Fix PR47707
[official-gcc.git] / gcc / graphite-dependences.c
blobb9b1d1b5880339713b19338042537a97e556cf6a
1 /* Data dependence analysis for Graphite.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Konrad Trifunovic <konrad.trifunovic@inria.fr>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree-flow.h"
26 #include "tree-dump.h"
27 #include "cfgloop.h"
28 #include "tree-chrec.h"
29 #include "tree-data-ref.h"
30 #include "tree-scalar-evolution.h"
31 #include "sese.h"
33 #ifdef HAVE_cloog
34 #include "ppl_c.h"
35 #include "graphite-ppl.h"
36 #include "graphite-poly.h"
37 #include "graphite-dependences.h"
38 #include "graphite-cloog-util.h"
40 /* Comparison function for poly_ddr hash table. */
42 int
43 eq_poly_ddr_p (const void *pddr1, const void *pddr2)
45 const struct poly_ddr *p1 = (const struct poly_ddr *) pddr1;
46 const struct poly_ddr *p2 = (const struct poly_ddr *) pddr2;
48 return (PDDR_SOURCE (p1) == PDDR_SOURCE (p2)
49 && PDDR_SINK (p1) == PDDR_SINK (p2));
52 /* Hash function for poly_ddr hashtable. */
54 hashval_t
55 hash_poly_ddr_p (const void *pddr)
57 const struct poly_ddr *p = (const struct poly_ddr *) pddr;
59 return (hashval_t) ((long) PDDR_SOURCE (p) + (long) PDDR_SINK (p));
62 /* Returns true when PDDR has no dependence. */
64 static bool
65 pddr_is_empty (poly_ddr_p pddr)
67 if (!pddr)
68 return true;
70 gcc_assert (PDDR_KIND (pddr) != unknown_dependence);
72 return PDDR_KIND (pddr) == no_dependence ? true : false;
75 /* Prints to FILE the layout of the dependence polyhedron of PDDR:
77 T1|I1|T2|I2|S1|S2|G
79 with
80 | T1 and T2 the scattering dimensions for PDDR_SOURCE and PDDR_SINK
81 | I1 and I2 the iteration domains
82 | S1 and S2 the subscripts
83 | G the global parameters. */
85 static void
86 print_dependence_polyhedron_layout (FILE *file, poly_ddr_p pddr)
88 poly_dr_p pdr1 = PDDR_SOURCE (pddr);
89 poly_dr_p pdr2 = PDDR_SINK (pddr);
90 poly_bb_p pbb1 = PDR_PBB (pdr1);
91 poly_bb_p pbb2 = PDR_PBB (pdr2);
93 graphite_dim_t i;
94 graphite_dim_t tdim1 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
95 pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
96 graphite_dim_t tdim2 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
97 pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
98 graphite_dim_t idim1 = pbb_dim_iter_domain (pbb1);
99 graphite_dim_t idim2 = pbb_dim_iter_domain (pbb2);
100 graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
101 graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
102 graphite_dim_t gdim = scop_nb_params (PBB_SCOP (pbb1));
104 fprintf (file, "# eq");
106 for (i = 0; i < tdim1; i++)
107 fprintf (file, " t1_%d", (int) i);
108 for (i = 0; i < idim1; i++)
109 fprintf (file, " i1_%d", (int) i);
110 for (i = 0; i < tdim2; i++)
111 fprintf (file, " t2_%d", (int) i);
112 for (i = 0; i < idim2; i++)
113 fprintf (file, " i2_%d", (int) i);
114 for (i = 0; i < sdim1; i++)
115 fprintf (file, " s1_%d", (int) i);
116 for (i = 0; i < sdim2; i++)
117 fprintf (file, " s2_%d", (int) i);
118 for (i = 0; i < gdim; i++)
119 fprintf (file, " g_%d", (int) i);
121 fprintf (file, " cst\n");
124 /* Prints to FILE the poly_ddr_p PDDR. */
126 void
127 print_pddr (FILE *file, poly_ddr_p pddr)
129 fprintf (file, "pddr (kind: ");
131 if (PDDR_KIND (pddr) == unknown_dependence)
132 fprintf (file, "unknown_dependence");
133 else if (PDDR_KIND (pddr) == no_dependence)
134 fprintf (file, "no_dependence");
135 else if (PDDR_KIND (pddr) == has_dependence)
136 fprintf (file, "has_dependence");
138 fprintf (file, "\n source ");
139 print_pdr (file, PDDR_SOURCE (pddr), 2);
141 fprintf (file, "\n sink ");
142 print_pdr (file, PDDR_SINK (pddr), 2);
144 if (PDDR_KIND (pddr) == has_dependence)
146 fprintf (file, "\n dependence polyhedron (\n");
147 print_dependence_polyhedron_layout (file, pddr);
148 ppl_print_powerset_matrix (file, PDDR_DDP (pddr));
149 ppl_io_fprint_Pointset_Powerset_C_Polyhedron (file, PDDR_DDP (pddr));
150 fprintf (file, ")\n");
153 fprintf (file, ")\n");
156 /* Prints to STDERR the poly_ddr_p PDDR. */
158 DEBUG_FUNCTION void
