Fix PR47707
[official-gcc.git] / gcc / ira-lives.c
blob5c5c41581dec62e0d38198259af3358e458b0f5e
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "regs.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "target.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "diagnostic-core.h"
37 #include "params.h"
38 #include "df.h"
39 #include "sbitmap.h"
40 #include "sparseset.h"
41 #include "ira-int.h"
43 /* The code in this file is similar to one in global but the code
44 works on the allocno basis and creates live ranges instead of
45 pseudo-register conflicts. */
47 /* Program points are enumerated by numbers from range
48 0..IRA_MAX_POINT-1. There are approximately two times more program
49 points than insns. Program points are places in the program where
50 liveness info can be changed. In most general case (there are more
51 complicated cases too) some program points correspond to places
52 where input operand dies and other ones correspond to places where
53 output operands are born. */
54 int ira_max_point;
56 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
57 live ranges with given start/finish point. */
58 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
60 /* Number of the current program point. */
61 static int curr_point;
63 /* Point where register pressure excess started or -1 if there is no
64 register pressure excess. Excess pressure for a register class at
65 some point means that there are more allocnos of given register
66 class living at the point than number of hard-registers of the
67 class available for the allocation. It is defined only for cover
68 classes. */
69 static int high_pressure_start_point[N_REG_CLASSES];
71 /* Objects live at current point in the scan. */
72 static sparseset objects_live;
74 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
75 multiple times. */
76 static sparseset allocnos_processed;
78 /* Set of hard regs (except eliminable ones) currently live. */
79 static HARD_REG_SET hard_regs_live;
81 /* The loop tree node corresponding to the current basic block. */
82 static ira_loop_tree_node_t curr_bb_node;
84 /* The number of the last processed call. */
85 static int last_call_num;
86 /* The number of last call at which given allocno was saved. */
87 static int *allocno_saved_at_call;
89 /* Record the birth of hard register REGNO, updating hard_regs_live and
90 hard reg conflict information for living allocnos. */
91 static void
92 make_hard_regno_born (int regno)
94 unsigned int i;
96 SET_HARD_REG_BIT (hard_regs_live, regno);
97 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
99 ira_object_t obj = ira_object_id_map[i];
100 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
101 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
105 /* Process the death of hard register REGNO. This updates
106 hard_regs_live. */
107 static void
108 make_hard_regno_dead (int regno)
110 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
113 /* Record the birth of object OBJ. Set a bit for it in objects_live,
114 start a new live range for it if necessary and update hard register
115 conflicts. */
116 static void
117 make_object_born (ira_object_t obj)
119 live_range_t lr = OBJECT_LIVE_RANGES (obj);
121 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
122 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
123 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
125 if (lr == NULL
126 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
127 ira_add_live_range_to_object (obj, curr_point, -1);
130 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
131 associated with object OBJ. */
132 static void
133 update_allocno_pressure_excess_length (ira_object_t obj)
135 ira_allocno_t a = OBJECT_ALLOCNO (obj);
136 int start, i;
137 enum reg_class cover_class, cl;
138 live_range_t p;
140 cover_class = ALLOCNO_COVER_CLASS (a);
141 for (i = 0;
142 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
143 i++)
145 if (high_pressure_start_point[cl] < 0)
146 continue;
147 p = OBJECT_LIVE_RANGES (obj);
148 ira_assert (p != NULL);
149 start = (high_pressure_start_point[cl] > p->start
150 ? high_pressure_start_point[cl] : p->start);
151 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
155 /* Process the death of object OBJ, which is associated with allocno
156 A. This finishes the current live range for it. */
157 static void
158 make_object_dead (ira_object_t obj)
160 live_range_t lr;
162 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
163 lr = OBJECT_LIVE_RANGES (obj);
164 ira_assert (lr != NULL);
165 lr->finish = curr_point;
166 update_allocno_pressure_excess_length (obj);
169 /* The current register pressures for each cover class for the current
170 basic block. */
171 static int curr_reg_pressure[N_REG_CLASSES];
173 /* Record that register pressure for COVER_CLASS increased by N
174 registers. Update the current register pressure, maximal register
175 pressure for the current BB and the start point of the register
176 pressure excess. */
177 static void
178 inc_register_pressure (enum reg_class cover_class, int n)
180 int i;
181 enum reg_class cl;
183 for (i = 0;
184 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
185 i++)
187 curr_reg_pressure[cl] += n;
188 if (high_pressure_start_point[cl] < 0
189 && (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
190 high_pressure_start_point[cl] = curr_point;
191 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
192 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
196 /* Record that register pressure for COVER_CLASS has decreased by
197 NREGS registers; update current register pressure, start point of
198 the register pressure excess, and register pressure excess length
199 for living allocnos. */
201 static void
202 dec_register_pressure (enum reg_class cover_class, int nregs)
204 int i;
205 unsigned int j;
206 enum reg_class cl;
207 bool set_p = false;
209 for (i = 0;
210 (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
211 i++)
213 curr_reg_pressure[cl] -= nregs;
214 ira_assert (curr_reg_pressure[cl] >= 0);
215 if (high_pressure_start_point[cl] >= 0
216 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
217 set_p = true;
219 if (set_p)
221 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
222 update_allocno_pressure_excess_length (ira_object_id_map[j]);
223 for (i = 0;
224 (cl = ira_reg_class_super_classes[cover_class][i])
225 != LIM_REG_CLASSES;
226 i++)
227 if (high_pressure_start_point[cl] >= 0
228 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
229 high_pressure_start_point[cl] = -1;
233 /* Mark the pseudo register REGNO as live. Update all information about
