merge with trunk @ 139506
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob19afc8d8fa759a02d4c8fd2d1e8e42b48f4c0380
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Util; use Exp_Util;
32 with Fname; use Fname;
33 with Itypes; use Itypes;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Namet.Sp; use Namet.Sp;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch3; use Sem_Ch3;
47 with Sem_Ch6; use Sem_Ch6;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Disp; use Sem_Disp;
50 with Sem_Dist; use Sem_Dist;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_Util; use Sem_Util;
54 with Sem_Type; use Sem_Type;
55 with Stand; use Stand;
56 with Sinfo; use Sinfo;
57 with Snames; use Snames;
58 with Tbuild; use Tbuild;
60 package body Sem_Ch4 is
62 -----------------------
63 -- Local Subprograms --
64 -----------------------
66 procedure Analyze_Concatenation_Rest (N : Node_Id);
67 -- Does the "rest" of the work of Analyze_Concatenation, after the left
68 -- operand has been analyzed. See Analyze_Concatenation for details.
70 procedure Analyze_Expression (N : Node_Id);
71 -- For expressions that are not names, this is just a call to analyze.
72 -- If the expression is a name, it may be a call to a parameterless
73 -- function, and if so must be converted into an explicit call node
74 -- and analyzed as such. This deproceduring must be done during the first
75 -- pass of overload resolution, because otherwise a procedure call with
76 -- overloaded actuals may fail to resolve.
78 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
79 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
80 -- is an operator name or an expanded name whose selector is an operator
81 -- name, and one possible interpretation is as a predefined operator.
83 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
84 -- If the prefix of a selected_component is overloaded, the proper
85 -- interpretation that yields a record type with the proper selector
86 -- name must be selected.
88 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
89 -- Procedure to analyze a user defined binary operator, which is resolved
90 -- like a function, but instead of a list of actuals it is presented
91 -- with the left and right operands of an operator node.
93 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
94 -- Procedure to analyze a user defined unary operator, which is resolved
95 -- like a function, but instead of a list of actuals, it is presented with
96 -- the operand of the operator node.
98 procedure Ambiguous_Operands (N : Node_Id);
99 -- for equality, membership, and comparison operators with overloaded
100 -- arguments, list possible interpretations.
102 procedure Analyze_One_Call
103 (N : Node_Id;
104 Nam : Entity_Id;
105 Report : Boolean;
106 Success : out Boolean;
107 Skip_First : Boolean := False);
108 -- Check one interpretation of an overloaded subprogram name for
109 -- compatibility with the types of the actuals in a call. If there is a
110 -- single interpretation which does not match, post error if Report is
111 -- set to True.
113 -- Nam is the entity that provides the formals against which the actuals
114 -- are checked. Nam is either the name of a subprogram, or the internal
115 -- subprogram type constructed for an access_to_subprogram. If the actuals
116 -- are compatible with Nam, then Nam is added to the list of candidate
117 -- interpretations for N, and Success is set to True.
119 -- The flag Skip_First is used when analyzing a call that was rewritten
120 -- from object notation. In this case the first actual may have to receive
121 -- an explicit dereference, depending on the first formal of the operation
122 -- being called. The caller will have verified that the object is legal
123 -- for the call. If the remaining parameters match, the first parameter
124 -- will rewritten as a dereference if needed, prior to completing analysis.
126 procedure Check_Misspelled_Selector
127 (Prefix : Entity_Id;
128 Sel : Node_Id);
129 -- Give possible misspelling diagnostic if Sel is likely to be
130 -- a misspelling of one of the selectors of the Prefix.
131 -- This is called by Analyze_Selected_Component after producing
132 -- an invalid selector error message.
134 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
135 -- Verify that type T is declared in scope S. Used to find interpretations
136 -- for operators given by expanded names. This is abstracted as a separate
137 -- function to handle extensions to System, where S is System, but T is
138 -- declared in the extension.
140 procedure Find_Arithmetic_Types
141 (L, R : Node_Id;
142 Op_Id : Entity_Id;
143 N : Node_Id);
144 -- L and R are the operands of an arithmetic operator. Find
145 -- consistent pairs of interpretations for L and R that have a
146 -- numeric type consistent with the semantics of the operator.
148 procedure Find_Comparison_Types
149 (L, R : Node_Id;
150 Op_Id : Entity_Id;
151 N : Node_Id);
152 -- L and R are operands of a comparison operator. Find consistent
153 -- pairs of interpretations for L and R.
155 procedure Find_Concatenation_Types
156 (L, R : Node_Id;
157 Op_Id : Entity_Id;
158 N : Node_Id);
159 -- For the four varieties of concatenation
161 procedure Find_Equality_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
165 -- Ditto for equality operators
167 procedure Find_Boolean_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
171 -- Ditto for binary logical operations
173 procedure Find_Negation_Types
174 (R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
177 -- Find consistent interpretation for operand of negation operator
179 procedure Find_Non_Universal_Interpretations
180 (N : Node_Id;
181 R : Node_Id;
182 Op_Id : Entity_Id;
183 T1 : Entity_Id);
184 -- For equality and comparison operators, the result is always boolean,
185 -- and the legality of the operation is determined from the visibility
186 -- of the operand types. If one of the operands has a universal interpre-
187 -- tation, the legality check uses some compatible non-universal
188 -- interpretation of the other operand. N can be an operator node, or
189 -- a function call whose name is an operator designator.
191 function Find_Primitive_Operation (N : Node_Id) return Boolean;
192 -- Find candidate interpretations for the name Obj.Proc when it appears
193 -- in a subprogram renaming declaration.
195 procedure Find_Unary_Types
196 (R : Node_Id;
197 Op_Id : Entity_Id;
198 N : Node_Id);
199 -- Unary arithmetic types: plus, minus, abs
201 procedure Check_Arithmetic_Pair
202 (T1, T2 : Entity_Id;
203 Op_Id : Entity_Id;
204 N : Node_Id);
205 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
206 -- types for left and right operand. Determine whether they constitute
207 -- a valid pair for the given operator, and record the corresponding
208 -- interpretation of the operator node. The node N may be an operator
209 -- node (the usual case) or a function call whose prefix is an operator
210 -- designator. In both cases Op_Id is the operator name itself.
212 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
213 -- Give detailed information on overloaded call where none of the
214 -- interpretations match. N is the call node, Nam the designator for
215 -- the overloaded entity being called.
217 function Junk_Operand (N : Node_Id) return Boolean;
218 -- Test for an operand that is an inappropriate entity (e.g. a package
219 -- name or a label). If so, issue an error message and return True. If
220 -- the operand is not an inappropriate entity kind, return False.
222 procedure Operator_Check (N : Node_Id);
223 -- Verify that an operator has received some valid interpretation. If none
224 -- was found, determine whether a use clause would make the operation
225 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
226 -- every type compatible with the operator, even if the operator for the
227 -- type is not directly visible. The routine uses this type to emit a more
228 -- informative message.
230 function Process_Implicit_Dereference_Prefix
231 (E : Entity_Id;
232 P : Node_Id) return Entity_Id;
233 -- Called when P is the prefix of an implicit dereference, denoting an
234 -- object E. The function returns the designated type of the prefix, taking
235 -- into account that the designated type of an anonymous access type may be
236 -- a limited view, when the non-limited view is visible.
237 -- If in semantics only mode (-gnatc or generic), the function also records
238 -- that the prefix is a reference to E, if any. Normally, such a reference
239 -- is generated only when the implicit dereference is expanded into an
240 -- explicit one, but for consistency we must generate the reference when
241 -- expansion is disabled as well.
243 procedure Remove_Abstract_Operations (N : Node_Id);
244 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
245 -- operation is not a candidate interpretation.
247 function Try_Indexed_Call
248 (N : Node_Id;
249 Nam : Entity_Id;
250 Typ : Entity_Id;
251 Skip_First : Boolean) return Boolean;
252 -- If a function has defaults for all its actuals, a call to it may in fact
253 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
254 -- interpretation as an indexing, prior to analysis as a call. If both are
255 -- possible, the node is overloaded with both interpretations (same symbol
256 -- but two different types). If the call is written in prefix form, the
257 -- prefix becomes the first parameter in the call, and only the remaining
258 -- actuals must be checked for the presence of defaults.
260 function Try_Indirect_Call
261 (N : Node_Id;
262 Nam : Entity_Id;
263 Typ : Entity_Id) return Boolean;
264 -- Similarly, a function F that needs no actuals can return an access to a
265 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
266 -- the call may be overloaded with both interpretations.
268 function Try_Object_Operation (N : Node_Id) return Boolean;
269 -- Ada 2005 (AI-252): Support the object.operation notation
271 procedure wpo (T : Entity_Id);
272 pragma Warnings (Off, wpo);
273 -- Used for debugging: obtain list of primitive operations even if
274 -- type is not frozen and dispatch table is not built yet.
276 ------------------------
277 -- Ambiguous_Operands --
278 ------------------------
280 procedure Ambiguous_Operands (N : Node_Id) is
281 procedure List_Operand_Interps (Opnd : Node_Id);
283 --------------------------
284 -- List_Operand_Interps --
285 --------------------------
287 procedure List_Operand_Interps (Opnd : Node_Id) is
288 Nam : Node_Id;
289 Err : Node_Id := N;
291 begin
292 if Is_Overloaded (Opnd) then
293 if Nkind (Opnd) in N_Op then
294 Nam := Opnd;
295 elsif Nkind (Opnd) = N_Function_Call then
296 Nam := Name (Opnd);
297 else
298 return;
299 end if;
301 else
302 return;
303 end if;
305 if Opnd = Left_Opnd (N) then
306 Error_Msg_N
307 ("\left operand has the following interpretations", N);
308 else
309 Error_Msg_N
310 ("\right operand has the following interpretations", N);
311 Err := Opnd;
312 end if;
314 List_Interps (Nam, Err);
315 end List_Operand_Interps;
317 -- Start of processing for Ambiguous_Operands
319 begin
320 if Nkind (N) in N_Membership_Test then
321 Error_Msg_N ("ambiguous operands for membership", N);
323 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
324 Error_Msg_N ("ambiguous operands for equality", N);
326 else
327 Error_Msg_N ("ambiguous operands for comparison", N);
328 end if;
330 if All_Errors_Mode then
331 List_Operand_Interps (Left_Opnd (N));
332 List_Operand_Interps (Right_Opnd (N));
333 else
334 Error_Msg_N ("\use -gnatf switch for details", N);
335 end if;
336 end Ambiguous_Operands;
338 -----------------------
339 -- Analyze_Aggregate --
340 -----------------------
342 -- Most of the analysis of Aggregates requires that the type be known,
343 -- and is therefore put off until resolution.
345 procedure Analyze_Aggregate (N : Node_Id) is
346 begin
347 if No (Etype (N)) then
348 Set_Etype (N, Any_Composite);
349 end if;
350 end Analyze_Aggregate;
352 -----------------------
353 -- Analyze_Allocator --
354 -----------------------
356 procedure Analyze_Allocator (N : Node_Id) is
357 Loc : constant Source_Ptr := Sloc (N);
358 Sav_Errs : constant Nat := Serious_Errors_Detected;
359 E : Node_Id := Expression (N);
360 Acc_Type : Entity_Id;
361 Type_Id : Entity_Id;
363 begin
364 -- In accordance with H.4(7), the No_Allocators restriction only applies
365 -- to user-written allocators.
367 if Comes_From_Source (N) then
368 Check_Restriction (No_Allocators, N);
369 end if;
371 if Nkind (E) = N_Qualified_Expression then
372 Acc_Type := Create_Itype (E_Allocator_Type, N);
373 Set_Etype (Acc_Type, Acc_Type);
374 Find_Type (Subtype_Mark (E));
376 -- Analyze the qualified expression, and apply the name resolution
377 -- rule given in 4.7 (3).
379 Analyze (E);
380 Type_Id := Etype (E);
381 Set_Directly_Designated_Type (Acc_Type, Type_Id);
383 Resolve (Expression (E), Type_Id);
385 if Is_Limited_Type (Type_Id)
386 and then Comes_From_Source (N)
387 and then not In_Instance_Body
388 then
389 if not OK_For_Limited_Init (Expression (E)) then
390 Error_Msg_N ("initialization not allowed for limited types", N);
391 Explain_Limited_Type (Type_Id, N);
392 end if;
393 end if;
395 -- A qualified expression requires an exact match of the type,
396 -- class-wide matching is not allowed.
398 -- if Is_Class_Wide_Type (Type_Id)
399 -- and then Base_Type
400 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
401 -- then
402 -- Wrong_Type (Expression (E), Type_Id);
403 -- end if;
405 Check_Non_Static_Context (Expression (E));
407 -- We don't analyze the qualified expression itself because it's
408 -- part of the allocator
410 Set_Etype (E, Type_Id);
412 -- Case where allocator has a subtype indication
414 else
415 declare
416 Def_Id : Entity_Id;
417 Base_Typ : Entity_Id;
419 begin
420 -- If the allocator includes a N_Subtype_Indication then a
421 -- constraint is present, otherwise the node is a subtype mark.
422 -- Introduce an explicit subtype declaration into the tree
423 -- defining some anonymous subtype and rewrite the allocator to
424 -- use this subtype rather than the subtype indication.
426 -- It is important to introduce the explicit subtype declaration
427 -- so that the bounds of the subtype indication are attached to
428 -- the tree in case the allocator is inside a generic unit.
430 if Nkind (E) = N_Subtype_Indication then
432 -- A constraint is only allowed for a composite type in Ada
433 -- 95. In Ada 83, a constraint is also allowed for an
434 -- access-to-composite type, but the constraint is ignored.
436 Find_Type (Subtype_Mark (E));
437 Base_Typ := Entity (Subtype_Mark (E));
439 if Is_Elementary_Type (Base_Typ) then
440 if not (Ada_Version = Ada_83
441 and then Is_Access_Type (Base_Typ))
442 then
443 Error_Msg_N ("constraint not allowed here", E);
445 if Nkind (Constraint (E)) =
446 N_Index_Or_Discriminant_Constraint
447 then
448 Error_Msg_N
449 ("\if qualified expression was meant, " &
450 "use apostrophe", Constraint (E));
451 end if;
452 end if;
454 -- Get rid of the bogus constraint:
456 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
457 Analyze_Allocator (N);
458 return;
460 -- Ada 2005, AI-363: if the designated type has a constrained
461 -- partial view, it cannot receive a discriminant constraint,
462 -- and the allocated object is unconstrained.
464 elsif Ada_Version >= Ada_05
465 and then Has_Constrained_Partial_View (Base_Typ)
466 then
467 Error_Msg_N
468 ("constraint no allowed when type " &
469 "has a constrained partial view", Constraint (E));
470 end if;
472 if Expander_Active then
473 Def_Id :=
474 Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
476 Insert_Action (E,
477 Make_Subtype_Declaration (Loc,
478 Defining_Identifier => Def_Id,
479 Subtype_Indication => Relocate_Node (E)));
481 if Sav_Errs /= Serious_Errors_Detected
482 and then Nkind (Constraint (E)) =
483 N_Index_Or_Discriminant_Constraint
484 then
485 Error_Msg_N
486 ("if qualified expression was meant, " &
487 "use apostrophe!", Constraint (E));
488 end if;
490 E := New_Occurrence_Of (Def_Id, Loc);
491 Rewrite (Expression (N), E);
492 end if;
493 end if;
495 Type_Id := Process_Subtype (E, N);
496 Acc_Type := Create_Itype (E_Allocator_Type, N);
497 Set_Etype (Acc_Type, Acc_Type);
498 Set_Directly_Designated_Type (Acc_Type, Type_Id);
499 Check_Fully_Declared (Type_Id, N);
501 -- Ada 2005 (AI-231): If the designated type is itself an access
502 -- type that excludes null, it's default initializastion will
503 -- be a null object, and we can insert an unconditional raise
504 -- before the allocator.
506 if Can_Never_Be_Null (Type_Id) then
507 declare
508 Not_Null_Check : constant Node_Id :=
509 Make_Raise_Constraint_Error (Sloc (E),
510 Reason => CE_Null_Not_Allowed);
511 begin
512 if Expander_Active then
513 Insert_Action (N, Not_Null_Check);
514 Analyze (Not_Null_Check);
515 else
516 Error_Msg_N ("null value not allowed here?", E);
517 end if;
518 end;
519 end if;
521 -- Check restriction against dynamically allocated protected
522 -- objects. Note that when limited aggregates are supported,
523 -- a similar test should be applied to an allocator with a
524 -- qualified expression ???
526 if Is_Protected_Type (Type_Id) then
527 Check_Restriction (No_Protected_Type_Allocators, N);
528 end if;
530 -- Check for missing initialization. Skip this check if we already
531 -- had errors on analyzing the allocator, since in that case these
532 -- are probably cascaded errors.
534 if Is_Indefinite_Subtype (Type_Id)
535 and then Serious_Errors_Detected = Sav_Errs
536 then
537 if Is_Class_Wide_Type (Type_Id) then
538 Error_Msg_N
539 ("initialization required in class-wide allocation", N);
540 else
541 if Ada_Version < Ada_05
542 and then Is_Limited_Type (Type_Id)
543 then
544 Error_Msg_N ("unconstrained allocation not allowed", N);
546 if Is_Array_Type (Type_Id) then
547 Error_Msg_N
548 ("\constraint with array bounds required", N);
550 elsif Has_Unknown_Discriminants (Type_Id) then
551 null;
553 else pragma Assert (Has_Discriminants (Type_Id));
554 Error_Msg_N
555 ("\constraint with discriminant values required", N);
556 end if;
558 -- Limited Ada 2005 and general non-limited case
560 else
561 Error_Msg_N
562 ("uninitialized unconstrained allocation not allowed",
565 if Is_Array_Type (Type_Id) then
566 Error_Msg_N
567 ("\qualified expression or constraint with " &
568 "array bounds required", N);
570 elsif Has_Unknown_Discriminants (Type_Id) then
571 Error_Msg_N ("\qualified expression required", N);
573 else pragma Assert (Has_Discriminants (Type_Id));
574 Error_Msg_N
575 ("\qualified expression or constraint with " &
576 "discriminant values required", N);
577 end if;
578 end if;
579 end if;
580 end if;
581 end;
582 end if;
584 if Is_Abstract_Type (Type_Id) then
585 Error_Msg_N ("cannot allocate abstract object", E);
586 end if;
588 if Has_Task (Designated_Type (Acc_Type)) then
589 Check_Restriction (No_Tasking, N);
590 Check_Restriction (Max_Tasks, N);
591 Check_Restriction (No_Task_Allocators, N);
592 end if;
594 -- If the No_Streams restriction is set, check that the type of the
595 -- object is not, and does not contain, any subtype derived from
596 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
597 -- Has_Stream just for efficiency reasons. There is no point in
598 -- spending time on a Has_Stream check if the restriction is not set.
600 if Restrictions.Set (No_Streams) then
601 if Has_Stream (Designated_Type (Acc_Type)) then
602 Check_Restriction (No_Streams, N);
603 end if;
604 end if;
606 Set_Etype (N, Acc_Type);
608 if not Is_Library_Level_Entity (Acc_Type) then
609 Check_Restriction (No_Local_Allocators, N);
610 end if;
612 if Serious_Errors_Detected > Sav_Errs then
613 Set_Error_Posted (N);
614 Set_Etype (N, Any_Type);
615 end if;
616 end Analyze_Allocator;
618 ---------------------------
619 -- Analyze_Arithmetic_Op --
620 ---------------------------
622 procedure Analyze_Arithmetic_Op (N : Node_Id) is
623 L : constant Node_Id := Left_Opnd (N);
624 R : constant Node_Id := Right_Opnd (N);
625 Op_Id : Entity_Id;
627 begin
628 Candidate_Type := Empty;
629 Analyze_Expression (L);
630 Analyze_Expression (R);
632 -- If the entity is already set, the node is the instantiation of a
633 -- generic node with a non-local reference, or was manufactured by a
634 -- call to Make_Op_xxx. In either case the entity is known to be valid,
635 -- and we do not need to collect interpretations, instead we just get
636 -- the single possible interpretation.
638 Op_Id := Entity (N);
640 if Present (Op_Id) then
641 if Ekind (Op_Id) = E_Operator then
643 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
644 and then Treat_Fixed_As_Integer (N)
645 then
646 null;
647 else
648 Set_Etype (N, Any_Type);
649 Find_Arithmetic_Types (L, R, Op_Id, N);
650 end if;
652 else
653 Set_Etype (N, Any_Type);
654 Add_One_Interp (N, Op_Id, Etype (Op_Id));
655 end if;
657 -- Entity is not already set, so we do need to collect interpretations
659 else
660 Op_Id := Get_Name_Entity_Id (Chars (N));
661 Set_Etype (N, Any_Type);
663 while Present (Op_Id) loop
664 if Ekind (Op_Id) = E_Operator
665 and then Present (Next_Entity (First_Entity (Op_Id)))
666 then
667 Find_Arithmetic_Types (L, R, Op_Id, N);
669 -- The following may seem superfluous, because an operator cannot
670 -- be generic, but this ignores the cleverness of the author of
671 -- ACVC bc1013a.
673 elsif Is_Overloadable (Op_Id) then
674 Analyze_User_Defined_Binary_Op (N, Op_Id);
675 end if;
677 Op_Id := Homonym (Op_Id);
678 end loop;
679 end if;
681 Operator_Check (N);
682 end Analyze_Arithmetic_Op;
684 ------------------
685 -- Analyze_Call --
686 ------------------
688 -- Function, procedure, and entry calls are checked here. The Name in
689 -- the call may be overloaded. The actuals have been analyzed and may
690 -- themselves be overloaded. On exit from this procedure, the node N
691 -- may have zero, one or more interpretations. In the first case an
692 -- error message is produced. In the last case, the node is flagged
693 -- as overloaded and the interpretations are collected in All_Interp.
695 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
696 -- the type-checking is similar to that of other calls.
698 procedure Analyze_Call (N : Node_Id) is
699 Actuals : constant List_Id := Parameter_Associations (N);
700 Nam : Node_Id;
701 X : Interp_Index;
702 It : Interp;
703 Nam_Ent : Entity_Id;
704 Success : Boolean := False;
706 Deref : Boolean := False;
707 -- Flag indicates whether an interpretation of the prefix is a
708 -- parameterless call that returns an access_to_subprogram.
710 function Name_Denotes_Function return Boolean;
711 -- If the type of the name is an access to subprogram, this may be the
712 -- type of a name, or the return type of the function being called. If
713 -- the name is not an entity then it can denote a protected function.
714 -- Until we distinguish Etype from Return_Type, we must use this routine
715 -- to resolve the meaning of the name in the call.
717 procedure No_Interpretation;
718 -- Output error message when no valid interpretation exists
720 ---------------------------
721 -- Name_Denotes_Function --
722 ---------------------------
724 function Name_Denotes_Function return Boolean is
725 begin
726 if Is_Entity_Name (Nam) then
727 return Ekind (Entity (Nam)) = E_Function;
729 elsif Nkind (Nam) = N_Selected_Component then
730 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
732 else
733 return False;
734 end if;
735 end Name_Denotes_Function;
737 -----------------------
738 -- No_Interpretation --
739 -----------------------
741 procedure No_Interpretation is
742 L : constant Boolean := Is_List_Member (N);
743 K : constant Node_Kind := Nkind (Parent (N));
745 begin
746 -- If the node is in a list whose parent is not an expression then it
747 -- must be an attempted procedure call.
749 if L and then K not in N_Subexpr then
750 if Ekind (Entity (Nam)) = E_Generic_Procedure then
751 Error_Msg_NE
752 ("must instantiate generic procedure& before call",
753 Nam, Entity (Nam));
754 else
755 Error_Msg_N
756 ("procedure or entry name expected", Nam);
757 end if;
759 -- Check for tasking cases where only an entry call will do
761 elsif not L
762 and then Nkind_In (K, N_Entry_Call_Alternative,
763 N_Triggering_Alternative)
764 then
765 Error_Msg_N ("entry name expected", Nam);
767 -- Otherwise give general error message
769 else
770 Error_Msg_N ("invalid prefix in call", Nam);
771 end if;
772 end No_Interpretation;
774 -- Start of processing for Analyze_Call
776 begin
777 -- Initialize the type of the result of the call to the error type,
778 -- which will be reset if the type is successfully resolved.
780 Set_Etype (N, Any_Type);
782 Nam := Name (N);
784 if not Is_Overloaded (Nam) then
786 -- Only one interpretation to check
788 if Ekind (Etype (Nam)) = E_Subprogram_Type then
789 Nam_Ent := Etype (Nam);
791 -- If the prefix is an access_to_subprogram, this may be an indirect
792 -- call. This is the case if the name in the call is not an entity
793 -- name, or if it is a function name in the context of a procedure
794 -- call. In this latter case, we have a call to a parameterless
795 -- function that returns a pointer_to_procedure which is the entity
796 -- being called. Finally, F (X) may be a call to a parameterless
797 -- function that returns a pointer to a function with parameters.
799 elsif Is_Access_Type (Etype (Nam))
800 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
801 and then
802 (not Name_Denotes_Function
803 or else Nkind (N) = N_Procedure_Call_Statement
804 or else
805 (Nkind (Parent (N)) /= N_Explicit_Dereference
806 and then Is_Entity_Name (Nam)
807 and then No (First_Formal (Entity (Nam)))
808 and then Present (Actuals)))
809 then
810 Nam_Ent := Designated_Type (Etype (Nam));
811 Insert_Explicit_Dereference (Nam);
813 -- Selected component case. Simple entry or protected operation,
814 -- where the entry name is given by the selector name.