159 debug_pddr (poly_ddr_p pddr)
161 print_pddr (stderr, pddr);
165 /* Remove all the dimensions except alias information at dimension
166 ALIAS_DIM. */
168 static void
169 build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
170 ppl_dimension_type alias_dim)
172 ppl_dimension_type *ds;
173 ppl_dimension_type access_dim;
174 unsigned i, pos = 0;
176 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
177 &access_dim);
178 ds = XNEWVEC (ppl_dimension_type, access_dim-1);
179 for (i = 0; i < access_dim; i++)
181 if (i == alias_dim)
182 continue;
184 ds[pos] = i;
185 pos++;
188 ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
190 access_dim - 1);
191 free (ds);
194 /* Return true when PDR1 and PDR2 may alias. */
196 static bool
197 poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
199 ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
200 ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
201 ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
202 ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
203 ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
204 int empty_p;
206 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
207 (&alias_powerset1, accesses1);
208 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
209 (&alias_powerset2, accesses2);
211 build_alias_set_powerset (alias_powerset1, alias_dim1);
212 build_alias_set_powerset (alias_powerset2, alias_dim2);
214 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
215 (alias_powerset1, alias_powerset2);
217 empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
219 ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
220 ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
222 return !empty_p;
225 /* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
226 transformed into "a CUT0 c CUT1' b"
228 Add NB0 zeros before "a": "00...0 a CUT0 c CUT1' b"
229 Add NB1 zeros between "a" and "c": "00...0 a 00...0 c CUT1' b"
230 Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
231 "00...0 a 00...0 c 00...0 b". */
233 static ppl_Pointset_Powerset_C_Polyhedron_t
234 map_dr_into_dep_poly (graphite_dim_t dim,
235 ppl_Pointset_Powerset_C_Polyhedron_t dr,
236 graphite_dim_t cut0, graphite_dim_t cut1,
237 graphite_dim_t nb0, graphite_dim_t nb1)
239 ppl_dimension_type pdim;
240 ppl_dimension_type *map;
241 ppl_Pointset_Powerset_C_Polyhedron_t res;
242 ppl_dimension_type i;
244 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
245 (&res, dr);
246 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
248 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
250 /* First mapping: move 'g' vector to right position. */
251 for (i = 0; i < cut0; i++)
252 map[i] = i;
254 for (i = cut0; i < cut1; i++)
255 map[i] = pdim - cut1 + i;
257 for (i = cut1; i < pdim; i++)
258 map[i] = cut0 + i - cut1;
260 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
261 free (map);
263 /* After swapping 's' and 'g' vectors, we have to update a new cut. */
264 cut1 = pdim - cut1 + cut0;
266 ppl_insert_dimensions_pointset (res, 0, nb0);
267 ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
268 ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
269 dim - nb0 - nb1 - pdim);
271 return res;
274 /* Builds subscript equality constraints. */
276 static ppl_Pointset_Powerset_C_Polyhedron_t
277 dr_equality_constraints (graphite_dim_t dim,
278 graphite_dim_t pos, graphite_dim_t nb_subscripts)
280 ppl_Polyhedron_t eqs;
281 ppl_Pointset_Powerset_C_Polyhedron_t res;
282 graphite_dim_t i;
284 ppl_new_C_Polyhedron_from_space_dimension (&eqs, dim, 0);
286 for (i = 0; i < nb_subscripts; i++)
288 ppl_Constraint_t cstr
289 = ppl_build_relation (dim, pos + i, pos + i + nb_subscripts,
290 0, PPL_CONSTRAINT_TYPE_EQUAL);
291 ppl_Polyhedron_add_constraint (eqs, cstr);
292 ppl_delete_Constraint (cstr);
295 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, eqs);
296 ppl_delete_Polyhedron (eqs);
297 return res;
300 /* Builds scheduling inequality constraints: when DIRECTION is
301 1 builds a GE constraint,
302 0 builds an EQ constraint,
303 -1 builds a LE constraint.
