item -ftree-dse
8492 @opindex ftree-dse
8493 Perform dead store elimination (DSE) on trees.  A dead store is a store into
8494 a memory location that is later overwritten by another store without
8495 any intervening loads.  In this case the earlier store can be deleted.  This
8496 flag is enabled by default at @option{-O} and higher.
8498 @item -ftree-ch
8499 @opindex ftree-ch
8500 Perform loop header copying on trees.  This is beneficial since it increases
8501 effectiveness of code motion optimizations.  It also saves one jump.  This flag
8502 is enabled by default at @option{-O} and higher.  It is not enabled
8503 for @option{-Os}, since it usually increases code size.
8505 @item -ftree-loop-optimize
8506 @opindex ftree-loop-optimize
8507 Perform loop optimizations on trees.  This flag is enabled by default
8508 at @option{-O} and higher.
8510 @item -ftree-loop-linear
8511 @itemx -floop-interchange
8512 @itemx -floop-strip-mine
8513 @itemx -floop-block
8514 @itemx -floop-unroll-and-jam
8515 @opindex ftree-loop-linear
8516 @opindex floop-interchange
8517 @opindex floop-strip-mine
8518 @opindex floop-block
8519 @opindex floop-unroll-and-jam
8520 Perform loop nest optimizations.  Same as
8521 @option{-floop-nest-optimize}.  To use this code transformation, GCC has
8522 to be configured with @option{--with-isl} to enable the Graphite loop
8523 transformation infrastructure.
8525 @item -fgraphite-identity
8526 @opindex fgraphite-identity
8527 Enable the identity transformation for graphite.  For every SCoP we generate
8528 the polyhedral representation and transform it back to gimple.  Using
8529 @option{-fgraphite-identity} we can check the costs or benefits of the
8530 GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
8531 are also performed by the code generator isl, like index splitting and
8532 dead code elimination in loops.
8534 @item -floop-nest-optimize
8535 @opindex floop-nest-optimize
8536 Enable the isl based loop nest optimizer.  This is a generic loop nest
8537 optimizer based on the Pluto optimization algorithms.  It calculates a loop
8538 structure optimized for data-locality and parallelism.  This option
8539 is experimental.
8541 @item -floop-parallelize-all
8542 @opindex floop-parallelize-all
8543 Use the Graphite data dependence analysis to identify loops that can
8544 be parallelized.  Parallelize all the loops that can be analyzed to
8545 not contain loop carried dependences without checking that it is
8546 profitable to parallelize the loops.
8548 @item -ftree-coalesce-vars
8549 @opindex ftree-coalesce-vars
8550 While transforming the program out of the SSA representation, attempt to
8551 reduce copying by coalescing versions of different user-defined
8552 variables, instead of just compiler temporaries.  This may severely
8553 limit the ability to debug an optimized program compiled with
8554 @option{-fno-var-tracking-assignments}.  In the negated form, this flag
8555 prevents SSA coalescing of user variables.  This option is enabled by
8556 default if optimization is enabled, and it does very little otherwise.
8558 @item -ftree-loop-if-convert
8559 @opindex ftree-loop-if-convert
8560 Attempt to transform conditional jumps in the innermost loops to
8561 branch-less equivalents.  The intent is to remove control-flow from
8562 the innermost loops in order to improve the ability of the
8563 vectorization pass to handle these loops.  This is enabled by default
8564 if vectorization is enabled.
8566 @item -ftree-loop-distribution
8567 @opindex ftree-loop-distribution
8568 Perform loop distribution.  This flag can improve cache performance on
8569 big loop bodies and allow further loop optimizations, like
8570 parallelization or vectorization, to take place.  For example, the loop
8571 @smallexample
8572 DO I = 1, N
8573   A(I) = B(I) + C
8574   D(I) = E(I) * F
8575 ENDDO
8576 @end smallexample
8577 is transformed to
8578 @smallexample
8579 DO I = 1, N
8580    A(I) = B(I) + C
8581 ENDDO
8582 DO I = 1, N
8583    D(I) = E(I) * F
8584 ENDDO
8585 @end smallexample
8587 @item -ftree-loop-distribute-patterns
8588 @opindex ftree-loop-distribute-patterns
8589 Perform loop distribution of patterns that can be code generated with
8590 calls to a library.  This flag is enabled by default at @option{-O3}.
8592 This pass distributes the initialization loops and generates a call to
8593 memset zero.  For example, the loop
8594 @smallexample
8595 DO I = 1, N
8596   A(I) = 0
8597   B(I) = A(I) + I
8598 ENDDO
8599 @end smallexample
8600 is transformed to
8601 @smallexample
8602 DO I = 1, N
8603    A(I) = 0
8604 ENDDO
8605 DO I = 1, N
8606    B(I) = A(I) + I
8607 ENDDO
8608 @end smallexample
8609 and the initialization loop is transformed into a call to memset zero.
8611 @item -ftree-loop-im
8612 @opindex ftree-loop-im
8613 Perform loop invariant motion on trees.  This pass moves only invariants that
8614 are hard to handle at RTL level (function calls, operations that expand to
8615 nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
8616 operands of conditions that are invariant out of the loop, so that we can use
8617 just trivial invariantness analysis in loop unswitching.  The pass also includes
8618 store motion.
8620 @item -ftree-loop-ivcanon
8621 @opindex ftree-loop-ivcanon
8622 Create a canonical counter for number of iterations in loops for which
8623 determining number of iterations requires complicated analysis.  Later
8624 optimizations then may determine the number easily.  Useful especially
8625 in connection with unrolling.
8627 @item -fivopts
8628 @opindex fivopts
8629 Perform induction variable optimizations (strength reduction, induction
8630 variable merging and induction variable elimination) on trees.
8632 @item -ftree-parallelize-loops=n
8633 @opindex ftree-parallelize-loops
8634 Parallelize loops, i.e., split their iteration space to run in n threads.
8635 This is only possible for loops whose iterations are independent
8636 and can be arbitrarily reordered.  The optimization is only
8637 profitable on multiprocessor machines, for loops that are CPU-intensive,
8638 rather than constrained e.g.@: by memory bandwidth.  This option
8639 implies @option{-pthread}, and thus is only supported on targets
8640 that have support for @option{-pthread}.
8642 @item -ftree-pta
8643 @opindex ftree-pta
8644 Perform function-local points-to analysis on trees.  This flag is
8645 enabled by default at @option{-O} and higher.
8647 @item -ftree-sra
8648 @opindex ftree-sra
8649 Perform scalar replacement of aggregates.  This pass replaces structure
8650 references with scalars to prevent committing structures to memory too
8651 early.  This flag is enabled by default at @option{-O} and higher.
8653 @item -fstore-merging
8654 @opindex fstore-merging
8655 Perform merging of narrow stores to consecutive memory addresses.  This pass
8656 merges contiguous stores of immediate values narrower than a word into fewer
8657 wider stores to reduce the number of instructions.  This is enabled by default
8658 at @option{-O2} and higher as well as @option{-Os}.
8660 @item -ftree-ter
8661 @opindex ftree-ter
8662 Perform temporary expression replacement during the SSA->normal phase.  Single
8663 use/single def temporaries are replaced at their use location with their
8664 defining expression.  This results in non-GIMPLE code, but gives the expanders
8665 much more complex trees to work on resulting in better RTL generation.  This is
8666 enabled by default at @option{-O} and higher.
8668 @item -ftree-slsr
8669 @opindex ftree-slsr
8670 Perform straight-line strength reduction on trees.  This recognizes related
8671 expressions involving multiplications and replaces them by less expensive
8672 calculations when possible.  This is enabled by default at @option{-O} and
8673 higher.
8675 @item -ftree-vectorize
8676 @opindex ftree-vectorize
8677 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8678 and @option{-ftree-slp-vectorize} if not explicitly specified.
8680 @item -ftree-loop-vectorize
8681 @opindex ftree-loop-vectorize
8682 Perform loop vectorization on trees. This flag is enabled by default at
8683 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8685 @item -ftree-slp-vectorize
8686 @opindex ftree-slp-vectorize
8687 Perform basic block vectorization on trees. This flag is enabled by default at
8688 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8690 @item -fvect-cost-model=@var{model}
8691 @opindex fvect-cost-model
8692 Alter the cost model used for vectorization.  The @var{model} argument
8693 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8694 With the @samp{unlimited} model the vectorized code-path is assumed
8695 to be profitable while with the @samp{dynamic} model a runtime check
8696 guards the vectorized code-path to enable it only for iteration
8697 counts that will likely execute faster than when executing the original
8698 scalar loop.  The @samp{cheap} model disables vectorization of
8699 loops where doing so would be cost prohibitive for example due to
8700 required runtime checks for data dependence or alignment but otherwise
8701 is equal to the @samp{dynamic} model.
8702 The default cost model depends on other optimization flags and is
8703 either @samp{dynamic} or @samp{cheap}.
8705 @item -fsimd-cost-model=@var{model}
8706 @opindex fsimd-cost-model
8707 Alter the cost model used for vectorization of loops marked with the OpenMP
8708 or Cilk Plus simd directive.  The @var{model} argument should be one of
8709 @samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
8710 have the same meaning as described in @option{-fvect-cost-model} and by
8711 default a cost model defined with @option{-fvect-cost-model} is used.
8713 @item -ftree-vrp
8714 @opindex ftree-vrp
8715 Perform Value Range Propagation on trees.  This is similar to the
8716 constant propagation pass, but instead of values, ranges of values are
8717 propagated.  This allows the optimizers to remove unnecessary range
8718 checks like array bound checks and null pointer checks.  This is
8719 enabled by default at @option{-O2} and higher.  Null pointer check
8720 elimination is only done if @option{-fdelete-null-pointer-checks} is
8721 enabled.
8723 @item -fsplit-paths
8724 @opindex fsplit-paths
8725 Split paths leading to loop backedges.  This can improve dead code
8726 elimination and common subexpression elimination.  This is enabled by
8727 default at @option{-O2} and above.
8729 @item -fsplit-ivs-in-unroller
8730 @opindex fsplit-ivs-in-unroller
8731 Enables expression of values of induction variables in later iterations
8732 of the unrolled loop using the value in the first iteration.  This breaks
8733 long dependency chains, thus improving efficiency of the scheduling passes.
8735 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8736 same effect.  However, that is not reliable in cases where the loop body
8737 is more complicated than a single basic block.  It also does not work at all
8738 on some architectures due to restrictions in the CSE pass.
8740 This optimization is enabled by default.
8742 @item -fvariable-expansion-in-unroller
8743 @opindex fvariable-expansion-in-unroller
8744 With this option, the compiler creates multiple copies of some
8745 local variables when unrolling a loop, which can result in superior code.
8747 @item -fpartial-inlining
8748 @opindex fpartial-inlining
8749 Inline parts of functions.  This option has any effect only
8750 when inlining itself is turned on by the @option{-finline-functions}
8751 or @option{-finline-small-functions} options.
8753 Enabled at level @option{-O2}.
8755 @item -fpredictive-commoning
8756 @opindex fpredictive-commoning
8757 Perform predictive commoning optimization, i.e., reusing computations
8758 (especially memory loads and stores) performed in previous
8759 iterations of loops.
8761 This option is enabled at level @option{-O3}.
8763 @item -fprefetch-loop-arrays
8764 @opindex fprefetch-loop-arrays
8765 If supported by the target machine, generate instructions to prefetch
8766 memory to improve the performance of loops that access large arrays.
8768 This option may generate better or worse code; results are highly
8769 dependent on the structure of loops within the source code.
8771 Disabled at level @option{-Os}.
8773 @item -fno-printf-return-value
8774 @opindex fno-printf-return-value
8775 Do not substitute constants for known return value of formatted output
8776 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
8777 @code{vsnprintf} (but not @code{printf} of @code{fprintf}).  This
8778 transformation allows GCC to optimize or even eliminate branches based
8779 on the known return value of these functions called with arguments that
8780 are either constant, or whose values are known to be in a range that
8781 makes determining the exact return value possible.  For example, when
8782 @option{-fprintf-return-value} is in effect, both the branch and the
8783 body of the @code{if} statement (but not the call to @code{snprint})
8784 can be optimized away when @code{i} is a 32-bit or smaller integer
8785 because the return value is guaranteed to be at most 8.
8787 @smallexample
8788 char buf[9];
8789 if (snprintf (buf, "%08x", i) >= sizeof buf)
8790   @dots{}
8791 @end smallexample
8793 The @option{-fprintf-return-value} option relies on other optimizations
8794 and yields best results with @option{-O2}.  It works in tandem with the
8795 @option{-Wformat-overflow} and @option{-Wformat-truncation} options.
8796 The @option{-fprintf-return-value} option is enabled by default.
8798 @item -fno-peephole
8799 @itemx -fno-peephole2
8800 @opindex fno-peephole
8801 @opindex fno-peephole2
8802 Disable any machine-specific peephole optimizations.  The difference
8803 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8804 are implemented in the compiler; some targets use one, some use the
8805 other, a few use both.
8807 @option{-fpeephole} is enabled by default.
8808 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8810 @item -fno-guess-branch-probability
8811 @opindex fno-guess-branch-probability
8812 Do not guess branch probabilities using heuristics.
8814 GCC uses heuristics to guess branch probabilities if they are
8815 not provided by profiling feedback (@option{-fprofile-arcs}).  These
8816 heuristics are based on the control flow graph.  If some branch probabilities
8817 are specified by @code{__builtin_expect}, then the heuristics are
8818 used to guess branch probabilities for the rest of the control flow graph,
8819 taking the @code{__builtin_expect} info into account.  The interactions
8820 between the heuristics and @code{__builtin_expect} can be complex, and in
8821 some cases, it may be useful to disable the heuristics so that the effects
8822 of @code{__builtin_expect} are easier to understand.
8824 The default is @option{-fguess-branch-probability} at levels
8825 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8827 @item -freorder-blocks
8828 @opindex freorder-blocks
8829 Reorder basic blocks in the compiled function in order to reduce number of
8830 taken branches and improve code locality.
8832 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8834 @item -freorder-blocks-algorithm=@var{algorithm}
8835 @opindex freorder-blocks-algorithm
8836 Use the specified algorithm for basic block reordering.  The
8837 @var{algorithm} argument can be @samp{simple}, which does not increase
8838 code size (except sometimes due to secondary effects like alignment),
8839 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
8840 put all often executed code together, minimizing the number of branches
8841 executed by making extra copies of code.
8843 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
8844 @samp{stc} at levels @option{-O2}, @option{-O3}.
8846 @item -freorder-blocks-and-partition
8847 @opindex freorder-blocks-and-partition
8848 In addition to reordering basic blocks in the compiled function, in order
8849 to reduce number of taken branches, partitions hot and cold basic blocks
8850 into separate sections of the assembly and @file{.o} files, to improve
8851 paging and cache locality performance.
8853 This optimization is automatically turned off in the presence of
8854 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
8855 section attribute and on any architecture that does not support named
8856 sections.  When @option{-fsplit-stack} is used this option is not
8857 enabled by default (to avoid linker errors), but may be enabled
8858 explicitly (if using a working linker).
8860 Enabled for x86 at levels @option{-O2}, @option{-O3}.
8862 @item -freorder-functions
8863 @opindex freorder-functions
8864 Reorder functions in the object file in order to
8865 improve code locality.  This is implemented by using special
8866 subsections @code{.text.hot} for most frequently executed functions and
8867 @code{.text.unlikely} for unlikely executed functions.  Reordering is done by
8868 the linker so object file format must support named sections and linker must
8869 place them in a reasonable way.
8871 Also profile feedback must be available to make this option effective.  See
8872 @option{-fprofile-arcs} for details.
8874 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8876 @item -fstrict-aliasing
8877 @opindex fstrict-aliasing
8878 Allow the compiler to assume the strictest aliasing rules applicable to
8879 the language being compiled.  For C (and C++), this activates
8880 optimizations based on the type of expressions.  In particular, an
8881 object of one type is assumed never to reside at the same address as an
8882 object of a different type, unless the types are almost the same.  For
8883 example, an @code{unsigned int} can alias an @code{int}, but not a
8884 @code{void*} or a @code{double}.  A character type may alias any other
8885 type.
8887 @anchor{Type-punning}Pay special attention to code like this:
8888 @smallexample
8889 union a_union @{
8890   int i;
8891   double d;
8894 int f() @{
8895   union a_union t;
8896   t.d = 3.0;
8897   return t.i;
8899 @end smallexample
8900 The practice of reading from a different union member than the one most
8901 recently written to (called ``type-punning'') is common.  Even with
8902 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
8903 is accessed through the union type.  So, the code above works as
8904 expected.  @xref{Structures unions enumerations and bit-fields
8905 implementation}.  However, this code might not:
8906 @smallexample
8907 int f() @{
8908   union a_union t;
8909   int* ip;
8910   t.d = 3.0;
8911   ip = &t.i;
8912   return *ip;
8914 @end smallexample
8916 Similarly, access by taking the address, casting the resulting pointer
8917 and dereferencing the result has undefined behavior, even if the cast
8918 uses a union type, e.g.:
8919 @smallexample
8920 int f() @{
8921   double d = 3.0;
8922   return ((union a_union *) &d)->i;
8924 @end smallexample
8926 The @option{-fstrict-aliasing} option is enabled at levels
8927 @option{-O2}, @option{-O3}, @option{-Os}.
8929 @item -falign-functions
8930 @itemx -falign-functions=@var{n}
8931 @opindex falign-functions
8932 Align the start of functions to the next power-of-two greater than
8933 @var{n}, skipping up to @var{n} bytes.  For instance,
8934 @option{-falign-functions=32} aligns functions to the next 32-byte
8935 boundary, but @option{-falign-functions=24} aligns to the next
8936 32-byte boundary only if this can be done by skipping 23 bytes or less.
8938 @option{-fno-align-functions} and @option{-falign-functions=1} are
8939 equivalent and mean that functions are not aligned.
8941 Some assemblers only support this flag when @var{n} is a power of two;
8942 in that case, it is rounded up.
8944 If @var{n} is not specified or is zero, use a machine-dependent default.
8946 Enabled at levels @option{-O2}, @option{-O3}.
8948 @item -flimit-function-alignment
8949 If this option is enabled, the compiler tries to avoid unnecessarily
8950 overaligning functions. It attempts to instruct the assembler to align
8951 by the amount specified by @option{-falign-functions}, but not to
8952 skip more bytes than the size of the function.
8954 @item -falign-labels
8955 @itemx -falign-labels=@var{n}
8956 @opindex falign-labels
8957 Align all branch targets to a power-of-two boundary, skipping up to
8958 @var{n} bytes like @option{-falign-functions}.  This option can easily
8959 make code slower, because it must insert dummy operations for when the
8960 branch target is reached in the usual flow of the code.
8962 @option{-fno-align-labels} and @option{-falign-labels=1} are
8963 equivalent and mean that labels are not aligned.
8965 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
8966 are greater than this value, then their values are used instead.
8968 If @var{n} is not specified or is zero, use a machine-dependent default
8969 which is very likely to be @samp{1}, meaning no alignment.
8971 Enabled at levels @option{-O2}, @option{-O3}.
8973 @item -falign-loops
8974 @itemx -falign-loops=@var{n}
8975 @opindex falign-loops
8976 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
8977 like @option{-falign-functions}.  If the loops are
8978 executed many times, this makes up for any execution of the dummy
8979 operations.
8981 @option{-fno-align-loops} and @option{-falign-loops=1} are
8982 equivalent and mean that loops are not aligned.
8984 If @var{n} is not specified or is zero, use a machine-dependent default.
8986 Enabled at levels @option{-O2}, @option{-O3}.
8988 @item -falign-jumps
8989 @itemx -falign-jumps=@var{n}
8990 @opindex falign-jumps
8991 Align branch targets to a power-of-two boundary, for branch targets
8992 where the targets can only be reached by jumping, skipping up to @var{n}
8993 bytes like @option{-falign-functions}.  In this case, no dummy operations
8994 need be executed.
8996 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
8997 equivalent and mean that loops are not aligned.
8999 If @var{n} is not specified or is zero, use a machine-dependent default.
9001 Enabled at levels @option{-O2}, @option{-O3}.
9003 @item -funit-at-a-time
9004 @opindex funit-at-a-time
9005 This option is left for compatibility reasons. @option{-funit-at-a-time}
9006 has no effect, while @option{-fno-unit-at-a-time} implies
9007 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9009 Enabled by default.
9011 @item -fno-toplevel-reorder
9012 @opindex fno-toplevel-reorder
9013 Do not reorder top-level functions, variables, and @code{asm}
9014 statements.  Output them in the same order that they appear in the
9015 input file.  When this option is used, unreferenced static variables
9016 are not removed.  This option is intended to support existing code
9017 that relies on a particular ordering.  For new code, it is better to
9018 use attributes when possible.
9020 Enabled at level @option{-O0}.  When disabled explicitly, it also implies
9021 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9022 targets.
9024 @item -fweb
9025 @opindex fweb
9026 Constructs webs as commonly used for register allocation purposes and assign
9027 each web individual pseudo register.  This allows the register allocation pass
9028 to operate on pseudos directly, but also strengthens several other optimization
9029 passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
9030 however, make debugging impossible, since variables no longer stay in a
9031 ``home register''.
9033 Enabled by default with @option{-funroll-loops}.
9035 @item -fwhole-program
9036 @opindex fwhole-program
9037 Assume that the current compilation unit represents the whole program being
9038 compiled.  All public functions and variables with the exception of @code{main}
9039 and those merged by attribute @code{externally_visible} become static functions
9040 and in effect are optimized more aggressively by interprocedural optimizers.
9042 This option should not be used in combination with @option{-flto}.
9043 Instead relying on a linker plugin should provide safer and more precise
9044 information.
9046 @item -flto[=@var{n}]
9047 @opindex flto
9048 This option runs the standard link-time optimizer.  When invoked
9049 with source code, it generates GIMPLE (one of GCC's internal
9050 representations) and writes it to special ELF sections in the object
9051 file.  When the object files are linked together, all the function
9052 bodies are read from these ELF sections and instantiated as if they
9053 had been part of the same translation unit.
9055 To use the link-time optimizer, @option{-flto} and optimization
9056 options should be specified at compile time and during the final link.
9057 It is recommended that you compile all the files participating in the
9058 same link with the same options and also specify those options at
9059 link time.  
9060 For example:
9062 @smallexample
9063 gcc -c -O2 -flto foo.c
9064 gcc -c -O2 -flto bar.c
9065 gcc -o myprog -flto -O2 foo.o bar.o
9066 @end smallexample
9068 The first two invocations to GCC save a bytecode representation
9069 of GIMPLE into special ELF sections inside @file{foo.o} and
9070 @file{bar.o}.  The final invocation reads the GIMPLE bytecode from
9071 @file{foo.o} and @file{bar.o}, merges the two files into a single
9072 internal image, and compiles the result as usual.  Since both
9073 @file{foo.o} and @file{bar.o} are merged into a single image, this
9074 causes all the interprocedural analyses and optimizations in GCC to
9075 work across the two files as if they were a single one.  This means,
9076 for example, that the inliner is able to inline functions in
9077 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9079 Another (simpler) way to enable link-time optimization is:
9081 @smallexample
9082 gcc -o myprog -flto -O2 foo.c bar.c
9083 @end smallexample
9085 The above generates bytecode for @file{foo.c} and @file{bar.c},
9086 merges them together into a single GIMPLE representation and optimizes
9087 them as usual to produce @file{myprog}.
9089 The only important thing to keep in mind is that to enable link-time
9090 optimizations you need to use the GCC driver to perform the link step.
9091 GCC then automatically performs link-time optimization if any of the
9092 objects involved were compiled with the @option{-flto} command-line option.  
9093 You generally
9094 should specify the optimization options to be used for link-time
9095 optimization though GCC tries to be clever at guessing an
9096 optimization level to use from the options used at compile time
9097 if you fail to specify one at link time.  You can always override
9098 the automatic decision to do link-time optimization
9099 by passing @option{-fno-lto} to the link command.
9101 To make whole program optimization effective, it is necessary to make
9102 certain whole program assumptions.  The compiler needs to know
9103 what functions and variables can be accessed by libraries and runtime
9104 outside of the link-time optimized unit.  When supported by the linker,
9105 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9106 to the compiler about used and externally visible symbols.  When
9107 the linker plugin is not available, @option{-fwhole-program} should be
9108 used to allow the compiler to make these assumptions, which leads
9109 to more aggressive optimization decisions.
9111 When @option{-fuse-linker-plugin} is not enabled, when a file is
9112 compiled with @option{-flto}, the generated object file is larger than
9113 a regular object file because it contains GIMPLE bytecodes and the usual
9114 final code (see @option{-ffat-lto-objects}.  This means that
9115 object files with LTO information can be linked as normal object
9116 files; if @option{-fno-lto} is passed to the linker, no
9117 interprocedural optimizations are applied.  Note that when
9118 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
9119 but you cannot perform a regular, non-LTO link on them.
9121 Additionally, the optimization flags used to compile individual files
9122 are not necessarily related to those used at link time.  For instance,
9124 @smallexample
9125 gcc -c -O0 -ffat-lto-objects -flto foo.c
9126 gcc -c -O0 -ffat-lto-objects -flto bar.c
9127 gcc -o myprog -O3 foo.o bar.o
9128 @end smallexample
9130 This produces individual object files with unoptimized assembler
9131 code, but the resulting binary @file{myprog} is optimized at
9132 @option{-O3}.  If, instead, the final binary is generated with
9133 @option{-fno-lto}, then @file{myprog} is not optimized.
9135 When producing the final binary, GCC only
9136 applies link-time optimizations to those files that contain bytecode.
9137 Therefore, you can mix and match object files and libraries with
9138 GIMPLE bytecodes and final object code.  GCC automatically selects
9139 which files to optimize in LTO mode and which files to link without
9140 further processing.
9142 There are some code generation flags preserved by GCC when
9143 generating bytecodes, as they need to be used during the final link
9144 stage.  Generally options specified at link time override those
9145 specified at compile time.
9147 If you do not specify an optimization level option @option{-O} at
9148 link time, then GCC uses the highest optimization level 
9149 used when compiling the object files.
9151 Currently, the following options and their settings are taken from
9152 the first object file that explicitly specifies them: 
9153 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9154 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9155 and all the @option{-m} target flags.
9157 Certain ABI-changing flags are required to match in all compilation units,
9158 and trying to override this at link time with a conflicting value
9159 is ignored.  This includes options such as @option{-freg-struct-return}
9160 and @option{-fpcc-struct-return}. 
9162 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9163 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9164 are passed through to the link stage and merged conservatively for
9165 conflicting translation units.  Specifically
9166 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9167 precedence; and for example @option{-ffp-contract=off} takes precedence
9168 over @option{-ffp-contract=fast}.  You can override them at link time.
9170 If LTO encounters objects with C linkage declared with incompatible
9171 types in separate translation units to be linked together (undefined
9172 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9173 issued.  The behavior is still undefined at run time.  Similar
9174 diagnostics may be raised for other languages.
9176 Another feature of LTO is that it is possible to apply interprocedural
9177 optimizations on files written in different languages:
9179 @smallexample
9180 gcc -c -flto foo.c
9181 g++ -c -flto bar.cc
9182 gfortran -c -flto baz.f90
9183 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9184 @end smallexample
9186 Notice that the final link is done with @command{g++} to get the C++
9187 runtime libraries and @option{-lgfortran} is added to get the Fortran
9188 runtime libraries.  In general, when mixing languages in LTO mode, you
9189 should use the same link command options as when mixing languages in a
9190 regular (non-LTO) compilation.
9192 If object files containing GIMPLE bytecode are stored in a library archive, say
9193 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9194 are using a linker with plugin support.  To create static libraries suitable
9195 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9196 and @command{ranlib}; 
9197 to show the symbols of object files with GIMPLE bytecode, use
9198 @command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
9199 and @command{nm} have been compiled with plugin support.  At link time, use the the
9200 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9201 the LTO optimization process:
9203 @smallexample
9204 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9205 @end smallexample
9207 With the linker plugin enabled, the linker extracts the needed
9208 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9209 to make them part of the aggregated GIMPLE image to be optimized.
9211 If you are not using a linker with plugin support and/or do not
9212 enable the linker plugin, then the objects inside @file{libfoo.a}
9213 are extracted and linked as usual, but they do not participate
9214 in the LTO optimization process.  In order to make a static library suitable
9215 for both LTO optimization and usual linkage, compile its object files with
9216 @option{-flto} @option{-ffat-lto-objects}.
9218 Link-time optimizations do not require the presence of the whole program to
9219 operate.  If the program does not require any symbols to be exported, it is
9220 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9221 the interprocedural optimizers to use more aggressive assumptions which may
9222 lead to improved optimization opportunities.
9223 Use of @option{-fwhole-program} is not needed when linker plugin is
9224 active (see @option{-fuse-linker-plugin}).
9226 The current implementation of LTO makes no
9227 attempt to generate bytecode that is portable between different
9228 types of hosts.  The bytecode files are versioned and there is a
9229 strict version check, so bytecode files generated in one version of
9230 GCC do not work with an older or newer version of GCC.
9232 Link-time optimization does not work well with generation of debugging
9233 information.  Combining @option{-flto} with
9234 @option{-g} is currently experimental and expected to produce unexpected
9235 results.
9237 If you specify the optional @var{n}, the optimization and code
9238 generation done at link time is executed in parallel using @var{n}
9239 parallel jobs by utilizing an installed @command{make} program.  The
9240 environment variable @env{MAKE} may be used to override the program
9241 used.  The default value for @var{n} is 1.
9243 You can also specify @option{-flto=jobserver} to use GNU make's
9244 job server mode to determine the number of parallel jobs. This
9245 is useful when the Makefile calling GCC is already executing in parallel.
9246 You must prepend a @samp{+} to the command recipe in the parent Makefile
9247 for this to work.  This option likely only works if @env{MAKE} is
9248 GNU make.
9250 @item -flto-partition=@var{alg}
9251 @opindex flto-partition
9252 Specify the partitioning algorithm used by the link-time optimizer.
9253 The value is either @samp{1to1} to specify a partitioning mirroring
9254 the original source files or @samp{balanced} to specify partitioning
9255 into equally sized chunks (whenever possible) or @samp{max} to create
9256 new partition for every symbol where possible.  Specifying @samp{none}
9257 as an algorithm disables partitioning and streaming completely. 
9258 The default value is @samp{balanced}. While @samp{1to1} can be used
9259 as an workaround for various code ordering issues, the @samp{max}
9260 partitioning is intended for internal testing only.
9261 The value @samp{one} specifies that exactly one partition should be
9262 used while the value @samp{none} bypasses partitioning and executes
9263 the link-time optimization step directly from the WPA phase.
9265 @item -flto-odr-type-merging
9266 @opindex flto-odr-type-merging
9267 Enable streaming of mangled types names of C++ types and their unification
9268 at link time.  This increases size of LTO object files, but enables
9269 diagnostics about One Definition Rule violations.
9271 @item -flto-compression-level=@var{n}
9272 @opindex flto-compression-level
9273 This option specifies the level of compression used for intermediate
9274 language written to LTO object files, and is only meaningful in
9275 conjunction with LTO mode (@option{-flto}).  Valid
9276 values are 0 (no compression) to 9 (maximum compression).  Values
9277 outside this range are clamped to either 0 or 9.  If the option is not
9278 given, a default balanced compression setting is used.
9280 @item -fuse-linker-plugin
9281 @opindex fuse-linker-plugin
9282 Enables the use of a linker plugin during link-time optimization.  This
9283 option relies on plugin support in the linker, which is available in gold
9284 or in GNU ld 2.21 or newer.
9286 This option enables the extraction of object files with GIMPLE bytecode out
9287 of library archives. This improves the quality of optimization by exposing
9288 more code to the link-time optimizer.  This information specifies what
9289 symbols can be accessed externally (by non-LTO object or during dynamic
9290 linking).  Resulting code quality improvements on binaries (and shared
9291 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9292 See @option{-flto} for a description of the effect of this flag and how to
9293 use it.
9295 This option is enabled by default when LTO support in GCC is enabled
9296 and GCC was configured for use with
9297 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9299 @item -ffat-lto-objects
9300 @opindex ffat-lto-objects
9301 Fat LTO objects are object files that contain both the intermediate language
9302 and the object code. This makes them usable for both LTO linking and normal
9303 linking. This option is effective only when compiling with @option{-flto}
9304 and is ignored at link time.
9306 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9307 requires the complete toolchain to be aware of LTO. It requires a linker with
9308 linker plugin support for basic functionality.  Additionally,
9309 @command{nm}, @command{ar} and @command{ranlib}
9310 need to support linker plugins to allow a full-featured build environment
9311 (capable of building static libraries etc).  GCC provides the @command{gcc-ar},
9312 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9313 to these tools. With non fat LTO makefiles need to be modified to use them.
9315 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9316 support.
9318 @item -fcompare-elim
9319 @opindex fcompare-elim
9320 After register allocation and post-register allocation instruction splitting,
9321 identify arithmetic instructions that compute processor flags similar to a
9322 comparison operation based on that arithmetic.  If possible, eliminate the
9323 explicit comparison operation.
9325 This pass only applies to certain targets that cannot explicitly represent
9326 the comparison operation before register allocation is complete.
9328 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9330 @item -fcprop-registers
9331 @opindex fcprop-registers
9332 After register allocation and post-register allocation instruction splitting,
9333 perform a copy-propagation pass to try to reduce scheduling dependencies
9334 and occasionally eliminate the copy.
9336 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9338 @item -fprofile-correction
9339 @opindex fprofile-correction
9340 Profiles collected using an instrumented binary for multi-threaded programs may
9341 be inconsistent due to missed counter updates. When this option is specified,
9342 GCC uses heuristics to correct or smooth out such inconsistencies. By
9343 default, GCC emits an error message when an inconsistent profile is detected.
9345 @item -fprofile-use
9346 @itemx -fprofile-use=@var{path}
9347 @opindex fprofile-use
9348 Enable profile feedback-directed optimizations, 
9349 and the following optimizations
9350 which are generally profitable only with profile feedback available:
9351 @option{-fbranch-probabilities}, @option{-fvpt},
9352 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9353 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9355 Before you can use this option, you must first generate profiling information.
9356 @xref{Instrumentation Options}, for information about the
9357 @option{-fprofile-generate} option.
9359 By default, GCC emits an error message if the feedback profiles do not
9360 match the source code.  This error can be turned into a warning by using
9361 @option{-Wcoverage-mismatch}.  Note this may result in poorly optimized
9362 code.
9364 If @var{path} is specified, GCC looks at the @var{path} to find
9365 the profile feedback data files. See @option{-fprofile-dir}.
9367 @item -fauto-profile
9368 @itemx -fauto-profile=@var{path}
9369 @opindex fauto-profile
9370 Enable sampling-based feedback-directed optimizations, 
9371 and the following optimizations
9372 which are generally profitable only with profile feedback available:
9373 @option{-fbranch-probabilities}, @option{-fvpt},
9374 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer}, 
9375 @option{-ftree-vectorize},
9376 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9377 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9378 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9380 @var{path} is the name of a file containing AutoFDO profile information.
9381 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9383 Producing an AutoFDO profile data file requires running your program
9384 with the @command{perf} utility on a supported GNU/Linux target system.
9385 For more information, see @uref{https://perf.wiki.kernel.org/}.
9387 E.g.
9388 @smallexample
9389 perf record -e br_inst_retired:near_taken -b -o perf.data \
9390     -- your_program
9391 @end smallexample
9393 Then use the @command{create_gcov} tool to convert the raw profile data
9394 to a format that can be used by GCC.@  You must also supply the 
9395 unstripped binary for your program to this tool.  
9396 See @uref{https://github.com/google/autofdo}.
9398 E.g.
9399 @smallexample
9400 create_gcov --binary=your_program.unstripped --profile=perf.data \
9401     --gcov=profile.afdo
9402 @end smallexample
9403 @end table
9405 The following options control compiler behavior regarding floating-point 
9406 arithmetic.  These options trade off between speed and
9407 correctness.  All must be specifically enabled.
9409 @table @gcctabopt
9410 @item -ffloat-store
9411 @opindex ffloat-store
9412 Do not store floating-point variables in registers, and inhibit other
9413 options that might change whether a floating-point value is taken from a
9414 register or memory.
9416 @cindex floating-point precision
9417 This option prevents undesirable excess precision on machines such as
9418 the 68000 where the floating registers (of the 68881) keep more
9419 precision than a @code{double} is supposed to have.  Similarly for the
9420 x86 architecture.  For most programs, the excess precision does only
9421 good, but a few programs rely on the precise definition of IEEE floating
9422 point.  Use @option{-ffloat-store} for such programs, after modifying
9423 them to store all pertinent intermediate computations into variables.
9425 @item -fexcess-precision=@var{style}
9426 @opindex fexcess-precision
9427 This option allows further control over excess precision on machines
9428 where floating-point operations occur in a format with more precision or
9429 range than the IEEE standard and interchange floating-point types.  By
9430 default, @option{-fexcess-precision=fast} is in effect; this means that
9431 operations may be carried out in a wider precision than the types specified
9432 in the source if that would result in faster code, and it is unpredictable
9433 when rounding to the types specified in the source code takes place.
9434 When compiling C, if @option{-fexcess-precision=standard} is specified then
9435 excess precision follows the rules specified in ISO C99; in particular,
9436 both casts and assignments cause values to be rounded to their
9437 semantic types (whereas @option{-ffloat-store} only affects
9438 assignments).  This option is enabled by default for C if a strict
9439 conformance option such as @option{-std=c99} is used.
9440 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9441 regardless of whether a strict conformance option is used.
9443 @opindex mfpmath
9444 @option{-fexcess-precision=standard} is not implemented for languages
9445 other than C.  On the x86, it has no effect if @option{-mfpmath=sse}
9446 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9447 semantics apply without excess precision, and in the latter, rounding
9448 is unpredictable.
9450 @item -ffast-math
9451 @opindex ffast-math
9452 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9453 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9454 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9455 @option{-fexcess-precision=fast}.
9457 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9459 This option is not turned on by any @option{-O} option besides
9460 @option{-Ofast} since it can result in incorrect output for programs
9461 that depend on an exact implementation of IEEE or ISO rules/specifications
9462 for math functions. It may, however, yield faster code for programs
9463 that do not require the guarantees of these specifications.
9465 @item -fno-math-errno
9466 @opindex fno-math-errno
9467 Do not set @code{errno} after calling math functions that are executed
9468 with a single instruction, e.g., @code{sqrt}.  A program that relies on
9469 IEEE exceptions for math error handling may want to use this flag
9470 for speed while maintaining IEEE arithmetic compatibility.
9472 This option is not turned on by any @option{-O} option since
9473 it can result in incorrect output for programs that depend on
9474 an exact implementation of IEEE or ISO rules/specifications for
9475 math functions. It may, however, yield faster code for programs
9476 that do not require the guarantees of these specifications.
9478 The default is @option{-fmath-errno}.
9480 On Darwin systems, the math library never sets @code{errno}.  There is
9481 therefore no reason for the compiler to consider the possibility that
9482 it might, and @option{-fno-math-errno} is the default.
9484 @item -funsafe-math-optimizations
9485 @opindex funsafe-math-optimizations
9487 Allow optimizations for floating-point arithmetic that (a) assume
9488 that arguments and results are valid and (b) may violate IEEE or
9489 ANSI standards.  When used at link time, it may include libraries
9490 or startup files that change the default FPU control word or other
9491 similar optimizations.
9493 This option is not turned on by any @option{-O} option since
9494 it can result in incorrect output for programs that depend on
9495 an exact implementation of IEEE or ISO rules/specifications for
9496 math functions. It may, however, yield faster code for programs
9497 that do not require the guarantees of these specifications.
9498 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9499 @option{-fassociative-math} and @option{-freciprocal-math}.
9501 The default is @option{-fno-unsafe-math-optimizations}.
9503 @item -fassociative-math
9504 @opindex fassociative-math
9506 Allow re-association of operands in series of floating-point operations.
9507 This violates the ISO C and C++ language standard by possibly changing
9508 computation result.  NOTE: re-ordering may change the sign of zero as
9509 well as ignore NaNs and inhibit or create underflow or overflow (and
9510 thus cannot be used on code that relies on rounding behavior like
9511 @code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
9512 and thus may not be used when ordered comparisons are required.
9513 This option requires that both @option{-fno-signed-zeros} and
9514 @option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
9515 much sense with @option{-frounding-math}. For Fortran the option
9516 is automatically enabled when both @option{-fno-signed-zeros} and
9517 @option{-fno-trapping-math} are in effect.
9519 The default is @option{-fno-associative-math}.
9521 @item -freciprocal-math
9522 @opindex freciprocal-math
9524 Allow the reciprocal of a value to be used instead of dividing by
9525 the value if this enables optimizations.  For example @code{x / y}
9526 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9527 is subject to common subexpression elimination.  Note that this loses
9528 precision and increases the number of flops operating on the value.
9530 The default is @option{-fno-reciprocal-math}.
9532 @item -ffinite-math-only
9533 @opindex ffinite-math-only
9534 Allow optimizations for floating-point arithmetic that assume
9535 that arguments and results are not NaNs or +-Infs.
9537 This option is not turned on by any @option{-O} option since
9538 it can result in incorrect output for programs that depend on
9539 an exact implementation of IEEE or ISO rules/specifications for
9540 math functions. It may, however, yield faster code for programs
9541 that do not require the guarantees of these specifications.
9543 The default is @option{-fno-finite-math-only}.
9545 @item -fno-signed-zeros
9546 @opindex fno-signed-zeros
9547 Allow optimizations for floating-point arithmetic that ignore the
9548 signedness of zero.  IEEE arithmetic specifies the behavior of
9549 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9550 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9551 This option implies that the sign of a zero result isn't significant.
9553 The default is @option{-fsigned-zeros}.
9555 @item -fno-trapping-math
9556 @opindex fno-trapping-math
9557 Compile code assuming that floating-point operations cannot generate
9558 user-visible traps.  These traps include division by zero, overflow,
9559 underflow, inexact result and invalid operation.  This option requires
9560 that @option{-fno-signaling-nans} be in effect.  Setting this option may
9561 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9563 This option should never be turned on by any @option{-O} option since
9564 it can result in incorrect output for programs that depend on
9565 an exact implementation of IEEE or ISO rules/specifications for
9566 math functions.
9568 The default is @option{-ftrapping-math}.
9570 @item -frounding-math
9571 @opindex frounding-math
9572 Disable transformations and optimizations that assume default floating-point
9573 rounding behavior.  This is round-to-zero for all floating point
9574 to integer conversions, and round-to-nearest for all other arithmetic
9575 truncations.  This option should be specified for programs that change
9576 the FP rounding mode dynamically, or that may be executed with a
9577 non-default rounding mode.  This option disables constant folding of
9578 floating-point expressions at compile time (which may be affected by
9579 rounding mode) and arithmetic transformations that are unsafe in the
9580 presence of sign-dependent rounding modes.
9582 The default is @option{-fno-rounding-math}.
9584 This option is experimental and does not currently guarantee to
9585 disable all GCC optimizations that are affected by rounding mode.
9586 Future versions of GCC may provide finer control of this setting
9587 using C99's @code{FENV_ACCESS} pragma.  This command-line option
9588 will be used to specify the default state for @code{FENV_ACCESS}.
9590 @item -fsignaling-nans
9591 @opindex fsignaling-nans
9592 Compile code assuming that IEEE signaling NaNs may generate user-visible
9593 traps during floating-point operations.  Setting this option disables
9594 optimizations that may change the number of exceptions visible with
9595 signaling NaNs.  This option implies @option{-ftrapping-math}.
9597 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9598 be defined.
9600 The default is @option{-fno-signaling-nans}.
9602 This option is experimental and does not currently guarantee to
9603 disable all GCC optimizations that affect signaling NaN behavior.
9605 @item -fno-fp-int-builtin-inexact
9606 @opindex fno-fp-int-builtin-inexact
9607 Do not allow the built-in functions @code{ceil}, @code{floor},
9608 @code{round} and @code{trunc}, and their @code{float} and @code{long
9609 double} variants, to generate code that raises the ``inexact''
9610 floating-point exception for noninteger arguments.  ISO C99 and C11
9611 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9612 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9613 functions to do so.
9615 The default is @option{-ffp-int-builtin-inexact}, allowing the
9616 exception to be raised.  This option does nothing unless
9617 @option{-ftrapping-math} is in effect.
9619 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9620 generate a call to a library function then the ``inexact'' exception
9621 may be raised if the library implementation does not follow TS 18661.
9623 @item -fsingle-precision-constant
9624 @opindex fsingle-precision-constant
9625 Treat floating-point constants as single precision instead of
9626 implicitly converting them to double-precision constants.
9628 @item -fcx-limited-range
9629 @opindex fcx-limited-range
9630 When enabled, this option states that a range reduction step is not
9631 needed when performing complex division.  Also, there is no checking
9632 whether the result of a complex multiplication or division is @code{NaN
9633 + I*NaN}, with an attempt to rescue the situation in that case.  The
9634 default is @option{-fno-cx-limited-range}, but is enabled by
9635 @option{-ffast-math}.
9637 This option controls the default setting of the ISO C99
9638 @code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
9639 all languages.
9641 @item -fcx-fortran-rules
9642 @opindex fcx-fortran-rules
9643 Complex multiplication and division follow Fortran rules.  Range
9644 reduction is done as part of complex division, but there is no checking
9645 whether the result of a complex multiplication or division is @code{NaN
9646 + I*NaN}, with an attempt to rescue the situation in that case.
9648 The default is @option{-fno-cx-fortran-rules}.
9650 @end table
9652 The following options control optimizations that may improve
9653 performance, but are not enabled by any @option{-O} options.  This
9654 section includes experimental options that may produce broken code.
9656 @table @gcctabopt
9657 @item -fbranch-probabilities
9658 @opindex fbranch-probabilities
9659 After running a program compiled with @option{-fprofile-arcs}
9660 (@pxref{Instrumentation Options}),
9661 you can compile it a second time using
9662 @option{-fbranch-probabilities}, to improve optimizations based on
9663 the number of times each branch was taken.  When a program
9664 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9665 counts to a file called @file{@var{sourcename}.gcda} for each source
9666 file.  The information in this data file is very dependent on the
9667 structure of the generated code, so you must use the same source code
9668 and the same optimization options for both compilations.
9670 With @option{-fbranch-probabilities}, GCC puts a
9671 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9672 These can be used to improve optimization.  Currently, they are only
9673 used in one place: in @file{reorg.c}, instead of guessing which path a
9674 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9675 exactly determine which path is taken more often.
9677 @item -fprofile-values
9678 @opindex fprofile-values
9679 If combined with @option{-fprofile-arcs}, it adds code so that some
9680 data about values of expressions in the program is gathered.
9682 With @option{-fbranch-probabilities}, it reads back the data gathered
9683 from profiling values of expressions for usage in optimizations.
9685 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9687 @item -fprofile-reorder-functions
9688 @opindex fprofile-reorder-functions
9689 Function reordering based on profile instrumentation collects
9690 first time of execution of a function and orders these functions
9691 in ascending order.
9693 Enabled with @option{-fprofile-use}.
9695 @item -fvpt
9696 @opindex fvpt
9697 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9698 to add code to gather information about values of expressions.
9700 With @option{-fbranch-probabilities}, it reads back the data gathered
9701 and actually performs the optimizations based on them.
9702 Currently the optimizations include specialization of division operations
9703 using the knowledge about the value of the denominator.
9705 @item -frename-registers
9706 @opindex frename-registers
9707 Attempt to avoid false dependencies in scheduled code by making use
9708 of registers left over after register allocation.  This optimization
9709 most benefits processors with lots of registers.  Depending on the
9710 debug information format adopted by the target, however, it can
9711 make debugging impossible, since variables no longer stay in
9712 a ``home register''.
9714 Enabled by default with @option{-funroll-loops}.
9716 @item -fschedule-fusion
9717 @opindex fschedule-fusion
9718 Performs a target dependent pass over the instruction stream to schedule
9719 instructions of same type together because target machine can execute them
9720 more efficiently if they are adjacent to each other in the instruction flow.
9722 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9724 @item -ftracer
9725 @opindex ftracer
9726 Perform tail duplication to enlarge superblock size.  This transformation
9727 simplifies the control flow of the function allowing other optimizations to do
9728 a better job.
9730 Enabled with @option{-fprofile-use}.
9732 @item -funroll-loops
9733 @opindex funroll-loops
9734 Unroll loops whose number of iterations can be determined at compile time or
9735 upon entry to the loop.  @option{-funroll-loops} implies
9736 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9737 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9738 a small constant number of iterations).  This option makes code larger, and may
9739 or may not make it run faster.
9741 Enabled with @option{-fprofile-use}.
9743 @item -funroll-all-loops
9744 @opindex funroll-all-loops
9745 Unroll all loops, even if their number of iterations is uncertain when
9746 the loop is entered.  This usually makes programs run more slowly.
9747 @option{-funroll-all-loops} implies the same options as
9748 @option{-funroll-loops}.
9750 @item -fpeel-loops
9751 @opindex fpeel-loops
9752 Peels loops for which there is enough information that they do not
9753 roll much (from profile feedback or static analysis).  It also turns on
9754 complete loop peeling (i.e.@: complete removal of loops with small constant
9755 number of iterations).
9757 Enabled with @option{-O3} and/or @option{-fprofile-use}.
9759 @item -fmove-loop-invariants
9760 @opindex fmove-loop-invariants
9761 Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
9762 at level @option{-O1}
9764 @item -fsplit-loops
9765 @opindex fsplit-loops
9766 Split a loop into two if it contains a condition that's always true
9767 for one side of the iteration space and false for the other.
9769 @item -funswitch-loops
9770 @opindex funswitch-loops
9771 Move branches with loop invariant conditions out of the loop, with duplicates
9772 of the loop on both branches (modified according to result of the condition).
9774 @item -ffunction-sections
9775 @itemx -fdata-sections
9776 @opindex ffunction-sections
9777 @opindex fdata-sections
9778 Place each function or data item into its own section in the output
9779 file if the target supports arbitrary sections.  The name of the
9780 function or the name of the data item determines the section's name
9781 in the output file.
9783 Use these options on systems where the linker can perform optimizations to
9784 improve locality of reference in the instruction space.  Most systems using the
9785 ELF object format have linkers with such optimizations.  On AIX, the linker
9786 rearranges sections (CSECTs) based on the call graph.  The performance impact
9787 varies.
9789 Together with a linker garbage collection (linker @option{--gc-sections}
9790 option) these options may lead to smaller statically-linked executables (after
9791 stripping).
9793 On ELF/DWARF systems these options do not degenerate the quality of the debug
9794 information.  There could be issues with other object files/debug info formats.
9796 Only use these options when there are significant benefits from doing so.  When
9797 you specify these options, the assembler and linker create larger object and
9798 executable files and are also slower.  These options affect code generation.
9799 They prevent optimizations by the compiler and assembler using relative
9800 locations inside a translation unit since the locations are unknown until
9801 link time.  An example of such an optimization is relaxing calls to short call
9802 instructions.
9804 @item -fbranch-target-load-optimize
9805 @opindex fbranch-target-load-optimize
9806 Perform branch target register load optimization before prologue / epilogue
9807 threading.
9808 The use of target registers can typically be exposed only during reload,
9809 thus hoisting loads out of loops and doing inter-block scheduling needs
9810 a separate optimization pass.
9812 @item -fbranch-target-load-optimize2
9813 @opindex fbranch-target-load-optimize2
9814 Perform branch target register load optimization after prologue / epilogue
9815 threading.
9817 @item -fbtr-bb-exclusive
9818 @opindex fbtr-bb-exclusive
9819 When performing branch target register load optimization, don't reuse
9820 branch target registers within any basic block.
9822 @item -fstdarg-opt
9823 @opindex fstdarg-opt
9824 Optimize the prologue of variadic argument functions with respect to usage of
9825 those arguments.
9827 @item -fsection-anchors
9828 @opindex fsection-anchors
9829 Try to reduce the number of symbolic address calculations by using
9830 shared ``anchor'' symbols to address nearby objects.  This transformation
9831 can help to reduce the number of GOT entries and GOT accesses on some
9832 targets.
9834 For example, the implementation of the following function @code{foo}:
9836 @smallexample
9837 static int a, b, c;
9838 int foo (void) @{ return a + b + c; @}
9839 @end smallexample
9841 @noindent
9842 usually calculates the addresses of all three variables, but if you
9843 compile it with @option{-fsection-anchors}, it accesses the variables
9844 from a common anchor point instead.  The effect is similar to the
9845 following pseudocode (which isn't valid C):
9847 @smallexample
9848 int foo (void)
9850   register int *xr = &x;
9851   return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
9853 @end smallexample
9855 Not all targets support this option.
9857 @item --param @var{name}=@var{value}
9858 @opindex param
9859 In some places, GCC uses various constants to control the amount of
9860 optimization that is done.  For example, GCC does not inline functions
9861 that contain more than a certain number of instructions.  You can
9862 control some of these constants on the command line using the
9863 @option{--param} option.
9865 The names of specific parameters, and the meaning of the values, are
9866 tied to the internals of the compiler, and are subject to change
9867 without notice in future releases.
9869 In each case, the @var{value} is an integer.  The allowable choices for
9870 @var{name} are:
9872 @table @gcctabopt
9873 @item predictable-branch-outcome
9874 When branch is predicted to be taken with probability lower than this threshold
9875 (in percent), then it is considered well predictable. The default is 10.
9877 @item max-rtl-if-conversion-insns
9878 RTL if-conversion tries to remove conditional branches around a block and
9879 replace them with conditionally executed instructions.  This parameter
9880 gives the maximum number of instructions in a block which should be
9881 considered for if-conversion.  The default is 10, though the compiler will
9882 also use other heuristics to decide whether if-conversion is likely to be
9883 profitable.
9885 @item max-rtl-if-conversion-predictable-cost
9886 @item max-rtl-if-conversion-unpredictable-cost
9887 RTL if-conversion will try to remove conditional branches around a block
9888 and replace them with conditionally executed instructions.  These parameters
9889 give the maximum permissible cost for the sequence that would be generated
9890 by if-conversion depending on whether the branch is statically determined
9891 to be predictable or not.  The units for this parameter are the same as
9892 those for the GCC internal seq_cost metric.  The compiler will try to
9893 provide a reasonable default for this parameter using the BRANCH_COST
9894 target macro.
9896 @item max-crossjump-edges
9897 The maximum number of incoming edges to consider for cross-jumping.
9898 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
9899 the number of edges incoming to each block.  Increasing values mean
9900 more aggressive optimization, making the compilation time increase with
9901 probably small improvement in executable size.
9903 @item min-crossjump-insns
9904 The minimum number of instructions that must be matched at the end
9905 of two blocks before cross-jumping is performed on them.  This
9906 value is ignored in the case where all instructions in the block being
9907 cross-jumped from are matched.  The default value is 5.
9909 @item max-grow-copy-bb-insns
9910 The maximum code size expansion factor when copying basic blocks
9911 instead of jumping.  The expansion is relative to a jump instruction.
9912 The default value is 8.
9914 @item max-goto-duplication-insns
9915 The maximum number of instructions to duplicate to a block that jumps
9916 to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
9917 passes, GCC factors computed gotos early in the compilation process,
9918 and unfactors them as late as possible.  Only computed jumps at the
9919 end of a basic blocks with no more than max-goto-duplication-insns are
9920 unfactored.  The default value is 8.
9922 @item max-delay-slot-insn-search
9923 The maximum number of instructions to consider when looking for an
9924 instruction to fill a delay slot.  If more than this arbitrary number of
9925 instructions are searched, the time savings from filling the delay slot
9926 are minimal, so stop searching.  Increasing values mean more
9927 aggressive optimization, making the compilation time increase with probably
9928 small improvement in execution time.
9930 @item max-delay-slot-live-search
9931 When trying to fill delay slots, the maximum number of instructions to
9932 consider when searching for a block with valid live register
9933 information.  Increasing this arbitrarily chosen value means more
9934 aggressive optimization, increasing the compilation time.  This parameter
9935 should be removed when the delay slot code is rewritten to maintain the
9936 control-flow graph.
9938 @item max-gcse-memory
9939 The approximate maximum amount of memory that can be allocated in
9940 order to perform the global common subexpression elimination
9941 optimization.  If more memory than specified is required, the
9942 optimization is not done.
9944 @item max-gcse-insertion-ratio
9945 If the ratio of expression insertions to deletions is larger than this value
9946 for any expression, then RTL PRE inserts or removes the expression and thus
9947 leaves partially redundant computations in the instruction stream.  The default value is 20.
9949 @item max-pending-list-length
9950 The maximum number of pending dependencies scheduling allows
9951 before flushing the current state and starting over.  Large functions
9952 with few branches or calls can create excessively large lists which
9953 needlessly consume memory and resources.
9955 @item max-modulo-backtrack-attempts
9956 The maximum number of backtrack attempts the scheduler should make
9957 when modulo scheduling a loop.  Larger values can exponentially increase
9958 compilation time.
9960 @item max-inline-insns-single
9961 Several parameters control the tree inliner used in GCC@.
9962 This number sets the maximum number of instructions (counted in GCC's
9963 internal representation) in a single function that the tree inliner
9964 considers for inlining.  This only affects functions declared
9965 inline and methods implemented in a class declaration (C++).
9966 The default value is 400.
9968 @item max-inline-insns-auto
9969 When you use @option{-finline-functions} (included in @option{-O3}),
9970 a lot of functions that would otherwise not be considered for inlining
9971 by the compiler are investigated.  To those functions, a different
9972 (more restrictive) limit compared to functions declared inline can
9973 be applied.
9974 The default value is 40.
9976 @item inline-min-speedup
9977 When estimated performance improvement of caller + callee runtime exceeds this
9978 threshold (in percent), the function can be inlined regardless of the limit on
9979 @option{--param max-inline-insns-single} and @option{--param
9980 max-inline-insns-auto}.
9982 @item large-function-insns
9983 The limit specifying really large functions.  For functions larger than this
9984 limit after inlining, inlining is constrained by
9985 @option{--param large-function-growth}.  This parameter is useful primarily
9986 to avoid extreme compilation time caused by non-linear algorithms used by the
9987 back end.
9988 The default value is 2700.
9990 @item large-function-growth
9991 Specifies maximal growth of large function caused by inlining in percents.
9992 The default value is 100 which limits large function growth to 2.0 times
9993 the original size.
9995 @item large-unit-insns
9996 The limit specifying large translation unit.  Growth caused by inlining of
9997 units larger than this limit is limited by @option{--param inline-unit-growth}.
9998 For small units this might be too tight.
9999 For example, consider a unit consisting of function A
10000 that is inline and B that just calls A three times.  If B is small relative to
10001 A, the growth of unit is 300\% and yet such inlining is very sane.  For very
10002 large units consisting of small inlineable functions, however, the overall unit
10003 growth limit is needed to avoid exponential explosion of code size.  Thus for
10004 smaller units, the size is increased to @option{--param large-unit-insns}
10005 before applying @option{--param inline-unit-growth}.  The default is 10000.
10007 @item inline-unit-growth
10008 Specifies maximal overall growth of the compilation unit caused by inlining.
10009 The default value is 20 which limits unit growth to 1.2 times the original
10010 size. Cold functions (either marked cold via an attribute or by profile
10011 feedback) are not accounted into the unit size.
10013 @item ipcp-unit-growth
10014 Specifies maximal overall growth of the compilation unit caused by
10015 interprocedural constant propagation.  The default value is 10 which limits
10016 unit growth to 1.1 times the original size.
10018 @item large-stack-frame
10019 The limit specifying large stack frames.  While inlining the algorithm is trying
10020 to not grow past this limit too much.  The default value is 256 bytes.
10022 @item large-stack-frame-growth
10023 Specifies maximal growth of large stack frames caused by inlining in percents.
10024 The default value is 1000 which limits large stack frame growth to 11 times
10025 the original size.
10027 @item max-inline-insns-recursive
10028 @itemx max-inline-insns-recursive-auto
10029 Specifies the maximum number of instructions an out-of-line copy of a
10030 self-recursive inline
10031 function can grow into by performing recursive inlining.
10033 @option{--param max-inline-insns-recursive} applies to functions
10034 declared inline.
10035 For functions not declared inline, recursive inlining
10036 happens only when @option{-finline-functions} (included in @option{-O3}) is
10037 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.  The
10038 default value is 450.
10040 @item max-inline-recursive-depth
10041 @itemx max-inline-recursive-depth-auto
10042 Specifies the maximum recursion depth used for recursive inlining.
10044 @option{--param max-inline-recursive-depth} applies to functions
10045 declared inline.  For functions not declared inline, recursive inlining
10046 happens only when @option{-finline-functions} (included in @option{-O3}) is
10047 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.  The
10048 default value is 8.
10050 @item min-inline-recursive-probability
10051 Recursive inlining is profitable only for function having deep recursion
10052 in average and can hurt for function having little recursion depth by
10053 increasing the prologue size or complexity of function body to other
10054 optimizers.
10056 When profile feedback is available (see @option{-fprofile-generate}) the actual
10057 recursion depth can be guessed from the probability that function recurses
10058 via a given call expression.  This parameter limits inlining only to call
10059 expressions whose probability exceeds the given threshold (in percents).
10060 The default value is 10.
10062 @item early-inlining-insns
10063 Specify growth that the early inliner can make.  In effect it increases
10064 the amount of inlining for code having a large abstraction penalty.
10065 The default value is 14.
10067 @item max-early-inliner-iterations
10068 Limit of iterations of the early inliner.  This basically bounds
10069 the number of nested indirect calls the early inliner can resolve.
10070 Deeper chains are still handled by late inlining.
10072 @item comdat-sharing-probability
10073 Probability (in percent) that C++ inline function with comdat visibility
10074 are shared across multiple compilation units.  The default value is 20.
10076 @item profile-func-internal-id
10077 A parameter to control whether to use function internal id in profile
10078 database lookup. If the value is 0, the compiler uses an id that
10079 is based on function assembler name and filename, which makes old profile
10080 data more tolerant to source changes such as function reordering etc.
10081 The default value is 0.
10083 @item min-vect-loop-bound
10084 The minimum number of iterations under which loops are not vectorized
10085 when @option{-ftree-vectorize} is used.  The number of iterations after
10086 vectorization needs to be greater than the value specified by this option
10087 to allow vectorization.  The default value is 0.
10089 @item gcse-cost-distance-ratio
10090 Scaling factor in calculation of maximum distance an expression
10091 can be moved by GCSE optimizations.  This is currently supported only in the
10092 code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
10093 is with simple expressions, i.e., the expressions that have cost
10094 less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
10095 hoisting of simple expressions.  The default value is 10.
10097 @item gcse-unrestricted-cost
10098 Cost, roughly measured as the cost of a single typical machine
10099 instruction, at which GCSE optimizations do not constrain
10100 the distance an expression can travel.  This is currently
10101 supported only in the code hoisting pass.  The lesser the cost,
10102 the more aggressive code hoisting is.  Specifying 0 
10103 allows all expressions to travel unrestricted distances.
10104 The default value is 3.
10106 @item max-hoist-depth
10107 The depth of search in the dominator tree for expressions to hoist.
10108 This is used to avoid quadratic behavior in hoisting algorithm.
10109 The value of 0 does not limit on the search, but may slow down compilation
10110 of huge functions.  The default value is 30.
10112 @item max-tail-merge-comparisons
10113 The maximum amount of similar bbs to compare a bb with.  This is used to
10114 avoid quadratic behavior in tree tail merging.  The default value is 10.
10116 @item max-tail-merge-iterations
10117 The maximum amount of iterations of the pass over the function.  This is used to
10118 limit compilation time in tree tail merging.  The default value is 2.
10120 @item store-merging-allow-unaligned
10121 Allow the store merging pass to introduce unaligned stores if it is legal to
10122 do so.  The default value is 1.
10124 @item max-stores-to-merge
10125 The maximum number of stores to attempt to merge into wider stores in the store
10126 merging pass.  The minimum value is 2 and the default is 64.
10128 @item max-unrolled-insns
10129 The maximum number of instructions that a loop may have to be unrolled.
10130 If a loop is unrolled, this parameter also determines how many times
10131 the loop code is unrolled.
10133 @item max-average-unrolled-insns
10134 The maximum number of instructions biased by probabilities of their execution
10135 that a loop may have to be unrolled.  If a loop is unrolled,
10136 this parameter also determines how many times the loop code is unrolled.
10138 @item max-unroll-times
10139 The maximum number of unrollings of a single loop.
10141 @item max-peeled-insns
10142 The maximum number of instructions that a loop may have to be peeled.
10143 If a loop is peeled, this parameter also determines how many times
10144 the loop code is peeled.
10146 @item max-peel-times
10147 The maximum number of peelings of a single loop.
10149 @item max-peel-branches
10150 The maximum number of branches on the hot path through the peeled sequence.
10152 @item max-completely-peeled-insns
10153 The maximum number of insns of a completely peeled loop.
10155 @item max-completely-peel-times
10156 The maximum number of iterations of a loop to be suitable for complete peeling.
10158 @item max-completely-peel-loop-nest-depth
10159 The maximum depth of a loop nest suitable for complete peeling.
10161 @item max-unswitch-insns
10162 The maximum number of insns of an unswitched loop.
10164 @item max-unswitch-level
10165 The maximum number of branches unswitched in a single loop.
10167 @item max-loop-headers-insns
10168 The maximum number of insns in loop header duplicated by the copy loop headers
10169 pass.
10171 @item lim-expensive
10172 The minimum cost of an expensive expression in the loop invariant motion.
10174 @item iv-consider-all-candidates-bound
10175 Bound on number of candidates for induction variables, below which
10176 all candidates are considered for each use in induction variable
10177 optimizations.  If there are more candidates than this,
10178 only the most relevant ones are considered to avoid quadratic time complexity.
10180 @item iv-max-considered-uses
10181 The induction variable optimizations give up on loops that contain more
10182 induction variable uses.
10184 @item iv-always-prune-cand-set-bound
10185 If the number of candidates in the set is smaller than this value,
10186 always try to remove unnecessary ivs from the set
10187 when adding a new one.
10189 @item avg-loop-niter
10190 Average number of iterations of a loop.
10192 @item dse-max-object-size
10193 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10194 Larger values may result in larger compilation times.
10196 @item scev-max-expr-size
10197 Bound on size of expressions used in the scalar evolutions analyzer.
10198 Large expressions slow the analyzer.
10200 @item scev-max-expr-complexity
10201 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10202 Complex expressions slow the analyzer.
10204 @item max-tree-if-conversion-phi-args
10205 Maximum number of arguments in a PHI supported by TREE if conversion
10206 unless the loop is marked with simd pragma.
10208 @item vect-max-version-for-alignment-checks
10209 The maximum number of run-time checks that can be performed when
10210 doing loop versioning for alignment in the vectorizer.
10212 @item vect-max-version-for-alias-checks
10213 The maximum number of run-time checks that can be performed when
10214 doing loop versioning for alias in the vectorizer.
10216 @item vect-max-peeling-for-alignment
10217 The maximum number of loop peels to enhance access alignment
10218 for vectorizer. Value -1 means no limit.
10220 @item max-iterations-to-track
10221 The maximum number of iterations of a loop the brute-force algorithm
10222 for analysis of the number of iterations of the loop tries to evaluate.
10224 @item hot-bb-count-ws-permille
10225 A basic block profile count is considered hot if it contributes to 
10226 the given permillage (i.e. 0...1000) of the entire profiled execution.
10228 @item hot-bb-frequency-fraction
10229 Select fraction of the entry block frequency of executions of basic block in
10230 function given basic block needs to have to be considered hot.
10232 @item max-predicted-iterations
10233 The maximum number of loop iterations we predict statically.  This is useful
10234 in cases where a function contains a single loop with known bound and
10235 another loop with unknown bound.
10236 The known number of iterations is predicted correctly, while
10237 the unknown number of iterations average to roughly 10.  This means that the
10238 loop without bounds appears artificially cold relative to the other one.
10240 @item builtin-expect-probability
10241 Control the probability of the expression having the specified value. This
10242 parameter takes a percentage (i.e. 0 ... 100) as input.
10243 The default probability of 90 is obtained empirically.
10245 @item align-threshold
10247 Select fraction of the maximal frequency of executions of a basic block in
10248 a function to align the basic block.
10250 @item align-loop-iterations
10252 A loop expected to iterate at least the selected number of iterations is
10253 aligned.
10255 @item tracer-dynamic-coverage
10256 @itemx tracer-dynamic-coverage-feedback
10258 This value is used to limit superblock formation once the given percentage of
10259 executed instructions is covered.  This limits unnecessary code size
10260 expansion.
10262 The @option{tracer-dynamic-coverage-feedback} parameter
10263 is used only when profile
10264 feedback is available.  The real profiles (as opposed to statically estimated
10265 ones) are much less balanced allowing the threshold to be larger value.
10267 @item tracer-max-code-growth
10268 Stop tail duplication once code growth has reached given percentage.  This is
10269 a rather artificial limit, as most of the duplicates are eliminated later in
10270 cross jumping, so it may be set to much higher values than is the desired code
10271 growth.
10273 @item tracer-min-branch-ratio
10275 Stop reverse growth when the reverse probability of best edge is less than this
10276 threshold (in percent).
10278 @item tracer-min-branch-probability
10279 @itemx tracer-min-branch-probability-feedback
10281 Stop forward growth if the best edge has probability lower than this
10282 threshold.
10284 Similarly to @option{tracer-dynamic-coverage} two parameters are
10285 provided.  @option{tracer-min-branch-probability-feedback} is used for
10286 compilation with profile feedback and @option{tracer-min-branch-probability}
10287 compilation without.  The value for compilation with profile feedback
10288 needs to be more conservative (higher) in order to make tracer
10289 effective.
10291 @item stack-clash-protection-guard-size
10292 Specify the size of the operating system provided stack guard as
10293 2 raised to @var{num} bytes.  The default value is 12 (4096 bytes).
10294 Acceptable values are between 12 and 30.  Higher values may reduce the
10295 number of explicit probes, but a value larger than the operating system
10296 provided guard will leave code vulnerable to stack clash style attacks.
10298 @item stack-clash-protection-probe-interval
10299 Stack clash protection involves probing stack space as it is allocated.  This
10300 param controls the maximum distance between probes into the stack as 2 raised
10301 to @var{num} bytes.  Acceptable values are between 10 and 16 and defaults to
10302 12.  Higher values may reduce the number of explicit probes, but a value
10303 larger than the operating system provided guard will leave code vulnerable to
10304 stack clash style attacks.
10306 @item max-cse-path-length
10308 The maximum number of basic blocks on path that CSE considers.
10309 The default is 10.
10311 @item max-cse-insns
10312 The maximum number of instructions CSE processes before flushing.
10313 The default is 1000.
10315 @item ggc-min-expand
10317 GCC uses a garbage collector to manage its own memory allocation.  This
10318 parameter specifies the minimum percentage by which the garbage
10319 collector's heap should be allowed to expand between collections.
10320 Tuning this may improve compilation speed; it has no effect on code
10321 generation.
10323 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10324 RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
10325 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
10326 GCC is not able to calculate RAM on a particular platform, the lower
10327 bound of 30% is used.  Setting this parameter and
10328 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10329 every opportunity.  This is extremely slow, but can be useful for
10330 debugging.
10332 @item ggc-min-heapsize
10334 Minimum size of the garbage collector's heap before it begins bothering
10335 to collect garbage.  The first collection occurs after the heap expands
10336 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
10337 tuning this may improve compilation speed, and has no effect on code
10338 generation.
10340 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10341 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10342 with a lower bound of 4096 (four megabytes) and an upper bound of
10343 131072 (128 megabytes).  If GCC is not able to calculate RAM on a
10344 particular platform, the lower bound is used.  Setting this parameter
10345 very large effectively disables garbage collection.  Setting this
10346 parameter and @option{ggc-min-expand} to zero causes a full collection
10347 to occur at every opportunity.
10349 @item max-reload-search-insns
10350 The maximum number of instruction reload should look backward for equivalent
10351 register.  Increasing values mean more aggressive optimization, making the
10352 compilation time increase with probably slightly better performance.
10353 The default value is 100.
10355 @item max-cselib-memory-locations
10356 The maximum number of memory locations cselib should take into account.
10357 Increasing values mean more aggressive optimization, making the compilation time
10358 increase with probably slightly better performance.  The default value is 500.
10360 @item max-sched-ready-insns
10361 The maximum number of instructions ready to be issued the scheduler should
10362 consider at any given time during the first scheduling pass.  Increasing
10363 values mean more thorough searches, making the compilation time increase
10364 with probably little benefit.  The default value is 100.
10366 @item max-sched-region-blocks
10367 The maximum number of blocks in a region to be considered for
10368 interblock scheduling.  The default value is 10.
10370 @item max-pipeline-region-blocks
10371 The maximum number of blocks in a region to be considered for
10372 pipelining in the selective scheduler.  The default value is 15.
10374 @item max-sched-region-insns
10375 The maximum number of insns in a region to be considered for
10376 interblock scheduling.  The default value is 100.
10378 @item max-pipeline-region-insns
10379 The maximum number of insns in a region to be considered for
10380 pipelining in the selective scheduler.  The default value is 200.
10382 @item min-spec-prob
10383 The minimum probability (in percents) of reaching a source block
10384 for interblock speculative scheduling.  The default value is 40.
10386 @item max-sched-extend-regions-iters
10387 The maximum number of iterations through CFG to extend regions.
10388 A value of 0 (the default) disables region extensions.
10390 @item max-sched-insn-conflict-delay
10391 The maximum conflict delay for an insn to be considered for speculative motion.
10392 The default value is 3.
10394 @item sched-spec-prob-cutoff
10395 The minimal probability of speculation success (in percents), so that
10396 speculative insns are scheduled.
10397 The default value is 40.
10399 @item sched-state-edge-prob-cutoff
10400 The minimum probability an edge must have for the scheduler to save its
10401 state across it.
10402 The default value is 10.
10404 @item sched-mem-true-dep-cost
10405 Minimal distance (in CPU cycles) between store and load targeting same
10406 memory locations.  The default value is 1.
10408 @item selsched-max-lookahead
10409 The maximum size of the lookahead window of selective scheduling.  It is a
10410 depth of search for available instructions.
10411 The default value is 50.
10413 @item selsched-max-sched-times
10414 The maximum number of times that an instruction is scheduled during
10415 selective scheduling.  This is the limit on the number of iterations
10416 through which the instruction may be pipelined.  The default value is 2.
10418 @item selsched-insns-to-rename
10419 The maximum number of best instructions in the ready list that are considered
10420 for renaming in the selective scheduler.  The default value is 2.
10422 @item sms-min-sc
10423 The minimum value of stage count that swing modulo scheduler
10424 generates.  The default value is 2.
10426 @item max-last-value-rtl
10427 The maximum size measured as number of RTLs that can be recorded in an expression
10428 in combiner for a pseudo register as last known value of that register.  The default
10429 is 10000.
10431 @item max-combine-insns
10432 The maximum number of instructions the RTL combiner tries to combine.
10433 The default value is 2 at @option{-Og} and 4 otherwise.
10435 @item integer-share-limit
10436 Small integer constants can use a shared data structure, reducing the
10437 compiler's memory usage and increasing its speed.  This sets the maximum
10438 value of a shared integer constant.  The default value is 256.
10440 @item ssp-buffer-size
10441 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10442 protection when @option{-fstack-protection} is used.
10444 @item min-size-for-stack-sharing
10445 The minimum size of variables taking part in stack slot sharing when not
10446 optimizing. The default value is 32.
10448 @item max-jump-thread-duplication-stmts
10449 Maximum number of statements allowed in a block that needs to be
10450 duplicated when threading jumps.
10452 @item max-fields-for-field-sensitive
10453 Maximum number of fields in a structure treated in
10454 a field sensitive manner during pointer analysis.  The default is zero
10455 for @option{-O0} and @option{-O1},
10456 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10458 @item prefetch-latency
10459 Estimate on average number of instructions that are executed before
10460 prefetch finishes.  The distance prefetched ahead is proportional
10461 to this constant.  Increasing this number may also lead to less
10462 streams being prefetched (see @option{simultaneous-prefetches}).
10464 @item simultaneous-prefetches
10465 Maximum number of prefetches that can run at the same time.
10467 @item l1-cache-line-size
10468 The size of cache line in L1 cache, in bytes.
10470 @item l1-cache-size
10471 The size of L1 cache, in kilobytes.
10473 @item l2-cache-size
10474 The size of L2 cache, in kilobytes.
10476 @item min-insn-to-prefetch-ratio
10477 The minimum ratio between the number of instructions and the
10478 number of prefetches to enable prefetching in a loop.
10480 @item prefetch-min-insn-to-mem-ratio
10481 The minimum ratio between the number of instructions and the
10482 number of memory references to enable prefetching in a loop.
10484 @item use-canonical-types
10485 Whether the compiler should use the ``canonical'' type system.  By
10486 default, this should always be 1, which uses a more efficient internal
10487 mechanism for comparing types in C++ and Objective-C++.  However, if
10488 bugs in the canonical type system are causing compilation failures,
10489 set this value to 0 to disable canonical types.
10491 @item switch-conversion-max-branch-ratio
10492 Switch initialization conversion refuses to create arrays that are
10493 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10494 branches in the switch.
10496 @item max-partial-antic-length
10497 Maximum length of the partial antic set computed during the tree
10498 partial redundancy elimination optimization (@option{-ftree-pre}) when
10499 optimizing at @option{-O3} and above.  For some sorts of source code
10500 the enhanced partial redundancy elimination optimization can run away,
10501 consuming all of the memory available on the host machine.  This
10502 parameter sets a limit on the length of the sets that are computed,
10503 which prevents the runaway behavior.  Setting a value of 0 for
10504 this parameter allows an unlimited set length.
10506 @item sccvn-max-scc-size
10507 Maximum size of a strongly connected component (SCC) during SCCVN
10508 processing.  If this limit is hit, SCCVN processing for the whole
10509 function is not done and optimizations depending on it are
10510 disabled.  The default maximum SCC size is 10000.
10512 @item sccvn-max-alias-queries-per-access
10513 Maximum number of alias-oracle queries we perform when looking for
10514 redundancies for loads and stores.  If this limit is hit the search
10515 is aborted and the load or store is not considered redundant.  The
10516 number of queries is algorithmically limited to the number of
10517 stores on all paths from the load to the function entry.
10518 The default maximum number of queries is 1000.
10520 @item ira-max-loops-num
10521 IRA uses regional register allocation by default.  If a function
10522 contains more loops than the number given by this parameter, only at most
10523 the given number of the most frequently-executed loops form regions
10524 for regional register allocation.  The default value of the
10525 parameter is 100.
10527 @item ira-max-conflict-table-size 
10528 Although IRA uses a sophisticated algorithm to compress the conflict
10529 table, the table can still require excessive amounts of memory for
10530 huge functions.  If the conflict table for a function could be more
10531 than the size in MB given by this parameter, the register allocator
10532 instead uses a faster, simpler, and lower-quality
10533 algorithm that does not require building a pseudo-register conflict table.  
10534 The default value of the parameter is 2000.
10536 @item ira-loop-reserved-regs
10537 IRA can be used to evaluate more accurate register pressure in loops
10538 for decisions to move loop invariants (see @option{-O3}).  The number
10539 of available registers reserved for some other purposes is given
10540 by this parameter.  The default value of the parameter is 2, which is
10541 the minimal number of registers needed by typical instructions.
10542 This value is the best found from numerous experiments.
10544 @item lra-inheritance-ebb-probability-cutoff
10545 LRA tries to reuse values reloaded in registers in subsequent insns.
10546 This optimization is called inheritance.  EBB is used as a region to
10547 do this optimization.  The parameter defines a minimal fall-through
10548 edge probability in percentage used to add BB to inheritance EBB in
10549 LRA.  The default value of the parameter is 40.  The value was chosen
10550 from numerous runs of SPEC2000 on x86-64.
10552 @item loop-invariant-max-bbs-in-loop
10553 Loop invariant motion can be very expensive, both in compilation time and
10554 in amount of needed compile-time memory, with very large loops.  Loops
10555 with more basic blocks than this parameter won't have loop invariant
10556 motion optimization performed on them.  The default value of the
10557 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10559 @item loop-max-datarefs-for-datadeps
10560 Building data dependencies is expensive for very large loops.  This
10561 parameter limits the number of data references in loops that are
10562 considered for data dependence analysis.  These large loops are no
10563 handled by the optimizations using loop data dependencies.
10564 The default value is 1000.
10566 @item max-vartrack-size
10567 Sets a maximum number of hash table slots to use during variable
10568 tracking dataflow analysis of any function.  If this limit is exceeded
10569 with variable tracking at assignments enabled, analysis for that
10570 function is retried without it, after removing all debug insns from
10571 the function.  If the limit is exceeded even without debug insns, var
10572 tracking analysis is completely disabled for the function.  Setting
10573 the parameter to zero makes it unlimited.
10575 @item max-vartrack-expr-depth
10576 Sets a maximum number of recursion levels when attempting to map
10577 variable names or debug temporaries to value expressions.  This trades
10578 compilation time for more complete debug information.  If this is set too
10579 low, value expressions that are available and could be represented in
10580 debug information may end up not being used; setting this higher may
10581 enable the compiler to find more complex debug expressions, but compile
10582 time and memory use may grow.  The default is 12.
10584 @item min-nondebug-insn-uid
10585 Use uids starting at this parameter for nondebug insns.  The range below
10586 the parameter is reserved exclusively for debug insns created by
10587 @option{-fvar-tracking-assignments}, but debug insns may get
10588 (non-overlapping) uids above it if the reserved range is exhausted.
10590 @item ipa-sra-ptr-growth-factor
10591 IPA-SRA replaces a pointer to an aggregate with one or more new
10592 parameters only when their cumulative size is less or equal to
10593 @option{ipa-sra-ptr-growth-factor} times the size of the original
10594 pointer parameter.
10596 @item sra-max-scalarization-size-Ospeed
10597 @item sra-max-scalarization-size-Osize
10598 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10599 replace scalar parts of aggregates with uses of independent scalar
10600 variables.  These parameters control the maximum size, in storage units,
10601 of aggregate which is considered for replacement when compiling for
10602 speed
10603 (@option{sra-max-scalarization-size-Ospeed}) or size
10604 (@option{sra-max-scalarization-size-Osize}) respectively.
10606 @item tm-max-aggregate-size
10607 When making copies of thread-local variables in a transaction, this
10608 parameter specifies the size in bytes after which variables are
10609 saved with the logging functions as opposed to save/restore code
10610 sequence pairs.  This option only applies when using
10611 @option{-fgnu-tm}.
10613 @item graphite-max-nb-scop-params
10614 To avoid exponential effects in the Graphite loop transforms, the
10615 number of parameters in a Static Control Part (SCoP) is bounded.  The
10616 default value is 10 parameters, a value of zero can be used to lift
10617 the bound.  A variable whose value is unknown at compilation time and
10618 defined outside a SCoP is a parameter of the SCoP.
10620 @item loop-block-tile-size
10621 Loop blocking or strip mining transforms, enabled with
10622 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10623 loop in the loop nest by a given number of iterations.  The strip
10624 length can be changed using the @option{loop-block-tile-size}
10625 parameter.  The default value is 51 iterations.
10627 @item loop-unroll-jam-size
10628 Specify the unroll factor for the @option{-floop-unroll-and-jam} option.  The 
10629 default value is 4.
10631 @item loop-unroll-jam-depth
10632 Specify the dimension to be unrolled (counting from the most inner loop)
10633 for the  @option{-floop-unroll-and-jam}.  The default value is 2.
10635 @item ipa-cp-value-list-size
10636 IPA-CP attempts to track all possible values and types passed to a function's
10637 parameter in order to propagate them and perform devirtualization.
10638 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10639 stores per one formal parameter of a function.
10641 @item ipa-cp-eval-threshold
10642 IPA-CP calculates its own score of cloning profitability heuristics
10643 and performs those cloning opportunities with scores that exceed
10644 @option{ipa-cp-eval-threshold}.
10646 @item ipa-cp-recursion-penalty
10647 Percentage penalty the recursive functions will receive when they
10648 are evaluated for cloning.
10650 @item ipa-cp-single-call-penalty
10651 Percentage penalty functions containing a single call to another
10652 function will receive when they are evaluated for cloning.
10655 @item ipa-max-agg-items
10656 IPA-CP is also capable to propagate a number of scalar values passed
10657 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10658 number of such values per one parameter.
10660 @item ipa-cp-loop-hint-bonus
10661 When IPA-CP determines that a cloning candidate would make the number
10662 of iterations of a loop known, it adds a bonus of
10663 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10664 the candidate.
10666 @item ipa-cp-array-index-hint-bonus
10667 When IPA-CP determines that a cloning candidate would make the index of
10668 an array access known, it adds a bonus of
10669 @option{ipa-cp-array-index-hint-bonus} to the profitability
10670 score of the candidate.
10672 @item ipa-max-aa-steps
10673 During its analysis of function bodies, IPA-CP employs alias analysis
10674 in order to track values pointed to by function parameters.  In order
10675 not spend too much time analyzing huge functions, it gives up and
10676 consider all memory clobbered after examining
10677 @option{ipa-max-aa-steps} statements modifying memory.
10679 @item lto-partitions
10680 Specify desired number of partitions produced during WHOPR compilation.
10681 The number of partitions should exceed the number of CPUs used for compilation.
10682 The default value is 32.
10684 @item lto-min-partition
10685 Size of minimal partition for WHOPR (in estimated instructions).
10686 This prevents expenses of splitting very small programs into too many
10687 partitions.
10689 @item lto-max-partition
10690 Size of max partition for WHOPR (in estimated instructions).
10691 to provide an upper bound for individual size of partition.
10692 Meant to be used only with balanced partitioning.
10694 @item cxx-max-namespaces-for-diagnostic-help
10695 The maximum number of namespaces to consult for suggestions when C++
10696 name lookup fails for an identifier.  The default is 1000.