816 elsif Nkind (Nam) = N_Selected_Component then
817 Nam_Ent := Entity (Selector_Name (Nam));
819 if Ekind (Nam_Ent) /= E_Entry
820 and then Ekind (Nam_Ent) /= E_Entry_Family
821 and then Ekind (Nam_Ent) /= E_Function
822 and then Ekind (Nam_Ent) /= E_Procedure
823 then
824 Error_Msg_N ("name in call is not a callable entity", Nam);
825 Set_Etype (N, Any_Type);
826 return;
827 end if;
829 -- If the name is an Indexed component, it can be a call to a member
830 -- of an entry family. The prefix must be a selected component whose
831 -- selector is the entry. Analyze_Procedure_Call normalizes several
832 -- kinds of call into this form.
834 elsif Nkind (Nam) = N_Indexed_Component then
835 if Nkind (Prefix (Nam)) = N_Selected_Component then
836 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
837 else
838 Error_Msg_N ("name in call is not a callable entity", Nam);
839 Set_Etype (N, Any_Type);
840 return;
841 end if;
843 elsif not Is_Entity_Name (Nam) then
844 Error_Msg_N ("name in call is not a callable entity", Nam);
845 Set_Etype (N, Any_Type);
846 return;
848 else
849 Nam_Ent := Entity (Nam);
851 -- If no interpretations, give error message
853 if not Is_Overloadable (Nam_Ent) then
854 No_Interpretation;
855 return;
856 end if;
857 end if;
859 -- Operations generated for RACW stub types are called only through
860 -- dispatching, and can never be the static interpretation of a call.
862 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
863 No_Interpretation;
864 return;
865 end if;
867 Analyze_One_Call (N, Nam_Ent, True, Success);
869 -- If this is an indirect call, the return type of the access_to
870 -- subprogram may be an incomplete type. At the point of the call,
871 -- use the full type if available, and at the same time update
872 -- the return type of the access_to_subprogram.
874 if Success
875 and then Nkind (Nam) = N_Explicit_Dereference
876 and then Ekind (Etype (N)) = E_Incomplete_Type
877 and then Present (Full_View (Etype (N)))
878 then
879 Set_Etype (N, Full_View (Etype (N)));
880 Set_Etype (Nam_Ent, Etype (N));
881 end if;
883 else
884 -- An overloaded selected component must denote overloaded operations
885 -- of a concurrent type. The interpretations are attached to the
886 -- simple name of those operations.
888 if Nkind (Nam) = N_Selected_Component then
889 Nam := Selector_Name (Nam);
890 end if;
892 Get_First_Interp (Nam, X, It);
894 while Present (It.Nam) loop
895 Nam_Ent := It.Nam;
896 Deref := False;
898 -- Name may be call that returns an access to subprogram, or more
899 -- generally an overloaded expression one of whose interpretations
900 -- yields an access to subprogram. If the name is an entity, we
901 -- do not dereference, because the node is a call that returns
902 -- the access type: note difference between f(x), where the call
903 -- may return an access subprogram type, and f(x)(y), where the
904 -- type returned by the call to f is implicitly dereferenced to
905 -- analyze the outer call.
907 if Is_Access_Type (Nam_Ent) then
908 Nam_Ent := Designated_Type (Nam_Ent);
910 elsif Is_Access_Type (Etype (Nam_Ent))
911 and then
912 (not Is_Entity_Name (Nam)
913 or else Nkind (N) = N_Procedure_Call_Statement)
914 and then Ekind (Designated_Type (Etype (Nam_Ent)))
915 = E_Subprogram_Type
916 then
917 Nam_Ent := Designated_Type (Etype (Nam_Ent));
919 if Is_Entity_Name (Nam) then
920 Deref := True;
921 end if;
922 end if;
924 Analyze_One_Call (N, Nam_Ent, False, Success);
926 -- If the interpretation succeeds, mark the proper type of the
927 -- prefix (any valid candidate will do). If not, remove the
928 -- candidate interpretation. This only needs to be done for
929 -- overloaded protected operations, for other entities disambi-
930 -- guation is done directly in Resolve.
932 if Success then
933 if Deref
934 and then Nkind (Parent (N)) /= N_Explicit_Dereference
935 then
936 Set_Entity (Nam, It.Nam);
937 Insert_Explicit_Dereference (Nam);
938 Set_Etype (Nam, Nam_Ent);
940 else
941 Set_Etype (Nam, It.Typ);
942 end if;
944 elsif Nkind_In (Name (N), N_Selected_Component,
945 N_Function_Call)
946 then
947 Remove_Interp (X);
948 end if;
950 Get_Next_Interp (X, It);
951 end loop;
953 -- If the name is the result of a function call, it can only
954 -- be a call to a function returning an access to subprogram.
955 -- Insert explicit dereference.
957 if Nkind (Nam) = N_Function_Call then
958 Insert_Explicit_Dereference (Nam);
959 end if;
961 if Etype (N) = Any_Type then
963 -- None of the interpretations is compatible with the actuals
965 Diagnose_Call (N, Nam);
967 -- Special checks for uninstantiated put routines
969 if Nkind (N) = N_Procedure_Call_Statement
970 and then Is_Entity_Name (Nam)
971 and then Chars (Nam) = Name_Put
972 and then List_Length (Actuals) = 1
973 then
974 declare
975 Arg : constant Node_Id := First (Actuals);
976 Typ : Entity_Id;
978 begin
979 if Nkind (Arg) = N_Parameter_Association then
980 Typ := Etype (Explicit_Actual_Parameter (Arg));
981 else
982 Typ := Etype (Arg);
983 end if;
985 if Is_Signed_Integer_Type (Typ) then
986 Error_Msg_N
987 ("possible missing instantiation of " &
988 "'Text_'I'O.'Integer_'I'O!", Nam);
990 elsif Is_Modular_Integer_Type (Typ) then
991 Error_Msg_N
992 ("possible missing instantiation of " &
993 "'Text_'I'O.'Modular_'I'O!", Nam);
995 elsif Is_Floating_Point_Type (Typ) then
996 Error_Msg_N
997 ("possible missing instantiation of " &
998 "'Text_'I'O.'Float_'I'O!", Nam);
1000 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1001 Error_Msg_N
1002 ("possible missing instantiation of " &
1003 "'Text_'I'O.'Fixed_'I'O!", Nam);
1005 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1006 Error_Msg_N
1007 ("possible missing instantiation of " &
1008 "'Text_'I'O.'Decimal_'I'O!", Nam);
1010 elsif Is_Enumeration_Type (Typ) then
1011 Error_Msg_N
1012 ("possible missing instantiation of " &
1013 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1014 end if;
1015 end;
1016 end if;
1018 elsif not Is_Overloaded (N)
1019 and then Is_Entity_Name (Nam)
1020 then
1021 -- Resolution yields a single interpretation. Verify that the
1022 -- reference has capitalization consistent with the declaration.
1024 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1025 Generate_Reference (Entity (Nam), Nam);
1027 Set_Etype (Nam, Etype (Entity (Nam)));
1028 else
1029 Remove_Abstract_Operations (N);
1030 end if;
1032 End_Interp_List;
1033 end if;
1034 end Analyze_Call;
1036 ---------------------------
1037 -- Analyze_Comparison_Op --
1038 ---------------------------
1040 procedure Analyze_Comparison_Op (N : Node_Id) is
1041 L : constant Node_Id := Left_Opnd (N);
1042 R : constant Node_Id := Right_Opnd (N);
1043 Op_Id : Entity_Id := Entity (N);
1045 begin
1046 Set_Etype (N, Any_Type);
1047 Candidate_Type := Empty;
1049 Analyze_Expression (L);
1050 Analyze_Expression (R);
1052 if Present (Op_Id) then
1053 if Ekind (Op_Id) = E_Operator then
1054 Find_Comparison_Types (L, R, Op_Id, N);
1055 else
1056 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1057 end if;
1059 if Is_Overloaded (L) then
1060 Set_Etype (L, Intersect_Types (L, R));
1061 end if;
1063 else
1064 Op_Id := Get_Name_Entity_Id (Chars (N));
1065 while Present (Op_Id) loop
1066 if Ekind (Op_Id) = E_Operator then
1067 Find_Comparison_Types (L, R, Op_Id, N);
1068 else
1069 Analyze_User_Defined_Binary_Op (N, Op_Id);
1070 end if;
1072 Op_Id := Homonym (Op_Id);
1073 end loop;
1074 end if;
1076 Operator_Check (N);
1077 end Analyze_Comparison_Op;
1079 ---------------------------
1080 -- Analyze_Concatenation --
1081 ---------------------------
1083 procedure Analyze_Concatenation (N : Node_Id) is
1085 -- We wish to avoid deep recursion, because concatenations are often
1086 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1087 -- operands nonrecursively until we find something that is not a
1088 -- concatenation (A in this case), or has already been analyzed. We
1089 -- analyze that, and then walk back up the tree following Parent
1090 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1091 -- work at each level. The Parent pointers allow us to avoid recursion,
1092 -- and thus avoid running out of memory.
1094 NN : Node_Id := N;
1095 L : Node_Id;
1097 begin
1098 Candidate_Type := Empty;
1100 -- The following code is equivalent to:
1102 -- Set_Etype (N, Any_Type);
1103 -- Analyze_Expression (Left_Opnd (N));
1104 -- Analyze_Concatenation_Rest (N);
1106 -- where the Analyze_Expression call recurses back here if the left
1107 -- operand is a concatenation.
1109 -- Walk down left operands
1111 loop
1112 Set_Etype (NN, Any_Type);
1113 L := Left_Opnd (NN);
1114 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1115 NN := L;
1116 end loop;
1118 -- Now (given the above example) NN is A&B and L is A
1120 -- First analyze L ...
1122 Analyze_Expression (L);
1124 -- ... then walk NN back up until we reach N (where we started), calling
1125 -- Analyze_Concatenation_Rest along the way.
1127 loop
1128 Analyze_Concatenation_Rest (NN);
1129 exit when NN = N;
1130 NN := Parent (NN);
1131 end loop;
1132 end Analyze_Concatenation;
1134 --------------------------------
1135 -- Analyze_Concatenation_Rest --
1136 --------------------------------
1138 -- If the only one-dimensional array type in scope is String,
1139 -- this is the resulting type of the operation. Otherwise there
1140 -- will be a concatenation operation defined for each user-defined
1141 -- one-dimensional array.
1143 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1144 L : constant Node_Id := Left_Opnd (N);
1145 R : constant Node_Id := Right_Opnd (N);
1146 Op_Id : Entity_Id := Entity (N);
1147 LT : Entity_Id;
1148 RT : Entity_Id;
1150 begin
1151 Analyze_Expression (R);
1153 -- If the entity is present, the node appears in an instance, and
1154 -- denotes a predefined concatenation operation. The resulting type is
1155 -- obtained from the arguments when possible. If the arguments are
1156 -- aggregates, the array type and the concatenation type must be
1157 -- visible.
1159 if Present (Op_Id) then
1160 if Ekind (Op_Id) = E_Operator then
1162 LT := Base_Type (Etype (L));
1163 RT := Base_Type (Etype (R));
1165 if Is_Array_Type (LT)
1166 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1167 then
1168 Add_One_Interp (N, Op_Id, LT);
1170 elsif Is_Array_Type (RT)
1171 and then LT = Base_Type (Component_Type (RT))
1172 then
1173 Add_One_Interp (N, Op_Id, RT);
1175 -- If one operand is a string type or a user-defined array type,
1176 -- and the other is a literal, result is of the specific type.
1178 elsif
1179 (Root_Type (LT) = Standard_String
1180 or else Scope (LT) /= Standard_Standard)
1181 and then Etype (R) = Any_String
1182 then
1183 Add_One_Interp (N, Op_Id, LT);
1185 elsif
1186 (Root_Type (RT) = Standard_String
1187 or else Scope (RT) /= Standard_Standard)
1188 and then Etype (L) = Any_String
1189 then
1190 Add_One_Interp (N, Op_Id, RT);
1192 elsif not Is_Generic_Type (Etype (Op_Id)) then
1193 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1195 else
1196 -- Type and its operations must be visible
1198 Set_Entity (N, Empty);
1199 Analyze_Concatenation (N);
1200 end if;
1202 else
1203 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1204 end if;
1206 else
1207 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1208 while Present (Op_Id) loop
1209 if Ekind (Op_Id) = E_Operator then
1211 -- Do not consider operators declared in dead code, they can
1212 -- not be part of the resolution.
1214 if Is_Eliminated (Op_Id) then
1215 null;
1216 else
1217 Find_Concatenation_Types (L, R, Op_Id, N);
1218 end if;
1220 else
1221 Analyze_User_Defined_Binary_Op (N, Op_Id);
1222 end if;
1224 Op_Id := Homonym (Op_Id);
1225 end loop;
1226 end if;
1228 Operator_Check (N);
1229 end Analyze_Concatenation_Rest;
1231 ------------------------------------
1232 -- Analyze_Conditional_Expression --
1233 ------------------------------------
1235 procedure Analyze_Conditional_Expression (N : Node_Id) is
1236 Condition : constant Node_Id := First (Expressions (N));
1237 Then_Expr : constant Node_Id := Next (Condition);
1238 Else_Expr : constant Node_Id := Next (Then_Expr);
1239 begin
1240 Analyze_Expression (Condition);
1241 Analyze_Expression (Then_Expr);
1242 Analyze_Expression (Else_Expr);
1243 Set_Etype (N, Etype (Then_Expr));
1244 end Analyze_Conditional_Expression;
1246 -------------------------
1247 -- Analyze_Equality_Op --
1248 -------------------------
1250 procedure Analyze_Equality_Op (N : Node_Id) is
1251 Loc : constant Source_Ptr := Sloc (N);
1252 L : constant Node_Id := Left_Opnd (N);
1253 R : constant Node_Id := Right_Opnd (N);
1254 Op_Id : Entity_Id;
1256 begin
1257 Set_Etype (N, Any_Type);
1258 Candidate_Type := Empty;
1260 Analyze_Expression (L);
1261 Analyze_Expression (R);
1263 -- If the entity is set, the node is a generic instance with a non-local
1264 -- reference to the predefined operator or to a user-defined function.
1265 -- It can also be an inequality that is expanded into the negation of a
1266 -- call to a user-defined equality operator.
1268 -- For the predefined case, the result is Boolean, regardless of the
1269 -- type of the operands. The operands may even be limited, if they are
1270 -- generic actuals. If they are overloaded, label the left argument with
1271 -- the common type that must be present, or with the type of the formal
1272 -- of the user-defined function.
1274 if Present (Entity (N)) then
1275 Op_Id := Entity (N);
1277 if Ekind (Op_Id) = E_Operator then
1278 Add_One_Interp (N, Op_Id, Standard_Boolean);
1279 else
1280 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1281 end if;
1283 if Is_Overloaded (L) then
1284 if Ekind (Op_Id) = E_Operator then
1285 Set_Etype (L, Intersect_Types (L, R));
1286 else
1287 Set_Etype (L, Etype (First_Formal (Op_Id)));
1288 end if;
1289 end if;
1291 else
1292 Op_Id := Get_Name_Entity_Id (Chars (N));
1293 while Present (Op_Id) loop
1294 if Ekind (Op_Id) = E_Operator then
1295 Find_Equality_Types (L, R, Op_Id, N);
1296 else
1297 Analyze_User_Defined_Binary_Op (N, Op_Id);
1298 end if;
1300 Op_Id := Homonym (Op_Id);
1301 end loop;
1302 end if;
1304 -- If there was no match, and the operator is inequality, this may
1305 -- be a case where inequality has not been made explicit, as for
1306 -- tagged types. Analyze the node as the negation of an equality
1307 -- operation. This cannot be done earlier, because before analysis
1308 -- we cannot rule out the presence of an explicit inequality.
1310 if Etype (N) = Any_Type
1311 and then Nkind (N) = N_Op_Ne
1312 then
1313 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1314 while Present (Op_Id) loop
1315 if Ekind (Op_Id) = E_Operator then
1316 Find_Equality_Types (L, R, Op_Id, N);
1317 else
1318 Analyze_User_Defined_Binary_Op (N, Op_Id);
1319 end if;
1321 Op_Id := Homonym (Op_Id);
1322 end loop;
1324 if Etype (N) /= Any_Type then
1325 Op_Id := Entity (N);
1327 Rewrite (N,
1328 Make_Op_Not (Loc,
1329 Right_Opnd =>
1330 Make_Op_Eq (Loc,
1331 Left_Opnd => Left_Opnd (N),
1332 Right_Opnd => Right_Opnd (N))));
1334 Set_Entity (Right_Opnd (N), Op_Id);
1335 Analyze (N);
1336 end if;
1337 end if;
1339 Operator_Check (N);
1340 end Analyze_Equality_Op;
1342 ----------------------------------
1343 -- Analyze_Explicit_Dereference --
1344 ----------------------------------
1346 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1347 Loc : constant Source_Ptr := Sloc (N);
1348 P : constant Node_Id := Prefix (N);
1349 T : Entity_Id;
1350 I : Interp_Index;
1351 It : Interp;
1352 New_N : Node_Id;
1354 function Is_Function_Type return Boolean;
1355 -- Check whether node may be interpreted as an implicit function call
1357 ----------------------
1358 -- Is_Function_Type --
1359 ----------------------
1361 function Is_Function_Type return Boolean is
1362 I : Interp_Index;
1363 It : Interp;
1365 begin
1366 if not Is_Overloaded (N) then
1367 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1368 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1370 else
1371 Get_First_Interp (N, I, It);
1372 while Present (It.Nam) loop
1373 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1374 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1375 then
1376 return False;
1377 end if;
1379 Get_Next_Interp (I, It);
1380 end loop;
1382 return True;
1383 end if;
1384 end Is_Function_Type;
1386 -- Start of processing for Analyze_Explicit_Dereference
1388 begin
1389 Analyze (P);
1390 Set_Etype (N, Any_Type);
1392 -- Test for remote access to subprogram type, and if so return
1393 -- after rewriting the original tree.
1395 if Remote_AST_E_Dereference (P) then
1396 return;
1397 end if;
1399 -- Normal processing for other than remote access to subprogram type
1401 if not Is_Overloaded (P) then
1402 if Is_Access_Type (Etype (P)) then
1404 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1405 -- avoid other problems caused by the Private_Subtype and it is
1406 -- safe to go to the Base_Type because this is the same as
1407 -- converting the access value to its Base_Type.
1409 declare
1410 DT : Entity_Id := Designated_Type (Etype (P));
1412 begin
1413 if Ekind (DT) = E_Private_Subtype
1414 and then Is_For_Access_Subtype (DT)
1415 then
1416 DT := Base_Type (DT);
1417 end if;
1419 -- An explicit dereference is a legal occurrence of an
1420 -- incomplete type imported through a limited_with clause,
1421 -- if the full view is visible.
1423 if From_With_Type (DT)
1424 and then not From_With_Type (Scope (DT))
1425 and then
1426 (Is_Immediately_Visible (Scope (DT))
1427 or else
1428 (Is_Child_Unit (Scope (DT))
1429 and then Is_Visible_Child_Unit (Scope (DT))))
1430 then
1431 Set_Etype (N, Available_View (DT));
1433 else
1434 Set_Etype (N, DT);
1435 end if;
1436 end;
1438 elsif Etype (P) /= Any_Type then
1439 Error_Msg_N ("prefix of dereference must be an access type", N);
1440 return;
1441 end if;
1443 else
1444 Get_First_Interp (P, I, It);
1445 while Present (It.Nam) loop
1446 T := It.Typ;
1448 if Is_Access_Type (T) then
1449 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1450 end if;
1452 Get_Next_Interp (I, It);
1453 end loop;
1455 -- Error if no interpretation of the prefix has an access type
1457 if Etype (N) = Any_Type then
1458 Error_Msg_N
1459 ("access type required in prefix of explicit dereference", P);
1460 Set_Etype (N, Any_Type);
1461 return;
1462 end if;
1463 end if;
1465 if Is_Function_Type
1466 and then Nkind (Parent (N)) /= N_Indexed_Component
1468 and then (Nkind (Parent (N)) /= N_Function_Call
1469 or else N /= Name (Parent (N)))
1471 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1472 or else N /= Name (Parent (N)))
1474 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1475 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1476 or else
1477 (Attribute_Name (Parent (N)) /= Name_Address
1478 and then
1479 Attribute_Name (Parent (N)) /= Name_Access))
1480 then
1481 -- Name is a function call with no actuals, in a context that
1482 -- requires deproceduring (including as an actual in an enclosing
1483 -- function or procedure call). There are some pathological cases
1484 -- where the prefix might include functions that return access to
1485 -- subprograms and others that return a regular type. Disambiguation
1486 -- of those has to take place in Resolve.
1488 New_N :=
1489 Make_Function_Call (Loc,
1490 Name => Make_Explicit_Dereference (Loc, P),
1491 Parameter_Associations => New_List);
1493 -- If the prefix is overloaded, remove operations that have formals,
1494 -- we know that this is a parameterless call.
1496 if Is_Overloaded (P) then
1497 Get_First_Interp (P, I, It);
1498 while Present (It.Nam) loop
1499 T := It.Typ;
1501 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1502 Set_Etype (P, T);
1503 else
1504 Remove_Interp (I);
1505 end if;
1507 Get_Next_Interp (I, It);
1508 end loop;
1509 end if;
1511 Rewrite (N, New_N);
1512 Analyze (N);
1514 elsif not Is_Function_Type
1515 and then Is_Overloaded (N)
1516 then
1517 -- The prefix may include access to subprograms and other access
1518 -- types. If the context selects the interpretation that is a
1519 -- function call (not a procedure call) we cannot rewrite the node
1520 -- yet, but we include the result of the call interpretation.
1522 Get_First_Interp (N, I, It);
1523 while Present (It.Nam) loop
1524 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1525 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1526 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1527 then
1528 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1529 end if;
1531 Get_Next_Interp (I, It);
1532 end loop;
1533 end if;
1535 -- A value of remote access-to-class-wide must not be dereferenced
1536 -- (RM E.2.2(16)).
1538 Validate_Remote_Access_To_Class_Wide_Type (N);
1539 end Analyze_Explicit_Dereference;
1541 ------------------------
1542 -- Analyze_Expression --
1543 ------------------------
1545 procedure Analyze_Expression (N : Node_Id) is
1546 begin
1547 Analyze (N);
1548 Check_Parameterless_Call (N);
1549 end Analyze_Expression;
1551 ------------------------------------
1552 -- Analyze_Indexed_Component_Form --
1553 ------------------------------------
1555 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1556 P : constant Node_Id := Prefix (N);
1557 Exprs : constant List_Id := Expressions (N);
1558 Exp : Node_Id;
1559 P_T : Entity_Id;
1560 E : Node_Id;
1561 U_N : Entity_Id;
1563 procedure Process_Function_Call;
1564 -- Prefix in indexed component form is an overloadable entity,
1565 -- so the node is a function call. Reformat it as such.
1567 procedure Process_Indexed_Component;
1568 -- Prefix in indexed component form is actually an indexed component.
1569 -- This routine processes it, knowing that the prefix is already
1570 -- resolved.
1572 procedure Process_Indexed_Component_Or_Slice;
1573 -- An indexed component with a single index may designate a slice if
1574 -- the index is a subtype mark. This routine disambiguates these two
1575 -- cases by resolving the prefix to see if it is a subtype mark.
1577 procedure Process_Overloaded_Indexed_Component;
1578 -- If the prefix of an indexed component is overloaded, the proper
1579 -- interpretation is selected by the index types and the context.
1581 ---------------------------
1582 -- Process_Function_Call --
1583 ---------------------------
1585 procedure Process_Function_Call is
1586 Actual : Node_Id;
1588 begin
1589 Change_Node (N, N_Function_Call);
1590 Set_Name (N, P);
1591 Set_Parameter_Associations (N, Exprs);
1593 -- Analyze actuals prior to analyzing the call itself
1595 Actual := First (Parameter_Associations (N));
1596 while Present (Actual) loop
1597 Analyze (Actual);
1598 Check_Parameterless_Call (Actual);
1600 -- Move to next actual. Note that we use Next, not Next_Actual
1601 -- here. The reason for this is a bit subtle. If a function call
1602 -- includes named associations, the parser recognizes the node as
1603 -- a call, and it is analyzed as such. If all associations are
1604 -- positional, the parser builds an indexed_component node, and
1605 -- it is only after analysis of the prefix that the construct
1606 -- is recognized as a call, in which case Process_Function_Call
1607 -- rewrites the node and analyzes the actuals. If the list of
1608 -- actuals is malformed, the parser may leave the node as an
1609 -- indexed component (despite the presence of named associations).
1610 -- The iterator Next_Actual is equivalent to Next if the list is
1611 -- positional, but follows the normalized chain of actuals when
1612 -- named associations are present. In this case normalization has
1613 -- not taken place, and actuals remain unanalyzed, which leads to
1614 -- subsequent crashes or loops if there is an attempt to continue
1615 -- analysis of the program.
1617 Next (Actual);
1618 end loop;
1620 Analyze_Call (N);
1621 end Process_Function_Call;
1623 -------------------------------
1624 -- Process_Indexed_Component --
1625 -------------------------------
1627 procedure Process_Indexed_Component is
1628 Exp : Node_Id;
1629 Array_Type : Entity_Id;
1630 Index : Node_Id;
1631 Pent : Entity_Id := Empty;
1633 begin
1634 Exp := First (Exprs);
1636 if Is_Overloaded (P) then
1637 Process_Overloaded_Indexed_Component;
1639 else
1640 Array_Type := Etype (P);
1642 if Is_Entity_Name (P) then
1643 Pent := Entity (P);
1644 elsif Nkind (P) = N_Selected_Component
1645 and then Is_Entity_Name (Selector_Name (P))
1646 then
1647 Pent := Entity (Selector_Name (P));
1648 end if;
1650 -- Prefix must be appropriate for an array type, taking into
1651 -- account a possible implicit dereference.