234 live ranges and register pressure. */
235 static void
236 mark_pseudo_regno_live (int regno)
238 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
239 int i, n, nregs;
240 enum reg_class cl;
242 if (a == NULL)
243 return;
245 /* Invalidate because it is referenced. */
246 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
248 n = ALLOCNO_NUM_OBJECTS (a);
249 cl = ALLOCNO_COVER_CLASS (a);
250 nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
251 if (n > 1)
253 /* We track every subobject separately. */
254 gcc_assert (nregs == n);
255 nregs = 1;
258 for (i = 0; i < n; i++)
260 ira_object_t obj = ALLOCNO_OBJECT (a, i);
261 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
262 continue;
264 inc_register_pressure (cl, nregs);
265 make_object_born (obj);
269 /* Like mark_pseudo_regno_live, but try to only mark one subword of
270 the pseudo as live. SUBWORD indicates which; a value of 0
271 indicates the low part. */
272 static void
273 mark_pseudo_regno_subword_live (int regno, int subword)
275 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
276 int n, nregs;
277 enum reg_class cl;
278 ira_object_t obj;
280 if (a == NULL)
281 return;
283 /* Invalidate because it is referenced. */
284 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
286 n = ALLOCNO_NUM_OBJECTS (a);
287 if (n == 1)
289 mark_pseudo_regno_live (regno);
290 return;
293 cl = ALLOCNO_COVER_CLASS (a);
294 nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
295 gcc_assert (nregs == n);
296 obj = ALLOCNO_OBJECT (a, subword);
298 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
299 return;
301 inc_register_pressure (cl, nregs);
302 make_object_born (obj);
305 /* Mark the register REG as live. Store a 1 in hard_regs_live for
306 this register, record how many consecutive hardware registers it
307 actually needs. */
308 static void
309 mark_hard_reg_live (rtx reg)
311 int regno = REGNO (reg);
313 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
315 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
317 while (regno < last)
319 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
320 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
322 enum reg_class cover_class = ira_hard_regno_cover_class[regno];
323 inc_register_pressure (cover_class, 1);
324 make_hard_regno_born (regno);
326 regno++;
331 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
332 register number; ORIG_REG is the access in the insn, which may be a
333 subreg. */
334 static void
335 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
337 if (df_read_modify_subreg_p (orig_reg))
339 mark_pseudo_regno_subword_live (regno,
340 subreg_lowpart_p (orig_reg) ? 0 : 1);
342 else
343 mark_pseudo_regno_live (regno);
346 /* Mark the register referenced by use or def REF as live. */
347 static void
348 mark_ref_live (df_ref ref)
350 rtx reg = DF_REF_REG (ref);
351 rtx orig_reg = reg;
353 if (GET_CODE (reg) == SUBREG)
354 reg = SUBREG_REG (reg);
356 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
357 mark_pseudo_reg_live (orig_reg, REGNO (reg));
358 else
359 mark_hard_reg_live (reg);
362 /* Mark the pseudo register REGNO as dead. Update all information about
363 live ranges and register pressure. */
364 static void
365 mark_pseudo_regno_dead (int regno)
367 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
368 int n, i, nregs;
369 enum reg_class cl;
371 if (a == NULL)
372 return;
374 /* Invalidate because it is referenced. */
375 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
377 n = ALLOCNO_NUM_OBJECTS (a);
378 cl = ALLOCNO_COVER_CLASS (a);
379 nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
380 if (n > 1)
382 /* We track every subobject separately. */
383 gcc_assert (nregs == n);
384 nregs = 1;
386 for (i = 0; i < n; i++)
388 ira_object_t obj = ALLOCNO_OBJECT (a, i);
389 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
390 continue;
392 dec_register_pressure (cl, nregs);
393 make_object_dead (obj);
397 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
398 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
399 static void
400 mark_pseudo_regno_subword_dead (int regno, int subword)
402 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
403 int n, nregs;
404 enum reg_class cl;
405 ira_object_t obj;
407 if (a == NULL)
408 return;
410 /* Invalidate because it is referenced. */
411 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
413 n = ALLOCNO_NUM_OBJECTS (a);
414 if (n == 1)
415 /* The allocno as a whole doesn't die in this case. */
416 return;
418 cl = ALLOCNO_COVER_CLASS (a);
419 nregs = ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
420 gcc_assert (nregs == n);
422 obj = ALLOCNO_OBJECT (a, subword);
423 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
424 return;
426 dec_register_pressure (cl, 1);
427 make_object_dead (obj);
430 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
431 register. */
432 static void
433 mark_hard_reg_dead (rtx reg)
435 int regno = REGNO (reg);
437 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
439 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
441 while (regno < last)
443 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
445 enum reg_class cover_class = ira_hard_regno_cover_class[regno];
446 dec_register_pressure (cover_class, 1);
447 make_hard_regno_dead (regno);
449 regno++;
454 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
455 register number; ORIG_REG is the access in the insn, which may be a
456 subreg. */
457 static void
458 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
460 if (df_read_modify_subreg_p (orig_reg))
462 mark_pseudo_regno_subword_dead (regno,
463 subreg_lowpart_p (orig_reg) ? 0 : 1);
465 else
466 mark_pseudo_regno_dead (regno);
469 /* Mark the register referenced by definition DEF as dead, if the
470 definition is a total one. */
471 static void
472 mark_ref_dead (df_ref def)
474 rtx reg = DF_REF_REG (def);
475 rtx orig_reg = reg;
477 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
478 return;
480 if (GET_CODE (reg) == SUBREG)
481 reg = SUBREG_REG (reg);
483 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
484 && (GET_CODE (orig_reg) != SUBREG
485 || REGNO (reg) < FIRST_PSEUDO_REGISTER
486 || !df_read_modify_subreg_p (orig_reg)))
487 return;
489 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
490 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
491 else
492 mark_hard_reg_dead (reg);
495 /* If REG is a pseudo or a subreg of it, and the class of its allocno
496 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
497 rtx actually accessed, it may be indentical to DREG or a subreg of it.