304 DIM is the dimension of the scheduling space.
305 POS and POS + OFFSET are the dimensions that are related. */
307 static ppl_Pointset_Powerset_C_Polyhedron_t
308 build_pairwise_scheduling (graphite_dim_t dim,
309 graphite_dim_t pos,
310 graphite_dim_t offset,
311 int direction)
313 ppl_Pointset_Powerset_C_Polyhedron_t res;
314 ppl_Polyhedron_t equalities;
315 ppl_Constraint_t cstr;
316 graphite_dim_t a = pos;
317 graphite_dim_t b = pos + offset;
319 ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
321 switch (direction)
323 case 1:
324 /* Builds "a + 1 <= b. */
325 cstr = ppl_build_relation (dim, a, b, 1,
326 PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
327 break;
329 case 0:
330 /* Builds "a = b. */
331 cstr = ppl_build_relation (dim, a, b, 0,
332 PPL_CONSTRAINT_TYPE_EQUAL);
333 break;
335 case -1:
336 /* Builds "a >= b + 1. */
337 cstr = ppl_build_relation (dim, a, b, -1,
338 PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
339 break;
341 default:
342 gcc_unreachable ();
345 ppl_Polyhedron_add_constraint (equalities, cstr);
346 ppl_delete_Constraint (cstr);
348 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
349 ppl_delete_Polyhedron (equalities);
350 return res;
353 /* Add to a non empty polyhedron BAG the precedence constraints for
354 the lexicographical comparison of time vectors in BAG following the
355 lexicographical order. DIM is the dimension of the polyhedron BAG.
356 TDIM is the number of loops common to the two statements that are
357 compared lexicographically, i.e. the number of loops containing
358 both statements. OFFSET is the number of dimensions needed to
359 represent the first statement, i.e. dimT1 + dimI1 in the layout of
360 the BAG polyhedron: T1|I1|T2|I2|S1|S2|G. When DIRECTION is set to
361 1, compute the direct dependence from PDR1 to PDR2, and when
362 DIRECTION is -1, compute the reversed dependence relation, from
363 PDR2 to PDR1. */
365 static ppl_Pointset_Powerset_C_Polyhedron_t
366 build_lexicographical_constraint (ppl_Pointset_Powerset_C_Polyhedron_t bag,
367 graphite_dim_t dim,
368 graphite_dim_t tdim,
369 graphite_dim_t offset,
370 int direction)
372 graphite_dim_t i;
373 ppl_Pointset_Powerset_C_Polyhedron_t res, lex;
375 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 1);
377 lex = build_pairwise_scheduling (dim, 0, offset, direction);
378 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
380 if (!ppl_powerset_is_empty (lex))
381 ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
383 ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
385 for (i = 0; i < tdim - 1; i++)
387 ppl_Pointset_Powerset_C_Polyhedron_t sceq;
389 sceq = build_pairwise_scheduling (dim, i, offset, 0);
390 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (bag, sceq);
391 ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
393 if (ppl_powerset_is_empty (bag))
394 break;
396 lex = build_pairwise_scheduling (dim, i + 1, offset, direction);
397 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
399 if (!ppl_powerset_is_empty (lex))
400 ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
402 ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
405 return res;
408 /* Build the dependence polyhedron for data references PDR1 and PDR2.