1653 if Is_Access_Type (Array_Type) then
1654 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1655 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
1656 end if;
1658 if Is_Array_Type (Array_Type) then
1659 null;
1661 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
1662 Analyze (Exp);
1663 Set_Etype (N, Any_Type);
1665 if not Has_Compatible_Type
1666 (Exp, Entry_Index_Type (Pent))
1667 then
1668 Error_Msg_N ("invalid index type in entry name", N);
1670 elsif Present (Next (Exp)) then
1671 Error_Msg_N ("too many subscripts in entry reference", N);
1673 else
1674 Set_Etype (N, Etype (P));
1675 end if;
1677 return;
1679 elsif Is_Record_Type (Array_Type)
1680 and then Remote_AST_I_Dereference (P)
1681 then
1682 return;
1684 elsif Array_Type = Any_Type then
1685 Set_Etype (N, Any_Type);
1686 return;
1688 -- Here we definitely have a bad indexing
1690 else
1691 if Nkind (Parent (N)) = N_Requeue_Statement
1692 and then Present (Pent) and then Ekind (Pent) = E_Entry
1693 then
1694 Error_Msg_N
1695 ("REQUEUE does not permit parameters", First (Exprs));
1697 elsif Is_Entity_Name (P)
1698 and then Etype (P) = Standard_Void_Type
1699 then
1700 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1702 else
1703 Error_Msg_N ("array type required in indexed component", P);
1704 end if;
1706 Set_Etype (N, Any_Type);
1707 return;
1708 end if;
1710 Index := First_Index (Array_Type);
1711 while Present (Index) and then Present (Exp) loop
1712 if not Has_Compatible_Type (Exp, Etype (Index)) then
1713 Wrong_Type (Exp, Etype (Index));
1714 Set_Etype (N, Any_Type);
1715 return;
1716 end if;
1718 Next_Index (Index);
1719 Next (Exp);
1720 end loop;
1722 Set_Etype (N, Component_Type (Array_Type));
1724 if Present (Index) then
1725 Error_Msg_N
1726 ("too few subscripts in array reference", First (Exprs));
1728 elsif Present (Exp) then
1729 Error_Msg_N ("too many subscripts in array reference", Exp);
1730 end if;
1731 end if;
1732 end Process_Indexed_Component;
1734 ----------------------------------------
1735 -- Process_Indexed_Component_Or_Slice --
1736 ----------------------------------------
1738 procedure Process_Indexed_Component_Or_Slice is
1739 begin
1740 Exp := First (Exprs);
1741 while Present (Exp) loop
1742 Analyze_Expression (Exp);
1743 Next (Exp);
1744 end loop;
1746 Exp := First (Exprs);
1748 -- If one index is present, and it is a subtype name, then the
1749 -- node denotes a slice (note that the case of an explicit range
1750 -- for a slice was already built as an N_Slice node in the first
1751 -- place, so that case is not handled here).
1753 -- We use a replace rather than a rewrite here because this is one
1754 -- of the cases in which the tree built by the parser is plain wrong.
1756 if No (Next (Exp))
1757 and then Is_Entity_Name (Exp)
1758 and then Is_Type (Entity (Exp))
1759 then
1760 Replace (N,
1761 Make_Slice (Sloc (N),
1762 Prefix => P,
1763 Discrete_Range => New_Copy (Exp)));
1764 Analyze (N);
1766 -- Otherwise (more than one index present, or single index is not
1767 -- a subtype name), then we have the indexed component case.
1769 else
1770 Process_Indexed_Component;
1771 end if;
1772 end Process_Indexed_Component_Or_Slice;
1774 ------------------------------------------
1775 -- Process_Overloaded_Indexed_Component --
1776 ------------------------------------------
1778 procedure Process_Overloaded_Indexed_Component is
1779 Exp : Node_Id;
1780 I : Interp_Index;
1781 It : Interp;
1782 Typ : Entity_Id;
1783 Index : Node_Id;
1784 Found : Boolean;
1786 begin
1787 Set_Etype (N, Any_Type);
1789 Get_First_Interp (P, I, It);
1790 while Present (It.Nam) loop
1791 Typ := It.Typ;
1793 if Is_Access_Type (Typ) then
1794 Typ := Designated_Type (Typ);
1795 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1796 end if;
1798 if Is_Array_Type (Typ) then
1800 -- Got a candidate: verify that index types are compatible
1802 Index := First_Index (Typ);
1803 Found := True;
1804 Exp := First (Exprs);
1805 while Present (Index) and then Present (Exp) loop
1806 if Has_Compatible_Type (Exp, Etype (Index)) then
1807 null;
1808 else
1809 Found := False;
1810 Remove_Interp (I);
1811 exit;
1812 end if;
1814 Next_Index (Index);
1815 Next (Exp);
1816 end loop;
1818 if Found and then No (Index) and then No (Exp) then
1819 Add_One_Interp (N,
1820 Etype (Component_Type (Typ)),
1821 Etype (Component_Type (Typ)));
1822 end if;
1823 end if;
1825 Get_Next_Interp (I, It);
1826 end loop;
1828 if Etype (N) = Any_Type then
1829 Error_Msg_N ("no legal interpretation for indexed component", N);
1830 Set_Is_Overloaded (N, False);
1831 end if;
1833 End_Interp_List;
1834 end Process_Overloaded_Indexed_Component;
1836 -- Start of processing for Analyze_Indexed_Component_Form
1838 begin
1839 -- Get name of array, function or type
1841 Analyze (P);
1843 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
1845 -- If P is an explicit dereference whose prefix is of a
1846 -- remote access-to-subprogram type, then N has already
1847 -- been rewritten as a subprogram call and analyzed.
1849 return;
1850 end if;
1852 pragma Assert (Nkind (N) = N_Indexed_Component);
1854 P_T := Base_Type (Etype (P));
1856 if Is_Entity_Name (P)
1857 or else Nkind (P) = N_Operator_Symbol
1858 then
1859 U_N := Entity (P);
1861 if Is_Type (U_N) then
1863 -- Reformat node as a type conversion
1865 E := Remove_Head (Exprs);
1867 if Present (First (Exprs)) then
1868 Error_Msg_N
1869 ("argument of type conversion must be single expression", N);
1870 end if;
1872 Change_Node (N, N_Type_Conversion);
1873 Set_Subtype_Mark (N, P);
1874 Set_Etype (N, U_N);
1875 Set_Expression (N, E);
1877 -- After changing the node, call for the specific Analysis
1878 -- routine directly, to avoid a double call to the expander.
1880 Analyze_Type_Conversion (N);
1881 return;
1882 end if;
1884 if Is_Overloadable (U_N) then
1885 Process_Function_Call;
1887 elsif Ekind (Etype (P)) = E_Subprogram_Type
1888 or else (Is_Access_Type (Etype (P))
1889 and then
1890 Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
1891 then
1892 -- Call to access_to-subprogram with possible implicit dereference
1894 Process_Function_Call;
1896 elsif Is_Generic_Subprogram (U_N) then
1898 -- A common beginner's (or C++ templates fan) error
1900 Error_Msg_N ("generic subprogram cannot be called", N);
1901 Set_Etype (N, Any_Type);
1902 return;
1904 else
1905 Process_Indexed_Component_Or_Slice;
1906 end if;
1908 -- If not an entity name, prefix is an expression that may denote
1909 -- an array or an access-to-subprogram.
1911 else
1912 if Ekind (P_T) = E_Subprogram_Type
1913 or else (Is_Access_Type (P_T)
1914 and then
1915 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
1916 then
1917 Process_Function_Call;
1919 elsif Nkind (P) = N_Selected_Component
1920 and then Is_Overloadable (Entity (Selector_Name (P)))
1921 then
1922 Process_Function_Call;
1924 else
1925 -- Indexed component, slice, or a call to a member of a family
1926 -- entry, which will be converted to an entry call later.
1928 Process_Indexed_Component_Or_Slice;
1929 end if;
1930 end if;
1931 end Analyze_Indexed_Component_Form;
1933 ------------------------
1934 -- Analyze_Logical_Op --
1935 ------------------------
1937 procedure Analyze_Logical_Op (N : Node_Id) is
1938 L : constant Node_Id := Left_Opnd (N);
1939 R : constant Node_Id := Right_Opnd (N);
1940 Op_Id : Entity_Id := Entity (N);
1942 begin
1943 Set_Etype (N, Any_Type);
1944 Candidate_Type := Empty;
1946 Analyze_Expression (L);
1947 Analyze_Expression (R);
1949 if Present (Op_Id) then
1951 if Ekind (Op_Id) = E_Operator then
1952 Find_Boolean_Types (L, R, Op_Id, N);
1953 else
1954 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1955 end if;
1957 else
1958 Op_Id := Get_Name_Entity_Id (Chars (N));
1959 while Present (Op_Id) loop
1960 if Ekind (Op_Id) = E_Operator then
1961 Find_Boolean_Types (L, R, Op_Id, N);
1962 else
1963 Analyze_User_Defined_Binary_Op (N, Op_Id);
1964 end if;
1966 Op_Id := Homonym (Op_Id);
1967 end loop;
1968 end if;
1970 Operator_Check (N);
1971 end Analyze_Logical_Op;
1973 ---------------------------
1974 -- Analyze_Membership_Op --
1975 ---------------------------
1977 procedure Analyze_Membership_Op (N : Node_Id) is
1978 L : constant Node_Id := Left_Opnd (N);
1979 R : constant Node_Id := Right_Opnd (N);
1981 Index : Interp_Index;
1982 It : Interp;
1983 Found : Boolean := False;
1984 I_F : Interp_Index;
1985 T_F : Entity_Id;
1987 procedure Try_One_Interp (T1 : Entity_Id);
1988 -- Routine to try one proposed interpretation. Note that the context
1989 -- of the operation plays no role in resolving the arguments, so that
1990 -- if there is more than one interpretation of the operands that is
1991 -- compatible with a membership test, the operation is ambiguous.
1993 --------------------
1994 -- Try_One_Interp --
1995 --------------------
1997 procedure Try_One_Interp (T1 : Entity_Id) is
1998 begin
1999 if Has_Compatible_Type (R, T1) then
2000 if Found
2001 and then Base_Type (T1) /= Base_Type (T_F)
2002 then
2003 It := Disambiguate (L, I_F, Index, Any_Type);
2005 if It = No_Interp then
2006 Ambiguous_Operands (N);
2007 Set_Etype (L, Any_Type);
2008 return;
2010 else
2011 T_F := It.Typ;
2012 end if;
2014 else
2015 Found := True;
2016 T_F := T1;
2017 I_F := Index;
2018 end if;
2020 Set_Etype (L, T_F);
2021 end if;
2023 end Try_One_Interp;
2025 -- Start of processing for Analyze_Membership_Op
2027 begin
2028 Analyze_Expression (L);
2030 if Nkind (R) = N_Range
2031 or else (Nkind (R) = N_Attribute_Reference
2032 and then Attribute_Name (R) = Name_Range)
2033 then
2034 Analyze (R);
2036 if not Is_Overloaded (L) then
2037 Try_One_Interp (Etype (L));
2039 else
2040 Get_First_Interp (L, Index, It);
2041 while Present (It.Typ) loop
2042 Try_One_Interp (It.Typ);
2043 Get_Next_Interp (Index, It);
2044 end loop;
2045 end if;
2047 -- If not a range, it can only be a subtype mark, or else there
2048 -- is a more basic error, to be diagnosed in Find_Type.
2050 else
2051 Find_Type (R);
2053 if Is_Entity_Name (R) then
2054 Check_Fully_Declared (Entity (R), R);
2055 end if;
2056 end if;
2058 -- Compatibility between expression and subtype mark or range is
2059 -- checked during resolution. The result of the operation is Boolean
2060 -- in any case.
2062 Set_Etype (N, Standard_Boolean);
2064 if Comes_From_Source (N)
2065 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2066 then
2067 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2068 end if;
2069 end Analyze_Membership_Op;
2071 ----------------------
2072 -- Analyze_Negation --
2073 ----------------------
2075 procedure Analyze_Negation (N : Node_Id) is
2076 R : constant Node_Id := Right_Opnd (N);
2077 Op_Id : Entity_Id := Entity (N);
2079 begin
2080 Set_Etype (N, Any_Type);
2081 Candidate_Type := Empty;
2083 Analyze_Expression (R);
2085 if Present (Op_Id) then
2086 if Ekind (Op_Id) = E_Operator then
2087 Find_Negation_Types (R, Op_Id, N);
2088 else
2089 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2090 end if;
2092 else
2093 Op_Id := Get_Name_Entity_Id (Chars (N));
2094 while Present (Op_Id) loop
2095 if Ekind (Op_Id) = E_Operator then
2096 Find_Negation_Types (R, Op_Id, N);
2097 else
2098 Analyze_User_Defined_Unary_Op (N, Op_Id);
2099 end if;
2101 Op_Id := Homonym (Op_Id);
2102 end loop;
2103 end if;
2105 Operator_Check (N);
2106 end Analyze_Negation;
2108 ------------------
2109 -- Analyze_Null --
2110 ------------------
2112 procedure Analyze_Null (N : Node_Id) is
2113 begin
2114 Set_Etype (N, Any_Access);
2115 end Analyze_Null;
2117 ----------------------
2118 -- Analyze_One_Call --
2119 ----------------------
2121 procedure Analyze_One_Call
2122 (N : Node_Id;
2123 Nam : Entity_Id;
2124 Report : Boolean;
2125 Success : out Boolean;
2126 Skip_First : Boolean := False)
2128 Actuals : constant List_Id := Parameter_Associations (N);
2129 Prev_T : constant Entity_Id := Etype (N);
2131 Must_Skip : constant Boolean := Skip_First
2132 or else Nkind (Original_Node (N)) = N_Selected_Component
2133 or else
2134 (Nkind (Original_Node (N)) = N_Indexed_Component
2135 and then Nkind (Prefix (Original_Node (N)))
2136 = N_Selected_Component);
2137 -- The first formal must be omitted from the match when trying to find
2138 -- a primitive operation that is a possible interpretation, and also
2139 -- after the call has been rewritten, because the corresponding actual
2140 -- is already known to be compatible, and because this may be an
2141 -- indexing of a call with default parameters.
2143 Formal : Entity_Id;
2144 Actual : Node_Id;
2145 Is_Indexed : Boolean := False;
2146 Is_Indirect : Boolean := False;
2147 Subp_Type : constant Entity_Id := Etype (Nam);
2148 Norm_OK : Boolean;
2150 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2151 -- There may be a user-defined operator that hides the current
2152 -- interpretation. We must check for this independently of the
2153 -- analysis of the call with the user-defined operation, because
2154 -- the parameter names may be wrong and yet the hiding takes place.
2155 -- This fixes a problem with ACATS test B34014O.
2157 -- When the type Address is a visible integer type, and the DEC
2158 -- system extension is visible, the predefined operator may be
2159 -- hidden as well, by one of the address operations in auxdec.
2160 -- Finally, The abstract operations on address do not hide the
2161 -- predefined operator (this is the purpose of making them abstract).
2163 procedure Indicate_Name_And_Type;
2164 -- If candidate interpretation matches, indicate name and type of
2165 -- result on call node.
2167 ----------------------------
2168 -- Indicate_Name_And_Type --
2169 ----------------------------
2171 procedure Indicate_Name_And_Type is
2172 begin
2173 Add_One_Interp (N, Nam, Etype (Nam));
2174 Success := True;
2176 -- If the prefix of the call is a name, indicate the entity
2177 -- being called. If it is not a name, it is an expression that
2178 -- denotes an access to subprogram or else an entry or family. In
2179 -- the latter case, the name is a selected component, and the entity
2180 -- being called is noted on the selector.
2182 if not Is_Type (Nam) then
2183 if Is_Entity_Name (Name (N))
2184 or else Nkind (Name (N)) = N_Operator_Symbol
2185 then
2186 Set_Entity (Name (N), Nam);
2188 elsif Nkind (Name (N)) = N_Selected_Component then
2189 Set_Entity (Selector_Name (Name (N)), Nam);
2190 end if;
2191 end if;
2193 if Debug_Flag_E and not Report then
2194 Write_Str (" Overloaded call ");
2195 Write_Int (Int (N));
2196 Write_Str (" compatible with ");
2197 Write_Int (Int (Nam));
2198 Write_Eol;
2199 end if;
2200 end Indicate_Name_And_Type;
2202 ------------------------
2203 -- Operator_Hidden_By --
2204 ------------------------
2206 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2207 Act1 : constant Node_Id := First_Actual (N);
2208 Act2 : constant Node_Id := Next_Actual (Act1);
2209 Form1 : constant Entity_Id := First_Formal (Fun);
2210 Form2 : constant Entity_Id := Next_Formal (Form1);
2212 begin
2213 if Ekind (Fun) /= E_Function
2214 or else Is_Abstract_Subprogram (Fun)
2215 then
2216 return False;
2218 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2219 return False;
2221 elsif Present (Form2) then
2223 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2224 then
2225 return False;
2226 end if;
2228 elsif Present (Act2) then
2229 return False;
2230 end if;
2232 -- Now we know that the arity of the operator matches the function,
2233 -- and the function call is a valid interpretation. The function
2234 -- hides the operator if it has the right signature, or if one of
2235 -- its operands is a non-abstract operation on Address when this is
2236 -- a visible integer type.
2238 return Hides_Op (Fun, Nam)
2239 or else Is_Descendent_Of_Address (Etype (Form1))
2240 or else
2241 (Present (Form2)
2242 and then Is_Descendent_Of_Address (Etype (Form2)));
2243 end Operator_Hidden_By;
2245 -- Start of processing for Analyze_One_Call
2247 begin
2248 Success := False;
2250 -- If the subprogram has no formals or if all the formals have defaults,
2251 -- and the return type is an array type, the node may denote an indexing
2252 -- of the result of a parameterless call. In Ada 2005, the subprogram
2253 -- may have one non-defaulted formal, and the call may have been written
2254 -- in prefix notation, so that the rebuilt parameter list has more than
2255 -- one actual.
2257 if not Is_Overloadable (Nam)
2258 and then Ekind (Nam) /= E_Subprogram_Type
2259 and then Ekind (Nam) /= E_Entry_Family
2260 then
2261 return;
2262 end if;
2264 if Present (Actuals)
2265 and then
2266 (Needs_No_Actuals (Nam)
2267 or else
2268 (Needs_One_Actual (Nam)
2269 and then Present (Next_Actual (First (Actuals)))))
2270 then
2271 if Is_Array_Type (Subp_Type) then
2272 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2274 elsif Is_Access_Type (Subp_Type)
2275 and then Is_Array_Type (Designated_Type (Subp_Type))
2276 then
2277 Is_Indexed :=
2278 Try_Indexed_Call
2279 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2281 -- The prefix can also be a parameterless function that returns an
2282 -- access to subprogram, in which case this is an indirect call.
2283 -- If this succeeds, an explicit dereference is added later on,
2284 -- in Analyze_Call or Resolve_Call.
2286 elsif Is_Access_Type (Subp_Type)
2287 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2288 then
2289 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2290 end if;
2292 end if;
2294 -- If the call has been transformed into a slice, it is of the form
2295 -- F (Subtype) where F is parameterless. The node has been rewritten in
2296 -- Try_Indexed_Call and there is nothing else to do.
2298 if Is_Indexed
2299 and then Nkind (N) = N_Slice
2300 then
2301 return;
2302 end if;
2304 Normalize_Actuals
2305 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2307 if not Norm_OK then
2309 -- If an indirect call is a possible interpretation, indicate
2310 -- success to the caller.
2312 if Is_Indirect then
2313 Success := True;
2314 return;
2316 -- Mismatch in number or names of parameters
2318 elsif Debug_Flag_E then
2319 Write_Str (" normalization fails in call ");
2320 Write_Int (Int (N));
2321 Write_Str (" with subprogram ");
2322 Write_Int (Int (Nam));
2323 Write_Eol;
2324 end if;
2326 -- If the context expects a function call, discard any interpretation
2327 -- that is a procedure. If the node is not overloaded, leave as is for
2328 -- better error reporting when type mismatch is found.
2330 elsif Nkind (N) = N_Function_Call
2331 and then Is_Overloaded (Name (N))
2332 and then Ekind (Nam) = E_Procedure
2333 then
2334 return;
2336 -- Ditto for function calls in a procedure context
2338 elsif Nkind (N) = N_Procedure_Call_Statement
2339 and then Is_Overloaded (Name (N))
2340 and then Etype (Nam) /= Standard_Void_Type
2341 then
2342 return;
2344 elsif No (Actuals) then
2346 -- If Normalize succeeds, then there are default parameters for
2347 -- all formals.
2349 Indicate_Name_And_Type;
2351 elsif Ekind (Nam) = E_Operator then
2352 if Nkind (N) = N_Procedure_Call_Statement then
2353 return;
2354 end if;
2356 -- This can occur when the prefix of the call is an operator
2357 -- name or an expanded name whose selector is an operator name.
2359 Analyze_Operator_Call (N, Nam);
2361 if Etype (N) /= Prev_T then
2363 -- Check that operator is not hidden by a function interpretation
2365 if Is_Overloaded (Name (N)) then
2366 declare
2367 I : Interp_Index;
2368 It : Interp;
2370 begin
2371 Get_First_Interp (Name (N), I, It);
2372 while Present (It.Nam) loop
2373 if Operator_Hidden_By (It.Nam) then
2374 Set_Etype (N, Prev_T);
2375 return;
2376 end if;
2378 Get_Next_Interp (I, It);
2379 end loop;
2380 end;
2381 end if;
2383 -- If operator matches formals, record its name on the call.
2384 -- If the operator is overloaded, Resolve will select the
2385 -- correct one from the list of interpretations. The call
2386 -- node itself carries the first candidate.
2388 Set_Entity (Name (N), Nam);
2389 Success := True;
2391 elsif Report and then Etype (N) = Any_Type then
2392 Error_Msg_N ("incompatible arguments for operator", N);
2393 end if;
2395 else
2396 -- Normalize_Actuals has chained the named associations in the
2397 -- correct order of the formals.
2399 Actual := First_Actual (N);
2400 Formal := First_Formal (Nam);
2402 -- If we are analyzing a call rewritten from object notation,
2403 -- skip first actual, which may be rewritten later as an
2404 -- explicit dereference.
2406 if Must_Skip then
2407 Next_Actual (Actual);
2408 Next_Formal (Formal);
2409 end if;
2411 while Present (Actual) and then Present (Formal) loop
2412 if Nkind (Parent (Actual)) /= N_Parameter_Association
2413 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
2414 then
2415 -- The actual can be compatible with the formal, but we must
2416 -- also check that the context is not an address type that is
2417 -- visibly an integer type, as is the case in VMS_64. In this
2418 -- case the use of literals is illegal, except in the body of
2419 -- descendents of system, where arithmetic operations on
2420 -- address are of course used.
2422 if Has_Compatible_Type (Actual, Etype (Formal))
2423 and then
2424 (Etype (Actual) /= Universal_Integer
2425 or else not Is_Descendent_Of_Address (Etype (Formal))
2426 or else
2427 Is_Predefined_File_Name
2428 (Unit_File_Name (Get_Source_Unit (N))))
2429 then
2430 Next_Actual (Actual);
2431 Next_Formal (Formal);
2433 else
2434 if Debug_Flag_E then
2435 Write_Str (" type checking fails in call ");
2436 Write_Int (Int (N));
2437 Write_Str (" with formal ");
2438 Write_Int (Int (Formal));
2439 Write_Str (" in subprogram ");
2440 Write_Int (Int (Nam));
2441 Write_Eol;
2442 end if;
2444 if Report and not Is_Indexed and not Is_Indirect then
2446 -- Ada 2005 (AI-251): Complete the error notification
2447 -- to help new Ada 2005 users
2449 if Is_Class_Wide_Type (Etype (Formal))
2450 and then Is_Interface (Etype (Etype (Formal)))
2451 and then not Interface_Present_In_Ancestor
2452 (Typ => Etype (Actual),
2453 Iface => Etype (Etype (Formal)))
2454 then
2455 Error_Msg_NE
2456 ("(Ada 2005) does not implement interface }",
2457 Actual, Etype (Etype (Formal)));
2458 end if;
2460 Wrong_Type (Actual, Etype (Formal));
2462 if Nkind (Actual) = N_Op_Eq
2463 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2464 then
2465 Formal := First_Formal (Nam);
2466 while Present (Formal) loop
2467 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2468 Error_Msg_N
2469 ("possible misspelling of `='>`!", Actual);
2470 exit;
2471 end if;
2473 Next_Formal (Formal);
2474 end loop;
2475 end if;
2477 if All_Errors_Mode then
2478 Error_Msg_Sloc := Sloc (Nam);
2480 if Is_Overloadable (Nam)
2481 and then Present (Alias (Nam))
2482 and then not Comes_From_Source (Nam)
2483 then
2484 Error_Msg_NE
2485 ("\\ =='> in call to inherited operation & #!",
2486 Actual, Nam);
2488 elsif Ekind (Nam) = E_Subprogram_Type then
2489 declare
2490 Access_To_Subprogram_Typ :
2491 constant Entity_Id :=
2492 Defining_Identifier
2493 (Associated_Node_For_Itype (Nam));
2494 begin
2495 Error_Msg_NE (
2496 "\\ =='> in call to dereference of &#!",
2497 Actual, Access_To_Subprogram_Typ);
2498 end;
2500 else
2501 Error_Msg_NE
2502 ("\\ =='> in call to &#!", Actual, Nam);
2504 end if;
2505 end if;
2506 end if;
2508 return;
2509 end if;
2511 else
2512 -- Normalize_Actuals has verified that a default value exists
2513 -- for this formal. Current actual names a subsequent formal.