498 Advance the current program point before making the conflict if
499 ADVANCE_P. Return TRUE if we will need to advance the current
500 program point. */
501 static bool
502 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
503 bool advance_p)
505 rtx orig_reg = reg;
506 ira_allocno_t a;
508 if (GET_CODE (reg) == SUBREG)
509 reg = SUBREG_REG (reg);
511 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
512 return advance_p;
514 a = ira_curr_regno_allocno_map[REGNO (reg)];
515 if (! reg_classes_intersect_p (cl, ALLOCNO_COVER_CLASS (a)))
516 return advance_p;
518 if (advance_p)
519 curr_point++;
521 mark_pseudo_reg_live (orig_reg, REGNO (reg));
522 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
523 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
524 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
526 return false;
529 /* Check and make if necessary conflicts for pseudo DREG of class
530 DEF_CL of the current insn with input operand USE of class USE_CL.
531 ORIG_DREG is the rtx actually accessed, it may be indentical to
532 DREG or a subreg of it. Advance the current program point before
533 making the conflict if ADVANCE_P. Return TRUE if we will need to
534 advance the current program point. */
535 static bool
536 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
537 enum reg_class def_cl, int use,
538 enum reg_class use_cl, bool advance_p)
540 if (! reg_classes_intersect_p (def_cl, use_cl))
541 return advance_p;
543 advance_p = make_pseudo_conflict (recog_data.operand[use],
544 use_cl, dreg, orig_dreg, advance_p);
546 /* Reload may end up swapping commutative operands, so you
547 have to take both orderings into account. The
548 constraints for the two operands can be completely
549 different. (Indeed, if the constraints for the two
550 operands are the same for all alternatives, there's no
551 point marking them as commutative.) */
552 if (use < recog_data.n_operands - 1
553 && recog_data.constraints[use][0] == '%')
554 advance_p
555 = make_pseudo_conflict (recog_data.operand[use + 1],
556 use_cl, dreg, orig_dreg, advance_p);
557 if (use >= 1
558 && recog_data.constraints[use - 1][0] == '%')
559 advance_p
560 = make_pseudo_conflict (recog_data.operand[use - 1],
561 use_cl, dreg, orig_dreg, advance_p);
562 return advance_p;
565 /* Check and make if necessary conflicts for definition DEF of class
566 DEF_CL of the current insn with input operands. Process only
567 constraints of alternative ALT. */
568 static void
569 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
571 int use, use_match;
572 ira_allocno_t a;
573 enum reg_class use_cl, acl;
574 bool advance_p;
575 rtx dreg = recog_data.operand[def];
576 rtx orig_dreg = dreg;
578 if (def_cl == NO_REGS)
579 return;
581 if (GET_CODE (dreg) == SUBREG)
582 dreg = SUBREG_REG (dreg);
584 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
585 return;
587 a = ira_curr_regno_allocno_map[REGNO (dreg)];
588 acl = ALLOCNO_COVER_CLASS (a);
589 if (! reg_classes_intersect_p (acl, def_cl))
590 return;
592 advance_p = true;
594 for (use = 0; use < recog_data.n_operands; use++)
596 int alt1;
598 if (use == def || recog_data.operand_type[use] == OP_OUT)
599 continue;
601 if (recog_op_alt[use][alt].anything_ok)
602 use_cl = ALL_REGS;
603 else
604 use_cl = recog_op_alt[use][alt].cl;
606 /* If there's any alternative that allows USE to match DEF, do not
607 record a conflict. If that causes us to create an invalid
608 instruction due to the earlyclobber, reload must fix it up. */
609 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
610 if (recog_op_alt[use][alt1].matches == def
611 || (use < recog_data.n_operands - 1
612 && recog_data.constraints[use][0] == '%'
613 && recog_op_alt[use + 1][alt1].matches == def)
614 || (use >= 1
615 && recog_data.constraints[use - 1][0] == '%'
616 && recog_op_alt[use - 1][alt1].matches == def))
617 break;
619 if (alt1 < recog_data.n_alternatives)
620 continue;
622 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
623 use, use_cl, advance_p);
625 if ((use_match = recog_op_alt[use][alt].matches) >= 0)
627 if (use_match == def)
628 continue;
630 if (recog_op_alt[use_match][alt].anything_ok)
631 use_cl = ALL_REGS;
632 else
633 use_cl = recog_op_alt[use_match][alt].cl;
634 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
635 use, use_cl, advance_p);
640 /* Make conflicts of early clobber pseudo registers of the current
641 insn with its inputs. Avoid introducing unnecessary conflicts by
642 checking classes of the constraints and pseudos because otherwise
643 significant code degradation is possible for some targets. */