10698 @item sink-frequency-threshold
10699 The maximum relative execution frequency (in percents) of the target block
10700 relative to a statement's original block to allow statement sinking of a
10701 statement.  Larger numbers result in more aggressive statement sinking.
10702 The default value is 75.  A small positive adjustment is applied for
10703 statements with memory operands as those are even more profitable so sink.
10705 @item max-stores-to-sink
10706 The maximum number of conditional store pairs that can be sunk.  Set to 0
10707 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10708 (@option{-ftree-loop-if-convert}) is disabled.  The default is 2.
10710 @item allow-store-data-races
10711 Allow optimizers to introduce new data races on stores.
10712 Set to 1 to allow, otherwise to 0.  This option is enabled by default
10713 at optimization level @option{-Ofast}.
10715 @item case-values-threshold
10716 The smallest number of different values for which it is best to use a
10717 jump-table instead of a tree of conditional branches.  If the value is
10718 0, use the default for the machine.  The default is 0.
10720 @item tree-reassoc-width
10721 Set the maximum number of instructions executed in parallel in
10722 reassociated tree. This parameter overrides target dependent
10723 heuristics used by default if has non zero value.
10725 @item sched-pressure-algorithm
10726 Choose between the two available implementations of
10727 @option{-fsched-pressure}.  Algorithm 1 is the original implementation
10728 and is the more likely to prevent instructions from being reordered.
10729 Algorithm 2 was designed to be a compromise between the relatively
10730 conservative approach taken by algorithm 1 and the rather aggressive
10731 approach taken by the default scheduler.  It relies more heavily on
10732 having a regular register file and accurate register pressure classes.
10733 See @file{haifa-sched.c} in the GCC sources for more details.
10735 The default choice depends on the target.
10737 @item max-slsr-cand-scan
10738 Set the maximum number of existing candidates that are considered when
10739 seeking a basis for a new straight-line strength reduction candidate.
10741 @item asan-globals
10742 Enable buffer overflow detection for global objects.  This kind
10743 of protection is enabled by default if you are using
10744 @option{-fsanitize=address} option.
10745 To disable global objects protection use @option{--param asan-globals=0}.
10747 @item asan-stack
10748 Enable buffer overflow detection for stack objects.  This kind of
10749 protection is enabled by default when using @option{-fsanitize=address}.
10750 To disable stack protection use @option{--param asan-stack=0} option.
10752 @item asan-instrument-reads
10753 Enable buffer overflow detection for memory reads.  This kind of
10754 protection is enabled by default when using @option{-fsanitize=address}.
10755 To disable memory reads protection use
10756 @option{--param asan-instrument-reads=0}.
10758 @item asan-instrument-writes
10759 Enable buffer overflow detection for memory writes.  This kind of
10760 protection is enabled by default when using @option{-fsanitize=address}.
10761 To disable memory writes protection use
10762 @option{--param asan-instrument-writes=0} option.
10764 @item asan-memintrin
10765 Enable detection for built-in functions.  This kind of protection
10766 is enabled by default when using @option{-fsanitize=address}.
10767 To disable built-in functions protection use
10768 @option{--param asan-memintrin=0}.
10770 @item asan-use-after-return
10771 Enable detection of use-after-return.  This kind of protection
10772 is enabled by default when using the @option{-fsanitize=address} option.
10773 To disable it use @option{--param asan-use-after-return=0}.
10775 Note: By default the check is disabled at run time.  To enable it,
10776 add @code{detect_stack_use_after_return=1} to the environment variable
10777 @env{ASAN_OPTIONS}.
10779 @item asan-instrumentation-with-call-threshold
10780 If number of memory accesses in function being instrumented
10781 is greater or equal to this number, use callbacks instead of inline checks.
10782 E.g. to disable inline code use
10783 @option{--param asan-instrumentation-with-call-threshold=0}.
10785 @item use-after-scope-direct-emission-threshold
10786 If the size of a local variable in bytes is smaller or equal to this
10787 number, directly poison (or unpoison) shadow memory instead of using
10788 run-time callbacks.  The default value is 256.
10790 @item chkp-max-ctor-size
10791 Static constructors generated by Pointer Bounds Checker may become very
10792 large and significantly increase compile time at optimization level
10793 @option{-O1} and higher.  This parameter is a maximum number of statements
10794 in a single generated constructor.  Default value is 5000.
10796 @item max-fsm-thread-path-insns
10797 Maximum number of instructions to copy when duplicating blocks on a
10798 finite state automaton jump thread path.  The default is 100.
10800 @item max-fsm-thread-length
10801 Maximum number of basic blocks on a finite state automaton jump thread
10802 path.  The default is 10.
10804 @item max-fsm-thread-paths
10805 Maximum number of new jump thread paths to create for a finite state
10806 automaton.  The default is 50.
10808 @item parloops-chunk-size
10809 Chunk size of omp schedule for loops parallelized by parloops.  The default
10810 is 0.
10812 @item parloops-schedule
10813 Schedule type of omp schedule for loops parallelized by parloops (static,
10814 dynamic, guided, auto, runtime).  The default is static.
10816 @item parloops-min-per-thread
10817 The minimum number of iterations per thread of an innermost parallelized
10818 loop for which the parallelized variant is prefered over the single threaded
10819 one.  The default is 100.  Note that for a parallelized loop nest the
10820 minimum number of iterations of the outermost loop per thread is two.
10822 @item max-ssa-name-query-depth
10823 Maximum depth of recursion when querying properties of SSA names in things
10824 like fold routines.  One level of recursion corresponds to following a
10825 use-def chain.
10827 @item hsa-gen-debug-stores
10828 Enable emission of special debug stores within HSA kernels which are
10829 then read and reported by libgomp plugin.  Generation of these stores
10830 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
10831 enable it.
10833 @item max-speculative-devirt-maydefs
10834 The maximum number of may-defs we analyze when looking for a must-def
10835 specifying the dynamic type of an object that invokes a virtual call
10836 we may be able to devirtualize speculatively.
10838 @item max-vrp-switch-assertions
10839 The maximum number of assertions to add along the default edge of a switch
10840 statement during VRP.  The default is 10.
10841 @end table
10842 @end table
10844 @node Instrumentation Options
10845 @section Program Instrumentation Options
10846 @cindex instrumentation options
10847 @cindex program instrumentation options
10848 @cindex run-time error checking options
10849 @cindex profiling options
10850 @cindex options, program instrumentation
10851 @cindex options, run-time error checking
10852 @cindex options, profiling
10854 GCC supports a number of command-line options that control adding
10855 run-time instrumentation to the code it normally generates.  
10856 For example, one purpose of instrumentation is collect profiling
10857 statistics for use in finding program hot spots, code coverage
10858 analysis, or profile-guided optimizations.
10859 Another class of program instrumentation is adding run-time checking 
10860 to detect programming errors like invalid pointer
10861 dereferences or out-of-bounds array accesses, as well as deliberately
10862 hostile attacks such as stack smashing or C++ vtable hijacking.
10863 There is also a general hook which can be used to implement other
10864 forms of tracing or function-level instrumentation for debug or
10865 program analysis purposes.
10867 @table @gcctabopt
10868 @cindex @command{prof}
10869 @item -p
10870 @opindex p
10871 Generate extra code to write profile information suitable for the
10872 analysis program @command{prof}.  You must use this option when compiling
10873 the source files you want data about, and you must also use it when
10874 linking.
10876 @cindex @command{gprof}
10877 @item -pg
10878 @opindex pg
10879 Generate extra code to write profile information suitable for the
10880 analysis program @command{gprof}.  You must use this option when compiling
10881 the source files you want data about, and you must also use it when
10882 linking.
10884 @item -fprofile-arcs
10885 @opindex fprofile-arcs
10886 Add code so that program flow @dfn{arcs} are instrumented.  During
10887 execution the program records how many times each branch and call is
10888 executed and how many times it is taken or returns.  On targets that support
10889 constructors with priority support, profiling properly handles constructors,
10890 destructors and C++ constructors (and destructors) of classes which are used
10891 as a type of a global variable.
10893 When the compiled
10894 program exits it saves this data to a file called
10895 @file{@var{auxname}.gcda} for each source file.  The data may be used for
10896 profile-directed optimizations (@option{-fbranch-probabilities}), or for
10897 test coverage analysis (@option{-ftest-coverage}).  Each object file's
10898 @var{auxname} is generated from the name of the output file, if
10899 explicitly specified and it is not the final executable, otherwise it is
10900 the basename of the source file.  In both cases any suffix is removed
10901 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
10902 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
10903 @xref{Cross-profiling}.
10905 @cindex @command{gcov}
10906 @item --coverage
10907 @opindex coverage
10909 This option is used to compile and link code instrumented for coverage
10910 analysis.  The option is a synonym for @option{-fprofile-arcs}
10911 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
10912 linking).  See the documentation for those options for more details.
10914 @itemize
10916 @item
10917 Compile the source files with @option{-fprofile-arcs} plus optimization
10918 and code generation options.  For test coverage analysis, use the
10919 additional @option{-ftest-coverage} option.  You do not need to profile
10920 every source file in a program.
10922 @item
10923 Compile the source files additionally with @option{-fprofile-abs-path}
10924 to create absolute path names in the @file{.gcno} files.  This allows
10925 @command{gcov} to find the correct sources in projects where compilations
10926 occur with different working directories.
10928 @item
10929 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
10930 (the latter implies the former).
10932 @item
10933 Run the program on a representative workload to generate the arc profile
10934 information.  This may be repeated any number of times.  You can run
10935 concurrent instances of your program, and provided that the file system
10936 supports locking, the data files will be correctly updated.  Unless
10937 a strict ISO C dialect option is in effect, @code{fork} calls are
10938 detected and correctly handled without double counting.
10940 @item
10941 For profile-directed optimizations, compile the source files again with
10942 the same optimization and code generation options plus
10943 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
10944 Control Optimization}).
10946 @item
10947 For test coverage analysis, use @command{gcov} to produce human readable
10948 information from the @file{.gcno} and @file{.gcda} files.  Refer to the
10949 @command{gcov} documentation for further information.
10951 @end itemize
10953 With @option{-fprofile-arcs}, for each function of your program GCC
10954 creates a program flow graph, then finds a spanning tree for the graph.
10955 Only arcs that are not on the spanning tree have to be instrumented: the
10956 compiler adds code to count the number of times that these arcs are
10957 executed.  When an arc is the only exit or only entrance to a block, the
10958 instrumentation code can be added to the block; otherwise, a new basic
10959 block must be created to hold the instrumentation code.
10961 @need 2000
10962 @item -ftest-coverage
10963 @opindex ftest-coverage
10964 Produce a notes file that the @command{gcov} code-coverage utility
10965 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
10966 show program coverage.  Each source file's note file is called
10967 @file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
10968 above for a description of @var{auxname} and instructions on how to
10969 generate test coverage data.  Coverage data matches the source files
10970 more closely if you do not optimize.
10972 @item -fprofile-abs-path
10973 @opindex fprofile-abs-path
10974 Automatically convert relative source file names to absolute path names
10975 in the @file{.gcno} files.  This allows @command{gcov} to find the correct
10976 sources in projects where compilations occur with different working
10977 directories.
10979 @item -fprofile-dir=@var{path}
10980 @opindex fprofile-dir
10982 Set the directory to search for the profile data files in to @var{path}.
10983 This option affects only the profile data generated by
10984 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
10985 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
10986 and its related options.  Both absolute and relative paths can be used.
10987 By default, GCC uses the current directory as @var{path}, thus the
10988 profile data file appears in the same directory as the object file.
10990 @item -fprofile-generate
10991 @itemx -fprofile-generate=@var{path}
10992 @opindex fprofile-generate
10994 Enable options usually used for instrumenting application to produce
10995 profile useful for later recompilation with profile feedback based
10996 optimization.  You must use @option{-fprofile-generate} both when
10997 compiling and when linking your program.
10999 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
11001 If @var{path} is specified, GCC looks at the @var{path} to find
11002 the profile feedback data files. See @option{-fprofile-dir}.
11004 To optimize the program based on the collected profile information, use
11005 @option{-fprofile-use}.  @xref{Optimize Options}, for more information.
11007 @item -fprofile-update=@var{method}
11008 @opindex fprofile-update
11010 Alter the update method for an application instrumented for profile
11011 feedback based optimization.  The @var{method} argument should be one of
11012 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
11013 The first one is useful for single-threaded applications,
11014 while the second one prevents profile corruption by emitting thread-safe code.
11016 @strong{Warning:} When an application does not properly join all threads
11017 (or creates an detached thread), a profile file can be still corrupted.
11019 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
11020 when supported by a target, or to @samp{single} otherwise.  The GCC driver
11021 automatically selects @samp{prefer-atomic} when @option{-pthread}
11022 is present in the command line.
11024 @item -fsanitize=address
11025 @opindex fsanitize=address
11026 Enable AddressSanitizer, a fast memory error detector.
11027 Memory access instructions are instrumented to detect
11028 out-of-bounds and use-after-free bugs.
11029 The option enables @option{-fsanitize-address-use-after-scope}.
11030 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
11031 more details.  The run-time behavior can be influenced using the
11032 @env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
11033 the available options are shown at startup of the instrumented program.  See
11034 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
11035 for a list of supported options.
11036 The option cannot be combined with @option{-fsanitize=thread}
11037 and/or @option{-fcheck-pointer-bounds}.
11039 @item -fsanitize=kernel-address
11040 @opindex fsanitize=kernel-address
11041 Enable AddressSanitizer for Linux kernel.
11042 See @uref{https://github.com/google/kasan/wiki} for more details.
11043 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11045 @item -fsanitize=pointer-compare
11046 @opindex fsanitize=pointer-compare
11047 Instrument comparison operation (<, <=, >, >=) with pointer operands.
11048 The option must be combined with either @option{-fsanitize=kernel-address} or
11049 @option{-fsanitize=address}
11050 The option cannot be combined with @option{-fsanitize=thread}
11051 and/or @option{-fcheck-pointer-bounds}.
11052 Note: By default the check is disabled at run time.  To enable it,
11053 add @code{detect_invalid_pointer_pairs=1} to the environment variable
11054 @env{ASAN_OPTIONS}.
11056 @item -fsanitize=pointer-subtract
11057 @opindex fsanitize=pointer-subtract
11058 Instrument subtraction with pointer operands.
11059 The option must be combined with either @option{-fsanitize=kernel-address} or
11060 @option{-fsanitize=address}
11061 The option cannot be combined with @option{-fsanitize=thread}
11062 and/or @option{-fcheck-pointer-bounds}.
11063 Note: By default the check is disabled at run time.  To enable it,
11064 add @code{detect_invalid_pointer_pairs=1} to the environment variable
11065 @env{ASAN_OPTIONS}.
11067 @item -fsanitize=thread
11068 @opindex fsanitize=thread
11069 Enable ThreadSanitizer, a fast data race detector.
11070 Memory access instructions are instrumented to detect
11071 data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
11072 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
11073 environment variable; see
11074 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
11075 supported options.
11076 The option cannot be combined with @option{-fsanitize=address},
11077 @option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
11079 Note that sanitized atomic builtins cannot throw exceptions when
11080 operating on invalid memory addresses with non-call exceptions
11081 (@option{-fnon-call-exceptions}).
11083 @item -fsanitize=leak
11084 @opindex fsanitize=leak
11085 Enable LeakSanitizer, a memory leak detector.
11086 This option only matters for linking of executables and
11087 the executable is linked against a library that overrides @code{malloc}
11088 and other allocator functions.  See
11089 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
11090 details.  The run-time behavior can be influenced using the
11091 @env{LSAN_OPTIONS} environment variable.
11092 The option cannot be combined with @option{-fsanitize=thread}.
11094 @item -fsanitize=undefined
11095 @opindex fsanitize=undefined
11096 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
11097 Various computations are instrumented to detect undefined behavior
11098 at runtime.  Current suboptions are:
11100 @table @gcctabopt
11102 @item -fsanitize=shift
11103 @opindex fsanitize=shift
11104 This option enables checking that the result of a shift operation is
11105 not undefined.  Note that what exactly is considered undefined differs
11106 slightly between C and C++, as well as between ISO C90 and C99, etc.
11107 This option has two suboptions, @option{-fsanitize=shift-base} and
11108 @option{-fsanitize=shift-exponent}.
11110 @item -fsanitize=shift-exponent
11111 @opindex fsanitize=shift-exponent
11112 This option enables checking that the second argument of a shift operation
11113 is not negative and is smaller than the precision of the promoted first
11114 argument.
11116 @item -fsanitize=shift-base
11117 @opindex fsanitize=shift-base
11118 If the second argument of a shift operation is within range, check that the
11119 result of a shift operation is not undefined.  Note that what exactly is
11120 considered undefined differs slightly between C and C++, as well as between
11121 ISO C90 and C99, etc.
11123 @item -fsanitize=integer-divide-by-zero
11124 @opindex fsanitize=integer-divide-by-zero
11125 Detect integer division by zero as well as @code{INT_MIN / -1} division.
11127 @item -fsanitize=unreachable
11128 @opindex fsanitize=unreachable
11129 With this option, the compiler turns the @code{__builtin_unreachable}
11130 call into a diagnostics message call instead.  When reaching the
11131 @code{__builtin_unreachable} call, the behavior is undefined.
11133 @item -fsanitize=vla-bound
11134 @opindex fsanitize=vla-bound
11135 This option instructs the compiler to check that the size of a variable
11136 length array is positive.
11138 @item -fsanitize=null
11139 @opindex fsanitize=null
11140 This option enables pointer checking.  Particularly, the application
11141 built with this option turned on will issue an error message when it
11142 tries to dereference a NULL pointer, or if a reference (possibly an
11143 rvalue reference) is bound to a NULL pointer, or if a method is invoked
11144 on an object pointed by a NULL pointer.
11146 @item -fsanitize=return
11147 @opindex fsanitize=return
11148 This option enables return statement checking.  Programs
11149 built with this option turned on will issue an error message
11150 when the end of a non-void function is reached without actually
11151 returning a value.  This option works in C++ only.
11153 @item -fsanitize=signed-integer-overflow
11154 @opindex fsanitize=signed-integer-overflow
11155 This option enables signed integer overflow checking.  We check that
11156 the result of @code{+}, @code{*}, and both unary and binary @code{-}
11157 does not overflow in the signed arithmetics.  Note, integer promotion
11158 rules must be taken into account.  That is, the following is not an
11159 overflow:
11160 @smallexample
11161 signed char a = SCHAR_MAX;
11162 a++;
11163 @end smallexample
11165 @item -fsanitize=bounds
11166 @opindex fsanitize=bounds
11167 This option enables instrumentation of array bounds.  Various out of bounds
11168 accesses are detected.  Flexible array members, flexible array member-like
11169 arrays, and initializers of variables with static storage are not instrumented.
11170 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11172 @item -fsanitize=bounds-strict
11173 @opindex fsanitize=bounds-strict
11174 This option enables strict instrumentation of array bounds.  Most out of bounds
11175 accesses are detected, including flexible array members and flexible array
11176 member-like arrays.  Initializers of variables with static storage are not
11177 instrumented.  The option cannot be combined
11178 with @option{-fcheck-pointer-bounds}.
11180 @item -fsanitize=alignment
11181 @opindex fsanitize=alignment
11183 This option enables checking of alignment of pointers when they are
11184 dereferenced, or when a reference is bound to insufficiently aligned target,
11185 or when a method or constructor is invoked on insufficiently aligned object.
11187 @item -fsanitize=object-size
11188 @opindex fsanitize=object-size
11189 This option enables instrumentation of memory references using the
11190 @code{__builtin_object_size} function.  Various out of bounds pointer
11191 accesses are detected.
11193 @item -fsanitize=float-divide-by-zero
11194 @opindex fsanitize=float-divide-by-zero
11195 Detect floating-point division by zero.  Unlike other similar options,
11196 @option{-fsanitize=float-divide-by-zero} is not enabled by
11197 @option{-fsanitize=undefined}, since floating-point division by zero can
11198 be a legitimate way of obtaining infinities and NaNs.
11200 @item -fsanitize=float-cast-overflow
11201 @opindex fsanitize=float-cast-overflow
11202 This option enables floating-point type to integer conversion checking.
11203 We check that the result of the conversion does not overflow.
11204 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11205 not enabled by @option{-fsanitize=undefined}.
11206 This option does not work well with @code{FE_INVALID} exceptions enabled.
11208 @item -fsanitize=nonnull-attribute
11209 @opindex fsanitize=nonnull-attribute
11211 This option enables instrumentation of calls, checking whether null values
11212 are not passed to arguments marked as requiring a non-null value by the
11213 @code{nonnull} function attribute.
11215 @item -fsanitize=returns-nonnull-attribute
11216 @opindex fsanitize=returns-nonnull-attribute
11218 This option enables instrumentation of return statements in functions
11219 marked with @code{returns_nonnull} function attribute, to detect returning
11220 of null values from such functions.
11222 @item -fsanitize=bool
11223 @opindex fsanitize=bool
11225 This option enables instrumentation of loads from bool.  If a value other
11226 than 0/1 is loaded, a run-time error is issued.
11228 @item -fsanitize=enum
11229 @opindex fsanitize=enum
11231 This option enables instrumentation of loads from an enum type.  If
11232 a value outside the range of values for the enum type is loaded,
11233 a run-time error is issued.
11235 @item -fsanitize=vptr
11236 @opindex fsanitize=vptr
11238 This option enables instrumentation of C++ member function calls, member
11239 accesses and some conversions between pointers to base and derived classes,
11240 to verify the referenced object has the correct dynamic type.
11242 @item -fsanitize=pointer-overflow
11243 @opindex fsanitize=pointer-overflow
11245 This option enables instrumentation of pointer arithmetics.  If the pointer
11246 arithmetics overflows, a run-time error is issued.
11248 @item -fsanitize=builtin
11249 @opindex fsanitize=builtin
11251 This option enables instrumentation of arguments to selected builtin
11252 functions.  If an invalid value is passed to such arguments, a run-time
11253 error is issued.  E.g.@ passing 0 as the argument to @code{__builtin_ctz}
11254 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
11255 by this option.
11257 @end table
11259 While @option{-ftrapv} causes traps for signed overflows to be emitted,
11260 @option{-fsanitize=undefined} gives a diagnostic message.
11261 This currently works only for the C family of languages.
11263 @item -fno-sanitize=all
11264 @opindex fno-sanitize=all
11266 This option disables all previously enabled sanitizers.
11267 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11268 together.
11270 @item -fasan-shadow-offset=@var{number}
11271 @opindex fasan-shadow-offset
11272 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11273 It is useful for experimenting with different shadow memory layouts in
11274 Kernel AddressSanitizer.
11276 @item -fsanitize-sections=@var{s1},@var{s2},...
11277 @opindex fsanitize-sections
11278 Sanitize global variables in selected user-defined sections.  @var{si} may
11279 contain wildcards.
11281 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
11282 @opindex fsanitize-recover
11283 @opindex fno-sanitize-recover
11284 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
11285 mentioned in comma-separated list of @var{opts}.  Enabling this option
11286 for a sanitizer component causes it to attempt to continue
11287 running the program as if no error happened.  This means multiple
11288 runtime errors can be reported in a single program run, and the exit
11289 code of the program may indicate success even when errors
11290 have been reported.  The @option{-fno-sanitize-recover=} option
11291 can be used to alter
11292 this behavior: only the first detected error is reported
11293 and program then exits with a non-zero exit code.
11295 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11296 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11297 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11298 @option{-fsanitize=bounds-strict},
11299 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11300 For these sanitizers error recovery is turned on by default,
11301 except @option{-fsanitize=address}, for which this feature is experimental.
11302 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11303 accepted, the former enables recovery for all sanitizers that support it,
11304 the latter disables recovery for all sanitizers that support it.
11306 Even if a recovery mode is turned on the compiler side, it needs to be also
11307 enabled on the runtime library side, otherwise the failures are still fatal.
11308 The runtime library defaults to @code{halt_on_error=0} for
11309 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11310 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11311 setting the @code{halt_on_error} flag in the corresponding environment variable.
11313 Syntax without an explicit @var{opts} parameter is deprecated.  It is
11314 equivalent to specifying an @var{opts} list of:
11316 @smallexample
11317 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11318 @end smallexample
11320 @item -fsanitize-address-use-after-scope
11321 @opindex fsanitize-address-use-after-scope
11322 Enable sanitization of local variables to detect use-after-scope bugs.
11323 The option sets @option{-fstack-reuse} to @samp{none}.
11325 @item -fsanitize-undefined-trap-on-error
11326 @opindex fsanitize-undefined-trap-on-error
11327 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11328 report undefined behavior using @code{__builtin_trap} rather than
11329 a @code{libubsan} library routine.  The advantage of this is that the
11330 @code{libubsan} library is not needed and is not linked in, so this
11331 is usable even in freestanding environments.
11333 @item -fsanitize-coverage=trace-pc
11334 @opindex fsanitize-coverage=trace-pc
11335 Enable coverage-guided fuzzing code instrumentation.
11336 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11338 @item -fsanitize-coverage=trace-cmp
11339 @opindex fsanitize-coverage=trace-cmp
11340 Enable dataflow guided fuzzing code instrumentation.
11341 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
11342 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
11343 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
11344 variable or @code{__sanitizer_cov_trace_const_cmp1},
11345 @code{__sanitizer_cov_trace_const_cmp2},
11346 @code{__sanitizer_cov_trace_const_cmp4} or
11347 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
11348 operand constant, @code{__sanitizer_cov_trace_cmpf} or
11349 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
11350 @code{__sanitizer_cov_trace_switch} for switch statements.
11352 @item -fbounds-check
11353 @opindex fbounds-check
11354 For front ends that support it, generate additional code to check that
11355 indices used to access arrays are within the declared range.  This is
11356 currently only supported by the Fortran front end, where this option
11357 defaults to false.
11359 @item -fcheck-pointer-bounds
11360 @opindex fcheck-pointer-bounds
11361 @opindex fno-check-pointer-bounds
11362 @cindex Pointer Bounds Checker options
11363 Enable Pointer Bounds Checker instrumentation.  Each memory reference
11364 is instrumented with checks of the pointer used for memory access against
11365 bounds associated with that pointer.  
11367 Currently there
11368 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11369 and @option{-mmpx} are required to enable this feature.  
11370 MPX-based instrumentation requires
11371 a runtime library to enable MPX in hardware and handle bounds
11372 violation signals.  By default when @option{-fcheck-pointer-bounds}
11373 and @option{-mmpx} options are used to link a program, the GCC driver
11374 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11375 Bounds checking on calls to dynamic libraries requires a linker
11376 with @option{-z bndplt} support; if GCC was configured with a linker
11377 without support for this option (including the Gold linker and older
11378 versions of ld), a warning is given if you link with @option{-mmpx}
11379 without also specifying @option{-static}, since the overall effectiveness
11380 of the bounds checking protection is reduced.
11381 See also @option{-static-libmpxwrappers}.
11383 MPX-based instrumentation
11384 may be used for debugging and also may be included in production code
11385 to increase program security.  Depending on usage, you may
11386 have different requirements for the runtime library.  The current version
11387 of the MPX runtime library is more oriented for use as a debugging
11388 tool.  MPX runtime library usage implies @option{-lpthread}.  See
11389 also @option{-static-libmpx}.  The runtime library  behavior can be
11390 influenced using various @env{CHKP_RT_*} environment variables.  See
11391 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11392 for more details.
11394 Generated instrumentation may be controlled by various
11395 @option{-fchkp-*} options and by the @code{bnd_variable_size}
11396 structure field attribute (@pxref{Type Attributes}) and
11397 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
11398 (@pxref{Function Attributes}).  GCC also provides a number of built-in
11399 functions for controlling the Pointer Bounds Checker.  @xref{Pointer
11400 Bounds Checker builtins}, for more information.
11402 @item -fchkp-check-incomplete-type
11403 @opindex fchkp-check-incomplete-type
11404 @opindex fno-chkp-check-incomplete-type
11405 Generate pointer bounds checks for variables with incomplete type.
11406 Enabled by default.
11408 @item -fchkp-narrow-bounds
11409 @opindex fchkp-narrow-bounds
11410 @opindex fno-chkp-narrow-bounds
11411 Controls bounds used by Pointer Bounds Checker for pointers to object
11412 fields.  If narrowing is enabled then field bounds are used.  Otherwise
11413 object bounds are used.  See also @option{-fchkp-narrow-to-innermost-array}
11414 and @option{-fchkp-first-field-has-own-bounds}.  Enabled by default.
11416 @item -fchkp-first-field-has-own-bounds
11417 @opindex fchkp-first-field-has-own-bounds
11418 @opindex fno-chkp-first-field-has-own-bounds
11419 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11420 first field in the structure.  By default a pointer to the first field has
11421 the same bounds as a pointer to the whole structure.
11423 @item -fchkp-flexible-struct-trailing-arrays
11424 @opindex fchkp-flexible-struct-trailing-arrays
11425 @opindex fno-chkp-flexible-struct-trailing-arrays
11426 Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11427 possibly flexible.  By default only array fields with zero length or that are
11428 marked with attribute bnd_variable_size are treated as flexible.
11430 @item -fchkp-narrow-to-innermost-array
11431 @opindex fchkp-narrow-to-innermost-array
11432 @opindex fno-chkp-narrow-to-innermost-array
11433 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11434 case of nested static array access.  By default this option is disabled and
11435 bounds of the outermost array are used.
11437 @item -fchkp-optimize
11438 @opindex fchkp-optimize
11439 @opindex fno-chkp-optimize
11440 Enables Pointer Bounds Checker optimizations.  Enabled by default at
11441 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11443 @item -fchkp-use-fast-string-functions
11444 @opindex fchkp-use-fast-string-functions
11445 @opindex fno-chkp-use-fast-string-functions
11446 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11447 by Pointer Bounds Checker.  Disabled by default.
11449 @item -fchkp-use-nochk-string-functions
11450 @opindex fchkp-use-nochk-string-functions
11451 @opindex fno-chkp-use-nochk-string-functions
11452 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11453 by Pointer Bounds Checker.  Disabled by default.
11455 @item -fchkp-use-static-bounds
11456 @opindex fchkp-use-static-bounds
11457 @opindex fno-chkp-use-static-bounds
11458 Allow Pointer Bounds Checker to generate static bounds holding
11459 bounds of static variables.  Enabled by default.
11461 @item -fchkp-use-static-const-bounds
11462 @opindex fchkp-use-static-const-bounds
11463 @opindex fno-chkp-use-static-const-bounds
11464 Use statically-initialized bounds for constant bounds instead of
11465 generating them each time they are required.  By default enabled when
11466 @option{-fchkp-use-static-bounds} is enabled.
11468 @item -fchkp-treat-zero-dynamic-size-as-infinite
11469 @opindex fchkp-treat-zero-dynamic-size-as-infinite
11470 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11471 With this option, objects with incomplete type whose
11472 dynamically-obtained size is zero are treated as having infinite size
11473 instead by Pointer Bounds
11474 Checker.  This option may be helpful if a program is linked with a library
11475 missing size information for some symbols.  Disabled by default.
11477 @item -fchkp-check-read
11478 @opindex fchkp-check-read
11479 @opindex fno-chkp-check-read
11480 Instructs Pointer Bounds Checker to generate checks for all read
11481 accesses to memory.  Enabled by default.
11483 @item -fchkp-check-write
11484 @opindex fchkp-check-write
11485 @opindex fno-chkp-check-write
11486 Instructs Pointer Bounds Checker to generate checks for all write
11487 accesses to memory.  Enabled by default.
11489 @item -fchkp-store-bounds
11490 @opindex fchkp-store-bounds
11491 @opindex fno-chkp-store-bounds
11492 Instructs Pointer Bounds Checker to generate bounds stores for
11493 pointer writes.  Enabled by default.
11495 @item -fchkp-instrument-calls
11496 @opindex fchkp-instrument-calls
11497 @opindex fno-chkp-instrument-calls
11498 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11499 Enabled by default.
11501 @item -fchkp-instrument-marked-only
11502 @opindex fchkp-instrument-marked-only
11503 @opindex fno-chkp-instrument-marked-only
11504 Instructs Pointer Bounds Checker to instrument only functions
11505 marked with the @code{bnd_instrument} attribute
11506 (@pxref{Function Attributes}).  Disabled by default.
11508 @item -fchkp-use-wrappers
11509 @opindex fchkp-use-wrappers
11510 @opindex fno-chkp-use-wrappers
11511 Allows Pointer Bounds Checker to replace calls to built-in functions
11512 with calls to wrapper functions.  When @option{-fchkp-use-wrappers}
11513 is used to link a program, the GCC driver automatically links
11514 against @file{libmpxwrappers}.  See also @option{-static-libmpxwrappers}.
11515 Enabled by default.
11517 @item -fcf-protection==@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
11518 @opindex fcf-protection
11519 Enable code instrumentation of control-flow transfers to increase
11520 program security by checking that target addresses of control-flow
11521 transfer instructions (such as indirect function call, function return,
11522 indirect jump) are valid.  This prevents diverting the flow of control
11523 to an unexpected target.  This is intended to protect against such
11524 threats as Return-oriented Programming (ROP), and similarly
11525 call/jmp-oriented programming (COP/JOP).
11527 The value @code{branch} tells the compiler to implement checking of
11528 validity of control-flow transfer at the point of indirect branch
11529 instructions, i.e. call/jmp instructions.  The value @code{return}
11530 implements checking of validity at the point of returning from a
11531 function.  The value @code{full} is an alias for specifying both
11532 @code{branch} and @code{return}. The value @code{none} turns off
11533 instrumentation.
11535 You can also use the @code{nocf_check} attribute to identify
11536 which functions and calls should be skipped from instrumentation
11537 (@pxref{Function Attributes}).
11539 Currently the x86 GNU/Linux target provides an implementation based
11540 on Intel Control-flow Enforcement Technology (CET).  Instrumentation
11541 for x86 is controlled by target-specific options @option{-mcet},
11542 @option{-mibt} and @option{-mshstk} (@pxref{x86 Options}).
11544 @item -fstack-protector
11545 @opindex fstack-protector
11546 Emit extra code to check for buffer overflows, such as stack smashing
11547 attacks.  This is done by adding a guard variable to functions with
11548 vulnerable objects.  This includes functions that call @code{alloca}, and
11549 functions with buffers larger than 8 bytes.  The guards are initialized
11550 when a function is entered and then checked when the function exits.
11551 If a guard check fails, an error message is printed and the program exits.
11553 @item -fstack-protector-all
11554 @opindex fstack-protector-all
11555 Like @option{-fstack-protector} except that all functions are protected.
11557 @item -fstack-protector-strong
11558 @opindex fstack-protector-strong
11559 Like @option{-fstack-protector} but includes additional functions to
11560 be protected --- those that have local array definitions, or have
11561 references to local frame addresses.
11563 @item -fstack-protector-explicit
11564 @opindex fstack-protector-explicit
11565 Like @option{-fstack-protector} but only protects those functions which
11566 have the @code{stack_protect} attribute.
11568 @item -fstack-check
11569 @opindex fstack-check
11570 Generate code to verify that you do not go beyond the boundary of the
11571 stack.  You should specify this flag if you are running in an
11572 environment with multiple threads, but you only rarely need to specify it in
11573 a single-threaded environment since stack overflow is automatically
11574 detected on nearly all systems if there is only one stack.
11576 Note that this switch does not actually cause checking to be done; the
11577 operating system or the language runtime must do that.  The switch causes
11578 generation of code to ensure that they see the stack being extended.
11580 You can additionally specify a string parameter: @samp{no} means no
11581 checking, @samp{generic} means force the use of old-style checking,
11582 @samp{specific} means use the best checking method and is equivalent
11583 to bare @option{-fstack-check}.
11585 Old-style checking is a generic mechanism that requires no specific
11586 target support in the compiler but comes with the following drawbacks:
11588 @enumerate
11589 @item
11590 Modified allocation strategy for large objects: they are always
11591 allocated dynamically if their size exceeds a fixed threshold.  Note this
11592 may change the semantics of some code.
11594 @item
11595 Fixed limit on the size of the static frame of functions: when it is
11596 topped by a particular function, stack checking is not reliable and
11597 a warning is issued by the compiler.
11599 @item
11600 Inefficiency: because of both the modified allocation strategy and the
11601 generic implementation, code performance is hampered.
11602 @end enumerate
11604 Note that old-style stack checking is also the fallback method for
11605 @samp{specific} if no target support has been added in the compiler.
11607 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
11608 and stack overflows.  @samp{specific} is an excellent choice when compiling
11609 Ada code.  It is not generally sufficient to protect against stack-clash
11610 attacks.  To protect against those you want @samp{-fstack-clash-protection}.
11612 @item -fstack-clash-protection
11613 @opindex fstack-clash-protection
11614 Generate code to prevent stack clash style attacks.  When this option is
11615 enabled, the compiler will only allocate one page of stack space at a time
11616 and each page is accessed immediately after allocation.  Thus, it prevents
11617 allocations from jumping over any stack guard page provided by the
11618 operating system.
11620 Most targets do not fully support stack clash protection.  However, on
11621 those targets @option{-fstack-clash-protection} will protect dynamic stack
11622 allocations.  @option{-fstack-clash-protection} may also provide limited
11623 protection for static stack allocations if the target supports
11624 @option{-fstack-check=specific}.
11626 @item -fstack-limit-register=@var{reg}
11627 @itemx -fstack-limit-symbol=@var{sym}
11628 @itemx -fno-stack-limit
11629 @opindex fstack-limit-register
11630 @opindex fstack-limit-symbol
11631 @opindex fno-stack-limit
11632 Generate code to ensure that the stack does not grow beyond a certain value,
11633 either the value of a register or the address of a symbol.  If a larger
11634 stack is required, a signal is raised at run time.  For most targets,
11635 the signal is raised before the stack overruns the boundary, so
11636 it is possible to catch the signal without taking special precautions.
11638 For instance, if the stack starts at absolute address @samp{0x80000000}
11639 and grows downwards, you can use the flags
11640 @option{-fstack-limit-symbol=__stack_limit} and
11641 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11642 of 128KB@.  Note that this may only work with the GNU linker.
11644 You can locally override stack limit checking by using the
11645 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11647 @item -fsplit-stack
11648 @opindex fsplit-stack
11649 Generate code to automatically split the stack before it overflows.
11650 The resulting program has a discontiguous stack which can only
11651 overflow if the program is unable to allocate any more memory.  This
11652 is most useful when running threaded programs, as it is no longer
11653 necessary to calculate a good stack size to use for each thread.  This
11654 is currently only implemented for the x86 targets running
11655 GNU/Linux.
11657 When code compiled with @option{-fsplit-stack} calls code compiled
11658 without @option{-fsplit-stack}, there may not be much stack space
11659 available for the latter code to run.  If compiling all code,
11660 including library code, with @option{-fsplit-stack} is not an option,
11661 then the linker can fix up these calls so that the code compiled
11662 without @option{-fsplit-stack} always has a large stack.  Support for
11663 this is implemented in the gold linker in GNU binutils release 2.21
11664 and later.
11666 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11667 @opindex fvtable-verify
11668 This option is only available when compiling C++ code.
11669 It turns on (or off, if using @option{-fvtable-verify=none}) the security
11670 feature that verifies at run time, for every virtual call, that
11671 the vtable pointer through which the call is made is valid for the type of
11672 the object, and has not been corrupted or overwritten.  If an invalid vtable
11673 pointer is detected at run time, an error is reported and execution of the
11674 program is immediately halted.
11676 This option causes run-time data structures to be built at program startup,
11677 which are used for verifying the vtable pointers.  
11678 The options @samp{std} and @samp{preinit}
11679 control the timing of when these data structures are built.  In both cases the
11680 data structures are built before execution reaches @code{main}.  Using
11681 @option{-fvtable-verify=std} causes the data structures to be built after
11682 shared libraries have been loaded and initialized.
11683 @option{-fvtable-verify=preinit} causes them to be built before shared
11684 libraries have been loaded and initialized.
11686 If this option appears multiple times in the command line with different
11687 values specified, @samp{none} takes highest priority over both @samp{std} and
11688 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
11690 @item -fvtv-debug
11691 @opindex fvtv-debug
11692 When used in conjunction with @option{-fvtable-verify=std} or 
11693 @option{-fvtable-verify=preinit}, causes debug versions of the 
11694 runtime functions for the vtable verification feature to be called.  
11695 This flag also causes the compiler to log information about which 
11696 vtable pointers it finds for each class.
11697 This information is written to a file named @file{vtv_set_ptr_data.log} 
11698 in the directory named by the environment variable @env{VTV_LOGS_DIR} 
11699 if that is defined or the current working directory otherwise.
11701 Note:  This feature @emph{appends} data to the log file. If you want a fresh log
11702 file, be sure to delete any existing one.
11704 @item -fvtv-counts
11705 @opindex fvtv-counts
11706 This is a debugging flag.  When used in conjunction with
11707 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
11708 causes the compiler to keep track of the total number of virtual calls
11709 it encounters and the number of verifications it inserts.  It also
11710 counts the number of calls to certain run-time library functions
11711 that it inserts and logs this information for each compilation unit.
11712 The compiler writes this information to a file named
11713 @file{vtv_count_data.log} in the directory named by the environment
11714 variable @env{VTV_LOGS_DIR} if that is defined or the current working
11715 directory otherwise.  It also counts the size of the vtable pointer sets
11716 for each class, and writes this information to @file{vtv_class_set_sizes.log}
11717 in the same directory.
11719 Note:  This feature @emph{appends} data to the log files.  To get fresh log
11720 files, be sure to delete any existing ones.
11722 @item -finstrument-functions
11723 @opindex finstrument-functions
11724 Generate instrumentation calls for entry and exit to functions.  Just
11725 after function entry and just before function exit, the following
11726 profiling functions are called with the address of the current
11727 function and its call site.  (On some platforms,
11728 @code{__builtin_return_address} does not work beyond the current
11729 function, so the call site information may not be available to the
11730 profiling functions otherwise.)
11732 @smallexample
11733 void __cyg_profile_func_enter (void *this_fn,
11734                                void *call_site);
11735 void __cyg_profile_func_exit  (void *this_fn,
11736                                void *call_site);
11737 @end smallexample
11739 The first argument is the address of the start of the current function,
11740 which may be looked up exactly in the symbol table.
11742 This instrumentation is also done for functions expanded inline in other
11743 functions.  The profiling calls indicate where, conceptually, the
11744 inline function is entered and exited.  This means that addressable
11745 versions of such functions must be available.  If all your uses of a
11746 function are expanded inline, this may mean an additional expansion of
11747 code size.  If you use @code{extern inline} in your C code, an
11748 addressable version of such functions must be provided.  (This is
11749 normally the case anyway, but if you get lucky and the optimizer always
11750 expands the functions inline, you might have gotten away without
11751 providing static copies.)
11753 A function may be given the attribute @code{no_instrument_function}, in
11754 which case this instrumentation is not done.  This can be used, for
11755 example, for the profiling functions listed above, high-priority
11756 interrupt routines, and any functions from which the profiling functions
11757 cannot safely be called (perhaps signal handlers, if the profiling
11758 routines generate output or allocate memory).
11760 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
11761 @opindex finstrument-functions-exclude-file-list
11763 Set the list of functions that are excluded from instrumentation (see
11764 the description of @option{-finstrument-functions}).  If the file that
11765 contains a function definition matches with one of @var{file}, then
11766 that function is not instrumented.  The match is done on substrings:
11767 if the @var{file} parameter is a substring of the file name, it is
11768 considered to be a match.
11770 For example:
11772 @smallexample
11773 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
11774 @end smallexample
11776 @noindent
11777 excludes any inline function defined in files whose pathnames
11778 contain @file{/bits/stl} or @file{include/sys}.
11780 If, for some reason, you want to include letter @samp{,} in one of
11781 @var{sym}, write @samp{\,}. For example,
11782 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
11783 (note the single quote surrounding the option).
11785 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
11786 @opindex finstrument-functions-exclude-function-list
11788 This is similar to @option{-finstrument-functions-exclude-file-list},
11789 but this option sets the list of function names to be excluded from
11790 instrumentation.  The function name to be matched is its user-visible
11791 name, such as @code{vector<int> blah(const vector<int> &)}, not the
11792 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
11793 match is done on substrings: if the @var{sym} parameter is a substring
11794 of the function name, it is considered to be a match.  For C99 and C++
11795 extended identifiers, the function name must be given in UTF-8, not
11796 using universal character names.
11798 @item -fpatchable-function-entry=@var{N}[,@var{M}]
11799 @opindex fpatchable-function-entry
11800 Generate @var{N} NOPs right at the beginning
11801 of each function, with the function entry point before the @var{M}th NOP.
11802 If @var{M} is omitted, it defaults to @code{0} so the
11803 function entry points to the address just at the first NOP.
11804 The NOP instructions reserve extra space which can be used to patch in
11805 any desired instrumentation at run time, provided that the code segment
11806 is writable.  The amount of space is controllable indirectly via
11807 the number of NOPs; the NOP instruction used corresponds to the instruction
11808 emitted by the internal GCC back-end interface @code{gen_nop}.  This behavior
11809 is target-specific and may also depend on the architecture variant and/or
11810 other compilation options.
11812 For run-time identification, the starting addresses of these areas,
11813 which correspond to their respective function entries minus @var{M},
11814 are additionally collected in the @code{__patchable_function_entries}
11815 section of the resulting binary.
11817 Note that the value of @code{__attribute__ ((patchable_function_entry
11818 (N,M)))} takes precedence over command-line option
11819 @option{-fpatchable-function-entry=N,M}.  This can be used to increase
11820 the area size or to remove it completely on a single function.
11821 If @code{N=0}, no pad location is recorded.
11823 The NOP instructions are inserted at---and maybe before, depending on
11824 @var{M}---the function entry address, even before the prologue.
11826 @end table
11829 @node Preprocessor Options
11830 @section Options Controlling the Preprocessor
11831 @cindex preprocessor options
11832 @cindex options, preprocessor
11834 These options control the C preprocessor, which is run on each C source
11835 file before actual compilation.
11837 If you use the @option{-E} option, nothing is done except preprocessing.
11838 Some of these options make sense only together with @option{-E} because
11839 they cause the preprocessor output to be unsuitable for actual
11840 compilation.
11842 In addition to the options listed here, there are a number of options 
11843 to control search paths for include files documented in 
11844 @ref{Directory Options}.  
11845 Options to control preprocessor diagnostics are listed in 
11846 @ref{Warning Options}.
11848 @table @gcctabopt
11849 @include cppopts.texi
11851 @item -Wp,@var{option}
11852 @opindex Wp
11853 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11854 and pass @var{option} directly through to the preprocessor.  If
11855 @var{option} contains commas, it is split into multiple options at the
11856 commas.  However, many options are modified, translated or interpreted
11857 by the compiler driver before being passed to the preprocessor, and
11858 @option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
11859 interface is undocumented and subject to change, so whenever possible
11860 you should avoid using @option{-Wp} and let the driver handle the
11861 options instead.
11863 @item -Xpreprocessor @var{option}
11864 @opindex Xpreprocessor
11865 Pass @var{option} as an option to the preprocessor.  You can use this to
11866 supply system-specific preprocessor options that GCC does not 
11867 recognize.
11869 If you want to pass an option that takes an argument, you must use
11870 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11872 @item -no-integrated-cpp
11873 @opindex no-integrated-cpp
11874 Perform preprocessing as a separate pass before compilation.
11875 By default, GCC performs preprocessing as an integrated part of
11876 input tokenization and parsing.
11877 If this option is provided, the appropriate language front end
11878 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11879 and Objective-C, respectively) is instead invoked twice,
11880 once for preprocessing only and once for actual compilation
11881 of the preprocessed input.
11882 This option may be useful in conjunction with the @option{-B} or
11883 @option{-wrapper} options to specify an alternate preprocessor or
11884 perform additional processing of the program source between
11885 normal preprocessing and compilation.
11887 @end table
11889 @node Assembler Options
11890 @section Passing Options to the Assembler
11892 @c prevent bad page break with this line
11893 You can pass options to the assembler.
11895 @table @gcctabopt
11896 @item -Wa,@var{option}
11897 @opindex Wa
11898 Pass @var{option} as an option to the assembler.  If @var{option}
11899 contains commas, it is split into multiple options at the commas.
11901 @item -Xassembler @var{option}
11902 @opindex Xassembler
11903 Pass @var{option} as an option to the assembler.  You can use this to
11904 supply system-specific assembler options that GCC does not
11905 recognize.
11907 If you want to pass an option that takes an argument, you must use
11908 @option{-Xassembler} twice, once for the option and once for the argument.
11910 @end table
11912 @node Link Options
11913 @section Options for Linking
11914 @cindex link options
11915 @cindex options, linking
11917 These options come into play when the compiler links object files into
11918 an executable output file.  They are meaningless if the compiler is
11919 not doing a link step.
11921 @table @gcctabopt
11922 @cindex file names
11923 @item @var{object-file-name}
11924 A file name that does not end in a special recognized suffix is
11925 considered to name an object file or library.  (Object files are
11926 distinguished from libraries by the linker according to the file
11927 contents.)  If linking is done, these object files are used as input
11928 to the linker.
11930 @item -c
11931 @itemx -S
11932 @itemx -E
11933 @opindex c
11934 @opindex S
11935 @opindex E
11936 If any of these options is used, then the linker is not run, and
11937 object file names should not be used as arguments.  @xref{Overall
11938 Options}.
11940 @item -fuse-ld=bfd
11941 @opindex fuse-ld=bfd
11942 Use the @command{bfd} linker instead of the default linker.
11944 @item -fuse-ld=gold
11945 @opindex fuse-ld=gold
11946 Use the @command{gold} linker instead of the default linker.
11948 @cindex Libraries
11949 @item -l@var{library}
11950 @itemx -l @var{library}
11951 @opindex l
11952 Search the library named @var{library} when linking.  (The second
11953 alternative with the library as a separate argument is only for
11954 POSIX compliance and is not recommended.)
11956 It makes a difference where in the command you write this option; the
11957 linker searches and processes libraries and object files in the order they
11958 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11959 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
11960 to functions in @samp{z}, those functions may not be loaded.
11962 The linker searches a standard list of directories for the library,
11963 which is actually a file named @file{lib@var{library}.a}.  The linker
11964 then uses this file as if it had been specified precisely by name.
11966 The directories searched include several standard system directories
11967 plus any that you specify with @option{-L}.
11969 Normally the files found this way are library files---archive files
11970 whose members are object files.  The linker handles an archive file by
11971 scanning through it for members which define symbols that have so far
11972 been referenced but not defined.  But if the file that is found is an
11973 ordinary object file, it is linked in the usual fashion.  The only
11974 difference between using an @option{-l} option and specifying a file name
11975 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11976 and searches several directories.
11978 @item -lobjc
11979 @opindex lobjc
11980 You need this special case of the @option{-l} option in order to
11981 link an Objective-C or Objective-C++ program.
11983 @item -nostartfiles
11984 @opindex nostartfiles
11985 Do not use the standard system startup files when linking.
11986 The standard system libraries are used normally, unless @option{-nostdlib}
11987 or @option{-nodefaultlibs} is used.
11989 @item -nodefaultlibs
11990 @opindex nodefaultlibs
11991 Do not use the standard system libraries when linking.
11992 Only the libraries you specify are passed to the linker, and options
11993 specifying linkage of the system libraries, such as @option{-static-libgcc}
11994 or @option{-shared-libgcc}, are ignored.  
11995 The standard startup files are used normally, unless @option{-nostartfiles}
11996 is used.  
11998 The compiler may generate calls to @code{memcmp},
11999 @code{memset}, @code{memcpy} and @code{memmove}.
12000 These entries are usually resolved by entries in
12001 libc.  These entry points should be supplied through some other
12002 mechanism when this option is specified.
12004 @item -nostdlib
12005 @opindex nostdlib
12006 Do not use the standard system startup files or libraries when linking.
12007 No startup files and only the libraries you specify are passed to
12008 the linker, and options specifying linkage of the system libraries, such as
12009 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
12011 The compiler may generate calls to @code{memcmp}, @code{memset},
12012 @code{memcpy} and @code{memmove}.
12013 These entries are usually resolved by entries in
12014 libc.  These entry points should be supplied through some other
12015 mechanism when this option is specified.
12017 @cindex @option{-lgcc}, use with @option{-nostdlib}
12018 @cindex @option{-nostdlib} and unresolved references
12019 @cindex unresolved references and @option{-nostdlib}
12020 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
12021 @cindex @option{-nodefaultlibs} and unresolved references
12022 @cindex unresolved references and @option{-nodefaultlibs}
12023 One of the standard libraries bypassed by @option{-nostdlib} and
12024 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
12025 which GCC uses to overcome shortcomings of particular machines, or special
12026 needs for some languages.
12027 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
12028 Collection (GCC) Internals},
12029 for more discussion of @file{libgcc.a}.)
12030 In most cases, you need @file{libgcc.a} even when you want to avoid
12031 other standard libraries.  In other words, when you specify @option{-nostdlib}
12032 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
12033 This ensures that you have no unresolved references to internal GCC
12034 library subroutines.
12035 (An example of such an internal subroutine is @code{__main}, used to ensure C++
12036 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
12037 GNU Compiler Collection (GCC) Internals}.)
12039 @item -pie
12040 @opindex pie
12041 Produce a dynamically linked position independent executable on targets
12042 that support it.  For predictable results, you must also specify the same
12043 set of options used for compilation (@option{-fpie}, @option{-fPIE},
12044 or model suboptions) when you specify this linker option.
12046 @item -no-pie
12047 @opindex no-pie
12048 Don't produce a dynamically linked position independent executable.
12050 @item -static-pie
12051 @opindex static-pie
12052 Produce a static position independent executable on targets that support
12053 it.  A static position independent executable is similar to a static
12054 executable, but can be loaded at any address without a dynamic linker.
12055 For predictable results, you must also specify the same set of options
12056 used for compilation (@option{-fpie}, @option{-fPIE}, or model
12057 suboptions) when you specify this linker option.
12059 @item -pthread
12060 @opindex pthread
12061 Link with the POSIX threads library.  This option is supported on 
12062 GNU/Linux targets, most other Unix derivatives, and also on 
12063 x86 Cygwin and MinGW targets.  On some targets this option also sets 
12064 flags for the preprocessor, so it should be used consistently for both
12065 compilation and linking.
12067 @item -rdynamic
12068 @opindex rdynamic
12069 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
12070 that support it. This instructs the linker to add all symbols, not
12071 only used ones, to the dynamic symbol table. This option is needed
12072 for some uses of @code{dlopen} or to allow obtaining backtraces
12073 from within a program.
12075 @item -s
12076 @opindex s
12077 Remove all symbol table and relocation information from the executable.
12079 @item -static
12080 @opindex static
12081 On systems that support dynamic linking, this overrides @option{-pie}
12082 and prevents linking with the shared libraries.  On other systems, this
12083 option has no effect.
12085 @item -shared
12086 @opindex shared
12087 Produce a shared object which can then be linked with other objects to
12088 form an executable.  Not all systems support this option.  For predictable
12089 results, you must also specify the same set of options used for compilation
12090 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
12091 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
12092 needs to build supplementary stub code for constructors to work.  On
12093 multi-libbed systems, @samp{gcc -shared} must select the correct support
12094 libraries to link against.  Failing to supply the correct flags may lead
12095 to subtle defects.  Supplying them in cases where they are not necessary
12096 is innocuous.}
12098 @item -shared-libgcc
12099 @itemx -static-libgcc
12100 @opindex shared-libgcc
12101 @opindex static-libgcc
12102 On systems that provide @file{libgcc} as a shared library, these options
12103 force the use of either the shared or static version, respectively.
12104 If no shared version of @file{libgcc} was built when the compiler was
12105 configured, these options have no effect.
12107 There are several situations in which an application should use the
12108 shared @file{libgcc} instead of the static version.  The most common
12109 of these is when the application wishes to throw and catch exceptions
12110 across different shared libraries.  In that case, each of the libraries
12111 as well as the application itself should use the shared @file{libgcc}.
12113 Therefore, the G++ and driver automatically adds @option{-shared-libgcc}
12114  whenever you build a shared library or a main executable, because C++
12115  programs typically use exceptions, so this is the right thing to do.
12117 If, instead, you use the GCC driver to create shared libraries, you may
12118 find that they are not always linked with the shared @file{libgcc}.
12119 If GCC finds, at its configuration time, that you have a non-GNU linker
12120 or a GNU linker that does not support option @option{--eh-frame-hdr},
12121 it links the shared version of @file{libgcc} into shared libraries
12122 by default.  Otherwise, it takes advantage of the linker and optimizes
12123 away the linking with the shared version of @file{libgcc}, linking with
12124 the static version of libgcc by default.  This allows exceptions to
12125 propagate through such shared libraries, without incurring relocation
12126 costs at library load time.
12128 However, if a library or main executable is supposed to throw or catch
12129 exceptions, you must link it using the G++ driver, as appropriate
12130 for the languages used in the program, or using the option
12131 @option{-shared-libgcc}, such that it is linked with the shared
12132 @file{libgcc}.
12134 @item -static-libasan
12135 @opindex static-libasan
12136 When the @option{-fsanitize=address} option is used to link a program,
12137 the GCC driver automatically links against @option{libasan}.  If
12138 @file{libasan} is available as a shared library, and the @option{-static}
12139 option is not used, then this links against the shared version of
12140 @file{libasan}.  The @option{-static-libasan} option directs the GCC
12141 driver to link @file{libasan} statically, without necessarily linking
12142 other libraries statically.
12144 @item -static-libtsan
12145 @opindex static-libtsan
12146 When the @option{-fsanitize=thread} option is used to link a program,
12147 the GCC driver automatically links against @option{libtsan}.  If
12148 @file{libtsan} is available as a shared library, and the @option{-static}
12149 option is not used, then this links against the shared version of
12150 @file{libtsan}.  The @option{-static-libtsan} option directs the GCC
12151 driver to link @file{libtsan} statically, without necessarily linking
12152 other libraries statically.
12154 @item -static-liblsan
12155 @opindex static-liblsan
12156 When the @option{-fsanitize=leak} option is used to link a program,
12157 the GCC driver automatically links against @option{liblsan}.  If
12158 @file{liblsan} is available as a shared library, and the @option{-static}
12159 option is not used, then this links against the shared version of
12160 @file{liblsan}.  The @option{-static-liblsan} option directs the GCC
12161 driver to link @file{liblsan} statically, without necessarily linking
12162 other libraries statically.
12164 @item -static-libubsan
12165 @opindex static-libubsan
12166 When the @option{-fsanitize=undefined} option is used to link a program,
12167 the GCC driver automatically links against @option{libubsan}.  If
12168 @file{libubsan} is available as a shared library, and the @option{-static}
12169 option is not used, then this links against the shared version of
12170 @file{libubsan}.  The @option{-static-libubsan} option directs the GCC
12171 driver to link @file{libubsan} statically, without necessarily linking
12172 other libraries statically.
12174 @item -static-libmpx
12175 @opindex static-libmpx
12176 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
12177 used to link a program, the GCC driver automatically links against
12178 @file{libmpx}.  If @file{libmpx} is available as a shared library,
12179 and the @option{-static} option is not used, then this links against
12180 the shared version of @file{libmpx}.  The @option{-static-libmpx}
12181 option directs the GCC driver to link @file{libmpx} statically,
12182 without necessarily linking other libraries statically.
12184 @item -static-libmpxwrappers
12185 @opindex static-libmpxwrappers
12186 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
12187 to link a program without also using @option{-fno-chkp-use-wrappers}, the
12188 GCC driver automatically links against @file{libmpxwrappers}.  If
12189 @file{libmpxwrappers} is available as a shared library, and the
12190 @option{-static} option is not used, then this links against the shared
12191 version of @file{libmpxwrappers}.  The @option{-static-libmpxwrappers}
12192 option directs the GCC driver to link @file{libmpxwrappers} statically,
12193 without necessarily linking other libraries statically.
12195 @item -static-libstdc++
12196 @opindex static-libstdc++
12197 When the @command{g++} program is used to link a C++ program, it
12198 normally automatically links against @option{libstdc++}.  If
12199 @file{libstdc++} is available as a shared library, and the
12200 @option{-static} option is not used, then this links against the
12201 shared version of @file{libstdc++}.  That is normally fine.  However, it
12202 is sometimes useful to freeze the version of @file{libstdc++} used by
12203 the program without going all the way to a fully static link.  The
12204 @option{-static-libstdc++} option directs the @command{g++} driver to
12205 link @file{libstdc++} statically, without necessarily linking other
12206 libraries statically.
12208 @item -symbolic
12209 @opindex symbolic
12210 Bind references to global symbols when building a shared object.  Warn
12211 about any unresolved references (unless overridden by the link editor
12212 option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
12213 this option.
12215 @item -T @var{script}
12216 @opindex T
12217 @cindex linker script
12218 Use @var{script} as the linker script.  This option is supported by most
12219 systems using the GNU linker.  On some targets, such as bare-board
12220 targets without an operating system, the @option{-T} option may be required
12221 when linking to avoid references to undefined symbols.
12223 @item -Xlinker @var{option}
12224 @opindex Xlinker
12225 Pass @var{option} as an option to the linker.  You can use this to
12226 supply system-specific linker options that GCC does not recognize.
12228 If you want to pass an option that takes a separate argument, you must use
12229 @option{-Xlinker} twice, once for the option and once for the argument.
12230 For example, to pass @option{-assert definitions}, you must write
12231 @option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
12232 @option{-Xlinker "-assert definitions"}, because this passes the entire
12233 string as a single argument, which is not what the linker expects.
12235 When using the GNU linker, it is usually more convenient to pass
12236 arguments to linker options using the @option{@var{option}=@var{value}}
12237 syntax than as separate arguments.  For example, you can specify
12238 @option{-Xlinker -Map=output.map} rather than
12239 @option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
12240 this syntax for command-line options.
12242 @item -Wl,@var{option}
12243 @opindex Wl
12244 Pass @var{option} as an option to the linker.  If @var{option} contains
12245 commas, it is split into multiple options at the commas.  You can use this
12246 syntax to pass an argument to the option.
12247 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
12248 linker.  When using the GNU linker, you can also get the same effect with
12249 @option{-Wl,-Map=output.map}.
12251 @item -u @var{symbol}
12252 @opindex u
12253 Pretend the symbol @var{symbol} is undefined, to force linking of
12254 library modules to define it.  You can use @option{-u} multiple times with
12255 different symbols to force loading of additional library modules.
12257 @item -z @var{keyword}
12258 @opindex z
12259 @option{-z} is passed directly on to the linker along with the keyword
12260 @var{keyword}. See the section in the documentation of your linker for
12261 permitted values and their meanings.
12262 @end table
12264 @node Directory Options
12265 @section Options for Directory Search
12266 @cindex directory options
12267 @cindex options, directory search
12268 @cindex search path
12270 These options specify directories to search for header files, for
12271 libraries and for parts of the compiler:
12273 @table @gcctabopt
12274 @include cppdiropts.texi
12276 @item -iplugindir=@var{dir}
12277 @opindex iplugindir=
12278 Set the directory to search for plugins that are passed
12279 by @option{-fplugin=@var{name}} instead of
12280 @option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
12281 to be used by the user, but only passed by the driver.
12283 @item -L@var{dir}
12284 @opindex L
12285 Add directory @var{dir} to the list of directories to be searched
12286 for @option{-l}.
12288 @item -B@var{prefix}
12289 @opindex B
12290 This option specifies where to find the executables, libraries,
12291 include files, and data files of the compiler itself.
12293 The compiler driver program runs one or more of the subprograms
12294 @command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
12295 @var{prefix} as a prefix for each program it tries to run, both with and
12296 without @samp{@var{machine}/@var{version}/} for the corresponding target
12297 machine and compiler version.
12299 For each subprogram to be run, the compiler driver first tries the
12300 @option{-B} prefix, if any.  If that name is not found, or if @option{-B}
12301 is not specified, the driver tries two standard prefixes, 
12302 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
12303 those results in a file name that is found, the unmodified program
12304 name is searched for using the directories specified in your
12305 @env{PATH} environment variable.
12307 The compiler checks to see if the path provided by @option{-B}
12308 refers to a directory, and if necessary it adds a directory
12309 separator character at the end of the path.
12311 @option{-B} prefixes that effectively specify directory names also apply
12312 to libraries in the linker, because the compiler translates these
12313 options into @option{-L} options for the linker.  They also apply to
12314 include files in the preprocessor, because the compiler translates these
12315 options into @option{-isystem} options for the preprocessor.  In this case,
12316 the compiler appends @samp{include} to the prefix.
12318 The runtime support file @file{libgcc.a} can also be searched for using
12319 the @option{-B} prefix, if needed.  If it is not found there, the two
12320 standard prefixes above are tried, and that is all.  The file is left
12321 out of the link if it is not found by those means.
12323 Another way to specify a prefix much like the @option{-B} prefix is to use
12324 the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
12325 Variables}.
12327 As a special kludge, if the path provided by @option{-B} is
12328 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
12329 9, then it is replaced by @file{[dir/]include}.  This is to help
12330 with boot-strapping the compiler.
12332 @item -no-canonical-prefixes
12333 @opindex no-canonical-prefixes
12334 Do not expand any symbolic links, resolve references to @samp{/../}
12335 or @samp{/./}, or make the path absolute when generating a relative
12336 prefix.
12338 @item --sysroot=@var{dir}
12339 @opindex sysroot
12340 Use @var{dir} as the logical root directory for headers and libraries.
12341 For example, if the compiler normally searches for headers in
12342 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
12343 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12345 If you use both this option and the @option{-isysroot} option, then
12346 the @option{--sysroot} option applies to libraries, but the
12347 @option{-isysroot} option applies to header files.
12349 The GNU linker (beginning with version 2.16) has the necessary support
12350 for this option.  If your linker does not support this option, the
12351 header file aspect of @option{--sysroot} still works, but the
12352 library aspect does not.
12354 @item --no-sysroot-suffix
12355 @opindex no-sysroot-suffix
12356 For some targets, a suffix is added to the root directory specified
12357 with @option{--sysroot}, depending on the other options used, so that
12358 headers may for example be found in
12359 @file{@var{dir}/@var{suffix}/usr/include} instead of
12360 @file{@var{dir}/usr/include}.  This option disables the addition of
12361 such a suffix.
12363 @end table
12365 @node Code Gen Options
12366 @section Options for Code Generation Conventions
12367 @cindex code generation conventions
12368 @cindex options, code generation
12369 @cindex run-time options
12371 These machine-independent options control the interface conventions
12372 used in code generation.
12374 Most of them have both positive and negative forms; the negative form
12375 of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
12376 one of the forms is listed---the one that is not the default.  You
12377 can figure out the other form by either removing @samp{no-} or adding
12380 @table @gcctabopt
12381 @item -fstack-reuse=@var{reuse-level}
12382 @opindex fstack_reuse
12383 This option controls stack space reuse for user declared local/auto variables
12384 and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
12385 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12386 local variables and temporaries, @samp{named_vars} enables the reuse only for
12387 user defined local variables with names, and @samp{none} disables stack reuse
12388 completely. The default value is @samp{all}. The option is needed when the
12389 program extends the lifetime of a scoped local variable or a compiler generated
12390 temporary beyond the end point defined by the language.  When a lifetime of
12391 a variable ends, and if the variable lives in memory, the optimizing compiler
12392 has the freedom to reuse its stack space with other temporaries or scoped
12393 local variables whose live range does not overlap with it. Legacy code extending
12394 local lifetime is likely to break with the stack reuse optimization.
12396 For example,
12398 @smallexample
12399    int *p;
12400    @{
12401      int local1;
12403      p = &local1;
12404      local1 = 10;
12405      ....
12406    @}
12407    @{
12408       int local2;
12409       local2 = 20;
12410       ...
12411    @}
12413    if (*p == 10)  // out of scope use of local1
12414      @{
12416      @}
12417 @end smallexample
12419 Another example:
12420 @smallexample
12422    struct A
12423    @{
12424        A(int k) : i(k), j(k) @{ @}
12425        int i;
12426        int j;
12427    @};
12429    A *ap;
12431    void foo(const A& ar)
12432    @{
12433       ap = &ar;
12434    @}
12436    void bar()
12437    @{
12438       foo(A(10)); // temp object's lifetime ends when foo returns
12440       @{
12441         A a(20);
12442         ....
12443       @}
12444       ap->i+= 10;  // ap references out of scope temp whose space
12445                    // is reused with a. What is the value of ap->i?
12446    @}
12448 @end smallexample
12450 The lifetime of a compiler generated temporary is well defined by the C++
12451 standard. When a lifetime of a temporary ends, and if the temporary lives
12452 in memory, the optimizing compiler has the freedom to reuse its stack
12453 space with other temporaries or scoped local variables whose live range
12454 does not overlap with it. However some of the legacy code relies on
12455 the behavior of older compilers in which temporaries' stack space is
12456 not reused, the aggressive stack reuse can lead to runtime errors. This
12457 option is used to control the temporary stack reuse optimization.
12459 @item -ftrapv
12460 @opindex ftrapv
12461 This option generates traps for signed overflow on addition, subtraction,
12462 multiplication operations.
12463 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12464 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12465 @option{-fwrapv} being effective.  Note that only active options override, so
12466 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12467 results in @option{-ftrapv} being effective.
12469 @item -fwrapv
12470 @opindex fwrapv
12471 This option instructs the compiler to assume that signed arithmetic
12472 overflow of addition, subtraction and multiplication wraps around
12473 using twos-complement representation.  This flag enables some optimizations
12474 and disables others.
12475 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12476 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12477 @option{-fwrapv} being effective.  Note that only active options override, so
12478 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12479 results in @option{-ftrapv} being effective.
12481 @item -fexceptions
12482 @opindex fexceptions
12483 Enable exception handling.  Generates extra code needed to propagate
12484 exceptions.  For some targets, this implies GCC generates frame
12485 unwind information for all functions, which can produce significant data
12486 size overhead, although it does not affect execution.  If you do not
12487 specify this option, GCC enables it by default for languages like
12488 C++ that normally require exception handling, and disables it for
12489 languages like C that do not normally require it.  However, you may need
12490 to enable this option when compiling C code that needs to interoperate
12491 properly with exception handlers written in C++.  You may also wish to
12492 disable this option if you are compiling older C++ programs that don't
12493 use exception handling.
12495 @item -fnon-call-exceptions
12496 @opindex fnon-call-exceptions
12497 Generate code that allows trapping instructions to throw exceptions.
12498 Note that this requires platform-specific runtime support that does
12499 not exist everywhere.  Moreover, it only allows @emph{trapping}
12500 instructions to throw exceptions, i.e.@: memory references or floating-point
12501 instructions.  It does not allow exceptions to be thrown from
12502 arbitrary signal handlers such as @code{SIGALRM}.
12504 @item -fdelete-dead-exceptions
12505 @opindex fdelete-dead-exceptions
12506 Consider that instructions that may throw exceptions but don't otherwise
12507 contribute to the execution of the program can be optimized away.
12508 This option is enabled by default for the Ada front end, as permitted by
12509 the Ada language specification.
12510 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12512 @item -funwind-tables
12513 @opindex funwind-tables
12514 Similar to @option{-fexceptions}, except that it just generates any needed
12515 static data, but does not affect the generated code in any other way.
12516 You normally do not need to enable this option; instead, a language processor
12517 that needs this handling enables it on your behalf.
12519 @item -fasynchronous-unwind-tables
12520 @opindex fasynchronous-unwind-tables
12521 Generate unwind table in DWARF format, if supported by target machine.  The
12522 table is exact at each instruction boundary, so it can be used for stack
12523 unwinding from asynchronous events (such as debugger or garbage collector).
12525 @item -fno-gnu-unique
12526 @opindex fno-gnu-unique
12527 On systems with recent GNU assembler and C library, the C++ compiler
12528 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12529 of template static data members and static local variables in inline
12530 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12531 is necessary to avoid problems with a library used by two different
12532 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12533 therefore disagreeing with the other one about the binding of the
12534 symbol.  But this causes @code{dlclose} to be ignored for affected
12535 DSOs; if your program relies on reinitialization of a DSO via
12536 @code{dlclose} and @code{dlopen}, you can use
12537 @option{-fno-gnu-unique}.
12539 @item -fpcc-struct-return
12540 @opindex fpcc-struct-return
12541 Return ``short'' @code{struct} and @code{union} values in memory like
12542 longer ones, rather than in registers.  This convention is less
12543 efficient, but it has the advantage of allowing intercallability between
12544 GCC-compiled files and files compiled with other compilers, particularly
12545 the Portable C Compiler (pcc).
12547 The precise convention for returning structures in memory depends
12548 on the target configuration macros.
12550 Short structures and unions are those whose size and alignment match
12551 that of some integer type.
12553 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12554 switch is not binary compatible with code compiled with the
12555 @option{-freg-struct-return} switch.
12556 Use it to conform to a non-default application binary interface.
12558 @item -freg-struct-return
12559 @opindex freg-struct-return
12560 Return @code{struct} and @code{union} values in registers when possible.
12561 This is more efficient for small structures than
12562 @option{-fpcc-struct-return}.
12564 If you specify neither @option{-fpcc-struct-return} nor
12565 @option{-freg-struct-return}, GCC defaults to whichever convention is
12566 standard for the target.  If there is no standard convention, GCC
12567 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12568 the principal compiler.  In those cases, we can choose the standard, and
12569 we chose the more efficient register return alternative.
12571 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12572 switch is not binary compatible with code compiled with the
12573 @option{-fpcc-struct-return} switch.
12574 Use it to conform to a non-default application binary interface.
12576 @item -fshort-enums
12577 @opindex fshort-enums
12578 Allocate to an @code{enum} type only as many bytes as it needs for the
12579 declared range of possible values.  Specifically, the @code{enum} type
12580 is equivalent to the smallest integer type that has enough room.
12582 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12583 code that is not binary compatible with code generated without that switch.
12584 Use it to conform to a non-default application binary interface.
12586 @item -fshort-wchar
12587 @opindex fshort-wchar
12588 Override the underlying type for @code{wchar_t} to be @code{short
12589 unsigned int} instead of the default for the target.  This option is
12590 useful for building programs to run under WINE@.
12592 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12593 code that is not binary compatible with code generated without that switch.
12594 Use it to conform to a non-default application binary interface.
12596 @item -fno-common
12597 @opindex fno-common
12598 @cindex tentative definitions
12599 In C code, this option controls the placement of global variables 
12600 defined without an initializer, known as @dfn{tentative definitions} 
12601 in the C standard.  Tentative definitions are distinct from declarations 
12602 of a variable with the @code{extern} keyword, which do not allocate storage.
12604 Unix C compilers have traditionally allocated storage for
12605 uninitialized global variables in a common block.  This allows the
12606 linker to resolve all tentative definitions of the same variable
12607 in different compilation units to the same object, or to a non-tentative
12608 definition.  
12609 This is the behavior specified by @option{-fcommon}, and is the default for 
12610 GCC on most targets.  
12611 On the other hand, this behavior is not required by ISO
12612 C, and on some targets may carry a speed or code size penalty on
12613 variable references.
12615 The @option{-fno-common} option specifies that the compiler should instead
12616 place uninitialized global variables in the data section of the object file.
12617 This inhibits the merging of tentative definitions by the linker so
12618 you get a multiple-definition error if the same 
12619 variable is defined in more than one compilation unit.
12620 Compiling with @option{-fno-common} is useful on targets for which
12621 it provides better performance, or if you wish to verify that the
12622 program will work on other systems that always treat uninitialized
12623 variable definitions this way.
12625 @item -fno-ident
12626 @opindex fno-ident
12627 Ignore the @code{#ident} directive.
12629 @item -finhibit-size-directive
12630 @opindex finhibit-size-directive
12631 Don't output a @code{.size} assembler directive, or anything else that
12632 would cause trouble if the function is split in the middle, and the
12633 two halves are placed at locations far apart in memory.  This option is
12634 used when compiling @file{crtstuff.c}; you should not need to use it
12635 for anything else.
12637 @item -fverbose-asm
12638 @opindex fverbose-asm
12639 Put extra commentary information in the generated assembly code to
12640 make it more readable.  This option is generally only of use to those
12641 who actually need to read the generated assembly code (perhaps while
12642 debugging the compiler itself).
12644 @option{-fno-verbose-asm}, the default, causes the
12645 extra information to be omitted and is useful when comparing two assembler
12646 files.
12648 The added comments include:
12650 @itemize @bullet
12652 @item
12653 information on the compiler version and command-line options,
12655 @item
12656 the source code lines associated with the assembly instructions,
12657 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12659 @item
12660 hints on which high-level expressions correspond to
12661 the various assembly instruction operands.
12663 @end itemize
12665 For example, given this C source file:
12667 @smallexample
12668 int test (int n)
12670   int i;
12671   int total = 0;
12673   for (i = 0; i < n; i++)
12674     total += i * i;
12676   return total;
12678 @end smallexample
12680 compiling to (x86_64) assembly via @option{-S} and emitting the result
12681 direct to stdout via @option{-o} @option{-}
12683 @smallexample
12684 gcc -S test.c -fverbose-asm -Os -o -
12685 @end smallexample
12687 gives output similar to this:
12689 @smallexample
12690         .file   "test.c"
12691 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
12692   [...snip...]
12693 # options passed:
12694   [...snip...]
12696         .text
12697         .globl  test
12698         .type   test, @@function
12699 test:
12700 .LFB0:
12701         .cfi_startproc
12702 # test.c:4:   int total = 0;
12703         xorl    %eax, %eax      # <retval>
12704 # test.c:6:   for (i = 0; i < n; i++)
12705         xorl    %edx, %edx      # i
12706 .L2:
12707 # test.c:6:   for (i = 0; i < n; i++)
12708         cmpl    %edi, %edx      # n, i
12709         jge     .L5     #,
12710 # test.c:7:     total += i * i;
12711         movl    %edx, %ecx      # i, tmp92
12712         imull   %edx, %ecx      # i, tmp92
12713 # test.c:6:   for (i = 0; i < n; i++)
12714         incl    %edx    # i
12715 # test.c:7:     total += i * i;
12716         addl    %ecx, %eax      # tmp92, <retval>
12717         jmp     .L2     #
12718 .L5:
12719 # test.c:10: @}
12720         ret
12721         .cfi_endproc
12722 .LFE0:
12723         .size   test, .-test
12724         .ident  "GCC: (GNU) 7.0.0 20160809 (experimental)"
12725         .section        .note.GNU-stack,"",@@progbits
12726 @end smallexample
12728 The comments are intended for humans rather than machines and hence the
12729 precise format of the comments is subject to change.
12731 @item -frecord-gcc-switches
12732 @opindex frecord-gcc-switches
12733 This switch causes the command line used to invoke the
12734 compiler to be recorded into the object file that is being created.
12735 This switch is only implemented on some targets and the exact format
12736 of the recording is target and binary file format dependent, but it
12737 usually takes the form of a section containing ASCII text.  This
12738 switch is related to the @option{-fverbose-asm} switch, but that
12739 switch only records information in the assembler output file as
12740 comments, so it never reaches the object file.
12741 See also @option{-grecord-gcc-switches} for another
12742 way of storing compiler options into the object file.
12744 @item -fpic
12745 @opindex fpic
12746 @cindex global offset table
12747 @cindex PIC
12748 Generate position-independent code (PIC) suitable for use in a shared
12749 library, if supported for the target machine.  Such code accesses all
12750 constant addresses through a global offset table (GOT)@.  The dynamic
12751 loader resolves the GOT entries when the program starts (the dynamic
12752 loader is not part of GCC; it is part of the operating system).  If
12753 the GOT size for the linked executable exceeds a machine-specific
12754 maximum size, you get an error message from the linker indicating that
12755 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12756 instead.  (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12757 on the m68k and RS/6000.  The x86 has no such limit.)
12759 Position-independent code requires special support, and therefore works
12760 only on certain machines.  For the x86, GCC supports PIC for System V
12761 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
12762 position-independent.
12764 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12765 are defined to 1.
12767 @item -fPIC
12768 @opindex fPIC
12769 If supported for the target machine, emit position-independent code,
12770 suitable for dynamic linking and avoiding any limit on the size of the
12771 global offset table.  This option makes a difference on AArch64, m68k,
12772 PowerPC and SPARC@.
12774 Position-independent code requires special support, and therefore works
12775 only on certain machines.
12777 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12778 are defined to 2.
12780 @item -fpie
12781 @itemx -fPIE
12782 @opindex fpie
12783 @opindex fPIE
12784 These options are similar to @option{-fpic} and @option{-fPIC}, but
12785 generated position independent code can be only linked into executables.
12786 Usually these options are used when @option{-pie} GCC option is
12787 used during linking.
12789 @option{-fpie} and @option{-fPIE} both define the macros
12790 @code{__pie__} and @code{__PIE__}.  The macros have the value 1
12791 for @option{-fpie} and 2 for @option{-fPIE}.
12793 @item -fno-plt
12794 @opindex fno-plt
12795 Do not use the PLT for external function calls in position-independent code.
12796 Instead, load the callee address at call sites from the GOT and branch to it.
12797 This leads to more efficient code by eliminating PLT stubs and exposing
12798 GOT loads to optimizations.  On architectures such as 32-bit x86 where
12799 PLT stubs expect the GOT pointer in a specific register, this gives more
12800 register allocation freedom to the compiler.
12801 Lazy binding requires use of the PLT; 
12802 with @option{-fno-plt} all external symbols are resolved at load time.
12804 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12805 through the PLT for specific external functions.
12807 In position-dependent code, a few targets also convert calls to
12808 functions that are marked to not use the PLT to use the GOT instead.
12810 @item -fno-jump-tables
12811 @opindex fno-jump-tables
12812 Do not use jump tables for switch statements even where it would be
12813 more efficient than other code generation strategies.  This option is
12814 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12815 building code that forms part of a dynamic linker and cannot
12816 reference the address of a jump table.  On some targets, jump tables
12817 do not require a GOT and this option is not needed.
12819 @item -ffixed-@var{reg}
12820 @opindex ffixed
12821 Treat the register named @var{reg} as a fixed register; generated code
12822 should never refer to it (except perhaps as a stack pointer, frame
12823 pointer or in some other fixed role).
12825 @var{reg} must be the name of a register.  The register names accepted
12826 are machine-specific and are defined in the @code{REGISTER_NAMES}
12827 macro in the machine description macro file.
12829 This flag does not have a negative form, because it specifies a
12830 three-way choice.
12832 @item -fcall-used-@var{reg}
12833 @opindex fcall-used
12834 Treat the register named @var{reg} as an allocable register that is
12835 clobbered by function calls.  It may be allocated for temporaries or
12836 variables that do not live across a call.  Functions compiled this way
12837 do not save and restore the register @var{reg}.
12839 It is an error to use this flag with the frame pointer or stack pointer.
12840 Use of this flag for other registers that have fixed pervasive roles in
12841 the machine's execution model produces disastrous results.
12843 This flag does not have a negative form, because it specifies a
12844 three-way choice.
12846 @item -fcall-saved-@var{reg}
12847 @opindex fcall-saved
12848 Treat the register named @var{reg} as an allocable register saved by
12849 functions.  It may be allocated even for temporaries or variables that
12850 live across a call.  Functions compiled this way save and restore
12851 the register @var{reg} if they use it.
12853 It is an error to use this flag with the frame pointer or stack pointer.
12854 Use of this flag for other registers that have fixed pervasive roles in
12855 the machine's execution model produces disastrous results.
12857 A different sort of disaster results from the use of this flag for
12858 a register in which function values may be returned.
12860 This flag does not have a negative form, because it specifies a
12861 three-way choice.
12863 @item -fpack-struct[=@var{n}]
12864 @opindex fpack-struct
12865 Without a value specified, pack all structure members together without
12866 holes.  When a value is specified (which must be a small power of two), pack
12867 structure members according to this value, representing the maximum
12868 alignment (that is, objects with default alignment requirements larger than
12869 this are output potentially unaligned at the next fitting location.
12871 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
12872 code that is not binary compatible with code generated without that switch.
12873 Additionally, it makes the code suboptimal.
12874 Use it to conform to a non-default application binary interface.
12876 @item -fleading-underscore
12877 @opindex fleading-underscore
12878 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
12879 change the way C symbols are represented in the object file.  One use
12880 is to help link with legacy assembly code.
12882 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
12883 generate code that is not binary compatible with code generated without that
12884 switch.  Use it to conform to a non-default application binary interface.
12885 Not all targets provide complete support for this switch.
12887 @item -ftls-model=@var{model}
12888 @opindex ftls-model
12889 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
12890 The @var{model} argument should be one of @samp{global-dynamic},
12891 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
12892 Note that the choice is subject to optimization: the compiler may use
12893 a more efficient model for symbols not visible outside of the translation
12894 unit, or if @option{-fpic} is not given on the command line.
12896 The default without @option{-fpic} is @samp{initial-exec}; with
12897 @option{-fpic} the default is @samp{global-dynamic}.
12899 @item -ftrampolines
12900 @opindex ftrampolines
12901 For targets that normally need trampolines for nested functions, always
12902 generate them instead of using descriptors.  Otherwise, for targets that
12903 do not need them, like for example HP-PA or IA-64, do nothing.
12905 A trampoline is a small piece of code that is created at run time on the
12906 stack when the address of a nested function is taken, and is used to call
12907 the nested function indirectly.  Therefore, it requires the stack to be
12908 made executable in order for the program to work properly.
12910 @option{-fno-trampolines} is enabled by default on a language by language
12911 basis to let the compiler avoid generating them, if it computes that this
12912 is safe, and replace them with descriptors.  Descriptors are made up of data
12913 only, but the generated code must be prepared to deal with them.  As of this
12914 writing, @option{-fno-trampolines} is enabled by default only for Ada.
12916 Moreover, code compiled with @option{-ftrampolines} and code compiled with
12917 @option{-fno-trampolines} are not binary compatible if nested functions are
12918 present.  This option must therefore be used on a program-wide basis and be
12919 manipulated with extreme care.