2515 Next_Formal (Formal);
2516 end if;
2517 end loop;
2519 -- On exit, all actuals match
2521 Indicate_Name_And_Type;
2522 end if;
2523 end Analyze_One_Call;
2525 ---------------------------
2526 -- Analyze_Operator_Call --
2527 ---------------------------
2529 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2530 Op_Name : constant Name_Id := Chars (Op_Id);
2531 Act1 : constant Node_Id := First_Actual (N);
2532 Act2 : constant Node_Id := Next_Actual (Act1);
2534 begin
2535 -- Binary operator case
2537 if Present (Act2) then
2539 -- If more than two operands, then not binary operator after all
2541 if Present (Next_Actual (Act2)) then
2542 return;
2544 elsif Op_Name = Name_Op_Add
2545 or else Op_Name = Name_Op_Subtract
2546 or else Op_Name = Name_Op_Multiply
2547 or else Op_Name = Name_Op_Divide
2548 or else Op_Name = Name_Op_Mod
2549 or else Op_Name = Name_Op_Rem
2550 or else Op_Name = Name_Op_Expon
2551 then
2552 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2554 elsif Op_Name = Name_Op_And
2555 or else Op_Name = Name_Op_Or
2556 or else Op_Name = Name_Op_Xor
2557 then
2558 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2560 elsif Op_Name = Name_Op_Lt
2561 or else Op_Name = Name_Op_Le
2562 or else Op_Name = Name_Op_Gt
2563 or else Op_Name = Name_Op_Ge
2564 then
2565 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2567 elsif Op_Name = Name_Op_Eq
2568 or else Op_Name = Name_Op_Ne
2569 then
2570 Find_Equality_Types (Act1, Act2, Op_Id, N);
2572 elsif Op_Name = Name_Op_Concat then
2573 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2575 -- Is this else null correct, or should it be an abort???
2577 else
2578 null;
2579 end if;
2581 -- Unary operator case
2583 else
2584 if Op_Name = Name_Op_Subtract or else
2585 Op_Name = Name_Op_Add or else
2586 Op_Name = Name_Op_Abs
2587 then
2588 Find_Unary_Types (Act1, Op_Id, N);
2590 elsif
2591 Op_Name = Name_Op_Not
2592 then
2593 Find_Negation_Types (Act1, Op_Id, N);
2595 -- Is this else null correct, or should it be an abort???
2597 else
2598 null;
2599 end if;
2600 end if;
2601 end Analyze_Operator_Call;
2603 -------------------------------------------
2604 -- Analyze_Overloaded_Selected_Component --
2605 -------------------------------------------
2607 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
2608 Nam : constant Node_Id := Prefix (N);
2609 Sel : constant Node_Id := Selector_Name (N);
2610 Comp : Entity_Id;
2611 I : Interp_Index;
2612 It : Interp;
2613 T : Entity_Id;
2615 begin
2616 Set_Etype (Sel, Any_Type);
2618 Get_First_Interp (Nam, I, It);
2619 while Present (It.Typ) loop
2620 if Is_Access_Type (It.Typ) then
2621 T := Designated_Type (It.Typ);
2622 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2623 else
2624 T := It.Typ;
2625 end if;
2627 if Is_Record_Type (T) then
2629 -- If the prefix is a class-wide type, the visible components are
2630 -- those of the base type.
2632 if Is_Class_Wide_Type (T) then
2633 T := Etype (T);
2634 end if;
2636 Comp := First_Entity (T);
2637 while Present (Comp) loop
2638 if Chars (Comp) = Chars (Sel)
2639 and then Is_Visible_Component (Comp)
2640 then
2641 Set_Entity (Sel, Comp);
2642 Set_Etype (Sel, Etype (Comp));
2643 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2645 -- This also specifies a candidate to resolve the name.
2646 -- Further overloading will be resolved from context.
2648 Set_Etype (Nam, It.Typ);
2649 end if;
2651 Next_Entity (Comp);
2652 end loop;
2654 elsif Is_Concurrent_Type (T) then
2655 Comp := First_Entity (T);
2656 while Present (Comp)
2657 and then Comp /= First_Private_Entity (T)
2658 loop
2659 if Chars (Comp) = Chars (Sel) then
2660 if Is_Overloadable (Comp) then
2661 Add_One_Interp (Sel, Comp, Etype (Comp));
2662 else
2663 Set_Entity_With_Style_Check (Sel, Comp);
2664 Generate_Reference (Comp, Sel);
2665 end if;
2667 Set_Etype (Sel, Etype (Comp));
2668 Set_Etype (N, Etype (Comp));
2669 Set_Etype (Nam, It.Typ);
2671 -- For access type case, introduce explicit deference for
2672 -- more uniform treatment of entry calls. Do this only
2673 -- once if several interpretations yield an access type.
2675 if Is_Access_Type (Etype (Nam))
2676 and then Nkind (Nam) /= N_Explicit_Dereference
2677 then
2678 Insert_Explicit_Dereference (Nam);
2679 Error_Msg_NW
2680 (Warn_On_Dereference, "?implicit dereference", N);
2681 end if;
2682 end if;
2684 Next_Entity (Comp);
2685 end loop;
2687 Set_Is_Overloaded (N, Is_Overloaded (Sel));
2688 end if;
2690 Get_Next_Interp (I, It);
2691 end loop;
2693 if Etype (N) = Any_Type
2694 and then not Try_Object_Operation (N)
2695 then
2696 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
2697 Set_Entity (Sel, Any_Id);
2698 Set_Etype (Sel, Any_Type);
2699 end if;
2700 end Analyze_Overloaded_Selected_Component;
2702 ----------------------------------
2703 -- Analyze_Qualified_Expression --
2704 ----------------------------------
2706 procedure Analyze_Qualified_Expression (N : Node_Id) is
2707 Mark : constant Entity_Id := Subtype_Mark (N);
2708 Expr : constant Node_Id := Expression (N);
2709 I : Interp_Index;
2710 It : Interp;
2711 T : Entity_Id;
2713 begin
2714 Analyze_Expression (Expr);
2716 Set_Etype (N, Any_Type);
2717 Find_Type (Mark);
2718 T := Entity (Mark);
2719 Set_Etype (N, T);
2721 if T = Any_Type then
2722 return;
2723 end if;
2725 Check_Fully_Declared (T, N);
2727 -- If expected type is class-wide, check for exact match before
2728 -- expansion, because if the expression is a dispatching call it
2729 -- may be rewritten as explicit dereference with class-wide result.
2730 -- If expression is overloaded, retain only interpretations that
2731 -- will yield exact matches.
2733 if Is_Class_Wide_Type (T) then
2734 if not Is_Overloaded (Expr) then
2735 if Base_Type (Etype (Expr)) /= Base_Type (T) then
2736 if Nkind (Expr) = N_Aggregate then
2737 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
2738 else
2739 Wrong_Type (Expr, T);
2740 end if;
2741 end if;
2743 else
2744 Get_First_Interp (Expr, I, It);
2746 while Present (It.Nam) loop
2747 if Base_Type (It.Typ) /= Base_Type (T) then
2748 Remove_Interp (I);
2749 end if;
2751 Get_Next_Interp (I, It);
2752 end loop;
2753 end if;
2754 end if;
2756 Set_Etype (N, T);
2757 end Analyze_Qualified_Expression;
2759 -------------------
2760 -- Analyze_Range --
2761 -------------------
2763 procedure Analyze_Range (N : Node_Id) is
2764 L : constant Node_Id := Low_Bound (N);
2765 H : constant Node_Id := High_Bound (N);
2766 I1, I2 : Interp_Index;
2767 It1, It2 : Interp;
2769 procedure Check_Common_Type (T1, T2 : Entity_Id);
2770 -- Verify the compatibility of two types, and choose the
2771 -- non universal one if the other is universal.
2773 procedure Check_High_Bound (T : Entity_Id);
2774 -- Test one interpretation of the low bound against all those
2775 -- of the high bound.
2777 procedure Check_Universal_Expression (N : Node_Id);
2778 -- In Ada83, reject bounds of a universal range that are not
2779 -- literals or entity names.
2781 -----------------------
2782 -- Check_Common_Type --
2783 -----------------------
2785 procedure Check_Common_Type (T1, T2 : Entity_Id) is
2786 begin
2787 if Covers (T1 => T1, T2 => T2)
2788 or else
2789 Covers (T1 => T2, T2 => T1)
2790 then
2791 if T1 = Universal_Integer
2792 or else T1 = Universal_Real
2793 or else T1 = Any_Character
2794 then
2795 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
2797 elsif T1 = T2 then
2798 Add_One_Interp (N, T1, T1);
2800 else
2801 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
2802 end if;
2803 end if;
2804 end Check_Common_Type;
2806 ----------------------
2807 -- Check_High_Bound --
2808 ----------------------
2810 procedure Check_High_Bound (T : Entity_Id) is
2811 begin
2812 if not Is_Overloaded (H) then
2813 Check_Common_Type (T, Etype (H));
2814 else
2815 Get_First_Interp (H, I2, It2);
2816 while Present (It2.Typ) loop
2817 Check_Common_Type (T, It2.Typ);
2818 Get_Next_Interp (I2, It2);
2819 end loop;
2820 end if;
2821 end Check_High_Bound;
2823 -----------------------------
2824 -- Is_Universal_Expression --
2825 -----------------------------
2827 procedure Check_Universal_Expression (N : Node_Id) is
2828 begin
2829 if Etype (N) = Universal_Integer
2830 and then Nkind (N) /= N_Integer_Literal
2831 and then not Is_Entity_Name (N)
2832 and then Nkind (N) /= N_Attribute_Reference
2833 then
2834 Error_Msg_N ("illegal bound in discrete range", N);
2835 end if;
2836 end Check_Universal_Expression;
2838 -- Start of processing for Analyze_Range
2840 begin
2841 Set_Etype (N, Any_Type);
2842 Analyze_Expression (L);
2843 Analyze_Expression (H);
2845 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
2846 return;
2848 else
2849 if not Is_Overloaded (L) then
2850 Check_High_Bound (Etype (L));
2851 else
2852 Get_First_Interp (L, I1, It1);
2853 while Present (It1.Typ) loop
2854 Check_High_Bound (It1.Typ);
2855 Get_Next_Interp (I1, It1);
2856 end loop;
2857 end if;
2859 -- If result is Any_Type, then we did not find a compatible pair
2861 if Etype (N) = Any_Type then
2862 Error_Msg_N ("incompatible types in range ", N);
2863 end if;
2864 end if;
2866 if Ada_Version = Ada_83
2867 and then
2868 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
2869 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
2870 then
2871 Check_Universal_Expression (L);
2872 Check_Universal_Expression (H);
2873 end if;
2874 end Analyze_Range;
2876 -----------------------
2877 -- Analyze_Reference --
2878 -----------------------
2880 procedure Analyze_Reference (N : Node_Id) is
2881 P : constant Node_Id := Prefix (N);
2882 E : Entity_Id;
2883 T : Entity_Id;
2884 Acc_Type : Entity_Id;
2886 begin
2887 Analyze (P);
2889 -- An interesting error check, if we take the 'Reference of an object
2890 -- for which a pragma Atomic or Volatile has been given, and the type
2891 -- of the object is not Atomic or Volatile, then we are in trouble. The
2892 -- problem is that no trace of the atomic/volatile status will remain
2893 -- for the backend to respect when it deals with the resulting pointer,
2894 -- since the pointer type will not be marked atomic (it is a pointer to
2895 -- the base type of the object).
2897 -- It is not clear if that can ever occur, but in case it does, we will
2898 -- generate an error message. Not clear if this message can ever be
2899 -- generated, and pretty clear that it represents a bug if it is, still
2900 -- seems worth checking!
2902 T := Etype (P);
2904 if Is_Entity_Name (P)
2905 and then Is_Object_Reference (P)
2906 then
2907 E := Entity (P);
2908 T := Etype (P);
2910 if (Has_Atomic_Components (E)
2911 and then not Has_Atomic_Components (T))
2912 or else
2913 (Has_Volatile_Components (E)
2914 and then not Has_Volatile_Components (T))
2915 or else (Is_Atomic (E) and then not Is_Atomic (T))
2916 or else (Is_Volatile (E) and then not Is_Volatile (T))
2917 then
2918 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
2919 end if;
2920 end if;
2922 -- Carry on with normal processing
2924 Acc_Type := Create_Itype (E_Allocator_Type, N);
2925 Set_Etype (Acc_Type, Acc_Type);
2926 Set_Directly_Designated_Type (Acc_Type, Etype (P));
2927 Set_Etype (N, Acc_Type);
2928 end Analyze_Reference;
2930 --------------------------------
2931 -- Analyze_Selected_Component --
2932 --------------------------------
2934 -- Prefix is a record type or a task or protected type. In the
2935 -- later case, the selector must denote a visible entry.
2937 procedure Analyze_Selected_Component (N : Node_Id) is
2938 Name : constant Node_Id := Prefix (N);
2939 Sel : constant Node_Id := Selector_Name (N);
2940 Act_Decl : Node_Id;
2941 Comp : Entity_Id;
2942 Has_Candidate : Boolean := False;
2943 In_Scope : Boolean;
2944 Parent_N : Node_Id;
2945 Pent : Entity_Id := Empty;
2946 Prefix_Type : Entity_Id;
2948 Type_To_Use : Entity_Id;
2949 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
2950 -- a class-wide type, we use its root type, whose components are
2951 -- present in the class-wide type.
2953 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
2954 -- It is known that the parent of N denotes a subprogram call. Comp
2955 -- is an overloadable component of the concurrent type of the prefix.
2956 -- Determine whether all formals of the parent of N and Comp are mode
2957 -- conformant. If the parent node is not analyzed yet it may be an
2958 -- indexed component rather than a function call.
2960 ------------------------------
2961 -- Has_Mode_Conformant_Spec --
2962 ------------------------------
2964 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
2965 Comp_Param : Entity_Id;
2966 Param : Node_Id;
2967 Param_Typ : Entity_Id;
2969 begin
2970 Comp_Param := First_Formal (Comp);
2972 if Nkind (Parent (N)) = N_Indexed_Component then
2973 Param := First (Expressions (Parent (N)));
2974 else
2975 Param := First (Parameter_Associations (Parent (N)));
2976 end if;
2978 while Present (Comp_Param)
2979 and then Present (Param)
2980 loop
2981 Param_Typ := Find_Parameter_Type (Param);
2983 if Present (Param_Typ)
2984 and then
2985 not Conforming_Types
2986 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
2987 then
2988 return False;
2989 end if;
2991 Next_Formal (Comp_Param);
2992 Next (Param);
2993 end loop;
2995 -- One of the specs has additional formals
2997 if Present (Comp_Param) or else Present (Param) then
2998 return False;
2999 end if;
3001 return True;
3002 end Has_Mode_Conformant_Spec;
3004 -- Start of processing for Analyze_Selected_Component
3006 begin
3007 Set_Etype (N, Any_Type);
3009 if Is_Overloaded (Name) then
3010 Analyze_Overloaded_Selected_Component (N);
3011 return;
3013 elsif Etype (Name) = Any_Type then
3014 Set_Entity (Sel, Any_Id);
3015 Set_Etype (Sel, Any_Type);
3016 return;
3018 else
3019 Prefix_Type := Etype (Name);
3020 end if;
3022 if Is_Access_Type (Prefix_Type) then
3024 -- A RACW object can never be used as prefix of a selected
3025 -- component since that means it is dereferenced without
3026 -- being a controlling operand of a dispatching operation
3027 -- (RM E.2.2(16/1)). Before reporting an error, we must check
3028 -- whether this is actually a dispatching call in prefix form.
3030 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3031 and then Comes_From_Source (N)
3032 then
3033 if Try_Object_Operation (N) then
3034 return;
3035 else
3036 Error_Msg_N
3037 ("invalid dereference of a remote access-to-class-wide value",
3039 end if;
3041 -- Normal case of selected component applied to access type
3043 else
3044 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3046 if Is_Entity_Name (Name) then
3047 Pent := Entity (Name);
3048 elsif Nkind (Name) = N_Selected_Component
3049 and then Is_Entity_Name (Selector_Name (Name))
3050 then
3051 Pent := Entity (Selector_Name (Name));
3052 end if;
3054 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3055 end if;
3057 -- If we have an explicit dereference of a remote access-to-class-wide
3058 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3059 -- have to check for the case of a prefix that is a controlling operand
3060 -- of a prefixed dispatching call, as the dereference is legal in that
3061 -- case. Normally this condition is checked in Validate_Remote_Access_
3062 -- To_Class_Wide_Type, but we have to defer the checking for selected
3063 -- component prefixes because of the prefixed dispatching call case.
3064 -- Note that implicit dereferences are checked for this just above.
3066 elsif Nkind (Name) = N_Explicit_Dereference
3067 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3068 and then Comes_From_Source (N)
3069 then
3070 if Try_Object_Operation (N) then
3071 return;
3072 else
3073 Error_Msg_N
3074 ("invalid dereference of a remote access-to-class-wide value",
3076 end if;
3077 end if;
3079 -- (Ada 2005): if the prefix is the limited view of a type, and
3080 -- the context already includes the full view, use the full view
3081 -- in what follows, either to retrieve a component of to find
3082 -- a primitive operation. If the prefix is an explicit dereference,
3083 -- set the type of the prefix to reflect this transformation.
3084 -- If the non-limited view is itself an incomplete type, get the
3085 -- full view if available.
3087 if Is_Incomplete_Type (Prefix_Type)
3088 and then From_With_Type (Prefix_Type)
3089 and then Present (Non_Limited_View (Prefix_Type))
3090 then
3091 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3093 if Nkind (N) = N_Explicit_Dereference then
3094 Set_Etype (Prefix (N), Prefix_Type);
3095 end if;
3097 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3098 and then From_With_Type (Prefix_Type)
3099 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3100 then
3101 Prefix_Type :=
3102 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3104 if Nkind (N) = N_Explicit_Dereference then
3105 Set_Etype (Prefix (N), Prefix_Type);
3106 end if;
3107 end if;
3109 if Ekind (Prefix_Type) = E_Private_Subtype then
3110 Prefix_Type := Base_Type (Prefix_Type);
3111 end if;
3113 Type_To_Use := Prefix_Type;
3115 -- For class-wide types, use the entity list of the root type. This
3116 -- indirection is specially important for private extensions because
3117 -- only the root type get switched (not the class-wide type).
3119 if Is_Class_Wide_Type (Prefix_Type) then
3120 Type_To_Use := Root_Type (Prefix_Type);
3121 end if;
3123 Comp := First_Entity (Type_To_Use);
3125 -- If the selector has an original discriminant, the node appears in
3126 -- an instance. Replace the discriminant with the corresponding one
3127 -- in the current discriminated type. For nested generics, this must
3128 -- be done transitively, so note the new original discriminant.
3130 if Nkind (Sel) = N_Identifier
3131 and then Present (Original_Discriminant (Sel))
3132 then
3133 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3135 -- Mark entity before rewriting, for completeness and because
3136 -- subsequent semantic checks might examine the original node.
3138 Set_Entity (Sel, Comp);
3139 Rewrite (Selector_Name (N),
3140 New_Occurrence_Of (Comp, Sloc (N)));
3141 Set_Original_Discriminant (Selector_Name (N), Comp);
3142 Set_Etype (N, Etype (Comp));
3144 if Is_Access_Type (Etype (Name)) then
3145 Insert_Explicit_Dereference (Name);
3146 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3147 end if;
3149 elsif Is_Record_Type (Prefix_Type) then
3151 -- Find component with given name
3153 while Present (Comp) loop
3154 if Chars (Comp) = Chars (Sel)
3155 and then Is_Visible_Component (Comp)
3156 then
3157 Set_Entity_With_Style_Check (Sel, Comp);
3158 Set_Etype (Sel, Etype (Comp));
3160 if Ekind (Comp) = E_Discriminant then
3161 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3162 Error_Msg_N
3163 ("cannot reference discriminant of Unchecked_Union",
3164 Sel);
3165 end if;
3167 if Is_Generic_Type (Prefix_Type)
3168 or else
3169 Is_Generic_Type (Root_Type (Prefix_Type))
3170 then
3171 Set_Original_Discriminant (Sel, Comp);
3172 end if;
3173 end if;
3175 -- Resolve the prefix early otherwise it is not possible to
3176 -- build the actual subtype of the component: it may need
3177 -- to duplicate this prefix and duplication is only allowed
3178 -- on fully resolved expressions.
3180 Resolve (Name);
3182 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3183 -- subtypes in a package specification.
3184 -- Example:
3186 -- limited with Pkg;
3187 -- package Pkg is
3188 -- type Acc_Inc is access Pkg.T;
3189 -- X : Acc_Inc;
3190 -- N : Natural := X.all.Comp; -- ERROR, limited view
3191 -- end Pkg; -- Comp is not visible
3193 if Nkind (Name) = N_Explicit_Dereference
3194 and then From_With_Type (Etype (Prefix (Name)))
3195 and then not Is_Potentially_Use_Visible (Etype (Name))
3196 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3197 N_Package_Specification
3198 then
3199 Error_Msg_NE
3200 ("premature usage of incomplete}", Prefix (Name),
3201 Etype (Prefix (Name)));
3202 end if;
3204 -- We never need an actual subtype for the case of a selection
3205 -- for a indexed component of a non-packed array, since in
3206 -- this case gigi generates all the checks and can find the
3207 -- necessary bounds information.
3209 -- We also do not need an actual subtype for the case of
3210 -- a first, last, length, or range attribute applied to a
3211 -- non-packed array, since gigi can again get the bounds in
3212 -- these cases (gigi cannot handle the packed case, since it
3213 -- has the bounds of the packed array type, not the original
3214 -- bounds of the type). However, if the prefix is itself a
3215 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3216 -- as a dynamic-sized temporary, so we do generate an actual
3217 -- subtype for this case.
3219 Parent_N := Parent (N);
3221 if not Is_Packed (Etype (Comp))
3222 and then
3223 ((Nkind (Parent_N) = N_Indexed_Component
3224 and then Nkind (Name) /= N_Selected_Component)
3225 or else
3226 (Nkind (Parent_N) = N_Attribute_Reference
3227 and then (Attribute_Name (Parent_N) = Name_First
3228 or else
3229 Attribute_Name (Parent_N) = Name_Last
3230 or else
3231 Attribute_Name (Parent_N) = Name_Length
3232 or else
3233 Attribute_Name (Parent_N) = Name_Range)))
3234 then
3235 Set_Etype (N, Etype (Comp));
3237 -- If full analysis is not enabled, we do not generate an
3238 -- actual subtype, because in the absence of expansion
3239 -- reference to a formal of a protected type, for example,
3240 -- will not be properly transformed, and will lead to
3241 -- out-of-scope references in gigi.
3243 -- In all other cases, we currently build an actual subtype.
3244 -- It seems likely that many of these cases can be avoided,
3245 -- but right now, the front end makes direct references to the
3246 -- bounds (e.g. in generating a length check), and if we do
3247 -- not make an actual subtype, we end up getting a direct
3248 -- reference to a discriminant, which will not do.
3250 elsif Full_Analysis then
3251 Act_Decl :=
3252 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3253 Insert_Action (N, Act_Decl);
3255 if No (Act_Decl) then
3256 Set_Etype (N, Etype (Comp));
3258 else
3259 -- Component type depends on discriminants. Enter the
3260 -- main attributes of the subtype.
3262 declare
3263 Subt : constant Entity_Id :=
3264 Defining_Identifier (Act_Decl);
3266 begin
3267 Set_Etype (Subt, Base_Type (Etype (Comp)));
3268 Set_Ekind (Subt, Ekind (Etype (Comp)));
3269 Set_Etype (N, Subt);
3270 end;
3271 end if;
3273 -- If Full_Analysis not enabled, just set the Etype
3275 else
3276 Set_Etype (N, Etype (Comp));
3277 end if;
3279 return;
3280 end if;
3282 -- If the prefix is a private extension, check only the visible
3283 -- components of the partial view. This must include the tag,
3284 -- which can appear in expanded code in a tag check.
3286 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3287 and then Chars (Selector_Name (N)) /= Name_uTag
3288 then
3289 exit when Comp = Last_Entity (Type_To_Use);
3290 end if;
3292 Next_Entity (Comp);
3293 end loop;
3295 -- Ada 2005 (AI-252): The selected component can be interpreted as
3296 -- a prefixed view of a subprogram. Depending on the context, this is
3297 -- either a name that can appear in a renaming declaration, or part
3298 -- of an enclosing call given in prefix form.
3300 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3301 -- selected component should resolve to a name.
3303 if Ada_Version >= Ada_05
3304 and then Is_Tagged_Type (Prefix_Type)
3305 and then not Is_Concurrent_Type (Prefix_Type)
3306 then
3307 if Nkind (Parent (N)) = N_Generic_Association
3308 or else Nkind (Parent (N)) = N_Requeue_Statement
3309 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
3310 then
3311 if Find_Primitive_Operation (N) then
3312 return;
3313 end if;
3315 elsif Try_Object_Operation (N) then
3316 return;
3317 end if;
3319 -- If the transformation fails, it will be necessary to redo the
3320 -- analysis with all errors enabled, to indicate candidate
3321 -- interpretations and reasons for each failure ???
3323 end if;
3325 elsif Is_Private_Type (Prefix_Type) then
3327 -- Allow access only to discriminants of the type. If the type has
3328 -- no full view, gigi uses the parent type for the components, so we
3329 -- do the same here.
3331 if No (Full_View (Prefix_Type)) then
3332 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
3333 Comp := First_Entity (Type_To_Use);
3334 end if;
3336 while Present (Comp) loop
3337 if Chars (Comp) = Chars (Sel) then
3338 if Ekind (Comp) = E_Discriminant then
3339 Set_Entity_With_Style_Check (Sel, Comp);
3340 Generate_Reference (Comp, Sel);
3342 Set_Etype (Sel, Etype (Comp));
3343 Set_Etype (N, Etype (Comp));
3345 if Is_Generic_Type (Prefix_Type)
3346 or else Is_Generic_Type (Root_Type (Prefix_Type))
3347 then
3348 Set_Original_Discriminant (Sel, Comp);
3349 end if;
3351 -- Before declaring an error, check whether this is tagged
3352 -- private type and a call to a primitive operation.