644 static void
645 make_early_clobber_and_input_conflicts (void)
647 int alt;
648 int def, def_match;
649 enum reg_class def_cl;
651 for (alt = 0; alt < recog_data.n_alternatives; alt++)
652 for (def = 0; def < recog_data.n_operands; def++)
654 def_cl = NO_REGS;
655 if (recog_op_alt[def][alt].earlyclobber)
657 if (recog_op_alt[def][alt].anything_ok)
658 def_cl = ALL_REGS;
659 else
660 def_cl = recog_op_alt[def][alt].cl;
661 check_and_make_def_conflict (alt, def, def_cl);
663 if ((def_match = recog_op_alt[def][alt].matches) >= 0
664 && (recog_op_alt[def_match][alt].earlyclobber
665 || recog_op_alt[def][alt].earlyclobber))
667 if (recog_op_alt[def_match][alt].anything_ok)
668 def_cl = ALL_REGS;
669 else
670 def_cl = recog_op_alt[def_match][alt].cl;
671 check_and_make_def_conflict (alt, def, def_cl);
676 /* Mark early clobber hard registers of the current INSN as live (if
677 LIVE_P) or dead. Return true if there are such registers. */
678 static bool
679 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
681 df_ref *def_rec;
682 bool set_p = false;
684 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
685 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
687 rtx dreg = DF_REF_REG (*def_rec);
689 if (GET_CODE (dreg) == SUBREG)
690 dreg = SUBREG_REG (dreg);
691 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
692 continue;
694 /* Hard register clobbers are believed to be early clobber
695 because there is no way to say that non-operand hard
696 register clobbers are not early ones. */
697 if (live_p)
698 mark_ref_live (*def_rec);
699 else
700 mark_ref_dead (*def_rec);
701 set_p = true;
704 return set_p;
707 /* Checks that CONSTRAINTS permits to use only one hard register. If
708 it is so, the function returns the class of the hard register.
709 Otherwise it returns NO_REGS. */
710 static enum reg_class
711 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
713 int ignore_p;
714 enum reg_class cl, next_cl;
715 int c;
717 cl = NO_REGS;
718 for (ignore_p = false;
719 (c = *constraints);
720 constraints += CONSTRAINT_LEN (c, constraints))
721 if (c == '#')
722 ignore_p = true;
723 else if (c == ',')
724 ignore_p = false;
725 else if (! ignore_p)
726 switch (c)
728 case ' ':
729 case '\t':
730 case '=':
731 case '+':
732 case '*':
733 case '&':
734 case '%':
735 case '!':
736 case '?':
737 break;
738 case 'i':
739 if (CONSTANT_P (op)
740 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
741 return NO_REGS;
742 break;
744 case 'n':
745 if (CONST_INT_P (op)
746 || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
747 || (equiv_const != NULL_RTX
748 && (CONST_INT_P (equiv_const)
749 || (GET_CODE (equiv_const) == CONST_DOUBLE
750 && GET_MODE (equiv_const) == VOIDmode))))
751 return NO_REGS;
752 break;
754 case 's':
755 if ((CONSTANT_P (op) && !CONST_INT_P (op)
756 && (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
757 || (equiv_const != NULL_RTX
758 && CONSTANT_P (equiv_const)
759 && !CONST_INT_P (equiv_const)
760 && (GET_CODE (equiv_const) != CONST_DOUBLE
761 || GET_MODE (equiv_const) != VOIDmode)))
762 return NO_REGS;
763 break;
765 case 'I':
766 case 'J':
767 case 'K':
768 case 'L':
769 case 'M':
770 case 'N':
771 case 'O':
772 case 'P':
773 if ((CONST_INT_P (op)
774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
775 || (equiv_const != NULL_RTX
776 && CONST_INT_P (equiv_const)
777 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
778 c, constraints)))
779 return NO_REGS;
780 break;
782 case 'E':
783 case 'F':
784 if (GET_CODE (op) == CONST_DOUBLE
785 || (GET_CODE (op) == CONST_VECTOR
786 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
787 || (equiv_const != NULL_RTX
788 && (GET_CODE (equiv_const) == CONST_DOUBLE
789 || (GET_CODE (equiv_const) == CONST_VECTOR
790 && (GET_MODE_CLASS (GET_MODE (equiv_const))
791 == MODE_VECTOR_FLOAT)))))
792 return NO_REGS;
793 break;
795 case 'G':
796 case 'H':
797 if ((GET_CODE (op) == CONST_DOUBLE
798 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
799 || (equiv_const != NULL_RTX
800 && GET_CODE (equiv_const) == CONST_DOUBLE
801 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
802 c, constraints)))
803 return NO_REGS;
804 /* ??? what about memory */
805 case 'r':
806 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
807 case 'h': case 'j': case 'k': case 'l':
808 case 'q': case 't': case 'u':
809 case 'v': case 'w': case 'x': case 'y': case 'z':
810 case 'A': case 'B': case 'C': case 'D':
811 case 'Q': case 'R': case 'S': case 'T': case 'U':
812 case 'W': case 'Y': case 'Z':
813 next_cl = (c == 'r'
814 ? GENERAL_REGS