12921 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
12922 @opindex fvisibility
12923 Set the default ELF image symbol visibility to the specified option---all
12924 symbols are marked with this unless overridden within the code.
12925 Using this feature can very substantially improve linking and
12926 load times of shared object libraries, produce more optimized
12927 code, provide near-perfect API export and prevent symbol clashes.
12928 It is @strong{strongly} recommended that you use this in any shared objects
12929 you distribute.
12931 Despite the nomenclature, @samp{default} always means public; i.e.,
12932 available to be linked against from outside the shared object.
12933 @samp{protected} and @samp{internal} are pretty useless in real-world
12934 usage so the only other commonly used option is @samp{hidden}.
12935 The default if @option{-fvisibility} isn't specified is
12936 @samp{default}, i.e., make every symbol public.
12938 A good explanation of the benefits offered by ensuring ELF
12939 symbols have the correct visibility is given by ``How To Write
12940 Shared Libraries'' by Ulrich Drepper (which can be found at
12941 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
12942 solution made possible by this option to marking things hidden when
12943 the default is public is to make the default hidden and mark things
12944 public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
12945 and @code{__attribute__ ((visibility("default")))} instead of
12946 @code{__declspec(dllexport)} you get almost identical semantics with
12947 identical syntax.  This is a great boon to those working with
12948 cross-platform projects.
12950 For those adding visibility support to existing code, you may find
12951 @code{#pragma GCC visibility} of use.  This works by you enclosing
12952 the declarations you wish to set visibility for with (for example)
12953 @code{#pragma GCC visibility push(hidden)} and
12954 @code{#pragma GCC visibility pop}.
12955 Bear in mind that symbol visibility should be viewed @strong{as
12956 part of the API interface contract} and thus all new code should
12957 always specify visibility when it is not the default; i.e., declarations
12958 only for use within the local DSO should @strong{always} be marked explicitly
12959 as hidden as so to avoid PLT indirection overheads---making this
12960 abundantly clear also aids readability and self-documentation of the code.
12961 Note that due to ISO C++ specification requirements, @code{operator new} and
12962 @code{operator delete} must always be of default visibility.
12964 Be aware that headers from outside your project, in particular system
12965 headers and headers from any other library you use, may not be
12966 expecting to be compiled with visibility other than the default.  You
12967 may need to explicitly say @code{#pragma GCC visibility push(default)}
12968 before including any such headers.
12970 @code{extern} declarations are not affected by @option{-fvisibility}, so
12971 a lot of code can be recompiled with @option{-fvisibility=hidden} with
12972 no modifications.  However, this means that calls to @code{extern}
12973 functions with no explicit visibility use the PLT, so it is more
12974 effective to use @code{__attribute ((visibility))} and/or
12975 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
12976 declarations should be treated as hidden.
12978 Note that @option{-fvisibility} does affect C++ vague linkage
12979 entities. This means that, for instance, an exception class that is
12980 be thrown between DSOs must be explicitly marked with default
12981 visibility so that the @samp{type_info} nodes are unified between
12982 the DSOs.
12984 An overview of these techniques, their benefits and how to use them
12985 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
12987 @item -fstrict-volatile-bitfields
12988 @opindex fstrict-volatile-bitfields
12989 This option should be used if accesses to volatile bit-fields (or other
12990 structure fields, although the compiler usually honors those types
12991 anyway) should use a single access of the width of the
12992 field's type, aligned to a natural alignment if possible.  For
12993 example, targets with memory-mapped peripheral registers might require
12994 all such accesses to be 16 bits wide; with this flag you can
12995 declare all peripheral bit-fields as @code{unsigned short} (assuming short
12996 is 16 bits on these targets) to force GCC to use 16-bit accesses
12997 instead of, perhaps, a more efficient 32-bit access.
12999 If this option is disabled, the compiler uses the most efficient
13000 instruction.  In the previous example, that might be a 32-bit load
13001 instruction, even though that accesses bytes that do not contain
13002 any portion of the bit-field, or memory-mapped registers unrelated to
13003 the one being updated.
13005 In some cases, such as when the @code{packed} attribute is applied to a 
13006 structure field, it may not be possible to access the field with a single
13007 read or write that is correctly aligned for the target machine.  In this
13008 case GCC falls back to generating multiple accesses rather than code that 
13009 will fault or truncate the result at run time.
13011 Note:  Due to restrictions of the C/C++11 memory model, write accesses are
13012 not allowed to touch non bit-field members.  It is therefore recommended
13013 to define all bits of the field's type as bit-field members.
13015 The default value of this option is determined by the application binary
13016 interface for the target processor.
13018 @item -fsync-libcalls
13019 @opindex fsync-libcalls
13020 This option controls whether any out-of-line instance of the @code{__sync}
13021 family of functions may be used to implement the C++11 @code{__atomic}
13022 family of functions.
13024 The default value of this option is enabled, thus the only useful form
13025 of the option is @option{-fno-sync-libcalls}.  This option is used in
13026 the implementation of the @file{libatomic} runtime library.
13028 @end table
13030 @node Developer Options
13031 @section GCC Developer Options
13032 @cindex developer options
13033 @cindex debugging GCC
13034 @cindex debug dump options
13035 @cindex dump options
13036 @cindex compilation statistics
13038 This section describes command-line options that are primarily of
13039 interest to GCC developers, including options to support compiler
13040 testing and investigation of compiler bugs and compile-time
13041 performance problems.  This includes options that produce debug dumps
13042 at various points in the compilation; that print statistics such as
13043 memory use and execution time; and that print information about GCC's
13044 configuration, such as where it searches for libraries.  You should
13045 rarely need to use any of these options for ordinary compilation and
13046 linking tasks.
13048 @table @gcctabopt
13050 @item -d@var{letters}
13051 @itemx -fdump-rtl-@var{pass}
13052 @itemx -fdump-rtl-@var{pass}=@var{filename}
13053 @opindex d
13054 @opindex fdump-rtl-@var{pass}
13055 Says to make debugging dumps during compilation at times specified by
13056 @var{letters}.  This is used for debugging the RTL-based passes of the
13057 compiler.  The file names for most of the dumps are made by appending
13058 a pass number and a word to the @var{dumpname}, and the files are
13059 created in the directory of the output file.  In case of
13060 @option{=@var{filename}} option, the dump is output on the given file
13061 instead of the pass numbered dump files.  Note that the pass number is
13062 assigned as passes are registered into the pass manager.  Most passes
13063 are registered in the order that they will execute and for these passes
13064 the number corresponds to the pass execution order.  However, passes
13065 registered by plugins, passes specific to compilation targets, or
13066 passes that are otherwise registered after all the other passes are
13067 numbered higher than a pass named "final", even if they are executed
13068 earlier.  @var{dumpname} is generated from the name of the output
13069 file if explicitly specified and not an executable, otherwise it is
13070 the basename of the source file.  
13072 Some @option{-d@var{letters}} switches have different meaning when
13073 @option{-E} is used for preprocessing.  @xref{Preprocessor Options},
13074 for information about preprocessor-specific dump options.
13076 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
13077 @option{-d} option @var{letters}.  Here are the possible
13078 letters for use in @var{pass} and @var{letters}, and their meanings:
13080 @table @gcctabopt
13082 @item -fdump-rtl-alignments
13083 @opindex fdump-rtl-alignments
13084 Dump after branch alignments have been computed.
13086 @item -fdump-rtl-asmcons
13087 @opindex fdump-rtl-asmcons
13088 Dump after fixing rtl statements that have unsatisfied in/out constraints.
13090 @item -fdump-rtl-auto_inc_dec
13091 @opindex fdump-rtl-auto_inc_dec
13092 Dump after auto-inc-dec discovery.  This pass is only run on
13093 architectures that have auto inc or auto dec instructions.
13095 @item -fdump-rtl-barriers
13096 @opindex fdump-rtl-barriers
13097 Dump after cleaning up the barrier instructions.
13099 @item -fdump-rtl-bbpart
13100 @opindex fdump-rtl-bbpart
13101 Dump after partitioning hot and cold basic blocks.
13103 @item -fdump-rtl-bbro
13104 @opindex fdump-rtl-bbro
13105 Dump after block reordering.
13107 @item -fdump-rtl-btl1
13108 @itemx -fdump-rtl-btl2
13109 @opindex fdump-rtl-btl2
13110 @opindex fdump-rtl-btl2
13111 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
13112 after the two branch
13113 target load optimization passes.
13115 @item -fdump-rtl-bypass
13116 @opindex fdump-rtl-bypass
13117 Dump after jump bypassing and control flow optimizations.
13119 @item -fdump-rtl-combine
13120 @opindex fdump-rtl-combine
13121 Dump after the RTL instruction combination pass.
13123 @item -fdump-rtl-compgotos
13124 @opindex fdump-rtl-compgotos
13125 Dump after duplicating the computed gotos.
13127 @item -fdump-rtl-ce1
13128 @itemx -fdump-rtl-ce2
13129 @itemx -fdump-rtl-ce3
13130 @opindex fdump-rtl-ce1
13131 @opindex fdump-rtl-ce2
13132 @opindex fdump-rtl-ce3
13133 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
13134 @option{-fdump-rtl-ce3} enable dumping after the three
13135 if conversion passes.
13137 @item -fdump-rtl-cprop_hardreg
13138 @opindex fdump-rtl-cprop_hardreg
13139 Dump after hard register copy propagation.
13141 @item -fdump-rtl-csa
13142 @opindex fdump-rtl-csa
13143 Dump after combining stack adjustments.
13145 @item -fdump-rtl-cse1
13146 @itemx -fdump-rtl-cse2
13147 @opindex fdump-rtl-cse1
13148 @opindex fdump-rtl-cse2
13149 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
13150 the two common subexpression elimination passes.
13152 @item -fdump-rtl-dce
13153 @opindex fdump-rtl-dce
13154 Dump after the standalone dead code elimination passes.
13156 @item -fdump-rtl-dbr
13157 @opindex fdump-rtl-dbr
13158 Dump after delayed branch scheduling.
13160 @item -fdump-rtl-dce1
13161 @itemx -fdump-rtl-dce2
13162 @opindex fdump-rtl-dce1
13163 @opindex fdump-rtl-dce2
13164 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
13165 the two dead store elimination passes.
13167 @item -fdump-rtl-eh
13168 @opindex fdump-rtl-eh
13169 Dump after finalization of EH handling code.
13171 @item -fdump-rtl-eh_ranges
13172 @opindex fdump-rtl-eh_ranges
13173 Dump after conversion of EH handling range regions.
13175 @item -fdump-rtl-expand
13176 @opindex fdump-rtl-expand
13177 Dump after RTL generation.
13179 @item -fdump-rtl-fwprop1
13180 @itemx -fdump-rtl-fwprop2
13181 @opindex fdump-rtl-fwprop1
13182 @opindex fdump-rtl-fwprop2
13183 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
13184 dumping after the two forward propagation passes.
13186 @item -fdump-rtl-gcse1
13187 @itemx -fdump-rtl-gcse2
13188 @opindex fdump-rtl-gcse1
13189 @opindex fdump-rtl-gcse2
13190 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
13191 after global common subexpression elimination.
13193 @item -fdump-rtl-init-regs
13194 @opindex fdump-rtl-init-regs
13195 Dump after the initialization of the registers.
13197 @item -fdump-rtl-initvals
13198 @opindex fdump-rtl-initvals
13199 Dump after the computation of the initial value sets.
13201 @item -fdump-rtl-into_cfglayout
13202 @opindex fdump-rtl-into_cfglayout
13203 Dump after converting to cfglayout mode.
13205 @item -fdump-rtl-ira
13206 @opindex fdump-rtl-ira
13207 Dump after iterated register allocation.
13209 @item -fdump-rtl-jump
13210 @opindex fdump-rtl-jump
13211 Dump after the second jump optimization.
13213 @item -fdump-rtl-loop2
13214 @opindex fdump-rtl-loop2
13215 @option{-fdump-rtl-loop2} enables dumping after the rtl
13216 loop optimization passes.
13218 @item -fdump-rtl-mach
13219 @opindex fdump-rtl-mach
13220 Dump after performing the machine dependent reorganization pass, if that
13221 pass exists.
13223 @item -fdump-rtl-mode_sw
13224 @opindex fdump-rtl-mode_sw
13225 Dump after removing redundant mode switches.
13227 @item -fdump-rtl-rnreg
13228 @opindex fdump-rtl-rnreg
13229 Dump after register renumbering.
13231 @item -fdump-rtl-outof_cfglayout
13232 @opindex fdump-rtl-outof_cfglayout
13233 Dump after converting from cfglayout mode.
13235 @item -fdump-rtl-peephole2
13236 @opindex fdump-rtl-peephole2
13237 Dump after the peephole pass.
13239 @item -fdump-rtl-postreload
13240 @opindex fdump-rtl-postreload
13241 Dump after post-reload optimizations.
13243 @item -fdump-rtl-pro_and_epilogue
13244 @opindex fdump-rtl-pro_and_epilogue
13245 Dump after generating the function prologues and epilogues.
13247 @item -fdump-rtl-sched1
13248 @itemx -fdump-rtl-sched2
13249 @opindex fdump-rtl-sched1
13250 @opindex fdump-rtl-sched2
13251 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
13252 after the basic block scheduling passes.
13254 @item -fdump-rtl-ree
13255 @opindex fdump-rtl-ree
13256 Dump after sign/zero extension elimination.
13258 @item -fdump-rtl-seqabstr
13259 @opindex fdump-rtl-seqabstr
13260 Dump after common sequence discovery.
13262 @item -fdump-rtl-shorten
13263 @opindex fdump-rtl-shorten
13264 Dump after shortening branches.
13266 @item -fdump-rtl-sibling
13267 @opindex fdump-rtl-sibling
13268 Dump after sibling call optimizations.
13270 @item -fdump-rtl-split1
13271 @itemx -fdump-rtl-split2
13272 @itemx -fdump-rtl-split3
13273 @itemx -fdump-rtl-split4
13274 @itemx -fdump-rtl-split5
13275 @opindex fdump-rtl-split1
13276 @opindex fdump-rtl-split2
13277 @opindex fdump-rtl-split3
13278 @opindex fdump-rtl-split4
13279 @opindex fdump-rtl-split5
13280 These options enable dumping after five rounds of
13281 instruction splitting.
13283 @item -fdump-rtl-sms
13284 @opindex fdump-rtl-sms
13285 Dump after modulo scheduling.  This pass is only run on some
13286 architectures.
13288 @item -fdump-rtl-stack
13289 @opindex fdump-rtl-stack
13290 Dump after conversion from GCC's ``flat register file'' registers to the
13291 x87's stack-like registers.  This pass is only run on x86 variants.
13293 @item -fdump-rtl-subreg1
13294 @itemx -fdump-rtl-subreg2
13295 @opindex fdump-rtl-subreg1
13296 @opindex fdump-rtl-subreg2
13297 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
13298 the two subreg expansion passes.
13300 @item -fdump-rtl-unshare
13301 @opindex fdump-rtl-unshare
13302 Dump after all rtl has been unshared.
13304 @item -fdump-rtl-vartrack
13305 @opindex fdump-rtl-vartrack
13306 Dump after variable tracking.
13308 @item -fdump-rtl-vregs
13309 @opindex fdump-rtl-vregs
13310 Dump after converting virtual registers to hard registers.
13312 @item -fdump-rtl-web
13313 @opindex fdump-rtl-web
13314 Dump after live range splitting.
13316 @item -fdump-rtl-regclass
13317 @itemx -fdump-rtl-subregs_of_mode_init
13318 @itemx -fdump-rtl-subregs_of_mode_finish
13319 @itemx -fdump-rtl-dfinit
13320 @itemx -fdump-rtl-dfinish
13321 @opindex fdump-rtl-regclass
13322 @opindex fdump-rtl-subregs_of_mode_init
13323 @opindex fdump-rtl-subregs_of_mode_finish
13324 @opindex fdump-rtl-dfinit
13325 @opindex fdump-rtl-dfinish
13326 These dumps are defined but always produce empty files.
13328 @item -da
13329 @itemx -fdump-rtl-all
13330 @opindex da
13331 @opindex fdump-rtl-all
13332 Produce all the dumps listed above.
13334 @item -dA
13335 @opindex dA
13336 Annotate the assembler output with miscellaneous debugging information.
13338 @item -dD
13339 @opindex dD
13340 Dump all macro definitions, at the end of preprocessing, in addition to
13341 normal output.
13343 @item -dH
13344 @opindex dH
13345 Produce a core dump whenever an error occurs.
13347 @item -dp
13348 @opindex dp
13349 Annotate the assembler output with a comment indicating which
13350 pattern and alternative is used.  The length and cost of each instruction are
13351 also printed.
13353 @item -dP
13354 @opindex dP
13355 Dump the RTL in the assembler output as a comment before each instruction.
13356 Also turns on @option{-dp} annotation.
13358 @item -dx
13359 @opindex dx
13360 Just generate RTL for a function instead of compiling it.  Usually used
13361 with @option{-fdump-rtl-expand}.
13362 @end table
13364 @item -fdump-noaddr
13365 @opindex fdump-noaddr
13366 When doing debugging dumps, suppress address output.  This makes it more
13367 feasible to use diff on debugging dumps for compiler invocations with
13368 different compiler binaries and/or different
13369 text / bss / data / heap / stack / dso start locations.
13371 @item -freport-bug
13372 @opindex freport-bug
13373 Collect and dump debug information into a temporary file if an
13374 internal compiler error (ICE) occurs.
13376 @item -fdump-unnumbered
13377 @opindex fdump-unnumbered
13378 When doing debugging dumps, suppress instruction numbers and address output.
13379 This makes it more feasible to use diff on debugging dumps for compiler
13380 invocations with different options, in particular with and without
13381 @option{-g}.
13383 @item -fdump-unnumbered-links
13384 @opindex fdump-unnumbered-links
13385 When doing debugging dumps (see @option{-d} option above), suppress
13386 instruction numbers for the links to the previous and next instructions
13387 in a sequence.
13389 @item -fdump-ipa-@var{switch}
13390 @opindex fdump-ipa
13391 Control the dumping at various stages of inter-procedural analysis
13392 language tree to a file.  The file name is generated by appending a
13393 switch specific suffix to the source file name, and the file is created
13394 in the same directory as the output file.  The following dumps are
13395 possible:
13397 @table @samp
13398 @item all
13399 Enables all inter-procedural analysis dumps.
13401 @item cgraph
13402 Dumps information about call-graph optimization, unused function removal,
13403 and inlining decisions.
13405 @item inline
13406 Dump after function inlining.
13408 @end table
13410 @item -fdump-lang-all
13411 @itemx -fdump-lang-@var{switch}
13412 @itemx -fdump-lang-@var{switch}-@var{options}
13413 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13414 @opindex fdump-lang-all
13415 @opindex fdump-lang
13416 Control the dumping of language-specific information.  The @var{options}
13417 and @var{filename} portions behave as described in the
13418 @option{-fdump-tree} option.  The following @var{switch} values are
13419 accepted:
13421 @table @samp
13422 @item all
13424 Enable all language-specific dumps.
13426 @item class
13427 Dump class hierarchy information.  Virtual table information is emitted
13428 unless '@option{slim}' is specified.  This option is applicable to C++ only.
13430 @item raw
13431 Dump the raw internal tree data.  This option is applicable to C++ only.
13433 @end table
13435 @item -fdump-passes
13436 @opindex fdump-passes
13437 Print on @file{stderr} the list of optimization passes that are turned
13438 on and off by the current command-line options.
13440 @item -fdump-statistics-@var{option}
13441 @opindex fdump-statistics
13442 Enable and control dumping of pass statistics in a separate file.  The
13443 file name is generated by appending a suffix ending in
13444 @samp{.statistics} to the source file name, and the file is created in
13445 the same directory as the output file.  If the @samp{-@var{option}}
13446 form is used, @samp{-stats} causes counters to be summed over the
13447 whole compilation unit while @samp{-details} dumps every event as
13448 the passes generate them.  The default with no option is to sum
13449 counters for each function compiled.
13451 @item -fdump-tree-all
13452 @itemx -fdump-tree-@var{switch}
13453 @itemx -fdump-tree-@var{switch}-@var{options}
13454 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13455 @opindex fdump-tree-all
13456 @opindex fdump-tree
13457 Control the dumping at various stages of processing the intermediate
13458 language tree to a file.  The file name is generated by appending a
13459 switch-specific suffix to the source file name, and the file is
13460 created in the same directory as the output file. In case of
13461 @option{=@var{filename}} option, the dump is output on the given file
13462 instead of the auto named dump files.  If the @samp{-@var{options}}
13463 form is used, @var{options} is a list of @samp{-} separated options
13464 which control the details of the dump.  Not all options are applicable
13465 to all dumps; those that are not meaningful are ignored.  The
13466 following options are available
13468 @table @samp
13469 @item address
13470 Print the address of each node.  Usually this is not meaningful as it
13471 changes according to the environment and source file.  Its primary use
13472 is for tying up a dump file with a debug environment.
13473 @item asmname
13474 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13475 in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
13476 use working backward from mangled names in the assembly file.
13477 @item slim
13478 When dumping front-end intermediate representations, inhibit dumping
13479 of members of a scope or body of a function merely because that scope
13480 has been reached.  Only dump such items when they are directly reachable
13481 by some other path.
13483 When dumping pretty-printed trees, this option inhibits dumping the
13484 bodies of control structures.
13486 When dumping RTL, print the RTL in slim (condensed) form instead of
13487 the default LISP-like representation.
13488 @item raw
13489 Print a raw representation of the tree.  By default, trees are
13490 pretty-printed into a C-like representation.
13491 @item details
13492 Enable more detailed dumps (not honored by every dump option). Also
13493 include information from the optimization passes.
13494 @item stats
13495 Enable dumping various statistics about the pass (not honored by every dump
13496 option).
13497 @item blocks
13498 Enable showing basic block boundaries (disabled in raw dumps).
13499 @item graph
13500 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13501 dump a representation of the control flow graph suitable for viewing with
13502 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
13503 the file is pretty-printed as a subgraph, so that GraphViz can render them
13504 all in a single plot.
13506 This option currently only works for RTL dumps, and the RTL is always
13507 dumped in slim form.
13508 @item vops
13509 Enable showing virtual operands for every statement.
13510 @item lineno
13511 Enable showing line numbers for statements.
13512 @item uid
13513 Enable showing the unique ID (@code{DECL_UID}) for each variable.
13514 @item verbose
13515 Enable showing the tree dump for each statement.
13516 @item eh
13517 Enable showing the EH region number holding each statement.
13518 @item scev
13519 Enable showing scalar evolution analysis details.
13520 @item optimized
13521 Enable showing optimization information (only available in certain
13522 passes).
13523 @item missed
13524 Enable showing missed optimization information (only available in certain
13525 passes).
13526 @item note
13527 Enable other detailed optimization information (only available in
13528 certain passes).
13529 @item =@var{filename}
13530 Instead of an auto named dump file, output into the given file
13531 name. The file names @file{stdout} and @file{stderr} are treated
13532 specially and are considered already open standard streams. For
13533 example,
13535 @smallexample
13536 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
13537      -fdump-tree-pre=/dev/stderr file.c
13538 @end smallexample
13540 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
13541 output on to @file{stderr}. If two conflicting dump filenames are
13542 given for the same pass, then the latter option overrides the earlier
13543 one.
13545 @item all
13546 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13547 and @option{lineno}.
13549 @item optall
13550 Turn on all optimization options, i.e., @option{optimized},
13551 @option{missed}, and @option{note}.
13552 @end table
13554 To determine what tree dumps are available or find the dump for a pass
13555 of interest follow the steps below.
13557 @enumerate
13558 @item
13559 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13560 look for a code that corresponds to the pass you are interested in.
13561 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13562 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
13563 The number at the end distinguishes distinct invocations of the same pass.
13564 @item
13565 To enable the creation of the dump file, append the pass code to
13566 the @option{-fdump-} option prefix and invoke GCC with it.  For example,
13567 to enable the dump from the Early Value Range Propagation pass, invoke
13568 GCC with the @option{-fdump-tree-evrp} option.  Optionally, you may
13569 specify the name of the dump file.  If you don't specify one, GCC
13570 creates as described below.
13571 @item
13572 Find the pass dump in a file whose name is composed of three components
13573 separated by a period: the name of the source file GCC was invoked to
13574 compile, a numeric suffix indicating the pass number followed by the
13575 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13576 and finally the pass code.  For example, the Early VRP pass dump might
13577 be in a file named @file{myfile.c.038t.evrp} in the current working
13578 directory.  Note that the numeric codes are not stable and may change
13579 from one version of GCC to another.
13580 @end enumerate
13582 @item -fopt-info
13583 @itemx -fopt-info-@var{options}
13584 @itemx -fopt-info-@var{options}=@var{filename}
13585 @opindex fopt-info
13586 Controls optimization dumps from various optimization passes. If the
13587 @samp{-@var{options}} form is used, @var{options} is a list of
13588 @samp{-} separated option keywords to select the dump details and
13589 optimizations.  
13591 The @var{options} can be divided into two groups: options describing the
13592 verbosity of the dump, and options describing which optimizations
13593 should be included. The options from both the groups can be freely
13594 mixed as they are non-overlapping. However, in case of any conflicts,
13595 the later options override the earlier options on the command
13596 line. 
13598 The following options control the dump verbosity:
13600 @table @samp
13601 @item optimized
13602 Print information when an optimization is successfully applied. It is
13603 up to a pass to decide which information is relevant. For example, the
13604 vectorizer passes print the source location of loops which are
13605 successfully vectorized.
13606 @item missed
13607 Print information about missed optimizations. Individual passes
13608 control which information to include in the output. 
13609 @item note
13610 Print verbose information about optimizations, such as certain
13611 transformations, more detailed messages about decisions etc.
13612 @item all
13613 Print detailed optimization information. This includes
13614 @samp{optimized}, @samp{missed}, and @samp{note}.
13615 @end table
13617 One or more of the following option keywords can be used to describe a
13618 group of optimizations:
13620 @table @samp
13621 @item ipa
13622 Enable dumps from all interprocedural optimizations.
13623 @item loop
13624 Enable dumps from all loop optimizations.
13625 @item inline
13626 Enable dumps from all inlining optimizations.
13627 @item omp
13628 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13629 @item vec
13630 Enable dumps from all vectorization optimizations.
13631 @item optall
13632 Enable dumps from all optimizations. This is a superset of
13633 the optimization groups listed above.
13634 @end table
13636 If @var{options} is
13637 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13638 info about successful optimizations from all the passes.  
13640 If the @var{filename} is provided, then the dumps from all the
13641 applicable optimizations are concatenated into the @var{filename}.
13642 Otherwise the dump is output onto @file{stderr}. Though multiple
13643 @option{-fopt-info} options are accepted, only one of them can include
13644 a @var{filename}. If other filenames are provided then all but the
13645 first such option are ignored.
13647 Note that the output @var{filename} is overwritten
13648 in case of multiple translation units. If a combined output from
13649 multiple translation units is desired, @file{stderr} should be used
13650 instead.
13652 In the following example, the optimization info is output to
13653 @file{stderr}:
13655 @smallexample
13656 gcc -O3 -fopt-info
13657 @end smallexample
13659 This example:
13660 @smallexample
13661 gcc -O3 -fopt-info-missed=missed.all
13662 @end smallexample
13664 @noindent
13665 outputs missed optimization report from all the passes into
13666 @file{missed.all}, and this one:
13668 @smallexample
13669 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13670 @end smallexample
13672 @noindent
13673 prints information about missed optimization opportunities from
13674 vectorization passes on @file{stderr}.  
13675 Note that @option{-fopt-info-vec-missed} is equivalent to 
13676 @option{-fopt-info-missed-vec}.  The order of the optimization group
13677 names and message types listed after @option{-fopt-info} does not matter.
13679 As another example,
13680 @smallexample
13681 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13682 @end smallexample
13684 @noindent
13685 outputs information about missed optimizations as well as
13686 optimized locations from all the inlining passes into
13687 @file{inline.txt}.
13689 Finally, consider:
13691 @smallexample
13692 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13693 @end smallexample
13695 @noindent
13696 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13697 in conflict since only one output file is allowed. In this case, only
13698 the first option takes effect and the subsequent options are
13699 ignored. Thus only @file{vec.miss} is produced which contains
13700 dumps from the vectorizer about missed opportunities.
13702 @item -fsched-verbose=@var{n}
13703 @opindex fsched-verbose
13704 On targets that use instruction scheduling, this option controls the
13705 amount of debugging output the scheduler prints to the dump files.
13707 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
13708 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
13709 For @var{n} greater than one, it also output basic block probabilities,
13710 detailed ready list information and unit/insn info.  For @var{n} greater
13711 than two, it includes RTL at abort point, control-flow and regions info.
13712 And for @var{n} over four, @option{-fsched-verbose} also includes
13713 dependence info.
13717 @item -fenable-@var{kind}-@var{pass}
13718 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
13719 @opindex fdisable-
13720 @opindex fenable-
13722 This is a set of options that are used to explicitly disable/enable
13723 optimization passes.  These options are intended for use for debugging GCC.
13724 Compiler users should use regular options for enabling/disabling
13725 passes instead.
13727 @table @gcctabopt
13729 @item -fdisable-ipa-@var{pass}
13730 Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
13731 statically invoked in the compiler multiple times, the pass name should be
13732 appended with a sequential number starting from 1.
13734 @item -fdisable-rtl-@var{pass}
13735 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
13736 Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
13737 statically invoked in the compiler multiple times, the pass name should be
13738 appended with a sequential number starting from 1.  @var{range-list} is a 
13739 comma-separated list of function ranges or assembler names.  Each range is a number
13740 pair separated by a colon.  The range is inclusive in both ends.  If the range
13741 is trivial, the number pair can be simplified as a single number.  If the
13742 function's call graph node's @var{uid} falls within one of the specified ranges,
13743 the @var{pass} is disabled for that function.  The @var{uid} is shown in the
13744 function header of a dump file, and the pass names can be dumped by using
13745 option @option{-fdump-passes}.
13747 @item -fdisable-tree-@var{pass}
13748 @itemx -fdisable-tree-@var{pass}=@var{range-list}
13749 Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
13750 option arguments.
13752 @item -fenable-ipa-@var{pass}
13753 Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
13754 statically invoked in the compiler multiple times, the pass name should be
13755 appended with a sequential number starting from 1.
13757 @item -fenable-rtl-@var{pass}
13758 @itemx -fenable-rtl-@var{pass}=@var{range-list}
13759 Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
13760 description and examples.
13762 @item -fenable-tree-@var{pass}
13763 @itemx -fenable-tree-@var{pass}=@var{range-list}
13764 Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
13765 of option arguments.
13767 @end table
13769 Here are some examples showing uses of these options.
13771 @smallexample
13773 # disable ccp1 for all functions
13774    -fdisable-tree-ccp1
13775 # disable complete unroll for function whose cgraph node uid is 1
13776    -fenable-tree-cunroll=1
13777 # disable gcse2 for functions at the following ranges [1,1],
13778 # [300,400], and [400,1000]
13779 # disable gcse2 for functions foo and foo2
13780    -fdisable-rtl-gcse2=foo,foo2
13781 # disable early inlining
13782    -fdisable-tree-einline
13783 # disable ipa inlining
13784    -fdisable-ipa-inline
13785 # enable tree full unroll
13786    -fenable-tree-unroll
13788 @end smallexample
13790 @item -fchecking
13791 @itemx -fchecking=@var{n}
13792 @opindex fchecking
13793 @opindex fno-checking
13794 Enable internal consistency checking.  The default depends on
13795 the compiler configuration.  @option{-fchecking=2} enables further
13796 internal consistency checking that might affect code generation.
13798 @item -frandom-seed=@var{string}
13799 @opindex frandom-seed
13800 This option provides a seed that GCC uses in place of
13801 random numbers in generating certain symbol names
13802 that have to be different in every compiled file.  It is also used to
13803 place unique stamps in coverage data files and the object files that
13804 produce them.  You can use the @option{-frandom-seed} option to produce
13805 reproducibly identical object files.
13807 The @var{string} can either be a number (decimal, octal or hex) or an
13808 arbitrary string (in which case it's converted to a number by
13809 computing CRC32).
13811 The @var{string} should be different for every file you compile.
13813 @item -save-temps
13814 @itemx -save-temps=cwd
13815 @opindex save-temps
13816 Store the usual ``temporary'' intermediate files permanently; place them
13817 in the current directory and name them based on the source file.  Thus,
13818 compiling @file{foo.c} with @option{-c -save-temps} produces files
13819 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
13820 preprocessed @file{foo.i} output file even though the compiler now
13821 normally uses an integrated preprocessor.
13823 When used in combination with the @option{-x} command-line option,
13824 @option{-save-temps} is sensible enough to avoid over writing an
13825 input source file with the same extension as an intermediate file.
13826 The corresponding intermediate file may be obtained by renaming the
13827 source file before using @option{-save-temps}.
13829 If you invoke GCC in parallel, compiling several different source
13830 files that share a common base name in different subdirectories or the
13831 same source file compiled for multiple output destinations, it is
13832 likely that the different parallel compilers will interfere with each
13833 other, and overwrite the temporary files.  For instance:
13835 @smallexample
13836 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
13837 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
13838 @end smallexample
13840 may result in @file{foo.i} and @file{foo.o} being written to
13841 simultaneously by both compilers.
13843 @item -save-temps=obj
13844 @opindex save-temps=obj
13845 Store the usual ``temporary'' intermediate files permanently.  If the
13846 @option{-o} option is used, the temporary files are based on the
13847 object file.  If the @option{-o} option is not used, the
13848 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
13850 For example:
13852 @smallexample
13853 gcc -save-temps=obj -c foo.c
13854 gcc -save-temps=obj -c bar.c -o dir/xbar.o
13855 gcc -save-temps=obj foobar.c -o dir2/yfoobar
13856 @end smallexample
13858 @noindent
13859 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
13860 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
13861 @file{dir2/yfoobar.o}.
13863 @item -time@r{[}=@var{file}@r{]}
13864 @opindex time
13865 Report the CPU time taken by each subprocess in the compilation
13866 sequence.  For C source files, this is the compiler proper and assembler
13867 (plus the linker if linking is done).
13869 Without the specification of an output file, the output looks like this:
13871 @smallexample
13872 # cc1 0.12 0.01
13873 # as 0.00 0.01
13874 @end smallexample
13876 The first number on each line is the ``user time'', that is time spent
13877 executing the program itself.  The second number is ``system time'',
13878 time spent executing operating system routines on behalf of the program.
13879 Both numbers are in seconds.
13881 With the specification of an output file, the output is appended to the
13882 named file, and it looks like this:
13884 @smallexample
13885 0.12 0.01 cc1 @var{options}
13886 0.00 0.01 as @var{options}
13887 @end smallexample
13889 The ``user time'' and the ``system time'' are moved before the program
13890 name, and the options passed to the program are displayed, so that one
13891 can later tell what file was being compiled, and with which options.
13893 @item -fdump-final-insns@r{[}=@var{file}@r{]}
13894 @opindex fdump-final-insns
13895 Dump the final internal representation (RTL) to @var{file}.  If the
13896 optional argument is omitted (or if @var{file} is @code{.}), the name
13897 of the dump file is determined by appending @code{.gkd} to the
13898 compilation output file name.
13900 @item -fcompare-debug@r{[}=@var{opts}@r{]}
13901 @opindex fcompare-debug
13902 @opindex fno-compare-debug
13903 If no error occurs during compilation, run the compiler a second time,
13904 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
13905 passed to the second compilation.  Dump the final internal
13906 representation in both compilations, and print an error if they differ.
13908 If the equal sign is omitted, the default @option{-gtoggle} is used.
13910 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
13911 and nonzero, implicitly enables @option{-fcompare-debug}.  If
13912 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
13913 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
13914 is used.
13916 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
13917 is equivalent to @option{-fno-compare-debug}, which disables the dumping
13918 of the final representation and the second compilation, preventing even
13919 @env{GCC_COMPARE_DEBUG} from taking effect.
13921 To verify full coverage during @option{-fcompare-debug} testing, set
13922 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
13923 which GCC rejects as an invalid option in any actual compilation
13924 (rather than preprocessing, assembly or linking).  To get just a
13925 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
13926 not overridden} will do.
13928 @item -fcompare-debug-second
13929 @opindex fcompare-debug-second
13930 This option is implicitly passed to the compiler for the second
13931 compilation requested by @option{-fcompare-debug}, along with options to
13932 silence warnings, and omitting other options that would cause
13933 side-effect compiler outputs to files or to the standard output.  Dump
13934 files and preserved temporary files are renamed so as to contain the
13935 @code{.gk} additional extension during the second compilation, to avoid
13936 overwriting those generated by the first.
13938 When this option is passed to the compiler driver, it causes the
13939 @emph{first} compilation to be skipped, which makes it useful for little
13940 other than debugging the compiler proper.
13942 @item -gtoggle
13943 @opindex gtoggle
13944 Turn off generation of debug info, if leaving out this option
13945 generates it, or turn it on at level 2 otherwise.  The position of this
13946 argument in the command line does not matter; it takes effect after all
13947 other options are processed, and it does so only once, no matter how
13948 many times it is given.  This is mainly intended to be used with
13949 @option{-fcompare-debug}.
13951 @item -fvar-tracking-assignments-toggle
13952 @opindex fvar-tracking-assignments-toggle
13953 @opindex fno-var-tracking-assignments-toggle
13954 Toggle @option{-fvar-tracking-assignments}, in the same way that
13955 @option{-gtoggle} toggles @option{-g}.
13957 @item -Q
13958 @opindex Q
13959 Makes the compiler print out each function name as it is compiled, and
13960 print some statistics about each pass when it finishes.
13962 @item -ftime-report
13963 @opindex ftime-report
13964 Makes the compiler print some statistics about the time consumed by each
13965 pass when it finishes.
13967 @item -ftime-report-details
13968 @opindex ftime-report-details
13969 Record the time consumed by infrastructure parts separately for each pass.
13971 @item -fira-verbose=@var{n}
13972 @opindex fira-verbose
13973 Control the verbosity of the dump file for the integrated register allocator.
13974 The default value is 5.  If the value @var{n} is greater or equal to 10,
13975 the dump output is sent to stderr using the same format as @var{n} minus 10.
13977 @item -flto-report
13978 @opindex flto-report
13979 Prints a report with internal details on the workings of the link-time
13980 optimizer.  The contents of this report vary from version to version.
13981 It is meant to be useful to GCC developers when processing object
13982 files in LTO mode (via @option{-flto}).
13984 Disabled by default.
13986 @item -flto-report-wpa
13987 @opindex flto-report-wpa
13988 Like @option{-flto-report}, but only print for the WPA phase of Link
13989 Time Optimization.
13991 @item -fmem-report
13992 @opindex fmem-report
13993 Makes the compiler print some statistics about permanent memory
13994 allocation when it finishes.
13996 @item -fmem-report-wpa
13997 @opindex fmem-report-wpa
13998 Makes the compiler print some statistics about permanent memory
13999 allocation for the WPA phase only.
14001 @item -fpre-ipa-mem-report
14002 @opindex fpre-ipa-mem-report
14003 @item -fpost-ipa-mem-report
14004 @opindex fpost-ipa-mem-report
14005 Makes the compiler print some statistics about permanent memory
14006 allocation before or after interprocedural optimization.
14008 @item -fprofile-report
14009 @opindex fprofile-report
14010 Makes the compiler print some statistics about consistency of the
14011 (estimated) profile and effect of individual passes.
14013 @item -fstack-usage
14014 @opindex fstack-usage
14015 Makes the compiler output stack usage information for the program, on a
14016 per-function basis.  The filename for the dump is made by appending
14017 @file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
14018 the output file, if explicitly specified and it is not an executable,
14019 otherwise it is the basename of the source file.  An entry is made up
14020 of three fields:
14022 @itemize
14023 @item
14024 The name of the function.
14025 @item
14026 A number of bytes.
14027 @item
14028 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
14029 @end itemize
14031 The qualifier @code{static} means that the function manipulates the stack
14032 statically: a fixed number of bytes are allocated for the frame on function
14033 entry and released on function exit; no stack adjustments are otherwise made
14034 in the function.  The second field is this fixed number of bytes.
14036 The qualifier @code{dynamic} means that the function manipulates the stack
14037 dynamically: in addition to the static allocation described above, stack
14038 adjustments are made in the body of the function, for example to push/pop
14039 arguments around function calls.  If the qualifier @code{bounded} is also
14040 present, the amount of these adjustments is bounded at compile time and
14041 the second field is an upper bound of the total amount of stack used by
14042 the function.  If it is not present, the amount of these adjustments is
14043 not bounded at compile time and the second field only represents the
14044 bounded part.
14046 @item -fstats
14047 @opindex fstats
14048 Emit statistics about front-end processing at the end of the compilation.
14049 This option is supported only by the C++ front end, and
14050 the information is generally only useful to the G++ development team.
14052 @item -fdbg-cnt-list
14053 @opindex fdbg-cnt-list
14054 Print the name and the counter upper bound for all debug counters.
14057 @item -fdbg-cnt=@var{counter-value-list}
14058 @opindex fdbg-cnt
14059 Set the internal debug counter upper bound.  @var{counter-value-list}
14060 is a comma-separated list of @var{name}:@var{value} pairs
14061 which sets the upper bound of each debug counter @var{name} to @var{value}.
14062 All debug counters have the initial upper bound of @code{UINT_MAX};
14063 thus @code{dbg_cnt} returns true always unless the upper bound
14064 is set by this option.
14065 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
14066 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
14068 @item -print-file-name=@var{library}
14069 @opindex print-file-name
14070 Print the full absolute name of the library file @var{library} that
14071 would be used when linking---and don't do anything else.  With this
14072 option, GCC does not compile or link anything; it just prints the
14073 file name.
14075 @item -print-multi-directory
14076 @opindex print-multi-directory
14077 Print the directory name corresponding to the multilib selected by any
14078 other switches present in the command line.  This directory is supposed
14079 to exist in @env{GCC_EXEC_PREFIX}.
14081 @item -print-multi-lib
14082 @opindex print-multi-lib
14083 Print the mapping from multilib directory names to compiler switches
14084 that enable them.  The directory name is separated from the switches by
14085 @samp{;}, and each switch starts with an @samp{@@} instead of the
14086 @samp{-}, without spaces between multiple switches.  This is supposed to
14087 ease shell processing.
14089 @item -print-multi-os-directory
14090 @opindex print-multi-os-directory
14091 Print the path to OS libraries for the selected
14092 multilib, relative to some @file{lib} subdirectory.  If OS libraries are
14093 present in the @file{lib} subdirectory and no multilibs are used, this is
14094 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
14095 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
14096 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
14097 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
14099 @item -print-multiarch
14100 @opindex print-multiarch
14101 Print the path to OS libraries for the selected multiarch,
14102 relative to some @file{lib} subdirectory.
14104 @item -print-prog-name=@var{program}
14105 @opindex print-prog-name
14106 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
14108 @item -print-libgcc-file-name
14109 @opindex print-libgcc-file-name
14110 Same as @option{-print-file-name=libgcc.a}.
14112 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
14113 but you do want to link with @file{libgcc.a}.  You can do:
14115 @smallexample
14116 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
14117 @end smallexample
14119 @item -print-search-dirs
14120 @opindex print-search-dirs
14121 Print the name of the configured installation directory and a list of
14122 program and library directories @command{gcc} searches---and don't do anything else.
14124 This is useful when @command{gcc} prints the error message
14125 @samp{installation problem, cannot exec cpp0: No such file or directory}.
14126 To resolve this you either need to put @file{cpp0} and the other compiler
14127 components where @command{gcc} expects to find them, or you can set the environment
14128 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
14129 Don't forget the trailing @samp{/}.
14130 @xref{Environment Variables}.
14132 @item -print-sysroot
14133 @opindex print-sysroot
14134 Print the target sysroot directory that is used during
14135 compilation.  This is the target sysroot specified either at configure
14136 time or using the @option{--sysroot} option, possibly with an extra
14137 suffix that depends on compilation options.  If no target sysroot is
14138 specified, the option prints nothing.
14140 @item -print-sysroot-headers-suffix
14141 @opindex print-sysroot-headers-suffix
14142 Print the suffix added to the target sysroot when searching for
14143 headers, or give an error if the compiler is not configured with such
14144 a suffix---and don't do anything else.
14146 @item -dumpmachine
14147 @opindex dumpmachine
14148 Print the compiler's target machine (for example,
14149 @samp{i686-pc-linux-gnu})---and don't do anything else.
14151 @item -dumpversion
14152 @opindex dumpversion
14153 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
14154 anything else.  This is the compiler version used in filesystem paths,
14155 specs, can be depending on how the compiler has been configured just
14156 a single number (major version), two numbers separated by dot (major and
14157 minor version) or three numbers separated by dots (major, minor and patchlevel
14158 version).
14160 @item -dumpfullversion
14161 @opindex dumpfullversion
14162 Print the full compiler version, always 3 numbers separated by dots,
14163 major, minor and patchlevel version.
14165 @item -dumpspecs
14166 @opindex dumpspecs
14167 Print the compiler's built-in specs---and don't do anything else.  (This
14168 is used when GCC itself is being built.)  @xref{Spec Files}.
14169 @end table
14171 @node Submodel Options
14172 @section Machine-Dependent Options
14173 @cindex submodel options
14174 @cindex specifying hardware config
14175 @cindex hardware models and configurations, specifying
14176 @cindex target-dependent options
14177 @cindex machine-dependent options
14179 Each target machine supported by GCC can have its own options---for
14180 example, to allow you to compile for a particular processor variant or
14181 ABI, or to control optimizations specific to that machine.  By
14182 convention, the names of machine-specific options start with
14183 @samp{-m}.
14185 Some configurations of the compiler also support additional target-specific
14186 options, usually for compatibility with other compilers on the same
14187 platform.
14189 @c This list is ordered alphanumerically by subsection name.
14190 @c It should be the same order and spelling as these options are listed
14191 @c in Machine Dependent Options
14193 @menu
14194 * AArch64 Options::
14195 * Adapteva Epiphany Options::
14196 * ARC Options::
14197 * ARM Options::
14198 * AVR Options::
14199 * Blackfin Options::
14200 * C6X Options::
14201 * CRIS Options::
14202 * CR16 Options::
14203 * Darwin Options::
14204 * DEC Alpha Options::
14205 * FR30 Options::
14206 * FT32 Options::
14207 * FRV Options::
14208 * GNU/Linux Options::
14209 * H8/300 Options::
14210 * HPPA Options::
14211 * IA-64 Options::
14212 * LM32 Options::
14213 * M32C Options::
14214 * M32R/D Options::
14215 * M680x0 Options::
14216 * MCore Options::
14217 * MeP Options::
14218 * MicroBlaze Options::
14219 * MIPS Options::
14220 * MMIX Options::
14221 * MN10300 Options::
14222 * Moxie Options::
14223 * MSP430 Options::
14224 * NDS32 Options::
14225 * Nios II Options::
14226 * Nvidia PTX Options::
14227 * PDP-11 Options::
14228 * picoChip Options::
14229 * PowerPC Options::
14230 * RISC-V Options::
14231 * RL78 Options::
14232 * RS/6000 and PowerPC Options::
14233 * RX Options::
14234 * S/390 and zSeries Options::
14235 * Score Options::
14236 * SH Options::
14237 * Solaris 2 Options::
14238 * SPARC Options::
14239 * SPU Options::
14240 * System V Options::
14241 * TILE-Gx Options::
14242 * TILEPro Options::
14243 * V850 Options::
14244 * VAX Options::
14245 * Visium Options::
14246 * VMS Options::
14247 * VxWorks Options::
14248 * x86 Options::
14249 * x86 Windows Options::
14250 * Xstormy16 Options::
14251 * Xtensa Options::
14252 * zSeries Options::
14253 @end menu
14255 @node AArch64 Options
14256 @subsection AArch64 Options
14257 @cindex AArch64 Options
14259 These options are defined for AArch64 implementations:
14261 @table @gcctabopt
14263 @item -mabi=@var{name}
14264 @opindex mabi
14265 Generate code for the specified data model.  Permissible values
14266 are @samp{ilp32} for SysV-like data model where int, long int and pointers
14267 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
14268 but long int and pointers are 64 bits.
14270 The default depends on the specific target configuration.  Note that
14271 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
14272 entire program with the same ABI, and link with a compatible set of libraries.
14274 @item -mbig-endian
14275 @opindex mbig-endian
14276 Generate big-endian code.  This is the default when GCC is configured for an
14277 @samp{aarch64_be-*-*} target.
14279 @item -mgeneral-regs-only
14280 @opindex mgeneral-regs-only
14281 Generate code which uses only the general-purpose registers.  This will prevent
14282 the compiler from using floating-point and Advanced SIMD registers but will not
14283 impose any restrictions on the assembler.
14285 @item -mlittle-endian
14286 @opindex mlittle-endian
14287 Generate little-endian code.  This is the default when GCC is configured for an
14288 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
14290 @item -mcmodel=tiny
14291 @opindex mcmodel=tiny
14292 Generate code for the tiny code model.  The program and its statically defined
14293 symbols must be within 1MB of each other.  Programs can be statically or
14294 dynamically linked.
14296 @item -mcmodel=small
14297 @opindex mcmodel=small
14298 Generate code for the small code model.  The program and its statically defined
14299 symbols must be within 4GB of each other.  Programs can be statically or
14300 dynamically linked.  This is the default code model.
14302 @item -mcmodel=large
14303 @opindex mcmodel=large
14304 Generate code for the large code model.  This makes no assumptions about
14305 addresses and sizes of sections.  Programs can be statically linked only.
14307 @item -mstrict-align
14308 @opindex mstrict-align
14309 Avoid generating memory accesses that may not be aligned on a natural object
14310 boundary as described in the architecture specification.
14312 @item -momit-leaf-frame-pointer
14313 @itemx -mno-omit-leaf-frame-pointer
14314 @opindex momit-leaf-frame-pointer
14315 @opindex mno-omit-leaf-frame-pointer
14316 Omit or keep the frame pointer in leaf functions.  The former behavior is the
14317 default.
14319 @item -mtls-dialect=desc
14320 @opindex mtls-dialect=desc
14321 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14322 of TLS variables.  This is the default.
14324 @item -mtls-dialect=traditional
14325 @opindex mtls-dialect=traditional
14326 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14327 of TLS variables.
14329 @item -mtls-size=@var{size}
14330 @opindex mtls-size
14331 Specify bit size of immediate TLS offsets.  Valid values are 12, 24, 32, 48.
14332 This option requires binutils 2.26 or newer.
14334 @item -mfix-cortex-a53-835769
14335 @itemx -mno-fix-cortex-a53-835769
14336 @opindex mfix-cortex-a53-835769
14337 @opindex mno-fix-cortex-a53-835769
14338 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14339 This involves inserting a NOP instruction between memory instructions and
14340 64-bit integer multiply-accumulate instructions.
14342 @item -mfix-cortex-a53-843419
14343 @itemx -mno-fix-cortex-a53-843419
14344 @opindex mfix-cortex-a53-843419
14345 @opindex mno-fix-cortex-a53-843419
14346 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14347 This erratum workaround is made at link time and this will only pass the
14348 corresponding flag to the linker.
14350 @item -mlow-precision-recip-sqrt
14351 @item -mno-low-precision-recip-sqrt
14352 @opindex mlow-precision-recip-sqrt
14353 @opindex mno-low-precision-recip-sqrt
14354 Enable or disable the reciprocal square root approximation.
14355 This option only has an effect if @option{-ffast-math} or
14356 @option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
14357 precision of reciprocal square root results to about 16 bits for
14358 single precision and to 32 bits for double precision.
14360 @item -mlow-precision-sqrt
14361 @item -mno-low-precision-sqrt
14362 @opindex -mlow-precision-sqrt
14363 @opindex -mno-low-precision-sqrt
14364 Enable or disable the square root approximation.
14365 This option only has an effect if @option{-ffast-math} or
14366 @option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
14367 precision of square root results to about 16 bits for
14368 single precision and to 32 bits for double precision.
14369 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14371 @item -mlow-precision-div
14372 @item -mno-low-precision-div
14373 @opindex -mlow-precision-div
14374 @opindex -mno-low-precision-div
14375 Enable or disable the division approximation.
14376 This option only has an effect if @option{-ffast-math} or
14377 @option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
14378 precision of division results to about 16 bits for
14379 single precision and to 32 bits for double precision.
14381 @item -march=@var{name}
14382 @opindex march
14383 Specify the name of the target architecture and, optionally, one or
14384 more feature modifiers.  This option has the form
14385 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14387 The permissible values for @var{arch} are @samp{armv8-a},
14388 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @var{native}.
14390 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14391 support for the ARMv8.3-A architecture extensions.
14393 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14394 support for the ARMv8.2-A architecture extensions.
14396 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14397 support for the ARMv8.1-A architecture extension.  In particular, it
14398 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
14400 The value @samp{native} is available on native AArch64 GNU/Linux and
14401 causes the compiler to pick the architecture of the host system.  This
14402 option has no effect if the compiler is unable to recognize the
14403 architecture of the host system,
14405 The permissible values for @var{feature} are listed in the sub-section
14406 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14407 Feature Modifiers}.  Where conflicting feature modifiers are
14408 specified, the right-most feature is used.
14410 GCC uses @var{name} to determine what kind of instructions it can emit
14411 when generating assembly code.  If @option{-march} is specified
14412 without either of @option{-mtune} or @option{-mcpu} also being
14413 specified, the code is tuned to perform well across a range of target
14414 processors implementing the target architecture.
14416 @item -mtune=@var{name}
14417 @opindex mtune
14418 Specify the name of the target processor for which GCC should tune the
14419 performance of the code.  Permissible values for this option are:
14420 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14421 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14422 @samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx}, @samp{saphira},
14423 @samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14424 @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14425 @samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14426 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14427 @samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14428 @samp{native}.
14430 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14431 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14432 @samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14433 big.LITTLE system.
14435 Additionally on native AArch64 GNU/Linux systems the value
14436 @samp{native} tunes performance to the host system.  This option has no effect
14437 if the compiler is unable to recognize the processor of the host system.
14439 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14440 are specified, the code is tuned to perform well across a range
14441 of target processors.
14443 This option cannot be suffixed by feature modifiers.
14445 @item -mcpu=@var{name}
14446 @opindex mcpu
14447 Specify the name of the target processor, optionally suffixed by one
14448 or more feature modifiers.  This option has the form
14449 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14450 the permissible values for @var{cpu} are the same as those available
14451 for @option{-mtune}.  The permissible values for @var{feature} are
14452 documented in the sub-section on
14453 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14454 Feature Modifiers}.  Where conflicting feature modifiers are
14455 specified, the right-most feature is used.
14457 GCC uses @var{name} to determine what kind of instructions it can emit when
14458 generating assembly code (as if by @option{-march}) and to determine
14459 the target processor for which to tune for performance (as if
14460 by @option{-mtune}).  Where this option is used in conjunction
14461 with @option{-march} or @option{-mtune}, those options take precedence
14462 over the appropriate part of this option.
14464 @item -moverride=@var{string}
14465 @opindex moverride
14466 Override tuning decisions made by the back-end in response to a
14467 @option{-mtune=} switch.  The syntax, semantics, and accepted values
14468 for @var{string} in this option are not guaranteed to be consistent
14469 across releases.
14471 This option is only intended to be useful when developing GCC.
14473 @item -mpc-relative-literal-loads
14474 @itemx -mno-pc-relative-literal-loads
14475 @opindex mpc-relative-literal-loads
14476 @opindex mno-pc-relative-literal-loads
14477 Enable or disable PC-relative literal loads.  With this option literal pools are
14478 accessed using a single instruction and emitted after each function.  This
14479 limits the maximum size of functions to 1MB.  This is enabled by default for
14480 @option{-mcmodel=tiny}.
14482 @item -msign-return-address=@var{scope}
14483 @opindex msign-return-address
14484 Select the function scope on which return address signing will be applied.
14485 Permissible values are @samp{none}, which disables return address signing,
14486 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
14487 functions, and @samp{all}, which enables pointer signing for all functions.  The
14488 default value is @samp{none}.
14490 @end table
14492 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14493 @anchor{aarch64-feature-modifiers}
14494 @cindex @option{-march} feature modifiers
14495 @cindex @option{-mcpu} feature modifiers
14496 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14497 the following and their inverses @option{no@var{feature}}:
14499 @table @samp
14500 @item crc
14501 Enable CRC extension.  This is on by default for
14502 @option{-march=armv8.1-a}.
14503 @item crypto
14504 Enable Crypto extension.  This also enables Advanced SIMD and floating-point
14505 instructions.
14506 @item fp
14507 Enable floating-point instructions.  This is on by default for all possible
14508 values for options @option{-march} and @option{-mcpu}.
14509 @item simd
14510 Enable Advanced SIMD instructions.  This also enables floating-point
14511 instructions.  This is on by default for all possible values for options
14512 @option{-march} and @option{-mcpu}.
14513 @item lse
14514 Enable Large System Extension instructions.  This is on by default for
14515 @option{-march=armv8.1-a}.
14516 @item rdma
14517 Enable Round Double Multiply Accumulate instructions.  This is on by default
14518 for @option{-march=armv8.1-a}.
14519 @item fp16
14520 Enable FP16 extension.  This also enables floating-point instructions.
14521 @item rcpc
14522 Enable the RcPc extension.  This does not change code generation from GCC,
14523 but is passed on to the assembler, enabling inline asm statements to use
14524 instructions from the RcPc extension.
14525 @item dotprod
14526 Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
14528 @end table
14530 Feature @option{crypto} implies @option{simd}, which implies @option{fp}.
14531 Conversely, @option{nofp} implies @option{nosimd}, which implies
14532 @option{nocrypto}.
14534 @node Adapteva Epiphany Options
14535 @subsection Adapteva Epiphany Options
14537 These @samp{-m} options are defined for Adapteva Epiphany:
14539 @table @gcctabopt
14540 @item -mhalf-reg-file
14541 @opindex mhalf-reg-file
14542 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14543 That allows code to run on hardware variants that lack these registers.
14545 @item -mprefer-short-insn-regs
14546 @opindex mprefer-short-insn-regs
14547 Preferentially allocate registers that allow short instruction generation.
14548 This can result in increased instruction count, so this may either reduce or
14549 increase overall code size.
14551 @item -mbranch-cost=@var{num}
14552 @opindex mbranch-cost
14553 Set the cost of branches to roughly @var{num} ``simple'' instructions.
14554 This cost is only a heuristic and is not guaranteed to produce
14555 consistent results across releases.
14557 @item -mcmove
14558 @opindex mcmove
14559 Enable the generation of conditional moves.
14561 @item -mnops=@var{num}
14562 @opindex mnops
14563 Emit @var{num} NOPs before every other generated instruction.
14565 @item -mno-soft-cmpsf
14566 @opindex mno-soft-cmpsf
14567 For single-precision floating-point comparisons, emit an @code{fsub} instruction
14568 and test the flags.  This is faster than a software comparison, but can
14569 get incorrect results in the presence of NaNs, or when two different small
14570 numbers are compared such that their difference is calculated as zero.
14571 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14572 software comparisons.
14574 @item -mstack-offset=@var{num}
14575 @opindex mstack-offset
14576 Set the offset between the top of the stack and the stack pointer.
14577 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14578 can be used by leaf functions without stack allocation.
14579 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14580 Note also that this option changes the ABI; compiling a program with a
14581 different stack offset than the libraries have been compiled with
14582 generally does not work.
14583 This option can be useful if you want to evaluate if a different stack
14584 offset would give you better code, but to actually use a different stack
14585 offset to build working programs, it is recommended to configure the
14586 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14588 @item -mno-round-nearest
14589 @opindex mno-round-nearest
14590 Make the scheduler assume that the rounding mode has been set to
14591 truncating.  The default is @option{-mround-nearest}.
14593 @item -mlong-calls
14594 @opindex mlong-calls
14595 If not otherwise specified by an attribute, assume all calls might be beyond
14596 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14597 function address into a register before performing a (otherwise direct) call.
14598 This is the default.
14600 @item -mshort-calls
14601 @opindex short-calls
14602 If not otherwise specified by an attribute, assume all direct calls are
14603 in the range of the @code{b} / @code{bl} instructions, so use these instructions
14604 for direct calls.  The default is @option{-mlong-calls}.
14606 @item -msmall16
14607 @opindex msmall16
14608 Assume addresses can be loaded as 16-bit unsigned values.  This does not
14609 apply to function addresses for which @option{-mlong-calls} semantics
14610 are in effect.
14612 @item -mfp-mode=@var{mode}
14613 @opindex mfp-mode
14614 Set the prevailing mode of the floating-point unit.
14615 This determines the floating-point mode that is provided and expected
14616 at function call and return time.  Making this mode match the mode you
14617 predominantly need at function start can make your programs smaller and
14618 faster by avoiding unnecessary mode switches.
14620 @var{mode} can be set to one the following values:
14622 @table @samp
14623 @item caller
14624 Any mode at function entry is valid, and retained or restored when
14625 the function returns, and when it calls other functions.
14626 This mode is useful for compiling libraries or other compilation units
14627 you might want to incorporate into different programs with different
14628 prevailing FPU modes, and the convenience of being able to use a single
14629 object file outweighs the size and speed overhead for any extra
14630 mode switching that might be needed, compared with what would be needed
14631 with a more specific choice of prevailing FPU mode.
14633 @item truncate
14634 This is the mode used for floating-point calculations with
14635 truncating (i.e.@: round towards zero) rounding mode.  That includes
14636 conversion from floating point to integer.
14638 @item round-nearest
14639 This is the mode used for floating-point calculations with
14640 round-to-nearest-or-even rounding mode.
14642 @item int
14643 This is the mode used to perform integer calculations in the FPU, e.g.@:
14644 integer multiply, or integer multiply-and-accumulate.
14645 @end table
14647 The default is @option{-mfp-mode=caller}
14649 @item -mnosplit-lohi
14650 @itemx -mno-postinc
14651 @itemx -mno-postmodify
14652 @opindex mnosplit-lohi
14653 @opindex mno-postinc
14654 @opindex mno-postmodify
14655 Code generation tweaks that disable, respectively, splitting of 32-bit
14656 loads, generation of post-increment addresses, and generation of
14657 post-modify addresses.  The defaults are @option{msplit-lohi},
14658 @option{-mpost-inc}, and @option{-mpost-modify}.
14660 @item -mnovect-double
14661 @opindex mno-vect-double
14662 Change the preferred SIMD mode to SImode.  The default is
14663 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
14665 @item -max-vect-align=@var{num}
14666 @opindex max-vect-align
14667 The maximum alignment for SIMD vector mode types.
14668 @var{num} may be 4 or 8.  The default is 8.
14669 Note that this is an ABI change, even though many library function
14670 interfaces are unaffected if they don't use SIMD vector modes
14671 in places that affect size and/or alignment of relevant types.
14673 @item -msplit-vecmove-early
14674 @opindex msplit-vecmove-early
14675 Split vector moves into single word moves before reload.  In theory this
14676 can give better register allocation, but so far the reverse seems to be
14677 generally the case.
14679 @item -m1reg-@var{reg}
14680 @opindex m1reg-
14681 Specify a register to hold the constant @minus{}1, which makes loading small negative
14682 constants and certain bitmasks faster.
14683 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
14684 which specify use of that register as a fixed register,
14685 and @samp{none}, which means that no register is used for this
14686 purpose.  The default is @option{-m1reg-none}.
14688 @end table
14690 @node ARC Options
14691 @subsection ARC Options
14692 @cindex ARC options
14694 The following options control the architecture variant for which code
14695 is being compiled:
14697 @c architecture variants
14698 @table @gcctabopt
14700 @item -mbarrel-shifter
14701 @opindex mbarrel-shifter
14702 Generate instructions supported by barrel shifter.  This is the default
14703 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
14705 @item -mcpu=@var{cpu}
14706 @opindex mcpu
14707 Set architecture type, register usage, and instruction scheduling
14708 parameters for @var{cpu}.  There are also shortcut alias options
14709 available for backward compatibility and convenience.  Supported
14710 values for @var{cpu} are
14712 @table @samp
14713 @opindex mA6
14714 @opindex mARC600
14715 @item arc600
14716 Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
14718 @item arc601
14719 @opindex mARC601
14720 Compile for ARC601.  Alias: @option{-mARC601}.
14722 @item arc700
14723 @opindex mA7
14724 @opindex mARC700
14725 Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
14726 This is the default when configured with @option{--with-cpu=arc700}@.
14728 @item arcem
14729 Compile for ARC EM.
14731 @item archs
14732 Compile for ARC HS.
14734 @item em
14735 Compile for ARC EM CPU with no hardware extensions.
14737 @item em4
14738 Compile for ARC EM4 CPU.
14740 @item em4_dmips
14741 Compile for ARC EM4 DMIPS CPU.
14743 @item em4_fpus
14744 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
14745 extension.
14747 @item em4_fpuda
14748 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
14749 double assist instructions.
14751 @item hs
14752 Compile for ARC HS CPU with no hardware extensions except the atomic
14753 instructions.
14755 @item hs34
14756 Compile for ARC HS34 CPU.
14758 @item hs38
14759 Compile for ARC HS38 CPU.
14761 @item hs38_linux
14762 Compile for ARC HS38 CPU with all hardware extensions on.
14764 @item arc600_norm
14765 Compile for ARC 600 CPU with @code{norm} instructions enabled.
14767 @item arc600_mul32x16
14768 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply 
14769 instructions enabled.
14771 @item arc600_mul64
14772 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family 
14773 instructions enabled.
14775 @item arc601_norm
14776 Compile for ARC 601 CPU with @code{norm} instructions enabled.
14778 @item arc601_mul32x16
14779 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
14780 instructions enabled.
14782 @item arc601_mul64
14783 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
14784 instructions enabled.
14786 @item nps400
14787 Compile for ARC 700 on NPS400 chip.
14789 @end table
14791 @item -mdpfp
14792 @opindex mdpfp
14793 @itemx -mdpfp-compact
14794 @opindex mdpfp-compact
14795 Generate double-precision FPX instructions, tuned for the compact
14796 implementation.
14798 @item -mdpfp-fast
14799 @opindex mdpfp-fast
14800 Generate double-precision FPX instructions, tuned for the fast
14801 implementation.
14803 @item -mno-dpfp-lrsr
14804 @opindex mno-dpfp-lrsr
14805 Disable @code{lr} and @code{sr} instructions from using FPX extension
14806 aux registers.
14808 @item -mea
14809 @opindex mea
14810 Generate extended arithmetic instructions.  Currently only
14811 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
14812 supported.  This is always enabled for @option{-mcpu=ARC700}.
14814 @item -mno-mpy
14815 @opindex mno-mpy
14816 Do not generate @code{mpy}-family instructions for ARC700.  This option is
14817 deprecated.
14819 @item -mmul32x16
14820 @opindex mmul32x16
14821 Generate 32x16-bit multiply and multiply-accumulate instructions.
14823 @item -mmul64
14824 @opindex mmul64
14825 Generate @code{mul64} and @code{mulu64} instructions.  
14826 Only valid for @option{-mcpu=ARC600}.
14828 @item -mnorm
14829 @opindex mnorm
14830 Generate @code{norm} instructions.  This is the default if @option{-mcpu=ARC700}
14831 is in effect.
14833 @item -mspfp
14834 @opindex mspfp
14835 @itemx -mspfp-compact
14836 @opindex mspfp-compact
14837 Generate single-precision FPX instructions, tuned for the compact
14838 implementation.
14840 @item -mspfp-fast
14841 @opindex mspfp-fast
14842 Generate single-precision FPX instructions, tuned for the fast
14843 implementation.
14845 @item -msimd
14846 @opindex msimd
14847 Enable generation of ARC SIMD instructions via target-specific
14848 builtins.  Only valid for @option{-mcpu=ARC700}.
14850 @item -msoft-float
14851 @opindex msoft-float
14852 This option ignored; it is provided for compatibility purposes only.
14853 Software floating-point code is emitted by default, and this default
14854 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
14855 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
14856 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
14858 @item -mswap
14859 @opindex mswap
14860 Generate @code{swap} instructions.
14862 @item -matomic
14863 @opindex matomic
14864 This enables use of the locked load/store conditional extension to implement
14865 atomic memory built-in functions.  Not available for ARC 6xx or ARC
14866 EM cores.
14868 @item -mdiv-rem
14869 @opindex mdiv-rem
14870 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
14872 @item -mcode-density
14873 @opindex mcode-density
14874 Enable code density instructions for ARC EM.  
14875 This option is on by default for ARC HS.
14877 @item -mll64
14878 @opindex mll64
14879 Enable double load/store operations for ARC HS cores.
14881 @item -mtp-regno=@var{regno}
14882 @opindex mtp-regno
14883 Specify thread pointer register number.
14885 @item -mmpy-option=@var{multo}
14886 @opindex mmpy-option
14887 Compile ARCv2 code with a multiplier design option.  You can specify 
14888 the option using either a string or numeric value for @var{multo}.  
14889 @samp{wlh1} is the default value.  The recognized values are:
14891 @table @samp
14892 @item 0
14893 @itemx none
14894 No multiplier available.
14896 @item 1
14897 @itemx w
14898 16x16 multiplier, fully pipelined.
14899 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
14901 @item 2
14902 @itemx wlh1
14903 32x32 multiplier, fully
14904 pipelined (1 stage).  The following instructions are additionally
14905 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14907 @item 3
14908 @itemx wlh2
14909 32x32 multiplier, fully pipelined
14910 (2 stages).  The following instructions are additionally enabled: @code{mpy},
14911 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14913 @item 4
14914 @itemx wlh3
14915 Two 16x16 multipliers, blocking,
14916 sequential.  The following instructions are additionally enabled: @code{mpy},
14917 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14919 @item 5
14920 @itemx wlh4
14921 One 16x16 multiplier, blocking,
14922 sequential.  The following instructions are additionally enabled: @code{mpy},
14923 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14925 @item 6
14926 @itemx wlh5
14927 One 32x4 multiplier, blocking,
14928 sequential.  The following instructions are additionally enabled: @code{mpy},
14929 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
14931 @item 7
14932 @itemx plus_dmpy
14933 ARC HS SIMD support.
14935 @item 8
14936 @itemx plus_macd
14937 ARC HS SIMD support.
14939 @item 9
14940 @itemx plus_qmacw
14941 ARC HS SIMD support.
14943 @end table
14945 This option is only available for ARCv2 cores@.
14947 @item -mfpu=@var{fpu}
14948 @opindex mfpu
14949 Enables support for specific floating-point hardware extensions for ARCv2
14950 cores.  Supported values for @var{fpu} are:
14952 @table @samp
14954 @item fpus
14955 Enables support for single-precision floating-point hardware
14956 extensions@.
14958 @item fpud
14959 Enables support for double-precision floating-point hardware
14960 extensions.  The single-precision floating-point extension is also
14961 enabled.  Not available for ARC EM@.
14963 @item fpuda
14964 Enables support for double-precision floating-point hardware
14965 extensions using double-precision assist instructions.  The single-precision
14966 floating-point extension is also enabled.  This option is
14967 only available for ARC EM@.
14969 @item fpuda_div
14970 Enables support for double-precision floating-point hardware
14971 extensions using double-precision assist instructions.
14972 The single-precision floating-point, square-root, and divide 
14973 extensions are also enabled.  This option is
14974 only available for ARC EM@.
14976 @item fpuda_fma
14977 Enables support for double-precision floating-point hardware
14978 extensions using double-precision assist instructions.
14979 The single-precision floating-point and fused multiply and add 
14980 hardware extensions are also enabled.  This option is
14981 only available for ARC EM@.
14983 @item fpuda_all
14984 Enables support for double-precision floating-point hardware
14985 extensions using double-precision assist instructions.
14986 All single-precision floating-point hardware extensions are also
14987 enabled.  This option is only available for ARC EM@.
14989 @item fpus_div
14990 Enables support for single-precision floating-point, square-root and divide 
14991 hardware extensions@.
14993 @item fpud_div
14994 Enables support for double-precision floating-point, square-root and divide 
14995 hardware extensions.  This option
14996 includes option @samp{fpus_div}. Not available for ARC EM@.
14998 @item fpus_fma
14999 Enables support for single-precision floating-point and 
15000 fused multiply and add hardware extensions@.
15002 @item fpud_fma
15003 Enables support for double-precision floating-point and 
15004 fused multiply and add hardware extensions.  This option
15005 includes option @samp{fpus_fma}.  Not available for ARC EM@.
15007 @item fpus_all
15008 Enables support for all single-precision floating-point hardware
15009 extensions@.
15011 @item fpud_all
15012 Enables support for all single- and double-precision floating-point
15013 hardware extensions.  Not available for ARC EM@.
15015 @end table
15017 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
15018 @opindex mirq-ctrl-saved
15019 Specifies general-purposes registers that the processor automatically
15020 saves/restores on interrupt entry and exit.  @var{register-range} is
15021 specified as two registers separated by a dash.  The register range
15022 always starts with @code{r0}, the upper limit is @code{fp} register.
15023 @var{blink} and @var{lp_count} are optional.  This option is only
15024 valid for ARC EM and ARC HS cores.
15026 @item -mrgf-banked-regs=@var{number}
15027 @opindex mrgf-banked-regs
15028 Specifies the number of registers replicated in second register bank
15029 on entry to fast interrupt.  Fast interrupts are interrupts with the
15030 highest priority level P0.  These interrupts save only PC and STATUS32
15031 registers to avoid memory transactions during interrupt entry and exit
15032 sequences.  Use this option when you are using fast interrupts in an
15033 ARC V2 family processor.  Permitted values are 4, 8, 16, and 32.
15035 @item -mlpc-width=@var{width}
15036 @opindex mlpc-width
15037 Specify the width of the @code{lp_count} register.  Valid values for
15038 @var{width} are 8, 16, 20, 24, 28 and 32 bits.  The default width is
15039 fixed to 32 bits.  If the width is less than 32, the compiler does not
15040 attempt to transform loops in your program to use the zero-delay loop
15041 mechanism unless it is known that the @code{lp_count} register can
15042 hold the required loop-counter value.  Depending on the width
15043 specified, the compiler and run-time library might continue to use the
15044 loop mechanism for various needs.  This option defines macro
15045 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
15047 @end table
15049 The following options are passed through to the assembler, and also
15050 define preprocessor macro symbols.
15052 @c Flags used by the assembler, but for which we define preprocessor
15053 @c macro symbols as well.
15054 @table @gcctabopt
15055 @item -mdsp-packa
15056 @opindex mdsp-packa
15057 Passed down to the assembler to enable the DSP Pack A extensions.
15058 Also sets the preprocessor symbol @code{__Xdsp_packa}.  This option is
15059 deprecated.
15061 @item -mdvbf
15062 @opindex mdvbf
15063 Passed down to the assembler to enable the dual Viterbi butterfly
15064 extension.  Also sets the preprocessor symbol @code{__Xdvbf}.  This
15065 option is deprecated.
15067 @c ARC700 4.10 extension instruction
15068 @item -mlock
15069 @opindex mlock
15070 Passed down to the assembler to enable the locked load/store
15071 conditional extension.  Also sets the preprocessor symbol
15072 @code{__Xlock}.
15074 @item -mmac-d16
15075 @opindex mmac-d16
15076 Passed down to the assembler.  Also sets the preprocessor symbol
15077 @code{__Xxmac_d16}.  This option is deprecated.
15079 @item -mmac-24
15080 @opindex mmac-24
15081 Passed down to the assembler.  Also sets the preprocessor symbol
15082 @code{__Xxmac_24}.  This option is deprecated.
15084 @c ARC700 4.10 extension instruction
15085 @item -mrtsc
15086 @opindex mrtsc
15087 Passed down to the assembler to enable the 64-bit time-stamp counter
15088 extension instruction.  Also sets the preprocessor symbol
15089 @code{__Xrtsc}.  This option is deprecated.
15091 @c ARC700 4.10 extension instruction
15092 @item -mswape
15093 @opindex mswape
15094 Passed down to the assembler to enable the swap byte ordering
15095 extension instruction.  Also sets the preprocessor symbol
15096 @code{__Xswape}.
15098 @item -mtelephony
15099 @opindex mtelephony
15100 Passed down to the assembler to enable dual- and single-operand
15101 instructions for telephony.  Also sets the preprocessor symbol
15102 @code{__Xtelephony}.  This option is deprecated.
15104 @item -mxy
15105 @opindex mxy
15106 Passed down to the assembler to enable the XY memory extension.  Also
15107 sets the preprocessor symbol @code{__Xxy}.
15109 @end table
15111 The following options control how the assembly code is annotated:
15113 @c Assembly annotation options
15114 @table @gcctabopt
15115 @item -misize
15116 @opindex misize
15117 Annotate assembler instructions with estimated addresses.
15119 @item -mannotate-align
15120 @opindex mannotate-align
15121 Explain what alignment considerations lead to the decision to make an
15122 instruction short or long.
15124 @end table
15126 The following options are passed through to the linker:
15128 @c options passed through to the linker
15129 @table @gcctabopt
15130 @item -marclinux
15131 @opindex marclinux
15132 Passed through to the linker, to specify use of the @code{arclinux} emulation.
15133 This option is enabled by default in tool chains built for
15134 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
15135 when profiling is not requested.
15137 @item -marclinux_prof
15138 @opindex marclinux_prof
15139 Passed through to the linker, to specify use of the
15140 @code{arclinux_prof} emulation.  This option is enabled by default in
15141 tool chains built for @w{@code{arc-linux-uclibc}} and
15142 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
15144 @end table
15146 The following options control the semantics of generated code:
15148 @c semantically relevant code generation options
15149 @table @gcctabopt
15150 @item -mlong-calls
15151 @opindex mlong-calls
15152 Generate calls as register indirect calls, thus providing access
15153 to the full 32-bit address range.
15155 @item -mmedium-calls
15156 @opindex mmedium-calls
15157 Don't use less than 25-bit addressing range for calls, which is the
15158 offset available for an unconditional branch-and-link
15159 instruction.  Conditional execution of function calls is suppressed, to
15160 allow use of the 25-bit range, rather than the 21-bit range with
15161 conditional branch-and-link.  This is the default for tool chains built
15162 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
15164 @item -G @var{num}
15165 @opindex G
15166 Put definitions of externally-visible data in a small data section if
15167 that data is no bigger than @var{num} bytes.  The default value of
15168 @var{num} is 4 for any ARC configuration, or 8 when we have double
15169 load/store operations.
15171 @item -mno-sdata
15172 @opindex mno-sdata
15173 Do not generate sdata references.  This is the default for tool chains
15174 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
15175 targets.
15177 @item -mvolatile-cache
15178 @opindex mvolatile-cache
15179 Use ordinarily cached memory accesses for volatile references.  This is the
15180 default.
15182 @item -mno-volatile-cache
15183 @opindex mno-volatile-cache
15184 Enable cache bypass for volatile references.
15186 @end table
15188 The following options fine tune code generation:
15189 @c code generation tuning options
15190 @table @gcctabopt
15191 @item -malign-call
15192 @opindex malign-call
15193 Do alignment optimizations for call instructions.
15195 @item -mauto-modify-reg
15196 @opindex mauto-modify-reg
15197 Enable the use of pre/post modify with register displacement.
15199 @item -mbbit-peephole
15200 @opindex mbbit-peephole
15201 Enable bbit peephole2.
15203 @item -mno-brcc
15204 @opindex mno-brcc
15205 This option disables a target-specific pass in @file{arc_reorg} to
15206 generate compare-and-branch (@code{br@var{cc}}) instructions.  
15207 It has no effect on
15208 generation of these instructions driven by the combiner pass.
15210 @item -mcase-vector-pcrel
15211 @opindex mcase-vector-pcrel
15212 Use PC-relative switch case tables to enable case table shortening.
15213 This is the default for @option{-Os}.
15215 @item -mcompact-casesi
15216 @opindex mcompact-casesi
15217 Enable compact @code{casesi} pattern.  This is the default for @option{-Os},
15218 and only available for ARCv1 cores.
15220 @item -mno-cond-exec
15221 @opindex mno-cond-exec
15222 Disable the ARCompact-specific pass to generate conditional 
15223 execution instructions.
15225 Due to delay slot scheduling and interactions between operand numbers,
15226 literal sizes, instruction lengths, and the support for conditional execution,
15227 the target-independent pass to generate conditional execution is often lacking,
15228 so the ARC port has kept a special pass around that tries to find more
15229 conditional execution generation opportunities after register allocation,
15230 branch shortening, and delay slot scheduling have been done.  This pass
15231 generally, but not always, improves performance and code size, at the cost of
15232 extra compilation time, which is why there is an option to switch it off.
15233 If you have a problem with call instructions exceeding their allowable
15234 offset range because they are conditionalized, you should consider using
15235 @option{-mmedium-calls} instead.
15237 @item -mearly-cbranchsi
15238 @opindex mearly-cbranchsi
15239 Enable pre-reload use of the @code{cbranchsi} pattern.
15241 @item -mexpand-adddi
15242 @opindex mexpand-adddi
15243 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
15244 @code{add.f}, @code{adc} etc.  This option is deprecated.
15246 @item -mindexed-loads
15247 @opindex mindexed-loads
15248 Enable the use of indexed loads.  This can be problematic because some
15249 optimizers then assume that indexed stores exist, which is not
15250 the case.
15252 @opindex mlra
15253 Enable Local Register Allocation.  This is still experimental for ARC,
15254 so by default the compiler uses standard reload
15255 (i.e. @option{-mno-lra}).
15257 @item -mlra-priority-none
15258 @opindex mlra-priority-none
15259 Don't indicate any priority for target registers.
15261 @item -mlra-priority-compact
15262 @opindex mlra-priority-compact
15263 Indicate target register priority for r0..r3 / r12..r15.
15265 @item -mlra-priority-noncompact
15266 @opindex mlra-priority-noncompact
15267 Reduce target register priority for r0..r3 / r12..r15.
15269 @item -mno-millicode
15270 @opindex mno-millicode
15271 When optimizing for size (using @option{-Os}), prologues and epilogues
15272 that have to save or restore a large number of registers are often
15273 shortened by using call to a special function in libgcc; this is
15274 referred to as a @emph{millicode} call.  As these calls can pose
15275 performance issues, and/or cause linking issues when linking in a
15276 nonstandard way, this option is provided to turn off millicode call
15277 generation.
15279 @item -mmixed-code
15280 @opindex mmixed-code
15281 Tweak register allocation to help 16-bit instruction generation.
15282 This generally has the effect of decreasing the average instruction size
15283 while increasing the instruction count.
15285 @item -mq-class
15286 @opindex mq-class
15287 Enable @samp{q} instruction alternatives.
15288 This is the default for @option{-Os}.
15290 @item -mRcq
15291 @opindex mRcq
15292 Enable @samp{Rcq} constraint handling.  
15293 Most short code generation depends on this.
15294 This is the default.
15296 @item -mRcw
15297 @opindex mRcw
15298 Enable @samp{Rcw} constraint handling.  
15299 Most ccfsm condexec mostly depends on this.
15300 This is the default.
15302 @item -msize-level=@var{level}
15303 @opindex msize-level
15304 Fine-tune size optimization with regards to instruction lengths and alignment.
15305 The recognized values for @var{level} are:
15306 @table @samp
15307 @item 0
15308 No size optimization.  This level is deprecated and treated like @samp{1}.
15310 @item 1
15311 Short instructions are used opportunistically.
15313 @item 2
15314 In addition, alignment of loops and of code after barriers are dropped.
15316 @item 3
15317 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
15319 @end table
15321 This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
15322 the behavior when this is not set is equivalent to level @samp{1}.
15324 @item -mtune=@var{cpu}
15325 @opindex mtune
15326 Set instruction scheduling parameters for @var{cpu}, overriding any implied
15327 by @option{-mcpu=}.
15329 Supported values for @var{cpu} are
15331 @table @samp
15332 @item ARC600
15333 Tune for ARC600 CPU.
15335 @item ARC601
15336 Tune for ARC601 CPU.
15338 @item ARC700
15339 Tune for ARC700 CPU with standard multiplier block.
15341 @item ARC700-xmac
15342 Tune for ARC700 CPU with XMAC block.
15344 @item ARC725D
15345 Tune for ARC725D CPU.
15347 @item ARC750D
15348 Tune for ARC750D CPU.
15350 @end table
15352 @item -mmultcost=@var{num}
15353 @opindex mmultcost
15354 Cost to assume for a multiply instruction, with @samp{4} being equal to a
15355 normal instruction.
15357 @item -munalign-prob-threshold=@var{probability}
15358 @opindex munalign-prob-threshold
15359 Set probability threshold for unaligning branches.
15360 When tuning for @samp{ARC700} and optimizing for speed, branches without
15361 filled delay slot are preferably emitted unaligned and long, unless
15362 profiling indicates that the probability for the branch to be taken
15363 is below @var{probability}.  @xref{Cross-profiling}.
15364 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15366 @end table
15368 The following options are maintained for backward compatibility, but
15369 are now deprecated and will be removed in a future release:
15371 @c Deprecated options
15372 @table @gcctabopt
15374 @item -margonaut
15375 @opindex margonaut
15376 Obsolete FPX.
15378 @item -mbig-endian
15379 @opindex mbig-endian
15380 @itemx -EB
15381 @opindex EB
15382 Compile code for big-endian targets.  Use of these options is now
15383 deprecated.  Big-endian code is supported by configuring GCC to build
15384 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15385 for which big endian is the default.
15387 @item -mlittle-endian
15388 @opindex mlittle-endian
15389 @itemx -EL
15390 @opindex EL
15391 Compile code for little-endian targets.  Use of these options is now
15392 deprecated.  Little-endian code is supported by configuring GCC to build 
15393 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15394 for which little endian is the default.