409 The layout of the dependence polyhedron is:
411 T1|I1|T2|I2|S1|S2|G
413 with
414 | T1 and T2 the scattering dimensions for PDR1 and PDR2
415 | I1 and I2 the iteration domains
416 | S1 and S2 the subscripts
417 | G the global parameters.
419 When DIRECTION is set to 1, compute the direct dependence from PDR1
420 to PDR2, and when DIRECTION is -1, compute the reversed dependence
421 relation, from PDR2 to PDR1. */
423 static ppl_Pointset_Powerset_C_Polyhedron_t
424 dependence_polyhedron (poly_dr_p pdr1, poly_dr_p pdr2,
425 int direction, bool original_scattering_p)
427 poly_bb_p pbb1 = PDR_PBB (pdr1);
428 poly_bb_p pbb2 = PDR_PBB (pdr2);
429 scop_p scop = PBB_SCOP (pbb1);
430 graphite_dim_t tdim1 = original_scattering_p ?
431 pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
432 graphite_dim_t tdim2 = original_scattering_p ?
433 pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
434 graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
435 graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
436 graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
437 graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
438 graphite_dim_t gdim = scop_nb_params (scop);
439 graphite_dim_t dim1 = pdr_dim (pdr1);
440 graphite_dim_t dim2 = pdr_dim (pdr2);
441 graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2 - gdim;
442 ppl_Pointset_Powerset_C_Polyhedron_t res;
443 ppl_Pointset_Powerset_C_Polyhedron_t idr1, idr2;
444 ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
445 ppl_Pointset_Powerset_C_Polyhedron_t lex;
447 gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
449 combine_context_id_scat (&sc1, pbb1, original_scattering_p);
450 combine_context_id_scat (&sc2, pbb2, original_scattering_p);
452 ppl_insert_dimensions_pointset (sc1, tdim1 + ddim1,
453 tdim2 + ddim2 + sdim1 + sdim2);
455 ppl_insert_dimensions_pointset (sc2, 0, tdim1 + ddim1);
456 ppl_insert_dimensions_pointset (sc2, tdim1 + ddim1 + tdim2 + ddim2,
457 sdim1 + sdim2);
459 idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
460 tdim1, tdim2 + ddim2);
461 idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
462 tdim1 + ddim1 + tdim2, sdim1);
464 /* Now add the subscript equalities. */
465 dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
467 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
468 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc1);
469 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc2);
470 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
471 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
472 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
473 ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
474 ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
475 ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
476 ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
477 ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
479 if (ppl_powerset_is_empty (res))
480 return NULL;
482 lex = build_lexicographical_constraint (res, dim, MIN (tdim1, tdim2),
483 tdim1 + ddim1, direction);
484 ppl_delete_Pointset_Powerset_C_Polyhedron (res);
486 return lex;
489 /* Build the dependence polyhedron for data references PDR1 and PDR2.