815 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
816 if ((cl != NO_REGS && next_cl != cl)
817 || (ira_available_class_regs[next_cl]
818 > ira_reg_class_nregs[next_cl][GET_MODE (op)]))
819 return NO_REGS;
820 cl = next_cl;
821 break;
823 case '0': case '1': case '2': case '3': case '4':
824 case '5': case '6': case '7': case '8': case '9':
825 next_cl
826 = single_reg_class (recog_data.constraints[c - '0'],
827 recog_data.operand[c - '0'], NULL_RTX);
828 if ((cl != NO_REGS && next_cl != cl)
829 || next_cl == NO_REGS
830 || (ira_available_class_regs[next_cl]
831 > ira_reg_class_nregs[next_cl][GET_MODE (op)]))
832 return NO_REGS;
833 cl = next_cl;
834 break;
836 default:
837 return NO_REGS;
839 return cl;
842 /* The function checks that operand OP_NUM of the current insn can use
843 only one hard register. If it is so, the function returns the
844 class of the hard register. Otherwise it returns NO_REGS. */
845 static enum reg_class
846 single_reg_operand_class (int op_num)
848 if (op_num < 0 || recog_data.n_alternatives == 0)
849 return NO_REGS;
850 return single_reg_class (recog_data.constraints[op_num],
851 recog_data.operand[op_num], NULL_RTX);
854 /* The function sets up hard register set *SET to hard registers which
855 might be used by insn reloads because the constraints are too
856 strict. */
857 void
858 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
860 int i, c, regno = 0;
861 bool ignore_p;
862 enum reg_class cl;
863 rtx op;
864 enum machine_mode mode;
866 CLEAR_HARD_REG_SET (*set);
867 for (i = 0; i < recog_data.n_operands; i++)
869 op = recog_data.operand[i];
871 if (GET_CODE (op) == SUBREG)
872 op = SUBREG_REG (op);
874 if (GET_CODE (op) == SCRATCH
875 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
877 const char *p = recog_data.constraints[i];
879 mode = (GET_CODE (op) == SCRATCH
880 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
881 cl = NO_REGS;
882 for (ignore_p = false; (c = *p); p += CONSTRAINT_LEN (c, p))
883 if (c == '#')
884 ignore_p = true;
885 else if (c == ',')
886 ignore_p = false;
887 else if (! ignore_p)
888 switch (c)
890 case 'r':
891 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
892 case 'h': case 'j': case 'k': case 'l':
893 case 'q': case 't': case 'u':
894 case 'v': case 'w': case 'x': case 'y': case 'z':
895 case 'A': case 'B': case 'C': case 'D':
896 case 'Q': case 'R': case 'S': case 'T': case 'U':
897 case 'W': case 'Y': case 'Z':
898 cl = (c == 'r'
899 ? GENERAL_REGS
900 : REG_CLASS_FROM_CONSTRAINT (c, p));
901 if (cl != NO_REGS
902 /* There is no register pressure problem if all of the
903 regs in this class are fixed. */
904 && ira_available_class_regs[cl] != 0
905 && (ira_available_class_regs[cl]
906 <= ira_reg_class_nregs[cl][mode]))
907 IOR_HARD_REG_SET (*set, reg_class_contents[cl]);
908 break;
913 /* Processes input operands, if IN_P, or output operands otherwise of
914 the current insn with FREQ to find allocno which can use only one
915 hard register and makes other currently living allocnos conflicting
916 with the hard register. */
917 static void
918 process_single_reg_class_operands (bool in_p, int freq)
920 int i, regno;
921 unsigned int px;
922 enum reg_class cl;
923 rtx operand;
924 ira_allocno_t operand_a, a;
926 for (i = 0; i < recog_data.n_operands; i++)
928 operand = recog_data.operand[i];
929 if (in_p && recog_data.operand_type[i] != OP_IN
930 && recog_data.operand_type[i] != OP_INOUT)
931 continue;
932 if (! in_p && recog_data.operand_type[i] != OP_OUT
933 && recog_data.operand_type[i] != OP_INOUT)
934 continue;
935 cl = single_reg_operand_class (i);
936 if (cl == NO_REGS)
937 continue;
939 operand_a = NULL;
941 if (GET_CODE (operand) == SUBREG)
942 operand = SUBREG_REG (operand);
944 if (REG_P (operand)
945 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
947 enum reg_class cover_class;
949 operand_a = ira_curr_regno_allocno_map[regno];
950 cover_class = ALLOCNO_COVER_CLASS (operand_a);
951 if (ira_class_subset_p[cl][cover_class]
952 && ira_class_hard_regs_num[cl] != 0)
954 /* View the desired allocation of OPERAND as:
956 (REG:YMODE YREGNO),
958 a simplification of:
960 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
961 enum machine_mode ymode, xmode;
962 int xregno, yregno;
963 HOST_WIDE_INT offset;
965 xmode = recog_data.operand_mode[i];
966 xregno = ira_class_hard_regs[cl][0];
967 ymode = ALLOCNO_MODE (operand_a);
968 offset = subreg_lowpart_offset (ymode, xmode);
969 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
970 if (yregno >= 0
971 && ira_class_hard_reg_index[cover_class][yregno] >= 0)
973 int cost;
975 ira_allocate_and_set_costs