15396 @item -mbarrel_shifter
15397 @opindex mbarrel_shifter
15398 Replaced by @option{-mbarrel-shifter}.
15400 @item -mdpfp_compact
15401 @opindex mdpfp_compact
15402 Replaced by @option{-mdpfp-compact}.
15404 @item -mdpfp_fast
15405 @opindex mdpfp_fast
15406 Replaced by @option{-mdpfp-fast}.
15408 @item -mdsp_packa
15409 @opindex mdsp_packa
15410 Replaced by @option{-mdsp-packa}.
15412 @item -mEA
15413 @opindex mEA
15414 Replaced by @option{-mea}.
15416 @item -mmac_24
15417 @opindex mmac_24
15418 Replaced by @option{-mmac-24}.
15420 @item -mmac_d16
15421 @opindex mmac_d16
15422 Replaced by @option{-mmac-d16}.
15424 @item -mspfp_compact
15425 @opindex mspfp_compact
15426 Replaced by @option{-mspfp-compact}.
15428 @item -mspfp_fast
15429 @opindex mspfp_fast
15430 Replaced by @option{-mspfp-fast}.
15432 @item -mtune=@var{cpu}
15433 @opindex mtune
15434 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15435 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15436 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15438 @item -multcost=@var{num}
15439 @opindex multcost
15440 Replaced by @option{-mmultcost}.
15442 @end table
15444 @node ARM Options
15445 @subsection ARM Options
15446 @cindex ARM options
15448 These @samp{-m} options are defined for the ARM port:
15450 @table @gcctabopt
15451 @item -mabi=@var{name}
15452 @opindex mabi
15453 Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
15454 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15456 @item -mapcs-frame
15457 @opindex mapcs-frame
15458 Generate a stack frame that is compliant with the ARM Procedure Call
15459 Standard for all functions, even if this is not strictly necessary for
15460 correct execution of the code.  Specifying @option{-fomit-frame-pointer}
15461 with this option causes the stack frames not to be generated for
15462 leaf functions.  The default is @option{-mno-apcs-frame}.
15463 This option is deprecated.
15465 @item -mapcs
15466 @opindex mapcs
15467 This is a synonym for @option{-mapcs-frame} and is deprecated.
15469 @ignore
15470 @c not currently implemented
15471 @item -mapcs-stack-check
15472 @opindex mapcs-stack-check
15473 Generate code to check the amount of stack space available upon entry to
15474 every function (that actually uses some stack space).  If there is
15475 insufficient space available then either the function
15476 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15477 called, depending upon the amount of stack space required.  The runtime
15478 system is required to provide these functions.  The default is
15479 @option{-mno-apcs-stack-check}, since this produces smaller code.
15481 @c not currently implemented
15482 @item -mapcs-reentrant
15483 @opindex mapcs-reentrant
15484 Generate reentrant, position-independent code.  The default is
15485 @option{-mno-apcs-reentrant}.
15486 @end ignore
15488 @item -mthumb-interwork
15489 @opindex mthumb-interwork
15490 Generate code that supports calling between the ARM and Thumb
15491 instruction sets.  Without this option, on pre-v5 architectures, the
15492 two instruction sets cannot be reliably used inside one program.  The
15493 default is @option{-mno-thumb-interwork}, since slightly larger code
15494 is generated when @option{-mthumb-interwork} is specified.  In AAPCS
15495 configurations this option is meaningless.
15497 @item -mno-sched-prolog
15498 @opindex mno-sched-prolog
15499 Prevent the reordering of instructions in the function prologue, or the
15500 merging of those instruction with the instructions in the function's
15501 body.  This means that all functions start with a recognizable set
15502 of instructions (or in fact one of a choice from a small set of
15503 different function prologues), and this information can be used to
15504 locate the start of functions inside an executable piece of code.  The
15505 default is @option{-msched-prolog}.
15507 @item -mfloat-abi=@var{name}
15508 @opindex mfloat-abi
15509 Specifies which floating-point ABI to use.  Permissible values
15510 are: @samp{soft}, @samp{softfp} and @samp{hard}.
15512 Specifying @samp{soft} causes GCC to generate output containing
15513 library calls for floating-point operations.
15514 @samp{softfp} allows the generation of code using hardware floating-point
15515 instructions, but still uses the soft-float calling conventions.
15516 @samp{hard} allows generation of floating-point instructions
15517 and uses FPU-specific calling conventions.
15519 The default depends on the specific target configuration.  Note that
15520 the hard-float and soft-float ABIs are not link-compatible; you must
15521 compile your entire program with the same ABI, and link with a
15522 compatible set of libraries.
15524 @item -mlittle-endian
15525 @opindex mlittle-endian
15526 Generate code for a processor running in little-endian mode.  This is
15527 the default for all standard configurations.
15529 @item -mbig-endian
15530 @opindex mbig-endian
15531 Generate code for a processor running in big-endian mode; the default is
15532 to compile code for a little-endian processor.
15534 @item -mbe8
15535 @itemx -mbe32
15536 @opindex mbe8
15537 When linking a big-endian image select between BE8 and BE32 formats.
15538 The option has no effect for little-endian images and is ignored.  The
15539 default is dependent on the selected target architecture.  For ARMv6
15540 and later architectures the default is BE8, for older architectures
15541 the default is BE32.  BE32 format has been deprecated by ARM.
15543 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
15544 @opindex march
15545 This specifies the name of the target ARM architecture.  GCC uses this
15546 name to determine what kind of instructions it can emit when generating
15547 assembly code.  This option can be used in conjunction with or instead
15548 of the @option{-mcpu=} option.
15550 Permissible names are:
15551 @samp{armv4t},
15552 @samp{armv5t}, @samp{armv5te},
15553 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15554 @samp{armv6z}, @samp{armv6zk},
15555 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve}, 
15556 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
15557 @samp{armv7-r},
15558 @samp{armv8-r},
15559 @samp{armv6-m}, @samp{armv6s-m},
15560 @samp{armv7-m}, @samp{armv7e-m},
15561 @samp{armv8-m.base}, @samp{armv8-m.main},
15562 @samp{iwmmxt} and @samp{iwmmxt2}.
15564 Additionally, the following architectures, which lack support for the
15565 Thumb exection state, are recognized but support is deprecated:
15566 @samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15567 @samp{armv4}, @samp{armv5} and @samp{armv5e}.
15569 Many of the architectures support extensions.  These can be added by
15570 appending @samp{+@var{extension}} to the architecture name.  Extension
15571 options are processed in order and capabilities accumulate.  An extension
15572 will also enable any necessary base extensions
15573 upon which it depends.  For example, the @samp{+crypto} extension
15574 will always enable the @samp{+simd} extension.  The exception to the
15575 additive construction is for extensions that are prefixed with
15576 @samp{+no@dots{}}: these extensions disable the specified option and
15577 any other extensions that may depend on the presence of that
15578 extension.
15580 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15581 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15582 entirely disabled by the @samp{+nofp} option that follows it.
15584 Most extension names are generically named, but have an effect that is
15585 dependent upon the architecture to which it is applied.  For example,
15586 the @samp{+simd} option can be applied to both @samp{armv7-a} and
15587 @samp{armv8-a} architectures, but will enable the original ARMv7-A
15588 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
15589 variant for @samp{armv8-a}.
15591 The table below lists the supported extensions for each architecture.
15592 Architectures not mentioned do not support any extensions.
15594 @table @samp
15595 @item  armv5e
15596 @itemx armv5te
15597 @itemx armv6
15598 @itemx armv6j
15599 @itemx armv6k
15600 @itemx armv6kz
15601 @itemx armv6t2
15602 @itemx armv6z
15603 @itemx armv6zk
15604 @table @samp
15605 @item +fp
15606 The VFPv2 floating-point instructions.  The extension @samp{+vfpv2} can be
15607 used as an alias for this extension.
15609 @item +nofp
15610 Disable the floating-point instructions.
15611 @end table
15613 @item armv7
15614 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
15615 @table @samp
15616 @item +fp
15617 The VFPv3 floating-point instructions, with 16 double-precision
15618 registers.  The extension @samp{+vfpv3-d16} can be used as an alias
15619 for this extension.  Note that floating-point is not supported by the
15620 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
15621 ARMv7-R architectures.
15623 @item +nofp
15624 Disable the floating-point instructions.
15625 @end table
15627 @item armv7-a
15628 @table @samp
15629 @item +fp
15630 The VFPv3 floating-point instructions, with 16 double-precision
15631 registers.  The extension @samp{+vfpv3-d16} can be used as an alias
15632 for this extension.
15634 @item +simd
15635 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15636 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
15637 for this extension.
15639 @item +vfpv3
15640 The VFPv3 floating-point instructions, with 32 double-precision
15641 registers.
15643 @item +vfpv3-d16-fp16
15644 The VFPv3 floating-point instructions, with 16 double-precision
15645 registers and the half-precision floating-point conversion operations.
15647 @item +vfpv3-fp16
15648 The VFPv3 floating-point instructions, with 32 double-precision
15649 registers and the half-precision floating-point conversion operations.
15651 @item +vfpv4-d16
15652 The VFPv4 floating-point instructions, with 16 double-precision
15653 registers.
15655 @item +vfpv4
15656 The VFPv4 floating-point instructions, with 32 double-precision
15657 registers.
15659 @item +neon-fp16
15660 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15661 the half-precision floating-point conversion operations.
15663 @item +neon-vfpv4
15664 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
15666 @item +nosimd
15667 Disable the Advanced SIMD instructions (does not disable floating point).
15669 @item +nofp
15670 Disable the floating-point and Advanced SIMD instructions.
15671 @end table
15673 @item armv7ve
15674 The extended version of the ARMv7-A architecture with support for
15675 virtualization.
15676 @table @samp
15677 @item +fp
15678 The VFPv4 floating-point instructions, with 16 double-precision registers.
15679 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
15681 @item +simd
15682 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.  The
15683 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
15685 @item +vfpv3-d16
15686 The VFPv3 floating-point instructions, with 16 double-precision
15687 registers.
15689 @item +vfpv3
15690 The VFPv3 floating-point instructions, with 32 double-precision
15691 registers.
15693 @item +vfpv3-d16-fp16
15694 The VFPv3 floating-point instructions, with 16 double-precision
15695 registers and the half-precision floating-point conversion operations.
15697 @item +vfpv3-fp16
15698 The VFPv3 floating-point instructions, with 32 double-precision
15699 registers and the half-precision floating-point conversion operations.
15701 @item +vfpv4-d16
15702 The VFPv4 floating-point instructions, with 16 double-precision
15703 registers.
15705 @item +vfpv4
15706 The VFPv4 floating-point instructions, with 32 double-precision
15707 registers.
15709 @item +neon
15710 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15711 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
15713 @item +neon-fp16
15714 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15715 the half-precision floating-point conversion operations.
15717 @item +nosimd
15718 Disable the Advanced SIMD instructions (does not disable floating point).
15720 @item +nofp
15721 Disable the floating-point and Advanced SIMD instructions.
15722 @end table
15724 @item armv8-a
15725 @table @samp
15726 @item +crc
15727 The Cyclic Redundancy Check (CRC) instructions.
15728 @item +simd
15729 The ARMv8-A Advanced SIMD and floating-point instructions.
15730 @item +crypto
15731 The cryptographic instructions.
15732 @item +nocrypto
15733 Disable the cryptographic isntructions.
15734 @item +nofp
15735 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15736 @end table
15738 @item armv8.1-a
15739 @table @samp
15740 @item +simd
15741 The ARMv8.1-A Advanced SIMD and floating-point instructions.
15743 @item +crypto
15744 The cryptographic instructions.  This also enables the Advanced SIMD and
15745 floating-point instructions.
15747 @item +nocrypto
15748 Disable the cryptographic isntructions.
15750 @item +nofp
15751 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15752 @end table
15754 @item armv8.2-a
15755 @table @samp
15756 @item +fp16
15757 The half-precision floating-point data processing instructions.
15758 This also enables the Advanced SIMD and floating-point instructions.
15760 @item +simd
15761 The ARMv8.1-A Advanced SIMD and floating-point instructions.
15763 @item +crypto
15764 The cryptographic instructions.  This also enables the Advanced SIMD and
15765 floating-point instructions.
15767 @item +dotprod
15768 Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
15770 @item +nocrypto
15771 Disable the cryptographic extension.
15773 @item +nofp
15774 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15775 @end table
15777 @item armv7-r
15778 @table @samp
15779 @item +fp.sp
15780 The single-precision VFPv3 floating-point instructions.  The extension
15781 @samp{+vfpv3xd} can be used as an alias for this extension.
15783 @item +fp
15784 The VFPv3 floating-point instructions with 16 double-precision registers.
15785 The extension +vfpv3-d16 can be used as an alias for this extension.
15787 @item +nofp
15788 Disable the floating-point extension.
15790 @item +idiv
15791 The ARM-state integer division instructions.
15793 @item +noidiv
15794 Disable the ARM-state integer division extension.
15795 @end table
15797 @item armv7e-m
15798 @table @samp
15799 @item +fp
15800 The single-precision VFPv4 floating-point instructions.
15802 @item +fpv5
15803 The single-precision FPv5 floating-point instructions.
15805 @item +fp.dp
15806 The single- and double-precision FPv5 floating-point instructions.
15808 @item +nofp
15809 Disable the floating-point extensions.
15810 @end table
15812 @item  armv8-m.main
15813 @table @samp
15814 @item +dsp
15815 The DSP instructions.
15817 @item +nodsp
15818 Disable the DSP extension.
15820 @item +fp
15821 The single-precision floating-point instructions.
15823 @item +fp.dp
15824 The single- and double-precision floating-point instructions.
15826 @item +nofp
15827 Disable the floating-point extension.
15828 @end table
15830 @item armv8-r
15831 @table @samp
15832 @item +crc
15833 The Cyclic Redundancy Check (CRC) instructions.
15834 @item +fp.sp
15835 The single-precision FPv5 floating-point instructions.
15836 @item +simd
15837 The ARMv8-A Advanced SIMD and floating-point instructions.
15838 @item +crypto
15839 The cryptographic instructions.
15840 @item +nocrypto
15841 Disable the cryptographic isntructions.
15842 @item +nofp
15843 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15844 @end table
15846 @end table
15848 @option{-march=native} causes the compiler to auto-detect the architecture
15849 of the build computer.  At present, this feature is only supported on
15850 GNU/Linux, and not all architectures are recognized.  If the auto-detect
15851 is unsuccessful the option has no effect.
15853 @item -mtune=@var{name}
15854 @opindex mtune
15855 This option specifies the name of the target ARM processor for
15856 which GCC should tune the performance of the code.
15857 For some ARM implementations better performance can be obtained by using
15858 this option.
15859 Permissible names are: @samp{arm2}, @samp{arm250},
15860 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
15861 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
15862 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
15863 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
15864 @samp{arm720},
15865 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
15866 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
15867 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
15868 @samp{strongarm1110},
15869 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
15870 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
15871 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
15872 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
15873 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
15874 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
15875 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
15876 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
15877 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
15878 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15879 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15880 @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7},
15881 @samp{cortex-r8}, @samp{cortex-r52},
15882 @samp{cortex-m33},
15883 @samp{cortex-m23},
15884 @samp{cortex-m7},
15885 @samp{cortex-m4},
15886 @samp{cortex-m3},
15887 @samp{cortex-m1},
15888 @samp{cortex-m0},
15889 @samp{cortex-m0plus},
15890 @samp{cortex-m1.small-multiply},
15891 @samp{cortex-m0.small-multiply},
15892 @samp{cortex-m0plus.small-multiply},
15893 @samp{exynos-m1},
15894 @samp{marvell-pj4},
15895 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
15896 @samp{fa526}, @samp{fa626},
15897 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
15898 @samp{xgene1}.
15900 Additionally, this option can specify that GCC should tune the performance
15901 of the code for a big.LITTLE system.  Permissible names are:
15902 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
15903 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15904 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
15905 @samp{cortex-a75.cortex-a55}.
15907 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
15908 performance for a blend of processors within architecture @var{arch}.
15909 The aim is to generate code that run well on the current most popular
15910 processors, balancing between optimizations that benefit some CPUs in the
15911 range, and avoiding performance pitfalls of other CPUs.  The effects of
15912 this option may change in future GCC versions as CPU models come and go.
15914 @option{-mtune} permits the same extension options as @option{-mcpu}, but
15915 the extension options do not affect the tuning of the generated code.
15917 @option{-mtune=native} causes the compiler to auto-detect the CPU
15918 of the build computer.  At present, this feature is only supported on
15919 GNU/Linux, and not all architectures are recognized.  If the auto-detect is
15920 unsuccessful the option has no effect.
15922 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
15923 @opindex mcpu
15924 This specifies the name of the target ARM processor.  GCC uses this name
15925 to derive the name of the target ARM architecture (as if specified
15926 by @option{-march}) and the ARM processor type for which to tune for
15927 performance (as if specified by @option{-mtune}).  Where this option
15928 is used in conjunction with @option{-march} or @option{-mtune},
15929 those options take precedence over the appropriate part of this option.
15931 Many of the supported CPUs implement optional architectural
15932 extensions.  Where this is so the architectural extensions are
15933 normally enabled by default.  If implementations that lack the
15934 extension exist, then the extension syntax can be used to disable
15935 those extensions that have been omitted.  For floating-point and
15936 Advanced SIMD (Neon) instructions, the settings of the options
15937 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
15938 floating-point and Advanced SIMD instructions will only be used if
15939 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
15940 @option{-mfpu} other than @samp{auto} will override the available
15941 floating-point and SIMD extension instructions.
15943 For example, @samp{cortex-a9} can be found in three major
15944 configurations: integer only, with just a floating-point unit or with
15945 floating-point and Advanced SIMD.  The default is to enable all the
15946 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
15947 be used to disable just the SIMD or both the SIMD and floating-point
15948 instructions respectively.
15950 Permissible names for this option are the same as those for
15951 @option{-mtune}.
15953 The following extension options are common to the listed CPUs:
15955 @table @samp
15956 @item +nodsp
15957 Disable the DSP instructions on @samp{cortex-m33}.
15959 @item  +nofp
15960 Disables the floating-point instructions on @samp{arm9e},
15961 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
15962 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
15963 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
15964 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
15965 Disables the floating-point and SIMD instructions on
15966 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
15967 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
15968 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
15969 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
15970 @samp{cortex-a53} and @samp{cortex-a55}.
15972 @item +nofp.dp
15973 Disables the double-precision component of the floating-point instructions
15974 on @samp{cortex-r5}, @samp{cortex-r52} and @samp{cortex-m7}.
15976 @item +nosimd
15977 Disables the SIMD (but not floating-point) instructions on
15978 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
15979 and @samp{cortex-a9}.
15981 @item +crypto
15982 Enables the cryptographic instructions on @samp{cortex-a32},
15983 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
15984 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
15985 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15986 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
15987 @samp{cortex-a75.cortex-a55}.
15988 @end table
15990 Additionally the @samp{generic-armv7-a} pseudo target defaults to
15991 VFPv3 with 16 double-precision registers.  It supports the following
15992 extension options: @samp{vfpv3-d16}, @samp{vfpv3},
15993 @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16}, @samp{vfpv4-d16},
15994 @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3}, @samp{neon-fp16},
15995 @samp{neon-vfpv4}.  The meanings are the same as for the extensions to
15996 @option{-march=armv7-a}.
15998 @option{-mcpu=generic-@var{arch}} is also permissible, and is
15999 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
16000 See @option{-mtune} for more information.
16002 @option{-mcpu=native} causes the compiler to auto-detect the CPU
16003 of the build computer.  At present, this feature is only supported on
16004 GNU/Linux, and not all architectures are recognized.  If the auto-detect
16005 is unsuccessful the option has no effect.
16007 @item -mfpu=@var{name}
16008 @opindex mfpu
16009 This specifies what floating-point hardware (or hardware emulation) is
16010 available on the target.  Permissible names are: @samp{auto}, @samp{vfpv2},
16011 @samp{vfpv3},
16012 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
16013 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
16014 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
16015 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
16016 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
16017 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
16018 is an alias for @samp{vfpv2}.
16020 The setting @samp{auto} is the default and is special.  It causes the
16021 compiler to select the floating-point and Advanced SIMD instructions
16022 based on the settings of @option{-mcpu} and @option{-march}.
16024 If the selected floating-point hardware includes the NEON extension
16025 (e.g. @option{-mfpu=neon}), note that floating-point
16026 operations are not generated by GCC's auto-vectorization pass unless
16027 @option{-funsafe-math-optimizations} is also specified.  This is
16028 because NEON hardware does not fully implement the IEEE 754 standard for
16029 floating-point arithmetic (in particular denormal values are treated as
16030 zero), so the use of NEON instructions may lead to a loss of precision.
16032 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16034 @item -mfp16-format=@var{name}
16035 @opindex mfp16-format
16036 Specify the format of the @code{__fp16} half-precision floating-point type.
16037 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
16038 the default is @samp{none}, in which case the @code{__fp16} type is not
16039 defined.  @xref{Half-Precision}, for more information.
16041 @item -mstructure-size-boundary=@var{n}
16042 @opindex mstructure-size-boundary
16043 The sizes of all structures and unions are rounded up to a multiple
16044 of the number of bits set by this option.  Permissible values are 8, 32
16045 and 64.  The default value varies for different toolchains.  For the COFF
16046 targeted toolchain the default value is 8.  A value of 64 is only allowed
16047 if the underlying ABI supports it.
16049 Specifying a larger number can produce faster, more efficient code, but
16050 can also increase the size of the program.  Different values are potentially
16051 incompatible.  Code compiled with one value cannot necessarily expect to
16052 work with code or libraries compiled with another value, if they exchange
16053 information using structures or unions.
16055 This option is deprecated.
16057 @item -mabort-on-noreturn
16058 @opindex mabort-on-noreturn
16059 Generate a call to the function @code{abort} at the end of a
16060 @code{noreturn} function.  It is executed if the function tries to
16061 return.
16063 @item -mlong-calls
16064 @itemx -mno-long-calls
16065 @opindex mlong-calls
16066 @opindex mno-long-calls
16067 Tells the compiler to perform function calls by first loading the
16068 address of the function into a register and then performing a subroutine
16069 call on this register.  This switch is needed if the target function
16070 lies outside of the 64-megabyte addressing range of the offset-based
16071 version of subroutine call instruction.
16073 Even if this switch is enabled, not all function calls are turned
16074 into long calls.  The heuristic is that static functions, functions
16075 that have the @code{short_call} attribute, functions that are inside
16076 the scope of a @code{#pragma no_long_calls} directive, and functions whose
16077 definitions have already been compiled within the current compilation
16078 unit are not turned into long calls.  The exceptions to this rule are
16079 that weak function definitions, functions with the @code{long_call}
16080 attribute or the @code{section} attribute, and functions that are within
16081 the scope of a @code{#pragma long_calls} directive are always
16082 turned into long calls.
16084 This feature is not enabled by default.  Specifying
16085 @option{-mno-long-calls} restores the default behavior, as does
16086 placing the function calls within the scope of a @code{#pragma
16087 long_calls_off} directive.  Note these switches have no effect on how
16088 the compiler generates code to handle function calls via function
16089 pointers.
16091 @item -msingle-pic-base
16092 @opindex msingle-pic-base
16093 Treat the register used for PIC addressing as read-only, rather than
16094 loading it in the prologue for each function.  The runtime system is
16095 responsible for initializing this register with an appropriate value
16096 before execution begins.
16098 @item -mpic-register=@var{reg}
16099 @opindex mpic-register
16100 Specify the register to be used for PIC addressing.
16101 For standard PIC base case, the default is any suitable register
16102 determined by compiler.  For single PIC base case, the default is
16103 @samp{R9} if target is EABI based or stack-checking is enabled,
16104 otherwise the default is @samp{R10}.
16106 @item -mpic-data-is-text-relative
16107 @opindex mpic-data-is-text-relative
16108 Assume that the displacement between the text and data segments is fixed
16109 at static link time.  This permits using PC-relative addressing
16110 operations to access data known to be in the data segment.  For
16111 non-VxWorks RTP targets, this option is enabled by default.  When
16112 disabled on such targets, it will enable @option{-msingle-pic-base} by
16113 default.
16115 @item -mpoke-function-name
16116 @opindex mpoke-function-name
16117 Write the name of each function into the text section, directly
16118 preceding the function prologue.  The generated code is similar to this:
16120 @smallexample
16121      t0
16122          .ascii "arm_poke_function_name", 0
16123          .align
16124      t1
16125          .word 0xff000000 + (t1 - t0)
16126      arm_poke_function_name
16127          mov     ip, sp
16128          stmfd   sp!, @{fp, ip, lr, pc@}
16129          sub     fp, ip, #4
16130 @end smallexample
16132 When performing a stack backtrace, code can inspect the value of
16133 @code{pc} stored at @code{fp + 0}.  If the trace function then looks at
16134 location @code{pc - 12} and the top 8 bits are set, then we know that
16135 there is a function name embedded immediately preceding this location
16136 and has length @code{((pc[-3]) & 0xff000000)}.
16138 @item -mthumb
16139 @itemx -marm
16140 @opindex marm
16141 @opindex mthumb
16143 Select between generating code that executes in ARM and Thumb
16144 states.  The default for most configurations is to generate code
16145 that executes in ARM state, but the default can be changed by
16146 configuring GCC with the @option{--with-mode=}@var{state}
16147 configure option.
16149 You can also override the ARM and Thumb mode for each function
16150 by using the @code{target("thumb")} and @code{target("arm")} function attributes
16151 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16153 @item -mtpcs-frame
16154 @opindex mtpcs-frame
16155 Generate a stack frame that is compliant with the Thumb Procedure Call
16156 Standard for all non-leaf functions.  (A leaf function is one that does
16157 not call any other functions.)  The default is @option{-mno-tpcs-frame}.
16159 @item -mtpcs-leaf-frame
16160 @opindex mtpcs-leaf-frame
16161 Generate a stack frame that is compliant with the Thumb Procedure Call
16162 Standard for all leaf functions.  (A leaf function is one that does
16163 not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
16165 @item -mcallee-super-interworking
16166 @opindex mcallee-super-interworking
16167 Gives all externally visible functions in the file being compiled an ARM
16168 instruction set header which switches to Thumb mode before executing the
16169 rest of the function.  This allows these functions to be called from
16170 non-interworking code.  This option is not valid in AAPCS configurations
16171 because interworking is enabled by default.
16173 @item -mcaller-super-interworking
16174 @opindex mcaller-super-interworking
16175 Allows calls via function pointers (including virtual functions) to
16176 execute correctly regardless of whether the target code has been
16177 compiled for interworking or not.  There is a small overhead in the cost
16178 of executing a function pointer if this option is enabled.  This option
16179 is not valid in AAPCS configurations because interworking is enabled
16180 by default.
16182 @item -mtp=@var{name}
16183 @opindex mtp
16184 Specify the access model for the thread local storage pointer.  The valid
16185 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
16186 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
16187 (supported in the arm6k architecture), and @samp{auto}, which uses the
16188 best available method for the selected processor.  The default setting is
16189 @samp{auto}.
16191 @item -mtls-dialect=@var{dialect}
16192 @opindex mtls-dialect
16193 Specify the dialect to use for accessing thread local storage.  Two
16194 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
16195 @samp{gnu} dialect selects the original GNU scheme for supporting
16196 local and global dynamic TLS models.  The @samp{gnu2} dialect
16197 selects the GNU descriptor scheme, which provides better performance
16198 for shared libraries.  The GNU descriptor scheme is compatible with
16199 the original scheme, but does require new assembler, linker and
16200 library support.  Initial and local exec TLS models are unaffected by
16201 this option and always use the original scheme.
16203 @item -mword-relocations
16204 @opindex mword-relocations
16205 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
16206 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
16207 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
16208 is specified.
16210 @item -mfix-cortex-m3-ldrd
16211 @opindex mfix-cortex-m3-ldrd
16212 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
16213 with overlapping destination and base registers are used.  This option avoids
16214 generating these instructions.  This option is enabled by default when
16215 @option{-mcpu=cortex-m3} is specified.
16217 @item -munaligned-access
16218 @itemx -mno-unaligned-access
16219 @opindex munaligned-access
16220 @opindex mno-unaligned-access
16221 Enables (or disables) reading and writing of 16- and 32- bit values
16222 from addresses that are not 16- or 32- bit aligned.  By default
16223 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
16224 ARMv8-M Baseline architectures, and enabled for all other
16225 architectures.  If unaligned access is not enabled then words in packed
16226 data structures are accessed a byte at a time.
16228 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
16229 generated object file to either true or false, depending upon the
16230 setting of this option.  If unaligned access is enabled then the
16231 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
16232 defined.
16234 @item -mneon-for-64bits
16235 @opindex mneon-for-64bits
16236 Enables using Neon to handle scalar 64-bits operations. This is
16237 disabled by default since the cost of moving data from core registers
16238 to Neon is high.
16240 @item -mslow-flash-data
16241 @opindex mslow-flash-data
16242 Assume loading data from flash is slower than fetching instruction.
16243 Therefore literal load is minimized for better performance.
16244 This option is only supported when compiling for ARMv7 M-profile and
16245 off by default.
16247 @item -masm-syntax-unified
16248 @opindex masm-syntax-unified
16249 Assume inline assembler is using unified asm syntax.  The default is
16250 currently off which implies divided syntax.  This option has no impact
16251 on Thumb2. However, this may change in future releases of GCC.
16252 Divided syntax should be considered deprecated.
16254 @item -mrestrict-it
16255 @opindex mrestrict-it
16256 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
16257 IT blocks can only contain a single 16-bit instruction from a select
16258 set of instructions. This option is on by default for ARMv8-A Thumb mode.
16260 @item -mprint-tune-info
16261 @opindex mprint-tune-info
16262 Print CPU tuning information as comment in assembler file.  This is
16263 an option used only for regression testing of the compiler and not
16264 intended for ordinary use in compiling code.  This option is disabled
16265 by default.
16267 @item -mpure-code
16268 @opindex mpure-code
16269 Do not allow constant data to be placed in code sections.
16270 Additionally, when compiling for ELF object format give all text sections the
16271 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}.  This option
16272 is only available when generating non-pic code for M-profile targets with the
16273 MOVT instruction.
16275 @item -mcmse
16276 @opindex mcmse
16277 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
16278 Development Tools Engineering Specification", which can be found on
16279 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
16280 @end table
16282 @node AVR Options
16283 @subsection AVR Options
16284 @cindex AVR Options
16286 These options are defined for AVR implementations:
16288 @table @gcctabopt
16289 @item -mmcu=@var{mcu}
16290 @opindex mmcu
16291 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
16293 The default for this option is@tie{}@samp{avr2}.
16295 GCC supports the following AVR devices and ISAs:
16297 @include avr-mmcu.texi
16299 @item -mabsdata
16300 @opindex mabsdata
16302 Assume that all data in static storage can be accessed by LDS / STS
16303 instructions.  This option has only an effect on reduced Tiny devices like
16304 ATtiny40.  See also the @code{absdata}
16305 @ref{AVR Variable Attributes,variable attribute}.
16307 @item -maccumulate-args
16308 @opindex maccumulate-args
16309 Accumulate outgoing function arguments and acquire/release the needed
16310 stack space for outgoing function arguments once in function
16311 prologue/epilogue.  Without this option, outgoing arguments are pushed
16312 before calling a function and popped afterwards.
16314 Popping the arguments after the function call can be expensive on
16315 AVR so that accumulating the stack space might lead to smaller
16316 executables because arguments need not be removed from the
16317 stack after such a function call.
16319 This option can lead to reduced code size for functions that perform
16320 several calls to functions that get their arguments on the stack like
16321 calls to printf-like functions.
16323 @item -mbranch-cost=@var{cost}
16324 @opindex mbranch-cost
16325 Set the branch costs for conditional branch instructions to
16326 @var{cost}.  Reasonable values for @var{cost} are small, non-negative
16327 integers. The default branch cost is 0.
16329 @item -mcall-prologues
16330 @opindex mcall-prologues
16331 Functions prologues/epilogues are expanded as calls to appropriate
16332 subroutines.  Code size is smaller.
16334 @item -mgas-isr-prologues
16335 @opindex mgas-isr-prologues
16336 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
16337 instruction supported by GNU Binutils.
16338 If this option is on, the feature can still be disabled for individual
16339 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
16340 function attribute.  This feature is activated per default
16341 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
16342 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
16344 @item -mint8
16345 @opindex mint8
16346 Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
16347 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
16348 and @code{long long} is 4 bytes.  Please note that this option does not
16349 conform to the C standards, but it results in smaller code
16350 size.
16352 @item -mn-flash=@var{num}
16353 @opindex mn-flash
16354 Assume that the flash memory has a size of 
16355 @var{num} times 64@tie{}KiB.
16357 @item -mno-interrupts
16358 @opindex mno-interrupts
16359 Generated code is not compatible with hardware interrupts.
16360 Code size is smaller.
16362 @item -mrelax
16363 @opindex mrelax
16364 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
16365 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
16366 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
16367 the assembler's command line and the @option{--relax} option to the
16368 linker's command line.
16370 Jump relaxing is performed by the linker because jump offsets are not
16371 known before code is located. Therefore, the assembler code generated by the
16372 compiler is the same, but the instructions in the executable may
16373 differ from instructions in the assembler code.
16375 Relaxing must be turned on if linker stubs are needed, see the
16376 section on @code{EIND} and linker stubs below.
16378 @item -mrmw
16379 @opindex mrmw
16380 Assume that the device supports the Read-Modify-Write
16381 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
16383 @item -mshort-calls
16384 @opindex mshort-calls
16386 Assume that @code{RJMP} and @code{RCALL} can target the whole
16387 program memory.
16389 This option is used internally for multilib selection.  It is
16390 not an optimization option, and you don't need to set it by hand.
16392 @item -msp8
16393 @opindex msp8
16394 Treat the stack pointer register as an 8-bit register,
16395 i.e.@: assume the high byte of the stack pointer is zero.
16396 In general, you don't need to set this option by hand.
16398 This option is used internally by the compiler to select and
16399 build multilibs for architectures @code{avr2} and @code{avr25}.
16400 These architectures mix devices with and without @code{SPH}.
16401 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16402 the compiler driver adds or removes this option from the compiler
16403 proper's command line, because the compiler then knows if the device
16404 or architecture has an 8-bit stack pointer and thus no @code{SPH}
16405 register or not.
16407 @item -mstrict-X
16408 @opindex mstrict-X
16409 Use address register @code{X} in a way proposed by the hardware.  This means
16410 that @code{X} is only used in indirect, post-increment or
16411 pre-decrement addressing.
16413 Without this option, the @code{X} register may be used in the same way
16414 as @code{Y} or @code{Z} which then is emulated by additional
16415 instructions.  
16416 For example, loading a value with @code{X+const} addressing with a
16417 small non-negative @code{const < 64} to a register @var{Rn} is
16418 performed as
16420 @example
16421 adiw r26, const   ; X += const
16422 ld   @var{Rn}, X        ; @var{Rn} = *X
16423 sbiw r26, const   ; X -= const
16424 @end example
16426 @item -mtiny-stack
16427 @opindex mtiny-stack
16428 Only change the lower 8@tie{}bits of the stack pointer.
16430 @item -mfract-convert-truncate
16431 @opindex mfract-convert-truncate
16432 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16434 @item -nodevicelib
16435 @opindex nodevicelib
16436 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16438 @item -Waddr-space-convert
16439 @opindex Waddr-space-convert
16440 Warn about conversions between address spaces in the case where the
16441 resulting address space is not contained in the incoming address space.
16443 @item -Wmisspelled-isr
16444 @opindex Wmisspelled-isr
16445 Warn if the ISR is misspelled, i.e. without __vector prefix.
16446 Enabled by default.
16447 @end table
16449 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16450 @cindex @code{EIND}
16451 Pointers in the implementation are 16@tie{}bits wide.
16452 The address of a function or label is represented as word address so
16453 that indirect jumps and calls can target any code address in the
16454 range of 64@tie{}Ki words.
16456 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16457 bytes of program memory space, there is a special function register called
16458 @code{EIND} that serves as most significant part of the target address
16459 when @code{EICALL} or @code{EIJMP} instructions are used.
16461 Indirect jumps and calls on these devices are handled as follows by
16462 the compiler and are subject to some limitations:
16464 @itemize @bullet
16466 @item
16467 The compiler never sets @code{EIND}.
16469 @item
16470 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16471 instructions or might read @code{EIND} directly in order to emulate an
16472 indirect call/jump by means of a @code{RET} instruction.
16474 @item
16475 The compiler assumes that @code{EIND} never changes during the startup
16476 code or during the application. In particular, @code{EIND} is not
16477 saved/restored in function or interrupt service routine
16478 prologue/epilogue.
16480 @item
16481 For indirect calls to functions and computed goto, the linker
16482 generates @emph{stubs}. Stubs are jump pads sometimes also called
16483 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16484 The stub contains a direct jump to the desired address.
16486 @item
16487 Linker relaxation must be turned on so that the linker generates
16488 the stubs correctly in all situations. See the compiler option
16489 @option{-mrelax} and the linker option @option{--relax}.
16490 There are corner cases where the linker is supposed to generate stubs
16491 but aborts without relaxation and without a helpful error message.
16493 @item
16494 The default linker script is arranged for code with @code{EIND = 0}.
16495 If code is supposed to work for a setup with @code{EIND != 0}, a custom
16496 linker script has to be used in order to place the sections whose
16497 name start with @code{.trampolines} into the segment where @code{EIND}
16498 points to.
16500 @item
16501 The startup code from libgcc never sets @code{EIND}.
16502 Notice that startup code is a blend of code from libgcc and AVR-LibC.
16503 For the impact of AVR-LibC on @code{EIND}, see the
16504 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16506 @item
16507 It is legitimate for user-specific startup code to set up @code{EIND}
16508 early, for example by means of initialization code located in
16509 section @code{.init3}. Such code runs prior to general startup code
16510 that initializes RAM and calls constructors, but after the bit
16511 of startup code from AVR-LibC that sets @code{EIND} to the segment
16512 where the vector table is located.
16513 @example
16514 #include <avr/io.h>
16516 static void
16517 __attribute__((section(".init3"),naked,used,no_instrument_function))
16518 init3_set_eind (void)
16520   __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16521                   "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16523 @end example
16525 @noindent
16526 The @code{__trampolines_start} symbol is defined in the linker script.
16528 @item
16529 Stubs are generated automatically by the linker if
16530 the following two conditions are met:
16531 @itemize @minus
16533 @item The address of a label is taken by means of the @code{gs} modifier
16534 (short for @emph{generate stubs}) like so:
16535 @example
16536 LDI r24, lo8(gs(@var{func}))
16537 LDI r25, hi8(gs(@var{func}))
16538 @end example
16539 @item The final location of that label is in a code segment
16540 @emph{outside} the segment where the stubs are located.
16541 @end itemize
16543 @item
16544 The compiler emits such @code{gs} modifiers for code labels in the
16545 following situations:
16546 @itemize @minus
16547 @item Taking address of a function or code label.
16548 @item Computed goto.
16549 @item If prologue-save function is used, see @option{-mcall-prologues}
16550 command-line option.
16551 @item Switch/case dispatch tables. If you do not want such dispatch
16552 tables you can specify the @option{-fno-jump-tables} command-line option.
16553 @item C and C++ constructors/destructors called during startup/shutdown.
16554 @item If the tools hit a @code{gs()} modifier explained above.
16555 @end itemize
16557 @item
16558 Jumping to non-symbolic addresses like so is @emph{not} supported:
16560 @example
16561 int main (void)
16563     /* Call function at word address 0x2 */
16564     return ((int(*)(void)) 0x2)();
16566 @end example
16568 Instead, a stub has to be set up, i.e.@: the function has to be called
16569 through a symbol (@code{func_4} in the example):
16571 @example
16572 int main (void)
16574     extern int func_4 (void);
16576     /* Call function at byte address 0x4 */
16577     return func_4();
16579 @end example
16581 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
16582 Alternatively, @code{func_4} can be defined in the linker script.
16583 @end itemize
16585 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
16586 @cindex @code{RAMPD}
16587 @cindex @code{RAMPX}
16588 @cindex @code{RAMPY}
16589 @cindex @code{RAMPZ}
16590 Some AVR devices support memories larger than the 64@tie{}KiB range
16591 that can be accessed with 16-bit pointers.  To access memory locations
16592 outside this 64@tie{}KiB range, the content of a @code{RAMP}
16593 register is used as high part of the address:
16594 The @code{X}, @code{Y}, @code{Z} address register is concatenated
16595 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
16596 register, respectively, to get a wide address. Similarly,
16597 @code{RAMPD} is used together with direct addressing.
16599 @itemize
16600 @item
16601 The startup code initializes the @code{RAMP} special function
16602 registers with zero.
16604 @item
16605 If a @ref{AVR Named Address Spaces,named address space} other than
16606 generic or @code{__flash} is used, then @code{RAMPZ} is set
16607 as needed before the operation.
16609 @item
16610 If the device supports RAM larger than 64@tie{}KiB and the compiler
16611 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
16612 is reset to zero after the operation.
16614 @item
16615 If the device comes with a specific @code{RAMP} register, the ISR
16616 prologue/epilogue saves/restores that SFR and initializes it with
16617 zero in case the ISR code might (implicitly) use it.
16619 @item
16620 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
16621 If you use inline assembler to read from locations outside the
16622 16-bit address range and change one of the @code{RAMP} registers,
16623 you must reset it to zero after the access.
16625 @end itemize
16627 @subsubsection AVR Built-in Macros
16629 GCC defines several built-in macros so that the user code can test
16630 for the presence or absence of features.  Almost any of the following
16631 built-in macros are deduced from device capabilities and thus
16632 triggered by the @option{-mmcu=} command-line option.
16634 For even more AVR-specific built-in macros see
16635 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
16637 @table @code
16639 @item __AVR_ARCH__
16640 Build-in macro that resolves to a decimal number that identifies the
16641 architecture and depends on the @option{-mmcu=@var{mcu}} option.
16642 Possible values are:
16644 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
16645 @code{4}, @code{5}, @code{51}, @code{6}
16647 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
16648 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
16650 respectively and
16652 @code{100},
16653 @code{102}, @code{103}, @code{104},
16654 @code{105}, @code{106}, @code{107}
16656 for @var{mcu}=@code{avrtiny},
16657 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
16658 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
16659 If @var{mcu} specifies a device, this built-in macro is set
16660 accordingly. For example, with @option{-mmcu=atmega8} the macro is
16661 defined to @code{4}.
16663 @item __AVR_@var{Device}__
16664 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
16665 the device's name. For example, @option{-mmcu=atmega8} defines the
16666 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
16667 @code{__AVR_ATtiny261A__}, etc.
16669 The built-in macros' names follow
16670 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
16671 the device name as from the AVR user manual. The difference between
16672 @var{Device} in the built-in macro and @var{device} in
16673 @option{-mmcu=@var{device}} is that the latter is always lowercase.
16675 If @var{device} is not a device but only a core architecture like
16676 @samp{avr51}, this macro is not defined.
16678 @item __AVR_DEVICE_NAME__
16679 Setting @option{-mmcu=@var{device}} defines this built-in macro to
16680 the device's name. For example, with @option{-mmcu=atmega8} the macro
16681 is defined to @code{atmega8}.
16683 If @var{device} is not a device but only a core architecture like
16684 @samp{avr51}, this macro is not defined.
16686 @item __AVR_XMEGA__
16687 The device / architecture belongs to the XMEGA family of devices.
16689 @item __AVR_HAVE_ELPM__
16690 The device has the @code{ELPM} instruction.
16692 @item __AVR_HAVE_ELPMX__
16693 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
16694 R@var{n},Z+} instructions.
16696 @item __AVR_HAVE_MOVW__
16697 The device has the @code{MOVW} instruction to perform 16-bit
16698 register-register moves.
16700 @item __AVR_HAVE_LPMX__
16701 The device has the @code{LPM R@var{n},Z} and
16702 @code{LPM R@var{n},Z+} instructions.
16704 @item __AVR_HAVE_MUL__
16705 The device has a hardware multiplier. 
16707 @item __AVR_HAVE_JMP_CALL__
16708 The device has the @code{JMP} and @code{CALL} instructions.
16709 This is the case for devices with more than 8@tie{}KiB of program
16710 memory.
16712 @item __AVR_HAVE_EIJMP_EICALL__
16713 @itemx __AVR_3_BYTE_PC__
16714 The device has the @code{EIJMP} and @code{EICALL} instructions.
16715 This is the case for devices with more than 128@tie{}KiB of program memory.
16716 This also means that the program counter
16717 (PC) is 3@tie{}bytes wide.
16719 @item __AVR_2_BYTE_PC__
16720 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
16721 with up to 128@tie{}KiB of program memory.
16723 @item __AVR_HAVE_8BIT_SP__
16724 @itemx __AVR_HAVE_16BIT_SP__
16725 The stack pointer (SP) register is treated as 8-bit respectively
16726 16-bit register by the compiler.
16727 The definition of these macros is affected by @option{-mtiny-stack}.
16729 @item __AVR_HAVE_SPH__
16730 @itemx __AVR_SP8__
16731 The device has the SPH (high part of stack pointer) special function
16732 register or has an 8-bit stack pointer, respectively.
16733 The definition of these macros is affected by @option{-mmcu=} and
16734 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
16735 by @option{-msp8}.
16737 @item __AVR_HAVE_RAMPD__
16738 @itemx __AVR_HAVE_RAMPX__
16739 @itemx __AVR_HAVE_RAMPY__
16740 @itemx __AVR_HAVE_RAMPZ__
16741 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
16742 @code{RAMPZ} special function register, respectively.
16744 @item __NO_INTERRUPTS__
16745 This macro reflects the @option{-mno-interrupts} command-line option.
16747 @item __AVR_ERRATA_SKIP__
16748 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
16749 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
16750 instructions because of a hardware erratum.  Skip instructions are
16751 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
16752 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
16753 set.
16755 @item __AVR_ISA_RMW__
16756 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
16758 @item __AVR_SFR_OFFSET__=@var{offset}
16759 Instructions that can address I/O special function registers directly
16760 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
16761 address as if addressed by an instruction to access RAM like @code{LD}
16762 or @code{STS}. This offset depends on the device architecture and has
16763 to be subtracted from the RAM address in order to get the
16764 respective I/O@tie{}address.
16766 @item __AVR_SHORT_CALLS__
16767 The @option{-mshort-calls} command line option is set.
16769 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
16770 Some devices support reading from flash memory by means of @code{LD*}
16771 instructions.  The flash memory is seen in the data address space
16772 at an offset of @code{__AVR_PM_BASE_ADDRESS__}.  If this macro
16773 is not defined, this feature is not available.  If defined,
16774 the address space is linear and there is no need to put
16775 @code{.rodata} into RAM.  This is handled by the default linker
16776 description file, and is currently available for
16777 @code{avrtiny} and @code{avrxmega3}.  Even more convenient,
16778 there is no need to use address spaces like @code{__flash} or
16779 features like attribute @code{progmem} and @code{pgm_read_*}.
16781 @item __WITH_AVRLIBC__
16782 The compiler is configured to be used together with AVR-Libc.
16783 See the @option{--with-avrlibc} configure option.
16785 @end table
16787 @node Blackfin Options
16788 @subsection Blackfin Options
16789 @cindex Blackfin Options
16791 @table @gcctabopt
16792 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
16793 @opindex mcpu=
16794 Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
16795 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
16796 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
16797 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
16798 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
16799 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
16800 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
16801 @samp{bf561}, @samp{bf592}.
16803 The optional @var{sirevision} specifies the silicon revision of the target
16804 Blackfin processor.  Any workarounds available for the targeted silicon revision
16805 are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
16806 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
16807 are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
16808 hexadecimal digits representing the major and minor numbers in the silicon
16809 revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
16810 is not defined.  If @var{sirevision} is @samp{any}, the
16811 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
16812 If this optional @var{sirevision} is not used, GCC assumes the latest known
16813 silicon revision of the targeted Blackfin processor.
16815 GCC defines a preprocessor macro for the specified @var{cpu}.
16816 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
16817 provided by libgloss to be linked in if @option{-msim} is not given.
16819 Without this option, @samp{bf532} is used as the processor by default.
16821 Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
16822 only the preprocessor macro is defined.
16824 @item -msim
16825 @opindex msim
16826 Specifies that the program will be run on the simulator.  This causes
16827 the simulator BSP provided by libgloss to be linked in.  This option
16828 has effect only for @samp{bfin-elf} toolchain.
16829 Certain other options, such as @option{-mid-shared-library} and
16830 @option{-mfdpic}, imply @option{-msim}.
16832 @item -momit-leaf-frame-pointer
16833 @opindex momit-leaf-frame-pointer
16834 Don't keep the frame pointer in a register for leaf functions.  This
16835 avoids the instructions to save, set up and restore frame pointers and
16836 makes an extra register available in leaf functions.
16838 @item -mspecld-anomaly
16839 @opindex mspecld-anomaly
16840 When enabled, the compiler ensures that the generated code does not
16841 contain speculative loads after jump instructions. If this option is used,
16842 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
16844 @item -mno-specld-anomaly
16845 @opindex mno-specld-anomaly
16846 Don't generate extra code to prevent speculative loads from occurring.
16848 @item -mcsync-anomaly
16849 @opindex mcsync-anomaly
16850 When enabled, the compiler ensures that the generated code does not
16851 contain CSYNC or SSYNC instructions too soon after conditional branches.
16852 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
16854 @item -mno-csync-anomaly
16855 @opindex mno-csync-anomaly
16856 Don't generate extra code to prevent CSYNC or SSYNC instructions from
16857 occurring too soon after a conditional branch.
16859 @item -mlow-64k
16860 @opindex mlow-64k
16861 When enabled, the compiler is free to take advantage of the knowledge that
16862 the entire program fits into the low 64k of memory.
16864 @item -mno-low-64k
16865 @opindex mno-low-64k
16866 Assume that the program is arbitrarily large.  This is the default.
16868 @item -mstack-check-l1
16869 @opindex mstack-check-l1
16870 Do stack checking using information placed into L1 scratchpad memory by the
16871 uClinux kernel.
16873 @item -mid-shared-library
16874 @opindex mid-shared-library
16875 Generate code that supports shared libraries via the library ID method.
16876 This allows for execute in place and shared libraries in an environment
16877 without virtual memory management.  This option implies @option{-fPIC}.
16878 With a @samp{bfin-elf} target, this option implies @option{-msim}.
16880 @item -mno-id-shared-library
16881 @opindex mno-id-shared-library
16882 Generate code that doesn't assume ID-based shared libraries are being used.
16883 This is the default.
16885 @item -mleaf-id-shared-library
16886 @opindex mleaf-id-shared-library
16887 Generate code that supports shared libraries via the library ID method,
16888 but assumes that this library or executable won't link against any other
16889 ID shared libraries.  That allows the compiler to use faster code for jumps
16890 and calls.
16892 @item -mno-leaf-id-shared-library
16893 @opindex mno-leaf-id-shared-library
16894 Do not assume that the code being compiled won't link against any ID shared
16895 libraries.  Slower code is generated for jump and call insns.
16897 @item -mshared-library-id=n
16898 @opindex mshared-library-id
16899 Specifies the identification number of the ID-based shared library being
16900 compiled.  Specifying a value of 0 generates more compact code; specifying
16901 other values forces the allocation of that number to the current
16902 library but is no more space- or time-efficient than omitting this option.
16904 @item -msep-data
16905 @opindex msep-data
16906 Generate code that allows the data segment to be located in a different
16907 area of memory from the text segment.  This allows for execute in place in
16908 an environment without virtual memory management by eliminating relocations
16909 against the text section.
16911 @item -mno-sep-data
16912 @opindex mno-sep-data
16913 Generate code that assumes that the data segment follows the text segment.
16914 This is the default.
16916 @item -mlong-calls
16917 @itemx -mno-long-calls
16918 @opindex mlong-calls
16919 @opindex mno-long-calls
16920 Tells the compiler to perform function calls by first loading the
16921 address of the function into a register and then performing a subroutine
16922 call on this register.  This switch is needed if the target function
16923 lies outside of the 24-bit addressing range of the offset-based
16924 version of subroutine call instruction.
16926 This feature is not enabled by default.  Specifying
16927 @option{-mno-long-calls} restores the default behavior.  Note these
16928 switches have no effect on how the compiler generates code to handle
16929 function calls via function pointers.
16931 @item -mfast-fp
16932 @opindex mfast-fp
16933 Link with the fast floating-point library. This library relaxes some of
16934 the IEEE floating-point standard's rules for checking inputs against
16935 Not-a-Number (NAN), in the interest of performance.
16937 @item -minline-plt
16938 @opindex minline-plt
16939 Enable inlining of PLT entries in function calls to functions that are
16940 not known to bind locally.  It has no effect without @option{-mfdpic}.
16942 @item -mmulticore
16943 @opindex mmulticore
16944 Build a standalone application for multicore Blackfin processors. 
16945 This option causes proper start files and link scripts supporting 
16946 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}. 
16947 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. 
16949 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
16950 selects the one-application-per-core programming model.  Without
16951 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
16952 programming model is used. In this model, the main function of Core B
16953 should be named as @code{coreb_main}.
16955 If this option is not used, the single-core application programming
16956 model is used.
16958 @item -mcorea
16959 @opindex mcorea
16960 Build a standalone application for Core A of BF561 when using
16961 the one-application-per-core programming model. Proper start files
16962 and link scripts are used to support Core A, and the macro
16963 @code{__BFIN_COREA} is defined.
16964 This option can only be used in conjunction with @option{-mmulticore}.
16966 @item -mcoreb
16967 @opindex mcoreb
16968 Build a standalone application for Core B of BF561 when using
16969 the one-application-per-core programming model. Proper start files
16970 and link scripts are used to support Core B, and the macro
16971 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
16972 should be used instead of @code{main}. 
16973 This option can only be used in conjunction with @option{-mmulticore}.
16975 @item -msdram
16976 @opindex msdram
16977 Build a standalone application for SDRAM. Proper start files and
16978 link scripts are used to put the application into SDRAM, and the macro
16979 @code{__BFIN_SDRAM} is defined.
16980 The loader should initialize SDRAM before loading the application.
16982 @item -micplb
16983 @opindex micplb
16984 Assume that ICPLBs are enabled at run time.  This has an effect on certain
16985 anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
16986 are enabled; for standalone applications the default is off.
16987 @end table
16989 @node C6X Options
16990 @subsection C6X Options
16991 @cindex C6X Options
16993 @table @gcctabopt
16994 @item -march=@var{name}
16995 @opindex march
16996 This specifies the name of the target architecture.  GCC uses this
16997 name to determine what kind of instructions it can emit when generating
16998 assembly code.  Permissible names are: @samp{c62x},
16999 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
17001 @item -mbig-endian
17002 @opindex mbig-endian
17003 Generate code for a big-endian target.
17005 @item -mlittle-endian
17006 @opindex mlittle-endian
17007 Generate code for a little-endian target.  This is the default.
17009 @item -msim
17010 @opindex msim
17011 Choose startup files and linker script suitable for the simulator.
17013 @item -msdata=default
17014 @opindex msdata=default
17015 Put small global and static data in the @code{.neardata} section,
17016 which is pointed to by register @code{B14}.  Put small uninitialized
17017 global and static data in the @code{.bss} section, which is adjacent
17018 to the @code{.neardata} section.  Put small read-only data into the
17019 @code{.rodata} section.  The corresponding sections used for large
17020 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
17022 @item -msdata=all
17023 @opindex msdata=all
17024 Put all data, not just small objects, into the sections reserved for
17025 small data, and use addressing relative to the @code{B14} register to
17026 access them.
17028 @item -msdata=none
17029 @opindex msdata=none
17030 Make no use of the sections reserved for small data, and use absolute
17031 addresses to access all data.  Put all initialized global and static
17032 data in the @code{.fardata} section, and all uninitialized data in the
17033 @code{.far} section.  Put all constant data into the @code{.const}
17034 section.
17035 @end table
17037 @node CRIS Options
17038 @subsection CRIS Options
17039 @cindex CRIS Options
17041 These options are defined specifically for the CRIS ports.
17043 @table @gcctabopt
17044 @item -march=@var{architecture-type}
17045 @itemx -mcpu=@var{architecture-type}
17046 @opindex march
17047 @opindex mcpu
17048 Generate code for the specified architecture.  The choices for
17049 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
17050 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
17051 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
17052 @samp{v10}.
17054 @item -mtune=@var{architecture-type}
17055 @opindex mtune
17056 Tune to @var{architecture-type} everything applicable about the generated
17057 code, except for the ABI and the set of available instructions.  The
17058 choices for @var{architecture-type} are the same as for
17059 @option{-march=@var{architecture-type}}.
17061 @item -mmax-stack-frame=@var{n}
17062 @opindex mmax-stack-frame
17063 Warn when the stack frame of a function exceeds @var{n} bytes.
17065 @item -metrax4
17066 @itemx -metrax100
17067 @opindex metrax4
17068 @opindex metrax100
17069 The options @option{-metrax4} and @option{-metrax100} are synonyms for
17070 @option{-march=v3} and @option{-march=v8} respectively.
17072 @item -mmul-bug-workaround
17073 @itemx -mno-mul-bug-workaround
17074 @opindex mmul-bug-workaround
17075 @opindex mno-mul-bug-workaround
17076 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
17077 models where it applies.  This option is active by default.
17079 @item -mpdebug
17080 @opindex mpdebug
17081 Enable CRIS-specific verbose debug-related information in the assembly
17082 code.  This option also has the effect of turning off the @samp{#NO_APP}
17083 formatted-code indicator to the assembler at the beginning of the
17084 assembly file.
17086 @item -mcc-init
17087 @opindex mcc-init
17088 Do not use condition-code results from previous instruction; always emit
17089 compare and test instructions before use of condition codes.
17091 @item -mno-side-effects
17092 @opindex mno-side-effects
17093 Do not emit instructions with side effects in addressing modes other than
17094 post-increment.
17096 @item -mstack-align
17097 @itemx -mno-stack-align
17098 @itemx -mdata-align
17099 @itemx -mno-data-align
17100 @itemx -mconst-align
17101 @itemx -mno-const-align
17102 @opindex mstack-align
17103 @opindex mno-stack-align
17104 @opindex mdata-align
17105 @opindex mno-data-align
17106 @opindex mconst-align
17107 @opindex mno-const-align
17108 These options (@samp{no-} options) arrange (eliminate arrangements) for the
17109 stack frame, individual data and constants to be aligned for the maximum
17110 single data access size for the chosen CPU model.  The default is to
17111 arrange for 32-bit alignment.  ABI details such as structure layout are
17112 not affected by these options.
17114 @item -m32-bit
17115 @itemx -m16-bit
17116 @itemx -m8-bit
17117 @opindex m32-bit
17118 @opindex m16-bit
17119 @opindex m8-bit
17120 Similar to the stack- data- and const-align options above, these options
17121 arrange for stack frame, writable data and constants to all be 32-bit,
17122 16-bit or 8-bit aligned.  The default is 32-bit alignment.
17124 @item -mno-prologue-epilogue
17125 @itemx -mprologue-epilogue
17126 @opindex mno-prologue-epilogue
17127 @opindex mprologue-epilogue
17128 With @option{-mno-prologue-epilogue}, the normal function prologue and
17129 epilogue which set up the stack frame are omitted and no return
17130 instructions or return sequences are generated in the code.  Use this
17131 option only together with visual inspection of the compiled code: no
17132 warnings or errors are generated when call-saved registers must be saved,
17133 or storage for local variables needs to be allocated.
17135 @item -mno-gotplt
17136 @itemx -mgotplt
17137 @opindex mno-gotplt
17138 @opindex mgotplt
17139 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
17140 instruction sequences that load addresses for functions from the PLT part
17141 of the GOT rather than (traditional on other architectures) calls to the
17142 PLT@.  The default is @option{-mgotplt}.
17144 @item -melf
17145 @opindex melf
17146 Legacy no-op option only recognized with the cris-axis-elf and
17147 cris-axis-linux-gnu targets.
17149 @item -mlinux
17150 @opindex mlinux
17151 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
17153 @item -sim
17154 @opindex sim
17155 This option, recognized for the cris-axis-elf, arranges
17156 to link with input-output functions from a simulator library.  Code,
17157 initialized data and zero-initialized data are allocated consecutively.
17159 @item -sim2
17160 @opindex sim2
17161 Like @option{-sim}, but pass linker options to locate initialized data at
17162 0x40000000 and zero-initialized data at 0x80000000.
17163 @end table
17165 @node CR16 Options
17166 @subsection CR16 Options
17167 @cindex CR16 Options
17169 These options are defined specifically for the CR16 ports.
17171 @table @gcctabopt
17173 @item -mmac
17174 @opindex mmac
17175 Enable the use of multiply-accumulate instructions. Disabled by default.
17177 @item -mcr16cplus
17178 @itemx -mcr16c
17179 @opindex mcr16cplus
17180 @opindex mcr16c
17181 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture 
17182 is default.
17184 @item -msim
17185 @opindex msim
17186 Links the library libsim.a which is in compatible with simulator. Applicable
17187 to ELF compiler only.
17189 @item -mint32
17190 @opindex mint32
17191 Choose integer type as 32-bit wide.
17193 @item -mbit-ops
17194 @opindex mbit-ops
17195 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
17197 @item -mdata-model=@var{model}
17198 @opindex mdata-model
17199 Choose a data model. The choices for @var{model} are @samp{near},
17200 @samp{far} or @samp{medium}. @samp{medium} is default.
17201 However, @samp{far} is not valid with @option{-mcr16c}, as the
17202 CR16C architecture does not support the far data model.
17203 @end table
17205 @node Darwin Options
17206 @subsection Darwin Options
17207 @cindex Darwin options
17209 These options are defined for all architectures running the Darwin operating
17210 system.
17212 FSF GCC on Darwin does not create ``fat'' object files; it creates
17213 an object file for the single architecture that GCC was built to
17214 target.  Apple's GCC on Darwin does create ``fat'' files if multiple
17215 @option{-arch} options are used; it does so by running the compiler or
17216 linker multiple times and joining the results together with
17217 @file{lipo}.
17219 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
17220 @samp{i686}) is determined by the flags that specify the ISA
17221 that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
17222 @option{-force_cpusubtype_ALL} option can be used to override this.
17224 The Darwin tools vary in their behavior when presented with an ISA
17225 mismatch.  The assembler, @file{as}, only permits instructions to
17226 be used that are valid for the subtype of the file it is generating,
17227 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
17228 The linker for shared libraries, @file{/usr/bin/libtool}, fails
17229 and prints an error if asked to create a shared library with a less
17230 restrictive subtype than its input files (for instance, trying to put
17231 a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
17232 for executables, @command{ld}, quietly gives the executable the most
17233 restrictive subtype of any of its input files.
17235 @table @gcctabopt
17236 @item -F@var{dir}
17237 @opindex F
17238 Add the framework directory @var{dir} to the head of the list of
17239 directories to be searched for header files.  These directories are
17240 interleaved with those specified by @option{-I} options and are
17241 scanned in a left-to-right order.
17243 A framework directory is a directory with frameworks in it.  A
17244 framework is a directory with a @file{Headers} and/or
17245 @file{PrivateHeaders} directory contained directly in it that ends
17246 in @file{.framework}.  The name of a framework is the name of this
17247 directory excluding the @file{.framework}.  Headers associated with
17248 the framework are found in one of those two directories, with
17249 @file{Headers} being searched first.  A subframework is a framework
17250 directory that is in a framework's @file{Frameworks} directory.
17251 Includes of subframework headers can only appear in a header of a
17252 framework that contains the subframework, or in a sibling subframework
17253 header.  Two subframeworks are siblings if they occur in the same
17254 framework.  A subframework should not have the same name as a
17255 framework; a warning is issued if this is violated.  Currently a
17256 subframework cannot have subframeworks; in the future, the mechanism
17257 may be extended to support this.  The standard frameworks can be found
17258 in @file{/System/Library/Frameworks} and
17259 @file{/Library/Frameworks}.  An example include looks like
17260 @code{#include <Framework/header.h>}, where @file{Framework} denotes
17261 the name of the framework and @file{header.h} is found in the
17262 @file{PrivateHeaders} or @file{Headers} directory.
17264 @item -iframework@var{dir}
17265 @opindex iframework
17266 Like @option{-F} except the directory is a treated as a system
17267 directory.  The main difference between this @option{-iframework} and
17268 @option{-F} is that with @option{-iframework} the compiler does not
17269 warn about constructs contained within header files found via
17270 @var{dir}.  This option is valid only for the C family of languages.
17272 @item -gused
17273 @opindex gused
17274 Emit debugging information for symbols that are used.  For stabs
17275 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
17276 This is by default ON@.
17278 @item -gfull
17279 @opindex gfull
17280 Emit debugging information for all symbols and types.
17282 @item -mmacosx-version-min=@var{version}
17283 The earliest version of MacOS X that this executable will run on
17284 is @var{version}.  Typical values of @var{version} include @code{10.1},
17285 @code{10.2}, and @code{10.3.9}.
17287 If the compiler was built to use the system's headers by default,
17288 then the default for this option is the system version on which the
17289 compiler is running, otherwise the default is to make choices that
17290 are compatible with as many systems and code bases as possible.
17292 @item -mkernel
17293 @opindex mkernel
17294 Enable kernel development mode.  The @option{-mkernel} option sets
17295 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
17296 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
17297 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
17298 applicable.  This mode also sets @option{-mno-altivec},
17299 @option{-msoft-float}, @option{-fno-builtin} and
17300 @option{-mlong-branch} for PowerPC targets.
17302 @item -mone-byte-bool
17303 @opindex mone-byte-bool
17304 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
17305 By default @code{sizeof(bool)} is @code{4} when compiling for
17306 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
17307 option has no effect on x86.
17309 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
17310 to generate code that is not binary compatible with code generated
17311 without that switch.  Using this switch may require recompiling all
17312 other modules in a program, including system libraries.  Use this
17313 switch to conform to a non-default data model.
17315 @item -mfix-and-continue
17316 @itemx -ffix-and-continue
17317 @itemx -findirect-data
17318 @opindex mfix-and-continue
17319 @opindex ffix-and-continue
17320 @opindex findirect-data
17321 Generate code suitable for fast turnaround development, such as to
17322 allow GDB to dynamically load @file{.o} files into already-running
17323 programs.  @option{-findirect-data} and @option{-ffix-and-continue}
17324 are provided for backwards compatibility.
17326 @item -all_load
17327 @opindex all_load
17328 Loads all members of static archive libraries.
17329 See man ld(1) for more information.
17331 @item -arch_errors_fatal
17332 @opindex arch_errors_fatal
17333 Cause the errors having to do with files that have the wrong architecture
17334 to be fatal.
17336 @item -bind_at_load
17337 @opindex bind_at_load
17338 Causes the output file to be marked such that the dynamic linker will
17339 bind all undefined references when the file is loaded or launched.
17341 @item -bundle
17342 @opindex bundle
17343 Produce a Mach-o bundle format file.
17344 See man ld(1) for more information.
17346 @item -bundle_loader @var{executable}
17347 @opindex bundle_loader
17348 This option specifies the @var{executable} that will load the build
17349 output file being linked.  See man ld(1) for more information.
17351 @item -dynamiclib
17352 @opindex dynamiclib
17353 When passed this option, GCC produces a dynamic library instead of
17354 an executable when linking, using the Darwin @file{libtool} command.
17356 @item -force_cpusubtype_ALL
17357 @opindex force_cpusubtype_ALL
17358 This causes GCC's output file to have the @samp{ALL} subtype, instead of
17359 one controlled by the @option{-mcpu} or @option{-march} option.
17361 @item -allowable_client  @var{client_name}
17362 @itemx -client_name
17363 @itemx -compatibility_version
17364 @itemx -current_version
17365 @itemx -dead_strip
17366 @itemx -dependency-file
17367 @itemx -dylib_file
17368 @itemx -dylinker_install_name
17369 @itemx -dynamic
17370 @itemx -exported_symbols_list
17371 @itemx -filelist
17372 @need 800
17373 @itemx -flat_namespace
17374 @itemx -force_flat_namespace
17375 @itemx -headerpad_max_install_names
17376 @itemx -image_base
17377 @itemx -init
17378 @itemx -install_name
17379 @itemx -keep_private_externs
17380 @itemx -multi_module
17381 @itemx -multiply_defined
17382 @itemx -multiply_defined_unused
17383 @need 800
17384 @itemx -noall_load
17385 @itemx -no_dead_strip_inits_and_terms
17386 @itemx -nofixprebinding
17387 @itemx -nomultidefs
17388 @itemx -noprebind
17389 @itemx -noseglinkedit
17390 @itemx -pagezero_size
17391 @itemx -prebind
17392 @itemx -prebind_all_twolevel_modules
17393 @itemx -private_bundle
17394 @need 800
17395 @itemx -read_only_relocs
17396 @itemx -sectalign
17397 @itemx -sectobjectsymbols
17398 @itemx -whyload
17399 @itemx -seg1addr
17400 @itemx -sectcreate
17401 @itemx -sectobjectsymbols
17402 @itemx -sectorder
17403 @itemx -segaddr
17404 @itemx -segs_read_only_addr
17405 @need 800
17406 @itemx -segs_read_write_addr
17407 @itemx -seg_addr_table
17408 @itemx -seg_addr_table_filename
17409 @itemx -seglinkedit
17410 @itemx -segprot
17411 @itemx -segs_read_only_addr
17412 @itemx -segs_read_write_addr
17413 @itemx -single_module
17414 @itemx -static
17415 @itemx -sub_library
17416 @need 800
17417 @itemx -sub_umbrella
17418 @itemx -twolevel_namespace
17419 @itemx -umbrella
17420 @itemx -undefined
17421 @itemx -unexported_symbols_list
17422 @itemx -weak_reference_mismatches
17423 @itemx -whatsloaded
17424 @opindex allowable_client
17425 @opindex client_name
17426 @opindex compatibility_version
17427 @opindex current_version
17428 @opindex dead_strip
17429 @opindex dependency-file
17430 @opindex dylib_file
17431 @opindex dylinker_install_name
17432 @opindex dynamic
17433 @opindex exported_symbols_list
17434 @opindex filelist
17435 @opindex flat_namespace
17436 @opindex force_flat_namespace
17437 @opindex headerpad_max_install_names
17438 @opindex image_base
17439 @opindex init
17440 @opindex install_name
17441 @opindex keep_private_externs
17442 @opindex multi_module
17443 @opindex multiply_defined
17444 @opindex multiply_defined_unused
17445 @opindex noall_load
17446 @opindex no_dead_strip_inits_and_terms
17447 @opindex nofixprebinding
17448 @opindex nomultidefs
17449 @opindex noprebind
17450 @opindex noseglinkedit
17451 @opindex pagezero_size
17452 @opindex prebind
17453 @opindex prebind_all_twolevel_modules
17454 @opindex private_bundle
17455 @opindex read_only_relocs
17456 @opindex sectalign
17457 @opindex sectobjectsymbols
17458 @opindex whyload
17459 @opindex seg1addr
17460 @opindex sectcreate
17461 @opindex sectobjectsymbols
17462 @opindex sectorder
17463 @opindex segaddr
17464 @opindex segs_read_only_addr
17465 @opindex segs_read_write_addr
17466 @opindex seg_addr_table
17467 @opindex seg_addr_table_filename
17468 @opindex seglinkedit
17469 @opindex segprot
17470 @opindex segs_read_only_addr
17471 @opindex segs_read_write_addr
17472 @opindex single_module
17473 @opindex static
17474 @opindex sub_library
17475 @opindex sub_umbrella
17476 @opindex twolevel_namespace
17477 @opindex umbrella
17478 @opindex undefined
17479 @opindex unexported_symbols_list
17480 @opindex weak_reference_mismatches
17481 @opindex whatsloaded
17482 These options are passed to the Darwin linker.  The Darwin linker man page
17483 describes them in detail.
17484 @end table
17486 @node DEC Alpha Options
17487 @subsection DEC Alpha Options
17489 These @samp{-m} options are defined for the DEC Alpha implementations:
17491 @table @gcctabopt
17492 @item -mno-soft-float
17493 @itemx -msoft-float
17494 @opindex mno-soft-float
17495 @opindex msoft-float
17496 Use (do not use) the hardware floating-point instructions for
17497 floating-point operations.  When @option{-msoft-float} is specified,
17498 functions in @file{libgcc.a} are used to perform floating-point
17499 operations.  Unless they are replaced by routines that emulate the
17500 floating-point operations, or compiled in such a way as to call such
17501 emulations routines, these routines issue floating-point
17502 operations.   If you are compiling for an Alpha without floating-point
17503 operations, you must ensure that the library is built so as not to call
17504 them.
17506 Note that Alpha implementations without floating-point operations are
17507 required to have floating-point registers.
17509 @item -mfp-reg
17510 @itemx -mno-fp-regs
17511 @opindex mfp-reg
17512 @opindex mno-fp-regs
17513 Generate code that uses (does not use) the floating-point register set.
17514 @option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
17515 register set is not used, floating-point operands are passed in integer
17516 registers as if they were integers and floating-point results are passed
17517 in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
17518 so any function with a floating-point argument or return value called by code
17519 compiled with @option{-mno-fp-regs} must also be compiled with that
17520 option.
17522 A typical use of this option is building a kernel that does not use,
17523 and hence need not save and restore, any floating-point registers.
17525 @item -mieee
17526 @opindex mieee
17527 The Alpha architecture implements floating-point hardware optimized for
17528 maximum performance.  It is mostly compliant with the IEEE floating-point
17529 standard.  However, for full compliance, software assistance is
17530 required.  This option generates code fully IEEE-compliant code
17531 @emph{except} that the @var{inexact-flag} is not maintained (see below).
17532 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17533 defined during compilation.  The resulting code is less efficient but is
17534 able to correctly support denormalized numbers and exceptional IEEE
17535 values such as not-a-number and plus/minus infinity.  Other Alpha
17536 compilers call this option @option{-ieee_with_no_inexact}.
17538 @item -mieee-with-inexact
17539 @opindex mieee-with-inexact
17540 This is like @option{-mieee} except the generated code also maintains
17541 the IEEE @var{inexact-flag}.  Turning on this option causes the
17542 generated code to implement fully-compliant IEEE math.  In addition to
17543 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
17544 macro.  On some Alpha implementations the resulting code may execute
17545 significantly slower than the code generated by default.  Since there is
17546 very little code that depends on the @var{inexact-flag}, you should
17547 normally not specify this option.  Other Alpha compilers call this
17548 option @option{-ieee_with_inexact}.
17550 @item -mfp-trap-mode=@var{trap-mode}
17551 @opindex mfp-trap-mode
17552 This option controls what floating-point related traps are enabled.
17553 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
17554 The trap mode can be set to one of four values:
17556 @table @samp
17557 @item n
17558 This is the default (normal) setting.  The only traps that are enabled
17559 are the ones that cannot be disabled in software (e.g., division by zero
17560 trap).
17562 @item u
17563 In addition to the traps enabled by @samp{n}, underflow traps are enabled
17564 as well.
17566 @item su
17567 Like @samp{u}, but the instructions are marked to be safe for software
17568 completion (see Alpha architecture manual for details).
17570 @item sui
17571 Like @samp{su}, but inexact traps are enabled as well.
17572 @end table
17574 @item -mfp-rounding-mode=@var{rounding-mode}
17575 @opindex mfp-rounding-mode
17576 Selects the IEEE rounding mode.  Other Alpha compilers call this option
17577 @option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
17580 @table @samp
17581 @item n
17582 Normal IEEE rounding mode.  Floating-point numbers are rounded towards
17583 the nearest machine number or towards the even machine number in case
17584 of a tie.
17586 @item m
17587 Round towards minus infinity.
17589 @item c
17590 Chopped rounding mode.  Floating-point numbers are rounded towards zero.
17592 @item d
17593 Dynamic rounding mode.  A field in the floating-point control register
17594 (@var{fpcr}, see Alpha architecture reference manual) controls the
17595 rounding mode in effect.  The C library initializes this register for
17596 rounding towards plus infinity.  Thus, unless your program modifies the
17597 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
17598 @end table
17600 @item -mtrap-precision=@var{trap-precision}
17601 @opindex mtrap-precision
17602 In the Alpha architecture, floating-point traps are imprecise.  This
17603 means without software assistance it is impossible to recover from a
17604 floating trap and program execution normally needs to be terminated.
17605 GCC can generate code that can assist operating system trap handlers
17606 in determining the exact location that caused a floating-point trap.
17607 Depending on the requirements of an application, different levels of
17608 precisions can be selected:
17610 @table @samp
17611 @item p
17612 Program precision.  This option is the default and means a trap handler
17613 can only identify which program caused a floating-point exception.
17615 @item f
17616 Function precision.  The trap handler can determine the function that
17617 caused a floating-point exception.
17619 @item i
17620 Instruction precision.  The trap handler can determine the exact
17621 instruction that caused a floating-point exception.
17622 @end table
17624 Other Alpha compilers provide the equivalent options called
17625 @option{-scope_safe} and @option{-resumption_safe}.
17627 @item -mieee-conformant
17628 @opindex mieee-conformant
17629 This option marks the generated code as IEEE conformant.  You must not
17630 use this option unless you also specify @option{-mtrap-precision=i} and either
17631 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
17632 is to emit the line @samp{.eflag 48} in the function prologue of the
17633 generated assembly file.
17635 @item -mbuild-constants
17636 @opindex mbuild-constants
17637 Normally GCC examines a 32- or 64-bit integer constant to
17638 see if it can construct it from smaller constants in two or three
17639 instructions.  If it cannot, it outputs the constant as a literal and
17640 generates code to load it from the data segment at run time.
17642 Use this option to require GCC to construct @emph{all} integer constants
17643 using code, even if it takes more instructions (the maximum is six).
17645 You typically use this option to build a shared library dynamic
17646 loader.  Itself a shared library, it must relocate itself in memory
17647 before it can find the variables and constants in its own data segment.
17649 @item -mbwx
17650 @itemx -mno-bwx
17651 @itemx -mcix
17652 @itemx -mno-cix
17653 @itemx -mfix
17654 @itemx -mno-fix
17655 @itemx -mmax
17656 @itemx -mno-max
17657 @opindex mbwx
17658 @opindex mno-bwx
17659 @opindex mcix
17660 @opindex mno-cix
17661 @opindex mfix
17662 @opindex mno-fix
17663 @opindex mmax
17664 @opindex mno-max
17665 Indicate whether GCC should generate code to use the optional BWX,
17666 CIX, FIX and MAX instruction sets.  The default is to use the instruction
17667 sets supported by the CPU type specified via @option{-mcpu=} option or that
17668 of the CPU on which GCC was built if none is specified.
17670 @item -mfloat-vax
17671 @itemx -mfloat-ieee
17672 @opindex mfloat-vax
17673 @opindex mfloat-ieee
17674 Generate code that uses (does not use) VAX F and G floating-point
17675 arithmetic instead of IEEE single and double precision.
17677 @item -mexplicit-relocs
17678 @itemx -mno-explicit-relocs
17679 @opindex mexplicit-relocs
17680 @opindex mno-explicit-relocs
17681 Older Alpha assemblers provided no way to generate symbol relocations
17682 except via assembler macros.  Use of these macros does not allow
17683 optimal instruction scheduling.  GNU binutils as of version 2.12
17684 supports a new syntax that allows the compiler to explicitly mark
17685 which relocations should apply to which instructions.  This option
17686 is mostly useful for debugging, as GCC detects the capabilities of
17687 the assembler when it is built and sets the default accordingly.
17689 @item -msmall-data
17690 @itemx -mlarge-data
17691 @opindex msmall-data
17692 @opindex mlarge-data
17693 When @option{-mexplicit-relocs} is in effect, static data is
17694 accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
17695 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
17696 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
17697 16-bit relocations off of the @code{$gp} register.  This limits the
17698 size of the small data area to 64KB, but allows the variables to be
17699 directly accessed via a single instruction.
17701 The default is @option{-mlarge-data}.  With this option the data area
17702 is limited to just below 2GB@.  Programs that require more than 2GB of
17703 data must use @code{malloc} or @code{mmap} to allocate the data in the
17704 heap instead of in the program's data segment.
17706 When generating code for shared libraries, @option{-fpic} implies
17707 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
17709 @item -msmall-text
17710 @itemx -mlarge-text
17711 @opindex msmall-text
17712 @opindex mlarge-text
17713 When @option{-msmall-text} is used, the compiler assumes that the
17714 code of the entire program (or shared library) fits in 4MB, and is
17715 thus reachable with a branch instruction.  When @option{-msmall-data}
17716 is used, the compiler can assume that all local symbols share the
17717 same @code{$gp} value, and thus reduce the number of instructions
17718 required for a function call from 4 to 1.
17720 The default is @option{-mlarge-text}.
17722 @item -mcpu=@var{cpu_type}
17723 @opindex mcpu
17724 Set the instruction set and instruction scheduling parameters for
17725 machine type @var{cpu_type}.  You can specify either the @samp{EV}
17726 style name or the corresponding chip number.  GCC supports scheduling
17727 parameters for the EV4, EV5 and EV6 family of processors and
17728 chooses the default values for the instruction set from the processor
17729 you specify.  If you do not specify a processor type, GCC defaults
17730 to the processor on which the compiler was built.
17732 Supported values for @var{cpu_type} are
17734 @table @samp
17735 @item ev4
17736 @itemx ev45
17737 @itemx 21064
17738 Schedules as an EV4 and has no instruction set extensions.
17740 @item ev5
17741 @itemx 21164
17742 Schedules as an EV5 and has no instruction set extensions.
17744 @item ev56
17745 @itemx 21164a
17746 Schedules as an EV5 and supports the BWX extension.
17748 @item pca56
17749 @itemx 21164pc
17750 @itemx 21164PC
17751 Schedules as an EV5 and supports the BWX and MAX extensions.
17753 @item ev6
17754 @itemx 21264
17755 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
17757 @item ev67
17758 @itemx 21264a
17759 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
17760 @end table
17762 Native toolchains also support the value @samp{native},
17763 which selects the best architecture option for the host processor.
17764 @option{-mcpu=native} has no effect if GCC does not recognize
17765 the processor.
17767 @item -mtune=@var{cpu_type}
17768 @opindex mtune
17769 Set only the instruction scheduling parameters for machine type
17770 @var{cpu_type}.  The instruction set is not changed.
17772 Native toolchains also support the value @samp{native},
17773 which selects the best architecture option for the host processor.
17774 @option{-mtune=native} has no effect if GCC does not recognize
17775 the processor.
17777 @item -mmemory-latency=@var{time}
17778 @opindex mmemory-latency
17779 Sets the latency the scheduler should assume for typical memory
17780 references as seen by the application.  This number is highly
17781 dependent on the memory access patterns used by the application
17782 and the size of the external cache on the machine.
17784 Valid options for @var{time} are
17786 @table @samp
17787 @item @var{number}
17788 A decimal number representing clock cycles.
17790 @item L1
17791 @itemx L2
17792 @itemx L3
17793 @itemx main
17794 The compiler contains estimates of the number of clock cycles for
17795 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
17796 (also called Dcache, Scache, and Bcache), as well as to main memory.
17797 Note that L3 is only valid for EV5.
17799 @end table
17800 @end table
17802 @node FR30 Options
17803 @subsection FR30 Options
17804 @cindex FR30 Options
17806 These options are defined specifically for the FR30 port.
17808 @table @gcctabopt
17810 @item -msmall-model
17811 @opindex msmall-model
17812 Use the small address space model.  This can produce smaller code, but
17813 it does assume that all symbolic values and addresses fit into a
17814 20-bit range.
17816 @item -mno-lsim
17817 @opindex mno-lsim
17818 Assume that runtime support has been provided and so there is no need
17819 to include the simulator library (@file{libsim.a}) on the linker
17820 command line.
17822 @end table
17824 @node FT32 Options
17825 @subsection FT32 Options
17826 @cindex FT32 Options
17828 These options are defined specifically for the FT32 port.
17830 @table @gcctabopt
17832 @item -msim
17833 @opindex msim
17834 Specifies that the program will be run on the simulator.  This causes
17835 an alternate runtime startup and library to be linked.
17836 You must not use this option when generating programs that will run on
17837 real hardware; you must provide your own runtime library for whatever
17838 I/O functions are needed.
17840 @item -mlra
17841 @opindex mlra
17842 Enable Local Register Allocation.  This is still experimental for FT32,
17843 so by default the compiler uses standard reload.
17845 @item -mnodiv
17846 @opindex mnodiv
17847 Do not use div and mod instructions.
17849 @item -mft32b
17850 @opindex mft32b
17851 Enable use of the extended instructions of the FT32B processor.
17853 @item -mcompress
17854 @opindex mcompress
17855 Compress all code using the Ft32B code compression scheme.
17857 @item -mnopm
17858 @opindex  mnopm
17859 Do not generate code that reads program memory.
17861 @end table
17863 @node FRV Options
17864 @subsection FRV Options
17865 @cindex FRV Options
17867 @table @gcctabopt
17868 @item -mgpr-32
17869 @opindex mgpr-32
17871 Only use the first 32 general-purpose registers.
17873 @item -mgpr-64
17874 @opindex mgpr-64
17876 Use all 64 general-purpose registers.
17878 @item -mfpr-32
17879 @opindex mfpr-32
17881 Use only the first 32 floating-point registers.
17883 @item -mfpr-64
17884 @opindex mfpr-64
17886 Use all 64 floating-point registers.
17888 @item -mhard-float
17889 @opindex mhard-float
17891 Use hardware instructions for floating-point operations.
17893 @item -msoft-float
17894 @opindex msoft-float
17896 Use library routines for floating-point operations.
17898 @item -malloc-cc
17899 @opindex malloc-cc
17901 Dynamically allocate condition code registers.
17903 @item -mfixed-cc
17904 @opindex mfixed-cc
17906 Do not try to dynamically allocate condition code registers, only
17907 use @code{icc0} and @code{fcc0}.