490 If possible use already cached information.
492 When DIRECTION is set to 1, compute the direct dependence from PDR1
493 to PDR2, and when DIRECTION is -1, compute the reversed dependence
494 relation, from PDR2 to PDR1. */
496 static poly_ddr_p
497 new_poly_ddr (poly_dr_p pdr1, poly_dr_p pdr2,
498 int direction, bool original_scattering_p)
500 PTR *x = NULL;
501 poly_ddr_p res;
502 bool may_alias;
504 /* Return the PDDR from the cache if it already has been computed. */
505 if (original_scattering_p)
507 struct poly_ddr tmp;
508 scop_p scop = PBB_SCOP (PDR_PBB (pdr1));
510 tmp.source = pdr1;
511 tmp.sink = pdr2;
512 x = htab_find_slot (SCOP_ORIGINAL_PDDRS (scop),
513 &tmp, INSERT);
515 if (x && *x)
516 return (poly_ddr_p) *x;
519 res = XNEW (struct poly_ddr);
520 PDDR_SOURCE (res) = pdr1;
521 PDDR_SINK (res) = pdr2;
522 PDDR_DDP (res) = NULL;
523 PDDR_ORIGINAL_SCATTERING_P (res) = original_scattering_p;
524 PDDR_KIND (res) = unknown_dependence;
526 may_alias = poly_drs_may_alias_p (pdr1, pdr2);
528 if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
529 && PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
530 && may_alias)
531 PDDR_KIND (res) = unknown_dependence;
533 else if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
534 && same_pdr_p (pdr1, pdr2)
535 && may_alias)
537 PDDR_DDP (res) = dependence_polyhedron (pdr1, pdr2, direction,
538 original_scattering_p);
539 if (PDDR_DDP (res))
540 PDDR_KIND (res) = has_dependence;
541 else
542 PDDR_KIND (res) = no_dependence;
544 else
545 PDDR_KIND (res) = no_dependence;
547 if (original_scattering_p)
548 *x = res;
550 return res;
553 /* Free the data dependence relation poly_ddr_p P. */
555 void
556 free_poly_ddr (void *p)
558 poly_ddr_p pddr = (poly_ddr_p) p;
559 ppl_delete_Pointset_Powerset_C_Polyhedron (PDDR_DDP (pddr));
560 free (pddr);
563 /* Return true when the data dependence relation between the data
564 references PDR1 belonging to PBB1 and PDR2 is part of a
565 reduction. */
567 static inline bool
568 reduction_dr_1 (poly_bb_p pbb1, poly_dr_p pdr1, poly_dr_p pdr2)
570 int i;
571 poly_dr_p pdr;
573 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr)
574 if (PDR_TYPE (pdr) == PDR_WRITE
575 && same_pdr_p (pdr, pdr1) && same_pdr_p (pdr, pdr2))
576 return true;
578 return false;
581 /* Return true when the data dependence relation between the data
582 references PDR1 belonging to PBB1 and PDR2 belonging to PBB2 is
583 part of a reduction. */
585 static inline bool
586 reduction_dr_p (poly_dr_p pdr1, poly_dr_p pdr2)
588 poly_bb_p pbb1 = PDR_PBB (pdr1);
589 poly_bb_p pbb2 = PDR_PBB (pdr2);
591 if (PBB_IS_REDUCTION (pbb1))
592 return reduction_dr_1 (pbb1, pdr1, pdr2);
594 if (PBB_IS_REDUCTION (pbb2))
595 return reduction_dr_1 (pbb2, pdr2, pdr1);
597 return false;
600 /* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
601 and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
602 functions. */
604 static bool
605 graphite_legal_transform_dr (poly_dr_p pdr1, poly_dr_p pdr2)
607 ppl_Pointset_Powerset_C_Polyhedron_t po, pt;
608 graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
609 ppl_Pointset_Powerset_C_Polyhedron_t po_temp;
610 ppl_dimension_type pdim;
611 bool is_empty_p;
612 poly_ddr_p opddr, tpddr;
613 poly_bb_p pbb1, pbb2;
615 if (reduction_dr_p (pdr1, pdr2))
616 return true;
618 /* We build the reverse dependence relation for the transformed
619 scattering, such that when we intersect it with the original PO,
620 we get an empty intersection when the transform is legal:
621 i.e. the transform should reverse no dependences, and so PT, the
622 reversed transformed PDDR, should have no constraint from PO. */
623 opddr = new_poly_ddr (pdr1, pdr2, 1, true);
625 if (PDDR_KIND (opddr) == unknown_dependence)
626 return false;
628 /* There are no dependences between PDR1 and PDR2 in the original
629 version of the program, or after the transform, so the