3354 elsif Ada_Version >= Ada_05
3355 and then Is_Tagged_Type (Prefix_Type)
3356 and then Try_Object_Operation (N)
3357 then
3358 return;
3360 else
3361 Error_Msg_NE
3362 ("invisible selector for }",
3363 N, First_Subtype (Prefix_Type));
3364 Set_Entity (Sel, Any_Id);
3365 Set_Etype (N, Any_Type);
3366 end if;
3368 return;
3369 end if;
3371 Next_Entity (Comp);
3372 end loop;
3374 elsif Is_Concurrent_Type (Prefix_Type) then
3376 -- Find visible operation with given name. For a protected type,
3377 -- the possible candidates are discriminants, entries or protected
3378 -- procedures. For a task type, the set can only include entries or
3379 -- discriminants if the task type is not an enclosing scope. If it
3380 -- is an enclosing scope (e.g. in an inner task) then all entities
3381 -- are visible, but the prefix must denote the enclosing scope, i.e.
3382 -- can only be a direct name or an expanded name.
3384 Set_Etype (Sel, Any_Type);
3385 In_Scope := In_Open_Scopes (Prefix_Type);
3387 while Present (Comp) loop
3388 if Chars (Comp) = Chars (Sel) then
3389 if Is_Overloadable (Comp) then
3390 Add_One_Interp (Sel, Comp, Etype (Comp));
3392 -- If the prefix is tagged, the correct interpretation may
3393 -- lie in the primitive or class-wide operations of the
3394 -- type. Perform a simple conformance check to determine
3395 -- whether Try_Object_Operation should be invoked even if
3396 -- a visible entity is found.
3398 if Is_Tagged_Type (Prefix_Type)
3399 and then
3400 Nkind_In (Parent (N), N_Procedure_Call_Statement,
3401 N_Function_Call,
3402 N_Indexed_Component)
3403 and then Has_Mode_Conformant_Spec (Comp)
3404 then
3405 Has_Candidate := True;
3406 end if;
3408 elsif Ekind (Comp) = E_Discriminant
3409 or else Ekind (Comp) = E_Entry_Family
3410 or else (In_Scope
3411 and then Is_Entity_Name (Name))
3412 then
3413 Set_Entity_With_Style_Check (Sel, Comp);
3414 Generate_Reference (Comp, Sel);
3416 else
3417 goto Next_Comp;
3418 end if;
3420 Set_Etype (Sel, Etype (Comp));
3421 Set_Etype (N, Etype (Comp));
3423 if Ekind (Comp) = E_Discriminant then
3424 Set_Original_Discriminant (Sel, Comp);
3425 end if;
3427 -- For access type case, introduce explicit deference for more
3428 -- uniform treatment of entry calls.
3430 if Is_Access_Type (Etype (Name)) then
3431 Insert_Explicit_Dereference (Name);
3432 Error_Msg_NW
3433 (Warn_On_Dereference, "?implicit dereference", N);
3434 end if;
3435 end if;
3437 <<Next_Comp>>
3438 Next_Entity (Comp);
3439 exit when not In_Scope
3440 and then
3441 Comp = First_Private_Entity (Base_Type (Prefix_Type));
3442 end loop;
3444 -- If there is no visible entity with the given name or none of the
3445 -- visible entities are plausible interpretations, check whether
3446 -- there is some other primitive operation with that name.
3448 if Ada_Version >= Ada_05
3449 and then Is_Tagged_Type (Prefix_Type)
3450 then
3451 if (Etype (N) = Any_Type
3452 or else not Has_Candidate)
3453 and then Try_Object_Operation (N)
3454 then
3455 return;
3457 -- If the context is not syntactically a procedure call, it
3458 -- may be a call to a primitive function declared outside of
3459 -- the synchronized type.
3461 -- If the context is a procedure call, there might still be
3462 -- an overloading between an entry and a primitive procedure
3463 -- declared outside of the synchronized type, called in prefix
3464 -- notation. This is harder to disambiguate because in one case
3465 -- the controlling formal is implicit ???
3467 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
3468 and then Nkind (Parent (N)) /= N_Indexed_Component
3469 and then Try_Object_Operation (N)
3470 then
3471 return;
3472 end if;
3473 end if;
3475 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3477 else
3478 -- Invalid prefix
3480 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
3481 end if;
3483 -- If N still has no type, the component is not defined in the prefix
3485 if Etype (N) = Any_Type then
3487 -- If the prefix is a single concurrent object, use its name in the
3488 -- error message, rather than that of its anonymous type.
3490 if Is_Concurrent_Type (Prefix_Type)
3491 and then Is_Internal_Name (Chars (Prefix_Type))
3492 and then not Is_Derived_Type (Prefix_Type)
3493 and then Is_Entity_Name (Name)
3494 then
3496 Error_Msg_Node_2 := Entity (Name);
3497 Error_Msg_NE ("no selector& for&", N, Sel);
3499 Check_Misspelled_Selector (Type_To_Use, Sel);
3501 elsif Is_Generic_Type (Prefix_Type)
3502 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
3503 and then Prefix_Type /= Etype (Prefix_Type)
3504 and then Is_Record_Type (Etype (Prefix_Type))
3505 then
3506 -- If this is a derived formal type, the parent may have
3507 -- different visibility at this point. Try for an inherited
3508 -- component before reporting an error.
3510 Set_Etype (Prefix (N), Etype (Prefix_Type));
3511 Analyze_Selected_Component (N);
3512 return;
3514 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
3515 and then Is_Generic_Actual_Type (Prefix_Type)
3516 and then Present (Full_View (Prefix_Type))
3517 then
3518 -- Similarly, if this the actual for a formal derived type, the
3519 -- component inherited from the generic parent may not be visible
3520 -- in the actual, but the selected component is legal.
3522 declare
3523 Comp : Entity_Id;
3525 begin
3526 Comp :=
3527 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
3528 while Present (Comp) loop
3529 if Chars (Comp) = Chars (Sel) then
3530 Set_Entity_With_Style_Check (Sel, Comp);
3531 Set_Etype (Sel, Etype (Comp));
3532 Set_Etype (N, Etype (Comp));
3533 return;
3534 end if;
3536 Next_Component (Comp);
3537 end loop;
3539 pragma Assert (Etype (N) /= Any_Type);
3540 end;
3542 else
3543 if Ekind (Prefix_Type) = E_Record_Subtype then
3545 -- Check whether this is a component of the base type
3546 -- which is absent from a statically constrained subtype.
3547 -- This will raise constraint error at run-time, but is
3548 -- not a compile-time error. When the selector is illegal
3549 -- for base type as well fall through and generate a
3550 -- compilation error anyway.
3552 Comp := First_Component (Base_Type (Prefix_Type));
3553 while Present (Comp) loop
3554 if Chars (Comp) = Chars (Sel)
3555 and then Is_Visible_Component (Comp)
3556 then
3557 Set_Entity_With_Style_Check (Sel, Comp);
3558 Generate_Reference (Comp, Sel);
3559 Set_Etype (Sel, Etype (Comp));
3560 Set_Etype (N, Etype (Comp));
3562 -- Emit appropriate message. Gigi will replace the
3563 -- node subsequently with the appropriate Raise.
3565 Apply_Compile_Time_Constraint_Error
3566 (N, "component not present in }?",
3567 CE_Discriminant_Check_Failed,
3568 Ent => Prefix_Type, Rep => False);
3569 Set_Raises_Constraint_Error (N);
3570 return;
3571 end if;
3573 Next_Component (Comp);
3574 end loop;
3576 end if;
3578 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3579 Error_Msg_NE ("no selector& for}", N, Sel);
3581 Check_Misspelled_Selector (Type_To_Use, Sel);
3582 end if;
3584 Set_Entity (Sel, Any_Id);
3585 Set_Etype (Sel, Any_Type);
3586 end if;
3587 end Analyze_Selected_Component;
3589 ---------------------------
3590 -- Analyze_Short_Circuit --
3591 ---------------------------
3593 procedure Analyze_Short_Circuit (N : Node_Id) is
3594 L : constant Node_Id := Left_Opnd (N);
3595 R : constant Node_Id := Right_Opnd (N);
3596 Ind : Interp_Index;
3597 It : Interp;
3599 begin
3600 Analyze_Expression (L);
3601 Analyze_Expression (R);
3602 Set_Etype (N, Any_Type);
3604 if not Is_Overloaded (L) then
3605 if Root_Type (Etype (L)) = Standard_Boolean
3606 and then Has_Compatible_Type (R, Etype (L))
3607 then
3608 Add_One_Interp (N, Etype (L), Etype (L));
3609 end if;
3611 else
3612 Get_First_Interp (L, Ind, It);
3613 while Present (It.Typ) loop
3614 if Root_Type (It.Typ) = Standard_Boolean
3615 and then Has_Compatible_Type (R, It.Typ)
3616 then
3617 Add_One_Interp (N, It.Typ, It.Typ);
3618 end if;
3620 Get_Next_Interp (Ind, It);
3621 end loop;
3622 end if;
3624 -- Here we have failed to find an interpretation. Clearly we know that
3625 -- it is not the case that both operands can have an interpretation of
3626 -- Boolean, but this is by far the most likely intended interpretation.
3627 -- So we simply resolve both operands as Booleans, and at least one of
3628 -- these resolutions will generate an error message, and we do not need
3629 -- to give another error message on the short circuit operation itself.
3631 if Etype (N) = Any_Type then
3632 Resolve (L, Standard_Boolean);
3633 Resolve (R, Standard_Boolean);
3634 Set_Etype (N, Standard_Boolean);
3635 end if;
3636 end Analyze_Short_Circuit;
3638 -------------------
3639 -- Analyze_Slice --
3640 -------------------
3642 procedure Analyze_Slice (N : Node_Id) is
3643 P : constant Node_Id := Prefix (N);
3644 D : constant Node_Id := Discrete_Range (N);
3645 Array_Type : Entity_Id;
3647 procedure Analyze_Overloaded_Slice;
3648 -- If the prefix is overloaded, select those interpretations that
3649 -- yield a one-dimensional array type.
3651 ------------------------------
3652 -- Analyze_Overloaded_Slice --
3653 ------------------------------
3655 procedure Analyze_Overloaded_Slice is
3656 I : Interp_Index;
3657 It : Interp;
3658 Typ : Entity_Id;
3660 begin
3661 Set_Etype (N, Any_Type);
3663 Get_First_Interp (P, I, It);
3664 while Present (It.Nam) loop
3665 Typ := It.Typ;
3667 if Is_Access_Type (Typ) then
3668 Typ := Designated_Type (Typ);
3669 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3670 end if;
3672 if Is_Array_Type (Typ)
3673 and then Number_Dimensions (Typ) = 1
3674 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
3675 then
3676 Add_One_Interp (N, Typ, Typ);
3677 end if;
3679 Get_Next_Interp (I, It);
3680 end loop;
3682 if Etype (N) = Any_Type then
3683 Error_Msg_N ("expect array type in prefix of slice", N);
3684 end if;
3685 end Analyze_Overloaded_Slice;
3687 -- Start of processing for Analyze_Slice
3689 begin
3690 Analyze (P);
3691 Analyze (D);
3693 if Is_Overloaded (P) then
3694 Analyze_Overloaded_Slice;
3696 else
3697 Array_Type := Etype (P);
3698 Set_Etype (N, Any_Type);
3700 if Is_Access_Type (Array_Type) then
3701 Array_Type := Designated_Type (Array_Type);
3702 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3703 end if;
3705 if not Is_Array_Type (Array_Type) then
3706 Wrong_Type (P, Any_Array);
3708 elsif Number_Dimensions (Array_Type) > 1 then
3709 Error_Msg_N
3710 ("type is not one-dimensional array in slice prefix", N);
3712 elsif not
3713 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
3714 then
3715 Wrong_Type (D, Etype (First_Index (Array_Type)));
3717 else
3718 Set_Etype (N, Array_Type);
3719 end if;
3720 end if;
3721 end Analyze_Slice;
3723 -----------------------------
3724 -- Analyze_Type_Conversion --
3725 -----------------------------
3727 procedure Analyze_Type_Conversion (N : Node_Id) is
3728 Expr : constant Node_Id := Expression (N);
3729 T : Entity_Id;
3731 begin
3732 -- If Conversion_OK is set, then the Etype is already set, and the
3733 -- only processing required is to analyze the expression. This is
3734 -- used to construct certain "illegal" conversions which are not
3735 -- allowed by Ada semantics, but can be handled OK by Gigi, see
3736 -- Sinfo for further details.
3738 if Conversion_OK (N) then
3739 Analyze (Expr);
3740 return;
3741 end if;
3743 -- Otherwise full type analysis is required, as well as some semantic
3744 -- checks to make sure the argument of the conversion is appropriate.
3746 Find_Type (Subtype_Mark (N));
3747 T := Entity (Subtype_Mark (N));
3748 Set_Etype (N, T);
3749 Check_Fully_Declared (T, N);
3750 Analyze_Expression (Expr);
3751 Validate_Remote_Type_Type_Conversion (N);
3753 -- Only remaining step is validity checks on the argument. These
3754 -- are skipped if the conversion does not come from the source.
3756 if not Comes_From_Source (N) then
3757 return;
3759 -- If there was an error in a generic unit, no need to replicate the
3760 -- error message. Conversely, constant-folding in the generic may
3761 -- transform the argument of a conversion into a string literal, which
3762 -- is legal. Therefore the following tests are not performed in an
3763 -- instance.
3765 elsif In_Instance then
3766 return;
3768 elsif Nkind (Expr) = N_Null then
3769 Error_Msg_N ("argument of conversion cannot be null", N);
3770 Error_Msg_N ("\use qualified expression instead", N);
3771 Set_Etype (N, Any_Type);
3773 elsif Nkind (Expr) = N_Aggregate then
3774 Error_Msg_N ("argument of conversion cannot be aggregate", N);
3775 Error_Msg_N ("\use qualified expression instead", N);
3777 elsif Nkind (Expr) = N_Allocator then
3778 Error_Msg_N ("argument of conversion cannot be an allocator", N);
3779 Error_Msg_N ("\use qualified expression instead", N);
3781 elsif Nkind (Expr) = N_String_Literal then
3782 Error_Msg_N ("argument of conversion cannot be string literal", N);
3783 Error_Msg_N ("\use qualified expression instead", N);
3785 elsif Nkind (Expr) = N_Character_Literal then
3786 if Ada_Version = Ada_83 then
3787 Resolve (Expr, T);
3788 else
3789 Error_Msg_N ("argument of conversion cannot be character literal",
3791 Error_Msg_N ("\use qualified expression instead", N);
3792 end if;
3794 elsif Nkind (Expr) = N_Attribute_Reference
3795 and then
3796 (Attribute_Name (Expr) = Name_Access or else
3797 Attribute_Name (Expr) = Name_Unchecked_Access or else
3798 Attribute_Name (Expr) = Name_Unrestricted_Access)
3799 then
3800 Error_Msg_N ("argument of conversion cannot be access", N);
3801 Error_Msg_N ("\use qualified expression instead", N);
3802 end if;
3803 end Analyze_Type_Conversion;
3805 ----------------------
3806 -- Analyze_Unary_Op --
3807 ----------------------
3809 procedure Analyze_Unary_Op (N : Node_Id) is
3810 R : constant Node_Id := Right_Opnd (N);
3811 Op_Id : Entity_Id := Entity (N);
3813 begin
3814 Set_Etype (N, Any_Type);
3815 Candidate_Type := Empty;
3817 Analyze_Expression (R);
3819 if Present (Op_Id) then
3820 if Ekind (Op_Id) = E_Operator then
3821 Find_Unary_Types (R, Op_Id, N);
3822 else
3823 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3824 end if;
3826 else
3827 Op_Id := Get_Name_Entity_Id (Chars (N));
3828 while Present (Op_Id) loop
3829 if Ekind (Op_Id) = E_Operator then
3830 if No (Next_Entity (First_Entity (Op_Id))) then
3831 Find_Unary_Types (R, Op_Id, N);
3832 end if;
3834 elsif Is_Overloadable (Op_Id) then
3835 Analyze_User_Defined_Unary_Op (N, Op_Id);
3836 end if;
3838 Op_Id := Homonym (Op_Id);
3839 end loop;
3840 end if;
3842 Operator_Check (N);
3843 end Analyze_Unary_Op;
3845 ----------------------------------
3846 -- Analyze_Unchecked_Expression --
3847 ----------------------------------
3849 procedure Analyze_Unchecked_Expression (N : Node_Id) is
3850 begin
3851 Analyze (Expression (N), Suppress => All_Checks);
3852 Set_Etype (N, Etype (Expression (N)));
3853 Save_Interps (Expression (N), N);
3854 end Analyze_Unchecked_Expression;
3856 ---------------------------------------
3857 -- Analyze_Unchecked_Type_Conversion --
3858 ---------------------------------------
3860 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
3861 begin
3862 Find_Type (Subtype_Mark (N));
3863 Analyze_Expression (Expression (N));
3864 Set_Etype (N, Entity (Subtype_Mark (N)));
3865 end Analyze_Unchecked_Type_Conversion;
3867 ------------------------------------
3868 -- Analyze_User_Defined_Binary_Op --
3869 ------------------------------------
3871 procedure Analyze_User_Defined_Binary_Op
3872 (N : Node_Id;
3873 Op_Id : Entity_Id)
3875 begin
3876 -- Only do analysis if the operator Comes_From_Source, since otherwise
3877 -- the operator was generated by the expander, and all such operators
3878 -- always refer to the operators in package Standard.
3880 if Comes_From_Source (N) then
3881 declare
3882 F1 : constant Entity_Id := First_Formal (Op_Id);
3883 F2 : constant Entity_Id := Next_Formal (F1);
3885 begin
3886 -- Verify that Op_Id is a visible binary function. Note that since
3887 -- we know Op_Id is overloaded, potentially use visible means use
3888 -- visible for sure (RM 9.4(11)).
3890 if Ekind (Op_Id) = E_Function
3891 and then Present (F2)
3892 and then (Is_Immediately_Visible (Op_Id)
3893 or else Is_Potentially_Use_Visible (Op_Id))
3894 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
3895 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
3896 then
3897 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3899 if Debug_Flag_E then
3900 Write_Str ("user defined operator ");
3901 Write_Name (Chars (Op_Id));
3902 Write_Str (" on node ");
3903 Write_Int (Int (N));
3904 Write_Eol;
3905 end if;
3906 end if;
3907 end;
3908 end if;
3909 end Analyze_User_Defined_Binary_Op;
3911 -----------------------------------
3912 -- Analyze_User_Defined_Unary_Op --
3913 -----------------------------------
3915 procedure Analyze_User_Defined_Unary_Op
3916 (N : Node_Id;
3917 Op_Id : Entity_Id)
3919 begin
3920 -- Only do analysis if the operator Comes_From_Source, since otherwise
3921 -- the operator was generated by the expander, and all such operators
3922 -- always refer to the operators in package Standard.
3924 if Comes_From_Source (N) then
3925 declare
3926 F : constant Entity_Id := First_Formal (Op_Id);
3928 begin
3929 -- Verify that Op_Id is a visible unary function. Note that since
3930 -- we know Op_Id is overloaded, potentially use visible means use
3931 -- visible for sure (RM 9.4(11)).
3933 if Ekind (Op_Id) = E_Function
3934 and then No (Next_Formal (F))
3935 and then (Is_Immediately_Visible (Op_Id)
3936 or else Is_Potentially_Use_Visible (Op_Id))
3937 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
3938 then
3939 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3940 end if;
3941 end;
3942 end if;
3943 end Analyze_User_Defined_Unary_Op;
3945 ---------------------------
3946 -- Check_Arithmetic_Pair --
3947 ---------------------------
3949 procedure Check_Arithmetic_Pair
3950 (T1, T2 : Entity_Id;
3951 Op_Id : Entity_Id;
3952 N : Node_Id)
3954 Op_Name : constant Name_Id := Chars (Op_Id);
3956 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
3957 -- Check whether the fixed-point type Typ has a user-defined operator
3958 -- (multiplication or division) that should hide the corresponding
3959 -- predefined operator. Used to implement Ada 2005 AI-264, to make
3960 -- such operators more visible and therefore useful.
3962 -- If the name of the operation is an expanded name with prefix
3963 -- Standard, the predefined universal fixed operator is available,
3964 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
3966 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
3967 -- Get specific type (i.e. non-universal type if there is one)
3969 ------------------
3970 -- Has_Fixed_Op --
3971 ------------------
3973 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
3974 Bas : constant Entity_Id := Base_Type (Typ);
3975 Ent : Entity_Id;
3976 F1 : Entity_Id;
3977 F2 : Entity_Id;
3979 begin
3980 -- If the universal_fixed operation is given explicitly the rule
3981 -- concerning primitive operations of the type do not apply.
3983 if Nkind (N) = N_Function_Call
3984 and then Nkind (Name (N)) = N_Expanded_Name
3985 and then Entity (Prefix (Name (N))) = Standard_Standard
3986 then
3987 return False;
3988 end if;
3990 -- The operation is treated as primitive if it is declared in the
3991 -- same scope as the type, and therefore on the same entity chain.
3993 Ent := Next_Entity (Typ);
3994 while Present (Ent) loop
3995 if Chars (Ent) = Chars (Op) then
3996 F1 := First_Formal (Ent);
3997 F2 := Next_Formal (F1);
3999 -- The operation counts as primitive if either operand or
4000 -- result are of the given base type, and both operands are
4001 -- fixed point types.
4003 if (Base_Type (Etype (F1)) = Bas
4004 and then Is_Fixed_Point_Type (Etype (F2)))
4006 or else
4007 (Base_Type (Etype (F2)) = Bas
4008 and then Is_Fixed_Point_Type (Etype (F1)))
4010 or else
4011 (Base_Type (Etype (Ent)) = Bas
4012 and then Is_Fixed_Point_Type (Etype (F1))
4013 and then Is_Fixed_Point_Type (Etype (F2)))
4014 then
4015 return True;
4016 end if;
4017 end if;
4019 Next_Entity (Ent);
4020 end loop;
4022 return False;
4023 end Has_Fixed_Op;
4025 -------------------
4026 -- Specific_Type --
4027 -------------------
4029 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4030 begin
4031 if T1 = Universal_Integer or else T1 = Universal_Real then
4032 return Base_Type (T2);
4033 else
4034 return Base_Type (T1);
4035 end if;
4036 end Specific_Type;
4038 -- Start of processing for Check_Arithmetic_Pair
4040 begin
4041 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4043 if Is_Numeric_Type (T1)
4044 and then Is_Numeric_Type (T2)
4045 and then (Covers (T1 => T1, T2 => T2)
4046 or else
4047 Covers (T1 => T2, T2 => T1))
4048 then
4049 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4050 end if;
4052 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4054 if Is_Fixed_Point_Type (T1)
4055 and then (Is_Fixed_Point_Type (T2)
4056 or else T2 = Universal_Real)
4057 then
4058 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4059 -- and no further processing is required (this is the case of an
4060 -- operator constructed by Exp_Fixd for a fixed point operation)
4061 -- Otherwise add one interpretation with universal fixed result
4062 -- If the operator is given in functional notation, it comes
4063 -- from source and Fixed_As_Integer cannot apply.
4065 if (Nkind (N) not in N_Op
4066 or else not Treat_Fixed_As_Integer (N))
4067 and then
4068 (not Has_Fixed_Op (T1, Op_Id)
4069 or else Nkind (Parent (N)) = N_Type_Conversion)
4070 then
4071 Add_One_Interp (N, Op_Id, Universal_Fixed);
4072 end if;
4074 elsif Is_Fixed_Point_Type (T2)
4075 and then (Nkind (N) not in N_Op
4076 or else not Treat_Fixed_As_Integer (N))
4077 and then T1 = Universal_Real
4078 and then
4079 (not Has_Fixed_Op (T1, Op_Id)
4080 or else Nkind (Parent (N)) = N_Type_Conversion)
4081 then
4082 Add_One_Interp (N, Op_Id, Universal_Fixed);
4084 elsif Is_Numeric_Type (T1)
4085 and then Is_Numeric_Type (T2)
4086 and then (Covers (T1 => T1, T2 => T2)
4087 or else
4088 Covers (T1 => T2, T2 => T1))
4089 then
4090 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4092 elsif Is_Fixed_Point_Type (T1)
4093 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4094 or else T2 = Universal_Integer)
4095 then
4096 Add_One_Interp (N, Op_Id, T1);
4098 elsif T2 = Universal_Real
4099 and then Base_Type (T1) = Base_Type (Standard_Integer)
4100 and then Op_Name = Name_Op_Multiply
4101 then
4102 Add_One_Interp (N, Op_Id, Any_Fixed);
4104 elsif T1 = Universal_Real
4105 and then Base_Type (T2) = Base_Type (Standard_Integer)
4106 then
4107 Add_One_Interp (N, Op_Id, Any_Fixed);
4109 elsif Is_Fixed_Point_Type (T2)
4110 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4111 or else T1 = Universal_Integer)
4112 and then Op_Name = Name_Op_Multiply
4113 then
4114 Add_One_Interp (N, Op_Id, T2);
4116 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4117 Add_One_Interp (N, Op_Id, T1);
4119 elsif T2 = Universal_Real
4120 and then T1 = Universal_Integer
4121 and then Op_Name = Name_Op_Multiply
4122 then
4123 Add_One_Interp (N, Op_Id, T2);
4124 end if;
4126 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4128 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4129 -- set does not require any special processing, since the Etype is
4130 -- already set (case of operation constructed by Exp_Fixed).
4132 if Is_Integer_Type (T1)
4133 and then (Covers (T1 => T1, T2 => T2)
4134 or else
4135 Covers (T1 => T2, T2 => T1))
4136 then
4137 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4138 end if;
4140 elsif Op_Name = Name_Op_Expon then
4141 if Is_Numeric_Type (T1)
4142 and then not Is_Fixed_Point_Type (T1)
4143 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4144 or else T2 = Universal_Integer)
4145 then
4146 Add_One_Interp (N, Op_Id, Base_Type (T1));
4147 end if;
4149 else pragma Assert (Nkind (N) in N_Op_Shift);
4151 -- If not one of the predefined operators, the node may be one
4152 -- of the intrinsic functions. Its kind is always specific, and
4153 -- we can use it directly, rather than the name of the operation.