17909 @item -mdword
17910 @opindex mdword
17912 Change ABI to use double word insns.
17914 @item -mno-dword
17915 @opindex mno-dword
17917 Do not use double word instructions.
17919 @item -mdouble
17920 @opindex mdouble
17922 Use floating-point double instructions.
17924 @item -mno-double
17925 @opindex mno-double
17927 Do not use floating-point double instructions.
17929 @item -mmedia
17930 @opindex mmedia
17932 Use media instructions.
17934 @item -mno-media
17935 @opindex mno-media
17937 Do not use media instructions.
17939 @item -mmuladd
17940 @opindex mmuladd
17942 Use multiply and add/subtract instructions.
17944 @item -mno-muladd
17945 @opindex mno-muladd
17947 Do not use multiply and add/subtract instructions.
17949 @item -mfdpic
17950 @opindex mfdpic
17952 Select the FDPIC ABI, which uses function descriptors to represent
17953 pointers to functions.  Without any PIC/PIE-related options, it
17954 implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
17955 assumes GOT entries and small data are within a 12-bit range from the
17956 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
17957 are computed with 32 bits.
17958 With a @samp{bfin-elf} target, this option implies @option{-msim}.
17960 @item -minline-plt
17961 @opindex minline-plt
17963 Enable inlining of PLT entries in function calls to functions that are
17964 not known to bind locally.  It has no effect without @option{-mfdpic}.
17965 It's enabled by default if optimizing for speed and compiling for
17966 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
17967 optimization option such as @option{-O3} or above is present in the
17968 command line.
17970 @item -mTLS
17971 @opindex mTLS
17973 Assume a large TLS segment when generating thread-local code.
17975 @item -mtls
17976 @opindex mtls
17978 Do not assume a large TLS segment when generating thread-local code.
17980 @item -mgprel-ro
17981 @opindex mgprel-ro
17983 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
17984 that is known to be in read-only sections.  It's enabled by default,
17985 except for @option{-fpic} or @option{-fpie}: even though it may help
17986 make the global offset table smaller, it trades 1 instruction for 4.
17987 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
17988 one of which may be shared by multiple symbols, and it avoids the need
17989 for a GOT entry for the referenced symbol, so it's more likely to be a
17990 win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
17992 @item -multilib-library-pic
17993 @opindex multilib-library-pic
17995 Link with the (library, not FD) pic libraries.  It's implied by
17996 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
17997 @option{-fpic} without @option{-mfdpic}.  You should never have to use
17998 it explicitly.
18000 @item -mlinked-fp
18001 @opindex mlinked-fp
18003 Follow the EABI requirement of always creating a frame pointer whenever
18004 a stack frame is allocated.  This option is enabled by default and can
18005 be disabled with @option{-mno-linked-fp}.
18007 @item -mlong-calls
18008 @opindex mlong-calls
18010 Use indirect addressing to call functions outside the current
18011 compilation unit.  This allows the functions to be placed anywhere
18012 within the 32-bit address space.
18014 @item -malign-labels
18015 @opindex malign-labels
18017 Try to align labels to an 8-byte boundary by inserting NOPs into the
18018 previous packet.  This option only has an effect when VLIW packing
18019 is enabled.  It doesn't create new packets; it merely adds NOPs to
18020 existing ones.
18022 @item -mlibrary-pic
18023 @opindex mlibrary-pic
18025 Generate position-independent EABI code.
18027 @item -macc-4
18028 @opindex macc-4
18030 Use only the first four media accumulator registers.
18032 @item -macc-8
18033 @opindex macc-8
18035 Use all eight media accumulator registers.
18037 @item -mpack
18038 @opindex mpack
18040 Pack VLIW instructions.
18042 @item -mno-pack
18043 @opindex mno-pack
18045 Do not pack VLIW instructions.
18047 @item -mno-eflags
18048 @opindex mno-eflags
18050 Do not mark ABI switches in e_flags.
18052 @item -mcond-move
18053 @opindex mcond-move
18055 Enable the use of conditional-move instructions (default).
18057 This switch is mainly for debugging the compiler and will likely be removed
18058 in a future version.
18060 @item -mno-cond-move
18061 @opindex mno-cond-move
18063 Disable the use of conditional-move instructions.
18065 This switch is mainly for debugging the compiler and will likely be removed
18066 in a future version.
18068 @item -mscc
18069 @opindex mscc
18071 Enable the use of conditional set instructions (default).
18073 This switch is mainly for debugging the compiler and will likely be removed
18074 in a future version.
18076 @item -mno-scc
18077 @opindex mno-scc
18079 Disable the use of conditional set instructions.
18081 This switch is mainly for debugging the compiler and will likely be removed
18082 in a future version.
18084 @item -mcond-exec
18085 @opindex mcond-exec
18087 Enable the use of conditional execution (default).
18089 This switch is mainly for debugging the compiler and will likely be removed
18090 in a future version.
18092 @item -mno-cond-exec
18093 @opindex mno-cond-exec
18095 Disable the use of conditional execution.
18097 This switch is mainly for debugging the compiler and will likely be removed
18098 in a future version.
18100 @item -mvliw-branch
18101 @opindex mvliw-branch
18103 Run a pass to pack branches into VLIW instructions (default).
18105 This switch is mainly for debugging the compiler and will likely be removed
18106 in a future version.
18108 @item -mno-vliw-branch
18109 @opindex mno-vliw-branch
18111 Do not run a pass to pack branches into VLIW instructions.
18113 This switch is mainly for debugging the compiler and will likely be removed
18114 in a future version.
18116 @item -mmulti-cond-exec
18117 @opindex mmulti-cond-exec
18119 Enable optimization of @code{&&} and @code{||} in conditional execution
18120 (default).
18122 This switch is mainly for debugging the compiler and will likely be removed
18123 in a future version.
18125 @item -mno-multi-cond-exec
18126 @opindex mno-multi-cond-exec
18128 Disable optimization of @code{&&} and @code{||} in conditional execution.
18130 This switch is mainly for debugging the compiler and will likely be removed
18131 in a future version.
18133 @item -mnested-cond-exec
18134 @opindex mnested-cond-exec
18136 Enable nested conditional execution optimizations (default).
18138 This switch is mainly for debugging the compiler and will likely be removed
18139 in a future version.
18141 @item -mno-nested-cond-exec
18142 @opindex mno-nested-cond-exec
18144 Disable nested conditional execution optimizations.
18146 This switch is mainly for debugging the compiler and will likely be removed
18147 in a future version.
18149 @item -moptimize-membar
18150 @opindex moptimize-membar
18152 This switch removes redundant @code{membar} instructions from the
18153 compiler-generated code.  It is enabled by default.
18155 @item -mno-optimize-membar
18156 @opindex mno-optimize-membar
18158 This switch disables the automatic removal of redundant @code{membar}
18159 instructions from the generated code.
18161 @item -mtomcat-stats
18162 @opindex mtomcat-stats
18164 Cause gas to print out tomcat statistics.
18166 @item -mcpu=@var{cpu}
18167 @opindex mcpu
18169 Select the processor type for which to generate code.  Possible values are
18170 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
18171 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
18173 @end table
18175 @node GNU/Linux Options
18176 @subsection GNU/Linux Options
18178 These @samp{-m} options are defined for GNU/Linux targets:
18180 @table @gcctabopt
18181 @item -mglibc
18182 @opindex mglibc
18183 Use the GNU C library.  This is the default except
18184 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
18185 @samp{*-*-linux-*android*} targets.
18187 @item -muclibc
18188 @opindex muclibc
18189 Use uClibc C library.  This is the default on
18190 @samp{*-*-linux-*uclibc*} targets.
18192 @item -mmusl
18193 @opindex mmusl
18194 Use the musl C library.  This is the default on
18195 @samp{*-*-linux-*musl*} targets.
18197 @item -mbionic
18198 @opindex mbionic
18199 Use Bionic C library.  This is the default on
18200 @samp{*-*-linux-*android*} targets.
18202 @item -mandroid
18203 @opindex mandroid
18204 Compile code compatible with Android platform.  This is the default on
18205 @samp{*-*-linux-*android*} targets.
18207 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
18208 @option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
18209 this option makes the GCC driver pass Android-specific options to the linker.
18210 Finally, this option causes the preprocessor macro @code{__ANDROID__}
18211 to be defined.
18213 @item -tno-android-cc
18214 @opindex tno-android-cc
18215 Disable compilation effects of @option{-mandroid}, i.e., do not enable
18216 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
18217 @option{-fno-rtti} by default.
18219 @item -tno-android-ld
18220 @opindex tno-android-ld
18221 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
18222 linking options to the linker.
18224 @end table
18226 @node H8/300 Options
18227 @subsection H8/300 Options
18229 These @samp{-m} options are defined for the H8/300 implementations:
18231 @table @gcctabopt
18232 @item -mrelax
18233 @opindex mrelax
18234 Shorten some address references at link time, when possible; uses the
18235 linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
18236 ld, Using ld}, for a fuller description.
18238 @item -mh
18239 @opindex mh
18240 Generate code for the H8/300H@.
18242 @item -ms
18243 @opindex ms
18244 Generate code for the H8S@.
18246 @item -mn
18247 @opindex mn
18248 Generate code for the H8S and H8/300H in the normal mode.  This switch
18249 must be used either with @option{-mh} or @option{-ms}.
18251 @item -ms2600
18252 @opindex ms2600
18253 Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
18255 @item -mexr
18256 @opindex mexr
18257 Extended registers are stored on stack before execution of function
18258 with monitor attribute. Default option is @option{-mexr}.
18259 This option is valid only for H8S targets.
18261 @item -mno-exr
18262 @opindex mno-exr
18263 Extended registers are not stored on stack before execution of function 
18264 with monitor attribute. Default option is @option{-mno-exr}. 
18265 This option is valid only for H8S targets.
18267 @item -mint32
18268 @opindex mint32
18269 Make @code{int} data 32 bits by default.
18271 @item -malign-300
18272 @opindex malign-300
18273 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
18274 The default for the H8/300H and H8S is to align longs and floats on
18275 4-byte boundaries.
18276 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
18277 This option has no effect on the H8/300.
18278 @end table
18280 @node HPPA Options
18281 @subsection HPPA Options
18282 @cindex HPPA Options
18284 These @samp{-m} options are defined for the HPPA family of computers:
18286 @table @gcctabopt
18287 @item -march=@var{architecture-type}
18288 @opindex march
18289 Generate code for the specified architecture.  The choices for
18290 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
18291 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
18292 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
18293 architecture option for your machine.  Code compiled for lower numbered
18294 architectures runs on higher numbered architectures, but not the
18295 other way around.
18297 @item -mpa-risc-1-0
18298 @itemx -mpa-risc-1-1
18299 @itemx -mpa-risc-2-0
18300 @opindex mpa-risc-1-0
18301 @opindex mpa-risc-1-1
18302 @opindex mpa-risc-2-0
18303 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
18305 @item -mcaller-copies
18306 @opindex mcaller-copies
18307 The caller copies function arguments passed by hidden reference.  This
18308 option should be used with care as it is not compatible with the default
18309 32-bit runtime.  However, only aggregates larger than eight bytes are
18310 passed by hidden reference and the option provides better compatibility
18311 with OpenMP.
18313 @item -mjump-in-delay
18314 @opindex mjump-in-delay
18315 This option is ignored and provided for compatibility purposes only.
18317 @item -mdisable-fpregs
18318 @opindex mdisable-fpregs
18319 Prevent floating-point registers from being used in any manner.  This is
18320 necessary for compiling kernels that perform lazy context switching of
18321 floating-point registers.  If you use this option and attempt to perform
18322 floating-point operations, the compiler aborts.
18324 @item -mdisable-indexing
18325 @opindex mdisable-indexing
18326 Prevent the compiler from using indexing address modes.  This avoids some
18327 rather obscure problems when compiling MIG generated code under MACH@.
18329 @item -mno-space-regs
18330 @opindex mno-space-regs
18331 Generate code that assumes the target has no space registers.  This allows
18332 GCC to generate faster indirect calls and use unscaled index address modes.
18334 Such code is suitable for level 0 PA systems and kernels.
18336 @item -mfast-indirect-calls
18337 @opindex mfast-indirect-calls
18338 Generate code that assumes calls never cross space boundaries.  This
18339 allows GCC to emit code that performs faster indirect calls.
18341 This option does not work in the presence of shared libraries or nested
18342 functions.
18344 @item -mfixed-range=@var{register-range}
18345 @opindex mfixed-range
18346 Generate code treating the given register range as fixed registers.
18347 A fixed register is one that the register allocator cannot use.  This is
18348 useful when compiling kernel code.  A register range is specified as
18349 two registers separated by a dash.  Multiple register ranges can be
18350 specified separated by a comma.
18352 @item -mlong-load-store
18353 @opindex mlong-load-store
18354 Generate 3-instruction load and store sequences as sometimes required by
18355 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
18356 the HP compilers.
18358 @item -mportable-runtime
18359 @opindex mportable-runtime
18360 Use the portable calling conventions proposed by HP for ELF systems.
18362 @item -mgas
18363 @opindex mgas
18364 Enable the use of assembler directives only GAS understands.
18366 @item -mschedule=@var{cpu-type}
18367 @opindex mschedule
18368 Schedule code according to the constraints for the machine type
18369 @var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
18370 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
18371 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
18372 proper scheduling option for your machine.  The default scheduling is
18373 @samp{8000}.
18375 @item -mlinker-opt
18376 @opindex mlinker-opt
18377 Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
18378 debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
18379 linkers in which they give bogus error messages when linking some programs.
18381 @item -msoft-float
18382 @opindex msoft-float
18383 Generate output containing library calls for floating point.
18384 @strong{Warning:} the requisite libraries are not available for all HPPA
18385 targets.  Normally the facilities of the machine's usual C compiler are
18386 used, but this cannot be done directly in cross-compilation.  You must make
18387 your own arrangements to provide suitable library functions for
18388 cross-compilation.
18390 @option{-msoft-float} changes the calling convention in the output file;
18391 therefore, it is only useful if you compile @emph{all} of a program with
18392 this option.  In particular, you need to compile @file{libgcc.a}, the
18393 library that comes with GCC, with @option{-msoft-float} in order for
18394 this to work.
18396 @item -msio
18397 @opindex msio
18398 Generate the predefine, @code{_SIO}, for server IO@.  The default is
18399 @option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
18400 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
18401 options are available under HP-UX and HI-UX@.
18403 @item -mgnu-ld
18404 @opindex mgnu-ld
18405 Use options specific to GNU @command{ld}.
18406 This passes @option{-shared} to @command{ld} when
18407 building a shared library.  It is the default when GCC is configured,
18408 explicitly or implicitly, with the GNU linker.  This option does not
18409 affect which @command{ld} is called; it only changes what parameters
18410 are passed to that @command{ld}.
18411 The @command{ld} that is called is determined by the
18412 @option{--with-ld} configure option, GCC's program search path, and
18413 finally by the user's @env{PATH}.  The linker used by GCC can be printed
18414 using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
18415 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18417 @item -mhp-ld
18418 @opindex mhp-ld
18419 Use options specific to HP @command{ld}.
18420 This passes @option{-b} to @command{ld} when building
18421 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18422 links.  It is the default when GCC is configured, explicitly or
18423 implicitly, with the HP linker.  This option does not affect
18424 which @command{ld} is called; it only changes what parameters are passed to that
18425 @command{ld}.
18426 The @command{ld} that is called is determined by the @option{--with-ld}
18427 configure option, GCC's program search path, and finally by the user's
18428 @env{PATH}.  The linker used by GCC can be printed using @samp{which
18429 `gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
18430 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18432 @item -mlong-calls
18433 @opindex mno-long-calls
18434 Generate code that uses long call sequences.  This ensures that a call
18435 is always able to reach linker generated stubs.  The default is to generate
18436 long calls only when the distance from the call site to the beginning
18437 of the function or translation unit, as the case may be, exceeds a
18438 predefined limit set by the branch type being used.  The limits for
18439 normal calls are 7,600,000 and 240,000 bytes, respectively for the
18440 PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
18441 240,000 bytes.
18443 Distances are measured from the beginning of functions when using the
18444 @option{-ffunction-sections} option, or when using the @option{-mgas}
18445 and @option{-mno-portable-runtime} options together under HP-UX with
18446 the SOM linker.
18448 It is normally not desirable to use this option as it degrades
18449 performance.  However, it may be useful in large applications,
18450 particularly when partial linking is used to build the application.
18452 The types of long calls used depends on the capabilities of the
18453 assembler and linker, and the type of code being generated.  The
18454 impact on systems that support long absolute calls, and long pic
18455 symbol-difference or pc-relative calls should be relatively small.
18456 However, an indirect call is used on 32-bit ELF systems in pic code
18457 and it is quite long.
18459 @item -munix=@var{unix-std}
18460 @opindex march
18461 Generate compiler predefines and select a startfile for the specified
18462 UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
18463 and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
18464 is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
18465 11.11 and later.  The default values are @samp{93} for HP-UX 10.00,
18466 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18467 and later.
18469 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18470 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18471 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18472 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18473 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18474 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18476 It is @emph{important} to note that this option changes the interfaces
18477 for various library routines.  It also affects the operational behavior
18478 of the C library.  Thus, @emph{extreme} care is needed in using this
18479 option.
18481 Library code that is intended to operate with more than one UNIX
18482 standard must test, set and restore the variable @code{__xpg4_extended_mask}
18483 as appropriate.  Most GNU software doesn't provide this capability.
18485 @item -nolibdld
18486 @opindex nolibdld
18487 Suppress the generation of link options to search libdld.sl when the
18488 @option{-static} option is specified on HP-UX 10 and later.
18490 @item -static
18491 @opindex static
18492 The HP-UX implementation of setlocale in libc has a dependency on
18493 libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
18494 when the @option{-static} option is specified, special link options
18495 are needed to resolve this dependency.
18497 On HP-UX 10 and later, the GCC driver adds the necessary options to
18498 link with libdld.sl when the @option{-static} option is specified.
18499 This causes the resulting binary to be dynamic.  On the 64-bit port,
18500 the linkers generate dynamic binaries by default in any case.  The
18501 @option{-nolibdld} option can be used to prevent the GCC driver from
18502 adding these link options.
18504 @item -threads
18505 @opindex threads
18506 Add support for multithreading with the @dfn{dce thread} library
18507 under HP-UX@.  This option sets flags for both the preprocessor and
18508 linker.
18509 @end table
18511 @node IA-64 Options
18512 @subsection IA-64 Options
18513 @cindex IA-64 Options
18515 These are the @samp{-m} options defined for the Intel IA-64 architecture.
18517 @table @gcctabopt
18518 @item -mbig-endian
18519 @opindex mbig-endian
18520 Generate code for a big-endian target.  This is the default for HP-UX@.
18522 @item -mlittle-endian
18523 @opindex mlittle-endian
18524 Generate code for a little-endian target.  This is the default for AIX5
18525 and GNU/Linux.
18527 @item -mgnu-as
18528 @itemx -mno-gnu-as
18529 @opindex mgnu-as
18530 @opindex mno-gnu-as
18531 Generate (or don't) code for the GNU assembler.  This is the default.
18532 @c Also, this is the default if the configure option @option{--with-gnu-as}
18533 @c is used.
18535 @item -mgnu-ld
18536 @itemx -mno-gnu-ld
18537 @opindex mgnu-ld
18538 @opindex mno-gnu-ld
18539 Generate (or don't) code for the GNU linker.  This is the default.
18540 @c Also, this is the default if the configure option @option{--with-gnu-ld}
18541 @c is used.
18543 @item -mno-pic
18544 @opindex mno-pic
18545 Generate code that does not use a global pointer register.  The result
18546 is not position independent code, and violates the IA-64 ABI@.
18548 @item -mvolatile-asm-stop
18549 @itemx -mno-volatile-asm-stop
18550 @opindex mvolatile-asm-stop
18551 @opindex mno-volatile-asm-stop
18552 Generate (or don't) a stop bit immediately before and after volatile asm
18553 statements.
18555 @item -mregister-names
18556 @itemx -mno-register-names
18557 @opindex mregister-names
18558 @opindex mno-register-names
18559 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
18560 the stacked registers.  This may make assembler output more readable.
18562 @item -mno-sdata
18563 @itemx -msdata
18564 @opindex mno-sdata
18565 @opindex msdata
18566 Disable (or enable) optimizations that use the small data section.  This may
18567 be useful for working around optimizer bugs.
18569 @item -mconstant-gp
18570 @opindex mconstant-gp
18571 Generate code that uses a single constant global pointer value.  This is
18572 useful when compiling kernel code.
18574 @item -mauto-pic
18575 @opindex mauto-pic
18576 Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
18577 This is useful when compiling firmware code.
18579 @item -minline-float-divide-min-latency
18580 @opindex minline-float-divide-min-latency
18581 Generate code for inline divides of floating-point values
18582 using the minimum latency algorithm.
18584 @item -minline-float-divide-max-throughput
18585 @opindex minline-float-divide-max-throughput
18586 Generate code for inline divides of floating-point values
18587 using the maximum throughput algorithm.
18589 @item -mno-inline-float-divide
18590 @opindex mno-inline-float-divide
18591 Do not generate inline code for divides of floating-point values.
18593 @item -minline-int-divide-min-latency
18594 @opindex minline-int-divide-min-latency
18595 Generate code for inline divides of integer values
18596 using the minimum latency algorithm.
18598 @item -minline-int-divide-max-throughput
18599 @opindex minline-int-divide-max-throughput
18600 Generate code for inline divides of integer values
18601 using the maximum throughput algorithm.
18603 @item -mno-inline-int-divide
18604 @opindex mno-inline-int-divide
18605 Do not generate inline code for divides of integer values.
18607 @item -minline-sqrt-min-latency
18608 @opindex minline-sqrt-min-latency
18609 Generate code for inline square roots
18610 using the minimum latency algorithm.
18612 @item -minline-sqrt-max-throughput
18613 @opindex minline-sqrt-max-throughput
18614 Generate code for inline square roots
18615 using the maximum throughput algorithm.
18617 @item -mno-inline-sqrt
18618 @opindex mno-inline-sqrt
18619 Do not generate inline code for @code{sqrt}.
18621 @item -mfused-madd
18622 @itemx -mno-fused-madd
18623 @opindex mfused-madd
18624 @opindex mno-fused-madd
18625 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
18626 instructions.  The default is to use these instructions.
18628 @item -mno-dwarf2-asm
18629 @itemx -mdwarf2-asm
18630 @opindex mno-dwarf2-asm
18631 @opindex mdwarf2-asm
18632 Don't (or do) generate assembler code for the DWARF line number debugging
18633 info.  This may be useful when not using the GNU assembler.
18635 @item -mearly-stop-bits
18636 @itemx -mno-early-stop-bits
18637 @opindex mearly-stop-bits
18638 @opindex mno-early-stop-bits
18639 Allow stop bits to be placed earlier than immediately preceding the
18640 instruction that triggered the stop bit.  This can improve instruction
18641 scheduling, but does not always do so.
18643 @item -mfixed-range=@var{register-range}
18644 @opindex mfixed-range
18645 Generate code treating the given register range as fixed registers.
18646 A fixed register is one that the register allocator cannot use.  This is
18647 useful when compiling kernel code.  A register range is specified as
18648 two registers separated by a dash.  Multiple register ranges can be
18649 specified separated by a comma.
18651 @item -mtls-size=@var{tls-size}
18652 @opindex mtls-size
18653 Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
18656 @item -mtune=@var{cpu-type}
18657 @opindex mtune
18658 Tune the instruction scheduling for a particular CPU, Valid values are
18659 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
18660 and @samp{mckinley}.
18662 @item -milp32
18663 @itemx -mlp64
18664 @opindex milp32
18665 @opindex mlp64
18666 Generate code for a 32-bit or 64-bit environment.
18667 The 32-bit environment sets int, long and pointer to 32 bits.
18668 The 64-bit environment sets int to 32 bits and long and pointer
18669 to 64 bits.  These are HP-UX specific flags.
18671 @item -mno-sched-br-data-spec
18672 @itemx -msched-br-data-spec
18673 @opindex mno-sched-br-data-spec
18674 @opindex msched-br-data-spec
18675 (Dis/En)able data speculative scheduling before reload.
18676 This results in generation of @code{ld.a} instructions and
18677 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18678 The default setting is disabled.
18680 @item -msched-ar-data-spec
18681 @itemx -mno-sched-ar-data-spec
18682 @opindex msched-ar-data-spec
18683 @opindex mno-sched-ar-data-spec
18684 (En/Dis)able data speculative scheduling after reload.
18685 This results in generation of @code{ld.a} instructions and
18686 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18687 The default setting is enabled.
18689 @item -mno-sched-control-spec
18690 @itemx -msched-control-spec
18691 @opindex mno-sched-control-spec
18692 @opindex msched-control-spec
18693 (Dis/En)able control speculative scheduling.  This feature is
18694 available only during region scheduling (i.e.@: before reload).
18695 This results in generation of the @code{ld.s} instructions and
18696 the corresponding check instructions @code{chk.s}.
18697 The default setting is disabled.
18699 @item -msched-br-in-data-spec
18700 @itemx -mno-sched-br-in-data-spec
18701 @opindex msched-br-in-data-spec
18702 @opindex mno-sched-br-in-data-spec
18703 (En/Dis)able speculative scheduling of the instructions that
18704 are dependent on the data speculative loads before reload.
18705 This is effective only with @option{-msched-br-data-spec} enabled.
18706 The default setting is enabled.
18708 @item -msched-ar-in-data-spec
18709 @itemx -mno-sched-ar-in-data-spec
18710 @opindex msched-ar-in-data-spec
18711 @opindex mno-sched-ar-in-data-spec
18712 (En/Dis)able speculative scheduling of the instructions that
18713 are dependent on the data speculative loads after reload.
18714 This is effective only with @option{-msched-ar-data-spec} enabled.
18715 The default setting is enabled.
18717 @item -msched-in-control-spec
18718 @itemx -mno-sched-in-control-spec
18719 @opindex msched-in-control-spec
18720 @opindex mno-sched-in-control-spec
18721 (En/Dis)able speculative scheduling of the instructions that
18722 are dependent on the control speculative loads.
18723 This is effective only with @option{-msched-control-spec} enabled.
18724 The default setting is enabled.
18726 @item -mno-sched-prefer-non-data-spec-insns
18727 @itemx -msched-prefer-non-data-spec-insns
18728 @opindex mno-sched-prefer-non-data-spec-insns
18729 @opindex msched-prefer-non-data-spec-insns
18730 If enabled, data-speculative instructions are chosen for schedule
18731 only if there are no other choices at the moment.  This makes
18732 the use of the data speculation much more conservative.
18733 The default setting is disabled.
18735 @item -mno-sched-prefer-non-control-spec-insns
18736 @itemx -msched-prefer-non-control-spec-insns
18737 @opindex mno-sched-prefer-non-control-spec-insns
18738 @opindex msched-prefer-non-control-spec-insns
18739 If enabled, control-speculative instructions are chosen for schedule
18740 only if there are no other choices at the moment.  This makes
18741 the use of the control speculation much more conservative.
18742 The default setting is disabled.
18744 @item -mno-sched-count-spec-in-critical-path
18745 @itemx -msched-count-spec-in-critical-path
18746 @opindex mno-sched-count-spec-in-critical-path
18747 @opindex msched-count-spec-in-critical-path
18748 If enabled, speculative dependencies are considered during
18749 computation of the instructions priorities.  This makes the use of the
18750 speculation a bit more conservative.
18751 The default setting is disabled.
18753 @item -msched-spec-ldc
18754 @opindex msched-spec-ldc
18755 Use a simple data speculation check.  This option is on by default.
18757 @item -msched-control-spec-ldc
18758 @opindex msched-spec-ldc
18759 Use a simple check for control speculation.  This option is on by default.
18761 @item -msched-stop-bits-after-every-cycle
18762 @opindex msched-stop-bits-after-every-cycle
18763 Place a stop bit after every cycle when scheduling.  This option is on
18764 by default.
18766 @item -msched-fp-mem-deps-zero-cost
18767 @opindex msched-fp-mem-deps-zero-cost
18768 Assume that floating-point stores and loads are not likely to cause a conflict
18769 when placed into the same instruction group.  This option is disabled by
18770 default.
18772 @item -msel-sched-dont-check-control-spec
18773 @opindex msel-sched-dont-check-control-spec
18774 Generate checks for control speculation in selective scheduling.
18775 This flag is disabled by default.
18777 @item -msched-max-memory-insns=@var{max-insns}
18778 @opindex msched-max-memory-insns
18779 Limit on the number of memory insns per instruction group, giving lower
18780 priority to subsequent memory insns attempting to schedule in the same
18781 instruction group. Frequently useful to prevent cache bank conflicts.
18782 The default value is 1.
18784 @item -msched-max-memory-insns-hard-limit
18785 @opindex msched-max-memory-insns-hard-limit
18786 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
18787 disallowing more than that number in an instruction group.
18788 Otherwise, the limit is ``soft'', meaning that non-memory operations
18789 are preferred when the limit is reached, but memory operations may still
18790 be scheduled.
18792 @end table
18794 @node LM32 Options
18795 @subsection LM32 Options
18796 @cindex LM32 options
18798 These @option{-m} options are defined for the LatticeMico32 architecture:
18800 @table @gcctabopt
18801 @item -mbarrel-shift-enabled
18802 @opindex mbarrel-shift-enabled
18803 Enable barrel-shift instructions.
18805 @item -mdivide-enabled
18806 @opindex mdivide-enabled
18807 Enable divide and modulus instructions.
18809 @item -mmultiply-enabled
18810 @opindex multiply-enabled
18811 Enable multiply instructions.
18813 @item -msign-extend-enabled
18814 @opindex msign-extend-enabled
18815 Enable sign extend instructions.
18817 @item -muser-enabled
18818 @opindex muser-enabled
18819 Enable user-defined instructions.
18821 @end table
18823 @node M32C Options
18824 @subsection M32C Options
18825 @cindex M32C options
18827 @table @gcctabopt
18828 @item -mcpu=@var{name}
18829 @opindex mcpu=
18830 Select the CPU for which code is generated.  @var{name} may be one of
18831 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
18832 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
18833 the M32C/80 series.
18835 @item -msim
18836 @opindex msim
18837 Specifies that the program will be run on the simulator.  This causes
18838 an alternate runtime library to be linked in which supports, for
18839 example, file I/O@.  You must not use this option when generating
18840 programs that will run on real hardware; you must provide your own
18841 runtime library for whatever I/O functions are needed.
18843 @item -memregs=@var{number}
18844 @opindex memregs=
18845 Specifies the number of memory-based pseudo-registers GCC uses
18846 during code generation.  These pseudo-registers are used like real
18847 registers, so there is a tradeoff between GCC's ability to fit the
18848 code into available registers, and the performance penalty of using
18849 memory instead of registers.  Note that all modules in a program must
18850 be compiled with the same value for this option.  Because of that, you
18851 must not use this option with GCC's default runtime libraries.
18853 @end table
18855 @node M32R/D Options
18856 @subsection M32R/D Options
18857 @cindex M32R/D options
18859 These @option{-m} options are defined for Renesas M32R/D architectures:
18861 @table @gcctabopt
18862 @item -m32r2
18863 @opindex m32r2
18864 Generate code for the M32R/2@.
18866 @item -m32rx
18867 @opindex m32rx
18868 Generate code for the M32R/X@.
18870 @item -m32r
18871 @opindex m32r
18872 Generate code for the M32R@.  This is the default.
18874 @item -mmodel=small
18875 @opindex mmodel=small
18876 Assume all objects live in the lower 16MB of memory (so that their addresses
18877 can be loaded with the @code{ld24} instruction), and assume all subroutines
18878 are reachable with the @code{bl} instruction.
18879 This is the default.
18881 The addressability of a particular object can be set with the
18882 @code{model} attribute.
18884 @item -mmodel=medium
18885 @opindex mmodel=medium
18886 Assume objects may be anywhere in the 32-bit address space (the compiler
18887 generates @code{seth/add3} instructions to load their addresses), and
18888 assume all subroutines are reachable with the @code{bl} instruction.
18890 @item -mmodel=large
18891 @opindex mmodel=large
18892 Assume objects may be anywhere in the 32-bit address space (the compiler
18893 generates @code{seth/add3} instructions to load their addresses), and
18894 assume subroutines may not be reachable with the @code{bl} instruction
18895 (the compiler generates the much slower @code{seth/add3/jl}
18896 instruction sequence).
18898 @item -msdata=none
18899 @opindex msdata=none
18900 Disable use of the small data area.  Variables are put into
18901 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
18902 @code{section} attribute has been specified).
18903 This is the default.
18905 The small data area consists of sections @code{.sdata} and @code{.sbss}.
18906 Objects may be explicitly put in the small data area with the
18907 @code{section} attribute using one of these sections.
18909 @item -msdata=sdata
18910 @opindex msdata=sdata
18911 Put small global and static data in the small data area, but do not
18912 generate special code to reference them.
18914 @item -msdata=use
18915 @opindex msdata=use
18916 Put small global and static data in the small data area, and generate
18917 special instructions to reference them.
18919 @item -G @var{num}
18920 @opindex G
18921 @cindex smaller data references
18922 Put global and static objects less than or equal to @var{num} bytes
18923 into the small data or BSS sections instead of the normal data or BSS
18924 sections.  The default value of @var{num} is 8.
18925 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
18926 for this option to have any effect.
18928 All modules should be compiled with the same @option{-G @var{num}} value.
18929 Compiling with different values of @var{num} may or may not work; if it
18930 doesn't the linker gives an error message---incorrect code is not
18931 generated.
18933 @item -mdebug
18934 @opindex mdebug
18935 Makes the M32R-specific code in the compiler display some statistics
18936 that might help in debugging programs.
18938 @item -malign-loops
18939 @opindex malign-loops
18940 Align all loops to a 32-byte boundary.
18942 @item -mno-align-loops
18943 @opindex mno-align-loops
18944 Do not enforce a 32-byte alignment for loops.  This is the default.
18946 @item -missue-rate=@var{number}
18947 @opindex missue-rate=@var{number}
18948 Issue @var{number} instructions per cycle.  @var{number} can only be 1
18949 or 2.
18951 @item -mbranch-cost=@var{number}
18952 @opindex mbranch-cost=@var{number}
18953 @var{number} can only be 1 or 2.  If it is 1 then branches are
18954 preferred over conditional code, if it is 2, then the opposite applies.
18956 @item -mflush-trap=@var{number}
18957 @opindex mflush-trap=@var{number}
18958 Specifies the trap number to use to flush the cache.  The default is
18959 12.  Valid numbers are between 0 and 15 inclusive.
18961 @item -mno-flush-trap
18962 @opindex mno-flush-trap
18963 Specifies that the cache cannot be flushed by using a trap.
18965 @item -mflush-func=@var{name}
18966 @opindex mflush-func=@var{name}
18967 Specifies the name of the operating system function to call to flush
18968 the cache.  The default is @samp{_flush_cache}, but a function call
18969 is only used if a trap is not available.
18971 @item -mno-flush-func
18972 @opindex mno-flush-func
18973 Indicates that there is no OS function for flushing the cache.
18975 @end table
18977 @node M680x0 Options
18978 @subsection M680x0 Options
18979 @cindex M680x0 options
18981 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
18982 The default settings depend on which architecture was selected when
18983 the compiler was configured; the defaults for the most common choices
18984 are given below.
18986 @table @gcctabopt
18987 @item -march=@var{arch}
18988 @opindex march
18989 Generate code for a specific M680x0 or ColdFire instruction set
18990 architecture.  Permissible values of @var{arch} for M680x0
18991 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
18992 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
18993 architectures are selected according to Freescale's ISA classification
18994 and the permissible values are: @samp{isaa}, @samp{isaaplus},
18995 @samp{isab} and @samp{isac}.
18997 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
18998 code for a ColdFire target.  The @var{arch} in this macro is one of the
18999 @option{-march} arguments given above.
19001 When used together, @option{-march} and @option{-mtune} select code
19002 that runs on a family of similar processors but that is optimized
19003 for a particular microarchitecture.
19005 @item -mcpu=@var{cpu}
19006 @opindex mcpu
19007 Generate code for a specific M680x0 or ColdFire processor.
19008 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
19009 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
19010 and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
19011 below, which also classifies the CPUs into families:
19013 @multitable @columnfractions 0.20 0.80
19014 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
19015 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
19016 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
19017 @item @samp{5206e} @tab @samp{5206e}
19018 @item @samp{5208} @tab @samp{5207} @samp{5208}
19019 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
19020 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
19021 @item @samp{5216} @tab @samp{5214} @samp{5216}
19022 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
19023 @item @samp{5225} @tab @samp{5224} @samp{5225}
19024 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
19025 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
19026 @item @samp{5249} @tab @samp{5249}
19027 @item @samp{5250} @tab @samp{5250}
19028 @item @samp{5271} @tab @samp{5270} @samp{5271}
19029 @item @samp{5272} @tab @samp{5272}
19030 @item @samp{5275} @tab @samp{5274} @samp{5275}
19031 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
19032 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
19033 @item @samp{5307} @tab @samp{5307}
19034 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
19035 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
19036 @item @samp{5407} @tab @samp{5407}
19037 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
19038 @end multitable
19040 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
19041 @var{arch} is compatible with @var{cpu}.  Other combinations of
19042 @option{-mcpu} and @option{-march} are rejected.
19044 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
19045 @var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
19046 where the value of @var{family} is given by the table above.
19048 @item -mtune=@var{tune}
19049 @opindex mtune
19050 Tune the code for a particular microarchitecture within the
19051 constraints set by @option{-march} and @option{-mcpu}.
19052 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
19053 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
19054 and @samp{cpu32}.  The ColdFire microarchitectures
19055 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
19057 You can also use @option{-mtune=68020-40} for code that needs
19058 to run relatively well on 68020, 68030 and 68040 targets.
19059 @option{-mtune=68020-60} is similar but includes 68060 targets
19060 as well.  These two options select the same tuning decisions as
19061 @option{-m68020-40} and @option{-m68020-60} respectively.
19063 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
19064 when tuning for 680x0 architecture @var{arch}.  It also defines
19065 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
19066 option is used.  If GCC is tuning for a range of architectures,
19067 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
19068 it defines the macros for every architecture in the range.
19070 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
19071 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
19072 of the arguments given above.
19074 @item -m68000
19075 @itemx -mc68000
19076 @opindex m68000
19077 @opindex mc68000
19078 Generate output for a 68000.  This is the default
19079 when the compiler is configured for 68000-based systems.
19080 It is equivalent to @option{-march=68000}.
19082 Use this option for microcontrollers with a 68000 or EC000 core,
19083 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
19085 @item -m68010
19086 @opindex m68010
19087 Generate output for a 68010.  This is the default
19088 when the compiler is configured for 68010-based systems.
19089 It is equivalent to @option{-march=68010}.
19091 @item -m68020
19092 @itemx -mc68020
19093 @opindex m68020
19094 @opindex mc68020
19095 Generate output for a 68020.  This is the default
19096 when the compiler is configured for 68020-based systems.
19097 It is equivalent to @option{-march=68020}.
19099 @item -m68030
19100 @opindex m68030
19101 Generate output for a 68030.  This is the default when the compiler is
19102 configured for 68030-based systems.  It is equivalent to
19103 @option{-march=68030}.
19105 @item -m68040
19106 @opindex m68040
19107 Generate output for a 68040.  This is the default when the compiler is
19108 configured for 68040-based systems.  It is equivalent to
19109 @option{-march=68040}.
19111 This option inhibits the use of 68881/68882 instructions that have to be
19112 emulated by software on the 68040.  Use this option if your 68040 does not
19113 have code to emulate those instructions.
19115 @item -m68060
19116 @opindex m68060
19117 Generate output for a 68060.  This is the default when the compiler is
19118 configured for 68060-based systems.  It is equivalent to
19119 @option{-march=68060}.
19121 This option inhibits the use of 68020 and 68881/68882 instructions that
19122 have to be emulated by software on the 68060.  Use this option if your 68060
19123 does not have code to emulate those instructions.
19125 @item -mcpu32
19126 @opindex mcpu32
19127 Generate output for a CPU32.  This is the default
19128 when the compiler is configured for CPU32-based systems.
19129 It is equivalent to @option{-march=cpu32}.
19131 Use this option for microcontrollers with a
19132 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
19133 68336, 68340, 68341, 68349 and 68360.
19135 @item -m5200
19136 @opindex m5200
19137 Generate output for a 520X ColdFire CPU@.  This is the default
19138 when the compiler is configured for 520X-based systems.
19139 It is equivalent to @option{-mcpu=5206}, and is now deprecated
19140 in favor of that option.
19142 Use this option for microcontroller with a 5200 core, including
19143 the MCF5202, MCF5203, MCF5204 and MCF5206.
19145 @item -m5206e
19146 @opindex m5206e
19147 Generate output for a 5206e ColdFire CPU@.  The option is now
19148 deprecated in favor of the equivalent @option{-mcpu=5206e}.
19150 @item -m528x
19151 @opindex m528x
19152 Generate output for a member of the ColdFire 528X family.
19153 The option is now deprecated in favor of the equivalent
19154 @option{-mcpu=528x}.
19156 @item -m5307
19157 @opindex m5307
19158 Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
19159 in favor of the equivalent @option{-mcpu=5307}.
19161 @item -m5407
19162 @opindex m5407
19163 Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
19164 in favor of the equivalent @option{-mcpu=5407}.
19166 @item -mcfv4e
19167 @opindex mcfv4e
19168 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
19169 This includes use of hardware floating-point instructions.
19170 The option is equivalent to @option{-mcpu=547x}, and is now
19171 deprecated in favor of that option.
19173 @item -m68020-40
19174 @opindex m68020-40
19175 Generate output for a 68040, without using any of the new instructions.
19176 This results in code that can run relatively efficiently on either a
19177 68020/68881 or a 68030 or a 68040.  The generated code does use the
19178 68881 instructions that are emulated on the 68040.
19180 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
19182 @item -m68020-60
19183 @opindex m68020-60
19184 Generate output for a 68060, without using any of the new instructions.
19185 This results in code that can run relatively efficiently on either a
19186 68020/68881 or a 68030 or a 68040.  The generated code does use the
19187 68881 instructions that are emulated on the 68060.
19189 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
19191 @item -mhard-float
19192 @itemx -m68881
19193 @opindex mhard-float
19194 @opindex m68881
19195 Generate floating-point instructions.  This is the default for 68020
19196 and above, and for ColdFire devices that have an FPU@.  It defines the
19197 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
19198 on ColdFire targets.
19200 @item -msoft-float
19201 @opindex msoft-float
19202 Do not generate floating-point instructions; use library calls instead.
19203 This is the default for 68000, 68010, and 68832 targets.  It is also
19204 the default for ColdFire devices that have no FPU.
19206 @item -mdiv
19207 @itemx -mno-div
19208 @opindex mdiv
19209 @opindex mno-div
19210 Generate (do not generate) ColdFire hardware divide and remainder
19211 instructions.  If @option{-march} is used without @option{-mcpu},
19212 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
19213 architectures.  Otherwise, the default is taken from the target CPU
19214 (either the default CPU, or the one specified by @option{-mcpu}).  For
19215 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
19216 @option{-mcpu=5206e}.
19218 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
19220 @item -mshort
19221 @opindex mshort
19222 Consider type @code{int} to be 16 bits wide, like @code{short int}.
19223 Additionally, parameters passed on the stack are also aligned to a
19224 16-bit boundary even on targets whose API mandates promotion to 32-bit.
19226 @item -mno-short
19227 @opindex mno-short
19228 Do not consider type @code{int} to be 16 bits wide.  This is the default.
19230 @item -mnobitfield
19231 @itemx -mno-bitfield
19232 @opindex mnobitfield
19233 @opindex mno-bitfield
19234 Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
19235 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
19237 @item -mbitfield
19238 @opindex mbitfield
19239 Do use the bit-field instructions.  The @option{-m68020} option implies
19240 @option{-mbitfield}.  This is the default if you use a configuration
19241 designed for a 68020.
19243 @item -mrtd
19244 @opindex mrtd
19245 Use a different function-calling convention, in which functions
19246 that take a fixed number of arguments return with the @code{rtd}
19247 instruction, which pops their arguments while returning.  This
19248 saves one instruction in the caller since there is no need to pop
19249 the arguments there.
19251 This calling convention is incompatible with the one normally
19252 used on Unix, so you cannot use it if you need to call libraries
19253 compiled with the Unix compiler.
19255 Also, you must provide function prototypes for all functions that
19256 take variable numbers of arguments (including @code{printf});
19257 otherwise incorrect code is generated for calls to those
19258 functions.
19260 In addition, seriously incorrect code results if you call a
19261 function with too many arguments.  (Normally, extra arguments are
19262 harmlessly ignored.)
19264 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
19265 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
19267 @item -mno-rtd
19268 @opindex mno-rtd
19269 Do not use the calling conventions selected by @option{-mrtd}.
19270 This is the default.
19272 @item -malign-int
19273 @itemx -mno-align-int
19274 @opindex malign-int
19275 @opindex mno-align-int
19276 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
19277 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
19278 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
19279 Aligning variables on 32-bit boundaries produces code that runs somewhat
19280 faster on processors with 32-bit busses at the expense of more memory.
19282 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
19283 aligns structures containing the above types differently than
19284 most published application binary interface specifications for the m68k.
19286 @item -mpcrel
19287 @opindex mpcrel
19288 Use the pc-relative addressing mode of the 68000 directly, instead of
19289 using a global offset table.  At present, this option implies @option{-fpic},
19290 allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
19291 not presently supported with @option{-mpcrel}, though this could be supported for
19292 68020 and higher processors.
19294 @item -mno-strict-align
19295 @itemx -mstrict-align
19296 @opindex mno-strict-align
19297 @opindex mstrict-align
19298 Do not (do) assume that unaligned memory references are handled by
19299 the system.
19301 @item -msep-data
19302 Generate code that allows the data segment to be located in a different
19303 area of memory from the text segment.  This allows for execute-in-place in
19304 an environment without virtual memory management.  This option implies
19305 @option{-fPIC}.
19307 @item -mno-sep-data
19308 Generate code that assumes that the data segment follows the text segment.
19309 This is the default.
19311 @item -mid-shared-library
19312 Generate code that supports shared libraries via the library ID method.
19313 This allows for execute-in-place and shared libraries in an environment
19314 without virtual memory management.  This option implies @option{-fPIC}.
19316 @item -mno-id-shared-library
19317 Generate code that doesn't assume ID-based shared libraries are being used.
19318 This is the default.
19320 @item -mshared-library-id=n
19321 Specifies the identification number of the ID-based shared library being
19322 compiled.  Specifying a value of 0 generates more compact code; specifying
19323 other values forces the allocation of that number to the current
19324 library, but is no more space- or time-efficient than omitting this option.
19326 @item -mxgot
19327 @itemx -mno-xgot
19328 @opindex mxgot
19329 @opindex mno-xgot
19330 When generating position-independent code for ColdFire, generate code
19331 that works if the GOT has more than 8192 entries.  This code is
19332 larger and slower than code generated without this option.  On M680x0
19333 processors, this option is not needed; @option{-fPIC} suffices.
19335 GCC normally uses a single instruction to load values from the GOT@.
19336 While this is relatively efficient, it only works if the GOT
19337 is smaller than about 64k.  Anything larger causes the linker
19338 to report an error such as:
19340 @cindex relocation truncated to fit (ColdFire)
19341 @smallexample
19342 relocation truncated to fit: R_68K_GOT16O foobar
19343 @end smallexample
19345 If this happens, you should recompile your code with @option{-mxgot}.
19346 It should then work with very large GOTs.  However, code generated with
19347 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
19348 the value of a global symbol.
19350 Note that some linkers, including newer versions of the GNU linker,
19351 can create multiple GOTs and sort GOT entries.  If you have such a linker,
19352 you should only need to use @option{-mxgot} when compiling a single
19353 object file that accesses more than 8192 GOT entries.  Very few do.
19355 These options have no effect unless GCC is generating
19356 position-independent code.
19358 @item -mlong-jump-table-offsets
19359 @opindex mlong-jump-table-offsets
19360 Use 32-bit offsets in @code{switch} tables.  The default is to use
19361 16-bit offsets.
19363 @end table
19365 @node MCore Options
19366 @subsection MCore Options
19367 @cindex MCore options
19369 These are the @samp{-m} options defined for the Motorola M*Core
19370 processors.
19372 @table @gcctabopt
19374 @item -mhardlit
19375 @itemx -mno-hardlit
19376 @opindex mhardlit
19377 @opindex mno-hardlit
19378 Inline constants into the code stream if it can be done in two
19379 instructions or less.
19381 @item -mdiv
19382 @itemx -mno-div
19383 @opindex mdiv
19384 @opindex mno-div
19385 Use the divide instruction.  (Enabled by default).
19387 @item -mrelax-immediate
19388 @itemx -mno-relax-immediate
19389 @opindex mrelax-immediate
19390 @opindex mno-relax-immediate
19391 Allow arbitrary-sized immediates in bit operations.
19393 @item -mwide-bitfields
19394 @itemx -mno-wide-bitfields
19395 @opindex mwide-bitfields
19396 @opindex mno-wide-bitfields
19397 Always treat bit-fields as @code{int}-sized.
19399 @item -m4byte-functions
19400 @itemx -mno-4byte-functions
19401 @opindex m4byte-functions
19402 @opindex mno-4byte-functions
19403 Force all functions to be aligned to a 4-byte boundary.
19405 @item -mcallgraph-data
19406 @itemx -mno-callgraph-data
19407 @opindex mcallgraph-data
19408 @opindex mno-callgraph-data
19409 Emit callgraph information.
19411 @item -mslow-bytes
19412 @itemx -mno-slow-bytes
19413 @opindex mslow-bytes
19414 @opindex mno-slow-bytes
19415 Prefer word access when reading byte quantities.
19417 @item -mlittle-endian
19418 @itemx -mbig-endian
19419 @opindex mlittle-endian
19420 @opindex mbig-endian
19421 Generate code for a little-endian target.
19423 @item -m210
19424 @itemx -m340
19425 @opindex m210
19426 @opindex m340
19427 Generate code for the 210 processor.
19429 @item -mno-lsim
19430 @opindex mno-lsim
19431 Assume that runtime support has been provided and so omit the
19432 simulator library (@file{libsim.a)} from the linker command line.
19434 @item -mstack-increment=@var{size}
19435 @opindex mstack-increment
19436 Set the maximum amount for a single stack increment operation.  Large
19437 values can increase the speed of programs that contain functions
19438 that need a large amount of stack space, but they can also trigger a
19439 segmentation fault if the stack is extended too much.  The default
19440 value is 0x1000.
19442 @end table
19444 @node MeP Options
19445 @subsection MeP Options
19446 @cindex MeP options
19448 @table @gcctabopt
19450 @item -mabsdiff
19451 @opindex mabsdiff
19452 Enables the @code{abs} instruction, which is the absolute difference
19453 between two registers.
19455 @item -mall-opts
19456 @opindex mall-opts
19457 Enables all the optional instructions---average, multiply, divide, bit
19458 operations, leading zero, absolute difference, min/max, clip, and
19459 saturation.
19462 @item -maverage
19463 @opindex maverage
19464 Enables the @code{ave} instruction, which computes the average of two
19465 registers.
19467 @item -mbased=@var{n}
19468 @opindex mbased=
19469 Variables of size @var{n} bytes or smaller are placed in the
19470 @code{.based} section by default.  Based variables use the @code{$tp}
19471 register as a base register, and there is a 128-byte limit to the
19472 @code{.based} section.
19474 @item -mbitops
19475 @opindex mbitops
19476 Enables the bit operation instructions---bit test (@code{btstm}), set
19477 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19478 test-and-set (@code{tas}).
19480 @item -mc=@var{name}
19481 @opindex mc=
19482 Selects which section constant data is placed in.  @var{name} may
19483 be @samp{tiny}, @samp{near}, or @samp{far}.
19485 @item -mclip
19486 @opindex mclip
19487 Enables the @code{clip} instruction.  Note that @option{-mclip} is not
19488 useful unless you also provide @option{-mminmax}.
19490 @item -mconfig=@var{name}
19491 @opindex mconfig=
19492 Selects one of the built-in core configurations.  Each MeP chip has
19493 one or more modules in it; each module has a core CPU and a variety of
19494 coprocessors, optional instructions, and peripherals.  The
19495 @code{MeP-Integrator} tool, not part of GCC, provides these
19496 configurations through this option; using this option is the same as
19497 using all the corresponding command-line options.  The default
19498 configuration is @samp{default}.
19500 @item -mcop
19501 @opindex mcop
19502 Enables the coprocessor instructions.  By default, this is a 32-bit
19503 coprocessor.  Note that the coprocessor is normally enabled via the
19504 @option{-mconfig=} option.
19506 @item -mcop32
19507 @opindex mcop32
19508 Enables the 32-bit coprocessor's instructions.
19510 @item -mcop64
19511 @opindex mcop64
19512 Enables the 64-bit coprocessor's instructions.
19514 @item -mivc2
19515 @opindex mivc2
19516 Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
19518 @item -mdc
19519 @opindex mdc
19520 Causes constant variables to be placed in the @code{.near} section.
19522 @item -mdiv
19523 @opindex mdiv
19524 Enables the @code{div} and @code{divu} instructions.
19526 @item -meb
19527 @opindex meb
19528 Generate big-endian code.
19530 @item -mel
19531 @opindex mel
19532 Generate little-endian code.
19534 @item -mio-volatile
19535 @opindex mio-volatile
19536 Tells the compiler that any variable marked with the @code{io}
19537 attribute is to be considered volatile.
19539 @item -ml
19540 @opindex ml
19541 Causes variables to be assigned to the @code{.far} section by default.
19543 @item -mleadz
19544 @opindex mleadz
19545 Enables the @code{leadz} (leading zero) instruction.
19547 @item -mm
19548 @opindex mm
19549 Causes variables to be assigned to the @code{.near} section by default.
19551 @item -mminmax
19552 @opindex mminmax
19553 Enables the @code{min} and @code{max} instructions.
19555 @item -mmult
19556 @opindex mmult
19557 Enables the multiplication and multiply-accumulate instructions.
19559 @item -mno-opts
19560 @opindex mno-opts
19561 Disables all the optional instructions enabled by @option{-mall-opts}.
19563 @item -mrepeat
19564 @opindex mrepeat
19565 Enables the @code{repeat} and @code{erepeat} instructions, used for
19566 low-overhead looping.
19568 @item -ms
19569 @opindex ms
19570 Causes all variables to default to the @code{.tiny} section.  Note
19571 that there is a 65536-byte limit to this section.  Accesses to these
19572 variables use the @code{%gp} base register.
19574 @item -msatur
19575 @opindex msatur
19576 Enables the saturation instructions.  Note that the compiler does not
19577 currently generate these itself, but this option is included for
19578 compatibility with other tools, like @code{as}.
19580 @item -msdram
19581 @opindex msdram
19582 Link the SDRAM-based runtime instead of the default ROM-based runtime.
19584 @item -msim
19585 @opindex msim
19586 Link the simulator run-time libraries.
19588 @item -msimnovec
19589 @opindex msimnovec
19590 Link the simulator runtime libraries, excluding built-in support
19591 for reset and exception vectors and tables.
19593 @item -mtf
19594 @opindex mtf
19595 Causes all functions to default to the @code{.far} section.  Without
19596 this option, functions default to the @code{.near} section.
19598 @item -mtiny=@var{n}
19599 @opindex mtiny=
19600 Variables that are @var{n} bytes or smaller are allocated to the
19601 @code{.tiny} section.  These variables use the @code{$gp} base
19602 register.  The default for this option is 4, but note that there's a
19603 65536-byte limit to the @code{.tiny} section.
19605 @end table
19607 @node MicroBlaze Options
19608 @subsection MicroBlaze Options
19609 @cindex MicroBlaze Options
19611 @table @gcctabopt
19613 @item -msoft-float
19614 @opindex msoft-float
19615 Use software emulation for floating point (default).
19617 @item -mhard-float
19618 @opindex mhard-float
19619 Use hardware floating-point instructions.
19621 @item -mmemcpy
19622 @opindex mmemcpy
19623 Do not optimize block moves, use @code{memcpy}.
19625 @item -mno-clearbss
19626 @opindex mno-clearbss
19627 This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
19629 @item -mcpu=@var{cpu-type}
19630 @opindex mcpu=
19631 Use features of, and schedule code for, the given CPU.
19632 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
19633 where @var{X} is a major version, @var{YY} is the minor version, and
19634 @var{Z} is compatibility code.  Example values are @samp{v3.00.a},
19635 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
19637 @item -mxl-soft-mul
19638 @opindex mxl-soft-mul
19639 Use software multiply emulation (default).
19641 @item -mxl-soft-div
19642 @opindex mxl-soft-div
19643 Use software emulation for divides (default).
19645 @item -mxl-barrel-shift
19646 @opindex mxl-barrel-shift
19647 Use the hardware barrel shifter.
19649 @item -mxl-pattern-compare
19650 @opindex mxl-pattern-compare
19651 Use pattern compare instructions.
19653 @item -msmall-divides
19654 @opindex msmall-divides
19655 Use table lookup optimization for small signed integer divisions.
19657 @item -mxl-stack-check
19658 @opindex mxl-stack-check
19659 This option is deprecated.  Use @option{-fstack-check} instead.
19661 @item -mxl-gp-opt
19662 @opindex mxl-gp-opt
19663 Use GP-relative @code{.sdata}/@code{.sbss} sections.
19665 @item -mxl-multiply-high
19666 @opindex mxl-multiply-high
19667 Use multiply high instructions for high part of 32x32 multiply.
19669 @item -mxl-float-convert
19670 @opindex mxl-float-convert
19671 Use hardware floating-point conversion instructions.
19673 @item -mxl-float-sqrt
19674 @opindex mxl-float-sqrt
19675 Use hardware floating-point square root instruction.
19677 @item -mbig-endian
19678 @opindex mbig-endian
19679 Generate code for a big-endian target.
19681 @item -mlittle-endian
19682 @opindex mlittle-endian
19683 Generate code for a little-endian target.
19685 @item -mxl-reorder
19686 @opindex mxl-reorder
19687 Use reorder instructions (swap and byte reversed load/store).
19689 @item -mxl-mode-@var{app-model}
19690 Select application model @var{app-model}.  Valid models are
19691 @table @samp
19692 @item executable
19693 normal executable (default), uses startup code @file{crt0.o}.
19695 @item xmdstub
19696 for use with Xilinx Microprocessor Debugger (XMD) based
19697 software intrusive debug agent called xmdstub. This uses startup file
19698 @file{crt1.o} and sets the start address of the program to 0x800.
19700 @item bootstrap
19701 for applications that are loaded using a bootloader.
19702 This model uses startup file @file{crt2.o} which does not contain a processor
19703 reset vector handler. This is suitable for transferring control on a
19704 processor reset to the bootloader rather than the application.
19706 @item novectors
19707 for applications that do not require any of the
19708 MicroBlaze vectors. This option may be useful for applications running
19709 within a monitoring application. This model uses @file{crt3.o} as a startup file.
19710 @end table
19712 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
19713 @option{-mxl-mode-@var{app-model}}.
19715 @end table
19717 @node MIPS Options
19718 @subsection MIPS Options
19719 @cindex MIPS options
19721 @table @gcctabopt
19723 @item -EB
19724 @opindex EB
19725 Generate big-endian code.
19727 @item -EL
19728 @opindex EL
19729 Generate little-endian code.  This is the default for @samp{mips*el-*-*}
19730 configurations.
19732 @item -march=@var{arch}
19733 @opindex march
19734 Generate code that runs on @var{arch}, which can be the name of a
19735 generic MIPS ISA, or the name of a particular processor.
19736 The ISA names are:
19737 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
19738 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
19739 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
19740 @samp{mips64r5} and @samp{mips64r6}.
19741 The processor names are:
19742 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
19743 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
19744 @samp{5kc}, @samp{5kf},
19745 @samp{20kc},
19746 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
19747 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
19748 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
19749 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
19750 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
19751 @samp{i6400},
19752 @samp{interaptiv},
19753 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
19754 @samp{m4k},
19755 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
19756 @samp{m5100}, @samp{m5101},
19757 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
19758 @samp{orion},
19759 @samp{p5600},
19760 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
19761 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
19762 @samp{rm7000}, @samp{rm9000},
19763 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
19764 @samp{sb1},
19765 @samp{sr71000},
19766 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
19767 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
19768 @samp{xlr} and @samp{xlp}.
19769 The special value @samp{from-abi} selects the
19770 most compatible architecture for the selected ABI (that is,
19771 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
19773 The native Linux/GNU toolchain also supports the value @samp{native},
19774 which selects the best architecture option for the host processor.
19775 @option{-march=native} has no effect if GCC does not recognize
19776 the processor.
19778 In processor names, a final @samp{000} can be abbreviated as @samp{k}
19779 (for example, @option{-march=r2k}).  Prefixes are optional, and
19780 @samp{vr} may be written @samp{r}.
19782 Names of the form @samp{@var{n}f2_1} refer to processors with
19783 FPUs clocked at half the rate of the core, names of the form
19784 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
19785 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
19786 processors with FPUs clocked a ratio of 3:2 with respect to the core.
19787 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
19788 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
19789 accepted as synonyms for @samp{@var{n}f1_1}.
19791 GCC defines two macros based on the value of this option.  The first
19792 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
19793 a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
19794 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
19795 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
19796 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
19798 Note that the @code{_MIPS_ARCH} macro uses the processor names given
19799 above.  In other words, it has the full prefix and does not
19800 abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
19801 the macro names the resolved architecture (either @code{"mips1"} or
19802 @code{"mips3"}).  It names the default architecture when no
19803 @option{-march} option is given.
19805 @item -mtune=@var{arch}
19806 @opindex mtune
19807 Optimize for @var{arch}.  Among other things, this option controls
19808 the way instructions are scheduled, and the perceived cost of arithmetic
19809 operations.  The list of @var{arch} values is the same as for
19810 @option{-march}.
19812 When this option is not used, GCC optimizes for the processor
19813 specified by @option{-march}.  By using @option{-march} and
19814 @option{-mtune} together, it is possible to generate code that
19815 runs on a family of processors, but optimize the code for one
19816 particular member of that family.
19818 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
19819 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
19820 @option{-march} ones described above.
19822 @item -mips1
19823 @opindex mips1
19824 Equivalent to @option{-march=mips1}.
19826 @item -mips2
19827 @opindex mips2
19828 Equivalent to @option{-march=mips2}.
19830 @item -mips3
19831 @opindex mips3
19832 Equivalent to @option{-march=mips3}.
19834 @item -mips4
19835 @opindex mips4
19836 Equivalent to @option{-march=mips4}.
19838 @item -mips32
19839 @opindex mips32
19840 Equivalent to @option{-march=mips32}.
19842 @item -mips32r3
19843 @opindex mips32r3
19844 Equivalent to @option{-march=mips32r3}.
19846 @item -mips32r5
19847 @opindex mips32r5
19848 Equivalent to @option{-march=mips32r5}.
19850 @item -mips32r6
19851 @opindex mips32r6
19852 Equivalent to @option{-march=mips32r6}.
19854 @item -mips64
19855 @opindex mips64
19856 Equivalent to @option{-march=mips64}.
19858 @item -mips64r2
19859 @opindex mips64r2
19860 Equivalent to @option{-march=mips64r2}.
19862 @item -mips64r3
19863 @opindex mips64r3
19864 Equivalent to @option{-march=mips64r3}.
19866 @item -mips64r5
19867 @opindex mips64r5
19868 Equivalent to @option{-march=mips64r5}.
19870 @item -mips64r6
19871 @opindex mips64r6
19872 Equivalent to @option{-march=mips64r6}.
19874 @item -mips16
19875 @itemx -mno-mips16
19876 @opindex mips16
19877 @opindex mno-mips16
19878 Generate (do not generate) MIPS16 code.  If GCC is targeting a
19879 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
19881 MIPS16 code generation can also be controlled on a per-function basis
19882 by means of @code{mips16} and @code{nomips16} attributes.
19883 @xref{Function Attributes}, for more information.
19885 @item -mflip-mips16
19886 @opindex mflip-mips16
19887 Generate MIPS16 code on alternating functions.  This option is provided
19888 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
19889 not intended for ordinary use in compiling user code.
19891 @item -minterlink-compressed
19892 @item -mno-interlink-compressed
19893 @opindex minterlink-compressed
19894 @opindex mno-interlink-compressed
19895 Require (do not require) that code using the standard (uncompressed) MIPS ISA
19896 be link-compatible with MIPS16 and microMIPS code, and vice versa.
19898 For example, code using the standard ISA encoding cannot jump directly
19899 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
19900 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
19901 knows that the target of the jump is not compressed.
19903 @item -minterlink-mips16
19904 @itemx -mno-interlink-mips16
19905 @opindex minterlink-mips16
19906 @opindex mno-interlink-mips16
19907 Aliases of @option{-minterlink-compressed} and
19908 @option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
19909 and are retained for backwards compatibility.
19911 @item -mabi=32
19912 @itemx -mabi=o64
19913 @itemx -mabi=n32
19914 @itemx -mabi=64
19915 @itemx -mabi=eabi
19916 @opindex mabi=32
19917 @opindex mabi=o64
19918 @opindex mabi=n32
19919 @opindex mabi=64
19920 @opindex mabi=eabi
19921 Generate code for the given ABI@.
19923 Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
19924 generates 64-bit code when you select a 64-bit architecture, but you
19925 can use @option{-mgp32} to get 32-bit code instead.
19927 For information about the O64 ABI, see
19928 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
19930 GCC supports a variant of the o32 ABI in which floating-point registers
19931 are 64 rather than 32 bits wide.  You can select this combination with
19932 @option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
19933 and @code{mfhc1} instructions and is therefore only supported for
19934 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
19936 The register assignments for arguments and return values remain the
19937 same, but each scalar value is passed in a single 64-bit register
19938 rather than a pair of 32-bit registers.  For example, scalar
19939 floating-point values are returned in @samp{$f0} only, not a
19940 @samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
19941 remains the same in that the even-numbered double-precision registers
19942 are saved.
19944 Two additional variants of the o32 ABI are supported to enable
19945 a transition from 32-bit to 64-bit registers.  These are FPXX
19946 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
19947 The FPXX extension mandates that all code must execute correctly
19948 when run using 32-bit or 64-bit registers.  The code can be interlinked
19949 with either FP32 or FP64, but not both.
19950 The FP64A extension is similar to the FP64 extension but forbids the
19951 use of odd-numbered single-precision registers.  This can be used
19952 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
19953 processors and allows both FP32 and FP64A code to interlink and
19954 run in the same process without changing FPU modes.
19956 @item -mabicalls
19957 @itemx -mno-abicalls
19958 @opindex mabicalls
19959 @opindex mno-abicalls
19960 Generate (do not generate) code that is suitable for SVR4-style
19961 dynamic objects.  @option{-mabicalls} is the default for SVR4-based
19962 systems.
19964 @item -mshared
19965 @itemx -mno-shared
19966 Generate (do not generate) code that is fully position-independent,
19967 and that can therefore be linked into shared libraries.  This option
19968 only affects @option{-mabicalls}.
19970 All @option{-mabicalls} code has traditionally been position-independent,
19971 regardless of options like @option{-fPIC} and @option{-fpic}.  However,
19972 as an extension, the GNU toolchain allows executables to use absolute
19973 accesses for locally-binding symbols.  It can also use shorter GP
19974 initialization sequences and generate direct calls to locally-defined
19975 functions.  This mode is selected by @option{-mno-shared}.
19977 @option{-mno-shared} depends on binutils 2.16 or higher and generates
19978 objects that can only be linked by the GNU linker.  However, the option
19979 does not affect the ABI of the final executable; it only affects the ABI
19980 of relocatable objects.  Using @option{-mno-shared} generally makes
19981 executables both smaller and quicker.
19983 @option{-mshared} is the default.
19985 @item -mplt
19986 @itemx -mno-plt
19987 @opindex mplt
19988 @opindex mno-plt
19989 Assume (do not assume) that the static and dynamic linkers
19990 support PLTs and copy relocations.  This option only affects
19991 @option{-mno-shared -mabicalls}.  For the n64 ABI, this option
19992 has no effect without @option{-msym32}.
19994 You can make @option{-mplt} the default by configuring
19995 GCC with @option{--with-mips-plt}.  The default is
19996 @option{-mno-plt} otherwise.
19998 @item -mxgot
19999 @itemx -mno-xgot
20000 @opindex mxgot
20001 @opindex mno-xgot
20002 Lift (do not lift) the usual restrictions on the size of the global
20003 offset table.
20005 GCC normally uses a single instruction to load values from the GOT@.
20006 While this is relatively efficient, it only works if the GOT
20007 is smaller than about 64k.  Anything larger causes the linker
20008 to report an error such as:
20010 @cindex relocation truncated to fit (MIPS)
20011 @smallexample
20012 relocation truncated to fit: R_MIPS_GOT16 foobar
20013 @end smallexample
20015 If this happens, you should recompile your code with @option{-mxgot}.
20016 This works with very large GOTs, although the code is also
20017 less efficient, since it takes three instructions to fetch the
20018 value of a global symbol.
20020 Note that some linkers can create multiple GOTs.  If you have such a
20021 linker, you should only need to use @option{-mxgot} when a single object
20022 file accesses more than 64k's worth of GOT entries.  Very few do.
20024 These options have no effect unless GCC is generating position
20025 independent code.
20027 @item -mgp32
20028 @opindex mgp32
20029 Assume that general-purpose registers are 32 bits wide.
20031 @item -mgp64
20032 @opindex mgp64
20033 Assume that general-purpose registers are 64 bits wide.
20035 @item -mfp32
20036 @opindex mfp32
20037 Assume that floating-point registers are 32 bits wide.
20039 @item -mfp64
20040 @opindex mfp64
20041 Assume that floating-point registers are 64 bits wide.
20043 @item -mfpxx
20044 @opindex mfpxx
20045 Do not assume the width of floating-point registers.
20047 @item -mhard-float
20048 @opindex mhard-float
20049 Use floating-point coprocessor instructions.
20051 @item -msoft-float
20052 @opindex msoft-float
20053 Do not use floating-point coprocessor instructions.  Implement
20054 floating-point calculations using library calls instead.
20056 @item -mno-float
20057 @opindex mno-float
20058 Equivalent to @option{-msoft-float}, but additionally asserts that the
20059 program being compiled does not perform any floating-point operations.
20060 This option is presently supported only by some bare-metal MIPS
20061 configurations, where it may select a special set of libraries
20062 that lack all floating-point support (including, for example, the
20063 floating-point @code{printf} formats).  
20064 If code compiled with @option{-mno-float} accidentally contains
20065 floating-point operations, it is likely to suffer a link-time
20066 or run-time failure.
20068 @item -msingle-float
20069 @opindex msingle-float
20070 Assume that the floating-point coprocessor only supports single-precision
20071 operations.
20073 @item -mdouble-float
20074 @opindex mdouble-float
20075 Assume that the floating-point coprocessor supports double-precision
20076 operations.  This is the default.
20078 @item -modd-spreg
20079 @itemx -mno-odd-spreg
20080 @opindex modd-spreg
20081 @opindex mno-odd-spreg
20082 Enable the use of odd-numbered single-precision floating-point registers
20083 for the o32 ABI.  This is the default for processors that are known to
20084 support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
20085 is set by default.
20087 @item -mabs=2008
20088 @itemx -mabs=legacy
20089 @opindex mabs=2008
20090 @opindex mabs=legacy
20091 These options control the treatment of the special not-a-number (NaN)
20092 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
20093 @code{neg.@i{fmt}} machine instructions.
20095 By default or when @option{-mabs=legacy} is used the legacy
20096 treatment is selected.  In this case these instructions are considered
20097 arithmetic and avoided where correct operation is required and the
20098 input operand might be a NaN.  A longer sequence of instructions that
20099 manipulate the sign bit of floating-point datum manually is used
20100 instead unless the @option{-ffinite-math-only} option has also been
20101 specified.
20103 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
20104 this case these instructions are considered non-arithmetic and therefore
20105 operating correctly in all cases, including in particular where the
20106 input operand is a NaN.  These instructions are therefore always used
20107 for the respective operations.
20109 @item -mnan=2008
20110 @itemx -mnan=legacy
20111 @opindex mnan=2008
20112 @opindex mnan=legacy
20113 These options control the encoding of the special not-a-number (NaN)
20114 IEEE 754 floating-point data.
20116 The @option{-mnan=legacy} option selects the legacy encoding.  In this
20117 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
20118 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
20119 by the first bit of their trailing significand field being 1.
20121 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
20122 this case qNaNs are denoted by the first bit of their trailing
20123 significand field being 1, whereas sNaNs are denoted by the first bit of
20124 their trailing significand field being 0.
20126 The default is @option{-mnan=legacy} unless GCC has been configured with
20127 @option{--with-nan=2008}.
20129 @item -mllsc
20130 @itemx -mno-llsc
20131 @opindex mllsc
20132 @opindex mno-llsc
20133 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
20134 implement atomic memory built-in functions.  When neither option is
20135 specified, GCC uses the instructions if the target architecture
20136 supports them.
20138 @option{-mllsc} is useful if the runtime environment can emulate the
20139 instructions and @option{-mno-llsc} can be useful when compiling for
20140 nonstandard ISAs.  You can make either option the default by
20141 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
20142 respectively.  @option{--with-llsc} is the default for some
20143 configurations; see the installation documentation for details.
20145 @item -mdsp
20146 @itemx -mno-dsp
20147 @opindex mdsp
20148 @opindex mno-dsp
20149 Use (do not use) revision 1 of the MIPS DSP ASE@.
20150 @xref{MIPS DSP Built-in Functions}.  This option defines the
20151 preprocessor macro @code{__mips_dsp}.  It also defines
20152 @code{__mips_dsp_rev} to 1.
20154 @item -mdspr2
20155 @itemx -mno-dspr2
20156 @opindex mdspr2
20157 @opindex mno-dspr2
20158 Use (do not use) revision 2 of the MIPS DSP ASE@.
20159 @xref{MIPS DSP Built-in Functions}.  This option defines the
20160 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
20161 It also defines @code{__mips_dsp_rev} to 2.
20163 @item -msmartmips
20164 @itemx -mno-smartmips
20165 @opindex msmartmips
20166 @opindex mno-smartmips
20167 Use (do not use) the MIPS SmartMIPS ASE.
20169 @item -mpaired-single
20170 @itemx -mno-paired-single
20171 @opindex mpaired-single
20172 @opindex mno-paired-single
20173 Use (do not use) paired-single floating-point instructions.
20174 @xref{MIPS Paired-Single Support}.  This option requires
20175 hardware floating-point support to be enabled.
20177 @item -mdmx
20178 @itemx -mno-mdmx
20179 @opindex mdmx
20180 @opindex mno-mdmx
20181 Use (do not use) MIPS Digital Media Extension instructions.
20182 This option can only be used when generating 64-bit code and requires
20183 hardware floating-point support to be enabled.
20185 @item -mips3d
20186 @itemx -mno-mips3d
20187 @opindex mips3d
20188 @opindex mno-mips3d
20189 Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
20190 The option @option{-mips3d} implies @option{-mpaired-single}.
20192 @item -mmicromips
20193 @itemx -mno-micromips
20194 @opindex mmicromips
20195 @opindex mno-mmicromips
20196 Generate (do not generate) microMIPS code.
20198 MicroMIPS code generation can also be controlled on a per-function basis
20199 by means of @code{micromips} and @code{nomicromips} attributes.
20200 @xref{Function Attributes}, for more information.
20202 @item -mmt
20203 @itemx -mno-mt
20204 @opindex mmt
20205 @opindex mno-mt
20206 Use (do not use) MT Multithreading instructions.
20208 @item -mmcu
20209 @itemx -mno-mcu
20210 @opindex mmcu
20211 @opindex mno-mcu
20212 Use (do not use) the MIPS MCU ASE instructions.
20214 @item -meva
20215 @itemx -mno-eva
20216 @opindex meva
20217 @opindex mno-eva
20218 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
20220 @item -mvirt
20221 @itemx -mno-virt
20222 @opindex mvirt
20223 @opindex mno-virt
20224 Use (do not use) the MIPS Virtualization (VZ) instructions.
20226 @item -mxpa
20227 @itemx -mno-xpa
20228 @opindex mxpa
20229 @opindex mno-xpa
20230 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
20232 @item -mlong64
20233 @opindex mlong64
20234 Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
20235 an explanation of the default and the way that the pointer size is
20236 determined.
20238 @item -mlong32
20239 @opindex mlong32
20240 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
20242 The default size of @code{int}s, @code{long}s and pointers depends on
20243 the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
20244 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
20245 32-bit @code{long}s.  Pointers are the same size as @code{long}s,
20246 or the same size as integer registers, whichever is smaller.
20248 @item -msym32
20249 @itemx -mno-sym32
20250 @opindex msym32
20251 @opindex mno-sym32
20252 Assume (do not assume) that all symbols have 32-bit values, regardless
20253 of the selected ABI@.  This option is useful in combination with
20254 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
20255 to generate shorter and faster references to symbolic addresses.
20257 @item -G @var{num}
20258 @opindex G
20259 Put definitions of externally-visible data in a small data section
20260 if that data is no bigger than @var{num} bytes.  GCC can then generate
20261 more efficient accesses to the data; see @option{-mgpopt} for details.
20263 The default @option{-G} option depends on the configuration.
20265 @item -mlocal-sdata
20266 @itemx -mno-local-sdata
20267 @opindex mlocal-sdata
20268 @opindex mno-local-sdata
20269 Extend (do not extend) the @option{-G} behavior to local data too,
20270 such as to static variables in C@.  @option{-mlocal-sdata} is the
20271 default for all configurations.
20273 If the linker complains that an application is using too much small data,
20274 you might want to try rebuilding the less performance-critical parts with
20275 @option{-mno-local-sdata}.  You might also want to build large
20276 libraries with @option{-mno-local-sdata}, so that the libraries leave
20277 more room for the main program.
20279 @item -mextern-sdata
20280 @itemx -mno-extern-sdata
20281 @opindex mextern-sdata
20282 @opindex mno-extern-sdata
20283 Assume (do not assume) that externally-defined data is in
20284 a small data section if the size of that data is within the @option{-G} limit.
20285 @option{-mextern-sdata} is the default for all configurations.
20287 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
20288 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
20289 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
20290 is placed in a small data section.  If @var{Var} is defined by another
20291 module, you must either compile that module with a high-enough
20292 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
20293 definition.  If @var{Var} is common, you must link the application
20294 with a high-enough @option{-G} setting.
20296 The easiest way of satisfying these restrictions is to compile
20297 and link every module with the same @option{-G} option.  However,
20298 you may wish to build a library that supports several different
20299 small data limits.  You can do this by compiling the library with
20300 the highest supported @option{-G} setting and additionally using
20301 @option{-mno-extern-sdata} to stop the library from making assumptions
20302 about externally-defined data.
20304 @item -mgpopt
20305 @itemx -mno-gpopt
20306 @opindex mgpopt
20307 @opindex mno-gpopt
20308 Use (do not use) GP-relative accesses for symbols that are known to be
20309 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
20310 @option{-mextern-sdata}.  @option{-mgpopt} is the default for all
20311 configurations.
20313 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
20314 might not hold the value of @code{_gp}.  For example, if the code is
20315 part of a library that might be used in a boot monitor, programs that
20316 call boot monitor routines pass an unknown value in @code{$gp}.
20317 (In such situations, the boot monitor itself is usually compiled
20318 with @option{-G0}.)
20320 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
20321 @option{-mno-extern-sdata}.
20323 @item -membedded-data
20324 @itemx -mno-embedded-data
20325 @opindex membedded-data
20326 @opindex mno-embedded-data
20327 Allocate variables to the read-only data section first if possible, then
20328 next in the small data section if possible, otherwise in data.  This gives
20329 slightly slower code than the default, but reduces the amount of RAM required
20330 when executing, and thus may be preferred for some embedded systems.
20332 @item -muninit-const-in-rodata
20333 @itemx -mno-uninit-const-in-rodata
20334 @opindex muninit-const-in-rodata
20335 @opindex mno-uninit-const-in-rodata
20336 Put uninitialized @code{const} variables in the read-only data section.
20337 This option is only meaningful in conjunction with @option{-membedded-data}.
20339 @item -mcode-readable=@var{setting}
20340 @opindex mcode-readable
20341 Specify whether GCC may generate code that reads from executable sections.
20342 There are three possible settings:
20344 @table @gcctabopt
20345 @item -mcode-readable=yes
20346 Instructions may freely access executable sections.  This is the
20347 default setting.
20349 @item -mcode-readable=pcrel
20350 MIPS16 PC-relative load instructions can access executable sections,
20351 but other instructions must not do so.  This option is useful on 4KSc
20352 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
20353 It is also useful on processors that can be configured to have a dual
20354 instruction/data SRAM interface and that, like the M4K, automatically
20355 redirect PC-relative loads to the instruction RAM.
20357 @item -mcode-readable=no
20358 Instructions must not access executable sections.  This option can be
20359 useful on targets that are configured to have a dual instruction/data
20360 SRAM interface but that (unlike the M4K) do not automatically redirect
20361 PC-relative loads to the instruction RAM.
20362 @end table
20364 @item -msplit-addresses
20365 @itemx -mno-split-addresses
20366 @opindex msplit-addresses
20367 @opindex mno-split-addresses
20368 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
20369 relocation operators.  This option has been superseded by
20370 @option{-mexplicit-relocs} but is retained for backwards compatibility.
20372 @item -mexplicit-relocs
20373 @itemx -mno-explicit-relocs
20374 @opindex mexplicit-relocs
20375 @opindex mno-explicit-relocs
20376 Use (do not use) assembler relocation operators when dealing with symbolic
20377 addresses.  The alternative, selected by @option{-mno-explicit-relocs},
20378 is to use assembler macros instead.
20380 @option{-mexplicit-relocs} is the default if GCC was configured
20381 to use an assembler that supports relocation operators.
20383 @item -mcheck-zero-division
20384 @itemx -mno-check-zero-division
20385 @opindex mcheck-zero-division
20386 @opindex mno-check-zero-division
20387 Trap (do not trap) on integer division by zero.
20389 The default is @option{-mcheck-zero-division}.
20391 @item -mdivide-traps
20392 @itemx -mdivide-breaks
20393 @opindex mdivide-traps
20394 @opindex mdivide-breaks
20395 MIPS systems check for division by zero by generating either a
20396 conditional trap or a break instruction.  Using traps results in
20397 smaller code, but is only supported on MIPS II and later.  Also, some
20398 versions of the Linux kernel have a bug that prevents trap from
20399 generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
20400 allow conditional traps on architectures that support them and
20401 @option{-mdivide-breaks} to force the use of breaks.
20403 The default is usually @option{-mdivide-traps}, but this can be
20404 overridden at configure time using @option{--with-divide=breaks}.
20405 Divide-by-zero checks can be completely disabled using
20406 @option{-mno-check-zero-division}.
20408 @item -mload-store-pairs
20409 @itemx -mno-load-store-pairs
20410 @opindex mload-store-pairs
20411 @opindex mno-load-store-pairs
20412 Enable (disable) an optimization that pairs consecutive load or store
20413 instructions to enable load/store bonding.  This option is enabled by
20414 default but only takes effect when the selected architecture is known
20415 to support bonding.
20417 @item -mmemcpy
20418 @itemx -mno-memcpy
20419 @opindex mmemcpy
20420 @opindex mno-memcpy
20421 Force (do not force) the use of @code{memcpy} for non-trivial block
20422 moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
20423 most constant-sized copies.
20425 @item -mlong-calls
20426 @itemx -mno-long-calls
20427 @opindex mlong-calls
20428 @opindex mno-long-calls
20429 Disable (do not disable) use of the @code{jal} instruction.  Calling
20430 functions using @code{jal} is more efficient but requires the caller
20431 and callee to be in the same 256 megabyte segment.
20433 This option has no effect on abicalls code.  The default is
20434 @option{-mno-long-calls}.
20436 @item -mmad
20437 @itemx -mno-mad
20438 @opindex mmad
20439 @opindex mno-mad
20440 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20441 instructions, as provided by the R4650 ISA@.
20443 @item -mimadd
20444 @itemx -mno-imadd
20445 @opindex mimadd
20446 @opindex mno-imadd
20447 Enable (disable) use of the @code{madd} and @code{msub} integer
20448 instructions.  The default is @option{-mimadd} on architectures
20449 that support @code{madd} and @code{msub} except for the 74k 
20450 architecture where it was found to generate slower code.
20452 @item -mfused-madd
20453 @itemx -mno-fused-madd
20454 @opindex mfused-madd
20455 @opindex mno-fused-madd
20456 Enable (disable) use of the floating-point multiply-accumulate
20457 instructions, when they are available.  The default is
20458 @option{-mfused-madd}.
20460 On the R8000 CPU when multiply-accumulate instructions are used,
20461 the intermediate product is calculated to infinite precision
20462 and is not subject to the FCSR Flush to Zero bit.  This may be
20463 undesirable in some circumstances.  On other processors the result
20464 is numerically identical to the equivalent computation using
20465 separate multiply, add, subtract and negate instructions.
20467 @item -nocpp
20468 @opindex nocpp
20469 Tell the MIPS assembler to not run its preprocessor over user
20470 assembler files (with a @samp{.s} suffix) when assembling them.
20472 @item -mfix-24k
20473 @item -mno-fix-24k
20474 @opindex mfix-24k
20475 @opindex mno-fix-24k
20476 Work around the 24K E48 (lost data on stores during refill) errata.
20477 The workarounds are implemented by the assembler rather than by GCC@.
20479 @item -mfix-r4000
20480 @itemx -mno-fix-r4000
20481 @opindex mfix-r4000
20482 @opindex mno-fix-r4000
20483 Work around certain R4000 CPU errata:
20484 @itemize @minus
20485 @item
20486 A double-word or a variable shift may give an incorrect result if executed
20487 immediately after starting an integer division.
20488 @item
20489 A double-word or a variable shift may give an incorrect result if executed
20490 while an integer multiplication is in progress.