630 transform is legal. */
631 if (pddr_is_empty (opddr))
632 return true;
634 tpddr = new_poly_ddr (pdr1, pdr2, -1, false);
636 if (PDDR_KIND (tpddr) == unknown_dependence)
638 free_poly_ddr (tpddr);
639 return false;
642 if (pddr_is_empty (tpddr))
644 free_poly_ddr (tpddr);
645 return true;
648 po = PDDR_DDP (opddr);
649 pt = PDDR_DDP (tpddr);
651 /* Copy PO into PO_TEMP, such that PO is not destroyed. PO is
652 stored in a cache and should not be modified or freed. */
653 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
654 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&po_temp,
655 pdim, 0);
656 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, po);
658 /* Extend PO and PT to have the same dimensions. */
659 pbb1 = PDR_PBB (pdr1);
660 pbb2 = PDR_PBB (pdr2);
661 ddim1 = pbb_dim_iter_domain (pbb1);
662 otdim1 = pbb_nb_scattering_orig (pbb1);
663 otdim2 = pbb_nb_scattering_orig (pbb2);
664 ttdim1 = pbb_nb_scattering_transform (pbb1);
665 ttdim2 = pbb_nb_scattering_transform (pbb2);
666 ppl_insert_dimensions_pointset (po_temp, otdim1, ttdim1);
667 ppl_insert_dimensions_pointset (po_temp, otdim1 + ttdim1 + ddim1 + otdim2,
668 ttdim2);
669 ppl_insert_dimensions_pointset (pt, 0, otdim1);
670 ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
672 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, pt);
673 is_empty_p = ppl_powerset_is_empty (po_temp);
675 ppl_delete_Pointset_Powerset_C_Polyhedron (po_temp);
676 free_poly_ddr (tpddr);
678 if (dump_file && (dump_flags & TDF_DETAILS))
679 fprintf (dump_file, "\nloop carries dependency.\n");
681 return is_empty_p;
684 /* Return true when the data dependence relation for PBB1 and PBB2 is
685 part of a reduction. */
687 static inline bool
688 reduction_ddr_p (poly_bb_p pbb1, poly_bb_p pbb2)
690 return pbb1 == pbb2 && PBB_IS_REDUCTION (pbb1);
693 /* Iterates over the data references of PBB1 and PBB2 and detect
694 whether the transformed schedule is correct. */
696 static bool
697 graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
699 int i, j;
700 poly_dr_p pdr1, pdr2;
702 if (!PBB_PDR_DUPLICATES_REMOVED (pbb1))
703 pbb_remove_duplicate_pdrs (pbb1);
705 if (!PBB_PDR_DUPLICATES_REMOVED (pbb2))
706 pbb_remove_duplicate_pdrs (pbb2);
708 if (reduction_ddr_p (pbb1, pbb2))
709 return true;
711 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
712 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
713 if (!graphite_legal_transform_dr (pdr1, pdr2))
714 return false;
716 return true;
719 /* Iterates over the SCOP and detect whether the transformed schedule
720 is correct. */
722 bool
723 graphite_legal_transform (scop_p scop)
725 int i, j;
726 poly_bb_p pbb1, pbb2;
728 timevar_push (TV_GRAPHITE_DATA_DEPS);
730 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
731 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
732 if (!graphite_legal_transform_bb (pbb1, pbb2))
734 timevar_pop (TV_GRAPHITE_DATA_DEPS);
735 return false;
738 timevar_pop (TV_GRAPHITE_DATA_DEPS);
739 return true;
742 /* Returns TRUE when the dependence polyhedron between PDR1 and
743 PDR2 represents a loop carried dependence at level LEVEL. */
745 static bool
746 graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
747 int level)
749 ppl_Pointset_Powerset_C_Polyhedron_t po;
750 ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
751 graphite_dim_t tdim1 = pbb_nb_scattering_transform (PDR_PBB (pdr1));
752 graphite_dim_t ddim1 = pbb_dim_iter_domain (PDR_PBB (pdr1));
753 ppl_dimension_type dim;
754 bool empty_p;
755 poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, false);
757 if (PDDR_KIND (pddr) == unknown_dependence)
759 free_poly_ddr (pddr);
760 return true;
763 if (pddr_is_empty (pddr))
765 free_poly_ddr (pddr);
766 return false;
769 po = PDDR_DDP (pddr);
770 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
771 eqpp = build_pairwise_scheduling (dim, level, tdim1 + ddim1, 1);