4155 if Is_Integer_Type (T1)
4156 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4157 or else T2 = Universal_Integer)
4158 then
4159 Add_One_Interp (N, Op_Id, Base_Type (T1));
4160 end if;
4161 end if;
4162 end Check_Arithmetic_Pair;
4164 -------------------------------
4165 -- Check_Misspelled_Selector --
4166 -------------------------------
4168 procedure Check_Misspelled_Selector
4169 (Prefix : Entity_Id;
4170 Sel : Node_Id)
4172 Max_Suggestions : constant := 2;
4173 Nr_Of_Suggestions : Natural := 0;
4175 Suggestion_1 : Entity_Id := Empty;
4176 Suggestion_2 : Entity_Id := Empty;
4178 Comp : Entity_Id;
4180 begin
4181 -- All the components of the prefix of selector Sel are matched
4182 -- against Sel and a count is maintained of possible misspellings.
4183 -- When at the end of the analysis there are one or two (not more!)
4184 -- possible misspellings, these misspellings will be suggested as
4185 -- possible correction.
4187 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4189 -- Concurrent types should be handled as well ???
4191 return;
4192 end if;
4194 Comp := First_Entity (Prefix);
4195 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4196 if Is_Visible_Component (Comp) then
4197 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4198 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4200 case Nr_Of_Suggestions is
4201 when 1 => Suggestion_1 := Comp;
4202 when 2 => Suggestion_2 := Comp;
4203 when others => exit;
4204 end case;
4205 end if;
4206 end if;
4208 Comp := Next_Entity (Comp);
4209 end loop;
4211 -- Report at most two suggestions
4213 if Nr_Of_Suggestions = 1 then
4214 Error_Msg_NE
4215 ("\possible misspelling of&", Sel, Suggestion_1);
4217 elsif Nr_Of_Suggestions = 2 then
4218 Error_Msg_Node_2 := Suggestion_2;
4219 Error_Msg_NE
4220 ("\possible misspelling of& or&", Sel, Suggestion_1);
4221 end if;
4222 end Check_Misspelled_Selector;
4224 ----------------------
4225 -- Defined_In_Scope --
4226 ----------------------
4228 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4230 S1 : constant Entity_Id := Scope (Base_Type (T));
4231 begin
4232 return S1 = S
4233 or else (S1 = System_Aux_Id and then S = Scope (S1));
4234 end Defined_In_Scope;
4236 -------------------
4237 -- Diagnose_Call --
4238 -------------------
4240 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
4241 Actual : Node_Id;
4242 X : Interp_Index;
4243 It : Interp;
4244 Err_Mode : Boolean;
4245 New_Nam : Node_Id;
4246 Void_Interp_Seen : Boolean := False;
4248 Success : Boolean;
4249 pragma Warnings (Off, Boolean);
4251 begin
4252 if Ada_Version >= Ada_05 then
4253 Actual := First_Actual (N);
4254 while Present (Actual) loop
4256 -- Ada 2005 (AI-50217): Post an error in case of premature
4257 -- usage of an entity from the limited view.
4259 if not Analyzed (Etype (Actual))
4260 and then From_With_Type (Etype (Actual))
4261 then
4262 Error_Msg_Qual_Level := 1;
4263 Error_Msg_NE
4264 ("missing with_clause for scope of imported type&",
4265 Actual, Etype (Actual));
4266 Error_Msg_Qual_Level := 0;
4267 end if;
4269 Next_Actual (Actual);
4270 end loop;
4271 end if;
4273 -- Analyze each candidate call again, with full error reporting
4274 -- for each.
4276 Error_Msg_N
4277 ("no candidate interpretations match the actuals:!", Nam);
4278 Err_Mode := All_Errors_Mode;
4279 All_Errors_Mode := True;
4281 -- If this is a call to an operation of a concurrent type,
4282 -- the failed interpretations have been removed from the
4283 -- name. Recover them to provide full diagnostics.
4285 if Nkind (Parent (Nam)) = N_Selected_Component then
4286 Set_Entity (Nam, Empty);
4287 New_Nam := New_Copy_Tree (Parent (Nam));
4288 Set_Is_Overloaded (New_Nam, False);
4289 Set_Is_Overloaded (Selector_Name (New_Nam), False);
4290 Set_Parent (New_Nam, Parent (Parent (Nam)));
4291 Analyze_Selected_Component (New_Nam);
4292 Get_First_Interp (Selector_Name (New_Nam), X, It);
4293 else
4294 Get_First_Interp (Nam, X, It);
4295 end if;
4297 while Present (It.Nam) loop
4298 if Etype (It.Nam) = Standard_Void_Type then
4299 Void_Interp_Seen := True;
4300 end if;
4302 Analyze_One_Call (N, It.Nam, True, Success);
4303 Get_Next_Interp (X, It);
4304 end loop;
4306 if Nkind (N) = N_Function_Call then
4307 Get_First_Interp (Nam, X, It);
4308 while Present (It.Nam) loop
4309 if Ekind (It.Nam) = E_Function
4310 or else Ekind (It.Nam) = E_Operator
4311 then
4312 return;
4313 else
4314 Get_Next_Interp (X, It);
4315 end if;
4316 end loop;
4318 -- If all interpretations are procedures, this deserves a
4319 -- more precise message. Ditto if this appears as the prefix
4320 -- of a selected component, which may be a lexical error.
4322 Error_Msg_N
4323 ("\context requires function call, found procedure name", Nam);
4325 if Nkind (Parent (N)) = N_Selected_Component
4326 and then N = Prefix (Parent (N))
4327 then
4328 Error_Msg_N (
4329 "\period should probably be semicolon", Parent (N));
4330 end if;
4332 elsif Nkind (N) = N_Procedure_Call_Statement
4333 and then not Void_Interp_Seen
4334 then
4335 Error_Msg_N (
4336 "\function name found in procedure call", Nam);
4337 end if;
4339 All_Errors_Mode := Err_Mode;
4340 end Diagnose_Call;
4342 ---------------------------
4343 -- Find_Arithmetic_Types --
4344 ---------------------------
4346 procedure Find_Arithmetic_Types
4347 (L, R : Node_Id;
4348 Op_Id : Entity_Id;
4349 N : Node_Id)
4351 Index1 : Interp_Index;
4352 Index2 : Interp_Index;
4353 It1 : Interp;
4354 It2 : Interp;
4356 procedure Check_Right_Argument (T : Entity_Id);
4357 -- Check right operand of operator
4359 --------------------------
4360 -- Check_Right_Argument --
4361 --------------------------
4363 procedure Check_Right_Argument (T : Entity_Id) is
4364 begin
4365 if not Is_Overloaded (R) then
4366 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
4367 else
4368 Get_First_Interp (R, Index2, It2);
4369 while Present (It2.Typ) loop
4370 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
4371 Get_Next_Interp (Index2, It2);
4372 end loop;
4373 end if;
4374 end Check_Right_Argument;
4376 -- Start processing for Find_Arithmetic_Types
4378 begin
4379 if not Is_Overloaded (L) then
4380 Check_Right_Argument (Etype (L));
4382 else
4383 Get_First_Interp (L, Index1, It1);
4384 while Present (It1.Typ) loop
4385 Check_Right_Argument (It1.Typ);
4386 Get_Next_Interp (Index1, It1);
4387 end loop;
4388 end if;
4390 end Find_Arithmetic_Types;
4392 ------------------------
4393 -- Find_Boolean_Types --
4394 ------------------------
4396 procedure Find_Boolean_Types
4397 (L, R : Node_Id;
4398 Op_Id : Entity_Id;
4399 N : Node_Id)
4401 Index : Interp_Index;
4402 It : Interp;
4404 procedure Check_Numeric_Argument (T : Entity_Id);
4405 -- Special case for logical operations one of whose operands is an
4406 -- integer literal. If both are literal the result is any modular type.
4408 ----------------------------
4409 -- Check_Numeric_Argument --
4410 ----------------------------
4412 procedure Check_Numeric_Argument (T : Entity_Id) is
4413 begin
4414 if T = Universal_Integer then
4415 Add_One_Interp (N, Op_Id, Any_Modular);
4417 elsif Is_Modular_Integer_Type (T) then
4418 Add_One_Interp (N, Op_Id, T);
4419 end if;
4420 end Check_Numeric_Argument;
4422 -- Start of processing for Find_Boolean_Types
4424 begin
4425 if not Is_Overloaded (L) then
4426 if Etype (L) = Universal_Integer
4427 or else Etype (L) = Any_Modular
4428 then
4429 if not Is_Overloaded (R) then
4430 Check_Numeric_Argument (Etype (R));
4432 else
4433 Get_First_Interp (R, Index, It);
4434 while Present (It.Typ) loop
4435 Check_Numeric_Argument (It.Typ);
4436 Get_Next_Interp (Index, It);
4437 end loop;
4438 end if;
4440 -- If operands are aggregates, we must assume that they may be
4441 -- boolean arrays, and leave disambiguation for the second pass.
4442 -- If only one is an aggregate, verify that the other one has an
4443 -- interpretation as a boolean array
4445 elsif Nkind (L) = N_Aggregate then
4446 if Nkind (R) = N_Aggregate then
4447 Add_One_Interp (N, Op_Id, Etype (L));
4449 elsif not Is_Overloaded (R) then
4450 if Valid_Boolean_Arg (Etype (R)) then
4451 Add_One_Interp (N, Op_Id, Etype (R));
4452 end if;
4454 else
4455 Get_First_Interp (R, Index, It);
4456 while Present (It.Typ) loop
4457 if Valid_Boolean_Arg (It.Typ) then
4458 Add_One_Interp (N, Op_Id, It.Typ);
4459 end if;
4461 Get_Next_Interp (Index, It);
4462 end loop;
4463 end if;
4465 elsif Valid_Boolean_Arg (Etype (L))
4466 and then Has_Compatible_Type (R, Etype (L))
4467 then
4468 Add_One_Interp (N, Op_Id, Etype (L));
4469 end if;
4471 else
4472 Get_First_Interp (L, Index, It);
4473 while Present (It.Typ) loop
4474 if Valid_Boolean_Arg (It.Typ)
4475 and then Has_Compatible_Type (R, It.Typ)
4476 then
4477 Add_One_Interp (N, Op_Id, It.Typ);
4478 end if;
4480 Get_Next_Interp (Index, It);
4481 end loop;
4482 end if;
4483 end Find_Boolean_Types;
4485 ---------------------------
4486 -- Find_Comparison_Types --
4487 ---------------------------
4489 procedure Find_Comparison_Types
4490 (L, R : Node_Id;
4491 Op_Id : Entity_Id;
4492 N : Node_Id)
4494 Index : Interp_Index;
4495 It : Interp;
4496 Found : Boolean := False;
4497 I_F : Interp_Index;
4498 T_F : Entity_Id;
4499 Scop : Entity_Id := Empty;
4501 procedure Try_One_Interp (T1 : Entity_Id);
4502 -- Routine to try one proposed interpretation. Note that the context
4503 -- of the operator plays no role in resolving the arguments, so that
4504 -- if there is more than one interpretation of the operands that is
4505 -- compatible with comparison, the operation is ambiguous.
4507 --------------------
4508 -- Try_One_Interp --
4509 --------------------
4511 procedure Try_One_Interp (T1 : Entity_Id) is
4512 begin
4514 -- If the operator is an expanded name, then the type of the operand
4515 -- must be defined in the corresponding scope. If the type is
4516 -- universal, the context will impose the correct type.
4518 if Present (Scop)
4519 and then not Defined_In_Scope (T1, Scop)
4520 and then T1 /= Universal_Integer
4521 and then T1 /= Universal_Real
4522 and then T1 /= Any_String
4523 and then T1 /= Any_Composite
4524 then
4525 return;
4526 end if;
4528 if Valid_Comparison_Arg (T1)
4529 and then Has_Compatible_Type (R, T1)
4530 then
4531 if Found
4532 and then Base_Type (T1) /= Base_Type (T_F)
4533 then
4534 It := Disambiguate (L, I_F, Index, Any_Type);
4536 if It = No_Interp then
4537 Ambiguous_Operands (N);
4538 Set_Etype (L, Any_Type);
4539 return;
4541 else
4542 T_F := It.Typ;
4543 end if;
4545 else
4546 Found := True;
4547 T_F := T1;
4548 I_F := Index;
4549 end if;
4551 Set_Etype (L, T_F);
4552 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4554 end if;
4555 end Try_One_Interp;
4557 -- Start processing for Find_Comparison_Types
4559 begin
4560 -- If left operand is aggregate, the right operand has to
4561 -- provide a usable type for it.
4563 if Nkind (L) = N_Aggregate
4564 and then Nkind (R) /= N_Aggregate
4565 then
4566 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4567 return;
4568 end if;
4570 if Nkind (N) = N_Function_Call
4571 and then Nkind (Name (N)) = N_Expanded_Name
4572 then
4573 Scop := Entity (Prefix (Name (N)));
4575 -- The prefix may be a package renaming, and the subsequent test
4576 -- requires the original package.
4578 if Ekind (Scop) = E_Package
4579 and then Present (Renamed_Entity (Scop))
4580 then
4581 Scop := Renamed_Entity (Scop);
4582 Set_Entity (Prefix (Name (N)), Scop);
4583 end if;
4584 end if;
4586 if not Is_Overloaded (L) then
4587 Try_One_Interp (Etype (L));
4589 else
4590 Get_First_Interp (L, Index, It);
4591 while Present (It.Typ) loop
4592 Try_One_Interp (It.Typ);
4593 Get_Next_Interp (Index, It);
4594 end loop;
4595 end if;
4596 end Find_Comparison_Types;
4598 ----------------------------------------
4599 -- Find_Non_Universal_Interpretations --
4600 ----------------------------------------
4602 procedure Find_Non_Universal_Interpretations
4603 (N : Node_Id;
4604 R : Node_Id;
4605 Op_Id : Entity_Id;
4606 T1 : Entity_Id)
4608 Index : Interp_Index;
4609 It : Interp;
4611 begin
4612 if T1 = Universal_Integer
4613 or else T1 = Universal_Real
4614 then
4615 if not Is_Overloaded (R) then
4616 Add_One_Interp
4617 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
4618 else
4619 Get_First_Interp (R, Index, It);
4620 while Present (It.Typ) loop
4621 if Covers (It.Typ, T1) then
4622 Add_One_Interp
4623 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
4624 end if;
4626 Get_Next_Interp (Index, It);
4627 end loop;
4628 end if;
4629 else
4630 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
4631 end if;
4632 end Find_Non_Universal_Interpretations;
4634 ------------------------------
4635 -- Find_Concatenation_Types --
4636 ------------------------------
4638 procedure Find_Concatenation_Types
4639 (L, R : Node_Id;
4640 Op_Id : Entity_Id;
4641 N : Node_Id)
4643 Op_Type : constant Entity_Id := Etype (Op_Id);
4645 begin
4646 if Is_Array_Type (Op_Type)
4647 and then not Is_Limited_Type (Op_Type)
4649 and then (Has_Compatible_Type (L, Op_Type)
4650 or else
4651 Has_Compatible_Type (L, Component_Type (Op_Type)))
4653 and then (Has_Compatible_Type (R, Op_Type)
4654 or else
4655 Has_Compatible_Type (R, Component_Type (Op_Type)))
4656 then
4657 Add_One_Interp (N, Op_Id, Op_Type);
4658 end if;
4659 end Find_Concatenation_Types;
4661 -------------------------
4662 -- Find_Equality_Types --
4663 -------------------------
4665 procedure Find_Equality_Types
4666 (L, R : Node_Id;
4667 Op_Id : Entity_Id;
4668 N : Node_Id)
4670 Index : Interp_Index;
4671 It : Interp;
4672 Found : Boolean := False;
4673 I_F : Interp_Index;
4674 T_F : Entity_Id;
4675 Scop : Entity_Id := Empty;
4677 procedure Try_One_Interp (T1 : Entity_Id);
4678 -- The context of the operator plays no role in resolving the
4679 -- arguments, so that if there is more than one interpretation
4680 -- of the operands that is compatible with equality, the construct
4681 -- is ambiguous and an error can be emitted now, after trying to
4682 -- disambiguate, i.e. applying preference rules.
4684 --------------------
4685 -- Try_One_Interp --
4686 --------------------
4688 procedure Try_One_Interp (T1 : Entity_Id) is
4689 begin
4690 -- If the operator is an expanded name, then the type of the operand
4691 -- must be defined in the corresponding scope. If the type is
4692 -- universal, the context will impose the correct type. An anonymous
4693 -- type for a 'Access reference is also universal in this sense, as
4694 -- the actual type is obtained from context.
4695 -- In Ada 2005, the equality operator for anonymous access types
4696 -- is declared in Standard, and preference rules apply to it.
4698 if Present (Scop) then
4699 if Defined_In_Scope (T1, Scop)
4700 or else T1 = Universal_Integer
4701 or else T1 = Universal_Real
4702 or else T1 = Any_Access
4703 or else T1 = Any_String
4704 or else T1 = Any_Composite
4705 or else (Ekind (T1) = E_Access_Subprogram_Type
4706 and then not Comes_From_Source (T1))
4707 then
4708 null;
4710 elsif Ekind (T1) = E_Anonymous_Access_Type
4711 and then Scop = Standard_Standard
4712 then
4713 null;
4715 else
4716 -- The scope does not contain an operator for the type
4718 return;
4719 end if;
4720 end if;
4722 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
4723 -- Do not allow anonymous access types in equality operators.
4725 if Ada_Version < Ada_05
4726 and then Ekind (T1) = E_Anonymous_Access_Type
4727 then
4728 return;
4729 end if;
4731 if T1 /= Standard_Void_Type
4732 and then not Is_Limited_Type (T1)
4733 and then not Is_Limited_Composite (T1)
4734 and then Has_Compatible_Type (R, T1)
4735 then
4736 if Found
4737 and then Base_Type (T1) /= Base_Type (T_F)
4738 then
4739 It := Disambiguate (L, I_F, Index, Any_Type);
4741 if It = No_Interp then
4742 Ambiguous_Operands (N);
4743 Set_Etype (L, Any_Type);
4744 return;
4746 else
4747 T_F := It.Typ;
4748 end if;
4750 else
4751 Found := True;
4752 T_F := T1;
4753 I_F := Index;
4754 end if;
4756 if not Analyzed (L) then
4757 Set_Etype (L, T_F);
4758 end if;
4760 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4762 -- Case of operator was not visible, Etype still set to Any_Type
4764 if Etype (N) = Any_Type then
4765 Found := False;
4766 end if;
4768 elsif Scop = Standard_Standard
4769 and then Ekind (T1) = E_Anonymous_Access_Type
4770 then
4771 Found := True;
4772 end if;
4773 end Try_One_Interp;
4775 -- Start of processing for Find_Equality_Types
4777 begin
4778 -- If left operand is aggregate, the right operand has to
4779 -- provide a usable type for it.
4781 if Nkind (L) = N_Aggregate
4782 and then Nkind (R) /= N_Aggregate
4783 then
4784 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4785 return;
4786 end if;
4788 if Nkind (N) = N_Function_Call
4789 and then Nkind (Name (N)) = N_Expanded_Name
4790 then
4791 Scop := Entity (Prefix (Name (N)));
4793 -- The prefix may be a package renaming, and the subsequent test
4794 -- requires the original package.
4796 if Ekind (Scop) = E_Package
4797 and then Present (Renamed_Entity (Scop))
4798 then
4799 Scop := Renamed_Entity (Scop);
4800 Set_Entity (Prefix (Name (N)), Scop);
4801 end if;
4802 end if;
4804 if not Is_Overloaded (L) then
4805 Try_One_Interp (Etype (L));
4807 else
4808 Get_First_Interp (L, Index, It);
4809 while Present (It.Typ) loop
4810 Try_One_Interp (It.Typ);
4811 Get_Next_Interp (Index, It);
4812 end loop;
4813 end if;
4814 end Find_Equality_Types;
4816 -------------------------
4817 -- Find_Negation_Types --
4818 -------------------------
4820 procedure Find_Negation_Types
4821 (R : Node_Id;
4822 Op_Id : Entity_Id;
4823 N : Node_Id)
4825 Index : Interp_Index;
4826 It : Interp;
4828 begin
4829 if not Is_Overloaded (R) then
4830 if Etype (R) = Universal_Integer then
4831 Add_One_Interp (N, Op_Id, Any_Modular);
4832 elsif Valid_Boolean_Arg (Etype (R)) then
4833 Add_One_Interp (N, Op_Id, Etype (R));
4834 end if;
4836 else
4837 Get_First_Interp (R, Index, It);
4838 while Present (It.Typ) loop
4839 if Valid_Boolean_Arg (It.Typ) then
4840 Add_One_Interp (N, Op_Id, It.Typ);
4841 end if;
4843 Get_Next_Interp (Index, It);
4844 end loop;
4845 end if;
4846 end Find_Negation_Types;
4848 ------------------------------
4849 -- Find_Primitive_Operation --
4850 ------------------------------
4852 function Find_Primitive_Operation (N : Node_Id) return Boolean is
4853 Obj : constant Node_Id := Prefix (N);
4854 Op : constant Node_Id := Selector_Name (N);
4856 Prim : Elmt_Id;
4857 Prims : Elist_Id;
4858 Typ : Entity_Id;
4860 begin
4861 Set_Etype (Op, Any_Type);
4863 if Is_Access_Type (Etype (Obj)) then
4864 Typ := Designated_Type (Etype (Obj));
4865 else
4866 Typ := Etype (Obj);
4867 end if;
4869 if Is_Class_Wide_Type (Typ) then
4870 Typ := Root_Type (Typ);
4871 end if;
4873 Prims := Primitive_Operations (Typ);
4875 Prim := First_Elmt (Prims);
4876 while Present (Prim) loop
4877 if Chars (Node (Prim)) = Chars (Op) then
4878 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
4879 Set_Etype (N, Etype (Node (Prim)));
4880 end if;
4882 Next_Elmt (Prim);
4883 end loop;
4885 -- Now look for class-wide operations of the type or any of its
4886 -- ancestors by iterating over the homonyms of the selector.
4888 declare
4889 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
4890 Hom : Entity_Id;
4892 begin
4893 Hom := Current_Entity (Op);
4894 while Present (Hom) loop
4895 if (Ekind (Hom) = E_Procedure
4896 or else
4897 Ekind (Hom) = E_Function)
4898 and then Scope (Hom) = Scope (Typ)
4899 and then Present (First_Formal (Hom))
4900 and then
4901 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
4902 or else
4903 (Is_Access_Type (Etype (First_Formal (Hom)))
4904 and then
4905 Ekind (Etype (First_Formal (Hom))) =
4906 E_Anonymous_Access_Type
4907 and then
4908 Base_Type
4909 (Designated_Type (Etype (First_Formal (Hom)))) =
4910 Cls_Type))
4911 then
4912 Add_One_Interp (Op, Hom, Etype (Hom));
4913 Set_Etype (N, Etype (Hom));
4914 end if;
4916 Hom := Homonym (Hom);
4917 end loop;
4918 end;
4920 return Etype (Op) /= Any_Type;
4921 end Find_Primitive_Operation;
4923 ----------------------
4924 -- Find_Unary_Types --
4925 ----------------------
4927 procedure Find_Unary_Types
4928 (R : Node_Id;
4929 Op_Id : Entity_Id;
4930 N : Node_Id)
4932 Index : Interp_Index;
4933 It : Interp;
4935 begin
4936 if not Is_Overloaded (R) then
4937 if Is_Numeric_Type (Etype (R)) then
4938 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
4939 end if;
4941 else
4942 Get_First_Interp (R, Index, It);
4943 while Present (It.Typ) loop
4944 if Is_Numeric_Type (It.Typ) then
4945 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
4946 end if;
4948 Get_Next_Interp (Index, It);
4949 end loop;
4950 end if;
4951 end Find_Unary_Types;
4953 ------------------
4954 -- Junk_Operand --
4955 ------------------
4957 function Junk_Operand (N : Node_Id) return Boolean is
4958 Enode : Node_Id;
4960 begin
4961 if Error_Posted (N) then
4962 return False;
4963 end if;
4965 -- Get entity to be tested
4967 if Is_Entity_Name (N)
4968 and then Present (Entity (N))
4969 then
4970 Enode := N;
4972 -- An odd case, a procedure name gets converted to a very peculiar
4973 -- function call, and here is where we detect this happening.
4975 elsif Nkind (N) = N_Function_Call
4976 and then Is_Entity_Name (Name (N))
4977 and then Present (Entity (Name (N)))
4978 then
4979 Enode := Name (N);
4981 -- Another odd case, there are at least some cases of selected
4982 -- components where the selected component is not marked as having
4983 -- an entity, even though the selector does have an entity
4985 elsif Nkind (N) = N_Selected_Component
4986 and then Present (Entity (Selector_Name (N)))
4987 then
4988 Enode := Selector_Name (N);
4990 else
4991 return False;
4992 end if;
4994 -- Now test the entity we got to see if it is a bad case
4996 case Ekind (Entity (Enode)) is
4998 when E_Package =>
4999 Error_Msg_N
5000 ("package name cannot be used as operand", Enode);
5002 when Generic_Unit_Kind =>
5003 Error_Msg_N
5004 ("generic unit name cannot be used as operand", Enode);
5006 when Type_Kind =>
5007 Error_Msg_N
5008 ("subtype name cannot be used as operand", Enode);
5010 when Entry_Kind =>
5011 Error_Msg_N
5012 ("entry name cannot be used as operand", Enode);
5014 when E_Procedure =>
5015 Error_Msg_N
5016 ("procedure name cannot be used as operand", Enode);
5018 when E_Exception =>
5019 Error_Msg_N
5020 ("exception name cannot be used as operand", Enode);
5022 when E_Block | E_Label | E_Loop =>
5023 Error_Msg_N
5024 ("label name cannot be used as operand", Enode);
5026 when others =>
5027 return False;
5029 end case;
5031 return True;
5032 end Junk_Operand;
5034 --------------------
5035 -- Operator_Check --
5036 --------------------
5038 procedure Operator_Check (N : Node_Id) is
5039 begin
5040 Remove_Abstract_Operations (N);
5042 -- Test for case of no interpretation found for operator
5044 if Etype (N) = Any_Type then
5045 declare
5046 L : Node_Id;
5047 R : Node_Id;
5048 Op_Id : Entity_Id := Empty;
5050 begin
5051 R := Right_Opnd (N);
5053 if Nkind (N) in N_Binary_Op then
5054 L := Left_Opnd (N);
5055 else
5056 L := Empty;
5057 end if;
5059 -- If either operand has no type, then don't complain further,
5060 -- since this simply means that we have a propagated error.