20491 @item
20492 An integer division may give an incorrect result if started in a delay slot
20493 of a taken branch or a jump.
20494 @end itemize
20496 @item -mfix-r4400
20497 @itemx -mno-fix-r4400
20498 @opindex mfix-r4400
20499 @opindex mno-fix-r4400
20500 Work around certain R4400 CPU errata:
20501 @itemize @minus
20502 @item
20503 A double-word or a variable shift may give an incorrect result if executed
20504 immediately after starting an integer division.
20505 @end itemize
20507 @item -mfix-r10000
20508 @itemx -mno-fix-r10000
20509 @opindex mfix-r10000
20510 @opindex mno-fix-r10000
20511 Work around certain R10000 errata:
20512 @itemize @minus
20513 @item
20514 @code{ll}/@code{sc} sequences may not behave atomically on revisions
20515 prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
20516 @end itemize
20518 This option can only be used if the target architecture supports
20519 branch-likely instructions.  @option{-mfix-r10000} is the default when
20520 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20521 otherwise.
20523 @item -mfix-rm7000
20524 @itemx -mno-fix-rm7000
20525 @opindex mfix-rm7000
20526 Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
20527 workarounds are implemented by the assembler rather than by GCC@.
20529 @item -mfix-vr4120
20530 @itemx -mno-fix-vr4120
20531 @opindex mfix-vr4120
20532 Work around certain VR4120 errata:
20533 @itemize @minus
20534 @item
20535 @code{dmultu} does not always produce the correct result.
20536 @item
20537 @code{div} and @code{ddiv} do not always produce the correct result if one
20538 of the operands is negative.
20539 @end itemize
20540 The workarounds for the division errata rely on special functions in
20541 @file{libgcc.a}.  At present, these functions are only provided by
20542 the @code{mips64vr*-elf} configurations.
20544 Other VR4120 errata require a NOP to be inserted between certain pairs of
20545 instructions.  These errata are handled by the assembler, not by GCC itself.
20547 @item -mfix-vr4130
20548 @opindex mfix-vr4130
20549 Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
20550 workarounds are implemented by the assembler rather than by GCC,
20551 although GCC avoids using @code{mflo} and @code{mfhi} if the
20552 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
20553 instructions are available instead.
20555 @item -mfix-sb1
20556 @itemx -mno-fix-sb1
20557 @opindex mfix-sb1
20558 Work around certain SB-1 CPU core errata.
20559 (This flag currently works around the SB-1 revision 2
20560 ``F1'' and ``F2'' floating-point errata.)
20562 @item -mr10k-cache-barrier=@var{setting}
20563 @opindex mr10k-cache-barrier
20564 Specify whether GCC should insert cache barriers to avoid the
20565 side-effects of speculation on R10K processors.
20567 In common with many processors, the R10K tries to predict the outcome
20568 of a conditional branch and speculatively executes instructions from
20569 the ``taken'' branch.  It later aborts these instructions if the
20570 predicted outcome is wrong.  However, on the R10K, even aborted
20571 instructions can have side effects.
20573 This problem only affects kernel stores and, depending on the system,
20574 kernel loads.  As an example, a speculatively-executed store may load
20575 the target memory into cache and mark the cache line as dirty, even if
20576 the store itself is later aborted.  If a DMA operation writes to the
20577 same area of memory before the ``dirty'' line is flushed, the cached
20578 data overwrites the DMA-ed data.  See the R10K processor manual
20579 for a full description, including other potential problems.
20581 One workaround is to insert cache barrier instructions before every memory
20582 access that might be speculatively executed and that might have side
20583 effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
20584 controls GCC's implementation of this workaround.  It assumes that
20585 aborted accesses to any byte in the following regions does not have
20586 side effects:
20588 @enumerate
20589 @item
20590 the memory occupied by the current function's stack frame;
20592 @item
20593 the memory occupied by an incoming stack argument;
20595 @item
20596 the memory occupied by an object with a link-time-constant address.
20597 @end enumerate
20599 It is the kernel's responsibility to ensure that speculative
20600 accesses to these regions are indeed safe.
20602 If the input program contains a function declaration such as:
20604 @smallexample
20605 void foo (void);
20606 @end smallexample
20608 then the implementation of @code{foo} must allow @code{j foo} and
20609 @code{jal foo} to be executed speculatively.  GCC honors this
20610 restriction for functions it compiles itself.  It expects non-GCC
20611 functions (such as hand-written assembly code) to do the same.
20613 The option has three forms:
20615 @table @gcctabopt
20616 @item -mr10k-cache-barrier=load-store
20617 Insert a cache barrier before a load or store that might be
20618 speculatively executed and that might have side effects even
20619 if aborted.
20621 @item -mr10k-cache-barrier=store
20622 Insert a cache barrier before a store that might be speculatively
20623 executed and that might have side effects even if aborted.
20625 @item -mr10k-cache-barrier=none
20626 Disable the insertion of cache barriers.  This is the default setting.
20627 @end table
20629 @item -mflush-func=@var{func}
20630 @itemx -mno-flush-func
20631 @opindex mflush-func
20632 Specifies the function to call to flush the I and D caches, or to not
20633 call any such function.  If called, the function must take the same
20634 arguments as the common @code{_flush_func}, that is, the address of the
20635 memory range for which the cache is being flushed, the size of the
20636 memory range, and the number 3 (to flush both caches).  The default
20637 depends on the target GCC was configured for, but commonly is either
20638 @code{_flush_func} or @code{__cpu_flush}.
20640 @item mbranch-cost=@var{num}
20641 @opindex mbranch-cost
20642 Set the cost of branches to roughly @var{num} ``simple'' instructions.
20643 This cost is only a heuristic and is not guaranteed to produce
20644 consistent results across releases.  A zero cost redundantly selects
20645 the default, which is based on the @option{-mtune} setting.
20647 @item -mbranch-likely
20648 @itemx -mno-branch-likely
20649 @opindex mbranch-likely
20650 @opindex mno-branch-likely
20651 Enable or disable use of Branch Likely instructions, regardless of the
20652 default for the selected architecture.  By default, Branch Likely
20653 instructions may be generated if they are supported by the selected
20654 architecture.  An exception is for the MIPS32 and MIPS64 architectures
20655 and processors that implement those architectures; for those, Branch
20656 Likely instructions are not be generated by default because the MIPS32
20657 and MIPS64 architectures specifically deprecate their use.
20659 @item -mcompact-branches=never
20660 @itemx -mcompact-branches=optimal
20661 @itemx -mcompact-branches=always
20662 @opindex mcompact-branches=never
20663 @opindex mcompact-branches=optimal
20664 @opindex mcompact-branches=always
20665 These options control which form of branches will be generated.  The
20666 default is @option{-mcompact-branches=optimal}.
20668 The @option{-mcompact-branches=never} option ensures that compact branch
20669 instructions will never be generated.
20671 The @option{-mcompact-branches=always} option ensures that a compact
20672 branch instruction will be generated if available.  If a compact branch
20673 instruction is not available, a delay slot form of the branch will be
20674 used instead.
20676 This option is supported from MIPS Release 6 onwards.
20678 The @option{-mcompact-branches=optimal} option will cause a delay slot
20679 branch to be used if one is available in the current ISA and the delay
20680 slot is successfully filled.  If the delay slot is not filled, a compact
20681 branch will be chosen if one is available.
20683 @item -mfp-exceptions
20684 @itemx -mno-fp-exceptions
20685 @opindex mfp-exceptions
20686 Specifies whether FP exceptions are enabled.  This affects how
20687 FP instructions are scheduled for some processors.
20688 The default is that FP exceptions are
20689 enabled.
20691 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
20692 64-bit code, then we can use both FP pipes.  Otherwise, we can only use one
20693 FP pipe.
20695 @item -mvr4130-align
20696 @itemx -mno-vr4130-align
20697 @opindex mvr4130-align
20698 The VR4130 pipeline is two-way superscalar, but can only issue two
20699 instructions together if the first one is 8-byte aligned.  When this
20700 option is enabled, GCC aligns pairs of instructions that it
20701 thinks should execute in parallel.
20703 This option only has an effect when optimizing for the VR4130.
20704 It normally makes code faster, but at the expense of making it bigger.
20705 It is enabled by default at optimization level @option{-O3}.
20707 @item -msynci
20708 @itemx -mno-synci
20709 @opindex msynci
20710 Enable (disable) generation of @code{synci} instructions on
20711 architectures that support it.  The @code{synci} instructions (if
20712 enabled) are generated when @code{__builtin___clear_cache} is
20713 compiled.
20715 This option defaults to @option{-mno-synci}, but the default can be
20716 overridden by configuring GCC with @option{--with-synci}.
20718 When compiling code for single processor systems, it is generally safe
20719 to use @code{synci}.  However, on many multi-core (SMP) systems, it
20720 does not invalidate the instruction caches on all cores and may lead
20721 to undefined behavior.
20723 @item -mrelax-pic-calls
20724 @itemx -mno-relax-pic-calls
20725 @opindex mrelax-pic-calls
20726 Try to turn PIC calls that are normally dispatched via register
20727 @code{$25} into direct calls.  This is only possible if the linker can
20728 resolve the destination at link time and if the destination is within
20729 range for a direct call.
20731 @option{-mrelax-pic-calls} is the default if GCC was configured to use
20732 an assembler and a linker that support the @code{.reloc} assembly
20733 directive and @option{-mexplicit-relocs} is in effect.  With
20734 @option{-mno-explicit-relocs}, this optimization can be performed by the
20735 assembler and the linker alone without help from the compiler.
20737 @item -mmcount-ra-address
20738 @itemx -mno-mcount-ra-address
20739 @opindex mmcount-ra-address
20740 @opindex mno-mcount-ra-address
20741 Emit (do not emit) code that allows @code{_mcount} to modify the
20742 calling function's return address.  When enabled, this option extends
20743 the usual @code{_mcount} interface with a new @var{ra-address}
20744 parameter, which has type @code{intptr_t *} and is passed in register
20745 @code{$12}.  @code{_mcount} can then modify the return address by
20746 doing both of the following:
20747 @itemize
20748 @item
20749 Returning the new address in register @code{$31}.
20750 @item
20751 Storing the new address in @code{*@var{ra-address}},
20752 if @var{ra-address} is nonnull.
20753 @end itemize
20755 The default is @option{-mno-mcount-ra-address}.
20757 @item -mframe-header-opt
20758 @itemx -mno-frame-header-opt
20759 @opindex mframe-header-opt
20760 Enable (disable) frame header optimization in the o32 ABI.  When using the
20761 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
20762 function to write out register arguments.  When enabled, this optimization
20763 will suppress the allocation of the frame header if it can be determined that
20764 it is unused.
20766 This optimization is off by default at all optimization levels.
20768 @item -mlxc1-sxc1
20769 @itemx -mno-lxc1-sxc1
20770 @opindex mlxc1-sxc1
20771 When applicable, enable (disable) the generation of @code{lwxc1},
20772 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions.  Enabled by default.
20774 @item -mmadd4
20775 @itemx -mno-madd4
20776 @opindex mmadd4
20777 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
20778 @code{madd.d} and related instructions.  Enabled by default.
20780 @end table
20782 @node MMIX Options
20783 @subsection MMIX Options
20784 @cindex MMIX Options
20786 These options are defined for the MMIX:
20788 @table @gcctabopt
20789 @item -mlibfuncs
20790 @itemx -mno-libfuncs
20791 @opindex mlibfuncs
20792 @opindex mno-libfuncs
20793 Specify that intrinsic library functions are being compiled, passing all
20794 values in registers, no matter the size.
20796 @item -mepsilon
20797 @itemx -mno-epsilon
20798 @opindex mepsilon
20799 @opindex mno-epsilon
20800 Generate floating-point comparison instructions that compare with respect
20801 to the @code{rE} epsilon register.
20803 @item -mabi=mmixware
20804 @itemx -mabi=gnu
20805 @opindex mabi=mmixware
20806 @opindex mabi=gnu
20807 Generate code that passes function parameters and return values that (in
20808 the called function) are seen as registers @code{$0} and up, as opposed to
20809 the GNU ABI which uses global registers @code{$231} and up.
20811 @item -mzero-extend
20812 @itemx -mno-zero-extend
20813 @opindex mzero-extend
20814 @opindex mno-zero-extend
20815 When reading data from memory in sizes shorter than 64 bits, use (do not
20816 use) zero-extending load instructions by default, rather than
20817 sign-extending ones.
20819 @item -mknuthdiv
20820 @itemx -mno-knuthdiv
20821 @opindex mknuthdiv
20822 @opindex mno-knuthdiv
20823 Make the result of a division yielding a remainder have the same sign as
20824 the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
20825 remainder follows the sign of the dividend.  Both methods are
20826 arithmetically valid, the latter being almost exclusively used.
20828 @item -mtoplevel-symbols
20829 @itemx -mno-toplevel-symbols
20830 @opindex mtoplevel-symbols
20831 @opindex mno-toplevel-symbols
20832 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
20833 code can be used with the @code{PREFIX} assembly directive.
20835 @item -melf
20836 @opindex melf
20837 Generate an executable in the ELF format, rather than the default
20838 @samp{mmo} format used by the @command{mmix} simulator.
20840 @item -mbranch-predict
20841 @itemx -mno-branch-predict
20842 @opindex mbranch-predict
20843 @opindex mno-branch-predict
20844 Use (do not use) the probable-branch instructions, when static branch
20845 prediction indicates a probable branch.
20847 @item -mbase-addresses
20848 @itemx -mno-base-addresses
20849 @opindex mbase-addresses
20850 @opindex mno-base-addresses
20851 Generate (do not generate) code that uses @emph{base addresses}.  Using a
20852 base address automatically generates a request (handled by the assembler
20853 and the linker) for a constant to be set up in a global register.  The
20854 register is used for one or more base address requests within the range 0
20855 to 255 from the value held in the register.  The generally leads to short
20856 and fast code, but the number of different data items that can be
20857 addressed is limited.  This means that a program that uses lots of static
20858 data may require @option{-mno-base-addresses}.
20860 @item -msingle-exit
20861 @itemx -mno-single-exit
20862 @opindex msingle-exit
20863 @opindex mno-single-exit
20864 Force (do not force) generated code to have a single exit point in each
20865 function.
20866 @end table
20868 @node MN10300 Options
20869 @subsection MN10300 Options
20870 @cindex MN10300 options
20872 These @option{-m} options are defined for Matsushita MN10300 architectures:
20874 @table @gcctabopt
20875 @item -mmult-bug
20876 @opindex mmult-bug
20877 Generate code to avoid bugs in the multiply instructions for the MN10300
20878 processors.  This is the default.
20880 @item -mno-mult-bug
20881 @opindex mno-mult-bug
20882 Do not generate code to avoid bugs in the multiply instructions for the
20883 MN10300 processors.
20885 @item -mam33
20886 @opindex mam33
20887 Generate code using features specific to the AM33 processor.
20889 @item -mno-am33
20890 @opindex mno-am33
20891 Do not generate code using features specific to the AM33 processor.  This
20892 is the default.
20894 @item -mam33-2
20895 @opindex mam33-2
20896 Generate code using features specific to the AM33/2.0 processor.
20898 @item -mam34
20899 @opindex mam34
20900 Generate code using features specific to the AM34 processor.
20902 @item -mtune=@var{cpu-type}
20903 @opindex mtune
20904 Use the timing characteristics of the indicated CPU type when
20905 scheduling instructions.  This does not change the targeted processor
20906 type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
20907 @samp{am33-2} or @samp{am34}.
20909 @item -mreturn-pointer-on-d0
20910 @opindex mreturn-pointer-on-d0
20911 When generating a function that returns a pointer, return the pointer
20912 in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
20913 only in @code{a0}, and attempts to call such functions without a prototype
20914 result in errors.  Note that this option is on by default; use
20915 @option{-mno-return-pointer-on-d0} to disable it.
20917 @item -mno-crt0
20918 @opindex mno-crt0
20919 Do not link in the C run-time initialization object file.
20921 @item -mrelax
20922 @opindex mrelax
20923 Indicate to the linker that it should perform a relaxation optimization pass
20924 to shorten branches, calls and absolute memory addresses.  This option only
20925 has an effect when used on the command line for the final link step.
20927 This option makes symbolic debugging impossible.
20929 @item -mliw
20930 @opindex mliw
20931 Allow the compiler to generate @emph{Long Instruction Word}
20932 instructions if the target is the @samp{AM33} or later.  This is the
20933 default.  This option defines the preprocessor macro @code{__LIW__}.
20935 @item -mnoliw
20936 @opindex mnoliw
20937 Do not allow the compiler to generate @emph{Long Instruction Word}
20938 instructions.  This option defines the preprocessor macro
20939 @code{__NO_LIW__}.
20941 @item -msetlb
20942 @opindex msetlb
20943 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
20944 instructions if the target is the @samp{AM33} or later.  This is the
20945 default.  This option defines the preprocessor macro @code{__SETLB__}.
20947 @item -mnosetlb
20948 @opindex mnosetlb
20949 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
20950 instructions.  This option defines the preprocessor macro
20951 @code{__NO_SETLB__}.
20953 @end table
20955 @node Moxie Options
20956 @subsection Moxie Options
20957 @cindex Moxie Options
20959 @table @gcctabopt
20961 @item -meb
20962 @opindex meb
20963 Generate big-endian code.  This is the default for @samp{moxie-*-*}
20964 configurations.
20966 @item -mel
20967 @opindex mel
20968 Generate little-endian code.
20970 @item -mmul.x
20971 @opindex mmul.x
20972 Generate mul.x and umul.x instructions.  This is the default for
20973 @samp{moxiebox-*-*} configurations.
20975 @item -mno-crt0
20976 @opindex mno-crt0
20977 Do not link in the C run-time initialization object file.
20979 @end table
20981 @node MSP430 Options
20982 @subsection MSP430 Options
20983 @cindex MSP430 Options
20985 These options are defined for the MSP430:
20987 @table @gcctabopt
20989 @item -masm-hex
20990 @opindex masm-hex
20991 Force assembly output to always use hex constants.  Normally such
20992 constants are signed decimals, but this option is available for
20993 testsuite and/or aesthetic purposes.
20995 @item -mmcu=
20996 @opindex mmcu=
20997 Select the MCU to target.  This is used to create a C preprocessor
20998 symbol based upon the MCU name, converted to upper case and pre- and
20999 post-fixed with @samp{__}.  This in turn is used by the
21000 @file{msp430.h} header file to select an MCU-specific supplementary
21001 header file.
21003 The option also sets the ISA to use.  If the MCU name is one that is
21004 known to only support the 430 ISA then that is selected, otherwise the
21005 430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
21006 used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
21007 name selects the 430X ISA.
21009 In addition an MCU-specific linker script is added to the linker
21010 command line.  The script's name is the name of the MCU with
21011 @file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
21012 command line defines the C preprocessor symbol @code{__XXX__} and
21013 cause the linker to search for a script called @file{xxx.ld}.
21015 This option is also passed on to the assembler.
21017 @item -mwarn-mcu
21018 @itemx -mno-warn-mcu
21019 @opindex mwarn-mcu
21020 @opindex mno-warn-mcu
21021 This option enables or disables warnings about conflicts between the
21022 MCU name specified by the @option{-mmcu} option and the ISA set by the
21023 @option{-mcpu} option and/or the hardware multiply support set by the
21024 @option{-mhwmult} option.  It also toggles warnings about unrecognized
21025 MCU names.  This option is on by default.
21027 @item -mcpu=
21028 @opindex mcpu=
21029 Specifies the ISA to use.  Accepted values are @samp{msp430},
21030 @samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
21031 @option{-mmcu=} option should be used to select the ISA.
21033 @item -msim
21034 @opindex msim
21035 Link to the simulator runtime libraries and linker script.  Overrides
21036 any scripts that would be selected by the @option{-mmcu=} option.
21038 @item -mlarge
21039 @opindex mlarge
21040 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
21042 @item -msmall
21043 @opindex msmall
21044 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
21046 @item -mrelax
21047 @opindex mrelax
21048 This option is passed to the assembler and linker, and allows the
21049 linker to perform certain optimizations that cannot be done until
21050 the final link.
21052 @item mhwmult=
21053 @opindex mhwmult=
21054 Describes the type of hardware multiply supported by the target.
21055 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
21056 for the original 16-bit-only multiply supported by early MCUs.
21057 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
21058 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
21059 A value of @samp{auto} can also be given.  This tells GCC to deduce
21060 the hardware multiply support based upon the MCU name provided by the
21061 @option{-mmcu} option.  If no @option{-mmcu} option is specified or if
21062 the MCU name is not recognized then no hardware multiply support is
21063 assumed.  @code{auto} is the default setting.
21065 Hardware multiplies are normally performed by calling a library
21066 routine.  This saves space in the generated code.  When compiling at
21067 @option{-O3} or higher however the hardware multiplier is invoked
21068 inline.  This makes for bigger, but faster code.
21070 The hardware multiply routines disable interrupts whilst running and
21071 restore the previous interrupt state when they finish.  This makes
21072 them safe to use inside interrupt handlers as well as in normal code.
21074 @item -minrt
21075 @opindex minrt
21076 Enable the use of a minimum runtime environment - no static
21077 initializers or constructors.  This is intended for memory-constrained
21078 devices.  The compiler includes special symbols in some objects
21079 that tell the linker and runtime which code fragments are required.
21081 @item -mcode-region=
21082 @itemx -mdata-region=
21083 @opindex mcode-region
21084 @opindex mdata-region
21085 These options tell the compiler where to place functions and data that
21086 do not have one of the @code{lower}, @code{upper}, @code{either} or
21087 @code{section} attributes.  Possible values are @code{lower},
21088 @code{upper}, @code{either} or @code{any}.  The first three behave
21089 like the corresponding attribute.  The fourth possible value -
21090 @code{any} - is the default.  It leaves placement entirely up to the
21091 linker script and how it assigns the standard sections
21092 (@code{.text}, @code{.data}, etc) to the memory regions.
21094 @item -msilicon-errata=
21095 @opindex msilicon-errata
21096 This option passes on a request to assembler to enable the fixes for
21097 the named silicon errata.
21099 @item -msilicon-errata-warn=
21100 @opindex msilicon-errata-warn
21101 This option passes on a request to the assembler to enable warning
21102 messages when a silicon errata might need to be applied.
21104 @end table
21106 @node NDS32 Options
21107 @subsection NDS32 Options
21108 @cindex NDS32 Options
21110 These options are defined for NDS32 implementations:
21112 @table @gcctabopt
21114 @item -mbig-endian
21115 @opindex mbig-endian
21116 Generate code in big-endian mode.
21118 @item -mlittle-endian
21119 @opindex mlittle-endian
21120 Generate code in little-endian mode.
21122 @item -mreduced-regs
21123 @opindex mreduced-regs
21124 Use reduced-set registers for register allocation.
21126 @item -mfull-regs
21127 @opindex mfull-regs
21128 Use full-set registers for register allocation.
21130 @item -mcmov
21131 @opindex mcmov
21132 Generate conditional move instructions.
21134 @item -mno-cmov
21135 @opindex mno-cmov
21136 Do not generate conditional move instructions.
21138 @item -mperf-ext
21139 @opindex mperf-ext
21140 Generate performance extension instructions.
21142 @item -mno-perf-ext
21143 @opindex mno-perf-ext
21144 Do not generate performance extension instructions.
21146 @item -mv3push
21147 @opindex mv3push
21148 Generate v3 push25/pop25 instructions.
21150 @item -mno-v3push
21151 @opindex mno-v3push
21152 Do not generate v3 push25/pop25 instructions.
21154 @item -m16-bit
21155 @opindex m16-bit
21156 Generate 16-bit instructions.
21158 @item -mno-16-bit
21159 @opindex mno-16-bit
21160 Do not generate 16-bit instructions.
21162 @item -misr-vector-size=@var{num}
21163 @opindex misr-vector-size
21164 Specify the size of each interrupt vector, which must be 4 or 16.
21166 @item -mcache-block-size=@var{num}
21167 @opindex mcache-block-size
21168 Specify the size of each cache block,
21169 which must be a power of 2 between 4 and 512.
21171 @item -march=@var{arch}
21172 @opindex march
21173 Specify the name of the target architecture.
21175 @item -mcmodel=@var{code-model}
21176 @opindex mcmodel
21177 Set the code model to one of
21178 @table @asis
21179 @item @samp{small}
21180 All the data and read-only data segments must be within 512KB addressing space.
21181 The text segment must be within 16MB addressing space.
21182 @item @samp{medium}
21183 The data segment must be within 512KB while the read-only data segment can be
21184 within 4GB addressing space.  The text segment should be still within 16MB
21185 addressing space.
21186 @item @samp{large}
21187 All the text and data segments can be within 4GB addressing space.
21188 @end table
21190 @item -mctor-dtor
21191 @opindex mctor-dtor
21192 Enable constructor/destructor feature.
21194 @item -mrelax
21195 @opindex mrelax
21196 Guide linker to relax instructions.
21198 @end table
21200 @node Nios II Options
21201 @subsection Nios II Options
21202 @cindex Nios II options
21203 @cindex Altera Nios II options
21205 These are the options defined for the Altera Nios II processor.
21207 @table @gcctabopt
21209 @item -G @var{num}
21210 @opindex G
21211 @cindex smaller data references
21212 Put global and static objects less than or equal to @var{num} bytes
21213 into the small data or BSS sections instead of the normal data or BSS
21214 sections.  The default value of @var{num} is 8.
21216 @item -mgpopt=@var{option}
21217 @item -mgpopt
21218 @itemx -mno-gpopt
21219 @opindex mgpopt
21220 @opindex mno-gpopt
21221 Generate (do not generate) GP-relative accesses.  The following 
21222 @var{option} names are recognized:
21224 @table @samp
21226 @item none
21227 Do not generate GP-relative accesses.
21229 @item local
21230 Generate GP-relative accesses for small data objects that are not 
21231 external, weak, or uninitialized common symbols.  
21232 Also use GP-relative addressing for objects that
21233 have been explicitly placed in a small data section via a @code{section}
21234 attribute.
21236 @item global
21237 As for @samp{local}, but also generate GP-relative accesses for
21238 small data objects that are external, weak, or common.  If you use this option,
21239 you must ensure that all parts of your program (including libraries) are
21240 compiled with the same @option{-G} setting.
21242 @item data
21243 Generate GP-relative accesses for all data objects in the program.  If you
21244 use this option, the entire data and BSS segments
21245 of your program must fit in 64K of memory and you must use an appropriate
21246 linker script to allocate them within the addressable range of the
21247 global pointer.
21249 @item all
21250 Generate GP-relative addresses for function pointers as well as data
21251 pointers.  If you use this option, the entire text, data, and BSS segments
21252 of your program must fit in 64K of memory and you must use an appropriate
21253 linker script to allocate them within the addressable range of the
21254 global pointer.
21256 @end table
21258 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
21259 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
21261 The default is @option{-mgpopt} except when @option{-fpic} or
21262 @option{-fPIC} is specified to generate position-independent code.
21263 Note that the Nios II ABI does not permit GP-relative accesses from
21264 shared libraries.
21266 You may need to specify @option{-mno-gpopt} explicitly when building
21267 programs that include large amounts of small data, including large
21268 GOT data sections.  In this case, the 16-bit offset for GP-relative
21269 addressing may not be large enough to allow access to the entire 
21270 small data section.
21272 @item -mgprel-sec=@var{regexp}
21273 @opindex mgprel-sec
21274 This option specifies additional section names that can be accessed via
21275 GP-relative addressing.  It is most useful in conjunction with 
21276 @code{section} attributes on variable declarations 
21277 (@pxref{Common Variable Attributes}) and a custom linker script.  
21278 The @var{regexp} is a POSIX Extended Regular Expression.
21280 This option does not affect the behavior of the @option{-G} option, and 
21281 and the specified sections are in addition to the standard @code{.sdata} 
21282 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
21284 @item -mr0rel-sec=@var{regexp}
21285 @opindex mr0rel-sec
21286 This option specifies names of sections that can be accessed via a 
21287 16-bit offset from @code{r0}; that is, in the low 32K or high 32K 
21288 of the 32-bit address space.  It is most useful in conjunction with 
21289 @code{section} attributes on variable declarations 
21290 (@pxref{Common Variable Attributes}) and a custom linker script.  
21291 The @var{regexp} is a POSIX Extended Regular Expression.
21293 In contrast to the use of GP-relative addressing for small data, 
21294 zero-based addressing is never generated by default and there are no 
21295 conventional section names used in standard linker scripts for sections
21296 in the low or high areas of memory.
21298 @item -mel
21299 @itemx -meb
21300 @opindex mel
21301 @opindex meb
21302 Generate little-endian (default) or big-endian (experimental) code,
21303 respectively.
21305 @item -march=@var{arch}
21306 @opindex march
21307 This specifies the name of the target Nios II architecture.  GCC uses this
21308 name to determine what kind of instructions it can emit when generating
21309 assembly code.  Permissible names are: @samp{r1}, @samp{r2}.
21311 The preprocessor macro @code{__nios2_arch__} is available to programs,
21312 with value 1 or 2, indicating the targeted ISA level.
21314 @item -mbypass-cache
21315 @itemx -mno-bypass-cache
21316 @opindex mno-bypass-cache
21317 @opindex mbypass-cache
21318 Force all load and store instructions to always bypass cache by 
21319 using I/O variants of the instructions. The default is not to
21320 bypass the cache.
21322 @item -mno-cache-volatile 
21323 @itemx -mcache-volatile       
21324 @opindex mcache-volatile 
21325 @opindex mno-cache-volatile
21326 Volatile memory access bypass the cache using the I/O variants of 
21327 the load and store instructions. The default is not to bypass the cache.
21329 @item -mno-fast-sw-div
21330 @itemx -mfast-sw-div
21331 @opindex mno-fast-sw-div
21332 @opindex mfast-sw-div
21333 Do not use table-based fast divide for small numbers. The default 
21334 is to use the fast divide at @option{-O3} and above.
21336 @item -mno-hw-mul
21337 @itemx -mhw-mul
21338 @itemx -mno-hw-mulx
21339 @itemx -mhw-mulx
21340 @itemx -mno-hw-div
21341 @itemx -mhw-div
21342 @opindex mno-hw-mul
21343 @opindex mhw-mul
21344 @opindex mno-hw-mulx
21345 @opindex mhw-mulx
21346 @opindex mno-hw-div
21347 @opindex mhw-div
21348 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of 
21349 instructions by the compiler. The default is to emit @code{mul}
21350 and not emit @code{div} and @code{mulx}.
21352 @item -mbmx
21353 @itemx -mno-bmx
21354 @itemx -mcdx
21355 @itemx -mno-cdx
21356 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
21357 CDX (code density) instructions.  Enabling these instructions also
21358 requires @option{-march=r2}.  Since these instructions are optional
21359 extensions to the R2 architecture, the default is not to emit them.
21361 @item -mcustom-@var{insn}=@var{N}
21362 @itemx -mno-custom-@var{insn}
21363 @opindex mcustom-@var{insn}
21364 @opindex mno-custom-@var{insn}
21365 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
21366 custom instruction with encoding @var{N} when generating code that uses 
21367 @var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
21368 instruction 253 for single-precision floating-point add operations instead
21369 of the default behavior of using a library call.
21371 The following values of @var{insn} are supported.  Except as otherwise
21372 noted, floating-point operations are expected to be implemented with
21373 normal IEEE 754 semantics and correspond directly to the C operators or the
21374 equivalent GCC built-in functions (@pxref{Other Builtins}).
21376 Single-precision floating point:
21377 @table @asis
21379 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
21380 Binary arithmetic operations.
21382 @item @samp{fnegs}
21383 Unary negation.
21385 @item @samp{fabss}
21386 Unary absolute value.
21388 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
21389 Comparison operations.
21391 @item @samp{fmins}, @samp{fmaxs}
21392 Floating-point minimum and maximum.  These instructions are only
21393 generated if @option{-ffinite-math-only} is specified.
21395 @item @samp{fsqrts}
21396 Unary square root operation.
21398 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
21399 Floating-point trigonometric and exponential functions.  These instructions
21400 are only generated if @option{-funsafe-math-optimizations} is also specified.
21402 @end table
21404 Double-precision floating point:
21405 @table @asis
21407 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
21408 Binary arithmetic operations.
21410 @item @samp{fnegd}
21411 Unary negation.
21413 @item @samp{fabsd}
21414 Unary absolute value.
21416 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
21417 Comparison operations.
21419 @item @samp{fmind}, @samp{fmaxd}
21420 Double-precision minimum and maximum.  These instructions are only
21421 generated if @option{-ffinite-math-only} is specified.
21423 @item @samp{fsqrtd}
21424 Unary square root operation.
21426 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
21427 Double-precision trigonometric and exponential functions.  These instructions
21428 are only generated if @option{-funsafe-math-optimizations} is also specified.
21430 @end table
21432 Conversions:
21433 @table @asis
21434 @item @samp{fextsd}
21435 Conversion from single precision to double precision.
21437 @item @samp{ftruncds}
21438 Conversion from double precision to single precision.
21440 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21441 Conversion from floating point to signed or unsigned integer types, with
21442 truncation towards zero.
21444 @item @samp{round}
21445 Conversion from single-precision floating point to signed integer,
21446 rounding to the nearest integer and ties away from zero.
21447 This corresponds to the @code{__builtin_lroundf} function when
21448 @option{-fno-math-errno} is used.
21450 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21451 Conversion from signed or unsigned integer types to floating-point types.
21453 @end table
21455 In addition, all of the following transfer instructions for internal
21456 registers X and Y must be provided to use any of the double-precision
21457 floating-point instructions.  Custom instructions taking two
21458 double-precision source operands expect the first operand in the
21459 64-bit register X.  The other operand (or only operand of a unary
21460 operation) is given to the custom arithmetic instruction with the
21461 least significant half in source register @var{src1} and the most
21462 significant half in @var{src2}.  A custom instruction that returns a
21463 double-precision result returns the most significant 32 bits in the
21464 destination register and the other half in 32-bit register Y.  
21465 GCC automatically generates the necessary code sequences to write
21466 register X and/or read register Y when double-precision floating-point
21467 instructions are used.
21469 @table @asis
21471 @item @samp{fwrx}
21472 Write @var{src1} into the least significant half of X and @var{src2} into
21473 the most significant half of X.
21475 @item @samp{fwry}
21476 Write @var{src1} into Y.
21478 @item @samp{frdxhi}, @samp{frdxlo}
21479 Read the most or least (respectively) significant half of X and store it in
21480 @var{dest}.
21482 @item @samp{frdy}
21483 Read the value of Y and store it into @var{dest}.
21484 @end table
21486 Note that you can gain more local control over generation of Nios II custom
21487 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21488 and @code{target("no-custom-@var{insn}")} function attributes
21489 (@pxref{Function Attributes})
21490 or pragmas (@pxref{Function Specific Option Pragmas}).
21492 @item -mcustom-fpu-cfg=@var{name}
21493 @opindex mcustom-fpu-cfg
21495 This option enables a predefined, named set of custom instruction encodings
21496 (see @option{-mcustom-@var{insn}} above).  
21497 Currently, the following sets are defined:
21499 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
21500 @gccoptlist{-mcustom-fmuls=252 @gol
21501 -mcustom-fadds=253 @gol
21502 -mcustom-fsubs=254 @gol
21503 -fsingle-precision-constant}
21505 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
21506 @gccoptlist{-mcustom-fmuls=252 @gol
21507 -mcustom-fadds=253 @gol
21508 -mcustom-fsubs=254 @gol
21509 -mcustom-fdivs=255 @gol
21510 -fsingle-precision-constant}
21512 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
21513 @gccoptlist{-mcustom-floatus=243 @gol
21514 -mcustom-fixsi=244 @gol
21515 -mcustom-floatis=245 @gol
21516 -mcustom-fcmpgts=246 @gol
21517 -mcustom-fcmples=249 @gol
21518 -mcustom-fcmpeqs=250 @gol
21519 -mcustom-fcmpnes=251 @gol
21520 -mcustom-fmuls=252 @gol
21521 -mcustom-fadds=253 @gol
21522 -mcustom-fsubs=254 @gol
21523 -mcustom-fdivs=255 @gol
21524 -fsingle-precision-constant}
21526 Custom instruction assignments given by individual
21527 @option{-mcustom-@var{insn}=} options override those given by
21528 @option{-mcustom-fpu-cfg=}, regardless of the
21529 order of the options on the command line.
21531 Note that you can gain more local control over selection of a FPU
21532 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
21533 function attribute (@pxref{Function Attributes})
21534 or pragma (@pxref{Function Specific Option Pragmas}).
21536 @end table
21538 These additional @samp{-m} options are available for the Altera Nios II
21539 ELF (bare-metal) target:
21541 @table @gcctabopt
21543 @item -mhal
21544 @opindex mhal
21545 Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
21546 startup and termination code, and is typically used in conjunction with
21547 @option{-msys-crt0=} to specify the location of the alternate startup code
21548 provided by the HAL BSP.
21550 @item -msmallc
21551 @opindex msmallc
21552 Link with a limited version of the C library, @option{-lsmallc}, rather than
21553 Newlib.
21555 @item -msys-crt0=@var{startfile}
21556 @opindex msys-crt0
21557 @var{startfile} is the file name of the startfile (crt0) to use 
21558 when linking.  This option is only useful in conjunction with @option{-mhal}.
21560 @item -msys-lib=@var{systemlib}
21561 @opindex msys-lib
21562 @var{systemlib} is the library name of the library that provides
21563 low-level system calls required by the C library,
21564 e.g. @code{read} and @code{write}.
21565 This option is typically used to link with a library provided by a HAL BSP.
21567 @end table
21569 @node Nvidia PTX Options
21570 @subsection Nvidia PTX Options
21571 @cindex Nvidia PTX options
21572 @cindex nvptx options
21574 These options are defined for Nvidia PTX:
21576 @table @gcctabopt
21578 @item -m32
21579 @itemx -m64
21580 @opindex m32
21581 @opindex m64
21582 Generate code for 32-bit or 64-bit ABI.
21584 @item -mmainkernel
21585 @opindex mmainkernel
21586 Link in code for a __main kernel.  This is for stand-alone instead of
21587 offloading execution.
21589 @item -moptimize
21590 @opindex moptimize
21591 Apply partitioned execution optimizations.  This is the default when any
21592 level of optimization is selected.
21594 @item -msoft-stack
21595 @opindex msoft-stack
21596 Generate code that does not use @code{.local} memory
21597 directly for stack storage. Instead, a per-warp stack pointer is
21598 maintained explicitly. This enables variable-length stack allocation (with
21599 variable-length arrays or @code{alloca}), and when global memory is used for
21600 underlying storage, makes it possible to access automatic variables from other
21601 threads, or with atomic instructions. This code generation variant is used
21602 for OpenMP offloading, but the option is exposed on its own for the purpose
21603 of testing the compiler; to generate code suitable for linking into programs
21604 using OpenMP offloading, use option @option{-mgomp}.
21606 @item -muniform-simt
21607 @opindex muniform-simt
21608 Switch to code generation variant that allows to execute all threads in each
21609 warp, while maintaining memory state and side effects as if only one thread
21610 in each warp was active outside of OpenMP SIMD regions.  All atomic operations
21611 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
21612 current lane index equals the master lane index), and the register being
21613 assigned is copied via a shuffle instruction from the master lane.  Outside of
21614 SIMD regions lane 0 is the master; inside, each thread sees itself as the
21615 master.  Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
21616 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
21617 regions).  Each thread can bitwise-and the bitmask at position @code{tid.y}
21618 with current lane index to compute the master lane index.
21620 @item -mgomp
21621 @opindex mgomp
21622 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
21623 @option{-muniform-simt} options, and selects corresponding multilib variant.
21625 @end table
21627 @node PDP-11 Options
21628 @subsection PDP-11 Options
21629 @cindex PDP-11 Options
21631 These options are defined for the PDP-11:
21633 @table @gcctabopt
21634 @item -mfpu
21635 @opindex mfpu
21636 Use hardware FPP floating point.  This is the default.  (FIS floating
21637 point on the PDP-11/40 is not supported.)
21639 @item -msoft-float
21640 @opindex msoft-float
21641 Do not use hardware floating point.
21643 @item -mac0
21644 @opindex mac0
21645 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
21647 @item -mno-ac0
21648 @opindex mno-ac0
21649 Return floating-point results in memory.  This is the default.
21651 @item -m40
21652 @opindex m40
21653 Generate code for a PDP-11/40.
21655 @item -m45
21656 @opindex m45
21657 Generate code for a PDP-11/45.  This is the default.
21659 @item -m10
21660 @opindex m10
21661 Generate code for a PDP-11/10.
21663 @item -mbcopy-builtin
21664 @opindex mbcopy-builtin
21665 Use inline @code{movmemhi} patterns for copying memory.  This is the
21666 default.
21668 @item -mbcopy
21669 @opindex mbcopy
21670 Do not use inline @code{movmemhi} patterns for copying memory.
21672 @item -mint16
21673 @itemx -mno-int32
21674 @opindex mint16
21675 @opindex mno-int32
21676 Use 16-bit @code{int}.  This is the default.
21678 @item -mint32
21679 @itemx -mno-int16
21680 @opindex mint32
21681 @opindex mno-int16
21682 Use 32-bit @code{int}.
21684 @item -mfloat64
21685 @itemx -mno-float32
21686 @opindex mfloat64
21687 @opindex mno-float32
21688 Use 64-bit @code{float}.  This is the default.
21690 @item -mfloat32
21691 @itemx -mno-float64
21692 @opindex mfloat32
21693 @opindex mno-float64
21694 Use 32-bit @code{float}.
21696 @item -mabshi
21697 @opindex mabshi
21698 Use @code{abshi2} pattern.  This is the default.
21700 @item -mno-abshi
21701 @opindex mno-abshi
21702 Do not use @code{abshi2} pattern.
21704 @item -mbranch-expensive
21705 @opindex mbranch-expensive
21706 Pretend that branches are expensive.  This is for experimenting with
21707 code generation only.
21709 @item -mbranch-cheap
21710 @opindex mbranch-cheap
21711 Do not pretend that branches are expensive.  This is the default.
21713 @item -munix-asm
21714 @opindex munix-asm
21715 Use Unix assembler syntax.  This is the default when configured for
21716 @samp{pdp11-*-bsd}.
21718 @item -mdec-asm
21719 @opindex mdec-asm
21720 Use DEC assembler syntax.  This is the default when configured for any
21721 PDP-11 target other than @samp{pdp11-*-bsd}.
21722 @end table
21724 @node picoChip Options
21725 @subsection picoChip Options
21726 @cindex picoChip options
21728 These @samp{-m} options are defined for picoChip implementations:
21730 @table @gcctabopt
21732 @item -mae=@var{ae_type}
21733 @opindex mcpu
21734 Set the instruction set, register set, and instruction scheduling
21735 parameters for array element type @var{ae_type}.  Supported values
21736 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
21738 @option{-mae=ANY} selects a completely generic AE type.  Code
21739 generated with this option runs on any of the other AE types.  The
21740 code is not as efficient as it would be if compiled for a specific
21741 AE type, and some types of operation (e.g., multiplication) do not
21742 work properly on all types of AE.
21744 @option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
21745 for compiled code, and is the default.
21747 @option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
21748 option may suffer from poor performance of byte (char) manipulation,
21749 since the DSP AE does not provide hardware support for byte load/stores.
21751 @item -msymbol-as-address
21752 Enable the compiler to directly use a symbol name as an address in a
21753 load/store instruction, without first loading it into a
21754 register.  Typically, the use of this option generates larger
21755 programs, which run faster than when the option isn't used.  However, the
21756 results vary from program to program, so it is left as a user option,
21757 rather than being permanently enabled.
21759 @item -mno-inefficient-warnings
21760 Disables warnings about the generation of inefficient code.  These
21761 warnings can be generated, for example, when compiling code that
21762 performs byte-level memory operations on the MAC AE type.  The MAC AE has
21763 no hardware support for byte-level memory operations, so all byte
21764 load/stores must be synthesized from word load/store operations.  This is
21765 inefficient and a warning is generated to indicate
21766 that you should rewrite the code to avoid byte operations, or to target
21767 an AE type that has the necessary hardware support.  This option disables
21768 these warnings.
21770 @end table
21772 @node PowerPC Options
21773 @subsection PowerPC Options
21774 @cindex PowerPC options
21776 These are listed under @xref{RS/6000 and PowerPC Options}.
21778 @node RISC-V Options
21779 @subsection RISC-V Options
21780 @cindex RISC-V Options
21782 These command-line options are defined for RISC-V targets:
21784 @table @gcctabopt
21785 @item -mbranch-cost=@var{n}
21786 @opindex mbranch-cost
21787 Set the cost of branches to roughly @var{n} instructions.
21789 @item -mplt
21790 @itemx -mno-plt
21791 @opindex plt
21792 When generating PIC code, do or don't allow the use of PLTs. Ignored for
21793 non-PIC.  The default is @option{-mplt}.
21795 @item -mabi=@var{ABI-string}
21796 @opindex mabi
21797 Specify integer and floating-point calling convention.  @var{ABI-string}
21798 contains two parts: the size of integer types and the registers used for
21799 floating-point types.  For example @samp{-march=rv64ifd -mabi=lp64d} means that
21800 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
21801 32-bit), and that floating-point values up to 64 bits wide are passed in F
21802 registers.  Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
21803 allows the compiler to generate code that uses the F and D extensions but only
21804 allows floating-point values up to 32 bits long to be passed in registers; or
21805 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
21806 passed in registers.
21808 The default for this argument is system dependent, users who want a specific
21809 calling convention should specify one explicitly.  The valid calling
21810 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
21811 @samp{lp64f}, and @samp{lp64d}.  Some calling conventions are impossible to
21812 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
21813 invalid because the ABI requires 64-bit values be passed in F registers, but F
21814 registers are only 32 bits wide.
21816 @item -mfdiv
21817 @itemx -mno-fdiv
21818 @opindex mfdiv
21819 Do or don't use hardware floating-point divide and square root instructions.
21820 This requires the F or D extensions for floating-point registers.  The default
21821 is to use them if the specified architecture has these instructions.
21823 @item -mdiv
21824 @itemx -mno-div
21825 @opindex mdiv
21826 Do or don't use hardware instructions for integer division.  This requires the
21827 M extension.  The default is to use them if the specified architecture has
21828 these instructions.
21830 @item -march=@var{ISA-string}
21831 @opindex march
21832 Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}).  ISA strings must be
21833 lower-case.  Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
21835 @item -mtune=@var{processor-string}
21836 @opindex mtune
21837 Optimize the output for the given processor, specified by microarchitecture
21838 name.
21840 @item -msmall-data-limit=@var{n}
21841 @opindex msmall-data-limit
21842 Put global and static data smaller than @var{n} bytes into a special section
21843 (on some targets).
21845 @item -msave-restore
21846 @itemx -mno-save-restore
21847 @opindex msave-restore
21848 Do or don't use smaller but slower prologue and epilogue code that uses
21849 library function calls.  The default is to use fast inline prologues and
21850 epilogues.
21852 @item -mstrict-align
21853 @itemx -mno-strict-align
21854 @opindex mstrict-align
21855 Do not or do generate unaligned memory accesses.  The default is set depending
21856 on whether the processor we are optimizing for supports fast unaligned access
21857 or not.
21859 @item -mcmodel=medlow
21860 @opindex mcmodel=medlow
21861 Generate code for the medium-low code model. The program and its statically
21862 defined symbols must lie within a single 2 GiB address range and must lie
21863 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
21864 statically or dynamically linked. This is the default code model.
21866 @item -mcmodel=medany
21867 @opindex mcmodel=medany
21868 Generate code for the medium-any code model. The program and its statically
21869 defined symbols must be within any single 2 GiB address range. Programs can be
21870 statically or dynamically linked.
21872 @item -mexplicit-relocs
21873 @itemx -mno-exlicit-relocs
21874 Use or do not use assembler relocation operators when dealing with symbolic
21875 addresses.  The alternative is to use assembler macros instead, which may
21876 limit optimization.
21878 @end table
21880 @node RL78 Options
21881 @subsection RL78 Options
21882 @cindex RL78 Options
21884 @table @gcctabopt
21886 @item -msim
21887 @opindex msim
21888 Links in additional target libraries to support operation within a
21889 simulator.
21891 @item -mmul=none
21892 @itemx -mmul=g10
21893 @itemx -mmul=g13
21894 @itemx -mmul=g14
21895 @itemx -mmul=rl78
21896 @opindex mmul
21897 Specifies the type of hardware multiplication and division support to
21898 be used.  The simplest is @code{none}, which uses software for both
21899 multiplication and division.  This is the default.  The @code{g13}
21900 value is for the hardware multiply/divide peripheral found on the
21901 RL78/G13 (S2 core) targets.  The @code{g14} value selects the use of
21902 the multiplication and division instructions supported by the RL78/G14
21903 (S3 core) parts.  The value @code{rl78} is an alias for @code{g14} and
21904 the value @code{mg10} is an alias for @code{none}.
21906 In addition a C preprocessor macro is defined, based upon the setting
21907 of this option.  Possible values are: @code{__RL78_MUL_NONE__},
21908 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
21910 @item -mcpu=g10
21911 @itemx -mcpu=g13
21912 @itemx -mcpu=g14
21913 @itemx -mcpu=rl78
21914 @opindex mcpu
21915 Specifies the RL78 core to target.  The default is the G14 core, also
21916 known as an S3 core or just RL78.  The G13 or S2 core does not have
21917 multiply or divide instructions, instead it uses a hardware peripheral
21918 for these operations.  The G10 or S1 core does not have register
21919 banks, so it uses a different calling convention.
21921 If this option is set it also selects the type of hardware multiply
21922 support to use, unless this is overridden by an explicit
21923 @option{-mmul=none} option on the command line.  Thus specifying
21924 @option{-mcpu=g13} enables the use of the G13 hardware multiply
21925 peripheral and specifying @option{-mcpu=g10} disables the use of
21926 hardware multiplications altogether.
21928 Note, although the RL78/G14 core is the default target, specifying
21929 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
21930 change the behavior of the toolchain since it also enables G14
21931 hardware multiply support.  If these options are not specified on the
21932 command line then software multiplication routines will be used even
21933 though the code targets the RL78 core.  This is for backwards
21934 compatibility with older toolchains which did not have hardware
21935 multiply and divide support.
21937 In addition a C preprocessor macro is defined, based upon the setting
21938 of this option.  Possible values are: @code{__RL78_G10__},
21939 @code{__RL78_G13__} or @code{__RL78_G14__}.
21941 @item -mg10
21942 @itemx -mg13
21943 @itemx -mg14
21944 @itemx -mrl78
21945 @opindex mg10
21946 @opindex mg13
21947 @opindex mg14
21948 @opindex mrl78
21949 These are aliases for the corresponding @option{-mcpu=} option.  They
21950 are provided for backwards compatibility.
21952 @item -mallregs
21953 @opindex mallregs
21954 Allow the compiler to use all of the available registers.  By default
21955 registers @code{r24..r31} are reserved for use in interrupt handlers.
21956 With this option enabled these registers can be used in ordinary
21957 functions as well.
21959 @item -m64bit-doubles
21960 @itemx -m32bit-doubles
21961 @opindex m64bit-doubles
21962 @opindex m32bit-doubles
21963 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
21964 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
21965 @option{-m32bit-doubles}.
21967 @item -msave-mduc-in-interrupts
21968 @item -mno-save-mduc-in-interrupts
21969 @opindex msave-mduc-in-interrupts
21970 @opindex mno-save-mduc-in-interrupts
21971 Specifies that interrupt handler functions should preserve the
21972 MDUC registers.  This is only necessary if normal code might use
21973 the MDUC registers, for example because it performs multiplication
21974 and division operations.  The default is to ignore the MDUC registers
21975 as this makes the interrupt handlers faster.  The target option -mg13
21976 needs to be passed for this to work as this feature is only available
21977 on the G13 target (S2 core).  The MDUC registers will only be saved
21978 if the interrupt handler performs a multiplication or division
21979 operation or it calls another function.
21981 @end table
21983 @node RS/6000 and PowerPC Options
21984 @subsection IBM RS/6000 and PowerPC Options
21985 @cindex RS/6000 and PowerPC Options
21986 @cindex IBM RS/6000 and PowerPC Options
21988 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
21989 @table @gcctabopt
21990 @item -mpowerpc-gpopt
21991 @itemx -mno-powerpc-gpopt
21992 @itemx -mpowerpc-gfxopt
21993 @itemx -mno-powerpc-gfxopt
21994 @need 800
21995 @itemx -mpowerpc64
21996 @itemx -mno-powerpc64
21997 @itemx -mmfcrf
21998 @itemx -mno-mfcrf
21999 @itemx -mpopcntb
22000 @itemx -mno-popcntb
22001 @itemx -mpopcntd
22002 @itemx -mno-popcntd
22003 @itemx -mfprnd
22004 @itemx -mno-fprnd
22005 @need 800
22006 @itemx -mcmpb
22007 @itemx -mno-cmpb
22008 @itemx -mmfpgpr
22009 @itemx -mno-mfpgpr
22010 @itemx -mhard-dfp
22011 @itemx -mno-hard-dfp
22012 @opindex mpowerpc-gpopt
22013 @opindex mno-powerpc-gpopt
22014 @opindex mpowerpc-gfxopt
22015 @opindex mno-powerpc-gfxopt
22016 @opindex mpowerpc64
22017 @opindex mno-powerpc64
22018 @opindex mmfcrf
22019 @opindex mno-mfcrf
22020 @opindex mpopcntb
22021 @opindex mno-popcntb
22022 @opindex mpopcntd
22023 @opindex mno-popcntd
22024 @opindex mfprnd
22025 @opindex mno-fprnd
22026 @opindex mcmpb
22027 @opindex mno-cmpb
22028 @opindex mmfpgpr
22029 @opindex mno-mfpgpr
22030 @opindex mhard-dfp
22031 @opindex mno-hard-dfp
22032 You use these options to specify which instructions are available on the
22033 processor you are using.  The default value of these options is
22034 determined when configuring GCC@.  Specifying the
22035 @option{-mcpu=@var{cpu_type}} overrides the specification of these
22036 options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
22037 rather than the options listed above.
22039 Specifying @option{-mpowerpc-gpopt} allows
22040 GCC to use the optional PowerPC architecture instructions in the
22041 General Purpose group, including floating-point square root.  Specifying
22042 @option{-mpowerpc-gfxopt} allows GCC to
22043 use the optional PowerPC architecture instructions in the Graphics
22044 group, including floating-point select.
22046 The @option{-mmfcrf} option allows GCC to generate the move from
22047 condition register field instruction implemented on the POWER4
22048 processor and other processors that support the PowerPC V2.01
22049 architecture.
22050 The @option{-mpopcntb} option allows GCC to generate the popcount and
22051 double-precision FP reciprocal estimate instruction implemented on the
22052 POWER5 processor and other processors that support the PowerPC V2.02
22053 architecture.
22054 The @option{-mpopcntd} option allows GCC to generate the popcount
22055 instruction implemented on the POWER7 processor and other processors
22056 that support the PowerPC V2.06 architecture.
22057 The @option{-mfprnd} option allows GCC to generate the FP round to
22058 integer instructions implemented on the POWER5+ processor and other
22059 processors that support the PowerPC V2.03 architecture.
22060 The @option{-mcmpb} option allows GCC to generate the compare bytes
22061 instruction implemented on the POWER6 processor and other processors
22062 that support the PowerPC V2.05 architecture.
22063 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
22064 general-purpose register instructions implemented on the POWER6X
22065 processor and other processors that support the extended PowerPC V2.05
22066 architecture.
22067 The @option{-mhard-dfp} option allows GCC to generate the decimal
22068 floating-point instructions implemented on some POWER processors.
22070 The @option{-mpowerpc64} option allows GCC to generate the additional
22071 64-bit instructions that are found in the full PowerPC64 architecture
22072 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
22073 @option{-mno-powerpc64}.
22075 @item -mcpu=@var{cpu_type}
22076 @opindex mcpu
22077 Set architecture type, register usage, and
22078 instruction scheduling parameters for machine type @var{cpu_type}.
22079 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
22080 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
22081 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
22082 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
22083 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
22084 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
22085 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
22086 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
22087 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
22088 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
22089 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
22090 and @samp{rs64}.
22092 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
22093 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
22094 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
22095 architecture machine types, with an appropriate, generic processor
22096 model assumed for scheduling purposes.
22098 The other options specify a specific processor.  Code generated under
22099 those options runs best on that processor, and may not run at all on
22100 others.
22102 The @option{-mcpu} options automatically enable or disable the
22103 following options:
22105 @gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
22106 -mpopcntb -mpopcntd  -mpowerpc64 @gol
22107 -mpowerpc-gpopt  -mpowerpc-gfxopt  -msingle-float -mdouble-float @gol
22108 -msimple-fpu -mstring  -mmulhw  -mdlmzb  -mmfpgpr -mvsx @gol
22109 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
22110 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
22112 The particular options set for any particular CPU varies between
22113 compiler versions, depending on what setting seems to produce optimal
22114 code for that CPU; it doesn't necessarily reflect the actual hardware's
22115 capabilities.  If you wish to set an individual option to a particular
22116 value, you may specify it after the @option{-mcpu} option, like
22117 @option{-mcpu=970 -mno-altivec}.
22119 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
22120 not enabled or disabled by the @option{-mcpu} option at present because
22121 AIX does not have full support for these options.  You may still
22122 enable or disable them individually if you're sure it'll work in your
22123 environment.
22125 @item -mtune=@var{cpu_type}
22126 @opindex mtune
22127 Set the instruction scheduling parameters for machine type
22128 @var{cpu_type}, but do not set the architecture type or register usage,
22129 as @option{-mcpu=@var{cpu_type}} does.  The same
22130 values for @var{cpu_type} are used for @option{-mtune} as for
22131 @option{-mcpu}.  If both are specified, the code generated uses the
22132 architecture and registers set by @option{-mcpu}, but the
22133 scheduling parameters set by @option{-mtune}.
22135 @item -mcmodel=small
22136 @opindex mcmodel=small
22137 Generate PowerPC64 code for the small model: The TOC is limited to
22138 64k.
22140 @item -mcmodel=medium
22141 @opindex mcmodel=medium
22142 Generate PowerPC64 code for the medium model: The TOC and other static
22143 data may be up to a total of 4G in size.  This is the default for 64-bit
22144 Linux.
22146 @item -mcmodel=large
22147 @opindex mcmodel=large
22148 Generate PowerPC64 code for the large model: The TOC may be up to 4G
22149 in size.  Other data and code is only limited by the 64-bit address
22150 space.
22152 @item -maltivec
22153 @itemx -mno-altivec
22154 @opindex maltivec
22155 @opindex mno-altivec
22156 Generate code that uses (does not use) AltiVec instructions, and also
22157 enable the use of built-in functions that allow more direct access to
22158 the AltiVec instruction set.  You may also need to set
22159 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
22160 enhancements.
22162 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
22163 @option{-maltivec=be}, the element order for AltiVec intrinsics such
22164 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert} 
22165 match array element order corresponding to the endianness of the
22166 target.  That is, element zero identifies the leftmost element in a
22167 vector register when targeting a big-endian platform, and identifies
22168 the rightmost element in a vector register when targeting a
22169 little-endian platform.
22171 @item -maltivec=be
22172 @opindex maltivec=be
22173 Generate AltiVec instructions using big-endian element order,
22174 regardless of whether the target is big- or little-endian.  This is
22175 the default when targeting a big-endian platform.
22177 The element order is used to interpret element numbers in AltiVec
22178 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
22179 @code{vec_insert}.  By default, these match array element order
22180 corresponding to the endianness for the target.
22182 @item -maltivec=le
22183 @opindex maltivec=le
22184 Generate AltiVec instructions using little-endian element order,
22185 regardless of whether the target is big- or little-endian.  This is
22186 the default when targeting a little-endian platform.  This option is
22187 currently ignored when targeting a big-endian platform.
22189 The element order is used to interpret element numbers in AltiVec
22190 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
22191 @code{vec_insert}.  By default, these match array element order
22192 corresponding to the endianness for the target.
22194 @item -mvrsave
22195 @itemx -mno-vrsave
22196 @opindex mvrsave
22197 @opindex mno-vrsave
22198 Generate VRSAVE instructions when generating AltiVec code.
22200 @item -msecure-plt
22201 @opindex msecure-plt
22202 Generate code that allows @command{ld} and @command{ld.so}
22203 to build executables and shared
22204 libraries with non-executable @code{.plt} and @code{.got} sections.
22205 This is a PowerPC
22206 32-bit SYSV ABI option.
22208 @item -mbss-plt
22209 @opindex mbss-plt
22210 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
22211 fills in, and
22212 requires @code{.plt} and @code{.got}
22213 sections that are both writable and executable.
22214 This is a PowerPC 32-bit SYSV ABI option.
22216 @item -misel
22217 @itemx -mno-isel
22218 @opindex misel
22219 @opindex mno-isel
22220 This switch enables or disables the generation of ISEL instructions.
22222 @item -misel=@var{yes/no}
22223 This switch has been deprecated.  Use @option{-misel} and
22224 @option{-mno-isel} instead.
22226 @item -mspe
22227 @itemx -mno-spe
22228 @opindex mspe
22229 @opindex mno-spe
22230 This switch enables or disables the generation of SPE simd
22231 instructions.
22233 @item -mpaired
22234 @itemx -mno-paired
22235 @opindex mpaired
22236 @opindex mno-paired
22237 This switch enables or disables the generation of PAIRED simd
22238 instructions.
22240 @item -mspe=@var{yes/no}
22241 This option has been deprecated.  Use @option{-mspe} and
22242 @option{-mno-spe} instead.
22244 @item -mvsx
22245 @itemx -mno-vsx
22246 @opindex mvsx
22247 @opindex mno-vsx
22248 Generate code that uses (does not use) vector/scalar (VSX)
22249 instructions, and also enable the use of built-in functions that allow
22250 more direct access to the VSX instruction set.
22252 @item -mcrypto
22253 @itemx -mno-crypto
22254 @opindex mcrypto
22255 @opindex mno-crypto
22256 Enable the use (disable) of the built-in functions that allow direct
22257 access to the cryptographic instructions that were added in version
22258 2.07 of the PowerPC ISA.
22260 @item -mdirect-move
22261 @itemx -mno-direct-move
22262 @opindex mdirect-move
22263 @opindex mno-direct-move
22264 Generate code that uses (does not use) the instructions to move data
22265 between the general purpose registers and the vector/scalar (VSX)
22266 registers that were added in version 2.07 of the PowerPC ISA.
22268 @item -mhtm
22269 @itemx -mno-htm
22270 @opindex mhtm
22271 @opindex mno-htm
22272 Enable (disable) the use of the built-in functions that allow direct
22273 access to the Hardware Transactional Memory (HTM) instructions that
22274 were added in version 2.07 of the PowerPC ISA.
22276 @item -mpower8-fusion
22277 @itemx -mno-power8-fusion
22278 @opindex mpower8-fusion
22279 @opindex mno-power8-fusion
22280 Generate code that keeps (does not keeps) some integer operations
22281 adjacent so that the instructions can be fused together on power8 and
22282 later processors.
22284 @item -mpower8-vector
22285 @itemx -mno-power8-vector
22286 @opindex mpower8-vector
22287 @opindex mno-power8-vector
22288 Generate code that uses (does not use) the vector and scalar
22289 instructions that were added in version 2.07 of the PowerPC ISA.  Also
22290 enable the use of built-in functions that allow more direct access to
22291 the vector instructions.
22293 @item -mquad-memory
22294 @itemx -mno-quad-memory
22295 @opindex mquad-memory
22296 @opindex mno-quad-memory
22297 Generate code that uses (does not use) the non-atomic quad word memory
22298 instructions.  The @option{-mquad-memory} option requires use of
22299 64-bit mode.
22301 @item -mquad-memory-atomic
22302 @itemx -mno-quad-memory-atomic
22303 @opindex mquad-memory-atomic
22304 @opindex mno-quad-memory-atomic
22305 Generate code that uses (does not use) the atomic quad word memory
22306 instructions.  The @option{-mquad-memory-atomic} option requires use of
22307 64-bit mode.
22309 @item -mfloat128
22310 @itemx -mno-float128
22311 @opindex mfloat128
22312 @opindex mno-float128
22313 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
22314 and use either software emulation for IEEE 128-bit floating point or
22315 hardware instructions.
22317 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
22318 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
22319 use the IEEE 128-bit floating point support.  The IEEE 128-bit
22320 floating point support only works on PowerPC Linux systems.
22322 The default for @option{-mfloat128} is enabled on PowerPC Linux
22323 systems using the VSX instruction set, and disabled on other systems.
22325 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
22326 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
22327 point support will also enable the generation of ISA 3.0 IEEE 128-bit
22328 floating point instructions.  Otherwise, if you do not specify to
22329 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
22330 system, IEEE 128-bit floating point will be done with software
22331 emulation.
22333 @item -mfloat128-hardware
22334 @itemx -mno-float128-hardware
22335 @opindex mfloat128-hardware
22336 @opindex mno-float128-hardware
22337 Enable/disable using ISA 3.0 hardware instructions to support the
22338 @var{__float128} data type.
22340 The default for @option{-mfloat128-hardware} is enabled on PowerPC
22341 Linux systems using the ISA 3.0 instruction set, and disabled on other
22342 systems.
22344 @item -mfloat-gprs=@var{yes/single/double/no}
22345 @itemx -mfloat-gprs
22346 @opindex mfloat-gprs
22347 This switch enables or disables the generation of floating-point
22348 operations on the general-purpose registers for architectures that
22349 support it.
22351 The argument @samp{yes} or @samp{single} enables the use of
22352 single-precision floating-point operations.
22354 The argument @samp{double} enables the use of single and
22355 double-precision floating-point operations.
22357 The argument @samp{no} disables floating-point operations on the
22358 general-purpose registers.
22360 This option is currently only available on the MPC854x.
22362 @item -m32
22363 @itemx -m64
22364 @opindex m32
22365 @opindex m64
22366 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
22367 targets (including GNU/Linux).  The 32-bit environment sets int, long
22368 and pointer to 32 bits and generates code that runs on any PowerPC
22369 variant.  The 64-bit environment sets int to 32 bits and long and
22370 pointer to 64 bits, and generates code for PowerPC64, as for
22371 @option{-mpowerpc64}.
22373 @item -mfull-toc
22374 @itemx -mno-fp-in-toc
22375 @itemx -mno-sum-in-toc
22376 @itemx -mminimal-toc
22377 @opindex mfull-toc
22378 @opindex mno-fp-in-toc
22379 @opindex mno-sum-in-toc
22380 @opindex mminimal-toc
22381 Modify generation of the TOC (Table Of Contents), which is created for
22382 every executable file.  The @option{-mfull-toc} option is selected by
22383 default.  In that case, GCC allocates at least one TOC entry for
22384 each unique non-automatic variable reference in your program.  GCC
22385 also places floating-point constants in the TOC@.  However, only
22386 16,384 entries are available in the TOC@.
22388 If you receive a linker error message that saying you have overflowed
22389 the available TOC space, you can reduce the amount of TOC space used
22390 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
22391 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
22392 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
22393 generate code to calculate the sum of an address and a constant at
22394 run time instead of putting that sum into the TOC@.  You may specify one
22395 or both of these options.  Each causes GCC to produce very slightly
22396 slower and larger code at the expense of conserving TOC space.
22398 If you still run out of space in the TOC even when you specify both of
22399 these options, specify @option{-mminimal-toc} instead.  This option causes
22400 GCC to make only one TOC entry for every file.  When you specify this
22401 option, GCC produces code that is slower and larger but which
22402 uses extremely little TOC space.  You may wish to use this option
22403 only on files that contain less frequently-executed code.
22405 @item -maix64
22406 @itemx -maix32
22407 @opindex maix64
22408 @opindex maix32
22409 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
22410 @code{long} type, and the infrastructure needed to support them.
22411 Specifying @option{-maix64} implies @option{-mpowerpc64},
22412 while @option{-maix32} disables the 64-bit ABI and
22413 implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
22415 @item -mxl-compat
22416 @itemx -mno-xl-compat
22417 @opindex mxl-compat
22418 @opindex mno-xl-compat
22419 Produce code that conforms more closely to IBM XL compiler semantics
22420 when using AIX-compatible ABI@.  Pass floating-point arguments to
22421 prototyped functions beyond the register save area (RSA) on the stack
22422 in addition to argument FPRs.  Do not assume that most significant
22423 double in 128-bit long double value is properly rounded when comparing
22424 values and converting to double.  Use XL symbol names for long double
22425 support routines.
22427 The AIX calling convention was extended but not initially documented to
22428 handle an obscure K&R C case of calling a function that takes the
22429 address of its arguments with fewer arguments than declared.  IBM XL
22430 compilers access floating-point arguments that do not fit in the
22431 RSA from the stack when a subroutine is compiled without
22432 optimization.  Because always storing floating-point arguments on the
22433 stack is inefficient and rarely needed, this option is not enabled by
22434 default and only is necessary when calling subroutines compiled by IBM
22435 XL compilers without optimization.
22437 @item -mpe
22438 @opindex mpe
22439 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
22440 application written to use message passing with special startup code to
22441 enable the application to run.  The system must have PE installed in the
22442 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
22443 must be overridden with the @option{-specs=} option to specify the
22444 appropriate directory location.  The Parallel Environment does not
22445 support threads, so the @option{-mpe} option and the @option{-pthread}
22446 option are incompatible.
22448 @item -malign-natural
22449 @itemx -malign-power
22450 @opindex malign-natural
22451 @opindex malign-power
22452 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22453 @option{-malign-natural} overrides the ABI-defined alignment of larger
22454 types, such as floating-point doubles, on their natural size-based boundary.
22455 The option @option{-malign-power} instructs GCC to follow the ABI-specified
22456 alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
22458 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22459 is not supported.
22461 @item -msoft-float
22462 @itemx -mhard-float
22463 @opindex msoft-float
22464 @opindex mhard-float
22465 Generate code that does not use (uses) the floating-point register set.
22466 Software floating-point emulation is provided if you use the
22467 @option{-msoft-float} option, and pass the option to GCC when linking.
22469 @item -msingle-float
22470 @itemx -mdouble-float
22471 @opindex msingle-float
22472 @opindex mdouble-float
22473 Generate code for single- or double-precision floating-point operations.
22474 @option{-mdouble-float} implies @option{-msingle-float}.
22476 @item -msimple-fpu
22477 @opindex msimple-fpu
22478 Do not generate @code{sqrt} and @code{div} instructions for hardware
22479 floating-point unit.
22481 @item -mfpu=@var{name}
22482 @opindex mfpu
22483 Specify type of floating-point unit.  Valid values for @var{name} are
22484 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
22485 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
22486 @samp{sp_full} (equivalent to @option{-msingle-float}),
22487 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
22489 @item -mxilinx-fpu
22490 @opindex mxilinx-fpu
22491 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
22493 @item -mmultiple
22494 @itemx -mno-multiple
22495 @opindex mmultiple
22496 @opindex mno-multiple
22497 Generate code that uses (does not use) the load multiple word
22498 instructions and the store multiple word instructions.  These
22499 instructions are generated by default on POWER systems, and not
22500 generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
22501 PowerPC systems, since those instructions do not work when the
22502 processor is in little-endian mode.  The exceptions are PPC740 and
22503 PPC750 which permit these instructions in little-endian mode.
22505 @item -mstring
22506 @itemx -mno-string
22507 @opindex mstring
22508 @opindex mno-string
22509 Generate code that uses (does not use) the load string instructions
22510 and the store string word instructions to save multiple registers and
22511 do small block moves.  These instructions are generated by default on
22512 POWER systems, and not generated on PowerPC systems.  Do not use
22513 @option{-mstring} on little-endian PowerPC systems, since those
22514 instructions do not work when the processor is in little-endian mode.
22515 The exceptions are PPC740 and PPC750 which permit these instructions
22516 in little-endian mode.
22518 @item -mupdate
22519 @itemx -mno-update
22520 @opindex mupdate
22521 @opindex mno-update
22522 Generate code that uses (does not use) the load or store instructions
22523 that update the base register to the address of the calculated memory
22524 location.  These instructions are generated by default.  If you use
22525 @option{-mno-update}, there is a small window between the time that the
22526 stack pointer is updated and the address of the previous frame is
22527 stored, which means code that walks the stack frame across interrupts or
22528 signals may get corrupted data.
22530 @item -mavoid-indexed-addresses
22531 @itemx -mno-avoid-indexed-addresses
22532 @opindex mavoid-indexed-addresses
22533 @opindex mno-avoid-indexed-addresses
22534 Generate code that tries to avoid (not avoid) the use of indexed load
22535 or store instructions. These instructions can incur a performance
22536 penalty on Power6 processors in certain situations, such as when
22537 stepping through large arrays that cross a 16M boundary.  This option
22538 is enabled by default when targeting Power6 and disabled otherwise.
22540 @item -mfused-madd
22541 @itemx -mno-fused-madd
22542 @opindex mfused-madd
22543 @opindex mno-fused-madd
22544 Generate code that uses (does not use) the floating-point multiply and
22545 accumulate instructions.  These instructions are generated by default
22546 if hardware floating point is used.  The machine-dependent
22547 @option{-mfused-madd} option is now mapped to the machine-independent
22548 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22549 mapped to @option{-ffp-contract=off}.
22551 @item -mmulhw
22552 @itemx -mno-mulhw
22553 @opindex mmulhw
22554 @opindex mno-mulhw
22555 Generate code that uses (does not use) the half-word multiply and
22556 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
22557 These instructions are generated by default when targeting those
22558 processors.
22560 @item -mdlmzb
22561 @itemx -mno-dlmzb
22562 @opindex mdlmzb
22563 @opindex mno-dlmzb
22564 Generate code that uses (does not use) the string-search @samp{dlmzb}
22565 instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
22566 generated by default when targeting those processors.
22568 @item -mno-bit-align
22569 @itemx -mbit-align
22570 @opindex mno-bit-align
22571 @opindex mbit-align
22572 On System V.4 and embedded PowerPC systems do not (do) force structures
22573 and unions that contain bit-fields to be aligned to the base type of the
22574 bit-field.
22576 For example, by default a structure containing nothing but 8
22577 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
22578 boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
22579 the structure is aligned to a 1-byte boundary and is 1 byte in
22580 size.
22582 @item -mno-strict-align
22583 @itemx -mstrict-align
22584 @opindex mno-strict-align
22585 @opindex mstrict-align
22586 On System V.4 and embedded PowerPC systems do not (do) assume that
22587 unaligned memory references are handled by the system.
22589 @item -mrelocatable
22590 @itemx -mno-relocatable
22591 @opindex mrelocatable
22592 @opindex mno-relocatable
22593 Generate code that allows (does not allow) a static executable to be
22594 relocated to a different address at run time.  A simple embedded
22595 PowerPC system loader should relocate the entire contents of
22596 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22597 a table of 32-bit addresses generated by this option.  For this to
22598 work, all objects linked together must be compiled with
22599 @option{-mrelocatable} or @option{-mrelocatable-lib}.
22600 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22602 @item -mrelocatable-lib
22603 @itemx -mno-relocatable-lib
22604 @opindex mrelocatable-lib
22605 @opindex mno-relocatable-lib
22606 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22607 @code{.fixup} section to allow static executables to be relocated at
22608 run time, but @option{-mrelocatable-lib} does not use the smaller stack
22609 alignment of @option{-mrelocatable}.  Objects compiled with
22610 @option{-mrelocatable-lib} may be linked with objects compiled with
22611 any combination of the @option{-mrelocatable} options.
22613 @item -mno-toc
22614 @itemx -mtoc
22615 @opindex mno-toc
22616 @opindex mtoc
22617 On System V.4 and embedded PowerPC systems do not (do) assume that
22618 register 2 contains a pointer to a global area pointing to the addresses
22619 used in the program.
22621 @item -mlittle
22622 @itemx -mlittle-endian
22623 @opindex mlittle
22624 @opindex mlittle-endian
22625 On System V.4 and embedded PowerPC systems compile code for the
22626 processor in little-endian mode.  The @option{-mlittle-endian} option is
22627 the same as @option{-mlittle}.
22629 @item -mbig
22630 @itemx -mbig-endian
22631 @opindex mbig
22632 @opindex mbig-endian
22633 On System V.4 and embedded PowerPC systems compile code for the
22634 processor in big-endian mode.  The @option{-mbig-endian} option is
22635 the same as @option{-mbig}.
22637 @item -mdynamic-no-pic
22638 @opindex mdynamic-no-pic
22639 On Darwin and Mac OS X systems, compile code so that it is not
22640 relocatable, but that its external references are relocatable.  The
22641 resulting code is suitable for applications, but not shared
22642 libraries.
22644 @item -msingle-pic-base
22645 @opindex msingle-pic-base
22646 Treat the register used for PIC addressing as read-only, rather than
22647 loading it in the prologue for each function.  The runtime system is
22648 responsible for initializing this register with an appropriate value
22649 before execution begins.
22651 @item -mprioritize-restricted-insns=@var{priority}
22652 @opindex mprioritize-restricted-insns
22653 This option controls the priority that is assigned to
22654 dispatch-slot restricted instructions during the second scheduling
22655 pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
22656 or @samp{2} to assign no, highest, or second-highest (respectively) 
22657 priority to dispatch-slot restricted
22658 instructions.
22660 @item -msched-costly-dep=@var{dependence_type}
22661 @opindex msched-costly-dep
22662 This option controls which dependences are considered costly
22663 by the target during instruction scheduling.  The argument
22664 @var{dependence_type} takes one of the following values:
22666 @table @asis
22667 @item @samp{no}
22668 No dependence is costly.
22670 @item @samp{all}
22671 All dependences are costly.
22673 @item @samp{true_store_to_load}
22674 A true dependence from store to load is costly.
22676 @item @samp{store_to_load}
22677 Any dependence from store to load is costly.
22679 @item @var{number}
22680 Any dependence for which the latency is greater than or equal to 
22681 @var{number} is costly.
22682 @end table
22684 @item -minsert-sched-nops=@var{scheme}
22685 @opindex minsert-sched-nops
22686 This option controls which NOP insertion scheme is used during
22687 the second scheduling pass.  The argument @var{scheme} takes one of the
22688 following values:
22690 @table @asis
22691 @item @samp{no}
22692 Don't insert NOPs.
22694 @item @samp{pad}
22695 Pad with NOPs any dispatch group that has vacant issue slots,
22696 according to the scheduler's grouping.
22698 @item @samp{regroup_exact}
22699 Insert NOPs to force costly dependent insns into
22700 separate groups.  Insert exactly as many NOPs as needed to force an insn
22701 to a new group, according to the estimated processor grouping.
22703 @item @var{number}
22704 Insert NOPs to force costly dependent insns into
22705 separate groups.  Insert @var{number} NOPs to force an insn to a new group.
22706 @end table
22708 @item -mcall-sysv
22709 @opindex mcall-sysv
22710 On System V.4 and embedded PowerPC systems compile code using calling
22711 conventions that adhere to the March 1995 draft of the System V
22712 Application Binary Interface, PowerPC processor supplement.  This is the
22713 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22715 @item -mcall-sysv-eabi
22716 @itemx -mcall-eabi
22717 @opindex mcall-sysv-eabi
22718 @opindex mcall-eabi
22719 Specify both @option{-mcall-sysv} and @option{-meabi} options.
22721 @item -mcall-sysv-noeabi
22722 @opindex mcall-sysv-noeabi
22723 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22725 @item -mcall-aixdesc
22726 @opindex m
22727 On System V.4 and embedded PowerPC systems compile code for the AIX
22728 operating system.
22730 @item -mcall-linux
22731 @opindex mcall-linux
22732 On System V.4 and embedded PowerPC systems compile code for the
22733 Linux-based GNU system.
22735 @item -mcall-freebsd
22736 @opindex mcall-freebsd
22737 On System V.4 and embedded PowerPC systems compile code for the
22738 FreeBSD operating system.
22740 @item -mcall-netbsd
22741 @opindex mcall-netbsd
22742 On System V.4 and embedded PowerPC systems compile code for the
22743 NetBSD operating system.
22745 @item -mcall-openbsd
22746 @opindex mcall-netbsd
22747 On System V.4 and embedded PowerPC systems compile code for the
22748 OpenBSD operating system.
22750 @item -maix-struct-return
22751 @opindex maix-struct-return
22752 Return all structures in memory (as specified by the AIX ABI)@.
22754 @item -msvr4-struct-return
22755 @opindex msvr4-struct-return
22756 Return structures smaller than 8 bytes in registers (as specified by the
22757 SVR4 ABI)@.
22759 @item -mabi=@var{abi-type}
22760 @opindex mabi
22761 Extend the current ABI with a particular extension, or remove such extension.
22762 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
22763 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
22764 @samp{elfv1}, @samp{elfv2}@.
22766 @item -mabi=spe
22767 @opindex mabi=spe
22768 Extend the current ABI with SPE ABI extensions.  This does not change
22769 the default ABI, instead it adds the SPE ABI extensions to the current
22770 ABI@.
22772 @item -mabi=no-spe
22773 @opindex mabi=no-spe
22774 Disable Book-E SPE ABI extensions for the current ABI@.
22776 @item -mabi=ibmlongdouble
22777 @opindex mabi=ibmlongdouble
22778 Change the current ABI to use IBM extended-precision long double.
22779 This is not likely to work if your system defaults to using IEEE
22780 extended-precision long double.  If you change the long double type
22781 from IEEE extended-precision, the compiler will issue a warning unless
22782 you use the @option{-Wno-psabi} option.
22784 @item -mabi=ieeelongdouble
22785 @opindex mabi=ieeelongdouble
22786 Change the current ABI to use IEEE extended-precision long double.
22787 This is not likely to work if your system defaults to using IBM
22788 extended-precision long double.  If you change the long double type
22789 from IBM extended-precision, the compiler will issue a warning unless
22790 you use the @option{-Wno-psabi} option.
22792 @item -mabi=elfv1
22793 @opindex mabi=elfv1
22794 Change the current ABI to use the ELFv1 ABI.
22795 This is the default ABI for big-endian PowerPC 64-bit Linux.
22796 Overriding the default ABI requires special system support and is
22797 likely to fail in spectacular ways.
22799 @item -mabi=elfv2
22800 @opindex mabi=elfv2
22801 Change the current ABI to use the ELFv2 ABI.
22802 This is the default ABI for little-endian PowerPC 64-bit Linux.
22803 Overriding the default ABI requires special system support and is
22804 likely to fail in spectacular ways.
22806 @item -mgnu-attribute
22807 @itemx -mno-gnu-attribute
22808 @opindex mgnu-attribute
22809 @opindex mno-gnu-attribute
22810 Emit .gnu_attribute assembly directives to set tag/value pairs in a
22811 .gnu.attributes section that specify ABI variations in function
22812 parameters or return values.
22814 @item -mprototype
22815 @itemx -mno-prototype
22816 @opindex mprototype
22817 @opindex mno-prototype
22818 On System V.4 and embedded PowerPC systems assume that all calls to
22819 variable argument functions are properly prototyped.  Otherwise, the
22820 compiler must insert an instruction before every non-prototyped call to
22821 set or clear bit 6 of the condition code register (@code{CR}) to
22822 indicate whether floating-point values are passed in the floating-point
22823 registers in case the function takes variable arguments.  With
22824 @option{-mprototype}, only calls to prototyped variable argument functions
22825 set or clear the bit.
22827 @item -msim
22828 @opindex msim
22829 On embedded PowerPC systems, assume that the startup module is called
22830 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
22831 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
22832 configurations.
22834 @item -mmvme
22835 @opindex mmvme
22836 On embedded PowerPC systems, assume that the startup module is called
22837 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
22838 @file{libc.a}.
22840 @item -mads
22841 @opindex mads
22842 On embedded PowerPC systems, assume that the startup module is called
22843 @file{crt0.o} and the standard C libraries are @file{libads.a} and
22844 @file{libc.a}.
22846 @item -myellowknife
22847 @opindex myellowknife
22848 On embedded PowerPC systems, assume that the startup module is called
22849 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
22850 @file{libc.a}.
22852 @item -mvxworks
22853 @opindex mvxworks
22854 On System V.4 and embedded PowerPC systems, specify that you are
22855 compiling for a VxWorks system.
22857 @item -memb
22858 @opindex memb
22859 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
22860 header to indicate that @samp{eabi} extended relocations are used.
22862 @item -meabi
22863 @itemx -mno-eabi
22864 @opindex meabi
22865 @opindex mno-eabi
22866 On System V.4 and embedded PowerPC systems do (do not) adhere to the
22867 Embedded Applications Binary Interface (EABI), which is a set of
22868 modifications to the System V.4 specifications.  Selecting @option{-meabi}
22869 means that the stack is aligned to an 8-byte boundary, a function
22870 @code{__eabi} is called from @code{main} to set up the EABI
22871 environment, and the @option{-msdata} option can use both @code{r2} and
22872 @code{r13} to point to two separate small data areas.  Selecting
22873 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
22874 no EABI initialization function is called from @code{main}, and the
22875 @option{-msdata} option only uses @code{r13} to point to a single
22876 small data area.  The @option{-meabi} option is on by default if you
22877 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
22879 @item -msdata=eabi
22880 @opindex msdata=eabi
22881 On System V.4 and embedded PowerPC systems, put small initialized
22882 @code{const} global and static data in the @code{.sdata2} section, which
22883 is pointed to by register @code{r2}.  Put small initialized
22884 non-@code{const} global and static data in the @code{.sdata} section,
22885 which is pointed to by register @code{r13}.  Put small uninitialized
22886 global and static data in the @code{.sbss} section, which is adjacent to
22887 the @code{.sdata} section.  The @option{-msdata=eabi} option is
22888 incompatible with the @option{-mrelocatable} option.  The
22889 @option{-msdata=eabi} option also sets the @option{-memb} option.