976 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
977 cover_class, 0);
978 cost
979 = (freq
980 * (in_p
981 ? ira_get_register_move_cost (xmode, cover_class, cl)
982 : ira_get_register_move_cost (xmode, cl,
983 cover_class)));
984 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
985 [ira_class_hard_reg_index[cover_class][yregno]] -= cost;
990 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
992 ira_object_t obj = ira_object_id_map[px];
993 a = OBJECT_ALLOCNO (obj);
994 if (a != operand_a)
996 /* We could increase costs of A instead of making it
997 conflicting with the hard register. But it works worse
998 because it will be spilled in reload in anyway. */
999 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1000 reg_class_contents[cl]);
1001 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1002 reg_class_contents[cl]);
1008 /* Return true when one of the predecessor edges of BB is marked with
1009 EDGE_ABNORMAL_CALL or EDGE_EH. */
1010 static bool
1011 bb_has_abnormal_call_pred (basic_block bb)
1013 edge e;
1014 edge_iterator ei;
1016 FOR_EACH_EDGE (e, ei, bb->preds)
1018 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1019 return true;
1021 return false;
1024 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1025 update allocno live ranges, allocno hard register conflicts,
1026 intersected calls, and register pressure info for allocnos for the
1027 basic block for and regions containing the basic block. */
1028 static void
1029 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1031 int i, freq;
1032 unsigned int j;
1033 basic_block bb;
1034 rtx insn;
1035 bitmap_iterator bi;
1036 bitmap reg_live_out;
1037 unsigned int px;
1038 bool set_p;
1040 bb = loop_tree_node->bb;
1041 if (bb != NULL)
1043 for (i = 0; i < ira_reg_class_cover_size; i++)
1045 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
1046 high_pressure_start_point[ira_reg_class_cover[i]] = -1;
1048 curr_bb_node = loop_tree_node;
1049 reg_live_out = DF_LR_OUT (bb);
1050 sparseset_clear (objects_live);
1051 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1052 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1053 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1054 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1055 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1057 enum reg_class cover_class, cl;
1059 cover_class = ira_class_translate[REGNO_REG_CLASS (i)];
1060 for (j = 0;
1061 (cl = ira_reg_class_super_classes[cover_class][j])
1062 != LIM_REG_CLASSES;
1063 j++)
1065 curr_reg_pressure[cl]++;
1066 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1067 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1068 ira_assert (curr_reg_pressure[cl]
1069 <= ira_available_class_regs[cl]);
1072 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1073 mark_pseudo_regno_live (j);
1075 freq = REG_FREQ_FROM_BB (bb);
1076 if (freq == 0)
1077 freq = 1;
1079 /* Invalidate all allocno_saved_at_call entries. */
1080 last_call_num++;
1082 /* Scan the code of this basic block, noting which allocnos and
1083 hard regs are born or die.
1085 Note that this loop treats uninitialized values as live until
1086 the beginning of the block. For example, if an instruction
1087 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1088 set, FOO will remain live until the beginning of the block.
1089 Likewise if FOO is not set at all. This is unnecessarily
1090 pessimistic, but it probably doesn't matter much in practice. */
1091 FOR_BB_INSNS_REVERSE (bb, insn)
1093 df_ref *def_rec, *use_rec;
1094 bool call_p;
1096 if (!NONDEBUG_INSN_P (insn))
1097 continue;
1099 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1100 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1101 INSN_UID (insn), loop_tree_node->parent->loop->num,
1102 curr_point);
1104 /* Mark each defined value as live. We need to do this for
1105 unused values because they still conflict with quantities
1106 that are live at the time of the definition.
1108 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1109 references represent the effect of the called function
1110 on a call-clobbered register. Marking the register as
1111 live would stop us from allocating it to a call-crossing
1112 allocno. */
1113 call_p = CALL_P (insn);
1114 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1115 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1116 mark_ref_live (*def_rec);
1118 /* If INSN has multiple outputs, then any value used in one
1119 of the outputs conflicts with the other outputs. Model this
1120 by making the used value live during the output phase.