773 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
774 empty_p = ppl_powerset_is_empty (eqpp);
776 ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
777 free_poly_ddr (pddr);
779 return !empty_p;
782 /* Check data dependency between PBB1 and PBB2 at level LEVEL. */
784 bool
785 dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
787 int i, j;
788 poly_dr_p pdr1, pdr2;
790 timevar_push (TV_GRAPHITE_DATA_DEPS);
792 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
793 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
794 if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
796 timevar_pop (TV_GRAPHITE_DATA_DEPS);
797 return true;
800 timevar_pop (TV_GRAPHITE_DATA_DEPS);
801 return false;
804 /* When ORIG is true, pretty print to FILE all the original data
805 dependences of SCoP in DOT format, otherwise print the transformed
806 data deps. */
808 static void
809 dot_deps_stmt_2 (FILE *file, scop_p scop, bool orig)
811 int i, j, k, l;
812 poly_bb_p pbb1, pbb2;
813 poly_dr_p pdr1, pdr2;
815 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
816 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
818 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
819 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
821 poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, orig);
823 if (!pddr_is_empty (pddr))
825 fprintf (file, orig ? "OS%d -> OS%d\n" : "TS%d -> TS%d\n",
826 pbb_index (pbb1), pbb_index (pbb2));
828 free_poly_ddr (pddr);
829 goto done;
832 free_poly_ddr (pddr);
834 done:;
838 /* Pretty print to FILE all the data dependences of SCoP in DOT
839 format. */
841 static void
842 dot_deps_stmt_1 (FILE *file, scop_p scop)
844 fputs ("digraph all {\n", file);
846 dot_deps_stmt_2 (file, scop, true);
847 dot_deps_stmt_2 (file, scop, false);
849 fputs ("}\n\n", file);
852 /* When ORIG is true, pretty print to FILE all the original data
853 dependences of SCoP in DOT format, otherwise print the transformed
854 data deps. */
856 static void
857 dot_deps_2 (FILE *file, scop_p scop, bool orig)
859 int i, j, k, l;
860 poly_bb_p pbb1, pbb2;
861 poly_dr_p pdr1, pdr2;
863 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
864 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
865 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
866 FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
868 poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, orig);
870 if (!pddr_is_empty (pddr))
871 fprintf (file, orig
872 ? "OS%d_D%d -> OS%d_D%d\n" : "TS%d_D%d -> TS%d_D%d\n",
873 pbb_index (pbb1), PDR_ID (pdr1),
874 pbb_index (pbb2), PDR_ID (pdr2));
876 free_poly_ddr (pddr);
880 /* Pretty print to FILE all the data dependences of SCoP in DOT
881 format. */
883 static void
884 dot_deps_1 (FILE *file, scop_p scop)
886 fputs ("digraph all {\n", file);
888 dot_deps_2 (file, scop, true);
889 dot_deps_2 (file, scop, false);
891 fputs ("}\n\n", file);
894 /* Display all the data dependences in SCoP using dotty. */
896 DEBUG_FUNCTION void
897 dot_deps (scop_p scop)
899 /* When debugging, enable the following code. This cannot be used
900 in production compilers because it calls "system". */
901 #if 0
902 FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
903 gcc_assert (stream);
905 dot_deps_1 (stream, scop);
906 fclose (stream);
908 system ("dotty /tmp/scopdeps.dot &");
909 #else
910 dot_deps_1 (stderr, scop);
911 #endif
914 /* Display all the statement dependences in SCoP using dotty. */
916 DEBUG_FUNCTION void
917 dot_deps_stmt (scop_p scop)
919 /* When debugging, enable the following code. This cannot be used
920 in production compilers because it calls "system". */
921 #if 0
922 FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
923 gcc_assert (stream);
925 dot_deps_stmt_1 (stream, scop);
926 fclose (stream);
928 system ("dotty /tmp/scopdeps.dot &");
929 #else
930 dot_deps_stmt_1 (stderr, scop);
931 #endif
934 #endif