22891 @item -msdata=sysv
22892 @opindex msdata=sysv
22893 On System V.4 and embedded PowerPC systems, put small global and static
22894 data in the @code{.sdata} section, which is pointed to by register
22895 @code{r13}.  Put small uninitialized global and static data in the
22896 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
22897 The @option{-msdata=sysv} option is incompatible with the
22898 @option{-mrelocatable} option.
22900 @item -msdata=default
22901 @itemx -msdata
22902 @opindex msdata=default
22903 @opindex msdata
22904 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
22905 compile code the same as @option{-msdata=eabi}, otherwise compile code the
22906 same as @option{-msdata=sysv}.
22908 @item -msdata=data
22909 @opindex msdata=data
22910 On System V.4 and embedded PowerPC systems, put small global
22911 data in the @code{.sdata} section.  Put small uninitialized global
22912 data in the @code{.sbss} section.  Do not use register @code{r13}
22913 to address small data however.  This is the default behavior unless
22914 other @option{-msdata} options are used.
22916 @item -msdata=none
22917 @itemx -mno-sdata
22918 @opindex msdata=none
22919 @opindex mno-sdata
22920 On embedded PowerPC systems, put all initialized global and static data
22921 in the @code{.data} section, and all uninitialized data in the
22922 @code{.bss} section.
22924 @item -mblock-move-inline-limit=@var{num}
22925 @opindex mblock-move-inline-limit
22926 Inline all block moves (such as calls to @code{memcpy} or structure
22927 copies) less than or equal to @var{num} bytes.  The minimum value for
22928 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
22929 targets.  The default value is target-specific.
22931 @item -G @var{num}
22932 @opindex G
22933 @cindex smaller data references (PowerPC)
22934 @cindex .sdata/.sdata2 references (PowerPC)
22935 On embedded PowerPC systems, put global and static items less than or
22936 equal to @var{num} bytes into the small data or BSS sections instead of
22937 the normal data or BSS section.  By default, @var{num} is 8.  The
22938 @option{-G @var{num}} switch is also passed to the linker.
22939 All modules should be compiled with the same @option{-G @var{num}} value.
22941 @item -mregnames
22942 @itemx -mno-regnames
22943 @opindex mregnames
22944 @opindex mno-regnames
22945 On System V.4 and embedded PowerPC systems do (do not) emit register
22946 names in the assembly language output using symbolic forms.
22948 @item -mlongcall
22949 @itemx -mno-longcall
22950 @opindex mlongcall
22951 @opindex mno-longcall
22952 By default assume that all calls are far away so that a longer and more
22953 expensive calling sequence is required.  This is required for calls
22954 farther than 32 megabytes (33,554,432 bytes) from the current location.
22955 A short call is generated if the compiler knows
22956 the call cannot be that far away.  This setting can be overridden by
22957 the @code{shortcall} function attribute, or by @code{#pragma
22958 longcall(0)}.
22960 Some linkers are capable of detecting out-of-range calls and generating
22961 glue code on the fly.  On these systems, long calls are unnecessary and
22962 generate slower code.  As of this writing, the AIX linker can do this,
22963 as can the GNU linker for PowerPC/64.  It is planned to add this feature
22964 to the GNU linker for 32-bit PowerPC systems as well.
22966 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
22967 callee, L42}, plus a @dfn{branch island} (glue code).  The two target
22968 addresses represent the callee and the branch island.  The
22969 Darwin/PPC linker prefers the first address and generates a @code{bl
22970 callee} if the PPC @code{bl} instruction reaches the callee directly;
22971 otherwise, the linker generates @code{bl L42} to call the branch
22972 island.  The branch island is appended to the body of the
22973 calling function; it computes the full 32-bit address of the callee
22974 and jumps to it.
22976 On Mach-O (Darwin) systems, this option directs the compiler emit to
22977 the glue for every direct call, and the Darwin linker decides whether
22978 to use or discard it.
22980 In the future, GCC may ignore all longcall specifications
22981 when the linker is known to generate glue.
22983 @item -mtls-markers
22984 @itemx -mno-tls-markers
22985 @opindex mtls-markers
22986 @opindex mno-tls-markers
22987 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
22988 specifying the function argument.  The relocation allows the linker to
22989 reliably associate function call with argument setup instructions for
22990 TLS optimization, which in turn allows GCC to better schedule the
22991 sequence.
22993 @item -mrecip
22994 @itemx -mno-recip
22995 @opindex mrecip
22996 This option enables use of the reciprocal estimate and
22997 reciprocal square root estimate instructions with additional
22998 Newton-Raphson steps to increase precision instead of doing a divide or
22999 square root and divide for floating-point arguments.  You should use
23000 the @option{-ffast-math} option when using @option{-mrecip} (or at
23001 least @option{-funsafe-math-optimizations},
23002 @option{-ffinite-math-only}, @option{-freciprocal-math} and
23003 @option{-fno-trapping-math}).  Note that while the throughput of the
23004 sequence is generally higher than the throughput of the non-reciprocal
23005 instruction, the precision of the sequence can be decreased by up to 2
23006 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
23007 roots.
23009 @item -mrecip=@var{opt}
23010 @opindex mrecip=opt
23011 This option controls which reciprocal estimate instructions
23012 may be used.  @var{opt} is a comma-separated list of options, which may
23013 be preceded by a @code{!} to invert the option:
23015 @table @samp
23017 @item all
23018 Enable all estimate instructions.
23020 @item default 
23021 Enable the default instructions, equivalent to @option{-mrecip}.
23023 @item none 
23024 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23026 @item div 
23027 Enable the reciprocal approximation instructions for both 
23028 single and double precision.
23030 @item divf 
23031 Enable the single-precision reciprocal approximation instructions.
23033 @item divd 
23034 Enable the double-precision reciprocal approximation instructions.
23036 @item rsqrt 
23037 Enable the reciprocal square root approximation instructions for both
23038 single and double precision.
23040 @item rsqrtf 
23041 Enable the single-precision reciprocal square root approximation instructions.
23043 @item rsqrtd 
23044 Enable the double-precision reciprocal square root approximation instructions.
23046 @end table
23048 So, for example, @option{-mrecip=all,!rsqrtd} enables
23049 all of the reciprocal estimate instructions, except for the
23050 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
23051 which handle the double-precision reciprocal square root calculations.
23053 @item -mrecip-precision
23054 @itemx -mno-recip-precision
23055 @opindex mrecip-precision
23056 Assume (do not assume) that the reciprocal estimate instructions
23057 provide higher-precision estimates than is mandated by the PowerPC
23058 ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
23059 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
23060 The double-precision square root estimate instructions are not generated by
23061 default on low-precision machines, since they do not provide an
23062 estimate that converges after three steps.
23064 @item -mveclibabi=@var{type}
23065 @opindex mveclibabi
23066 Specifies the ABI type to use for vectorizing intrinsics using an
23067 external library.  The only type supported at present is @samp{mass},
23068 which specifies to use IBM's Mathematical Acceleration Subsystem
23069 (MASS) libraries for vectorizing intrinsics using external libraries.
23070 GCC currently emits calls to @code{acosd2}, @code{acosf4},
23071 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
23072 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
23073 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
23074 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
23075 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
23076 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
23077 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
23078 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
23079 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
23080 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
23081 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
23082 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
23083 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
23084 for power7.  Both @option{-ftree-vectorize} and
23085 @option{-funsafe-math-optimizations} must also be enabled.  The MASS
23086 libraries must be specified at link time.
23088 @item -mfriz
23089 @itemx -mno-friz
23090 @opindex mfriz
23091 Generate (do not generate) the @code{friz} instruction when the
23092 @option{-funsafe-math-optimizations} option is used to optimize
23093 rounding of floating-point values to 64-bit integer and back to floating
23094 point.  The @code{friz} instruction does not return the same value if
23095 the floating-point number is too large to fit in an integer.
23097 @item -mpointers-to-nested-functions
23098 @itemx -mno-pointers-to-nested-functions
23099 @opindex mpointers-to-nested-functions
23100 Generate (do not generate) code to load up the static chain register
23101 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
23102 systems where a function pointer points to a 3-word descriptor giving
23103 the function address, TOC value to be loaded in register @code{r2}, and
23104 static chain value to be loaded in register @code{r11}.  The
23105 @option{-mpointers-to-nested-functions} is on by default.  You cannot
23106 call through pointers to nested functions or pointers
23107 to functions compiled in other languages that use the static chain if
23108 you use @option{-mno-pointers-to-nested-functions}.
23110 @item -msave-toc-indirect
23111 @itemx -mno-save-toc-indirect
23112 @opindex msave-toc-indirect
23113 Generate (do not generate) code to save the TOC value in the reserved
23114 stack location in the function prologue if the function calls through
23115 a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
23116 saved in the prologue, it is saved just before the call through the
23117 pointer.  The @option{-mno-save-toc-indirect} option is the default.
23119 @item -mcompat-align-parm
23120 @itemx -mno-compat-align-parm
23121 @opindex mcompat-align-parm
23122 Generate (do not generate) code to pass structure parameters with a
23123 maximum alignment of 64 bits, for compatibility with older versions
23124 of GCC.
23126 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
23127 structure parameter on a 128-bit boundary when that structure contained
23128 a member requiring 128-bit alignment.  This is corrected in more
23129 recent versions of GCC.  This option may be used to generate code
23130 that is compatible with functions compiled with older versions of
23131 GCC.
23133 The @option{-mno-compat-align-parm} option is the default.
23135 @item -mstack-protector-guard=@var{guard}
23136 @itemx -mstack-protector-guard-reg=@var{reg}
23137 @itemx -mstack-protector-guard-offset=@var{offset}
23138 @itemx -mstack-protector-guard-symbol=@var{symbol}
23139 @opindex mstack-protector-guard
23140 @opindex mstack-protector-guard-reg
23141 @opindex mstack-protector-guard-offset
23142 @opindex mstack-protector-guard-symbol
23143 Generate stack protection code using canary at @var{guard}.  Supported
23144 locations are @samp{global} for global canary or @samp{tls} for per-thread
23145 canary in the TLS block (the default with GNU libc version 2.4 or later).
23147 With the latter choice the options
23148 @option{-mstack-protector-guard-reg=@var{reg}} and
23149 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
23150 which register to use as base register for reading the canary, and from what
23151 offset from that base register. The default for those is as specified in the
23152 relevant ABI.  @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
23153 the offset with a symbol reference to a canary in the TLS block.
23154 @end table
23156 @node RX Options
23157 @subsection RX Options
23158 @cindex RX Options
23160 These command-line options are defined for RX targets:
23162 @table @gcctabopt
23163 @item -m64bit-doubles
23164 @itemx -m32bit-doubles
23165 @opindex m64bit-doubles
23166 @opindex m32bit-doubles
23167 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23168 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
23169 @option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
23170 works on 32-bit values, which is why the default is
23171 @option{-m32bit-doubles}.
23173 @item -fpu
23174 @itemx -nofpu
23175 @opindex fpu
23176 @opindex nofpu
23177 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
23178 floating-point hardware.  The default is enabled for the RX600
23179 series and disabled for the RX200 series.
23181 Floating-point instructions are only generated for 32-bit floating-point 
23182 values, however, so the FPU hardware is not used for doubles if the
23183 @option{-m64bit-doubles} option is used.
23185 @emph{Note} If the @option{-fpu} option is enabled then
23186 @option{-funsafe-math-optimizations} is also enabled automatically.
23187 This is because the RX FPU instructions are themselves unsafe.
23189 @item -mcpu=@var{name}
23190 @opindex mcpu
23191 Selects the type of RX CPU to be targeted.  Currently three types are
23192 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
23193 the specific @samp{RX610} CPU.  The default is @samp{RX600}.
23195 The only difference between @samp{RX600} and @samp{RX610} is that the
23196 @samp{RX610} does not support the @code{MVTIPL} instruction.
23198 The @samp{RX200} series does not have a hardware floating-point unit
23199 and so @option{-nofpu} is enabled by default when this type is
23200 selected.
23202 @item -mbig-endian-data
23203 @itemx -mlittle-endian-data
23204 @opindex mbig-endian-data
23205 @opindex mlittle-endian-data
23206 Store data (but not code) in the big-endian format.  The default is
23207 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
23208 format.
23210 @item -msmall-data-limit=@var{N}
23211 @opindex msmall-data-limit
23212 Specifies the maximum size in bytes of global and static variables
23213 which can be placed into the small data area.  Using the small data
23214 area can lead to smaller and faster code, but the size of area is
23215 limited and it is up to the programmer to ensure that the area does
23216 not overflow.  Also when the small data area is used one of the RX's
23217 registers (usually @code{r13}) is reserved for use pointing to this
23218 area, so it is no longer available for use by the compiler.  This
23219 could result in slower and/or larger code if variables are pushed onto
23220 the stack instead of being held in this register.
23222 Note, common variables (variables that have not been initialized) and
23223 constants are not placed into the small data area as they are assigned
23224 to other sections in the output executable.
23226 The default value is zero, which disables this feature.  Note, this
23227 feature is not enabled by default with higher optimization levels
23228 (@option{-O2} etc) because of the potentially detrimental effects of
23229 reserving a register.  It is up to the programmer to experiment and
23230 discover whether this feature is of benefit to their program.  See the
23231 description of the @option{-mpid} option for a description of how the
23232 actual register to hold the small data area pointer is chosen.
23234 @item -msim
23235 @itemx -mno-sim
23236 @opindex msim
23237 @opindex mno-sim
23238 Use the simulator runtime.  The default is to use the libgloss
23239 board-specific runtime.
23241 @item -mas100-syntax
23242 @itemx -mno-as100-syntax
23243 @opindex mas100-syntax
23244 @opindex mno-as100-syntax
23245 When generating assembler output use a syntax that is compatible with
23246 Renesas's AS100 assembler.  This syntax can also be handled by the GAS
23247 assembler, but it has some restrictions so it is not generated by default.
23249 @item -mmax-constant-size=@var{N}
23250 @opindex mmax-constant-size
23251 Specifies the maximum size, in bytes, of a constant that can be used as
23252 an operand in a RX instruction.  Although the RX instruction set does
23253 allow constants of up to 4 bytes in length to be used in instructions,
23254 a longer value equates to a longer instruction.  Thus in some
23255 circumstances it can be beneficial to restrict the size of constants
23256 that are used in instructions.  Constants that are too big are instead
23257 placed into a constant pool and referenced via register indirection.
23259 The value @var{N} can be between 0 and 4.  A value of 0 (the default)
23260 or 4 means that constants of any size are allowed.
23262 @item -mrelax
23263 @opindex mrelax
23264 Enable linker relaxation.  Linker relaxation is a process whereby the
23265 linker attempts to reduce the size of a program by finding shorter
23266 versions of various instructions.  Disabled by default.
23268 @item -mint-register=@var{N}
23269 @opindex mint-register
23270 Specify the number of registers to reserve for fast interrupt handler
23271 functions.  The value @var{N} can be between 0 and 4.  A value of 1
23272 means that register @code{r13} is reserved for the exclusive use
23273 of fast interrupt handlers.  A value of 2 reserves @code{r13} and
23274 @code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
23275 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
23276 A value of 0, the default, does not reserve any registers.
23278 @item -msave-acc-in-interrupts
23279 @opindex msave-acc-in-interrupts
23280 Specifies that interrupt handler functions should preserve the
23281 accumulator register.  This is only necessary if normal code might use
23282 the accumulator register, for example because it performs 64-bit
23283 multiplications.  The default is to ignore the accumulator as this
23284 makes the interrupt handlers faster.
23286 @item -mpid
23287 @itemx -mno-pid
23288 @opindex mpid
23289 @opindex mno-pid
23290 Enables the generation of position independent data.  When enabled any
23291 access to constant data is done via an offset from a base address
23292 held in a register.  This allows the location of constant data to be
23293 determined at run time without requiring the executable to be
23294 relocated, which is a benefit to embedded applications with tight
23295 memory constraints.  Data that can be modified is not affected by this
23296 option.
23298 Note, using this feature reserves a register, usually @code{r13}, for
23299 the constant data base address.  This can result in slower and/or
23300 larger code, especially in complicated functions.
23302 The actual register chosen to hold the constant data base address
23303 depends upon whether the @option{-msmall-data-limit} and/or the
23304 @option{-mint-register} command-line options are enabled.  Starting
23305 with register @code{r13} and proceeding downwards, registers are
23306 allocated first to satisfy the requirements of @option{-mint-register},
23307 then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
23308 is possible for the small data area register to be @code{r8} if both
23309 @option{-mint-register=4} and @option{-mpid} are specified on the
23310 command line.
23312 By default this feature is not enabled.  The default can be restored
23313 via the @option{-mno-pid} command-line option.
23315 @item -mno-warn-multiple-fast-interrupts
23316 @itemx -mwarn-multiple-fast-interrupts
23317 @opindex mno-warn-multiple-fast-interrupts
23318 @opindex mwarn-multiple-fast-interrupts
23319 Prevents GCC from issuing a warning message if it finds more than one
23320 fast interrupt handler when it is compiling a file.  The default is to
23321 issue a warning for each extra fast interrupt handler found, as the RX
23322 only supports one such interrupt.
23324 @item -mallow-string-insns
23325 @itemx -mno-allow-string-insns
23326 @opindex mallow-string-insns
23327 @opindex mno-allow-string-insns
23328 Enables or disables the use of the string manipulation instructions
23329 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
23330 @code{SWHILE} and also the @code{RMPA} instruction.  These
23331 instructions may prefetch data, which is not safe to do if accessing
23332 an I/O register.  (See section 12.2.7 of the RX62N Group User's Manual
23333 for more information).
23335 The default is to allow these instructions, but it is not possible for
23336 GCC to reliably detect all circumstances where a string instruction
23337 might be used to access an I/O register, so their use cannot be
23338 disabled automatically.  Instead it is reliant upon the programmer to
23339 use the @option{-mno-allow-string-insns} option if their program
23340 accesses I/O space.
23342 When the instructions are enabled GCC defines the C preprocessor
23343 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
23344 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
23346 @item -mjsr
23347 @itemx -mno-jsr
23348 @opindex mjsr
23349 @opindex mno-jsr
23350 Use only (or not only) @code{JSR} instructions to access functions.
23351 This option can be used when code size exceeds the range of @code{BSR}
23352 instructions.  Note that @option{-mno-jsr} does not mean to not use
23353 @code{JSR} but instead means that any type of branch may be used.
23354 @end table
23356 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
23357 has special significance to the RX port when used with the
23358 @code{interrupt} function attribute.  This attribute indicates a
23359 function intended to process fast interrupts.  GCC ensures
23360 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
23361 and/or @code{r13} and only provided that the normal use of the
23362 corresponding registers have been restricted via the
23363 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
23364 options.
23366 @node S/390 and zSeries Options
23367 @subsection S/390 and zSeries Options
23368 @cindex S/390 and zSeries Options
23370 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
23372 @table @gcctabopt
23373 @item -mhard-float
23374 @itemx -msoft-float
23375 @opindex mhard-float
23376 @opindex msoft-float
23377 Use (do not use) the hardware floating-point instructions and registers
23378 for floating-point operations.  When @option{-msoft-float} is specified,
23379 functions in @file{libgcc.a} are used to perform floating-point
23380 operations.  When @option{-mhard-float} is specified, the compiler
23381 generates IEEE floating-point instructions.  This is the default.
23383 @item -mhard-dfp
23384 @itemx -mno-hard-dfp
23385 @opindex mhard-dfp
23386 @opindex mno-hard-dfp
23387 Use (do not use) the hardware decimal-floating-point instructions for
23388 decimal-floating-point operations.  When @option{-mno-hard-dfp} is
23389 specified, functions in @file{libgcc.a} are used to perform
23390 decimal-floating-point operations.  When @option{-mhard-dfp} is
23391 specified, the compiler generates decimal-floating-point hardware
23392 instructions.  This is the default for @option{-march=z9-ec} or higher.
23394 @item -mlong-double-64
23395 @itemx -mlong-double-128
23396 @opindex mlong-double-64
23397 @opindex mlong-double-128
23398 These switches control the size of @code{long double} type. A size
23399 of 64 bits makes the @code{long double} type equivalent to the @code{double}
23400 type. This is the default.
23402 @item -mbackchain
23403 @itemx -mno-backchain
23404 @opindex mbackchain
23405 @opindex mno-backchain
23406 Store (do not store) the address of the caller's frame as backchain pointer
23407 into the callee's stack frame.
23408 A backchain may be needed to allow debugging using tools that do not understand
23409 DWARF call frame information.
23410 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
23411 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
23412 the backchain is placed into the topmost word of the 96/160 byte register
23413 save area.
23415 In general, code compiled with @option{-mbackchain} is call-compatible with
23416 code compiled with @option{-mmo-backchain}; however, use of the backchain
23417 for debugging purposes usually requires that the whole binary is built with
23418 @option{-mbackchain}.  Note that the combination of @option{-mbackchain},
23419 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
23420 to build a linux kernel use @option{-msoft-float}.
23422 The default is to not maintain the backchain.
23424 @item -mpacked-stack
23425 @itemx -mno-packed-stack
23426 @opindex mpacked-stack
23427 @opindex mno-packed-stack
23428 Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
23429 specified, the compiler uses the all fields of the 96/160 byte register save
23430 area only for their default purpose; unused fields still take up stack space.
23431 When @option{-mpacked-stack} is specified, register save slots are densely
23432 packed at the top of the register save area; unused space is reused for other
23433 purposes, allowing for more efficient use of the available stack space.
23434 However, when @option{-mbackchain} is also in effect, the topmost word of
23435 the save area is always used to store the backchain, and the return address
23436 register is always saved two words below the backchain.
23438 As long as the stack frame backchain is not used, code generated with
23439 @option{-mpacked-stack} is call-compatible with code generated with
23440 @option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
23441 S/390 or zSeries generated code that uses the stack frame backchain at run
23442 time, not just for debugging purposes.  Such code is not call-compatible
23443 with code compiled with @option{-mpacked-stack}.  Also, note that the
23444 combination of @option{-mbackchain},
23445 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
23446 to build a linux kernel use @option{-msoft-float}.
23448 The default is to not use the packed stack layout.
23450 @item -msmall-exec
23451 @itemx -mno-small-exec
23452 @opindex msmall-exec
23453 @opindex mno-small-exec
23454 Generate (or do not generate) code using the @code{bras} instruction
23455 to do subroutine calls.
23456 This only works reliably if the total executable size does not
23457 exceed 64k.  The default is to use the @code{basr} instruction instead,
23458 which does not have this limitation.
23460 @item -m64
23461 @itemx -m31
23462 @opindex m64
23463 @opindex m31
23464 When @option{-m31} is specified, generate code compliant to the
23465 GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
23466 code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
23467 particular to generate 64-bit instructions.  For the @samp{s390}
23468 targets, the default is @option{-m31}, while the @samp{s390x}
23469 targets default to @option{-m64}.
23471 @item -mzarch
23472 @itemx -mesa
23473 @opindex mzarch
23474 @opindex mesa
23475 When @option{-mzarch} is specified, generate code using the
23476 instructions available on z/Architecture.
23477 When @option{-mesa} is specified, generate code using the
23478 instructions available on ESA/390.  Note that @option{-mesa} is
23479 not possible with @option{-m64}.
23480 When generating code compliant to the GNU/Linux for S/390 ABI,
23481 the default is @option{-mesa}.  When generating code compliant
23482 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
23484 @item -mhtm
23485 @itemx -mno-htm
23486 @opindex mhtm
23487 @opindex mno-htm
23488 The @option{-mhtm} option enables a set of builtins making use of
23489 instructions available with the transactional execution facility
23490 introduced with the IBM zEnterprise EC12 machine generation
23491 @ref{S/390 System z Built-in Functions}.
23492 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
23494 @item -mvx
23495 @itemx -mno-vx
23496 @opindex mvx
23497 @opindex mno-vx
23498 When @option{-mvx} is specified, generate code using the instructions
23499 available with the vector extension facility introduced with the IBM
23500 z13 machine generation.
23501 This option changes the ABI for some vector type values with regard to
23502 alignment and calling conventions.  In case vector type values are
23503 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
23504 command will be added to mark the resulting binary with the ABI used.
23505 @option{-mvx} is enabled by default when using @option{-march=z13}.
23507 @item -mzvector
23508 @itemx -mno-zvector
23509 @opindex mzvector
23510 @opindex mno-zvector
23511 The @option{-mzvector} option enables vector language extensions and
23512 builtins using instructions available with the vector extension
23513 facility introduced with the IBM z13 machine generation.
23514 This option adds support for @samp{vector} to be used as a keyword to
23515 define vector type variables and arguments.  @samp{vector} is only
23516 available when GNU extensions are enabled.  It will not be expanded
23517 when requesting strict standard compliance e.g. with @option{-std=c99}.
23518 In addition to the GCC low-level builtins @option{-mzvector} enables
23519 a set of builtins added for compatibility with AltiVec-style
23520 implementations like Power and Cell.  In order to make use of these
23521 builtins the header file @file{vecintrin.h} needs to be included.
23522 @option{-mzvector} is disabled by default.
23524 @item -mmvcle
23525 @itemx -mno-mvcle
23526 @opindex mmvcle
23527 @opindex mno-mvcle
23528 Generate (or do not generate) code using the @code{mvcle} instruction
23529 to perform block moves.  When @option{-mno-mvcle} is specified,
23530 use a @code{mvc} loop instead.  This is the default unless optimizing for
23531 size.
23533 @item -mdebug
23534 @itemx -mno-debug
23535 @opindex mdebug
23536 @opindex mno-debug
23537 Print (or do not print) additional debug information when compiling.
23538 The default is to not print debug information.
23540 @item -march=@var{cpu-type}
23541 @opindex march
23542 Generate code that runs on @var{cpu-type}, which is the name of a
23543 system representing a certain processor type.  Possible values for
23544 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
23545 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
23546 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11}, and
23547 @samp{native}.
23549 The default is @option{-march=z900}.  @samp{g5}/@samp{arch3} and
23550 @samp{g6} are deprecated and will be removed with future releases.
23552 Specifying @samp{native} as cpu type can be used to select the best
23553 architecture option for the host processor.
23554 @option{-march=native} has no effect if GCC does not recognize the
23555 processor.
23557 @item -mtune=@var{cpu-type}
23558 @opindex mtune
23559 Tune to @var{cpu-type} everything applicable about the generated code,
23560 except for the ABI and the set of available instructions.
23561 The list of @var{cpu-type} values is the same as for @option{-march}.
23562 The default is the value used for @option{-march}.
23564 @item -mtpf-trace
23565 @itemx -mno-tpf-trace
23566 @opindex mtpf-trace
23567 @opindex mno-tpf-trace
23568 Generate code that adds (does not add) in TPF OS specific branches to trace
23569 routines in the operating system.  This option is off by default, even
23570 when compiling for the TPF OS@.
23572 @item -mfused-madd
23573 @itemx -mno-fused-madd
23574 @opindex mfused-madd
23575 @opindex mno-fused-madd
23576 Generate code that uses (does not use) the floating-point multiply and
23577 accumulate instructions.  These instructions are generated by default if
23578 hardware floating point is used.
23580 @item -mwarn-framesize=@var{framesize}
23581 @opindex mwarn-framesize
23582 Emit a warning if the current function exceeds the given frame size.  Because
23583 this is a compile-time check it doesn't need to be a real problem when the program
23584 runs.  It is intended to identify functions that most probably cause
23585 a stack overflow.  It is useful to be used in an environment with limited stack
23586 size e.g.@: the linux kernel.
23588 @item -mwarn-dynamicstack
23589 @opindex mwarn-dynamicstack
23590 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
23591 arrays.  This is generally a bad idea with a limited stack size.
23593 @item -mstack-guard=@var{stack-guard}
23594 @itemx -mstack-size=@var{stack-size}
23595 @opindex mstack-guard
23596 @opindex mstack-size
23597 If these options are provided the S/390 back end emits additional instructions in
23598 the function prologue that trigger a trap if the stack size is @var{stack-guard}
23599 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
23600 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
23601 the frame size of the compiled function is chosen.
23602 These options are intended to be used to help debugging stack overflow problems.
23603 The additionally emitted code causes only little overhead and hence can also be
23604 used in production-like systems without greater performance degradation.  The given
23605 values have to be exact powers of 2 and @var{stack-size} has to be greater than
23606 @var{stack-guard} without exceeding 64k.
23607 In order to be efficient the extra code makes the assumption that the stack starts
23608 at an address aligned to the value given by @var{stack-size}.
23609 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
23611 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
23612 @opindex mhotpatch
23613 If the hotpatch option is enabled, a ``hot-patching'' function
23614 prologue is generated for all functions in the compilation unit.
23615 The funtion label is prepended with the given number of two-byte
23616 NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
23617 the label, 2 * @var{post-halfwords} bytes are appended, using the
23618 largest NOP like instructions the architecture allows (maximum
23619 1000000).
23621 If both arguments are zero, hotpatching is disabled.
23623 This option can be overridden for individual functions with the
23624 @code{hotpatch} attribute.
23625 @end table
23627 @node Score Options
23628 @subsection Score Options
23629 @cindex Score Options
23631 These options are defined for Score implementations:
23633 @table @gcctabopt
23634 @item -meb
23635 @opindex meb
23636 Compile code for big-endian mode.  This is the default.
23638 @item -mel
23639 @opindex mel
23640 Compile code for little-endian mode.
23642 @item -mnhwloop
23643 @opindex mnhwloop
23644 Disable generation of @code{bcnz} instructions.
23646 @item -muls
23647 @opindex muls
23648 Enable generation of unaligned load and store instructions.
23650 @item -mmac
23651 @opindex mmac
23652 Enable the use of multiply-accumulate instructions. Disabled by default.
23654 @item -mscore5
23655 @opindex mscore5
23656 Specify the SCORE5 as the target architecture.
23658 @item -mscore5u
23659 @opindex mscore5u
23660 Specify the SCORE5U of the target architecture.
23662 @item -mscore7
23663 @opindex mscore7
23664 Specify the SCORE7 as the target architecture. This is the default.
23666 @item -mscore7d
23667 @opindex mscore7d
23668 Specify the SCORE7D as the target architecture.
23669 @end table
23671 @node SH Options
23672 @subsection SH Options
23674 These @samp{-m} options are defined for the SH implementations:
23676 @table @gcctabopt
23677 @item -m1
23678 @opindex m1
23679 Generate code for the SH1.
23681 @item -m2
23682 @opindex m2
23683 Generate code for the SH2.
23685 @item -m2e
23686 Generate code for the SH2e.
23688 @item -m2a-nofpu
23689 @opindex m2a-nofpu
23690 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
23691 that the floating-point unit is not used.
23693 @item -m2a-single-only
23694 @opindex m2a-single-only
23695 Generate code for the SH2a-FPU, in such a way that no double-precision
23696 floating-point operations are used.
23698 @item -m2a-single
23699 @opindex m2a-single
23700 Generate code for the SH2a-FPU assuming the floating-point unit is in
23701 single-precision mode by default.
23703 @item -m2a
23704 @opindex m2a
23705 Generate code for the SH2a-FPU assuming the floating-point unit is in
23706 double-precision mode by default.
23708 @item -m3
23709 @opindex m3
23710 Generate code for the SH3.
23712 @item -m3e
23713 @opindex m3e
23714 Generate code for the SH3e.
23716 @item -m4-nofpu
23717 @opindex m4-nofpu
23718 Generate code for the SH4 without a floating-point unit.
23720 @item -m4-single-only
23721 @opindex m4-single-only
23722 Generate code for the SH4 with a floating-point unit that only
23723 supports single-precision arithmetic.
23725 @item -m4-single
23726 @opindex m4-single
23727 Generate code for the SH4 assuming the floating-point unit is in
23728 single-precision mode by default.
23730 @item -m4
23731 @opindex m4
23732 Generate code for the SH4.
23734 @item -m4-100
23735 @opindex m4-100
23736 Generate code for SH4-100.
23738 @item -m4-100-nofpu
23739 @opindex m4-100-nofpu
23740 Generate code for SH4-100 in such a way that the
23741 floating-point unit is not used.
23743 @item -m4-100-single
23744 @opindex m4-100-single
23745 Generate code for SH4-100 assuming the floating-point unit is in
23746 single-precision mode by default.
23748 @item -m4-100-single-only
23749 @opindex m4-100-single-only
23750 Generate code for SH4-100 in such a way that no double-precision
23751 floating-point operations are used.
23753 @item -m4-200
23754 @opindex m4-200
23755 Generate code for SH4-200.
23757 @item -m4-200-nofpu
23758 @opindex m4-200-nofpu
23759 Generate code for SH4-200 without in such a way that the
23760 floating-point unit is not used.
23762 @item -m4-200-single
23763 @opindex m4-200-single
23764 Generate code for SH4-200 assuming the floating-point unit is in
23765 single-precision mode by default.
23767 @item -m4-200-single-only
23768 @opindex m4-200-single-only
23769 Generate code for SH4-200 in such a way that no double-precision
23770 floating-point operations are used.
23772 @item -m4-300
23773 @opindex m4-300
23774 Generate code for SH4-300.
23776 @item -m4-300-nofpu
23777 @opindex m4-300-nofpu
23778 Generate code for SH4-300 without in such a way that the
23779 floating-point unit is not used.
23781 @item -m4-300-single
23782 @opindex m4-300-single
23783 Generate code for SH4-300 in such a way that no double-precision
23784 floating-point operations are used.
23786 @item -m4-300-single-only
23787 @opindex m4-300-single-only
23788 Generate code for SH4-300 in such a way that no double-precision
23789 floating-point operations are used.
23791 @item -m4-340
23792 @opindex m4-340
23793 Generate code for SH4-340 (no MMU, no FPU).
23795 @item -m4-500
23796 @opindex m4-500
23797 Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
23798 assembler.
23800 @item -m4a-nofpu
23801 @opindex m4a-nofpu
23802 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
23803 floating-point unit is not used.
23805 @item -m4a-single-only
23806 @opindex m4a-single-only
23807 Generate code for the SH4a, in such a way that no double-precision
23808 floating-point operations are used.
23810 @item -m4a-single
23811 @opindex m4a-single
23812 Generate code for the SH4a assuming the floating-point unit is in
23813 single-precision mode by default.
23815 @item -m4a
23816 @opindex m4a
23817 Generate code for the SH4a.
23819 @item -m4al
23820 @opindex m4al
23821 Same as @option{-m4a-nofpu}, except that it implicitly passes
23822 @option{-dsp} to the assembler.  GCC doesn't generate any DSP
23823 instructions at the moment.
23825 @item -mb
23826 @opindex mb
23827 Compile code for the processor in big-endian mode.
23829 @item -ml
23830 @opindex ml
23831 Compile code for the processor in little-endian mode.
23833 @item -mdalign
23834 @opindex mdalign
23835 Align doubles at 64-bit boundaries.  Note that this changes the calling
23836 conventions, and thus some functions from the standard C library do
23837 not work unless you recompile it first with @option{-mdalign}.
23839 @item -mrelax
23840 @opindex mrelax
23841 Shorten some address references at link time, when possible; uses the
23842 linker option @option{-relax}.
23844 @item -mbigtable
23845 @opindex mbigtable
23846 Use 32-bit offsets in @code{switch} tables.  The default is to use
23847 16-bit offsets.
23849 @item -mbitops
23850 @opindex mbitops
23851 Enable the use of bit manipulation instructions on SH2A.
23853 @item -mfmovd
23854 @opindex mfmovd
23855 Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
23856 alignment constraints.
23858 @item -mrenesas
23859 @opindex mrenesas
23860 Comply with the calling conventions defined by Renesas.
23862 @item -mno-renesas
23863 @opindex mno-renesas
23864 Comply with the calling conventions defined for GCC before the Renesas
23865 conventions were available.  This option is the default for all
23866 targets of the SH toolchain.
23868 @item -mnomacsave
23869 @opindex mnomacsave
23870 Mark the @code{MAC} register as call-clobbered, even if
23871 @option{-mrenesas} is given.
23873 @item -mieee
23874 @itemx -mno-ieee
23875 @opindex mieee
23876 @opindex mno-ieee
23877 Control the IEEE compliance of floating-point comparisons, which affects the
23878 handling of cases where the result of a comparison is unordered.  By default
23879 @option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
23880 enabled @option{-mno-ieee} is implicitly set, which results in faster
23881 floating-point greater-equal and less-equal comparisons.  The implicit settings
23882 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
23884 @item -minline-ic_invalidate
23885 @opindex minline-ic_invalidate
23886 Inline code to invalidate instruction cache entries after setting up
23887 nested function trampolines.
23888 This option has no effect if @option{-musermode} is in effect and the selected
23889 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
23890 instruction.
23891 If the selected code generation option does not allow the use of the @code{icbi}
23892 instruction, and @option{-musermode} is not in effect, the inlined code
23893 manipulates the instruction cache address array directly with an associative
23894 write.  This not only requires privileged mode at run time, but it also
23895 fails if the cache line had been mapped via the TLB and has become unmapped.
23897 @item -misize
23898 @opindex misize
23899 Dump instruction size and location in the assembly code.
23901 @item -mpadstruct
23902 @opindex mpadstruct
23903 This option is deprecated.  It pads structures to multiple of 4 bytes,
23904 which is incompatible with the SH ABI@.
23906 @item -matomic-model=@var{model}
23907 @opindex matomic-model=@var{model}
23908 Sets the model of atomic operations and additional parameters as a comma
23909 separated list.  For details on the atomic built-in functions see
23910 @ref{__atomic Builtins}.  The following models and parameters are supported:
23912 @table @samp
23914 @item none
23915 Disable compiler generated atomic sequences and emit library calls for atomic
23916 operations.  This is the default if the target is not @code{sh*-*-linux*}.
23918 @item soft-gusa
23919 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
23920 built-in functions.  The generated atomic sequences require additional support
23921 from the interrupt/exception handling code of the system and are only suitable
23922 for SH3* and SH4* single-core systems.  This option is enabled by default when
23923 the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
23924 this option also partially utilizes the hardware atomic instructions
23925 @code{movli.l} and @code{movco.l} to create more efficient code, unless
23926 @samp{strict} is specified.  
23928 @item soft-tcb
23929 Generate software atomic sequences that use a variable in the thread control
23930 block.  This is a variation of the gUSA sequences which can also be used on
23931 SH1* and SH2* targets.  The generated atomic sequences require additional
23932 support from the interrupt/exception handling code of the system and are only
23933 suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
23934 parameter has to be specified as well.
23936 @item soft-imask
23937 Generate software atomic sequences that temporarily disable interrupts by
23938 setting @code{SR.IMASK = 1111}.  This model works only when the program runs
23939 in privileged mode and is only suitable for single-core systems.  Additional
23940 support from the interrupt/exception handling code of the system is not
23941 required.  This model is enabled by default when the target is
23942 @code{sh*-*-linux*} and SH1* or SH2*.
23944 @item hard-llcs
23945 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
23946 instructions only.  This is only available on SH4A and is suitable for
23947 multi-core systems.  Since the hardware instructions support only 32 bit atomic
23948 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
23949 Code compiled with this option is also compatible with other software
23950 atomic model interrupt/exception handling systems if executed on an SH4A
23951 system.  Additional support from the interrupt/exception handling code of the
23952 system is not required for this model.
23954 @item gbr-offset=
23955 This parameter specifies the offset in bytes of the variable in the thread
23956 control block structure that should be used by the generated atomic sequences
23957 when the @samp{soft-tcb} model has been selected.  For other models this
23958 parameter is ignored.  The specified value must be an integer multiple of four
23959 and in the range 0-1020.
23961 @item strict
23962 This parameter prevents mixed usage of multiple atomic models, even if they
23963 are compatible, and makes the compiler generate atomic sequences of the
23964 specified model only.
23966 @end table
23968 @item -mtas
23969 @opindex mtas
23970 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
23971 Notice that depending on the particular hardware and software configuration
23972 this can degrade overall performance due to the operand cache line flushes
23973 that are implied by the @code{tas.b} instruction.  On multi-core SH4A
23974 processors the @code{tas.b} instruction must be used with caution since it
23975 can result in data corruption for certain cache configurations.
23977 @item -mprefergot
23978 @opindex mprefergot
23979 When generating position-independent code, emit function calls using
23980 the Global Offset Table instead of the Procedure Linkage Table.
23982 @item -musermode
23983 @itemx -mno-usermode
23984 @opindex musermode
23985 @opindex mno-usermode
23986 Don't allow (allow) the compiler generating privileged mode code.  Specifying
23987 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
23988 inlined code would not work in user mode.  @option{-musermode} is the default
23989 when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
23990 @option{-musermode} has no effect, since there is no user mode.
23992 @item -multcost=@var{number}
23993 @opindex multcost=@var{number}
23994 Set the cost to assume for a multiply insn.
23996 @item -mdiv=@var{strategy}
23997 @opindex mdiv=@var{strategy}
23998 Set the division strategy to be used for integer division operations.
23999 @var{strategy} can be one of: 
24001 @table @samp
24003 @item call-div1
24004 Calls a library function that uses the single-step division instruction
24005 @code{div1} to perform the operation.  Division by zero calculates an
24006 unspecified result and does not trap.  This is the default except for SH4,
24007 SH2A and SHcompact.
24009 @item call-fp
24010 Calls a library function that performs the operation in double precision
24011 floating point.  Division by zero causes a floating-point exception.  This is
24012 the default for SHcompact with FPU.  Specifying this for targets that do not
24013 have a double precision FPU defaults to @code{call-div1}.
24015 @item call-table
24016 Calls a library function that uses a lookup table for small divisors and
24017 the @code{div1} instruction with case distinction for larger divisors.  Division
24018 by zero calculates an unspecified result and does not trap.  This is the default
24019 for SH4.  Specifying this for targets that do not have dynamic shift
24020 instructions defaults to @code{call-div1}.
24022 @end table
24024 When a division strategy has not been specified the default strategy is
24025 selected based on the current target.  For SH2A the default strategy is to
24026 use the @code{divs} and @code{divu} instructions instead of library function
24027 calls.
24029 @item -maccumulate-outgoing-args
24030 @opindex maccumulate-outgoing-args
24031 Reserve space once for outgoing arguments in the function prologue rather
24032 than around each call.  Generally beneficial for performance and size.  Also
24033 needed for unwinding to avoid changing the stack frame around conditional code.
24035 @item -mdivsi3_libfunc=@var{name}
24036 @opindex mdivsi3_libfunc=@var{name}
24037 Set the name of the library function used for 32-bit signed division to
24038 @var{name}.
24039 This only affects the name used in the @samp{call} division strategies, and
24040 the compiler still expects the same sets of input/output/clobbered registers as
24041 if this option were not present.
24043 @item -mfixed-range=@var{register-range}
24044 @opindex mfixed-range
24045 Generate code treating the given register range as fixed registers.
24046 A fixed register is one that the register allocator can not use.  This is
24047 useful when compiling kernel code.  A register range is specified as
24048 two registers separated by a dash.  Multiple register ranges can be
24049 specified separated by a comma.
24051 @item -mbranch-cost=@var{num}
24052 @opindex mbranch-cost=@var{num}
24053 Assume @var{num} to be the cost for a branch instruction.  Higher numbers
24054 make the compiler try to generate more branch-free code if possible.  
24055 If not specified the value is selected depending on the processor type that
24056 is being compiled for.
24058 @item -mzdcbranch
24059 @itemx -mno-zdcbranch
24060 @opindex mzdcbranch
24061 @opindex mno-zdcbranch
24062 Assume (do not assume) that zero displacement conditional branch instructions
24063 @code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
24064 compiler prefers zero displacement branch code sequences.  This is
24065 enabled by default when generating code for SH4 and SH4A.  It can be explicitly
24066 disabled by specifying @option{-mno-zdcbranch}.
24068 @item -mcbranch-force-delay-slot
24069 @opindex mcbranch-force-delay-slot
24070 Force the usage of delay slots for conditional branches, which stuffs the delay
24071 slot with a @code{nop} if a suitable instruction cannot be found.  By default
24072 this option is disabled.  It can be enabled to work around hardware bugs as
24073 found in the original SH7055.
24075 @item -mfused-madd
24076 @itemx -mno-fused-madd
24077 @opindex mfused-madd
24078 @opindex mno-fused-madd
24079 Generate code that uses (does not use) the floating-point multiply and
24080 accumulate instructions.  These instructions are generated by default
24081 if hardware floating point is used.  The machine-dependent
24082 @option{-mfused-madd} option is now mapped to the machine-independent
24083 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24084 mapped to @option{-ffp-contract=off}.
24086 @item -mfsca
24087 @itemx -mno-fsca
24088 @opindex mfsca
24089 @opindex mno-fsca
24090 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
24091 and cosine approximations.  The option @option{-mfsca} must be used in
24092 combination with @option{-funsafe-math-optimizations}.  It is enabled by default
24093 when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
24094 approximations even if @option{-funsafe-math-optimizations} is in effect.
24096 @item -mfsrra
24097 @itemx -mno-fsrra
24098 @opindex mfsrra
24099 @opindex mno-fsrra
24100 Allow or disallow the compiler to emit the @code{fsrra} instruction for
24101 reciprocal square root approximations.  The option @option{-mfsrra} must be used
24102 in combination with @option{-funsafe-math-optimizations} and
24103 @option{-ffinite-math-only}.  It is enabled by default when generating code for
24104 SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
24105 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
24106 in effect.
24108 @item -mpretend-cmove
24109 @opindex mpretend-cmove
24110 Prefer zero-displacement conditional branches for conditional move instruction
24111 patterns.  This can result in faster code on the SH4 processor.
24113 @item -mfdpic
24114 @opindex fdpic
24115 Generate code using the FDPIC ABI.
24117 @end table
24119 @node Solaris 2 Options
24120 @subsection Solaris 2 Options
24121 @cindex Solaris 2 options
24123 These @samp{-m} options are supported on Solaris 2:
24125 @table @gcctabopt
24126 @item -mclear-hwcap
24127 @opindex mclear-hwcap
24128 @option{-mclear-hwcap} tells the compiler to remove the hardware
24129 capabilities generated by the Solaris assembler.  This is only necessary
24130 when object files use ISA extensions not supported by the current
24131 machine, but check at runtime whether or not to use them.
24133 @item -mimpure-text
24134 @opindex mimpure-text
24135 @option{-mimpure-text}, used in addition to @option{-shared}, tells
24136 the compiler to not pass @option{-z text} to the linker when linking a
24137 shared object.  Using this option, you can link position-dependent
24138 code into a shared object.
24140 @option{-mimpure-text} suppresses the ``relocations remain against
24141 allocatable but non-writable sections'' linker error message.
24142 However, the necessary relocations trigger copy-on-write, and the
24143 shared object is not actually shared across processes.  Instead of
24144 using @option{-mimpure-text}, you should compile all source code with
24145 @option{-fpic} or @option{-fPIC}.
24147 @end table
24149 These switches are supported in addition to the above on Solaris 2:
24151 @table @gcctabopt
24152 @item -pthreads
24153 @opindex pthreads
24154 This is a synonym for @option{-pthread}.
24155 @end table
24157 @node SPARC Options
24158 @subsection SPARC Options
24159 @cindex SPARC options
24161 These @samp{-m} options are supported on the SPARC:
24163 @table @gcctabopt
24164 @item -mno-app-regs
24165 @itemx -mapp-regs
24166 @opindex mno-app-regs
24167 @opindex mapp-regs
24168 Specify @option{-mapp-regs} to generate output using the global registers
24169 2 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
24170 global register 1, each global register 2 through 4 is then treated as an
24171 allocable register that is clobbered by function calls.  This is the default.
24173 To be fully SVR4 ABI-compliant at the cost of some performance loss,
24174 specify @option{-mno-app-regs}.  You should compile libraries and system
24175 software with this option.
24177 @item -mflat
24178 @itemx -mno-flat
24179 @opindex mflat
24180 @opindex mno-flat
24181 With @option{-mflat}, the compiler does not generate save/restore instructions
24182 and uses a ``flat'' or single register window model.  This model is compatible
24183 with the regular register window model.  The local registers and the input
24184 registers (0--5) are still treated as ``call-saved'' registers and are
24185 saved on the stack as needed.
24187 With @option{-mno-flat} (the default), the compiler generates save/restore
24188 instructions (except for leaf functions).  This is the normal operating mode.
24190 @item -mfpu
24191 @itemx -mhard-float
24192 @opindex mfpu
24193 @opindex mhard-float
24194 Generate output containing floating-point instructions.  This is the
24195 default.
24197 @item -mno-fpu
24198 @itemx -msoft-float
24199 @opindex mno-fpu
24200 @opindex msoft-float
24201 Generate output containing library calls for floating point.
24202 @strong{Warning:} the requisite libraries are not available for all SPARC
24203 targets.  Normally the facilities of the machine's usual C compiler are
24204 used, but this cannot be done directly in cross-compilation.  You must make
24205 your own arrangements to provide suitable library functions for
24206 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
24207 @samp{sparclite-*-*} do provide software floating-point support.
24209 @option{-msoft-float} changes the calling convention in the output file;
24210 therefore, it is only useful if you compile @emph{all} of a program with
24211 this option.  In particular, you need to compile @file{libgcc.a}, the
24212 library that comes with GCC, with @option{-msoft-float} in order for
24213 this to work.
24215 @item -mhard-quad-float
24216 @opindex mhard-quad-float
24217 Generate output containing quad-word (long double) floating-point
24218 instructions.
24220 @item -msoft-quad-float
24221 @opindex msoft-quad-float
24222 Generate output containing library calls for quad-word (long double)
24223 floating-point instructions.  The functions called are those specified
24224 in the SPARC ABI@.  This is the default.
24226 As of this writing, there are no SPARC implementations that have hardware
24227 support for the quad-word floating-point instructions.  They all invoke
24228 a trap handler for one of these instructions, and then the trap handler
24229 emulates the effect of the instruction.  Because of the trap handler overhead,
24230 this is much slower than calling the ABI library routines.  Thus the
24231 @option{-msoft-quad-float} option is the default.
24233 @item -mno-unaligned-doubles
24234 @itemx -munaligned-doubles
24235 @opindex mno-unaligned-doubles
24236 @opindex munaligned-doubles
24237 Assume that doubles have 8-byte alignment.  This is the default.
24239 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
24240 alignment only if they are contained in another type, or if they have an
24241 absolute address.  Otherwise, it assumes they have 4-byte alignment.
24242 Specifying this option avoids some rare compatibility problems with code
24243 generated by other compilers.  It is not the default because it results
24244 in a performance loss, especially for floating-point code.
24246 @item -muser-mode
24247 @itemx -mno-user-mode
24248 @opindex muser-mode
24249 @opindex mno-user-mode
24250 Do not generate code that can only run in supervisor mode.  This is relevant
24251 only for the @code{casa} instruction emitted for the LEON3 processor.  This
24252 is the default.
24254 @item -mfaster-structs
24255 @itemx -mno-faster-structs
24256 @opindex mfaster-structs
24257 @opindex mno-faster-structs
24258 With @option{-mfaster-structs}, the compiler assumes that structures
24259 should have 8-byte alignment.  This enables the use of pairs of
24260 @code{ldd} and @code{std} instructions for copies in structure
24261 assignment, in place of twice as many @code{ld} and @code{st} pairs.
24262 However, the use of this changed alignment directly violates the SPARC
24263 ABI@.  Thus, it's intended only for use on targets where the developer
24264 acknowledges that their resulting code is not directly in line with
24265 the rules of the ABI@.
24267 @item -mstd-struct-return
24268 @itemx -mno-std-struct-return
24269 @opindex mstd-struct-return
24270 @opindex mno-std-struct-return
24271 With @option{-mstd-struct-return}, the compiler generates checking code
24272 in functions returning structures or unions to detect size mismatches
24273 between the two sides of function calls, as per the 32-bit ABI@.
24275 The default is @option{-mno-std-struct-return}.  This option has no effect
24276 in 64-bit mode.
24278 @item -mlra
24279 @itemx -mno-lra
24280 @opindex mlra
24281 @opindex mno-lra
24282 Enable Local Register Allocation.  This is the default for SPARC since GCC 7
24283 so @option{-mno-lra} needs to be passed to get old Reload.
24285 @item -mcpu=@var{cpu_type}
24286 @opindex mcpu
24287 Set the instruction set, register set, and instruction scheduling parameters
24288 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
24289 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
24290 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
24291 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
24292 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
24293 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
24295 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
24296 which selects the best architecture option for the host processor.
24297 @option{-mcpu=native} has no effect if GCC does not recognize
24298 the processor.
24300 Default instruction scheduling parameters are used for values that select
24301 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
24302 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
24304 Here is a list of each supported architecture and their supported
24305 implementations.
24307 @table @asis
24308 @item v7
24309 cypress, leon3v7
24311 @item v8
24312 supersparc, hypersparc, leon, leon3
24314 @item sparclite
24315 f930, f934, sparclite86x
24317 @item sparclet
24318 tsc701
24320 @item v9
24321 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
24322 niagara7, m8
24323 @end table
24325 By default (unless configured otherwise), GCC generates code for the V7
24326 variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
24327 additionally optimizes it for the Cypress CY7C602 chip, as used in the
24328 SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
24329 SPARCStation 1, 2, IPX etc.
24331 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
24332 architecture.  The only difference from V7 code is that the compiler emits
24333 the integer multiply and integer divide instructions which exist in SPARC-V8
24334 but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
24335 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
24336 2000 series.
24338 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
24339 the SPARC architecture.  This adds the integer multiply, integer divide step
24340 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
24341 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
24342 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
24343 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
24344 MB86934 chip, which is the more recent SPARClite with FPU@.
24346 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
24347 the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
24348 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
24349 but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
24350 optimizes it for the TEMIC SPARClet chip.
24352 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
24353 architecture.  This adds 64-bit integer and floating-point move instructions,
24354 3 additional floating-point condition code registers and conditional move
24355 instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
24356 optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
24357 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
24358 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
24359 @option{-mcpu=niagara}, the compiler additionally optimizes it for
24360 Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
24361 additionally optimizes it for Sun UltraSPARC T2 chips. With
24362 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
24363 UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
24364 additionally optimizes it for Sun UltraSPARC T4 chips.  With
24365 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
24366 Oracle SPARC M7 chips.  With @option{-mcpu=m8}, the compiler
24367 additionally optimizes it for Oracle M8 chips.
24369 @item -mtune=@var{cpu_type}
24370 @opindex mtune
24371 Set the instruction scheduling parameters for machine type
24372 @var{cpu_type}, but do not set the instruction set or register set that the
24373 option @option{-mcpu=@var{cpu_type}} does.
24375 The same values for @option{-mcpu=@var{cpu_type}} can be used for
24376 @option{-mtune=@var{cpu_type}}, but the only useful values are those
24377 that select a particular CPU implementation.  Those are
24378 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
24379 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
24380 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
24381 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
24382 @samp{niagara4}, @samp{niagara7} and @samp{m8}.  With native Solaris
24383 and GNU/Linux toolchains, @samp{native} can also be used.
24385 @item -mv8plus
24386 @itemx -mno-v8plus
24387 @opindex mv8plus
24388 @opindex mno-v8plus
24389 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
24390 difference from the V8 ABI is that the global and out registers are
24391 considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
24392 mode for all SPARC-V9 processors.
24394 @item -mvis
24395 @itemx -mno-vis
24396 @opindex mvis
24397 @opindex mno-vis
24398 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
24399 Visual Instruction Set extensions.  The default is @option{-mno-vis}.
24401 @item -mvis2
24402 @itemx -mno-vis2
24403 @opindex mvis2
24404 @opindex mno-vis2
24405 With @option{-mvis2}, GCC generates code that takes advantage of
24406 version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
24407 default is @option{-mvis2} when targeting a cpu that supports such
24408 instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
24409 also sets @option{-mvis}.
24411 @item -mvis3
24412 @itemx -mno-vis3
24413 @opindex mvis3
24414 @opindex mno-vis3
24415 With @option{-mvis3}, GCC generates code that takes advantage of
24416 version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
24417 default is @option{-mvis3} when targeting a cpu that supports such
24418 instructions, such as niagara-3 and later.  Setting @option{-mvis3}
24419 also sets @option{-mvis2} and @option{-mvis}.
24421 @item -mvis4
24422 @itemx -mno-vis4
24423 @opindex mvis4
24424 @opindex mno-vis4
24425 With @option{-mvis4}, GCC generates code that takes advantage of
24426 version 4.0 of the UltraSPARC Visual Instruction Set extensions.  The
24427 default is @option{-mvis4} when targeting a cpu that supports such
24428 instructions, such as niagara-7 and later.  Setting @option{-mvis4}
24429 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
24431 @item -mvis4b
24432 @itemx -mno-vis4b
24433 @opindex mvis4b
24434 @opindex mno-vis4b
24435 With @option{-mvis4b}, GCC generates code that takes advantage of
24436 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
24437 the additional VIS instructions introduced in the Oracle SPARC
24438 Architecture 2017.  The default is @option{-mvis4b} when targeting a
24439 cpu that supports such instructions, such as m8 and later.  Setting
24440 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
24441 @option{-mvis2} and @option{-mvis}.
24443 @item -mcbcond
24444 @itemx -mno-cbcond
24445 @opindex mcbcond
24446 @opindex mno-cbcond
24447 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
24448 Compare-and-Branch-on-Condition instructions.  The default is @option{-mcbcond}
24449 when targeting a CPU that supports such instructions, such as Niagara-4 and
24450 later.
24452 @item -mfmaf
24453 @itemx -mno-fmaf
24454 @opindex mfmaf
24455 @opindex mno-fmaf
24456 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
24457 Fused Multiply-Add Floating-point instructions.  The default is @option{-mfmaf}
24458 when targeting a CPU that supports such instructions, such as Niagara-3 and
24459 later.
24461 @item -mfsmuld
24462 @itemx -mno-fsmuld
24463 @opindex mfsmuld
24464 @opindex mno-fsmuld
24465 With @option{-mfsmuld}, GCC generates code that takes advantage of the
24466 Floating-point Multiply Single to Double (FsMULd) instruction.  The default is
24467 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
24468 or V9 with FPU except @option{-mcpu=leon}.
24470 @item -mpopc
24471 @itemx -mno-popc
24472 @opindex mpopc
24473 @opindex mno-popc
24474 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
24475 Population Count instruction.  The default is @option{-mpopc}
24476 when targeting a CPU that supports such an instruction, such as Niagara-2 and
24477 later.
24479 @item -msubxc
24480 @itemx -mno-subxc
24481 @opindex msubxc
24482 @opindex mno-subxc
24483 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
24484 Subtract-Extended-with-Carry instruction.  The default is @option{-msubxc}
24485 when targeting a CPU that supports such an instruction, such as Niagara-7 and
24486 later.
24488 @item -mfix-at697f
24489 @opindex mfix-at697f
24490 Enable the documented workaround for the single erratum of the Atmel AT697F
24491 processor (which corresponds to erratum #13 of the AT697E processor).
24493 @item -mfix-ut699
24494 @opindex mfix-ut699
24495 Enable the documented workarounds for the floating-point errata and the data
24496 cache nullify errata of the UT699 processor.
24498 @item -mfix-ut700
24499 @opindex mfix-ut700
24500 Enable the documented workaround for the back-to-back store errata of
24501 the UT699E/UT700 processor.
24503 @item -mfix-gr712rc
24504 @opindex mfix-gr712rc
24505 Enable the documented workaround for the back-to-back store errata of
24506 the GR712RC processor.
24507 @end table
24509 These @samp{-m} options are supported in addition to the above
24510 on SPARC-V9 processors in 64-bit environments:
24512 @table @gcctabopt
24513 @item -m32
24514 @itemx -m64
24515 @opindex m32
24516 @opindex m64
24517 Generate code for a 32-bit or 64-bit environment.
24518 The 32-bit environment sets int, long and pointer to 32 bits.
24519 The 64-bit environment sets int to 32 bits and long and pointer
24520 to 64 bits.
24522 @item -mcmodel=@var{which}
24523 @opindex mcmodel
24524 Set the code model to one of
24526 @table @samp
24527 @item medlow
24528 The Medium/Low code model: 64-bit addresses, programs
24529 must be linked in the low 32 bits of memory.  Programs can be statically
24530 or dynamically linked.
24532 @item medmid
24533 The Medium/Middle code model: 64-bit addresses, programs
24534 must be linked in the low 44 bits of memory, the text and data segments must
24535 be less than 2GB in size and the data segment must be located within 2GB of
24536 the text segment.
24538 @item medany
24539 The Medium/Anywhere code model: 64-bit addresses, programs
24540 may be linked anywhere in memory, the text and data segments must be less
24541 than 2GB in size and the data segment must be located within 2GB of the
24542 text segment.
24544 @item embmedany
24545 The Medium/Anywhere code model for embedded systems:
24546 64-bit addresses, the text and data segments must be less than 2GB in
24547 size, both starting anywhere in memory (determined at link time).  The
24548 global register %g4 points to the base of the data segment.  Programs
24549 are statically linked and PIC is not supported.
24550 @end table
24552 @item -mmemory-model=@var{mem-model}
24553 @opindex mmemory-model
24554 Set the memory model in force on the processor to one of
24556 @table @samp
24557 @item default
24558 The default memory model for the processor and operating system.
24560 @item rmo
24561 Relaxed Memory Order
24563 @item pso
24564 Partial Store Order
24566 @item tso
24567 Total Store Order
24569 @item sc
24570 Sequential Consistency
24571 @end table
24573 These memory models are formally defined in Appendix D of the SPARC-V9
24574 architecture manual, as set in the processor's @code{PSTATE.MM} field.
24576 @item -mstack-bias
24577 @itemx -mno-stack-bias
24578 @opindex mstack-bias
24579 @opindex mno-stack-bias
24580 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
24581 frame pointer if present, are offset by @minus{}2047 which must be added back
24582 when making stack frame references.  This is the default in 64-bit mode.
24583 Otherwise, assume no such offset is present.
24584 @end table
24586 @node SPU Options
24587 @subsection SPU Options
24588 @cindex SPU options
24590 These @samp{-m} options are supported on the SPU:
24592 @table @gcctabopt
24593 @item -mwarn-reloc
24594 @itemx -merror-reloc
24595 @opindex mwarn-reloc
24596 @opindex merror-reloc
24598 The loader for SPU does not handle dynamic relocations.  By default, GCC
24599 gives an error when it generates code that requires a dynamic
24600 relocation.  @option{-mno-error-reloc} disables the error,
24601 @option{-mwarn-reloc} generates a warning instead.
24603 @item -msafe-dma
24604 @itemx -munsafe-dma
24605 @opindex msafe-dma
24606 @opindex munsafe-dma
24608 Instructions that initiate or test completion of DMA must not be
24609 reordered with respect to loads and stores of the memory that is being
24610 accessed.
24611 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
24612 memory accesses, but that can lead to inefficient code in places where the
24613 memory is known to not change.  Rather than mark the memory as volatile,
24614 you can use @option{-msafe-dma} to tell the compiler to treat
24615 the DMA instructions as potentially affecting all memory.  
24617 @item -mbranch-hints
24618 @opindex mbranch-hints
24620 By default, GCC generates a branch hint instruction to avoid
24621 pipeline stalls for always-taken or probably-taken branches.  A hint
24622 is not generated closer than 8 instructions away from its branch.
24623 There is little reason to disable them, except for debugging purposes,
24624 or to make an object a little bit smaller.
24626 @item -msmall-mem
24627 @itemx -mlarge-mem
24628 @opindex msmall-mem
24629 @opindex mlarge-mem
24631 By default, GCC generates code assuming that addresses are never larger
24632 than 18 bits.  With @option{-mlarge-mem} code is generated that assumes
24633 a full 32-bit address.
24635 @item -mstdmain
24636 @opindex mstdmain
24638 By default, GCC links against startup code that assumes the SPU-style
24639 main function interface (which has an unconventional parameter list).
24640 With @option{-mstdmain}, GCC links your program against startup
24641 code that assumes a C99-style interface to @code{main}, including a
24642 local copy of @code{argv} strings.
24644 @item -mfixed-range=@var{register-range}
24645 @opindex mfixed-range
24646 Generate code treating the given register range as fixed registers.
24647 A fixed register is one that the register allocator cannot use.  This is
24648 useful when compiling kernel code.  A register range is specified as
24649 two registers separated by a dash.  Multiple register ranges can be
24650 specified separated by a comma.
24652 @item -mea32
24653 @itemx -mea64
24654 @opindex mea32
24655 @opindex mea64
24656 Compile code assuming that pointers to the PPU address space accessed
24657 via the @code{__ea} named address space qualifier are either 32 or 64
24658 bits wide.  The default is 32 bits.  As this is an ABI-changing option,
24659 all object code in an executable must be compiled with the same setting.
24661 @item -maddress-space-conversion
24662 @itemx -mno-address-space-conversion
24663 @opindex maddress-space-conversion
24664 @opindex mno-address-space-conversion
24665 Allow/disallow treating the @code{__ea} address space as superset
24666 of the generic address space.  This enables explicit type casts
24667 between @code{__ea} and generic pointer as well as implicit
24668 conversions of generic pointers to @code{__ea} pointers.  The
24669 default is to allow address space pointer conversions.
24671 @item -mcache-size=@var{cache-size}
24672 @opindex mcache-size
24673 This option controls the version of libgcc that the compiler links to an
24674 executable and selects a software-managed cache for accessing variables
24675 in the @code{__ea} address space with a particular cache size.  Possible
24676 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
24677 and @samp{128}.  The default cache size is 64KB.
24679 @item -matomic-updates
24680 @itemx -mno-atomic-updates
24681 @opindex matomic-updates
24682 @opindex mno-atomic-updates
24683 This option controls the version of libgcc that the compiler links to an
24684 executable and selects whether atomic updates to the software-managed
24685 cache of PPU-side variables are used.  If you use atomic updates, changes
24686 to a PPU variable from SPU code using the @code{__ea} named address space
24687 qualifier do not interfere with changes to other PPU variables residing
24688 in the same cache line from PPU code.  If you do not use atomic updates,
24689 such interference may occur; however, writing back cache lines is
24690 more efficient.  The default behavior is to use atomic updates.
24692 @item -mdual-nops
24693 @itemx -mdual-nops=@var{n}
24694 @opindex mdual-nops
24695 By default, GCC inserts NOPs to increase dual issue when it expects
24696 it to increase performance.  @var{n} can be a value from 0 to 10.  A
24697 smaller @var{n} inserts fewer NOPs.  10 is the default, 0 is the
24698 same as @option{-mno-dual-nops}.  Disabled with @option{-Os}.
24700 @item -mhint-max-nops=@var{n}
24701 @opindex mhint-max-nops
24702 Maximum number of NOPs to insert for a branch hint.  A branch hint must
24703 be at least 8 instructions away from the branch it is affecting.  GCC
24704 inserts up to @var{n} NOPs to enforce this, otherwise it does not
24705 generate the branch hint.
24707 @item -mhint-max-distance=@var{n}
24708 @opindex mhint-max-distance
24709 The encoding of the branch hint instruction limits the hint to be within
24710 256 instructions of the branch it is affecting.  By default, GCC makes
24711 sure it is within 125.
24713 @item -msafe-hints
24714 @opindex msafe-hints
24715 Work around a hardware bug that causes the SPU to stall indefinitely.
24716 By default, GCC inserts the @code{hbrp} instruction to make sure
24717 this stall won't happen.
24719 @end table
24721 @node System V Options
24722 @subsection Options for System V
24724 These additional options are available on System V Release 4 for
24725 compatibility with other compilers on those systems:
24727 @table @gcctabopt
24728 @item -G
24729 @opindex G
24730 Create a shared object.
24731 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
24733 @item -Qy
24734 @opindex Qy
24735 Identify the versions of each tool used by the compiler, in a
24736 @code{.ident} assembler directive in the output.
24738 @item -Qn
24739 @opindex Qn
24740 Refrain from adding @code{.ident} directives to the output file (this is
24741 the default).
24743 @item -YP,@var{dirs}
24744 @opindex YP
24745 Search the directories @var{dirs}, and no others, for libraries
24746 specified with @option{-l}.
24748 @item -Ym,@var{dir}
24749 @opindex Ym
24750 Look in the directory @var{dir} to find the M4 preprocessor.
24751 The assembler uses this option.
24752 @c This is supposed to go with a -Yd for predefined M4 macro files, but
24753 @c the generic assembler that comes with Solaris takes just -Ym.
24754 @end table
24756 @node TILE-Gx Options
24757 @subsection TILE-Gx Options
24758 @cindex TILE-Gx options
24760 These @samp{-m} options are supported on the TILE-Gx:
24762 @table @gcctabopt
24763 @item -mcmodel=small
24764 @opindex mcmodel=small
24765 Generate code for the small model.  The distance for direct calls is
24766 limited to 500M in either direction.  PC-relative addresses are 32
24767 bits.  Absolute addresses support the full address range.
24769 @item -mcmodel=large
24770 @opindex mcmodel=large
24771 Generate code for the large model.  There is no limitation on call
24772 distance, pc-relative addresses, or absolute addresses.
24774 @item -mcpu=@var{name}
24775 @opindex mcpu
24776 Selects the type of CPU to be targeted.  Currently the only supported
24777 type is @samp{tilegx}.
24779 @item -m32
24780 @itemx -m64
24781 @opindex m32
24782 @opindex m64
24783 Generate code for a 32-bit or 64-bit environment.  The 32-bit
24784 environment sets int, long, and pointer to 32 bits.  The 64-bit
24785 environment sets int to 32 bits and long and pointer to 64 bits.
24787 @item -mbig-endian
24788 @itemx -mlittle-endian
24789 @opindex mbig-endian
24790 @opindex mlittle-endian
24791 Generate code in big/little endian mode, respectively.
24792 @end table
24794 @node TILEPro Options
24795 @subsection TILEPro Options
24796 @cindex TILEPro options
24798 These @samp{-m} options are supported on the TILEPro:
24800 @table @gcctabopt
24801 @item -mcpu=@var{name}
24802 @opindex mcpu
24803 Selects the type of CPU to be targeted.  Currently the only supported
24804 type is @samp{tilepro}.
24806 @item -m32
24807 @opindex m32
24808 Generate code for a 32-bit environment, which sets int, long, and
24809 pointer to 32 bits.  This is the only supported behavior so the flag
24810 is essentially ignored.
24811 @end table
24813 @node V850 Options
24814 @subsection V850 Options
24815 @cindex V850 Options
24817 These @samp{-m} options are defined for V850 implementations:
24819 @table @gcctabopt
24820 @item -mlong-calls
24821 @itemx -mno-long-calls
24822 @opindex mlong-calls
24823 @opindex mno-long-calls
24824 Treat all calls as being far away (near).  If calls are assumed to be
24825 far away, the compiler always loads the function's address into a
24826 register, and calls indirect through the pointer.
24828 @item -mno-ep
24829 @itemx -mep
24830 @opindex mno-ep
24831 @opindex mep
24832 Do not optimize (do optimize) basic blocks that use the same index
24833 pointer 4 or more times to copy pointer into the @code{ep} register, and
24834 use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
24835 option is on by default if you optimize.
24837 @item -mno-prolog-function
24838 @itemx -mprolog-function
24839 @opindex mno-prolog-function
24840 @opindex mprolog-function
24841 Do not use (do use) external functions to save and restore registers
24842 at the prologue and epilogue of a function.  The external functions
24843 are slower, but use less code space if more than one function saves
24844 the same number of registers.  The @option{-mprolog-function} option
24845 is on by default if you optimize.
24847 @item -mspace
24848 @opindex mspace
24849 Try to make the code as small as possible.  At present, this just turns
24850 on the @option{-mep} and @option{-mprolog-function} options.
24852 @item -mtda=@var{n}
24853 @opindex mtda
24854 Put static or global variables whose size is @var{n} bytes or less into
24855 the tiny data area that register @code{ep} points to.  The tiny data
24856 area can hold up to 256 bytes in total (128 bytes for byte references).
24858 @item -msda=@var{n}
24859 @opindex msda
24860 Put static or global variables whose size is @var{n} bytes or less into
24861 the small data area that register @code{gp} points to.  The small data
24862 area can hold up to 64 kilobytes.
24864 @item -mzda=@var{n}
24865 @opindex mzda
24866 Put static or global variables whose size is @var{n} bytes or less into
24867 the first 32 kilobytes of memory.
24869 @item -mv850
24870 @opindex mv850
24871 Specify that the target processor is the V850.
24873 @item -mv850e3v5
24874 @opindex mv850e3v5
24875 Specify that the target processor is the V850E3V5.  The preprocessor
24876 constant @code{__v850e3v5__} is defined if this option is used.
24878 @item -mv850e2v4
24879 @opindex mv850e2v4
24880 Specify that the target processor is the V850E3V5.  This is an alias for
24881 the @option{-mv850e3v5} option.
24883 @item -mv850e2v3
24884 @opindex mv850e2v3
24885 Specify that the target processor is the V850E2V3.  The preprocessor
24886 constant @code{__v850e2v3__} is defined if this option is used.
24888 @item -mv850e2
24889 @opindex mv850e2
24890 Specify that the target processor is the V850E2.  The preprocessor
24891 constant @code{__v850e2__} is defined if this option is used.
24893 @item -mv850e1
24894 @opindex mv850e1
24895 Specify that the target processor is the V850E1.  The preprocessor
24896 constants @code{__v850e1__} and @code{__v850e__} are defined if
24897 this option is used.
24899 @item -mv850es
24900 @opindex mv850es
24901 Specify that the target processor is the V850ES.  This is an alias for
24902 the @option{-mv850e1} option.
24904 @item -mv850e
24905 @opindex mv850e
24906 Specify that the target processor is the V850E@.  The preprocessor
24907 constant @code{__v850e__} is defined if this option is used.
24909 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
24910 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
24911 are defined then a default target processor is chosen and the
24912 relevant @samp{__v850*__} preprocessor constant is defined.
24914 The preprocessor constants @code{__v850} and @code{__v851__} are always
24915 defined, regardless of which processor variant is the target.
24917 @item -mdisable-callt
24918 @itemx -mno-disable-callt
24919 @opindex mdisable-callt
24920 @opindex mno-disable-callt
24921 This option suppresses generation of the @code{CALLT} instruction for the
24922 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
24923 architecture.
24925 This option is enabled by default when the RH850 ABI is
24926 in use (see @option{-mrh850-abi}), and disabled by default when the
24927 GCC ABI is in use.  If @code{CALLT} instructions are being generated
24928 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
24930 @item -mrelax
24931 @itemx -mno-relax
24932 @opindex mrelax
24933 @opindex mno-relax
24934 Pass on (or do not pass on) the @option{-mrelax} command-line option
24935 to the assembler.
24937 @item -mlong-jumps
24938 @itemx -mno-long-jumps
24939 @opindex mlong-jumps
24940 @opindex mno-long-jumps
24941 Disable (or re-enable) the generation of PC-relative jump instructions.
24943 @item -msoft-float
24944 @itemx -mhard-float
24945 @opindex msoft-float
24946 @opindex mhard-float
24947 Disable (or re-enable) the generation of hardware floating point
24948 instructions.  This option is only significant when the target
24949 architecture is @samp{V850E2V3} or higher.  If hardware floating point
24950 instructions are being generated then the C preprocessor symbol
24951 @code{__FPU_OK__} is defined, otherwise the symbol
24952 @code{__NO_FPU__} is defined.
24954 @item -mloop
24955 @opindex mloop
24956 Enables the use of the e3v5 LOOP instruction.  The use of this
24957 instruction is not enabled by default when the e3v5 architecture is
24958 selected because its use is still experimental.
24960 @item -mrh850-abi
24961 @itemx -mghs
24962 @opindex mrh850-abi
24963 @opindex mghs
24964 Enables support for the RH850 version of the V850 ABI.  This is the
24965 default.  With this version of the ABI the following rules apply:
24967 @itemize
24968 @item
24969 Integer sized structures and unions are returned via a memory pointer
24970 rather than a register.
24972 @item
24973 Large structures and unions (more than 8 bytes in size) are passed by
24974 value.
24976 @item
24977 Functions are aligned to 16-bit boundaries.
24979 @item
24980 The @option{-m8byte-align} command-line option is supported.
24982 @item
24983 The @option{-mdisable-callt} command-line option is enabled by
24984 default.  The @option{-mno-disable-callt} command-line option is not
24985 supported.
24986 @end itemize
24988 When this version of the ABI is enabled the C preprocessor symbol
24989 @code{__V850_RH850_ABI__} is defined.
24991 @item -mgcc-abi
24992 @opindex mgcc-abi
24993 Enables support for the old GCC version of the V850 ABI.  With this
24994 version of the ABI the following rules apply:
24996 @itemize
24997 @item
24998 Integer sized structures and unions are returned in register @code{r10}.
25000 @item
25001 Large structures and unions (more than 8 bytes in size) are passed by
25002 reference.
25004 @item
25005 Functions are aligned to 32-bit boundaries, unless optimizing for
25006 size.
25008 @item
25009 The @option{-m8byte-align} command-line option is not supported.
25011 @item
25012 The @option{-mdisable-callt} command-line option is supported but not
25013 enabled by default.
25014 @end itemize
25016 When this version of the ABI is enabled the C preprocessor symbol
25017 @code{__V850_GCC_ABI__} is defined.
25019 @item -m8byte-align
25020 @itemx -mno-8byte-align
25021 @opindex m8byte-align
25022 @opindex mno-8byte-align
25023 Enables support for @code{double} and @code{long long} types to be
25024 aligned on 8-byte boundaries.  The default is to restrict the
25025 alignment of all objects to at most 4-bytes.  When
25026 @option{-m8byte-align} is in effect the C preprocessor symbol
25027 @code{__V850_8BYTE_ALIGN__} is defined.
25029 @item -mbig-switch
25030 @opindex mbig-switch
25031 Generate code suitable for big switch tables.  Use this option only if
25032 the assembler/linker complain about out of range branches within a switch
25033 table.
25035 @item -mapp-regs
25036 @opindex mapp-regs
25037 This option causes r2 and r5 to be used in the code generated by
25038 the compiler.  This setting is the default.
25040 @item -mno-app-regs
25041 @opindex mno-app-regs
25042 This option causes r2 and r5 to be treated as fixed registers.
25044 @end table
25046 @node VAX Options
25047 @subsection VAX Options
25048 @cindex VAX options
25050 These @samp{-m} options are defined for the VAX:
25052 @table @gcctabopt
25053 @item -munix
25054 @opindex munix
25055 Do not output certain jump instructions (@code{aobleq} and so on)
25056 that the Unix assembler for the VAX cannot handle across long
25057 ranges.
25059 @item -mgnu
25060 @opindex mgnu
25061 Do output those jump instructions, on the assumption that the
25062 GNU assembler is being used.
25064 @item -mg
25065 @opindex mg
25066 Output code for G-format floating-point numbers instead of D-format.
25067 @end table
25069 @node Visium Options
25070 @subsection Visium Options
25071 @cindex Visium options
25073 @table @gcctabopt
25075 @item -mdebug
25076 @opindex mdebug
25077 A program which performs file I/O and is destined to run on an MCM target
25078 should be linked with this option.  It causes the libraries libc.a and
25079 libdebug.a to be linked.  The program should be run on the target under
25080 the control of the GDB remote debugging stub.
25082 @item -msim
25083 @opindex msim
25084 A program which performs file I/O and is destined to run on the simulator
25085 should be linked with option.  This causes libraries libc.a and libsim.a to
25086 be linked.
25088 @item -mfpu
25089 @itemx -mhard-float
25090 @opindex mfpu
25091 @opindex mhard-float
25092 Generate code containing floating-point instructions.  This is the
25093 default.
25095 @item -mno-fpu
25096 @itemx -msoft-float
25097 @opindex mno-fpu
25098 @opindex msoft-float
25099 Generate code containing library calls for floating-point.
25101 @option{-msoft-float} changes the calling convention in the output file;
25102 therefore, it is only useful if you compile @emph{all} of a program with
25103 this option.  In particular, you need to compile @file{libgcc.a}, the
25104 library that comes with GCC, with @option{-msoft-float} in order for
25105 this to work.
25107 @item -mcpu=@var{cpu_type}
25108 @opindex mcpu
25109 Set the instruction set, register set, and instruction scheduling parameters
25110 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
25111 @samp{mcm}, @samp{gr5} and @samp{gr6}.
25113 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
25115 By default (unless configured otherwise), GCC generates code for the GR5
25116 variant of the Visium architecture.  
25118 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
25119 architecture.  The only difference from GR5 code is that the compiler will
25120 generate block move instructions.
25122 @item -mtune=@var{cpu_type}
25123 @opindex mtune
25124 Set the instruction scheduling parameters for machine type @var{cpu_type},
25125 but do not set the instruction set or register set that the option
25126 @option{-mcpu=@var{cpu_type}} would.
25128 @item -msv-mode
25129 @opindex msv-mode
25130 Generate code for the supervisor mode, where there are no restrictions on
25131 the access to general registers.  This is the default.
25133 @item -muser-mode
25134 @opindex muser-mode
25135 Generate code for the user mode, where the access to some general registers
25136 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
25137 mode; on the GR6, only registers r29 to r31 are affected.
25138 @end table
25140 @node VMS Options
25141 @subsection VMS Options
25143 These @samp{-m} options are defined for the VMS implementations:
25145 @table @gcctabopt
25146 @item -mvms-return-codes
25147 @opindex mvms-return-codes
25148 Return VMS condition codes from @code{main}. The default is to return POSIX-style
25149 condition (e.g.@ error) codes.
25151 @item -mdebug-main=@var{prefix}
25152 @opindex mdebug-main=@var{prefix}
25153 Flag the first routine whose name starts with @var{prefix} as the main
25154 routine for the debugger.
25156 @item -mmalloc64
25157 @opindex mmalloc64
25158 Default to 64-bit memory allocation routines.
25160 @item -mpointer-size=@var{size}
25161 @opindex mpointer-size=@var{size}
25162 Set the default size of pointers. Possible options for @var{size} are
25163 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
25164 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
25165 The later option disables @code{pragma pointer_size}.
25166 @end table
25168 @node VxWorks Options
25169 @subsection VxWorks Options
25170 @cindex VxWorks Options
25172 The options in this section are defined for all VxWorks targets.
25173 Options specific to the target hardware are listed with the other
25174 options for that target.
25176 @table @gcctabopt
25177 @item -mrtp
25178 @opindex mrtp
25179 GCC can generate code for both VxWorks kernels and real time processes
25180 (RTPs).  This option switches from the former to the latter.  It also
25181 defines the preprocessor macro @code{__RTP__}.
25183 @item -non-static
25184 @opindex non-static
25185 Link an RTP executable against shared libraries rather than static
25186 libraries.  The options @option{-static} and @option{-shared} can
25187 also be used for RTPs (@pxref{Link Options}); @option{-static}
25188 is the default.
25190 @item -Bstatic
25191 @itemx -Bdynamic
25192 @opindex Bstatic
25193 @opindex Bdynamic
25194 These options are passed down to the linker.  They are defined for
25195 compatibility with Diab.
25197 @item -Xbind-lazy
25198 @opindex Xbind-lazy
25199 Enable lazy binding of function calls.  This option is equivalent to
25200 @option{-Wl,-z,now} and is defined for compatibility with Diab.
25202 @item -Xbind-now
25203 @opindex Xbind-now
25204 Disable lazy binding of function calls.  This option is the default and
25205 is defined for compatibility with Diab.
25206 @end table
25208 @node x86 Options
25209 @subsection x86 Options
25210 @cindex x86 Options
25212 These @samp{-m} options are defined for the x86 family of computers.
25214 @table @gcctabopt
25216 @item -march=@var{cpu-type}
25217 @opindex march
25218 Generate instructions for the machine type @var{cpu-type}.  In contrast to
25219 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code 
25220 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
25221 to generate code that may not run at all on processors other than the one
25222 indicated.  Specifying @option{-march=@var{cpu-type}} implies 
25223 @option{-mtune=@var{cpu-type}}.
25225 The choices for @var{cpu-type} are:
25227 @table @samp
25228 @item native
25229 This selects the CPU to generate code for at compilation time by determining
25230 the processor type of the compiling machine.  Using @option{-march=native}
25231 enables all instruction subsets supported by the local machine (hence
25232 the result might not run on different machines).  Using @option{-mtune=native}
25233 produces code optimized for the local machine under the constraints
25234 of the selected instruction set.  
25236 @item i386
25237 Original Intel i386 CPU@.
25239 @item i486
25240 Intel i486 CPU@.  (No scheduling is implemented for this chip.)
25242 @item i586
25243 @itemx pentium
25244 Intel Pentium CPU with no MMX support.
25246 @item lakemont
25247 Intel Lakemont MCU, based on Intel Pentium CPU.
25249 @item pentium-mmx
25250 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
25252 @item pentiumpro
25253 Intel Pentium Pro CPU@.
25255 @item i686
25256 When used with @option{-march}, the Pentium Pro
25257 instruction set is used, so the code runs on all i686 family chips.
25258 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
25260 @item pentium2
25261 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
25262 support.
25264 @item pentium3
25265 @itemx pentium3m
25266 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
25267 set support.
25269 @item pentium-m
25270 Intel Pentium M; low-power version of Intel Pentium III CPU
25271 with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
25273 @item pentium4
25274 @itemx pentium4m
25275 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
25277 @item prescott
25278 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
25279 set support.
25281 @item nocona
25282 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
25283 SSE2 and SSE3 instruction set support.
25285 @item core2
25286 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
25287 instruction set support.
25289 @item nehalem
25290 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25291 SSE4.1, SSE4.2 and POPCNT instruction set support.
25293 @item westmere
25294 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25295 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
25297 @item sandybridge
25298 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25299 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
25301 @item ivybridge
25302 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25303 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
25304 instruction set support.
25306 @item haswell
25307 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25308 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25309 BMI, BMI2 and F16C instruction set support.
25311 @item broadwell
25312 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25313 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25314 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
25316 @item skylake
25317 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25318 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25319 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
25320 XSAVES instruction set support.
25322 @item bonnell
25323 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
25324 instruction set support.