5062 if R = Error
5063 or else Etype (R) = Any_Type
5064 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5065 then
5066 return;
5068 -- We explicitly check for the case of concatenation of component
5069 -- with component to avoid reporting spurious matching array types
5070 -- that might happen to be lurking in distant packages (such as
5071 -- run-time packages). This also prevents inconsistencies in the
5072 -- messages for certain ACVC B tests, which can vary depending on
5073 -- types declared in run-time interfaces. Another improvement when
5074 -- aggregates are present is to look for a well-typed operand.
5076 elsif Present (Candidate_Type)
5077 and then (Nkind (N) /= N_Op_Concat
5078 or else Is_Array_Type (Etype (L))
5079 or else Is_Array_Type (Etype (R)))
5080 then
5082 if Nkind (N) = N_Op_Concat then
5083 if Etype (L) /= Any_Composite
5084 and then Is_Array_Type (Etype (L))
5085 then
5086 Candidate_Type := Etype (L);
5088 elsif Etype (R) /= Any_Composite
5089 and then Is_Array_Type (Etype (R))
5090 then
5091 Candidate_Type := Etype (R);
5092 end if;
5093 end if;
5095 Error_Msg_NE
5096 ("operator for} is not directly visible!",
5097 N, First_Subtype (Candidate_Type));
5098 Error_Msg_N ("use clause would make operation legal!", N);
5099 return;
5101 -- If either operand is a junk operand (e.g. package name), then
5102 -- post appropriate error messages, but do not complain further.
5104 -- Note that the use of OR in this test instead of OR ELSE is
5105 -- quite deliberate, we may as well check both operands in the
5106 -- binary operator case.
5108 elsif Junk_Operand (R)
5109 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5110 then
5111 return;
5113 -- If we have a logical operator, one of whose operands is
5114 -- Boolean, then we know that the other operand cannot resolve to
5115 -- Boolean (since we got no interpretations), but in that case we
5116 -- pretty much know that the other operand should be Boolean, so
5117 -- resolve it that way (generating an error)
5119 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
5120 if Etype (L) = Standard_Boolean then
5121 Resolve (R, Standard_Boolean);
5122 return;
5123 elsif Etype (R) = Standard_Boolean then
5124 Resolve (L, Standard_Boolean);
5125 return;
5126 end if;
5128 -- For an arithmetic operator or comparison operator, if one
5129 -- of the operands is numeric, then we know the other operand
5130 -- is not the same numeric type. If it is a non-numeric type,
5131 -- then probably it is intended to match the other operand.
5133 elsif Nkind_In (N, N_Op_Add,
5134 N_Op_Divide,
5135 N_Op_Ge,
5136 N_Op_Gt,
5137 N_Op_Le)
5138 or else
5139 Nkind_In (N, N_Op_Lt,
5140 N_Op_Mod,
5141 N_Op_Multiply,
5142 N_Op_Rem,
5143 N_Op_Subtract)
5144 then
5145 if Is_Numeric_Type (Etype (L))
5146 and then not Is_Numeric_Type (Etype (R))
5147 then
5148 Resolve (R, Etype (L));
5149 return;
5151 elsif Is_Numeric_Type (Etype (R))
5152 and then not Is_Numeric_Type (Etype (L))
5153 then
5154 Resolve (L, Etype (R));
5155 return;
5156 end if;
5158 -- Comparisons on A'Access are common enough to deserve a
5159 -- special message.
5161 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
5162 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5163 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5164 then
5165 Error_Msg_N
5166 ("two access attributes cannot be compared directly", N);
5167 Error_Msg_N
5168 ("\use qualified expression for one of the operands",
5170 return;
5172 -- Another one for C programmers
5174 elsif Nkind (N) = N_Op_Concat
5175 and then Valid_Boolean_Arg (Etype (L))
5176 and then Valid_Boolean_Arg (Etype (R))
5177 then
5178 Error_Msg_N ("invalid operands for concatenation", N);
5179 Error_Msg_N ("\maybe AND was meant", N);
5180 return;
5182 -- A special case for comparison of access parameter with null
5184 elsif Nkind (N) = N_Op_Eq
5185 and then Is_Entity_Name (L)
5186 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5187 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5188 N_Access_Definition
5189 and then Nkind (R) = N_Null
5190 then
5191 Error_Msg_N ("access parameter is not allowed to be null", L);
5192 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5193 return;
5194 end if;
5196 -- If we fall through then just give general message. Note that in
5197 -- the following messages, if the operand is overloaded we choose
5198 -- an arbitrary type to complain about, but that is probably more
5199 -- useful than not giving a type at all.
5201 if Nkind (N) in N_Unary_Op then
5202 Error_Msg_Node_2 := Etype (R);
5203 Error_Msg_N ("operator& not defined for}", N);
5204 return;
5206 else
5207 if Nkind (N) in N_Binary_Op then
5208 if not Is_Overloaded (L)
5209 and then not Is_Overloaded (R)
5210 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5211 then
5212 Error_Msg_Node_2 := First_Subtype (Etype (R));
5213 Error_Msg_N ("there is no applicable operator& for}", N);
5215 else
5216 -- Another attempt to find a fix: one of the candidate
5217 -- interpretations may not be use-visible. This has
5218 -- already been checked for predefined operators, so
5219 -- we examine only user-defined functions.
5221 Op_Id := Get_Name_Entity_Id (Chars (N));
5223 while Present (Op_Id) loop
5224 if Ekind (Op_Id) /= E_Operator
5225 and then Is_Overloadable (Op_Id)
5226 then
5227 if not Is_Immediately_Visible (Op_Id)
5228 and then not In_Use (Scope (Op_Id))
5229 and then not Is_Abstract_Subprogram (Op_Id)
5230 and then not Is_Hidden (Op_Id)
5231 and then Ekind (Scope (Op_Id)) = E_Package
5232 and then
5233 Has_Compatible_Type
5234 (L, Etype (First_Formal (Op_Id)))
5235 and then Present
5236 (Next_Formal (First_Formal (Op_Id)))
5237 and then
5238 Has_Compatible_Type
5240 Etype (Next_Formal (First_Formal (Op_Id))))
5241 then
5242 Error_Msg_N
5243 ("No legal interpretation for operator&", N);
5244 Error_Msg_NE
5245 ("\use clause on& would make operation legal",
5246 N, Scope (Op_Id));
5247 exit;
5248 end if;
5249 end if;
5251 Op_Id := Homonym (Op_Id);
5252 end loop;
5254 if No (Op_Id) then
5255 Error_Msg_N ("invalid operand types for operator&", N);
5257 if Nkind (N) /= N_Op_Concat then
5258 Error_Msg_NE ("\left operand has}!", N, Etype (L));
5259 Error_Msg_NE ("\right operand has}!", N, Etype (R));
5260 end if;
5261 end if;
5262 end if;
5263 end if;
5264 end if;
5265 end;
5266 end if;
5267 end Operator_Check;
5269 -----------------------------------------
5270 -- Process_Implicit_Dereference_Prefix --
5271 -----------------------------------------
5273 function Process_Implicit_Dereference_Prefix
5274 (E : Entity_Id;
5275 P : Entity_Id) return Entity_Id
5277 Ref : Node_Id;
5278 Typ : constant Entity_Id := Designated_Type (Etype (P));
5280 begin
5281 if Present (E)
5282 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
5283 then
5284 -- We create a dummy reference to E to ensure that the reference
5285 -- is not considered as part of an assignment (an implicit
5286 -- dereference can never assign to its prefix). The Comes_From_Source
5287 -- attribute needs to be propagated for accurate warnings.
5289 Ref := New_Reference_To (E, Sloc (P));
5290 Set_Comes_From_Source (Ref, Comes_From_Source (P));
5291 Generate_Reference (E, Ref);
5292 end if;
5294 -- An implicit dereference is a legal occurrence of an
5295 -- incomplete type imported through a limited_with clause,
5296 -- if the full view is visible.
5298 if From_With_Type (Typ)
5299 and then not From_With_Type (Scope (Typ))
5300 and then
5301 (Is_Immediately_Visible (Scope (Typ))
5302 or else
5303 (Is_Child_Unit (Scope (Typ))
5304 and then Is_Visible_Child_Unit (Scope (Typ))))
5305 then
5306 return Available_View (Typ);
5307 else
5308 return Typ;
5309 end if;
5311 end Process_Implicit_Dereference_Prefix;
5313 --------------------------------
5314 -- Remove_Abstract_Operations --
5315 --------------------------------
5317 procedure Remove_Abstract_Operations (N : Node_Id) is
5318 Abstract_Op : Entity_Id := Empty;
5319 Address_Kludge : Boolean := False;
5320 I : Interp_Index;
5321 It : Interp;
5323 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5324 -- activate this if either extensions are enabled, or if the abstract
5325 -- operation in question comes from a predefined file. This latter test
5326 -- allows us to use abstract to make operations invisible to users. In
5327 -- particular, if type Address is non-private and abstract subprograms
5328 -- are used to hide its operators, they will be truly hidden.
5330 type Operand_Position is (First_Op, Second_Op);
5331 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5333 procedure Remove_Address_Interpretations (Op : Operand_Position);
5334 -- Ambiguities may arise when the operands are literal and the address
5335 -- operations in s-auxdec are visible. In that case, remove the
5336 -- interpretation of a literal as Address, to retain the semantics of
5337 -- Address as a private type.
5339 ------------------------------------
5340 -- Remove_Address_Interpretations --
5341 ------------------------------------
5343 procedure Remove_Address_Interpretations (Op : Operand_Position) is
5344 Formal : Entity_Id;
5346 begin
5347 if Is_Overloaded (N) then
5348 Get_First_Interp (N, I, It);
5349 while Present (It.Nam) loop
5350 Formal := First_Entity (It.Nam);
5352 if Op = Second_Op then
5353 Formal := Next_Entity (Formal);
5354 end if;
5356 if Is_Descendent_Of_Address (Etype (Formal)) then
5357 Address_Kludge := True;
5358 Remove_Interp (I);
5359 end if;
5361 Get_Next_Interp (I, It);
5362 end loop;
5363 end if;
5364 end Remove_Address_Interpretations;
5366 -- Start of processing for Remove_Abstract_Operations
5368 begin
5369 if Is_Overloaded (N) then
5370 Get_First_Interp (N, I, It);
5372 while Present (It.Nam) loop
5373 if Is_Overloadable (It.Nam)
5374 and then Is_Abstract_Subprogram (It.Nam)
5375 and then not Is_Dispatching_Operation (It.Nam)
5376 then
5377 Abstract_Op := It.Nam;
5379 if Is_Descendent_Of_Address (It.Typ) then
5380 Address_Kludge := True;
5381 Remove_Interp (I);
5382 exit;
5384 -- In Ada 2005, this operation does not participate in Overload
5385 -- resolution. If the operation is defined in a predefined
5386 -- unit, it is one of the operations declared abstract in some
5387 -- variants of System, and it must be removed as well.
5389 elsif Ada_Version >= Ada_05
5390 or else Is_Predefined_File_Name
5391 (Unit_File_Name (Get_Source_Unit (It.Nam)))
5392 then
5393 Remove_Interp (I);
5394 exit;
5395 end if;
5396 end if;
5398 Get_Next_Interp (I, It);
5399 end loop;
5401 if No (Abstract_Op) then
5403 -- If some interpretation yields an integer type, it is still
5404 -- possible that there are address interpretations. Remove them
5405 -- if one operand is a literal, to avoid spurious ambiguities
5406 -- on systems where Address is a visible integer type.
5408 if Is_Overloaded (N)
5409 and then Nkind (N) in N_Op
5410 and then Is_Integer_Type (Etype (N))
5411 then
5412 if Nkind (N) in N_Binary_Op then
5413 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
5414 Remove_Address_Interpretations (Second_Op);
5416 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
5417 Remove_Address_Interpretations (First_Op);
5418 end if;
5419 end if;
5420 end if;
5422 elsif Nkind (N) in N_Op then
5424 -- Remove interpretations that treat literals as addresses. This
5425 -- is never appropriate, even when Address is defined as a visible
5426 -- Integer type. The reason is that we would really prefer Address
5427 -- to behave as a private type, even in this case, which is there
5428 -- only to accommodate oddities of VMS address sizes. If Address
5429 -- is a visible integer type, we get lots of overload ambiguities.
5431 if Nkind (N) in N_Binary_Op then
5432 declare
5433 U1 : constant Boolean :=
5434 Present (Universal_Interpretation (Right_Opnd (N)));
5435 U2 : constant Boolean :=
5436 Present (Universal_Interpretation (Left_Opnd (N)));
5438 begin
5439 if U1 then
5440 Remove_Address_Interpretations (Second_Op);
5441 end if;
5443 if U2 then
5444 Remove_Address_Interpretations (First_Op);
5445 end if;
5447 if not (U1 and U2) then
5449 -- Remove corresponding predefined operator, which is
5450 -- always added to the overload set.
5452 Get_First_Interp (N, I, It);
5453 while Present (It.Nam) loop
5454 if Scope (It.Nam) = Standard_Standard
5455 and then Base_Type (It.Typ) =
5456 Base_Type (Etype (Abstract_Op))
5457 then
5458 Remove_Interp (I);
5459 end if;
5461 Get_Next_Interp (I, It);
5462 end loop;
5464 elsif Is_Overloaded (N)
5465 and then Present (Univ_Type)
5466 then
5467 -- If both operands have a universal interpretation,
5468 -- it is still necessary to remove interpretations that
5469 -- yield Address. Any remaining ambiguities will be
5470 -- removed in Disambiguate.
5472 Get_First_Interp (N, I, It);
5473 while Present (It.Nam) loop
5474 if Is_Descendent_Of_Address (It.Typ) then
5475 Remove_Interp (I);
5477 elsif not Is_Type (It.Nam) then
5478 Set_Entity (N, It.Nam);
5479 end if;
5481 Get_Next_Interp (I, It);
5482 end loop;
5483 end if;
5484 end;
5485 end if;
5487 elsif Nkind (N) = N_Function_Call
5488 and then
5489 (Nkind (Name (N)) = N_Operator_Symbol
5490 or else
5491 (Nkind (Name (N)) = N_Expanded_Name
5492 and then
5493 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
5494 then
5496 declare
5497 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5498 U1 : constant Boolean :=
5499 Present (Universal_Interpretation (Arg1));
5500 U2 : constant Boolean :=
5501 Present (Next (Arg1)) and then
5502 Present (Universal_Interpretation (Next (Arg1)));
5504 begin
5505 if U1 then
5506 Remove_Address_Interpretations (First_Op);
5507 end if;
5509 if U2 then
5510 Remove_Address_Interpretations (Second_Op);
5511 end if;
5513 if not (U1 and U2) then
5514 Get_First_Interp (N, I, It);
5515 while Present (It.Nam) loop
5516 if Scope (It.Nam) = Standard_Standard
5517 and then It.Typ = Base_Type (Etype (Abstract_Op))
5518 then
5519 Remove_Interp (I);
5520 end if;
5522 Get_Next_Interp (I, It);
5523 end loop;
5524 end if;
5525 end;
5526 end if;
5528 -- If the removal has left no valid interpretations, emit an error
5529 -- message now and label node as illegal.
5531 if Present (Abstract_Op) then
5532 Get_First_Interp (N, I, It);
5534 if No (It.Nam) then
5536 -- Removal of abstract operation left no viable candidate
5538 Set_Etype (N, Any_Type);
5539 Error_Msg_Sloc := Sloc (Abstract_Op);
5540 Error_Msg_NE
5541 ("cannot call abstract operation& declared#", N, Abstract_Op);
5543 -- In Ada 2005, an abstract operation may disable predefined
5544 -- operators. Since the context is not yet known, we mark the
5545 -- predefined operators as potentially hidden. Do not include
5546 -- predefined operators when addresses are involved since this
5547 -- case is handled separately.
5549 elsif Ada_Version >= Ada_05
5550 and then not Address_Kludge
5551 then
5552 while Present (It.Nam) loop
5553 if Is_Numeric_Type (It.Typ)
5554 and then Scope (It.Typ) = Standard_Standard
5555 then
5556 Set_Abstract_Op (I, Abstract_Op);
5557 end if;
5559 Get_Next_Interp (I, It);
5560 end loop;
5561 end if;
5562 end if;
5563 end if;
5564 end Remove_Abstract_Operations;
5566 -----------------------
5567 -- Try_Indirect_Call --
5568 -----------------------
5570 function Try_Indirect_Call
5571 (N : Node_Id;
5572 Nam : Entity_Id;
5573 Typ : Entity_Id) return Boolean
5575 Actual : Node_Id;
5576 Formal : Entity_Id;
5578 Call_OK : Boolean;
5579 pragma Warnings (Off, Call_OK);
5581 begin
5582 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
5584 Actual := First_Actual (N);
5585 Formal := First_Formal (Designated_Type (Typ));
5586 while Present (Actual) and then Present (Formal) loop
5587 if not Has_Compatible_Type (Actual, Etype (Formal)) then
5588 return False;
5589 end if;
5591 Next (Actual);
5592 Next_Formal (Formal);
5593 end loop;
5595 if No (Actual) and then No (Formal) then
5596 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
5598 -- Nam is a candidate interpretation for the name in the call,
5599 -- if it is not an indirect call.
5601 if not Is_Type (Nam)
5602 and then Is_Entity_Name (Name (N))
5603 then
5604 Set_Entity (Name (N), Nam);
5605 end if;
5607 return True;
5608 else
5609 return False;
5610 end if;
5611 end Try_Indirect_Call;
5613 ----------------------
5614 -- Try_Indexed_Call --
5615 ----------------------
5617 function Try_Indexed_Call
5618 (N : Node_Id;
5619 Nam : Entity_Id;
5620 Typ : Entity_Id;
5621 Skip_First : Boolean) return Boolean
5623 Loc : constant Source_Ptr := Sloc (N);
5624 Actuals : constant List_Id := Parameter_Associations (N);
5625 Actual : Node_Id;
5626 Index : Entity_Id;
5628 begin
5629 Actual := First (Actuals);
5631 -- If the call was originally written in prefix form, skip the first
5632 -- actual, which is obviously not defaulted.
5634 if Skip_First then
5635 Next (Actual);
5636 end if;
5638 Index := First_Index (Typ);
5639 while Present (Actual) and then Present (Index) loop
5641 -- If the parameter list has a named association, the expression
5642 -- is definitely a call and not an indexed component.
5644 if Nkind (Actual) = N_Parameter_Association then
5645 return False;
5646 end if;
5648 if Is_Entity_Name (Actual)
5649 and then Is_Type (Entity (Actual))
5650 and then No (Next (Actual))
5651 then
5652 Rewrite (N,
5653 Make_Slice (Loc,
5654 Prefix => Make_Function_Call (Loc,
5655 Name => Relocate_Node (Name (N))),
5656 Discrete_Range =>
5657 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
5659 Analyze (N);
5660 return True;
5662 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
5663 return False;
5664 end if;
5666 Next (Actual);
5667 Next_Index (Index);
5668 end loop;
5670 if No (Actual) and then No (Index) then
5671 Add_One_Interp (N, Nam, Component_Type (Typ));
5673 -- Nam is a candidate interpretation for the name in the call,
5674 -- if it is not an indirect call.
5676 if not Is_Type (Nam)
5677 and then Is_Entity_Name (Name (N))
5678 then
5679 Set_Entity (Name (N), Nam);
5680 end if;
5682 return True;
5683 else
5684 return False;
5685 end if;
5686 end Try_Indexed_Call;
5688 --------------------------
5689 -- Try_Object_Operation --
5690 --------------------------
5692 function Try_Object_Operation (N : Node_Id) return Boolean is
5693 K : constant Node_Kind := Nkind (Parent (N));
5694 Is_Subprg_Call : constant Boolean := Nkind_In
5695 (K, N_Procedure_Call_Statement,
5696 N_Function_Call);
5697 Loc : constant Source_Ptr := Sloc (N);
5698 Obj : constant Node_Id := Prefix (N);
5699 Subprog : constant Node_Id :=
5700 Make_Identifier (Sloc (Selector_Name (N)),
5701 Chars => Chars (Selector_Name (N)));
5702 -- Identifier on which possible interpretations will be collected
5704 Report_Error : Boolean := False;
5705 -- If no candidate interpretation matches the context, redo the
5706 -- analysis with error enabled to provide additional information.
5708 Actual : Node_Id;
5709 Candidate : Entity_Id := Empty;
5710 New_Call_Node : Node_Id := Empty;
5711 Node_To_Replace : Node_Id;
5712 Obj_Type : Entity_Id := Etype (Obj);
5713 Success : Boolean := False;
5715 function Valid_Candidate
5716 (Success : Boolean;
5717 Call : Node_Id;
5718 Subp : Entity_Id) return Entity_Id;
5719 -- If the subprogram is a valid interpretation, record it, and add
5720 -- to the list of interpretations of Subprog.
5722 procedure Complete_Object_Operation
5723 (Call_Node : Node_Id;
5724 Node_To_Replace : Node_Id);
5725 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
5726 -- Call_Node, insert the object (or its dereference) as the first actual
5727 -- in the call, and complete the analysis of the call.
5729 procedure Report_Ambiguity (Op : Entity_Id);
5730 -- If a prefixed procedure call is ambiguous, indicate whether the
5731 -- call includes an implicit dereference or an implicit 'Access.
5733 procedure Transform_Object_Operation
5734 (Call_Node : out Node_Id;
5735 Node_To_Replace : out Node_Id);
5736 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
5737 -- Call_Node is the resulting subprogram call, Node_To_Replace is
5738 -- either N or the parent of N, and Subprog is a reference to the
5739 -- subprogram we are trying to match.
5741 function Try_Class_Wide_Operation
5742 (Call_Node : Node_Id;
5743 Node_To_Replace : Node_Id) return Boolean;
5744 -- Traverse all ancestor types looking for a class-wide subprogram
5745 -- for which the current operation is a valid non-dispatching call.
5747 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
5748 -- If prefix is overloaded, its interpretation may include different
5749 -- tagged types, and we must examine the primitive operations and
5750 -- the class-wide operations of each in order to find candidate
5751 -- interpretations for the call as a whole.
5753 function Try_Primitive_Operation
5754 (Call_Node : Node_Id;
5755 Node_To_Replace : Node_Id) return Boolean;
5756 -- Traverse the list of primitive subprograms looking for a dispatching
5757 -- operation for which the current node is a valid call .
5759 ---------------------
5760 -- Valid_Candidate --
5761 ---------------------
5763 function Valid_Candidate
5764 (Success : Boolean;
5765 Call : Node_Id;
5766 Subp : Entity_Id) return Entity_Id
5768 Comp_Type : Entity_Id;
5770 begin
5771 -- If the subprogram is a valid interpretation, record it in global
5772 -- variable Subprog, to collect all possible overloadings.
5774 if Success then
5775 if Subp /= Entity (Subprog) then
5776 Add_One_Interp (Subprog, Subp, Etype (Subp));
5777 end if;
5778 end if;
5780 -- If the call may be an indexed call, retrieve component type of
5781 -- resulting expression, and add possible interpretation.
5783 Comp_Type := Empty;
5785 if Nkind (Call) = N_Function_Call
5786 and then Nkind (Parent (N)) = N_Indexed_Component
5787 and then Needs_One_Actual (Subp)
5788 then
5789 if Is_Array_Type (Etype (Subp)) then
5790 Comp_Type := Component_Type (Etype (Subp));
5792 elsif Is_Access_Type (Etype (Subp))
5793 and then Is_Array_Type (Designated_Type (Etype (Subp)))
5794 then
5795 Comp_Type := Component_Type (Designated_Type (Etype (Subp)));
5796 end if;
5797 end if;
5799 if Present (Comp_Type)
5800 and then Etype (Subprog) /= Comp_Type
5801 then
5802 Add_One_Interp (Subprog, Subp, Comp_Type);
5803 end if;
5805 if Etype (Call) /= Any_Type then
5806 return Subp;
5807 else
5808 return Empty;
5809 end if;
5810 end Valid_Candidate;
5812 -------------------------------
5813 -- Complete_Object_Operation --
5814 -------------------------------
5816 procedure Complete_Object_Operation
5817 (Call_Node : Node_Id;
5818 Node_To_Replace : Node_Id)
5820 Control : constant Entity_Id := First_Formal (Entity (Subprog));
5821 Formal_Type : constant Entity_Id := Etype (Control);
5822 First_Actual : Node_Id;
5824 begin
5825 -- Place the name of the operation, with its interpretations,
5826 -- on the rewritten call.
5828 Set_Name (Call_Node, Subprog);
5830 First_Actual := First (Parameter_Associations (Call_Node));
5832 -- For cross-reference purposes, treat the new node as being in
5833 -- the source if the original one is.
5835 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
5836 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
5838 if Nkind (N) = N_Selected_Component
5839 and then not Inside_A_Generic
5840 then
5841 Set_Entity (Selector_Name (N), Entity (Subprog));
5842 end if;
5844 -- If need be, rewrite first actual as an explicit dereference
5845 -- If the call is overloaded, the rewriting can only be done
5846 -- once the primitive operation is identified.