1122 It is unsafe to use !single_set here since it will ignore
1123 an unused output. Just because an output is unused does
1124 not mean the compiler can assume the side effect will not
1125 occur. Consider if ALLOCNO appears in the address of an
1126 output and we reload the output. If we allocate ALLOCNO
1127 to the same hard register as an unused output we could
1128 set the hard register before the output reload insn. */
1129 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1130 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1132 int i;
1133 rtx reg;
1135 reg = DF_REF_REG (*use_rec);
1136 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1138 rtx set;
1140 set = XVECEXP (PATTERN (insn), 0, i);
1141 if (GET_CODE (set) == SET
1142 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1144 /* After the previous loop, this is a no-op if
1145 REG is contained within SET_DEST (SET). */
1146 mark_ref_live (*use_rec);
1147 break;
1152 extract_insn (insn);
1153 preprocess_constraints ();
1154 process_single_reg_class_operands (false, freq);
1156 /* See which defined values die here. */
1157 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1158 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1159 mark_ref_dead (*def_rec);
1161 if (call_p)
1163 last_call_num++;
1164 sparseset_clear (allocnos_processed);
1165 /* The current set of live allocnos are live across the call. */
1166 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1168 ira_object_t obj = ira_object_id_map[i];
1169 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1170 int num = ALLOCNO_NUM (a);
1172 /* Don't allocate allocnos that cross setjmps or any
1173 call, if this function receives a nonlocal
1174 goto. */
1175 if (cfun->has_nonlocal_label
1176 || find_reg_note (insn, REG_SETJMP,
1177 NULL_RTX) != NULL_RTX)
1179 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1180 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1182 if (can_throw_internal (insn))
1184 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1185 call_used_reg_set);
1186 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1187 call_used_reg_set);
1190 if (sparseset_bit_p (allocnos_processed, num))
1191 continue;
1192 sparseset_set_bit (allocnos_processed, num);
1194 if (allocno_saved_at_call[num] != last_call_num)
1195 /* Here we are mimicking caller-save.c behaviour
1196 which does not save hard register at a call if
1197 it was saved on previous call in the same basic
1198 block and the hard register was not mentioned
1199 between the two calls. */
1200 ALLOCNO_CALL_FREQ (a) += freq;
1201 /* Mark it as saved at the next call. */
1202 allocno_saved_at_call[num] = last_call_num + 1;
1203 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1207 make_early_clobber_and_input_conflicts ();
1209 curr_point++;
1211 /* Mark each used value as live. */
1212 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1213 mark_ref_live (*use_rec);
1215 process_single_reg_class_operands (true, freq);
1217 set_p = mark_hard_reg_early_clobbers (insn, true);
1219 if (set_p)
1221 mark_hard_reg_early_clobbers (insn, false);
1223 /* Mark each hard reg as live again. For example, a
1224 hard register can be in clobber and in an insn
1225 input. */
1226 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1228 rtx ureg = DF_REF_REG (*use_rec);
1230 if (GET_CODE (ureg) == SUBREG)
1231 ureg = SUBREG_REG (ureg);
1232 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1233 continue;
1235 mark_ref_live (*use_rec);
1239 curr_point++;
1242 #ifdef EH_RETURN_DATA_REGNO
1243 if (bb_has_eh_pred (bb))
1244 for (j = 0; ; ++j)
1246 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1247 if (regno == INVALID_REGNUM)
1248 break;
1249 make_hard_regno_born (regno);
1251 #endif
1253 /* Allocnos can't go in stack regs at the start of a basic block
1254 that is reached by an abnormal edge. Likewise for call
1255 clobbered regs, because caller-save, fixup_abnormal_edges and
1256 possibly the table driven EH machinery are not quite ready to
1257 handle such allocnos live across such edges. */
1258 if (bb_has_abnormal_pred (bb))
1260 #ifdef STACK_REGS
1261 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1263 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1264 ALLOCNO_NO_STACK_REG_P (a) = true;
1265 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1267 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1268 make_hard_regno_born (px);
1269 #endif
1270 /* No need to record conflicts for call clobbered regs if we
1271 have nonlocal labels around, as we don't ever try to
1272 allocate such regs in this case. */
1273 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1274 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1275 if (call_used_regs[px])
1276 make_hard_regno_born (px);
1279 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1280 make_object_dead (ira_object_id_map[i]);
1282 curr_point++;
1285 /* Propagate register pressure to upper loop tree nodes: */
1286 if (loop_tree_node != ira_loop_tree_root)
1287 for (i = 0; i < ira_reg_class_cover_size; i++)
1289 enum reg_class cover_class;
1291 cover_class = ira_reg_class_cover[i];
1292 if (loop_tree_node->reg_pressure[cover_class]
1293 > loop_tree_node->parent->reg_pressure[cover_class])
1294 loop_tree_node->parent->reg_pressure[cover_class]
1295 = loop_tree_node->reg_pressure[cover_class];
1299 /* Create and set up IRA_START_POINT_RANGES and
1300 IRA_FINISH_POINT_RANGES. */
1301 static void
1302 create_start_finish_chains (void)
1304 ira_object_t obj;
1305 ira_object_iterator oi;