25326 @item silvermont
25327 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25328 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
25330 @item knl
25331 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25332 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25333 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
25334 AVX512CD instruction set support.
25336 @item knm
25337 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25338 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25339 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
25340 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
25342 @item skylake-avx512
25343 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25344 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25345 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
25346 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
25348 @item cannonlake
25349 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
25350 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
25351 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
25352 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
25353 AVX512IFMA, SHA, CLWB and UMIP instruction set support.
25355 @item k6
25356 AMD K6 CPU with MMX instruction set support.
25358 @item k6-2
25359 @itemx k6-3
25360 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
25362 @item athlon
25363 @itemx athlon-tbird
25364 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
25365 support.
25367 @item athlon-4
25368 @itemx athlon-xp
25369 @itemx athlon-mp
25370 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
25371 instruction set support.
25373 @item k8
25374 @itemx opteron
25375 @itemx athlon64
25376 @itemx athlon-fx
25377 Processors based on the AMD K8 core with x86-64 instruction set support,
25378 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
25379 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
25380 instruction set extensions.)
25382 @item k8-sse3
25383 @itemx opteron-sse3
25384 @itemx athlon64-sse3
25385 Improved versions of AMD K8 cores with SSE3 instruction set support.
25387 @item amdfam10
25388 @itemx barcelona
25389 CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
25390 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
25391 instruction set extensions.)
25393 @item bdver1
25394 CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
25395 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
25396 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
25397 @item bdver2
25398 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
25399 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
25400 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set 
25401 extensions.)
25402 @item bdver3
25403 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
25404 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, 
25405 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 
25406 64-bit instruction set extensions.
25407 @item bdver4
25408 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
25409 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, 
25410 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, 
25411 SSE4.2, ABM and 64-bit instruction set extensions.
25413 @item znver1
25414 AMD Family 17h core based CPUs with x86-64 instruction set support.  (This
25415 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
25416 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
25417 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
25418 instruction set extensions.
25420 @item btver1
25421 CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
25422 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
25423 instruction set extensions.)
25425 @item btver2
25426 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
25427 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
25428 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
25430 @item winchip-c6
25431 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
25432 set support.
25434 @item winchip2
25435 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
25436 instruction set support.
25438 @item c3
25439 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
25440 (No scheduling is implemented for this chip.)
25442 @item c3-2
25443 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
25444 (No scheduling is implemented for this chip.)
25446 @item c7
25447 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25448 (No scheduling is implemented for this chip.)
25450 @item samuel-2
25451 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
25452 (No scheduling is implemented for this chip.)
25454 @item nehemiah
25455 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
25456 (No scheduling is implemented for this chip.)
25458 @item esther
25459 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25460 (No scheduling is implemented for this chip.)
25462 @item eden-x2
25463 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
25464 (No scheduling is implemented for this chip.)
25466 @item eden-x4
25467 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
25468 AVX and AVX2 instruction set support.
25469 (No scheduling is implemented for this chip.)
25471 @item nano
25472 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25473 instruction set support.
25474 (No scheduling is implemented for this chip.)
25476 @item nano-1000
25477 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25478 instruction set support.
25479 (No scheduling is implemented for this chip.)
25481 @item nano-2000
25482 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25483 instruction set support.
25484 (No scheduling is implemented for this chip.)
25486 @item nano-3000
25487 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25488 instruction set support.
25489 (No scheduling is implemented for this chip.)
25491 @item nano-x2
25492 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25493 instruction set support.
25494 (No scheduling is implemented for this chip.)
25496 @item nano-x4
25497 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25498 instruction set support.
25499 (No scheduling is implemented for this chip.)
25501 @item geode
25502 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
25503 @end table
25505 @item -mtune=@var{cpu-type}
25506 @opindex mtune
25507 Tune to @var{cpu-type} everything applicable about the generated code, except
25508 for the ABI and the set of available instructions.  
25509 While picking a specific @var{cpu-type} schedules things appropriately
25510 for that particular chip, the compiler does not generate any code that
25511 cannot run on the default machine type unless you use a
25512 @option{-march=@var{cpu-type}} option.
25513 For example, if GCC is configured for i686-pc-linux-gnu
25514 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
25515 but still runs on i686 machines.
25517 The choices for @var{cpu-type} are the same as for @option{-march}.
25518 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
25520 @table @samp
25521 @item generic
25522 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
25523 If you know the CPU on which your code will run, then you should use
25524 the corresponding @option{-mtune} or @option{-march} option instead of
25525 @option{-mtune=generic}.  But, if you do not know exactly what CPU users
25526 of your application will have, then you should use this option.
25528 As new processors are deployed in the marketplace, the behavior of this
25529 option will change.  Therefore, if you upgrade to a newer version of
25530 GCC, code generation controlled by this option will change to reflect
25531 the processors
25532 that are most common at the time that version of GCC is released.
25534 There is no @option{-march=generic} option because @option{-march}
25535 indicates the instruction set the compiler can use, and there is no
25536 generic instruction set applicable to all processors.  In contrast,
25537 @option{-mtune} indicates the processor (or, in this case, collection of
25538 processors) for which the code is optimized.
25540 @item intel
25541 Produce code optimized for the most current Intel processors, which are
25542 Haswell and Silvermont for this version of GCC.  If you know the CPU
25543 on which your code will run, then you should use the corresponding
25544 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
25545 But, if you want your application performs better on both Haswell and
25546 Silvermont, then you should use this option.
25548 As new Intel processors are deployed in the marketplace, the behavior of
25549 this option will change.  Therefore, if you upgrade to a newer version of
25550 GCC, code generation controlled by this option will change to reflect
25551 the most current Intel processors at the time that version of GCC is
25552 released.
25554 There is no @option{-march=intel} option because @option{-march} indicates
25555 the instruction set the compiler can use, and there is no common
25556 instruction set applicable to all processors.  In contrast,
25557 @option{-mtune} indicates the processor (or, in this case, collection of
25558 processors) for which the code is optimized.
25559 @end table
25561 @item -mcpu=@var{cpu-type}
25562 @opindex mcpu
25563 A deprecated synonym for @option{-mtune}.
25565 @item -mfpmath=@var{unit}
25566 @opindex mfpmath
25567 Generate floating-point arithmetic for selected unit @var{unit}.  The choices
25568 for @var{unit} are:
25570 @table @samp
25571 @item 387
25572 Use the standard 387 floating-point coprocessor present on the majority of chips and
25573 emulated otherwise.  Code compiled with this option runs almost everywhere.
25574 The temporary results are computed in 80-bit precision instead of the precision
25575 specified by the type, resulting in slightly different results compared to most
25576 of other chips.  See @option{-ffloat-store} for more detailed description.
25578 This is the default choice for non-Darwin x86-32 targets.
25580 @item sse
25581 Use scalar floating-point instructions present in the SSE instruction set.
25582 This instruction set is supported by Pentium III and newer chips,
25583 and in the AMD line
25584 by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
25585 instruction set supports only single-precision arithmetic, thus the double and
25586 extended-precision arithmetic are still done using 387.  A later version, present
25587 only in Pentium 4 and AMD x86-64 chips, supports double-precision
25588 arithmetic too.
25590 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
25591 or @option{-msse2} switches to enable SSE extensions and make this option
25592 effective.  For the x86-64 compiler, these extensions are enabled by default.
25594 The resulting code should be considerably faster in the majority of cases and avoid
25595 the numerical instability problems of 387 code, but may break some existing
25596 code that expects temporaries to be 80 bits.
25598 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
25599 and the default choice for x86-32 targets with the SSE2 instruction set
25600 when @option{-ffast-math} is enabled.
25602 @item sse,387
25603 @itemx sse+387
25604 @itemx both
25605 Attempt to utilize both instruction sets at once.  This effectively doubles the
25606 amount of available registers, and on chips with separate execution units for
25607 387 and SSE the execution resources too.  Use this option with care, as it is
25608 still experimental, because the GCC register allocator does not model separate
25609 functional units well, resulting in unstable performance.
25610 @end table
25612 @item -masm=@var{dialect}
25613 @opindex masm=@var{dialect}
25614 Output assembly instructions using selected @var{dialect}.  Also affects
25615 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
25616 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
25617 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
25618 not support @samp{intel}.
25620 @item -mieee-fp
25621 @itemx -mno-ieee-fp
25622 @opindex mieee-fp
25623 @opindex mno-ieee-fp
25624 Control whether or not the compiler uses IEEE floating-point
25625 comparisons.  These correctly handle the case where the result of a
25626 comparison is unordered.
25628 @item -m80387
25629 @item -mhard-float
25630 @opindex 80387
25631 @opindex mhard-float
25632 Generate output containing 80387 instructions for floating point.
25634 @item -mno-80387
25635 @item -msoft-float
25636 @opindex no-80387
25637 @opindex msoft-float
25638 Generate output containing library calls for floating point.
25640 @strong{Warning:} the requisite libraries are not part of GCC@.
25641 Normally the facilities of the machine's usual C compiler are used, but
25642 this cannot be done directly in cross-compilation.  You must make your
25643 own arrangements to provide suitable library functions for
25644 cross-compilation.
25646 On machines where a function returns floating-point results in the 80387
25647 register stack, some floating-point opcodes may be emitted even if
25648 @option{-msoft-float} is used.
25650 @item -mno-fp-ret-in-387
25651 @opindex mno-fp-ret-in-387
25652 Do not use the FPU registers for return values of functions.
25654 The usual calling convention has functions return values of types
25655 @code{float} and @code{double} in an FPU register, even if there
25656 is no FPU@.  The idea is that the operating system should emulate
25657 an FPU@.
25659 The option @option{-mno-fp-ret-in-387} causes such values to be returned
25660 in ordinary CPU registers instead.
25662 @item -mno-fancy-math-387
25663 @opindex mno-fancy-math-387
25664 Some 387 emulators do not support the @code{sin}, @code{cos} and
25665 @code{sqrt} instructions for the 387.  Specify this option to avoid
25666 generating those instructions.  This option is the default on
25667 OpenBSD and NetBSD@.  This option is overridden when @option{-march}
25668 indicates that the target CPU always has an FPU and so the
25669 instruction does not need emulation.  These
25670 instructions are not generated unless you also use the
25671 @option{-funsafe-math-optimizations} switch.
25673 @item -malign-double
25674 @itemx -mno-align-double
25675 @opindex malign-double
25676 @opindex mno-align-double
25677 Control whether GCC aligns @code{double}, @code{long double}, and
25678 @code{long long} variables on a two-word boundary or a one-word
25679 boundary.  Aligning @code{double} variables on a two-word boundary
25680 produces code that runs somewhat faster on a Pentium at the
25681 expense of more memory.
25683 On x86-64, @option{-malign-double} is enabled by default.
25685 @strong{Warning:} if you use the @option{-malign-double} switch,
25686 structures containing the above types are aligned differently than
25687 the published application binary interface specifications for the x86-32
25688 and are not binary compatible with structures in code compiled
25689 without that switch.
25691 @item -m96bit-long-double
25692 @itemx -m128bit-long-double
25693 @opindex m96bit-long-double
25694 @opindex m128bit-long-double
25695 These switches control the size of @code{long double} type.  The x86-32
25696 application binary interface specifies the size to be 96 bits,
25697 so @option{-m96bit-long-double} is the default in 32-bit mode.
25699 Modern architectures (Pentium and newer) prefer @code{long double}
25700 to be aligned to an 8- or 16-byte boundary.  In arrays or structures
25701 conforming to the ABI, this is not possible.  So specifying
25702 @option{-m128bit-long-double} aligns @code{long double}
25703 to a 16-byte boundary by padding the @code{long double} with an additional
25704 32-bit zero.
25706 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
25707 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
25709 Notice that neither of these options enable any extra precision over the x87
25710 standard of 80 bits for a @code{long double}.
25712 @strong{Warning:} if you override the default value for your target ABI, this
25713 changes the size of 
25714 structures and arrays containing @code{long double} variables,
25715 as well as modifying the function calling convention for functions taking
25716 @code{long double}.  Hence they are not binary-compatible
25717 with code compiled without that switch.
25719 @item -mlong-double-64
25720 @itemx -mlong-double-80
25721 @itemx -mlong-double-128
25722 @opindex mlong-double-64
25723 @opindex mlong-double-80
25724 @opindex mlong-double-128
25725 These switches control the size of @code{long double} type. A size
25726 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25727 type. This is the default for 32-bit Bionic C library.  A size
25728 of 128 bits makes the @code{long double} type equivalent to the
25729 @code{__float128} type. This is the default for 64-bit Bionic C library.
25731 @strong{Warning:} if you override the default value for your target ABI, this
25732 changes the size of
25733 structures and arrays containing @code{long double} variables,
25734 as well as modifying the function calling convention for functions taking
25735 @code{long double}.  Hence they are not binary-compatible
25736 with code compiled without that switch.
25738 @item -malign-data=@var{type}
25739 @opindex malign-data
25740 Control how GCC aligns variables.  Supported values for @var{type} are
25741 @samp{compat} uses increased alignment value compatible uses GCC 4.8
25742 and earlier, @samp{abi} uses alignment value as specified by the
25743 psABI, and @samp{cacheline} uses increased alignment value to match
25744 the cache line size.  @samp{compat} is the default.
25746 @item -mlarge-data-threshold=@var{threshold}
25747 @opindex mlarge-data-threshold
25748 When @option{-mcmodel=medium} is specified, data objects larger than
25749 @var{threshold} are placed in the large data section.  This value must be the
25750 same across all objects linked into the binary, and defaults to 65535.
25752 @item -mrtd
25753 @opindex mrtd
25754 Use a different function-calling convention, in which functions that
25755 take a fixed number of arguments return with the @code{ret @var{num}}
25756 instruction, which pops their arguments while returning.  This saves one
25757 instruction in the caller since there is no need to pop the arguments
25758 there.
25760 You can specify that an individual function is called with this calling
25761 sequence with the function attribute @code{stdcall}.  You can also
25762 override the @option{-mrtd} option by using the function attribute
25763 @code{cdecl}.  @xref{Function Attributes}.
25765 @strong{Warning:} this calling convention is incompatible with the one
25766 normally used on Unix, so you cannot use it if you need to call
25767 libraries compiled with the Unix compiler.
25769 Also, you must provide function prototypes for all functions that
25770 take variable numbers of arguments (including @code{printf});
25771 otherwise incorrect code is generated for calls to those
25772 functions.
25774 In addition, seriously incorrect code results if you call a
25775 function with too many arguments.  (Normally, extra arguments are
25776 harmlessly ignored.)
25778 @item -mregparm=@var{num}
25779 @opindex mregparm
25780 Control how many registers are used to pass integer arguments.  By
25781 default, no registers are used to pass arguments, and at most 3
25782 registers can be used.  You can control this behavior for a specific
25783 function by using the function attribute @code{regparm}.
25784 @xref{Function Attributes}.
25786 @strong{Warning:} if you use this switch, and
25787 @var{num} is nonzero, then you must build all modules with the same
25788 value, including any libraries.  This includes the system libraries and
25789 startup modules.
25791 @item -msseregparm
25792 @opindex msseregparm
25793 Use SSE register passing conventions for float and double arguments
25794 and return values.  You can control this behavior for a specific
25795 function by using the function attribute @code{sseregparm}.
25796 @xref{Function Attributes}.
25798 @strong{Warning:} if you use this switch then you must build all
25799 modules with the same value, including any libraries.  This includes
25800 the system libraries and startup modules.
25802 @item -mvect8-ret-in-mem
25803 @opindex mvect8-ret-in-mem
25804 Return 8-byte vectors in memory instead of MMX registers.  This is the
25805 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
25806 Studio compilers until version 12.  Later compiler versions (starting
25807 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
25808 is the default on Solaris@tie{}10 and later.  @emph{Only} use this option if
25809 you need to remain compatible with existing code produced by those
25810 previous compiler versions or older versions of GCC@.
25812 @item -mpc32
25813 @itemx -mpc64
25814 @itemx -mpc80
25815 @opindex mpc32
25816 @opindex mpc64
25817 @opindex mpc80
25819 Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
25820 is specified, the significands of results of floating-point operations are
25821 rounded to 24 bits (single precision); @option{-mpc64} rounds the
25822 significands of results of floating-point operations to 53 bits (double
25823 precision) and @option{-mpc80} rounds the significands of results of
25824 floating-point operations to 64 bits (extended double precision), which is
25825 the default.  When this option is used, floating-point operations in higher
25826 precisions are not available to the programmer without setting the FPU
25827 control word explicitly.
25829 Setting the rounding of floating-point operations to less than the default
25830 80 bits can speed some programs by 2% or more.  Note that some mathematical
25831 libraries assume that extended-precision (80-bit) floating-point operations
25832 are enabled by default; routines in such libraries could suffer significant
25833 loss of accuracy, typically through so-called ``catastrophic cancellation'',
25834 when this option is used to set the precision to less than extended precision.
25836 @item -mstackrealign
25837 @opindex mstackrealign
25838 Realign the stack at entry.  On the x86, the @option{-mstackrealign}
25839 option generates an alternate prologue and epilogue that realigns the
25840 run-time stack if necessary.  This supports mixing legacy codes that keep
25841 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
25842 SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
25843 applicable to individual functions.
25845 @item -mpreferred-stack-boundary=@var{num}
25846 @opindex mpreferred-stack-boundary
25847 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
25848 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
25849 the default is 4 (16 bytes or 128 bits).
25851 @strong{Warning:} When generating code for the x86-64 architecture with
25852 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
25853 used to keep the stack boundary aligned to 8 byte boundary.  Since
25854 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
25855 intended to be used in controlled environment where stack space is
25856 important limitation.  This option leads to wrong code when functions
25857 compiled with 16 byte stack alignment (such as functions from a standard
25858 library) are called with misaligned stack.  In this case, SSE
25859 instructions may lead to misaligned memory access traps.  In addition,
25860 variable arguments are handled incorrectly for 16 byte aligned
25861 objects (including x87 long double and __int128), leading to wrong
25862 results.  You must build all modules with
25863 @option{-mpreferred-stack-boundary=3}, including any libraries.  This
25864 includes the system libraries and startup modules.
25866 @item -mincoming-stack-boundary=@var{num}
25867 @opindex mincoming-stack-boundary
25868 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
25869 boundary.  If @option{-mincoming-stack-boundary} is not specified,
25870 the one specified by @option{-mpreferred-stack-boundary} is used.
25872 On Pentium and Pentium Pro, @code{double} and @code{long double} values
25873 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
25874 suffer significant run time performance penalties.  On Pentium III, the
25875 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
25876 properly if it is not 16-byte aligned.
25878 To ensure proper alignment of this values on the stack, the stack boundary
25879 must be as aligned as that required by any value stored on the stack.
25880 Further, every function must be generated such that it keeps the stack
25881 aligned.  Thus calling a function compiled with a higher preferred
25882 stack boundary from a function compiled with a lower preferred stack
25883 boundary most likely misaligns the stack.  It is recommended that
25884 libraries that use callbacks always use the default setting.
25886 This extra alignment does consume extra stack space, and generally
25887 increases code size.  Code that is sensitive to stack space usage, such
25888 as embedded systems and operating system kernels, may want to reduce the
25889 preferred alignment to @option{-mpreferred-stack-boundary=2}.
25891 @need 200
25892 @item -mmmx
25893 @opindex mmmx
25894 @need 200
25895 @itemx -msse
25896 @opindex msse
25897 @need 200
25898 @itemx -msse2
25899 @opindex msse2
25900 @need 200
25901 @itemx -msse3
25902 @opindex msse3
25903 @need 200
25904 @itemx -mssse3
25905 @opindex mssse3
25906 @need 200
25907 @itemx -msse4
25908 @opindex msse4
25909 @need 200
25910 @itemx -msse4a
25911 @opindex msse4a
25912 @need 200
25913 @itemx -msse4.1
25914 @opindex msse4.1
25915 @need 200
25916 @itemx -msse4.2
25917 @opindex msse4.2
25918 @need 200
25919 @itemx -mavx
25920 @opindex mavx
25921 @need 200
25922 @itemx -mavx2
25923 @opindex mavx2
25924 @need 200
25925 @itemx -mavx512f
25926 @opindex mavx512f
25927 @need 200
25928 @itemx -mavx512pf
25929 @opindex mavx512pf
25930 @need 200
25931 @itemx -mavx512er
25932 @opindex mavx512er
25933 @need 200
25934 @itemx -mavx512cd
25935 @opindex mavx512cd
25936 @need 200
25937 @itemx -mavx512vl
25938 @opindex mavx512vl
25939 @need 200
25940 @itemx -mavx512bw
25941 @opindex mavx512bw
25942 @need 200
25943 @itemx -mavx512dq
25944 @opindex mavx512dq
25945 @need 200
25946 @itemx -mavx512ifma
25947 @opindex mavx512ifma
25948 @need 200
25949 @itemx -mavx512vbmi
25950 @opindex mavx512vbmi
25951 @need 200
25952 @itemx -msha
25953 @opindex msha
25954 @need 200
25955 @itemx -maes
25956 @opindex maes
25957 @need 200
25958 @itemx -mpclmul
25959 @opindex mpclmul
25960 @need 200
25961 @itemx -mclfushopt
25962 @opindex mclfushopt
25963 @need 200
25964 @itemx -mfsgsbase
25965 @opindex mfsgsbase
25966 @need 200
25967 @itemx -mrdrnd
25968 @opindex mrdrnd
25969 @need 200
25970 @itemx -mf16c
25971 @opindex mf16c
25972 @need 200
25973 @itemx -mfma
25974 @opindex mfma
25975 @need 200
25976 @itemx -mfma4
25977 @opindex mfma4
25978 @need 200
25979 @itemx -mprefetchwt1
25980 @opindex mprefetchwt1
25981 @need 200
25982 @itemx -mxop
25983 @opindex mxop
25984 @need 200
25985 @itemx -mlwp
25986 @opindex mlwp
25987 @need 200
25988 @itemx -m3dnow
25989 @opindex m3dnow
25990 @need 200
25991 @itemx -m3dnowa
25992 @opindex m3dnowa
25993 @need 200
25994 @itemx -mpopcnt
25995 @opindex mpopcnt
25996 @need 200
25997 @itemx -mabm
25998 @opindex mabm
25999 @need 200
26000 @itemx -mbmi
26001 @opindex mbmi
26002 @need 200
26003 @itemx -mbmi2
26004 @need 200
26005 @itemx -mlzcnt
26006 @opindex mlzcnt
26007 @need 200
26008 @itemx -mfxsr
26009 @opindex mfxsr
26010 @need 200
26011 @itemx -mxsave
26012 @opindex mxsave
26013 @need 200
26014 @itemx -mxsaveopt
26015 @opindex mxsaveopt
26016 @need 200
26017 @itemx -mxsavec
26018 @opindex mxsavec
26019 @need 200
26020 @itemx -mxsaves
26021 @opindex mxsaves
26022 @need 200
26023 @itemx -mrtm
26024 @opindex mrtm
26025 @need 200
26026 @itemx -mtbm
26027 @opindex mtbm
26028 @need 200
26029 @itemx -mmpx
26030 @opindex mmpx
26031 @need 200
26032 @itemx -mmwaitx
26033 @opindex mmwaitx
26034 @need 200
26035 @itemx -mclzero
26036 @opindex mclzero
26037 @need 200
26038 @itemx -mpku
26039 @opindex mpku
26040 @need 200
26041 @itemx -mcet
26042 @opindex mcet
26043 @need 200
26044 @itemx -mavx512vbmi2
26045 @opindex mavx512vbmi2
26046 @need 200
26047 @itemx -mgfni
26048 @opindex mgfni
26049 These switches enable the use of instructions in the MMX, SSE,
26050 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
26051 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
26052 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, BMI, BMI2,
26053 FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, IBT, SHSTK, AVX512VBMI2,
26054 GFNI, 3DNow!@: or enhanced 3DNow!@: extended instruction sets.  Each has a
26055 corresponding @option{-mno-} option to disable use of these instructions.
26057 These extensions are also available as built-in functions: see
26058 @ref{x86 Built-in Functions}, for details of the functions enabled and
26059 disabled by these switches.
26061 To generate SSE/SSE2 instructions automatically from floating-point
26062 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
26064 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
26065 generates new AVX instructions or AVX equivalence for all SSEx instructions
26066 when needed.
26068 These options enable GCC to use these extended instructions in
26069 generated code, even without @option{-mfpmath=sse}.  Applications that
26070 perform run-time CPU detection must compile separate files for each
26071 supported architecture, using the appropriate flags.  In particular,
26072 the file containing the CPU detection code should be compiled without
26073 these options.
26075 The @option{-mcet} option turns on the @option{-mibt} and @option{-mshstk}
26076 options.  The @option{-mibt} option enables indirect branch tracking support
26077 and the @option{-mshstk} option enables shadow stack support from
26078 Intel Control-flow Enforcement Technology (CET).  The compiler also provides
26079 a number of built-in functions for fine-grained control in a CET-based
26080 application.  See @xref{x86 Built-in Functions}, for more information.
26082 @item -mdump-tune-features
26083 @opindex mdump-tune-features
26084 This option instructs GCC to dump the names of the x86 performance 
26085 tuning features and default settings. The names can be used in 
26086 @option{-mtune-ctrl=@var{feature-list}}.
26088 @item -mtune-ctrl=@var{feature-list}
26089 @opindex mtune-ctrl=@var{feature-list}
26090 This option is used to do fine grain control of x86 code generation features.
26091 @var{feature-list} is a comma separated list of @var{feature} names. See also
26092 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
26093 on if it is not preceded with @samp{^}, otherwise, it is turned off. 
26094 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
26095 developers. Using it may lead to code paths not covered by testing and can
26096 potentially result in compiler ICEs or runtime errors.
26098 @item -mno-default
26099 @opindex mno-default
26100 This option instructs GCC to turn off all tunable features. See also 
26101 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
26103 @item -mcld
26104 @opindex mcld
26105 This option instructs GCC to emit a @code{cld} instruction in the prologue
26106 of functions that use string instructions.  String instructions depend on
26107 the DF flag to select between autoincrement or autodecrement mode.  While the
26108 ABI specifies the DF flag to be cleared on function entry, some operating
26109 systems violate this specification by not clearing the DF flag in their
26110 exception dispatchers.  The exception handler can be invoked with the DF flag
26111 set, which leads to wrong direction mode when string instructions are used.
26112 This option can be enabled by default on 32-bit x86 targets by configuring
26113 GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
26114 instructions can be suppressed with the @option{-mno-cld} compiler option
26115 in this case.
26117 @item -mvzeroupper
26118 @opindex mvzeroupper
26119 This option instructs GCC to emit a @code{vzeroupper} instruction
26120 before a transfer of control flow out of the function to minimize
26121 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
26122 intrinsics.
26124 @item -mprefer-avx128
26125 @opindex mprefer-avx128
26126 This option instructs GCC to use 128-bit AVX instructions instead of
26127 256-bit AVX instructions in the auto-vectorizer.
26129 @item -mprefer-vector-width=@var{opt}
26130 @opindex mprefer-vector-width
26131 This option instructs GCC to use @var{opt}-bit vector width in instructions
26132 instead of default on the selected platform.
26134 @table @samp
26135 @item none
26136 No extra limitations applied to GCC other than defined by the selected platform.
26138 @item 128
26139 Prefer 128-bit vector width for instructions.
26141 @item 256
26142 Prefer 256-bit vector width for instructions.
26144 @item 512
26145 Prefer 512-bit vector width for instructions.
26146 @end table
26148 @item -mcx16
26149 @opindex mcx16
26150 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
26151 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
26152 objects.  This is useful for atomic updates of data structures exceeding one
26153 machine word in size.  The compiler uses this instruction to implement
26154 @ref{__sync Builtins}.  However, for @ref{__atomic Builtins} operating on
26155 128-bit integers, a library call is always used.
26157 @item -msahf
26158 @opindex msahf
26159 This option enables generation of @code{SAHF} instructions in 64-bit code.
26160 Early Intel Pentium 4 CPUs with Intel 64 support,
26161 prior to the introduction of Pentium 4 G1 step in December 2005,
26162 lacked the @code{LAHF} and @code{SAHF} instructions
26163 which are supported by AMD64.
26164 These are load and store instructions, respectively, for certain status flags.
26165 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
26166 @code{drem}, and @code{remainder} built-in functions;
26167 see @ref{Other Builtins} for details.
26169 @item -mmovbe
26170 @opindex mmovbe
26171 This option enables use of the @code{movbe} instruction to implement
26172 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
26174 @item -mibt
26175 @opindex mibt
26176 This option tells the compiler to use indirect branch tracking support
26177 (for indirect calls and jumps) from x86 Control-flow Enforcement
26178 Technology (CET).  The option has effect only if the
26179 @option{-fcf-protection=full} or @option{-fcf-protection=branch} option
26180 is specified. The option @option{-mibt} is on by default when the
26181 @code{-mcet} option is specified.
26183 @item -mshstk
26184 @opindex mshstk
26185 This option tells the compiler to use shadow stack support (return
26186 address tracking) from x86 Control-flow Enforcement Technology (CET).
26187 The option has effect only if the @option{-fcf-protection=full} or
26188 @option{-fcf-protection=return} option is specified.  The option
26189 @option{-mshstk} is on by default when the @option{-mcet} option is
26190 specified.
26192 @item -mcrc32
26193 @opindex mcrc32
26194 This option enables built-in functions @code{__builtin_ia32_crc32qi},
26195 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
26196 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
26198 @item -mrecip
26199 @opindex mrecip
26200 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
26201 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
26202 with an additional Newton-Raphson step
26203 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
26204 (and their vectorized
26205 variants) for single-precision floating-point arguments.  These instructions
26206 are generated only when @option{-funsafe-math-optimizations} is enabled
26207 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
26208 Note that while the throughput of the sequence is higher than the throughput
26209 of the non-reciprocal instruction, the precision of the sequence can be
26210 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
26212 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
26213 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
26214 combination), and doesn't need @option{-mrecip}.
26216 Also note that GCC emits the above sequence with additional Newton-Raphson step
26217 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
26218 already with @option{-ffast-math} (or the above option combination), and
26219 doesn't need @option{-mrecip}.
26221 @item -mrecip=@var{opt}
26222 @opindex mrecip=opt
26223 This option controls which reciprocal estimate instructions
26224 may be used.  @var{opt} is a comma-separated list of options, which may
26225 be preceded by a @samp{!} to invert the option:
26227 @table @samp
26228 @item all
26229 Enable all estimate instructions.
26231 @item default
26232 Enable the default instructions, equivalent to @option{-mrecip}.
26234 @item none
26235 Disable all estimate instructions, equivalent to @option{-mno-recip}.
26237 @item div
26238 Enable the approximation for scalar division.
26240 @item vec-div
26241 Enable the approximation for vectorized division.
26243 @item sqrt
26244 Enable the approximation for scalar square root.
26246 @item vec-sqrt
26247 Enable the approximation for vectorized square root.
26248 @end table
26250 So, for example, @option{-mrecip=all,!sqrt} enables
26251 all of the reciprocal approximations, except for square root.
26253 @item -mveclibabi=@var{type}
26254 @opindex mveclibabi
26255 Specifies the ABI type to use for vectorizing intrinsics using an
26256 external library.  Supported values for @var{type} are @samp{svml} 
26257 for the Intel short
26258 vector math library and @samp{acml} for the AMD math core library.
26259 To use this option, both @option{-ftree-vectorize} and
26260 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML 
26261 ABI-compatible library must be specified at link time.
26263 GCC currently emits calls to @code{vmldExp2},
26264 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
26265 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
26266 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
26267 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
26268 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
26269 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
26270 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
26271 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
26272 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
26273 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
26274 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
26275 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
26276 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
26277 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
26278 when @option{-mveclibabi=acml} is used.  
26280 @item -mabi=@var{name}
26281 @opindex mabi
26282 Generate code for the specified calling convention.  Permissible values
26283 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
26284 @samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
26285 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
26286 You can control this behavior for specific functions by
26287 using the function attributes @code{ms_abi} and @code{sysv_abi}.
26288 @xref{Function Attributes}.
26290 @item -mforce-indirect-call
26291 @opindex mforce-indirect-call
26292 Force all calls to functions to be indirect. This is useful
26293 when using Intel Processor Trace where it generates more precise timing
26294 information for function calls.
26296 @item -mcall-ms2sysv-xlogues
26297 @opindex mcall-ms2sysv-xlogues
26298 @opindex mno-call-ms2sysv-xlogues
26299 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
26300 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered.  By
26301 default, the code for saving and restoring these registers is emitted inline,
26302 resulting in fairly lengthy prologues and epilogues.  Using
26303 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
26304 use stubs in the static portion of libgcc to perform these saves and restores,
26305 thus reducing function size at the cost of a few extra instructions.
26307 @item -mtls-dialect=@var{type}
26308 @opindex mtls-dialect
26309 Generate code to access thread-local storage using the @samp{gnu} or
26310 @samp{gnu2} conventions.  @samp{gnu} is the conservative default;
26311 @samp{gnu2} is more efficient, but it may add compile- and run-time
26312 requirements that cannot be satisfied on all systems.
26314 @item -mpush-args
26315 @itemx -mno-push-args
26316 @opindex mpush-args
26317 @opindex mno-push-args
26318 Use PUSH operations to store outgoing parameters.  This method is shorter
26319 and usually equally fast as method using SUB/MOV operations and is enabled
26320 by default.  In some cases disabling it may improve performance because of
26321 improved scheduling and reduced dependencies.
26323 @item -maccumulate-outgoing-args
26324 @opindex maccumulate-outgoing-args
26325 If enabled, the maximum amount of space required for outgoing arguments is
26326 computed in the function prologue.  This is faster on most modern CPUs
26327 because of reduced dependencies, improved scheduling and reduced stack usage
26328 when the preferred stack boundary is not equal to 2.  The drawback is a notable
26329 increase in code size.  This switch implies @option{-mno-push-args}.
26331 @item -mthreads
26332 @opindex mthreads
26333 Support thread-safe exception handling on MinGW.  Programs that rely
26334 on thread-safe exception handling must compile and link all code with the
26335 @option{-mthreads} option.  When compiling, @option{-mthreads} defines
26336 @option{-D_MT}; when linking, it links in a special thread helper library
26337 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
26339 @item -mms-bitfields
26340 @itemx -mno-ms-bitfields
26341 @opindex mms-bitfields
26342 @opindex mno-ms-bitfields
26344 Enable/disable bit-field layout compatible with the native Microsoft
26345 Windows compiler.  
26347 If @code{packed} is used on a structure, or if bit-fields are used,
26348 it may be that the Microsoft ABI lays out the structure differently
26349 than the way GCC normally does.  Particularly when moving packed
26350 data between functions compiled with GCC and the native Microsoft compiler
26351 (either via function call or as data in a file), it may be necessary to access
26352 either format.
26354 This option is enabled by default for Microsoft Windows
26355 targets.  This behavior can also be controlled locally by use of variable
26356 or type attributes.  For more information, see @ref{x86 Variable Attributes}
26357 and @ref{x86 Type Attributes}.
26359 The Microsoft structure layout algorithm is fairly simple with the exception
26360 of the bit-field packing.  
26361 The padding and alignment of members of structures and whether a bit-field 
26362 can straddle a storage-unit boundary are determine by these rules:
26364 @enumerate
26365 @item Structure members are stored sequentially in the order in which they are
26366 declared: the first member has the lowest memory address and the last member
26367 the highest.
26369 @item Every data object has an alignment requirement.  The alignment requirement
26370 for all data except structures, unions, and arrays is either the size of the
26371 object or the current packing size (specified with either the
26372 @code{aligned} attribute or the @code{pack} pragma),
26373 whichever is less.  For structures, unions, and arrays,
26374 the alignment requirement is the largest alignment requirement of its members.
26375 Every object is allocated an offset so that:
26377 @smallexample
26378 offset % alignment_requirement == 0
26379 @end smallexample
26381 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
26382 unit if the integral types are the same size and if the next bit-field fits
26383 into the current allocation unit without crossing the boundary imposed by the
26384 common alignment requirements of the bit-fields.
26385 @end enumerate
26387 MSVC interprets zero-length bit-fields in the following ways:
26389 @enumerate
26390 @item If a zero-length bit-field is inserted between two bit-fields that
26391 are normally coalesced, the bit-fields are not coalesced.
26393 For example:
26395 @smallexample
26396 struct
26397  @{
26398    unsigned long bf_1 : 12;
26399    unsigned long : 0;
26400    unsigned long bf_2 : 12;
26401  @} t1;
26402 @end smallexample
26404 @noindent
26405 The size of @code{t1} is 8 bytes with the zero-length bit-field.  If the
26406 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
26408 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
26409 alignment of the zero-length bit-field is greater than the member that follows it,
26410 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
26412 For example:
26414 @smallexample
26415 struct
26416  @{
26417    char foo : 4;
26418    short : 0;
26419    char bar;
26420  @} t2;
26422 struct
26423  @{
26424    char foo : 4;
26425    short : 0;
26426    double bar;
26427  @} t3;
26428 @end smallexample
26430 @noindent
26431 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
26432 Accordingly, the size of @code{t2} is 4.  For @code{t3}, the zero-length
26433 bit-field does not affect the alignment of @code{bar} or, as a result, the size
26434 of the structure.
26436 Taking this into account, it is important to note the following:
26438 @enumerate
26439 @item If a zero-length bit-field follows a normal bit-field, the type of the
26440 zero-length bit-field may affect the alignment of the structure as whole. For
26441 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
26442 normal bit-field, and is of type short.
26444 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
26445 still affect the alignment of the structure:
26447 @smallexample
26448 struct
26449  @{
26450    char foo : 6;
26451    long : 0;
26452  @} t4;
26453 @end smallexample
26455 @noindent
26456 Here, @code{t4} takes up 4 bytes.
26457 @end enumerate
26459 @item Zero-length bit-fields following non-bit-field members are ignored:
26461 @smallexample
26462 struct
26463  @{
26464    char foo;
26465    long : 0;
26466    char bar;
26467  @} t5;
26468 @end smallexample
26470 @noindent
26471 Here, @code{t5} takes up 2 bytes.
26472 @end enumerate
26475 @item -mno-align-stringops
26476 @opindex mno-align-stringops
26477 Do not align the destination of inlined string operations.  This switch reduces
26478 code size and improves performance in case the destination is already aligned,
26479 but GCC doesn't know about it.
26481 @item -minline-all-stringops
26482 @opindex minline-all-stringops
26483 By default GCC inlines string operations only when the destination is 
26484 known to be aligned to least a 4-byte boundary.  
26485 This enables more inlining and increases code
26486 size, but may improve performance of code that depends on fast
26487 @code{memcpy}, @code{strlen},
26488 and @code{memset} for short lengths.
26490 @item -minline-stringops-dynamically
26491 @opindex minline-stringops-dynamically
26492 For string operations of unknown size, use run-time checks with
26493 inline code for small blocks and a library call for large blocks.
26495 @item -mstringop-strategy=@var{alg}
26496 @opindex mstringop-strategy=@var{alg}
26497 Override the internal decision heuristic for the particular algorithm to use
26498 for inlining string operations.  The allowed values for @var{alg} are:
26500 @table @samp
26501 @item rep_byte
26502 @itemx rep_4byte
26503 @itemx rep_8byte
26504 Expand using i386 @code{rep} prefix of the specified size.
26506 @item byte_loop
26507 @itemx loop
26508 @itemx unrolled_loop
26509 Expand into an inline loop.
26511 @item libcall
26512 Always use a library call.
26513 @end table
26515 @item -mmemcpy-strategy=@var{strategy}
26516 @opindex mmemcpy-strategy=@var{strategy}
26517 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
26518 should be inlined and what inline algorithm to use when the expected size
26519 of the copy operation is known. @var{strategy} 
26520 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets. 
26521 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
26522 the max byte size with which inline algorithm @var{alg} is allowed.  For the last
26523 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
26524 in the list must be specified in increasing order.  The minimal byte size for 
26525 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the 
26526 preceding range.
26528 @item -mmemset-strategy=@var{strategy}
26529 @opindex mmemset-strategy=@var{strategy}
26530 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
26531 @code{__builtin_memset} expansion.
26533 @item -momit-leaf-frame-pointer
26534 @opindex momit-leaf-frame-pointer
26535 Don't keep the frame pointer in a register for leaf functions.  This
26536 avoids the instructions to save, set up, and restore frame pointers and
26537 makes an extra register available in leaf functions.  The option
26538 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
26539 which might make debugging harder.
26541 @item -mtls-direct-seg-refs
26542 @itemx -mno-tls-direct-seg-refs
26543 @opindex mtls-direct-seg-refs
26544 Controls whether TLS variables may be accessed with offsets from the
26545 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
26546 or whether the thread base pointer must be added.  Whether or not this
26547 is valid depends on the operating system, and whether it maps the
26548 segment to cover the entire TLS area.
26550 For systems that use the GNU C Library, the default is on.
26552 @item -msse2avx
26553 @itemx -mno-sse2avx
26554 @opindex msse2avx
26555 Specify that the assembler should encode SSE instructions with VEX
26556 prefix.  The option @option{-mavx} turns this on by default.
26558 @item -mfentry
26559 @itemx -mno-fentry
26560 @opindex mfentry
26561 If profiling is active (@option{-pg}), put the profiling
26562 counter call before the prologue.
26563 Note: On x86 architectures the attribute @code{ms_hook_prologue}
26564 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
26566 @item -mrecord-mcount
26567 @itemx -mno-record-mcount
26568 @opindex mrecord-mcount
26569 If profiling is active (@option{-pg}), generate a __mcount_loc section
26570 that contains pointers to each profiling call. This is useful for
26571 automatically patching and out calls.
26573 @item -mnop-mcount
26574 @itemx -mno-nop-mcount
26575 @opindex mnop-mcount
26576 If profiling is active (@option{-pg}), generate the calls to
26577 the profiling functions as NOPs. This is useful when they
26578 should be patched in later dynamically. This is likely only
26579 useful together with @option{-mrecord-mcount}.
26581 @item -mskip-rax-setup
26582 @itemx -mno-skip-rax-setup
26583 @opindex mskip-rax-setup
26584 When generating code for the x86-64 architecture with SSE extensions
26585 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
26586 register when there are no variable arguments passed in vector registers.
26588 @strong{Warning:} Since RAX register is used to avoid unnecessarily
26589 saving vector registers on stack when passing variable arguments, the
26590 impacts of this option are callees may waste some stack space,
26591 misbehave or jump to a random location.  GCC 4.4 or newer don't have
26592 those issues, regardless the RAX register value.
26594 @item -m8bit-idiv
26595 @itemx -mno-8bit-idiv
26596 @opindex m8bit-idiv
26597 On some processors, like Intel Atom, 8-bit unsigned integer divide is
26598 much faster than 32-bit/64-bit integer divide.  This option generates a
26599 run-time check.  If both dividend and divisor are within range of 0
26600 to 255, 8-bit unsigned integer divide is used instead of
26601 32-bit/64-bit integer divide.
26603 @item -mavx256-split-unaligned-load
26604 @itemx -mavx256-split-unaligned-store
26605 @opindex mavx256-split-unaligned-load
26606 @opindex mavx256-split-unaligned-store
26607 Split 32-byte AVX unaligned load and store.
26609 @item -mstack-protector-guard=@var{guard}
26610 @itemx -mstack-protector-guard-reg=@var{reg}
26611 @itemx -mstack-protector-guard-offset=@var{offset}
26612 @opindex mstack-protector-guard
26613 @opindex mstack-protector-guard-reg
26614 @opindex mstack-protector-guard-offset
26615 Generate stack protection code using canary at @var{guard}.  Supported
26616 locations are @samp{global} for global canary or @samp{tls} for per-thread
26617 canary in the TLS block (the default).  This option has effect only when
26618 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
26620 With the latter choice the options
26621 @option{-mstack-protector-guard-reg=@var{reg}} and
26622 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
26623 which segment register (@code{%fs} or @code{%gs}) to use as base register
26624 for reading the canary, and from what offset from that base register.
26625 The default for those is as specified in the relevant ABI.
26627 @item -mmitigate-rop
26628 @opindex mmitigate-rop
26629 Try to avoid generating code sequences that contain unintended return
26630 opcodes, to mitigate against certain forms of attack. At the moment,
26631 this option is limited in what it can do and should not be relied
26632 on to provide serious protection.
26634 @item -mgeneral-regs-only
26635 @opindex mgeneral-regs-only
26636 Generate code that uses only the general-purpose registers.  This
26637 prevents the compiler from using floating-point, vector, mask and bound
26638 registers.
26640 @end table
26642 These @samp{-m} switches are supported in addition to the above
26643 on x86-64 processors in 64-bit environments.
26645 @table @gcctabopt
26646 @item -m32
26647 @itemx -m64
26648 @itemx -mx32
26649 @itemx -m16
26650 @itemx -miamcu
26651 @opindex m32
26652 @opindex m64
26653 @opindex mx32
26654 @opindex m16
26655 @opindex miamcu
26656 Generate code for a 16-bit, 32-bit or 64-bit environment.
26657 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
26658 to 32 bits, and
26659 generates code that runs on any i386 system.
26661 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
26662 types to 64 bits, and generates code for the x86-64 architecture.
26663 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
26664 and @option{-mdynamic-no-pic} options.
26666 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
26667 to 32 bits, and
26668 generates code for the x86-64 architecture.
26670 The @option{-m16} option is the same as @option{-m32}, except for that
26671 it outputs the @code{.code16gcc} assembly directive at the beginning of
26672 the assembly output so that the binary can run in 16-bit mode.
26674 The @option{-miamcu} option generates code which conforms to Intel MCU
26675 psABI.  It requires the @option{-m32} option to be turned on.
26677 @item -mno-red-zone
26678 @opindex mno-red-zone
26679 Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
26680 by the x86-64 ABI; it is a 128-byte area beyond the location of the
26681 stack pointer that is not modified by signal or interrupt handlers
26682 and therefore can be used for temporary data without adjusting the stack
26683 pointer.  The flag @option{-mno-red-zone} disables this red zone.
26685 @item -mcmodel=small
26686 @opindex mcmodel=small
26687 Generate code for the small code model: the program and its symbols must
26688 be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
26689 Programs can be statically or dynamically linked.  This is the default
26690 code model.
26692 @item -mcmodel=kernel
26693 @opindex mcmodel=kernel
26694 Generate code for the kernel code model.  The kernel runs in the
26695 negative 2 GB of the address space.
26696 This model has to be used for Linux kernel code.
26698 @item -mcmodel=medium
26699 @opindex mcmodel=medium
26700 Generate code for the medium model: the program is linked in the lower 2
26701 GB of the address space.  Small symbols are also placed there.  Symbols
26702 with sizes larger than @option{-mlarge-data-threshold} are put into
26703 large data or BSS sections and can be located above 2GB.  Programs can
26704 be statically or dynamically linked.
26706 @item -mcmodel=large
26707 @opindex mcmodel=large
26708 Generate code for the large model.  This model makes no assumptions
26709 about addresses and sizes of sections.
26711 @item -maddress-mode=long
26712 @opindex maddress-mode=long
26713 Generate code for long address mode.  This is only supported for 64-bit
26714 and x32 environments.  It is the default address mode for 64-bit
26715 environments.
26717 @item -maddress-mode=short
26718 @opindex maddress-mode=short
26719 Generate code for short address mode.  This is only supported for 32-bit
26720 and x32 environments.  It is the default address mode for 32-bit and
26721 x32 environments.
26722 @end table
26724 @node x86 Windows Options
26725 @subsection x86 Windows Options
26726 @cindex x86 Windows Options
26727 @cindex Windows Options for x86
26729 These additional options are available for Microsoft Windows targets:
26731 @table @gcctabopt
26732 @item -mconsole
26733 @opindex mconsole
26734 This option
26735 specifies that a console application is to be generated, by
26736 instructing the linker to set the PE header subsystem type
26737 required for console applications.
26738 This option is available for Cygwin and MinGW targets and is
26739 enabled by default on those targets.
26741 @item -mdll
26742 @opindex mdll
26743 This option is available for Cygwin and MinGW targets.  It
26744 specifies that a DLL---a dynamic link library---is to be
26745 generated, enabling the selection of the required runtime
26746 startup object and entry point.
26748 @item -mnop-fun-dllimport
26749 @opindex mnop-fun-dllimport
26750 This option is available for Cygwin and MinGW targets.  It
26751 specifies that the @code{dllimport} attribute should be ignored.
26753 @item -mthread
26754 @opindex mthread
26755 This option is available for MinGW targets. It specifies
26756 that MinGW-specific thread support is to be used.
26758 @item -municode
26759 @opindex municode
26760 This option is available for MinGW-w64 targets.  It causes
26761 the @code{UNICODE} preprocessor macro to be predefined, and
26762 chooses Unicode-capable runtime startup code.
26764 @item -mwin32
26765 @opindex mwin32
26766 This option is available for Cygwin and MinGW targets.  It
26767 specifies that the typical Microsoft Windows predefined macros are to
26768 be set in the pre-processor, but does not influence the choice
26769 of runtime library/startup code.
26771 @item -mwindows
26772 @opindex mwindows
26773 This option is available for Cygwin and MinGW targets.  It
26774 specifies that a GUI application is to be generated by
26775 instructing the linker to set the PE header subsystem type
26776 appropriately.
26778 @item -fno-set-stack-executable
26779 @opindex fno-set-stack-executable
26780 This option is available for MinGW targets. It specifies that
26781 the executable flag for the stack used by nested functions isn't
26782 set. This is necessary for binaries running in kernel mode of
26783 Microsoft Windows, as there the User32 API, which is used to set executable
26784 privileges, isn't available.
26786 @item -fwritable-relocated-rdata
26787 @opindex fno-writable-relocated-rdata
26788 This option is available for MinGW and Cygwin targets.  It specifies
26789 that relocated-data in read-only section is put into the @code{.data}
26790 section.  This is a necessary for older runtimes not supporting
26791 modification of @code{.rdata} sections for pseudo-relocation.
26793 @item -mpe-aligned-commons
26794 @opindex mpe-aligned-commons
26795 This option is available for Cygwin and MinGW targets.  It
26796 specifies that the GNU extension to the PE file format that
26797 permits the correct alignment of COMMON variables should be
26798 used when generating code.  It is enabled by default if
26799 GCC detects that the target assembler found during configuration
26800 supports the feature.
26801 @end table
26803 See also under @ref{x86 Options} for standard options.
26805 @node Xstormy16 Options
26806 @subsection Xstormy16 Options
26807 @cindex Xstormy16 Options
26809 These options are defined for Xstormy16:
26811 @table @gcctabopt
26812 @item -msim
26813 @opindex msim
26814 Choose startup files and linker script suitable for the simulator.
26815 @end table
26817 @node Xtensa Options
26818 @subsection Xtensa Options
26819 @cindex Xtensa Options
26821 These options are supported for Xtensa targets:
26823 @table @gcctabopt
26824 @item -mconst16
26825 @itemx -mno-const16
26826 @opindex mconst16
26827 @opindex mno-const16
26828 Enable or disable use of @code{CONST16} instructions for loading
26829 constant values.  The @code{CONST16} instruction is currently not a
26830 standard option from Tensilica.  When enabled, @code{CONST16}
26831 instructions are always used in place of the standard @code{L32R}
26832 instructions.  The use of @code{CONST16} is enabled by default only if
26833 the @code{L32R} instruction is not available.
26835 @item -mfused-madd
26836 @itemx -mno-fused-madd
26837 @opindex mfused-madd
26838 @opindex mno-fused-madd
26839 Enable or disable use of fused multiply/add and multiply/subtract
26840 instructions in the floating-point option.  This has no effect if the
26841 floating-point option is not also enabled.  Disabling fused multiply/add
26842 and multiply/subtract instructions forces the compiler to use separate
26843 instructions for the multiply and add/subtract operations.  This may be
26844 desirable in some cases where strict IEEE 754-compliant results are
26845 required: the fused multiply add/subtract instructions do not round the
26846 intermediate result, thereby producing results with @emph{more} bits of
26847 precision than specified by the IEEE standard.  Disabling fused multiply
26848 add/subtract instructions also ensures that the program output is not
26849 sensitive to the compiler's ability to combine multiply and add/subtract
26850 operations.
26852 @item -mserialize-volatile
26853 @itemx -mno-serialize-volatile
26854 @opindex mserialize-volatile
26855 @opindex mno-serialize-volatile
26856 When this option is enabled, GCC inserts @code{MEMW} instructions before
26857 @code{volatile} memory references to guarantee sequential consistency.
26858 The default is @option{-mserialize-volatile}.  Use
26859 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
26861 @item -mforce-no-pic
26862 @opindex mforce-no-pic
26863 For targets, like GNU/Linux, where all user-mode Xtensa code must be
26864 position-independent code (PIC), this option disables PIC for compiling
26865 kernel code.
26867 @item -mtext-section-literals
26868 @itemx -mno-text-section-literals
26869 @opindex mtext-section-literals
26870 @opindex mno-text-section-literals
26871 These options control the treatment of literal pools.  The default is
26872 @option{-mno-text-section-literals}, which places literals in a separate
26873 section in the output file.  This allows the literal pool to be placed
26874 in a data RAM/ROM, and it also allows the linker to combine literal
26875 pools from separate object files to remove redundant literals and
26876 improve code size.  With @option{-mtext-section-literals}, the literals
26877 are interspersed in the text section in order to keep them as close as
26878 possible to their references.  This may be necessary for large assembly
26879 files.  Literals for each function are placed right before that function.
26881 @item -mauto-litpools
26882 @itemx -mno-auto-litpools
26883 @opindex mauto-litpools
26884 @opindex mno-auto-litpools
26885 These options control the treatment of literal pools.  The default is
26886 @option{-mno-auto-litpools}, which places literals in a separate
26887 section in the output file unless @option{-mtext-section-literals} is
26888 used.  With @option{-mauto-litpools} the literals are interspersed in
26889 the text section by the assembler.  Compiler does not produce explicit
26890 @code{.literal} directives and loads literals into registers with
26891 @code{MOVI} instructions instead of @code{L32R} to let the assembler
26892 do relaxation and place literals as necessary.  This option allows
26893 assembler to create several literal pools per function and assemble
26894 very big functions, which may not be possible with
26895 @option{-mtext-section-literals}.
26897 @item -mtarget-align
26898 @itemx -mno-target-align
26899 @opindex mtarget-align
26900 @opindex mno-target-align
26901 When this option is enabled, GCC instructs the assembler to
26902 automatically align instructions to reduce branch penalties at the
26903 expense of some code density.  The assembler attempts to widen density
26904 instructions to align branch targets and the instructions following call
26905 instructions.  If there are not enough preceding safe density
26906 instructions to align a target, no widening is performed.  The
26907 default is @option{-mtarget-align}.  These options do not affect the
26908 treatment of auto-aligned instructions like @code{LOOP}, which the
26909 assembler always aligns, either by widening density instructions or
26910 by inserting NOP instructions.
26912 @item -mlongcalls
26913 @itemx -mno-longcalls
26914 @opindex mlongcalls
26915 @opindex mno-longcalls
26916 When this option is enabled, GCC instructs the assembler to translate
26917 direct calls to indirect calls unless it can determine that the target
26918 of a direct call is in the range allowed by the call instruction.  This
26919 translation typically occurs for calls to functions in other source
26920 files.  Specifically, the assembler translates a direct @code{CALL}
26921 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
26922 The default is @option{-mno-longcalls}.  This option should be used in
26923 programs where the call target can potentially be out of range.  This
26924 option is implemented in the assembler, not the compiler, so the
26925 assembly code generated by GCC still shows direct call
26926 instructions---look at the disassembled object code to see the actual
26927 instructions.  Note that the assembler uses an indirect call for
26928 every cross-file call, not just those that really are out of range.
26929 @end table
26931 @node zSeries Options
26932 @subsection zSeries Options
26933 @cindex zSeries options
26935 These are listed under @xref{S/390 and zSeries Options}.
26938 @c man end
26940 @node Spec Files
26941 @section Specifying Subprocesses and the Switches to Pass to Them
26942 @cindex Spec Files
26944 @command{gcc} is a driver program.  It performs its job by invoking a
26945 sequence of other programs to do the work of compiling, assembling and
26946 linking.  GCC interprets its command-line parameters and uses these to
26947 deduce which programs it should invoke, and which command-line options
26948 it ought to place on their command lines.  This behavior is controlled
26949 by @dfn{spec strings}.  In most cases there is one spec string for each
26950 program that GCC can invoke, but a few programs have multiple spec
26951 strings to control their behavior.  The spec strings built into GCC can
26952 be overridden by using the @option{-specs=} command-line switch to specify
26953 a spec file.
26955 @dfn{Spec files} are plain-text files that are used to construct spec
26956 strings.  They consist of a sequence of directives separated by blank
26957 lines.  The type of directive is determined by the first non-whitespace
26958 character on the line, which can be one of the following:
26960 @table @code
26961 @item %@var{command}
26962 Issues a @var{command} to the spec file processor.  The commands that can
26963 appear here are:
26965 @table @code
26966 @item %include <@var{file}>
26967 @cindex @code{%include}
26968 Search for @var{file} and insert its text at the current point in the
26969 specs file.
26971 @item %include_noerr <@var{file}>
26972 @cindex @code{%include_noerr}
26973 Just like @samp{%include}, but do not generate an error message if the include
26974 file cannot be found.
26976 @item %rename @var{old_name} @var{new_name}
26977 @cindex @code{%rename}
26978 Rename the spec string @var{old_name} to @var{new_name}.
26980 @end table
26982 @item *[@var{spec_name}]:
26983 This tells the compiler to create, override or delete the named spec
26984 string.  All lines after this directive up to the next directive or
26985 blank line are considered to be the text for the spec string.  If this
26986 results in an empty string then the spec is deleted.  (Or, if the
26987 spec did not exist, then nothing happens.)  Otherwise, if the spec
26988 does not currently exist a new spec is created.  If the spec does
26989 exist then its contents are overridden by the text of this
26990 directive, unless the first character of that text is the @samp{+}
26991 character, in which case the text is appended to the spec.
26993 @item [@var{suffix}]:
26994 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
26995 and up to the next directive or blank line are considered to make up the
26996 spec string for the indicated suffix.  When the compiler encounters an
26997 input file with the named suffix, it processes the spec string in
26998 order to work out how to compile that file.  For example:
27000 @smallexample
27001 .ZZ:
27002 z-compile -input %i
27003 @end smallexample
27005 This says that any input file whose name ends in @samp{.ZZ} should be
27006 passed to the program @samp{z-compile}, which should be invoked with the
27007 command-line switch @option{-input} and with the result of performing the
27008 @samp{%i} substitution.  (See below.)
27010 As an alternative to providing a spec string, the text following a
27011 suffix directive can be one of the following:
27013 @table @code
27014 @item @@@var{language}
27015 This says that the suffix is an alias for a known @var{language}.  This is
27016 similar to using the @option{-x} command-line switch to GCC to specify a
27017 language explicitly.  For example:
27019 @smallexample
27020 .ZZ:
27021 @@c++
27022 @end smallexample
27024 Says that .ZZ files are, in fact, C++ source files.
27026 @item #@var{name}
27027 This causes an error messages saying:
27029 @smallexample
27030 @var{name} compiler not installed on this system.
27031 @end smallexample
27032 @end table
27034 GCC already has an extensive list of suffixes built into it.
27035 This directive adds an entry to the end of the list of suffixes, but
27036 since the list is searched from the end backwards, it is effectively
27037 possible to override earlier entries using this technique.
27039 @end table
27041 GCC has the following spec strings built into it.  Spec files can
27042 override these strings or create their own.  Note that individual
27043 targets can also add their own spec strings to this list.
27045 @smallexample
27046 asm          Options to pass to the assembler
27047 asm_final    Options to pass to the assembler post-processor
27048 cpp          Options to pass to the C preprocessor
27049 cc1          Options to pass to the C compiler
27050 cc1plus      Options to pass to the C++ compiler
27051 endfile      Object files to include at the end of the link
27052 link         Options to pass to the linker
27053 lib          Libraries to include on the command line to the linker
27054 libgcc       Decides which GCC support library to pass to the linker
27055 linker       Sets the name of the linker
27056 predefines   Defines to be passed to the C preprocessor
27057 signed_char  Defines to pass to CPP to say whether @code{char} is signed
27058              by default
27059 startfile    Object files to include at the start of the link
27060 @end smallexample
27062 Here is a small example of a spec file:
27064 @smallexample
27065 %rename lib                 old_lib
27067 *lib:
27068 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
27069 @end smallexample
27071 This example renames the spec called @samp{lib} to @samp{old_lib} and
27072 then overrides the previous definition of @samp{lib} with a new one.
27073 The new definition adds in some extra command-line options before
27074 including the text of the old definition.
27076 @dfn{Spec strings} are a list of command-line options to be passed to their
27077 corresponding program.  In addition, the spec strings can contain
27078 @samp{%}-prefixed sequences to substitute variable text or to
27079 conditionally insert text into the command line.  Using these constructs
27080 it is possible to generate quite complex command lines.
27082 Here is a table of all defined @samp{%}-sequences for spec
27083 strings.  Note that spaces are not generated automatically around the
27084 results of expanding these sequences.  Therefore you can concatenate them
27085 together or combine them with constant text in a single argument.
27087 @table @code
27088 @item %%
27089 Substitute one @samp{%} into the program name or argument.
27091 @item %i
27092 Substitute the name of the input file being processed.
27094 @item %b
27095 Substitute the basename of the input file being processed.
27096 This is the substring up to (and not including) the last period
27097 and not including the directory.
27099 @item %B
27100 This is the same as @samp{%b}, but include the file suffix (text after
27101 the last period).
27103 @item %d
27104 Marks the argument containing or following the @samp{%d} as a
27105 temporary file name, so that that file is deleted if GCC exits
27106 successfully.  Unlike @samp{%g}, this contributes no text to the
27107 argument.
27109 @item %g@var{suffix}
27110 Substitute a file name that has suffix @var{suffix} and is chosen
27111 once per compilation, and mark the argument in the same way as
27112 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
27113 name is now chosen in a way that is hard to predict even when previously
27114 chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
27115 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
27116 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
27117 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
27118 was simply substituted with a file name chosen once per compilation,
27119 without regard to any appended suffix (which was therefore treated
27120 just like ordinary text), making such attacks more likely to succeed.
27122 @item %u@var{suffix}
27123 Like @samp{%g}, but generates a new temporary file name
27124 each time it appears instead of once per compilation.
27126 @item %U@var{suffix}
27127 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
27128 new one if there is no such last file name.  In the absence of any
27129 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
27130 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
27131 involves the generation of two distinct file names, one
27132 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
27133 simply substituted with a file name chosen for the previous @samp{%u},
27134 without regard to any appended suffix.
27136 @item %j@var{suffix}
27137 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
27138 writable, and if @option{-save-temps} is not used; 
27139 otherwise, substitute the name
27140 of a temporary file, just like @samp{%u}.  This temporary file is not
27141 meant for communication between processes, but rather as a junk
27142 disposal mechanism.
27144 @item %|@var{suffix}
27145 @itemx %m@var{suffix}
27146 Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
27147 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
27148 all.  These are the two most common ways to instruct a program that it
27149 should read from standard input or write to standard output.  If you
27150 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
27151 construct: see for example @file{f/lang-specs.h}.
27153 @item %.@var{SUFFIX}
27154 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
27155 when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
27156 terminated by the next space or %.
27158 @item %w
27159 Marks the argument containing or following the @samp{%w} as the
27160 designated output file of this compilation.  This puts the argument
27161 into the sequence of arguments that @samp{%o} substitutes.
27163 @item %o
27164 Substitutes the names of all the output files, with spaces
27165 automatically placed around them.  You should write spaces
27166 around the @samp{%o} as well or the results are undefined.
27167 @samp{%o} is for use in the specs for running the linker.
27168 Input files whose names have no recognized suffix are not compiled
27169 at all, but they are included among the output files, so they are
27170 linked.
27172 @item %O
27173 Substitutes the suffix for object files.  Note that this is
27174 handled specially when it immediately follows @samp{%g, %u, or %U},
27175 because of the need for those to form complete file names.  The
27176 handling is such that @samp{%O} is treated exactly as if it had already
27177 been substituted, except that @samp{%g, %u, and %U} do not currently
27178 support additional @var{suffix} characters following @samp{%O} as they do
27179 following, for example, @samp{.o}.
27181 @item %p
27182 Substitutes the standard macro predefinitions for the
27183 current target machine.  Use this when running @command{cpp}.
27185 @item %P
27186 Like @samp{%p}, but puts @samp{__} before and after the name of each
27187 predefined macro, except for macros that start with @samp{__} or with
27188 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
27191 @item %I
27192 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
27193 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
27194 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
27195 and @option{-imultilib} as necessary.
27197 @item %s
27198 Current argument is the name of a library or startup file of some sort.
27199 Search for that file in a standard list of directories and substitute
27200 the full name found.  The current working directory is included in the
27201 list of directories scanned.
27203 @item %T
27204 Current argument is the name of a linker script.  Search for that file
27205 in the current list of directories to scan for libraries. If the file
27206 is located insert a @option{--script} option into the command line
27207 followed by the full path name found.  If the file is not found then
27208 generate an error message.  Note: the current working directory is not
27209 searched.
27211 @item %e@var{str}
27212 Print @var{str} as an error message.  @var{str} is terminated by a newline.
27213 Use this when inconsistent options are detected.
27215 @item %(@var{name})
27216 Substitute the contents of spec string @var{name} at this point.
27218 @item %x@{@var{option}@}
27219 Accumulate an option for @samp{%X}.
27221 @item %X
27222 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
27223 spec string.
27225 @item %Y
27226 Output the accumulated assembler options specified by @option{-Wa}.
27228 @item %Z
27229 Output the accumulated preprocessor options specified by @option{-Wp}.
27231 @item %a
27232 Process the @code{asm} spec.  This is used to compute the
27233 switches to be passed to the assembler.
27235 @item %A
27236 Process the @code{asm_final} spec.  This is a spec string for
27237 passing switches to an assembler post-processor, if such a program is
27238 needed.
27240 @item %l
27241 Process the @code{link} spec.  This is the spec for computing the
27242 command line passed to the linker.  Typically it makes use of the
27243 @samp{%L %G %S %D and %E} sequences.
27245 @item %D
27246 Dump out a @option{-L} option for each directory that GCC believes might
27247 contain startup files.  If the target supports multilibs then the
27248 current multilib directory is prepended to each of these paths.
27250 @item %L
27251 Process the @code{lib} spec.  This is a spec string for deciding which
27252 libraries are included on the command line to the linker.
27254 @item %G
27255 Process the @code{libgcc} spec.  This is a spec string for deciding
27256 which GCC support library is included on the command line to the linker.
27258 @item %S
27259 Process the @code{startfile} spec.  This is a spec for deciding which
27260 object files are the first ones passed to the linker.  Typically
27261 this might be a file named @file{crt0.o}.
27263 @item %E
27264 Process the @code{endfile} spec.  This is a spec string that specifies
27265 the last object files that are passed to the linker.
27267 @item %C
27268 Process the @code{cpp} spec.  This is used to construct the arguments
27269 to be passed to the C preprocessor.
27271 @item %1
27272 Process the @code{cc1} spec.  This is used to construct the options to be
27273 passed to the actual C compiler (@command{cc1}).
27275 @item %2
27276 Process the @code{cc1plus} spec.  This is used to construct the options to be
27277 passed to the actual C++ compiler (@command{cc1plus}).
27279 @item %*
27280 Substitute the variable part of a matched option.  See below.
27281 Note that each comma in the substituted string is replaced by
27282 a single space.
27284 @item %<S
27285 Remove all occurrences of @code{-S} from the command line.  Note---this
27286 command is position dependent.  @samp{%} commands in the spec string
27287 before this one see @code{-S}, @samp{%} commands in the spec string
27288 after this one do not.
27290 @item %:@var{function}(@var{args})
27291 Call the named function @var{function}, passing it @var{args}.
27292 @var{args} is first processed as a nested spec string, then split
27293 into an argument vector in the usual fashion.  The function returns
27294 a string which is processed as if it had appeared literally as part
27295 of the current spec.
27297 The following built-in spec functions are provided:
27299 @table @code
27300 @item @code{getenv}
27301 The @code{getenv} spec function takes two arguments: an environment
27302 variable name and a string.  If the environment variable is not
27303 defined, a fatal error is issued.  Otherwise, the return value is the
27304 value of the environment variable concatenated with the string.  For
27305 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
27307 @smallexample
27308 %:getenv(TOPDIR /include)
27309 @end smallexample
27311 expands to @file{/path/to/top/include}.
27313 @item @code{if-exists}
27314 The @code{if-exists} spec function takes one argument, an absolute
27315 pathname to a file.  If the file exists, @code{if-exists} returns the
27316 pathname.  Here is a small example of its usage:
27318 @smallexample
27319 *startfile:
27320 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
27321 @end smallexample
27323 @item @code{if-exists-else}
27324 The @code{if-exists-else} spec function is similar to the @code{if-exists}
27325 spec function, except that it takes two arguments.  The first argument is
27326 an absolute pathname to a file.  If the file exists, @code{if-exists-else}
27327 returns the pathname.  If it does not exist, it returns the second argument.
27328 This way, @code{if-exists-else} can be used to select one file or another,
27329 based on the existence of the first.  Here is a small example of its usage:
27331 @smallexample
27332 *startfile:
27333 crt0%O%s %:if-exists(crti%O%s) \
27334 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
27335 @end smallexample
27337 @item @code{replace-outfile}
27338 The @code{replace-outfile} spec function takes two arguments.  It looks for the
27339 first argument in the outfiles array and replaces it with the second argument.  Here
27340 is a small example of its usage:
27342 @smallexample
27343 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
27344 @end smallexample
27346 @item @code{remove-outfile}
27347 The @code{remove-outfile} spec function takes one argument.  It looks for the
27348 first argument in the outfiles array and removes it.  Here is a small example
27349 its usage:
27351 @smallexample
27352 %:remove-outfile(-lm)
27353 @end smallexample
27355 @item @code{pass-through-libs}
27356 The @code{pass-through-libs} spec function takes any number of arguments.  It
27357 finds any @option{-l} options and any non-options ending in @file{.a} (which it
27358 assumes are the names of linker input library archive files) and returns a
27359 result containing all the found arguments each prepended by
27360 @option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
27361 intended to be passed to the LTO linker plugin.
27363 @smallexample
27364 %:pass-through-libs(%G %L %G)
27365 @end smallexample
27367 @item @code{print-asm-header}
27368 The @code{print-asm-header} function takes no arguments and simply
27369 prints a banner like:
27371 @smallexample
27372 Assembler options
27373 =================
27375 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
27376 @end smallexample
27378 It is used to separate compiler options from assembler options
27379 in the @option{--target-help} output.
27380 @end table
27382 @item %@{S@}
27383 Substitutes the @code{-S} switch, if that switch is given to GCC@.
27384 If that switch is not specified, this substitutes nothing.  Note that
27385 the leading dash is omitted when specifying this option, and it is
27386 automatically inserted if the substitution is performed.  Thus the spec
27387 string @samp{%@{foo@}} matches the command-line option @option{-foo}
27388 and outputs the command-line option @option{-foo}.
27390 @item %W@{S@}
27391 Like %@{@code{S}@} but mark last argument supplied within as a file to be
27392 deleted on failure.
27394 @item %@{S*@}
27395 Substitutes all the switches specified to GCC whose names start
27396 with @code{-S}, but which also take an argument.  This is used for
27397 switches like @option{-o}, @option{-D}, @option{-I}, etc.
27398 GCC considers @option{-o foo} as being
27399 one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
27400 text, including the space.  Thus two arguments are generated.
27402 @item %@{S*&T*@}
27403 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
27404 (the order of @code{S} and @code{T} in the spec is not significant).
27405 There can be any number of ampersand-separated variables; for each the
27406 wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
27408 @item %@{S:X@}
27409 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
27411 @item %@{!S:X@}
27412 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
27414 @item %@{S*:X@}
27415 Substitutes @code{X} if one or more switches whose names start with
27416 @code{-S} are specified to GCC@.  Normally @code{X} is substituted only
27417 once, no matter how many such switches appeared.  However, if @code{%*}
27418 appears somewhere in @code{X}, then @code{X} is substituted once
27419 for each matching switch, with the @code{%*} replaced by the part of
27420 that switch matching the @code{*}.
27422 If @code{%*} appears as the last part of a spec sequence then a space
27423 is added after the end of the last substitution.  If there is more
27424 text in the sequence, however, then a space is not generated.  This
27425 allows the @code{%*} substitution to be used as part of a larger
27426 string.  For example, a spec string like this:
27428 @smallexample
27429 %@{mcu=*:--script=%*/memory.ld@}
27430 @end smallexample
27432 @noindent
27433 when matching an option like @option{-mcu=newchip} produces:
27435 @smallexample
27436 --script=newchip/memory.ld
27437 @end smallexample
27439 @item %@{.S:X@}
27440 Substitutes @code{X}, if processing a file with suffix @code{S}.
27442 @item %@{!.S:X@}
27443 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
27445 @item %@{,S:X@}
27446 Substitutes @code{X}, if processing a file for language @code{S}.
27448 @item %@{!,S:X@}
27449 Substitutes @code{X}, if not processing a file for language @code{S}.
27451 @item %@{S|P:X@}
27452 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
27453 GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
27454 @code{*} sequences as well, although they have a stronger binding than
27455 the @samp{|}.  If @code{%*} appears in @code{X}, all of the
27456 alternatives must be starred, and only the first matching alternative
27457 is substituted.
27459 For example, a spec string like this:
27461 @smallexample
27462 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
27463 @end smallexample
27465 @noindent
27466 outputs the following command-line options from the following input
27467 command-line options:
27469 @smallexample
27470 fred.c        -foo -baz
27471 jim.d         -bar -boggle
27472 -d fred.c     -foo -baz -boggle
27473 -d jim.d      -bar -baz -boggle
27474 @end smallexample
27476 @item %@{S:X; T:Y; :D@}
27478 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
27479 given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
27480 be as many clauses as you need.  This may be combined with @code{.},
27481 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
27484 @end table
27486 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
27487 or similar construct can use a backslash to ignore the special meaning
27488 of the character following it, thus allowing literal matching of a
27489 character that is otherwise specially treated.  For example,
27490 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
27491 @option{-std=iso9899:1999} option is given.
27493 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
27494 construct may contain other nested @samp{%} constructs or spaces, or
27495 even newlines.  They are processed as usual, as described above.
27496 Trailing white space in @code{X} is ignored.  White space may also
27497 appear anywhere on the left side of the colon in these constructs,
27498 except between @code{.} or @code{*} and the corresponding word.
27500 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
27501 handled specifically in these constructs.  If another value of
27502 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
27503 @option{-W} switch is found later in the command line, the earlier
27504 switch value is ignored, except with @{@code{S}*@} where @code{S} is
27505 just one letter, which passes all matching options.
27507 The character @samp{|} at the beginning of the predicate text is used to
27508 indicate that a command should be piped to the following command, but
27509 only if @option{-pipe} is specified.
27511 It is built into GCC which switches take arguments and which do not.
27512 (You might think it would be useful to generalize this to allow each
27513 compiler's spec to say which switches take arguments.  But this cannot
27514 be done in a consistent fashion.  GCC cannot even decide which input
27515 files have been specified without knowing which switches take arguments,
27516 and it must know which input files to compile in order to tell which
27517 compilers to run).
27519 GCC also knows implicitly that arguments starting in @option{-l} are to be
27520 treated as compiler output files, and passed to the linker in their
27521 proper position among the other output files.
27523 @node Environment Variables
27524 @section Environment Variables Affecting GCC
27525 @cindex environment variables
27527 @c man begin ENVIRONMENT
27528 This section describes several environment variables that affect how GCC
27529 operates.  Some of them work by specifying directories or prefixes to use
27530 when searching for various kinds of files.  Some are used to specify other
27531 aspects of the compilation environment.
27533 Note that you can also specify places to search using options such as
27534 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
27535 take precedence over places specified using environment variables, which
27536 in turn take precedence over those specified by the configuration of GCC@.
27537 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
27538 GNU Compiler Collection (GCC) Internals}.
27540 @table @env
27541 @item LANG
27542 @itemx LC_CTYPE
27543 @c @itemx LC_COLLATE
27544 @itemx LC_MESSAGES
27545 @c @itemx LC_MONETARY
27546 @c @itemx LC_NUMERIC
27547 @c @itemx LC_TIME
27548 @itemx LC_ALL
27549 @findex LANG
27550 @findex LC_CTYPE
27551 @c @findex LC_COLLATE
27552 @findex LC_MESSAGES
27553 @c @findex LC_MONETARY
27554 @c @findex LC_NUMERIC
27555 @c @findex LC_TIME
27556 @findex LC_ALL
27557 @cindex locale
27558 These environment variables control the way that GCC uses
27559 localization information which allows GCC to work with different
27560 national conventions.  GCC inspects the locale categories
27561 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
27562 so.  These locale categories can be set to any value supported by your
27563 installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
27564 Kingdom encoded in UTF-8.
27566 The @env{LC_CTYPE} environment variable specifies character
27567 classification.  GCC uses it to determine the character boundaries in
27568 a string; this is needed for some multibyte encodings that contain quote
27569 and escape characters that are otherwise interpreted as a string
27570 end or escape.
27572 The @env{LC_MESSAGES} environment variable specifies the language to
27573 use in diagnostic messages.
27575 If the @env{LC_ALL} environment variable is set, it overrides the value
27576 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
27577 and @env{LC_MESSAGES} default to the value of the @env{LANG}
27578 environment variable.  If none of these variables are set, GCC
27579 defaults to traditional C English behavior.
27581 @item TMPDIR
27582 @findex TMPDIR
27583 If @env{TMPDIR} is set, it specifies the directory to use for temporary
27584 files.  GCC uses temporary files to hold the output of one stage of
27585 compilation which is to be used as input to the next stage: for example,
27586 the output of the preprocessor, which is the input to the compiler
27587 proper.
27589 @item GCC_COMPARE_DEBUG
27590 @findex GCC_COMPARE_DEBUG
27591 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
27592 @option{-fcompare-debug} to the compiler driver.  See the documentation
27593 of this option for more details.
27595 @item GCC_EXEC_PREFIX
27596 @findex GCC_EXEC_PREFIX
27597 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
27598 names of the subprograms executed by the compiler.  No slash is added
27599 when this prefix is combined with the name of a subprogram, but you can
27600 specify a prefix that ends with a slash if you wish.
27602 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
27603 an appropriate prefix to use based on the pathname it is invoked with.
27605 If GCC cannot find the subprogram using the specified prefix, it
27606 tries looking in the usual places for the subprogram.
27608 The default value of @env{GCC_EXEC_PREFIX} is
27609 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
27610 the installed compiler. In many cases @var{prefix} is the value
27611 of @code{prefix} when you ran the @file{configure} script.
27613 Other prefixes specified with @option{-B} take precedence over this prefix.
27615 This prefix is also used for finding files such as @file{crt0.o} that are
27616 used for linking.
27618 In addition, the prefix is used in an unusual way in finding the
27619 directories to search for header files.  For each of the standard
27620 directories whose name normally begins with @samp{/usr/local/lib/gcc}
27621 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
27622 replacing that beginning with the specified prefix to produce an
27623 alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
27624 @file{foo/bar} just before it searches the standard directory 
27625 @file{/usr/local/lib/bar}.
27626 If a standard directory begins with the configured
27627 @var{prefix} then the value of @var{prefix} is replaced by
27628 @env{GCC_EXEC_PREFIX} when looking for header files.
27630 @item COMPILER_PATH
27631 @findex COMPILER_PATH
27632 The value of @env{COMPILER_PATH} is a colon-separated list of
27633 directories, much like @env{PATH}.  GCC tries the directories thus
27634 specified when searching for subprograms, if it cannot find the
27635 subprograms using @env{GCC_EXEC_PREFIX}.
27637 @item LIBRARY_PATH
27638 @findex LIBRARY_PATH
27639 The value of @env{LIBRARY_PATH} is a colon-separated list of
27640 directories, much like @env{PATH}.  When configured as a native compiler,
27641 GCC tries the directories thus specified when searching for special
27642 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}.  Linking
27643 using GCC also uses these directories when searching for ordinary
27644 libraries for the @option{-l} option (but directories specified with
27645 @option{-L} come first).
27647 @item LANG
27648 @findex LANG
27649 @cindex locale definition
27650 This variable is used to pass locale information to the compiler.  One way in
27651 which this information is used is to determine the character set to be used
27652 when character literals, string literals and comments are parsed in C and C++.
27653 When the compiler is configured to allow multibyte characters,
27654 the following values for @env{LANG} are recognized:
27656 @table @samp
27657 @item C-JIS
27658 Recognize JIS characters.
27659 @item C-SJIS
27660 Recognize SJIS characters.
27661 @item C-EUCJP
27662 Recognize EUCJP characters.
27663 @end table
27665 If @env{LANG} is not defined, or if it has some other value, then the
27666 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
27667 recognize and translate multibyte characters.
27668 @end table
27670 @noindent
27671 Some additional environment variables affect the behavior of the
27672 preprocessor.
27674 @include cppenv.texi
27676 @c man end
27678 @node Precompiled Headers
27679 @section Using Precompiled Headers
27680 @cindex precompiled headers
27681 @cindex speed of compilation
27683 Often large projects have many header files that are included in every
27684 source file.  The time the compiler takes to process these header files
27685 over and over again can account for nearly all of the time required to
27686 build the project.  To make builds faster, GCC allows you to
27687 @dfn{precompile} a header file.
27689 To create a precompiled header file, simply compile it as you would any
27690 other file, if necessary using the @option{-x} option to make the driver
27691 treat it as a C or C++ header file.  You may want to use a
27692 tool like @command{make} to keep the precompiled header up-to-date when
27693 the headers it contains change.
27695 A precompiled header file is searched for when @code{#include} is
27696 seen in the compilation.  As it searches for the included file
27697 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
27698 compiler looks for a precompiled header in each directory just before it
27699 looks for the include file in that directory.  The name searched for is
27700 the name specified in the @code{#include} with @samp{.gch} appended.  If
27701 the precompiled header file cannot be used, it is ignored.
27703 For instance, if you have @code{#include "all.h"}, and you have
27704 @file{all.h.gch} in the same directory as @file{all.h}, then the
27705 precompiled header file is used if possible, and the original
27706 header is used otherwise.
27708 Alternatively, you might decide to put the precompiled header file in a
27709 directory and use @option{-I} to ensure that directory is searched
27710 before (or instead of) the directory containing the original header.
27711 Then, if you want to check that the precompiled header file is always
27712 used, you can put a file of the same name as the original header in this
27713 directory containing an @code{#error} command.
27715 This also works with @option{-include}.  So yet another way to use
27716 precompiled headers, good for projects not designed with precompiled
27717 header files in mind, is to simply take most of the header files used by
27718 a project, include them from another header file, precompile that header
27719 file, and @option{-include} the precompiled header.  If the header files
27720 have guards against multiple inclusion, they are skipped because
27721 they've already been included (in the precompiled header).
27723 If you need to precompile the same header file for different
27724 languages, targets, or compiler options, you can instead make a
27725 @emph{directory} named like @file{all.h.gch}, and put each precompiled
27726 header in the directory, perhaps using @option{-o}.  It doesn't matter
27727 what you call the files in the directory; every precompiled header in
27728 the directory is considered.  The first precompiled header
27729 encountered in the directory that is valid for this compilation is
27730 used; they're searched in no particular order.
27732 There are many other possibilities, limited only by your imagination,
27733 good sense, and the constraints of your build system.
27735 A precompiled header file can be used only when these conditions apply:
27737 @itemize
27738 @item
27739 Only one precompiled header can be used in a particular compilation.
27741 @item
27742 A precompiled header cannot be used once the first C token is seen.  You
27743 can have preprocessor directives before a precompiled header; you cannot
27744 include a precompiled header from inside another header.
27746 @item
27747 The precompiled header file must be produced for the same language as
27748 the current compilation.  You cannot use a C precompiled header for a C++
27749 compilation.
27751 @item
27752 The precompiled header file must have been produced by the same compiler
27753 binary as the current compilation is using.
27755 @item
27756 Any macros defined before the precompiled header is included must
27757 either be defined in the same way as when the precompiled header was
27758 generated, or must not affect the precompiled header, which usually
27759 means that they don't appear in the precompiled header at all.
27761 The @option{-D} option is one way to define a macro before a
27762 precompiled header is included; using a @code{#define} can also do it.
27763 There are also some options that define macros implicitly, like
27764 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
27765 defined this way.
27767 @item If debugging information is output when using the precompiled
27768 header, using @option{-g} or similar, the same kind of debugging information
27769 must have been output when building the precompiled header.  However,
27770 a precompiled header built using @option{-g} can be used in a compilation
27771 when no debugging information is being output.
27773 @item The same @option{-m} options must generally be used when building
27774 and using the precompiled header.  @xref{Submodel Options},
27775 for any cases where this rule is relaxed.
27777 @item Each of the following options must be the same when building and using
27778 the precompiled header:
27780 @gccoptlist{-fexceptions}
27782 @item
27783 Some other command-line options starting with @option{-f},
27784 @option{-p}, or @option{-O} must be defined in the same way as when
27785 the precompiled header was generated.  At present, it's not clear
27786 which options are safe to change and which are not; the safest choice
27787 is to use exactly the same options when generating and using the
27788 precompiled header.  The following are known to be safe:
27790 @gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
27791 -fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
27792 -fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
27793 -pedantic-errors}
27795 @end itemize
27797 For all of these except the last, the compiler automatically
27798 ignores the precompiled header if the conditions aren't met.  If you
27799 find an option combination that doesn't work and doesn't cause the
27800 precompiled header to be ignored, please consider filing a bug report,
27801 see @ref{Bugs}.
27803 If you do use differing options when generating and using the
27804 precompiled header, the actual behavior is a mixture of the
27805 behavior for the options.  For instance, if you use @option{-g} to
27806 generate the precompiled header but not when using it, you may or may
27807 not get debugging information for routines in the precompiled header.