5848 if Is_Overloaded (Subprog) then
5850 -- The prefix itself may be overloaded, and its interpretations
5851 -- must be propagated to the new actual in the call.
5853 if Is_Overloaded (Obj) then
5854 Save_Interps (Obj, First_Actual);
5855 end if;
5857 Rewrite (First_Actual, Obj);
5859 elsif not Is_Access_Type (Formal_Type)
5860 and then Is_Access_Type (Etype (Obj))
5861 then
5862 Rewrite (First_Actual,
5863 Make_Explicit_Dereference (Sloc (Obj), Obj));
5864 Analyze (First_Actual);
5866 -- If we need to introduce an explicit dereference, verify that
5867 -- the resulting actual is compatible with the mode of the formal.
5869 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
5870 and then Is_Access_Constant (Etype (Obj))
5871 then
5872 Error_Msg_NE
5873 ("expect variable in call to&", Prefix (N), Entity (Subprog));
5874 end if;
5876 -- Conversely, if the formal is an access parameter and the object
5877 -- is not, replace the actual with a 'Access reference. Its analysis
5878 -- will check that the object is aliased.
5880 elsif Is_Access_Type (Formal_Type)
5881 and then not Is_Access_Type (Etype (Obj))
5882 then
5883 -- A special case: A.all'access is illegal if A is an access to a
5884 -- constant and the context requires an access to a variable.
5886 if not Is_Access_Constant (Formal_Type) then
5887 if (Nkind (Obj) = N_Explicit_Dereference
5888 and then Is_Access_Constant (Etype (Prefix (Obj))))
5889 or else not Is_Variable (Obj)
5890 then
5891 Error_Msg_NE
5892 ("actual for& must be a variable", Obj, Control);
5893 end if;
5894 end if;
5896 Rewrite (First_Actual,
5897 Make_Attribute_Reference (Loc,
5898 Attribute_Name => Name_Access,
5899 Prefix => Relocate_Node (Obj)));
5901 if not Is_Aliased_View (Obj) then
5902 Error_Msg_NE
5903 ("object in prefixed call to& must be aliased"
5904 & " (RM-2005 4.3.1 (13))",
5905 Prefix (First_Actual), Subprog);
5906 end if;
5908 Analyze (First_Actual);
5910 else
5911 if Is_Overloaded (Obj) then
5912 Save_Interps (Obj, First_Actual);
5913 end if;
5915 Rewrite (First_Actual, Obj);
5916 end if;
5918 Rewrite (Node_To_Replace, Call_Node);
5920 -- Propagate the interpretations collected in subprog to the new
5921 -- function call node, to be resolved from context.
5923 if Is_Overloaded (Subprog) then
5924 Save_Interps (Subprog, Node_To_Replace);
5925 else
5926 Analyze (Node_To_Replace);
5927 end if;
5928 end Complete_Object_Operation;
5930 ----------------------
5931 -- Report_Ambiguity --
5932 ----------------------
5934 procedure Report_Ambiguity (Op : Entity_Id) is
5935 Access_Formal : constant Boolean :=
5936 Is_Access_Type (Etype (First_Formal (Op)));
5937 Access_Actual : constant Boolean :=
5938 Is_Access_Type (Etype (Prefix (N)));
5940 begin
5941 Error_Msg_Sloc := Sloc (Op);
5943 if Access_Formal and then not Access_Actual then
5944 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
5945 Error_Msg_N
5946 ("\possible interpretation"
5947 & " (inherited, with implicit 'Access) #", N);
5948 else
5949 Error_Msg_N
5950 ("\possible interpretation (with implicit 'Access) #", N);
5951 end if;
5953 elsif not Access_Formal and then Access_Actual then
5954 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
5955 Error_Msg_N
5956 ("\possible interpretation"
5957 & " ( inherited, with implicit dereference) #", N);
5958 else
5959 Error_Msg_N
5960 ("\possible interpretation (with implicit dereference) #", N);
5961 end if;
5963 else
5964 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
5965 Error_Msg_N ("\possible interpretation (inherited)#", N);
5966 else
5967 Error_Msg_N ("\possible interpretation#", N);
5968 end if;
5969 end if;
5970 end Report_Ambiguity;
5972 --------------------------------
5973 -- Transform_Object_Operation --
5974 --------------------------------
5976 procedure Transform_Object_Operation
5977 (Call_Node : out Node_Id;
5978 Node_To_Replace : out Node_Id)
5980 Dummy : constant Node_Id := New_Copy (Obj);
5981 -- Placeholder used as a first parameter in the call, replaced
5982 -- eventually by the proper object.
5984 Parent_Node : constant Node_Id := Parent (N);
5986 Actual : Node_Id;
5987 Actuals : List_Id;
5989 begin
5990 -- Common case covering 1) Call to a procedure and 2) Call to a
5991 -- function that has some additional actuals.
5993 if Nkind_In (Parent_Node, N_Function_Call,
5994 N_Procedure_Call_Statement)
5996 -- N is a selected component node containing the name of the
5997 -- subprogram. If N is not the name of the parent node we must
5998 -- not replace the parent node by the new construct. This case
5999 -- occurs when N is a parameterless call to a subprogram that
6000 -- is an actual parameter of a call to another subprogram. For
6001 -- example:
6002 -- Some_Subprogram (..., Obj.Operation, ...)
6004 and then Name (Parent_Node) = N
6005 then
6006 Node_To_Replace := Parent_Node;
6008 Actuals := Parameter_Associations (Parent_Node);
6010 if Present (Actuals) then
6011 Prepend (Dummy, Actuals);
6012 else
6013 Actuals := New_List (Dummy);
6014 end if;
6016 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6017 Call_Node :=
6018 Make_Procedure_Call_Statement (Loc,
6019 Name => New_Copy (Subprog),
6020 Parameter_Associations => Actuals);
6022 else
6023 Call_Node :=
6024 Make_Function_Call (Loc,
6025 Name => New_Copy (Subprog),
6026 Parameter_Associations => Actuals);
6028 end if;
6030 -- Before analysis, a function call appears as an indexed component
6031 -- if there are no named associations.
6033 elsif Nkind (Parent_Node) = N_Indexed_Component
6034 and then N = Prefix (Parent_Node)
6035 then
6036 Node_To_Replace := Parent_Node;
6038 Actuals := Expressions (Parent_Node);
6040 Actual := First (Actuals);
6041 while Present (Actual) loop
6042 Analyze (Actual);
6043 Next (Actual);
6044 end loop;
6046 Prepend (Dummy, Actuals);
6048 Call_Node :=
6049 Make_Function_Call (Loc,
6050 Name => New_Copy (Subprog),
6051 Parameter_Associations => Actuals);
6053 -- Parameterless call: Obj.F is rewritten as F (Obj)
6055 else
6056 Node_To_Replace := N;
6058 Call_Node :=
6059 Make_Function_Call (Loc,
6060 Name => New_Copy (Subprog),
6061 Parameter_Associations => New_List (Dummy));
6062 end if;
6063 end Transform_Object_Operation;
6065 ------------------------------
6066 -- Try_Class_Wide_Operation --
6067 ------------------------------
6069 function Try_Class_Wide_Operation
6070 (Call_Node : Node_Id;
6071 Node_To_Replace : Node_Id) return Boolean
6073 Anc_Type : Entity_Id;
6074 Matching_Op : Entity_Id := Empty;
6075 Error : Boolean;
6077 procedure Traverse_Homonyms
6078 (Anc_Type : Entity_Id;
6079 Error : out Boolean);
6080 -- Traverse the homonym chain of the subprogram searching for those
6081 -- homonyms whose first formal has the Anc_Type's class-wide type,
6082 -- or an anonymous access type designating the class-wide type. If
6083 -- an ambiguity is detected, then Error is set to True.
6085 procedure Traverse_Interfaces
6086 (Anc_Type : Entity_Id;
6087 Error : out Boolean);
6088 -- Traverse the list of interfaces, if any, associated with Anc_Type
6089 -- and search for acceptable class-wide homonyms associated with each
6090 -- interface. If an ambiguity is detected, then Error is set to True.
6092 -----------------------
6093 -- Traverse_Homonyms --
6094 -----------------------
6096 procedure Traverse_Homonyms
6097 (Anc_Type : Entity_Id;
6098 Error : out Boolean)
6100 Cls_Type : Entity_Id;
6101 Hom : Entity_Id;
6102 Hom_Ref : Node_Id;
6103 Success : Boolean;
6105 begin
6106 Error := False;
6108 Cls_Type := Class_Wide_Type (Anc_Type);
6110 Hom := Current_Entity (Subprog);
6112 -- Find operation whose first parameter is of the class-wide
6113 -- type, a subtype thereof, or an anonymous access to same.
6115 while Present (Hom) loop
6116 if (Ekind (Hom) = E_Procedure
6117 or else
6118 Ekind (Hom) = E_Function)
6119 and then Scope (Hom) = Scope (Anc_Type)
6120 and then Present (First_Formal (Hom))
6121 and then
6122 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6123 or else
6124 (Is_Access_Type (Etype (First_Formal (Hom)))
6125 and then
6126 Ekind (Etype (First_Formal (Hom))) =
6127 E_Anonymous_Access_Type
6128 and then
6129 Base_Type
6130 (Designated_Type (Etype (First_Formal (Hom)))) =
6131 Cls_Type))
6132 then
6133 Set_Etype (Call_Node, Any_Type);
6134 Set_Is_Overloaded (Call_Node, False);
6135 Success := False;
6137 if No (Matching_Op) then
6138 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
6139 Set_Etype (Call_Node, Any_Type);
6140 Set_Parent (Call_Node, Parent (Node_To_Replace));
6142 Set_Name (Call_Node, Hom_Ref);
6144 Analyze_One_Call
6145 (N => Call_Node,
6146 Nam => Hom,
6147 Report => Report_Error,
6148 Success => Success,
6149 Skip_First => True);
6151 Matching_Op :=
6152 Valid_Candidate (Success, Call_Node, Hom);
6154 else
6155 Analyze_One_Call
6156 (N => Call_Node,
6157 Nam => Hom,
6158 Report => Report_Error,
6159 Success => Success,
6160 Skip_First => True);
6162 if Present (Valid_Candidate (Success, Call_Node, Hom))
6163 and then Nkind (Call_Node) /= N_Function_Call
6164 then
6165 Error_Msg_NE ("ambiguous call to&", N, Hom);
6166 Report_Ambiguity (Matching_Op);
6167 Report_Ambiguity (Hom);
6168 Error := True;
6169 return;
6170 end if;
6171 end if;
6172 end if;
6174 Hom := Homonym (Hom);
6175 end loop;
6176 end Traverse_Homonyms;
6178 -------------------------
6179 -- Traverse_Interfaces --
6180 -------------------------
6182 procedure Traverse_Interfaces
6183 (Anc_Type : Entity_Id;
6184 Error : out Boolean)
6186 Intface_List : constant List_Id :=
6187 Abstract_Interface_List (Anc_Type);
6188 Intface : Node_Id;
6190 begin
6191 Error := False;
6193 if Is_Non_Empty_List (Intface_List) then
6194 Intface := First (Intface_List);
6195 while Present (Intface) loop
6197 -- Look for acceptable class-wide homonyms associated with
6198 -- the interface.
6200 Traverse_Homonyms (Etype (Intface), Error);
6202 if Error then
6203 return;
6204 end if;
6206 -- Continue the search by looking at each of the interface's
6207 -- associated interface ancestors.
6209 Traverse_Interfaces (Etype (Intface), Error);
6211 if Error then
6212 return;
6213 end if;
6215 Next (Intface);
6216 end loop;
6217 end if;
6218 end Traverse_Interfaces;
6220 -- Start of processing for Try_Class_Wide_Operation
6222 begin
6223 -- Loop through ancestor types (including interfaces), traversing
6224 -- the homonym chain of the subprogram, trying out those homonyms
6225 -- whose first formal has the class-wide type of the ancestor, or
6226 -- an anonymous access type designating the class-wide type.
6228 Anc_Type := Obj_Type;
6229 loop
6230 -- Look for a match among homonyms associated with the ancestor
6232 Traverse_Homonyms (Anc_Type, Error);
6234 if Error then
6235 return True;
6236 end if;
6238 -- Continue the search for matches among homonyms associated with
6239 -- any interfaces implemented by the ancestor.
6241 Traverse_Interfaces (Anc_Type, Error);
6243 if Error then
6244 return True;
6245 end if;
6247 exit when Etype (Anc_Type) = Anc_Type;
6248 Anc_Type := Etype (Anc_Type);
6249 end loop;
6251 if Present (Matching_Op) then
6252 Set_Etype (Call_Node, Etype (Matching_Op));
6253 end if;
6255 return Present (Matching_Op);
6256 end Try_Class_Wide_Operation;
6258 -----------------------------------
6259 -- Try_One_Prefix_Interpretation --
6260 -----------------------------------
6262 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
6263 begin
6264 Obj_Type := T;
6266 if Is_Access_Type (Obj_Type) then
6267 Obj_Type := Designated_Type (Obj_Type);
6268 end if;
6270 if Ekind (Obj_Type) = E_Private_Subtype then
6271 Obj_Type := Base_Type (Obj_Type);
6272 end if;
6274 if Is_Class_Wide_Type (Obj_Type) then
6275 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
6276 end if;
6278 -- The type may have be obtained through a limited_with clause,
6279 -- in which case the primitive operations are available on its
6280 -- non-limited view. If still incomplete, retrieve full view.
6282 if Ekind (Obj_Type) = E_Incomplete_Type
6283 and then From_With_Type (Obj_Type)
6284 then
6285 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
6286 end if;
6288 -- If the object is not tagged, or the type is still an incomplete
6289 -- type, this is not a prefixed call.
6291 if not Is_Tagged_Type (Obj_Type)
6292 or else Is_Incomplete_Type (Obj_Type)
6293 then
6294 return;
6295 end if;
6297 if Try_Primitive_Operation
6298 (Call_Node => New_Call_Node,
6299 Node_To_Replace => Node_To_Replace)
6300 or else
6301 Try_Class_Wide_Operation
6302 (Call_Node => New_Call_Node,
6303 Node_To_Replace => Node_To_Replace)
6304 then
6305 null;
6306 end if;
6307 end Try_One_Prefix_Interpretation;
6309 -----------------------------
6310 -- Try_Primitive_Operation --
6311 -----------------------------
6313 function Try_Primitive_Operation
6314 (Call_Node : Node_Id;
6315 Node_To_Replace : Node_Id) return Boolean
6317 Elmt : Elmt_Id;
6318 Prim_Op : Entity_Id;
6319 Matching_Op : Entity_Id := Empty;
6320 Prim_Op_Ref : Node_Id := Empty;
6322 Corr_Type : Entity_Id := Empty;
6323 -- If the prefix is a synchronized type, the controlling type of
6324 -- the primitive operation is the corresponding record type, else
6325 -- this is the object type itself.
6327 Success : Boolean := False;
6329 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
6330 -- For tagged types the candidate interpretations are found in
6331 -- the list of primitive operations of the type and its ancestors.
6332 -- For formal tagged types we have to find the operations declared
6333 -- in the same scope as the type (including in the generic formal
6334 -- part) because the type itself carries no primitive operations,
6335 -- except for formal derived types that inherit the operations of
6336 -- the parent and progenitors.
6337 -- If the context is a generic subprogram body, the generic formals
6338 -- are visible by name, but are not in the entity list of the
6339 -- subprogram because that list starts with the subprogram formals.
6340 -- We retrieve the candidate operations from the generic declaration.
6342 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
6343 -- Verify that the prefix, dereferenced if need be, is a valid
6344 -- controlling argument in a call to Op. The remaining actuals
6345 -- are checked in the subsequent call to Analyze_One_Call.
6347 ------------------------------
6348 -- Collect_Generic_Type_Ops --
6349 ------------------------------
6351 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
6352 Bas : constant Entity_Id := Base_Type (T);
6353 Candidates : constant Elist_Id := New_Elmt_List;
6354 Subp : Entity_Id;
6355 Formal : Entity_Id;
6357 procedure Check_Candidate;
6358 -- The operation is a candidate if its first parameter is a
6359 -- controlling operand of the desired type.
6361 -----------------------
6362 -- Check_Candidate; --
6363 -----------------------
6365 procedure Check_Candidate is
6366 begin
6367 Formal := First_Formal (Subp);
6369 if Present (Formal)
6370 and then Is_Controlling_Formal (Formal)
6371 and then
6372 (Base_Type (Etype (Formal)) = Bas
6373 or else
6374 (Is_Access_Type (Etype (Formal))
6375 and then Designated_Type (Etype (Formal)) = Bas))
6376 then
6377 Append_Elmt (Subp, Candidates);
6378 end if;
6379 end Check_Candidate;
6381 -- Start of processing for Collect_Generic_Type_Ops
6383 begin
6384 if Is_Derived_Type (T) then
6385 return Primitive_Operations (T);
6387 elsif Ekind (Scope (T)) = E_Procedure
6388 or else Ekind (Scope (T)) = E_Function
6389 then
6390 -- Scan the list of generic formals to find subprograms
6391 -- that may have a first controlling formal of the type.
6393 declare
6394 Decl : Node_Id;
6396 begin
6397 Decl :=
6398 First (Generic_Formal_Declarations
6399 (Unit_Declaration_Node (Scope (T))));
6400 while Present (Decl) loop
6401 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
6402 Subp := Defining_Entity (Decl);
6403 Check_Candidate;
6404 end if;
6406 Next (Decl);
6407 end loop;
6408 end;
6410 return Candidates;
6412 else
6413 -- Scan the list of entities declared in the same scope as
6414 -- the type. In general this will be an open scope, given that
6415 -- the call we are analyzing can only appear within a generic
6416 -- declaration or body (either the one that declares T, or a
6417 -- child unit).
6419 Subp := First_Entity (Scope (T));
6420 while Present (Subp) loop
6421 if Is_Overloadable (Subp) then
6422 Check_Candidate;
6423 end if;
6425 Next_Entity (Subp);
6426 end loop;
6428 return Candidates;
6429 end if;
6430 end Collect_Generic_Type_Ops;
6432 -----------------------------
6433 -- Valid_First_Argument_Of --
6434 -----------------------------
6436 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
6437 Typ : Entity_Id := Etype (First_Formal (Op));
6439 begin
6440 if Is_Concurrent_Type (Typ)
6441 and then Present (Corresponding_Record_Type (Typ))
6442 then
6443 Typ := Corresponding_Record_Type (Typ);
6444 end if;
6446 -- Simple case. Object may be a subtype of the tagged type or
6447 -- may be the corresponding record of a synchronized type.
6449 return Obj_Type = Typ
6450 or else Base_Type (Obj_Type) = Typ
6451 or else Corr_Type = Typ
6453 -- Prefix can be dereferenced
6455 or else
6456 (Is_Access_Type (Corr_Type)
6457 and then Designated_Type (Corr_Type) = Typ)
6459 -- Formal is an access parameter, for which the object
6460 -- can provide an access.
6462 or else
6463 (Ekind (Typ) = E_Anonymous_Access_Type
6464 and then Designated_Type (Typ) = Base_Type (Corr_Type));
6465 end Valid_First_Argument_Of;
6467 -- Start of processing for Try_Primitive_Operation
6469 begin
6470 -- Look for subprograms in the list of primitive operations. The name
6471 -- must be identical, and the kind of call indicates the expected
6472 -- kind of operation (function or procedure). If the type is a
6473 -- (tagged) synchronized type, the primitive ops are attached to the
6474 -- corresponding record (base) type.
6476 if Is_Concurrent_Type (Obj_Type) then
6477 if not Present (Corresponding_Record_Type (Obj_Type)) then
6478 return False;
6479 end if;
6481 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
6482 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
6484 elsif not Is_Generic_Type (Obj_Type) then
6485 Corr_Type := Obj_Type;
6486 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
6488 else
6489 Corr_Type := Obj_Type;
6490 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
6491 end if;
6493 while Present (Elmt) loop
6494 Prim_Op := Node (Elmt);
6496 if Chars (Prim_Op) = Chars (Subprog)
6497 and then Present (First_Formal (Prim_Op))
6498 and then Valid_First_Argument_Of (Prim_Op)
6499 and then
6500 (Nkind (Call_Node) = N_Function_Call)
6501 = (Ekind (Prim_Op) = E_Function)
6502 then
6503 -- Ada 2005 (AI-251): If this primitive operation corresponds
6504 -- with an immediate ancestor interface there is no need to add
6505 -- it to the list of interpretations; the corresponding aliased
6506 -- primitive is also in this list of primitive operations and
6507 -- will be used instead.
6509 if (Present (Interface_Alias (Prim_Op))
6510 and then Is_Ancestor (Find_Dispatching_Type
6511 (Alias (Prim_Op)), Corr_Type))
6512 or else
6514 -- Do not consider hidden primitives unless the type is
6515 -- in an open scope or we are within an instance, where
6516 -- visibility is known to be correct.
6518 (Is_Hidden (Prim_Op)
6519 and then not Is_Immediately_Visible (Obj_Type)
6520 and then not In_Instance)
6521 then
6522 goto Continue;
6523 end if;
6525 Set_Etype (Call_Node, Any_Type);
6526 Set_Is_Overloaded (Call_Node, False);
6528 if No (Matching_Op) then
6529 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
6530 Candidate := Prim_Op;
6532 Set_Parent (Call_Node, Parent (Node_To_Replace));
6534 Set_Name (Call_Node, Prim_Op_Ref);
6535 Success := False;
6537 Analyze_One_Call
6538 (N => Call_Node,
6539 Nam => Prim_Op,
6540 Report => Report_Error,
6541 Success => Success,
6542 Skip_First => True);
6544 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
6546 -- More than one interpretation, collect for subsequent
6547 -- disambiguation. If this is a procedure call and there
6548 -- is another match, report ambiguity now.
6550 else
6551 Analyze_One_Call
6552 (N => Call_Node,
6553 Nam => Prim_Op,
6554 Report => Report_Error,
6555 Success => Success,
6556 Skip_First => True);
6558 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
6559 and then Nkind (Call_Node) /= N_Function_Call
6560 then
6561 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
6562 Report_Ambiguity (Matching_Op);
6563 Report_Ambiguity (Prim_Op);
6564 return True;
6565 end if;
6566 end if;
6567 end if;
6569 <<Continue>>
6570 Next_Elmt (Elmt);
6571 end loop;
6573 if Present (Matching_Op) then
6574 Set_Etype (Call_Node, Etype (Matching_Op));
6575 end if;
6577 return Present (Matching_Op);
6578 end Try_Primitive_Operation;
6580 -- Start of processing for Try_Object_Operation
6582 begin
6583 Analyze_Expression (Obj);
6585 -- Analyze the actuals if node is known to be a subprogram call
6587 if Is_Subprg_Call and then N = Name (Parent (N)) then
6588 Actual := First (Parameter_Associations (Parent (N)));
6589 while Present (Actual) loop
6590 Analyze_Expression (Actual);
6591 Next (Actual);
6592 end loop;
6593 end if;
6595 -- Build a subprogram call node, using a copy of Obj as its first
6596 -- actual. This is a placeholder, to be replaced by an explicit
6597 -- dereference when needed.
6599 Transform_Object_Operation
6600 (Call_Node => New_Call_Node,
6601 Node_To_Replace => Node_To_Replace);
6603 Set_Etype (New_Call_Node, Any_Type);
6604 Set_Etype (Subprog, Any_Type);
6605 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
6607 if not Is_Overloaded (Obj) then
6608 Try_One_Prefix_Interpretation (Obj_Type);
6610 else
6611 declare
6612 I : Interp_Index;
6613 It : Interp;
6614 begin
6615 Get_First_Interp (Obj, I, It);
6616 while Present (It.Nam) loop
6617 Try_One_Prefix_Interpretation (It.Typ);
6618 Get_Next_Interp (I, It);
6619 end loop;
6620 end;
6621 end if;
6623 if Etype (New_Call_Node) /= Any_Type then
6624 Complete_Object_Operation
6625 (Call_Node => New_Call_Node,
6626 Node_To_Replace => Node_To_Replace);
6627 return True;
6629 elsif Present (Candidate) then
6631 -- The argument list is not type correct. Re-analyze with error
6632 -- reporting enabled, and use one of the possible candidates.
6633 -- In All_Errors_Mode, re-analyze all failed interpretations.
6635 if All_Errors_Mode then
6636 Report_Error := True;
6637 if Try_Primitive_Operation
6638 (Call_Node => New_Call_Node,
6639 Node_To_Replace => Node_To_Replace)
6641 or else
6642 Try_Class_Wide_Operation
6643 (Call_Node => New_Call_Node,
6644 Node_To_Replace => Node_To_Replace)
6645 then
6646 null;
6647 end if;
6649 else
6650 Analyze_One_Call
6651 (N => New_Call_Node,
6652 Nam => Candidate,
6653 Report => True,
6654 Success => Success,
6655 Skip_First => True);
6656 end if;
6658 -- No need for further errors
6660 return True;
6662 else
6663 -- There was no candidate operation, so report it as an error
6664 -- in the caller: Analyze_Selected_Component.
6666 return False;
6667 end if;
6668 end Try_Object_Operation;
6670 ---------
6671 -- wpo --
6672 ---------
6674 procedure wpo (T : Entity_Id) is
6675 Op : Entity_Id;
6676 E : Elmt_Id;
6678 begin
6679 if not Is_Tagged_Type (T) then
6680 return;
6681 end if;
6683 E := First_Elmt (Primitive_Operations (Base_Type (T)));
6684 while Present (E) loop
6685 Op := Node (E);
6686 Write_Int (Int (Op));
6687 Write_Str (" === ");
6688 Write_Name (Chars (Op));
6689 Write_Str (" in ");
6690 Write_Name (Chars (Scope (Op)));
6691 Next_Elmt (E);
6692 Write_Eol;
6693 end loop;
6694 end wpo;
6696 end Sem_Ch4;