1306 live_range_t r;
1308 ira_start_point_ranges
1309 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1310 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1311 ira_finish_point_ranges
1312 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1313 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1314 FOR_EACH_OBJECT (obj, oi)
1315 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1317 r->start_next = ira_start_point_ranges[r->start];
1318 ira_start_point_ranges[r->start] = r;
1319 r->finish_next = ira_finish_point_ranges[r->finish];
1320 ira_finish_point_ranges[r->finish] = r;
1324 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1325 new live ranges and program points were added as a result if new
1326 insn generation. */
1327 void
1328 ira_rebuild_start_finish_chains (void)
1330 ira_free (ira_finish_point_ranges);
1331 ira_free (ira_start_point_ranges);
1332 create_start_finish_chains ();
1335 /* Compress allocno live ranges by removing program points where
1336 nothing happens. */
1337 static void
1338 remove_some_program_points_and_update_live_ranges (void)
1340 unsigned i;
1341 int n;
1342 int *map;
1343 ira_object_t obj;
1344 ira_object_iterator oi;
1345 live_range_t r;
1346 sbitmap born_or_dead, born, dead;
1347 sbitmap_iterator sbi;
1348 bool born_p, dead_p, prev_born_p, prev_dead_p;
1350 born = sbitmap_alloc (ira_max_point);
1351 dead = sbitmap_alloc (ira_max_point);
1352 sbitmap_zero (born);
1353 sbitmap_zero (dead);
1354 FOR_EACH_OBJECT (obj, oi)
1355 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1357 ira_assert (r->start <= r->finish);
1358 SET_BIT (born, r->start);
1359 SET_BIT (dead, r->finish);
1362 born_or_dead = sbitmap_alloc (ira_max_point);
1363 sbitmap_a_or_b (born_or_dead, born, dead);
1364 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1365 n = -1;
1366 prev_born_p = prev_dead_p = false;
1367 EXECUTE_IF_SET_IN_SBITMAP (born_or_dead, 0, i, sbi)
1369 born_p = TEST_BIT (born, i);
1370 dead_p = TEST_BIT (dead, i);
1371 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1372 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1373 map[i] = n;
1374 else
1375 map[i] = ++n;
1376 prev_born_p = born_p;
1377 prev_dead_p = dead_p;
1379 sbitmap_free (born_or_dead);
1380 sbitmap_free (born);
1381 sbitmap_free (dead);
1382 n++;
1383 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1384 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1385 ira_max_point, n, 100 * n / ira_max_point);
1386 ira_max_point = n;
1388 FOR_EACH_OBJECT (obj, oi)
1389 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1391 r->start = map[r->start];
1392 r->finish = map[r->finish];
1395 ira_free (map);
1398 /* Print live ranges R to file F. */
1399 void
1400 ira_print_live_range_list (FILE *f, live_range_t r)
1402 for (; r != NULL; r = r->next)
1403 fprintf (f, " [%d..%d]", r->start, r->finish);
1404 fprintf (f, "\n");
1407 /* Print live ranges R to stderr. */
1408 void
1409 ira_debug_live_range_list (live_range_t r)
1411 ira_print_live_range_list (stderr, r);
1414 /* Print live ranges of object OBJ to file F. */
1415 static void
1416 print_object_live_ranges (FILE *f, ira_object_t obj)
1418 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1421 /* Print live ranges of allocno A to file F. */
1422 static void
1423 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1425 int n = ALLOCNO_NUM_OBJECTS (a);
1426 int i;
1427 for (i = 0; i < n; i++)
1429 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1430 if (n > 1)
1431 fprintf (f, " [%d]", i);
1432 fprintf (f, "):");
1433 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1437 /* Print live ranges of allocno A to stderr. */
1438 void
1439 ira_debug_allocno_live_ranges (ira_allocno_t a)
1441 print_allocno_live_ranges (stderr, a);
1444 /* Print live ranges of all allocnos to file F. */
1445 static void
1446 print_live_ranges (FILE *f)
1448 ira_allocno_t a;
1449 ira_allocno_iterator ai;
1451 FOR_EACH_ALLOCNO (a, ai)
1452 print_allocno_live_ranges (f, a);
1455 /* Print live ranges of all allocnos to stderr. */
1456 void
1457 ira_debug_live_ranges (void)
1459 print_live_ranges (stderr);
1462 /* The main entry function creates live ranges, set up
1463 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1464 calculate register pressure info. */
1465 void
1466 ira_create_allocno_live_ranges (void)
1468 objects_live = sparseset_alloc (ira_objects_num);
1469 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1470 curr_point = 0;
1471 last_call_num = 0;
1472 allocno_saved_at_call
1473 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1474 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1475 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1476 process_bb_node_lives);
1477 ira_max_point = curr_point;
1478 create_start_finish_chains ();
1479 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1480 print_live_ranges (ira_dump_file);
1481 /* Clean up. */
1482 ira_free (allocno_saved_at_call);
1483 sparseset_free (objects_live);
1484 sparseset_free (allocnos_processed);
1487 /* Compress allocno live ranges. */
1488 void
1489 ira_compress_allocno_live_ranges (void)
1491 remove_some_program_points_and_update_live_ranges ();
1492 ira_rebuild_start_finish_chains ();
1493 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1495 fprintf (ira_dump_file, "Ranges after the compression:\n");
1496 print_live_ranges (ira_dump_file);
1500 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1501 void
1502 ira_finish_allocno_live_ranges (void)
1504 ira_free (ira_finish_point_ranges);
1505 ira_free (ira_start_point_ranges);